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Preface

Technological innovations and exponential increases in computing power
have profound impacts on scientific research and development. New tech-
nologies allow us to collect data with an unpresredented level of size and
complexity. Internet disseminations make large and complex data widely
available to statisticians. Statistics has pervaded in every facet of sci-
ence and engineering. It plays an increasingly important role in computa-
tional biology, quantitative finance, information engineering, neuroscience,
medicine, and policy making as we enter a new era of quantitative research.
These applications pose new challenges to the design of experiments and
the analysis of the resulting multivariate data. At the occasion of the 65th
birthday of Professor Kai-Tai Fang, we give these two classical fields of
statistics a contemporary outlook.

This volume consists of the reviewed papers that contributed by many
prominent statisticians, who are the friends and former students of Profes-
sor Kai-Tai Fang. It features an exclusive interview with Professor Kai-Tai
Fang and seven review articles that are particularly useful to researchers
who are new to these areas. It gives an overview of new developments and
a contemporary outlook on the analysis of multivariate data, the design of
experiment and their related topics. The monograph is dedicated to Profes-
sor Fang on his 65th birthday in June 2005. Most of the articles in the book
will be presented at the International Conference on Statistics in Honor of
Professor Kai-Tai Fang's 65th Birthday, June 20 - 24, 2005, Hong Kong, co-
sponsored by the Institute of Mathematical Statistics and the Hong Kong
Baptist University, co-chaired by Fred Hickernell and Jianqing Fan.

Professor Kai-Tai Fang, fellow of the Institute of Mathematical Statis-
tics and fellow of the American Statistical Association, is a strong scholar
and prolific researcher. He has published over 200 articles, authored or co-
authored 17 books, and edited 8 lecture notes and proceedings in a wide
range of statistical subjects, including multivariate analysis, design of ex-
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periments, and quasi Monte Carlo methods. In addition, Professor Fang has
actively participated in a large array of consulting projects, including the
designs of chemical and biological experiments, standardization of Chinese
garments, and assessment of service of Hong Kong public libraries. As a
leading figure in Hong Kong and China, he has greatly popularized the use
of statistics in academic research and industry, enthusiastically participated
in organizing various professional meetings, and provided conscientious ed-
itorial service. He is a strong professional leader and a dedicated educator,
who foster a new generation of fertile statisticians worldwide.

Inside this monograph, Ms. Agnes W.L. Loie, former head of Informa-
tion and Public Relation Office of the Hong Kong Baptist University, pre-
sented an interview article with Professor Kai-Tai Fang. It includes many
anecdotes of Professor Fang and gives snapshots of Professor Fang's life as
a student, researcher and family man. It contains some of his philosophy
of life, outlines of his important contributions to statistics, and a list of his
publications.

The twenty-three invited papers encompass a wide range of topics and
are grouped into four parts. They are independent of each other. Each is
dedicated to a specific issue on multivariate analysis, design of experiments,
biostatistics, and other statistical issues. This book is targeted to a broad
readership. We hope that regardless of their background, readers will find
some parts are of their interest and suit their needs.

The first part contains 7 articles on multivariate analysis, studying a
number of emerging issues in the field. It begins with Art Owen's intro-
duction of multidimensional variation for quasi-monte Carlo simulation,
followed by Rahul Mukerjee's investigation on the higher order power prop-
erties for a very general class of empirical discrepancy statistics. Mingjin
Wang and Qiwei Yao introduced various methods for modelling multivariate
volatilities, a fundamental issue in asset pricing and portifolio management.
Some recent advances in two-level structural equation models were surveyed
in the paper by Peter Bentler, Jiajuan Liang and Ke-Hai Yuan. Hong-bin
Fang, Samuel Kotz and Gang Wei studied the geometric structures of copu-
las and local dependence patterns, which have wide applications in medical
research and risk managements. Driven by the needs of longitudinal studies,
Jianxin Pan and Dietrich von Rosen proposed a new data-driven approach
for modeling mean-covariance structures in a growth curve model. Tonu
Kollo and Anu Roos enriched the classical multivariate distribution the-
ory by contributing results and simulation methods on Kotz-type elliptical
distributions.

The second topic focuses on the design of experiments, consisting of 8
articles, covering a wide array of important subjects. It begins with the
construction of the optimal two-step sequential U-type of designs by Pe-
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ter Winker, followed by the study on the granularity and perfect balance
of experimental designs by Fred Hickernell. Scott Beattie and Dennis Lin
introduced a new class of Latin hypercube designs for computer experi-
ments. Min-Qian Liu, Hong Qin and Min-Yu Xie gave an overview on some
recent developments on the application of the discrete discrepancy to sev-
eral common experiment designs. Lean designs of orthogonal arrays of 2-
and 3-levels were extensively discussed by Chang-Xing Ma and Ling-Yau
Chan. Yingcai Su presented quasi-random sampling for estimation of in-
tegrals of random fields, including a review of number-theoretic methods.
An efficient approach to the probabilistic sensitivity analysis in engineering
design was introduced by Agus Sudjianto, Xiaoping Du and Wei Chen. The
topic concludes with an investigation on the kernel selection problem for
experimental designs by Aijun Zhang.

The third part is on some recent developments in biostatistics with
four articles on different subjects. Jianqing Fan, Gang Li and Runze Li
presented a contemporary overview on a new class of variable selection
techniques for various models in survival analysis with emphasis on oracle
properties. Gang Li, Runze Li and Mai Zhou complemented the topic by
presenting a review on the empirical likelihood for survival analysis. Ming
Tan, Hongbin Fang and Guoliang Tian reviewed the recent advance on
statistical analysis for tumor xenograft experiments and developed a new
multivariate random effect model. Parameter estimation after termination
of a multivariate group sequential test was investigated by Chengqing Wu,
Aiyi Liu and Kai F.Yu.

The fourth part of the monograph collects four papers on advance in
statistics. The subject begins with a contribution by Yuehua Wu on model
selection based on M-estimation and cross-validation, followed by the article
by Jinting Zhang on selecting important variables using order-dependent
thresholding with emphasis on applications to regression splines. The last
two papers in this monograph are on the two-sample t-test by using the
Box-Cox transform authored by Hanfeng Chen and Md. Khairul Islam,
and on the admissibility of location parameter under a more general class
of loss functions contributed by Jian-Lun Xu.

We are most grateful to the enthusiastic support of all of the people who
have helped to make this volume possible. We are particularly indebted to
Hongbin Fang, Fred Hickernell and Runze Li for their invaluable help. We
owe many thanks to Kenny Yeung for providing technological assistance
in turning collective contributions into such a wonderful book. We would
like to express our gratitude to Heping Zhang, the series editor, and Rok
Ting Tan of World Scientific for their valuable assistance and guidance.
Each article was reviewed critically by referees. We are grateful to Hongbin
Fang, Guoliang Tian, Fred Hickernell, Runze Li, Hua Liang, Jiajuan Liang,
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Changxing Ma, Kun Nie, Jianxin Pan, Gang Wei, Yuehua Wu, Jianlun
Xu, Ke-Hai Yuan, Aijun Zhang, Jinting Zhang, for their invaluable and
conscientious refereeing service.

Finally and most importantly, as his former students, we would like to
wholeheartedly thank Professor Kai-Tai Fang for bringing us into the world
of statistics, sharing with us his scientific creativity and fertile imagination,
teaching us philosophy of sciences, and showing us how to mentor and foster
younger generations. Many of our achievements reflect his determination.
We are very proud of him, as a teacher and a friend. We wish him the best.

Jianqing Fan, Princeton
Gang Li, Los Angeles
December 5, 2004



Contents

A Conversation with Kai-Tai Fang
Agnes W. L. Loie 1

A Tribute to Professor Kai-Tai Fang
Agnes W. L. Loie 23

Publications
Kai-Tai Fang 29

Part I Multivariate Analysis

Multidimensional Variation for Quasi-Monte Carlo
Art B. Owen 49

Higher Order Power Properties of Empirical Discrepancy
Statistics
Rahul Mukerjee 75

Modelling Multivariate Volatilities: An Ad Hoc Method
Mingjin Wang, Qiwei Yao 87

Some Recent Advances in Two-level Structural Equation
Models: Estimation, Testing and Robustness
Peter M. Bentler, Jiajuan Liang, Ke-Hai Yuan 99

Dependence Patterns of Random Variables: Geometric
Properties of Copulas
Hong-Bin Fang, Samuel Kotz, Gang Wei 121



X Contents

Modelling Mean-Covariance Structures in the Growth
Curve Model
Jianxin Pan, Dietrich von Rosen 141

On Kotz-Type Elliptical Distributions
Tonu Kollo, Anu Roos 159

Part II Experimental Design

Optimized Two-Step Sequential [/-Type Designs
Peter Winker 173

Granularity and Balance in Experimental Design
Fred J. Hickernell 185

A New Class of Latin Hypercube for Computer Experiments
Scott D. Beattie, Dennis K. J. Lin 205

Discrete Discrepancy and Its Application in Experimental
Design
Min-Qian Liu, Hong Qin, Min- Yu Xie 227

Orthogonal Arrays of 2 and 3 levels for Lean Designs
Chang-Xing Ma, Ling- Yau Chan 243

Quasi-Random Sampling for Estimation of Integrals of
Random Fields
Yingcai Su 257

Uniform Sampling and Saddlepoint Approximation for
Probabilistic Sensitivity Analysis in Engineering Design
Agus Sudjianto, Xiaoping Du and Wei Chen 269

Schur-Convex Discrimination of Designs Using Power and
Exponential Kernels
Aijun Zhang 293

Part III Advances in Biostatistics

An Overview on Variable Selection for Survival Analysis
Jianqing Fan, Gang Li, Runze Li 315



Contents XI

Empirical Likelihood in Survival Analysis
Gang Li, Runze Li, Mai Zhou 337

Statistical Analysis for Tumor Xenograft Experiments in
Drug Development
Ming Tan, Hong-Bin Fang, Guo-Liang Tian 351

Estimating Secondary Parameters after Termination of a
Multivariate Group Sequential Test
Chengqing Wu, Aiyi Liu, Kai F. Yu 369

Part IV Advance in Statistics

Penalized M-Estimation-Based Model Selection for
Regression by Cross-Validation
Yuehua Wu 387

Order-dependent Thresholding with Applications to
Regression Splines
Jin-Ting Zhang 397

A New Transformed Two-Sample i-Test
Hanfeng Chen, Md. Khairul Islam 427

On Improved Estimates of Location in the Presence of an
Unknown Scale
Jian-Lun Xu 435

Index

Subject Index 445

Author Index 449





A Conversation with Kai-Tai Fang

Agnes W. L. Loie

Abstract:
Kai-Tai Fang (#$!#) was born in 1940 in Taizhou,
Jiangsu province, China. He received his secondary
education at the renowned Yangzhou High School in
Jiangsu. In 1957, Kai-Tai entered Peking University
to read mathematics and in 1963 he undertook gradu-
ate studies at the Institute of Mathematics, Academia
Sinica, Beijing.

After graduation, Kai-Tai was appointed Assis-
tant Researcher in the Institute of Mathematics,
Academia Sinica, a position he held until 1978 when
he was promoted to Assistant Professor. The follow-
ing year, he was transferred to the Institute of Ap-
plied Mathematics, Academia Sinica, shortly after . .
which he was promoted to Associate Professor in Oc-
tober 1980. In 1984, Kai-Tai was appointed Associate
Director of the Institute and in July 1986, he became Professor.

Kai-Tai has received many awards for his statistical works, which had
a profound effect on developments in a wide range of fields. In 1982 he
was awarded the special prize of the Ministry of Light Industry for the
standardization of apparel sizes for Chinese adults. In 1984, his unified
approach to the distribution of restricted occupancy problems won him the
second-class prize for Science & Technology from the Academia Sinica. Kai-
Tai's precision test methodology and determination gained him second-class

Contemporary Multivariate Analysis and Experimental Design—In Honor Celebration of Pro-
fessor Kai-Tai Fang's 65th birthday. Edited by Jianqing Fan and Gang Li. The World Scientific
Publisher, 2005.
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prize for National Standardization in 1988. His solutions to the distribution
of some random military coverage problems also won him another Science
& Technology prize from the Academia Sinica the following year.

In 1992, Kai-Tai received a first-class award for Most Excellent Textbook
from the State Statistical Bureau of the PRC for his authorship of Statistical
Distributions. In the same year, his book Generalized Multivariate Analysis
won him a special nationwide award for Most Excellent Book in China by
the Government Information and Publication Administration, Beijing. In
1998, the number of citations of Kai-Tai's works reached the ninth highest
in the country, according to the Chinese Science Citation Database.

In Hong Kong, Kai-Tai was presented with the President's Award for
Outstanding Performance in Scholarly Work by Hong Kong Baptist Univer-
sity in 2001. He was made an honorary member of the Hong Kong Statistical
Society in 2002.

Kai-Tai has authored and co-authored 16 textbooks and monographs
and published more than 200 research papers. He has served on numerous
editorial boards and was editor-in-chief of the book series "Modern Applied
Mathematics Methods" in China from 1990 to 2003. Kai-Tai was instrumen-
tal in organizing several influential conferences and workshops, both inter-
nationally and nationally. He has supervised the research of many graduate
students and provided useful advice, encouragement and collaboration for
students and their peers around the world. In honor of his scholarly contri-
butions, Kai-Tai has been elected a Fellow of the Institute of Mathematical
Statistics and a Fellow of the American Statistical Association. The latter
honored him "for (his) outstanding contributions to multivariate analysis,
Quasi-Monte Carlo methods and design of experiments; for (his) leader-
ship in statistical education, consultation and administration; and for (his)
editorial service." He has also been elected a Member of the International
Statistical Institute.

The following conversation took place in Hong Kong during the fall of 2004.

Loie: When did you start to develop an interest in mathematics and sta-
tistics? Did it have anything to do with your family background?
Fang: Not really. Shortly after I was born, World War II broke out and
it was an era of complete chaos. My parents took the seven of us to find
refuge in rural villages. After the war, things were still chaotic and a formal
education system was not in place. The teachers were not serious about
teaching and that gave us a perfect excuse to follow suit with regard to
learning. I remember that because of a shortage of space and manpower,
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two classes of different levels shared the same
classroom and the same teachers. That meant
that the teacher could only devote half his time
to teaching us and the other half to teach-
ing the higher level. We lacked interest and
the desire to study hard. We aimed only at a
mere pass. It was not until headmaster Kong-
hou Wang (HiTLJP) stepped into our classroom
that I took a positive twist in my learning atti-
tude. It was also then that I began to develop
an interest in mathematics.

Loie: In what way did he inspire you?
Fang: Every day Mr Wang would give an extra
30-minutes' tuition for our grade six class and
he would come up with a list of questions for us Fig. 2. Kai-Tai when he was
to work on. Those who finished first and got all three,
the answers right would be allowed to leave the
classroom to play. The questions he set were far
from routine and were in fact pretty interest-
ing. There was one that I remember in particular. The question was about
a farmer who was selling a basket of eggs. He approached the first family
who bought half the basket of eggs plus half an egg. The second family
bought half of the remaining total plus half an egg. The third bought the
remaining half of the total plus half an egg, then the whole basket of eggs
was sold out. How many eggs were there in the basket? It didn't take me
long to come up with the answer: seven. I was the first to hand in the answer
and was instantly allowed to go out and play. Even my elder sister, who
was in the same class and ranked first in class, could not get the answer
right. That was the first time in my life that I discovered my strength and
competitiveness; it was also the first time I realized I had an edge over my
classmates. After that, I was almost always the first to leave the classroom.
This self-discovery, coupled with Mr Wang's recognition, worked miracles in
building up my confidence and had a far-reaching impact on my self-esteem.

Loie: Would you regard Mr Wang your first mentor?
Fang: Indeed he was. He was instrumental in stimulating my interest in
mathematics, an area that I undertook as my lifelong career.

Loie: What happened after that?
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Fang: In 1951, I was ad-
mitted to Yangzhou High
School, one of the most
reputable, well-established
secondary schools in the
whole nation. The school
adopted a serious and pro-
fessional manner and they
(the school board) even
employed university pro-
fessors to teach us. The
deputy headmaster, for ex-
ample, was a famous Eng- F i g 3 Kai-Tai (front, third from right) and other
lish professor. The quality j u n i o r high graduates of Yangzhou High School in
of the teachers was excep- 1954.
tional and they attached
great emphasis to indepen-
dent thinking. The school had produced many famous graduates such
as Chairman Jiang Zemin(lIfliR); Hu Jiaomu (SSfif^), Mao Zedong's
(=&WM) secretary; and more than 10 members of the Chinese Academy
of Sciences.

Loie: Was your interest in mathematics further enhanced here?
Fang: Yes. I met my second teacher who deepened my passion for mathe-
matics. He was Guangzhao Fang (̂ J3fc3$). He adopted an enlightened ap-
proach by first asking questions before giving a lecture. This was to inspire
us to think. I was always among the first two to answer the questions. His
lectures were stimulating and I was captivated by what he had to say. When
I was invited by the school to give a talk on how to learn mathematics in
the late 1980s, I was so pleased to meet Mr Fang again and I highlighted
his teaching approach in my talk.

Loie: I heard that Yangzhou High School was renowned for its whole-
person education and its emphasis on encouraging students to develop a
wide variety of interest as well as nurturing their psychological strength.
How did your secondary education benefit your development as a whole?

Fang: When I entered senior high, I read many books on self-development
to boost my psychological quality and I set a number of targets for myself.
For example, to increase my perseverance level, I planned a series of target
studies for every weekend, a practice that I maintained even when I en-
tered university. Another example is that our school then had a scheme to
encourage students to exercise. Those who succeeded in running a certain
number of kilometers would be awarded a souvenir. I challenged myself to
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run every day, even in the severe cold winter climate. All these self-training
exercises helped equip me with the determination to overcome future prob-
lems, both academic and otherwise; they also gave me the will to succeed.
I never give up easily, regardless of the scale of any problem.

Loie: Can you tell me something about your university studies?
Fang: Professors at Peking University had
high expectations about their students. Peking
University, famous as it was, wanted to do
just as well as Moscow University, which then
ranked first in a number of areas. Their ed-
ucation strategy was to let the best profes-
sors teach first-year students so that the lat-
ter would have a solid foundation for their
studies. This, I think, was a wise strategy be-
cause despite my 10-year stoppage in my stud-
ies due to the Cultural Revolution, I still had
a firm grasp of mathematical techniques. Be-
cause of the keen competition between Peking
and Moscow universities and also among stu-
dents, all of us were under tremendous pres-
sure. Many of my classmates were rilled with
a sense of negativism even though they per- Fig. 4. Kai-Tai during his
formed exceptionally well in their secondary university days,
school days.

Loie: How did you surpass all the difficulties
and keen competition you faced in learning advanced mathematics?
Fang: While at Peking University, I came across a book How to Solve
It - A New Aspect of Mathematical Method, authored by G. Polya, who
was then a professor at the Swiss Federal Institute (where Albert Einstein
graduated), and later at Stanford University. This book embodies a wealth
of wisdom on thinking skills. In a nutshell, the book establishes a close-knit
link between the specific and general and advises readers to be general in
order to be specific and vice-versa. It also warns readers that it is better
not to have a book at all than to believe all that is written in the book.
Professor Polya's book also challenges readers to do something positive to
exceed the teachings of books they read. I was deeply moved by Polya's
teachings and I put them into practice. I set high expectations of myself
and required myself to look for solutions rather than seeking help from my
teachers and classmates. Polya's book has had a life-long impact on me and
I have applied his teachings to my academic studies and research ever since.
It never occurred to me that I would have a chance to thank Professor Polya
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in person. That chance came when I visited Stanford University in 1982.
Professor K.L. Chung (MMW.) took me to see him and I told him that to
me, he was first and foremost a great educationalist and I trusted that his
readers would agree with what I said.

Loie: I understand that you were a student of the renowned P.L. Hsu
(IffJfiS) and became greatly influenced by his supervision.

Fang: Yes, the next per-
son that impacted me was
my supervisor, Professor
P.L. Hsu, a UK-educated
scholar who laid a solid
foundation for multivari-
ate statistical analysis and
who had four papers ac-
knowledging his contribu-
tions published in the
same issue of the presti-
gious international journal
The Annals of Statistics
in 1980. This was an ex-
ceptional treatment by the
journal in recognition of
his outstanding contribu-
tions. Hsu was severely ill

Fig. 5. P.L Hsu (front, second from left) with i n i g 6 2 a n d w a g i n s t m c t e d

Kai-tai (back, second from left) and his other , . ,, , , . ,
j . . , , . ., D ,. TT . .. to take full rest by his doc-

graduate students at the Peking University cam- J

pus in 1963 t o r- Despite his illness, he
continued to work full time
and take up both research

and supervision duties. He required us to study a 50-page book written
by a Russian mathematician, a Stalin award winner, and asked us to try
to improve his results and make a report in class. After our presentation,
Hsu told students that if they followed the Russian approach, they could
only come up with a single dimension. He then showed us how to solve
the problem using different approaches and came up with a more powerful
answer that catered not only to one dimensional statistics but also to high
dimensional statistics. This was an eye-opening experience for me. Hsu's

- - insistence in fulfilling his teaching obligations, despite his weak physical
condition, and his dedication to research exerted great influence on my fu-
ture academic career. In fact, my first paper "The Limiting Distribution of
Linear Permutation Statistics and its Applications" was completed under
his supervision. Hsu said to me that there was a gap in a paper originally
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published in The Annals of Statistics and should I be able to identify and
fill in that gap, I would be qualified to graduate. Very soon, I was able
to identify the gap and fill it in and even discovered that the paper could
well be extended. I put in many new angles which produced some interest-
ing results. After two weeks, I handed in my paper and, after reading it,
Hsu told me that I could now graduate. He even recommended that Acta
Peking University should publish my paper, which it willingly accepted.
It was however most unfortunate that before my paper was published, a
political movement took place and all publications and newsletters came to
a halt. Fortunately, the paper was published 19 years later in Acta Appl.
Math.

Loie: That was an indelibly dark era for mainland residents. How did you
survive this period?

Fang: China then was really shrouded in an intense political climate and
people became distant from one another, fearing that any outpouring of
genuine feelings would be betrayed, especially if they were about govern-
ment and policies. Because of this, my years at the university were unhappy
- a sharp contrast from my high school days. My dislike for the chaotic polit-
ical movement in Peking University prompted my decision to pursue further
studies at the Institute of Mathematics, Academia Sinica (later changed to
Chinese Academy of Sciences) and became the first postgraduate student
of Professor Minyi Yue (USIt) .

Loie: What did you do in Academia Sinica?
Fang: My first two years
at the Institute of Mathe-
matics were fruitful under
a favorable academic am-
bience. In 1965 I was as-
signed to An Shan Steel
and Iron Co and was forced
to turn to application in-
stead of just theory. The
engineers there treated us
nicely and had a high ex-
pectation of us. At that
time, I used 'non-linear' F i g fl# K a i . T a i ( f ront) g e c o n d from r ight)> o t h e r

regression analysis to an- p o s t g r a d u a t e students and new staff of Academia
alyze the data collected. Sinica were sent to work in rural villages during
This period signaled a pos- the Cultural Revolution,
itive change for me in that
I could apply my knowl-
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edge to meet the high expectations people bestowed on us. What I learned
in Peking University focused merely on theory and did not touch on any
applications, which was the weakness of the Russian system. While I was at
An Shan, I was asked to give lectures to the engineers. I covered eight topics
in statistics, all of which were published for staff reference, an indication of
the high regard in which they held me. However, this favorable situation
did not last long as the political movement took shape the following year.

Loie: That was a prelude to a political storm, with the Cultural Revolution
just round the corner?

Fang: Indeed. The subse-
quent years were a com-
plete waste of time. All
of us were deprived of the
right and opportunity to
pursue our studies and re-
search. In 1965 and 1966,
I was sent to the villages
as a laborer. The following
two years came the Cul-
tural Revolution and the
political movement lasted
until 1976. We were all
under tremendous pressure

Fig. 7. Grace Yang (centre) and stress and were un-
certain about tomorrow.
What was important then

was that we could survive today and we did not even dare to think about
tomorrow. As much as I hated this period, it did strengthen the psycholog-
ical side of me, enabling me to face each and every bitter challenge with an
unyielding manner. Like Professor Grace Yang (SPB3i?) of the University of
Maryland once said me: "You have recovered your 10 lost years." She gave
me a lot of encouragement on a number of issues.

Loie: When did you learn orthogonal design and start conducting experi-
ments with this method?
Fang: During the early '70s, staff from Peking University and the Insti-
tute of Mathematics, Academia Sinica, attempted to promote and apply
orthogonal design to the industrial sector. In 1972, I had the opportunity
to go to the Tsingdao Beer Factory and other factories. I supervised the
engineers there to apply orthogonal design to industrial experiments. It was
a precious experience for me to witness the substantial potential of apply-
ing orthogonal design to practical industrial use. However, I also detected
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the considerable difficulties faced by the engineers in understanding statis-
tical methods, especially in calculating the ANOVA Table without the help
of computers or calculators. I came to realize the need for statisticians to
simplify the complicated statistical theories and methods, and later created
"Visualization Analysis" for analytical use on experiment data. Very soon
this method was commonly used on the Mainland, triggering a great sense
of encouragement and inspiration on my part.

Loie: There were quite a number of contributions that you made to or-
thogonal design. What were they?
Fang: During my process of promoting the common use of orthogonal de-
sign, I encountered quite a number of complicated multi-factor and non-
linear issues. The engineers were unable to identify a satisfactory parameter
value combination for a long time. An example was a porcelain insulator
factory in Nanjing. The factory had a team of staff assigned to conduct
experiments continually to identify a satisfactory parameter value combi-
nation. Although they had achieved much in their experiments, they still
failed to get one of the responses to meet the requirement, thus failing to
deliver the glass insulator products. (At that time, the factory received a
large number of orders for glass insulators but was unable to deliver the
products.) In view of the complexity of the issue, I adhered to the principle
of "big net catching big fish". I conducted 25 experiments and arranged six
5-level factors by orthogonal design. Prom a statistical point of view, the ex-
periment model was non-estimable and was therefore incorrect. However,
in those 25 experiments, one had all the responses fulfilling the require-
ments. That was great news to the factory in-charge. Should one liken the
outcome to winning the U.S. lottery or was it significant? In fact, using
orthogonal design to conduct 25 experiments actually represented 15,625
experiments, thus greatly increasing the likelihood of attaining an ideal
technical/manufacturing condition. In my opinion, the power of fractional
factorial design was that the experimental points have a good represen-
tation. Since then, I have used the same strategy to solve many of the
"lasting, major and difficult" problems of the factories. This success has
also injected in me the necessary courage to initiate the Uniform Design
theory and method.

Loie: Can you tell me how you came up with uniform design, an approach
so well known in the statistical field?
Fang: Using the "big net" approach to get the best combinations, I mus-
tered the courage to create another new approach - the uniform design ap-
proach. After I returned to the Academia Sinica in 1970,1 came across sev-
eral occasions which called for the application of a more powerful statistical
approach.
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For example, in 1975,
a factory manufacturing
steel for automobiles wanted
to come up with a nation-
wide standard that needed
the numerical calculation
of many five-dimension in-
tegrals. At a time when
computers were much less
powerful, it was almost im-
possible to do so. Luogeng .
Hua (W8£Bi) and Yuan „ . o v „ , , . , .. ,. , . , .

v . ' Fig. 8. Yuan Wang (right) after being conferred
Wang (±7G) came up with a n h o n o r a r y d o c t o r a l d e g r e e b y Hong Kong Bap-
a method to solve high di- t i s t University. Prom left: Kai-Tai; Daniel Tsc,
mension integral problems. former President and Vice-Chancellor of HKBU;
Professor Wang taught me and Lu Ping, another honorary degree recipient in
how to use their method 1998.
and I realized that the
method might be applied
to experimental design.

In 1978, there were three major missile-related projects covering land,
sea and aerospace. A problem-solving approach was needed to tackle all
the projects. Again, it was highly challenging. I had to come up with a
new method, one that could approximate a complicated system by a simple

method with required ac-
curacy. The great chal-
lenge was a motivating
force to me.

I collaborated with Yuan
Wang and we worked out
the uniform design. This
method made possible the
calculation of an accurate
answer in .00001 seconds
with the required accu-
racy. It was both time- and
cost-saving and provided a
valuable alternative since

Fig. 9. Kai-Tai with Samuel Kotz and his wife, it could also be used in
computer experiments as
well as laboratory experi-

ments. Several years after the uniform design theory was proposed, I dis-
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covered that it was being used extensively in the Mainland. Not only was
it used for military purposes, it was also adopted by and for civilians.

Loie: The 1980s marked a significant chapter in your life as you started to
play a key role in the global scene. Would you consider that as an epoch-
making era for you?

Fang: In a way, yes. In 1980 when I had the opportunity for an overseas
visit, I did not plan to go initially in view of my wife's illness. She suf-
fered from asthma and, of course, my two daughters were quite young. My
standard of English then was low and basically I could not communicate in
the language. Besides, we were blocked from the outside world during the
10 years of political movement and were ignorant of what was happening
around the world. After much deliberation, I finally visited Yale University
with one focus in mind - to learn as much as I could within a limited period
of time. The eight months I spent at Yale was, on one hand, tremendously
difficult as I was learning from scratch and yet, on the other hand, it was
fulfilling as I succeeded in coming up with several papers, one of which
was published in a respected journal and one in Encyclopedia of Statistical
Sciences. While at Yale, Professor Samuel Kotz sent me one of his books
which inspired me to come up with a paper - my first paper to be published
in a western journal - and which started a series of collaborations between
us.

Then in 1981 and 1982,1 went to Stanford for a visit and there I met Pro-
fessor T.W. Anderson, a Princeton graduate who later taught at Columbia

and Stanford universities.
He asked me to read two
papers and then we had
some idea about general-
ized multivariate analysis.
Many statisticians wanted
to generalize multivariate
analysis to non-normal pop-
ulations, but they failed.
The combination of the
essence of Polya's and
Hsu's teaching - that you
need to seek different ap-

Fig. 10. T.W. Anderson (second from left) and P r o a c h e * a n d v o u n e e d a
jjjg w i f o powerful tool in order to

exceed the work of others
- prompted me to under-

take a search for such a powerful tool - the d operator. I systemat-
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ically developed this tool and wrote two papers on the topic. After
publication, Professor Anderson identified a vast potential for further
development and subsequently selected a topic for extended research.
He engaged more of his students in this research and on my return to the
Mainland, I also brought many students into the activity.

This collaborative re-
search of ours con-
tinued for eight years,
during which more •
than 50 articles, two
monographs and a
collection of papers
were published. This
was a big leap for-
ward compared to
the situation prior
to my overseas visit
when it was a norm
for one project to
generate only one or
two papers. I real-
ized that for people F i g . n . Shiing-Shen Chern (third from left) visiting
of high standards, the Institute of Applied Mathematics, Academia Sinica,
the choice of topics in 1986. (Prom left:) Kai-Tai, Minyi Yue, Wentsun Wu,
was of paramount Yuanshuen Ching and Fang Wu posed a picture with him
importance. during the visit.

Our collaboration
brought me high in-
ternational reputation. I was invited by Encyclopedia and other journals
to act as referee, author or Associate Editor. I was deeply appreciative of
Professor Anderson for his identification of the potential and productivity
of generalized multivariate analysis as a research topic.

Loie: Did you have the chance to visit other universities?

Fang: Yes, in October 1982, I was invited to give talks at several uni-
versities, including Princeton, Yale and Columbia, and the universities
of Pennsylvania, Maryland, Rutgers and George Washington. These vis-
its were useful to my work, especially after I was promoted to Asso-
ciate Director of the Institute of Applied Mathematics, Academia Sinica.
Then in 1985-86, upon Professor I. Olkin's recommendation, I taught two
subjects in the Swiss Federal Institute as a Guest Professor. It posed
another challenge for me as it was the first time I had to teach in
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English. During my stay there, I seized
the opportunity to visit various pres-
tigious institutions including Oxford,
Cambridge, London University College
and Imperial College, etc. The vis-
its helped me to "network" which has
proved useful throughout my career. In
fact, it was during my overseas trips that
I met Professors Colin White, C.R. Rao,
Norman Lloyd Johnson, D.R. Cox, A.P.

Fig. 12. Dietrich von Rosen (back, Dawid, Y.L. Tong (W.7K&), Y.S. Chow
c e n t r e ) (MTtSk), George Tiao pJ#B«), Michael

Stephens and Dietrich von Rosen. I am
glad that our paths crossed as they were

all inspirational to me in one way or another.

Loie: I heard that you had a particular "connection" with the University
of North Carolina (UNC) at Chapel Hill. How is that so?

Fang: Well, I first went to the University of North Carolina in Chapel
Hill - where my former supervisor P.L. Hsu once taught - as visiting pro-
fessor between 1986 and 1988. I taught generalized multivariate analysis.
Since then, I have
been linked to the
University in differ-
ent ways. In addi-
tion to P.L. Hsu, my
former student Jian-
qing Fan (ifc&ffi),
a recipient of the
COPSS award and
now professor at Prina
ton, was also a fac-
ulty member of the
university.

Loie: How would
you describe your

academic and re- Fig. 13. Kai-Tai fifth from left with C.F. Ng (centre), the
search pursuits at Dean of Science and now President and Vice-Chancellor,
Hong Kong Baptist and departmental colleagues at Hong Kong Baptist Uni-
University? versity in 1997.

Fang: With the en-
couragement of Kai-
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Wang Ng (M^ffi), I moved to Hong Kong Baptist University (then Col-
lege) in 1990. My years at Hong Kong Baptist University were the happiest
and smoothest of my academic life. Many of my important papers were
published during this period in international journals, gaining me global
exposure and reputation. The academic ambience here is stimulating and
the congeniality among colleagues is notable. The support I gained from the
top administrators is keen, facilitating my collaboration with overseas and
Mainland academics. The number of PhD and MPhil students supervised
by me is comparatively large. All these factors have created an environment
conducive to both academic and research developments. I must thank our
former and current Presidents Dr Daniel C.W. Tse (IM&iM-) and Professor
C.F. Ng (Mfitfli), as well as Academic Vice-President Professor Herbert
H. Tsang (#*SW) for their encouragement and support. It was at Hong
Kong Baptist University that I reaped the most fruitful harvest in terms
of academic and research pursuits. It was also here that I received various
honors and awards.

Loie: You have developed or further developed quite a number of methods
during your academic career here at HKBU. Can you tell me more about
them?
Fang: The Quasi-Monte Carlo method was one that was expanded and
further developed here in Hong Kong. We started applying the method in
Beijing to develop the uniform design. In Hong Kong we continued to apply
the Quasi-Monte Carlo Method to experimental design, and also to a variety
of statistical problems, including simulation and statistical inference. In
1994, I co-authored a book, Number-Theoretic Methods in Statistics, with

Yuan Wang to further promote
the method and its applications.
It was also in the same year that
I became President of the newly-
established Uniform Design Asso-
ciation of China, a post which I
held for 10 years until 2003.

There was a hiccup in the de-
velopment of uniform design as
the uniformity was categorized as
a geometric criterion instead of a
statistical one. This criticism pro-

• vided an excuse for people to re-
Fig. 14. Peter Winker. ject our papers. In view of this,

I decided to spend more time
on the uniform design theory. In
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1992, a participant from North Carolina State University attended my con-
ference in Hong Kong and told me that it was a pity that the Western
community did not know about the uniform design. This remark was of
great encouragement to me and inspired me to work on more solid basic
theory for the uniform design method.

Loie: How did you overcome the technical difficulties of promoting the
uniform design theory and method?
Fang: I indeed encountered a number of problems in tackling the issue.
First, I was not familiar with the typical tools employed by the Quasi-
Monte Carlo method as they were invented by mathematicians such as
Luogeng Hua and Yuan Wang. Besides, I am a statistician and not a pure
mathematician. One way to solve the problem was for me to learn to use
the tools but it would not be effective in light of my age and time.

Second, the uniform design theory in itself was difficult. I therefore
spent the first four years, i.e. from 1992-96, working on it. It was like an
exploration for me and I made slow progress. It was necessary for me to
identify the tools that suited me - on which I spent an enormous amount of
time. As the Chinese saying goes: "It is of little use for peonies to blossom
only by themselves. They need green leaves to bloom with them." I was
stimulated to focus more of my time on the uniform design. In fact, 90 per
cent of my academic pursuits have focused on uniform design since then. My
collaboration with several scholars led to the discovery of a breakthrough
that suited me. I came up with the conjecture
that most orthogonal designs were uniform. If
that was the case, we could link up orthogonal
design with uniform design and obtain a vast
development potential for uniform design.

I spent one year with Peter Winker of Ger-
many, a doctoral student then and a professor
now, to prove with the computer that my con-
jecture was true. It was exciting to find that
my conjecture was true in that many existing
orthogonal designs were also uniform designs.
Our result was based on the measure of uni-
formity proposed by my colleague, Fred Hick-
ernell. This discovery was of mutual benefit to
both Fred and myself. For him, his proposed
measure of uniformity was initially not appre-
ciated by many but his measure became nee- _ , ,

. ., , . „ , . Fig. 15. Rahul Mukerjee.
essary in uniform design. For me, his measure
of uniformity helped prove that many existing
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orthogonal designs were uniform designs. With this, we still had one step
to complete - to come up with a mathematical proof.

To achieve this, I invited Rahul Mukerjee, Professor of the India Insti-
tute of Management, to collaborate with me. Rahul is a worldwide expert
in experimental design. After two weeks, he told me that my conjecture
was not always true, even for a two-level factorial case. However, he came
up with an excellent result - that we could link up uniformity with orthog-
onality. A criterion "aberration" was used to measure orthogonal design.
For uniform design, the centered discrepancy was used to assess uniform
design. With this, Rahul established an analytic relationship between cen-
tered discrepancy and aberration.

This discovery was im-
mediately published in a
top journal, Biometrika. It
opened up an entirely new
area that linked up uni-
form design and factorial
design, an area in which I
collaborated with C.X. Ma
(MIMW) and others, and
which resulted in the pub-
lication of more than 20
papers since 1999-2000.

Then in 2000, I began
• collaboration with S.G.

Fig. 16. Prom left: A.P. Dawid, Fred Hickernell, G e ( ® ^ ) f r o m Suzhou
Kai-Tai and T.W. Anderson at a conference in University and M.Q. Liu
1997. Sitting behind Kai-Tai was C.R. Rao. ( fJKT) from Narikai Uni-

versity to link up combina-
torial design and uniform

design. Another new direction was established and this also led to the pub-
lication of many research papers.

The breakthrough we achieved in relation to uniform design won inter-
national recognition. The Encyclopedia of Statistics Science (Second Edi-
tion) has chosen uniform design as an entry while the Handbook of Statistics
Volume 22 (2003) already included uniform design as a chapter. Springer
Handbook of Engineering Statistics invited us to write a chapter on uniform
design for engineers and this too will soon be published.

Uniform design also won national acclaim. The Uniform Design Associ-
ation of China, for example, reflected the need to conduct national confer-
ences, training courses, workshops and other activities to meet the calls to
promote the applications of uniform design in the Mainland.
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Application-wise, there were numerous successful applications of uni-
form design in China and overseas. With the keyword "uniform design",
you can call up (on the Internet) hundreds of published case studies. The

application of uniform de-
sign by Ford Motor Co
in the U.S. is exemplary
of the applicability of this
method. At Ford, under
the leadership of Dr. Agus
Sudjianto, the technique
has become a critical en-
abler for them to execute
"Design for Six Sigma"
to support new product
development, in particu-
lar, automotive engine de-
sign. I was told that to-

Fig. 17. Kai-Tai poses with Jianqing Fan (third . ,
from left) and his other former graduate students UsinS U m f o r m d e S 1Sn h a v e
during a conference break. become standard practices

at Ford Motor Company
to support early stage of

product design before hardware is available. Uniform design has also been
successfully introduced elsewhere. A notable example was the significant
contribution made by Professor Dennis Lin (f-fcftji) to promoting the the-
ory and application of uniform design in Taiwan, India and the U.S.

Loie: Apart from research, you also spent much time on statistical educa-
tion. Can you elaborate on that?
Fang: To promote statistical education, I wrote international monographs,
textbooks for undergraduate and postgraduate studies as well as textbooks
for engineers in the Mainland and for various targets on different occasions.
I was also willing to take up guest professorships. Often, many of the partic-
ipants who are now professors and industry and university leaders came to
me and said they had listened to my lectures on various occasions or studied
my textbooks when they were students. I found that quite rewarding.

I have been told that one of my textbooks has been assigned as a com-
pulsory textbook for Analytical Chemistry students. That was beyond my
expectations. Although promoting statistical education has increased both
my exposure and reputation as a by-product, what I found most gratifying
and encouraging was the fact that I can make some contributions to my
country.
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I also understand that some of my textbooks and articles have been pub-
lished in layman's terms for different professions so that the non-statistical
sectors could also conduct research with statistics including uniform design.
For example, the application of multivariate statistics for the standardiza-
tion of apparel sizes for Chinese adults in 1976-78 was successful and the
National Standards Bureau invited me to write a series of lectures. The
published articles were collected as a book entitled Statistics and Stan-
dardization. Another example was the An Shan Steel and Iron Co which I
mentioned earlier.

Loie: I know that you have organized or co-organized quite a number of
significant conferences, both international and national. Organizing con-
ferences of this scale requires an enormous amount of time and attention.
How did you find time to organize these activities amid your already hectic
schedule?

Fang: On a national basis, China had fallen behind for at least two decades
because of the political turbulence. It was necessary to bring it to par with
our counterparts overseas. Collaboration was useful in this regard. I took
part in organizing seven nationwide multivariate analysis conferences since
1979, with one part of it theoretical and the other on applications, to pro-
vide a platform for establishing collaboration between the two. To attract
international collaboration, I organized the
Sino-American Statistical Meeting in 1987,
which attracted more than 200 partici-
pants. In Hong Kong, I organized the
International Symposium on Multivariate
Analysis and Their Applications in 1992,
the International Workshop on Quasi-
Monte Carlo Methods and Their Appli-
cations in 1995, the International Sympo-
sium on Contemporary Multivariate Analy-
sis and Its Applications in 1997, the Sympo-
sium on Theory of Uniform Design and Its
Applications in 1999, the 4th Monte Carlo
and Quasi-Monte Carlo Conference in Sci-
entific Computing in 2000 and the Sympo-
sium on the Uniform Experimental Design
in 2003.

Loie: You have been accorded high inter- F iS- 18< Kai"Tai w i t h h i s Par"
. . . . ,, c ents, sisters and brother in 1957.

national reputation as a result of your con-
tributions to the global statistical field. The
honors and awards bestowed on you include
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Fellow of Institute of Mathematical Statistics (1993), Fellow of American
Statistical Association (2001) and numerous awards for your outstanding
contributions to multivariate analysis, Quasi-Monte Carlo methods, design
of experiments, and for your leadership in statistical education, consultation
and administration as well as for your editorial service. Despite all these
prestigious honors, you are still a modest man of high integrity, as reflected
in the tributes dedicated to you by your peers. How did you manage to
always conduct yourself in such a good manner and with such a positive
attitude? Was there any advice you took to heart that helped shape you
the way you are today?

Fang: My parents set a good
example for me. To this day,
I still remember vividly the
advice my father gave me.
He said if you extend your
help to others, you should for-
get about it. On the contrary,
if you receive assistance from
other people, you should al-
ways keep that in mind and
return the favor. Before I
reached 40, the country was
poor. My wife was weak and

Fig. 19. A family picture taken at the Sum- m y daughters were small. Our
mer Palace in 1983. standard of living was basi-

cally minimal. Some of my
friends helped me, but I was incapable of paying them back. When my
economic situation improved, I paid back all
the debts and whenever we came across a friend who needed financial assis-
tance, we never hesitated to lend a helping hand. My mother was exemplary
of how one should conduct one's self, even in an adverse environment. She
came from a village background and had no educational opportunity or cul-
tural heritage. It was not until after her marriage that she had the chance
to learn how to read and write. My father, on the other hand, came from
the upper class. My mother kept a low profile but she learned exceptionally
fast. And she always presented herself well, regardless of the situation. I
learned from my mother that if you want to adapt yourself to a new envi-
ronment you have to learn to be aware of your surroundings and should not
be self-centered. I adhered strictly to this philosophy when I first visited the
United States, a country so vastly different from my own in almost every
aspect - cultural, logic, systems, terms, etc. I thought of my mother and I
began to watch attentively other people's behavior, their culture, their logic,
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their way of thinking, their
strengths and their weak-
nesses. I became happy
when I began to appreci-
ate differences in my en-
vironment. I learned the
things that were desirable
and brought them back to
the Mainland. My posi-
tive attitude allowed me to
keep an open mind in my
management style and, be-
cause of this, I was pro-
moted to Associate Direc- F i«- 20< K a i " T a i a n d w i f e T i n g m e i '" 1986.
tor of the Institute of Ap-
plied Mathematics, Acad-

emia Sinica, in a mere one-and-a-half years after my return to the Main-
land. Another person who influenced my personal development was Profes-
sor K.L. Chung, the first PhD student of P.L. Hsu.
While I was in the U.S., he told me that many people hid themselves in the
office or laboratories to do research and declined to mix with the Americans.
He asked me why I went to the States and advised me to go out and mix with
people. Following his advice, I joined an activity every two-and-a-half days,
be it a seminar or party or social gathering. I benefited greatly by joining
these activities

and I became aware of a signif-
icant improvement in my Eng-
lish communication skills and in
my understanding of the Western
culture.

I am a firm believer that
great achievements involve great
risks. I encountered a dilemma
in 1980 when I was offered an
opportunity to go abroad as a
visiting scholar. My wife then
was sick and my two kids still

• small. This, coupled with my

Fig. 21. Kai-Tai's family with C.R. Rao's unfavorable financial situation,
family. somehow deterred me from mak-

ing a positive move. One of
my friends said to me that if



A CONVERSATION WITH KAI-TAI FANG 21

I did not go abroad, my career development would be limited.
He said every person must face at least one difficult period in
his lifespan and that one must face it with bravery and courage
in order to overcome it. This remark was inspirational to me. I
therefore took the risk of traveling abroad and was psychologically prepared
to come back anytime should I receive a telegram with bad news. My wife,
Tingmui Li (=£f0i#5) who was told by some of the neighbors that she might
not be able to see me again should I go abroad, supported my move. I
deeply appreciate her much-needed understanding and unfailing support.

Loie: Do you have any motto and if yes, could
you share it with the younger generation?
Fang: I don't have one in particular but I think
that to me, the most important thing is to be a
person of integrity. Good character precedes good
academic achievements. Also, don't be afraid of
difficulties. Face the problems head-on and find a
way to solve them. Remember that there is always
a way out for those who seek it. I went through the
10-year Cultural Revolution without even know-
ing whether there would be a tomorrow and I sur-
vived. It is important to build a strong psycholog-
ical shield to shelter yourself from external blow. I
also encourage youngsters to work hard. If you de-
cide to go for something, do it with all your might
and give the best you can.

Fig. 22. Gang Li (right)
Loie: What post-retirement plans do you have?
Fang: I have been invited to continue supervising
postgraduate students, a task which I willingly ac-
cept as it has always been my earnest wish to nurture successors for the
statistical field. It always gives me great gratification to see my former post-
graduate students, such as Jianqing Fan and Gang Li (^W), now professor
at UCLA, doing so well.

I also plan to do some leisure traveling as my previous trips were mostly
work-related. It will be nice to have time to listen to music, classical in
particular, and to attend to my other interests including playing ping-pong,
badminton and Chinese chess, swimming and photography.

I would also like to spend more time with my wife and my two daughters,
Ying Fang (?Jffi) and Yan Fang (^3?$), both of whom are now working in
the U.S. The time that I spent with them was minimal and I always feel
guilty when I come to think of it. Although my wife and I have been married
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for 36 years, the time that
we were actually together
was just 19 years. We were
seven years apart immedi-
ately after our marriage in
1968 and were separated
again in 1990 when I came
to Hong Kong.

Fig. 23. A happy family reunion in the U.S.



A Tribute to Professor Kai-Tai Fang

Agnes W. L. Loie

Some names of significance popped up during my interview with Profes-
sor Kai-Tai Fang. Significant, because they are the names of those whose
academic interactions with Kai-Tai have sparked off fruitful collaborations
that have impacted on the development of the statistical field in different
ways. I took the liberty of contacting some of these scholars, who them-
selves are key players in the global statistical circle, to invite them to say a
few words about Kai-Tai at the onset of his retirement. The invitation was
met with immediate and enthusiastic responses. Here is a collective tribute
to Kai-Tai by some of his peers, friends and collaborators:

T.W. Anderson, Professor, Stanford University:
Professor Kai-Tai Fang came to the Department of Statistics at Stanford

University in the summer of 1981 as a visitor. He was motivated by a desire
to develop his knowledge and expertise in multivariate statistical analysis,
which is one of the fields of statistics in which I have done a great deal of
research and exposition.

A topic that I expected would be challenging and useful for both of
us was the statistical methodology appropriate for elliptically contoured
distributions.

We worked together during the academic year 1981-82 as well as the
summers before and after that academic year. I engaged more of my stu-
dents in this research; on his return to China Kai-Tai brought many students
and associates into our activity.

We continued this collaborative research for a period of years. Many of
our studies with those of our students and associates were assembled in a

Contemporary Multivariate Analysis and Experimental Design—In Honor Celebration of Pro-
fessor Kai-Tai Fang's 65th birthday. Edited by Jianqing Fan and Gang Li. The World Scientific
Publisher, 2005.
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volume that we edited: Statistical Inference in Elliptically Contoured and
Related Distributions, 1990.

The Hong Kong Baptist University sponsored several conferences on
multivariate analysis; Kai-Tai and I participated in them. One of them was
the International Symposium on Multivariate Analysis and its Applications
in March 1992 in which nearly 200 statisticians participated. This sympo-
sium resulted in a volume co-edited by Kai-Tai, Ingram Olkin, and me and
published by the Institute of Mathematical Statistics in 1994.

Kai-Tai has extended our work to multivariate models more general
than elliptically contoured ones, particularly Symmetric Multivariate and
Related Distributions with Samuel Kotz and Kai-Wang Ng (1990) and Gen-
eralized Multivariate Analysis with Yaoting Zhang (1990). I have reported
on some of my extensions of our work in the third edition of my book An
Introduction to Multivariate Statistical Analysis (2003). Incidentally Kai-
Tai and Yaotung Zhang drew heavily on my first edition for their book in
Chinese An Introduction to Multivariate Analysis (1982).

Kai-Tai has also done significant research in fields of statistics other
than multivariate analysis, including design of experiments and clustering.
His broad interests include number theory as well.

It has been a pleasure for me to collaborate with Kai-Tai on research,
writing, editing, and organizing. I have been impressed again and again by
his energy and initiative.

Another feature we share is our birthday: June 5!

Fred J. Hickernell, Professor, Hong Kong Baptist University:
Good statisticians are hard to find; great statisticians are even rarer.

Yet, for the past 14 years we have been blessed to have Professor Kai-Tai
Fang, one of the most well-known statisticians of China, to be part of our
Department of Mathematics. What a tremendous honor this has been!

Kai-Tai joined the Department of Mathematics at Hong Kong Baptist
University at a critical time. The Department had recently begun to offer
government-approved BSc degrees but had aspirations to engage in inter-
nationally recognized research and offer postgraduate degrees. At the time
most colleagues were relatively young and inexperienced in doing research.
Kai-Tai provided the necessary leadership to the Mathematics Department
that spurred our development.

There are many things that I appreciate about Kai-Tai and have learned
from him. Any list would be incomplete, but here are a few:

• Kai-Tai leads by example. By publishing important papers in interna-
tional journals, engaging in various research collaborations and organiz-
ing international conferences, he has set a high standard for the rest of
us to aspire to.
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• Kai-Tai is an expert in involving colleagues and students in his work.
One reason that he is so productive is that he knows how to draw on
the resources of others. At the same time, he uses these opportunities
to mentor other people and help them develop their potential.

• Kai-Tai is generous with his ideas. Choosing good research topics is
crucial to success, and some scholars guard their ideas jealously. Not so
with Kai-Tai, who freely suggests interesting research problems to his
colleagues and students and offers his advice on how best to solve them.

• While some scholars focus on their own interests, Kai-Tai has always
strived to further the interests of the whole Mathematics Department,
the University and the statistics profession.

• Many mathematicians do not appreciate that statistics is a separate dis-
cipline from mathematics, and many statisticians view mathematics as
bothersome. Kai-Tai understands how statisticians view problems dif-
ferently from mathematics, but at the same time recognizes that math-
ematics provides many useful tools for the statistician.

• Although a world-renowned scholar, Kai-Tai is happy to perform the
ordinary teaching and administrative duties expected of a professor. He
respects other colleagues, even when they may be junior to him in rank
or experience.

• Kai-Tai is hospitable. He loves to receive visitors and students even
amidst his hectic schedule. He takes a keen interest in their well-being
and makes sure that they enjoy their time at Hong Kong Baptist Uni-
versity.

Probably what I most admire about Kai-Tai, and wish that I could
emulate better, is how he can keep his composure and even be gracious in
the midst of difficult and emotional situations. I am most grateful to have
the opportunity to be his colleague and to learn so much from him. Although
he is going on to a well-deserved retirement, it will be a definite and heavy
loss for the students and colleagues of the Mathematics Department.

Rahul Mukerjee, Professor, India Institute of Management:
I recall, with much fondness, my first meeting with Professor Kai-Tai

Fang in June, 1997. Since then we developed a long-standing friendship and
collaboration and I was privileged to visit him many times.

Indeed, even before meeting Kai-Tai, I knew him very well through his
path-breaking contributions to such diverse areas as multivariate analysis,
experimental design, and so on. After working with him, I was amazed with
his profound depth of knowledge, innovative ideas and incisive analytical
skill. We collaborated on research problems in the fields of experimental
design and empirical likelihood, and on each occasion, it was a most re-
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warding experience. Certainly, I learned a lot through this association and,
just as the other co-workers of Kai-Tai, I hold the highest esteem for him.

In addition to being a scholar of the highest order of eminence, Kai-Tai
is an extremely kind person who embodies the Asian human values. I wish
him a long, productive life.

Dietrich von Rosen, Professor, Swedish Agriculture University:
Fourteen years ago after a hard day's work at the Tartu Seminar on

Multivariate Statistics, Professor Kollo from the University of Tartu and
myself discussed about the achievements in multivariate statistical analysis
during the last ten years. Perhaps because of our fatigue, we could not
identify many new interesting topics with one exception. There were several
books on elliptical and spherical distributions and in all of them Professor
Kai-Tai Fang was involved. We decided to invite Kai-Tai to our part of the
world. Since then Kai-Tai has been a frequent guest in our region, i.e. the
triangular region of Estonia, Finland and Sweden.

Our collaboration has been very successful. From my point of view, I
cannot overestimate the impact Kai-Tai has had on the statistical com-
munity and in particular on my research. I know that Kai-Tai is working
extremely hard but at the same time he always has time to share his knowl-
edge and the findings of his research groups. This is how science can and
should evolve and to me, Kai-Tai is an excellent ambassador for the inter-
national academic society. For example, besides giving several seminars at
our university he also conducted courses for non-statisticians. In particular
I would like to mention the one on the uniform design which was highly
appreciated by many students from different disciplines. Moreover, I re-
member Kai-Tai once acted as an opponent of a Swedish thesis and he did
his duty in such a good and constructive way that everyone was happy after
the defence - the thesis defender, the committee and the whole audience
including the defender's mother, father and friends.

Something which also characterizes Kai-Tai is effectiveness. Over the
years when Kai-Tai visited us, he always brought with him some basic ideas
for at least one or two papers. Without these preparations the effectiveness
would have been significantly reduced and the output lessened. The fields
in which we have been working comprise copulas, generalizations of the
complex normal distribution, influential observations, growth curve models
and general estimation procedures, etc.

Another reason why things have always become so effective is that there
are many excellent students around Kai-Tai, some of whom I still work with.
To be a good supervisor and help students open the door to the scientific
world is an art. I believe that the research environment created by Kai-
Tai and others at Hong Kong Baptist University provides an environment
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conducive to stimulating students to become excellent researchers. It has
always been fruitful for me to visit Hong Kong Baptist University as it was
there that some of my research ideas originated.

My participation in several of the conferences organized by Kai-Tai and
his colleagues has also proven useful. The conferences were well-organized,
the keynote speakers invited were inspiring and the ambience stimulating.
Kai-Tai was instrumental in making all these happen.

I am happy to know of such a visionary, warm and friendly scientist and
I wish Professor and Mrs. Fang a happy and successful future.

Yuan Wang, Professor, Academy of Mathematics & System Sci-
ences, Chinese Academy of Sciences:

Professor Kai-Tai Fang and I began to cooperate in 1976. Kai-Tai asked
me a question on the numerical evaluation of a 5-fold definite integral. I
introduced him to use the number theoretic method (or Quasi-Monte Carlo
method). He succeeded.

He then knew the number theoretic method might be useful in experi-
mental design. In 1978 a Chinese industrial agency proposed a problem of
experimental design to him. As the number of experiments would be too
large if the classical methods were used, Kai-Tai turned to the possibility
of using the number theoretic method, and he discussed it with me. This
was the start of a long cooperation between us.

It has been very nice cooperating with him. We have been very happy
and fruitful during these near 20 years of co-operation. While he was work-
ing in Beijing, we attended a seminar every week. As most of the time
we were not in the same place, we communicated by letters, emails and
telephones to exchange our ideas.

Kai-Tai is a very nice man and is very easy to approach. He is very active
and often seeks to come up with problems and then look for solutions. In
particular, I think he is a genius statistician. When faced with a statistical
problem, he can always propose a way to solve it. This leaves me with a
deep impression!

I sincerely hope he is healthy and happy.

Peter Winker, Professor, University of Erfurt :
I met Professor Kai-Tai Fang for the first time at a conference in Tartu,

Estonia, in 1994. We happened to sit next to each other at the conference
banquet, and Kai-Tai introduced me to uniform design theory. I was a
complete novice in this field, but discovered that the problem of finding
uniform designs or at least low discrepancy designs might be dealt with
by methods of integer programming. Given that I had some experience in
applying optimization heuristics to problems in statistics and econometrics,
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we decided to start a joint project on this topic. In fact, within a couple
of months, we finished our first joint paper without even meeting for a
second time - thanks to e-mail. My next opportunity to meet with Kai-Tai
was for the Workshop on Monte Carlo and Quasi-Monte Carlo methods
organized at Hong Kong Baptist University in 1995. There, we presented
already our second joint paper. Afterwards, the cooperation continued to
be very productive and fruitful. We met at different occasions in Heidelberg
and Hong Kong, and this summer, Kai-Tai visited Erfurt supported by a
grant of a joint Hong Kong - Germany exchange programme.

For me, it is a real pleasure to work with Kai-Tai. He introduced me
to a new interesting field and was willing to take over new ideas from
optimization heuristics. But besides joint work, it is also a pleasure to meet
with Kai-Tai and to enjoy spending some time together. I wish him all the
best for his coming anniversary and the time after retirement, and I am
quite optimistic that our close collaboration will not end with this event.
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Summary. A pivotal concept in quasi-Monte Carlo (QMC) methods is the total
variation, in the sense of Hardy and Krause, of a multidimensional function. The
Hardy and Krause variation in turn is based on the Vitali variation. This paper
presents an account of variation for QMC. It includes a perhaps surprising find
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included is a previously unpublished low variation function extension method due
to Sobol'.
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1 Introduction

This article collects together some properties of multidimensional defini-
tions of the total variation of a real valued function. The subject has been
studied for a long time. Many of the results presented here date back at
least to the early 1900s.

The main reason for revisiting this topic is that there has been much
recent work in theory and applications of Quasi-Monte Carlo (QMC)
sampling. For an account of quasi-Monte Carlo integration see Fang &
Wang (1994). For integrands with bounded variation in the sense of
Hardy and Krause (BVHK) such integrands, QMC attains an error rate
of O(n~x (log n)d) when using n function evaluations in d dimensions.
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When the integrand is in BVHK, then QMC has superior asymptotic
behavior, compared to Monte Carlo sampling. Therefore we may like to
know when a specific function is in BVHK. Recent introductory text books
on real analysis typically cover the notion of total variation for functions
of a single real variable. Few of them say much about multidimensional
variation. This article fills that gap, providing a machinery for computing
or bounding variation. This machinery is then used to show that a widely
studied class of financially motivated integrands have infinite variation,
so that the QMC rate of convergence for them cannot be found by the
usual Koksma-Hlawka bound. This article culminates with a presentation
of Sobol's low variation extension method, useful for applying QMC to
unbounded integrands.

Discussions of multidimensional variation usually require ungainly ex-
pressions that grow in complexity with the dimension d. For this reason,
many authors give details for d = 2 only. But some results that hold for
d = 2 do not hold for d > 2. For example if fix) and g(x) are linear func-
tions on the d dimensional cube, then min(f(x),g(x)) is BVHK when d = 2
but is not necessarily so when d > 2. As a result, we need general tools, like
the ones presented here. Some expressions remain complicated, but they do
not get more so as d increases.

2 One dimensional variation

Let f(x) be a real valued function defined on [a, b] where —oo < a < b < oo.
A "ladder" on [a, b] is a set y containing a and finitely many, possibly zero,
values from (a,b). The ladder y does not contain b except when a = b.
This case is clearly degenerate, but in some settings below it is simpler
to include it than to exclude it. Each element y £ y has a successor y+.
If (y, oo) n y = 0 then y+ = b and otherwise y+ is the smallest element
of (y, oo) D y. If the elements of y are arranged into increasing order,
fl = 2/o < Vi < • • • < Dm: then the successor of y^ is yk+i for k < m and it
is 6 for k = m. The value y+ depends on y but this dependence will not be
made explicit by the notation.

Let Y denote the set of all ladders on [a, 6]. Then the total variation of
/ on [a, b] is

V(f-a,b) = sup^2\f(y+)-f(y)\. (1)

This variation is written V(f) when [a,b] is understood from context. If
V(f) < oo then / is of bounded variation.
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There is no uniquely suitable way to extend the notion of variation to
functions of more than one variable. Clarkson & Adams (1933) study six
such generalizations, and Adams & Clarkson (1934) mention two more. For
quasi-Monte Carlo, the total variation in the sense of Hardy and Krause
is the most widely used definition. The early references for that definition
are Hardy (1905) and Krause (1903a,1903b), who were studying double
Fourier series. That definition of total variation is constructed using the
total variation in Vitali's sense. Only these two definitions are considered
in this work.

3 Notation

For x G M.d, write its j ' t h component as xj. Thus x = (x 1 , . . . ,xd). For
a, b 6 M.d write a < b or a < b if these inequalities hold for all d components.
For a, b € Rd with a < b, the hyperrectangle [a, b] is the set {x € M.d \
a < x < b}. Also (a,b) = {x e Rd \ a < x < b} and [a,b) and (a,b]
are defined similarly. The d dimensional volume r i j = i ( ^ ~ a"0 °f [a>b] IS

denoted Vol([a,6]).
For arbitrary points a,b € Rd, let rect[a,6] denote the hyperrectangle

[a, b] with <P = min(aJ, b*) and & = max (a-7, V). We can think of rectfa, b]
as the "rectangular hull" of {a, b}.

The subset relation is denoted by u C v or by u C v. In the former
u = v is allowed, and in the latter u =£ v is assumed.

For u, v C { 1 , . . . , d) write |w| for the cardinality of u, and u — v for the
complement of v with respect to u. For integers j < k, the set {j, j+1,..., k)
is written j:k. A unary minus, denotes the complement with respect to 1: d,
so that — u = 1: d — u. In expressions such as 1: d — {j} and j : k U u the
operator ':' has highest precedence. In — u — v, the unary minus has higher
precedence than the binary minus.

For u C 1: d, we use xu to denote the |u|-tuple of real values representing
the components a;-7' for j e u. The domain of xu is the hyperrectangle
[au,bu]. Suppose that u, v C 1 : d and x, z € [a, b] with u D v = 0. Then
z u : z" is defined to be the point y e [auUv,buUv] with yj = xj for j e u,
and y-7 = zJ for j ' ^ u. The expression xu: zv is well defined for xu £ [au, bu]
and zv € [a",6"], when uC\v — %, even if x~u or 2~v is left unspecified. We
also use the colon to glue together more than two sets of components. For
instance xu : yv : zw € [a,b] is well defined for xu € [au,bu], yv € [av,bv],
and zw € [aw,6w], when u, v, w are mutually disjoint sets whose union is
1: d. It will be clear from context whether a colon glues together a tuple
as in xu:xv, or denotes a range of integers as in j : k. The main use of the
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gluing operator is to construct the argument to a function by combining
components from multiple sources.

Let f(x) be a real valued function defined on the hyperrectangle [0,6].
The function / does not depend on xu if f(xu:x-u) = f{zu:x~u) holds
for all xu,zu e [au,bu] and all x~u € [a-u,b~u]. Similarly, / is a function
of xu alone, if it does not depend on x~u.

For u C 1 :d and x~u G [a~u, b~u] we can define a function g on [au, bu]
via g(xu) = f(xu : x~u). We write f(xu;x~u) to denote such a function
with the argument xu on the left of the semi-colon and the parameter x~u

on the right.
Many expressions require no special attention for u — 0. For instance,

when u = 0, then the definition of xu : z~u reduces to z. Sometimes the
index set u must be handled specially when it equals 0. It is often easier to
adopt a convention for u = 0 than to explicitly identify it as a special case.

Zero dimensional regions and functions on them are of no direct interest
in this work, but they appear as special cases in some derivations. In the
sequel, x® denotes the "zero-tuple" (), the Cartesian product of zero sets
is the set containing the zero-tuple, and the volume of a zero dimensional
rectangle is Yljeii^ ~ aJ) ~ •*•' Jus t a s emPty products are conventionally
taken to be one. A function / on [o0,60] is necessarily constant, with a
value denoted by /() .

4 Multidimensional variation

The d-fold alternating sum of / over the hyperrectangle [a, b] is

A(f;a,b) = A(f;[a,b})= £ ( - l )^ / (au :^) . (2)
uC{l,...,d}

Note particularly that in (2), the coefficient of f(b) is one while that of f(a)
is ( - l ) d . For uCl:d, define

Au(f;a,b) = 1£(-l)Mf(av:b-v). (3)
vC.u

Here Au(f;a,b) does not depend on a~u and A$(f;a,b) = f(b).
The alternating sums (2) and (3) are well defined even when a < b does

not hold. In general A(f;a,b) = ±A(f; rect[a,6]). The sign is negative if
a? > b> holds for an odd number of j € 1: d.

For each j = 1, . . . , d let yi be a ladder on [aj, fr3']. A (multidimensional)
ladder on [a, b] has the form y = ]Jdj=1 y*, and we also use yu = ]Jj€u P -
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For y £ y, the successor point y+ is defined by taking y°+ to be the successor
of yi in yi. The variation of / over 3̂  is

Vy{f) = Y,W;v,v+)\- (4)
yey

A ladder is, with minor differences, what Clarkson & Adams (1933) call
a "net". Their nets also include upper boundaries from b. Ladders are sets,
which allows some manipulations to be economically written. We avoid the
term net here, because in quasi-Monte Carlo, a net is a finite list of points
satisfying some equidistribution properties.

For the multidimensional setting, let YJ denote the set of all ladders on
[a^V], and put Y = I l L i ^j• Then:

Definition 1. The variation of f on the hyperrectangle [a,b], in the sense
of Vitali, is

V[o,b](/) = sup^,( / ) .
yey

When [a, b] is understood, we simply write V(f). The function / is of
bounded variation in Vitali's sense (BV) if V(f) < oo.

As described below, variation in the sense of Vitali is not adequate
for the study of quasi-Monte Carlo sampling. Instead, the variation in the
sense of Hardy and Krause is used. This notion of variation sums the Vitali
variations over [a, b] and its "upper faces".
Definition 2. The variation of f on the hyperrectangle [a,b], in the sense
of Hardy and Krause, is

VHK(/) = VHK(/; a, b) = J2 V- .* - ] / ^ " " ; 6 " ) - (5)
uCl:d

The function / has bounded variation in the sense of Hardy and Krause
(BVHK) if VHK(/) < oo- The definition of bounded variation in Hardy
(1905) requires V[o,6](/) < oo and V[a-«i6-u](/\x~u•;zu)) < oo for all 0 <
|u| < d and all zu G [au,bu]. Young (1913) shows that definition to be
equivalent to the one above.

The premier use of variation in QMC is in Hlawka's inequality (the
Koksma-Hlawka theorem) where the quadrature error has an upper bound
equal to VHK(/) times a discrepancy measure of the points X\,... ,xn. See
Niederreiter (1992).

If one follows the above definitions literally for a zero dimensional hy-
perrectangle, then V[o0_(,«](/) = | /() | and VHK(f;a,b) = 0. The variation
^HK(/) is a semi-norm on functions and not a norm, because it vanishes
for constant but non-zero functions. The quantity VHK(/) + \f(b)\ is often
used in QMC because it is a norm on functions. This norm can be obtained,
by adjoining the case u = 1 :d to the sum in (5).
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5 Splits of hyperrectangles

The properties of variation derive from those of alternating sums. Those in
turn are based on properties of splits of hyperrectangles.

Definition 3. A split of the hyperrectangle [a,b] is a set {[a,, &»] | 1 < i <
m < oo} where U^L^ai, 6j] = [a, b] and [a,, bi) n [a,-, bj) — 0 when i ^ j .

Note that [â , 6,] Pi \a,j,bj] is not necessarily empty for i ^ j . The most basic
split is a coordinate split:

Definition 4. For j € { 1 , . . . , d) and c € [aJ', fr7] £/te corresponding coordi-
nate split of [a, b] is the set {L, R} of left and right pieces

L = L(j, c) = L(j, c; a, b) = {x e [a, 6] | a;-7 < c}, and,

i? = i?(j, c) = i?(j, c; a, b) = {xe [a, b] \ x> > c},

respectively.

Both L and R are closed hyperrectangles: L — [a, b] where bk = bk for
k y£ j and V = c, and R = [a, fc] where ak = afc for k ^ j and aJ = c.
Next we show that the alternating sum over [a, b] is the sum of alternating
sums over L and R. Propositions 1 through 4 below recapitulate results
from Frechet (1910).

Proposition 1. Suppose that the hyperrectangle [a,b] is split into [a,b] and
[a, b] as described above. Then

A{f;a,b) = A(f;a,b) + A(f;a,b). (6)

Proof: Let c ^ denote c G [a-7, V\ for use as an argument to / . We write
a sum over v C 1: d as a double sum. The outer sum is over u C 1: d — {j}
and the inner sum is over u and u U {j}. Thus A(f; a, b) equals

Y, (-1)N [f(au : £~n) - /(auU{j> : 6"u-^>)]
«C-{j}

= J2 ( - 1 ) ' " ' ^ ( a " : cU} : b~U~{J}) ~ f(auL>{J} • &~u~{j})], (7)
uC- {j}

and similarly,

A(f;a,b)= Y, (-l)H[f(au:b-u)-f(au:cW:b-u-W)}. (8)
«c- {j}

Summing (7) and (8),

Y, (-1)1"1 [/(°U : h~U) ~ /(«"U{J} = b~u-W)} = Z\(/; a,6). D
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Proposition 2. Suppose that y = Y\j=iy3' is a ladder on [a,b]. Then
{[y, y+]\ye y} is a split of [a, b] and

A(f;a,b) = ̂ A(f;y,y+). (9)
yey

Proof: By construction a < y < y+ < b for y 6 y, so UyG.y[y,y+] C [a,b].
Now suppose that x e [o, b]. Consider y e y where y3 — aj if xJ = a?, and
otherwise y3 = max(3^J n [aJ',a;J')). Then y3' < x3 < y3+ so that x G [y,y+],
and hence Uy€y[y,y+] = [a,b). Now suppose that x e [y,y+) n \y,y+) for
y,y e y. Then T/̂  < xJ < y3+ and y3 < x3 < y^. which implies y3 = yJ,
so y = y. Thus [y,y+) n [y, y+) is empty whenever y ^ y, establishing
that {[y,y+] \ y £ y} is a. split of [a,6]. To prove (9), note that the split
{[2/1V+] \y £ y} can be obtained by making a sequence of \y\ -1 coordinate
splits of [a, 6]. D

Proposition 3. Suppose that { [ai,bj] | 1 < i < m < 00} is a split of the
hyperrectangle [a,b]. Then

m

A(f;a,b) = YJA{f,aiM)- (10)

Proof: Let yi = {a{,...,a3m, b{,..., Vm} n [a?,V), define the ladder
y = Y[di=iyj a n d d e f i n e t h e split «S = {[y,y+] | y G }>}. Next put
$i ~ {[VJ V+] I V ̂  y n [«t)t»)}. Then <Sj is a split of [aj,^] to which
Proposition 2 applies. Also «Sj are mutually disjoint with union S. There-
fore A(f; a, b) and YT= 1 ^ ( / ; «i, h) are both equal to £ £ 1 E 5 e 5 ^ ( / ; «)•
D

Proposition 4. Lei y j and 5" 6e ladders in [aj,bi} with yj C ^ /or
j = 1,. . . , d and write y = f l^ i ^ and y = l\dj=1 & • Then Vy(f; a, b) <
Vy(f;a,b).

Proof: The ladder y can be changed to 5̂  by d steps that each refine just
one of the ladders y3. Therefore it is sufficient to consider the case where
yo = yJ for j ^ k for some k £ { 1 , . . . , d}. Without loss of generality take
k = 1 and suppose that y1 - y1 = {c} where yt = yt < c = ye+i < ye+i

for 0 < £ < mi taking y m i + 1 = 61 if £ = mi. Then V~(/) - Vy{f) equals
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£ £ \A(f;y,y+)\- £ £ |̂ (/;y,y+)|
y2:d€y2:d-ley1 y2:dey2:d yl (zyl

= E E l^(/;i(l,c;y,2/+))| + |Z\(/;i?(l,c;2/,y+))|

-\A(f;L(l,c;y,y+)) + A(f;R(l,c;y,y+))\

>0. D

Proposition 4 allows us to replace the supremum over all ladders in
Definition^ 1 by one over a subset Y C Y of ladders. If to every y 6 Y there
is a y e Y with y cy, then

V(/) = SUpVy(/).
3>€Y

For instance when [a, b] = [0, l]d we may suppose that each ladder in Y
is the d-fold tensor product of some ladder on [0,1]. To show this, take
yk = [Jdj=iyi forJkGl:d.

A simple ladder that is sometimes useful is one with an equal number of
equispaced points in each direction. Let m > 1 be an integer, set y3(m) =
yj(m, a, b) = {a3, aj + (b> - aj)/m, ...,aj + (bj - aj)(m - l ) / m } , and put

d

y{m) = y(m,a,b) = Y[yJ{m,a,b). (11)
j=i

Simple ladders can be used to show lower bounds on variation, but we
cannot replace the supremum in Definition 1 by the supremum over simple
ladders, nor even by the supremum over ladders 3̂  for which (y-7 — a,i)/(b> —
a?) is always a rational number. We can however restrict attention to ladders
for which the cells [y,2/+] are nearly congruent and nearly cubic.

Proposition 5. Let f be a function on the hyperrectangle [a,b] of positive
volume. For e > 0, let Y = Y(e) be the set of ladders y for which

max max (y3, - y3) < (1 + e) min min (y3, -y3). (12)
yeyj£vd yeyi&l:d

ThenV[aM(f)=supy€yVy(f).

Proof: For y € Y, let r) = min y mmjei;d(y3+ -y3)- Because Vol([a,b}) >

0 we have r) > 0. Set y = 3^ Then_for each j € 1 :d, while there is y3 £ y3'
with y3+ - yJ > 2e, replace yj by y3 U {(yJ + 2/+)/2}. After a finite number
of steps y C y and y satisfies (12) for e = 1.
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If e > 1, we're done. Otherwise, for an integer m > 1/e let k(j,yj) =
\m{y0+ — y^)/r}\, where \z\ denotes the greatest integer less than or equal to
z. We have m < k < 2m because i?+ -yj € [77,2-q). Next set y = Ilf=i 3̂ '>
where

fcb\P)-i

yj= U U {vj + r(y3+-y*)/k(j,vi)}-

The interval [yj, y\] gets split into k = fc(j, y-7) equal width intervals. If an
interval in y has been split k ways then its length could have been as small
as k-q/m but not as large as (k+ l)rj/m. Thus the shortest interval in the y
ladder has length 77/m and the largest has length under maxfcem:(2m_i)(A: +
l)r]/(km) = (m + l)T?/m2. Now ((m +1)77/'m2)/'(77/'m) = (m + l ) /m < 1+e
because m > 1/e. Thus 3̂  C y where y satisfies (12). •

When computing or bounding V(f) it is often convenient to split the
domain of / into hyperrectangular regions and sum the variations from
within each of them. The following lemma, stated in Young (1913) justifies
such a divisive approach.

Lemma 1. Let f be defined on the hyperrectangle [a,b]. Let {[a,,6i] | 1 <
i < m < 00} be a split of [a, b}. Then

m

^[a,b](/) = £ y [* . ,„,](/)•

Proof: Letybealadderon[a,6].LetP' = (Pu{a{,... ,a^,bj,... ,6^})n
\ai,V). Then

m m

Vy(f) < Vy(f) = J2 E l^(/;y. i/+)l <Y,v[aiM(f).
i = 1 yeyn[ai,bi) i=1

Taking the supremum over y establishes that V[O)6](/) < YL™=i ^/iai,6i](/)-
Now let yt be ladders on [<n, 6,-j for i = 1 , . . . , m. Let y be the ladder with
yj = U?=ly{ and let ^ = ^ n [o<, 6<) 2 ^ - Then

m m

E E l̂ (/;̂ 2/+)l < E E W;y.i/+)l = E l^ /^ ' ^ ) ! ̂  VW-

Taking the supremum over ^ i , . . . , ym yields YT=i V[a, bt](f) < V[a b](f).

a
Suppose that we seek to prove that V(f) = 00. If for m > 1 we split

[a,b] into md congruent hyperrectangles similar in shape to [a, b], then by
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Lemma 1, at least one of these smaller hyperrectangles has infinite varia-
tion. The proof of infinite variation can therefore always be focussed on an
arbitrarily small region within [a,b\. Of course, matters would be different
had we considered unbounded hyperrectangles.

6 Alternating sums

A function / can be easily recovered from its alternating sums, as follows:

Proposition 6. Let f be a function on the hyperrectangle [a, b]. For x, c G
[a, b)

f(x) = f(c)+ E (-l)l"l/lu(/;z,c). (13)
m^ucv.d

Proof: The right hand side of (13) may be written as

E (-I)|«'A,(/;X)C) = E (-1)1"1 Ec-i)1*"/^-")
uCl-.d uCV.d vCu

= £(-1-)W/(*":O£(-1)N-
vCl:d »D»

Next YluDvi"1)1"1 ~ ( - 1 ) d if « = 1 : d and equals 0 otherwise. The sum
becomes (-l)2df(x) = f(x). D

For a,b € Rd, when / has a (Lebesgue) integral over rect[a, 6] then
J, „ f(x)dx = ± /rectfa 61 f(x)^x- The sign is negative if and only if there
are an odd number of indices j € 1 : d with a? > b3'.

Proposition 7. Suppose that f is in L1 [a, 6] and that y,y+,c € [a, b]. Then

E (-1)1"1 / f(x)dx = / f(x)dx. (14)

Proof: We proceed by induction on d. For d = 1 the left hand side of (14)

1S /[y,c] f(X)dx ~ J[y+,c] f(X)dX W h l c h e ClU a l S /[»,y+] / ( a ; ) d a ; - N ° W Suppose
that the result holds for dimensions 1 through d — 1. Then for dimension d
the left hand side of (14) is
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^1(-1)M(t,»:./( i )Ji-X--c".,/H

_ [ y (_i)i«i / /(ijdi-^^diW

= f I f{x)dx - f I f{x)dx
J[yW,cW} J[y-W,y+{d}] J[vid},cW\ J[y-idy,y+{d)]

= /" f(x)dx. D

The result of Proposition 7 is similar to an inclusion-exclusion familiar in
QMC. Let N([a, b\) denote the number of points from a list x i , . . . , xn that
are in [a, &]. Then for a < x < y, £uci:d(-l) |u |W([a,xt t : y~u}) = N{[x,y\).

7 Functions not depending on all variables

The next proposition states a well known deficiency for quasi-Monte Carlo
applications, of Vitali's definition of variation:

Proposition 8. Suppose that f(x) is defined on the hyperrectangle [a, b]
and that f(x) does not depend on xu for non-empty u C 1: d. Then V(f) =
0.

Proof: Let j € u. Then for a < a < 6 < b,

A{f-a,~b)= Y, (-l)M(f(*V--~b~V)-f(avU{J}--b-v-{j}))=0,
vC-{j}

because / does not depend on whether xi equals 'a? or &. Therefore Vy(f) =
0 for all ladders y on [a, b], and so V(f) =0 . D

For the next examples, suppose that [a, b] is a hyperrectangle of pos-
itive volume in dimension d > 2. Let fi(x) = 0 for x1 = a1 and
/i(x) = sin(l/(x1 - a1)) otherwise. Then V(/i) = 0 even though f\ has
infinite variation in the one dimensional sense along the line a1 < x1 < b1

for any fixed x2:d € [a2:d, b2:d]. Similarly V(f2) = 0, where /2(x) = 1 if x1 is
a rational number and /2(x) = 0 otherwise. Finally, suppose that fo(x) = 0
if x1 = a1 < b1 and /3(x) = ^ ( x 1 - a1) otherwise. Then V(f3) = 0, even
though / 3 is unbounded. Example /3 is given in Frechet (1910).
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8 Invariants and closure

Let f(x) be defined on the hyperrectangle \a, b). Let f(x) be defined on the
hyperrectangle [a, b] by f(x) = f(x) where 5? = 4>j{x^) with <f>j is a strictly
monotone (increasing or decreasing) invertible function from (a-7,̂ 7] onto
[a»>'].

Proposition 9. In the notation above V,~ y(/) = ^[a,6](/)-

Proof: Suppose that y is a ladder on [a,b]. For j = 1, . . . ,d, if <j>j is
increasing, let yj = {(j)j(y) \ y e y } and otherwise let y7 = {fiji^)} U
{0i(y) I 2/ 6 P - {aj}}- Then V^(/) = Vy(/), and so V[a${f) < V^iJ).
A similar argument using the inverses of <f>j yields V,~ y(/) < V[a()](/). D

Proposition 10. In the notation above, if every <j>j is increasing, then
VnK(f;a,b) = VHK(f;a,b).

Proof: Because all of the <f>j are increasing, the function f(x~u; bu) cor-
responds to f(x~u;bu). Then Proposition 9 applies to each term in (5).
•

Proposition 11. Let f and g be functions on the hyperrectangle [a,b]. If
f,g e BVHK, then f + g, f - g, and fg are in BVHK. If f € BVHK
with | / | > C > 0 then 1/ / £ BVHK. Iff,g€ BV, then f + g and f - g
are in BV, but fg is not necessarily in BV. If for nonempty u C 1 :d both
f € BV[au,bu\ and g € BV[a-u,b~u} hold, then fg € BV[a,b\. If also
a,PeR, then V[aM(a + 0f) = \P\V[a<b](f) and VHK(a + (3f) = \0\VHK(f).

Proof: The closure rules for BVHK are in Hardy (1905). Those for BV are
in Prechet (1910).Let y € y for a ladder y on [a,b]. Then \A(a + (3f;a,b)\ =
|/3||/A(/; a, 6)| from which the variation results for a + (5f follow easily.

The following example proves the nonclosure of BV under multiplica-
tion. Suppose that the dimension of [a,b] is d = 2 and Vol([a,6]) > 0. Let
f(x) = l/ix1 - a1) for x1 € (a1,^1] and f{x) = 0 when x1 = a1. Also let
g(x) = 1 + x2 - a2. Then V{f) = V(g) = 0 by Proposition 8. For e > 0
with e < b1 - a1, let P(e) equal b> for j > 1 and take bl(t) = a1 + e. Then

i2 2

A(f; a,b(e)) = f(e, b2) - f(t,bl) - f{a\b2) + f(a\a2) = — ^ - ,

andsOy(/g) >|62-a2|/e. D
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Proposition 12. The function f is in BVHK on [a,b] if and only if it can
be written / = /i — /2 where Au(fi;x,y) > 0 holds for i = 1,2 whenever
x < y and uC 1: d.

Proof: The "only if" part is due to Hardy (1905). Hardy (1905) and the
"if" part is noted in Adams k Clarkson (1934). •

9 Mixed partial derivatives

Vitali's variation is closely connected with the partial derivative of / , taken
once with respect to each variable. We write dl'df(x) for ddf(x)/ Ylj=i 9xj.
More generally, for u C 1: d, the mixed partial derivative of / taken once
with respect to every a;-3 for j e it is denoted duf and, by convention
d^fix) = f(x). If d1:df(x) exists for all x € [a,b], then

/ dvdf(x)dx = A(f;a,b). (15)
J[a,b]

Equation (15) is immediate for d = 1 and follows by induction for d > 1.
Frechet (1910) used (15) to get the upper bound (17) below, for V(f) from
8udf.

Proposition 13. Suppose that f is a function for which d1:df is defined
on the hyperrectangle [a, b]. Then

V(f;a,b)< f \d1:df(x)\dx, (16)

V(f; a, b) < Vol( [a, b]) sup |d1:d/(z)|, and, (17)

x€[a,b]

[dvdf{x))2dx\ . (18)
i€[o,6] /

Proof: For any ladder y, we find that

Vy(f;a,b)<^2 I \d1-df{x)\dx= f \dvdf(x)\dx,
y<zyJ{y,y+] J[a,b]

so taking suprema over y establishes (16). Applying standard inequalities
among Lp norms yields (17) and (18). •

Under mild conditions on d1:d, equality holds in (16). Continuity of d1:d

is sufficient, though clearly not necessary. The next result, stated in Frechet
(1910) is better known, though less applicable, than Proposition 13.
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Proposition 14. // d1[df(x) is continuous on the hyperrectangle [a,b] then

V(f)= f \dvdf(x)\dx. (19)
J[a,b\

Proof: Let e > 0. For an integer m > 1, define the ladder y(m) = ]Jd=1 yj

where yi = {a + t{b — a)/m \ £ = 0,... ,m — 1} for j = 1,...,d. Because
d1:df(x) is continuous on the compact set [a,b], it is uniformly continuous
there. Thus there is an integer m > 1 such that

max f max d1:df(x) - min d1:df(x) ) < e.
y€y(m) \x£[y,y+] x€{y,y+] )

For each y 6 y,

\[ dvdf(x)dx > f (\dvdf(x)\ -e)dx (20)
]J[v,v+] J[y,y+}K '

holds. Equation (20) is trivial if d1:df(x) has constant sign on [y,y+], and
otherwise, the left and right sides of (20) are positive and negative respec-
tively. Finally,

V[a,b](f)>Vy{m)(f)

= E / 91-df(x)dx

> E / (|^d/(a:)|-e)dx
y€y(m)Jiy<y+}

= [ \dvdf(x)\dx-eVol([a,b}). •
J[a,b]

Proposition 15. Let f be defined on the hyperrectangle [a, b]. Suppose that
for some setuC \:d that duf exists, and satisfies the Lipschitz-like condi-
tion

\A-U(duf;x,y)\ < AVol(rect[x-u,y-u}), (21)

for alia < x <y <b and some A < oo. Then V(f) < AVol([a, b]).

Proof: Let a < x < y < b. Then
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A(f;x,y)= £ £(-l)N+N/(x»u».jr»-»)
vC-u tuCu

= V (-l)lvl /" au /(2u : x(-")n(vUw) : y-u-v-w)dzu

vC-u •> [*".»"]

= / A_u(duf;zu:x-U,zu:y-U)dzu,
J[x",y«]

so that \A(f;x,y)\ < A\ /[x» >jr, Vol(rect[a:-tt,y-tt])da:u| < ^Vol(rect[x,y]).
Therefore for any ladder 3? on [a, 6] we find Vy(f) < AVol(\a,b}) and so
V(/) < AVol([a,6]). D

When u = l:d, then the sufficient condition (21) in Proposition 15
reduces to |91 : d / | < A. When u = 0 then (21) reduces to \A(f;x,y)\ <
>lVol(rect[a;,y]), a condition in Frechet (1910). When u = {j} then (21)
reduces to a Lipschitz condition for d~^f, with respect to x>, holding
uniformly in x~^. When condition (21) holds for u then it also holds for
u C u, so that Prechet's u = 0 condition is the most widely applicable
version of (21), and the condition on the full partial derivative dvd is the
least widely applicable.

We illustrate the use of the propositions above with an example function
having a "cusp" along a hyperplane. For integers d > 1 and r > 0 let fd,r
be a function on [0, l]d defined by

, , , fmax^ 1 + - - - + x d - l / 2 , 0 ) r , r > 0
fdAx) = <-. „

[lx1+-+xd>i/2, r = V.
For u C 1 :d with |u| < r,

dufd,r(x) = r(r - 1) • • • (r - |u| + l)/d,r_|u|(x). (22)

If |u| = r then (22) holds everywhere except on the set E — {x | x1 -\ h
xd = 1/2} of d dimensional volume zero. If \u\ > r then dufd,T{x) = 0 for
x g E and is not defined for x e E.

Proposition 16. V(fdy, [0, l]d) is finite ford < r and infinite ford > r+2.

Proof: If r > d then d1:df is bounded. If r = d then d2:df exists and is a
Lipschitz continuous function in xl uniformly in x2:d. Therefore V(f) < oo
by Proposition 15 when d <r.

Now suppose that d > r + 2. Let yj = {0, l /(2m),. . . , (m - l)/(2m)}
be a ladder on [0,1/2], and put y = f\d=iy:'- Suppose that y £ y with
Y,dj=iyj = {m - d+ l)/(2m). Then A(fdy,y,y+) = (2m)"r. The number
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of such y is equal to the number of ways to choose d nonnegative integers
whose sum is m — d + 1. Therefore

a s m - ^ o o . Therefore V(f; [0, l/2]d) = oo and so V(f; [0, l]d) = oo too.
D

Taking r = 0 in Proposition 16 shows that V{lA) = oo for A — {x G
[0, l]d \xl-\ \-xd > 1/2} when d > 2. Similarly if A is a hyperrectangular
region that is not parallel to any of the coordinate axes of [a, b] then \&
has infinite variation when d > 2. As d increases, it takes ever greater
smoothness along the set E for fd,r to have finite variation.

Proposition 16 has a gap for the case d = r + l. Then dhdfd,d-i vanishes
for x $ E, but does not exist for x G E. All of the variation of fd,d-i comes
from the set E. It is not hard to show that V(/2,i) = 1 and that in general
V(fd,d-i) < oo. Here is a sketch of the reasoning: By Proposition 5 with e =
1, we need only consider ladders 3̂  with every yJ+ — yi in an interval [r], 2r\)
where rj > 0. Such a ladder yields fewer than Ari~d+1 hyperrectangles [y, y+]
that intersect the set E, for some A < oo. For each such hyper rectangle, we
find that \A(fd,d-i;y,y+)\ < Erf'1 for some B < oo. Then Vy(fdd_l) <
AB.

Proposition 17 considered functions symmetric in their arguments. The
infinite variation result is more general:

Proposition 17. For integer r > 0, real values 90,..., 9d, and x G [a, b] let

, , x , / v _ J m a x ( 0 i z 1 + --- + <9d:Ed-0o,O)r, r > 0
I\x) — Jr,e(x) — <

[lglXi+...+edXd>0, r = 0.

Let E = {x G [a, 6] | fliz1 H h 6dxd = 60}. If E n [a,b] has positive
d — 1 dimensional volume, d > r + 2, and none of Q\,... ,9d is zero, then
V(f) = oo.

Proof: The proof follows from two applications of Proposition 9 with linear
transformations that reduce the problem to the one handled by Proposi-
tion 16. The details are omitted to save space. •

10 Functions vanishing except on one face

The next two propositions consider functions that are zero on all of the
hyperrectangle [a,b], except for a boundary face. There are two cases, one
for a face that is a single corner of [a, b] and one for a face of positive
dimension less than d.
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Proposition 18. Let a,b £ Rd with a < b and let u C 1: d. Suppose that
f(x) = 0 unless xu = au and x~u = b~u. Then

10, else.

Proof: If Vol([a, b]) = 0 then V(f) = 0 for any real valued / . Assume that
Vol([a,6]) ^ 0. Then Vy{f;a,b) = \f(au : b~u)\ for any ladder y on [a,b}.

•
Proposition 19. Let a, b e Rd with a < b. Let u, v C 1: d with u n v = 0
and |u U u| < <i, and sei w = — u — v ^ 0. Suppose that f(x) is defined on
[a, b] with f(x) = 0 unless xu = au and xv = bv. Then

10, e/se.

Proof: Suppose that Vol([a, b]) > 0. For any ladder y on [a,b] and any
y G ̂  we find that Zi(/;y,y+) = 0 if yu ^ au or ŷ f. ^ 6". Then Vy(/) =

Proposition 18 is the w = 0 version of Proposition 19 if we adopt the
convention that the variation of / on [a0,60] is | / ( ) | .

Proposition 20. Let a, 6, a, b £ Rd with a <a <b <b. Let f(x) be defined
on [a, b] with f(x) = 1 for a < x <b and f(x) = 0 otherwise. Then

d

V[aM{f) = I I O-aXV + HK*) • (25)
3 = 1

Proof: Begin by splitting [a, b] into 3d hyperrectangles of the form [au, au] x
[o1',^] x [am,bw], where u,v,w are disjoint subsets of 1 : d with K U » U

w = 1 : d. By Lemma 1, VjOj(,](/) is the sum of V(f) taken over these
hyperrectangles. Notice that if v ^ 0 then / does not depend on x-7 over the
corresponding hyperrectangle, so V(f) vanishes there. If instead v = 0, then
/ vanishes except at one corner of the hyperrectangle, and so Proposition 18
applies. Therefore

v[aMu)= £ v=-]xiw/)= E (n wO (n w )
d

J = l
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Proposition 20 includes some interpretable special cases. If a < a < b <
b, then VjO)f,](/) = 2d, so the variation of the indicator function of a hy-
perrectangle in general position is 2d. For_the indicator function of a single
point in general position, wejtake a = b, and find again the variation is
2d. When the boundary of [a, b\ intersects that of the containing hyperrect-
angle [a, b], the variation is smaller. If for any j , there is equality at both
boundaries, that is a? = 'a? and V = W, then V(f) vanishes, reflecting the
fact that / does not depend on a:-7. If any a? = \P then of necessity there is
equality at both boundaries so V(f) vanishes, as it must because aj = V
implies Vol([a,6]) = 0 .

The next result relates Hardy-Krause variation of / to Vitali variation
of / , after extending the domain of / to the "upper-right", and filling in
constant values.

Proposition 21. Suppose that a,b,b £ Rd with a < b < b. Let f(x) be
a real valued function defined on [a,b]. Define f(x) and f(x) on [a,b] as
follows: For x € [a,b] let ]{x) = f(x) = f(x). For x € [o,6] - [a, b] let
j{x) = 0 and J{x) = f(b). Then

Vlaft(f) = VHK{f) + \f{b)\, and, V[ O IJ]( / ) = V H K ( / ) .

Proof: Let g(x) = f(x) on [a,6] and let g(x) = c on [a,b] - [a,b]. Split
[a,6] into 2d hyperrectangles of the form [au,bu] x [b-u,Z~u] for u C 1 :d.
For u = 1 :d, we find V[a^(g) = V[a(,](/)- For u ̂  1 :d note that g(x) — c is
a function that vanishes except on one face of [au,bu] x [b~u, b~u]. If u = 0,
we find V^-^Ag — c) = \f(b) — c\ by Proposition 18. For 0 < |w| < d, we
apply Proposition 19 to g — c getting the variation of / — c on a face. By
Proposition 11 the variation of / — c equals that of / . Then

Vla,l](9)= E V.6-]x[6-,fc-](ff)= E Vla^}(ttxU,b-U)) + \f(b)-c\.
uCl-.d H^uCl-.d

The first result follows for c = 0, the second for c = f(b). •

11 Variation and ANOVA

If / £ L2[a,b] where Vol([a,6]) > 0, then there is an analysis of variance
(ANOVA) decomposition of / . Liu & Owen (2003) outline properties and
references for ANOVA. The ANOVA takes the form

/(*) = E /«(*)
uCl-.d
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where fu(x) only depends on xu and fai fu{x)dx^ = 0 whenever j € u.
By Proposition 8, V(/u) = 0 for |u| < d and so V(f) = V(/1:d). Let

E(g) — Vol([a, b])~x J, b, g(x)dx denote the expected value of g(x) for ran-
dom x uniformly distributed in [a,b\. Let Var(p) = E((g(x) — E(g(x)))2)
denote the variance of g(x). Write a2 = Var(/) and a\ = Var(/U). The
ANOVA decomposition is so named because a2 = $^ucirf°i»-

Proposition 22. Ifcrf.d > 0 then V(f) > 0. The converse does not hold.

Proof: Liu & Owen (2003) show that E(A(f; x, x)2) = o\d for indepen-
dent random x and x, both uniformly distributed on [a, b]. Then if a\.d > 0
there exist x,x G [a,b] with \A(f;x,x)\ > cr1:d and so V(/) > 0. As for
the converse, let f(x) = 1 if x = b and let f(x) = 0 otherwise. Then
0 < o\.d < a2 = 0 but V(/) = 1 by Proposition 20. D

12 Indicator functions

Let [a, b] be a d dimensional hyperrectangle and let A C [a, b]. The indica-
tor function of A, also called the characteristic function of A, is given by
1A{X) — 1 for x € A and 1A(X) — 0 otherwise. It is clear that A{\A,CL,b)
must be an integer and so Vy{\A) must also be an integer. Therefore either
V(l,4) = oo or V{1A) is a nonnegative integer. Also, we easily find that
V[a,b]0-A) = V[O)6](l[O)6]_A) by Proposition 11 because l[a,b]-A = 1 - 1A-
n

Proposition 20 gives the variation in Vitali's sense for indicator functions
of hyperrectangles. Propositions 16 and 17 show how indicator functions
can have infinite variation when d > 2 and A has a planar boundary. The
difference between the cases lies in whether the boundary of A is parallel
to any of the coordinate axes of [a, 6].

For a more general set A we can for integer m > 1, split [a,b] into md

congruent hyperrectangles each similar to [a, 6]. The variation of / is at least
as large as the number of those hyperrectangles with nonzero variation. We
anticipate that this number grows in proportion to md~1 for typical sets
A of interest. Therefore we first consider when an indicator function has
non-zero variation. We know that V(1A) = 0 if 1A does not depend on xJ

for some j G 1: d. When d = 2 there is a converse as follows:

Proposition 23. Let [a,b] be a rectangle in R2 with Vol([a, b]) > 0. Let
f : [a, b] —> {0,1} and suppose that f does depend on x-7 for each j G {1,2}.
ThenV(f;a,b) > 1.
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Proof: Because / depends on x2 there is a value y1 £ [a1,^1] such that
f(x^; yt1}) takes both values 0 and 1. Similarly let y2 be a point in [a2, b2}
for which f(x^; y^) takes both values 0 and 1, and put y — (y1, y2). Let
y1 € [a1,!,1] and y2 £ [a2,b2] satisfy f{y\y2) = /(y1,^2) = 1 - f(y). Let
\a,b] = rect[y,y\. Then

\A(f;a,~b)\ = \f(y) - f(y\y2) - f(y\y>) + f(y)\ = \f(y) - 2 + 3/(y) | > 1

for f(y),f(y)e {0,1}. D

The natural analogue of Proposition 23 does not hold true for d > 3.
For d = 3, consider [0,1]3. Let Ai = A2 = A3 = [0,1/2) and define

1, x3 € A3 and x2 € A2,

f / \ _ °. x 3 € ^3 and a;2 ^ ^ 2 ,
/ W ~ | 1 , x3gA3<mdx1 eAi,

0, x3 g A3 and x1 & Ax.

The function / depends on each of the 3 components of x. It can be shown
that V(f) = 0. The result also holds for more general sets Aj.

Suppose that A C [a, 6] is a set, open or closed or neither, with a positive
d dimensional volume and a smooth boundary. If a portion of that smooth
boundary has positive d — 1 dimensional volume and is not parallel to any
of the coordinate axes, then for d > 2, we expect that ^(1^) = oo. For
instance if A is the interior of a sphere of positive radius contained inside
[a, b] then V^(l^) = oo. Informally, the argument runs as follows. We can
find a small hyperrectangle s inside [a, b] with one face in A, the opposite
face not in A, and a nearly linear boundary separating s(~\A from sn(-A).
Then V(IA) > VS(1A) and the latter is infinite. The next proposition fills
in details.

Proposition 24. Let A be a subset of the hyperrectangle [a, b] in dimension
d>2. Suppose that there exists a subhyperrectangle \a,b] C [a, b] of positive
volume, an index j £l:d, and a function g defined on \a~^ ,b~^] taking
values in (aP,b>) such that either x € A when x-7 > g(x~^) and x $ A
when xi < g(x~^j^) or x e A when xj < g(x~W) and x £ A when
xi > g(x~{i}). Suppose further that d^g is bounded away from zero for
each k ^ j . Then ^(1,4) = 00.

Proof: For m > 1, let Sm be the split of \a~^\ b~^] into md~x congruent
hyperrectangles. Let Sm = {s x [a^fr7'] | s 6 Sm}. Then Sm is a split of
[5,6] into md'1 long thin hyperrectangles. For each s € Sm evaluate g at
all 2d~1 corners and select a value c strictly between the largest and second
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largest of these values. From a coordinate split of s x [5 ,̂ &] along direction
j at point c we find that V",^ ̂ , (1^) > 1 and so V(1A) > md~1. •

In Proposition 24 the set A was assumed to be of positive d dimensional
volume. Thus for example it does not apply to functions like the indicator
of a hypershere that nontrivially intersects the d > 2 dimensional [a, b]. For
that case we consider a subhyperrectangle [a, b] for which there is an index
j and a function g on [c^-^a""^] with x € A if and only if g(x~^) = x3.
Once again we can find coordinate splits to show that the variation oil A
is positive within each of rnd~1 long thin hyperrectangles constructed as in
the proof of Proposition 24.

13 Call and put options

Much work in quasi-Monte Carlo integration has been motivated by some
integrands from computational finance. For full details of Monte Carlo ap-
plications to computational finance, see Glasserman (2004). Here we present
some such integrands, and explain why they are not typically of bounded
variation.

For z £ l , let <p(z) = exp(—Z2/2)/\/2TT be the standard normal proba-
bility density function, <&(z) = Jf ^ <p(y)dy be the corresponding cumulative
distribution function, and let <P~l be the quantile function, mapping (0,1)
to M. We also take ^ ( O ) = -oo and $~l(l) = oo.

Many call options have a payoff function that can be expressed in the
form:

C{x) = max(o ,^a r exp( / ? r O + ^ / ^ G " V ) ) - K), (26)
\ r = 1 V J = 1 / /

for scalars ar > 0 and /3rj and a strike price K > 0. It is usual to have
G = ^ but sometimes G is an alternative distribution having fatter tails
than does the normal. We will assume that G-1(0) = —oo and G"1(l) = oo.
For simplicity some discount factors have been absorbed into the ar. The
value of the option is /,Q 1]d C(x)dx. In cases of interest there exist r and
j > 1 for which (5rj ̂  0 holds. Then C is unbounded on (0, l)rf and hence
cannot be BVHK.

For fr(x) = arexP((3ro + £?=i PrjG-\x^), let

/ R \
P(x) = maxf0,A--5^/P(x)). (27)
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This P{x) is the payoff of a put option whose value J,o ^d P(x)dx is of inde-
pendent interest. Notice that C{x)-P{x) = £* = 1 fr(x)-K. When G = $,
there is a closed form expression for J,Q ^d fr(x)dx and then an estimate of
P(x) can then be easily translated into one for C(x). The function P(x) is
bounded because all the ar > 0. When P(x) is BVHK, then quasi-Monte
Carlo integration yields an estimate of / P(x)dx and hence also of f C(x)dx
with error rate O{n~x log(n)d).

But P(x) is ordinarily not BHVK. It is continuous but has a cusp along
the set E = {x | J2r=i fr(x) — 0}- As m t n e proof of Proposition 24
we employ md~1 long thin hyperrectangles that cross E in their long di-
rection. Let j be an index for which /3rj =£ 0 for some r > 0. Suppose
first that (3rj > 0 so that fr(x) -> oo as i-* —> 1 for any x~^K The
projections of these hyperrectangles in the — {j} directions, split a hyper-
rectangle [a~^>,6~^'>] C [0,1]"1"1 such that P(x) > 0 at every point of
[a~{i},b~{i}] x c^} for some c^ G (0,1). The hyperrectangles extend from
c^} to 1 in the xJ direction. When d > 3, the variation in each long thin
hyperrectangle is larger than a fixed multiple of m~x so that the variation
of P is infinite.

If instead /3rj- < 0, then take long thin hyperrectangles whose —{j} pro-
jections split a hyperrectangle [a~^,b~^] C [0, l ] d - 1 such that P(x) = 0
at every point of [a~^^ ,b~^^] x c^ for some c^ £ (0,1). Then take the
long direction for the hyperrectangles to be from 0 to c^.

14 Sobol's low variation extensions

Given a function / denned on a subset K of [a,b] we consider ways of
extending it to / defined on all of [a, b] while keeping some control on the
size of V[ai)j(/). One application is in proving results like Theorem 2 of
Sobol' (1973). Sobol's proof of that theorem was never published. Professor
Sobol' kindly described for me the key ideas underlying the proof. See
especially equations (29) and (30) below.

The set K is assumed to have some regularity. First we assume that
K is a nonempty closed set. Then we designate some point c € K as an
"anchor" for the extensions. This anchor is commonly taken to be a or 6 or
(a + b)/2. Then we suppose that

x € K => rect[x,c] C K. (28)

In case c = b then K has the Pareto property. Given x e K and y £ K there
is at least one j with j/-7 < xJ. The next result appears in Sobol' (1961).



MULTIDIMENSIONAL VARIATION 71

Proposition 25. Let f be a function on the hyperrectangle [a,b\. Suppose
that d1:df exists. Then for x, c € [a, b]

f(x) = f(c)+ £ ( - i ) H / duf(yu;c-u)dy\ (29)

Proof: Similarly to equation (15) we find that /[xU cU] duf(yu; c~u)dyu =
A*(/; x, c). The rest follows from Proposition 6. •

The term f(c) in equation (29) corresponds to the excluded case u — 0
under a natural convention.

Next we give a representation of / as a sum of functions of varying di-
mensionalities, using mixed partial derivatives of / taken once with respect
to each xj for j in a set u. When K contains a d dimensional rectangle
of nonzero volume, these derivatives are defined as usual. In particular for
points x on the boundary of K, only one sided derivatives defined as limits
from within K are used. When K is contained inside a zero volume rect-
angle there are some coordinate directions from which no meaningful limit
can be taken. Let v(K) = {j € 1 : d | supx€A: xj > infx€K- xj} be the set of
coordinates that truly vary within K. The formulas below will not depend
on the value we give to derivatives with respect to coordinates that do not
vary. For definiteness, we take

* * > - { r W i :,r(K)
Even when v{K) = 0, which holds when K = {c}, we still have d^-f(c) —
f(c).

Def in i t ion 5. Let c € [a, b] and suppose that K is a nonempty closed subset
of[a,b] which satisfies (28), and that d^ f'(x) exists for x 6 K andu C l : i
Then the SoboV (low variation) extension of f from K to [a,b] with anchor
c is

f(x) = f(c)+ £ ( - l ) M / " lz. : c_.e i fa^/(^:c-»)dzu. (30)
0#uCl:d J[x",c»]

To justify the name "extension" requires that f(x) = f(x) when x e K.
Note that x € K implies rect[x,c] C K so that the expression \Z^-.C-^^K
can then be removed from equation (30). Next d\ only differs from du in
cases where [xu, cu) has zero volume, and those terms contribute nothing
to the sum. Therefore the subscript K can be removed from the partial
derivative symbol. Then f(x) = f(x) by Proposition 25.
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Theorem 1. Fore s [a, b], let K be a nonempty closed subset of [a, b] which
satisfies (28). Let f be a function for which d^f{x) exists for x € K, and
u C 1 : d. Let f be the Sobol' extension of f from K to [a, b] with anchor c.
Then

V[aM(f) < f \d^df(x)\dx. (31)

If dftdf(x) is continuous on K, then

V[aM(f) = f \d)<df{x)\dx. (32)

Proof: If \u\ < d then the corresponding term in (30) is a function of x
that does not depend on x~u, so it_has Vitali variation 0. Therefore the
Vitali variation of / equals that of fi-.d(x) = (—l)d f,x c,nK d]^df(z)dz. Let
y be a ladder on [a, b}. For y e y,

A(f1:d;y,y+) = ^ {-l)Wh-Avv^7)
vCl:d

= E (-l)1"^-!)" / W d}idf(z)dz
vCl-.d Jlyv,C]x[y+",c-"]

= E (-1)'""1 / l*ZK d1Kdf(z)dz

= [ d)idf{z)dz,
J[y,y+}nK

so that Vy(fi:d) < fK \d]^df(x)\dx. Taking the supremum over y proves (31).
To prove (32), note that K is compact, so d]^df is uniformly continuous on
K. We may split [a, b] into a regular grid of md hyperrectangles, sum V(f)
over those hyperrectangles that are contained within K, and let m —> oo.
•

For the Hardy-Krause variation of / we need to consider which x~v

values when glued to bv give a point in K. Let K(bv) = K-V(bv) = {x~v 6
[a~v,b-v\ \x~v:bv €K}.

Theorem 2. Assume the conditions of Theorem 1 and that c = b. Then

V H K ( / ) < E / \d~Kv f{x-\V)\dx~r (33)
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Proof: Prom the definition, VHK(/) = £ugi:d V^-lC/O*"™;6"))- I f

-v C i/(K) then f(x~v; bv) is also the Sobol' extension of f(x~v; bv) from
K(bv) to [a~v,b-v] with anchor b~v', and so

Vla-~,b-*](f(x-v;bv))< [ \d-vf(x-";b")\dx-\ (34)

Now suppose that j e —u and j £ v{K). Then f{x~v; bv) does not depend
on xj, so that K(/(a;~t'; bv)) = 0 and again (34) holds. Summing (34) over
v Cl:d establishes (33). •
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Summary. We investigate the higher order power properties for a very gen-
eral class of empirical discrepancy statistics. This class includes the Cressie-Read
discrepancy statistics and, in particular, the empirical likelihood ratio statistic.
Under the criterion of average local power along spherical contours, it is seen that
these competing statistics can be discriminated at the third order of comparison
and that the Pearsonian chi-square statistic tends to have an edge over others.

Key words: Average power, contiguous alternatives, Cressie-Read discrepancy,
Edgeworth expansion, empirical likelihood, Pearsonian chi-square statistic, third-
order.
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1 Introduction

Empirical likelihood (Owen, 1988) has been of significant interest in the
statistics and econometrics literature; accounts of recent developments are
available in Owen (2001) and Mittelhammer, Judge & Miller (2000). Corco-
ran (1998) introduced a very general class of empirical discrepancy statis-
tics. This class includes the Cressie-Read discrepancy statistics (Baggerly,
1998) as an important subclass and, in particular, the empirical likelihood
ratio (ELR) and Pearsonian chi-square statistics. Recently, Bravo (2003)
reported illuminating results on second order power of Cressie-Read dis-
crepancy statistics under contiguous alternatives and showed that the ELR
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statistic enjoys an optimality property in terms of second-order local maxi-
minity along spherical contours. He also observed that if instead one works
with the criterion of average local power along such contours, then all statis-
tics become equivalent at the second order of comparison. Thus under the
latter criterion, a third-order comparison of the statistics is warranted. This
problem is addressed in the present article with reference to the general class
of empirical discrepancy statistics (Corcoran, 1998).

As one can anticipate, the algebra for the third-order comparison is
significantly more challenging than that at the second order. In order to
alleviate this difficulty to some extent, we consider an approach, akin to
that in comparing parametric likelihood-based tests (Mukerjee, 1990a, b),
which avoids the direct computation of approximate cumulants. Even then,
the present nonparametric setting entails extra terms that need careful
attention. The final formula for third-order local average power reveals that
the Pearsonian chi-square statistic tends to have an edge over others under
the present criterion. This may be contrasted with the findings in Bravo
(2003) on the second-order local maximinity of the ELR statistic.

After presenting the preliminaries in Section 2, we obtain an expression
for the third-order power under contiguous alternatives in Section 3. This,
in turn, leads to a formula for the third-order local average power. The
formula as well as its implications are discussed in Section 4.

2 Preliminaries and a stochastic expansion

Let Xi,..., Xn be independent q x 1 random vectors from an unknown com-
mon distribution with mean 6 and a positive definite covariance matrix F.
Interest lies in the null hypothesis Ho : 0 = 9Q. Let {p,} be a nonparametric
likelihood supported on the observed data, and pi = nTl be the nonpara-
metric maximum likelihood estimator of Pi. Following Corcoran (1998), an
empirical discrepancy statistic for HQ : 0 = 9Q is given by

n

T(fl«>) = (2n 2 / J 2 )m/^h(p i ,p i ) ,
»=i

where the infimum is over Pi(l<i<n), subject to Y^Pi — l and^p j (X, — #o)
= 0. Here h(u, v) is a smooth discrepancy measure that satisfies h(u, u) = 0,
but need not be symmetric in its arguments. Also, Jm is the mth derivative
of h(pi,Pi) with respect to pi, evaluated at Pi — Pi = n~1. As in Corcoran
(1998), it is supposed that Jm/(nm~2J2) = 0(1), for sufficiently many val-
ues of m = (1, 3,4,...). Thus p3 = J3/(nJ2) and p4 = Ji/{n2J2) are 0(1)
constants.
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The choice h(u,v) = A-1{1 - {u/v)~x} leads to the important sub-
class of Cressie-Read discrepancy measures and entails p% = -(A + 2). The
cases A = 0, —1, - 2 , — \ and 1 correspond to the empirical likelihood,
Kullback-Leibler, Euclidean, Hellinger and Pearsonian chi-square discrep-
ancies respectively (the first two are defined in a limiting sense).

We work under the same conditions as in Bravo (2003); these conditions
justify the Edgeworth expansion in Section 3. Contiguous alternatives of the
form Hn : 9 = 9n are considered, where 9n = 6Q + n~1/'2r1/27 and 7 =
(7i, • • • i lq)' is free from n. As in Bravo (2003), we note that in the present
context of nonparametric inference, the population distribution functions
under the null and contiguous alternative hypotheses are related in the sense
that they are both assumed to belong to the same class of distributions,
indexed by the mean 9. Thus the distribution of Xi — 9n, under 9n, is the
same as that of Xi — 90, under 90 (the difference with a parametric location
model is that the form of the distribution is now unknown). Consequently,
denning

zi = (zil,...,ziqy = r-1'2(xi-90),
z; = (z;u..., z;qy = r - ^ p Q - en), (i)

the standardized moments

An(l)...m(u) = E0o(Zim(l) ' " " ^im(u))

= EeJZ:m{1yZ*miu)) (l<m(l),. . . ,m(u)<g) (2)

do not depend on 7. In particular, /3m = 0 and (3ms = 5ms (l<m,s<q),
where Sms is Kronecker delta. Let

n

An(l)...m(u) = n~ ' 2_^{Zim(l) • • • Zim(u) — ^m(l)...m(u)}i (3)
i=l

n

^m(l)...m(«) = n 2^{^»*m(l) • • • ^im(u) ~ Pm(l)...m(u)}- (4)
i=l

By (1) - (4),

Am =A*m+jm(l<m<q),
Ams = A*ms + n-^2(jmA* + lsA*m + lmls) (l<m, s<q), (5)

Amst = A*mst + jmdst + jsdmt + 7t<Sms + op(l) (l<m,s,t<q), (6)

are stochastically bounded under 9n. Hence following Bravo (2004), with
further simplification, a stochastic expansion for T(9Q) under 9n is given by

T(90) = W'W + op(n-1), (7)
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where
W = A + n~1/2W1 +n~lW2, (8)

with A = (Al:...,Aq)', Wj = (WjU... ,Wjq)' (j = 1,2), and using the
summation convention,

Wlm = --AmsAs - -p3/3mstAsAt (l<m<q), (9)

W2m = i ( l + ±P3)2(A'A)Am - ±(3f% - Pi)PmstuAsAtAu

1 3 1
+ nPl^rnstPuvtAsAuAv + -AmtAstAs - -p3AmstAsAt

+-^P3f3mstAtuAsAu - —p3/3stuAmuAsAt (l<m<q). (10)

The following notation will be used later. Let Gm(j), Gms{-y), Gmst(y)
etc. be multivariate Hermite polynomials in 7, i.e., Gm{^j) = j m , Gms(7) =
l m I s ~ 5 m s , a n d s o o n . A l s o , l e t Q m { l ) , Q m s { l ) , Q m s t { l ) , ••• r e p r e s e n t
the first, second, third, . . . raw moments of a g-variate normal distribution
with mean vector 7 and covariance matrix Iq. Thus Qm{l) = 1m, Qmsil) =
1ml"s + 5ms, and so on.

3 Third-order power

3.1 Approximate characteristic function
We first obtain the approximate characteristic function of W under 9n.
This approach yields the corresponding Edgeworth expansion without ex-
plicit evaluation of approximate cumulants of W. Let £ = (£1,... ,£g)' =
(_l)1/2r, where T is a g-dimensional auxiliary variate. By (8),

Een{exp(eW)} = Een[{l + n " 1 / 2 ^ ^ + n-\UW2m

+\uZuWlmWlu)}exp{£'A)] + o{n-1). (11)

From (2),(4) and (5), it is easy to obtain the cumulants of A under 8n.
Hence

EeJexp(eA)} = {1 + V 1 ^ ^ ^ + n"1f/(0}
D

xexpit'-y+^t'O+oin-1), (12)
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where !/(£) is a polynomial in £, whose coefficients are constants free from n.
Clearly, [/(£) is the same for all statistics under consideration. Its detailed
form of will not be needed in what follows.

In view of (11), we next consider Een{Wimexp(^'A)}. Equation (12)
yields an Edgeworth expansion for A, under 8n, with margin of error
o(n~1|/2). This helps in handling the second term of Wim in (9). Note also
that the first term of Wim is the same for all statistics under consideration.
Thus, after considerable algebra, one obtains

EeAWimexp^A)} = [C<?>(£ + 7) + t40)(£,7) + " ' ^ { C ^ K + 7)

+c£\z,1) + uW(ti)}}

xezp(£'7+^'O + 0(n-1/2), (13)

where

CtO)(7) = -\p30mstQst{i),

U£Ht,7) = -\(3mst{Qst{i) ~ Islt}, (14)

C£Htn) = ^Pz(3mstPuvW{Guvw{l)Qst{l)

SlvlwQstuil) + ^iwQstuvH)}, (15)

and 7 = (7i, • • • ,7g)' = £ + 7- Here Cm (7) is a polynomial in 7 and
Urn (£>7) is a polynomial in £ and 7. The coefficients in these polynomials
are 0(1) constants. The detailed forms of C™ (7) and f/m (£,7) are not
needed in the sequel. It may be noted that the first term of W\m entails
Um (£,7) and Um (£, 7) in (13) while the second term of W\m accounts for
the other terms in (13). Thus Um'(£,7) and Um (£,7) remain the same for
all statistics that are being considered.

Remark 1. One of the two leading terms within squared brackets in
(13), namely Um (£,7), does not depend on £ and 7 only through £ + 7.
This may be contrasted with what happens for parametric likelihood-based
tests (Mukerjee 1990a, b). The same phenomenon is seen to persist with
Eon{W2mexp(€'A)}. Then, unlike £/m'(£,7), s o m e of the resulting addi-
tional terms involve p$ and influence the comparison in which we are inter-
ested here. Hence these additional terms, shown explicitly in (20) and (21)
below (see also (19)), need careful attention.

Remark 2. An explanation for f/m (£, 7) helps in understanding the sub-
sequent development. By (2), (4) and (5), up to the first order of approxi-
mation, the limiting distribution of (Ams,A')', under 0n, is (q + l)-variate
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normal with mean (0,7')', and covariance matrix

[ipms / , J '

where tpms = (/3msi,. • • ,Pmsq)' and a^ is a constant. Hence, under appro-
priate moment assumptions (Bravo, 2003), via a conditioning argument,

E9n{AmsAsexp{i'A)} = E9n[Wms(A - -y)}A3exp{^A)] + o(l)

= Pmst{Qst{i) - Jslt}exp(et + 1?Q + o(l).

In view of the first term of Wim in (9), the form of Um (£,7) is now evident.
Precisely the same arguments as in Remark 2 help in handling the sub-

sequent terms in the right-hand side of (11). Thus by (2), (4)-(6), (9) and
(10), at the expense of a heavy algebra one can obtain Egn{W2mexp(^'A)}
and Egn{WimWiuexp(£'A)} with margin of error o(l). Using these calcu-
lations together with (12)-(15) in (11), we eventually get

EgJexpit'W)} = {l + n-1/2L1(e,7) + n"1i2(C,7)}

xexpie-r+^'O + oin-1), (16)

where

£i(£,7) = \pmstUUt + U{c£Ht + i) + u£\z,7)}, (17)

£2(67) = £2o(£,7)+U4T)(£ + 7)+£22(£,7), (18)
5

£22fe7) = P3^M,(e,7)-^M6(e,7), (19)
3=1

Ml(C,7) = -^PrnstPuvttmlvQsuil),

M2{i,l) = ^PstuPmuvUlvQst{l), (20)

M3(^,7) = -{Pmstulu - imSst ~ Is&mt ~ itSms^mQstil), (21)
b

Mi(?,7) = —f3mstPuvwZm{GUvw{l)Qst{l) ~ ?>lvlwQstuil)}, (22)ib

M5{£,,j) = -•^PmstPuvwZmiulwQstvii),

M6{Z,l) = ^PmstPuvwUluQstvwH)- (23)
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In (18), L20(£, 7) is a polynomial in £ and 7, and L2™ (7) is a polynomial in
7 for each m. The coefficients in these polynomials are O(l) constants. In
particular, Z,2o(£,7) *s * n e s a m e f°r all statistics under consideration. The
detailed forms of Z/2o(£>7) a n d £2™ (7) will not be needed later.

The terms in £22(^,7) will play a crucial role in Section 4. Of these,
Mj(£,7) 0 = 1,2,3) arise from Egn{W2mexp(£'A)} as hinted in Remark 2,
while the remaining M,-(£,7) arise from (15) and Egn{WimWiuexp(£'A)},
on simplification.

3.2 Third-order power function
For j ' > 1 and A > 0, let /^:?j/\(.) and /c;,zi(.) stand respectively for

the distribution and density functions of a possibly non-central chi-square
variate with j degrees of freedom and non-centrality parameter A. Write
KJ,A{-) = 1 - KJ,A{.), and given a(0 < a < 1), define z2 via Kqi0(z2) = a.
Let S = {u; = (lyj,.. . ,w,)' : ty'to > z2}, and JD = (Di , . . . , Dq)', where
D m = d/dwm. Write (j)q{.) for the ^-variate normal density with null mean
and covariance matrix Iq. Define

Rj(rf,z2)= f Lji-D^tgiw-^dw (j = 1,2). (24)
Js

The approximate characteristic function (16) readily yields an Edge-
worth expansion for W under 9n. Using such an expansion, from (7) it
follows that, for any O{\) constant b,

Pen{T(9o) >z2+ n^b} = Kq,A(z2) + n"1/2JR1(7,z2)

+n-1{R2(1, z2) - bkqtA(z2)} + oin-1),^)

where A = 7 ^ . From (14), (17) and (24), one can explicitly obtain
#1(7, z2). The resulting expression agrees with with Bravo (2003) and van-
ishes at 7 = 0. Hence by (25), Pgo{T(90) > z2 + n^b} = a + o{n-1)
holds, provided b - bo, where bo = R2(0,z2)/kqfi(z2). Let bo be obtained
by replacing any population moment in bo by its sample analog. Then
bo = 6o+op(l), and the critical region T(0O) > z2+n~1bo has size a+o{n~l).
By (25), the third-order power function for this critical region is given by

Pen{T(90) >z2 + n-%) = P9n{T(00) > z2 + n"1^} + o^"1)

= KqiA(z2) + n-1'2R1(~f,z2)

+n-lR*2{llz2)+o(n-1), (26)

where

i?;(7, z2) = R2(j, z2) - R2(0, z2){kq,A(z2)/kqfi(z2))}. (27)
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4 Average power

4-1 Expression for average power
We now consider the average power along spherical contours of the form
7;7 = fi(> 0). Let Vi(/z, z2) and V2(fi,z2) be the averages of #1(7, z2)
and R2(j,z2) respectively along such contours. Following Bravo (2003),
Vi(/j,,z2) = 0. Hence, by (26), the third-order average power function is
given by, say,

P{H) = Kq^{z2) + n-lV2{fi, z2) + o{n-1). (28)

In order to examine the third-order term V2(fj,,z2), note that by (18),
(24) and (27)

i?*(7, z2) = ^ 0 ( 7 , z2) + R*2l{j, z2) + R*22(j, z2), (29)

where

R*2j(j,z2) = R2j(l,z2) - R2j(0,z2){kq,A(z2)/kqfi(z2)} (j = 0,l,2),(30)

with A = 7'7, and

R2j(7, z2) = j L2j(-D,7)0q(w - 7) dw (j = 0,2), (31)
Js

R2ih,z2)= f(-Dm)L£\-D + ̂ {w-^dw. (32)
Js

For j = 0,1,2, let V2j(fi,z2) be the average of #^(7,z2) along J'J = fi.
Following Mukerjee (1990a), by(30) and (32), V2i(fi, z2) = 0. Hence by (28)
and (29),

P(M) = KqAz2) + n-X{Vm(n, z2) + V22(fi, z2)} + o{n-1). (33)

Since L2o($, 7) is the same for all statistics under consideration, it is evident
from (30) and (31) that the same holds for V20(/j,,z2). Therefore, by (33),
in order to study third-order average power, hereafter we consider only
V22(»,z2).

Now, from (19)-(23), £22^,0) = 0, so that by (30) and (31), V22(^,z2)
reduces to the average of #22(7, z2) along 7*7 = ft • From (19) and (31), it
now follows that

5

V22{^z2) = P3YJB3{^z2)-P2B^z% (34)

where, for each j , Bj(fi,z2) is the average of
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/ Mj(-D,~f)<t>q(w - i)dw
Js

along YJ = /i. For instance, from (20), proceeding along the line of Muk-
erjee (1990b),

/ Mi(-D,i)<l>q(w -i)dw = -PmstPuvtlv{lmls1ukq+Q,A{z2)
JS

+ {lmSSu + Is&mu + lu&ms)kq+i,A{z2)},

where A = J'J, so that

Bi(/i,z2) - -{fi/q){2Pmst(3mst + PmmtPsst)kq+ifi{z2) +O{»2).

Expressions for Bj(n,z2), 2 < j < 6, can be obtained similarly from (20)-
(23). Using these in (34), upon simplification,

V22(fi,z2) = (n/q)kq+AiO(z2)a(z2) +O(^2),

where

a(z2) = p3{Pmmss ~ q{q + 2) - PmstPmst ~ ^PmmtPsst}

~(P3 + \pl)tPmstPmst + ^PmmtPsSt){^ I' (q + 4)}- (35)

Hence, in order to perform well with regard to third-order local average
power, a statistic should keep a(z2) large.

4-2 Implications
The expression for a(z2) does not involve p\. Since p?, = —(A + 2) for
Cressie-Read discrepancy statistics, it is clear that this subclass is essen-
tially complete under the present criterion within the class of empirical
discrepancy statistics.

Note that PmstPmst + ^PmmtPsst > 0, whenever the pmst are not all
zeros. In this situation, the coefficient of z2 in a(z2) is maximum when
Pz + \p\ is minimum, i.e., uniquely when pz = —3, which corresponds to
the Pearsonian chi-square statistic. Thus, if the pmst are not all zeros, then
any statistic with p3 ^ - 3 will have a smaller a(z2) than the Pearsonian
chi-square statistic, and hence will be dominated by the latter under the
present criterion, for sufficiently large z2, i.e., for sufficiently small a. This
is comparable with an optimality property of Rao's score statistic in the
parametric setting (Mukerjee, 1990b).

For a given a or equivalently z2, the formula (35) for a(z2) can be
employed to compare standard choices of p3 over various possibilities for
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the pmst and I3mmss. To illustrate this, consider the univariate case, q = 1,
and write K\ = p2n, K2 — Pun- Then (35) reduces to

a(*2) = /»3(K2 - 3 - -KI) - -(pa + g P a ^ V (36)

Let a = 0.05, i.e., 22 = 3.8415. If K2 > 3, then by (36), the Pearsonian
chi-square statistic (for this, p% = —3) has a larger a(z2) than the empirical
likelihood, Kullback-Leibler, Euclidean or Hellinger discrepancy statistics
(for these, /03 = -2 , —1, 0 and —| respectively) when K2 — 3 is less than
1.82«i, 2.14«i, 2.46«i or 1.98KI respectively. On the other hand, if n2 = 3,
then the Pearsonian chi-square statistic has a larger a(z2) than each of its
aforesaid rivals whenever K\ > 0, and if K2 < 3, then the same holds for
every m.

Alternatively, one can consider expected a(z2) under suitable prior spec-
ification for the /3mst and /3 m m s s , and then optimize with respect to pz- To
illustrate this in the univariate case, we assign a uniform prior on (m, K2)
over

15 9
{(KI, K2) : 0 < KI < 1.8, KI + 1 < K2 < — «i + - } ,

o A

which is the range of (KI, K2) for the Pearsonian system of distributions; see
Pearson & Hartley (1958, p. 210). By (36), the expected a(z2) with respect
to such a uniform prior equals,

607 117. 1 2, 2

"T560P 3~245( P 3 + 6 P 3 ) Z '

which is maximum at p^ = —(3 + §f|£~2)- Furthermore, for every z2, the
Pearsonian chi-square statistic has a larger expected a(z2) than each of its
four rivals mentioned in the last paragraph.
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Summary. The goal of the paper is two-fold. We first survey the available meth-
ods for modelling multivariate volatility processes. We then propose a new and
simple method with numerical illustration.
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1 Introduction

Volatility plays an important role in controlling and forecasting risks in var-
ious financial operations. For a univariate return series, volatility is often
represented in terms of conditional variances or conditional standard devia-
tions. Many statistical models have been developed for modelling univariate
conditional variance processes. While univariate descriptions are useful and
important, problems of risk assessment, asset allocation, hedging in futures
markets and options pricing require a multivariate framework, since high
volatilities are often observed in the same time periods across different as-
sets. Statistically this boils down to model time-varying conditional variance
and covariance matrices of a vector-valued time series. Section 2 below lists
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some existing statistical models for multivariate volatility processes. We re-
fer to Bauwens, Laurent &; Rombouts (2003) for a more detailed survey on
this topic. We propose a new and ad hoc method with numerical illustration
in section 3. We concludes in section 4 with a brief summary.

2 Existing methods

Let xt = (xij, • • • , Xd,t)T be a d x 1 return series of d assets. Let Tt be the
cr-algebra generated by {x;t,/c < t}, which represents the information set
at time t. We assume

E(xt|.Ft_i) = 0, Var(xtl^i-i) = St = (<ry,t). (1)

The goal is to model the conditional variance-covariance matrix St which
is a d x d non-negative definite matrix. Different models for St have been
proposed over the last two decades. We review some of the models drawing
major attraction in the literatures below, and refer to Bauwens, Laurent &
Rombouts (2003) for a more extensive survey.

2.1 The BEKK GARCH models

One of the most general forms, proposed by Engle & Kroner (1995), is the
BEKK representation of a multivariate GARCH(p, q) process

K q K V

St = C0C0 + ̂ E Mk^t-iK-iKk + E E B ^ - ^ ' (2)
k=li=l fc=lj=l

where Co, Aik,T5jk are d x d matrices and Co is upper triangular.
Although the form of the above model is quite general especially when K

is reasonably large, it suffers from the problems due to overparametrization.
See Engle & Kroner (1995) for more discuss on the identification problem
of this model.

Similar to univariate GARCH models, the standard estimation method
for the BEKK model (2) is the quasi-maximum likelihood estimation
(qMLE) facilitated by assuming Xt\J-t-i ~ N(0, St)- The consistency and
the asymptotic normality of the qMLE have been established by Comte &
Lieberman (2003). Note that even for moderately large d, the qMLE is a
solution of a high-dimensional nonlinear optimization problem. Therefore
in practice some approximate and iterative estimation methods are often
more efficient.
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2.2 Factor and orthogonal models

In order to reduce the number of parameters in modelling multivariate
volatilities, different types of decompositions for St are often employed in
model-specifications. For instance, writing St as the sum of a time-varying
part (usually with reduced rank) and a homoscedastic part, Engle, Ng &
Rothschild (1990) proposed a factor multivariate GARCH model as follows:

K q p

Zt = n + ^gfcg^a^x^x^ffc + Y,PiktLEt-M (3)
fc = l t = l j=l

where a^^Pjk are non-negative constants, ft is a time-invariant non-
negative definite constant matrix, and gfc, f̂  are d x 1 constant vectors
satisfying the constraints X^=i fki = 1 f°r k = 1, • • • , K and f£gi = 0 for
k ^ i, and 1 for fc = i.

Model (3) is called a Factor-GARCH(p, q; k) model. The K linear com-
binations 6k,t = fj£xt, k = 1,2, ••• ,K, represent K common factors of
which the conditional variances are specified as K different univariate
GARCH(p, q) models. It is easy to see that (3) is a special case of the
BEKK model if we put Aik = y/aikfkSk a n d Bjfc = y/Pjkhg'k-

Factor-GARCH models can be estimated with qMLE method. In prac-
tice, the factor representation portfolios 9k,t are usually set as known and a
two-stage estimation scheme can then be invoked. See Lin (1992) for other
estimation procedures.

Orthogonal GARCH (hereafter "O-GARCH") model, which is based on
the principal components of xt, can virtually be viewed as a special case
of Factor-GARCH model (Alexander & Chibumba (1997)). Let the uncon-
ditional covariance matrix of x< be 27. Based on the eigen-decomposition
S = WAW, where W'W = Id and A is a diagonal matrix. O-GARCH
specification first fits the conditional variance of each principal component
£t = (£i)t, • • • , Cd,t)' = W'X( with a univariate GARCH model:

Ci,(|J-t-i~AT(O,AM),
Qi Pi

^i,t = U)i + 2^ aiuCi,t-u + Z-*i Piv^i,t-vi
u=l v=l

and then take St = WAtW as the conditional variance matrix of Xt,
where At = diag(Ai](, • • • , Xd,t)- This effectively assumes that the principal
components are also conditionally uncorrelated.

Obviously, O-GARCH model is easy to fit in practice even when d is
large or very large. However, it treats unconditionally uncorrelated principal
components as conditionally correlated as well, which is typically untrue.
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This may lead to nonsensical or even wrong results. See Fan, Wang & Yao
(2004).

Recently, Fan, Wang & Yao (2004) proposed to model multivariate
volatilities in terms of a decomposition based on the so-called conditionally
uncorrelated components (CUC) of xt. It overcomes the aforementioned
shortcoming of the O-GARCH models.

2.3 Conditional correlation models

It always holds that
S t = D t r t D t , (4)

where Dt = diag(^/<7n)t, • • • , y/crdd,t), and I \ is the conditional correlation
matrix Xj.

Assuming that Ft does not change over time t and modelling each Xjit

with a univariate GARCH model, (Bollerslev 1990) proposed a constant
conditional correlation (CCC) framework which simplified the estimation
and inference procedures substantially. However, it is questionable if the
time-invariant conditional correlation is a realistic assumption in practice.

The dynamic conditional correlation (DCC) model of Engle (2002) com-
putes the time changing conditional correlation matrix from the standard-
ized residuals series

Tt = d iag iQj-^QtdiagiQJ" 1 / 2 , (5)

where
Qt = S(l - 6x - 92) + 0i(&_!£_!) + ^ Q t - i , (6)

and ffc)t are the standardized residuals obtained from the raw residuals
Xkj/i&kkj}1^2: and S is the sample covariance matrix of {£t}"=i-

A slightly different formulation was suggested by Tse & Tsui (2002):

r t = r ( i - 0 i - 0 2 ) + 0ir t_i + 02¥t-i (7)

to fit the correlation process. Here F = {pij} is a time-invariant d x d
positive definite parametric matrix with unit diagonal elements and \&t_i
is, for example, the sample correlation matrix of {£^1]^. This specification
is called varying correlation multivariate GARCH model or simply VC-
MGARCH model.

Although qMLE method is available in principle for all these conditional
correlation models, some two-stage estimation schemes have been developed
to increase the computational efficiency, and have apparently been used
more often in practice.
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3 A new ad hoc method

3.1 Method

Note in (1), <riiit = Var(xi)t|^rt_i). We may model of t = aiitt using any ap-
propriate univariate volatility models based on univariate time series {xu}.

To model the off-diagonal elements er^ with i < j , put

Vij,t = (n,t + xj<t)/2. (8)

We may model its conditional variance u^ j = Var(yyjt|Jrt_i) again by a
simple univariate model. Note that for 1 < i < j < d,

<Jij,t = 2wy,t 2 O

Hence once we have derived univariate volatility models for each component
Xitt and the combined series yijtt, the models for the conditional covariances
is implied by (9) above.

In practice, we may use simple GARCH(1,1) models for modelling both
a\t and w^t, namely

alt =ai + pix2itt_1 + 7i(r?t_1> (10)

Vij,t = otij + PijVij,t-i + 7ijUij,t-i- (11)

It is clear that the above proposal overcomes the difficulties due to
overparametrization, and can be implemented in a computationally efficient
manner since all the components of St are practically fitted separately. Fur-
thermore, we have the flexibility in choosing appropriate univariate models
for aft and w ^ , which may be GARCH, stochastic volatility models, semi-
parametric or nonparametric volatility models, or some empirical methods
such as rolling exponential smoothing. However the simplicity in both the
structure and the feasibility does come with a price unfortunately. First
the implied estimator for the conditional variance St m&y n°t necessarily
be a non-negative definite matrix. (A quick remedy may be to shrink the
negative eigenvalues of the estimated St to 0). Furthermore, the approach
suffers from a kind of innate inconsistency in model specification. For exam-
ple, under the GARCH(1,1) specification of (10) and (11), the conditional
variance of a portfolio a'x^ is not necessarily GARCH(1,1). Also note that
we may define y^t differently from the form (8), still o^t may be uniquely
determined by oft,<7jt and Wij,t- However the estimator for a^j implied
may be different.
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3.2 Numerical illustration

We illustrate the new method with two real data sets. The first one con-
sists of the daily log returns (in percentages) of two exchange rate series,
namely, the Deutsche mark (D) and the Japanese yen (J) versus U.S. dol-
lar. It covers the period of 3 January 1990 — 23 June 1998, for a total
of 2131 observations. The data was downloaded from the website of the
Federal Reserve Bank of New York and has been analyzed by Tse & Tsui
(2002) using the VC-MGARCH model. See Figures l(a) & (b) for the time
series plots of these two series. The second data set contains the four indices
from Asian stock markets, i.e. the Hang Seng index of Hong Kong (HS),
the Japan Nikkei 225 index (JN), the Shanghai Composite index (SH) and
the Taiwan Weighted index (TW). Daily close prices adjusted for divi-
dends and splits are obtained directly from the website of YahoolFinance.
We applied log-difference transformation to convert them into continuously
compounded returns. Adjustment was also made to account for the effect
of different holidays of these four markets. The data consist of 1507 obser-
vations covering the period of 1 August 1997 — 31 July 2004. The time
series plots for the second data set are omitted to save the space.

Descriptive statistics for all the six series are reported in Table 1. All the
series are leptokurtic and the nulls of normal distribution can be rejected
based on the Jarque-Bera test for all series. The Ljung-Box portmanteau
statistics of the two exchange rates series suggest that there exists no sig-
nificant evidence for the autocorrelation structures in both the series. We
extract the mean values from these two series and focus our attention to
their covariance matrix modelling. For the Asian market data, the port-
manteau statistics reveal some autocorrelation structure in HS and TW
series. Accordingly we fit an AR(5) model for each of these four series first.
The analysis reported below was conducted with the filtered series.

For the first data set, a univariate GARCH(1,1) model is fitted to D
and J, respectively, using qMLE method subject to the "variance target-
ing" constraint in the sense that the long run variance is just the sample
variance (see Engle (2002)). In order to obtain an estimator for conditional
correlation between D and J, another univariate GARCH(1,1) model is fit-
ted to (D+J)/2 using the same method. Table 2 presents the estimated
parameters. Standard errors are omitted to save space. See Figure l(c) and
(d) for the fitted volatility for these two return series and (e) and (f) for the
fitted covariance and correlation between D and J, respectively. A horizon-
tal line in Figure l(f) is drawn to show the level of unconditional correlation
between these two series.
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Table 1. Summary Statistics of the Two Data Sets

ID J I HS JN SH TW
"Mean 0.0025 -0.0023 -0.0193 -0.0388 0.0101 -0.0411
Stdev 0.6746 0.6750 2.0974 1.6868 1.5109 1.9432
Min -2.8963 -4.5228 -14.7346 -9.0145 -8.7277 -9.9360
Max 3.1030 3.2269 20.2083 8.8876 8.8491 9.7871
Skewness 0.0197 -0.5065 0.6226 0.0107 0.1881 -0.0199
Kurtosis 4.7731 6.5508 14.9947 5.2678 8.2629 5.2284
J-B 279.29 1210.62 9131.42 322.97 1748.09 311.91
Qi(10) 13.9104 16.0221 14.8263 6.5265 8.2794 20.9968
Qi(20) 21.8039 27.4127 30.1055 10.7677 16.9162 38.4476
Q2(10) 287.0760 83.8406 226.8334 74.5163 131.2148 88.4256
Q2(20) 460.5919 111.9082 242.1270 100.1453 192.3026 103.3381

Note: J-B stands for the Jarque-Bera statistics. Qi(k) and Q2{k) represents the
Ljung-Box portmanteau statistics of the original and squared return series, re-
spectively.

It is interesting to compare the fitted conditional correlation in Figure
l(f) with those in Figure 4 of Tse & Tsui (2002). The later was obtained
using BEKK model and VC-MGARCH model, both of them needed an
intensive searching method to maximize the corresponding likelihood func-
tions. The magnitudes and the time-varying patterns in these two figures
are very similar. This suggests that our ad hoc method is as capable as those
more sophisticated models in representing dynamic correlation structure at
least for this data set. Furthermore, the fitted conditional correlation pro-
cess always stays between -1 and 1. Hence the corresponding conditional
covariance is automatically a non-negative definite matrix.

To further check the possible misspecification of the fitted model, we
use the Ljung-Box Q portmanteau statistics of the cross-product of the
standardized error series.

More specifically, we use the Q(k) statistics of u?t - l,t = 1,2, • • • ,T
to check adequacy of the volatility model for the i-th series and the Q(k)
statistics of u^tUjf — p%j,t,t = 1,2, • • • , T to check the correlation modelling
between i-th and j'-th series, where u^ = Xij/<Ji,t is the standardized resid-
uals, xifc is selected as a null reference distribution3. The two columns on the
right in Table 2 list the values of Q(10) and Q(20). Apparently, at any con-
ventional level of significance, there is no evidence to indicate the remnant

3Although there is no rigorous theory for such a test so far, the simulation
study in Tse & Tsui (1999) suggests that it indeed provides a reasonable test
with good size and power.



94 MINGJIN WANG AND QIWEI YAO

Fig. 1. Time series plot of daily log-return (in percentage) of (a) Deutsche mark
(D) and (b) Japanese yen (J) versus US dollar; the fitted volatility of the return
series of (c) Deutsche mark and (d) Japanese yen; and the fitted (e) conditional
covariance and (f) conditional correlation between D and J using the ad hoc
method.

autocorrelation structure in the residuals. This confirms quantitatively that
the new method works well for such a data set.

The intractability of estimating a high-dimensional volatility model is a
notorious fact in modelling multivariate volatility processes. For instance,
for a four-dimension BEKK model it requires to solve an optimization prob-
lem with at least 42(=10+16-|-16) parameters. However, our ad hoc method
can handle such a situation in a pretty easy manner. As a matter of fact,
we need to estimate 10 univariate GARCH (1,1) models only, and the six
conditional covariance can be derived according to (9). Table 2 lists the esti-
mated coefficients for the Asian market data set. The six fitted conditional
correlation series are plotted in Figure 2, where the horizontal line in each
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Table 2. Estimation and Diagnostic Checking Results

= = I a 0 7 I Q(1Q) Q(20)
T) 0.0061 0.0509 0.9357 11.5085 15.9470
J 0.0108 0.0439 0.9325 3.6654 10.7579
(D,J) 0.0066 0.0432 0.9376 15.8036 23.5034

~HS 0.0731 0.0946 0.8887 7.9466 14.3098
JN 0.2203 0.0777 0.8447 5.0772 9.1901
SH 0.1056 0.1322 0.8214 7.3288 20.1829
T W 0.3347 0.0862 0.8242 5.8506 15.4980
(HS,JN) 0.1228 0.0860 0.8674 5.0718 16.5563
(HS.SH) 0.0562 0.0956 0.8737 12.4900 23.6990
(HS,TW) 0.1952 0.0902 0.8385 7.0120 13.5878
(JN.SH) 0.0916 0.0673 0.8655 9.1555 12.9979
(JN.TW) 0.2163 0.0559 0.8423 2.1990 4.5946
(SH,TW)[o.l785 0.1015 0.7867| 7.4842 19.4355

panel is the corresponding uncondit ional correlation. Fur thermore , t h e val-
ues of t h e Q p o r t m a n t e a u stat is t ic in t h e two very-right columns of Table 2
suggest t h e adequacy of t h e fitting. Note the (global) uncondit ional corre-
lations are pre t ty close t o 0 in Figures 2(b) , (d) and (f), it seems reasonable
to observe some negative conditional correlations in those plots. Note t h a t
the es t imated condit ional variances are not guaranteed t o be non-negative
definite. We calculate t h e eigenvalues for each fitted covariance mat r ix and
t h e negative values only occur at t h e smallest eigenvalues of 23 points over
t h e whole 1502(=1507-5) observations.

4 Conclusion

After reviewing some of the major multivariate volatility models, we put
forward a new ad hoc method to model the conditional covariance process.
Numerical results based on two real data sets suggest that a practically
meaningful fitting may be obtained in a computationally efficient manner
from applying the proposed new method. Therefore it might be worthwhile
to investigate the theoretically properties of this ad hoc method more thor-
oughly.
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Fig. 2. The fitted conditional correlations between (a) HS and JN, (b) HS and
SH, (c) HS and TV, (d) JN and SH, (e) JN and TW, (f) SH and TW for the
Asian Stock Market data using the ad hoc method.
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Summary. Estimation, testing and robustness are three common problems in
two-level structural equation models. Liang & Bentler (2004a) developed the EM
approach to estimation of model parameters and studied the asymptotic prop-
erties of the estimators. In a series of articles, Yuan and Bentler studied the
problems of testing model fit and the robustness of tests and standard errors.
This paper reviews some recent advances in research on the three problems, and
provides some numerical comparisons between our methodology and selected ex-
isting ones.
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1 Introduction

Two-level structural equation models (SEM for simplicity) have been used to
analyze data collected from a hierarchical sampling scheme. For example, in eval-
uating students' performance in an educational program, test scores may be col-
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lected from students nested in schools; in studying some psychological behavior of
children, data may be collected from children nested in households; in evaluating
the effectiveness of a new drug, data may be collected from patients divided into
groups according to their age; or in longitudinal studies, data may be collected
from the same group of individuals at different time points. In collecting this
type of sample data, the hierarchical sampling scheme consists of two steps: 1)
randomly select some groups (such as schools and households); and 2) randomly
select some individuals from each of the selected groups. The data collected by
this two-step sampling are usually called two-level (or clustered, hierarchically
structured) data. The individuals (such as students) nested in different groups
(such as schools) are called level-1 units, and the groups the level-2 units. In
some practical situations, data with more than two levels can be encountered.
For example, students can be considered to be nested in different classes, while
the classes are nested in various schools. Such data collected from students have a
three-level structure. In general, the more levels that are utilized, the more com-
plicated the model and its associated methodologies will become. However, most
existing studies on multilevel models mainly focus on the case of two levels, and
similarly, we will focus on two-level structural equation models. Comprehensive
discussions of multilevel models can be found in books such as Goldstein (1995),
Heck & Thomas (2000), Hox (2002), Kreft & de Leeuw (1998), Raudenbush &
Bryk (2002), Reise & Duan (2003), and Snijders & Bosker (1999).

A general two-level SEM may contain observations from both level-1 and level-
2 units. They are called level-1 observations and level-2 observations, respectively.
For example, scores collected from students' tests are level-1 observations; finan-
cial resources and teaching facilities such as the number of labs in a school are
level-2 observations, which are collected only through the level-2 units. It is as-
sumed that level-1 observations are influenced by two sources: 1) variables and
factors characterizing the differences among individuals, which are called level-1
influences; and 2) variables and factors characterizing the differences across the
level-2 units, which are called level-2 influences. A model for characterizing the ef-
fect of level-1 influences is called the level-1 model, and a model for characterizing
the effect of level-2 influences, the level-2 model. A basic assumption of two-level
SEM is that the effects of various variables or factors on the response (indicator)
variables are additive. In structural equation models, there is a strong preference
to consider observed variables as indicators of hypothesized latent variables or fac-
tors, and hence models may include specifications that relate latent to observed
variables, and latent variables to each other. Such latent variables or factors may
exist at one or both levels in the case of two-level SEM. The most widely known
latent variable model is the factor analysis model, in which the latent variables
generate the observed variables and are simply correlated among themselves. Be-
cause of the wide applications of factor analysis models in various fields, especially
in the behavioral and social sciences, e.g., education, medicine, psychology, and
sociology, two-level SEM with a factor analysis model as its level-1 or level-2 (or
at both levels) model have been very common in practical applications.

Two-level SEM can be developed in a variety of ways. Some earlier discussions
on the formulation of two-level SEM can be referred to (to name a few): Goldstein
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& McDonald (1988), Muthen (1989, 1994, 1997) McDonald & Goldstein (1987),
Lee (1990), Lee and Poon (1992, 1998), McDonald (1993) and du Toit & du
Toit (2002). Based on this earlier work, Liang & Bentler (2004a) proposed the
following formulation for analysis of two-level SEM:

(") = (Z') + ( ° ) , (1)
\y9ij \V9) \VgiJ' K'

where {zg : q x 1, g = 1,...,G} is a set of i.i.d. (independently identically
distributed) level-2 observations whose level-1 component can be regarded as a
constant (zero, for simplicity), and {ygi : p x l , i = l,...,Ng; g = 1,... ,G} is
a set of level-1 observations that are assumed to be decomposed as the sum of
level-1 effect {vgi) and level-2 effect (vg). For each fixed g, {ygi : i = 1, . . . , Ng}
are i.i.d. observations from the same group (level-2 unit), while for all i and g,
{Vgi} a r e n°t independent. vg is the level-2 latent random vector characterizing
the level-2 effects, and vgi the level-1 latent random vector characterizing the
level-1 effects. It is typically assumed that both zg and vg are independent of
vgi, but zg and vg are generally correlated. The zero vector (q x 1) in (1) implies
that the level-2 observation zg has a constant effect (assuming zero without loss
of generality) on all level-1 units nested in the same level-2 unit. The set of level-
1 sample sizes {Ng : g = 1, . . . , G} is called the level-1 sample design and G
the level-2 sample size. When there are no level-2 observations zs 's (or zg E O ) ,
formulation (1) reduces to

ygi = Vg+Vgi. (2)

For example, Lee (1990), Lee and Poon (1992, 1998) and Lee & Tsang (1999)
studied two-level SEM by using formulation (2).

Within the setup of (1), we further denote /xz = E(zg), ny = E(ygi) = E(vg),
Szz = cov(z9), SB = cav(vg), Sw = cov(u9<) and Szy = cov(zg,ygi) =
cov(zg,vg). It is typically assumed that E(vgi) = 0. With p + q means and
p(p + l)/2 + (p + q)(p + q + l)/2 variances and nonduplicated covariances, there
are a total of

R = P + q + EiEpl + (P + i)(P + i + i) (3)

free parameters in the saturated model, which implies that all means, variances
and nonduplicated covariances are free parameters. In a two-level SEM, the means
fiz, fiy and variance-covariance matrices Szz, SB, SW and Szy can be further
structured. For example, a substantive theory might represent vgt as generated
by a factor model with Sw = Aw&A'w + * V . Similarly, SB may also have a
factor structure like that of Sw- The variables in zg might predict the between
level (level-2) factors, which will lead to structured Szy and fiy. The means,
variances and nonduplicated covariances of the observed data are no longer the
model's free parameters in the structured model. They are actually functions of
a more basic set of free parameters such as factor loadings, factor covariances,
error variances, the regression coefficients and residual error variances. Denote
the set of free parameters as a parameter vector 0. The structured model or the
null hypothesis can be represented as
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" - f t ) - ' " " ( f t ? ) - <p+')xl
Zw = Z w { 0 ) , pxp (4)

EB^B W = ( £ $ > £ $ > ) , (P + g) x ( p + g) .
Of course, model (4) has to be identified. There is no simple rule for deciding an
identified model. Let r be the number of parameters in 0, a necessary condition
for model identification is r < R. A similar inequality has to hold for the means
and mean parameters, as well as for the covariances and covariance parameters.
A detailed discussion of identification on conventional (one-level) SEM is given
by Bollen (1989). This can be applied to each level of a two-level SEM and covers
most instances. As in modeling with independent groups (see e.g., Bentler (2004)),
sometimes cross-level constraints on parameters can serve to identify a model that
would otherwise be underidentified at a given level.

As discussed in Liang & Bentler (2004a), formulation (1) covers a variety of
formulations for two-level SEM in the literature. The complexity of the structured
model (4) may come from the level-1 model for v9i, or from the level-2 model for
vg or from both. By setting up formulation (1), we want to answer the questions:
Ql) how do the level-1 factors in vgi influence one another at the within level
(level-1), how do the level-2 factors in vg influence one another at the between
level (level-2), and what are the effects from level-1 and level-2 factors on the ob-
servations {zg, VgiY- Q2) how well does model (4) fit the observed data {zg, ygi}
after the model parameters are estimated? and Q3) What assumptions have to
be imposed on formulation (1) for evaluating the methods for answering Ql)
and Q2), and what is the sensitivity of the methods to violation of assumptions?
Methods for addressing Ql) require adequate approaches to parameter estima-
tion. Methods for addressing Q2) involve testing hypotheses related to model fit,
and those for addressing Q3) are concerned with the robustness of statistics. Thus
in the next sections, we will discuss the recent literature with regard to formula-
tion (1) with the structured model (4): parameter estimation, hypothesis testing,
and robustness of statistics.

2 Parameter Estimation

The most commonly used method for parameter estimation in multilevel models
is maximum likelihood (ML) based on the normal distributional assumption. A
competitive alternative is the generalized least squares (GLS) procedure. We will
mainly discuss these two with an emphasis on the ML method for continuous
variables.
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2.1 Maximum likelihood estimation based on Gauss-Newton
type or Fisher scoring algorithms

In the context of multilevel models, maximum likelihood is based on the assump-
tion that the variables zg, vg and vgi are multivariate normally distributed. Based
on this, the log likelihood can be obtained. The associated first- and second-order
partial derivatives provide various algorithms for parameter estimation. An ad-
vantage of employing the Gauss-Newton or Fisher scoring algorithms is that the
Hessian matrix is not required, that is, the second order derivatives of the ML
function are not needed. The expected information matrix typically used in these
methods is substantially easier to compute than the observed information matrix.
With regard to specific implementations, Goldstein & McDonald (1988) pointed
out that two-level SEM is a special case of their general two-level model, which
is different from (1). McDonald &: Goldstein (1987) proposed a formulation for
analysis of two-level SEM and provided derivatives for implementing the quasi-
Newton or Fisher scoring algorithms for ML estimation. McDonald & Goldstein
(1987) model can be formulated in the form of (1) (Liang & Bentler (2004a)).
Muthen (1994, 1997) proposed the so-called MUML approach to parameter esti-
mation in two-level SEM. Muthen's (1994, 1997) model can also be formulated
in the form of (1). MUML is an approximate ML approach that reduces to full
ML estimation for a balanced level-1 sample design {Ng = n, g = 1, . . . , G}. For
unbalanced designs, some studies found that MUML provides similar parameter
estimates as ML (Muthen (1991)); Hox (1993); McDonald (1994); Hox & Maas
(2001). Yuan & Hayashi (2004) studied conditions for MUML inference to be
asymptotically valid. Lee (1990) studied the asymptotics of parameter estimates
for formulation (2) and pointed out the possible implementation of a Fisher scor-
ing algorithm for obtaining the ML estimate (MLE) of 0. du Toit & du Toit (2002)
provided the technical derivation for the ML method and model implemented in
LISREL 8.5 (du Toit & du Toit (2001)).

2.2 Maximum likelihood estimation based on EM-type
algorithms

The Expectation Maximization (EM) algorithm (Dempster, Laird & Rubin
(1977)) has been successfully used to solve ML estimation problems with missing
data. Observing the complexity that can result from an unbalanced sample de-
sign, Raudenbush (1995) constructed the "pseudo-balanced" sample design from
an unbalanced sample design by conceiving some observations as "missing". Un-
der his pattern of missing data, Raudenbush developed an EM algorithm for
obtaining the ML estimator (MLE) of two-level SEM. Raudenbush (1995) two-
level SEM can be formulated in the form of (1) (Liang & Bentler (2004a)). Lee &
Poon (1998) considered another pattern of missing data in two-level SEM by con-
ceiving of the level-2 latent variables as missing observations. Without involving
the mean structure, Lee and Poon developed an EM algorithm for ML analysis
of formulation (2). An advantage of Lee & Poon (1998) EM algorithm is that
the E-step function has the same form as the ML function from a conventional
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(one-level) multiple-group SEM. As a result, the M-step of Lee & Poon (1998)
EM algorithm can be realized by employing some standard SEM packages such as
EQS (Bentler (2004)), LISREL (du Toit & du Toit (2001)), and Mplus (Muthen
& Muthen (2004)). This can save some computational effort in implementing the
algorithm.

To compensate the disadvantages of no mean structure and the computation
of a large number of inverse matrices in Lee & Poon (1998) approach, Bentler &
Liang (2003a) generalized Lee & Poon (1998) methodology to the case of mean
structures and improved their algorithm by using a matrix decomposition that
avoids the computation of a large number of inverse matrices. Bentler & Liang
(2003b) illustrated the practical implementation of their EM algorithm by setting
up an EQS model for simultaneous two-level mean and covariance structure anal-
ysis. Liang & Bentler (2004a) proposed (1) as a formulation for general two-level
SEM and pointed out that its coverage includes many existing formulations in
the literature. Following the same line as in Lee & Poon (1998), Liang & Bentler
(2004a) developed an EM algorithm for fitting formulation (1) with the struc-
tural model (4). Their algorithm has been coded in EQS Version 6.0 (Bentler
(2004)). This new version provides structured or nonsaturated simultaneous two-
level mean and covariance structure analysis that is yet to be made available
in parallel packages such as LISREL and Mplus. An example based on Liang &
Bentler's algorithm in EQS is given in Section 5.

2.3 Estimation based on generalized least squares

It is well-known that the least squares (LS) method has been used in regression
analysis for parameter estimation without any distributional assumption on the
variables in the underlying model. The LS method has been generalized to various
weighted versions, and the resulting versions are usually called generalized least
squares (GLS). GLS can be implemented under distributional assumptions or
without imposing any distributional assumption on the underlying model. The
GLS estimator is taken as that based on a minimization of the sum of generalized
distances between the observed data and the modeled data. The various ways
for measuring distance result in various GLS estimators. Browne (1974, 1984)
developed the GLS method for analysis of conventional (one-level) SEM. One of
his weighting methods (1984) provides an asymptotically distribution free (ADF)
method. His techniques for developing the GLS and ADF methods have been
generalized to the case of two-level SEM. For example, Lee (1990) studied the GLS
estimator for two-level SEM and obtained some asymptotic results. Lee (1990)
pointed out that the Gauss-Newton algorithm or the Fisher scoring algorithm can
be employed to obtain the GLS estimator for parameters in formulation (2). Lee
fe Poon (1992) proposed both ML and GLS analysis with small level-1 samples for
formulation (2). Poon & Lee (1992) proposed another way to do GLS estimation
for two-level SEM. Lee's (1990) proposal is still used today, as computational
methods for practical implementation of existing GLS theory in two-level SEM
remain based on the Gauss-Newton or Fisher scoring algorithms.
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3 Testing Model Fit

Testing model fit in two-level SEM amounts to testing the null hypothesis of the
structured model against the alternative hypothesis of the unstructured model.
When the two-level SEM is formulated as (1), the null hypothesis can be stated
as

Ho : the structured model (4) is true,
~ (5)

versus Hi : fi, Sw and SB in (4) are unstructured.

The primary method for testing (5) under the assumption of multivariate nor-
mality of the involved variables is the likelihood ratio (LR) statistic defined by

TLR = 1(9) - 1(9.), (6)

where /(•) is the negative twice of log-likelihood function, 9 is the MLE for 9
from the structured model (Ho is true), and 9S the MLE for 0 from the saturated
(unstructured) model (Hi is true). The LR statistic in (6) has an asymptotic
chi-square XR-T (R ls given by (3)) under the normal distributional assumption
as described in McDonald & Goldstein (1987), Lee & Poon (1998), and Liang &
Bentler (2004a). The degrees of freedom R — r is the difference between number
of free parameters in the saturated model and in the structured model.

It has been found that the direct LR statistic (6) usually rejects the true model
(Ho is true) too often (with a higher type I error rate) in the case of conventional
(one-level) SEM. For example, Hu, Bentler & Kano (1992), and Bentler & Yuan
(1999) studied the effect of small sample size on test statistics for conventional
SEM. In fitting two-level SEM, there are two sets of sample sizes: the set of level-
1 sample sizes {Ng : g = 1, . . . , G) and the level-2 sample size G. It is mainly
the level-2 sample size G that influences the convergence of TLR to XR-T (Yuan
& Bentler (2002)). Due to the sensitivity of TLR to small G and to the normal
distributional assumption, various types of corrections or adjustments to TLR
and related induced statistics for testing model fit for conventional SEM have
been proposed, see, for example, Satorra and Bentler (1988, 1990, 1994), Yuan
and Bentler (1997, 1998a, 1998b, 1999a). Some of these corrected chi-square and
induced statistics have been generalized to fitting two-level SEM. We summarize
some recent results as follows.

3.1 Rescaled likelihood ratio statistics

Following the approach to rescaling the LR statistics for fitting conventional SEM,
Yuan & Bentler (2002) developed the rescaled LR statistic

TRLR = ^ (7)

for fitting two-level SEM, where TLR is defined by (6) and A is a rescaling factor
that is a function of an estimator of 9 and it has the property that for normally
distributed data A —> 1 as G —> oo. Thus, under the normal distributional as-
sumption on (1), TRLR is asymptotically equivalent to TLR- The Monte Carlo



106 PETER M. BENTLER, JIAJUAN LIANG AND KE-HAI YUAN

study in Yuan & Bentler (2002) implies that, with finite samples, TRLR performs
almost as well as TLR in controlling type I errors with normally distributed data.
When the normal distributional assumption is violated, TRLR performs much bet-
ter than TLR- TRLR also tends to over-reject the correct covariance structure for
small sample sizes. Thus TRLR has better performance than TLR in protecting
against a violation of the normal distributional assumption on (1).

3.2 Corrected ADF-type statistics

A variety of ADF (Asymptotically Distribution Free)-type statistics have been
constructed to fit conventional SEM. In addition to the ADF test mentioned
above, Browne (1984) also proposed a residual-based ADF statistic that can be
applied to any inefficient but consistent estimator. Yuan and Bentler (1997,1998b,
1999a) proposed corrected versions of Browne's (1984) ADF statistics, as well as
some new F-statistics. These statistics have been generalized to fitting two-level
SEM by Yuan & Bentler (2003a). They proposed six ADF-type statistics and
studied the empirical performance of eight test statistics (including two existing
LR-type statistics) for fitting two-level SEM. These statistics are (Yuan & Bentler
(2003a)):

1. the LR statistic TLR in (6);
2. the rescaled LR statistic TRLR in (7);
3. the ADF-type x2-statistic TADF;
4. the residual-based ADF-type x2-statistic TRADF;
5. the corrected ADF-type x2-statistic TCADF;

6. the corrected residual-based ADF-type x2-statistic TCRADF;
7. the ADF-type F-statistic FADF;

8. the residual-based ADF-type F-statistic FRADF-

The ADF-type statistics in 3)-6) have an asymptotic x2~distribution, a nd
the ADF-type statistics in 7)-8) have an asymptotic F-distribution. Based on
their empirical study, Yuan & Bentler (2003a) commented that the six ADF-
type statistics in 3)-8) have similar performance in a multilevel context as they
do in the conventional one-level SEM context as studied in Yuan and Bentler
(1997, 1998b, 1999a, 1999b). The TADF in 3) and the TRADF in 4) tend to reject
the correct models too often unless the sample size is huge. TCADF in 5) and
TCRADF in 6) slightly under-reject the correct models for a small level-2 sample
size G. FADF in 7) and FRADF in 8) moderately over-reject correct models for a
small level-2 sample size G, and both are not significantly influenced by the level-1
sample sizes. The commonly used LR-type statistic TLR in 1) performs acceptably
only when data are multivariate normal. The rescaled LR-type statistic TRLR in
2) over-rejects correct models too often for a small level-2 sample size G, thus
performing not as desirably as it does in the conventional SEM context (Hu,
Bentler & Kano (1992)).

Yuan and Bentler's (2003a) study shows that there are no ideal statistics for
fitting two-level SEM if the level-2 sample size G is too small. The bootstrap or
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resampling-based procedure has been suggested for dealing with small samples
in SEM (e.g., Yung & Chan (1999)). However, bootstrap also faces problems
with small samples (e.g., Polansky (2000)), especially when not every replication
enjoys a converged solution in the context of SEM (Yuan & Hayashi (2003);
Yung k Bentler (1996)). For a moderate or a large G, Yuan & Bentler (2003a)
recommended using the regular LR-type statistic TLR if the data are known to
be multivariate normal, otherwise using TCRADF or FRADF if no distributional
information is known. A simple example on the performance of the eight statistics
is given in Section 5.

4 Robustness

Reliable statistical analysis of two-level SEM can be accomplished in three major
ways: use a statistical machinery whose assumptions, such as multivariate nor-
mality in the case of ML, are justified in practice; use a method such as an ADF
estimator or a correction to a test statistic that makes minimal assumptions; or
use a method under violation of assumptions where theory can guarantee that
the violation will have no serious effect on statistical inferences. Experience indi-
cates that normality is an unlikely assumption in practice (e.g., Micceri (1989)).
Further, ADF-type statistics are quite slow to converge to their limiting distri-
butions, and hence larger level-2 sample sizes may be needed than are available.
As a result, the study of robustness is important.

The purpose of studying robustness is to find out how a violation of the normal
distributional assumption affects the validity of some existing methodologies for
ML analysis of two-level SEM. This has been studied in conventional SEM for a
long time (e.g., Anderson & Amemiya (1988); Browne & Shapiro (1988); Satorra
& Bentler (1990) and remains an active area of research (e.g., Satorra (2002);
Yuan and Bentler, 1998a, 1998b, 1999b, 2000a, 2000b). In this section we will
summarize some recent results on the robustness of test statistics and standard
errors of parameter estimators in two-level SEM. We will find that asymptotic
robustness theory developed for one-level SEM models can be extended to two-
level SEM models. This means that some test statistics and the standard errors of
certain parameters can be trusted under violation of assumptions. However, as in
the case of one-level models, there are conditions on the model and its parameters
that remain hard to evaluate in practice.

4.1 Robustness of test s tat ist ics

A slight violation of the multivariate normal distribution is the family of ellipti-
cally contoured distributions (ECD for simplicity), which includes the normal as
its special case. Comprehensive studies of ECD and its related distributions were
done by Fang, Kotz & Ng (1990), Fang & Zhang (1990), and Gupta & Varga
(1993). Having many properties that are similar to those of the normal distribu-
tion, particularly noteworthy is that an ECD maintains distributional symmetry
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(Kano (1994)). For example, an ECD has no skewness (zero skewness) in all of its
univariate marginals. The multivariate ^-distribution is perhaps the most familiar
ECD that has been used for statistical modeling (Lange, Little & Taylor (1989)).
Lee & Poon (1992) proposed a GLS approach to parameter estimation for for-
mulation (2) within ECD. A study on the robustness of the LR-type statistics in
two-level SEM can help to understand their sensitivity to violations of the normal
distributional assumption.

Yuan & Bentler (2003b) studied the asymptotic distribution of LR-type statis-
tics within the class of ECD. They found that, by proper rescalings, two LR-type
statistics still have an asymptotic x2-distribution under certain conditions. Those
conditions include large level-1 and level-2 sample sizes and that the within and
between model parameters are separable. Their results show that the two rescaled
LR-type statistics under study are robust within the class of ECD under the re-
quired conditions. Under a set of similar conditions to those in Yuan and Bentler
(2003b, 2003c) proved that the regular LR-statistics TLR in (6) is asymptotically
robust (keeps the same x2-distribution as under the normal distributional as-
sumption) within a large class of nonnormal distributions including the pseudo
normal distributions proposed in Yuan & Bentler (1999b). Yuan & Bentler (2003c)
also implies that rescaled LR-type statistics are asymptotically robust within the
class of pseudo elliptical distributions (PED for simplicity, see Yuan & Bentler
(1999b)). Because the family of PED includes the multivariate normal and the
ECD as its special cases, Yuan & Bentler (2003c) results show that the rescaled
LR-statistic TRLR is asymptotically robust against a large class of nonnormal
distributions.

4.2 Robus tness of s t andard er rors

Under the normal distributional assumption on formulation (1), the MLE 0 of
the model parameter vector 0 in model (4) has an asymptotic multivariate nor-
mal distribution (Lee (1990); Liang & Bentler (2004a)). The standard errors of
the components in 0 can be obtained by inverting the corresponding information
matrix. These standard errors are used as measures for accuracy of the MLE's
of the model parameters. When there is a violation of the normal distributional
assumption, it is unknown whether the standard errors are still valid for mea-
suring accuracy of the MLE's. Yuan & Bentler (2003d) studied the robustness of
standard errors in multilevel models. Under certain conditions, they concluded
that for some parameters the standard errors computed under the normal dis-
tributional assumption are robust (remain unchanged) within a large class of
nonnormal distributions.

5 Examples

In this section we will provide some numerical examples that illustrate the three
aspects of recent advances in two-level SEM as discussed in Sections 2-4.
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Example 5.1 Estimation of two-level SEM with simultaneous mean and covari-
ance structure using EQS (excerpted from Liang & Bentler (2004a)).

The practical data set school.dat is from the National Education Longitudinal
Study (NELS: 88) and can be downloaded from the Mplus website
http://www.statmodel.com/mplus/examples. The data set contains many aca-
demic measurements of N = 5198 students (level-1 units) nested in G = 235
schools (level-2 units). We only take the data in columns 7-10 which are students'
scores from four courses, and the data in columns 20-21, which are the school-
level (level-2) observations. Then we have level-1 observations {ygi : 4 x 1} and
level-2 observations {zg : 2 x 1 } . Formulation (1) with the structured model
(4) is set up for the ML analysis. In the two-level SEM under analysis, there is
only one level-1 factor Fw =math-ability of students, which is measured by four
indicator variables Y\, Y2, Y3 and Y4, representing the students' scores from four
math tests. Similarly, there is only one level-2 factor FB =general background,
which is also measured by the same four indicator variables. The factor loading
for Y\ is fixed as the constant "1" as a reference at both levels. The level-2 factor
FB is assumed to be further predicted by two level-2 observable variables Z\ (mi-
nority) and Zi (school type) with a random error. In addition, it is assumed that
the mean E(FB) cannot represent the mean of Y3 completely and a free mean
parameter has to be added in the prediction of Y3 by FB in the level-2 model.
The model can be easily specified by a path diagram. Readers who are familiar
with EQS can easily see the measurement relationships from the EQS input pro-
gram in the Appendix. Here we present expressions for the mean and covariance
structure from the measurement relationships. The covariance matrices have a
factor structure given by

Ew = Aw$wA'w + 9W, EB = AB*BA'B + <PB> EB= ( f" ^zy ) ,

where

Aw = (l,0i,6>2,6>3)', &w = var(Fw) = (04), *w = diag(05,06,07,08),

AB(4>) = (1,01,02,03)', # B ( # ) = var(FB), & B(4>) = diag(04,05,06,07),

s " = ( l i iio) - S z y = E y z > = ( c ° v ^ ' Y^)- <*=i] 2 ; j = i ] 2'3'̂
with

var(FB) = vb = 080n + 0io0i2 + 2090n0i2 + 0i3,

COv(Zi,Yi) = Vl = 08011 + 09012, C0v(Zl, Y2) = 0 m ,

cov(Zi, V3) = 4>2vi, cov(Zi,Y4) = 03ui,

COV(Z2, Y\) = V2 = 09011 + 010012, COv(Z2, Y2) = 01«2,

COv(Z2, Y3) = 02V2 + 014, COV(Z2, Yi) = 03«2-
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The mean structure is given by

f-z — (M1-M2)', My = (W>>0lMfc,02Mf> + H4,4>3Hb)', fJ-b = 01lMl + 012^2 + M3-

In this example, there are six observable variables (Z\, Z2, Y\, Y2, Y3, Y4) but
only four free mean parameters fj,i (i = 1,2,3,4). So we have a nonsaturated mean
structure. The EQS input program is provided in the Appendix for analysis of
this simultaneous mean and covariance structure. The results are given in Table
1, where the S.E. (standard error) and the model chi-square are computed by
the formulas in Liang & Bentler (2004a). The p-value=0.33 shows that this is an
acceptable mean and covariance structure for the selected data. By referring to
the LISREL manual (du Toit & du Toit (2001)) and the Mplus manual (Muthen
& Muthen (2004)), we can observe that the current versions of LISREL and Mplus
do not provide an option for the analysis of a nonsaturated mean structure.

Table 1. Parameter estimates, standard errors and model chi-square for Example
5.1 (S.E.=Standard Error

"l (72 t»3 "4 "5 t/Q C7 Cg

ESTIMATE 1.046 0.682 1.024 0.751 0.341 0.255 1.348 2.482
S.E. 0.021 0.022 0.031 0.024 0.015 0.015 0.028 0.053

01 02 03 04 05 06 <t>7 4>S
ESTIMATE 1.052 0.579 1.177 0.014 0.009 0.033 0.051 4.437
S.E. 0.006 0.043 0.012 0.005 0.004 0.009 0.017 0.409

4>9 4>W 011 012 013 014
ESTIMATE -.366 0.142 -.175 -.025 0.132 -.023
S.E. 0.057 0.013 0.015 0.083 0.017 0.007

Mi M2 M3 AU

ESTIMATE 4.630 1.170 3.262 0.728
S.E. 0.137 0.025 0.145 0.105

TEST chi-square= 12.51, d.f.= 11, p-value= 0.33

Example 5.2 Robustness of eight test statistics for two-level SEM (excerpted
from Yuan & Bentler (2003a)).

Yuan & Bentler (2003a) proposed six test statistics for fitting two-level SEM
and carried out an empirical study on the performance of eight statistics that
include their six new ones and the two existing ones TLR and TRLR in (6) and
(7), respectively. The eight statistics are summarized in subsection 3.2. They used
four types of distributions as the underlying distributions of the two-level SEM
under study: condition I) multivariate normal (MVN); condition II) elliptically
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contoured distribution (ECD); condition III) log multivariate normal (LMVN);
and condition IV) rescaled log multivariate normal (RLMVN). Formulation (1)
is employed to generate the two-level data with

vg = Xbfb + eb, fb = a + P'zg + e,

where Xb is a 8 x 1 vector, nz = E(zg) is a 3 x 1 vector, Ezz = cov(zg) is a 3 x 3
matrix, E(eb) = 0, cov(et) = <P(, is a 8 x 8 diagonal matrix, E(t) = 0, ip = var(e)
is a scalar; and

vgi = Awfw + ew, E(vgi) = 0, Ew = AW<I>WA'W + &W,

where Aw is a 8 x 2 matrix, &w is a 2 x 2 correlation matrix and \PW is a 8 x 8
diagonal matrix. Referring to (4), we have

tiy = \b(a + P'nJ, Szy = Szzf3X'b, 2B = \b(l3'2zz0 + ip)\b + 'Pb.

In generating the two-level data, a balanced level-1 sample design (Ng = n) is
employed for each case. Simulation was carried out for 500 replications and

_ . . . T Number of rejections
Empirical type I error rate = .

Number of replications
The results are summarized in Table 2. The type I error rates for the six x2-
type statistics TLR, TRLR, TADF, TRADF, TQADF, and TCRADF are computed by
referring to their asymptotic chi-square distribution X67> a nd those for the two
F-type statistics FADF and FRADF are computed by referring to their asymptotic
F-distribution Fe7,a-6T according to the choice of level-2 sample size G in Table
2. All type I error rates are computed with significance level a = .05.

The following empirical conclusions can be summarized from Table 2.

1. Under the normal distributional assumption on model (4), the two LR-type
X -statistics TLR and TRLR seem to have similar performance (in controlling
type I error rates). Both of them tend to over-reject the true model for small
level-2 sample size G, and their performance is hardly influenced by the level-
1 sample size. TLR is more sensitive to normal data than TRLR: it rejects the
true model with higher (much higher for ECD and RLMVN) probability than
that of TRLR;

2. The two ADF-type x2-statistics TCADF and TCRADF seem to have similar
performance. Both of them tend to under-reject the true model for all cases;

3. The two ADF-type F-statistics FADF and FRADF seem to have similar per-
formance. They tend to over-reject the true model for small level-2 sample
size G and are more like their asymptotic F-statistics when G increases (e.g.,
G > 500);
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Table 2. Empirical type I error rates of the eight statistics for four types of un-
derlying distributions in Example 5.2 (significance level a = .05)(Level-2 sample
size G = 150 with balanced level-1 sample size n)

Test Statistics
Distribution n TLR TRLR TADF TRADF TCADF TCRADF FADF FRADF

MVN 50 .062 .072 .948 .950 .012 .020 .078 .090
100 .080 .112 .950 .956 .020 .026 .106 .106
200 .062 .080 .954 .954 .010 .014 .078 .102
500 .092 .120 .938 .942 .022 .028 .096 .098

ECD 50.982 .238 .968 .976 .012 .034 .070 .082
100 .986 .230 .956 .954 .012 .016 .052 .074
200 .998 .224 .968 .962 .012 .018 .058 .090
500 .996 .228 .958 .960 .004 .006 .064 .066

LMVN 50 .134 .116 .971 .976 .014 .032 .076 .124
100 .146 .124 .959 .964 .010 .018 .066 .110
200 .138 .114 .963 ' .970 .029 .050 .092 .146
500 .136 .102 .961 .968 .010 .018 .077 .104

RLMVN 50.820 .232 M3 !988 M0 1)20 1)46 M0~
100 .882 .226 .955 .974 .002 .012 .041 .100
200 .898 .202 .967 .976 .014 .036 .078 .124
500 .920 .218 .968 .980 .016 .034 .057 .114

(Continued) (Balanced level-1 sample size n = 50)
I Test Statistics

Distribution G TLR TRLR TADF TRADF TCADF TCRADF FADF FRADF

MVN 150 .062 .072 .948 .950 .012 .020 .078 .090
200 .058 .068 .812 .822 .046 .046 .088 .094
500 .036 .044 .268 .270 .042 .042 .058 .056

1000 .044 .054 .130 .130 .040 .040 .044 .044
ECD 150 .982 .238 ^68 9̂76 1)12 1)34 !070 .082

200 .980 .218 .816 .836 .018 .022 .060 .066
500 .994 .126 .270 .278 .028 .030 .040 .048

1000 .998 .090 .086 .092 .036 .038 .040 .042
LMVN 150.134 .116 9̂71 ^76 !(Jl4 M2 1)76 .124

200 .138 .102 .842 .870 .035 .042 .069 .088
500 .094 .060 .284 .290 .048 .048 .050 .054

1000 .080 .032 .098 .098 .022 .022 .028 .028
RLMVN 150 .820 .232 .983 .988 .010 .020 .046 .080

200 .846 .164 .845 .870 .020 .040 .057 .074
500 .934 .108 .269 .296 .036 .056 .070 .076

1000|.964 .090 .110 .118 .028 .034 .040 .040
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4. The two ADF-type x2-statistics TADF and TRADF seem to require a huge
level-2 sample size G to keep the type I error rates under control. For example,
even for G = 1000, both of them still reject the true model quite often (their
type I error rates are much larger than the significance level a = .05). So
one should be careful when using TADF and TRADF to test the model fit of
two-level SEM without any distributional assumption.

Example 5.3 Robustness of standard errors (excerpted from Yuan &: Bentler
(2003d)).

Yuan & Bentler (2003d) studied the asymptotic robustness of the standard
errors of the MLE 0 for general multilevel models including formulation (1) as-
sociated with model (4). One of their conclusions is that the standard errors of
the MLE 0 for model (4) are asymptotically robust within a large family of non-
normal distributions. Such a family is generated by the stochastic representation
(SR) (see Fang, Kotz & Ng (1990); Yuan & Bentler (1999b))

x = rLZ, (8)

where r is a scalar random variable independent of the random vector £ =
(£i,•• •, £™)', i i s a d x r a constant matrix of rank d such that LL' = S. Both
r and £ have finite fourth-order moments. Note that ECD (MVN is included in
ECD) can be generated from the SR (8) when suitably choosing r and £ (Fang,
Kotz & Ng (1990)). But the family represented by (8) is much larger than that
of ECD (Yuan & Bentler (1999b)).

Yuan & Bentler (2003d) constructed an example of two-level SEM of the form
of formulation (2) (a special case of (1)). In the example, both the between and
the within covariance matrices have a factor structure:

SB = SB{9b) = Ab$bA'b + ¥b, Sw = Sw{0w) = AW&WA'W + <Pw,

where the parameter vectors 0w and Ob do not share any common parameter, <?(,
and VPu, are diagonal matrices, and Ab and Aw are matrices of factor loadings with
the structure that each indicator variable only measures one factor. Now assume
that the level-2 random component vg and the level-1 random component vgi in
(2) are generated by SR (8) with

L = Lb = {Ab$j,&l), and L = Lw = (AW$Z, ¥%),

respectively. The scalar variable r and the random vector £ = (£i> • • •, £m)' in SR
(8) satisfy the condition

E(r4) = l, E(tf) = 3.

Yuan & Bentler (2003d) concluded that the standard errors of the ML estimates
of 0b and 0W are asymptotically robust (level-2 sample size G —> oo) within a sub-
family of (8), which is still much large than ECD. This implies that the standard
errors of the MLE for model (4) under the normal distributional assumption can
be still valid within a wide class of nonnormal distributions.
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6 Comments and Supplements

In this paper we focused on summarizing certain selected recent advances in esti-
mation, testing, and robustness in two-level SEM with continuous data. Of course,
there exist many other recent developments in analysis of two-level SEM besides
those methodologies summarized in this paper. In this section we provide a few
examples of other research directions and/or advances in the study of two-level
SEM. For example, in the discussion of estimation in Section 2, we only consid-
ered the case where model parameters have no constraints. Lee & Tsang (1999)
proposed an EM algorithm for ML estimation with constraints for formulation
(2). Bentler, Liang & Yuan (2004) generalized Lee and Tsang's (1999) model and
algorithm to formulation (1). Zhang & Lee (2001) studied the asymptotic theory
of two-level SEM with constraints. Lee & Song (2001) studied ML estimation of
two-level latent variable models (including two-level SEM) with mixed continuous
and polytomous data. In our discussion of testing model fit in Section 3, we only
considered the case of fitting two-level SEM without any prior information. Lee
& Song (2001) studied the problem of testing hypothesis in two-level SEM using
a Bayesian approach.

In both Section 2 and Section 3, we considered the problem of estimation
and testing in two-level SEM using the standard one-step framework. That is,
we estimate the level-1 and level-2 parameters, and fit the level-1 and level-2
models, simultaneously. This is optimal if the model is correct, but may not be
optimal if parts of the model are incorrect as a misspecification in one part of
the model may propagate to other parts of the model. Yuan & Bentler (2003e)
proposed an approach to stepwise analysis of two-level SEM. They divided the
process of fitting a two-level SEM into the steps: 1) fitting the saturated model
and obtaining its parameter estimates (e.g., by the ML method); 2) fitting the
within-level (level-1) structural model in the framework of conventional (one-level)
SEM; 3) formulating the between-level (level-2) structural model and checking
the common parameters of the within-level and the between-level by a Wald-
type statistic; and 4) fitting the between-level structural model in the framework
of conventional SEM by using the parameter estimates obtained at the within-
level in step 2). This stepwise approach can be employed to analyze covariance
structure models with more than two levels.

Many additional problems in two-level SEM need tackling or remain open.
For example, when a two-level SEM is perturbed by a random factor, Song &
Lee (2004) gave a method for assessing the local influence of a minor perturba-
tion in the proposed model. Liang & Bentler (2004b) (under review) proposed
a heterogeneous two-level latent variable model and its associated algorithm for
practical data analysis. It remains unclear how the estimates of model parameters
and test statistics are affected when two-level data contain outliers or influential
cases at one or another level. In the case of conventional SEM, Yuan & Bentler
(2001) studied the effects of outliers on estimators and tests, and Yuan, Marshall
& Weston (2002) gave a method for handling influential cases. In still another
direction, Muthen (2001) pointed out new opportunities in the study of latent
variable models using a combination of categorical and continuous latent vari-
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ables. It remains open whether Muthen's methodologies for dealing with SEM
with categorical latent variables can be effectively generalized to the case of two-
level SEM. Also in the case of conventional SEM, besides the X2"*ype a n d the
F-type statistics, other fit indices are available (Yuan & Marshall (2004)). An
open question is whether those fit indices can be effectively generalized to the
case of two-level SEM. Clearly this paper has been able to shed some light on
only limited issues and advances in the huge field of multilevel modeling.
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Appendices

EQS input program for the model in Example 5.1

/TITLE
EQS Input Program for Analysis of the School Data Set
Within Model
/SPECIFICATIONS
DATA='SCHOOL.DAT'; CASES=5198; VARIABLES=21; METHOD=ML;
MATRIX=RAW; GROUPS=2; ANALYSIS=COV; MULTILEVEL=ML;
CLUSTER=V19;
/LABELS
V7=Y6; V8=Y7; V9=Y8; V10=Y9; V19=SCHOOL; V20=X3; V21=X4;
F1=FW;
/EQUATIONS
Y6=1FW+E6;
Y7=*FW+E7;
Y8=*FW+E8;
Y9=*FW+E9;
/VARIANCES
FW=*;
E6-E9=*;
/END

/TITLE
Between Model
/LABELS
V7=Y6; V8=Y7; V9=Y8; V10=Y9; V19=SCHOOL; V20=X3; V21=X4;
F1=FB;
/EQUATIONS
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Y6=1FB+E6;
Y7=*FB+E7;
Y8=*V999+*FB+E8;
Y9=*FB+E9;
FB=*V999+*X3+*X4+D1;
X3=*V999+E3;
X4=*V999+E4;
/VARIANCES
E6-E9=*;
Dl=*;
E3-E4=*;
/COVARIANCES
E3,E4=*;
E8,E4=*;
/TECHNICAL
ITR=200; CON=.000001;
/END
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Copulas were first introduced by Sklar (1959) as dependence functions of ran-
dom variables. A historical review and description of the major developments of
copula analysis are available in Dall'Aglio, Kotz & Salinetti (1991), Schweizer
(1991) and Nelsen (1999), among other sources. Copulas contain all the depen-
dence information of corresponding random variables and have been applied as
an effective construction of multivariate distributions with given marginals. They
have been widely applied in various fields of medicine, science and technology. To
mention a few recent examples, Jouini &: Clemen (1996) proposed a class of cop-
ula models for aggregating expert opinions. Frees, Carriere & Valdez (1996) and
Embrechts, Lindskog & McNeil (2003) considered the dependence analysis with
copulas in risk management. Fan, Prentice & Hsu (2000) discussed the depen-
dence measurement of copulas in bivariate survival analysis. Fang, Fang & Kotz
(2002) constructed meta-elliptical distributions based on elliptical copulas. Bas-
rak, B., Klaassen, Beekman, Martin & Boomsma (2004) analyzed human genetic
linkages using copulas.
Definition 1.1 An n(> 2)-dimensional copula is an n-dimensional cumulative
distribution function (cdf), denoted by Cn(ui,U2, • • • ,un), whose support is the
n-dimensional hypercube [0, l ] n and whose univariate marginal distributions are
uniformly distributed on [0,1].

Let X\, • • • , Xn be random variables, defined on a common probability space,
with the individual distribution functions F\{x{), • • • , Fn(xn) and the joint dis-
tribution function H(x\,--- ,xn). Sklar (1996) shows that there exists an n-
dimensional copula Cn(u\, • • • ,un) such that, for all (x\, • • • ,xn) £ lZn,

H(xU---,Xn)=Cn{F1(xi),--- ,Fn(Xn)). (1.1)

If Fi(xi),--- ,Fn(a:n) are continuous, then Cn(u\,--- ,un) is unique; otherwise
Cn(ui, • • • ,un) is uniquely determined on (Range Fi)x • • • x(Range Fn).

Consequently, for continuous multivariate distribution functions, the univari-
ate marginals and the multivariate dependence structure can be separated, and
the dependence structure can be represented by a copula. Assume furthermore
that the random vector x = (Xi, • • • , Xn)T has the density function h(x\, • • • , xn)
and marginal density functions, / i , . . •, / n , respectively. Then the copula density
function of x = (Xi, • • • , Xn)T exists and moreover

alternatively

n

h(Xu- • - , *„ ) = cOFKsi), • • • , Fn(Xn)) I ] fi(xi). (1.3)
i=l

The function c ( F i ( x i ) , - - ,Fn(xn)) in the above equation is referred to as
the density weighting function. For a given copula C(u\,--- ,un) and marginal
distribution functions Fi(a;i), • • •, Fn(xn) of x, the multivariate distribution of x
can be constructed from (1.2) or (1.3). Hence, copulas allow us to construct models

(1.2)
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which go beyond the standard ones as far as the level of dependence is concerned.
They yield a powerful tool for testing a wide variety of dependence measurements.
The study of copulas have attracted substantial attention of statisticians in the
last 20 years (see e.g. Drouet-Mari & Kotz (2001)). The basic properties of copulas
have been summarized by Nelsen (1999) and Embrechts, Lindskog & McNeil
(2003). However, the geometric and topological properties of copulas are quite
important for characterizing dependence patterns of random variables and based
on our knowledge has been scarcely addressed in the literature. In this paper,
we intend to investigate the simple fundamental properties of copulas and the
dependence among random variables. Some geometric features of copulas will be
considered. Specially, the piecewise linear and piecewise quadratic copulas will
be studied and their probabilistic interpretations will be provided. The notion
of the "holes" in the domains of multivariate distributions will be introduced. It
is shown that "holes" in the copulas are essential for characterizing dependence
patterns. Based on these results, some interesting multivariate distributions could
be constructed.

Without loss of generality, we will focus in this paper on bivariate copulas.
The corresponding results for multivariate copulas can straightforwardly be ob-
tained. This article is organized as follows. In Section 2 polynomial copulas being
an important family of copulas are studied. The necessary conditions for a poly-
nomial to be a copula are given. The piecewise linear and quadratic copulas are
discussed in Section 3. Section 4 provides the topological invariance properties
of copulas. In Section 5, we characterize the local dependence with standardized
cross difference ratio. Section 6 presents our conclusions.

2 Polynomial Copulas

Numerous copulas of various types have been constructed in the past decades. A
comprehensive review in this connection are given in Drouet-Mari & Kotz (2001)
and Embrechts, Lindskog & McNeil (2003). Many copulas can be obtained from
the well known multivariate distributions by means of formulas (1.1) or (1.2) (see
e.g. Fang, Fang & Kotz (2002). However, most of the copulas or copula densities
obtained in this manner could not be written in explicit forms, for example the
copula of a normal distribution. Kimeldorf & Sampson (1975) constructed a family
of piecewise-uniform copulas. Johnson & Kotz (1998) studied the nicked and
notched square distributions which are simple piecewise uniform distribution on
the unit square ([0,1]2). These distributions provide a method for constructing
simple copulas.

An important family of explicit copulas is the polynomial copulas. Given any
non-negative integer m, by power-m polynomial we mean a polynomial of the
following form:

p{u,v) = 52oi j i iV, (2.1)
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where 0 <i,j < m, i + j < m and there is at least one ay ^ 0 with i + j = m. If
p(u, v) is also a copula (see below), we call it a (non-trivial) polynomial copula of
power-m. By the definition of copulas we have immediately the following lemma.
Lemma 2.1 The necessary conditions for a power-m polynomial p(u,v) to be a
copula are:

(i) ij = 0, aij = 0, i.e. the polynomial p(u,v) is divisible by uv and C(u,v) =
p(u, v) possesses a density.

(ii) {aij, ij 7̂  0, i + j< m} are solutions of the linear system:

( E , ™ ? ' « * « = 0 , j = 2 , 3 , - " , m - l
I r->m—1 _ i

J E r = 7 * i = 0 , i = 2 , 3 , - " , m - l ( 2 2 )

lEr=ila« = i-
In the system (2.2) there are JVi = ^m(m—1) variables and 2(m—l) equations.

We could list the rows of these variables in a vector to form the TVi-dimensional
vector

O = (ail, • • • ,ai,m-1,02,1, . . . ,a2,m-2, • • . , arn_2,l,am-2,2, "m-l,l) • (2-3)

We have the following lemma dealing with the solution space of the system (2.2).
Lemma 2.2 The solution space of the linear system (2.2) is a linear space topo-
logically isomorphic to FtN2, where N2 = | (m - 2)(m — 3).
Proof. Utilizing the definition of a given in (2.3) the coefficient matrix A of the
system (2.2) takes on the following form:

m- 1 m-2 ••• 2 1

1 1.. .1 0 0 . . . 0 ••• 0 0 0
0 0 - 0 1 l - l ••• 0 0 0

0 0---0 0 0 - 0 ••• 1 1 0
A= 0 0 - 0 0 0---0 ••• 0 0 1

1 0 - 0 1 0 - 0 . . . 1 0 1
0 1---0 0 1---0 ••• 0 1 0

0 0---1 0 0---0 ••• 0 0 0

The first m — 1 rows (block 1) and the last m — 1 rows (block 2) are two sets of
linearly independent vectors. The summation of all the vectors in each one of the
two blocks equal to the same vector 1 = ( 1 , 1 , . . . , 1)T (of Ni-dimension). Hence
Rank(A) < 2(m - 1) - 1.

However, if we get rid of the first row of A, then any row of the remaining
matrix cannot be reduced to a zero vector by elementary row operations. Thus
we have RankA = 2(m — 1) — 1.
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Finally the existence of the simple copula uv means that there exists always
a solution on = 1, aij = 0, for all ij ^ 1. The dimension of the solution space is

jV2 = JVi - Rank.4
= \m(m - 1) - (2(m - 1) - 1) = \(m - 2)(m - 3).

This completes the proof.
Below we shall state and prove a general theorem dealing with polynomial

copulas.
Theorem 2.3 Polynomial copulas have the following properties:

(i) There are no linear and cubic copulas.
(ii) There is one and only one quadratic copula: C(u,v) = uv.
(iii) For any m > 3 there are infinitely many non-trivial polynomial copulas of

power-m. The coefficient set of all the polynomial copulas of power-m is a
convex hull in a \{m — 2)(m — 3)-dimensional space. In particular, any non-
trivial polynomial copula of power-m does not contain the power terms um~1v
anduv™'1.

Proof. Assume that the quadratic copula takes the following general forms

C2(u, v) = au + j3uv + -yv2 + \u + r\v + S.

To determine the unknown coefficients, we shall apply the four boundary condi-
tions. For example, for C2(u,v), we have

C2(0,0) = 0 =» 6 = 0,
C2(0, v) = 0 => -fv2 + r)v = 0, i.e., 7 = 0, 77 = 0,
C2(u,0) = 0 =>• au2 + Xu = 0, i.e., a = 0, A = 0,
C2(l, 1) = 0 =* P = 1.

Assertion (ii) of the theorem follows immediately. Assertion (i) can be proved in
the same manner. Actually if we attempt to determine the coefficients of a cubic
polynomial to form a copula, we shall end up with uv only which is just quadratic.
Thus, we only need to prove the part (iii) of the theorem.

Denote by p(u, v, a) a polynomial p(u, v) with the coefficient vector a. From
Lemmas 2.1 and 2.2 we know that the solution of the linear system (2.2) leads
to a polynomial p(u, v, a) satisfying all the boundary conditions of a copula. The
polynomial p(u, v, a) has density over [0,1]2,

q(u,v, a) = -Q-Q^, and p(u, v, a) = / / q(s,t,a)dsdt. (2.4)

The function q(u, v, a) depends continuously on the parameter vector a. With
ao = (1,0, ...,0) , q(u,v, do) = 1 is a particular density function corresponding
to the copula uv. Therefore, there exists an open neighborhood So of ao in the
solution space of the system (2.2), such that Va € So, the corresponding q(u, v, a)
is non-negative over [0,1]2, and is therefore a copula density function. Hence
the polynomial p(u,v,a) is a polynomial copula. Moreover, since So is an open
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set, there are infinitely non-trivial many polynomial copulas of power-m. The
convexity of the parameter set is due to the convexity of the copula set, i.e. any
convex linear combination of copulas is again a copula. The absence of the terms
um~1v and uo"1"1 is due to the fact from (2.2) that am_i,i = ai,m_i = 0. This
completes the proof of the theorem.
Corollary 2.4 A power-4 polynomial p(u, v) is a copula iff it is of the form

p4(u,v) = uv[a + (l-a)(u + v-uv)}, (u,v) € [0,1]2, (2.5)

where 0 < a < 2.
Proof. We know from Theorem 3.3 that the solution space of the linear system
(2.2) (for m = 4) is one dimensional ((m — 2)(m — 3)/2 = 1). So we use a = an
as the independent parameter. The general solution of the system (2.2) is ai3 =
a3i = 0 and a\2 = 021 = —022 = 1 — a. Hence the general polynomial copula of
power-4 must be of the form:

C(u, v) = auv + (1 - a)(u2v + uv2) - (1 - a )uV. (2.6)

Since C(u,v) is a copula, d2C(u,v)/dudv is non-negative over [0,1]2, that is

a + 2(1 - a)(u + v) - 4(1 - a)uv > 0, {u,v)e[0,l}2 ,„ ~

<^> 2(1 - a){u + v - 2uv) > -a. K '

With (u,v) € [0,1]2, we always have

1 > (it + v - 2uu) >u2+v2- 2uv > 0.

It is easy to verify that (2.7) is valid if and only if 2(1 — a) > —a and a > 0.
Namely, 0 < a < 2. This completes the proof.
Corollary 2.5 A power-5 polynomial p(u, v) is a copula iff it is of the form

p5{u, v) = auv + puv2 + (1 - a - P)uv3 + (1 - a - /3 - j)u2v . .
+ 7 u V - (1 - Q - f3)u2v3 + (/? + i)u3v -{/3 + 7 ) u V , ( 8 ;

where (a,/3,7) are parameters such that the density d2p${u,v)/dudv is non-
negative over [0,1]2. The range of (a,(3,-y) is a convex hull which is included
in the polyhedron:

V = {(a,0,-y) • oc>0, 3-2a-(3>0, 2 - a + /? + 7 > 0 , 2 a - 7 - l > 0 } .

Proof. Analogously to the previous corollary, with m = 5, the number of free
parameters is (m — 2)(m — 3)/2 = 3. We choose an = a, 012 = 0, and 022 = 7
as the free parameters. The general solution of the system (2.2) is then

o13 = 1 - (a + 0),
023 = -a i3 = -l + a + 0,
a32 = -(0 + 7),
a3i = -a.32 = 0 + 1,
O21 = - 7 - °23 = 1 - (a + 0 + i).
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Hence the power-5 polynomial copulas must be of the form in (2.8). The polyhe-
dron bounds of the parameters can be checked since the density d2ps(u, v)/dudv
is non-negative over [0,1]2.

The high power polynomial copulas have much more degrees of freedom to
be used as an approximation to other copulas. As a matter fact even a small
subset of this large family would be sufficient for this purpose. For example, Li,
Mikusinski, Sherwood & Taylor (1997) have proved that Bernstein polynomials
could be used to approximate any continuous copula with the convergence rate
proportional to the power of the polynomial.

3 Piecewise Linear/Quadratic Copulas

The piecewise linear copulas have received special attention in the literature.
Together with the piecewise quadratic copulas, they have the very simple and
direct probabilistic meaning of the dependence pattern between two marginal
random variables, i.e. the singularity and local independence. By singularity we
mean a probability measure is concentrated on the lower dimensional manifold
(one dimensional for the case of bivariate distributions). Local independence means
that the two marginal random variables are independent conditional on a subset
of the supporting set of a probability space. Also, we restrict the idea of piecewise
to the partition of the [0,1]2 into finite or countably infinite union of connected
open sets with boundaries as the one dimensional curves of finite length.
Example 3.1. Let (X, Y) be uniformly distributed on the Li-norm unit sphere
{(x,y) : \x\ + \y\ = 1} (Figure 3.1(a)). Then, |X| + \Y\ = 1. Its marginal distri-
bution function is given by

{ 0 if x < - 1 ,

(1 + x)/2 if | x | < l , (3.1)
1 if x > - 1 .

Then, the copula of (X, Y) is as follows,
r u + v/2 - 1/4, if \u - 1/2| + \v- 1/2| < 1/2,

for \u - 1/2| + \v- 1/2| > 1/2 :

<*•••>- °; S i : < i : S ! ' ^ : *»
V, i < U < 1, 0 < V < f,
U + V- 1, | < W < 1, i <V< 1,

which is piecewise linear. It is composed of five flats and symmetric on u = v
(Figure 3.1(b)).
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(a) (b)
Figure 3.1 A piecewise linear copula.

Theorem 3.1 Let C(u, v), F(x) and G(y) be the copula and marginal distribution
functions of(X,Y), respectively. The joint distribution of X andY is singular iff
the corresponding copula is piecewise additive, i.e. there exists a partition of
the [0,1]2 such that over each of the partition cells At, i = 1,2,...,

C ( u , v ) U i = C i ( u ) + C 2 (v ) , 2 = 1 , 2 , - - - , (3.3)

where C\(u) and C2(v) are increasing functions.
Proof. Necessity: Since (X, Y) is singular, there is an one-dimensional manifold
on which the probability measure concentrated. Under the transformation {u =
F(x),v = G(y)}, there is a corresponding one-dimensional manifold in [0,1]2.
Then [0,1]2 can be partitioned along the one-dimensional manifolds. Thus within
each partition set the increment of cdf is the sum of the increments of marginal
distributions, i.e.

C(u + Au,v + Av) - C(u, v) = [C(u + Au, v) - C(u, v)}
+[C(u,v + Av) - C(u,v)]

= C1(Au) + C2(Av),

as expected.
Sufficiency: Evidently an additive copula has no density. Due to the increment

structure of the cdf, the probability measure must be located along the boundaries
of the partition cells. This completes the proof.

If the random vector (X, Y) is singular, its probability measure is concentrated
on an one-dimensional manifold. It should be noted the one-dimensional manifold
may be a genuine subset of the union of boundaries of the partition sets used to
define a piecewise additive copula.

Corollary 3.2 The copula of X and Y is piecewise linear iff (X, Y) is singular
and there is a partition of the probability space given by [jAi, such that all the
conditional cdfs: F(x\Y < y)\Ai and G(y\X < x)\Ai are proportional to F(x) and
G(y) respectively.

Example 3.2. Consider the bivariate random vector (X, Y) with its probability
mass concentrated on two linear sections with the joint density is given by

hl s _ / ^ 2 / i - 1 < i < 0, y = -x ;
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The marginal distributions of X and Y are respectively,

EV ^ \ \ + \x, -\<x<0, _ . ! , . / 2 « - l , 0 < u < i

a n d , , i
G(y) = ^y+-y2, 0 < y < 1, G - > ) = - ( - l + V l T ¥ ) ,

and the copula of (X, Y) is

{ 0, 0 < M < 5 , 2 u - f + ^ ± ^ < 0 ,

v, ^ < u < 1, ^ I + |^ - 1 - V2u - 1 < 0
w - | + V1^8l), elsewhere.

Thus, the copula is piecewise additive but not piecewise linear even though the
probability mass is totally concentrated on two line sections.

The following Example 3.3 gives a non-trivial piecewise quadratic copula. It
follows from Theorem 2.3, if a random vector (X, Y) has a quadratic copula, then
X and Y are independent. However, if (X, Y) has a piecewise quadratic copula,
then X and Y are locally independent but not necessarily independent.
Example 3.3. We provide an example of a non-trivial piecewise quadratic copula.
The unit square [0,1]2 is partitioned into three parts with the two characterizing
boundaries:

6v = 17 - 8u - \/289 - 308u + 28u2 and 2v + u + 1 = \ / l + 18u - 3u2.

Then the three parts are (cf. Figure 3.2(b))
A = {(u,v) € [0,1]2 : 2v>Vl + 18tt - 3u2 - u - 1} ,
B = {{u,v) G [0,1]2 : v > ^(17 - 8M - V289 - 308n + 28tt2),

v< i(Vl + 1 8 u - 3 u 2 - u - l ) } ,
and

D = I(u,v) e [0,1]2 : 6v < 17 - 8M - \/289 - 308u + 28«2} .
The copula defined over the three sets is given by (see Figure 3.2)

f «(1 + «)/2, (u,v)€A,
C(u, v) = < (M2 + 6uv + v2 + u + w)/10, (M, V) G B,

lkv(2 + u)/3, (tt,w)eD.

(a) (b)
Figure 3.2 A piecewise quadratic copula.
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Since a convex linear combination of the copulas is still a copula, many other
quadratic copulas could easily be obtained from the known ones.

4 The "Holes" in the Domain

In this section we shall explore a very simple and quite elementary topological
nature of the dependence pattern: the number and the shape of the "holes" in
the domains of bivariate copula density functions.

Let (X, Y) be a bivariate random vector. Stoyanov (1997) constructed a clas-
sical counterexample involving an interesting non-normal bivariate distribution
of (X, Y) such that X, Y,and X + Y are normal but not the joint distribution
of (X, Y). The basic idea is to punch four square holes At (i = 1,2,3,4), sym-
metrically in the support of a bivariate normal density function, and to move the
probability masses in At to the other square holes with symmetrical position, Bi
(i = 1,2,3,4), respectively. This procedure ensures that the marginals are not
affected. It is clear that after punching the four holes and rearranging the prob-
ability mass, the joint probability density function will no longer be normal over
the supporting set.

In practice, the models of multivariate distributions with "holes" in the sup-
porting sets occur quite often. For example, the distribution of number of fishes
in an area of sea surrounded with a number of islands. More examples emerge in
biology, meteorology, communications and medicine. General geometrical prob-
lems arise naturally from probabilistic considerations. Could we construct a non-
normal bivariate pdf which is continuous over its support, yet with as many holes
as one desires? If so, could the holes have any particular boundaries? At first
sight these problems do not seem to be easy. However we shall demonstrate that,
though the explicit expression might not be easily available, the numerical solu-
tions for these problems are quite simple and straightforward using the copula
analysis and a computer.

Before proceeding further we shall describe rigorously the concept of holes.
Let (X, Y) be a bivariate continuous random vector with the pdf h(x, y) and the
marginal distributions F(x) and G(y). V = [a, b] x [c, d] is called a square domain
of (X,Y), where

a = inf{x : h(x,y) > 0}, c = inf{j/: h(x,y) > 0}, _4

b = sup{x : h(x,y) > 0}, d = sup{y : h(x,y) > 0}. \ • )

The invertible continuous transformations

(u = F(x) (x = F-\u)
\v = G(y) \ y = G-\v) [4-2)

are topological isomorphisms between [0,1]2 and V. So all the topological struc-
tures of the domain T>, such as the number of holes and the connectedness are
valid in the corresponding copula density function.
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Definition 4.1 Let (X, Y) be a continuous random vector with the support S
and the square domain V. Suppose that A C V is a connected open set and
its boundary consisting of piecewise differentiable curves of finite length. Let
S f] A = 4>. If there exists a open neighborhood of A in V, Ae such that Ae\A C S,
then A is called a hole.

Since the pdf is equal to 0 at the holes, the number of holes for the pdf and
those for the corresponding copula density function are same by (1.3). For given
marginals, the construction of bivariate pdf's with holes can be based on copulas,
and the number of holes are invariant under the transformation (4.2). Further-
more, since the marginal cdf's of (X, Y) are strictly increasing, some properties
of hole boundaries are consistent with those for the pdf and the copula density,
such as piecewise monotonicity and differentiability. In this subsection, we shall
study the shapes and bounds of holes by means of a copula density.

Now we use the terminology rectangular holes to denote those with boundaries
that are parallel to the coordinate axes. Particularly a single rectangular hole also
includes the situation when the left and the right, or upper and lower sides of the
unit square (the domain of copula density) are taken as equivalent.

From (1.3), if there is a rectangular hole in the pdf of (X, Y), then there
is also a rectangular hole in its copula density and conversely. The following
theorem offers exact upper bounds on the width, height, and the area of a single
rectangular hole in the supporting set of a copula density function.

Theorem 4.1 The exact upper bounds on the width (a), height(0), and area(a/3)
of a single rectangular hole in the copula C(u, v) are

1 - a - 0 > 0 and a0 < max{a(l - a), 0(1 - 0)} < 1/4, (4.3)

Furthermore, the bounds can be arbitrarily closely approached as {0 —> (1 — a ) - } ,
{a —> (1 — (3)-}, and {a —> \ —, 0 —> | —} respectively.

Proof. Consider a typical single rectangular hole A surrounded by the supporting
set of copula density, as shown in Figure 4.1. Assume the hole has width a and
height (3. Let d\, d2, b\, and 62 be the probability measure of the regions D\, D2,
B\, and B2 respectively. From the definition of a hole these measures must be
positive. Since the marginal of any copula is the uniform distribution on (0,1),
we must have that

a = d\ + d,2, and (3 = b\ + 62.

But none of T\, T2, T3, and T4 is of a zero measure, thus di + d-z + 61 + 62 < 1.
Hence, a > 0, (3 > 0 and a + (3 > 1. The area of the hole has bounds:

a/3 < max{a(l - a), 0(1 - 0)} < 1/4.

Exactness of the bounds is obvious.For any a and 0 satisfying the above
conditions, a copula density function with rectangular hole (a wide and 0 high)
could be directly constructed by assigning the probability mass (a, 0, 1 — a — 0)
uniformly to {(DUD2), (Bi,B2), (Ti,T2,T3,T4)} respectively. The proof is thus
completed.
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Figure 4.1 A typical rectangular hole within the domain of a copula

All the rectangles that could be used to construct a single hole of a copula
density will be now called admissible rectangles.

Corollary 4.2 Let h(x,y) be a bivariate pdf with the marginal distributions F(x)
and G(y). There exists a single rectangular hole [a, b] x [c, d] within the pdf h(x, y)
if and only if

1 _ (F(6) - F(a)) - (G(d) - G(c)) > 0.

(If this inequality is satisfied, the hole [a, b] x [c, d] will also be called admissible).
A bivariate pdf h{x, y) with non-rectangular holes exists provided the holes are
strictly covered by an admissible rectangle.

The algorithm for constructing the rectangular hole in above proof of the
theorem is a modification of the procedure used by Stoyanov (1997) in his coun-
terexample for normal distributions. We may call it a "mass swapping" algorithm
since we could proceed by starting from the uniform distribution over the unit
square and then swapping/redistributing the probability mass in the nine rect-
angular regions to obtain a copula with a single rectangular hole. With some
modification this method could also be used to construct other holes with non-
rectangular shapes as long as the holes are covered by an admissible rectangular
hole.

However we have noticed that a copula density with holes constructed by
the mass swapping algorithm is usually piecewise continuous over the supporting
region with jumps appearing along the boundaries of the eight rectangular regions.
It seems plausible that we could construct infinitely many copula densities with
holes, which are yet continuous everywhere over the supporting region. For this
construction another algorithm will be introduced.

Theorem 4.3 For a set of holes (which could be countably infinite) whose area
is bounded by an admissible rectangle A, there exist copula densities possessing
these holes.

Proof. We intend to prove the theorem by constructing directly the copula den-
sities with desired holes. The proof is rather lengthy but quite intuitive. Since
the basic idea of the algorithm is to redistribute the measure mass along the ver-
tical/horizontal directions as if the measure mass squeezed along the orthogonal
tubes, we shall simply call the algorithm the squeeze algorithm. Now we consider
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a typical situation shown in Figure 4.2, where the holes are bounded by the ad-
missible rectangle A= [a, 6] X [c, d}. The four major steps of the squeeze algorithm
are

(i) Starting from the uniform distribution over [0,1]2. Suppose the mass measure
(area) of the holes is S. Set the density to be 0 over the holes,

(ii) Distribute the mass S over Di |J D2 such that the marginal density in the
u-direction still remains 1 for u € [0,1].

(iii)Take mass S from (Ji=i Tt s u c n that the marginal density in the u-direction
for v € [0,c]|JKl] is still 1.

(iv)Distribute mass S over B1IJB2 such that the marginal densities in the u-
direction for u 6 [0, o] x [6,1] and in the u-direction for v € [c, d] are 1.

Figure 4.2 Two holes in an admissible rectangle A.

We provide further clarification. After step (i), mass 5 is being lost from
A. The new marginal mass densities are f*(u) and g*{v). The functions 0(u) =
1 — f*(u) and r](v) = 1 — g*(v) are the density functions used as a standard to
redistribute the mass S on Ac. Evidently

,fc rd

I 6{u)du = / rj(v)dv = S.
J o J c

We shall use the capital Roman letters to represent the area of the 9 different
rectangular regions, e.g., Ti will stand for the area of Ti, etc. In steps (ii) and (iii)
the mass 5 is to be distributed over the eight regions in the following proportion:

{ D! : rDl = (1 - d)/(c + (1 - <*)) r Ti : rTl = -rBirDl

D2 : rD2 = c/(c + (1 - d)) I T2 : rT2 = -rBlrDl

Bj : rBl = a/(a + (1 - 6)) | T3 : rr3 = -rBlrD2

B2 : rB2 = (1 - 6)/(o + (1 - 6)) [ T4 : rTi = -rB2rD2.
Step (ii): Typically in D2, we have to distribute the extra mass Q = ro2S.
Admissibility of A ensures that Q <T3 + Ti. Thus we could distribute the mass
Q over D2 with a density function q(u, v) > 0 satisfying

/ q(u,v)dv = ro2S{u), u G [a,b],

7» (4-4)
/ q(u,v)du < a + (1 - 6), ve[0,c].

J a
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In particular, we could choose q*(u, v) = r£>20(u)/c. A similar procedure is applied
toDi .

Step (iii): Typically in T3 and T4 masses -rT3S and -rTiS have subtracted
respectively. The simplest method is to choose constant densities. Similar proce-
dures are applied to Ti (J T2.

Step (iv): Now we have only Bi and B2 to deal with. Typically in Bi, mass
rBiS should be distributed with the density function w(u,v) > 0 such that

fa

/ w{u,v)du = r s j T j f n ) , v€[c,d],
Jofd (4.5)
/ w(u, v)dv = r(u) u e [0,o],

J c

where r(u) is the mass subtracted from T2 |J T4 along the vertical line section
with a fixed u. For the particular situation when constant densities are taken for
T2LJT4 in step (iii) we could simply take w(u,v) = r e ^ i O / a . Similar proce-
dures are applied to B2.

Using the squeeze algorithm described in detail above we have actually con-
structed a particular piecewise continuous copula density with desired holes given
by

I{(,u,v)tho\es}, (U,V) € A
i + rDlo(u)/(i-d), (u,v)er>1

l + rD29(u)/c, (u,v)€T32

B2C(v ,,\ 1 + rBMv)/a, (u, v) e Bi
3 3 = { 1 + rB2r,(v)/(l ~ b), (u, v) e B2 (4.6)
duOv 1 + rTlS/[(l - b)(l - d)}, (u,v) e T!

l + rT2S/[a(l-d)}, (u,v)eT2

l + rT3S/(ac), (u,v)eT3

_l + rr4S/[c{l-b)], ( u ,v )6T 4

There are infinitely many choices for the density functions q{u, v) and w(u, v)
satisfying the conditions (4.4) and (4.5) in steps (ii) and (iv). With minor mod-
ifications for the constant densities in \Ji=1 Ti, we could make the final copula
density with holes to be continuous across the boundaries T, |"| Bj and Ti f] Dj
(i = 1,2,3,4, j = 1,2) and therefore continuous everywhere over the supporting
set. This completes the proof of the theorem.

For a given the marginal distributions, a bivariate pdf with specified holes can
be constructed by the squeeze algorithm. A further study is given Fang (1998).

5 Local Dependence Measurement

Although copulas contain all the information concerning the dependence patterns
of random variables, the local dependence pattern seems to be seldom explored.
Practitioners are usually satisfied with the average information about dependence
over the whole domain of distributions, such as the Spearman coefficient, Kendall
coefficient and etc. However, important and indicative local properties could be
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totally filtered out by these average indices. In this section, we shall study the
local dependence index via the cross difference and describe local dependence
properties such that some fundamental features of the bivariate distributions
could be captured either in the limit or at different stages.

The basic operation of cross differencing has been mentioned in the literature
over 50 years ago (see e.g. Kendall (1938); Kruskal (1958)). It was averaged by the
integration over the whole domain of the random variables and used as an ordinal
measure of association. Now we shall examine this operation for local conditional
distributions over small rectangular domains.

Definition 5.1 Let W be a rectangle within the domain of a copula [0,1]2. W
is partitioned into four smaller rectangles A, B diagonally and C, D "counter
diagonally" and probability masses over them are denoted by A, B, C and D
respectively. The quantity (A + B) — (C + D) is called the cross difference over
rectangle W respect to this partition.

1 I 1

D A

(3

B C

0 a 1

Figure 5.1 The general probability assignments.

Let C(u, v) be the copula of the random variables X and Y. Consider the
cross difference A(a,/3) of C(u,v) over [0,1]2 with the partition lines coinciding
with the coordinates a and (3 respectively (Figure 5.1). Denoting the probability
mass over the rectangle C by 7 (> 0), we have

A(a,0) = l-2(a-0 + 2y). (5.1)

In particular, if X and Y are independent, the cross difference is

zA0(a,/3) = l - 2 ( a + /?) + 4a/3. (5.2)

If X and Y are perfectly positively dependent, the cross-difference becomes

Ai{a,0) = l-2\a-P\. (5.3)

Furthermore, for all a, 0 € (0,1), we have A(a,(3) < Ai(a,/3) and

Ai{a, f3) - A0{a, (3) = 4min(a, /3) min(l - a, 1 - (3). (5.4)

Definition 5.2 For 0 < a,/3 < 1, the value
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A(a,0)-Ao{a,0) A(a, 0) - (1 - 2(Q + 0) + Aa0)
A\ {a,0) - A0{a, 0) 4 min(a, 0) min(l - Q, 1 - 0)

is defined as the dependence index with respect to a partition (a, 0).

Equation (5.4) shows that — 1 < r < 1, and the equality holds if and only if
the two marginal random variables possess perfect positive/negative dependence.
With the dependence index r, we can obtain a general picture of the local de-
pendence patterns of a bivariate distribution (or copula) at different stages. Let
us partition the domain [0,1]2 of a copula C(u, v) into n — 22m identical small
squares. The probability mass over a typical square [u,u + du] x [v,v + dv] is

C(u + du,v + dv) - C(u, v + dv) - C(u + du, v) + C[u, v),

which is also a form of cross-difference. Then over every square consisting of
four neighboring small squares we could evaluate the cross difference and the
dependence index and obtain 22 'm"1 ' such indices. Plotting them over the domain
we arrive at the dependence picture at the 2~m-th stage.

In the last decade the study of local dependence between two continuous
random variables X and Y has attracted some interest. Holland & Wang (1987)
and Wang (1993) introduced the local dependence function given by the formula
(see also Bairamov, Kotz, & Kozubowski (2003) for a slightly different definition
of local dependence):

_ d2 log f(x,y) _ ffxy - / , /„
A ( X > 2 / j~ dxdy ~ P ( 5 ' 5 )

where / denotes the joint pdf of (X, Y) and fx is the partial derivative at (x, y)
respect to x. The authors motivate this as the "limit of the local cross-ratio defined
for adjacent cell probabilities, formed by a two-dimensional rectangular grid, when
the length and width of the rectangles shrink to zero." A relationship between the
dependence index and the dependence function is given by the following theorem.

V + Ay I I

C A

y

B D
y- Ay | I

x - Ax x x + Ax

Figure 5.2 Small rectangles around a typical point (x,y).

Theorem 5.1 Consider a typical point (x,y) and a small rectangle T = [x —
Ax,x + Ax] x [y — Ay,y + Ay] within the domain of a smooth pdf f(x,y) (see
Figure 5.2). Suppose that f(x,y) ^ 0, then as Ax and Ay approach zero, the
dependence index on T is given by



GEOMETRIC PROPERTIES OF COPULAS 137

T = -\(x,y)AxAy + o(AxAy). (5.6)

Proof. For notational convenience we shall use Qi to represent homogeneous
quadratic polynomials in (Ax, Ay). We shall simply carry out Taylor expansion
for each configuration. With the notation defined above we have

A = JoAxfoAvf(x + u,y + v)dndv

= ^ + f.A*+fv*v + /,,(*»)a+/BB(4»)a + U^Ay^ AxAy + o(Q2)

B = (/ - ****+fv*v + /-(*->'+/»»(*«»' + S ^ ^ AxAy + p ( Q a )

D = (f+I-**-W + /-(^)a+/»»(^)2 - Z ^ ^ ) ^xZ\y + o(Q2).

Then,

ft _ B+C _ 1 M £ + M*c)2 + fyyjAy)2

a - A+B+C+D - 2 4/ 12/ °W2;

o _ B+D _ i _ SyAy Jxx(Ax)2 +fyy(Ay)2 n(Q\
P ~ A+B+C+D ~ 2 4/ + 12/ -t-<W2;-

The cross-difference becomes

and the cross-difference in the independent case is

A0(a,p)=f*f»AA*Ay+o(Q2). (5.8)

Using (5.7) and (5.8), we obtain

and the proof is completed.

Corollary 5.2 A bivariate distribution with smooth pdf f(x, y) has a constant
local dependence function A if and only if the pdf is of the following form

f(x, y) = expfAxj/ + A(x) + B(y)}, (5.9)

where A(x) and B(y) are differentiate functions.

The bivariate normal distribution with the covariance matrix

(5.7)
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E = ( ff* a^ip\
\(T\(T2P a\ J'

belongs to the exponential family (5.8), and the corresponding local dependence
function takes the constant form A = p/((l — p2)cr\O2). Kotz & Nadarajah (2003)
studied local dependence functions of elliptically symmetric distributions.

6 Discussion

In statistical modeling, it is useful to have tractable multivariate distributions
with given marginals in order to be able to quantify the effect of dependence of
the variables contained in the model. The copula analysis is a efficient technique
to describe the dependence patterns of random variables. Without referring to
the copulas, we can hardly visualize and distinguish between the random vari-
ables depending upon each other in the same manner with different marginal
distributions. The finite set of joint moments and correlation coefficients of two
random variables contain insufficient information about their dependence struc-
ture. In particular, the number and the shape of holes in the supporting set of the
joint pdf is essentially impossible to describe by global "average indices", such as
moments and correlation coefficients.

In this article, we studied the basic geometric properties of copulas and defined
a version of local dependence index of random variables. An analysis of geometric
structures of copulas is an effective tool to characterize dependence structures.
The local dependence analysis allows us to capture all of the dependence in-
formation among random variables. Additional copulas and certain non-classical
multivariate distributions could be obtained utilizing the structures of copulas.
The applications of copula techniques in data analysis can refer to Fang, Fang &
von Rosen (2000) and Basrak, Klaassen, Beekman, Martin & Boomsma (2004).
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Summary. The growth curve model (GCM) has been widely used in longitudinal
studies and repeated measures. Most existing approaches for statistical inference
in the GCM assume a specific structure on the within-subject covariances, e.g.,
compound symmetry, AR(1) and unstructured covariances. This specification,
however, may select a suboptimal or even wrong model, which in turn may affect
the estimates of regression coefficients and/or bias standard errors of the esti-
mates. Accordingly, statistical inferences of the GCM may be severely affected by
mis-specification of covariance structures. Within the framework of the GCM in
this paper we propose a data-driven approach for modelling the within-subject
covariance structures, investigate the effects of mis-specification of covariance
structures on statistical inferences and study the possible heterogeneity of covari-
ances between different treatment groups.

Key words: Covariance structures, growth curve models, heterogeneity of co-
variances, joint mean-covariance modelling, maximum likelihood estimation, mis-
specification of covariance structures.
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1 Introduction

The growth curve models (GCM) are generalized multivariate analysis-of-variance
models that are useful especially in longitudinal studies and repeated measures
(Potthoff & Roy (1964)). The GCM is defined by
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IpXn = JipXm-DmXrZrxn ~t~ £pxn (1)

where Y is the response matrix of n subjects measured at p time points, and
X and Z are within- and between-subject design matrices with ranks m and
r, respectively. Typically, the columns of X are the powers of time at which
repeated measures are made when polynomials of time are used to model the
mean structures. The rows of Z are the indicators of treatment groups, i.e., the
ith row of Z is given by z[ = (0,..., 0, l'n., 0,..., 0) where l n ; is the (n; x 1) vector
with all components being one and rii is the sample size of the ith treatment group
(i = 1,2, ...,r; Y^i=ini — n)- The columns of the error matrix e are assumed
to be independent p-variate Normal with (p x 1) mean vector 0 and (p x p)
covariance matrices Ei, depending on the treatment group of which the responses
are generated (i = 1,2, ...,r). We denote this by e ~ iVpXn(0; E\, £2, ••-, Er\ In)
where /„ is the identity matrix with size n.

When the covariances are homegenerous, i.e., E\ = £2 = ••• = Er = E, the
estimates of the parameters B and E were discussed in the literature by many
authors including Potthoff fe Roy (1964), Khatri (1966) and von Rosen (1989)
among others. Particularly, if the homegenerous covariance matrix E is given
then the maximum likelihood estimate (MLE) of B must have an explicit form
in terms of generalized weighted least squares (GWLS)

B(E) = {X'E~lX)-1X'£-1YZ'{ZZ'y1. (2)

When E is unknown, a two-step estimation strategy is commonly used to calculate
the estimate of B. In other words, we first find an appropriate estimate of E and
then plug it into the GWLS in (2) (e.g., Potthoff & Roy (1964); Gleser & Olkin
(1970)). In particular, when the MLE of E is utilized then the resulting GWLS
estimate is the MLE of B (Rao (1965); von Rosen (1989)). Obviously, the GWLS
in (2) says that the estimate of B may depend on the estimate of E, of which an
exception is that E has the so-called Rao's simple covariance structure (SCS) :

E = XTX' + QGQ' (3)

where F and & are (m x m) and ((p — m) x (p — m)) positive definite and
Q is orthogonal to X, i.e., Q'X = 0 (Rao (1966)). In fact, it can be shown
B{£) = B(IP) if and only if E is of Rao' SCS given in (3) (Kariya (1985);
Pan & Fang (2002)). Typical examples of the SCS include compound symmetry
and random regression coefficients structures (Lee (1988); Pan & Fang (2002)).
Accordingly, the estimate of B is affected by the estimate of E unless E is within
the space of the SCS. On the other hand, since the estimated covariance of B is
given by

Cov(B) = Cov(vec(B)) = c [(ZZ')'1 <g> {X'E'^y1} (4)

(e.g., von Rosen (1989)) where c is a constant and <8> denotes the Kronecker
product of two matrices, it is obvious that Cov(B) depends on the estimate of
E even if E falls into the space of the SCS. Accordingly, correct estimate of the
covariances plays an important role in statistical inference of the GCM.
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In the statistical literature the GCM was studied under a variety of assump-
tions of covariance structures, for example, unstructured covariance (UC) by Pot-
thofffe Roy (1964) and von Rosen (1989), the SCS by Rao (1966) and Lee (1988),
compound symmetry structure by Lee (1988), AR(1) by Pujikoshi, Kanda & Tan-
imura (1990) and Lee (1988), random regression coefficients structure by Rao
(1966), etc.. With the specification of SCS and UC, statistical diagnostics includ-
ing outlier and influential observation detections was addressed within likelihood
and Bayesian framework by Pan & Fang (2002) and Pan, Fang & von Rosen
(1997, 1998, 1999). From inferential and predictive points of view, Lee (1991) and
Keramidas & Lee (1995) suggested several selection criteria to choose an appropri-
ate covariance structure from a menu of candidates. This kind of menu-selection
procedures, however, may not be optimal. For example, when the true covari-
ance structure is not contained in the menu the selected covariance structure,
though "best" in some sense, may not be close to the true value. Consequently,
statistical inference may be badly affected by the mis-specification of covariance
structures. On the other hand, the assumption of homogenerous covariances, i.e.,
E\ = E2 = ... = Sr, might not be true in practice. For example, in many bio-
logical and medical problems the homogeneity assumption does not hold because
different treatment groups may have different variations over time. Also, it is not
uncommon that within-subject correlation structures may vary from group to
group. Accordingly, we hope to establish a mechanism to test whether or not the
assumption of homogenerous covariances is true.

In this paper we propose a data-driven approach to jointly model the mean
and covariance structures for all treatment groups. The approach is based on
a modified Cholesky decomposition advocated by Pourahmadi (1999; 2000) for
modelling homogenerous covariance structures. We extend Pourahmadi's (1999)
approach to model heterogenerous covariances and in the modelling approach the
homogeneity assumption becomes testable. We also investigate the effects of mis-
specification of covariance structures on statistical inferences in the GCM. This
paper is organized as follows. In Section 2 the modified Cholesky decomposition
is briefly reviewed and models for mean-covariance structures are proposed. In
Section 3 maximum likelihood estimation is developed and in Section 4 principle
of testing homogenerous covariances is described. In Section 5 a real data set,
Cattle data (Kenward (1987)), is analyzed for illustration. Numerical comparisons
between the data-driven and menu-selection approaches are made as well. In
Section 6 we discuss some further issue and in the Appendix we give the technical
details of the proposed approach.

2 Regression models for mean-covariance structures

For illustration, let us look at the homogenerous GCM Y ~ NpXn(XBZ, E, In)
first. We assume the (p x p) covariance matrix £ is positive definite in this pa-
per. Accordingly, there is a unique lower triangular matrix T with l's as diagonal
entries and a unique diagonal matrix D with positive diagonal entries such that
TST' = D. This modified Cholesky decomposition has a transparent statistical
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interpretation: the below-diagonal entries of T are the negatives of the autore-
gressive coefficients, cfrjk, in

j-i

Vi = t*j + X ^ <t>ik^yk ~ A4*)'
fc=i

the linear least squares predictor of % based on its predecessors ?/(.,-_ i), ..., y\,
where \ij = E(yj) and % is the j th component of the (p x 1) response y, the
column random variable of Y (j = 1,2, ...,p). It can be shown that the diagonal
entries of D are the innovation variances aj = Var(y.j — yj) (Pourahmadi (2000)).
Obviously, it follows that E~l = T'D~1T.

For the heterogenerous GCM Y ~ NpXn(XBZ, Si, S2,..., ST; /„), we take the
modified Cholesky decomposition for each covariance matrix Si, i.e., TiSiT[ =
Di, and then obtain the autoregressive coefficients 4>jki from the lower triangular
matrices T, and the innovation variances o^ from the diagonal matrices Di (j =
1,2, ...,p; k = 1,2, ...,j - 1; i = 1,2, ...,r). In a spirit of Pourahmadi (1999),
we propose the following regression models to model the mean and covariance
structures, simultaneously,

Hji = x'jpi, 4>jki = djk"1i and log a], = h'jXi (5)

where ^n is the mean of the responses in the ith group measured at the j th time
point, Pi, ii and A, are (m x 1), (g x 1) and (d x 1) regression coefficients for
the ith group, and /3t is actually the ith column of B. The covariates Xj (i.e., the
transpose of the jth row of X), a,jk and hj are associated with the powers of time
when using polynomials of time to model the mean and covariance structures for
growth data. For example, we may choose

a,k = (i, (tj - tfc). fa - tk)\..., (tj - tky-ly (6)
^ = ( i , t J , t ? , . . . , ^ - 1 ) '

if the within-subject correlation only depends on the elapsed time, where tj is
the jth time point at which observations are made. In the literature a Brownian
motion specified to covariance structures of the GCM was considered by Lundbye-
Christense (1991), which is a special case of the mean-covariance models (5) with
the structures (6).

The advantages of the joint regression modelling of mean-covariance struc-
tures in (5) are multi-folds, for example, a) it is a data-driven approach that is
capable to capture the true structures for mean and covariance, b) the resulted
estimates of covariance matrices Si are guaranteed to be positive definite, c)
the reparameterized regression coefficients have transparent statistical interpre-
tations in terms of autoregressive coefficients and innovation variances (Pourah-
madi, 1999, 2000), and d) the assumption of homogenerous covariances becomes
testable. We will discuss these issues in more details in the following sections.
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3 Maximum likelihood estimation

Denote Y = (Yi, Y2,..., Yr) and Z = (Zu Z2,..., ZT) where Y; and Zt are the
(p x rii) responses and (r x n,) between-subject design matrices of the tth group
(i = 1, 2, ...,r), respectively. Similar to Pourahmadi (1999), it can be shown that
the log-likelihood function £ = £(B;yi, ...,yr; Ai,..., \r) of the heterogenerous
GCM Y ~ Npxn(XBZ,EltE2,...,Er;In) modelled with the regression models
(5), except a constant being — (pn/2) log(27r), has the following three representa-
tions corresponding to B, (71, ...,7r) and (Ai,..., A,.), respectively,

1= -\Y,ni\og\Ei\-\Yjtr{Zr\Yi- XBZi){Yi- XBZi)'}
«=1 i = l

= ~\ E rn log I A| - \J2 E ^ - [A^'-yiYDrHen - [^IS) (7)
i=i t=i j=i
TV 1 r p

= " f E E " ^ ~ 2 ^ ^ ^ " ^ ^ ' ( ^ -eji)/exp{^-Ai}
i=l j = l i=l j = l

where
Et =Yi-XBZi = (eli,e2i,...,epiyi

-Â  = E°^ e ' f c i and ^ » = E ^ f c i e f c i

for 4 = 1,2, ...,r and j = 1,2, ...,p. Note that when j = 1 the sum notation 5Zfc=i
means zero here.

Let vec(B) = (/3i,/?2i —,0'rY be the mr x 1 vector by vectorizing the matrix
B through column by column. Taking differentiation of I in (7) with respect to
vec(B), 7; and Ai leads to the following estimating equations, respectively,

r

d£/dvec{B) = E y^[X'E~\Yl - XBZJZ-} = 0

d^d^ = £ ^ (Cii - [^ ] ' 7 0 /4 = 0 (8)

a^A( = - f E ^ + \ E ( e ^ - [^i]'7i)'(eii - [^]'7i) V 4 = 0

The estimating equations above in general have no explicit solutions and certain
numerical optimization procedures such as the Nowton-Raphson algorithm and
Fisher-scoring algorithm are used instead. In the Appendix we show that the
Fisher information matrix of the parameter 6 = (vec(S)'; 71, ••-,j'r; X'i,...,X'rY
must have the form

/ I n 0 0 \
I = E{-d2£/d9d0') = 0 T22 T'32 (9)

V 0 T32 X33 /

where
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r

In = E(-d2e/dvec(B)dvec{B)') = £ [(Zi%) ® (XTf1*)] (10)
i=i

and the matrices J22 (rg x rg), 133 (rd x rd) and J32 (rd x rg) are block-diagonal
with ith block being non-zero (i = 1,2, ...,r). Their detailed matrix forms are
provided in the Appendix.

Based on the above equations, we propose the following Fisher-scoring algo-
rithm to calculate the MLEs of the parameters in the GCM.
Algorithm.
Step 1: Given a starting value of 0, say 60 = ((vec(B0)'i7i'> ...,7°'; A?',..., A°')',
we form the covariance matrices E° = ^ ( 7 ° , A?) using the modified Cholesky
decomposition where i = 1,2,..., r.
Step 2: Use the following procedure

vecCB1) = vec(S°) + { ]T [(ZtZ<) ® (X '^ ]" 1 * ) ] }"'
i=\

x {^vec[x'[2^]-1(yi-XBoZ0Z;]}
i=l

and

Uv-UoJ + U ^ J . ^ l « w ^ (11)
to update the parameter estimates of B, 7 = (71,..., 7r)' a nd A = (A'1;..., \'r)',
respectively.
Step 3: Use the updated value di = ((vec(B1)'; (71)'; (A1)')' in Step 2 to replace
#0 and then repeat Steps 1 and 2 above. These procedures are repeated until
convergence for 0.

A by-product of the algorithm above is the asymptotic variance-covariance
matrix of the MLE 9 = (vec(B)';7i, ...j'r; \[, ...,X'r)', which is obtained by simply
calculating the inverse of the Fisher information matrix (9), evaluated at the MLE
0. Regarding the starting values 7° and A° (i = 1, 2, ...,r), a convenient choice is
7° = . . . = 7° = 0 and A° = • • • = A° = 0 (i = 1, 2,..., r). In other words, the
starting values of covariance matrices in all groups are chosen to be an identity
matrix E\ = • • • = Er = Ip. Alternatively, those can be chosen from the sample
covariance matrices (Pourahmadi (2000)). Similarly, the regression coefficients B
may start from the sample mean of each group.

4 Hypothesis tests and model selection

As mentioned in Section 1, most literature work in the GCM assumes a homo-
geneous covariance across all the groups, i.e., E\ = £2 = • • • = ET. Within
the framework of the mean-covariance models in (5), this becomes a testable as-
sumption. In fact, testing the homogeneity is equivalent to testing the following
hypothesis
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Ho • 71 = 72 = • • • = 7r and Ai = A2 = • • • = Ar (12)

where the parameters in the regression coefficients B are arbitrary. The likelihood
ratio test statistic for testing the homogeneity (12) can be computed straightfor-
wardly but its exact distribution is difficult to obtain. Instead, we could use the
asymptotic likelihood ratio test. Let £0 and i\ be the maximized log-likelihoods
under the null hypothesis Ho and the alternative hypothesis Hi of which Ho is
not true, respectively. The homogeneity hypothesis (12) can then be tested using
—2(io — £1) ~ X2 o n (r — 1)(<7 + d) degrees of freedom. When Ho is rejected, the
usual hypothesis of covariance homogeneity is not true and heterogeneous covari-
ances exist across the treatment groups. On the other hand, acceptance of Ho
in (12) implies no evidence to against the homogeneous covariance assumption.
Note in this case the homogeneous covariance is modelled jointly with the mean
without any specifications of structures. The mean structure, however, may vary
from group to group in this case.

When the null hypothesis Ho in (12) is rejected, we may need to further
identify the type of dependence present by investigating the following hypotheses

Ho •• Ai = A2 = • • • = Xr and Ho : 71 = 72 = • • • = fr (13)

The first hypothesis in (13) indicates that the innovation variances are the same
across the treatment groups, while the second implies there is no difference for
within-subject correlation among groups. Again, we can test the null hypotheses
in (13) using the asymptotic likelihood ratio tests — 2(^o—£\) ~ "X2 on appropriate
degrees of freedom.

In the GCM we may also be interested in testing whether or not both the
mean and covariance structures are the same across the treatment groups. In
other words, we want to test the following hypothesis

Ho : Pi = P2 = • • • = Pr, 71 = 72 = • • • = 7r and . .
Ai = Aa = • • • = Ar l l 4 ;

where /?, is the ith column of the regression coefficients matrix B (i = 1, 2,..., r).
Similarly, the hypothesis in (14) can be tested using the asymptotic likelihood
ratio statistic —2(io — ^1) ~ X2 o n (r — 1)(TI + q + d) degrees of freedom.

When using polynomials of time to model the mean and covariance structures,
obviously we need to choose the appropriate degrees of polynomials m, q and d
in (6). In a spirit of Pan & MacKenzie (2003), we propose to use the following
Baysian Information Criterion (BIC)

BIC(m,<j,d) = - (2/n)4ax + (m +q +d) {{log n)/n} (15)

to choose the most appropriate degrees of polynomials, where £max = £(B;yi,
...,7V; Ai,..., Ar) is the maximized log-likelihood for the models with the specific
degree trip (m, q, d) and m + q + d is the number of parameters in the associated
models, including polynomials of degree zero (i.e., intercept). The best triple of
degrees, say (m*,q*,d*), satisfies

{m*,q*,d*) = arg min {BlC{m,q,d)} (16)
(m,q,d)
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where m, q and d lie in the range from 1 to p. The global search of the best
triple, however, is computationally intensive because the number of maximizations
required to find the best triple (m*, q*, d*) is as large as p3. Evenjf the number of
repeated measurements, p, is mediate, the search for (m*,g*,d*) may be highly
computationally time-consuming.

Within the framework of linear regression models, Pan & MacKenzie (2003)
proposed a profile search strategy that saturates the degrees m, q and d in
pairs. Their study shows that the profile search is able to capture the best triple
(m*, q*, d*) in most circumstances. A significant advantage is that the number of
maximizations for searching for (m*, q*, d*) reduces to 3p+l. For more details one
can refer to Pan &: MacKenzie (2003). In the real data analysis presented in the
next section we adopt this strategy to locate the degree triple in the modelling of
the mean and covariance structures. Our analysis confirms that the profile search
does lead to the global best triple (m*, q* ,d*).

So far we have assumed that the degree triple (m, q, d) of polynomials is cho-
sen to be the same across all treatment groups. It is not uncommon, however,
that different treatment group may have a different degree triple. In principle
the above parameter estimation procedure and model selection strategy are also
suitable to this case but the search of the optimal degrees of polynomials is more
computational intensive. On the other hand, testing the hypothesis of homoge-
neous covariance Ho : Si = Ei = • • • = ET no longer reduces to testing of the
hypothesis (12) in this case because the dimension of the parameters 71, 72, ...,
7r or X\, A2, ..., Ar may not be the same. However, the asymptotic likelihood
ratio test can be still applied to this case as long as the MLEs of the covariance
matrices under the null and alternative hypotheses are obtained.

5 An Example

In this section we analyze Kenward's Cattle data (1987) using the joint mean-
covariance modelling strategy. We also compare the data-driven approach to
menu-selection methods through the data analysis.

Kenward (1987) analyzed an experiment in which cattle were assigned ran-
domly to two treatment groups A and B, and their weights were recorded to study
the effect of treatment on intestinal parasites. Thirty animals received treatment
A and another thirty received treatment B. The animals were weighted 11 times
over 133-day period at 0, 14, 28, 42, 56, 70, 84, 98, 112, 126 and 133 in days.
Pourahmadi (2000) analyzed the data in treatment group A, modelling the co-
variance structure by adopting a saturated mean model and employing two cubic
polynomials of time in the augmented regression model defined in (5), one for
the autoregressive coefficients and another for the innovation variances. Below we
analyze the two group data simultaneously using the proposed mean-covariance
modelling strategy within the framework of growth curve models.

Firstly, we adopt Pan & MacKenzie (2003) BIC-based profile search strategy
to select the best degree triple (m*,g*,d*) of polynomials used in the modelling.
We find that (m* ,q* ,d*) = (11, 5,4), i.e., the mean has a saturated structure, and
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Table 1. The maximum likelihood estimates of parameters involved in the
autoregressive coefficients and innovation variances, i.e., 7* = (7*1, ...,7is) and
Aj = (Aji,• ••, AM) (estimated standard errors in parentheses)

Group Parameter / = 1 I = 2 / = 3 I = 4 I = 5

B 7K 0.185(.006) -1.628(.1O4) 1.568(.158) -1.137(.188) 0.694(.231)
An 3.518(.O77) 0.672(.258) 2.229(.258) -0.185(.258)

A 721 0.182(.003) -1.671(.O61) 1.497(.1O6) -1.031(.147) 0.365(.164)
A2; 3.488(.078) -1.172(.258) 0,234(,258) -0.988(.258)

the autoregressive coefficients and innovation variances are modelled in terms of
quartic and cubic polynomials of lag/time, respectively. The minimum value of
the BIC is BIC(11, 5,4) = 72.468. Table 1 above reports the parameter estimates
and the associated standard errors as well, while Figure 1 below gives the sample
regressograms (solid points) and the fitted polynomial curves (solid curves) for the
autoregressive coefficients and innovation variances in both groups. Note that the
estimated coefficients presented in Table 1 are those pertaining to the orthogonal
polynomials in order to avoid singularity of the design matrices.

Secondly, we study whether or not the covariances in Groups A and B are
homogeneous, which is equivalent to testing if the null hypothesis (12) is true
where r = 2. We therefore maximize the log-likelihood functions under the null
and alternative hypotheses and obtain £0 = -2120 and l\ = —2092.167 so that
—2(̂ o — ^1) = 56. We then compare this value to the Chi-square distribution
with (r — 1)(<7 + d) = 9 degrees of freedom, i.e., xii a nd conclude that there
is a highly significant evidence to against the null hypothesis. In other words,
heterogeneous covariances exist for the two group cattle data. Furthermore, we
may be concerned with whether either the autoregressive coefficients or innovation
variances vary from group to group. We therefore test the hypotheses presented
in (13) where r = 2. For the innovation variances, we test the null hypothesis
Ho : Ai = A2 against the alternative hypothesis Hi : Ai ^ A2. Under the null and
alternative hypotheses, the maximized log-likelihood functions are £0 = —2118
and £1 = —2092.167, respectively, and hence the testing statistic value is given
by —2(̂ o — £\) = 58. When comparing to xl, we know that the null hypothesis
HQ is rejected and conclude that the innovation variances are different in the two
treatment groups. For the autoregressive coefficients, we test the null hypothesis
Ho • 71 = 72 versus the alternative hypothesis Hi : 71 ^ 72 • Under Ho and H1,
the maximized log-likelihood functions are l0 = -2093.113 and £1 = -2092.167,
respectively, so that the testing statistic takes the value — 2(lo — ^1) = 4 . When
comparing it to xl, this time we have no evidence to against the null hypothesis
Ho- In other words, the autoregressive coefficients are not significantly different
in the two treatment groups, which confirms Pan and MacKenzie's (2003) finding
where a group indicator is incorporated into covariance modelling.

Thirdly, in order to gain an insight of merit on the mean-covariance mod-
elling we compare this strategy to several menu-selection approaches. Table 2
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(a) auto, coeff. for Group A (b) log-innov. var. for Group A

(c) auto, coeff. for Group B (d) log-innov. var. for Group B

Fig. 1. The Sample regressograms (solid points) and the fitted polynomials of
lag/time with the best degree triple (m*,q*,d*) = (11,5,4). The panels (a) and
(b) are those for Group A and (c) and (d) for Group B, respectively.

Table 2. Comparison between mean-covariance modelling and mean-selections
where all models assume a saturated mean

Covariance Parameter No. log-likelihood BIC
SCS H i -2018.396 77.789

AR(1) 26 -2161.371 73.520
CS 26 -2409.231 81.782

Modelling 40 -2092.167 72.468

above presents the numbers of parameters, the maximized log-likelihood functions
and the BIC values for the mean-covariance modelling and several specifications
of covariance structures, including the Rao's simple covariance structure (SCS),
AR(1) and and compound symmetry (CS). Note that since the mean structure is
saturated, i.e., m = 11, the Rao's SCS is completely identical to the unstructured
covariance (UC). In Table 2, when AR(1) or CS is used to specify the covariance
structures it is possible that the two treatment groups may have different vari-
ances and correlation coefficients. Therefore the BIC values presented in Table 2
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sire the average in the two groups under these two circumstances. From Table 2
it is obvious that the mean-covariance modelling approach proposed in this pa-
per performs better than the menu-selection approaches in terms of BIC model
selection criterion. Figure 2 below compares those modelling approaches through
different curves fitted to the sample autoregressive coefficients and innovation
variances (dot points) for the two treatment groups, where the solid curve repre-
sents the fitting using the mean-covariance modelling technique, while dot, dash
and dash-dot curves are the fitting with Rao's SCS, CS and AR(1) covariance
specifications, respectively.

(a) auto, coeff. for Group A (b) log-innov. var. for Group A

(c) auto, coeff. for Group B (d) log-innov. var. for Group B

Fig. 2. The Sample regressograms (solid points), the fitted curves using the mean-
covariance modelling technique (solid curve) and with covariance specification
being Rao's SCS (dot curve), Compound Symmetry (dash curve) and AR(1)
(dash-dot curve). The panels (a) and (b) are those for Group A while (c) and (d)
are for Group B.
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Again, Figure 2 shows that the mean-covariance modelling approach fits the
data well. It also clearly shows the menu-selection approach may mis-specify the
covariance structures. For example, neither the CS nor AR(1) is able to capture
the true covariance structure, while Rao's SCS tends to over-fit the covariance
structure. This, in turn, may influence the standard deviation of the estimated
regression coefficients and accordingly may bias the statistical inferences of the
GCM.

6 Discussion

In this paper we propose a data-driven approach to jointly model the mean and
covariance structures for longitudinal data within the framework of growth curve
models. The covariance matrices of repeated measures are reparameterized in
terms of the modified Cholesky decomposition and the reparameterized parame-
ters have a transparent statistical interpretation - autoregressive coefficients and
innovation variances. These reparameterized parameters are further fitted us-
ing regression models. The maximum likelihood estimates of the parameters are
obtained using the Fisher-scoring algorithm. Based on the joint models, the ho-
mogeneous covariance assumption becomes testable. The optimal joint model can
be obtained by searching for the most appropriate degree triple of polynomials
used for modelling the mean, autoregressive coefficients and innovation variances.
A profile BIC-based search strategy is proposed in order to obtain the optimal
degree triple.

Compared to menu-selection approaches, the joint mean-covariance modelling
strategy specifies no structures on the covariance matrices of within-subject cor-
relation. In contrast, menu-selection approaches assume a specific structure to
the covariance matrices. When the structure is misspecified, statistical inferences
of the regression coefficients may be incorrect. For example, within the frame-
work of generalized estimating equations (GEE) Wang & Carey (2003) showed
that misspecification of covariance structures produces too large standard devi-
ations for regression coefficients and hence results in inefficient estimates. Ye &
Pan (2004a) further modelled the mean and covariance structures in GEE using
regression models. Very recently they (Ye & Pan (2004b)) proposed to use local-
likelihood estimation approach developed by Fan, Farmen & Gijbels (1998) to
nonparametrically model the mean and covariance structures for large longitudi-
nal data.

For the growth curve models, Rao's simple covariance structure plays a special
role in the sense that within this sub-covariance space the MLE of regression
coefficients no longer depends on the choice of covariance structures. It is more
interesting to see how this specific covariance structure can be characterized in
terms of the autoregressive coefficients and innovation variances. In other words,
we want to know under which condition satisfied by the autoregressive coefficients
and innovation variances the covariance falls into Rao's simple covariance space.
This issue awaits for further exploitation.
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To our knowledge, this is the first article that addresses the joint model of
mean-covariance structures in the growth curve models in terms of the data-driven
regression technique. Of course, under certain specifications of covariance struc-
tures statistical modelling was widely discussed in the literature for the GCM,
multilevel models, structural equation models, etc. Modelling mean-covariance
structures without any specifications of covariance structure distinguishes our
approach from the literature work. In addition, our previous experience on sta-
tistical diagnostics in the GCM (e.g., Pan & Fang (2002); Pan et al, 1997, 1998,
1999) shows that the covariance structure plays an important role in outlier de-
tection and influential observation identification. The diagnostics issue studied
within the framework of joint mean-covariance modelling will be reported in a
follow-up paper.
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Appendices: Derivation of the Fisher Information
matrix

First, based on (8) we have the second-order derivatives of the log-likelihood with
respect to vec(-B), 7* and A; as given below

r

d2e/dvec{B)dvec'(B) = - ^ \{ZiZ'i) ® {X1 E;1 X)\

Fe/dXidK = -\ Yyea - [y£]'70'(<* - W ^ X M i ) / ^

where A^ = XI*=i ajke'ki and e^ is the fcth row of the residual matrix Ei = Yi —
XBZi (j = 1, 2, ...,p; i= l , 2 , . . . , r). Similarly, the second-order mixed derivatives
of £ with respect to vec(B), 7J and A, can be written into

(A.1)
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aPt/dvdvec'iB) = - £ { [ ^ J f c ~ [A'uHyZ'i ® In]

+ [A°ji][Z'i<8>(xi-[A%Y'yi)]}/a1i

dH/dXidvec'iB) = -J2 hjvec' [fa - [ ^ ] S 0 ( ^ - [A^]'yi)'Z'i(r%] ^

where A*{ = ̂ 2kZ\ o.ikx'k and X = ( n , ...,zp)'.
Second, when taking expectation to the first equation of (A.I) it obviously

results in Xn as given by (10) because the second-order derivative of £ with
respect to vec(B) is a constant. On the other hand, by noting that E(eji) = 0
and E(Aeji) = T,iZ\ ajkE(e'ki) = 0 we have J2i = 0 and T3i = 0. Therefore, the
Fisher information matrix must have the form given in (9), in which the matrices
I22,132 and I33 are obviously block-diagonal due to the forms of score functions
given in (8).

The ith diagonal block of I22 (i = 1, 2,..., r) can be calculated through

l22(i,i) = El-tfl/d^idTl] =Y,E(Aeji[A'ji]')/a%

= i2E(^£ajke'ki}(£ajle'll]')/a%
j = \ k-\ 1 = 1

P j - 1 j - 1

= Y, Z) 5D a^ajtEie'^eu)/^ (A3)
j=i k=i1=1
p j-ij-i

= Yl 5Z 5Z aJka'ji(nicrkii)/a^
j=i k=i1=1

p

= niYwarti = "iWt

where
j-ij-i P

W0« = S S a^fcOi'fffcH and w« = X) ^ / ^ ( A 4 )
A = l 1 = 1 j = l

where (ĵ a is the (fc, /)th element of the matrix Z1;. On the other hand, since TiEi •=•
Et - Ei ~ NpXni{0,Di,Ini) where £i = (eii,e2i, ...,epi)' and e^ = X)fc=i 4>jkieki
we have ê i - e ,̂ ~ Nn^O.crlj/nj) so that

(eji - eji)'(eji - e^ i ) / ^ ~ Xnf

which implies that E[(eji — eji)'(eji — iji)/a'ji} = rii. Accordingly, the ith diagonal
block of Z33 (i = 1,2,..., r) can be expressed as
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I33(i,i) = E[-dH/d\id\'i]
p

= i £ E [{ejt - <*)'(<* - e,i)/4] (Mi) (j4-5)

where if = {hi, /12, ...,/ip)' is the design matrix involved in the modelling of
innovation variances.

Finally, the ith diagonal block of Z32 is given by

I32{i,i) = El-dH/dXid^}

= YjhjE{{e]i-[A°ihi)'[A<i]'}/ol

= niX)ftj(J4Ji-Wii7i)74
3 = 1

where -EQ^]^^]') = riiWji is already showed in (A.3) while

ElA^eji] = jE^^ajfce'fciejij =^2ajiE(e'kieji)
fc=i *=i

= 53 a3i{ni(Jiki) = "i 5Z ai^jki = TuA"^.
k=\ fc=l

In summary, the Fisher information matrix has the form in (9) in which the
block forms of In, T22, I33 and J32 are provided by (10), (A.3), (A.5) and (A.5),
respectively.
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Summary. In the paper Kotz-type elliptical distributions are examined. Expres-
sions of multivariate moments and cumulants in matrix form are given as well as
kurtosis characteristics. It is proved that marginal distribution of a Kotz distri-
bution is a mixture of a normal and a Kotz distribution. Also basic formulae for
matrix Kotz distribution are given and a simulation rule based on the Metropolis-
Hastings algorithm is presented.
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1 Introduction

Kotz-type distributions were introduced by Kotz (1975) in a special case and
have become a topic of interest in applications in last ten years. The distribu-
tions present a wide 5-parameter class of elliptical distributions which contains
the multivariate normal family. These five parameters include a location vector-
parameter, a matrix scale (dispersion) parameter and three scalar parameters to
give flexibility to the model. In Fang, Kotz & Ng (1990), Section 3.2 most of the
results on Kotz-type distributions up to 1990 are collected. The characteristic
function has been first derived in a special case by Iyengar & Tong (1989) and
later obtained in the general case by Li (1993, 1994). The class of Kotz-type dis-
tributions was characterized by Liang & Bentler (1998). The relation of Kotz-type
distributions with extreme value distributions was studied by Kotz & Nadarajah

Contemporary Multivariate Analysis and Experimental Design—In Honor Celebration of Pro-
fessor Kai-Tai Fang's 65th birthday. Edited by Jianqing Fan and Gang Li. The World Scientific
Publisher, 2005.
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(2001). Moment expressions of elliptical distributions have got much attention.
General expressions of moments and cumulants up to the order eight were pre-
sented in matrix form by Traat (1990). Moments of an elliptically distributed
vector and its quadric forms are presented in Li (1990) while moment expressions
for a matrix elliptical distribution can be found in Fang & Zhang (1990) and in a
monograph by Gupta & Varga (1993). Expressions of the moments and cumulants
of Kotz-type distributions are straightforwardly obtained from the corresponding
general expressions for elliptical distributions using the characteristic generator.
Estimation and inference problems have not got much attention, we point out
here contributions of Zhao (1994) who considered estimation of the dispersion
parameter and Fang & Li (1999) on Bayesian inference problems.

Several early applications are referred to in Koutras (1986). Recently the
matrix Kotz distribution became a useful tool in parameter approximation in
the Growth Curve model (Kollo, Roos & von Rosen (2004)). A more detailed
presentation can be found in Kollo & von Rosen (2004). A review paper on this
class of distributions has been written by Nadarajah (2003), where references to
different recent applications can also be found.

We are going to concentrate on a special case which is of special interest in
parameter approximation in the Growth Curve model. The obtained results and
used procedures can be carried over to other fixed sets of parameters. The main
text of the paper is divided into five sections. In Section 2 necessary notation
and notions are introduced, Section 3 presents moments and cumulants of the
distribution, also kurtosis characteristics are found. Marginal distributions are
presented in Section 4. Section 5 deals with the matrix Kotz-type distributions
and finally, in Section 6, a simulation rule for Kotz-type distributions is given.

2 Notation and notions

Kotz-type distributions form a subclass of elliptical (or elliptically contoured)
distributions (see Fang, Kotz & Ng (1990)) or Anderson (2003). This class of
distributions can be defined by the probability density function (pdf).

Definition 1 Let x = (Xi,..., Xp)' be a random p— vector. The vector x has a
Kotz-type distribution with the parameters \i, V, N, s, r, if the density fx(x) of
x has a form:

fx(x) = Gv\V\-i [(x - ti)'V-\x - n)}"-1 exp{(-r[(x - n)'V-\x - M)]5)},

r,s > 0, 2N+p> 2, (1)

where Cp is a normalizing constant:

r - sr(P/2) (2N+p-2/2s) ,9s

p n?/*r(2N + p-2/2s) ' [)
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If we look the pdf as a univariate function of (a; — n)'V~l{x — fjb), we get a
function g(u), which is called a density generator:

g(u) = CpuN-1exp(-rus), r, s > 0, 2N +p > 2. (3)

We write x ~ Kp(n,V,N,s,r) if x has pdf (1). When TV = 1, s = 1 and
r = \, we get the multivariate normal distribution.

The Kotz-type distribution Kp(0, Ip, N, s, r) is called the Kotz-type spherical
distribution. Let y ~ Kp(0,Ip,N,s,r), then it follows from the properties of
density (1), that

x = Ay + n ~ Kp{n, V, N, s, r), where AA' = V.

Next we describe shortly the influence of the parameters N, s and r to the
shape of the density fx{x) in the univariate case. For simplicity we take /J. = 0.
Parameter TV determines the modality of the distribution: it is unimodal when
N < 1 and bimodal when N > 1. The parameters s and r regulate dispersion of
the distribution, s can be considered as a dispersion characteristic additional to
V while r can be called the kurtosis parameter.

In the bivariate case meaning of the parameters N, s and r is the same as in
the univariate case with just one difference that iV regulates the volume of the
"hole" at the origin of the coordinates. Shape of the distribution for two sets of
parameters is shown in Figures 1 and 2.

Fig. 1. Kotz distribution, parameters N = 2, s = l , r = - |

The characterization of a Kotz-type distribution through the characteristic
function is more complicated than via the density function. In the case s = 1
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Fig. 2. Kotz distribution, parameters iV = 2, s = l , r = ^, correlated components

the characteristic function <px(t) can be found from the book Fang, Kotz & Ng
(1990), Section 3.2, the formula is quite complicated.

The expression simplifies considerably when N = 2, r = ^:

<px(t) = exp(it'M)exp ( " ^ P ) ( l - ̂ y) • (4)

In this case (as when we considered the density) we may also look the character-
istic function as a univariate function of t'Vt. Then we get a function 4>{u) which
is called the characteristic generator:

0(«)=exp(-|)(l-H). (5)

We say that x ~ Kp((t,V,2,l,^) has a Kotz distribution and denote it x ~
KP(x,V).

3 Moments and cumulants of the Kotz
distribution

Consider the Kotz distribution, x ~ Kp(fj,,V). Moments can be obtained by
differentiating the characteristic function (4). Another way is to find the moments
using general formulae for an elliptical distribution. We are going to use the
second possibility and get the expressions straightforwardly from Kollo & von
Rosen (2004). The first four moments are given in the next theorem.



ON KOTZ-TYPE ELLIPTICAL DISTRIBUTIONS 163

Theorem 1. Let random vector x ~ Kp(fJ., V), then

E(x) = M, (6)

m2(x) = (l + ?\ V + up', (7)

m3{x) = M(M')®2 + ( l + - ) (M' ® V + V ® /i' + /zvec'V), (8)

m4(z) = M(/i')®3 + ( l + ~ ) A*(vecV ® /*')(V + / P ® iCp,p)

+ (1 + -") [(/x')®2 ® V- + /x' «» V ® M' + MV «) vec'V) + V ® (M')®2]

+ f 1 + - \ \{V ® vec'V) + (vec'V ® V)(Ip3 + / p ® Kp,p)]. (9)

In the theorem -K"PlP denotes the commutation matrix (see Harville (1997), for
example). The expressions of the dispersion matrix and the fourth central moment
are given in the next theorem.

Theorem 2. Let random vector x ~ Kp{n, V), then

D(x)=(l + ^V, (10)

m4(x) = (l + - \ [(V «> vec'V) + (vec'V ® V)(7p3 + Ip ® Kp,p)]. (11)

All odd central moments equal to zero.

The first cumulants are presented in the next theorem.

Theorem 3. Let random vector x ~ Kp(n, V), then

ci(x) = (J,, (12)

c2(x) = D(x) = (l + ?\ V, (13)

c4{x) = —^[{V® vec'V) (14)

+(vec'V ® V)(JP3 + Ip ® JK-P I P)].

A^ orfii cumulants starting from C3(x) equal to zero.

We are also interested in kurtosis of the Kotz distribution. We use two mea-
sures for that. First we find the kurtosis parameter K, which is defined for an
elliptical distribution using the characteristic generator (Muirhead (1982), for
example).
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Definition 2 Let a vector x be elliptically distributed with the characteristic gen-
erator <f>(u), then

4>"(0) - (^'(0))2

K- wm • ( }
is called the kurtosis parameter.
By straightforward calculations we get from (15) and (5) the value of the kurtosis
parameter for the Kotz distribution:

_ 4
K " " ( p + 2 ) 2 -

Another multivariate kurtosis measure was defined by Mardia (1970). We use
the definition from Kollo & Srivastava (2000) to present Mardia's skewness and
kurtosis measures through multivariate moments.

Definition 3 Let x be a random p-vector with mean vector n and dispersion
matrix S and y = £~i(x — /x). Let the third and fourth moment of vector
y be 7713(3/) and 7714(3/), respectively, and the third and fourth cumulant 03(3/)
and Ci(y), respectively. Then skewness /3i,p and kurtosis /?2,P of the vector x are
defined by equalities:

/3i,P = tr[c3{y)TC3(y)} = tr[m3(y)Tm3(y)},
p2,v = tr[mi(y)] = tr[c4(y)} + p2 + 2p.

From Definition 3 we get an expression for the kurtosis of the Kotz distribution:

/32,p=p2 + 2 p - - ^ - .
2 + p

Both measures of kurtosis, K and /?2,p show that the Kotz distribution has lighter
tails than the normal distribution, because the same measures for normal distri-
bution are n = 0 and /?2,P = p2 + 2p.

4 Marginal distribution

In this section we are going to derive marginal distribution of the Kotz distri-
bution. It comes out that marginal distributions of the Kotz distribution do not
follow the Kotz distribution of lower order and can be presented as a mixture of
a normal and a Kotz distribution.

Theorem 4. Let x ~ Kp(/z, V) be a random p-vector. Let x = (11,12)', where
x\ : p\ x 1 and X2 : pi x 1, let fi = (/Xj,/x2)' be partitioned the same way and let

Tr (V\\ V\2\ .,, ,. . (Pi x pi p i X p 2 \
V = _. Tr , with dimensions •

\^21 V22/ VP2XP1 p2Xp2/
Then the distribution of the vector x\ is a mixture of a Kotz distribution and a
normal distribution with parameters fi1 and V\\, with weights ^ and E i , respec-
tively.
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Proof
Denote z = x — /z, z\ = x i — \xx and z2 = x2 — fi2.
We use a formula from Horn & Johnson (1989, p.31) for the inverse of a

partitioned matrix:

v - i _ ( V n " V£V12V22\ V2XV-1 -V^ V12V2"211 \
" I -V^VnVj V22\ ) '

where V221 is the Schur complement ofVu. Calculate the quadric form z'V~1z:

z'V-lz = z\V^zi + z'1V^1Vi2V22.iV2iVn1z1

-z'2V22\V21V:11z1 - z'iV-V12V2-211z2 + z'2V2211z2.

Using the symmetry of matrix V, we get

z'V^z = ZiV^zi + z'1V^1Vl2V2-2.1V2iV^1zi
-2z'1Vr1 1V1 2V2-2 1 1z2 + z'2V22\z2

= z'1VT11z1 + {z'2V-22\ - z'xV^V12V-22\){V22\z2 - V22\v2lV^Zl)

= z\Vrfz! + (V;2\z2 - V-J1V21V^z1)'{V2-2\z2 - V2~2\V21V^z1).

By a formula for determinant (Anderson (2003, p.637)) we get

|V| = |Vn||V22., | .

To get the distribution of xi we have to integrate over x2. The integral can
be found after the change of variables:

Zl = Xl - f l j ,

z2 = x2 - n2,

y = z2- V2iV^zi => z2=y - V2iV^zi => dy = dz2.

The Jacobian of the transformation equals 1. By integration we get:

/zx(zi) = — - V l V r 1 exp(-iz'1Vrl1Zi) / exp(-iy'V2-211?/)
(2TT)2 P 2. JRP2 I

xizlvJzt+y'V^yWv.

Direct calculations yield

/Zl(zi) = ?^W| v r l e x p ("^'l V r i l z i ) {z'lV:ilziL2 exp(-\y'v™^dy
+ 1 y'v22\y eM-ly'V22\y)dy)

JRP2 * /

= 7-4z-lVr1exp(-^'1Vri1^i)[(27r)2Z'1Vrl1z1|V22.1| + (27r)5p2|V22.i|]

= T^lVnl'1 expi-UvJz!) f^Xllll + El) .
(2?r)2 2 \ P P)
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Going back to the initial variables, we have the density of x\ of the form of a
mixture of the Kotz distribution and the normal distribution with weights ^ ja
2 1 , respectively.
P QED

5 Matrix Kotz-type distribution

Let us define first a matrix Kotz-type spherical distribution.

Definition 4 A random matrix X : p x n has the matrix Kotz-type spherical
distribution, if

vecX ~ Kpn(0, Ipn).

For the vec-operator see Harville (1997), if necessary.
As in the multivariate case, we can introduce a matrix elliptical distribution

via a linear transformation. Let V = AA' and W = FF' be two positive definite
matrices with dimensions p x p and nxn respectively, where A and F are square
matrices of full rank.

Definition 5 We say that Y : p x n is matrix Kotz-type distributed, if

Y = M + AXT',

where M : p x n is a constant matrix and the matrices A and F are defined
above, X has the matrix spherical Kotz-type distribution.

From properties of the vec-operator:

vecY = vecM + (F ® A)vecX

and when applying density expression (1) to vecy we get:

fY(Y) = Ivr^lWI-t^t^V-^y - M)W~\Y - M)'}),

where <?(•) is the density generating function of a Kotz-type distributions, given
in (3).

The first two moments of the matrix Kotz distribution are given in the next
theorem. Formulae for other special cases can be easily obtained using general
moment expressions for elliptical distribution which are given in Kollo & von
Rosen (2004).

Theorem 5. Let a random matrix X : p x n have the matrix Kotz distribution
with parameters (N = 2, s = 1, r = \,) M, V, &. Then

jrn(X) = EX = M ; (16)

m2(X) = ( 1 + — )(W ® V) + vecMvec 'M. (17)
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The expressions of the dispersion matrix and the fourth central moment are
given in next theorem.

Theorem 6. Let a random matrix X : p x n have the matrix Kotz distribution
with parameters (N = 2, s = 1, r = \,) M, V, W. Then all odd central moment
equals to zero and

m2(X) = DX= (1 + — ) W®V; (18)

m4(X) = W ® V ® \ec'(W <8> V) (19)

+ (vec'(W ® V) <g) W ® Vr)(/(pn)3)(pn)3 + /pn ® Kpn.pn).

6 Simulation

We shall describe a simulation algorithm for the spherical Kotz-type distribu-
tion. A linear transformation to obtain elliptical Kotz-type distribution can be
performed later.

One way to simulate a spherically distributed random vector x is to use the
following stochastic representation.

Theorem 7. Assume that a p-vector x is spherically distributed. Then the fol-
lowing stochastic representation holds

x = Ru, (20)

where u is uniformly distributed on the unit sphere, R ~ F(x) is independent of
u and F(x) is a distribution function over [0, oo).

For Kotz-type distribution the representation for R is given in Pang, Kotz &
Ng (1990), Section 3.2. For the Kotz ditribution, which is of special interest for
us, R2 is T-distributed: R2 ~ T(n/2 + 1,1/2).

The simulation rule for u is given in Fang & Wang (1994), Section 4.3. If the
dimension of x is small, this rule is easy to use, but for larger dimensions the
algorithm is rather complicated.

For the latter case we suggest another simulation rule, based on Metropolis-
Hastings algorithm (see, for example, Gamerman (1997, p.172)).

When simulating random p-vector with pdf /(•) we have to set an arbitrary
initial value ZQ and choose a known and easy to simulate distribution with pdf
/»(•). This chosen distribution should be similar to the one being generated (from
point of view of symmetry and shape, for example) and should have a larger
variance than the pdf generated. First, take i = 0 and the algorithm is as follows:

1) i = i+l;
2) simulate yi from pdf h(-);
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3) calculate the acceptance probability:

4) simulate u from [7(0,1);
5) if u < a, then Zi = yi, otherwise z; = Zt-i.

Repeat l)-5) until requested number of vectors is generated.

Fig. 3. The generated histogram of the first marginal and corresponding theo-
retical density

The suggestion for the choice of initial value zo and pdf h[-) will be made in
a special case.

Let us apply the simulation algorithm to the Kotz distribution with parame-
ters fj, = 0 and V = 12-

We choose the easy-to-simulate distribution to be Np(0,2 (1 + - J Ip), because
it is easy to simulate, symmetric as the Kotz distribution, and its variance is twice
the variance of the requested distribution.

To test the algorithm we generate 100 000 bivariate random vectors. We
use two initial vectors: (0,1,-0,1) ja (25,-25), to test the convergence of the
algorithm.
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In Figure 3 the simulated marginal distribution is compared with the theoret-
ical one, found in Theorem 4. The figure demonstrates good fit and tests validity
of the algorithm.
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Summary. Uniform design has become a standard tool in experimental design
over the last decade. Uniform design is particularly powerful when the specific
form of the response to differing factor levels is unknown. Different criteria such
as Z/2-discrepancy and modifications thereof like the centered and wrap-around
^-discrepancies are used to assess the uniformity of U-type designs. Recent ad-
vantages in the analysis of these criteria allow for efficient calculation and the
derivation of lower bounds. In this contribution, these results are used to con-
struct two-step sequential [/-type designs. The construction is based on the opti-
mization heuristic threshold accepting. The results are compared with theoretical
lower bounds and ad hoc heuristics for the generation of sequential designs.

Key words: Discrepancy, threshold accepting, uniform design, sequential design
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1 Introduction

Uniform design has become a standard tool in experimental design over the last
decade. Uniform design is particularly powerful when the specific form of the
response to differing factor levels is unknown. Consequently, applications include
analysis of model robustness (Bates, Buck, Riccomagno & Wynn (1996)) and
efficient numerical analysis (Fang & Wang (1994, Ch.5)), but are not restricted
to these areas (Fang & Lin (2003)).

When the exact model is not known, uniform design might be used for a
preliminary exploratory analysis.

Contemporary Multivariate Analysis and Experimental Design—In Honor Celebration of Pro-
fessor Kai-Tai Fang's 65th birthday. Edited by Jianqing Fan and Gang Li. The World Scientific
Publisher, 2005.
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When no a priori information is available, a useful criterion for constructing
experimental designs is uniformity. Consequently, in this case, the quality of an
experimental design is expressed in terms of its discrepancy from uniformity.
There exist several different definitions of discrepancy for this purpose including
the classical "star discrepancy", the "Lp-discrepancy", and the "symmetric Lp-
discrepancy". Recently, (Hickernell, (1998a, b)) suggested modified versions of the
L2-discrepancy, namely the "centered Z/2-discrepancy" and the "wrap-around L2-
discrepancy". These measures are theoretically appealing and allow for efficient
calculation and updating (Fang, Lu & Winker (2003)), while e.g. the calculation
of the star discrepancy itself represents a complex optimization problem (Winker
& Fang (1997)). Given a measure of discrepancy, the number of factors d, levels q
and replications n, the goal consists in finding an experimental design minimizing
the discrepancy.

While all measures of discrepancy are defined for sets of d-dimensional points
in any super-rectangle Q, after a linear transformation, we may assume f2 =
[0, l]d. The problem of minimizing any measure of discrepancy on Q is probably
a NP hard problem. Only for the case d = 1, it is easy to obtain the optimal
solution (Fang, Ma & Winker (2002)). In this case, if only q different levels are
permitted for a set of n = qk points on the unit interval, the minimum for the
centered Z/2-discrepancy is assumed if and only if the points take each of the
equidistant values ^— ,̂ / = l,...q equally often, i.e. k times. Consequently, the
search for low discrepancy designs in higher dimensions is restricted to points lying
on an equidistant grid on Q. These designs are denoted as U-type designs. Fang,
Ma & Winker (2002) analyze possible improvements of relaxing this constraint
and find them to be rather small.

Finding good experimental designs or good U-type designs implies that with
a given number of replications, a good approximation to the response surface can
be obtained, or that for a required quality of the approximation, the number of
experimental runs can be reduced. Unfortunately, as already mentioned, finding
optimal [/-type designs for a given measure of discrepancy is a complex integer
programming problem. For this type of problems, the use of optimization heuris-
tics appears to be an adequate way to obtain high quality results (Winker & Gilli
(2004)). Winker & Fang (1997) provide the first implementation of the threshold
accepting algorithm in this context. More details on their implementation and
the heuristic can be found in Winker (2001).

So far, the problem of finding good experimental designs has been described
for the one-step case. However, when experiments are time consuming and/or
very costly, a sequential setup might become relevant. In practical applications,
the idea is to use a low number of experiments in a first step in order to find
out whether expected effects are likely to hold. Only if this first step provides
a positive signal, additional experiments are run in order to obtain a better ap-
proximation. Obviously, for the final evaluation, the results of both steps are
considered. Therefore, in this case, an optimal design has to take into account
both steps. How should the sequential design be built? Three alternatives could
be considered. First, use an optimal design for the first step and try to add addi-
tional runs in an optimal way afterwards. Second, use an optimal design for the
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total number of runs of both steps and try to select a subset for the first step in
an optimal way. Third, apply explicit optimization to both steps of the sequential
designs simultaneously. The latter approach will be followed in this paper. It leads
to the additional question on how to measure and weigh the performance of both
steps in the optimization algorithm.

This contribution presents a first application of the third approach to two-
and three-level designs. The optimization heuristic uses the efficient updating pro-
cedure and the lower bounds introduced by Fang, Lu & Winker (2003). Section 2
provides a formal description of the sequential design problem. In section 3 the
threshold accepting implementation is introduced. First results for the two- and
three-level cases are reported in section 4. The main findings and an outlook on
future research are provided in the concluding section 5.

2 The Sequential Design Problem

A two-step sequential [/-type design U{n\,n2,qd) consists of a pair of g-level U-
type designs {U(ni,qd), U(ri2, qd)}, n\ < n2. Thereby, a U-type design U(n,qd)
is given by a matrix of dimension nxd with each column having an equal number
of entries ^ ^ S I = 1, • • • ,9- By the linear transformation 2LzI —> /, a U(n,qd)
can also be presented as a matrix of size nxd, with each column having the same
number of entries 1,2,... ,q. In this contribution, both representations are used
without further specification. Let U(n, qd) be the set of all (/-level U-type designs
with n runs (points) and d factors, and let U(ni,ri2,qd) stand for the set of all
two-step sequential U-type designs with n\ and n2 runs, respectively.

The goal consists in generating two-step sequential [/-type designs with a high
degree of uniformity for both the first and the second step design. In the present
application, uniformity is measured by means of the centered Z/2-discrepancy
(CL2) for two-level designs and by the wrap-around ^-discrepancy (WL2) for
three-level designs introduced by Hickernell (1998a, 1998b) . Besides attractive
theoretical properties, these measures allow for a reexpression based on, respec-
tively, the column balance and the row distance (Fang, Lu & Winker (2003)). Us-
ing these presentations of the two measures allows to derive lower bounds, which
can be used as a benchmark, and to implement a fast local updating procedure
within the local search heuristic threshold accepting (Winker (2001)), which is
used for the generation of low discrepancy designs.

Once, the measure of uniformity is defined, the two-step sequential design
problem is given by the following optimization problem:

minU=(U1,U2)£U(n1,n2,q<l)[uiL2{Ul) + U2L2(U2)\ , (1)

where L2 stands for CL2 in the two-level case and for WL2 in the three-level case.
The u>i define the weights of the two designs in the global measure of uniformity.
For the present application, these weights are defined by the relative deviations
from the best available lower bounds. For general applications, different choices
of u)i can be considered.
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Given the definition of the problem as stated in (1), a solution appears to be
straightforward given that U(n\,ri2,qd) is a finite set. However, the cardinality of
U(ni,Ti2,q ) precludes an enumeration approach for typical values of n\, ni and q
encountered in real applications. The scope of use of standard optimization tools
like the Simplex method also appears to be limited to very small problem instances
Fang, Ma & Winker (2002). Probably, the problem shares the NP hardness with
the standard optimum design problem described above. Consequently, heuristic
algorithms have to be considered.

In this contribution, two different approaches are considered. First, we start
with an optimized design for the total number of runs n-i, which is obtained by
the threshold accepting implementation. Then, we choose n\ points out of the
ri2 as the first step design. This selection can be done sequentially or simulta-
neously. For the present application, a full enumeration of all possible subsets,
i.e. a simultaneous approach is used. Second, the optimization problem described
in (1) can be tackled explicitly by heuristic optimization. In section 3 a threshold
accepting implementation is described for this explicit approach. The results will
be compared with the sequential method in section 4.

When a simultaneous optimization is performed, the choice of the weights Wj
in the objective function (1) becomes relevant. It might depend on the application
considered, i.e. whether low discrepancy is considered to be more important for
the first or for the second step of the analysis. In this paper, the weights are chosen
relative to the value of the lower bound for the discrepancy of the two designs.
Consequently, if lb\ and Ibi denote the theoretical lower bounds for the designs
with rii and ni points, respectively, the weights are CL>I = l/lb\ and u>2 — 1//fa-
in order to give the resulting measure an intuitive interpretation, we subtract the
constant two. Thus, the objective function becomes

(£WO -1) + (±W) -1) (2)

and can be interpreted as the sum of the relative deviations from the two lower
bounds. However, the method described in the following section will also work
for any other choice of the Wj.

3 The Threshold Accepting Implementation

Threshold accepting is a modification of simulated annealing using a determin-
istic acceptance criterion instead of the probabilistic one in simulated annealing.
Consequently, it belongs to the class of local search methods. Like most of the lo-
cal search heuristics it allows uphill moves, i.e. accepts solutions which are worse
than the previous one, in order to be able to escape local minima. A classification
of optimization heuristics can be found in Winker & Gilli (2004), and a more
detailed description of the threshold accepting algorithm is provided by Winker
(2001). It has already been used repeatedly in the context of experimental design,
e.g. to obtain lower bounds for the star-discrepancy (Winker fe Fang (1997)), to
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generate low discrepancy {/-type designs for the star-discrepancy (Winker & Fang
(1997)), several modifications of the Z/2-discrepancy (Fang, Lin, Winker & Zhang
(2000)), for CL2 (Fang, Ma & Winker (2002)), and for CL2 and WL2 (Fang, Lu &
Winker (2003)). Algorithm 1 provides the pseudo-code for the threshold accept-
ing implementation for-the simultaneous optimization of the two-step sequential
design problem.

Algorithm 1 Pseudo-code for Threshold Accepting

1: Initialize UR, nsr and the sequence of thresholds rr, r = 1,2,... ,UR
2: Generate starting design U° £ U(ni,ri2,qd)
3: for r = 1 to UR do
4: for i = 1 to nsr do
5: Generate U1 e Af(U°) (neighbor of U°)
6: if CD^U1) < CD2{U°) x (1 + r r) then
7: U° = U1

8: end if
9: end for

10: end for

Thereby, CD2 represents any of the weighted measures of discrepancy for a
two-step designed as discussed before. Replacing U(n\, n2, qd) by a single [/-type
designs with n\ or n2 runs, respectively, and an appropriate choice of CD2 allows
to use the same algorithm for the optimization of the single-step sequential design
problems. In fact, this approach will be used in the sequential approach to obtain
a low-discrepancy design with n2 points.

Threshold accepting performs a refined local search on the set U(n\,n2,qd).
It starts with a randomly generated two-step design U° (2:) and continues by
iterating local search steps. For each step, a two-step design U1 has to be chosen
in the neighborhood of the current design (5:). Then, the value of the objective
function of both two-step designs is compared (6:). The new design is accepted if
it is better than U°, but also if it is not much worse. The extent of an accepted
worsening is limited by the current value of the threshold sequence (rr), which
decreases to zero during the course of iterations.

The performance of the threshold accepting implementation depends on a
number of settings. In particular, the definition of neighborhoods for the choice of
U1, the sequence of threshold values TV and, finally, the total number of iterations
are most relevant. In order to use a high number of iterations in given real time, we
resort to a fast updating method described in Fang, Lu & Winker (2003) for the
first time. Instead of recalculating CD2(Ul) completely, specific representations
of CL2 and WL2 in terms of the Hamming distance of row pairs allow for a
local updating, i.e. only a small number of calculations has to be performed when
U results from U by a small perturbation. In this application, the meaning of
small perturbation is defined by the exchange of few elements in a column between
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rows, thus keeping the characteristics of a U-type design. Given this framework,
a number of up to 5 million replications could be used for the optimization.

The neighborhood structure used by the threshold accepting heuristic to gen-
erate search steps is also based on the Hamming distances of row pairs (for details
see Fang, Lu & Winker (2003)). Consequently, while moving from one design to
a neighboring one, the objective function can be updated at low computational
cost. In fact, the speed up as compared to a full calculation of the discrepancy is
of the order of ^ j (Fang, Lu & Winker (2003)). As an additional complication
compared to the implementation in Fang, Lu & Winker (2003) for the one-step
design we have to check whether a change affects both subdesigns or only the
larger one. For a given U-type design U°, a neighborhood N{U°) is denned as a
e-sphere centered in U° using the metric derived from the Hamming distance, i.e.
a U-type design is considered as being a neighbor of U° if and only if it differs
in not more than e entries from U°. In order to obtain elements in U(n\,n2,qd),
changes to U° are restricted to exchanging elements within columns.

An alternative to this undirected definition of neighborhoods is provided by
Fang, Tang & Yin (2004), who exploit specific features of uniform designs in order
to define the neighborhoods. Using this information about the specific structure of
the optimization problem might increase the efficiency of the threshold accepting
implementation. It is left for future research to integrate their approach in the
present context and to assess the gain in efficiency.

Finally, the threshold sequence TT, r — 1, . . . , nn is obtained by a procedure
first described in Winker (2001) which is basically data driven. The intuitive idea
results from the observation that for a finite search space like U(n\,n2,qd), the
local changes of the objectivefunction can only take a finite number of values.
Obviously, for the algorithm, only these values are relevant for the threshold
sequence. Consequently, the threshold sequence is constructed as follows. First,
a large number of two-step designs is generated at random. Then, for each of
these random designs a neighbor is selected using the neighborhood definition
introduced above. For each resulting pair of designs, the relative difference of the
objective function values between the larger and the smaller value is calculated.
Ordering these values provides an approximation to the distribution of local rel-
ative changes of the objective function. Consequently, a lower quantile of these
sequence is employed as the threshold sequence.

In principle, the algorithm described in this section could be applied to any
number of levels. Nevertheless, we start with implementations for two- and three-
level designs as lower-bounds are available in Fang, Lu & Winker (2003) and
previous results for one-step designs might serve as additional benchmarks.

4 Results for Two- and Three-level designs

The discrepancy values obtained by the optimization procedure for the two-step
designs are difficult to evaluate without a relevant benchmark. For this purpose,
different alternatives can be considered. First, the lower bounds for the individual
designs with n\ and n% runs, respectively, could be used. Given our choice of



OPTIMIZED TWO-STEP SEQUENTIAL [/-TYPE DESIGNS 179

weights u>i in (2), the value of this benchmark (BMi) is zero by definition. Of
course, in general, it will not be possible to reach these lower bounds, as the two-
step design cannot generate the two sub-designs independently. Nevertheless, it
might provide a useful benchmark. A second approach consists in starting the
best result obtained for ni runs and to select the best subset of n\ rows out
of these ni runs. Obviously, this approach has a high computational complexity
and will not be feasible for larger values of ni. However, for most of the problem
sizes considered in this paper, it is still possible to generate this best subset. The
two-step design resulting from this sequential approach will serve as a second
benchmark (BM2). We did not implement the alternative strategy to start with
a good design for n\ runs and to add sequentially additional rows. However,
previous experience with this type of sequential construction algorithms (Fang,
Lin, Winker & Zhang (2000, p. 244)) indicates that we should not expect a high
quality for the resulting design with n-z runs, if ni ~> n\.

We contrast the best results obtained by the simultaneous optimization ap-
proach described in the previous section with a maximum number of 1.000.000
iterations for the two-level case and 5.000.000 iterations for the three-level case
with the two benchmark values BM\ and BMi. Given that by definition BM\ has
to be smaller or equal to the values obtained for the optimized two-step designs
and BMi, all values are expressed in relative deviations from BM\.

The following subsections summarize our findings for the two- and three-
level sequential designs, respectively. For the two-level designs, the centered Li-
discprepancy is used for the individual designs, while for the three-level case, the
wrap-around Li discrepancy is employed.

4.1 Two-level sequential designs

The results for the two-level sequential designs are summarized in table 1. The
measure of discrepancy employed in equation (1) is the centered Z/2-discrepancy.
The first three columns describe the dimension of the design: d is the number of
factors (columns), and n\ and ni are the number of runs (rows) for the first and
second step designs, respectively. The first ni runs of the second step design are
equal to the first step design.

The next four columns provide the results for the sequential approach de-
scribed above. In a first step, the threshold accepting implementation is used to
obtain a low-discrepancy design with ni runs. Then, by means of enumeration
of all subsets of n\ rows out of the ni the best first step design is identified.
The column enumeration provides the number of first step designs considered in
the selection process. The entries in the column n\ correspond to the relative
deviation of the best first step design found by the sequential approach relative
to the maximum lower bound, while the entries in the column ni provide the
relative deviation for the complete design with ni rows relative to the maximum
lower bound for this dimension. Finally, the column total provides the sum of
both relative deviations which is used as our objective criterion for the two-step
design in this contribution. Obviously, the threshold accepting implementation
run with up to 1.000.000 iterations provides optimal or near optimal designs for
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Table 1. Deviation (in percent) from theoretical lower bound BM\ for sequential
designs (U(nun2,2d))

dimension sequential approach BM2 TA optimized design

d n\ n2 enumeration n\ n2 total n\ n2 total
~"5 8~T0 45~ 13.03 0.00 13.03 ! 2.37 "T63 JW

6 8 10 45 12.32 1.26 13.57 3.49 2.59 6.08
6 8 12 495 10.63 0.36 10.99 3.49 2.60 6.09
7 8 12 495 13.53 0.65 14.18 0.00 4.75 4.75
7 8 14 3003 19.85 0.56 20.41 0.00 1.79 1.79
8 10 12 66 6.55 1.01 7.56 3.11 2.57 5.68
8 10 14 1001 9.25 0.86 10.11 3.11 2.74 5.85
8 10 16 8008 9.25 0.93 10.18 3.11 4.77 7.88
9 10 12 66 8.14 1.42 9.56 5.50 3.63 9.13
9 10 14 1001 10.50 3.46 13.96 4.86 4.12 8.98
9 10 16 8008 8.47 4.40 12.87 5.39 5.60 10.99
9 10 18 43758 10.50 1.96 12.46 4.56 3.06 7.62
10 10 12 66 9.34 1.88 11.21 9.34 1.88 11.21
10 10 14 1001 7.76 5.38 13.13 5.97 5.38 11.35
10 10 16 8008 12.55 5.98 18.53 6.13 7.73 13.86
10 10 18 43758 8.94 2.95 11.89 5.97 4.23 10.20
11 10 12 66 7.51 0.00 7.51 7.51 0.00 7.51
11 10 14 1001 4.10 6.57 10.67 4.10 6.57 10167
11 10 16 8008 10.23 7.52 17.76 4.33 9.08 13.41
11 10 18 43758 9.04 4.30 13.34 3.98 5.53 9.51
12 10 14 1001 10.09 6.66 16.75 2.23 7.55 9.78
12 10 16 8008 10.09 5.14 15.23 3.55 6.86 10.41
12 10 18 43758 6.58 5.83 12.41 2.23 6.91 9.14
13 10 14 1001 7.99 5.13 13.12 2.62 5.77 8.39
13 10 16 8008 7.99 3.52 11.51 2.73 5.98 8.71
13 10 18 43758 6.43 7.46 13.89 2.62 7.86 10.48
14 10 14 1001 6.21 4.00 10.21 2.07 4.87 6.94
14 10 16 8008 6.75 1.65 8.40 2.07 3.11 5.17
14 10 18 43758 7.01 7.93 14.94 2.57 8.24 10.82
15 10 14 1001 6.68 2.64 9.32 1.83 4.07 5.90
15 10 16 8008 12.41 0.00 12.41 1.83 4.69 6.52
15 10 18 43758 7.33 6.06 13.39 1.83 7.05 8.88
16 10 14 1001 7.00 2.27 9.27 1.57 4.20 5.77
16 10 18 43758 7.94 5.18 13.12 1.57 5.63 7.20
17 10 14 1001 7.70 1.82 9.52 0.74 3.32 4.06
17 10 18 43758 6.61 4.17 10.78 0.74 4.82 5.56
18 10 14 1001 5.14 1.81 6.95 0.00 3.18 3.18
18 10 18 43758 8.18 | 3.10 | 11.28 || 0.00 | 3.38 | 3.38
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712 rows for many problem instances. However, even when performing a full enu-
meration of all subsets with m rows, the resulting first step design is often far off
the lower bound. Consequently, the total value of the objective criterion is quite
high, ranging from about 8 to 20%.

Finally, the last three columns of table 1 provide the results for the simul-
taneous optimization approach. Again, the values in column n\ are the relative
deviations from the theoretical lower bound for the first n\ rows, while the col-
umn n2 provides the same information for the complete design. Obviously, the
simultaneous optimization imposes some constraint on the complete design with
ni rows. Consequently, it is not surprising that the values obtained for the full de-
sign are slightly larger, i.e. worse than for the sequential approach BMi. However,
the sub-designs with n\ rows are much better than in the sequential approach.
Therefore, the overall quality of the two-step designs resulting from the simultane-
ous optimization approach is much better than for the sequential approach. When
interpreting the absolute values for the optimized two-step designs, it should be
kept in mind that the benchmark BM\ resulting from the two lower bounds for
ni and 7i2 rows, respectively, is only a hypothetical one. First, it cannot be guar-
anteed that for all n\ and ni the relevant lower bound can be met. Second, the
restrictions imposed by the two-step characteristic of the designs have to be taken
into account. In general, they will not allow to reach the individual lower bounds.

4.2 Three-level sequential designs

The results for the three-level case are given in table 2. In contrast to the two-
level case, the wrap-around Z/2-discrepancy is used as a measure of uniformity in
equation (1) as no lower bound was available for the three-level case and the cen-
tered discrepancy. However, current research provides such a lower bound (Fang,
Tang & Yin (2004)). Consequently, future research might extend the analysis to
the centered discrepancy for the three- and four-level case.

The presentation of the results follows the conventions for the two-level case.
The first three columns describe the number of factors (d), and the number of
rows for the first (ni) and second (712) step of the two-step designs, respectively.

The following columns under the heading BMi summarize the findings for
the sequential approach. As indicated by the first of these columns, the number
of evaluations required for the full enumeration of all possible sub-designs of the
ni runs increases rapidly. Consequently, in order to keep the computational time
feasible, the sequential approach BMi is only performed when the number of
enumeration does not exceed 5 • 106. For the other cases, only the value for the
optimized design with ni rows is reported. The entries in the column n\ corre-
spond to the relative deviation of the best first step design found by the sequential
approach relative to the maximum lower bound, while the entries in the column
712 provide the relative deviation for the complete design with ni rows relative to
the maximum lower bound for this dimension. The column total provides the sum
of both relative deviations corresponding to equation (1). Again, the threshold
accepting implementation performs well in generating optimal or near optimal
designs for designs with ni rows while using up to 5.000.000 iterations. However,
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even when performing a full enumeration of all subsets with m rows, the result-
ing design is often far off the lower bound. Consequently, the total value of the
objective criterion is often quite high, for many instances exceeding 10%.

The results for the simultaneous optimization approach are presented in the
last three columns. Due to the constraint imposed by the two-step design, the
discrepancy for the second step design (712) is typically larger than in the case
of the sequential approach. However, as for the two-level case, this disadvantage
for the second step is overcompensated by the gain for the first step design (ni).
Consequently, the overall quality of the two-step designs as measured by (1)
is much better for the simultaneous approach than for the sequential approach,
which, in addition, becomes intractable for larger problem instances, in particular,
when the increase from m to w.2 is large.

5 Conclusion

This contribution extends previous analysis on the construction of low-
discrepancy f/-type designs by means of a threshold accepting implementation.
Here, the feature of two-step designs is analyzed. Two alternatives for the con-
struction of such designs are discussed and considered for the application to two-
and three-level two-step designs.

It turns out that a suitable implementation of the threshold accepting heuris-
tic is able to generate high-quality, i.e. low-discrepancy designs taking into account
the constraints imposed by the two-step characteristic of the problem. In general,
the results obtained with this simultaneous optimization approach are better than
those resulting from a sequential procedure.

Future work will extend the analysis to more problem instances, e.g. de-
signs with more than three levels. Furthermore, alternative objective functions
or weighting scheme for the two steps will be considered. Finally, an additional
benchmark might be generated from the independent optimization of designs for
n\ and n2 rows, respectively.
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Table 2. Deviation (in percent) from theoretical lower bound BM\ for sequential
designs {U(m,n2, 3d))

dimension sequential approach BM2 TA optimized design

d n\ 712 enumeration m ni total n\ ni total
~4 9~~12 220 13.82 0.00 13.82 0.00 0.31 oM~

5 12 15 455 3.42 0.10 3.52 0.00 0.15 0.15
6 12 15 455 5.73 0.31 6.04 0.00 0.35 0.35
6 12 18 1.86 104 1.70 0.23 1.93 0.46 1.17 1.63
7 12 15 455 8.64 0.56 9.20 0.14 2.04 2.18
7 12 18 1.86 104 7.47 0.62 8.09 0.14 3.04 3.18
7 12 21 2.94 -105 5.86 1.23 7.09 0.14 1.43 1.57

11 12 15 455 7.82 1.50 9.32 0.78 3.46 4.24
11 12 18 1.86104 11.28 2.11 13.39 0.93 3.43 4.36
11 12 21 2.94105 10.39 2.86 13.24 0.93 4.01 4.94
11 12 24 2.70-106 9.56 4.13 13.68 1.09 4.65 5.74
11 12 27 1.74-107 * n.a. 5.01 n.a. 0.78 5.73 6.51
11 12 30 8.65-107 * n.a. 3.81 n.a. 1.09 4.05 5.14
8 15 18 816 7.26 1.99 9.25 1.18 4.00 5.19
8 15 21 5.43104 5.06 1.82 6.88 1.18 2.15 3.33
8 15 24 1.31106 6.53 2.26 8.79 1.35 2.51 3.86
9 15 18 816 8.58 1.97 10.55 2.40 4.15 6.55
9 15 21 5.43-104 7.45 2.43 9.88 2.43 2.92 5.35
9 15 24 1.31-106 7.76 3.02 10.78 2.26 3.50 5.76
9 15 27 1.74-107 * n.a. 4.00 n.a. 2.90 4.72 7.62

10 15 18 816 6.89 2.35 9.24 2.01 3.70 5.72
10 15 21 5.43104 8.66 3.23 11.89 2.01 4.02 6.03
10 15 24 1.31-106 7.29 3.84 11.14 2.01 4.35 6.37
10 15 27 1.74-107 * n.a. 5.36 n.a. 2.15 5.83 7.98
10 15 30 1.55-108 * n.a. 3.05 n.a. 2.01 3.30 5.32
12 15 21 5.43104 8.28 2.44 10.73 1.46 3.83 5.28
12 15 27 1.74-107 * n.a. 4.05 n.a. 1.73 4.83 6.57
12 15 30 1.55 108 * n.a. 4.61 n.a. 1.73 4.94 6.68
17 15 18 816 4.70 1.03 5.73 0.67 2.66 3.33
17 15 21 5.43 -104 6.73 1.30 8.03 0.72 2.71 3.44
17 15 24 1.31 -106 6.63 1.77 8.40 0.72 2.83 3.55
17 15 27 1.74 107 * n.a. 2.28 n.a. 0.78 3.23 4.01
17 I 15 I 30 I 1.55 -108 * I n.a. | 2.71 | n.a. || 0.82 [ 3.59 | 4.41

The entries in column enumeration marked with * indicate that a full enumeration
of all sub-desings with n\ runs would require the evaluation of more than 5.000.000
designs. For these cases BM2 is not calculated.
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Summary. Granularity and perfect balance are defined and discussed for mul-
tiple factor designs. The granularity of a design is related to its discrepancy,
an important concept in uniform experimental design. It indicates how fine a
structure in the dependence of the response on the factors can be resolved. The
balance of a design is similar to the resolution of fractional factorial designs, but
it is defined for a much broader class of designs. The granularities and balance of
various designs, including simple random designs, orthogonal arrays, digital nets,
and integration lattices are compared. Two applications, the simple pendulum
and blood glucose monitoring, are used to illustrate how granularity and balance
can identify good designs.

Key words: Discrepancy, grid, integration lattice, orthogonal array, positive
semi-definite kernel, simple random

2000 Mathematics Subject Classification: 11K38, 62K15, 62K20, 62K99

1 Introduction

My first recollection of performing a serious experiment was as a college fresh-
man taking general physics. We were asked to determine the period of a simple
pendulum as a function of its mass and length, and the amplitude of the motion.
Before beginning the experiment we were taught how to make careful measure-
ments and to record what we observed in a laboratory notebook. The instructor
demonstrated the experimental apparatus, and guidance was given on how to
write our lab reports. However, no instruction was given on how to design the
experiment.

Contemporary Multivariate Analysis and Experimental Design—In Honor Celebration of Pro-
fessor Kai-Tai Fang's 65th birthday. Edited by Jianqing Fan and Gang Li. The World Scientific
Publisher, 2005.
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The three parameters or factors to be varied were length of the pendulum,
mass of the bob and amplitude of the motion. The single response was the pe-
riod. The sources of experimental error included imprecision of the instruments
and inexperience of the experimentalists. Some of us performed the experiment
by varying one factor while keeping the rest fixed. Others tried a full factorial
experiment, i.e., taking measurements of the period for all possible combinations
of levels of the three factors, but his meant that we had to limit ourselves to only
a few levels per factor. A few decades after that episode I have another exper-
iment to perform — checking my blood glucose level. The blood glucose meter
comes with a booklet listing seven different times per day: before breakfast, after
breakfast, before lunch, after lunch, before dinner, after dinner, and before sleep.
A person's blood glucose level normally peaks about 1-2 hours after eating. In-
dividuals with diabetes should aim for a blood sugar level 2 hours after eating to
be below 8.9 mmol/L (160 mg/dL), the level before breakfast, lunch, and supper
to be 5.0-6.1 mmol/L (90-130 mg/dL), and the level before sleep to be 6.1-8.3
mmol/L (110-150 mg/dL) (Joslin Diabetes Center (2004)). Because my blood
glucose level is moderately high, the doctor advised me to check it once per day.
He also wants me to check it at different times of the day on different days to give
an indication of the intra-daily fluctuations. However, no one has told me how to
design the experiment.

Experiments require valuable resources: time, equipment and consumables.
Measuring one's blood glucose level involves the discomfort of pricking a finger
to take a blood sample. It is crucial that experimentalists be taught how to
design their experiments to obtain the maximum amount of information given
limited resources. This article discusses two important concepts for measuring
the quality of an experimental design: granularity and perfect balance. These are
formally defined in Definitions 1-3 and 5, but they are introduced briefly here.
Granularity describes the effective number of levels per factor, or the fineness of
scale over which the design allows you to detect fluctuations in the response. A
design is perfectly balanced up to a certain granularity {q\,..., qs) if it looks like
an evenly spaced qi x • • • x qs grid.

It may be helpful to relate granularity and balance to other approaches to
experimental design. Atkinson & Donev (1992) and Pukelsheim (1993) empha-
size efficient estimation of the model parameters, assuming a known model for
the response as a function of the factors. If the model is truly known then one
only needs an experimental design with the granularity and balance dictated by
the complexity of the model. However, when the model is not known and the
experimentalist expects to infer the model from the data, it is advisable to make
the granularity and balance as high as possible. Dey & Mukerjee (1999) and
Hedayat, Sloane & Stufken (1999) assume that the model is unknown and try
to maximize balance, which is a generalization of resolution or strength. How-
ever, such designs often presume a relatively small number of levels and so have
a low granularity. On the other hand, digital nets (Niederreiter (1992), Larcher
(1998), Niederreiter & Xing (2001)) and integration lattices (Niederreiter (1992)
and Sloan & Joe (1994)) have higher granularity while not sacrificing much bal-
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ance. These designs are more flexible in model selection and more robust against
model misspecification than orthogonal designs.

Digital nets and integration lattices are examples of uniform designs (Fang
(1980), Wang & Fang (1981), Fang & Wang (1994) and Fang, Lin, Winker &
Zhang (2000)). They are constructed to minimize a model-independent criterion
called the discrepancy. Granularity and balance as defined here are closely re-
lated to the discrepancy (see Remark 6) and the projection uniformity pattern
(Hickernell & Liu (2002)).

2 Granularity for One Factor Designs

For simplicity consider the case of just one factor. This corresponds to fixing the
mass and amplitude of the pendulum and studying how the period depends on
its length. It also corresponds to measuring the blood glucose level several times
during just one day or at the same times every day. Let x denote this factor,
and let X C R denote the set of possible values, i.e., the experimental domain.
Although the definition of granularity is model-independent, a basic understand-
ing of regression illuminates the qualities that make a good experimental design.
Suppose that there are n runs or experiments to be performed. The set of differ-
ent values of the factors, P = {x\,..., xn}, is called the experimental design. Let
y denote the value of the response, and suppose that a linear regression model
describes the dependence of y on x:

yi = Pigi(xi) + — h PP9p(xi) + ei. (1)

The n x 1 vector of response data is y := (j/i,... ,yn)T, the n X p structure
matrix is G := {gj(xi))i,j, and the p x 1 unknown regression coefficient is /3 :=
(/3i,... ,PP)T. The least squares estimate of the regression coefficient is /3 :=
(GTGJ~1GTy, and the estimated model for the response is y(x) = J3igi(x) +
• • • + J3pgp(x). In this article all variables and functions are assumed to be real-
valued, unless otherwise stated, but extensions to complex-valued functions are
straight-forward. If the design P has just one level, i.e., x\ = ••••= xn, then
one can only estimate a model with a single term, i.e., y(x) = pigi(x), since
otherwise G is not of full rank and GTG is singular. Unless there is a priori
knowledge to suggest otherwise, it is probably safest to assume an overall mean
model, y(x) = J3i. If the design has p distinct levels, then one may fit a linear
regression model with at most p terms.

To allow a wider class of models it is advisable for the design to have as
many distinct levels as practical, the maximum being n. However, the number of
distinct levels is not a sufficient criterion to describe the quality of a design. One
may readily imagine a design where with n distinct, but nearly equal, levels. In
this case, the matrix G, while of full rank, would have large condition number,
and imply a large cov(/3). One would like a criterion for designs that indicates
how finely structured or complex a model one may reasonably fit. One might call
such a measure the granularity. Intuitively, a design with all points being evenly
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split among p well-spaced levels should have a granularity of p and be suitable
for fitting models that have p terms. Here is a possible definition the granularity.

Definition 1. Let X C R be the experimental domain of the factor (independent
variable). Let K(x, w) be a symmetric, positive semi-definite function defined for
all x,w S X. Let P — {xi , . . . ,xn} be a subset of the points in X, with the
possibility that some points are repeated. The granularity of the design P is defined
as

£ K(xi,xk)\
i.fc=i J

First, some examples are given to show how this definition matches one's
intuition. Consider the case of X = [0,1) and

Ksh(x,w) = 6\x-w\(\x-w\-l) + l. (2)

For this kernel designs of evenly spaced points with an arbitrary shift have a
granularity of n:

Psh = {{(i-l) + A)/n:i = l,...,n}, gran(Psh; Ksh) = n, (3)

where A g [0,1) is arbitrary and n € N := {1,2,...}.
For the same experimental domain another useful kernel is

KSc(x,w) = b1'2Ux'w\ where (4)

?(i , t i ) ) :=max{m€N:[6m"1iJ = [ r " ' t t ) j } , [x\ := x - (x modi),

and b > 2 is a fixed integer. Jittered designs with n = l,b,b2,... runs have
granularity n, i.e.,

Psc = {[(i-l) + Ai]/n:i = l,...,n}, gran(Psc;/CSc) = n, (5)

where the /A* are arbitrary numbers in [0,1).
For comparison consider a simple random design:

ftan = {xi, . . . ,xn '• Xi are i.i.d. on X with distribution F}. (6)

The granularity is also random and one may easily compute the inverse root mean
square of the inverse granularity directly from Definition 1:

[£{gran(Pran;K)}-2r1/2 = \ \ j K(x,x)dF(x)

+ 1 1 - - / K(x,w)dF(x)dF(w)} . (7)
V nj JX2 J

The definition of granularity may be extended to arbitrary probability distribu-
tions, and even arbitrary signed measures F (Dudley (2002)), as follows:
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gran(F; K) := j f K(x,w)dF(x)dF(w)\ . (8)

Choosing F to be the empirical distribution function of a design P in (8) recovers
the original definition of granularity. The granularity of a simple random design
Pran approaches gran(F; K) as n —» oo. If F is the uniform distribution, it follows
that

gran(F; K) = oo, [E{gran(Pran;/sT)}-2]"1/2 = n1 / 2 , K = Ksh,KSc

Thus, the granularity of a simple random design is generally less than n.
Consider this design with points restricted to the left half of [0,1):

P l e f t = { ( i - l ) / ( 2 n ) : i = l , . . . , n } .

Figure 1 compares the granularities of various designs for the kernels i<"sn and
A"sc- The limiting values of the granularities of P[eft are

limogra.n(Pleit;Kah) = gran(Fleft;.K:sh) = 2,

J[imogran(Pleft;i:Csc) = gran(Flef t; Ksc) = y/2,

where Fjgft is the uniform distribution on [0,1/2). Unlike the other designs con-
sidered so far the granularities of P\eft have finite limits as n —• oo because part
of the experimental domain (in this case [1/2,1)) is completely uncovered by
experimental points.

Remark 1. The granularity is always positive, even for signed measures, because
K is positive semi-definite.

Remark 2. The ideal design, i^jdeal' m a v ^ e defined as the probability distribution
that maximizes the granularity. A necessary and sufficient condition for Fj(jea] is
that

/ K(x,w) dPi(jeai(w) is constant for all x G X. (9)
Jx

To prove this suppose that F and F-l(^ea^ are probability distributions with G =
F — Fjdgjj, so that G is a signed measure satisfying fx dG(x) = 0. It follows that

7 / r , • , , , , = -, TB r^rx + 2 / K(x,w) dFd , (x) dG(w)
[gran(F;K)]2 [gran(Fideal;/C)]2 Jx2 l d e a l v

1
+ [gran(G;K)]2-

If Fjjgjj satisfies (9), then the second term on the right vanishes, and so
gran(F;K) < gran(Ficjeaj; K). If Fi(jeaj does not satisfy (9), then there is some
G which makes the second term, which is linear in G, negative and larger in mag-
nitude than the the third term, which is quadratic in G. Thus, there exists an F
for which gran(F; K) > gran(Fj(jeaj; K).
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Fig. 1. Granularities defined by the kernels /C"sn (left) and Ksc (right) and eval-
uated for P s h (O), Psc (x), Fran (•) , and Ple f t (A).

Remark 3. Condition (9) is satisfied by the uniform distribution over the unit
interval for the kernels /Cgn and Ksc-

Remark ^. Definition 1 for the granularity has a functional analytic interpretation.
Any symmetric, positive definite kernel K is the reproducing kernel for Tl, some
Hilbert space of functions (Aronszajn (1950) and Wahba (1990)). The inverse of
the granularity is the largest possible average of function values over the design
for a function with norm no larger than one (see the argument in Hickernell (2000)
and elsewhere):

gran(P;tf)=( sup - X>(*0 j • (10)

Remark 5. For a particular design the worst-case function that attains the above
supremum is (Hickernell (1998, 2000))

gWOT(x;P,K) = ~J2K(x,Xi).
n i=i
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The plot below shows gwor(x; Pg n, Ks^) for n = 8.

Remark 6. The granularity is related to the discrepancy, a crucial concept in
the theory of uniform experimental designs. The discrepancy, D(P;K,F), is the
worst-case error for numerically approximating an integral of a function in Ti
whose norm is no greater than one by the mean of function values over the design
P (Niederreiter (1992), Hickernell (1998, 1999, 2000)), i.e.,

D(P; K, F) := sup f g(x) dF(x) - ~ V g(Xi)

[ r 9 n t
= I / K(x, w) dF{x) dF(w) - - Y] / K(Xi,w)dF(w)

{Jx ni=iJx

1 1/2

(11)

Prom this definition it follows that

[gran(P;K)]2 = [gran(Fideal; K)}* + ^P'K'Fideal)f-

One may also define the discrepancy for an arbitrary signed measure, G, in which
case the above formula holds with P replaced by G. For good designs the dis-
crepancy tends to zero as n —> oo, and the granularity tends to the granularity of
Fideal-

Remark 7. If a design P is composed of m copies of another design P then their
granularities are the same by Definition 1.

Remark 8. Although Definition 1 allows much freedom in the choice of the kernel,
proper scaling is required for the granularity to match one's intuition. The kernel
should be chosen such that gran(Fjjeaj; K) equals the number of possible levels
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in the domain. For a continuous domain like [0,1), the number of levels is infinite,
so one should ensure that gran(Ficjea}; K) = oo, a condition that holds for K^
and Ksc- However, for X = { 1 , . . . , q} one would want gran(F; K) = q.

Remark 9. Another important constraint when choosing the kernel is that
gran(i->, K) — n for well-chosen designs. This is the case in (3) and (5). A well-
chosen design may depend on the choice of kernel. For example, gran(Psc; ^sc) =
n for n = bm, but gran(PSc; K^) < n in general.

Remark 10. The discrepancy literature gives examples of many kernels, including
.Kgjj and Ksc, but most of them are defined on the unit interval. Suppose that
K is defined for X = [0,1), and i^deal ' s t n e ideal design. Let X CUbe another
domain, and let F be a probability distribution function on X. Then define the
following symmetric and positive semi-definite kernel:

K{x, w) = K(F(x), F(w)), x,w£X.

It follows that F^ea^(x) := F^^Ffa)) is the ideal design for the granularity
based on K and the experimental domain X. Furthermore, if P C X and P :=
{F(x) : x G P} C X, then these two designs have the same granularity, i.e.,
gra,n(P;K) = gran(P;K). For example, if is X = [imm,imax), then one may
define K as:

K(x,w) = Kl , I , x,w e (xmin,a;max)-

and that F^eai(x) := F^eai((x - xmin)/(xmSLX - xmin))-

Remark 11. Relatively few kernels have been defined for discrete domains such
as X = { 1 , . . . ,q) (Hickernell, Liu & Yam (2000) and Hickernell & Liu (2002)),
however, one may do so using the previous remark. Given K defined for [0,1) and
a <7-run design P = {a;( i) , . . . , !( , )} with x^ < • • • < X(,) for which gran(P; K) =
q, define K(i,k) := / f ( z w , z ( f c ) ) , i,k € X = {l,...,q}. This kernel satisfies
gran(F; K) = q if F is the uniform distribution over X. For example, using the
kernels Ks^ and KSc with P - {0, \/q,..., (q - \)/q), one obtains

Ksh(i,k)~-\i-k\0—Q-i\ + 1 , i,kex

Ksc(i, k) := 6i-2€(«-i>/«.<fc-i>/«>, i, k e X

where in the latter case q is assumed to be a power of b.

Remark 12. Whereas the granularity in Definition 1 is related to the discrepancy
and theory of numerical integration, it may be possible to define the granularity
based criteria for design quality arising in approximation theory or in optimal
design theory. Discrepancy is known to be related to alphabetic optimality (Hick-
ernell & Liu (2002)). Regardless of how granularity is defined, Remarks 1 and 7-9
should be preserved.

Remark 13. Although this section is restricted to one factor designs, many of the
observations may be extended to multiple factor designs. Some of this is done in
Section 4.
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3 Balance for One Factor Designs

This section defines what it means for a one factor design to have perfect balance
for a certain granularity, q. This is not the same as asking when a design P has
gran(P; K) > q.

The kernel introduced to define the granularity may be decomposed as follows
(Wahba (1990)):

OO

K(x, w) = ^ K")°(x, v)a{w, u) (12)
K = l

where ~ denotes the complex conjugate. The (possibly complex) eigenfunctions
cr(x, u) and the eigenvalues A(i/) satisfy

/ K(x, w)a(w, v) dFideaj(w) = \{v)<r(x, v),
Jx

I a(x, n)o{x, u) rfFideal(x) = 5^.
Jx

The eigenvalues are all non-negative because the kernel is positive semi-definite.
Since Fjdeaj satisfies (9), the first eigenfunction may be labelled as cr(x, 1) = 1.
The eigenfunctions with u > 1 satisfy Jx o~{x, v) dF-l(^eg^(x) = 0 and are ordered
according to A(2) > A(3) > • • •.

Based on the above eigenfunction decomposition one may write the granular-
ity in terms of the sum of pieces:

[gran(P; K)]* ^ [gran(P; K, ^)]2 '

n - 1

with the natural extension to signed measures, F. By (9) it follows that

gran(Fideal;K,,) = {^Fidea ,^) , - j , ( u )

A design with perfect balance up to a certain granularity is defined as one whose
granularity pieces match those of Fjdea]-

Definition 2. Let the experimental domain, kernel and granularity be as in Def-
inition 1, and let the pieces of the granularity be defined as in (13). A design P is
perfectly balanced for granularity g £ N i / gran(P; K, 1) = gran(F^eaj; K) and
gran(P; K, u) = oo for v = 2 , . . . , q.

Note that since O\ = 1 by convention, gran(P; K, 1) = gran(Fjdeaj; K) for
any design P. Thus, any design is perfectly balanced for granularity one. For
granularities q > 1 one only needs to check the condition gran(P; K, v) — oo for
u = 2,...,q.

(13)
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Some examples are given to illustrate this definition. The kernel A"sn defined
in (2) may be decomposed in terms of trigonometric polynomials:

r , , . 6 v ^ cos(2in/(x — w))

where i = V^T. For an arbitrary n-run design, the pieces of the granularity are
gran(P;tf s h , l ) = cx>,

- 1

gran(P; Ksh, 2v) = gran(P; Ksh, 2u + 1) = ^ £ e2™*< , v € N.

In general a design is not perfectly balanced for granularities greater than one
because even the condition gran(P; Ks^, 2) = oo is nontrivial. The structure of the
shifted evenly spaced design, Pg n , fits the kernel ifsn so that gran(P; K^, v) = oo
for all v > 2 satisfying > / 0,1 (mod 2n). This means that Psjj is perfectly
balanced for granularity 2n — 1.

The kernel Ksc defined in (4) may be decomposed in terms of Walsh func-
tions, which are piecewise constant functions. Let (,0.x.ix.2 • • • denote the base b
expansion of x £ [0,1) and (• • • U2fi)b denote the base b expansion of the non-
negative integer v, where x.i and ii are digits between 0 and 6—1 inclusive. The
Walsh functions, <7wa are defined as

o\va(a:, v + 1) = exP - 7 - ^Z l>lXl ) ' v = ° ' 1 ]
\ 1=1 /

The kernel A"sc may be written as

00

Ksc(x,w) = ^(rwa(i,i')awa(i»,i')61"21g('"1), (15)

where lg(^) := max(0, Llog6(ix)J + 1). For an arbitrary n-run design, the pieces of
the granularity are gran(P; Ksc, 1) = 00,

gran(P; Ksc, v + 1) = n&lsM"1/2 f̂  exp fe jr H*«) , ^ N .

Again a general design is typically not perfectly balanced for granularities > 2
because even the condition gran(P; Ks^, 2) = 00 is nontrivial. The structure of the
jittered evenly spaced design, Psc, fits the kernel Ksc so that gran(Psc; Ks^,i/) =
00 for v = 1, . . . ,n = 1,6,62,.... This means that Psc is perfectly balanced for
granularity n — bm.

For simple random designs, Pran, whose design points have distribution F
over the domain X one may compute the inverse root mean square of the inverse
granularity pieces as was done in (7):
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[£{gran(Pran;tf,f)rT1/2= f— [ \°(x,v)\2 dF(x)
I n J x

f 1 \ 1 " 1 / 2

+ ^l-ij{gran(F;K)}-2j .

For F = F i d e a l this reduces to [£{gran(Pran; K, J/)}"2]"1/2 = [n/\(v)\1/2. Al-
though the granularity of Pran may be made arbitrary making n large enough,
this design is never perfectly balanced for granularity > 2 except in the trivial
case of 0 = A(2) = A(3) = • • •. This is the case where the kernel K is constant
and any design is perfectly balanced for all granularities.

It was noted that in the previous section that the design with evenly spaced
points in the left of the unit interval has different limiting granularities for
n —> oo for the kernels Ks^ and Ksc- However, for both kernels Pjeft and
^left a r e Perfectly balanced only for granularity 1 and no higher, even though
gran(Fjeft; K^) = 2. If a design, P is perfect balanced for granularity q it means
that the eigenfunctions <r(x, 1) = 1, a(x, 2), • • • , cr(x, q) have the same expectation
with respect to the empirical distribution of the design as they do with respect
to the ideal design, assuming that A(2) > • • • > X(q) > 0. The eigenfunction 1
has expectation one, and the other q — 1 eigenfunctions have expectation zero. If
all pairwise products of the functions making up linear regression model (1), i.e.,
gj(x)gi(x), j,l = 1,.. . ,p, may be written as a linear combinations of the first q
eigenfunctions, then for designs, P, with perfect balance for granularity q have
the same information matrix as Fjdeal' '-e->

iG T G = ( / 9j(x)9i(x) dFideal(x)) .

Typically, the ideal design, Fjdeai, is impossible to achieve with a limited number
of runs. For example, Fjdeai ' s the uniform distribution over the unit interval in
some of the examples discussed above. However, a design with perfect balance
for granularity q does just as well as the ideal design for certain classes of linear
regression models, and this class grows with q. Returning to the example of the
simple pendulum mentioned in the introduction, consider the period as a function
of length only, with a fixed amplitude of 90°. For simplicity it is also assumed
that air friction is negligible. Thus, a simulated experiment may be performed
by solving the partial differential equation 9" + (g/l) sin(0) = 0, where 6 is the
amplitude of the pendulum as a function of time, the g in this equation is the
acceleration of gravity, and / is the length of the pendulum.

Consider a design of evenly spaced length values, P = {0.1 m, 0.2 m, . . . ,
0.9 m}. This 9 run, 9 level design has a granularity of 9 based on the kernels
defined in Remark 11. Figure 2 shows the exact period as a function of / and some
data simulated by adding random normal i.i.d. noise with a standard deviation
of 1 sec to the exact values. Also shown is plot of the quadratic model in / fitted
by linear regression. This model and all of its coefficients are significant, and the
root mean square error of the fitted model with respect to the true period for
length in the range of 0.1-0.9 m is 0.054 sec. When a cubic model is fit to this
data, the cubic term is not significant.
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Fig. 2. Period of a pendulum as a function of length (solid), simulated experi-
mental data (O)i a n d fitted value based on a quadratic model (dashed), where
the amplitude is 90°.

An alternative to the above 9 level design is a 3 level optimal design for
quadratic models: P = {0.1 m, 0.1 m, 0.1 m, 0.5 m, 0.5 m, 0.5 m, 0.9 m, 0.9 m,
0.9 m}. This design has granularity 3. A quadratic model fit to simulated re-
sponse data based on the design P gives a somewhat better root mean square
error for the fitted model of 0.047 sec. However, it is impossible to fit a cubic model
using the design P to check whether a cubic term is significant. If the noise is
significantly smaller than was assumed here (unlikely for college students, but
quite likely for professional engineers), then the regression model based on the
design P is superior to that based on P for two reasons. First of all, there is mis-
specification in the quadratic model, since the true period is proportional to y/l.
The higher granularity design P is more robust to this misspecification. Second
of all, for smaller noise the design P allows one to fit a statistically significant
regression model with higher degree polynomial terms that fits the true period
better than the quadratic model.

4 Granularity for Multiple Factor Designs

This section and the next extend the concepts of granularity and perfect balance
to the case of multiple (s > 1) factors or independent variables. The experi-
mental domain for the j factor is denoted Xj C R and the full experimen-
tal domain is assumed to be the tensor product X = X\ <8) • • • ® Xs C Rs.
A point x = (xi,...,x3) £ X specifies the levels of the s different fac-
tors. For each factor there is assumed to be an associated symmetric, positive
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semi-definite kernel, KJ(XJ,WJ), defined for all Xj,Wj 6 Xj. The full kernel is
K(x,w) = X\SJ=1KJ(XJ,WJ). For any set u C { l , . . . , s} of coordinate indices
with cardinality \u\, let xu denote the vector comprised of the Xj with j S u,
e.g., X{i,2,4} is the 3-vector (xi, £2,2:4). Thus, xu lies in Xu the projection of X
into the coordinates indexed by u, i.e., ^{1,2,4} = X\ ® X2 ® A4. Corresponding
to Xu there is a kernel Ku(xu, wu) = rL,eu KAx5'wi)- F o r a ny design P let Pu

denote its projection into the coordinates indexed by u. In other words, Pu is the
sub-design of P found by considering only the factors Xj with j 6 u.

The definition of granularity for one factor designs in Definition 1 can be
extended to multiple factor designs using the above notation. This is done below.

Definition 3. For an experiment with s factors let P = {xi , . . . ,xn} denote the
design. The T factor granularity of this design is defined for r = 1,..., s as

!

\ -V(2T)

A E i E *«(*«,x*u) I (i6)
This definition reduces to Definition 1 for the case r = s = 1. It involves an

average over all the kernels corresponding to r coordinates. The r root is taken
so that the definition of granularity corresponds to one's intuition for grids.

Theorem 1. Suppose that any projection, Pu, of the s factor design, P, into
\u\ = T of its coordinates is a tensor product of one factor designs, each pith
granularity q. Then gran(P; K; r) = q.

Proof. When Pu is a tensor product of one factor designs, then the term
n~2 X)"fc=i ^"u(xiu,x/tu) in (16) may be re-written as a product of r factors,
n~2 X)ti=i Kj(\Vij,Wkj) for j € u, where {w\j,... ,wnjj} is the one factor de-
sign and n = II,gu ni- Each of these r factors must be q~2, since each one factor
design has granularity q. This implies that

i
\ - 1 / < 2 T )

•pc E (<?-2)T \ = 9,
\r) |U|=T J

as desired. D

This theorem may be applied to compute the granularities of orthogonal ar-
rays and grids. These designs appear as tensor products of one factor designs
whose points are evenly spread. Note that the definition of orthogonal arrays
below makes assumptions about the granularity, which implies that the kernels
must be chosen appropriately.

Definition 4. An orthogonal array with q = (qi,..., qs) levels and strength p is
a design, P, all of whose p dimensional projections, Pu with \u\ = p, are tensor
products of one factor designs Pj, j G u. Each Pj has qj levels, granularity qj,
and is perfectly balanced for granularity qj. A grid design is an orthogonal array
of strength s.
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Corollary 1. If P is an orthogonal array with q = q\ =•••• = q, levels of strength
p, then gran(P; K;r) = q for r = 1 , . . . , p. Moreover, it follows that the number
of levels is bounded above by n1^.

Many of the observations about granularity for one factor designs can be ex-
tended to the multiple factor case. Some of these are summarized in the following
theorem.

Theorem 2. a. For arbitrary signed measures F defined on X with marginals
Fu defined on Xu the definition of granularity may be extended as follows:

{
\ -1/(2T)

T ^ r / Ku(x,w)dFu(x)dFu(w)\
U M=TJX J

6. This granularity is positive for all designs or even signed measures.
c. The ideal design, F^eg^, is defined as having independent marginals F^eai

that satisfy (9) for experimental domains Xj and kernels Kj. This ideal design
simultaneously maximizes all r factor granularities.

d. For the unit cube domain X = [0, l ) s and the kernels, K, defined as products
of Kgfo and/or Ksc the ideal design is the uniform distribution.

e. If a design P is composed of m copies of another design P then their granu-
larities are the same.

f. For j — 1,..., s let Xj C R be domains, Fj be probability distribution func-
tions defined on Xj, and KJ(XJ,WJ) := KJ(FJ(XJ), FJ(WJ)) for Xj,Wj e Xj
as in Remark 10. It follows that the ideal design for the granularity based on
K has independent marginals Fideai,j(xj) := Fideal,j(Fj(xj)) Furthermore, if
P is a design on X, then the design P := {(Fi(^i), . . . , Fs(xs)) : x 6 P} has
the same granularity, i.e., gran(P; K) = gran(P;K).

5 Balance for Multiple Factor Designs

Now the concept of balance is extended to multifactor designs. The kernels
Kj(xj,uij) are decomposed in terms of eigenvalues \j(u) and eigenfunctions
CFJ(XJ,I/) for v = 1,2,... as in (12). The T factor granularity for r = l , . . . , s
may be written in terms of a sum of pieces:

( >| - V ( 2 T )

n - l / l - l

gran(P;/<>„):= - £ I I V%»i(**."*) • (17)
where N = {1, 2, 3, . . .}. Analogous to (14) it follows that gran(Fj(jeaj; K, i/u) = oo
for all uu with at least one v}, > 1. A design with perfect balance up to a certain
granularity is defined as one whose granularity pieces match those of F^ea^.

(17)
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Definition 5. For any q € N3, let u = {j : qj > 1}. A design P is said to be
perfectly balanced for the granularity q if gran(P; K, vu) = gran(Fj^eaj; K, vu)
for all vu < qu.

Again any design is perfectly balanced for granularity 1. Prom this definition
of perfect balance for multiple factor designs one may draw several conclusions
based on the discussion in the previous two sections.

Theorem 3. a. Suppose that the projection, Pu, of the s factor design, P, into
the coordinates indexed by j G u is a tensor product of one factor designs Pj
that are perfectly balanced for granularities qj. Then P is perfectly balanced
for granularity (qu, 1), the vector with elements qj for j £ u and 1 otherwise.

b. If P is an orthogonal array with q levels of strength p, then P is perfectly
balanced for granularities (qu, 1) for all \u\ < p.

c. In the linear regression model yt = /3i<?i(xi) + • • • + /3P<7p(x;) + £i, suppose
that all pairwise products gk(x)gi(x) may be written as a linear combination
of the rii=i a{xi'> ui) for v — 1< and that \j{qj) > 0 for all qj > 1. Then for
all designs, P, with perfect balance for granularity q the information matrix
for the design is the same as the information matrix F^^.

Two important multiple factor experimental designs in the numerical integra-
tion literature are digital nets and integration lattices. Although they are typically
used for large numbers of runs when evaluating integrals numerically, they have
also been used with moderate numbers of runs for laboratory experiments (Fang
& Wang (1994)). For digital nets the kernel Ksc is the most suitable for comput-
ing the granularity because it is based on Walsh functions, which are integrated
well by nets (Larcher &: Traunfellner (1994)). This is also a suitable kernel for
orthogonal arrays, which are related to nets. For integration lattices, a general-
ization of grids, the kernel /S"gn is the most suitable for computing the granularity
because it is based on trigonometric polynomials, which are integrated well by
integration lattices (Sloan & Joe (1994) and Hickernell (2000)). This kernel is also
suitable for orthogonal arrays.

Table 1 gives an example of a 16 run, 8 level, 3 factor design that one might
for the pendulum example from the introduction. A 16 level design is possible,
but it was thought that 8 levels might be less cumbersome for the experimentalist.
This design (Hickernell, Liu & Feng (2004)) comes from a digital net.

The 1, 2, and 3 factor granularities of the design in Table 1 are 8, 2.34, and
1.53, respectively, using the kernel Ksc with the variable transformation described
in Remarks 10 and 11. This design is also perfectly balanced for granularities
up to and including (2,2,2), (4,4,1), (4,1,4), (1,4,4), (8,2,1), (8,1,2), (1,8,2),
(1,2,8). By contrast, a 2 level orthogonal array of strength 3 would have 1, 2, and
3 factor granularities all equal to 2 and only be balanced for granularities up to
and including (2,2,2). A 4 level orthogonal array of strength 2 would have 1, and
2 factor granularities all equal to 4, and be balanced for granularities up to and
including (4,4,1), (4,1,4), (1,4,4). The design in Table 1, therefore, is perfectly
balanced for more different granularities than traditional orthogonal arrays. This
makes it more flexible for fitting different kinds of models and more robust to
model misspecification.
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Table 1. High granularity design for studying the period of the pendulum

Run Factors Length Amplitude Mass
1 2 3 (cm) (degrees) (kilograms)

1 I i I 20 10 O04
2 1 5 5 20 50 0.12
3 2 3 7 30 30 0.16
4 2 7 3 30 70 0.08
5 3 1 3 40 10 0.08
6 3 5 7 40 50 0.16
7 4 3 5 50 30 0.12
8 4 7 1 50 70 0.04
9 5 2 6 60 20 0.14
10 5 6 2 60 60 0.06
11 6 4 4 70 40 0.10
12 6 8 8 70 80 0.18
13 7 2 8 80 20 0.18
14 7 6 4 80 60 0.10
15 8 4 2 90 40 0.06
16 I 8 8 6 | 90 80 0.14

Before After Before After Before After Before
Breakfast Breakfast Lunch Lunch Dinner Dinner Sleep

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Fig. 3. High granularity design for monitoring blood glucose

The design in Figure 3 is suggested for monitoring blood glucose. There is a
seven day cycle. For monitoring once a day one chooses the dark gray blocks, for
monitoring twice a day one chooses the light gray blocks, and for monitoring four
times a day one chooses the white blocks. Any other number of times per day
may be monitored by choosing combinations of the three colors of blocks. The
once per day design comes from a rank-1 integration lattice. The other colors of
blocks are composed of shifted copies of this basic pattern. This design has several
advantages. All times per day are covered every week for once per day monitoring,
every 4 days for twice per day monitoring and every 3 days for four times per
day monitoring. The designs for three and four times per day monitoring are BIB
designs, where the the times of the day are treatments. In this case every pair of
times per day is covered once and twice in a week, respectively, for for three and
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four times per day monitoring. There are other BIB designs, for example, one
where once per day monitoring is done before breakfast, after breakfast, before
lunch, etc. on successive days. However, this design has a lower 2 factor granularity
using /fgn and the transformation in in Remarks 10 and 11 than the design in
Figure 3. In many applications of BIB designs the ordering of the treatments is
unimportant, but in cases where it is, such as this one, granularity may be a good
way to distinguish among BIB designs.

6 Conclusion

At first glance an evenly spaced grid is a very appealing design because it seems
to cover the experimental domain well. Unfortunately, given a limited budget of
n runs and a significant number of factors, s, the number of levels per factor may
be severely limited (< n1/s). Orthogonal arrays with strength p improve upon a
grid by requiring that the design only look like a grid when considering p or fewer
factors. However, the number of levels per factor is still < n1//p. Simple random
designs allow one to have n levels per factor, but the points are no longer spread
evenly. Digital nets and integration lattices improve upon both orthogonal arrays
and simple random designs by maintaining an even spread of points but allowing
more levels per factor. The concepts of granularity and perfect balance have been
defined with grids in mind. Suppose that one only considers the factors j 6 u for
some u C { l , . . . , s } . An ideal n point grid for those r = |u| factors would have
<7j evenly spaced levels in the j coordinate with FJ £ u gj = n. Granularity and
perfect balance have been defined so that a good design looks as much as possible
like this ideal grid.

The definitions of granularity and perfect balance are related to other concepts
in experimental design. Granularity is defined in terms of a symmetric, positive
semi-definite kernel, as is the discrepancy. The advantage of granularity is that it
has an intuitive meaning as the effective number of levels of a design. Granular-
ity and perfect balance are related to resolution, strength, aberration and word
length pattern, concepts that arise in orthogonal designs. However, these concepts
usually assume a very special structure of the design, e.g., that it be a regular
fractional factorial. Generalizations of these concepts have appeared in Deng &
Tang (1999), Tang & Deng (1999), Fang & Mukerjee (2000), Ma & Fang (2001),
Tang (2001), Xu & Wu (2001) and Hickernell & Liu (2002), and Xu (2003). The
definitions here may be thought of as a further kind of generalization. They make
only minimal assumptions about the structure of the design.
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Summary. Computer models can describe complicated physical phenomena. To
use these models for scientific investigation, however, their generally long running
times and mostly deterministic nature require a specially designed experiment.
Standard factorial designs are inadequate; in the absence of one or more main
effects, their replication cannot be used to estimate error but instead produces
redundancy. A number of alternative designs have been proposed, but many can
be burdensome computationally. This paper presents a class of Latin hypercube
designs developed from the rotation of factorial designs. These rotated factorial
designs are easy to construct and preserve many of the attractive properties of
standard factorial designs: they have equally-spaced projections to univariate di-
mensions and yield uncorrelated regression effect estimates (orthogonality). They
also rate comparably to maximin Latin hypercube designs by the minimum in-
terpoint distance criterion used in the latter's construction.

Key words: Effect correlation, maximin distance, minimum interpoint distance,
rotated factorial design

1 Introduction

Computer models are often used to describe complicated physical phenomena
encountered in science and engineering. These phenomena are often governed by
a set of equations, including linear, nonlinear, ordinary, and partial differential
equations. The equations are often too difficult to be solved simultaneously by
any person, but can be by a computer modeling program. These programs, due
to the number and complexity of the equations, may have long running times,
making their use difficult for comprehensive scientific investigation.

Contemporary Multivariate Analysis and Experimental Design—In Honor Celebration of Pro-
fessor Kai-Tai Fang's 65th birthday. Edited by Jianqing Fan and Gang Li. The World Scientific
Publisher, 2005.
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The SOLA-PTS algorithm described in Daly & Torrey (1984), for example,
has been developed at the Los Alamos National Laboratory for modeling the
rapid cooling of a nuclear reactor wall as a result of cold water injected into
the reactor's downcomer for containment during a nuclear accident. The authors'
three-pronged goal is to study the response of the reactor, to study the turbulent
mixture of the cold water and the warm fluid already in the downcomer, and to
predict the onset and growth of cracks in the reactor wall as a result of the rapid
cooling. This algorithm simultaneously solves eight partial differential equations
with eight inputs and takes approximately 90 minutes on a Cray supercomputer
to run. It solves a large number of differential equations, is very computationally
expensive in running time, and has a "black box" quality - one does not know
in advance which factors have large effects and one would like to examine the
response over a wide range of input combinations. This algorithm is typical of
computer models needing designed experiments.

One goal in this setting is to build an approximating program which, al-
though not as precise as the computer model, would run fast enough to study
the phenomenon in detail. Construction of an adequate approximating function
(or program) to the computer model requires the selection of design points (a
designed experiment) at which the computer model will be run to build an ap-
proximating function. Because the computer models are mostly deterministic,
these computer experiments require special designs. In physical experiments, if
certain factors have no effect on the response and are taken out of the approxi-
mation function (linear model), then the replicated design points in the reduced
design space can be used to estimate the random error present in the system.
However, with computer experiments, there is no random error - only lack of fit.
Replication of classical factorial designs cannot be used to estimate this error,
but instead produces redundancy. That is, they are hindered by their non-unique
projections to lower dimensions.

This paper presents a new and simple strategy for designs for computer ex-
periments, developed from the rotation of the standard factorial design to yield
a Latin hypercube. Section 2 discusses a number of alternative designs that have
been proposed. The following sections develop the rationale for these new de-
signs, using the two-dimensional case for illustration (Section 3), and compare
them to other previously proposed designs (Section 4). Section 5 shows the high-
dimensional rotation theorems and the concluding remarks are given in Section
6.

2 Design Criteria and Related Work

Selection of an appropriate designed experiment depends to an extent on the
experimental region, the model to be fit, and the method of analysis. This paper
assumes the following: the experimental region is cuboidal (each factor is bound
between values of interest), the true model is unknown to the experimenter and
that he will approximate it by a polynomial of some degree a priori unknown
to him, and the method of analysis will be ordinary least squares regression,
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although alternative methods are available (see Haaland, McMillan, Nychka &
Welch (1994)).

In order to assess design criteria for computer experiments, it is valuable to
study the progression of proposed designs. Koehler & Owen (1996) provide an
overview of past and current approaches. The two main geometric designs are the
standard (full or fractional) factorial designs and the Latin hypercube designs,
but also include other traditional designs for physical experiments, such as central
composite designs. Easterling (1989) points out that standard factorial designs
have many attractive properties for physical experiments: balance (factor levels
used an equal number of times), symmetry (permutation of design matrix columns
yields same design), orthogonality (separability of main effects), collapsibility
(projects to lower subspace as factorial design, sometimes redundantly), equally-
spaced projections to each dimension, and straightforward measurability of main
effects.

McKay, Beckman & Conover (1979) introduced the use of the Latin hypercube
(LH) in computer experiments. A n-point LH design matrix is constructed by
randomly permuting the integers {1,2,.. . , n} for each factor and rescaling to the
experimental region, so that the points project uniquely and equally-spaced to
each dimension. The unique projections of LHs allow for great flexibility in model
fitting. Box & Draper (1959) showed that when the true model is a polynomial
of unknown degree, the best design (in the sense of various criteria discussed in
their paper) places its points evenly spaced over the design region. Thus, equally-
spaced projections are also of value. For these reasons, the LH has become the
standard for computer experiments. However, random LHs are susceptible to high
correlations between factors, even complete confounding, and to omitting regions
of the design space.

Computer-generated designs include those of Sacks, Schiller & Welch (1989)
and Sacks, Welch, Mitchell & Wynn (1989) that try to minimize the integrated
mean square error (IMSE) of prediction when prediction errors are taken as a
realization of a spatial stochastic process. Johnson, Moore & Ylvisaker (1990)
proposed similar designs to minimize the correlations between observations when
responses are taken as a realization of a spatial stochastic process. The latter
authors' design D* they call a maximin distance design if

min d(a;i,a;2) = max min d{x\,X2), (1)
il,i2€D* D xi,x2£D v '

where d is a distance measure and mmxltX2£D d{x\ ,X2) is the minimum interpoint
distance (MID) of design D; that is, its points are moved as far apart from one
another as possible.

Attempts have been made to bridge the gap between geometric designs
and computer-generated designs. Tang (1993) and Owen (1992) introduced
orthogonal-array based LHs to guarantee coverage of all regions for every subset
of r factors. Morris & Mitchell (1992) and Tang (1994) proposed LHs that attain
the largest MID among all LHs, called maximin Latin hypercubes. Park (1994)
tried to construct LHs that optimize the IMSE criterion. Owen (1994) attempted
to control the correlations between design matrix columns of random LHs. These
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methods are a step forward in merging the good properties of Latin hypercubes
with the optimization of computer-generated designs. However, being themselves
computer-generated designs leaves many susceptible to the aforementioned prob-
lems.

With this in mind, we seek a new design for computer experiments with
these properties: the unique and equally-spaced projections to each dimension
and flexibility in model selection provided by Latin hypercube designs and the
orthogonality and ease of construction provided by standard factorial designs.
In addition, these new designs should perform reasonably well in terms of other
criteria mentioned, such as MID, correlation, and coverage of the design space.

3 Rotated Factorial Designs in Two Dimensions

The strategy taken here is to modify the standard factorial design by rotation so
as to yield a Latin hypercube. To see how this is done, first consider the standard
32 factorial design, represented by the 3 x 3 square of points and how it can be
rotated to yield equally-spaced projections (see Figure 1). The key to finding all
such rotations is in the relationship between points A-D. We focus on nontrivial
angles between 0 and 45 degrees clockwise due to the symmetry of the rotation
problem.

3 - »D • •

2 - »B • •

1 - »A «C •

1 1 L _ xi

Fig. 1. Standard 32 factorial design before rotation

The matrix equation to rotate a set of points clockwise by an angle w about
the origin is

\x, r,l x [COSH - s i n M l (2)
1 J [sin(iy) cos(w;) J v '
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so that if (xi,X2) are the coordinates of a design point in the standard factorial
design, then the rotation moves the point to (xi cos(w) + xi sin(u;), —x\ sin(u;) +
X2cos(u;)).

Notice first that as the points are rotated clockwise about the origin that A
will have the smallest x\ -coordinate for any angle between 0° and 45°. (A 45°
rotation will place A directly on the xi-axis and A is the closest point to the
origin.) Also notice that the xi-projections of points with the same initial xi-
coordinate (like A, B, and D) will be equally spaced, by sin(w), regardless of
the rotation angle. Likewise, the xi-projections of points with the same initial
a^-coordinate (like A and C) will be equally spaced, by cos(iu), regardless of the
rotation angle. It suffices to find all angles that make the xi-projections of points
A-D equally spaced. For the xi-coordinates of A-D, see the table below.

point xi-coordinate
A cos(iu) + sin(w)
B cos(w) + 2sin(u;)
C 2 cos(w) + sin(w)
D cos(w) + 3 sin(w)

Between 0° and 45°, sin(w) < cos(u;), so the point with the next smallest
xi-coordinate will always be B (although C will tie B when w = 45°) and the
distance between the smallest two xi-projections will always be sin(w). To achieve
equally-spaced xi-projections, the distance between all xi-projections must equal
sin(w). We've already seen that this is true when w = 45° (equivalently, tan"'(I))
and both C and B have the second smallest xi-coordinate (see Figures 2(b) and
2(c), for example).

Another possibility is that C will have the third smallest xi-coordinate, and
that the "xi-distance" between B and C will be sin(w). However, the "xi-
distance" between B and D is always sin(w). In this case, C and D will have
the same zi-coordinate, hence

cos(w) = 2sin(w) => w = tan"1 (1/2).

Continuing in this manner, consider the case where C has the fourth smallest
xi-coordinate - after A, B, and D - and the "xi-distance" between D and C is
sin(u;). Then

cos(tu) — 2sin(w) = sin(w) ==>• w = tan~2(l/3).

Point C cannot have the fifth smallest xi-coordinate, so these three rotations
are the only ones (again, among nontrivial angles between 0° and 45°) that yield
equally-spaced xi-projections from the 32 design. It is easily verified that these
also yield equally-spaced X2-projections.

Figure 2 displays the standard 32 factorial design, shown in open circles, and
the designs that result from these rotations, shown in solid circles. Boxes are
drawn around the rotated designs to identify the design regions. In practice, one
would then scale this design (by subtraction and division) to the experimental
region of interest. Along each axis, we have provided dot plots of the projections
from which it is plain to see the equally-spaced property.
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Fig. 2. Three rotations of a standard 32 factorial design:

(a) w = t a n ' ^ l ) , (b) w = tan~1(l/2), (c) w = tan~1(l/3)
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Following the argument above, a general result for factorial designs can be
stated. (The proofs of Theorems 1 and 2 are straightforward and are thus omitted
here.)

Theorem 1. For nontrivial rotations between 0° and 45°, a rotated standard p2

factorial design will produce equally-spaced projections to each dimension if and
only if the rotation angle is tan~1(l/fc), where k € {1 , . . . ,p}.

Among the rotated standard p2 factorial designs with equally-spaced projec-
tions, only those obtained from rotation angles of tan- 1(l /p) contain no redun-
dant projections. Therefore, we define a p2-point rotated full factorial design to
be a rotated standard p2 factorial design with unique, equally-spaced projections
to each dimension (which is a Latin hypercube).

Theorem 2. For a linear first-order regression model, any two-dimensional ro-
tated factorial design has uncorrelated regression effects estimates.

4 Two-Dimensional Subset Designs and Design
Comparisons

Two-dimensional rotated full factorial designs can be easily modified to accomo-
date many design sizes other than p2. After rotating the standard factorial design,
remove the four most extreme points - two for each factor - to get a new design.
This process can be repeated to get any design with the number of points equal
top2 — 4j for j 6 {0,1, . . . ,max(p — 2,0)}. When points are removed through this
deletion process, the resulting design will no longer have the equally-spaced pro-
jection property, although it will have unique projections. We will refer to designs
created by applying the deletion process to a rotated full factorial design as Type
U rotated factorial designs, where U emphasizes these unique projections. Figure
3 shows the 12-point Type U rotated factorial design that is created by removing
the four most extreme design points of the 16-point rotated full factorial design.

After the deletion process, these new designs can be given equally-spaced
projections by adjusting the angle of rotation, although this may have the simul-
taneous effect of creating some redundant projections. We will refer to designs
created by modifying the rotation angle of a Type U design to yield the greatest
number of unique, equally-spaced projections as Type E rotated factorial designs,
where E emphasizes the equally-spaced projections. Figure 4 shows the 12-point
Type E rotated factorial design which has been given equally-spaced projections
by adjusting the rotation angle to tan'1 (2/3). Our preference is for Type E de-
signs because of the equally-spaced projections, but others may choose Type U
designs because of the unique projections. A complete illustration for the exact
construction ofn = 16, n = 12 Type U and Type E designs is given in the
Appendix.

Table 1 presents the minimum interpoint distances calculated by scaling the
designs to the unit square [0,1]2 and using Euclidean distance for these same
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Fig. 3. 12-point (42 — 4) Type U rotated factorial design

Fig. 4. 12-point (42 — 4) Type E rotated factorial design
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designs. Johnson, Moore & Ylvisaker (1990) gave ranges for the MIDs of maximin
distance designs. These are listed merely as a reference for the other designs; no
direct comparison will be made since maximin distance designs aren't necessarily
appropriate for computer experiments (see, for example, Koehler & Owen (1996)).
A few maximin distance designs were published in Johnson, Moore & Ylvisaker
(1990) and in Koehler & Owen (1996) and the exact MIDs are listed for those
designs.

Table 1. Minimum Interpoint Distance (MID) Comparisons for d = 2 Dimen-
sional Designs

No. Maximin f Maximin o Rotated Factorial <
of Distance Latin Design

Pts. Design Hypercube Type U Type E
4 LOOM .7454 7T454 7454
5 .7071 .5590 .5270 .5590
8 .5000-1.0000 .4041 .3748 .4472
9 .5000 .3953 .3953 .3953

12 .3333-.5000 .3278 .3172 .3278
13 .3333-.5000 .3005 .2833 .3162
16 .3333 .2749 .2749 .2749
17 .2500-.3333 .2652 .2550 .2577
20 .2500-.3333 .2233 .2253 .2425

f Obtained via Johnson, Moore and Ylvisaker (1991).
o Obtained via Koehler and Owen (1996).
< Obtained by authors' algorithm.

In certain cases, the minimum interpoint distances of maximin LH and rotated
factorial designs are equal - most notably when there are p2 design points, but
also when n = 5,12. For n = 8,13, 20, the MIDs are better for RFDs, while
maximin LH designs are superior in the other listed case (n = 17). Maximin
LH designs were constructed to have large MIDs while preserving the unique,
equally-spaced projections of LHs, while RFDs were constructed to be LHs with
a factorial design structure. The gains in MID from using maximin LH designs
over rotated factorial designs, despite the significant increase in computer effort,
are never very large when compared alongside maximin distance designs, the ideal
according to minimum interpoint distance.

5 High-Dimensional Rotation Theory

Consider a standard full factorial design consisting of d factors, each with p levels.
The goal is to rotate this design to convert it into a LH design, so that the pd
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points create unique and equally-spaced projections to each individual factor. For
certain values of d (notably when d is a power of 2) such a rotation exists, but
not for general d. The following proof proceeds in three parts: identification of
the required form of the rotation matrix, construction of the power-of-2 rotation
matrix, and failure of the transformation matrix to be a rotation matrix when d
is not a power of two.

A p-level, d-factor standard full factorial design can be represented by a pd x d
matrix, D, with entries from {1, 2, . . . ,p} and all pd combinations represented.

' 1 1 • • • 1 • •• p p ••• p ~ \ T

D = • '• ':

1 1 . . . i ... p p ... p ... i i . . . i ... pp ... p

1 2 • • • p - - 1 2 • • • p - - - 1 2 • • • p ••• 1 2 • • • p _

A rotation of this matrix is accomplished by post-multiplication by a d x d matrix
R with the property that RTR — Id where Id is the d x d identity matrix. (In
this section, we relax the definition of rotation to be a matrix R that satisfies
RTR = kid for some scalar k, since the true rotation can be obtained as (l/%/fc)ii.)
Let the multiplication matrix R have entries denoted as r^j], which is the entry
from the ith row and jth column. Lemma 1 below will not be concerned with
whether the multiplication matrix is indeed a rotation matrix, but with how such
a matrix would yield unique and equally-spaced projections to each dimension.

Lemma 1. The entries of each column of the transformation matrix R must be
unique from the set {p*|£ = 0 ,1 , . . . ,d — 1} in order to yield unique and equally-
spaced projections.

The proof of Lemma 1 and all following lemmas and theorems are given in the
Appendix.

The previous lemma shows that every column of the transformation matrix
must be a permutation of the set {l ,p , . . . ,pd~1} (allowing sign changes to ele-
ments and multiplication of entire columns by a constant). However, every rota-
tion matrix R satisfies RTR = kid, so that the sum of squares for all columns
of R must be equal. Then, WLOG, every column of the transformation matrix
must be a permutation of the set {l ,p , . . . ,pd^1} (allowing only sign changes to
elements).

It is obvious that the columns of the transformation matrix cannot be identi-
cal, for otherwise the columns of the transformed matrix would be identical. The
following lemma shows that the ith entries for the d columns must be unique in
magnitude in order for the transformation to be a rotation.

Lemma 2. For a rotation matrix R, the ith entries of the d columns are unique
in magnitude for all i.

Lemmas 1 and 2 proved that all the rows and columns of the transformation
matrix must be permutations of the set {l ,p , . . . ,pd~1} (up to sign changes).
However, this is not sufficient to guarantee that the matrix will also be a rotation.
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Another requirement implied by the rotation condition RTR = kid is that the
columns of R must be orthogonal. Any matrix satisfying the requirements of the
lemmas and this last condition will rotate factorial designs into Latin hypercubes.
The remainder of this section shows how to create these matrices for d that are
powers of two and illustrates why other choices of d, in general, have no such
rotation matrix.

Let d be a power of 2. Let c = log2 d. Let

*=[* <*i=[53]- (3)
Now, for c > 1, let Vc be defined inductively from Vc_i as follows:

e~[irxv^ (Ve-o- J' (4)

where the operator (•)* works on any matrix with an even number of rows by
multiplying the entries in the top half of the matrix by -1 and leaving those in
the bottom half unchanged.

Theorem 3. The matrix Vc is a rotation of the d-factor (d = 2C), p-level standard
full factorial design which yields unique and equally-spaced projections to each
dimension.

Reviewing the two-dimensional result from section 3, when d = 2 = 21, equa-
tion (2) with w = tan~1(l/p) can be re-expressed as

[cosCtan-^l/p)) -sinCtan-^l/p))] 1 [+1 -p] , .
1 [s imW^l/p)) cosCtairHl/p)) j ^ T T F l+P +1\ '

which is the correctly scaled rotation matrix V\ given in equation (3).
Other scaled rotation matrices for cases of interest (d = 4,8 corresponding to

c = 2, 3) are
|~ +1 -p +p2 -p3'

v - P2-1 +P + 1 -P3 -P2 rfî

K 2 - y p ¥ 3 i V - P 3 - i +? (6)

l+p3 +p2 +p +1_
and

' +1 - p +p2 - p 3 +p4 - p 5 +p6 -p7'
+p +1 - p 3 - p 2 +p5 +p4 - p 7 - p 6

+p2 - p 3 - 1 +p - p 6 +p7 +p4 - p 5

/ P 2 - 1 +p3 +p2 +p +1 - p 7 - p 6 - p 5 - p 4

K3 y pl6 _ 1 +p4 - p 5 +p6 _p7 - 1 +p - p 2 + p 3 ' O
+p5 +p4 - p 7 -p6 -p - 1 +p3 +p2

+p6 - p 7 - p 4 +p5 +p2 - p 3 - 1 +p
.+p7 +p6 +p5 +p4 +p3 +p2 +p + 1 .

respectively.
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The choice of rotation matrices for higher dimensions (d > 2) is not unique.
Other inductive definitions for Vc in equation (4) are possible, namely

r ve-i -P^-W^]
1/-V.-X vB-i \- (8)

However, the point is still clear, such rotations do exist.
Owen (1994) showed why orthogonality of design matrix columns is important

in the estimation of Monte Carlo integrals and attempted to control the column
correlations within Latin hypercubes. Theorem 4 will prove that all designs ob-
tained by rotation of standard factorial designs, specifically rotated full factorial
designs, will also be orthogonal. Let k be the sum of squares of the first column
of X. As X is an orthogonal matrix with equal sum of squares for every column,
XTX = kld. So (XR)T(XR) = RTXTXR = RTkIdR = kRTR = kld, a diagonal
matrix. Therefore, the rotated design matrix XR is an orthogonal design.

Theorem 4. Let X be an orthogonal design matrix of n rows and d columns in
which the sums of squares for columns are equal. Let R be a dxd rotation matrix.
The design resulting from the matrix product XR is also an orthogonal design.

Since computation of Monte Carlo integrals is, in effect, a computer experi-
ment, it is beneficial for designs for computer experiments to have uncorrelated
regression estimates of main effects. The following theorem shows this to be true
for all designs obtained by rotation of standard full factorial designs, specifically
rotated factorial designs.

Theorem 5. Any pd-point rotated factorial design has uncorrelated regression
estimates of main effects.

Recall that Johnson et al. (1990) introduced the use of minimum interpoint
distance (MID) as an important design criterion (see equation (1)). It can be
shown that the MID using Euclidean distance for a pd-point rotated factorial
design scaled to the unit hypercube, [0, l]d, is y/l + p2 + • • • , +pd+1/(p — 1) =
y/(P2d ~ 1)/((P2 ~ 1)(P ~~ I)2)- Additionally, it can be shown this is the maximal
MID for d = 2. We are unable to obtain a formal proof for higher dimensions,
however.

Table 2 lists the MIDs for several of the four-dimensional RFDs requiring
fewer than 100 points and for the respective MmLH and MmU designs. Due to
the computational requirements of obtaining designs from other methods, some
were results not available (N/A). It is clear that the easily-constructed RFDs have
similar (if not equal) MIDs to other computing-extensive constructed designs.

6 Concluding Remarks

This paper has presented a new class of experimental designs for computer exper-
iments: the rotated factorial designs. Developed from a rotation of the standard
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Table 2. MID Comparisons of Four-Dimensional MmLH, RFD, and MmU De-
signs

No. Maximin Rotated Factorial Maximin
of Latin Design U

Pts H-cube Type U Type E # Design
8 0.9258 f 0.8692 0.7071 (3) 0.7954 <
9 0.8101 f 0.5762 1.0000 (3) 0.6960 <

10 0.7857 f * * *
11 0.7416 | * * *
12 0.7216 f * * *
16 0.6218 o 0.6146 0.6146 (16) 0.5292 <
24 0.5325 o 0.3963 0.3963 (24) N/A
28 N/A 0.3951 0.4167 (7) *
36 N/A 0.3725 0.3725 (36) N/A
40 N/A 0.5192 0.5192 (40) N/A
41 0.4507 o 0.5062 0.5062 (41) *
54 N/A 0.3641 0.3641 (54) N/A
67 N/A 0.3825 0.3825 (67) *
68 N/A 0.3751 0.3751 (68) *
81 N/A 0.3579 0.3579 (81) N/A
# The number in parenthesis means

the number of unique projected points.
* No design can be constructed as defined.
t Published in Morris & Mitchell (1992).
o Obtained via Morris & Mitchell (1992)

algorithm by the author.
< Obtained by author's algorithm.

factorial design to produce a Latin hypercube, these designs have qualities that
make them excellent candidates for use in today's computer experiments. The ro-
tated full factorial designs possess the orthogonality of factorial designs and the
unique and equally-spaced projections of Latin hypercubes, while maintaining a
high spatial dispersion according to minimum interpoint distance. The Type U
and E RFDs possess the orthogonality of factorial designs and either the unique
or equally-spaced projections of Latin hypercubes, again while maintaining high
spatial dispersion. All of the rotated factorial designs are extremely simple to
construct, in contrast to the computer-intensive nature of most other recent de-
signs, and perform well in terms of the minimum interpoint distance criterion
used in the construction of a competing design. In terms of orthogonality, these
RFDs perform even better. We have developed software to construct the rotated
factorial designs presented in this paper. Users of S-Plus or C who are interested
in obtaining this, please contact the authors.
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Directions for future research in this area include finding alternative proce-
dures for dimensions that are not powers of two, considering rotation of fractional
factorial designs (or some other method to reduce the number of required points
as d increases), and investigating the possibility of rotating mixed-level designs
(perhaps as an alternative for the other dimensions). Johnson et al. (1990) also
defined the index of a design - the number of pairs separated by the MID - as a
second criterion to distinguish among several designs with identical MIDs. The
performance of these designs may be investigated or modifications suggested, if
and when this criterion becomes relevant. Some related recent work can be found
in Bursztyn and Steinberg (2001, 2002).
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Appendices

6.1 A Sample Construction

(1) A 42=16-run rotated factorial design.
Start with a 42 standard factorial design.

h 11122223333444 4lT
[l 23412341234123 4j

Rotate by tan"1 (1/4). This yields a 16-point rotated factorial design.
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•lcos^an-^l/^) + lsin(tair1(l/4)) - l s m ^ n " 1 ^ ) ) + 1 c o s ^ n " 1 ^ ) ) -
lcos(tan-1(l/4)) + 2sin(tan-1(l/4)) -lsin^tan-^l^)) + 2cos(tarT1(l/4))
lcosCtan-^l^)) + 3sin(tan-x(l/4)) - l s in t t an" 1 ^ ) ) + Scosttan"1^))
lcosCtan-^l^)) +4sin(tan-1(l/4)) -lsin^tan-^l^)) + 4cos(tan-1(l/4))
2cos(tan-1(l/4)) + l s m ^ n " 1 ^ ) ) -2sin(tan-1(l/4)) + 1 cos^taiT1^))
2cos(tan-1(l/4)) + 2sin(tan-1(l/4)) -2sin(tan-1(l/4)) + 2cos(tan-1(l/4))
2cos(tan"1(l/4)) + 3sin(tan"1(l/4)) -2sin(tan-1(l/4)) + Scos^tan"1^^))
2cos(tan-1(l/4)) + 4sin(tan-1(l/4)) -2sin(tan-1(l/4)) + 4cos(tan-1(l/4))
Scos^tan-^l^)) + l s m ^ n " 1 ^ ) ) -3 sultan"1 (1/4)) + 1 c o s ^ a i r 1 ^ ) )
3cos(tan-1(l/4)) + 2sin(tan-1(l/4)) -^sh i^an" 1 ^ ) ) + 2cos(tan-1(l/4))
ScosCtan-^l^)) +3sin(tan-1(l/4)) -Ssin^tan-^l^)) + Scos^tan-^l^))
3cos(tan-1(l/4)) + 4sin(tan-1(l/4)) -Ssin^tan-^l^)) + 4cos(tan-1(l/4))
4cos(tan-1(l/4)) + 1 sultan"1 (1/4)) -4sin(tan-1(l/4)) + 1 cos^tan-^l^))
4cos(tan-1(l/4)) + 2sin(tarr1(l/4)) -4sin(tan-1(l/4)) + 2cos(tan-1(l/4))
4cos(tan-1(l/4)) +3sin(tan-1(l/4)) -4sin(tan-1(l/4)) + Septan"1 (1/4))
^cos^tan-^l^)) +4sin(tan-1(l/4)) -4sin(tan-1(l/4)) + 4cos(tan-1(l/4))_

1.21 0.73"
1.46 1.70
1.70 2.67
1.94 3.64
2.18 0.49
2.43 1.46
2.67 2.43
2.91 3.40
3.15 0.24
3.40 1.21
3.64 2.18
3.88 3.15
4.12 0.00
4.37 0.97
4.61 1.94
.4.85 2.91.

This can be rescaled to be a 16-point Latin hypercube by multiplying by 15/3.64
then subtracting 3.99 from the first column and adding 1.00 to the second column.

[12 3 4 5 6 7 8 9 10 11 12 13 14 15 16"|T
[4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13J

(2) A 12-run Type U design.
To constuct a 12-point Type U design, remove the 4 most extreme design points
(from the prescaled matrix): the 1st, 4th, 13th, and 16th.

(3) A 12-run Type E design.
To get a 12-point Type E rotated factorial design, adjust the rotation angle to
tan"1 (2/3). Figuring out the correct rotation angle is easy. If the original design
has p2 points, then the angle is unadjusted if 0 points are removed and is adjusted
to tan~ 1 ( l / (p- 1)) if {2, 4, . . . , 2 p - 2} points are removed or to t a n - 1 ( l / ( p - 2))
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if {2p, 2p + 2 , . . . , Ap — 8} points are removed. However, there is one exception to
this rule: if the new design has an even number of points which exceed a square by
3, then the angle is adjusted to tan~1(2/(p— 1)). (Note that 12 is such a number,
making the rotation angle tan"1 (2/3).)

•lcos(tan""1(2/3)) + 2sin(tan-1(2/3)) -lsin(tan"1(2/3)) + 2cos(tan-;1(2/3))'
l c o s ^ t a n - 1 ^ ) ) +3sin(tan-1(2/3)) - Isfahan"1 (2/3)) + Scos^tarr1^^))
2cos(tan"1(2/3)) + lsin^tan"1^^)) -2sin(tan"1(2/3)) + l o o s e n " 1 (2/3))
2cos(tan"1(2/3)) + 2sin(tan""1(2/3)) -2sin(tan"1(2/3)) + 2cos(tan~1(2/3))
2cos(tan-1 (2/3)) + 3sin(tan"x(2/3)) -2sin(tan~1 (2/3)) + 3 cos(tan~x(2/3))
2cos(tan-1(2/3)) + 4 sultan"1 (2/3)) - 2 sultan"1 (2/3)) + 4cos(tan-1(2/3))
Scos^tan"1^^)) + l s i n ^ t a n " 1 ^ ) ) -Ssin^tan"1^^)) + 1 cos^ tan" 1 ^ ) )
3cos(tan"1(2/3)) + 2sin(tan-1(2/3)) - S s i n ^ t a n " 1 ^ ) ) + 2cos(tan"x(2/3))
Scos^tan-^/sj j + Ssin^tan"1^^)) -Ss in^tan ' 1 ^^) ) + Scos^ tan" 1 ^) )
Scos^tan"1^^)) + 4sin(tan"1(2/3)) -Ssin^tan"1^^)) + 4cos(tan"1(2/3))
4cos(tan-1(2/3)) + 2sin(tan-1(2/3)) -4sin(tan-1(2/3)) + 2cos(tan-1(2/3))
4cos(tan-1(2/3)) + 3sin(tan-1(2/3)) -4sin(tan-1(2/3)) + Scos^ tan" 1 ^) ) .

"1.94 1.11 "
2.50 1.94
2.22 -0.28
2.77 0.55
3.33 1.39
3.88 2.22

~ 3.05 -0.83
3.61 0.00
4.16 0.83
4.71 1.66
4.44 -0.55
.4.99 0.28

Once constructed, these designs can be rescaled to the experimental region. For
example, to convert the 12-point Type E design matrix to LH notation, multiply
by 11/3.05 then subtract 6.00 from the first column and add 3.99 to the second
column.

[1 2 34 5 6 78 9 10 11 12lT

[8 11 3 6 9 12 1 4 7 10 2 5 j

6.2 Proofs

Lemma 1: The entries of each column of the transformation matrix R must be
unique from the set {pl\t = 0 ,1 ,1 . . . , d — 1} in order to yield unique and equally-
spaced projections.

Proof: The multiplication of the factorial design by R yields a new p x d
matrix X with entries labeled X[i,j]--

X = DxR
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Note that the values of the j th column of X depend on the j th column of ma-
trix R, but on none of its other columns. Without loss of generality (WLOG),
consider only the first column of these matrices and examine how the choices of
Hi,ili---.nd.il a f f e c t the values of X[M],. . . x[pa A].

The rows of the factorial design matrix can be arranged into pd~1 groups of
rows where the rows in each group are identical in d — 1 columns but unique
in one column. They can be arranged, WLOG, as above with the first d — 1
columns identical and the last column unique. Within each group the transformed
coordinates differ only in respect to the value of Hrf.i]-

Z[(il_i)p<i-i+(i2_i)pd-2+...+(id_1_1)p+lil] = i iHui +*2H2,i] H *d-iHd-i,i]

+1H<U)

E[(h-l)p<*-l+(i2-l)p<<-2+". + (i(,_1-l)p+2,l] = *lHl,l] +*2H2,11 H id-lHd-1,1]

+2r[(J,i]

a;[(ii-l)pd-1+(i2-l)p'i-2 + -+(i<i-i-l)p+p,l] *lHl,l] +»2H2,1] H Jd-lHd-1,1]

+Pr[d,l]

where i i , . . . ,id-i S {1, • • • ,p}- For these points to be unique and equally-spaced
requires only that rj^ij ^ 0. Let r^i] = 1 (or -1), WLOG, so that the transformed
points within any group differ by one unit and there are p d - 1 such groups.

Now arrange the factorial design matrix into pd~2 groups of p2 rows so that
the rows within each group are identical in the first d — 2 columns,subgrouped as
before by the last column, and unique (by subgroups) in the (d — l)th column.
For any group, examine the jth transformed point within each subgroup. Then
their transformed coordinates differ only in respect to the value of Hd-i,i]:

:B[(il-l)pd-1+-+(id-2-l)P2+J,l] = ^Hl.l] + ' " •*d-2'"[d_2,l] + lHd-1,1]

+3r[d,l]

a;[(ii-i)pd-1+-+(id_2-i)p2+p+j,i] = «iHi,i] -1 id-2r[d-2,i\ + 2Hd-i,i]

+3r[d,l]

x{(ii-i)pd-1+--+(id-2-i)p2+(p-i)p+3,i] = *iHi.i] ^ id-2r[d-2,i] +pr[d-i,i]

+3'rld,l]

where i\,... ,id-2,j 6 {1, . . . ,p}- For these p points to be unique and equally-
spaced requires only that Hd-i,i] / 0. However, for all p2 points within the group
to be unique and equally-spaced requires that Hd-i,i] = ^P. since each of the
p listed points represents one subgroup of p points differing by one unit. (Note
that Hd-i,i] = ± l /p also satisfies the requirement; but then the entire matrix R
could be multiplied by p to obtain Hd-i,i] = ±1 a n d r[d,i\ = ±P. essentially the
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same transformation.) This strategy yields pd~2 groups of p2 points where the
transformed points within any group differ by one unit.

Continuing in this manner, it is clear that to yield unique and equally-spaced
points in the transformed space, the values of r ^ j ] , . . . , r\d,i\ must be unique from
the set {l ,p , . . . ,pd~1} (up to sign changes and multiplication by a constant). As
the choice of columns to examine was arbitrary, so must the entries from each
column of the transformation matrix be of this form.

D

Lemma 2: For a rotation matrix R, the ith entries of the d columns are
unique in magnitude for all i.

Proof: Assume that R is a rotation matrix. Then RTR = kid, which implies
that RR = kid- This says that the sum of squares for all rows (in addition to
columns) of R must be equal to

| y ; = (p2<*-i)/(p2-i).
3=0

Suppose that one row has two (or more) entries with magnitude equal to p d - 1 .
Then its sum of squares is greater than

2 p ^ - ^ > ( 2 ( p 2 - l ) / p 2 ) ( ( P 2 d - l ) / ( p 2 - l ) ) .

Note that, since p > 2, we have 2(p2 — l)/p2 > 1- Thus its sum of squares is
greater than (p2d — l)/(p2 — 1), and this row has greater sum of squares than is
possible. Thus each row has exactly one entry with magnitude equal to pd~l.

Now, suppose that one row has two (or more) entries with magnitude equal
to pd~2- Examining the sum of squares of that row shows that it too is larger
than is possible. Therefore each row has exactly one entry with magnitude equal
to pd~2. Continuing in this manner, since d is finite, proves the lemma.

•
Theorem 1: The matrix Vc is a rotation of the d-factor (d = 2C), p-level

standard full factorial design which yields unique and equally-spaced projections
to each dimension.

Proof: It suffices to show for each c > 1 that Vc is comprised of rows and
columns of permutations of the set {l ,p,p2, . . . ,pd~x} (up to sign changes) and
that the columns are all orthogonal. The proof proceeds by induction.

First, consider the simplest case where d = 2 and c = 1. Clearly Vi meets
these criteria and is therefore a rotation satisfying the projection criteria.

Suppose now that Vc_ i is a rotation satisfying the projection criteria. If this
implies that Vc is also such a rotation, the proof is completed.

Note these observations:

1. Vc-i is comprised of rows and columns of permutations of

{l,p,p2, . . . ,p2 - 1 } (up to sign changes).
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2. Vj^Vc-i = k'I2c-i, where k' = 1 + p2 + ... + p2"'.

3. The rows and columns of p2° Vc_i are permutations (up to sign changes) of

{p^-V^+s...,^-!}.
4. The operator (•)* does not affect the magnitudes of entries in a matrix, only

their signs.

From these 4 observations it follows that Vc is comprised of rows and columns
of permutations of {l ,p ,p2 , . . . ,p2 "*} (up to sign changes). All that remains to
show is that the columns of Vc are orthogonal.

Recall that for an arbitrary matrix subdivided into 4 submatrices A (n\ x pi),
B (n2 x pi), C (m x p2), and D (n2 x p2),

\A C]T \A C] _ \AT BT] \A C] _ \ATA + BTB ATC + BTD]
[B D\ [B D\ ~ [CT DT\ [B D\ ~ [CTA + DTB CTC + DTD\ ' W

Letting A = Kc_i, B = p2C"Vc_i, C = - (p 2 ' " 1 Vc_i)*, and D = (Vc-i)*, it
suffices to show that AT A + BT B = CTC + DT D = fc/2c-i for some k and that
ATC + BTD = 0.

First,
ATA = VdiVc-! = k'l2o-l (10)

and
B T 5 = p2 C"Vcl l P 2 C"Vc_1 =p2=v;I1vre_i =p2Ck'i2C-i. (ii)

Thus ,4TyL + BTB = (1 + p2a)k'I2c-i. Now for simplicity let for any matrix M
with even number of rows

where M(1) and M(2) are the top and bottom half of M, respectively. Then

DTD =(VC_1)*T(K:_1)*

_ [ y(l)T y(2)T] - K - l

~^c-l "c-1 + vc-l vc-l QO\

_ rv(1)T y(2)T] [v^i]- [K-i v;. , j ^ ( 2 ) j

=V,I1K-i

= fc'/2c-l

(12)
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and

c T c = [ - ( P 2 C - V C _ 1 ) 1 T [ - ( P 2 C " V C _ 1 ) 1

= P2C[(vc_1)*]T(^-1r
= p2Cfc'/2c-i. (14)

Thus CTC + DTD = (1 + p2C)k'I2o-i = ATA + BTB. Finally,

ATC = ^ ^ [ - / ' V c i ) ' ] = -p a e " l ^ - i (Vc- i ) ' (15)

and
BTD = [p^'Vc-xfCVc-O* =P2C"VCT_1(VC_1)*. (16)

Thus ATC + BTD = 0, and the columns of Vc are orthogonal. By the principle
of mathematical induction, for all c > 1, Vc is a rotation of the d-factor (d =
2C), p-level standard full factorial design which yields unique and equally-spaced
projections to each dimension. That is, Vc turns standard factorial designs into
Latin hypercubes.

Theorem 5: Any pd -point rotated factorial design has uncorrelated regression
estimates of main effects.

Proof: Let TV be the model matrix with pd rows and d + 1 columns: a first
column (xo) of Is for an intercept and d centered and scaled columns (x\,..., Xd)
representing the standard pd full factorial design. The columns are centered so
that x^Xi = ]Cj=i = 0 for alii = 1,. . . , d and scaled so that xfxt = X^=i x% ~
pd. Since each level of any one factor is used in combination with all other levels of
any other factor, we have x j = 0 for all i ^ k. That is the matrix XTX = pdId+\ •

Let R be the D x d rotation matrix which transforms the factorial design into
a rotated factorial design. Since the rotation matrix does not affect the intercept,
the associated tranformation matrix on the model matrix X is the (d+1) x (d+1)
matrix

Then

(XR*)T(XR*) = PdR*TR* = Pd [J °J p d W
It follows that the regression estimates of the main effects are uncorrelated.
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1 Introduction

Discrepancy has been employed to many fields of statistics, in particular, to ex-
perimental design. Based on discrepancy, Wang & Fang (1981) and Fang & Wang
(1994) proposed a kind of novel experimental design, called uniform design, which
favors a design with the smallest discrepancy value. In view of geometry, a uniform
design spreads its experimental points uniformly over the experimental domain.
Uniformity is an important concept related to uniform designs. Several important
and popular measures of uniformity are discrepancies, such as the star discrepancy
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and the Lp-star discrepancy, etc, in the Quasi-Monte Carlo methods. The star
discrepancy, introduced by Weyl (1916), measures the difference between the em-
pirical distribution Fn(x) of the set of design points, P — {z\,..., zn} in the unit
hypercube Cm = [0, l ] m , and the uniform distribution Fm(x) on Cm, and has been
used in goodness-of-fit test named as the Kolmogorov-Smirov statistic. However,
the star discrepancy is not easy to compute. The Lp-star discrepancy, viewed as
an extension of the star discrepancy, has been widely used in Quasi-Monte Carlo
methods. The set P is associated with an n x m matrix, Xp = (xki)- It is well
known that the Lp-star discrepancy is invariant to the permutation of rows and
columns of Xp, but it is not invariant if the hypercube Cm is rotated by mapping
Xki to 1 — Xki- When n is small, the star discrepancy is not sensitive enough while
the Lp-star discrepancy ignores differences between Fn(x) and F,(a;) in any low
dimensional manifold. Unreasonable results of the Z/2-star discrepancy may be
easy found through many sets of points. Therefore, by using reproducing kernels
in Hilbert space, Hickernell (1998a), Hickernell (1998b) proposed several modified
versions of the Lp-star discrepancy, such as the centered Lp-discrepancy and the
wrap-around Lp-discrepancy. These discrepancies can overcome the weakness of
the Lp-star discrepancy mentioned above. In particular, when p = 2, analytical
expressions of the centered -^-discrepancy (CD, for short) and the wrap-around
Z/2-discrepancy (WD, for short) have also been obtained by Hickernell (1998a),
Hickernell (1998b). The statistical justification for the CD/WD serving as a mea-
sure of uniformity for fractional factorial designs with two- or three-level has been
interpreted by Fang & Mukerjee (2000), Fang, Lin, Winker & Zhang (2000), Ma
& Fang (2001), Fang (2002), Fang & Ma (2002), Fang, Ma & Mukerjee (2002),
Fang, Lin & Qin (2003), Ma, Fang & Lin (2003), Qin (2003), Fang & Qin (2004),
Chatterjee, Fang & Qin (2004a) and Chatterjee, Fang & Qin (2004b).

Note that the above discrepancies are defined in a unite hypercube domain and
used for measuring the uniformity of points corresponding to continuous variables.
However, for factorial designs the number of possible levels for each factor may
be restricted to a finite number. For example, a factor may have only two values
(low and high) or three values (low, medium and high). In these situations it
is reasonable to represent the experimental domain X as a discrete set, e.g.,
X = {0 ,1 , . . . , q\ — 1} x • • • x {0 ,1 , . . . , qm — 1} for mixed levels. Liu & Hickernell
(2002b) provided some justification for directly using the discrepancy defined on
a discrete domain instead of on a continuous domain as a measure of uniformity of
such design points. By using a reproducing kernel in Hilbert space, the so-called
discrete discrepancy (DD, for short) was directly defined on such a discrete domain
by Hickernell & Liu (2002), Liu & Hickernell (2002a), Liu (2002) and Fang, Lin
& Liu (2003). Comparing with other discrepancies mentioned above, the DD
not only enormously reduces the computational cost, particularly in constructing
uniform designs, but also has itself statistical properties.

The main purpose of this paper is to review some recent developments on the
application of the discrete discrepancy to experimental design.
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2 Discrete discrepancy

We begin with a brief review of the discrete discrepancy. Let X be a measurable
subset of Rm. A kernel function K(x,w) is any real-valued function defined on
X x X, and is symmetrical in its arguments and non-negative definite, i.e.,

K(x,w) = K(w, x), for any x,w € X and (1)
n

Y^ aiajK{xi,xi) > 0, for <n 6 R, xi € X, i=l,...,n. (2)

Let F, denote the uniform distribution function on X, P = {z i , . . . , zn} C X be
a set of design points and Fn denote the empirical distribution of P, where

Fn(x) = - ] T l{z<xy-
zep

Here z = (zi , . . . , zm) < x = (xi,..., xm) means that Zj < Xj for all j , I A is the
indicator function of A. For a given kernel function K(x,w), the discrepancy of
P is defined as

D{P-K) = IJ ^K(x,w)d[F,(x) - Fn(x)}d[F,(w) - Fn(w)}\2

= I f K(x,w)dF,(x)dF.{w) - - V / K(x,z)dF.(x)
[Jx2 nztpJx

z,z'eP )

From the above definition, it is clear that the discrepancy measures how far
apart the empirical distribution Fn is from the population distribution F». Con-
sequently, for a fixed number of points, n, a design with low discrepancy is
preferred. Several kernel functions were proposed and discussed by Hickernell
(1998a,b; 2000).

Let d denote a factorial design with n runs and m factors, where the ith factor
has q, levels. The experimental domain X = {0,1 , . . . , q\ — 1} x • • • x {0,1 , . . . , qm —
1} is formed by all possible YliLi 1* level-combinations of the m factors, F, is the
discrete uniform distribution on X. For notational convenience in this paper we
define for given a > 0, p > 1,

K(xj,Wj) = { aaP |J *j = ^ for Xj,Wj € {0 ,1 , . . . , qj - 1}, (3)

and
m

K(x,w) = l[K(xj,wj), (4)
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for any x = (xi , . . . , xm) and w = (wi,..., ium) G X. Then K(x, w) is a kernel
function. In particular, it satisfies conditions (1) and (2). The corresponding dis-
crete discrepancy, denoted by D(d; a, p), can be used for measuring the uniformity
of design points over the domain X (Hickernell & Liu (2002); Liu & Hickernell
(2002a)).

Consider the set, denoted by V(n; q\ • • • qm), of asymmetrical factorials with n
runs and m factors, where the ith factor has qi levels, qt is any positive integer (>
2) and the n level-combinations are not necessarily distinct. If some qt's are equal,
we denote it by V(n; q{* • • • qrr), where 5D[=i s> = m- U-type designs play a key
role in construction of uniform designs. A design d is called U-type if levels of each
factor appear equally often (Fang, Lin, Winker & Zhang (2000)). Following Fang,
Lin & Liu (2003) and Qin & Fang (2004), the squared DD-value, (D(d;a,b))2,
can be calculated as follows:

i=i Hl k=n=k+i

where atj is the coincidence number between the ith and jth rows of d.
A lower bound of D(d; a, b) over U-type designs in T>(n; qi • • • qm) is given in

the following theorem. A necessary and sufficient condition for a design reaching
this lower bound is obtained also.

Theorem 1. Let d € V(n; qi • • • qm) be a U-type design. Then

{D{d;a,p)f > LA{d;a,p), (5)

where

LA{d;a,p) f\(P + *-Va + Ml + (n-l)[l + (p-l)(a-7)]amp7

a =-52£Li(n/'7i ~ l ) / ( n ~ 1) a n ^ 7 is the integer part of a. The lower bound of
LA(d;a,p) can be achieved if and only if for any run dk of d, among the (n — 1)
values of aki (I ̂  k), there are (n—1)(7+1 — a) with the value 7 and (n —1)(<T —7)
with the value 7 + 1.

One lower bound of D(d; a, p) for symmetrical design d G T>{n; qm) can be
obtained from Theorem 1. Recently, Qin & Li (2003) obtained the following lower
bound of D(d;a,p) for a design d € V(n;qm), which is sharper than the lower
bound obtained from Theorem 1.

Theorem 2. Let d 6 V{n; qm). Then

(D(d;a,p))2>Lc(d;a,p),

where

Lc&«. p)=ai E (:) (p -1)-*...* (1 - ̂ ) .

Rn,v,q is the residual of n (mod qv).
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Note that Theorems 1 and 2 hold for a wide range of DD measures in which
the kernel satisfies (4), no matter what the values of a and p (a > 0, p > 1)
are. The lower bound LA(d;a,p) or Lc(d;a,p) can be used as a benchmark for
searching uniform designs. A design d £ T>(n; q\ • • • qm) is called a uniform de-
sign under D(d; a, p) if its DD value D(d; a, p) achieves the minimum value over
V(n; <?i • • • qm)- Based on Theorem 1 or 2, a design d G V(n; qi • • • qm) or V(n; qm)
in which the squared DD-value equals the lower bound LA(d; a, p) or Lc (d; a, p)
is obvious a uniform design. In this paper, the uniformity criterion favors designs
with the smallest discrete discrepancy.

3 Statistical inference for uniform designs measured by
DD

3.1 Robustness of uniform designs measured by DD

At the initial stage of an experiment, it is often the case that a practitioner does
not have enough information about models concerning the response and factors.
Therefore, it is important to use a factorial design that is robust against the un-
derlying model specifications. Since the uniform design spreads the design points
evenly in the design space, it usually has robust performance with different mod-
elling methods. Wiens (1991) gave two optimality properties of uniform designs.
Hickernell (1999) and Yue & Hickernell (1999) proved that the uniform design
is optimal and robust for approximate linear regression methods. Moreover, Xie
& Fang (2000) proved that the uniform design is admissible and minimax under
a certain sense in nonparametric regression model. Recently, Hickernell & Liu
(2002) reported that although it is rare for a single design to be both maximally
efficient and robust, uniform designs may limit the effects of aliasing to yield
reasonable efficiency and robustness together.

3.2 Connections between DD and GMA/MMA

Minimum aberration (Fries & Hunter (1980); Franklin (1984)) and generalized
minimum aberration (GMA, for short) (Tang & Deng (1999); Ma & Fang (2001);
Xu & Wu (2001)) have become the popular and standard criteria for optimal fac-
tor assignment. Recently, Xu (2003) proposed the minimum moment aberration
(MMA, for short) criterion to evaluate optimal factor assignment. Relationship
between uniformity and aberration, which may raise the hope of improving the
connection between uniform design theory and factorial design theory, has re-
ceived a great deal of attention. The work of Fang & Mukerjee (2000) was a
first attempt towards providing an analytic link between uniformity measured by
CD and the word-length pattern of regular 2s~k factorials. Fang & Ma (2002)
and Fang, Ma & Mukerjee (2002) gave extensions of previous works for three-
and higher-level factorials, respectively. For the discrete discrepancy, Qin & Fang
(2004) obtained similar conclusions as follows.
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Theorem 3. Let d £ V(n; <?i • • • qm). Then

where C^ jm(d)'s are the MacWilliams transforms of the distance distribution
ofd,S= '{(jl, • • .,jm) • 0 < ji < 1,1 < i < m, ( j i , . . . , jm) / (0,. . . ,0)}.

Corollary 1. Let d € V{n; qm). Then

where Ax™{d) = £il+...+,-m=J- C'h...jm{d), {Af{d),.. . , C W ) w called the gen-
eralized word-length pattern by Xu & Wu (2001).

From Theorem 3 noting that the coefficient of C^...jm(d) in (D(d;a,p))2 de-
creases exponentially with ( j i , . . . ,jm), we anticipate that factorials which keep
A*™+...+jm{d) small for small values of j \ + • • • + j m , that is those having less
aberration, should behave well in terms of uniformity in the sense of keeping
(D(d;a,p))2 small. This shows that uniform designs under the DD and GMA
designs are strongly related to each other, and provides a justification for the
criterion of GMA by consideration of uniformity measured by the DD. Theorem
3 also shows us that the uniformity criterion does not completely agree with
the GMA criterion. However, Qin & Fang (2004) indicated that for asymmetri-
cal factorials, a special kind of uniform design has MMA, and uniform designs,
MMA designs and GMA designs are equivalent in a special class of symmetrical
factorials.

Recently, Hickernell & Liu (2002) defined a projection discrepancy pattern and
proposed a minimum projection uniformity (MPU, for short) criterion in terms
of this pattern, which considers the uniformity of low-dimensional projections of
a design. Based on a specific kernel K(x,w) raised for asymmetrical factorial
designs, the t-dimensional projection discrepancy D(t)(d; K) of a design d = (dij)
is defined as

P(t>(̂ ))2 = ^ E EIK- 1 + «^)- (6)
\u\=ti,j = l leu

where u is any subset of the set { l , . . . , m } , |w| denotes the cardinality of u,
5XW denotes the Kronecker delta function, i.e., 5XW = 1 if x = w and 5XW = 0
otherwise. The vector

PD(d; K) = (Dw(d; K),..., Dim)(d; K))

is called the projection discrepancy pattern, and the MPU criterion is to sequen-
tially minimize D^(d; K) for t = 1, . . . , m. Based on (6), Hickernell & Liu (2002)
showed that
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Theorem 4. Let d S V(n;qi • • -qm), then (D(t)(d; K))2 = Axtw{d), i.e. the MPU
is equivalent to the GMA defined by Xu & Wu (2001). For the case of 2-level
designs, the MPU is equivalent to the minimum G^-aberration of Tang & Deng
(1999).

And their results show that the MPU criterion may be further generalized to
cover designs that are not fractional factorials by using the discrepancy. It is also
shown that minimum aberration designs and minimum discrepancy designs are
equivalent in a certain limit.

3.3 Connection between DD and orthogonality

We know that strength is a good measure of orthogonality for factorial designs. Liu
(2002) studied the connection between uniformity and strength. Taking a = 1+T0
and ap=l + 0, where 0 > 0 and -l/(q - 1) < r < 1 in (3), Liu (2002) obtained
the following relation between discrepancies of an orthogonal array (Hedayat,
Sloane & Stufken (1999)) on its low-dimensional projections and its strength.

Theorem 5. Let d = {dij) G V(n;qm), then
(i) D(t)(d\a,p) = 0 if and only if d is an OA(n,m,q,t), where

(D(llW„,p)f . _ [«! + ( . - 'Ml' + g E £ n/ -<„. ,„ .
L ^ J \u\=ti,j = ll€u

(ii) D(d; a, p) = 0 if and only if d is an OA(n, m, q, m) (here n must be a multiple
ofqm)-

Liu (2002) also showed that symmetrical saturated orthogonal arrays are the most
uniform one among all the saturated factorial designs with the same parameters.

Recently, some new criteria, such as the B-criterion (Fang, Lu & Winker
(2003)) and O-criterion (Fang, Ma & Mukerjee (2002)), have been utilized to
measure and evaluate the orthogonality of factorial designs. These criteria can
be viewed as extensions of the concept of strength in orthogonal array. For any
t columns of d G V(n; qm), say cilt...,ut, let ni\'.'.'la} be the number of runs in
which (QJ , . . . , cit) takes the level-combination (ai • • • at), let

ai,...,at ^ '

where the summation is taken over all possible level-combinations, and define

Bt{d)= J2 Bh...h{d)/(mX
\<l\< — <lt<m \ )

the B-criterion is to minimize Bt(d) for t = 1 , . . . , m sequentially. For symmetrical
designs, Qin & Chen (2004) showed that B-criterion is equivalent to GMA. Qin
& Li (2003) indicated that B-criterion and O-criterion are mutually equivalent,
and gave the following connection between DD and B-criterion.
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Theorem 6. Let d £ V(n;qm). Then

{D{d;a,P)f = ^±lm\P-iyBv{d)-

3.4 Connection between DD and CD/WD

As mentioned in Section 1, usefulness of uniformity measured by the CD/WD in
two- or three-level factorials has been discussed. The definitions and computa-
tion formulas for the CD and WD can refer to Hickernell (1998a) and Hickernell
(1998b). For d G V{n; qm), its CD and WD are denoted by CD{d) and WD(d)
respectively. Recently, Qin & Fang (2004) gave the following result, which connect
the DD with the CD and WD.

Theorem 7. For any design d e V(n\qm), we have the following equations:
(i) when q = 2, p = 5/4 and a = 1,

(D(d; a, p)f = (CD(d))2 + 2(35/32)m - (13/12)m - (9/8)m;

(ii) when q = 2, p = 6/5 and a = 5/4,

(D(d;a,p))2 = (WD(d)f + (4/3)m - (l l /8)m;

(in) when q = 3, p = 27/23 and a - 23/18,

{D(d;a,p))2 = (WD{d)f + (4/3)m - (73/54)m.

It is well known that there is yet an open problem whether uniformity measured by
the CD/WD may be utilized as a criterion for assessing factorials with high levels.
However, the DD can be used to compare symmetrical and asymmetrical factorials
with high levels. Hence, the DD can be regarded as a kind of generalization of
the CD and WD. We strongly recommend to use the discrete discrepancy as a
measure of uniformity for comparing fractional factorials in most cases.

3.5 Connection between D D and balance

Block design is an important kind of experimental design. Its basic ideas come
from agricultural and biological experiments. But now the applications of these
ideas are found in many areas of sciences and engineering. The most widely-used
one is the balanced incomplete block (BIB, for short) design in which every pair
of treatments occurs altogether in exact the same number of blocks. Another
important one is the resolvable incomplete block (RIB, for short) design. For a
thorough discussion of block designs, please refer to Dey (1986).

As we know the definitions in block designs reflect some "balance" among
the treatments, the blocks, or the parallel classes. This kind of balance is easy
to be accepted intuitively. While in existed works on block designs the criterion
of balance is introduced from the estimation point of view. In fact the balance
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criterion can be regarded as a kind of uniformity. Recently, Liu & Chan (2004)
and Liu & Fang (2004) studied the uniformity of block designs and obtained some
satisfactory results. Liu & Chan (2004) used the DD measure to prove theoret-
ically that BIB designs are the most uniform ones among all binary incomplete
block designs. This is an important characteristic of BIB designs in terms of uni-
formity. While Liu & Fang (2004) obtained a sufficient and necessary condition
under which a certain kind of RIB design is the most uniform one in the sense
of the DD measure, and showed that this uniform design is connected. They also
proposed a construction method for such designs via a kind of U-type designs.
This method sets up an important bridge between this kind of RIB designs and
U-type designs. All these results confirm our judgement that the "balance" crite-
rion can be regarded as a kind of uniformity. Note that these results are obtained
in the sense of the DD measure, but they also holds for any of the modified
.^-discrepancies proposed by Hickernell (1998a) and Hickernell (1998b).

4 Application of the DD in supersaturated designs

In the context of factorial designs, there has been recent interest in the study
of the supersaturated design (SSD, for short). Whenever the run size of a design
is insufficient for estimating all the main effects represented by the columns of
the design matrix, the design is called supersaturated. In industrial statistics
and other scientific experiments, especially in their preliminary stages, very often
there are a large number of factors to be studied and the run size is limited
because of cost. However, in many situations only a few factors are believed to
have significant effects. Under this assumption of effect sparsity (Box & Meyer
(1986)), SSDs can be used effectively, allowing the simultaneous identification of
the active factors.

4.1 Connection between DD and E(s2) in 2-level SSDs

Most studies on SSDs have focused on the 2-level case. Booth & Cox (1962), in
the first systematic construction of SSDs, proposed the E(s2) criterion, which is
a measure of non-orthogonality under the assumption that only two out of the m
factors are active. After Booth & Cox (1962), there was not much work on the
subject of SSDs until Lin (1993). Other recent work focusing on constructions of
£(s2)-optimal SSDs includes, e.g. Liu & Zhang (2000), Butler, Mead, Eskridge
& Gilmour (2001), Liu & Dean (2004) and the references therein.

Recently, Liu & Hickernell (2002a) showed that the E(s2) criterion shares
the same optimal designs with the DD criterion. They constructed a DD, i.e.
taking a = 1 + T/3 and ap = 1 + /?( /?> 0, - 1 < r < 1) in (3), and showed
that for 2-level factorial designs both E(s2) and the DD can be expressed in
terms of the Hamming distances (or the coincidence numbers) between any two
runs of the design. These expressions in terms of Hamming distances lead to a
lower bound on E(s2) and the lower bound of (5) on DD for 2-level SSDs. It is
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interesting to note that if a design d can attain one of these lower bounds, then
it attains both of them. In other words, an £(s2)-optimal design is also uniform
(minimal discrepancy) for the DD. They further showed that in what cases these
lower bounds can be achieved, even though the DD is not equivalent to the E(s2)
criterion.

Theorem 8. Let d be a 2-level design with n runs and m factors, where each
column has the same number of ±1 elements. Suppose that rj3 > —1, and that
m = c(n — 1) + e for e = —1,0 or 1. Also, suppose that either a) n is a multiple
of 4 and there exists an n x n Hadamard matrix, or b) c is even and there exists
a 2n x 2n Hadamard matrix. Then the lower bounds of E(s2) and DD can be
attained.

Moreover, the DD is a more general, and thus more flexible criterion than
E(s2). For example, E(s2) ignores possible interactions of more than one factor.
However, the DD includes interactions of all possible orders, and their importance
may be increased or decreased by changing the value of /3.

4.2 Connection between DD and E(fNOD) in mixed-level SSDs

Two-level SSDs can be used for screening the factors in simple linear models.
When the relationship between a set of factors and a response is nonlinear, or ap-
proximated by a polynomial response surface model, designs with multi-level and
mixed-level are often required, e.g., to exploring nonlinear effects of the factors.
Recently, Fang, Lin & Liu (2003) proposed a new criterion, called the E(fNOD)
criterion, for comparing SSDs. For a design d € T>(n; q\ • • • qm), the criterion is
defined as minimizing

E(f ) - V fij l(m\'-'xJ NOD) — /_^ J NOD I 1 2 ; '
l<i<j<m \ /

where

1i 1} / \ 2

fNOD~htAuv J 1
nil is the number of (u, v)-pairs in the ith and jth columns. Here, the subscript
NOD stands for non-orthogonality of the design. Fang, Lin & Liu (2003) obtained
a lower bound for E(fNOD) which can serve as a benchmark of design optimality.
They also studied the connection between DD and E(fNOD). Fang, Ge, Liu &
Qin (2004a) provided the following lower bound and the sufficient and necessary
condition to achieve it for E(fNOD), which includes the bound and condition of
Fang, Lin & Liu (2003) as a special case.

Theorem 9. Let d g V(n; qi • • • qm) be a U-type design, then

EUNOO) > ^ l * ! ) [(7 + 1 ~ °){° ~ 7) + <?2] + C(n,qlt. • • ,Qm), (7)
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where C(n, *,..., qm) = ^ - ^ ^ (£™ , =f + E i < ^ < m ^ j ) - °, 7 and
the sufficient and necessary condition for the lower bound to be achieved are the
same as those of Theorem 1.

Thus we conclude that

Theorem 10. Let d 6 2?(n; q\ • • • qm) be a U-type design, then d is a uniform
design with its squared DD-value achieving the lower bound on the right hand
side of (5) if and only if d is E(fNOD)-optimal with its E(fNOD) achieving the
lower bound on the right hand side of (7).

Theorem 10 leads to a strong relation between E{fNOD) optimality and uni-
formity measured by the DD of any SSD. The uniformity of E(s2)- and avex2-
optimal (Yamada & Lin (1999)) SSDs can be obtained directly based on this
theorem, as special cases of SSDs with equal-level factors.

4.3 Constructions of uniform SSDs measured by DD

To find uniform designs is an NP hard problem. There are several methods to
construct uniform designs in literature, such as the good lattice method (Fang &
Wang (1994)), Latin square method (Fang, Shiu & Pan (1999)) and optimization
searching method (Fang, Ma & Winker (2002)). In these methods, computer
algorithms play an important role to obtain uniform designs.

Recently, some combinatorial methods are introduced to construct uniform
U-type designs in terms of DD as well as E(fNOD). Note that in most cases,
uniform U-type designs are supersaturated. So this kind of U-type designs are
also called the uniform SSDs. Many infinite classes for the existence of uniform
designs with the same Hamming distances between any distinct rows are also
obtained simultaneously. These combinatorial approaches can be summarized as
follows:
I. Constructing symmetrical uniform SSDs from

a. Resolvable balanced incomplete block designs, see Fang, Ge k. Liu (2002b),
Fang, Ge, Liu & Qin (2003);

6. Room squares, see Fang, Ge & Liu (2002a);
c. Resolvable packings and coverings, see Fang, Ge & Liu (2004) and Fang, Lu,

Tang & Yin (2004);
d. Super-simple resolvable t-designs, see Fang, Ge, Liu & Qin (2004b).

II. Constructing asymmetrical uniform SSDs from

a. Resolvable group divisible designs, see Fang, Ge, Liu & Qin (2004a);
b. Latin squares, see Fang, Ge, Liu & Qin (2004a);
c. Resolvable partially pairwise balanced designs, see Fang, Tang & Yin (2004);
d. Other uniformly resolvable designs, see Fang, Ge, Liu & Qin (2004a).

In addition, Fang, Lin & Liu (2003) proposed a method by fractionalizing satu-
rated orthogonal arrays for constructing asymmetrical uniform SSDs. The prop-
erties of the resulting uniform SSDs were also investigated in those papers.
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5 Concluding remarks

Uniform experimental design has been widely used in many fields in the last
two decades. Discrepancy is a measurement of the uniformity and is a criterion
in experimental design. In this paper, we review the recent developments on the
discrete discrepancy and summarize some important results. The uniformity of the
common experimental designs, such as factorial design, orthogonal design, block
design and supersaturated design, are also discussed in this paper. All these results
show that orthogonality (non-orthogonality) and balance are strongly related to
uniformity, and the discrete discrepancy plays an important role in evaluating
such experimental designs.
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Summary. When an orthogonal array (OA) of n rows is used as the design
matrix in an experiment, n is the number of runs. In an OA of q levels, n is
an integer multiple of q2. In an experiment, if the number of runs cannot be set
exactly equal to the number of rows of an OA because of constraints in resources or
other reasons, the experimenter may use a design matrix formed by omitting some
rows of an OA. If such a design matrix is used, the number of observed response
obtained may not be enough for estimation of all the effects corresponding to
columns of the orthogonal array. A lean design is a design matrix formed by
deleting some rows and columns of an OA, which still allows efficient estimation
of the effects of the factors corresponding to the remaining columns of the OA.
In this article, the authors discuss lean designs of 2 and 3 levels, and provide
D-optimal OA's from which lean designs can be formed.
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1 Introduction

Orthogonal arrays (OAs) have been studied for several decades and have widely
been used in design of experiments. Given positive integers n, s,qi,..., qs, an
OA(n; q\ x • • • x qs) of strength 2 is an n x s array of symbols such that (i) along
each column, different symbols appear the same number of times, and (ii) in every
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n x 2 matrix formed from any two columns, all possible pairs of symbols appear
the same number times (Wu and Hamada (2000), Dey and Mukerjee (1999),
Hedayat, Sloan and Stufken (1999)).

When an OA(n; qs) of n rows is used as the design matrix in an experiment,
the number of runs will be n which is an integer multiple of q2. In an industrial
experiment, due to various constraints in the equipment used, the setup of the
experiment and the availability of other resources, it is not always possible to
perform the experiment with the numbers of runs exactly equal to a multiple
of q2. Thus the experimenter may be forced to conduct an experiment with the
number of runs not equal to the n in the OA. If the number of runs of the
experiment is less than the n in the OA(n; q\ x ••• x qs), from the results of
the experiment it may not be possible to estimate all the s effects corresponding
to the columns of the OA. Goh (1996) proposed to delete some rows and some
columns from an OA to obtain a lean design to be used for such an experiment. In
doing this, it is important that appropriate rows and columns are deleted from the
original OA, for otherwise the resulting matrix obtained will be of low efficiency
or even be rank deficient.

This article is concerned with construction of OA's for lean designs with 2
and 3 levels. In Section 2, the motivation for lean design will be illustrated with
an example. Section 3 will be devoted to 2-level designs, and Section 4 will be
devoted to 3-level designs. This article is concluded in Section 5.

Throughout this paper, we shall use X(n) to denote an extended design matrix
of n rows formed by adding column vectors of length n to an OA(n; q"). The forms
of the column vectors to be added depend on the regression model considered,
and in many cases the n x l column vector of l's, l n , is the first column of X(n).

2 The motivation for lean designs

Consider the experiment performed according to an OA(8; 27), quoted from Table
13.4 of Box, Hunter and Hunter (1978, Section 13.3). The layout and the results of
the experiment are shown in Table 1, where the column of l's beneath xo together
with the 7 columns of the OA(8; 27) beneath xi, ...,xj form the extended design
matrix ^(8), and the first column from the right hand side shows the observed
responses y.

The data in Table 1 can be used to estimate all the eight coefficients
Po,f3\,...,l3t in theregression model

E[y] =Po + Pixi + ••• + Pax5 + p6x6 + (37xT. (1)

Now, suppose that the resources available allow the experimenter to make
only 6 runs in the experiment instead of 8, and as a result only Runs 1 to 6 were
made. In this case, some conclusions can still be drawn from the observed data.
If it is known that the factors corresponding to xe and xj do not have effect on
y, the regression model becomes

E[y}=0o + /3ixi + --- + /35x5. (2)
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Table 1. An experiment performed according to an OA(8;27).

Observed
Run i xo xi X2 X3 X4 zs xe xj response y

~ I ^1 -I ^1 1 1 I T ~ 2/1 = 68.4
2 1 1 - 1 - 1 - 1 - 1 1 1 ^ = 77.7
3 1 - 1 1 - 1 - 1 1 - 1 1 2/3 = 66.4
4 1 1 1 - 1 1 - 1 - 1 - 1 2 / 4 = 81.0
5 1 - 1 - 1 1 1 - 1 - 1 1 2/5 = 78.6
6 1 1 - 1 1 - 1 1 - 1 - 1 2 / 6 = 41.2
7 1 - 1 1 1 - 1 - 1 1 - 1 2 / 7 = 68.7

__8 1 1 1 1 1 1 1 1 2/s = 38.7

Using the six responses y\,...,y§, all the six coefficients /3o, •••, 05 in model (2) can
be estimated.

The matrix X(6) obtained by deleting the 7 t h row, 8 t h row, 7t h column and
8t h column from X(8) is called a lean design with 6 runs. With this lean design,
assuming that the effects of x% and xy are nil, the missing observations 2/7 and j/8
can be estimated from the following two equations

(effect of x6) = (2/1 + 2/2 - 2/3 - 2/4 - 2/5 - 2/6 + 2/7 + 2/s)/8 = 0,

(effect of x7) = (-t/! + y2 + 2/3 - 2/4 + 2/5 - 2/6 - 2/7 + 2/s)/8 = 0.

Substituting 2/7 and 2/8 by such estimates 2/7 and 2/8, all the coefficients
/3o,/3i /?6,/97 in (1) can be estimated. Using the property that X'(8)X(8) is a
diagonal matrix, it was proved (Chan, Ma and Goh (2002)) that the estimates
of /?o,/?i, ...,04,0s obtained in this way are identical to those obtained from (2)
without the observations 2/7 and 2/8-

On the other hand, out of the 8 runs, if Run 2 and Run 8 are not available, and
if X6 and X7 have no effect on y, the coefficients 0o,---,05 in model (2) cannot be
estimated because the matrix obtained by deleting 2n d row, 8th row, 7th column
and 8th column from X(8) has rank < 6. Setting the effects of xe and X7 zero,
we have

(effect of x6) = (2/1 + 2/2 - 2/3 - 2/4 - 2/5 - 2/6 + 2/7 + 2/s)/8 = 0,

(effect of x7) = (-2/1 + J/2 + 2/3 - 2/4 + 2/5 - 2/6 - 2/7 + 2/s)/8 = 0,

from which the missing observations 2/2 and 2/8 cannot be estimated. Therefore,
the 6-run design obtained by deleting the 2 n d row, 8tk row and the last two
columns of X(8) is a poor design for estimation of the effects xo, 11, . . . , 2:5 in (2),
and this design cannot be considered as a lean design.

3 Lean designs of 2 levels

Prom an OA(n; 2 n - 1 ) , L say, where n is an integer multiple of 4, lean designs with
the number of runs less than n can be obtained by appropriately deleting rows
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and columns from X(n) = [ln , L], so that an efficient ixi sub-matrix X(i) (i < n)
will formed. If X(i) is used as the extended design matrix of a lean design for
estimation of coefficients in the model

y = Po + Pixi H h/?i-iXi_i+e, (3)

under the i.i.d. assumption on e, the covariance matrix of the estimated
(/3o, /3i, --., /3i_i)' will be proportional to (X'(i)X(i))~x. Using D-optimality as
a measure for efficiency (Atkinson and Donev (1996, Chapters 9 and 10}), we
look for X{i) with large det{X'{i)X(i}) = | det(X(i))\2.

Table 2. Orthogonal arrays A(n) for two-level lean designs

A(8)-OA(8;27) A(12) - OA(12; 211) A(16) - OA(16; 215)
0 1 0 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 1 1
1 1 1 0 0 0 0 1 0 1 0 0 0 1 1 0 1 1 10 110 10 1 0 0 1 0 1 1 0
0 0 1 1 0 0 1 1 1 0 0 1 1 0 1 0 0 1 0 0 0 1 1 0 1 1 0 1 1 1 1 0 0
1 0 0 0 1 0 1 0 0 0 1 1 0 0 1 1 1 1 110 1 0 0 1 1 1 1 0 0 0 1 0
0 0 1 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1
0 1 0 1 1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 1 1 1 1 1 0 0 0 1 10 10 10 1110 10001
1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1 0 1 0 0

o o o o o o o o o o o 1 0 1 0 1 1 1 0 0 1 0 1 0 1 0
1 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 1 1 0 1 0 0 0 1 1 1
1 0 0 1 0 1 1 1 1 0 0 10 1 1 0 0 0 0 1 1 0 1 1 0 1
0 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 0 1 1 0 0 1 0 0 0

1 1 0 1 0 1 1 0 0 0 1 1 0 0 1
0 0 0 0 0 1 0 1 1 1 1 1 0 1 1
0 1 1 0 0 0 1 1 0 0 0 1 1 1 1
1 1 0 0 1 0 0 0 1 0 1 1 1 1 0

To construct a 2-level lean design of i runs, a given OA(n, 2s), say L, is used
as an initial design, where n > i. The extended design matrix X(n) = [ln,£] is
transformed by exchange of rows and exchange of columns, so that the upper-left
i x i sub-matrix X(i) of the transformed matrix has the largest | det X(i)\. In doing
this, the matrix L, as a submatrix of X(n), is also transformed. The transformed
matrix of L, denoted by A(n), will be an optimal OA for a lean design of i
runs. In order that one A(n) can be used for lean designs for several i's, we may
maximize the quantity |(detX(ni)) x (det^(712)) x • • • x (det X(rij))\ for some
711,712, ...,rij, where n > n\ > ni • • • > n,; > 1. Chan, Ma and Goh (2002) carried
out this maximization using a numerical searching algorithm constructed based
on "threshold accepting" (Winker and Fang (1997)). The optimal OA's A(8),
A(12), A(16), A(20), A(24) and A(28) obtained in Chan, Ma and Goh (2002) are
displayed in Table 2. The 0's in A(8), ..., A(20) represent - 1 .

The first column from the right hand side of Tables 3 (extracted from Chan,
Ma, Goh (2002)) shows the maximum values of | det X(i)\ obtained from numeri-
cal searching, where X(i)'s are the upper-left ixi sub-matrices of A(8), ..., A(28).
Matrices X(i)'s with large values of | det X(i)\ are preferred. Values beneath A(8),
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Table 2. Orthogonal arrays A(n) for two-level lean designs (Continue)

A(20) - OA(20; 219) A(24) - OA(24; 223) A(28) - OA(28; 227)
1001010001110110110 01001011101101100000111 010101011110101000001011000

0100111010100011110 00011100111010100110101 001111001100100010010100110
1101010110001000111 11010101011100110100010 001001111010010100010011111

1110100100101110100 10100101100101101110001 101101000110011111100001100

1110000011100101011 01110110000011100101011 000000000101111011011011111

0011110101101001010 11111000001001011100101 011100100000101101110010010

0111000011011011100 00110001110011111000110 110011100010100011010001001

0100011111111100000 10011010000110111010011 100110111000011010111001010

0000001101001111111 00000000000000000000000 111010011000110111001010100

1101101000011101010 00101111011000111001001 101110010111110000110010001

1010101111010000110 11100110110000010010111 011000111111011011010100000
1100110101010011001 10100010101110110101100 111010001101001100000001011

1001101011101010001 01101000010100101111110 111100100011110000001101110
1011011110000111000 11001101000011110011100 101001001001000001111111000
0001100110110101101 10000100011111001001111 000110010011000111000111010
0010110010011110011 01110111001110001010100 000011101111110101101000010

1010011000111001101 00111100101101010011010 100010100110001100011110100

0111001100110010011 10101011011011000110010 001111110001001001001000101

0111111001000100101 01001110110111011100000 111111111111101111111111111

0000000000000000000 10011111100000001101110 010110101100010001100111101

11010010111001101011000 110001110101000010100010110

11111001110110000001001 010011010001111100110101100
00010011010101010111101 100000011010101001100100111

01000001101010011111011 011011000010011010101110011

100101101001111110000110001
001000110100100110101101001
110101010100010101011100011
010100001011000110111000101

A(12), ... , A(28) in Table 3 are the ratios of | det X(i)/ma.x(dei(X(i))\ for each
X(i). The maximum ratio, 1, is highlighted with square brackets.

If n is a multiple of 4, L is an OA(r»; 2s) and X{n) = [ln, L], it follows from
the identity X'(n)X(n) = n/n (where /„ denotes the nxn identity matrix) and
the Hadamard inequality (Searle (1982), pp.199-200)

det(X'(n)X(n)) < J] ll*f < n",
i=l

where x» denotes the ith column of X(n), that the maximum attainable value
of |det(X(n))| is n"'2. For similar results and a general equivalence theorem
involving determinants derived from orthogonal arrays of mixed levels, readers
may refer to Chan, Fang and Mukerjee (2001). As far as the authors are aware,
when L is an OA(n;2s), X(n) = [ln,L], X(i) is an i x i sub-matrix of X(n)
and i is not a multiple of 4, no general results are available about the theoretical
maximum of | det(X(i))\.

Given the number of runs n, the most appropriate choice(s) of X(n) for lean
design are indicated by the [l]'s in Table 3. For example, if a lean design of
n = 6 runs is needed, Table 3 shows that the maximum value of |detX(6)|
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Table 3 . Values of max| d e t X ( i ) | and | det X(i)\/max\ det X(i)\.

T l A(8) A(12) A(16) A(20) A(24) A(28)| m a x | det X(i)\
2 [1] [1] [1] [1] 0 0 2
3 [1] [1] [1] [1] [1] 0 22

4 [1] [1] [1] 0.50 0,50 0 24

I O67 [lj 6T67 0 [T] O33 iTx"?
6 0.80 [1] 0.80 0.40 [1] 0 5 x 25

7 0.89 [1] 0.89 0.22 0.89 0.67 26 x 3 2

8 [1] 0.56 0.75 0 0.50 0.38 21 2

9 0.48 0.57 0 0.68 [1] 7 x 2li

10 0.96 0.76 0.10 [1] 0.86 3 x 7 x 21 1

II [1] 0.53 0 0.97 0.46 21 0 x 3 5

12 [1] 0.18 0 0.34 0.02 21 2 x 3 6

13 0.78 0.19 [1] 0.02 3 x 5 x 11 x 21&

14 [1] 0 0.88 0.02 2 2 5

15 [1] 0 0.53 0.02 22 8

16 [1] 0.12 0.18 0.001 23 2

17 [1] 0.80 0 2 l b x 5V

18 [1] 0.60 0 21 7 x 58

19 [1] 0.43 0 21 8 x 59

20 [1] 0.09 0.01 22° x 5 M .
21 [T] 016 22U x 39

22 [1] 0.10 23 1 x 3 1 0

23 [1] 0.11 23 3 x 3 U

24 [1] 0.07 236 x 3 "
25 [1] 22 4 x 711

26 [1] 22 5 x 71 2

27 [1] 22 6 x 71 3

28J [1] | 22 8 x 714

found from numerical searching is 5 x 25 , and this maximum is attained if X(6)
is the upper-left 6 x 6 sub-matrices of the ^ ( 1 2 ) generated from A(12) or the
A"(24) generated from A(24). These two X(6) ' s are therefore the most efficient
extended design matrices for 2-level lean design of 6 runs. If a lean design of n = 9
runs is needed, Table 3 shows tha t the maximum value of | det X(9) | found from
numerical searching is 7 x 2 1 1 , and this maximum is attained if X(9) is the upper-
left 9 x 9 sub-matrix of the X(28) generated from A(28). This X(9) is therefore
the most efficient extended design matrix for 2-level lean design of 9 runs found
by the authors so far.

When the number of parameters to be estimated is less than the i in a regres-
sion equation, Chan, Ma and Goh (2002) indicated which matrices to select and
which additional column(s) to be deleted.
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4 Lean designs of 3 levels.

In this section, optimal 3-level orthogonal arrays for lean designs, denoted by
A(9), A(18), A(27), A(36), B(9), B(18), B(27) and B(36), are constructed from
OA(9;34), OA(18;37), OA(27;313), and OA(36;313). The upper-left square sub-
matrices of these A(n)'s and B(n)'s will be the design matrices recommended for
lean designs. We use —1,0,1 as the entries of OA(n;3s).

It is well-known that fi(x) = x and /2(ar) = 3a;2 — 2 form a system of
orthogonal polynomials of degrees up to 2, where x = —1,0,1 (Pearson and
Hartley (1966)). Given an OA(n;3s), say L = [xtj], we denote the j t h col-
umn -X.J = (xij,...,Xnj)' of L by fi(xj) = (/i(xij),..., f\{xnj))', define f2(xj) =
{f2(xij),..., f2(xnj))', and define the n x (2s + 1) extended design matrices

XA{n) = [ln,f1(xi),f2(xi),...,f1(xs),f2(xs)],

XB{n) = [In,fi(xi),...,f1(x5),f2(xi),...,f2(xs)].

Then both X'A(n)XA(n) and X'B(n)XB{n) will be (2s + 1) x (2s + 1) nonsingular
diagonal matrices, which ensures that the coefficients Po, Pi, Pa (i = l,...,s) in
the quadratic model

E[y] = Po + Pixi + ••• + (3sxs + /3ii(3x? - 2) + • • • + pss(3x2s - 2) (4)

can be independently estimated (Walpole and Myers (1998, Section 12.7)). In a
lean design, since the number of runs is less than n, it may not be possible to
estimate all the coefficients Pi and Pa in (4), and hence columns in X/j(n) and
XB(TI) may have to be removed.

To construct a lean design of i runs, an OA(n, 3s), say L, where n > i, is used
as an initial design. An extended design matrix X(n) is constructed from L. The
matrix X(n) is transformed by exchanging its rows and exchanging its columns, so
that the upper-left i x i sub-matrix X(i) of the transformed matrix has a maximum
| det X'(i)X(i)\. In doing this, the matrix L, as a submatrix of X(n), is also
transformed. The transformed matrix of L will be an optimal OA for a lean design
of i runs. In order that one optimal OA can be used for lean designs for several
i's, we may maximize the quantity |(det X(rii)) x (det X(n2)) x • • • x (det X(rij))\
for some m, n,2, •••, rij, where n > n\ > n.2 • • • > n} > 1. For this searching, the
authors adopted a maximization algorithm constructed using threshold accepting.
Since both linear and quadratic effects can be estimated from an OA of 3 levels,
in searching for optimal OA's we need to consider the following two aspects.

(1) To construct lean designs, we may choose X(n) = XA(TI), X(n) = XB(TI),

or other forms of X(n). If we want to exclude the quadratic and linear ef-
fects of insignificant variables in the lean design and keep the linear and
quadratic effects of significant variables, we will exchange rows and exchange
columns of X(n) = XA(TI) to produce optimal OA's, denoted by A(n), so
that the upper-left sub-matrices of A(n) will contain columns fi(x) and f2(x)
of the significant variables x's. The optimal OA's, A(n) (n = 9,18,27,36),
are produced from numerical searching, and their transposes are displayed in
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Table 4. Orthogonal arrays A(n) and B(ra) for three-level lean designs

Transpose of A(9) - OA(9; 34) Transpose of A(18) - OA(18; 37)
1 1 3 3 2 2 1 3 2 3 2 3 1 1 3 2 3 2 2 2 12 1 1 3 13
3 2 2 1 1 3 1 3 2 3 2 2 13 1 1 3 3 1 3 2 2 1 2 1 3 2
1 3 1 3 1 3 2 2 2 1 1 2 13 3 2 2 1 3 3 3 2 2 1 1 2 3
2 3 1 2 3 1 1 3 2 3 1 2 2 2 2 3 1 2 1 3 1 2 3 3 1 1 3

1 3 1 2 3 3 3 3 1 1 2 1 2 1 3 2 2 2
2 3 3 1 3 2 1 1 1 2 3 1 2 3 2 3 2 1
2 3 1 1 2 3 2 1 3 1 1 2 2 3 1 2 3 3

Transpose of A(27) - OA(27; 313) Transpose of A(36) - OA(36; 313)
322311132121112132331223323 121323211331333212323222121332111123
121332123113232223311323112 233112213132121311223221133321123233
331131223121321231323222131 332311211213211213232122213333312213
213132132133231232121211233 313231212331222113121323122311232313
313221311121233333312221212 322122113311213331331321221223223113
231312311133322133132212122 131232112213331131133223212212133223
333333332122112221112312211 112133313233312322122121112123321323
112212332113323121322321331 213323112112122232332123231211311333
223323111132322311321123231 223332311223123221111322312131213133
211233323132113212332121123 231221313321131123312121321122332233
133122211113111322333322223 111111111122332333211322333232222323
123231232111323213133113222 322213312122213122213223333113131113
232113232132231113313122312 232123311313223133212211132312213321
Transpose of B(9) - OA(9; 34) Transpose of B(18) - OA(18; 37)

1 1 3 1 2 2 3 3 2 3 2 13 13 2 2 2 1 1 3 2 3 3 2 1 1
3 2 2 1 1 3 3 1 2 13 2 3 12 3 12 2 12 2 13 13 3
1 3 1 2 1 3 2 3 2 3 2 3 1 1 3 3 1 1 2 2 1 2 2 2 3 3 1
2 3 1 1 3 1 3 2 2 2 1 3 3 1 1 2 3 1 3 2 2 2 1 3 3 1 2

1 1 2 2 2 3 2 1 3 1 3 1 2 2 3 3 1 3
1 3 3 2 1 2 1 2 1 1 2 3 2 3 1 3 2 3
3 3 3 3 2 1 1 1 3 1 3 2 2 1 2 2 2 1

Table 4. The upper-left sub-matrices of A(n) can be used as design matri-
ces of efficient lean designs. For tidiness of presentation, the values —1,0,1
taken by xi,..., xs in A(n) (and also B(n) to be introduced below) in Table 4
are denoted by 1,2,3, respectively. On the other hand, we may also wish to
take an alternative approach of including all linear effects before including
any quadratic effects in the lean design. Following this approach, we choose
X(n) = XB(JI), exchange rows and exchangs columns of X(n) — XB(TI) to
produce optimal OA's, denoted by B(n), so that the upper-left sub-matrices
of B(n) will include columns fi (x) of all linear effects before any columns {2 (x)
of quadratic effects are included. The optimal OA's, B(n) (n = 9,18,27,36),
are produced from numerical searching, and their transposes are displayed in
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Table 4. Orthogonal arrays A(n) and B(n) for three-level lean designs (Continue)

Transpose of B(27) - OA(27;313) Transpose of B(36) - OA(36;313)
333111123312232212313211223 311332112212222311331313112223122333
231131322123132123311123322 131332123131322223313221112132213213
123131331321223221213223131 113133223231211322221133132312123312
312131313222311322112323213 331133231323122212322132112311312123
212331233111232132223321311 122313311322322211233133121132321312
233311313231123322121212321 221231323123223131123333122211131213
311311331333332221222112212 233133212112313232133111122323211232
223231111132332111132222333 123332131223113123131212122121333322
131331212312323233122121123 132231323312131221232312132223313111
112231123333123212331322112 222231312231132132311122112332331331
331231132231211313233122221 212332112323331333222231132111221131
133211233123311132232213122 313231331331313311112321122232222122
323331221213111331321221232 322133231112231113213223132133132221

Table 4. The upper-left sub-matrices of B(n) can be used as design matrices
of efficient lean designs.

(2) Since entries of X(n), where X(n) = XA(n) or = XB(n), are -1 ,0 ,1 , and
fi(x) = x and f2(x) = 3a;2 — 2, it is clear that the sums of squares of
entries along columns fi() in X{n) is 2n/3 and those along columns f2(-)
have a considerably large value 2n. Thus the value of det(X'(i)X(i)) will
be dominated by the columns f2(), which will create instability during the
numerical searching process for the maximum of |(det(X(ni)) x det(X(ri2)) x
• • • x det(X(n,j))\. To overcome this problem, we may normalize all columns in
X(n) before applying the searching algorithm. In doing this we need only to
put a factor 3" 1 ' 2 to f2{x) = 3x2-2, since E*(3~1/2/2(*))2 = £B(/ i (*))2 =
2, where the summation Ylx *s taken for x = —1,0,1. Alternatively, we
may also normalize the sums of squares of columns of the sub-matrix X{i)
obtained from X(n) at each step in the numerical searching process, and in
doing this we need to divide each entry in column (fv{x\j),..., fv{xij))' in
X(i) by (/2(xij) H h /2(xij))1 /2 {y =1,2). In this article, we have chosen
to normalize all columns of X(n) before the searching process, since this
approach produces more stable results. We have chosen n\ = 1, ... , rij = 5
so that | det(X(n)) x • • • det(X(5))| is maximized.

For each of the extended design matrices X^(n) and XB(TI) obtained from
A(n) and B(n), respectively, its D-emciency value defined in Wu and Hamada
(2000) and Ma, Fang and Erkki (2000) are calculated, and the results are shown
in Table 5. Given the number of runs i, the most appropriate choice(s) of XA(I)
or XB{I) for lean design are the one(s) with the highest D-efficiency value. The
highest D-efficiency values are high-lighted with square brackets in Table 5. The
value of D-efficiency is 1 if and only if the design is an orthogonal array. Table 5
shows that the D-efficiency values for the lean designs constructed from A(n) and
B(n) are rather high, larger than 0.7 and in many cases larger than 0.8. Figure 1
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Table 5. D-efficiency of lean designs derived from A(n) and B(n)

r̂ rn] A(9) A(18) A(27) A(36) I B(9) B(18) B(27) B(36)
5 0.755] [0.755] 0.755 [0.755] 0.805 0.932 [0.959] 0.941
6 0.909 l0.827J 0.909 0.881J 0.860 0.937] 0.813 0.891
7 0.814 0.874 0.814 [0.877] 0.899 0.901 0.785 0.883
8 0.924 0.858 0.923 U865J 0.924] 0.877J 0.820 0.841
9 1.000 0.815 0.917 0.880 1.000 0.841 0.841 0.828
10 0.822 0.822 0.823] 0.815 0.858] 0.791
11 0.809 0.783 0.869 0.834 0.861 0.808
12 0.800 0.784 0.812 0.840 0.876 0.759
13 0.797] 0.730 0.772J 0.823 0.878 0.763
14 0.800 0.756 0.769 0.820 0.967 0.764
15 0.842 0.750 0.764 0.841 0.900 0.746
16 0.888 0.773 0.775 0.887 0.864 0.745
17 0.940 0.783 0.747 0.940 0.873 0.750
18 1.000 0.800 0.760 1.000 0.863 0.755
19 0.767 0.743 0.869 0.765
20 0.809 0.753 0.843 0.774
21 0.775 0.754 0.846 0.763
22 0.834 0.773 0.856 0.750
23 0.802 0.795 0.874 0.760
24 0.876 0.855 0.893 0.769
25 0.868 0..808 0.903 0.813
26 0.938 0.805 0.938 0.777
27 1.000 0.795 1.000 0.795
28 0.819 0.819
29 0.844 0.845
30 0.872 0.872
31 0.892 0.892
32 0.913 0.913
33 0.936 0.936
34 0.956 0.956
35 0.977 0.977
36 I 1.000] | 1.000

shows the comparison of the high .D-efficiency values of these lean designs, with
the low -D-efFiciency values of those designs obtained by merely choosing the
upper-left i x i submatrices of the extended design matrices formed from the
initial designs L without exchanging any rows or exchanging any columns.

Given the number of runs i, the most efficient matrix (or matrices) X(i) for
lean design are indicated in Table 5. The larger the .D-efficiency, the more efficient
the design in terms of D-optimality. Consider an example in which a 3-level lean
design of i = 6 runs is needed, and less significant variables are removed before
the more significant ones. Table 5 shows that the largest .D-efficiency 0.909 is
attained when the upper-left 6 x 6 extended design matrices XA(6) derived from
A(9) and A(27), respectively. The extended matrices XA(6) derived from A(9)
and A(27) are given by

[XA{6) derived from A(9)] [XA(6) derived from A(27)]
xo\ a i ( 3 a : f - 2 ) | x2 (3x1-2)1 x3 xo\ x i ( 3 a : ? - 2 ) | x2 ( 3 s ! - 2 ) 1 x3

1 - 1 1 1 1 -1 1 1 1 - 1 1 1
1 - 1 1 0 - 2 1 1 0 - 2 0 - 2 1
1 1 1 0 - 2 -1 1 0 - 2 - 1 1 -1
1 1 1 - 1 1 1 1 1 1 1 1 -1
1 0 - 2 - 1 1 -1 1 - 1 1 1 1 1
1 0 - 2 1 1 1 1 - 1 1 0 - 2 -1
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Fig. 1. D-efficiency vs Runs: Comparison of Z?-efficiency of the extended design
matrices derived from the optimal OA's, A(n) and B(rc) (circles), and the initial
OA's used in the construction (crosses).

These designs can be used for estimation of all the coefficients /?'s in the model

E[y] = f3Qx0 + &xxx + /3u(3x? - 2) + 02x2 + Pii{?>x\ - 2) + /33x3,

where l o s l .
Consider another example in which a lean design of n = 7 runs is needed and

all insignificant quadratic effects are removed before linear effects. Table 5 shows
that the largest D-efficiency 0.901 is attained when the upper-left 7 x 7 extended
design matrix derived from B(18) is chosen. The extended design matrix XB{7)
derived from B(18) is given by

[XB(7) derived from B(18)]
_£0 Xl X2 X3 Xj Z 5 X6

T 1 -1 1 0 -1 -1
1 0 10-1-11
1-10 1 1 0 1
1 1 1 - 1 1 0 0
1 -1 -1 -1 -1 0 -1
1 1 0 1-110
10 1 1 0 0-1

This design can be used for estimation of all the coefficients (3's in the model
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E[y] = /30x0 + /3izi + 02x2 + f33x3 + /34x4 + Psxs + /36x6,

where xo = 1.
If a lean design of n = 8 runs is needed and all insignificant quadratic effects

are removed before linear effects. Table 5 shows that the largest £>-efficiency 0.924
is attained when the upper-left 8 x 8 extended design matrix derived from B(9)
is chosen. The extended design matrix XB(&) derived form B(9) is given by

[XB(8) derived from B(9)]
xplxi x2 x3 x4 |(3zi - 2) (3xj - 2) (3x3 - 2)
T - i l - i o I I i

1 - 1 0 1 1 1 -2 1
1 1 0 - 1 - 1 1 -2 1
1 - 1 - 1 0 - 1 1 1 -2
1 0 - 1 - 1 1 -2 1 1
1 0 1 1 - 1 - 2 1 1
1 1 1 0 1 1 1 -2
1 1 - 1 1 0 1 1 1

This design can be used for estimation of all the coefficients /3's in the model

E[y] =/3oxo+(3ix1+(32X2+/33X3+p4X4+/3ii(3x21-2)+f322{3xl-2)+f333(3xl-2),

where io = l.

5 Conclusion

This article is concerned with forming 2-level and 3-level optimal OA's for lean
designs for experiments. The motivation for doing this is that the number of runs
allowed in an actual experiment may not be equal to the number of rows speci-
fied in an OA. The principle of construction of optimal OA's is to exchange rows
and exchange columns of known OA's, so that the upper-left sub-matrices of the
extended design matrices generated from the optimal OA's will have large values
of determinant. For 3-level designs, two types of matrices A(n) and B(n) are con-
structed in this article, which deal with the two cases when we wish to remove
both the quadratic and linear effects of insignificant variables, and when we wish
to remove all insignificant quadratic effects before removing linear effects. Many
other scenarios are not included - for example, when the effects x\,x\,x2,x3,x\
are to be included and all other effects are insignificant. For such cases, individ-
ual optimal OA's can be constructed from numerical sercahing by first defining
specific extended design matrices from the initial OA.
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Quasi-Random Sampling for Estimation of
Integrals of Random Fields

Yingcai Su

Department of Mathematics, Southwest Missouri State University
(yis780fasmsu.edu)

Summary. The problem of interest is to estimate an integral (or the total) of a
random field from observations at a finite number of sampling points. The quality
of an estimator is measured by mean square error (MSE). Sampling points are
appropriately selected so that the resulting MSE is as close to zero as possible. In
this article, we begin by introducing the basic elements of estimation of integrals of
random fields, including a review of the number-theoretic method. We then show
how the number-theoretic method is related to the design of sampling points
along with the sample mean estimator.

Key words: Random field, integral of random field, spatial average, sampling
design, extreme discrepancy, mean square discrepancy, spatial statistics.
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1 Introduction

Consider a random field X(t) on the d-dimensional unit cube Cd = [0, l]d with
mean/(t) = EX(t) and covariance R(t,s) = E[(X(t)-f(t))(X(s) - /(s))]. The
random field is sampled at a number of n sampling points Tn = {ti,n}"=1 C Cd.
Denote the observations of X at Tn by X'Tn = (X(ti,n), . . . , X{tn,n))- Here,
observations are not only coordinate-referenced (time-referenced when d = 1 and
geo-referenced when d = 2,3) but also correlated. On the basis of observations
Xrn, the aim is to estimate the integral

Contemporary Multivariate Analysis and Experimental Design—In Honor Celebration of Pro-
fessor Kai-Tai Fang's 65th birthday. Edited by Jianqing Fan and Gang Li. The World Scientific
Publisher, 2005.
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I{X) = / X(t)dt
Jcd

of X over Cd. The performance of estimation is measured by mean square error
(MSE). Sampling points Tn are designed in such a way that the MSE is as close
to zero as possible.

The integral of a random field over a region is an important summarizing
quantity of the random field, which represents the spatial total of the random field
in the region. For instance, it represents the total area precipitation in hydrology,
the total amount of acid concentration in the environmental science and the total
reserve of a certain metal deposit within a region in the mining industry. The
integral divided by the area or the volume of the region is the spatial average of the
random field. Other types of statistical inferences concerning a random field can
be found in Bras feRodriguez-Iturbe (1985), Cressie (1993), Christakos (1992) and
Journel & Huijbregts (1978). One can find discussions of various technical aspects
of estimation of integrals of random processes and random fields in Cambanis
(1985), Matern (1986), Stein (1999) and Ylvisaker (1975).

It is a common practice to use a linear estimator, a linear combination of
observations, each term of which is a product of a coefficient and an observation.
Linear estimators range from the optimal linear estimator to the sample mean
estimator, in accordance with available statistical features of the random field.
The optimal linear estimator requires the mean / to be known up to a regression
form and the precise knowledge of the covariance R. The sample mean estimator
is the simplest linear estimator and relatively nonparametric in the sense that its
coefficients do not depend on the mean and the covariance.

Denote by MSE(Tn) the mean square error of an estimator constructed from
observations Xrn- A minimizer T£ of MSE(Tn) constitutes an optimal sampling
design, namely, MSE(T£) = infrn MSE(Tn), where the infinimum is taken over
all possible sampling designs of size n. A sampling design T£ is asymptotically
optimal if and only if

MSE{T*) x MSE(T°),

where and throughout, an x bn means that an/ bn —* 1, as n —y oo. That is, an
asymptotically optimal design T* minimizes the MSE as the sample size tends to
infinity.

A widely discussed sampling method in one-dimension is the regular sampling,
which takes the percentiles of a properly chosen density as sampling points. Reg-
ular sampling designs are asymptotically optimal, as shown in Sacks & Ylvisaker
(1966). However, regular sampling designs do not have a direct extension to higher
(d > 2) dimensions. The simplest sampling design in higher dimensions is the
product design which selects each coordinate of sampling points separately, but
it has a rather poor convergent rate, as indicated by the work in Ylvisaker (1975).
For prediction of isotropic random fields, a particular piecewise regular sampling
design is used in Su (1997), in which the region C2 is tessellated into piecewise
regular hexagons or rhombi and the centers of these hexagons or rhombi are taken
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to be a design of sampling points. The sampling design constructed this way is
asymptotically optimal for a nonlinear type of predictor. It is generally not an
easy task to characterize optimal or asymptotically optimal sampling designs in
higher dimensions, which has baffled researchers for years.

The number-theoretic method is a rule to generate uniformly distributed point
sets on Cd. The quality of uniformity is measured by extreme discrepancy or mean
square discrepancy. The number-theoretic method is extensively used in Fang &
Wang (1994) to tackle a variety of statistical computation and inference problems,
including the design of experiments. In this article, the approach in Fang & Wang
(1994) is extended to the problem of estimation of integrals of random fields. Our
discussions are also motivated by the work in Wozniakowski (1991), though it
is in a different setup. Hereinafter, a design of sampling points produced by the
number-theoretic method is called a quasi-random sampling design.

2 Quasi-Random Sampling Designs

There are two kinds of point sets that are constructed in order to minimize the
discrepancy: finite point sets and infinite point sequences. A finite point set is of
single-stage in nature while an infinite point sequence has the stepwise feature. A
finite point set is of the form Tn = {tin}"—! while an infinite point sequence Tn

= {t;}"=1 can be viewed as the set of the first n points truncated from an infinite
sequence {t i}^.1.

For a point set Tn and u e Cd, denote by Tn(u) the number of points in Tn

that fall in the box [0, u] = [0,ui] x . . . x [O,Wd]. Then Tn(u)/n is the proportion
of points of Tn that are in [0, u]. The discrepancy function firn (u) defined on Cd

by

MTri(u) = ^ M - n « r , u e C d , (l)
T = l

measures the local discrepancy at u of uniformity of the distribution of Tn. The
overall degree of discrepancy of uniformity of Tn is quantified either by the ex-
treme discrepancy D(Tn) = supu€C<j |/iTn(u)| or by the rooted mean square dis-
crepancy L2(Tn,dF) — {Jcd ^7-ii(u)dF(u)}1/2, where F is a probability distribu-
tion function on Cd. It is trivial to see that L2(Tn, dF) < D(Tn). Thus an upper
bound for D(Tn) is also for L2(Tn,dF) and a lower bound for L2(Tn,dF) also
holds for D(Tn). A thorough survey of facts concerning extreme discrepancy and
mean square discrepancy is given in Fang & Wang (1994), Niederreiter (1978)
and Niederreiter (1992).

The convergent rate of infrn D(Tn) as well as constructions of a point set
to achieve such a rate remains undecided. But it is widely believed that the
convergent rate of infrn D(Tn) is in the order of (logn)^"1^/^ for finite point sets,
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while in the order of (log n) /n for infinite point sequences. Halton sequences and
Hammersley point sets are such point sets that achieve the conjectured convergent
rates, respectively, as shown in Niederreiter (1992).

2.1 Halton Sequences

Let p > 2 be an integer, and then every natural number i can be uniquely ex-
panded into a digit representation in base p: i = J^^'o aj(^)PJ > where the integers
0 < a,j(i) < p and Mi < oo. The radical-inverse function <rp(-) in base p is defined
on all natural numbers by

Mi

°p(i) = ^2aj(i)p~]~\
j=0

Now, let pi,... ,pd be d different prime numbers, the set of points {hij^j defined
by

hi = {apl(i),...,<rPd(i))

is called a Halton sequence of points in the bases pi,... ,pd- The extreme discrep-
ancy of a Halton sequence is in the order of (log n) /n.

2.2 Hammersley Point Sets

Let p\,... ,pd-i be d — 1 different prime numbers, the set of points {hi}™=1 defined
by

hi = {(i- l)/n,<rpi(i),... .(Tp^^i))
is called a Hammersley point set in the bases pi, • • • , Pd- I • Hammersley point sets
and Halton sequences differ only in the first component of points. However, Ham-
mersley point sets are finite point sets. The extreme discrepancy of Hammersley
point sets is in the order of (logn)d~1/n.

2.3 Modified Hammersley Point Sets

A modified version of Hammersley point sets is given in Fang & Wang (1994),
in which the first components in a set of n points are {(2i — l)/(2n)}"=i. The
modified Hammersley point sets {hj}7=i take the form

hi = ((2i-l)/(2n),(rpl(i),...,<7Pd_1(i)).

Asymptotic properties of the modified Hammersley point sets are not available.
However in one-dimension, the point set {(2i — l)/(2n)}"=1 minimizes both ex-
treme discrepancy and mean square discrepancy, as shown in Niederreiter (1992).
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It is called a median sampling design in Cambanis (1985), and it outperforms
other periodic sampling designs for a variety of inference problems concerning a
time series.

For finite point sets, the results in Roth (1980) together with the continuity
of L,2(Tn,dF) in Tn suggest that there is a constant c(d, F) such that

inf L22(Tn,dF) x c(d,F)[(logn)d-1/n2], (2)

where c{d, F) is a constant that depends on the dimension d and possibly also on
F. The optimal constant c(d, F) is known only in one dimension: c(l, F) = 1/12.
If the unconfirmed rate (lognpd~1'/n of D(Tn) is true for finite point sets, then
the limiting equation (2) implies that D(Tn) has not only a larger magnitude but
also a slower convergent rate than L,2(Tn,dF) (by a factor of (logn)^"1'/2).

Next we analyze the MSE of estimation of integrals of random fields with
the quasi-random sampling design, which is done for the case where the mean
/ is known or equivalently equals to zero and for the case where / is unknown,
respectively.

3 Random Fields with Mean Zero

The sample mean estimator is I(X,Tn) = ̂ 21=1X(ti,n) / n - l'n XTn / n, where
l'n = (1, . . . , 1) is the 1 x n unit vector, and its MSE is MSE(Tn) = E[I(X, Tn)
- i(x)}2.

Hereinafter, g stands for a function on Cd defined by g(t) = JcdR(t, s)ds and
o\ = Jcdg(t)dt = JcdJcdR(t,s)dtds for the integrated value of g over Cd. When
/(t) = 0, the mean square error of I(X, Tn) is equal to the variance of I(X, Tn),
which can be written as

Var(Tn) = o\- 2l'ngTn/n + l'nRTnln/n2, (3)

where g'Tn = (</(ti,n), . . . , <?(tnjn)) is the vector of values of the function g at Tn

and Rrn = (R{ti,n,tj,n))nxn is the variance-covariance matrix of Xrn-

We first establish a connection between Var(Tn) and discrepancy of Tn. To
do so, we need to introduce Riemann - Stieltjes integrals of functions on Cd x Cd

with respect to R.

Let r m = {A,m, . . . , r m i m } be a partition of Cd into a number of m —
I1T=I mr d-dimensional parallelepipeds (parallel to the axes): ri ,m = [a}1, a}1+1] x
• • • x [add, add+1], where 0 < iT < mT - 1, T = 1 , . . . , d and 0 = al < a\ < ... <
4 r = 1- Let Fmi = {A? m / , . . . , rm,,m,} be another partition of Cd into a number
of m' = Ylt=i mT parallelepipeds (parallel to the axes): rjiTn> = [b^, 6}1+i] x • • • x
lb1d>b1d+il w h e r e ° < > < m'T-l, T = 1 , . . . , d and 0 = 65 < b\ < ... < 6 ^ = 1.
Denote by
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AiAR) = 5D(- i ) '* ( ( t i , • • •>*-). («i. • • •' s<<))
the assigned value of R to the parallelepiped ./~ijm x .T,-jm', where the sum is taken
over all tT = ajr or aJT+1, sT = b]T or 6JT+1 and 6 is the sum of the number of
tT which are aJT+1 and the number of sT which are 6JT+i- When d = 1, dropping
the superscript 1 from a] and b), Aij (R) becomes

Aitj(R) = R(ai+1,bj+i) - Rfai+i,^) - R(a.i,bj+1) + R(a.i,bj).

The total variation of R on Cd x Cd, denoted by V(R; Cd x Cd), is denned by

V(R;Cd x Cd) = supJ2\Ai.i(R)l

where the supreme is taken over all m and m' and all possible parallelepiped
subdivisions Fm and Fmi. The function R is of bounded variation on Cd x Cd if
and only if V(R; Cd x Cd) < oo.

For a function / on Cd x Cd, s* € ri ,m and s* G •T,,m', form a sum
]Ci|j/(s*,sJ),Ai,j(.R). The Riemann - Stieltjes integral of / on Cd x Cd with
respect to R is defined as _^_

[ [ f(t,s)d2R(i~,s)= lim ^ / ( s ^ s * ) ^ - ^ ) ,

where 5m,mi is the width of the longest side among all parallelepipeds in rm and
rml. It is straightforward to see that

\[ [ f(t,s)d2R(t,s) < sup |/(u,v)| V(R;CdxCd). (4)
\JcdJcd (u,v)€CxC

Let Bl = {t S Cd : t = ( 1 , . . . ,t fc,..., 1)}, 1 < fc < d be the (̂ ) one-
dimensional face-regions of Cd, B\t = {t G Cd : t = ( 1 , . . . , tk, ..., tt, ..., 1)},
l<k^£<dbe the (d) two-dimensional face-regions of Cd, ..., and Bd~x d =
{t G Cd : t = (l , t 2 ) . . . ,* , , )}, . . . , Bf,:1,^! = {t E C " : t = (h,... ,td-u 1)} be
the (d^j) (d — l)-dimensional face-regions oi Cd.

Denote by B the collection of all these (d) + ... + {J_ x) = 2d - 2 face-regions
of Cd. For S ' ,B" € B, the total variation V(R;B' x B") of the restriction of
R to B' x B" and the Riemann - Stieltjes integral of a function / on B' x B",
with respect to the restriction of R, are defined similarly. We will make reference
to the projection, denoted by T'n, of Tn onto B', and also to the discrepancy
function fir' (•) of the point set T'n on £' , which is defined in a similar manner
to fi as in (1). The projection of a Halton sequence (a Hammersley point set)
onto B' G B is still a Halton sequence (a Hammersley point set) in B'. It is well
known that marginal distributions of an uniformly distributed random point set
are still uniformly distributed. Thus, it is reasonable to assume that a similar
property still holds for a low discrepancy point set, that is, the projection T'n of
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a low discrepancy point set Tn onto B' shall have a low discrepancy as well. Now
we state the following results.

Theorem 1. Suppose that R is of bounded variation on Cd x Cd and I(X) is
estimated by I(X,Tn), then

Var(Tn)= [ [ fiTn(t)fiTn(s)d2R{t,S) (5)
Jcd JC

+ E / / /*7v(a)/i3v(b)d2fl(a,b)
B£BJBJB

+ E (-1)""' / / ^(aW^(b)d2.R(a,b),
B, / f l , , JB> JB"

where T'n and T^ are the respective projections of Tn onto B' and B", a =
(ai , . . . , aj.) and b = (6i, . . . , bj) with Oi = U or\ and b, = Sj or 1, 0 is the number
of ai and bi which are 1 and the second summation is over all B' ̂  B" 6 B.

The proof of the theorem is given in the section of Proofs. With the help of
(4), an estimate on the variance Var(Tn) can be immediately obtained from the
theorem.

Corollary 1. For the same setup as in the theorem,

Var(Tn) < V(R;Cd x Cd)D2{Tn) + J^ V(R;Bx B)D2{T'n)
BeB

+ ^ V(R;B'XB")D(T^)D(T:).
B'^tB"

It follows from the corollary that if Tn is a Halton sequence,

d

Var(Tn) < 5>fc[(logn)Vn]2 + £cM[(logn)fc+7ri2],
fc=i k^te

where Ck,Ck,e are constants, and thus Var(Tn) is of the order [(logra)d /n]2.
Similarly, for a Hammersley point set Tn, Var(Tn) is of the order [(logn)d~1

/n] . In one-dimension, the equality (5) becomes

Var(Tn)= f f HTn{t)»Tn{s)d2R(t,s).
Jo Jo

When d = 2, it is

Var(Tn) = / / HTAt)»TJS)d2R(t,s) (6)
Jo?Jci
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+ / M^(tiW'(t2)d2i?(t,(l,l))+ / M7"'(si)Mr''(s2)d2JR((l,l),s)
Jc2 Jc? "

+ 2 / HT>(ti)vT"(s2)d2R((t1,l),(l,s2))-2[ [
Jc2 Jc* Jo

tlTJt)»T»(S2)d2R(t,(l,S2))-2[ [ /«TA(ti)/iTB(s)d2ii((t1,l),8))

Jo Jc2

where T'n and T% are the projections of Tn onto the horizontal axis and the vertical
axis, respectively.

As an example, consider a random field with mean zero and a particular
covariance

/•minfti.si) rmin(tdlsd)

Rd(t,s)= / . . . / 0(u)du,
Jo Jo

where <j> is a positive continuous function on Cd. It is elementary calculus to verify
that when d = 1, the variance of the sample mean is

/•1

Var(Tn)= / f?Tn{u)4>{u)du ,

and the set of points Tn = {{2i - l)/(2n)}"=1 minimizes Var(Tn). When d = 2

Var{Tn) = / [A«T' (UI) + A*r"(u2) - MTn(u)]2 </>(u)du.

Substituting Tn = {t i j n}"= 1 by Sn = {si,n}"=i with Si?n = 1 — ti,n, then it
is verified that Var(Sn) = J c 2 A'ln(u)</)(1 — u)du. It just takes some extra but
similar efforts to verify that the same equation holds in every d-dimension for
covariance Rd, namely,

Var(Sn)= f j 4 , ( u ) 0 ( l - u ) d u , (7)
Jcd

which together with (2) implies that infTrv Var(Tn) x c(d, <j>) [(log nf'1/n2},
where c(d, 4>) is a constant depending on d and <j>.

4 Random Fields with Unknown Mean

Here the mean function / ( t ) = EX(t) is unknown but it is assumed to have par-
allel smoothness to functions R(t, •), t g Cd, that is, it belongs to the reproducing
kernel Hilbert space generated by the covariance R.

Write the random field X as

*(t) = /(t)+£(t), tecd,



QUASI-RANDOM SAMPLING FOR ESTIMATION OF INTEGRALS OF RANDOM FIELDS 265

where £(t) are random errors with mean zero and covariance R(t, s) = i?[£(t)£(s)].
In addition to the notations grn and Rrn introduced in the preceding section,
put / r n = ( / ( t i i n ) , . . . , f(tnzn)) for the values of / at Tn. Then the mean square
error can be written as

MSE(Tn) = Bias2(Tn) + Var(Tn),

where Var(Tn) is as in (3), Bias(Tn) = l'nfTn/n - / ( / ) and / ( / ) = Jcd /(t)dt.

Let H(£) be the linear space of the random field £, which is the linear span
of the random variables £(t), t € Cd. That is, each random variable in H(£) is
either a finite linear combination of random variables £(t),t € Cd or a mean
square limit of a sequence of such finite linear combinations. The reproducing
kernel Hilbert space, denoted by H(.R), is the Hilbert space of all functions h :
Cd i-+ (-00,00) of the form h(t) = E[Z(i)rj\,t eCd,r] 6 H(£)- The linear space
H(£) and the reproducing kernel Hilbert space H(R) are isomorphic under the
correspondence £(t) <—> R(t, •). Thus the inner product in H(R) is provided by
< hi,h2 >R= E[THTH], where ht(t) = E[$(t)in], rji e H(£), i = 1,2, and the
norm of hi in H(R) is ||/ii||fi = El^2rjf. More properties concerning a reproducing
kernel Hilbert space can be found in Aronszajn (1950) and Parzen (1967).

In particular the mean square integral /(£) = Jcd f (t)dt belongs to H(£). The
function g(t) = Jcd R(t,s)ds = E[£(t)I(Z)} is a member of H(R) and \\g\\% =
EI2(0 = A-

There is a connection between the problem of estimating the mean square
integral /(£) and the problem of approximating a definite integral of functions
in H(R). For a fixed Tn, suppose that /(£) is estimated by l'n^Tn/n, where £'Tn

= (S(ti,n), • • •, £(tn,n)), and the definite integral I{h) = Jcd h(t)dt, h e H(R),
is approximated by the quadrature formula l'nhTn/n, where h'Tn = (/»(ti,n), •. •,
h(tn,n)), then the variance of l'n^Tn/n is

Var{Tn)= sup [l'nhTn/n - I(h)}2,
\\h\\R<l

where the supreme is taken over all h e H(/J) with ||/I||R < 1. Since the mean
/ is in E(R), the function h* = //| |/ | |je € H(R) and \\h*\\R = 1. The squared
error of approximation of the definite integral I(h") by use of a quadrature formula
in^T,,/™ with sampling points (or nodes) Tn is bounded above by Var(Tn). Thus

Bias2(Tn) = ||/||2fl [l'nh*TJn - I{h*)\2 < \\ffR Var(Tn),

which yields the following proposition.

Proposition 1. When the mean f is in H(R) and the integral I{X) is estimated
by the sample mean estimator I(X,Tn), the following inequality holds

MSE(Tn)<(\\f\\2R + l)Var(Tn),

where \\f\\R is the norm of f in H(R) and Var(Tn) is as in (3).
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It should be pointed out that the inequality as in the proposition is true for any
linear estimator. But as far as this article concerns, it is stated just for the sample
mean estimator. The variance of l'n^Tn/n in estimation of /(£) is equal to the
supreme of the squared error of approximation of integrals of all functions in H(R)
while the squared bias is the squared error of approximation of the integral of
one particular function / in H(i?). Thus when the mean function is unknown but
belongs to the reproducing kernel Hilbert space of R, it is reasonable to ignore
the mean (take it to be zero) and just search for Tn to minimize Var(Tn). The
following corollary follows from Theorem 1 and the proposition.

Corollary 2. Under the setup as in the theorem, if the mean f of X is unknown
but belongs to H(R) and I{X) is estimated by T(X,Tn), the following inequality
holds

MSE(Tn)<(\\f\\2R + l)\ f [ nTJt)nTn(s)d2R(t,S)
lJcdJcd

+ E (-1)""9/ / /^(a)/ir»(b)d2*(a,b)[,
B,+B,, JB'JB" J

where \\J\\R is the norm of f in H(R).

5 Proofs

5.1 Proof of Theorem 1

For simplicity, we prove Theorem 1 in d = 2 dimension. The proofs of cases with
d > 3 can be done similarly.

Denote the projection of Tn onto the x-axis by T'n = {£i}£L:i, where 0 < t\ <
... < tm < 1, and onto the y-axis by T%. Write Tn as Tn = U™!{(£*,Si,-,)}"^,
where m is the number of points in Tn with the x-coordinate U. Clearly, n\ +
. . . + nm = n. Then the sample mean estimator can be written as I(X,Tn) =

£ £ i £ ? i i * ( t i > *.;•)/"•

Note that I(X) = Jo Jo X(t,s) dtds. By use of the technique of integration
by parts first with respect to s then to t, we obtain

/ / X(t, s)dtds = X(l, 1) - / t dtX(t, 1)
Jo Jo Jo

- / sdsX(l,s)+ / / tsd2X(t,s), (8)
./o Jo Jo
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where the differentials dt and ds are with respect to t and s, respectively, and the
last term is defined as the mean square Riemann - Stieltjes integral with respect
to X.

For i = 1,. . . , m, put Tit7l = {si,j}™L1. It is elementary calculus to check that
for a function / of bounded variation on [0,1]

£>(*,i) = "i[/(i) - /V«(*W)1.

where prt n(t) is the proportion of points in Ti,n that falls in the interval [0,i\.
For each i — 1, . . . , m, substituting / by X(ti, •) in the equation above, it follows
that

J2x(U,si,j)=ni{X(ti,l)- / pT^(,s)dsX{tus)].

Observe that for each s € [0,1], X(U, s) = X(l, s) - ^ dtX(t, s), which implies

X(U,1)=X(1,1)- [ dX(t,l), dsX(U,s) = dsX{l,s)~ f d2X(t,s).
Jti Jti

Thus

y\X{tuSi,j) = ni{X(l,l)- / dX(t,l)- pTln(s)dsX(l,s)
j=1 Jti Jo

+ 11 PTin(s)d2X(t,s),
Jti Jo

and

I(X, Tn) = X(l, 1) - JT f m dX(t, l)/n
i=i Jti

rl "i m - ! -x

- ^2nipritAB)d.X(l,8)/n + J2 / / niPTi Js)d2X(t,s)/n
Jo i=1 i=1 Jti Jo

= X(1 ,1) - / PK{t)dX(t,l)- I pT,,(s)dX(l,s)+ [ pTn(t,s)d2X(t,s),
Jo Jo Jc2

which together with (8) produces

I(X) - I(X,Tn) = - / LXTk{i)dX{t,l) - / MT»(s)dX(l,s)
Jo Jo

+ f ixTn(t<s)d2X(t,s), (9)
Jc2

Squaring both sides of (9) and then taking expectation will produce the equation
(5). This completes the proof of Theorem 1.
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Summary. Sensitivity analysis plays an important role to help engineers gain
knowledge of complex model behaviors and make informed decisions regarding
where to spend engineering effort. In design under uncertainty, probabilistic sen-
sitivity analysis (PSA) is performed to quantify the impact of uncertainties in
random variables on the uncertainty in model outputs. One of the most challeng-
ing issues for PSA is the intensive computational demand for assessing the impact
of probabilistic variations. An efficient approach to PSA is presented in this ar-
ticle. Our approach employs the Kolmogorov-Smirnov (KS) distance to quantify
the importance of input variables. The saddlepoint approximation approach is
introduced to improve the efficiency of generating cumulative distribution func-
tions (CDFs) required for the evaluation of the KS distance. To further improve
efficiency, optimized uniform samples are used to replace the direct Monte Carlo
simulations for determining the cumulant generating function (CGF) in saddle-
point approximation. Efficient construction of a uniform design necessary to gen-
erate the "best" samples in a multidimensional space is presented. Our approach
is illustrated with a structural design problem. It has the potential to be the most
beneficial for high dimensional engineering design problems that involve expensive
computer simulations.

Contemporary Multivariate Analysis and Experimental Design—In Honor Celebration of Pro-
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tance, saddlepoint approximation, latin hypercube sampling, monte carlo, low
discrepancy, uniform design.

1 Introduction

In the past few years, with the advance of computing technologies and numerical
approaches, scientific and engineering disciplines have experienced tremendous
growth in the use of sophisticated computer models to assist scientific investiga-
tion and engineering analysis and design. Engineers and scientists make use of the
models to perform various tasks and decision-making by interrogating the mod-
els to predict behaviors of systems under different input variable settings. The
typical input-output relationship represented by a computer model is expressed
as follows.

y = /(x), (l)

where x 6 R are input variables, y is an output or response variable representing
product or system performance, and /(-)is the relationship function between in-
puts and the output. In complex engineering applications, /(•) typically does not
have an analytic formula. In product development such as automobile, sophisti-
cated engineering computer models are eminent. These models are important for
many reasons such as to guide significant upfront design decision making prior to
the availability of physical prototypes, to substitute physical testing that can be
too expensive, time consuming, harmful, or even, in some situations, prohibitive,
and to gain insights into certain phenomena which may be lacking from physical
experiments due to measurement system limitations or their practicality.

As engineering design process becomes more complex because of ever increas-
ing customer expectation toward product quality, deductive approach in design
using physics-based models alone is inadequate, and variability information must
be integrated into the decision process. The seminal work by Taguchi (1993) has
been very influential in introducing the concept of robust design for which a prod-
uct or system must be designed by choosing the right setting of "control" variables
(variables that engineers choose to control) such that the "ideal function" is in-
sensitive to noise factors (i.e., variations due to piece-to-piece, degradation over
time, environment, load, system interactions). Complementary to the robust de-
sign view, the product or system must be designed with high reliability (i.e., low
probability of failure). The later view is the subject in reliability-based design
discipline (Du, Sudjianto & Chen (2004)). The needs to address both robustness
and reliability design necessitate the integration of probabilistic analysis with
deterministic computer models. In this framework, the inputs to the computer
models are treated as random variables with assumed distributions.
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The interest in the probabilistic analysis approach is to understand the prob-
abilistic characteristics (e.g., mean, \xy, standard deviation, ay, or probability
distribution, py) of the response variable, y, due to the stochastic nature of in-
put variables, x. Unfortunately, in most practical situations, the above needs are
not easy to meet because stochastic information of input variables is often im-
precise, and acquiring such information can be a very expensive proposition. To
remedy this problem, the sensitivity analysis approach is employed with intention
to rank order or to assess the importance of random input variables among each
other. Through this analysis - though the stochastic information of input vari-
able may be imprecise, and thus the distribution of the response variability may
not be fully trustworthy - one can still acquire useful information for engineering
decision making such as to focus the effort to reduce the variation due to impor-
tant variables, to gather more precise stochastic information for the important
variables, or to eliminate insignificant variables thus to simplify further analysis.

Because the inputs to computer models can be numerous, probabilistic sen-
sitivity analysis involves various integral analyses in a high dimensional space.
Unfortunately, computer models in engineering such as computational fluid dy-
namics and finite element models are usually computationally intensive. Thus,
exercising the model by means of Monte Carlo simulation is not practical and
often prohibitive. Therefore, a computationally more efficient technique that re-
quires much fewer number of samples than that of Monte Carlo technique is
needed. To this end, we present an approximation approach using the Saddle-
point Approximation in combination with uniform design to reduce the sample
size yet maintaining a reasonable accuracy. This paper has the following flow. Sec-
tion 2 introduces the concepts of probabilistic design and sensitivity analysis. The
saddlepoint approximation technique required to calculate the sensitivity analy-
sis is discussed in Section 3. Efficient construction of uniform design necessary to
generate the "best" samples to calculate the saddlepoint approximation is pre-
sented in Section 4. Section 5 illustrates the use of our method for an engineering
application. Finally, the conclusion is presented in Section 6.

2 Probabilistic Design and Sensitivity Analysis

In probabilistic design, the effects of input variability on product performance
need to be addressed through rigorous variability analysis to prevent or to reduce
the probability of failure occurrence or performance variation that leads to qual-
ity losses. The major task of probabilistic analysis is to obtain the probability
distribution of the performance function (response) y given the distributions of
the vector of random input variables x. For a given performance target require-
ment, y < Y, the probability of the performance to meet the requirement can be
calculated by a multi-dimensional integral,
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P(y<Y) = J ...y"p(x)dx , (2)
/(x)<y

where p (x) is the joint probability density function of random variables x. The
equality at the integration boundary /(x) = Y is called the limit-state, separating
between "acceptable" and "unacceptable" (or safe and failure) regions of input
variable space. Obviously, due to the multi-dimensional integration and the non-
linear limit-state, the solution to Eq. (2) is analytically or numerically difficult
to obtain; thus, Monte Carlo integration technique often becomes the method of
choice. The solution is given by

P{y < Y) = A £/(!,« < Y) where I * *** ~Y , (3)
71 i=\ I 0 otherwise

where yi is obtained by evaluating /(x,) where Xi = {x\, x\,.. ., xf} are indepen-
dent and identical distributions (i.i.d) random samples, and d is the dimension or
the number of input random variables.

In robust design (see Chen, Allen, Mistree & Tsui (1996)), engineers would
like to minimize the variation of y which can be represented by a dispersion
measure such as standard deviation, ay, or quantile difference (Du, Sudjianto &
Chen (2004)), 5y = y1'" — ya, where a is a prespecified quantile (see Figure
1) with ya = P~l(a) and y^~a = P - 1 ( l - a). The quantile difference measure
may be more prefereable than the standard deviation when the distribution of y
consists of signficant higher moments (e.g., skewness and kurtosis).

The ability to calculate the distribution of y is needed for another important
focus of probabilistic design: probabilistic sensitivity analysis (PSA) to quantify
the impact of variability of input random variables on the variability of a model
output. Results from PSA can be crucial to assist engineering design decisions,
such as to help reduce the dimension of a design problem by identifying the proba-
bilistically insignificant factors; to check the validity of a model structure and the
assumptions made on the probability distributions of random inputs; to obtain in-
sights about the design space and the probabilistic behavior of a model response;
and to investigate the potential improvement on a probabilistic response by re-
ducing the uncertainty in random inputs (Saltelli, Chan & Scott (2000)). If the
interest is to study the effects of input variance on the output variance, variance-
based method can be used to quantify the importance of input variables to an
output (Saltelli, Chan & Scott (2000)). The variance-based method, however, will
not be sufficient when the problem involves performance distributions with higher
moments (Liu, Chen & Sudjianto (2004)). In this situation, sensitivity analysis
must include complete stochastic information of the distribution. Considering this
need, in the following discussion, we employ Kolmogorov-Smirnov (KS) distance
to quantify the importance of an input variable.
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Fig. 1. Measure of response variability.

The KS distance, CLKS, measures the difference between two cumulative dis-
tribution functions (CDF), Pi and Pi, as follows,

dKs (Pi, P2) = sup |Pj (y) - P2(y)\, yeR. (4)
v

That is, the KS distance measures the maximum discrepancy between two dis-
tributions. In the context of sensitivity analysis, the KS distance can be used to
quantify the main and total effects (i.e., the effect of a variable including all its
interaction terms). The main effect of the jth variable, xj, can be calculated as
follows,

djKS (Po, p^ = sup|p0(y |x) - P, {y\xj)\, yeR, (5)

where Po (y |x) is the CDF of y by including all variability of input variables where
Pj (y |xJ )is the CDF of y including only the variability of the x3 and setting the
rest of variables to constant values (e.g., their mean values). The smaller the
value of d?KS, the closer Pj {y \x3 ) is to Po (y |x), and the more dominant the
variability of xJ is to define Po; therefore, the smaller the value of d?KS is, the
more important the variable is to the distribution of response variable. The total
effect of x3 including the effect of its interactions with other variables can be
calculated as,

d~i (Po, P~j) = sup |P0 (y |x) - P~j (y |x~> )| , y G R, (6)
v
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where x~j is the set of all variables excluding the variability of xJ(i.e., setting x?
to a constant value such as its mean) and correspondingly P^j (y |x~j) is the CDF
of y by excluding the variability of xJ. Thus, when x-* is the dominant variable
then by excluding it, the discrepancy between the two distributions will be larger.
In this case, the larger the d~3svalue, the more important xHs. Based on the KS
distance of the total effect, the importance of xJcan be ranked according to their
order of importance.

As discussed above, probabilistic analysis including the sensitivity analysis re-
quires numerous evaluations of /(x) to calculate the integral in (2). Note, however,
/(x) is represented by a complex computer model with nonlinear behavior and
expensive to compute. Because the evaluation of /(x) is expensive and P(y < Y)
is typically very large for a highly reliable product, Monte Carlo integration may
not be a practical alternative. This computation difficulty has led to the devel-
opment of various approximation methods using the linearization of limit state
(see Du, Sudjianto & Chen (2004)) which in some situations may not lead to
satisfactory results. In Section 3, we propose an alternative method to the above
problem.

3 Saddlepoint Approximation for Probabilistic
Analysis and Sensitivity Analysis

3.1 Review of Saddlepoint Approximation

The Saddlepoint Approximation was introduced for approximating the proba-
bility density function (PDF) by Daniels (1954). Since then, the research and
applications of Saddlepoint Approximations have vastly increased (e.g., Jensen
(1995)).

Given a random variable y variable with a density function p(y), then the
characteristic function of y is

£(t) = j eltyp(y)dy, (7)
— OO

where i = y/^T. The cumulant generating function (CGF) K(t) of y is defined as

K(t) = log [£(*)], (8)

where log is the natural logarithm. The PDF of y can be restored from K{t) by
the inverse Fourier transformation,
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+ OO +1OO

p{y) = h I e~^{t) dt = h I e[K(t)~tv]dt- w
— 00 — ioo

The key idea of obtaining the PDF of y is to accurately approximate the above
integral through the concept of saddlepoint approximation. Simple formulae to
calculate the PDF and CDF have been derived; consequently, their use is fairly
straightforward. Daniels (1954) used the exponential power series expansion to
estimate the integral in Eq. (9) as

»Ms*W'•""'•'"'••'• (10)
where K" (•) is the second derivative of the CGF, and ts is the saddlepoint, which
is the solution to the equation at the point of interest, Y.

K'{t) = Y, (11)

where K'(-) is the first derivate of the CGF. Lugannani and Rice (1980) provided
a very concise formula to approximate CDF,

P(y<Y)=4>(w) + <t>(w)^-^ , (12)

where <£(•) and 4> (•) are CDF and PDF of the standard normal distribution,
respectively,

ti; = sgn (t.) {2 [t.Y - K {ts)\}1'2 (13)

and

r " l 1 / 2
v = t.\2K (ts)j , (14)

where sgn(ts)= +1, -1, or 0, depending on whether ts is positive, negative or
zero.

The Saddlepoint Approximation has several excellent features: (1) It yields
extremely accurate probability estimation, especially in the tail area of a distri-
bution; (2) it requires only the process of finding one saddlepoint without any
integration; and (3) it provides estimations of the PDF and CDF simultaneously.
In the following subsections, we will discuss how to combine Saddlepoint Approx-
imations with simulation samples to conduct probabilistic sensitivity analysis.
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3.2 Estimation of CDF by Saddlepoint Approximations

As discussed in the preceding section, the use of Saddlepoint Approximation rests
on the ability to estimate the CGF of a general performance function y = / (x) . In
some situations, a proper approximation can be developed through a linearization
process to approximate the CGF (Du, Sudjianto & Chen (2004)). However, in
general, the empirical estimation of CGF using sample dataset may be necessary
as follows.

• Generate n samples for the d input random variables, X = {a;^},i =
1,2,... ,n;j = 1,2,... ,d. Various sampling techniques are available for this
purpose such as Monte Carlo random sample, Quasi Monte Carlo, lattice
points, Latin Hypercube Sampling (LHS), and uniform design (Fang and
Wang, 1994; Owen, 1997; Fang et al., 2000). The choice of sampling tech-
nique is crucial in probabilistic engineering design to achieve high accuracy
of cumulant estimation while employing only limited sample size because of
computationally expensive engineering models. In Section 4, we will discuss
this step with a greater depth.

• Acquire outputs by applying the sample dataset to the engineering computer
model. For the ith sample, x, = (x},x?,--- , xf) , the output of computer
model is yt = /(x*).

• Estimate cumulants of the response variable, y, based on the sample output.
The first four cumulants are

2

^ = "'s""1' 2 \ , (15)
_ 2sy-3nsis2+n s3 v '

K3 - n(n-l)(n-2)
_ -6sf + 12nsfS2-3n(n-l)s2-4n(n+l)sis3+n2(Ti+l)s4

K i ~ n(n-l)(n-2)(n-3)

where sT, r = 1, 2, 3,4, are the rth power sum from the sample of output

n

*•=£>[. (16)
i=l

The empirical CGF is calculated based on series expansions of powers of t

K{t) = logi(t) = E^7T- (17)
J = l J'

• Calculate the saddlepoint solution. Since the empirical CGF in Eq. (17) is in a
polynomial form, its first and second derivatives can be derived analytically.
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If the higher order terms (i.e., after the fourth cumulant) in Eq. (17) are
omitted, Eq. (11) is expressed as

K'(t) = Kl + J2^jfzTy=Y- (18)

Solving the above equation, we get the saddlepoint ts.Then the PDF and CDF
can be calculated using Eqs. (10) and (12),respectively.

4 Efficient Construction of Uniform Samples

The efficiency of the saddlepoint approximation approach (Section 3) can be im-
proved by a proper choice of sampling technique. In the following discussion we
review available sampling techniques and their computational efficiency. In partic-
ular, we employ a combination of Latin Hypercube Sampling (LHS) and low dis-
crepancy samples known as uniform design (Fang, Lin, Winker & Zhang (2000))
by optimizing the uniformity of samples in multidimensional space. Because the
optimization process to attain maximum uniformity is a difficult combinatorial
problem, we present an efficient heuristic algorithm as a solution alternative. Ad-
ditionally, we also propose an algorithm to efficiently calculate the uniformity
criterion.

4.1 Latin Hypercube and Low Discrepancy Sampling

The probabilistic sensitivity calculation by means of saddlepoint approximation
requires generation of i.i.d samples, X = { x j } , i = 1,2,... ,n;j = 1,2,.. .,d,
where each variable xj follows a cumulative distribution Gj. These samples can be
generated using Quantile-Quantile transformation from i.i.d samples, U = [u{)
uniformly distributed on [0, l ) d ,

x{ = GJ1 ( V ) . (19)

Writing the multiple integration required to calculate probabilistic sensitivity in
a canonical form yields,

/(/) = I /(x)dx. (20)
[O,l)d

The sample mean approximation to / ( / ) is given by



278 AGUS SUDJIANTO, XIAOPING DU AND WEI CHEN

/(/-^) = ̂ E/(^)- (21)

When Monte Carlo random sampling is employed, it is known that I — I is
unbiased (i.e., mean zero) and has asymptotic variance cr2/n, therefore the ran-

_i
dom sampling errors are O(n 2). McKay, Conover & Beckman (1979) introduced
the use of Latin Hypercube Sampling (LHS) for computer experiments where the
samples are

4 = ^ ^ (22)

or its median version

4 = 7 r j ( i ) - ° - 5 . (23)
Th

LHS stratifies each variable individually into equal intervals. Owen (1997) showed
that for finite samples, LHS is never worse than Monte Carlo random samples,

2

varLHs(i) < -^—r. (24)
V / Th J.

Koksma-Hlawka inequality gives an upper bound for the approximation error

/ (/) - / (/, X) I < D (X) VHK (/), (25)

where VHA-(/) is the variation of / in the sense of Hardy and Krause (Niederreiter
(1992)) and D(X.) is a measure of discrepancy or nonuniformity of the samples.
The measure of discrepancy that has been widely used in the Quasi Monte Carlo
theory and uniform design is the star Lp-discrepancy (Fang & Wang (1994)), i.e.,

D(X) = h\N^f^~Vol([0,,))\PdJ>\ (26)

where [0, x) is the interval [0,a;i) x • • • x [0,x<j), AT(X,[O,x)) is the number of
samples lies in [0, x), and Vol([0, x)) is the volume of [0, x). Instead of using ran-
dom samples, Quasi Monte Carlo uses deterministic sequence to generate samples
in such a way to minimize sample cluster and gaps appear in random sampling;
thus, minimizing the discrepancy. Nieiderreiter (1992) provided the asymptotic
convergence rate of Quasi Monte Carlo as O{n~l log(n)d-1). This bound, how-
ever quickly becomes larger than that of simple Monte Carlo when n is fixed and
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d is large, which is the case for engineering design applications involving expen-
sive to run computer models. For example, for n — 500, the Quasi Monte Carlo
bound is greater than that of Monte Carlo for d = 5. The empirical experience,
on the other hand, suggests that, in practice, the Quasi Monte Carlo provides
better accuracy than that of simple Monte Carlo. Recently, Papageorgiou (2003)
showed that the Quasi Monte Carlo samples converge at the rate of not worse
thanO(n-1" 2 lo8(")) with p >0 for integration over all reals. That is, independent
of the dimensionality of a problem, the Quasi Monte Carlo sampling is signifi-
cantly better than random sampling. Hickernell (1998) explained the weakness of
the Lp-discrepancy and proposed several alternatives, among which the centered
Z-2-discrepancy {CL2) is the most attractive (Fang, Lin, Winker & Zhang (2000)).

CL2(X)2 = ( | | ) 2 - I t fl (1 + \ \*ik - 0.5| - § \xik - 0.5|2)
1 = 1 fc = l (C^rjX

+ ? E E I l ( l + 5 I*** " 0.5| + \ \xjk - 0.5| - i \xik - xjk\)
i=lj=lk=l

A sample set, X, is called uniform if it has the minimum C7/2(X)2. For the
one-dimensional case, Fang, Ma & Winker (2002) showed that the sample set
with equidistant stratification (i.e., LHS) has the lowest discrepancy. For higher
dimensional case, Fang, Ma & Winker (2002) showed that LHS has better ex-
pected value of Ci/2(X) compared to that of Monte Carlo random samples:

E(CL2(XMC)f-E(CL2(XLHS)y = ( « ) " ^ ^ (i - 2 ^ 1 ) + o („-»).

(28)

The advantage of LHS is more dramatic when the sample size is small and the
dimension is large as shown in the figure below.

Combining the advantageous features of Quasi Monte Carlo and stratified
sampling such as LHS, in this paper, we pursue to optimize LHS with respect
to Ci2-discrepancy. That is, to arrive to optimal samples with LHS-type strati-
fication which are uniformly distributed in the entire space and not only in the
one-dimensional projection: the feature of uniform design (Fang, Lin, Winker
& Zhang (2000)). When sample size is large, one may employ lattice sampling
or digital nets to generate the best LHS design (Fang & Wang (1994)). How-
ever, when samples are expensive such as in our applications for computationally
expensive computer models, the aforementioned approaches may produce unsat-
isfactory results. For example, two-dimensional projection plots of sample sets
generated using Halton sequence and uniform design for n = 16 and d = 5 are
shown in Figure 3 below. Considering that the uniformity in lower dimensions (es-
pecially 2 or 3) is usually of the particular interest in engineering designs where
hierarchy principle is often applicable (i.e., the lower order interaction effects are
usually more important than the higher order interaction effects), the sample
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Fig. 2. Difference between the expected value of CZ,2-discrepancy of monte carlo
random sampling and LHS.

set generated using digital nets is inferior compared to that of uniform design.
Motivated by overcoming this problem, we employ an optimization approach to
search for LHS that minimizes (^-discrepancy. Searching the optimal uniform
designs, however, is a difficult optimization problem to solve. Several heuristic
combinatorial optimization approaches have been proposed. The computational
cost of the existing algorithms, e.g., the simulated annealing (SA) algorithm used
by Morris & Mitchell (1995), the columnwise-pairwise (CP) algorithm by Ye,
Li & Sudjianto (2000), and the threshold accepting (TA) algorithm adopted by
Fang, Ma & Winker (2002) for constructing optimal LHD, is generally high. (Ye,
Li & Sudjianto 2000) reported that generating an optimal 25x4 LHSs using CP
could take several hours on a Sun SPARC 20 workstation. For a design as large
as 100x10, the computational cost could be formidable. Motivated by reducing
this computational cost, an efficient algorithm for constructing optimal experi-
mental designs is developed and introduced in this section. This new algorithm
significantly improves the computational efficiency as it cuts the computation
time from hours to minutes and seconds. There are two major ideas behind this
algorithm (Jin, Chen & Sudjianto (2004)). One is on the use of an efficient global
optimal search algorithm, named as the enhanced stochastic evolutionary (ESE)
algorithm. The other is on the use of efficient methods for evaluating optimality
criteria. Some details of the algorithm and results from comparative studies are
provided in the following subsections.

4.2 Algorithm for Optimizing Uniformity

The strategy to construct uniform LHS is summarized as follows,

1. Start from a randomly chosen LHS, Xo;
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Fig. 3. Two-dimensional projections of samples for n = 16 and d = 5 generated
using (a) Halton sequence and (b) Uniform design.

2. Construct a new design (or a set of new designs) through columnwise opera-
tions on the current design;

3. Compute optimality criterion (e.g., the centered L2 discrepancy criterion)
value of the new design and decide whether to replace the current design
with the new one.

4. Repeat steps 2 and 3 until a stopping criterion is met.

The columnwise element-exchange operations are used in the step 2 of the
search to maintain the structure property of LHS. The element-exchange within
a column interchanges two distinct elements in a column and guarantees to re-
tain the LHS property. As shown in Figure 4 for a 5x4 LHS, after the element-
exchange, the balance property of the 2nd column is retained, and the sample is
still a LHS after the exchange.

1 ^ 4 0 E x c h a n S e t w 0 1 2 4 0
elements in the 1 .

3 4 0 3 second column 3 I ° I ° 3

2 1 ^ 3 4 N 2 1 3 4
4 1 0 1 1 2 I ) 4 4 1 2
0 3 2 1 0 3 2 1

Fig. 4. Element-exchange in a 5x4 LHS.

In step 3 of the search process, a new sample set, Xneu>, replaces the incum-
bent, X, if it leads to an improvement in terms of the criterion, i.e., CZ/2(Xneu>) <
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CL2(X). Otherwise, it will replace X with probability of p(T, CL2{Xnew),
CL2(X.)) where T is a "threshold" of acceptance parameter. Several search algo-
rithms have been applied to construct optimal design in the context of computer
experiments. Principally, they differ in the strategy of threshold acceptance of
p(.) and T as follow:

Column Pair-wise (CP) algorithm (Li & Wu (1997))

, n p W N N f 1 for CL2 ( X n e w ) - CL2 (X) < T where T = 0
p (T, CL2 (X n e w ) , CL2 (X)) = \ 2{ ' V '

I 0 otherwise

(29)

Threshold Acceptance (TA) algorithm (Winker & Fang (1997))

,,<T,CI,(X~).CMX))-(1 «-sM*-)-ci,W<7* , (30)
I 0 otherwise

where Tk is a "threshold" parameter, initially set to T° = T and will be mono-
tonically reduced by some schedule Tk = aT where a (0 < a < 1) is a constant.

Simulated Annealing (SA) algorithm(Morris & Mitchell (1995))

p (T, CL2 (Xnew) , CL2 (X)) = exp j - -L [CL2 (Xnew) - CL2 (X)] } ,

(31)

where Tk is also known as "temperature" parameter analogous to the physical
process of annealing of solids which initially set to T° = T and will be mono-
tonically reduced by some cooling scheduleT* = aT, where a ( 0 < a < l ) i s a
constant called cooling factor.

Enhanced Stochastic Evolutionary (ESE) algorithm(Jin, Chen & Sudjianto
(2004))

p ( T , C L 2 ( X n e w ) , C L 2 ( X ) ) =

{ 1 for CL2 ( X n e w ) < CL2 (X)

1 - Jjj- [CL2 (X n e w ) - CL2 (X)] for CL2 ( X n e w ) - CL2 (X) < Tk

0 otherwise
(32)
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where Tk is a "threshold" parameter, initially set to T° = T and will be reduced or
increased by some schedule Tk = aiT and Tk = T/a>2 where otj (0 < aj < 1, j =
1,2) are a chosen set of constants. The scheduling of the threshold value (reduced
or increased) is adaptively determined by the history of the search results. Among
the above strategies, the enhanced stochastic evolutionary (ESE) algorithm is the
algorithm we recommend. It is adapted from the stochastic evolutionary (SE)
algorithm (Saab & Rao (1991)). The algorithm uses a sophisticated combination
of warming schedule and cooling schedule to control the threshold so that the
algorithm can be self-adjusted during the search process. Details of the algorithm
implementation can be found in (Jin, Chen & Sudjianto (2004)).

4.3 Efficient Optimality Criterion Calculation

Let Z = {z^}be the centered design matrix of X, i.e., z{ = x{ — 0.5. Let C =
[cij]nxnbe a symmetric matrix, whose elements are:

( £ r h ( 2 + k f c i + Kfc- i ^ - ^ i ) i f i^i ,
<*i = { "I1 „ 2 (33)

£ II (1 + k'l) - I n (1 + \\£\ - h" ) otherwise.
^ fc=i k=i

Let
d

9i = U (1 + |zf |) (34)
fc=i

and

^=n(i+^kfci-^f2) (35)

d 1

^ o ^ + ^DP- l 2 ' ! ) . (36)

then,

cu = gi/n2 - 2hi/n. (37)

It can be proved easily that

c L 2 ( x ) 2 = ( H y + £ £ C i . . (38)
v ' i = l J = l

Prom Eq. (33)- Eq. (35), the computational complexity to calculate the C matrix
(and thus, CLa) is O(dn2). Note, however, that each updating operation using
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columnwise element-exchanges for generating a new sample set, only involves two
elements in the sample matrix. That is, with the element exchange operation,
xfx «-> Xj2, only elements in i\ and ii rows and i\ and i2 columns of C are
changed. Considering this situation, we seek a more efficient CL2 calculation
after an element exchange without recalculating the entire C matrix. For any
1 < j < nandj ^ 11,12, let

l(h,i2,k,j) = (2+ | 4 | + |̂ *| - | 4 - 4\)/(2+ | 4 | + \z$\ - | 4 - z$\),
(39)

then,

c'iii = c'jii = i{.^M,k,i)cm, (40)

and

C'i23 = C'ji2 ~ ci2ih(il,i2,k,j). (41)

Let a(ti,t2)fc) = (l + |4|)/(l + |4|)and 0(iut2,k) = (2 - |4|)/(2 - |4|),
then:

Qjij = a(ii,i2,k)gil/n2 - 2a(ii,i2ik)(3(ii,i2,k)hil/n, (42)

and

c'i2i2 = gi2/[n2a(ii,i2,k)\ -2hi2/[na(ii,i2,k)0(ii,i2,k)]. (43)

The new CL2 can be computed by:

lr*T2\' — r1!2 _i_ ' _L '
\yL,2) — O1J2 + Ctit! ~ ctlM 1 W2i2 ~ Ci2'2

n
+2 x ^ (qu- - chj + c'i2j - a2j). (44)

l<j<n,jY«l>»2

Now, the computational complexity of calculating CL2 after an element exchange
operation becomes O(n), which is much less than O{dn2). This efficient updating
calculation enables us to search larger size optimal samples.

4.4 Example and Verifications

The search algorithm above can be used for optimizing various classes of designs
of experiments, including but not limited to LHS, general balanced designs, Or-
thogonal Array with various optimization criteria other than Eqn.(27) (see Jin,
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Chen & Sudjianto (2004)). Here we provide one example of optimal LHS based
on the CLi criterion. As shown in Figure 5, before optimization, the initial LHS is
a random LHS sample with good one-dimensional projective property but not so
good space-filling property. After optimization, the projective property is main-
tained while the space filling property is much improved.

Random LHS before optimization Optimum CL2 LHS

Fig. 5. LHS sample before and after optimization using CL2 Criterion.

In Jin, Chen & Sudjianto (2004), the new algorithm is compared to existing
techniques and found to be much more efficient in terms of the computation time,
the number of exchanges needed for generating new designs, and the achieved
optimality criteria. Specifically, it has cut the computation time from hours to
minutes and seconds, which makes the just-in-time generation of relatively large
size optimal samples possible. For the problems tested, we find that with the
same number of exchanges, the optimal designs generated by ESE are generally
better than those generated by Simulated Annealing (SA) and the columnwise-
pairwise (CP) algorithm. To obtain a design statistically significantly better than
those generated by SA and CP, ESE needs far less number of exchanges (typically
around 1/6 ~ 1/2 of exchanges needed by SA or CP for small-sized designs and
l / 3 3 ~ l / 4 of exchanges needed by CP for large-sized designs).

Through our comparative studies (Jin, Chen & Sudjianto (2004)), it was dis-
covered that the CLa criterion is much more efficient to evaluate than other op-
timality criteria such as MAXIMIN distance criterion (Morris & Mitchell (1995))
and the entropy criterion (Ye, Li & Sudjianto (2000)). For the problems tested,
the computing time for the MAXIMIN criterion is 2.3~3.0 times as much as that
for the CL2 criterion. The larger the size of an experimental design, the more
computational savings the method will make. For example, for 100x10 LHS, our
new method for evaluating CZ^criteria only requires 1/82.1 of the computation
effort compared to re-evaluating the whole matrix.
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As the global optimal samples may never be known, one way to access how
good the optimal designs are by estimating the probability of a randomly gen-
erated LHS to be better than that of optimal samples, P(CL2(X.random) <
Ci2(Xopt)). For the purpose of example, we generated 2xlO7 sets of 50x5 (n=50,
d=5) LHS samples and calculate their CL2 values. Figure 6 shows the empirical
CDF of CL2 values of random 50x5 LHSs. As we are only interested in the left
tails of CDF curves (i.e., small CLi values), the right part of CDF curves have
been truncated in the figure.

Fig. 6. Empirical Cumulative Distribution of CL2 values of random 50x5 LHSs.

In this case, fitting a line through the points at the tail region, we estimated
that P(CL2(Xrandom) < CL2(Xopt)) « 10"19 where CL2(X.opt) = 0.002249.
Similar observations were obtained for 100x10 LHSs. These indicate that the
optimal designs constructed by ESE generally have significantly lower CL2 values
(better uniformity) than randomly generated LHSs.

5 Application

To illustrate the application, we present a simple example where the engineering
model has an analytic form and thus computationally cheap. Typical real world
engineering models do not have analytic forms and computationally much more
expensive (see for example Ejakov, Sudjianto &: Pieprzak (2004)). Nevertheless,
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this example sufficiently demonstrates the use and the effectiveness of our pro-
posed method. A composite beam with Young's modulus Ew and A mm wide by
B mm deep by L mm long, has an aluminum plate with Young's modulus Ea

and a net section C mm wide by D mm high securely fastened to its bottom
face, as shown in Fig. 7. Six external vertical forces, Pi, P2, P3, P4, Ps and P& are
applied at six different locations along the beam, L\, L2, L3, L4, L5, and L6. The
allowable tensile stress is S. In this problem, there are twenty random variables
as follows (Details of these random variables are given in Table 1),

X = [Xi, • • • , X20]
= [A, B, C, D, LUL2,L3, L4, L5, L6, L, PltP2, P3,P4, P5, P6, Ea, Ew, S]T

Fig. 7. A Composite Beam with 20 random variables.

The maximum stress occurs in the middle cross-section M-M and is given by

LPi(L-Li)T p(r r , p(r r j [ ° ^ + ̂ DC(B+D) ]

— E L3 - P1(L2 - Za) - P2(L3 - L2) [ AB+\DC J
° ±A& + AB ( \!±±**+%™l*+»] _ ^ B Y

12 \ [ AB+§^DC J /

+ ±^CD3 + ̂ CD (o.5D + B- IO-M'+^W+V] V .
(45)

The response model is defined as the difference between the stress a and the
allowable stress (strength) S as below,

y = g(x) = S-o-. (46)

The probability of failure p/ is defined by the probability of the strength less than
the stress, i.e.,
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Table 1. Random Variables of the Beam Reliability Problem

Variable No. Variable Mean value Standard deviation Distribution type

1 A 100 mm 0.2mm Normal

2 B 200 mm 0.2 mm Normal

3 C 80 mm 0.2 mm Normal

4 D 20 mm 0.2 mm Normal

5 L\ 200 mm 1 mm Normal

6 L2 400 mm 1 mm Normal

7 L3 600 mm 1 mm Normal

8 L4 800 mm 1 mm Normal

9 L5 1000 mm 1 mm Normal

10 L6 1200 mm 1 mm Normal

11 L 1400 mm 2 mm Normal

12 Pi 20 kN 4 kN Extreme Type 1

13 P2 20 kN 4 kN Extreme Type 1

14 P3 15 kN 2 kN Extreme Type 1

15 P4 15 kN 2 kN Extreme Type 1

16 F 5 15 kN 2 kN Extreme Type 1

17 P6 15 kN 2 kN Extreme Type 1

18 Ea 70 GPa 7Gpa Normal

19 Ew 8.75 GPa 1 Gpa Normal

20 S 27MPa 2.78 MPa Normal

pf = Pr(S-a <0). (47)

Since there is no analytic solution for (44), we employed relatively large size Monte
Carlo samples (n = 1,000,000) as a reference for comparison. From this Monte
Carlo sample set, we found that p/ = 2.45xlO"4. The saddlepoint approximation
with an optimal LHS of n = 500 produces pf = 2.397 xlO~4. Accordingly, the
probabilistic sensitivity (i.e., total sensitivity) is obtained with optimized LHS of
n =500 using Eq. (6) The results are summarized in Figure 8.
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Fig. 8. KS distance and ranking of input random variables.

From the chart, it is noted that the most important variable is the material
strength, 5 (about 50% of the output variation is due to this variable). This is
in agreement with an observation of Eq. (43) and the variability information in
Table 1. The other important variables include Pi, Pi, P3, Ew, and PA-

6 Conclusion

A comprehensive uniform sample-based approach to probabilistic analysis and
sensitivity analysis is presented in this work. The efficiency of the probabilistic
sensitivity analysis is enhanced from several aspects.

First, the saddlepoint approximation approach is used to improve the effi-
ciency as well as the accuracy for probabilistic analysis when generating the whole
cumulative density functions to evaluate the importance of random input vari-
ables. The accuracy is maintained because the saddlepoint approximation yields
extremely accurate probability estimation, especially in the tail area of a distri-
bution. The approach is also efficient as it requires only the process of finding one
saddlepoint without any integration and provides estimations of PDF and CDF
simultaneously.

Second, for implementing the saddlepoint approximation approach, the uni-
form samples are used to replace the intensive Monte Carlo simulations. A combi-
nation of Latin Hypercube Sampling (LHS) and low discrepancy criterion known
as uniform design is employed by optimizing the uniformity of samples in multi-
dimensional space. Given that for finite samples LHS is never worse than Monte



290 AGUS SUDJIANTO, XIAOPING DU AND WEI CHEN

Carlo random samples, the advantages of using optimal LHS is more dramatic
when sample size is small and the dimensionality is large.

Third, an efficient algorithm is developed for constructing the uniform de-
signs. The new algorithm employs both an enhanced global search algorithm and
a method for efficient evaluation of the uniformity criterion. The proposed al-
gorithm to calculate CL2 criterion cuts the computation time of other existing
algorithms in this area from hours to minutes and seconds. That is, optimizing
uniform designs using the CL2 criterion is much more efficient to evaluate than
other optimality criteria. The statistical tests indicate that the optimal designs
constructed by our proposed algorithm have significantly better uniformity than
randomly generated LHSs.

We demonstrated the utility of the proposed framework using an engineering
example. In this paper, we use KS distance as the sensitivity measure. If desired,
one may employ other sensitivity measures such as Kullback-Leibler divergence.
This is subject to future research.
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Summary. This paper elaborates the kernel selection pjoblem in the majoriza-
tion framework by Zhang, Fang, Li & Sudjianto (2004) for experimental designs.
For designs with qualitative factors, the row-wise coincidence distribution and
its raw, central and factorial moments are studied. Under the effects hierarchy
principle, two protocols are recommended to employ power and exponential ker-
nels, which are shown equivalent to some classical criteria for fractional factorial
designs and uniform designs, respectively. In addition, an extension of majoriza-
tion framework is given to uniform designs with quantitative factors under wrap-
around discrepancy criterion.
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1 Background

Experimental designs have drawn much attention recently for process improve-
ment in industrial and computer experiments; see e.g. Wu & Hamada (2000)
and Santner, Williams & Notz (2003). Two major types of popular designs are
studied here: (I) fractional factorial design (FFD), either regular or non-regular,
assessed by minimum abberation criterion for qualitative factors; (II) uniform
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design (UD), of space-filling type, assessed by categorial discrepancy criterion for
qualitative factors and by wrap-around discrepancy for quantitative factors.

Consider in general the experiments with s factors each having q levels. Let
{Li, . . . ,Lq} denote either categorial levels for qualitative factors or scale levels
for quantitative factors. The lattice space C(q") is defined by the s-fold Cartesian
product of {L\,... ,Lq}, by taking each factor as a coordinate. An experimental
design with design points from C(q3) is termed as lattice design in a unified man-
ner, which covers both FFD and UD. Let ^(n, q") be the set of balanced designs
such that the projection of design points onto each coordinate scatter uniformly,
which correspond to the U-type designs in the UD context. Recently, Zhang,
Fang, Li & Sudjianto (2004) derived a general two-stage framework for balanced
designs with qualitative factors, by the majorization technique and Schur-convex
kernel functions. The monograph Marshall & Olkin (1979) provides a comprehen-
sive text of majorization and Schur-convex functions. See Shaked (1985), Cheng,
Steinberg & Sun (1999), Fang & Zhang (2004), Zhang (2004) for the references
of using majorization technique in experimental designs.

For each candidate design X = (xij)nX3 in a given interesting pool &{n, qs) C
^ ( n , q"), firstly compute the m-long (m = n(n — l)/2) vector /3(X) = [/?(xi, x*)]
for i = 1, . . . , k — 1 and k = 2 , . . . , n, where /3(xi, x^) counts the number of coin-
cidences of the (i, k)-th. runs. Such /3(X) = (/?i,..., /3m)' is called an informative
pairwise coincidence (IPC) vector. The sum of/3(X) is a constant ^ns(— — 1), so

the average (3 = "|"~^» holds for all X G ^ ( n , qs). For uniqueness, such constant
J3 is called IPC-mean. Schur-Psi criteria are defined by Schur-convex functions of
IPC-vectors, in particular the following separable-convex functions,

m

\P(X.;a) = 2~] ff(Pr) w.r.t. convex kernel a on non-negative R+. (1)
r=l

The two-stage investigation scheme of majorization framework by Zhang, Fang,
Li & Sudjianto (2004) is summarized briefly as follows,

• Beta-stage: stringent majorization check.
Let /3(X) be sorted as /?ji] < . . . < P[m]- The champion of majorant design
X* is characterized by /3(X*) ^ /3(X) for aU X S ®(n,qs), i.e.

k k

^/3[r |(X*)>]T/3M(X), forfc=l,2,-,m-l. (2)
r-=l r=\

Such X* is universally optimum and absolutely recommended for experimen-
tation, while any design on the right-hand side of (2) is inadmissible and
prohibitive. If there exists no majorant design, take all the admissible candi-
dates to Psi-stage for further comparison.

• Psi-stage: flexible Schur-convex discrimination.
Select an a priori convex kernel cr : R+ —+ R to define a specific Schur-Psi
criterion by (1). Rank-order admissible designs by ^(XICT) and determine
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Schur-<7 optimum one(s). The lower bound of #(X;<7) is given by Lemma 1
due to Zhang, Fang, Li & Sudjianto (2004). Follow-up kernels can be selected
to further discriminate candidates of the same rank.

Lemma 1 (Zhang, Fang, Li & Sudjianto (2004)). A balanced lattice design
is majorant if and only if it is Schur-optimum w.r.t. every convex kernel function.
For all X £ ^(n,qs) under Schur-Psi criterion, we have

<P(X; a) > m(l - f)a[9) + mfa(9 + 1)

in which 0 is the integral part of IPC-mean J3 and f = J3 — 0. The lower bound
can be achieved by weak equidistant designs whose /?(xi,xjt) for all 1 < i < k < n
differ at most 1.

It seems however a bit ambiguous in choosing the Schur-convex kernels at
Psi-stage. This paper elaborates the kernel selection problem for specific discrim-
ination. Section 2 studies the pairwise coincidence measurements of qualitative
factorials in order to guide lines of selecting Schur-convex kernels. It is shown
that the coincidence moments are able to characterize the minimum aberration
criterion. Power kernels are suggested in Section 3 to assess FFDs. Exponential
kernels are suggested in Section 4 to assess UDs. In Section 5, the majoriza-
tion framework is extended to UDs with quantitative factors under wrap-around
discrepancy. Finally, Section 6 gives concluding remarks and acknowledgements.

Throughout the paper, for integers j'• > k > 1, S(j,k) denotes the Stirling
number of the second kind, i.e., the number of partitions of j elements into k
non-empty sets; C(x,j) denotes the factorial function x(x — 1) • • • (x — j + 1) for
x > j . The combinatorial function (*) = C(x,j)/jl, (I) = 1 and (p = 0 if x < j .
Besides, the parameters 9 and / , respectively for integral part and fractional part
of the IPC-mean J3 = *("Ii) > are used globally in the paper.

2 Coincidence Distribution and Moments

Given an arbitrary design X G ^(n,qs) and coincidence measure /3(-, •) between
design points, let

Pj(x) := Prob(/3(x,w) = j : w £ X,w / x)

for x £ X and for j = 0,1, . . . ,s . Define the coincidence distribution
(Po, P\,..., Ps) with components evaluated by

P ^ ( X ) = \ E P J " ( X * ) . for J = 0 , 1 , . . . , » .
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It is clear that the probability that /3(xi,Xfc) = j for i ^ k is Pj(X) and
E j ^ f j t X ) = 1. The coincidence distribution has a tight link with Hamming
distance distribution (Eo, E\,..., Es) in algebraic coding theory

(E0(X) = l + (n-l)Ps(X),

I Ej(X) = (n - l)P.-,-(X), j = l,...,s.

2.1 Coincidence moments

In X(n,q"), there are n(n — l)/2 random variable of /3(xi,Xfc) for all i < k.
Consider the following three types of statistical moments,

K j ( x ) : = n(n-i) E [0{xi,Xk)]} (raw moments)

< w ( x ) : = ^ r r iy E [^(xi.Xfc)-^]^ (central moments) (4)
i<fc

C J ( X ) : = n(n-i) 12 C{P(xi,xk),j) (factorial moments)
*• i<k

for j = 2,3 . . . . The corresponding first-order moments all coincide with the con-
stant mean J3 = sq[^Zl\ f°r balanced designs of ^(n,qs). In terms of IPC-vector
/3(X) introduced in the previous section,

.. m m m

•̂(X) = ™ £ # > w(x) = ™ E ( ^ - PY and c>(x) = i E c ^ ' j )
III TXX Tit

r=l r=l r=l

or equivalents ELo fc'P*(X)-ELo(fc - WPk(X) and E U o ^ . ^ ^ W in
terms of coincidence distribution, respectively. Each type of moment statistics
completely characterize the nature of coincidence distribution.

For integer-valued random variable f3(xi,x.k) = 0,1,2,..., it is natural to
consider the probability generating function of power series in nonnegative y,

v ' i<k j=0

similar to the enumerator of distance distribution that underlies MacWilliams
transform in coding theory. Among (4), the factorial moments c,(X) are tied
firmly with £x.(y). Both the coincidence distribution and factorial moments can
be evaluated from the derivatives of <§x(y) at y = 0 and y = 1, respectively, i.e.,

Pj(X) = 4\0)/j\ and c,(X) = 4 j ) ( l ) , for j = 1,... ,s.

(3)
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Factorial moments are important in the study of orthogonal arrays, see e.g.
Bose & Bush (1952) and Dey & Mukerjee (1999, Chap5). For orthogonal array
OA(n, s, q, t), denote the constants

c j ( o A ) = n / g J ~ 1 C ( S , j ) , for j = l,...,s. (5)
n — 1

By noting that in Theorem 2 of Zhang, Fang, Li & Sudjianto (2004) the Schur-
combinatorial criteria

•MX; j) = 2m{c3(X) - C J (OA)) / J !

that are all non-negative, the following lemma is readily obtained. The necessity
was obtained early by Bose & Bush (1952); however, the sufficiency had been an
open problem, see e.g. Seiden & Zemach (1966) for their doubt.

Lemma 2 (Bose & Bush (1952); Zhang, Fang, Li &: Sudjianto (2004)).
The factorial moments Cj(X) of any design X(n, q") are bounded from below by
the constants C,-(OA) for j = l , . . . , s . They can be achieved simultaneously for
j = 1,... ,t if and only if the design is an orthogonal array OA(n, s, q, t).

2.2 Minimum aberration

Resolution and minimum aberration are important criteria for factorial designs
based on the word-length pattern (Ai,..., A,), which was originally defined by
Fries & Hunter (1980) from defining contrast subgroup for regular designs. For
general designs X(n,qs), the word-length pattern has been shown by Ma &:
Fang (2001) and Xu & Wu (2001) independently to have a natural link with
MacWilliams transform of distance distribution in coding theory,

^•(X) = i£^-(fc;a ,g)Efc(X), for j = l , . . . , s , (6)
fc=0

o r ^ ( X ) = ^Z'k=0&(s-k;s,q)Pk(X.) + to=l£ty by (3), where ^ ( x ; 8,9) =

J2"L=o(~l)w((l ~ iy~w(w)(j-w) a r e Krawtchouk polynomials; see MacWilliams
& Sloane (1977, Chap5) and Hedayat, Sloane & Stufken (1999, Chap4) for de-
tails. The resolution of design X is defined to be the smallest index R such that
AR(X.) > 0 and Aj(X) = 0 for all j < R. Orthogonal designs have resolution at
least 3. Conversely, the resolution-R designs have orthogonal strength R—l. For
comparing two designs, Xi is said to have less aberration than X2 if there exists
an index j such that A,-(Xi) < A,-(X2) and Ak(Xi) = ^fc(X2) for all fc < j . The
minimum aberration design X* is obtained if it has less aberration than all other
competing designs.

Instead of using complicated Krawtchouk polynomials, Zhang, Fang, Li &
Sudjianto (2004) introduced a deviation pattern (Bi,..., Bs) using Schur-convex
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function of separable combinatorial form based on pairwise coincidence measure-
ments

5,(X) = { E (*) P*<X) - (*) (~i - n) } ' = ay/csiX) - Cjio*) (7)

for j = 1, . . . , s, where the constant a = y/n(n — l)q~i/j\. The deviation pattern
is easy to analyze from the majorization perspective. Its benchmark can be derived
by Lemma 1 and can be achieved by weak equidistant designs; see Zhang, Fang, Li
& Sudjianto (2004) for details. It was also shown linearly related to word-length
pattern,

s ' ( x ) = i E ( - i J ; W x ) ' forj=i,...,s. (8)
Both patterns are equivalent under the sequential minimization procedure from
j = 1 to s. So, the deviation pattern is able to characterize minimum aberration.

The sequential minimization of either Aj 's or Bj 's in the spirit of the minimum
aberration criterion is supported by the effects hierarchy principle:

1) factorial effects of lower orders are more likely to be important; and
2) factorial effects of the same order are equally likely to be important.

Under this principle and the sequential minimization procedure, the moments in
(4) are equivalent to word-length pattern. Therefore, all three moments are able
to characterize minimum aberration.

Theorem 1. For any design X 6 ^(n,qs), their moments in (4) have the fol-
lowing relationships with word-length pattern

c,-(X) = K , - ( X ) + Ti = W ( X ) + T2 = aAj(X) + T3, j = 2,...,s

where the constant a = j\nq~j/(n — 1) > 0, Ti, T2 and T3 involve only lower-order
moments. Therefore, the sequential minimization of these moments from low to
high orders are equivalent to the minimum aberration criterion.

2.3 Guidelines for selecting kernels

Let us continue discussing the illustrative example in Zhang, Fang, Li & Sudjianto
(2004), with the present focus placed to the Psi-stage of Schur-convex discrimina-
tion for admissible designs. Recall the experimental scenario of selecting 4-factor
sub-designs from X(27,38), tabulated in Table 1, as well as the demonstrative
sub-designs Xi to X4. Both X3 and X4 are inadmissible at Beta-stage due to

{0(Xi),/3(X2)} X /3(X3) -c /3(X4),
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Table 1. Pull U-type design X(27,38) for sub-design selection, obtained from the
UD-web http://www.math.hkbu.edu.hk/UniformDesign/, constructed by Fang,
Ma and Winker (2002)

A B C D E F G H

1 1 2 1 1 0 1 2

2 2 2 1 2 0 2 0

0 0 1 2 1 0 2 2

2 0 1 0 1 1 2 0

0 0 1 1 2 0 0 1

0 2 1 2 2 2 1 1

0 2 0 1 0 1 2 2

1 2 1 0 0 0 0 0

2 1 0 2 2 1 0 1 I n t h e S p a c e ^(27,34)

1 0 0 1 0 2 0 2 of 70 sub-designs, we
choose

0 2 2 0 2 1 0 2 X1 = {A,C,G,H},

2 1 1 2 0 1 0 2
X2 = {B,C,G,H\,

2 2 0 2 1 0 1 2
1 0 0 2 2 1 2 0 X-3 = {A,B,D,F},

0 1 0 0 2 0 1 0 X4 = {A,D,E,F},

2 0 2 1 2 2 1 2
for demonstration, same

0 1 2 0 0 2 2 1 ^ Z h a n g i F a n g ; L i &

2 1 1 1 0 2 1 0 Sudjianto (2004).

0 1 0 1 1 2 0 0

1 1 1 0 2 2 2 2

1 2 2 2 1 2 0 0

1 2 1 1 1 1 1 1

2 2 0 0 1 2 2 1

1 1 2 2 0 0 2 1

1 0 0 0 0 0 1 1

0 0 2 2 0 1 1 0

2 0 2 0 1 1 0 1
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so we mainly concentrate on Xi, X2 and other admissible designs.

It is flexible to choose a kernel for defining Schur-Psi criterion (1), as long as
the univariate kernel is a convex function. The three toy kernels used by Zhang,
Fang, Li & Sudjianto (2004) are of the following variance, power and exponential
forms,

<n(0) = 1 ( 0 - P)\ <72(/3) = /T and <T3(/?) = (^Y^y,

which result in the consistent rank-order for the corresponding Schur-Psi criteria
defined by (1),

^(Xno-^,2,3)) < •f(X2;a{1,2,3}) < <P(X3;CT{1I2,3}) < <P(X2;er{li2,3}).

To study the kernel selection problem, it is natural to ask

1. can we choose any other convex kernel, e.g. another toy kernel of the negative
entropy form (modified to make (3(xi,Xk) + 1 > 0 for log function)

<T4(/3) = (/3+l)log(/? + l ) ?

2. how should we select follow-up kernel(s) to make further discrimination if
there are many designs ranked No.l under the a priori kernel?

For the first question, we get a reverse ordering of !̂ (Xi;<T4) > <̂ (X2;<X4)
which contradicts with the first three kernels. Further, we claim that the negative
entropy kernel ai(/3) is inadequate for the following reason. Both Xi and X2 are
orthogonal designs of resolution 3, so their 1st and 2nd-order raw moments are
constant by Theorem 1. By Taylor expansion of (74 (/?) on fl, we have

T—\ \ /
— Tfi 777 777

= mP+ ^ K 2 ( X ) - ^ K 3 ( X ) + g«4(X) - • • •

= fixed term —— «3(X) + higher-order term,
6

which tends to maximize the 3rd order raw moment and therefore destroy the
3-factor orthogonality. So, the answer to the first question is negative. Instead,
the convex kernels should be carefully selected; the negative entropy kernel is a
counter example for orthogonal designs.

Under the variance kernel <7i(/3), the Schur-Psi criterion is equivalent to the
2nd-order central moment, i.e. ^(XJCTI) = m^2(X). It is fixed for all orthogonal
designs by the necessary part of Lemma 2,

#(X; Ol) = 2c2(OA) + Cl(OA) - C?(OA) = ^ ' I h n - 1 - s(q - 1)).
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(Remarks: On the other hand, ^(X; a) > / ( I - / ) for any designs according
to Lemma 1. Thus, we have a necessary condition for parameters (n,s,q) for
the existence of OA(ra, s,q, 2), which is well known as Bose-Bush approach stud-
ied by Mukerjee & Wu (1995).) For the above example, !P(OA(27,4,3, 2); a{) is
evaluated by 0.6391, which is the minimum possible value for the candidate de-
signs in 9(27,34). Conversely, any sub-design X(27, 34) with !f(X;<7i) = 0.6391
is an orthogonal design, by the sufficient part of Lemma 2. That is to say, the
Schur-variance criteria ^(X; cr\) can be used to screen out orthogonal candidates
from the design pool, and it has successfully picked out 8 orthogonal sub-designs,
including Xi and X2, as listed in Table 2.

Table 2. Ranked orthogonal designs (under multiple criteria) from ^(27,34),
where the designs at the same row block have the same IPC-vector and rank,
the boldfaced numbers in parentheses denote the specific ranks among all 70
candidates

Rank Factors "^(Xicri) ^ ( X ; ^ ) ^(XJCTS) Gwp-aberration \VL2-discrepancy

l(Xi),4,C,G,H 0.6391 1658.7(2) 683.4(1) (0, 0, f, §) (1) 0.42416(1)

2 C,E,F,H 0.6391 1691.0(5) 684.4(3) (0, 0, ff, if)(2) 0.42434(2)

3 A,B,C,G 0.6391 1707.1(16) 684.8(6) (0, 0, ̂ , £) (3) 0.42443(3)

3 A,B,C,D 0.6391 1707.1(16) 684.8(6) (0, 0, ̂ , f) (3) 0.42443(3)

5 C,E,G,H 0.6391 1707.8(18) 685.0(9) (0, 0, ̂ , §) (5) 0.42444(5)

5 A,B,G,H 0.6391 1707.8(18) 685.0(9) (0, 0, ̂ , f) (5) 0.42444(5)

7(X2)B,C,G,H 0.6391 1724.5(30) 685.6(21) (0, 0, ff, §f)(7) 0.42454(7)

8 A,B,C,H 0.6391 1732.0(35) 685.7(25) (0, 0, f, f) (8) 0.42458(8)

Let us now try to answer the second question. Suppose the above variance
kernel is selected a priori, under which the 8 orthogonal sub-designs listed in
Table 2 are ranked equally the best candidates. Our focus is to make further
discrimination by selecting certain follow-up kernels. We claim that a follow-up
kernel is supposed to have higher functional order. Compared to the 2nd-order a\,
the orders 0(0-4) < 2 < O{CT2) < O{CTA), which implies that both 7r-th power and
golden-ratio exponential toy kernels are feasible choices of follow-up kernels. The
ranked order is consistent among 8 orthogonal candidates, using )P(X;cri) plus
either ^(X; 0-2) or ^(XJCTS). Further, it is consistent with classical criteria, e.g.
minimum aberration for orthogonal designs based on word-length pattern (GWP)
and uniformity measure for uniform designs based on wrap-around discrepancy
(WL2). As indicated by Zhang, Fang, Li & Sudjianto (2004), the sub-design Xi



302 AUUN ZHANG

is both a minimum aberration design and a uniform design in the complete pool
0(27,34) of 70 competing designs.

Formally, let us consider the linear model of the following ANOVA decompo-
sition form under design X(n, qs),

3

2/(x) = ^2 Xu(x)0u +e= J^ Xu(x)0u + e, (9)
«e» wt(u)=o

where the group & = {0,1 , . . . , q — I}3, e is the random error and wt(u) counts
the number of nonzero elements. For u G <£, 0U and %u are factorial effects and
orthonormal contrast coefficients, respectively Xu & Wu (2001). In (9), factorial
effects are decomposed into 1) the grand mean Qq, and main effects 0u with wt(u) =
1; and 2) j-factor interaction effects du with wt(u) = 2,...,s. Due to scarce
resources, the effects hierarchy principle is commonly relied on. Experimental
designers usually work on the main effects modely — GO+e, where 0 contains the
grand mean and main effects, y and G are the corresponding n x l response vector
and n x (s +1) regression matrix under design X(n, qs). The least squares estimate
is given by 0 = (GHG)~1G7/y, where GH denotes the complex conjugate of
G. It is known that an orthogonal design is universally optimal in the sense
of making small the covariance matrix of 0. However, bias of 6 may be caused
in the presence of interactions effects that are non-negligible. For j = 2 , . . . , s,
denote the n x (q — iy (s) matrix Hj = [x«(x«)] f°r * = 1> • • • >n a n d all u € ^
with wt(u) = j . The alias matrix of all j-factor interactions on 0 is given by
Cj = (G"G)- 1 G f l H j .

Our objective is to minimize the moments of coincidence distribution in a
certain sense. For the main effects model, it is known that a minimum aberration
design guards against aliasing from higher order interactions, since

\\CA\F = (s-j + 1)(9 - 1 ) ^ _ ! + j(q - 2)Aj + (j + l)Aj+1, j = 2 , . . . , 8

due to Xu & Wu (2001), where As+\ = 0 and the Frobenius norm ||Cj||j? =
X,race{CfCj) is used as a measure of aliasing effect caused by all j-factor inter-
actions. By Theorem 1, it is equivalent to sequentially minimize power, central
or factorial moments. Without loss of generality, we take the raw moments and

(I) minimize «2(X), K3(X),... one by one sequentially.

This minimum aberration approach follows strictly the effects hierarchy princi-
ple, but it is somewhat extreme. Consider the situation where 3-factor interac-
tions are potential. Given two orthogonal designs Xi with word-length pattern
(0,0,0, Ai,...) and X2 with (0,0, A'3,0,...) where A4 is small and A'3 is large, the
minimum aberration criterion contradicts the real need. It is logical to minimize
some weighted sum of raw moments at different orders. By the effects hierarchy
principle, more weights should be placed on the lower orders, so we should

(II) minimize S^=2 '> 'J K J ( -^ ) ' w n e r e t n e constants 7j > 7fc if j < k.
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The above two approaches constitute the guidelines for the kernel selection
procedure at Psi-stage of majorization framework. In what follows, we shall show
that they correspond to the selection of power and exponential kernels for frac-
tional factorial designs and uniform designs, respectively.

3 Power Kernels for Fractional Factorial Designs

For an FFD X E ^ ( n , qs) that has resolution at least 2, consider the Schur-Psi
criteria (1) w.r.t. the power kernels cr(f3) = ft* with orders t > 2. We restrict the
orders to be integers, rather than 3.14159... for the toy power kernel <T2 discussed
in Section 2.3. It is clear that Schur-power criteria are equivalent to the raw
moments, i.e.

m

!f(X;/3J) = ^ / V = m M X ) , J = 2, 3,.. . (10)
r=l

The sequential minimization of !/'(X;/32),'f'(X;/33),... characterizes the minimum
aberration, according to Theorem 1. Formally,

Protocol 1 (Power kernels) At Psi-stage of majorization framework, we sug-
gest to select the 2nd-order power kernel cr(/3) = 01 a priori; then increase the
power order one by one if necessary.

For the example discussed in the previous section, the ^(X; /32) is equivalent
to <P(X.;ai) w.r.t. the variance kernel, and therefore able to screen out the 8
orthogonal sub-designs. The "^(X; (33) is used to assess these 8 resulting designs,
but it can not discriminate rank-3 and 5 designs (whose 3rd GWP components are
identical). Then, the >P(X.;0i) is needed for the further discrimination.

By Lemma 1, we have the lower bounds for Schur-power criteria (10), which
can serve as the benchmark of Schur-optimum designs.

Theorem 2. For X € ^(n, q") and j = 2 , . . . , s,

<F(X; (3j) > m(l - f)0j + mf{0 + l)j

where the lower bound can be attained by weak equidistant designs.

We note that Xu (2003) studied intensively the raw moments «2(X), «3(X),...
for factorial designs. In Xu (2003), each raw moment Kj(X) is expressed as an
afnne transform of word-length /U(X) for k < j ; similar to Theorem 1. Then,
the lower bounds of raw moments can be obtained by the non-negativeness of
word-length pattern. The transform involves the generalized Pless power moment
identities in coding theory and is complicated in general. Xu (2003) only consid-
ered the lower bounds in terms of orthogonal arrays only up to strength 3. In
this paper, we suggest to study the behavior of Schur-power criteria (10) through
factorial moments e, (X) in (4) to derive their explicit lower bounds.
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Theorem 3. Schur-power criteria can be expressed through raw moments by

!f(X;/3J) = mJ2s(j,k)ck(X) > m £ S(j, k)ck(oA)
k = l k=l

for j = 2,3, . . . , where S(j, k) are Stirling numbers of the second kind. The lower
bounds can be achieved simultaneously for j = 2 , . . . , t if and only if the design
X(n,qs) is an orthogonal array OA(n,s,q,t).

By the triangle of Stirling numbers of the second kind, with properties
5(1,1) = 1 and the recurrence relation S{j, k) = S(j - 1, fc - 1) + kS(J - 1, jfc) in
which S(j, k) = 0 if k = 0 or k > j , we have that ^(X; 0) = mJ3,

<F(X;/?2) = m(C l(X)+C 2(X))

^(X;/33) = m(Cl(X) + 3c2(X) + c3(X))

f(X;P4) = m(ci(X) + 7c2(X) + 6c3(X) + c4(X))

<f(X;/95) = m(ci(X) + 15c2(X) + 25c3(X) + 10c4(X) + c5(X))

and so forth. Their lower bounds can be written down similarly in terms of the
constants CJ(OA) defined in (5). This generalizes the results by Xu (2003).

4 Exponential Kernels for Uniform Designs

For a U-type design X £ ^(n,qs), consider the Schur-Psi criterion w.r.t. expo-
nential kernel u(/3) = fr , i.e.

tf(X;/):=£y-, (p>l). (11)
r = l

By the Taylor expansion of the exponential function p@ on /?, we have

^E(X; p) = m(l + ̂ logp) + f; 5 ^ ^ pi.

= m ( l + ^ l O g p ) + ^ . 2 ( X ) + ^ K 3 ( X ) + .. .

where K2(X), «3(X),... are raw moments (4) of pairwise coincidences.

Schur-exponential criterion (11) corresponds to the approach (II) justified in
Section 2.3. The total weight assigned to raw moments is evaluated by

E°° (log/?)-7 , ,

i—— =p-l-logp,
3=2 •>•

of which the proportions ^log^ divided by the total (p — 1 — log p) are assigned
to Kj(X) for j = 2, 3, The following facts can be easily verified.
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a) The weight for Kj(X) is decreasing as j increases, provided that p < e3;
b) The weight for K 2 (X) is decreasing as p increases. This weight is large when

p is close to 1, e.g., it is as large as 94.7% when p = 1.174;
c) The weights for higher-order Kj(X.) (j > 3) is increasing of the base p.

For an illustration, Figure 1 plots both the individual and cumulative weights
assigned to raw moments «2(X) to Ke{X.), provided different choices of p > 1.

Fig. 1. Weights assigned to interactions effects by Schur-exponential criteria.

The discrepancy is the main criterion for uniform designs (Fang & Wang
(1994)). For designs with qualitative factors, Zhang, Fang, Li & Sudjianto (2004)
studied the categorial discrepancy, which is tightly related with Schur-exponential
criterion by

£>(X;aV&) = -,/2<P(X; pf>) + n(l + a)s - n2(l + /x)s,

where a, b are certain parameters for defining discrepancy by reproducing kernels,
p = (l+a)/(l+6) > 1 and \i = (a+(q~l)b)/q; see also Hickernell & Liu (2002). So
Schur-exponential criterion is equivalent to categorical discrepancy, which leads
to the following way of assessing U-type designs with qualitative factors.
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Protocol 2 (Exponential kernels) At Psi-stage of majorization framework,
we suggest to select the exponential kernel <r(/3) = p with p slightly greater than
1 (say, 1.174,); if necessary, increase the base for further discrimination.

The Schur-exponential criterion with pilot choice of base 1.174 de facto ap-
proximates the wrap-around /^-discrepancy (up to a scaling factor and an offset)
for assessing 3-level uniform designs, as discussed by Zhang, Fang, Li &; Sudjianto
(2004). Shown in Table 2, it can successfully discriminate all 8 orthogonal designs
and give their ranks correctly among 70 candidates in £)(27,34).

It is however not prohibited to choose smaller bases a priori, if we mainly
focus on the minimization of «2(X) in order to find orthogonal designs. For com-
peting designs that are orthogonal, Schur-exponential criterion turns to minimize
primarily the 3rd-order raw moment. The sub-design Xi in Table 2 is ranked in
such a manner.

Exponential kernels with larger bases can be selected to assess U-type designs
when the higher-order interactions effects are potential, but they had better be
used as follow-up kernels. For the example discussed in Section 2.3, the toy kernel
03 based on golden ratio 1.618... seems a bit over, since many orthogonal candi-
dates are ranked lower than the non-orthogonal ones. Nevertheless, in the pool
of orthogonal sub-designs, the golden ratio Schur-exponential criterion is working
properly.

The lower bound of Schur-exponential criterion can be otained immediately
from Lemma 1, by observing that (11) is Schur-convex of/3(X).

Theorem 4. For a U-type design X G ̂ (n, qs) and any p > 1,

<^(X;/)>m(l-/ + ?/)/,

where the lower bound can be attained by weak equidistant designs.

5 An Extension to Quantitative Designs

All the above texts are based on the qualitative designs with categorical levels. In
this section, we consider an extension of the majorization framework to quantita-
tive designs, in particular the UDs under the wrap-around Z/2-discrepancy (WL2)
criterion.

Without loss of generality, let the domain of quantitative factors be the hy-
percube [0, l ) s , as denoted by C. As suggested by Fang & Wang (1994), Cs can
be approximated by the following lattice

C(qs) = {L1,...,Lq}s where Lk = {k - 0.5)/q, fc = ! , . . . , < ? .
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and for a U-type design X(n,qa), each column vector is an permutation of

JJ_ 1 A 1 2g-l 2q-l) .
\ 2q'"'2q'2q'"'2q'--\ 2q '"" 2q J" U '

n/q n/q n/q

The uniform designs can be assessed by different versions of discrepancy criteria,
among which we consider the popular wrap-around one by Hickernell (1998)

WL2(x)={- QS+± £ n ft - i^-^i(i - i^-^i)| V,
which is important in Quasi-Monte Carlo methods for periodic integrands, re-
sponse surface fitting by periodic functions and otherwise.

Let a(x,y) = § — \x — y\(\ — \x — y\). Similar to the IPC-vector introduced
in Section 1, define for X(n,q") the informative vector /3(X) = [/3(xi,Xfc)] with
length n(n — l)/2, where

s

/3(xi,xfc) = ^2lna(xi:j,Xkj)

3 = 1

for i = 1, . . . , k — 1 and fe = 2, . . . , n. In terms of /3(X) and separable exponential
functions, define

k=2 i=\

which gives an extension of Schur-exponential criteria (11) for uniform designs,
from qualitative factors to quantitative factors. Clearly,

" * * > ~ ( i ) # + : ( ! ) ' + ;?•<*••>• M>

It is easy to check from (12) that the sum of /3(X) is fixed for any designs
X € e$/(n,qs), as given concretely by

TI fc —1 s r n n -i

k=2 i=l j= l ^-i,k=l i=l J

ns •r^9 ns 3

Similar to Lemma 1, we can derive the lower bounds for ^(X; e13),

^(X;e^>^i)e*T

with equality at the condition that /3(xi,xfc) = n(ls_1} for all i ̂  k. Then, by
(13), we can derive the lower bounds for WL2(X), as stated in Theorem 5.
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Theorem 5. For U-type design X 6 W(n,qs), its squared wrap-around L2-
discrepancy has a lower bound

where La = (a — 0.5)/g for a = 1, . . . , q. The lower bound can be achieved when
Y[j=i a(.xi)ixkj) is a constant for all i ̂  k.

6 Concluding Remarks and Acknowledgments

The paper discusses Schur-convex kernel selection problem in the majorization
framework for experimental designs, from a genuine perspective under the effects
hierarchy principle. It is suggested to use power and exponential kernels, with
respect to which Schur-optimum designs are justified to coincide with minimum
aberration fractional factorial designs and minimum categorical discrepancy uni-
form designs, respectively. Thus, by Zhang, Fang, Li & Sudjianto (2004) and the
current work, a unified approach is provided to assess fractional factorial designs
and uniform designs, as well as their benchmarks (i.e. lower bounds of Schur-Psi
criteria w.r.t. different convex Psi-kernel functions).

While using power kernels, there are two possible extensions, namely dec-
imal power-orders (e.g. 2.5 or irrational n) and polynomial functions (e.g.
ax3 + bx2 + ex), as long as they are convex on R+. We find that the decimal-order
power kernels have stronger discrimination ability. For the example discussed in
Section 2.3, ^(X; /32'5) can discriminate rank-3 and 5 designs that are indistin-
guishable under ^(X;/?3). Polynomial kernels can be viewed as a linear combi-
nation of individual power functions, similar to the weighted sum approach used
by exponential kernel selection; but they make non difference in the sequential
minimization procedure. The reformulation of minimum aberration for two-level
designs by Butler (2003) can be also covered by Schur-power criteria, by observ-
ing that the so-called "confounding between runs" in Butler (2003) has a natural
link with coincidences

Tifc = 2/}(xi,xfc)-s, i,k=l,...,n.

Lower bounds for Schur-power criteria, as presented in Theorem 2, can be
improved when the corresponding orthogonal arrays do not exist. Xu (2003) made
an effort to consider weak orthogonal strength and derived explicitly the improved
bounds up to order 3, using majorization (though not declared) in integer-valued
frequency of level-combinations. By Theorem 3 and Lemma 2, the explicit lower
bounds can be written down explicitly up to any order. Besides, for orthogonal
designs with resolution 3 or higher, additional constraints can be set onto the
pairwise coincidences, e.g. the conditions by Lemma 2 implied from orthogonal
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strength. Then, the lower bounds in Theorem 2 can be improved by constrained
integer programming.

Uniform design by Fang and Wang (Fang (1980), Fang & Wang (1994), Fang
(2004)) provides an alternative approach in terms of minimizing raw moments of
coincidence distribution, by using exponential kernels to define Schur-Psi criterion
as elaborated in Section 4. For the extension to quantitative designs in Section 5,
an advanced pairwise measure is used to define the informative vector in the
majorization framework, then majorization technique is used to derive Theorem 5.
An important property that allows for such extension is the shift-invariance of
the reproducing kernel that defines wrap-around discrepancy.

For the construction of Schur-optimum designs under majorization frame-
work, Zhang, Fang, Li &c Sudjianto (2004) provided a Robin-hood swapping algo-
rithm that determines the local search direction of columnwise-pairwise algorithm
(Li & Wu (1997)), in order to make pairwise coincidences spread as equally as
possible. Stochastic optimization methods are crucial in the global search, e.g.
the threshold accepting heuristic used by Fang, Lu & Winker (2003) to construct
uniform designs.

Lastly, I would like to congratulate Professor Kai-Tai Fang on his 65th birth-
day and wish to express my deep gratitude to Professor Fang for not only en-
lightening me about the research of experimental designs and statistics, but also
his inspiring guidance and consistent encouragement during my study in the De-
partment of Mathematics, Hong Kong Baptist University (1999 - 2004). I would
also thank Professor Fred Hickernell, Professor Runze Li and Professor Rahul
Mukerjee for their long-term encouragement and support.

Appendices

Proof of Theorem 1: The relationships among the raw, central and factorial mo-
ments at the same order are clear by their definitions (4). By (7) and (8), we have
that

c'(x) = j ^ w 1(*: *)Mx)+Cj(OA) = ( ^ w ^ ( x ) + n
which proves the theorem. D

Proof of Theorem 3: The lower bound is clear from Lemma 2, and we only need
to prove that Stirling numbers of the second kind connect the raw and factorial
moments by K^(X) = Ylk=i S(j,k)ck(X.). If suffices to show that for any integer
0> land j = 1,2,...,
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(3j = Y,S{j,k)C{(3,k).

At j = 1, the identity holds obviously. Suppose it is true for j = 1, . . . , J, then

J J

fc=l fc=l

= ^ S(J, k)C(/3, k + l) + kY^ S(J, k)C(0, k)
fc=i fc=i

= C(0, J + 1) + X ) I 5 W fc - 1) + fc5( J, fc)]C(^, A;).
fc=i

By the recurrent property S(J+l,k) = S(J,k-l) + kS(J,k) and S(J + 1, J+l) =
1, we have that / 3 J + 1 = f^ttl S(J+l,k)C((3, k). By mathematical induction, the
theorem is established. Q
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1 Introduction

Variable selection is vital to survival analysis. In practice, many covariates are
often available as potential risk factors. At the initial stage of modeling, data
analysts usually introduce a large number of predictors. To enhance model pre-
dictability and interpretation, a parsimonous model is always desirable. Thus,
selecting significant variables plays crucial roles in model building and is very
challenging in the presence of a large number of predictors. Let us first review
recent developments of model selection and variable selection for survival data
analysis.

Bayesian model selection procedures have been proposed for survival analy-
sis. Faraggi & Simon (1997) and Faraggi (1998) extended the ideas of Lindley
(1968) to Cox's proportional hazard models with right censored survival data.
To avoid specifying a prior on the baseline hazard function, they use the partial
likelihood as the basis for their proposed Bayesian variable selection procedures
rather than the full likelihood. Thus, their method indeed is not a proper Bayesian
method. Ibrahim, Chen & MacEachern (1999) proposed a full Bayesian variable
selection procedure for the Cox model by specifying a nonparametric prior for the
baseline function and a parametric prior for the regression coefficients. To imple-
ment their methodology, Markov chain Monte Carlo (MCMC) was proposed to
compute the posterior model probabilities. Ibrahim and his co-authors (Ibrahim
& Chen (2000)), Ibrahim, Chen & Sinha (2001), Sinha, Chen & Ghosh (1999)
further proposed several Bayesian model assessment criteria. Giudici, Mezzetti
& Muliere (2003) proposed a Bayesian nonparametric approach to selecting sig-
nificant variables in survival analysis based on mixtures of products of Dirichlet
process priors. Bayesian variable selection procedures are simple in concept, but
hard to implement in high-dimensional modeling due to computational demand
for calculating posterior model probabilities.

Most variable selection criteria are closely related to penalized least squares
and penalized likelihood. Some traditional variable selection criteria, such as
Akaike information criterion (AIC, Akaike (1974)) and Bayesian information cri-
terion (BIC, Schwarz (1978)) can be easily extended to survival analysis. Volinsky
& Raftery (2000) extended the BIC to the Cox model. They propose a modifica-
tion of the penalty term in the BIC so that it is defined in terms of the number
of uncensored events instead of the number of observations. Traditional variable
selection procedures require subset selection, such as stepwise deletion and the
best subset selection. While they are practically useful, subset selection proce-
dures ignore stochastic errors inherited at the stage of variable selections. Hence,
their theoretic properties are somewhat difficult to understand. Furthermore, the
best subset selection suffers from several drawbacks, the most severe of which is
its lack of stability (Breiman (1996)). To retain virtues of the subset selection and
to avoid the unstability of the subset selection, Tibshirani (1996) proposed the
LASSO variable selection procedures for linear regression models and generalized
linear models. The LASSO procedure was further extended to the Cox model
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in Tibshirani (1997). In an attempt to automatically and simultaneously select
variables, Fan & Li (2001) proposed nonconcave penalized approaches for linear
regression, robust linear models and generalized linear models, and suggested the
use of smoothly clipped absolute deviation (SCAD) penalty. For simplicity of pre-
sentation, we will refer the procedures related to the SCAD penalized likelihood as
SCAD. The SCAD is a useful amelioration of LASSO. Fan & Li (2001) demon-
strated the SCAD possesses an oracle property, namely, the resulting estimate
can correctly identify the true model as if it were known in advance, while the
LASSO does not possess this oracle property. Fan & Li (2002) derived a noncon-
cave penalized partial likelihood for the Cox model and the Cox frailty model, and
further illustrate the oracle property of their proposed procedures. In this paper,
we aim to provide a unified framework of variable selection for various survival
models, including parametric models and the Cox model for univariate survival
data, and the Cox frailty model and the marginal hazard model for multivariate
failure time.

The paper is organized as follows. In Section 2, we briefly introduce penalized
likelihood approaches and extend the nonconcave penalized likelihood approach
to parametric models in survival analysis. We derive a penalized partial likelihood
procedure for the Cox model using Breslow's "least informative" nonparametric
modeling for the cumulative baseline hazard function in Section 3. We extend non-
concave penalized likelihood variable selection procedures to multivariate survival
data in Section 4. We deal with some practical implementation issues in Section
5. A real data example in Section 6 is used to illustrate the nonconcave penalized
likelihood approach.

2 Nonconcave penalized likelihood approach

2.1 Penalized least squares and penalized likelihood

Most variable selection procedures are related to penalized least squares. Suppose
that we have the (d+ l)-dimensional random sample (x,, ?/»), i = 1, • • • , n, from a
population (x, y), where x is a d-dimensional random vector, and y is a continuous
random variable. Consider a linear regression model

Vi =xf/3 + £i,

where /3 is unknown regression coefficients, and £i is random error with mean
zero and variance a2. Define a penalized least squares as

w^E^-xf/^+n^p^a&D, (i)

where p\jrt (•) is a given nonnegative penalty function, and Ajns are regularization
parameters, which may depend on n and can be chosen by a data-driven criterion,
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such as cross-validation (CV) and generalized cross-validation (GCV, Craven &
Wahba (1979)). Minimizing (1) yields a penalized least squares estimator. It is
worth to note that the penalty functions p\jn (•) in (4) are not necessarily the same
for all j . For example, one may wish to keep important predictors in a paramet-
ric model and hence not be willing to penalize their corresponding parameters.
For simplicity of presentation, we will assume that the penalty functions for all
coefficients are the same, denoted by p\n{-)- Extensions to the case with different
thresholding functions do not involve any extra difficulties.

Many variable selection criteria can be derived from the above penalized least
squares. Take the penalty function to be the Lo penalty, namely, p\n(\l3\) —
iAJU(|/3| + 0), where /(•) is the indicator function. Note that Yl^iHlPA / 0)
equals the number of nonzero regression coefficients in the model. Hence many
popular variable selection criteria can be derived from (1) with the Lo penalty
by choosing different values of An. For instance, the Cp (Mallows (1973)), AIC
(Akaike (1974)), and BIC (Schwarz (1978)) correspond to An = y/2(p/y/n),
v/2(cr/y/n) and \/\ogn(crj\/n), respectively, although these criteria were moti-
vated from different principles.

Since the Lo penalty is discontinuous, it requires an exhaustive search over
all possible subsets of predictors to find the solution. That is, the algorithm must
find the best subset of J predictors for each J in 1,..., d, and then choose J to
optimize (1). This approach is very expensive in computational cost. Furthermore,
the best subset selection suffers from other drawbacks, the most severe of which
is its lack of stability as analyzed, for instance, by Breiman (1996).

To avoid the drawbacks of the best subset selection, expensive computational
cost and the lack of stability, Tibshirani (1996) proposed the LASSO, which can
be viewed as the solution of (1) with the L\ penalty, defined by p\n (\/3\) = An|/?|.
He further demonstrated that LASSO retains the virtues of both best subset se-
lection and ridge regression. Frank & Friedman (1993) considered the Lq penalty,
p\n(\(3\) = An|/?|9, (0 < q < 1), which yields a "bridge regression". The nonneg-
ative garrote (Breiman (1995)) is in the same spirit as bridge regression. Efron,
Hastie, Johnstone & Tibshirani (2004) further provides deep insights into proce-
dures of the LASSO and the least angle regression. The issue of selection penalty
function has been studied in depth by various authors, for instance, Antoniadis &
Fan (2001). Fan & Li (2001) suggested the use of the smoothly clipped absolute
deviation (SCAD) penalty, defined by

PxJP) = An{/(/3 < An) + ^Xn~P.)+I(P > An)} for some a > 2 and (3 > 0,
(a — L)An

with p\n (0) = 0. This penalty function involves two unknown parameters An and
a. Justifying from a Bayesian statistical point of view, Fan & Li (2001) suggested
using a = 3.7. The Bayes risk cannot be reduced much with other choices of a,
and simultaneous data-driven selection of a and An does not have any significant
improvements from our experience. Figure 1 depicts the plots of the SCAD, L0.5
and L\ penalty functions.
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Fig. 1. Plot of Penalty Functions

As shown in Figure 1, the three penalty functions all are singular at the ori-
gin. This is a necessary condition for sparsity in variable selection: the resulting
estimator automatically sets some small coefficients to be zero (Antoniadis & Pan
(2001)). Furthermore, the SCAD and L0.5 penalties are nonconvex over (0, +oo)
in order to reduce estimation bias. We refer to penalized least squares with the
nonconvex penalties over (0, oo) as nonconvex penalized least squares in order to
distinguish from the Li penalty, which yields a ridge regression. The SCAD is an
improvement over the Lo-penalty in two aspects: saving computational cost and
resulting in a continuous solution to avoid unnecessary modeling variation. Fur-
thermore, the SCAD improves bridge regression by reducing modeling variation
in model prediction. Although similar in spirit to the Li-penalty, the SCAD may
also improve the Li-penalty by avoiding excessive estimation bias because the so-
lution of the Li-penalty could shrink all regression coefficients by a constant, for
instance, the soft thresholding rule (Donoho & Johnstone (1994) and Tibshirani
(1996)).

Antoniadis & Fan (2001) and Fan & Li (2001) discussed extensively the choice
of the penalty functions. They gave necessary conditions for the penalty function
such that penalized least squares estimators to possess the following three de-
sired properties, (i) Sparsity: The coefficients of insignificant variables should be
estimated as zero. This achieves the purpose of the variable selection, (ii) Con-
tinuity: The estimated coefficients should be continuous in data to enhance the
model stability. This avoids unnecessary variation in the prediction, (iii) Unbi-
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asedness: When the true coefficients are large, they should be estimated asymp-
totically unbiasedly. This avoids unnecessary biases in the model selection steps.
Antoniadis & Fan (2001) and Fan & Li (2001) gave several useful penalty func-
tions that possess these three conditions. This includes the SCAD. Of course,
the class of penalty functions satisfied the aforementioned three properties are
infinitely many.

The discussion so far has assumed that y is continuous. When the response
Y is discrete, such as binary output and count data, generalized linear models
(McCullagh & Nelder (1989) may be used to fit the data. The penalized least
squares approach can be adopted to this setting. Conditioning on Xj, suppose that
t/i has a density fi{g(x.i f3),yi}, where g is a known link function. Let £i = log/*
denote the conditional log-likelihood of ?/,. Define a penalized likelihood as

X>(s(xT/3),i/<)-»X>»(l&l)- (2)
1=1 j=l

Maximizing the penalized likelihood results in a penalized likelihood estimator.
The penalized likelihood with a nonconvex penalty over (0, +oo) is referred to as
nonconcave penalized likelihood. For certain penalties, such as the SCAD, the se-
lected model based on the nonconcave penalized likelihood satisfies Pxn{\0j\) = 0
for certain /3/s. Therefore, model estimation is performed at the same time as
model selection. Because the nonconcave penalized likelihood selects variables
and estimates parameters simultaneously, this allows us to establish the sampling
properties of the resulting estimators. Under certain regularity conditions, Fan &
Li (2001) demonstrated how the rates of convergence for the penalized likelihood
estimators depend on the regularization parameter An. They further showed that
the penalized likelihood estimators perform as well as the oracle procedure in
terms of selecting the correct model, when the regularization parameter is appro-
priately chosen. In practice, a data-driven approach to selecting the regulariza-
tion parameter is recommended. In Section 5, we present a data-driven method
for choosing An using the generalized cross-validation. The optimization of the
nonconcave penalized likelihood can be accomplished by the modified Newton-
Raphson algorithm with local quadratic approximations (LQA) to the penalty
function (Fan & Li (2001)). The local quadratic approximation algorithm is also
given in Section 5.

2.2 Parametric models in survival data analysis

The penalized likelihood approach can be directly applied for parametric models
in survival analysis. Let T, C and x be respectively the survival time, the censor-
ing time and their associated covariates. Correspondingly, let Z = min{T, C} be
the observed time and 5 = I(T < C) be the censoring indicator. It is assumed that
T and C are conditionally independent given x and that the censoring mechanism
is noninformative. When the observed data {(XJ, Zi, 5i) : i — 1, • • • , n} is an inde-
pendently and identically distributed random sample from a certain population
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(x, Z,8), a complete likelihood of the data is given by

n

L = f] /(Ẑ lxO Ip(Zi|x<) = II MZ«|xO Ip(^lx<), (3)
tt C U 1 = 1

where the subscripts c and u denote the product of the censored and uncensored
data respectively, and /(£|x), F(t\x) and h(t\x) are the conditional density func-
tion, the conditional survival function and the conditional hazard function of T
given x. Statistical inference in this paper will be based on the likelihood function
(3).

In the reminder of this section, we illustrate how to extend the penalized like-
lihood approach for parametric survival models. Here we focus on accelerated life
models, which is one of the most popular parametric life models (Badgonavicius
& Nikulin (2002)). The proposed procedure is ready for applying to other para-
metric models. The accelerated life models use a linear regression model to fit
log(T), the natural logarithm of T. In other words, the accelerated life models
consider

log(T) = fj. + xT/3 + e. (4)

Different choices for the error distribution of e yields different regression models.
Let Fo(t) denote the survival function of T when x = 0, i.e., Fo(t) is the survival
function of exp(// + s). Then

F(t|x) = P{T > t|x} = F0{*exp(-xT/3)}.

Furthermore, with ho(-) being the hazard risk of Fo(-),

h(t\x) = fto{texp(-xT/3)}exp(-xT^).

Using (3), the log-likelihood of the observed data {(x*, Zj, 5i) : i = 1, • • • , n} is

n

ea{/3,8) = ]T (-xf/3 + log[ho{^exP(-xf/3)}]) + ̂  loglFo^ exp(-xf/3)}],
n i=l

(5)
where 0 consists of the unknown parameter involved in the distribution of fi + e.
Thus, a penalized likelihood for the accelerated life model is

d

403,0)-n^p^d&l) . (6)
i=i

Maximizing (6) yields a penalized likelihood estimator for (3 and 0. With a proper
choice of p\n, many of estimated coefficients will be zero and hence their corre-
sponding variables do not appear in the model. This achieves the objectives of
variable selection.

Example 1. Let the error distribution in (4) be N(0,a2). This yields a log-normal
regression model. Then the survival function of T when x = 0 is
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where #(•) is the cumulative distribution of the standard normal distribution.
Furthermore, the hazard function when x = 0 is

hQ{t) = exp{-(lOgW -tf/W)
t^{l-#(Srffl=a)}

Plugging Fo(t) and /io(t) into (5), we can derive a closed form for the log-
likelihood function. In this example, 0 = (//, a2)T.

Example 2. In this example, we consider the error distribution in (4) to be an
extreme value distribution with the following density function

/(e) = aexp{ae — exp(a£)}.

The regression model (4) becomes a Weibull regression. By some straightforward
calculation, we have

F0(t) = exp(-i/ta), and ho(t) = aut"'1,

where v = exp( — ot\x). In this example,

/i(t|x) = aut"'1 exp(-axT/3)

which is a proportional hazard model. Substituting Fo(t) and ho(t) into (5), the
log-likelihood function of the collected data is

n

4(/3,0) = ^T{-ax[f3 + \og(av) + (a - 1) log(^)} " »Y1 Z? ^P(-^Jp).
u i=l

where 0 = (y,a)T. Maximizing

d

ea(P,O)-n^2PXn(\{3j\).
3 = 1

yields a penalized maximum likelihood estimate for {(3,0).

Example 3. Take the error distribution in (4) to be logistic distribution with den-
sity

f(£) = e x P ( a £ )
JK> <r{l + exp(ae)}2 '

Then model (4) becomes a log-logistic regression model. It follows that

F0(t) = — - — , and ho(t) = ^ ,
w 1 + vta w 1 + vta
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where v = exp(—afi). In this example,

_ avta~x exp(-axT/3)
WW ~ \ + ut" exp(-ax.T0)'

A closed form for the log-likelihood function can be derived by using the explicit
expression of Fo(t) and ho(t). In this example, 8 = (\,a)T.

3 Variable selection for Cox's models

The Cox proportional hazard model assumes

/i(t|x) = Mt)exp(xT/3), (7)

where the baseline hazard function ho(t) is an unspecified function. To present
explicitly the likelihood function of the observed data {(XJ, Z,, 5i) : i = 1, • • • , n}
from Cox's proportional hazards model, more notation is needed. Let t° <
• • • < t% denote the ordered observed failure times. Let (j) provide the label
for the item falling at t° so that the covariates associated with the N fail-
ures are X(j),--- ,X(AT)- Let Rj denote the risk set right before the time t° :
Rj = {i: Zi> t°}. The likelihood in (3) becomes

JV n

L = H ho(Z(i)) exp^V) f ] exp{-H0(Zi) exp(xf 0)},
i=l i=l

where Ho(-) is the cumulative baseline hazard function. The corresponding pe-
nalized log-likelihood function is

N n d

£[log{fto(Z<i>)} +x£)|9] - £{ffo(Zi)exp(xf0)} - n^p A n ( | f t | ) . (8)
i=l i=l j=l

Since the baseline hazard and cumulative hazard functions are unknown and have
not been parameterized, the penalized log-likelihood function (8) is not ready
for optimization yet. Following Breslow's idea, consider the "least informative"
nonparametric modeling for HQ(-), in which Ho(t) has a possible jump hj at the
observed failure time £°. More precisely, let H0(t) = Xljli hjl(t° < t). Then

N

H0(Zi) = J2hiI(ieRA- (9)

Using (9), the logarithm of penalized likelihood function of (8) becomes

£>g(W + 4)/3> - E ( E W e *i) exP(^/3)} -n^pxAWj]). (10)
i=l i=l j=l i = l
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Taking the derivative with respect to hj and setting it to be zero, we obtain that

hj = {'£eMxTP)r1- (11)

Substituting hj into (10), we get the penalized partial likelihood
N d d

$>5)/3-log{£; exp(x?"/9)}]-nX>An(lftl) = *c(/3)-n5>A,.(|&|), (12)
3 = 1 ieRj j= l J = l

after dropping a constant term a—N". When px(-) = 0, (12) is the partial likeli-
hood function (Cox (1975)). Thus, the penalized likelihood indeed is the penalized
partial likelihood. The penalized likelihood estimate of /3 is obtained via maxi-
mizing (12) with respect to /3.

Numerical comparison in Fan & Li (2002) shows that the SCAD performs as
well as the oracle estimate, and outperforms the penalized likelihood with the
L\ penalty and the best subset selection with the BIC. This oracle property is
further demonstrated by the following asymptotic formulation.

Let 0O be the true value of 0O and 0O = (fro,--- ,Pdof = (Pw,PZo)T-
Without loss of generality, assume that /320 = 0. Denote by s the number of
the component of 01. Fan & Li (2002) first showed that under certain regularity
conditions, if Xn —+ 0, then there exists a local maximizer (3 of the SCAD penal-
ized partial likelihood function in (12) such that ||/3 - f30\\ = OP(n~1/2). They
further proved that if An - t 0 and y/n\n —* oo, then under certain regularity
conditions, with probability tending to 1, the root n consistent local maximizer
fi = (/3j ,/32 )T of the penalized partial likelihood in (12) with the SCAD penalty
must satisfy

(i) (Sparsity) /32 = 0;
(ii) (Asymptotic normality)

M0i-PiO)^N(o,irH0iO)),
where Ii(fiio) ' s the first s x s submatrix of I((30), the Fisher information
matrix of the partial likelihood.

Property (i) and (ii) is referred to as an oracle property, which provides a foun-
dation for variable selection. The sparsity (i) indicates that /32 = 0 is the same as
the oracle estimator who knows in advance /32 = 0. Furthermore, the estimator
/9j shares the same sampling property as the oracle estimator, and is more effi-
cient than the maximum partial likelihood estimator (without penalty). In other
words, the SCAD possesses this oracle property. The oracle property holds not
only for the SCAD, but also for a class of infinitely many penalty functions. But
it does not hold for the L\ penalty due to the excessive biases inherent to the L\
penalty. As demonstrated in Cai, Fan, Li & Zhou (2004), the oracle property is
also valid for the setting in which the number of covariates is allowed to depend
on n and the number of nonzero coefficients, say sn, tends to infinite as n —+ oo.
See Fan & Peng (2004) for a formulation under general settings.
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4 Variable selection for multivariate survival data

It is assumed for the Cox proportional hazards model that the survival times
of subjects are independent. This assumption might be violated in some situa-
tions, in which the collected data are correlated. The well-known Cox model (Cox
(1972)) is not valid in this situation because independence assumption among in-
dividuals is violated. Extensions of the Cox regression model to the analysis of
multivariate failure time data include frailty model and marginal model. In this
section, we extend the nonconcave penalized likelihood approach for the frailty
model and the marginal model.

4.1 Frailty models

One popular approach to modeling correlated survival times is to use a frailty
model. A frailty corresponds to a random block effect that acts multiplicatively
on the hazard rates of all subjects in a group. In this section, we only consider
the Cox proportional hazard frailty model, in which it is assumed that the hazard
rate for the j-th subject in the i-th subgroup is

/iiJ-(t|xij-,wi) = fco(t)«iexp(x5/3), i = I,--- ,n,j = I,--- ,Ji} (13)

where the in's are associated with frailties, and they are a random sample from
some population. It is frequently assumed that given the frailty m, the data in
the i-th group are independent. The most frequently used distribution for frailty
is the gamma distribution due to its simplicity. Assume without loss of generality
that the mean of frailty is 1 so that all parameters involved are estimable. For
the gamma frailty model, the density of u is

r(a)
Prom (3), the full likelihood of "pseudo-data" {(m,Xij, Ztj,6ij) : i = 1, • • • ,n,j =

1 ••• , Ji] is

nnKM^ixo.ui^^^zyixii.tiijin^ui).
1=1j=l i=l

Integrating the full likelihood function with respect to u\, • • • ,un, the likelihood
of the observed data is given by

L(/3,6) = exp{/3T(V V «yXy)} FT <* IW*.(*,•)}

(14)
where 6 = (a, H), and At = J2j=i hi- T h e log-likelihood of the observed data is
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n Jt Ji

if {13,0) = J2?E Sii h&Hzii) ~ [(Ai + a) Iog{]T Hoizij) exp(x^) + a}]}

n Ji

Therefore the logarithm of the penalized likelihood of the observed data is

£f{/3,h(-)}-nJ2pm\)- (15)

To eliminate the nuisance parameter h(-), we again employ the profile likelihood
method. Consider the "least informative" nonparametric modeling for HQ(-):

N

H0(z) = J2 AJ/(ZJ < z), (16)

where {z\, • • • , z/vr} are pooled observed failure times.

Substituting (16) into (15), then differentiating it with respect to A;, / =
1, • • • ,N, the root of the corresponding score function should satisfy the following
equations:

A-i - y (^ + Q) £ £ i J(2' ^ ^ ) exP(xg-/3) forj = i N

1 t tEfc=i^Eii i^*<^)exp(x5i3) + a °r ' " • ' '

The above solution does not admit a close form, neither does the profile like-
lihood function. However, the maximum profile likelihood can be implemented as
follows. With initial values for a,/3 and Aj, update {A/} from (17) and obtain the
penalized profile likelihood of (15). With known Ho(-) defined by (16), maximize
the penalized likelihood (15) with respect to (a, (3), and iterate between these two
steps. When the Newton-Raphson algorithm is applied to the penalized likelihood
(15), it involves the first two order derivatives of the gamma function, which may
not exist for certain value of a. One approach to avoid this difficulty is the use of
a grid of possible values for the frailty parameter a and finding the maxima over
this discrete grid, as suggested by Nielsen, Gill, Andersen & S0rensen (1992).
Our simulation experience shows that the estimate of /3 is quite empirically ro-
bust to the chosen grid of possible values for a. This profile likelihood method
even without the task of variable selection provides a viable alternative approach
to the EM algorithm frequently used in the frailty model.

A natural initial estimator for /3 is the maximum pseudo-partial likelihood
estimates of (3 ignoring possible dependency within each group. The correspond-
ing hi,--- ,/IAT in (11) may serve as an initial estimator for Ai , - - ,Ajv- Hence
given a value of a and initial values of f3 and Ai, • • • , XN, update the values of
Ai, • • • , XN and a, f3 in turn until they converge or the penalized profile likelihood

(17)
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fails to change substantially. The proposed algorithm avoids optimizing a high-
dimensional problem. It will give us an efficient estimate for (3. The algorithm
may converge slowly or even not converge. In this situation, the idea of one-step
estimator (see Bickel (1975)) provides us an alternative approach.

Fan & Li (2002) assessed the finite sample performance of the resulting es-
timate by extensive Monte Carlo simulation. From their numerical comparisons,
it can be seen that the SCAD performs almost as well as the oracle estimator
in terms of model error, and it outperforms the penalized likelihood with the L\
penalty in terms of model complexity and model error. The performance of the
SCAD is similar to the best subset selection with BIC in terms of model complex-
ity and model error, but the computational time of SCAD is dramatically less
than that of the best subset selection. Under certain regularity conditions, Fan &
Li (2002) showed that if An —» 0 and y/nXn —> oo, then the resulting estimate of
the SCAD is root n consistent, and with probability tending to one, (32 = 0 and

>/n(»i - Oio) - » N {o, ir\e10)},

where h(Oio) consists of the first (s+1) x (s+1) submatrix of /o(#io, 0), the Fisher

information matrix of the frailty model, and d\ = (&,Pi )T , 0io = (ao, (3jo)T•

4.2 Marginal Hazard Models

?The interpretations of the regression coefficients in the frailty model are different
from those in the Cox model. Consequently, when the correlation among the
observations is not of interest, the marginal proportional hazard models have
received much attention in the recent literature because they are semiparametric
models and retain the virtue of the Cox model (e.g., Wei, Lin & Weisseld (1989),
Lee, Wei & Amato (1992), Liang, Self & Chang (1993), Lin (1994), Cai and
Prentice (1995, 1997), Cai (1999), Spiekerman & Lin (1998) and Clegg, Cai &
Sen (1999) among others).

To fix notation, suppose that there are n independent clusters and each cluster
has K subjects. For each subject, J types of failure may occur. For the failure
time in the case of the j th type of failure on subject k in cluster i, the marginal
mixed baseline hazards model is taken as

hijk(t\xijk(t)) = hoj{t) exp{(3Txijk(t)}, (18)

where /3 = (Pi, • • • ,0d)T is a vector of unknown regression coefficients, Xijfc(t)
is a possibly external time-dependent covariate vector, and hoj(t) and ho(t) are
unspecified baseline hazard functions.

The marginal model approach does not specify correlation structure for the
failure times within a cluster, hence inferences are based on a pseudo-partial likeli-
hood approach. Under a working independence assumption (Wei, Lin & Weisseld
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(1989)), i.e., assuming the independence among failure times in a cluster, we ob-
tain the logarithm of a pseudo-partial likelihood function of the observed data
{ ( x i j f c , Zijk,Sijk) •• i = 1 , • • • , n , j = 1 • • • ,J,k = 1 , • • • ,K} f r o m m o d e l ( 1 8 ) a s

following:

n J K

i=l j=\ k=\

~ loS I E E Y'J9(Zijk) exp{/3Tx(j9(Zijfc)} ) . (19)

where Y(t) = I(Z > t) be the at-risk indicator. We use a penalized pseudo-partial
likelihood for model (18) which is defined as

d

£(/3) = 4,G9)-n£>AnU8j|). (20)

Let

an = max{|p^( | f to | ) | : f to#0}, and bn = max{\p'^(\pj0\)\ : (3j0 / 0}.
(21)

We first show that there exists a penalized pseudo-partial likelihood estimator
that converges at rate Op(n~x^2 + an), and then establish the oracle property for
the resulting estimator. We only state the main theoretic results here and leave
the regularity conditions in the Appendix. Technical proofs are given in Cai, Fan,
Li & Zhou (2004).

Theorem 1. Under Conditions A-D in the Appendix, if both an and bn tend to
0 as n —> oo, then with probability tending to one, there exists a local maximizer
(3 o/£(/3) defined in (6) such that ||/3 - /30|| = OP{rTYI'1 + an).

From Theorem 1, provided that an — OijC1^2), which can be achieved by
choosing proper Ans, there exists a root n consistent penalized pseudo-partial
likelihood estimator. Denote by

2: = diag{p^(|/3lo|),---,PAn(|Ao|)},

and
b = (pUl/3io|)sgn(/310), • • • ,p'AJ|/?sO|)sgn(Ao)).

Theorem 2. Assume that the penalty function pxn(\Pj\) satisfies that

liminfliminfp'A (0)/\n > 0. (22)
n—>oo 0—>0+

If An —* 0, y/n\n —* oo and an = O(n~1'2), then under the conditions of
Theorem 1, with probability tending to 1, the root n consistent local maximizer
J3 = (/3-L , /?2 ) *n Theorem 1 must satisfy that /32 = 0, and
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^{An + E}{pt - j910 + (An + Zy'b} -> JV(O, Dn) (23)

in distribution, where An and Dn consist of the first s columns and rows of
A(/310,0) and Z?(/310,0) defined in the Appendix, respectively.

5 Practical implementation

5.1 Local quadratic approximation and standard error formula

The Lq, (0 < q < 1), and SCAD penalty functions are singular at the origin,
and they do not have continuous second order derivatives. Therefore, maximizing
the nonconcave penalized likelihood is challenging. Fan & Li (2001) proposed a
unified algorithm for their nonconcave penalized likelihood using a local quadratic
approximation for the penalty function. The unified algorithm is ready for the
penalized likelihood function

d

Q(/3,e) = l(/3,0)-n^pAn(|/3j|). (24)
J=I

where £(/3,6) may be the likelihood function £a(/3,0) in Section 2, 4(/3) for
the Cox model, £f(f3,0) for the Cox's frailty model and £P(/3) for the marginal
model. Although the penalty function is singular at the origin and may not have
continuous 2nd order derivative. Fan & Li (2001) propose to locally approximate
using a quadratic function as follows. Set the initial value to be the maximum
likelihood estimate (without penalty). Under certain regularity conditions, the
MLE is root n consistent, and therefore it is close to the true value. Suppose that
we are given an initial value /3° that is close to the minimizer of (24). If /3° is
very close to 0, then set /3, = 0. Otherwise they can be locally approximated by
a quadratic function as

IPAB(|ft|)]' =PAn(lftl)sgn(ft) * { P U I # I ) / | # | } & ,

when Pj ^ 0. In other words,

PA-dftl) * PAn(l#l) + \{PxM\)/\$\Hfi - $*), for ft « $• (25)

With the aid of the quadratic approximation, the maximization of Q(/3,0) can
be carried out by using the Newton-Raphson algorithm.When the algorithm con-
verges, the estimator satisfies the condition

^ | i + «PAn(|^|)Sgn(/3°) = 0I

the penalized likelihood equation, for non-zero elements of J3 .
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Following conventional techniques in the likelihood setting, we can estimate
the standard error of the resulting estimate by using the sandwich formula. Specif-
ically, the corresponding sandwich formula can be used as an estimator for the
covariance of the estimates J3lt the non-vanishing component of 0. That is,

{V2e(01,d) + nZx(P1)}-l<w{Ve(pl,e)}{V2£(01,d)-nZx01)}-\ (26)

where
rA(/31) = diag{p'A(|/31|)/|/31|,--- ,p'A(|/3s |)/ | /U(),••• ,0},

where the number of zeros equals the dimension of 9, and s the dimension of P1.

5.2 Selection of regularization parameters

To implement the methods described in previous sections, it is desirable to have
an automatic method for selecting the thresholding parameter A involved in px(-)
based on data. Here we estimate A via minimizing an approximate generalized
cross-validation (GCV) statistic (Craven & Wahba (1979)). By some straightfor-
ward calculation, the effective number of parameters for Q((3,9) in (24) in the
last step of the Newton-Raphson algorithm iteration is

e(A) = tr[{V2£(/M) + Zx{P)}-lV2tCPM-

Therefore the generalized cross-validation statistic is defined by

GCV(A) = -«ftf j .,
n{\ — e(\)/n}2

and A = argminA{GCV(A)} is selected. The minimization can be carried out by
searching over a grid of points for A.

6 An Example

We illustrate the proposed variable selection procedures by an analysis of a data
set collected in the Framingham Heart Study (FHS, Dawber (1980)). In this study,
multiple failure outcomes, for instance, times to coronary heart disease (CHD)
and cerebrovascular accident (CVA), were observed from the same individual. In
addition, as the primary sampling unit was the family, failure times recorded are
likely to be dependent for the individuals within a family.

For simplicity, we consider only time to obtain first evidence of CHD and
of CVA, and analyze only data for participants in the FHS study who had an
examination at age 44 or 45 and were disease-free at that examination. By disease-
free we mean that there exists no history of hypertension or glucose intolerance
and no previous experience of a CHD or CVA. The time origin is the time of
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Fig. 2. Plot of Generalized Cross-Validation for the Framingham Heart Study
Analysis

the examination at which an individual participated in the study and the follow
up information is up to year 1980. The risk factors of interest are: body mass
index (BMI), denoted by i i , cholesterol level (12), systolic blood pressure (a;3),
smoking status (au), coded by 1 if this individual is smoking, and 0 otherwise,
gender (xs), coded by 1 for female and 0 for male. The values of risk factors
were taken from the biennial examination at which an individual was included
in the sample. Because some individuals were in the study several years prior
to inclusion into the data set, the waiting time, denoted by xs, from entering
the study to reaching 44 or 45 years of age was used as a covariate to account
for the cohort effect. Since xi, X2, X3 and xe are continuous covariates, they are
standardized individually in our analysis.

To explore possible nonlinear effects and interaction effects of the risk factors,
we include all main effects, quadratic effects and interaction effects of the risk
factors and covariates in the full model. This results in a mixed baseline hazard
model with 50 covariates:

hijk{t, Xijk) = hOj(t) exp{/3jxyfc}, (27)

where Xijk consists of all possible linear, quadratic and interaction terms of the
risk factors and covariates x\ to x&. Model (27) allows different baseline hazards
and different regression coefficients for CHD and CVA, but an identical baseline
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Table 1. Estimated Coefficients and Standard Errors for the FHS data

CHD CVA CHD CVA

Effect /3(SE(/3)) /3(SE(/3)) Effect /3(SE(/3)) /3(SE(/?))

xx 0.0810(0.1288) 0.4773 (0.2423) xx * x5 0 (-) 0 (-)

x2 0.0576 (0.1200) -0.2409 (0.2655) xj * x6 -0.1060 (0.0808) 0 (-)

x3 0.4129(0.1570) 0.2917 (0.1477) x2 * x3 0 (-) 0 (-)

x4 0.4754 (0.2361) 0.7077 (0.3587) x2 * x4 0.1550 (0.1425) 0.5702 (0.3766)

x5 -0.3666 (0.2543) -0.1016 (0.2890) x2 * x5 0 (-) 0 (-)

x6 0.0249 (0.0802) -0.1395 (0.1916) x2 * x6 0 (-) 0 (-)

xx2 -0.0743(0.0512) 0 (-) x3 * x4 -0.1952 (0.1489) 0 (-)

x22 0 (-) -0.0768 (0.1052) x3 * x5 -0.2054 (0.1378) 0 (-)

x32 O( - ) O(- ) x3*x6 0 ( - ) 0(-)

x62 0 (-) 0.2062 (0.1229) x4 * x5 -0.3071 (0.3106) 0 (-)

x i * x 2 0 (-) 0 ( - ) x 4 *x 6 0 (-) 0 (-)

xi * x3 0 (-) -0.2224 (0.1435) x5 * x6 0 (-) 0.5753 (0.2545)

xi *x4 0.1409 (0.1495) -0.2207 (0.2628)

hazards for siblings. A thorough analysis of this data set was also given in Cai,
Fan, Li & Zhou (2004).

The maximum pseudo-partial likelihood estimate for /3 is computed. The nat-
ural logarithm of the pseudo-partial likelihood for the full model of 50 covariates is
—2017.9590. Next we apply the SCAD procedure to model (7) to select significant
variables. In the implementation of the SCAD procedure, since all covariates are
important confounding variables, we included them in the model by not penaliz-
ing the linear main effect of x\ to X6. Thus, all linear effects are included in the
selected model. The GCV method is used to select the regularization parameter.
Figure 2 depicts the plot of GCV score versus A. The regularization parameter
A equals 0.9053, selected by minimizing the GCV scores. The resulting estimate
and standard error for /3 in the selected model is depicted in Table 1. The loga-
rithm of the pseudo-partial likelihood for the model selected by the SCAD with
the selected A is —2022.6635. This represents an increase of the logarithm of the
pseudo-partial likelihood by 10.1923 from that of the full model, which is much
less than 25, the number of covariates excluded from the full model. From exten-
sion of Theorem 3 of Cai (1999), the limiting distribution of the pseudo-partial
likelihood ratio statistic is a weighted sum of Chi-square distributions with 1 de-
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gree of freedom. Based on 100,000 Monte Carlo simulations, we computed the
p-value, which equals 0.9926. This is in favor of the selected model. We further
compared the selected model by SCAD with the one selected by the naive ap-
proach. The corresponding pseudo-partial likelihood ratio statistic is 90.4989 with
p-value 0.0000 obtained by 100,000 Monte Carlo simulations. This is also in favor
of the selected model by SCAD.

In another confirmation of the selected model, we compare the selected model
with the linear main effect model which include only all the linear main effects
of xi to x$. The maximum pseudo-partial likelihood estimate for the unknown
regression coefficients is computed, and the natural logarithm of the pseudo-
partial likelihood for the linear main effect model is —2034.6527. The pseudo-
partial likelihood ratio statistic for testing HQ: the linear main effect model versus
Hi: the selected model, is 23.9783. Based on 100,000 Monte Carlo simulations,
the corresponding p-value equals 0.0353. This indicates that the selected model
fits the data better than the model with only the linear main effects.
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Appendix: Regularity Conditions

To facilitate the notation, let Nijk(t) = I{Zijk < t,Sijk = 1) be the count-
ing process, and hijk(t) and Mijk(t) = Nijk(t) - f*Yijk(u)hijk(u) du be their
corresponding marginal hazards function and marginal martingale, respectively,
with respect to the filtration Fik(t~), where Tjk{t) is the (T-field generated by
{Nijk(u),Yiu(u), ...,YijK(.u),Xiii(u),..., x i J K ( w ) ; 0<u<t,i = l , . . . , n } . Define

1 n
S<f(/3;t) = -Y,Y>3k(t)xijk(t)®dexp{l3TXijk(t)}, d = 0,1,2

S^)(/3;i) = E s < t ) ( / 3 ; t ) , d = 0 , l , 2 ,
k=i

Ej(/3;t) = S<1)(/3;t)/Sf(/3;t),

V,(/3;t) = S^((3,t)/Sf\0,t) - E,(/3;i)®2,

where a®0 = 1, a®1 = 1, and a®2 = aaT for a vector a.
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Regularity conditions:

(A) For simplicity, assume that Tijk takes values on a finite interval [0, T], and
J^h0j(t)dt<OOi0TJ = !,-•• ,J.

(B) There exists a neighborhood B of the true value /30 that satisfies each of
the following conditions: (1) there exists a scalar, vector, and matrix function
s$(/3. t) (d = 0,1, 2) defined on Bx [0, r] such that supt€[0 T] ^ \\S^(/3, t)-
Sjf(/3,t)\\ -* 0 in probability; (2) there exists a matrix D = D(/3) such that

i^varCD^D,

where
J K r

D< = £ E / {*«»(*) -ej(0o;t)}<Miik(t),
j=ik=iJo

and ej&t) = {EJLX •$&*)} I {Ef=1 -̂ O?;*)} •
(C) Let s k , <i = 0,1, 2, B and ê  be as in Condition (B) and define

v, = {Ef=i ^)(/3 '<)} / {Ef=i ^'(/3-i)} - e,(/3;t)®2. Then for all /3 G B,
t e [0,T], j = 1 , . . . , J and k = l,...,K: sfk\f3;t) = dsjk{j3;t)fdp and

s^'(/3; t) = ds$(P;t)/df3. Assume sf^(0; t) is bounded away from 0 on B x
[0,r], and the matrix t2Jj=1 ft vj(0o;t)'£k<=1sf>(0o;t)hoj(t) dt is positive
definite.

(D) In probability

^E{\\Hi\\2I(\\Ui\\>en1/a)}^0.
i=i

These conditions are adapted from Clegg, Cai & Sen (1999) and guarantee the
asymptotic normality of the pseudo-partial likelihood estimator, the maximizer
of £(0) defined in (5). Under these conditions, there exists a sequence 0n —> 0O

as n —> oo.

References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Trans.
on Automatic Control 19 716-723.

Antoniadis, A. & Fan, J. (2001). Regularization of wavelets approximations (with
discussions). J. Amer. Statist. Assoc. 96 939-967.



VARIABLE SELECTION FOR SURVIVAL ANALYSIS 335

Badgonavicius, V. & Nikulin, M. (2002). Accelerated Life Models: Modeling &
Statistical Analysis. Chapman and Hall, New York.

Bickel, P. J. (1975). One-step Huber estimates in the linear model. Jour. Ameri.
Statist. Assoc. 70 428-433.

Breiman, L. (1995). Better subset regression using the nonnegative garrote. Tech-
nometrics 37 373-384.

Breiman, L. (1996). Heuristics of instability and stabilization in model selection.
Ann. Statist. 24 2350-2383.

Cai, J. (1999). Hypothesis testing of hazard ratio parameters in marginal models
for multivariate failure time data. Lifetime Data Analysis 5 39-53.

Cai, J., Fan, J., Li, R. & Zhou, H. (2004). Variable Selection for Multivariate
Failure Time Data. Biometrika. In press.

Cai, J. & Prentice, R. L. (1995). Estimating equations for hazard ratio parameters
based on correlated failure time data. Biometrika 82 151-164.

Cai, J. & Prentice, R. L. (1997). Regression estimation using multivariate time
data & a common baseline hazard function model. Lifetime Data Anal-
ysis 3 197-213.

Clegg, L. X., Cai, J. & Sen, P. K. (1999). A marginal mixed baseline hazards
model for multivariate failure time data. Biometrics 55 805-812.

Cox, D. R. (1972). Regression models and life tables (with discussion). Jour. Roy.
Statist. Soc. Ser. B 34 187-220.

Cox, D. R. (1975). Partial likelihood. Biometrika 62 269-276.
Craven, P. & Wahba, G. (1979). Smoothing noisy data with spline functions:

estimating the correct degree of smoothing by the method of generalized
cross-validation. Numer. Math. 31 377-403.

Dawber, T. R. (1980). The Framingham Study, The Epidemiology of Atheroscle-
rotic Disease, Cambridge, MA, Harvard University Press.

Donoho, D. L. & Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet
shrinkage. Biometrika 81 425-455.

Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2004). Least angle regression
(with discussions). Ann. Statist. 32 409-499.

Fan, J. & Li, R. (2001). Variable selection via nonconcave penalized likelihood
and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360.

Fan, J. & Li, R. (2002). Variable selection for Cox's proportional hazards model
and frailty model. The Annals of Statistics 30 74-99.

Fan, J. & Peng, H. (2004). Nonconcave penalized likelihood with a diverging
number of parameters. Annals of Statistics 32 928-961.

Faraggi, D. (1998). Bayesian variable selection method for censored survival data.
Biometrics 54 1475-1485.

Faraggi, D. & Simon, R. (1997). Large sample Bayesian inference on the pa-
rameters of the proportional hazard models. Statistics in Medicine 16
2573-2585.

Frank, I. E. & Friedman, J. H. (1993). A statistical view of some chemometrics
regression tools. Technometrics 35 109-148.

Giudici, P., Mezzetti, M. & Muliere, P. (2003). Mixtures of products of Dirichlet
processes for variable selection in survival analysis. Journal of Statistical
Planning and Inference 111 101-115.



336 JIANQING FAN, GANG LI, AND RI/NZE LI

Ibrahim, J. G. & Chen, M. H. (2000). Power prior distributions for regression
models. Statistical Sciences 15 46-60.

Ibrahim, J. G., Chen, M. H. & MacEachern, S. N. (1999). Bayesian variable
selection for proportional hazards models. Canadian Journal of Statistics
27 701-717.

Ibrahim, J. G., Chen, M. H. & Sinha, D. (2001). Bayesian variable selection for
proportional hazards model. Statistica Sinica 11 419-443.

Lee, E. W., Wei, L. J. & Amato, D. A. (1992). Cox-type regression analysis for
large numbers of small groups of correlated failure time observations. In
Survival Analysis: State of the Art (J. P. Klein & P. Goel, eds.) 237-248.
Boston: Kluwer Academic Publishers.

Liang, K. Y., Self, S. G. & Chang, Y. C. (1993). Modelling marginal hazards in
multivariate failure time data. J. Royal Statist. Soc, Ser. B 55 441-453.

Lin, D. Y. (1994). Cox regression analysis of multivariate failure time data: The
marginal approach. Statist, in Med. 13 2233-2247.

Lindley, D. V. (1968). The choice of variables in multiple regression (with discus-
sion). Jour. Roy. Statist. Soc, B 30 31-66.

Mallows, C. L. (1973). Some comments on Cv. Technometrics 15 661-675.
McCullagh, P. & Nelder, J. A. (1989). Generalized Linear Models 2nd ed. Chap-

man and Hall, London.
Miller, A. J. (2002). Subset Selection in Regression 2nd Edition Chapman and

Hall, London.
Nielsen, G. G, Gill, R. D., Andersen, P. K., & S0rensen, T. I. A. A. (1992). A

counting process approach to maximum likelihood estimator in frailty
models. Scandin. J. Statist. 19 25-43.

Schwarz, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-
464.

Sinha, D., Chen, M. H. & Ghosh, S. K. (1999). Bayesian analysis and model
selection for interval censored survival data. Biometrics 55 585-590.

Spiekerman, C. F. & Lin, D. Y. (1998). Marginal regression models for multivari-
ate failure time data. Jour. Araer. Statist. Assoc. 93 1164-1175.

Tibshirani, R. (1996). Regression shrinkage & selection via the LASSO. J. Royal
Statist. Soc, Ser. B 58 267-288.

Tibshirani, R. (1997). The lasso method for variable selection in the Cox model.
Statistics in Medicine 16 385-395.

Volinsky, C. T. & Raftery, A. E. (2000). Bayesian information criterion for cen-
sored survival models. Biometrics 56 256-262.

Wei, L. J., Lin, D. Y. & Weisseld, L. (1989). Regression analysis of multivari-
ate incomplete failure time data by modeling marginal distributions. J.
Amer. Statist. Assoc. 84 1065-1073.



Empirical Likelihood in Survival Analysis

Gang Li1, Runze Li2, and Mai Zhou3

1 Department of Biostatistics, University of California, Los Angeles, CA 90095,
U.S.A. (vliSucla.edu)

2 Department of Statistics, The Pennsylvania State University, University Park,
PA 16802-2111, U.S.A. (rli9stat.psu.edu)

3 Department of Statistics, University of Kentucky, Lexington, KY 40506,
U.S.A. (maiQms.uky.edu)

Summary. Since the pioneer work of Thomas & Grunkemeier (1975) and Owen
(1988), empirical likelihood has been developed as a powerful nonparametric in-
ference approach and become popular in statistical literature. There are many
applications of empirical likelihood in survival analysis. In this paper, we present
an overview of recent developments of empirical likelihood methods for survival
data. In particular, we discuss empirical likelihood results for a general mean
functional of the distribution function, a functional of the hazard function, the
Cox proportional hazards model, and a semiparametric accelerated failure time
model.
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1 Introduction

Empirical likelihood (EL) appears to be first used by Thomas & Grunkemeier
(1975) to obtain better confidence intervals involving the Kaplan-Meier estima-
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tor in survival analysis. Theoretical development of empirical likelihood was origi-
nated by Owen (1988) who derived nonparametric confidence regions for the mean
of a random vector based on i.i.d. observations. Since the work of Owen (1988),
EL method has become popular in the statistical literature and has been extended
to a variety of applications including linear regression models [cf. Owen (1991)
and Chen (1993, 1994)], general estimating equations (Qin & Lawless (1994)),
and nonparametric regression (Chen & Qin (2000)). A comprehensive review of
empirical likelihood for various complete data settings is given by Owen (2001).
EL has many desirable properties. For instance, the EL based confidence interval
is range preserving and transform respecting. It uses data to determine the shape
and orientation of a confidence region. Another notable feature of EL is its abil-
ity to carry out a hypothesis test and construct confidence intervals without the
need of estimating the variance. This feature has been appreciated particularly in
survival analysis since variance estimation can be very difficult in many survival
analysis problems. Because of this difficulty, many estimation procedures saw
limited action in practice. EL can provide a way to circumvent the complicated
variances and make many inference procedures practical.

Because the results of Owen (1988, 1991) cannot be easily extended to deal
with incomplete survival data, many authors have worked to develop EL proce-
dures for analysis of survival data. Li (1995) and Murphy (1995) gave theoretical
justifications for the method of Thomas & Grunkemeier (1975). Li (1995) demon-
strated that the likelihood ratio used by Thomas & Grunkemeier (1975) is a
"genuine" nonparametric likelihood ratio. That is, it can be derived by consider-
ing the parameter space of all survival functions. This property is not shared by
many existing EL. Li, Qin & Tiwari (1997) derived likelihood ratio-based confi-
dence intervals for survival probabilities and for the truncation proportion under
statistical setting in which the truncation distribution is either known or belong to
a parametric family. Hollander, McKeague & Yang (1997) constructed simultane-
ous confidence bands for survival probabilities based on right-censored data using
EL. Pan & Zhou (1999) illustrated the use of a particular kind of one-parameter
sub-family of distribution in the analysis of EL. Einmahl & McKeague (1999)
constructed simultaneous confidence tubes for multiple quantile plots based on
multiple independent samples using the EL approach. Wang & Jing (2001) inves-
tigated how to apply the EL method to a class of functional of survival function
in the presence of censoring by using an adjusted EL. Pan & Zhou (2002) studied
the EL ratios for right censored data and with parameters that are linear func-
tionals of the cumulative hazard function. Li & van Keilegom (2002) constructed
confidence intervals and bands for the conditional survival and quantile functions
using an EL ratio approach. McKeague & Zhao (2002) derived a simultaneous
confidence band for the ratio of two survival functions based on independent
right-censored data. Chen & Zhou (2003) extended the self consistent algorithm
(Turnbull (1976)) to include a constraint on the nonparametric maximum like-
lihood estimator of the distribution function with doubly censored data. They
further show how to construct confidence intervals and test hypothesis based on
the nonparametric maximum likelihood estimator via the EL ratio.
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The EL ratio has also been used to construct confidence intervals for other
parameters or functionals of a population in addition to survival probabilities. For
instance, Ren (2001) used weighted EL ratio to derive confidence intervals for the
mean with censored data. Adimari (1997) suggested a simple way to obtain EL
type confidence intervals for the mean under random censorship. Li, Hollander,
McKeague &: Yang (1996) derived confidence bands for quantile functions using
the EL ratio approach. The EL method has also been applied for linear regression
with censored data (Qin & Jing (2001a), Li & Wang (2003), Qin & Tsao (2003)).
Furthermore, the EL method has been adapted for semiparametric regression
models, including partial linear models (Leblanc & Crowley (1995), Shen, Shi &
Wong (1999), Qin & Jing (2001b), Lu, Chen & Gan (2002), Wang & Li (2002)).
Naiknimbalkar & Rajarshi (1997) proposed the EL ratio test for equality of k-
medians in censored data. Chen, Leung & Qin (2003) extended the EL method
for censored data with surrogate endpoints. Li (2003) developed EL methods for
testing goodness-of-fit with right censored data.

This article will focus on some recent EL results for censored data where the
limiting distribution in the Wilks type theorem is a pivotal quantity, like a chi
square. In Section 2, we introduce in detail EL results for a mean functional with
right censored data, while in Section 3 we discuss EL results for a functional of
the hazard function. Section 4 discusses some computation issues for the censored
EL. EL for the Cox proportional hazards regression model is studied in Section 5.
Section 6 presents the EL method for a semiparametric accelerated failure time
model. Finally Section 7 gives a brief discussion on EL results with other types
of censored data.

2 Empirical Likelihood for a mean functional

We define a mean functional as a parameter 0 that is determined by

Jg{t,0)dF(t) = O, (1)

where F is the unknown cumulative distribution function (CDF) and g is a known
function. For example, 0 is the mean if g(t, 9) = t—9, an s-year survival probability
if g(t, 9) = I{t < s) -9, and the p-th quantitle if g(t, 9) = I(t < 9) - p.

Suppose that X%, X2, • • • , Xn are independent and identically distributed life-
times with CDF F(t) = P(Xt < t). Let C i ,C 2 , - - ,Cn be censoring times with
CDF G(t) = P(d < t). Assume further that the life times and the censoring
times are independent. Under the random censorship model, we observe only

Ti = mm(Xi,Ci), 6i = I[x.<Ci], i = l , . . . , n . (2)

The EL of the censored data pertaining to F is
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n

EL(F) = Y[[AF(Ti)]Si [1 - FiTi)}1'5' , (3)
i=l

where AF(s) = F(s) - F(s-).

It is well known that among all the cumulative distribution functions, the
Kaplan & Meier (1958) estimator maximizes (3). Let us denote the Kaplan-Meier
estimator by Fn(t). Although the maximum of the censored EL under constraint
(1) does not always have an explicit expression, we have the following Wilks type
result.

Theorem 1. Suppose the true distribution of lifetimes satisfies constraint (1).
Assume further that the asymptotic variance of yjn f g(t,9)dFn(t) is positive and
finite. Then, as n —> oo

where the sup is taken over all the CDFs that satisfy (1) and F < F n .

The proof of Theorem 1 can be found in Murphy & van der Vaart (1997) or Pan
& Zhou (1999).

Counting process martingale techniques has now become a standard tool in
the literature of survival analysis. Given the censored data (2), it is well known
that we can define a filtration Tt such that

M (t) _ Fn(t) - F(t)

is a (local) martingale with respect to the filtration Tt, see Fleming & Harrington
(1991) for details. It is also known that under mild regularity conditions, y/nMn(t)
converges weakly to a time changed Brownian motion.

To develop EL methods for regression models such as the Cox model and
the accelerated failure time model, we need to extend Theorem 1 to a more
general setting in which g(t) is replaced by a random function gn{t) satisfying the
following conditions:

1. (i) gn{t) are predictable with respect to Tt and gn(t) —> g{t) as n —> oo.
2- (") V^IZo{9n(t)[l - Fx(t)] + J^oogn{s)dFx(s)}dMn(t) converges in dis-

tribution to a zero mean normal random variable with a finite and non-zero
variance.

It is worth noting that the integrand inside the curly brackets in (ii) is pre-
dictable. If we put a variable upper limit in the outside integration in (ii), then
it is also a martingale. It is not difficult to give a set of sufficient conditions that
will imply asymptotic normality. Usually a Lindeberg type condition is needed.

(4)
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Theorem 2. Suppose that gn(t) is a random function satisfying the above two
conditions and that for each n,

/•oo

/ gn(t)dFx(t) = O , (5)
J — oo

then
suPF EL(F) j ^ 2

EL(Fn) M1)

where the sup in the numerator is taken over those F that F « F n and satisfy
the constraint

r°°
/ 9n(t)dF(t) = 0 . (6)

The proof of Theorem 2 is given in Zhou & Li (2004). In Theorem 2, it
is assumed that the true distribution of Xi satisfies (5). However, the Kaplan-
Meier estimator may not satisfy this condition. Generalizations of the above two
Theorems for multiple constraints type similar to (1) or (6) are seen to hold, but a
formal proof is tedious and not available in the published literature. The limiting
distribution will be X(,) where q is the number of constraints.

3 Empirical Likelihood for functionals of the hazard

Hazard function is a quantity often of interest in survival analysis. For a random
variable X with cumulative distribution function F(t), the cumulative hazard
function is defined by

H(t) ~ f dF{8)

Given the randomly censored data (2), a natural way to define the EL in
terms of the hazard is:

EL{H) = f[[AH(Ti)]s' exp(-ff(71)). (7)
t=i

It can be easily verified that EL(H) is maximized when the hazard is the
Nelson-Aalen estimator, denoted by Hn(t). The parameter 6 of interest is defined
by

j gn(t,0)dH(t) = 0, (8)

where the meaning of the parameter 0 is similar to that in (1) or (5) and the
function gn is stochastic.
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Theorem 3. Suppose that gn(t) is a sequence of predictable functions with respect
p

to the filtration Tt, and gn —> g(t) with

J (1-Fx(x))(l-G(x))

If the true underlying cumulative hazard function satisfies the condition (8), then

„ . s u p H EL(H) T> 2

- 2 log — £ - 2 — ; - i — - —> Y , , os n -> oo ,
hjL(Hn)

where the sup is taken over those H that satisfy (8) and H -C Hn.

One nice feature here is that we can use stochastic functions to define the
statistics, i.e. g(t) = gn(t), as long as gn(t) is predictable with respect to JF(. See
Pan & Zhou (2002). For example gn(t) = size of risk set at time t, will produce
a statistic corresponding to the one sample log-rank test, etc.

Multivariate version of the Theorem 3 can similarly be obtained with a limit-
ing distribution of xfq) • The q parameters are defined through q equations similar
to (8) with different g and 9.

4 Computation of the censored Empirical Likelihood

Computation of the EL ratio can sometimes be reduced by the Lagrange multiplier
method to the dual problem. When it does, the computation of EL is relatively
easy, and is equivalent to the problem of finding the root of q nonlinear monotone
equations with q unknowns. But more often than not the censored EL problem
cannot be simplified by the Lagrange multiplier method. A case in point is the
right censored data with a mean constraint. No reduction to the dual problem is
available.

Below we discuss two computational methods when the maximization prob-
lem of the censored empirical likelihood cannot be simplified by the Lagrange
multiplier method.

Sequential quadratic programming (SQP) is a general optimization procedure
and a lot of related literature and software are available from the optimization
field. It repeatedly approximates the target function locally by a quadratic func-
tion. SQP can be used to find the maximum of the censored EL under a (linear)
constraint and the constrained NPMLE. This in turn enables us to obtain the
censored empirical likelihood ratio. A drawback of this approach is that without
the Lagrange multiplier reduction, the memory and computation requirement
increases dramatically as the sample size increases. It needs to invert matrices
of size n x n. With today's computing hardware, SQP works well for small to
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medium sample sizes. In our own experience, it is quite fast for samples of size
under 1000, but for larger sample sizes difficulty may rise.

EM algorithm has long been used to compute the NPMLE for censored data.
Turnbull (1976) showed how to find NPMLE with arbitrary censored, grouped
or truncated data. Zhou (2002) generalized Turnbull's EM algorithm to obtain
the maximum of the censored empirical likelihood under mean constraints, and
thus the censored empirical likelihood ratio can be computed. Compared to the
SQP, the generalized EM algorithm can handle much larger sample sizes, up to
10,000 and beyond. The memory requirement of the generalized EM algorithm
increases linearly with the sample size. The computation time is comparable to
the sum of two computation problems: the same EL problem but with uncensored
data (which has a Lagrange multiplier dual reduction), and Turnbull's EM for
censored data NPMLE.

Many EL papers include examples and simulation results and thus various
software are developed. There are two sources of publicly available software for
EL: there are Splus codes and Matlab codes on the EL web site maintained by
Owen but it cannot handle censored data. There is a package emplik for the sta-
tistical software R (Gentleman & Ihaka (1996)) written by Mai Zhou, available
from CRAN. This package includes several functions that can handle EL com-
putations for right censored data, left censored data, doubly censored data, and
right censored and left truncated data.

The package emplik also includes functions for computing EL in the regression
models discussed in Section 6. No special code is needed to compute EL in the Cox
proportional hazards model, since the EL coincides with the partial likelihood,
which can be computed using existing softwares.

5 Cox proportional hazards regression model

For survival data, the most popular model is the Cox model. It is known that
the partial likelihood ratio of Cox (1972, 1975) can be interpreted as the (profile)
empirical likelihood ratio; see, e.g., Pan (1997) and Murphy & van der Vaart
(2000).

Let Xi, i — 1, • • • ,n be independent lifetimes and z,, i = 1, • • • ,n be the
associated covariates. The Cox model assumes that

h(t\Zi) = ho(t)exp{(3zi),

where ho(t) is the unspecified baseline hazard function and f3 is a parameter.

The contribution to the empirical likelihood function from the ith observation
(Ti,6i) is

{AHiiT^t exp{-ffi(Ti)},
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where Hi{t) = Ho(t) exp(zt0). The empirical likelihood function is then the prod-
uct of the above over i:

n

ELc(H0,l3) = J][^^o(Ti)exp(Zi/3)]'s- exP{-i70(Ti)exp(Zi/3)} .
z = l

It can be verified that for any given 0 the ELC is maximized at the so called
Breslow estimator, Ho = H%. Also, by definition, the maximum of ELc(H%,0)
with respect to 0 is obtained at the Cox partial likelihood estimator of the re-
gression parameter. Denote the Cox partial likelihood estimator of 0 by 0C.

Theorem 4. Under the conditions that will guarantee the asymptotic normality
of the Cox maximum partial likelihood estimator as in Andersen & Gill (1982),
we have the following empirical likelihood ratio result:

10, Ho}

where /(•) is the information matrix as define in Andersen & Gill (1982), £ is
between 0o and 0C, and the sup in the denominator is over all 0 and hazard
Ho <S Hn. It then follows easily that the right hand side of (9) converges in
distribution to x^i) as n —> oo.

The proof of Theorem 4 was given in Pan (1997). Zhou (2003) further studied
EL inference for the Cox model along the lines of the above discussion. He ob-
tained the Wilks theorem of the EL for estimating/testing 0 when some partial
information for the baseline hazard is available. The (maximum EL) estimator of
0 is more efficient than 0C due to the extra information on the baseline hazard.

6 Accelerated Failure Time model

The semiparametric accelerated failure time (AFT) model is a linear regression
model where the responses are the logarithm of the survival times and the error
term distribution is unspecified. It provides a useful alternative to the popular
Cox proportional hazards model for analyzing censored survival data [cf. Wei
(1992)]. AFT models are sometimes more natural than the Cox model [cf. see
Reid (1994)].

For simplicity, we denote X, to be the logarithm of the lifetime for subject i.
Suppose

Xi = ptzi+ti i = l , . . . , n ;

where e '̂s are i.i.d. random errors, 0 is the regression parameter to be estimated
and Zi is the vector of covariates for subject i. For subject i, let d be the censoring

(9)
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time and assume that d and Xi are independent. Due to censoring, we observe
only

Ti=mm(Xi,Ci), 5i = I[Xi<ci\, Zi, i = l , . . . , n . (10)

For any candidate estimate b of /3, we define

ei(b) = Ti-btzi .

When 6 = /3, the e,(/3)'s are the censored sample for the ej's.

Two different approaches of EL analysis of the AFT model are available in
the literature. The first approach is characterized by its definition of the EL as

n

EL(AFT) = Y[Pi. (11)

However, this is a bona fide EL only for iid uncensored data. Similar to Owen
(1991), this EL(AFT) is coupled with the least squares type estimating equations

f>(77-/3(z0=0

where T* is defined by either the synthetic data approach:

T . _ SjTj

* l -G(T i ) '

or the Buckley-James approach:

T?=6iTi + (l-6i)E(Xi\Ti,0) .

Both definition of 77 are based on the observation that E{T*) = E(Xi). Un-
fortunately, the censoring distribution function G in the synthetic data approach
is unknown and is typically replaced by a Kaplan-Meier type estimator. In the
Buckley-James approach the conditional expectation depends on the unknown
error distribution and also need to be estimated. These substitution, however,
makes the T* dependent on each other and careful analysis show that the log
EL (AFT) ratio has a limiting distribution characterized by linear combinations
of chi squares, with the coefficients need to be estimated. See Qin & Jing (2001a),
Li & Wang (2003) and Fang, Li & Qin (2004) for details.

The second approach of EL for the censored AFT model defines the EL as

EL{errar) = f[p*<[l - ] T p,-]1"* . (12)

This EL may be viewed as the censored EL for the iid errors in the AFT model.
It is more natural in our opinion since it reflects the censoring.
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Zhou & Li (2004) first noted that the least squares estimation equation with
the Buckley-James approach can be written as

0 = 5>ei(6)L+ £ 'S^T^l. (13)
i [ k<i, 6k=0 1 ~ F " ( e 0

where Fn is the Kaplan-Meier estimator computed from (et, 5i), i = 1, . . . , n.

They then proposed to use the following estimation equations

Zl+ Y, « AK{")

" * > < » " ' ^ w * " " * » •

with the EL(error) defined earlier.

With the aid of Theorem 2, Zhou and Li proved the following theorem.

Theorem 5. Suppose that in the censored AFT model ti are iid with a finite
second moment. Under mild regularity conditions on the censoring, we have, as
n —> oo

„. sup ELlerror) v 2

-2l0gsuPEL(err0r)-^X^>
where the sup in the numerator is taken over b = (3 and all probabilities pi that
satisfy the estimating equations (14); the sup in the denominator is taken over
b = Buckley-James estimator and all probabilities pi.

A multivariate version of the above theorem can also be established. M-
estimation of (3 for the censored AFT model is also discussed by Zhou & Li
(2004).

7 Other Applications

Empirical likelihood method is applicable to many other types of censored data.
However, fewer results are available due to technical difficulties. Li (1996) and Li,
Qin & Tiwari (1997) studied EL for left truncated data. Similar results for the
left truncated and right censored data should also hold. Murphy & van der Vaart
(1997) described a general framework for studying EL. In particular, they showed
that for doubly censored data, where the lifetimes are subject to censoring from
above and below, EL results similar to Theorem 1 hold. Huang (1996) gave EL
results for a proportional hazards model with current status data.

(14)
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Summary. In cancer drug development, demonstrated efficacy in tumor
xenograft experiments on severe combined immunodeficient mice who are grafted
with human tumor tissues or cells is an important step to bring a promising
compound to human. These experiments also demonstrated a good correlation in
efficacy with clinical outcomes. A key outcome variable is tumor volumes mea-
sured over a period of time, while mice are treated with certain treatment reg-
imens. To analyze such data from xenograft experiments and evaluate the effi-
cacy of a new drug, some statistical methods have been developed in literature.
However, a mouse may die during the experiment or may be sacrificed when its
tumor volume reaches a threshold. A tumor may be suppressed its tumor bur-
den (volume) may become undetectable for some time but regrow and its tumor
burden (volume) may become (e.g., < 0.01cm3) undetectable at times. Thus,
incomplete repeated measurements arise. Because of the small sample sizes in
these experiments, asymptotic inferences are usually questionably. In addition,
were the tumor-bearing mice not treated, the tumors would keep growing until
the mice die or are sacrificed. This intrinsic growth of tumor in the absence of
treatment constrains the parameters in the statistical model and causes further
difficulties in statistical analysis. In this paper, we review the recent advance in
statistical inference accounting for these statistical challenges. Furthermore, we
develop a multivariate random effects model with constrained parameters for mul-
tiple tumors in xenograft experiments. A real xenograft study on the antitumor
agent exemestane, an aromatase inhibitor, combined with tamoxifen against the
postmenopausal breast cancer is analyzed using the proposed methods.

Contemporary Multivariate Analysis and Experimental Design—In Honor Celebration of Pro-
fessor Kai-Tai Fang's 65th birthday. Edited by Jianqing Fan and Gang Li. The World Scientific
Publisher, 2005.
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1 Introduction

Most human tumors have gone undetected clinically for the greater part of their
growth. It is thus necessary to study human tumors in an experimental situation
which requires the approach of xenografting, where human tumor tissues (e.g.,
sliced tissue blocks, or tumor cells) are grown in experimental animals. The most
widely used animal model is the mice (especially, the severe combined immunode-
ficient (scid) mice) model. Because anti-tumor activity in the xenograft correlates
well with patient response, it is an important step to demonstrate such activity
in xenografts to bring a promising compound to human.

In a typical xenograft experiment, treatment is initiated when the diameter of
tumor reaches certain level (e.g., 0.5cm). Several treatment regimens are adminis-
tered and the outcome variables such as tumor volumes are measured (using, e.g.,
the Maxcal digital caliper) at the start of the treatment and regularly in a given
period of follow-up time. Measurements are transmitted directly to a computer.
The renewed interest stems from humane and cost considerations as well as scien-
tific considerations for analyzing the data efficiently and make inference properly.
A general statistical guideline for the design and analysis of experiments involving
animals is proposed by Festing & Altman (2002) and Rygaard k. Spang-Thomsen
(1997). An optimal design and a sample size formula for tumor xenograft models
are developed in Tan, Fang, Tian & Houghton (2003). Without missing data, the
statistical analysis for tumor growth experiments has been studied by Heitjan
(1991) and Heitjan, Manni & Santen (1993).

However, the statistical analysis of such longitudinal data presents several
challenges for a number of reasons. First, sample sizes in xenograft experiments
are usually small because of cost, graft failures due to body rejection or some
xeno-antigens. Therefore, small sample inference procedures are needed. Second,
in xenograft experiments, the tumor growth depends on initial volumes. If no
treatment were given, tumors in mice would keep growing until the tumor-bearing
mice die or are sacrificed. Thus, estimating antitumor activity should adjust for
the intrinsic tumor growth in the absence of treatment, which thus constrains
the regression coefficients. Finally, missing data is hard to avoid in these experi-
ments because a mouse may die of toxicity or may be sacrificed when its tumor
volume reaches a set criterion (i.e. quadruples) or the tumor volume becomes
unmeasurable (for example, when it is less than 0.01cm3).
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Although the analysis of incomplete longitudinal data has attracted a great
deal of attention in the literature (see e.g. Diggle & Kenward (1994); Little (1995);
Hogan & Laird (1997); and Wu & Follmann (1999)), existing methods for infor-
mative missingness do not account for the constraints in the model parameters.
To account for special features of data arisen from xenograft experiments such
as moderate samples and informative censoring, Tan, Fang, Tian & Houghton
(2002) developed a i-test via the EM algorithm and a Bayesian approach for test-
ing difference between two treatment regimens in xenograft experiments. Tan,
Fang, Tian & Houghton (2004) proposed a class of regression models with con-
strained parameters and Fang, Tian & Tan (2004) considered a Bayesian hierar-
chical model accounting for the parameter constraints. In this paper, we synthe-
size recent advances in statistical inference accounting for these challenges and
further develop a random-effects model with constrained parameters for multiple
tumors.

In the rest of this article, we first summarize and formulate the statistical
models for xenograft experiments in Section 2. The parameters are estimated
using two inter-related methods, a maximum likelihood approach based on the
ECM algorithm and a Bayesian approach that takes advantage of the likelihood
results in Section 3. The comparison of two treatments is discussed in Section
4. Section 5 develops a multivariate random-effects model with constrained pa-
rameters for multiple tumors in xenograft experiments. We illustrate the method
with the xenograft experiments in breast cancer therapy when multiple tumors
are grown simultaneously. We conclude with a discussion in Section 6.

2 Statistical Models

To model the antitumor activity, let q be the number of agents and to < t\ <
• • • < tm the prespecified follow-up times. For subject i (i = 1, . . . , n), let X/M and
(3/ti> • • • ,yim)T denote the initial tumor volume at t0 and the tumor volumes at
(i i , . . . ,tm) in logarithm scale, respectively. Let zj . ' denote the cumulative dose
of agent k(k = \,...,q) administered to subject i up to time t, for j = 1,. . . , m.
Further consider {p—q) interaction terms of the q agents. The corresponding doses
are denoted by z\f, where k = q + 1,.. . ,p. Therefore, zf} = (z£\ .. • , z ^ ) T

denote the doses of agent k{k = 1,.. . ,p) given to subject i. Treating the initial
value yio as a covariate, we obtain a known m x (p + 1) covariate matrix Zi =
(j/iolm, z ^ , . . . , z'p)), where l m denotes the m-vector of component 1.

Note that all initial values {yio} are completely observed but ( j / i x , . . . ,yim)T

may be not. Due to early withdrawal, we only observe yi = (yn, • • •, yini )T• If the
tumor volume is below some threshold a (e.g., 0.01cm3), then it is unmeasurable
and the informative censoring occurs. Therefore, the observation y, consists of the
observed part y;,obs with length pi and the informative censoring part yi,inf with
length Hi-pi, of which all components are less than the threshold a. Fang, Tian
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& Tan (2004) proposed the following linear mixed-effects model for the dose-effect
relationship

yt = 7 i + Xi/3 + W i b i + e i , i = l,...,n, (2.1)

where yi is unknown intercept, (3 = (/?o,/?i, -. • ,/3P)T is the fixed-effects, X* is
the rii x (p + 1) submatrix of Zj by removing the last (m — n,) rows, Wj is the
rii x (q + 1) submatrix of X* by removing the last (p — q) columns, b, is the
( ? + l ) x l random-effects, and ei is the error vector. We further assume that
bt ~ iV9+i(0, D), e» ~ Nni(0,a2Ini), and bj is independent of ei, where D and
cr2 are unknown (q+ 1) x (q + 1) matrix and variance, respectively, and In i is the
identity matrix.

In model (2.1), the intercept j { = (71, . . . ,jni)T reflects the intrinsic growth
of tumor when no treatment was given. To characterize the unperturbed tumor
growth, some parametric models were used, for example, Norton & Simon (1977)
used a Gompertzian curve and Heitjan (1991) proposed a family of parametric
models that contains the Gompertz and several other popular growth models.
However, those parametric models do not always fit well across the entire curves
for certain tumors, especially for different tumor growth curves even in the same
xenograft experiments (e.g. untreated growth curves for breast cancer in Section
5 below). Then, we propose a regression model with nondecreasing intercept pa-
rameters for unperturbed tumor growth here. Since the tumor volumes in the
control group are non-decreasing, a reasonable restriction on •yi is

7 l < 7 2 < . . . < 7 n . . (2.2)

7; is an rii-dimensional vector with varying length. To effectively deal with the
restricted parameter problem (2.2), we make a transformation ft = V,a , where
Vt is the mxm submatrix of V by removing its last m — rii rows, and V = (v«>)
is the mxm lower-triangle matrix with Vu' — 1 for £ > £' and 0 otherwise, and
a = ( a i , . . . , a m ) T £ M x JR™"1, where

M x JR+'1 = {a : -00 < m < +00, a, > 0, 3 = 2,...,m}. (2.3)

Therefore, the model (2.1) can be rewritten in a hierarchical form

y*|bi ~d Nni(Vta + Xi(3 + Wibi, a2lni),

(2.4)

• b< ~ Nq+1(0, D), t = l , . . . , r » ,

In tumor xenograft experiments, mice often from the same strain are used
and they are virtually genetically identical. Then the random-effects among mice
may be omitted and Tan, Fang, Tian & Houghton (2004) proposed the following
linear regression model with constrained parameters

5n = 7 + Zi/3 + £ i , i = l,...,n, (2.5)

where y, = (yn,.. -,yim)T, 7 = (711 • • •,"fm)T and
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7i < 72 < • • • < 7m- (2.6)

The error term Si is assumed to have the m-dimensional normal distribution with
mean 0 and covariance matrix Sm = <r2Rm and Rm = (rji) has the Toeplitz
correlation structure,

ril=Con{yij,yu) = pU-l\ j , l = l , . . . ,m, / > € ( - l , l ) (2.7)

p is the correlation between successive measurements on the same subject and
the correlation structure suggests that tumor volumes at two closer time points
have higher correlation than those at two time points.

Although the normality assumption on tumor volume in /op-scale is often
appropriate and convenient for statistical inference, one natural question is how
to actually test the multinormality of incomplete longitudinal data with small
sample size. For the complete data, Liang, Li, Fang & Fang (2000) proposed the
projection tests for multivariate normality based on the properties of left-spherical
matrix distributions and affine invariant statistics. Especially, in the case of the
small sample size n and the large dimension m (m < n), the projection tests are
still effective in testing multinormality if one chooses the projection dimension
q < min(m,n — 1). Using multiple imputations and the projection test, Tan,
Fang, Tian & Wei (2005) developed a test procedure for the multinormality of
incomplete longitudinal data with small sample size. In addition, historic data of
xenograft models (for a series of drugs in a host of cell lines) are usually available
within a developmental therapeutics program and should be utilized to assist
model checking and the selection of a transformation to approximate normality.

3 Estimation of Parameters

In this section, we focus on statistical inference for model (2.1) with restriction
(2.2). The methods proposed below are adoptable for model (2.5) with parameter
constraint (2.6). We denote the unknown population parameters by G = (cr,a),
where cr = (D,/3,cr2). Further denote the observed part by Yot,s = {yi,obs : i =
1,... , n}, the informative censoring part by Y;nf = {yi,inf : i = 1,. . . , n}, and
the observed data by Yobs = {Yobs, A}, where A = {<5, : i = 1, . . . , n}, and <5, is a
vector of indicator whose components equal to 1 if the corresponding component
of yi is less than a, otherwise 0. We treat both y;,inf and b* as missing data, and
denote them by Ymis = {(yi.inf, bt) : i = 1, . . . , n}.

From (2.4), the likelihood function of 0 for the complete-data YCOm =
{(yi, bj) : i = 1,...,n} is proportional to

<«•)-*-P{- 5 ^ } • i°r»**P{- t r ( D"?-"•b T) , P..)
where N = YL7=i n» an<^ ^ i ' s a n ni x ni matrix defined by
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Mi = (yi - Via - Xi/3 - Wibi)(yi - Via - X</3 - Wibif. (3.2)

We develop two inter-related methods, a maximum likelihood approach based
on the ECM algorithm and a Bayesian approach to estimate the dose-response
relationship while accounting for the informative censoring and the constrained
parameters. Posteriors in the Bayesian analysis are computed straightforwardly by
taking advantage of the MLEs using the inverse Bayes formulae (IBF) sampling
procedure (Tan, Tian & Ng (2003)).

3.1. Maximum Likelihood Estimation via the ECM Algorithm

Prom (3.1), given the complete-data Ycom, the MLE of D depends only on
{bj} and does not involve the other parameters (/3,<r2,a),

6=ii>b^ (3-3)
i=l

Given YCOm, the MLEs of (/3,<r2,a) are determined by the following equations:

/3=(^XfXi) ^X^yi-Via-Wibi), (3.4)
^ i=l ' i=l

and
1 n

<r2 =-^r^ZtrMi, ai = (v! - n12a-!)/uiu, (3.5)

a_i=arg min < a^ii722a_i - 2a^x(v_i - ai/?2i) f , (3.6)
OC — 1 > 0 I. )

where argmin{/(x)} means the value of x at which f(x) arrives its minimum,
a - i = (a2, - . . ,otm)T, Mi is given by (3.2), and

^r^w^vrv,,
\f22l f22^

(3.7)

v = ( Vl) = E?=i vTfri - Xi^ - Wibi).
\v_i/

To obtain the solution of a_i in (3.6), we use a novel EM algorithm via data
augmentation proposed by Tian, Fang & Tan (2004). Equation (3.6) is equivalent
to

oc-i = arg min (a_i — v) ,J?22(a:-i — v) = arg min ||/x — Aa_i | | 2 ,
a_i>o «_!>()

where v = v_i — aiJ?2i> A = (a^) is the upper triangular matrix with
positive diagonal elements from the Cholesky decomposition of J?22 such that
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/?22 = A T A a n d fi = (^2, • • • ,/J-m)T = A v . Given the current es t imate

aL'i = («4*\ . . . ,otm)T, the E-step calculates

& - g « * [ ^ P + M i " ^ : 2 r Q < ] / g«?», *=2, . . . , m >

and the M-step updates

a<:'+1) =max{0,SJ<t)}I k = 2,...,m.

The parameters 0 can be estimated via (3.3)-(3.6) using the EM algorithm.
Because of missing data, the MLE involves an iterative algorithm and the conven-
tional EM algorithm (Dempster, Laird & Rubin (1977)) does not apply. Thus,
we use the ECM algorithm (Meng & Rubin (1993)) to obtain MLEs of 0. Let
0(() = (D(t),/3(t),<72(t),a(t)) be the estimates from the t-th iteration of the CM
steps. The (t + l)-th E-step computes the conditional expected values of the
complete-data sufficient statistics:

£(YmisnCbs,0(t)), £(YmisY,L|X,*bs,0(t)), (3.8)

which are calculated by the method proposed in Tian, Fang & Tan (2004). Then
we perform the first CM-step, which calculates (D(*\ /3(t+1>) using (3.3) and (3.4)
with Ymis and YmisY^ia being replaced by the corresponding conditional expec-
tations in (3.8), respectively. Having obtained (D(*\/3(t+1)), we then perform the
second CM-step, which calculates (<r2(t+1), a{t+1)) based on (3.5) and (3.6) where
Ymis and YmisY îs are replaced with the corresponding conditional expectations
in (3.8), respectively. The algorithm is iterated until | |0( t+1 ) - 0 ( t ) | | is sufficiently
small. Assume that the ECM algorithm converged at the (t+ l)-th iteration, then
the MLE 0 = 0*t+1'. The observed information matrix is given by (Louis (1982))

Ffd2i(0|Ycom)-n fai(0|Ycomn , „ . .
-E{ 8636- ) \ 9 J b - Var{ -^6—} e=e <3-9>

where the expectation and variance are with respect to /(Ymis|Yobs, 0). Standard
errors are equal to the square root of the diagonal elements of the inverse of the
estimated information matrix.

3.2. Bayesian Analysis via the IBF Sampling

The likelihood-based statistical inferences depend on the large sample theo-
ries and the ability to compute standard errors of the estimates (Louis (1982);
Oakes (1999)). Thus, for small to moderate sample sizes, the Bayesian approach
is an appealing alternative. The key to Bayesian analysis is to compute poste-
riors. Although the Markov chain Monte Carlo (MCMC) method is applicable
to the present model, the burden of proof is shifted to the assessment of the
convergence of the Markov chain to its stationary distribution. Furthermore, con-
vergence is slowed substantially since each cycle of the MCMC requires another
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MCMC to generate dependent samples from truncated multivariate normal distri-
butions (TMVND) induced by the restricted parameters (Breslaw (1994); Robert
(1995)). In addition, the slowness is acute if the components of the truncated mul-
tivariate normal vector are highly correlated. Therefore, we adopt a non-iterative
sampling procedure, the IBF sampler (Tan, Tian & Ng (2003)), to obtain indepen-
dently and identically distributed (iid) samples approximately from the observed
posterior distribution, thus eliminating the convergence problem associated with
MCMC.

We adopt the common prior of inverse Wishart distribution on D: D ~
IW,+i(i/o, -̂ o"1) with density

IW,+i(DK V ) oc |Dr("0+*+2)/2exp{-±tr(A0D-1)} ,

a diffuse prior on (3: 13 ~ Np+i(0,B^1) with Bo —> 0, an inverse gamma prior on
a2: a2 ~ IG(^ , ^ ) with density

1 G T 2' 2 ) - r(qo/2) e X P\ 2u/ '

where qo and Ao are known constants, and a diffuse prior of truncated m-
dimensional normal distribution on a: a ~ T7Vm(0, A^1; M x iR™"1) with
Ao -> 0, where the TMVND is formally denned in Tian, Fang & Tan (2004).
We further assume that these priors are independent. Then the complete-data
posterior distribution is given by

/(6>|Ycom) = /(<7|Ycom, a) x /(a|Ycom) (3.10)

and

/(o-|Ycom,a)

= /(D|Yc o m,a) x /(/3|Ycom,cr2,a) x /(<72|Ycom,a)

(3.11)

= TWg+i(vo + n,A-1)xNp+i(l3\0o(a),o3X.) x I G ( < T 2 | ^ , ^ ) ,

where q* — q0 + N - p - 1, A* = Ao + s(a),

A = A0 + Zti bibf,

po(a) = X Er=i Xf (yi - Via - WibO,

«(«) = E?=i hi ~ v ^ a - w'bill2 - /3j(a)X-^0(a),

andX = (Er=iXrXi)-1.
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To obtain iid samples approximately from the observed posterior distribution
/(0|X>bs)> we use the IBF sampling method (Tan, Tian & Ng (2003)) which
utilizes the following formula

/(0|X>bs) K f(7 iV»—ZT> (6.12)

where Zo = £(Ymis|YDbs,0) and 0 denotes the MLE of 6. The IBF sampling via
sampling/importance resampling method (Rubin (1988)) is as follows:

(i) Draw J independent samples of 0 from /(0|X>bs> zo), denoted by {0u)}{;
(ii) Calculate the weights Uj = / - 1 (Zo |Xb. .»° ' ) ) /E /=i / " ' (^o lX 'b . ,^ 0 ) f o r

j = l,...,J;
(iii) Choose a subset from {6^}( via resample without replacement from the

discrete distribution on {6^}{ with probabilities {LJJ}{ to obtain an iid
sample of size M (< J) approximately from the observed posterior /(#|X>bs)
with the approximation "improving" as J increases (Smith & Gelfand (1992)).

Sampling from f {0\Y^s, Zo) can be obtained via (3.10), in which sampling
from /(<r|Ycom,c«) in (3.11) is straightforward. To obtain iid samples approxi-
mately from /(a|YCOm), similar to (3.12), we have

f(n\Y > ,-- /(«|Ycom,6-) , .
J\a\ xcom) oc , . —r, (3.16)

J V" I Icomj IXJ

where & is the MLE of a = (D,(3,a2). Note that /(<r|Ycom,a) denotes the value
of the conditional density f(cr\Ycom,a) evaluated at cr = <y, from (3.11). How-
ever, the random vector a given (Ycom,<r) has a truncated multivariate normal
distribution,

/(a|YCom,o-) = TNm(a\fl~\, a2^1; R x M+'1), (3.14)

where the rectangle 1R x M™'1 is defined in (2.3), v and fl are given by (3.7).
Then the sampling approach for truncated multivariate normal distributions in
Tian, Fang & Tan (2004) can be used.

To calculate the denominator /(^o|YobSi^) m (312), we now consider the
conditional predictive distribution of the missing data YmiS for given (Yobs>0)
since f(Z0\Yols,d) = /(Ym i s |Yo-b s ,0) |Y r a i s = Z o . From (2.4), we have ( y f , b f ) T '~d

Nni+q+i(Hi, Si), where

/ Vta + Xtj3 \ j WiDWf + a2lni WiD \

Denote the conditional density of b, given (XAS,0) by /^bilYabs,©) which is a
(q + l)-dimensional normal density, and the conditional density of yj,jnf given
(Y-,bs,bi,0) by /2(yi,inf|Yobs>bt,0) which is a truncated (n, — pi)-dimensional
normal density,
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/2(y*,inf|X*a)bi,0) = TNni-Pi(yi,int\p.i, (T2lni-Pi; Ani-Pi(a)), (3.15)

where fit = (p.itPi+1,... ,p,ini)T = £(yi,jnf|Yobs,bi,0) a n d Ani-Pi(a) =
{yi.inf : y«,inf < a}- Noting that a2Ini-Pi is a diagonal matrix, then the
components of yiiinf = (l/i,Pj+i,... ,yini)T given (X,*bs,bi,0) are independent
and distributed as truncated univariate normal, i.e., /2(yi,inf|X>bs!bi,0) =

njJLPi+1 TiVi(i/ifcl/iifc, c2; (—00,a)). Hence, the conditional predictive density
of Ymis is given by

f(Y™s\Xls,0) = n {/i(b<l^b..fl) x f2(yi,in(\Xls,bi,9)}- (3.16)

4 Comparison of Treatment Effects

To compare two treatments in xenograft experiments, a common method is to
test the treatment difference at a fixed points using a t-test or a Mann-Whitney
test, an ANOVA F-test or a Kruskal-Wallis test, indicating all the times at which
differences were significant {e.g. Kasprzyk, Song, Di Fiore & King (1992)). For
example, a test may be performed at the final measurement time or the final time
when a substantial fraction of the animals were alive (Sakaguchi, Maehara, Baba,
Kusumoto, Sugimachi & Newman (1992)). The method to analyse animal survival
times in addition to tumor volumes was also used in literature (Honghton et al.
2000). Based on a comparison of those methods, Heitjan, Manni & Santen (1993)
indicated that the methods commonly used are deficient in that they have either
low power or misleading type I error rates and proposed a multivariate method to
improving the efficiency of testing. However, this multivariate test method does
not account for the missing data and large sample sizes are necessary.

A major goal in the xenograft model is to assess the effectiveness of treat-
ment regimens, e.g., the mean tumor sizes at different time points as opposed
to a growth curve analysis where the nonlinearity of tumor responses over the
follow-up period and the limited amount of data in xenograft models preclude
a growth curve characterization. When the goal of the study is to compare two
treatment groups, a test can be derived as a special case in the random-effects
model. However, a simpler approach is to use a modified t-test and the Bayesian
hypothesis testing.

Consider a longitudinal study with m prespecified follow-up times t\ < £2 <
••• < tm for n subjects. Let Y<*° = (V//0,... ,Y^)T be an m x 1 vector of
outcomes which are the tumor volumes (in log-scale) from the ith subject in the
fcth group, i = 1,2,... ,ru, fc = 1,2, and n = n\ + ni. Based on the assump-
tions in Section 2, we focus on the model where Y^ has a multivariate normal
distribution with mean vector and covariance matrix of the toeplitz form
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(4.1)

Cov(Yp)) = Em = <72B-m,

respectively, k = 1,2, where Rm is defined in (2.7).

Our goal is to test hypotheses

Ho: d V ( 1 ) = d V 2 ) versus H, : dT »W < dT^2\

where d = (di dm)T is a known contrast vector which is chosen based on the
scientific goal of the study. For example, if we want to find out if a different dosing
schedule can decrease the total tumor volumes (or area under the tumor growth
curve) further than does another schedule in the xenograft models, the contrast
vector d would be the m-dimensional vector with unit component. If our goal is to
compare tumor response after the first course of treatment (consisting of multiple
doses of a drug), the components of the contrast vector d should be weighted
appropriately. To test the hypotheses Ho, Tan, Fang, Tian & Houghton (2002)
proposed two approaches, one is a heuristic i-test and a Bayesian hypothesis test.

4-1 Exact Test Based on the EM Algorithm

If we had the complete-data Ycom = {Y^ : i = 1, . . . ,nk, k = 1,2}, where
Y<fc) ~ JVm(/*(fc),cr2Rm), we could simply use the t-statistic to test Ho,

^JdT(SW+Sm)d^ rn+n2 '

where Y<"> = ^ E?=i Y,0 0 , S(fc) = £ ? = i Y , W Y W T _ nfcY(fc>Y<fc>T = (1 -

£ ) E £ i Yf'Yf)r - J - £ y j Yf>Yf)T, for k = 1 2 If HQ holdSj t h e n thfi

t-statistic in (4.2) has i-distribution with degree of freedom n\ + n2 — 2.

When there are missing data, we use the EM algorithm to obtain maximum
likelihood estimates of the parameters of interest <f> = (/x^\ (*^2\ &2, p)T (cf. Sec-
tion 3.1 above). Denote the MLE of 4> by 4>. Then, the t-statistic in (4.1) is
calculated with Y8-fc) and Y ^ ' Y ^ ' 7 being replaced by the corresponding condi-
tional expectations

E(Ylk)\Y:hs,4>) and E^Y^Y;^), (4.3)

respectively, where Yobs is defined as in Section 3.

4.2 Bayesian Test

The Bayesian hypothesis testing requires calculating the observed poste-
rior probability of the one-sided alternative hypothesis Hi : dT/i ( 1 ) < dT/iz(2),
namely,

(4.2)
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IMJfxpC} = Pr{dr(/i<1) - /z(2)) < 0|Yo*bs}

(4.4)

where {{(*> , H ) : £ = 1, . . . , L} is an iid sample from the observed posterior
density f(/j. ,/x |X>bs) and /(•) denotes the indicator function. If the posterior
probability of Hi is greater than or equal to certain level (e.g., 95%), we reject
the null hypothesis. We chose posterior probability (over the Bayes factor) for
its ease of interpretation to biologists. For incomplete data, the samples from
the observed posterior density / ( M ^ ' I M'^IXXS) c a n be obtained using the IBF
sampler (cf. Section 3.2).

With an analysis of a real study on xenograft models for two new anti-cancer
agents temozolomide and irinotecan, Tan, Fang, Tian & Houghton (2002) shows
that these two test approaches are in concordance. The main advantage of the
presented methods is that they are valid for small samples which occur animal
studies for cancer drug development.

5 Models for Multiple Tumors

In some tumor systems, multiple tumors are grown in each mouse. For example,
preclinical studies evaluating the anti-tumor effects of exemestane and tamoxifen
for postmenopausal breast cancer, aromatase-transfected human breast cancer
cells (MCF-7Ca) were inoculated into the ovariectomized athymic mice. Each
mouse received subcutaneous injections at two sites on each flank with 0.1ml of
cell suspension (2.5 x 107 cells/mZ) and four tumors were grown in each mouse
(see Jelovac, Macedo, Handratta, Long, Goloubeva & Brodie (2004).

In this section, we extend the proposed methods to xenograft models for
multiple tumors where a mouse is simultaneously grafted several human tumor
cells. To model the antitumor activity, let q be the number of agents and to <
t\ < • • • < tm the prespecified follow-up times. Denote K the number of tumors
which were grafted in each mouse. For mouse i(i = 1,. . . , n), let ytok and yijk be
the initial tumor volume at to and the tumor volume of fe-th tumor at i, of mouse
i (in log scale), respectively. Due to early withdrawal, we only observe yifc =
{yak, • • • ,Hinik)T- Let zlj denote the cumulative dose of agent h(h = l,...,q)
administered to subject i up to time tj for j = 1, . . . , m. Further consider (p — q)
interaction terms induced by the q agents. The corresponding doses are denoted by
z£\ where h = q+l,...,p. Therefore, z\h) = (z^,..., z^)T denotes the doses
of agent h (h = 1,. . . ,p) given to subject i. Treating the initial value yiok as a
covariate, we obtain a known mxp covariate matrix Z;jt = (yiojfclm, z) , . . . , z\ ) .
Then, the dose-response relationship can be modelled by the following hierarchical
models
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(5.1)

0ik = P + bik, for k= l,...,K;i = l,...,n,

where Xi/t is the rii x (p + 1) matrix consisting of the first n, rows of Zik , /3 is
a (p + l)-dimensional unknown parmeter vector. Assume that the errors hik and
£ik are independent and

Bi = (bii , . . . MK)T ~ JVif x(p+i)(O,R x D),

(5.2)

E< = {eiu ... ,eiK)T ~ NKxni{0,a2(lK ®Ini)),

for i = 1, . . . , n, where R and D are K and (p+1) order positive definite matrices,
respectively.

In model (5.1), the intercept -yik = (71/t,... ,7nife)T) reflects the intrinsic
growth of tumor when no drug is given. This results in an order constraint on
some regression coefficients, i.e. for each k,

7ifc<"-<7nifc. (5.3)

According to the description in Section 2, we make a transformation ~fik = V,o:fc
for the restricted parameter estimation, where ctk = (out, • • • ,amk)T 6 M x
2R™~ and Vj is the m x m matrix defined in Section 2. The Bayesian analysis
via IBF sampling proposed in Section 3 is employed to estimate the parameters.

We now analyze the anti-tumor efficacy of steroidal aromatase inhibitor
exemestane alone or in combination with the antiestrongen tamoxifen in the
xenograft models of postmenopausal breast cancer. Thirty-three female BALB/c
athymic ovariectomized mice have been successfully cultured with subcutaneous
transplant of tumors. Treatment started when one of the 4 tumors reached a
measurable sizes (~ 0.03cm3) about 4 weeks after inoculation. At the start of
treatment, the upper left tumor of 8 mice, the lower left tumor of one mouse,
the upper right tumor of 5 mice and the lower tumor of 5 mice were unmea-
surable (< 0.03cm3). Mice were assigned to different treatment groups (5 mice
per group) with different dosage of single drugs or their combinations, e.g. the
mouse received 100 /Ug/day tamoxifen in gourp I, 100 fig/day exemestane in group
II, 250 /^g/day exemestane in group III, 100 fig/day exemestane combined with
100 /ig/day tamoxifen in group IV, 250 ^fg/day exemestane combined with 100
fig/day tamoxifen in group V, and no treated in the control group. Tumors were
measured weekly over a given period of time (e.g. 9 weeks). Of 33 mice, the tu-
mor volumes of 19 mice were complete observed and 14 mice were incomplete
observed. About 11% of these tumor volumes are below 0.03cm3 and were con-
sidered not measurable. Figure 1 shows the plots for tumor volumes of mice in
group II.
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Let 2/iofc and yik = {ynk, • • • ,Vi9k)T be the logarithmic transformations of
the initial tumor volume and a 9-dimensional vector of tumor volumes at each
week from the fc-tumor of the i-th mouse, respectively. Then, ytjk is truncated
if Vijk < log 0.03. Let a:̂ 1' and x\f be the cumulative weekly total doses of ta-
moxifen and exemestane respectively, which the i-th mouse received at jf-th week,
(j = 1,2,... ,9). To consider the synergism of the two drugs, we denote xf^ =

y/x^xlf as the interaction term (cf. Finney (1971)). Let x<u) = (x^\ ..., x^)T',
u = 1,2, 3. Then, the model (5.1) is proposed to study the activity of exemestane
combined with tamoxifen against the postmenopausal breast cancer in xenograft

Figure 1.

Fig. 1. Aromatase-transfected breast cancer tumor volumes(cm3) measured
weekly for 9 weeks in treatment with 100 /xp/day exemestane.

experiments,

yik - lik + Xifc/3 + Xjfcbifc + £ik,

(5.4)

= ViCtk + ViokUPo + x ^ f t + x|2)02 + xj3)& + Xikbik + eik,

for k = 1,...,4 and i = 1,...,33, where Xik = (yiofclg.x^.xf\x^3)), /3 =
(/3o,/?i,/32,/?3)T are the fixed effects, b ^ = {bnk,bi2k,bi3k,biAk)T are the random
effects, and ejjt is the error vector.
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As alluded to earlier to use the IBF sampler, we use the ECM algorithm to
obtain the MLE 0 = (D, R, a1,J3, ak; k = 1, 2,3,4) at 120 iterations and calculate
Zo = £(Ymis|Yo*bs,0). Note some initial tumor volumes were unmeasurable. For
the unmeasurable yiok, we draw a sample from the truncated normal distribution
TN(iik,crl; (—oo,log0.03)) at each iteration, where /ik and a\ are the estimated
mean and variance from the observations of the /c-tumor initial volumes (A; =
1, 2,3,4). We take the diffuse (or flat) priors for 6 as same as in Section 3.2. With
J = 8000 and M = 5000, the IBF sampling based on (3.11) gives an iid sample of
size 5000 approximately from the observed posterior distribution f(8' !%£„). The
posterior means of a are: c*i = (-1.3876, 0.1469, 0.0656, 0.0467, 0.0419, 0.0404,
0.0398, 0.0456, 0.0678)7", a2 = (-1.2772, 0.0628, 0.0408, 0.0329, 0.0302, 0.0307,
0.0330, 0.0403, 0.0594)T, a 3 = (-1.4264, 0.0976, 0.0685, 0.0629, 0.0609, 0.0613,
0.0624, 0.0703, 0.0891)T, a 4 = (-1.4818, 0.0741, 0.0513, 0.0428, 0.0443, 0.0481,
0.0514, 0.0526, 0.0783)7". Figure 2 shows the intrinsic growth of untreated tumors
which depends on the initial tumor volume. When no treatment was given, the
tumors have different growth curves and the upper tumors have a faster growth
than the lower tumors.

The posterior estimates of the parameters of interest are given in Table 1. The
analysis results show that even with a more powerful test, both drugs exemestane
and tamoxifen have low activity against the aromatase-transfected breast cancer
tumor. Tamoxifen is more effective than exemestane in suppressing tumor growth.
However, there is a significant synergism between these two drugs. The combina-
tion of two drugs is significantly effective than the individule drugs against the
breast cancer.

Table 1. Bayesian Estimates of the Parameters

Parameter Posterior Mean Posterior SD 95% CI p-value

00 0.46223 0.010254 [0.44256,0.48248] < 0.0001

01 -2.75 x 10"6 0.000087 [-0.00017,0.00017] 0.4873

02 4.16 x 10~6 0.000038 [-0.00007,0.00008] 0.4362

03 -2.43 x 10~4 0.000090 [-0.00042, -0.00007] 0.0035

a2 0.39491 0.016403 [0.36412,0.42810] < 0.0001

6 Discussions

We have developed a class of multivariate random effects models to characterize
the dose-response relationship in xenograft experiments with incomplete (missing
at random and informative censoring) longitudinal data and the monotonicity of
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Figure 2.

Fig. 2. The predicted growth curves of untreated aromatase-transfected breast
cancer tumor in xenograft experiments.

model parameters. Two approaches, MLE and Bayesian analysis, are proposed
for model estimation. The main advantage of the presented methods is that they
are valid for small samples which are common in the translational stage of the
drug development process. The flat priors used in the Bayesian analysis imply
the conclusions are similar to those from MLE. Although we have focused on the
Toeplitz correlation structure, the simpler compound symmetry structure may
be justified for within-cluster correlation in some cases. On the other hand, when
the sample sizes are moderate, more complicated covariance structures may be
incorporated in models (2.5) and (4.1).

Although we have focused on the type of xenograft experiments in our devel-
opmental therapeutics programs, we believe that the model formulation and esti-
mation methods can be adopted to other animal experiments in research. Because
the mechanism of the compound in development is better understood and some
drugs are designed based on molecular targets resulted from the vast progresses
in molecular and cellular biology and genetics in the last decade, coupled with
the need for protecting human research subjects, tumor xenograft models play an
important role in the translational research of bringing laboratory advances to
clinic. The statistical models and methods proposed in this article serve as a basis
for further development of methods to fully utilize the costly data and provide
relevant information for the design of subsequent clinical trials.
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1 Introduction

Justified by administrative, ethical and cost concerns, group sequential testing
procedures are frequently used in clinical trials. Most often the hypotheses involve
only a real-valued parameter (as a measure of treatment difference in a single
primary endpoint), and considerable amount of work has been done in the design
and analysis of sequentially testing such hypotheses; an excellent review of the
past development can be found (Jennison & Turnbull 2000) and (Whitehead
1997).

In some studies the effectiveness of the treatments is comprehensive and has
to be determined by a number of endpoints, often equally important. Early
stopping of the trial is often guided by monitoring these endpoints simultane-
ously, rather than by one single endpoint; See (Jennison & Turnbull 1993) and
(Todd 1999) for practical examples. Unlike sequential tests with a single end-
point, sequential tests with multiple endpoints have received relatively less at-
tention, perhaps due to their relatively less frequent use, and technical complex-
ity in both design and analysis. To date, only a number of publications have
been found in the literature that address the design issues of such tests. See
(Siegmund 1980) (Geller & Pocock 1988)(Tang, Gnecco & Geller 1989)(Tang,
Gnecco & Geller 1989b)(Lin 1991) (Jennison & Turnbull 1991)(Geller, Gnecco
& Tang 1992) (Su & Lachin 1992) (Tang, Geller & Pocock 1993) and (Tang &
Geller 1999). To our best knowledge, analysis following these tests such as esti-
mation, confidence regions, p-values, and inference on secondary endpoints, has
not been adequately addressed. Only recently (Liu, Wu, Yu &: Yuan 2004) inves-
tigated estimation of the primary parameters after a group sequential test with
multiple endpoints, assuming no secondary endpoints to be analyzed.

The need to analyze secondary endpoints collected during the course of the
trial further complicates the situation, since in general these secondary endpoints
are correlated with the primary ones and hence analysis of these secondary end-
points has to take into account the correlation along with the sequential sampling
based on the primary endpoints. Failing to do so introduces bias to the conven-
tional inference procedures, as well demonstrated in the case of univariate sequen-
tial testing ((Whitehead 1986a)(Whitehead 1986b)(Liu & Hall 2001)(Whitehead,
Todd & Hall 2000) (Hall & Yakir 2003)).

The present paper investigates estimation of secondary parameters following a
multivariate group sequential test, and whether it has any effect on the estimation
of the primary parameters. The context is that a p-variate random vector X and
a g-variate random vector Y, jointly normally distributed, with X ~ Np(n,Ip),
Y ~ Nq(6, Iq), and p x q correlation matrix J? (assumed known), are of interest.
The random stopping of the sampling process is based solely on observations of
X according to a group sequential testing procedure concerning the (primary)
mean vector /x. Inference such as estimation of the (secondary) mean parameter
<5 is conducted only after the sampling process stops. Such paradigm provides
large-sample approximation to most random sampling problems with the excep-
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tion of survival type data; See (Hall & Yakir 2003). In Section 2 we introduce
multivariate group sequential tests with random sampling models incorporating
secondary endpoints, and derive statistics with their joint density function that
are minimally jointly sufficient for /x, and S. In Section 3 we consider joint estima-
tion of parameters, focusing on <5 in particular. We show that the usual sample
means continue to be the maximum likelihood estimators but are biased, and
sometimes badly so, with inflated variance. We propose two estimators to reduce
the bias, one derived by (Whitehead 1986a) (Whitehead 1986b) bias-adjusted ap-
proach and the other by Rao-Blackwell method of conditioning, and demonstrate
their outperformance over the maximum likelihood estimator in bias and preci-
sion. In Section 4 we address the issue of completeness and minimum variance.
We show that the family of distributions of the sufficient statistics is not com-
plete, and that there exist infinitely many unbiased estimators of the secondary
vector of parameters, S, depending on the sufficient statistic and, moreover, none
has uniformly minimum variance. In Section 5 we go on to show that the family
of distributions of the sufficient statistics satisfies restricted completeness when
confining to statistics that are independent of future stopping criteria. Moreover,
the Rao-Blackwell estimator has uniformly minimum variance among unbiased
estimators of such kind. Finally we present some discussions in Section 6, with
technical details and proofs given in the appendix.

2 Multivariate group sequential tests incorporating
secondary endpoints: The random sampling model

We extend the random sampling model of (Whitehead 1986b), see also
(Whitehead, Todd & Hall 2000), to multivariate group sequential test setting.
Throughout, vectors are written as column vectors, and A' stands for the trans-
pose of a vector or matrix A.

Denote respectively the primary and secondary responses of the ith object by
Xi = (Xn, • • • , Xip)' and Yj = (Yii, • • • , Yi,)'. Suppose observations are taken in
groups with gk observations in the kth group. Define n/t = gi + 92 + • • • + gk, the
cumulative sample size at stage k, and let (Xnfc_1+i, Yn f c_1 +i) , . . . , (Xnfc, Y n J
be the gk observations in the kth group. Further, we define

" i t " i t

Sfc^Xi, Zfc = ^ Y , ,
i=l i=l

the cumulative sample sums of Xs and Ys at stage k, respectively.

Now suppose that the null hypothesis of primary interest is Ho : \i = 0.
With the above sampling scheme, a /("-stage group sequential test concerning
Ho in general can be specified by a partition of the outcome space of Sfc into a
continuation region Ck and a stopping region Bk, for each stage k, k = 1, • • • , K.
The test stops the sampling process at the kth analysis if



372 CHENGQING WU, AIYI LIU, AND KAI F. YU

Sj€Cj,j<A;-l,SfceBfc. (1)

The last stopping region, BK, is set to be Rp, the p-dimensional Euclidean space,
to force the sampling process to stop at the Kth analysis, if it does not so at an ear-
lier stage. Note that the continuation and stopping regions are solely determined
by the primary endpoints X. Common methods to compute these regions include
sequential \2 tests and sequential Bonferroni procedures. See(Siegmund 1980)
(Jennison & Turnbull 1991)(Jennison & Turnbull 2000), among others.

Upon termination of the sequential test, a triplet ( M , S M , Z M ) is observed,
where M denotes the (random) number of analyses performed. Without ambigu-
ity, we will omit the subscription and simply write the two sample sums as S (for
SM) and Z (for ZM)- Note that for each fixed k, (Sfc,Z;t) is jointly sufficient for
(/x, <5). Prom (Blackwell 1947), the statistic U = (M, S, Z) is then jointly sufficient
for (fi,S); See also (Lehmann & Stein 1950). Hence following the sequential test
it suffices to base solely on U to make secondary inference on (fj,, S).

The density of U is given below.

Theorem 1. Let po(k,s) be the density of (M, S) at {i = 0, and 4>A{-) be the
density of N(0,A). Then the density of U = (M, S, Z) is given by

Pn,a(k,s,z) =pOiO(k,s, z)exp I - -Q^,,s(fc,s, z) I , (2)

where po,o(k, s, z) = po(k, s)(j>nkA{2, - Q's), and

QM,«(A;,s,z) = nkfi'n - 2sV + nkff'A~le - 2(z - /2's)'^"1© (3)

with A = Iq- n'n andO = 8- O'fj..

3 Estimating secondary parameters

3.1 Precision of a class of estimators

We will consider in the rest of the section three estimators of 6, the maximum
likelihood estimator, a bias-reduced estimator, and an unbiased estimator; their
parallels have been extensively studied in univariate group sequential test litera-
ture. Each of these three estimators is a member of a class li of estimators of 8
being defined as

U= h : 5 = — -Q'{—-fi(M,S)}\. (4)
|_ tiM riM )

Note that we require \i depend only on observations from the primary endpoints.

A key feature of an estimator d in IA is that its bias and variance can be
evaluated through that of fi. Indeed, we have
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Lemma 1. Consider an estimator 6 in (4) and let A be defined as in Theorem
1. Then

bias((5) = f2'bias(fi), (5)

Cov(J) = fi'Cov(A)n + AE( — ). (6)
\ n M /

Lemma 1 is the multivariate version of similar observations in (Whitehead
1986b) and (Liu & Hall 2001) for univariate sequential tests. Write MSEM(<5) =
E{(6 — 8)(6 — 6)'}, the mean square error matrix of 6. Then from (5) and (6) we
have

MSEM(<5) = n'MSEM(fl)n + AE( — ). (7)
\TlM )

The mean squared error MSE(<5) = E{(d — 6)'(6 — <$)} of 6 is then obtained by
taking the trace of the matrices in (7).

3.2 Maximum likelihood estimation

The maximum likelihood estimators of n and <5 can be obtained by minimizing
(3) with respect to (fJ.,9) and <5 = 0 + O'fx. It follows that

AMI, = S/nM, SML = ZI/UM-

Note that 5ML has form (4) with (x = (iML- Hence the maximum likelihood
estimators remain unchanged, being simply the same as that in a fixed sample
test. From Lemma 1, however, their statistical properties, from a frequentist's
point of view, change dramatically due to the sequential nature of the sampling
process—they are biased estimators, often with inflated variance.

3.3 Bias-Reduced estimation

Focusing on a sequential probability ratio or triangular test, (Whitehead
1986a) (Whitehead 1986b) proposed a general approach to reduce the bias of the
maximum likelihood estimators. His method was later extended, for estimation
of primary endpoints, to univariate group sequential test setting by (Emerson
& Fleming 1990) and to multivariate group sequential test setting by (Liu, Wu,
Yu & Yuan 2004). Here we utilize the method to obtain bias-reduced estimation,
jointly for the primary and secondary parameters. Write 77 = (/*', 5')', and denote
by t>T>(»?) the bias of an estimator fj of TJ, (and similarly for other estimators).

Following (Whitehead 1986a), the bias-adjusted estimator f)w of r) satisfies
the equation hflML(ffw) + f)w = f)ML. Since bf,ML = (/, J?)'bAML, it follows that

hi*ML((lw) + ilw = P'ML' '5w=6ML-n'{flML- (lw). (8)
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These are the multivariate versions of Whitehead's (1986a, b} bias-adjusted
estimators. Again from Lemma 1, the bias and variance of Sw is determined by
that of the bias-reduced estimator jlw; the latter has been numerically studied in
(Liu, Wu, Yu & Yuan 2004).

Computation of fiw and thus S-w can be done using Newton-Raphson iterative
method; See (Liu, Wu, Yu & Yuan 2004) for details.

3.4 Unbiased estimation

Unbiased estimators eliminate bias and hence have received substantial attention
in the case of univariate group sequential tests; See (Emerson & Fleming 1990)
(Emerson & Kittelson 1997) (Liu & Hall 1999) (Liu & Hall 2001), among others.
Following (Emerson & Fleming 1990) approach, we define a Rao-Blackwell type
estimator of S as

SRB = E(^- M,S,z). (9)

That SRB is unbiased for 5 is obvious since Z/m is unbiased for 8.

Let fiRB = E(Si/ni\M, S,Z) be the Rao-Blackwell estimator of /x. Note
that for each k, W& = Zjt — Q'Sk follows a g-variate normal distribution with
mean vector nk{8 — f2' n) and covariance matrix rikA, and is independent of Si,
i < K. It then follows that fiRB = E(Si/m\M, S,W) = £(Si/m|M, S), the
Rao-Blackwell estimator depending on the primary endpoints ((Liu, Wu, Yu &
Yuan 2004)).

The Rao-Blackwell estimator 8RB is also a member of (4). Indeed, we have

SRB = SML - n'{fiML - fiRB). (10)

A proof of (10) is presented in the appendix.

Therefore the performance of SRB depends on that of fiRB- (Liu, Wu, Yu &
Yuan 2004) derived recursive formula for numerical computation of ftRB which
then lead to computation of SRB-

3.5 Comparison of estimators

Consider estimators in (4). From (5) and (6) it follows that an improved estimator
of fj, results in an improved estimator of S. While it is difficult to draw any
analytical conclusion regarding comparison of estimators, some limited numerical
results in (Liu, Wu, Yu & Yuan 2004) showed that both p,w and p.RB have
smaller bias and variance than AML- Subsequently, both 8W and SRB are better
estimators than SML in terms of quadratic loss.
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The bias-adjusted estimator fiw, though possessing some bias, appears to have
smaller mean squared error than the Rao-Blackwell estimator ftRB. However, the
former depends on the knowledge of stopping criteria beyond the stopped stage
M while the latter does not. The same observations apply to estimation of <5, and
are, not surprisingly, in agreement with that in (Emerson & Fleming 1990)and
(Liu & Hall 2001).

4 The issue of completeness and minimum variance

It is well known that in a fixed-size sampling the sample sums (S, Z) are suffi-
cient and complete statistics for inference on (fj.,6), and the sample means are
the unique unbiased estimators depending on the sample sums and hence have
uniformly minimum variance among all unbiased estimators. (Liu & Hall 2001)
showed that completeness fails in a univariate group sequential test. We demon-
strate here that the same conclusion holds for multivariate group sequential tests.
To do so, we construct all zero-mean, identically in (/z, S), statistics based on the
sufficient statistics (M, S, Z), and subsequently claim that the family of distribu-
tions of (M, S, Z) is not complete. Write a statistic h = h(M, S, Z) as h(/c, s, z)
at M = k, S = s, Z = z. We have

Lemma 2. A statistic h = h(M, S, Z) has mean zero if and only if it satisfies

1 F J5~1 r r
h(/f,s,z) = —— J2 h(fc,si,zi)po(A;,si)

Po{K,s)<f>ni<A(z - f2's) [ ^ JBk JRq

x</>nfc4(zi-r2'si)0mfc/p(s-si)^mt^{z-fi's-(zi-i7'si)}dzidsi . (11)

This is an extension to the zero mean statistics based on (M, S) in (Liu, Wu,
Yu & Yuan 2004), because

4>nKA(t) = / <f>nkA{tl)(t>mkA(t-tl)dtl.
J Ri

Lemma 2 leads directly to

Theorem 2. For any parameter space in Rp+q that has an open set, the family
of distributions ofXJ = (M, S, Z) in a group sequential test is not complete.

Adding zero-mean statistics to the Rao-Blackwell estimator
'HRB = (A'HSI P-'RBY yields the whole class of unbiased estimators of r\ = (fj,',8')',
indeed, infinitely many of them. The following theorem shows that no unbiased
estimators have uniformly minimum variance. For a proof, see the appendix.
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Theorem 3. Consider estimation of )3 = C'r] following a multivariate group
sequential test, where C ^ 0 is an (p+q)xl (non-random) matrix. Then among all
unbiased estimators of 0, none has uniformly minimum variance. In particular,
uniformly minimum variance unbiased estimators do not exist for yt, or S.

5 Completeness and unbiasedness restricted to
certain statistics

In the previous section, we have shown that the family of distributions of U is not
complete and that no unbiased estimators, the Rao-Blackwell estimators in par-
ticular, possess minimum variance. It is then natural to ask whether U is complete
among a meaningful subset of statistics—the so called restricted completeness—
and whether the Rao-Blackwell estimators, or any other estimators, have uni-
formly minimum variance among a reasonable class of unbiased estimators.

We confine attention to truncation-adaptable statistics, and subsequently,
truncation-adaptable unbiased estimators. The concept, which requires that an
inference after a stopped sequential test be independent of the future stopping
boundaries, was initially developed in (Liu & Hall 1999), and subsequently inves-
tigated in (Liu & Hall 2001), and(Liu, Wu, Yu & Yuan 2004).

First, we give some notations. Let T> represent a group sequential test design
with stopping regions Bk, 1 < k < K (BK = Rv), for testing a hypothesis
concerning the multivariate mean vector p. For each k < K, a "shorter" group
sequential test design, denoted by Vk and called the truncated design of V at
the fcth stage, is obtained by retaining the first k — 1 stopping regions but closing
the A;th stopping region of V. Expectation under the truncated design T>k will be
written as Ek, while the notation E is reserved for taking expectation under T>.

Write as h(fc, X\,..., Xnk, Yi, . . . , Ynk) the statisic h (scale, vector or matrix)
depending on the whole data set when M = k. Note that for each k, h is defined
only for Xs subject to (1). Corresponding to each truncated design T>k, h can also
be truncated to yield a statistic hfc with respect to T>k with hfc(fc,...) extended
U>Sk€Ckandhk(i,Xu---,Xni,Yu...,Yni) = h(i,Xu...,Xni,Y1,...,Yni)foT
each 1 < i < k on the region subject to {Sj 6 Cj, j < i— 1, S, € Bi}. We will
simply call such hfc an extension of h to the domain Ck •

Definition 1. We call a statistic h with respect to V truncation-adaptable, if for
each k, there exists an extension hjt of h to the domain Ck such that Ek(iik) =
E(h). In particular, if E(h) = S, then h is said to be a truncation-adaptable
unbiased estimator of S.

It is worth pointing out that truncation-adaptable statistics are closed under
linear transformations, namely a linear combination of a number of truncation-
adaptable statistics is also truncation-adaptable. Further, we have
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Theorem 4. Let h be a truncation-adaptable statistic, possibly depending on the
whole data set. Then

(i) The statistic h = E(h\M, S,Z) is also truncation-adaptable.

(ii) If h depends solely on (M, S,Z) and E(h) = 0 uniformly in n and 5,
then h = 0, except for a zero-measure set with respect to the density (2).

Therefore, the family of distributions of the sufficient statistic U = (M, S, Z)
is truncation-adaptably complete; Among truncation adaptable statistics depend-
ing on U, only the null function has mean zero!

Subsequently the Rao-Blackwell estimators ftRB and 5RB are respectively
the uniformly minimum variance truncation-adaptable unbiased estimator of fj,
and S depending on U. This follows from (i) Si/ni and Zi /m are respectively
truncation-adaptable unbiased estimator of n and S, and hence so are ftRB and
$RB by (i) of Theorem 4; (ii) truncation-adaptable unbiased estimators depending
on U are identical, up to a zero-measure set, by (ii) of Theorem 4; And (iii) By the
Rao-Blackwell theorem and (i) of Theorem 4, JJ.RB and 8RB have smaller variance
than any other truncation-adaptable unbiased estimators. We summarize more
generally in

Theorem 5. Consider a parameter f3 = C'77 as in Theorem 3, and define (3RB =
C'VRB- Then (3RB has uniformly minimum variance among all truncation-
adaptable unbiased estimators of p.

6 Discussion

Judging by a frequentist's criteria, conventional statistical inference procedures,
such as those based on likelihood functions, that are shown efficient under fixed-
size sampling may be inappropriate when used in a sequential sampling setting,
and the post-stopping inference of multivariate sequential tests shows no ex-
ception, as being demonstrated in the present paper and in (Liu, Wu, Yu &
Yuan 2004). Unbiasedness, minimum variance, and completeness all fail in the
presence of sequential sampling. Furthermore, the sampling no longer possesses
uniformly minimum variance unbiased estimators. It remains to be seen whether
other fixed-size properties, such as admissibility of estimators, are also lost in
sequential sampling.

We investigated three estimation procedures following termination of the se-
quential tests, a bias-adjusted approach, the Rao-Blackwell method, and the
truncation-adaptation criterion, all result in improved estimation as compared
to the maximum likelihood procedure for the secondary parameters. We further
note that under these procedures the presence of secondary endpoints does not
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provide improvement for estimation of the primary parameters; Estimation for
the primary parameters can be based solely on the stopping time and the primary
endpoints. We suspect that any reasonable estimation procedures should inherit
the same characteristic.

All along the correlation matrix Q is assumed to be known. When fl is un-
known, we can still obtain efficient estimation for <5 by simply replacing it by its
usual estimator Q = ^ ( X ; - ftML)'(Yi - SML)}/(NM - 1) in (4). Following
conditional argument it can be shown that such two-stage estimation procedure
does not change the bias, but increase the variance of the estimators. The same
bias results from the fact that Q is independent of then sample sums.

Appendix Technical Details

A. I Proof of Theorem 1

Given M = k, Sk = s, the conditional distribution of Z is Nq{nk8 + fi'(s -
nkfi),nkA), see (Rao 1965). It follows that

Pn,s(k, S,z) =pM(fc, s)<j>nkA(z ~ nkS - fl'(s- UkfJt)) •

We hence obtain (2) by noting that

4>nkA(z-nk5-n'(S-nkn)) = ̂ nkA(z-f2's) exp{-infce'4-1fl+(z-fl's}'4-1e},

and Pii(k, s) = po(k,s) exp{—^nkfi'H + s'fi} according to (Liu, Wu, Yu &: Yuan
2004).

A.2 Proof of Lemma 1

Recall (Section 3.4) that for each k, Wfc = Zk - n'Sk ~ Nq(nk(S - n'(i),nkA)
and is independent of Sj, i < K. Since the stopping stage M depends only on
Si, S2, • • •, Wfc is independent of (M, S). For a 5 in (4) we have

bias(5) = E{—- n'(— - p) } - 6
yriM \riM J)

= 0EW + E{E(Z±\M))-6

= n'E(fi) - n'n = n'bi,

and
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Cov{6) = Cov \- 0 fi)
V nM )

= Cov(tf'£) + Cov f — ) + 2Cov f — , fi'A^
V riM ) \riM )

= n'Cav(p.)n + AE(—\
\riM J

A.3 Proof of (10)

Let W be as previously defined. Then from (9),

x r? ^Wj + ^'Si \

V m 7

V ni } \ m J

= — 1- U MRS = OML - ii (fJ-ML ~ MRS)-
riM

A.4 Proo/ o/ Lemma 2

For an I x I positive matrix B and an Z-variate vector 7, integrating to 1 the
density function of Ni(B-y, B) to obtain

exP{i7 'B7}= / <£B(s)exp(s'7)ds. (A.I)
1 JR'

Let h(/c,s,z) be zero mean statistic, that is, from (2),

0 = J 3 exp f-±r»fc/iV " in*©'-*-1*)

x I I h(k, s, z)po(A;, s)(An^(z - J?'s) exp{sV + (z - fi's)'^"1©}^^ .

JBk JRi

Then with t = z — J2's, 77 = Zl"1©, and rrik = TIK — rik this yield

/ / h(K,s,t + n's)po{K,s)<j>nKA{t)exv(s n + t'r))dtds
JRP JRI

^S-~\ /1 1 \ f r
= -y2exp( 7m.ktJ''n +-jnkri'ATi) / h(fc,s,t + tt's^po(k,s)

fc=l \ JJBkJRi

x<t>nkA(t) expos'fj. + t'7])dtds.

It follows from (A.I) that
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/ f h(K,s,t + n's)po(K,s)(j)rlKA(t)exp(sn + t'r))dtds
JRP J R1

= exp(sV + t'r])dtds\ - V / / h(fc,si, ti + !Tsi)po(k, si)0nfc4(ti)
./.RP Viji [̂  fc=1 7sfc v/fli

X0mt/p(s - si)ijl>mfc4(t - ti)dtids! > .

By the uniqueness theorem of Laplace transforms, we have

h(K,s,t + n's)po(K,s)4>nKA(t) = -y2 / h(*,si,ti + fi'si)po(fc,si)

k=1 JBk JRi

X<j>nkA(tl)4>mkIp(s - Si)<t>mk/\(t ~ t i )d t lds i ,
yielding (11) .

On the other hand, if h(-, •, •) is any function for which the integrals in (11)
are finite for each k< K and (11) holds, then £'M,<!h(M, S, Z) = 0.

A.5 Proof of Theorem 3

Suppose /3(M, S, Z) has uniformly minimum variance among unbiased estimators.
Let h(M, S, Z) be a zero-mean statistic. Then from (Lehmann & Casella 1998,
p. 85), Er,{J3(M,S,Z)ti(M,S,Z)} = 0, indenticaly in r\. Applying Lemma 2
respectively to h and /9h' we have

p(K,s,z)h'(K,s,z)

X(j>nkA(zi - fi'si)4>mkjp(s - Si)(f>mkA{z - Q's - (zi - f2'si)}dtldsi

i F^"1 r r
= TlT^k 1 f)M E / / tes.zJh'^.Sx.zOpo^.Si)

Po(K,s)<pni<A(z - Si's) [ ^ JBk JRq

X<t>nkA(zi ~ '̂Sl)<?!>mfe/p(s - Sl)0mfcZi{z - Si's - (Zl - J?'si)}dtidSi ,

yielding

0 = / / (&(K,s,z) - 0(k,s1,z1))W(K,sl!z1)Po(k,s1)
Jek JRI v '
x(pnkA(zi - Q'si)<f>mkIp(s - si)<t>mkA{z - Si's - (zi - fi'si)}dtidsi(A.2)
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Since this must hold for any function h(fc,s, z), it follows that f3(K, s, z) =
/3(/c,Si,zi) for all (s,z) e Rp+g and (si,zi) € BkxRq- Hence/3(/c, s, z) is constant
vector for all (s, z) £ Bk x -R9 for all k < K, and this contradict the unbiasedness
of /3(M, S, Z). Therefore /3 can not be of minimum variance.

A.6 Proof of Theorem 4

Extend h to the domain Ck to obtain h/t. Let h/t = Ek{hk\M,SM) with M < k
and Sk being replaced by Rp. Then hk is an extension of h to the domain Ck and
Ek(hk) = E(h). This proves truncation-adaptability of h.

We now prove (ii). With zero-mean and truncation-adaptability, we have, for
fc = l,

I I pA,,«(l,s,z)h(l,s,z)dzds = O. (A.3)

Since T)1 is a non-sequential design with sample size m, by the completeness of
the family of distributions of (Si, Zi), (A.3) possess a unique solution for h, that
is h ~ 0.

Suppose h(j,s,z) = 0,j = I,--- ,fc < K. Then with truncation to k + 1,
h(/c + 1, s, z) must satisfy the equation

/ / h(k+ l,s, z)pw>a(fc+ l,s,z)dzds = 0,

that is,

/ / h(fc + l ,s , t + /2's)po(A;+l,s)0nfc+lia(t)exp(/i's + t'r;)dtds = O.
JRP J RI

By the uniqueness of Laplace transforms, we have h(/c + 1, s, z) = 0. The proof
hence follows by induction.
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Summary. We consider the problem of model (or variable) selection in the lin-
ear regression model based on M-estimation and cross-validation with an added
penalty term for penalizing overfitting. Under some conditions, the new criterion
is shown to be strongly consistent in the sense that with probability one, for all
large n, the criterion chooses the smallest true model. The penalty function de-
noted by Cn depends on the sample size n and is chosen to ensure the consistency
in the selection of the smallest true model. There are various choices of Cn sug-
gested in the literature on model selection. In this paper we show by simulation
that for small and medium size samples, a particular choice of Cn based on ob-
served data, which makes it random, provides satisfactory performance compared
with fixed choices of Cn.

Key words: Model selection, M-estimation, cross-validation, strong consistency,
data-oriented penalty.
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1 Introduction

Consider the linear regression model

yi = Xi(3 + ei, i = l , . . . , n , (1)
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fessor Kai-Tai Fang's 65th birthday. Edited by Jianqing Fan and Gang Li. The World Scientific
Publisher, 2005.
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where x\ denotes the ith row of an n xp design matrix Xn = (x i , . . . ,xn)', /3 is a
p-vector of unknown regression parameters, and ei, e2,..., are independently and
identically distributed random variables. Each component of /3 may be zero or
nonzero. Each subset M of {1,2, • • • ,p} is called a sub-model. It is obvious that
there are 2P possible sub-models for the multiple regression problem. A sub-model
is called a true model if 0i = 0 for alH £ M. The problem is to find the smallest
true model which is defined to be the one whose all proper sub-models are not
true models. There is considerable literature on how to solve this problem; see
the book on model selection by McQuarrie & Tsai (1998) or the review paper by
Rao & Wu (2001) among others.

Cross-validation is a method for model selection in terms of the predictive
ability of the models. Suppose that n data points are available. A model is to
be selected from a class of models. First, hold one data point and use the rest
of n — 1 data points to fit a model. Then check the predictive ability of the
model in terms of the withheld data point. Perform this procedure for all data
points. Select the model with the best average predictive ability. This procedure is
described as the LOO (leave one out) method. There is considerable literature on
this method; see Stone (1974), Shao (1993), and the book by McQuarrie & Tsai
(1998) among others. When the number of predictors in any regression model
under consideration is fixed, this type of cross-validation is not consistent and it
can be shown that it is equivalent to Akaike information criterion (see, e.g. Li
(1987)). Some consistent generalized cross-validation methods have been proposed
in Shao (1993), where k(n) data points are used to fit the model and the rest data
points are used for assessing the predictive ability. As another approach, Rao &
Wu (2004) proposed the penalized LOO, which has been shown to be consistent.

Note that least squares cross-validation is very sensitive to outliers and depar-
tures from normality assumption on error distribution. Hence, Ronchetti, Field
& Blanchard (1997) proposed a robust model selection technique for regression
based on cross-validation to overcome this weakness, which, jointly with Rao &:
Wu (2004), inspires us to propose the penalized M-estimation based model se-
lection by cross-validation. It can be shown that under certain conditions, the
proposed method is consistent.

The paper is arranged as follows: In Section 2, we introduce the penalized
M-estimation based model selection by cross-validation. The simulation study is
provided in Section 3. Consistency of the proposed criterion is presented in the
appendix.

Let A be a p x p matrix and a be a p-vector. In the rest of this paper, A(—i)
denotes a matrix consisting of all the columns of A excluding its zth column,
and a(-i) denotes a vector consisting of all the elements of a excluding its ith
element.
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2 Penalized M-estimation based model selection by
cross-validation

Since each component of /3 in (1) may be zero or nonzero, let us consider the
leave-one-out approach (see Rao & Wu (1989) among others) for selecting the
smallest true model, which is computationally economic.

Consider the model

yn = Xn(-k)/3(-k) + en. (2)

Let ^ _ ; be the M-estimate of f3 in the model (1) based on the data {(yi.xi),
. . . , (yi-i,Xi_i), (j/i+i,Xi+i), . . . , (yn,xn)} and let f3_i(-k) be the M-estimate
of /3 in the model (2) based on the data {(yi, Xi(—k)), . . . , (yi-i,Xi-i(—k)),
(yi+i,xi+i(-k)), . . . , (yn,xn(-k))} so that

h-i = arg min ̂  p(yj - x'j/3), (3)

and
0-ti-k) = arg min £ p(Vj - Xj(-k)'f3{-k)), (4)

respectively, where p is a convex discrepancy function. Define, for 1 < k < p,

RCZv(-k) = Y, P(y* ~ xi(-k)'0_t(-k)) - J2 P(Vi - x'iP-i)-
i=l i=l

Then, choose the model as

pk = 0, if RCZv{-k) < Cn,

< for k = l , . . . , p , (5)

J3k^ 0, if RCZv{-k) > Cn,

where {Cn} is a sequence of constants. This criterion will be called RC in the rest
of this paper. It will be shown in the appendix that the criterion RC is consistent
under certain conditions.

In the above criterion, it can be seen that Cn decides how large the penalty
is. It is clear that how to choose Cn is a very important task. Note that the model
will tend to overfitting if the penalty is small and in contrast the model will be
prone to undercutting if the penalty is large. Since the criterion RC with a fixed
choice of Cn may not perform well in various situations, there is a need to find
a data-oriented penalty so that a procedure with its use will have satisfactory
performance. Such efforts can be found in Rao & Wu (1989) and Shao (1998)
among others.
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Recently, Bai, Rao & Wu (1999) proposed a method of constructing a data-
oriented penalty. Based on the same idea, Wu (2001) proposed a method of con-
structing a data-oriented penalty for an M-estimation-based model selection cri-
terion. The main idea is as follows: First, obtain a consistent estimate of the
regression parameters in the model of full size and compute the residuals. Then
construct p pseudo models with the use of the residuals. To guarantee all the
regression coefficients in the pseudo models are recognizable, small regression co-
efficients are replaced by a chosen threshold value. Find the differences between
the pseudo models and all its sub-models. Then construct the penalty based on
these differences so that the pseudo models are selected with large possibilities.
For details, see Bai, Rao & Wu (1999) and Wu (2001). Rao & Wu (2004) modi-
fied this type of procedures. Instead of using p pseudo models for constructing a
data-oriented penalty, only one pseudo model is employed in Rao & Wu (2004) so
that the computing time is reduced. In this paper, we will adopt their approach
and hence construct a data-oriented penalty for small and medium size samples.
It will be shown that this type of penalty works well by simulation in the next
section.

For the regression model (1), let a sequence of experimental measurements
{(yi, X\),..., (yn, xn)} be available. The details of the procedure for constructing
a data-oriented penalty are as follows:

1. Compute the M-estimate /3n of (3 based on the data {(yi,a;i), ..., (yn,xn)
such that

n

0 = argmin^ p(% - x'j0).
P j=\

2. Compute e-n = yn -_XnJ3n-
3. Let J3n = (Pln,..., Ppn)' be denned as follows:

Pin, if | An | >K,

Pin = < KSign(An), if 0 < | An | < «, for I = 1, . . . ,p, (6)

K, if | An | = 0 ,

where the constant K is a suitably chosen threshold value.
4. Construct a pseudo model: u = Xnj3n + en, h = I,...,p. Compute the

M-estimate fi_i of (3 for the data {(ui,xi), . . . , (v,i-i,Xi~i), (MJ+I, Xj+i),
. . . , (un, xn)} such that

n

P-i = arg min ̂  p(uj - x'j/3).

Also compute the M-estimate f3_i(—h) of f3(—h) based on the data
{(ui,xi(-/i)),..., (ui-i,Xi-i(-h)), (ui+1,xi+i(-h)),..., (un,xn(-h)) such
that
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n

h-A-h) = argmin£>K - Xj(-h)'f3(-h)),

for i = 1,.. . ,n. Then compute An(h) = Dn(h) — Dno, h = 1,.. . ,p, where
Dn(h) = £?=! p(m - Xii-hYP^i-h)) and Dn0 = £?= 1 *>(«« - <P-i)-

5. Define
Ci*' = min{4n(/i), fc = 1,.. . ,p} + T. (7)

Then choose C^ as the penalty Cn in the criterion RC.

REMARK: K in (6) is a distinguishability level, which needs to be selected by
the practical users. For example, the state treasure department counts money in
million dollars, so K can be chosen as 1,000,000, a store manager counts con-
sumer's income in hundreds dollars, K can be chosen as 100, and an engineering
counts unit cost of a product in milli-cents, K can be chosen as 0.00001.

How to choose T in (7) depends on one's tolerance to the overfitting. Large
value of T will reduce the chance of overfitting but it will also increase the chance
of underrating. In the simulation study presented in the next section, r is set to
be 5.

3 A simulation study

In this section, we will study the finite sample performance of the criterion RC.
The regression model is assumed to be:

Vi = P\X\i + f32X2i + 03X3i + PAXAI + P$Xr,i + d, i = 1, . . . ,71,

where xu, • • • ,xa, i = l,...,n, are iid N(0,1) random variables, {ej} are in-
dependently and identically distributed from (1) iV(0,1); (2) Cauchy(0,l), and
P = (ft, ft, 03,04,0s)' is set as (1.3,1.5,0,0,1.3)'. In our simulation, p{u) = 0.5u2

if |u| < 1.345 and p[u) = 1.345|u| - 0.5 • (1.345)2 otherwise (Huber p), q(k) = k,
K is set to be 0.01, Cn is chosen as log(n), ^/n[log(n)]01, or the date-oriented
penalty Cn given in (7) with r = 5.

The simulation results are reported in Tables 1-2. In both tables, G^v de-
notes the penalized least squares cross-validation criterion proposed in Rao &
Wu (2004); RC represents the criterion given in (5); the Diff is equal to —i if
the selected model has eliminated i nonzero parameters for t = 1,2,3; the Diff
is equal to j if the selected model has included j more independent variables
than the smallest true model for j = 1, 2, 3; the Diff is equal to 0 if the small-
est true model is selected; c£1J = log(n); Cn2) = y/n[log(n)]01. The entries give
the actual number of the runs falling into each category based on 1,000 repli-
cations. Note that if Cn = 0, the penalized cross-validation criteria reduce to
ordinary cross-validation criteria. The reasons for selecting C^1' = log(n) and
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Cn — y/n[\og(n)]01 in the simulation are due to the well-known BIC criterion
and (10), respectively.

Prom the two tables, it can be seen that when the random errors obey standard
normal distribution, both criteria GnV and RC with Cn = log(rc) or y/n[log(n)]01

outperform ordinary cross-validation criteria, i.e., the criteria G%V and RC with
Cn = 0. When the random errors are Cauchy distributed, the criterion RC with
Cn = log(n) or v/n[log(n)]01 performs significantly better than the criteria RC
with Cn = 0 and G£v with Cn = 0, log(n) or y/n[log(n)]01. The performance of
the criterion RC with use of Cn seems to have improved average performance
over these fixed choices of Cn. Since the computation time is no more a problem
in today's computing environment, RC with use of Cn is recommended for use
in a variable selection problem for small and medium-size samples.

Table 1. Results based on 1,000 simulations with e, ~ iV(0,1)

Sample G°v RC

Size Diff CB = 0 C » = C^ Cn = C^2) Cn = 0 Cn = C^ Cn = C^2> Cn = C^R)

- 1 0 0 0 0 0 3 1

n = 30 0 679 935 983 582 987 997 999

1 279 61 16 319 11 0 0

2 42 4 1 99 2 0 0

- 1 0 0 0 0 0 0 0

n = 50 0 691 957 996 614 994 1000 1000

1 268 42 4 317 6 0 0

2 41 1 0 69 0 0 0

- 1 0 0 0 0 0 0 0

n = 100 0 698 981 1000 586 995 1000 1000

1 262 19 0 330 5 0 0

2 40 0 0 84 0 0 0

Appendix

In this appendix, the asymptotic behavior of the model selection criterion
proposed in Section 2 is investigated.

Consider the model (1). We assume that the following assumptions hold true,
and hence the results in Lemma A3, Corollary A5, Theorem 3.1 and Theorem 4.1
of Wu & Zen (1999) are valid.

(Al) p(-) is a convex function on Rl.
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Table 2. Results based on 1,000 simulations with d ~ Cauchy(0,l)

Sample G°v RC

Size Diff Cn = 0 Cn = C^ Cn = C<,2) Cn = 0 C n = C^ Cn = C™ Cn = c£H)

- 3 230 235 239 9 4 9 6

- 2 250 261 264 31 22 71 45

-1 263 265 272 88 150 252 226

n = 30 0 177 177 177 531 717 651 702

1 68 56 44 276 98 17 21

2 12 6 4 65 9 0 O

-3 244 246 248 0 0 2 0

-2 230 236 244 4 0 22 4

-1 293 294 298 27 52 169 76

n = 50 0 171 177 175 631 873 800 888

1 52 39 29 271 66 7 32

2 10 8 1 67 9 0 0

- 3 219 220 223 0 0 0 O

-2 251 255 264 0 0 0 0

-1 272 274 269 1 1 12 0

n = 100 0 185 291 197 604 946 985 969

1 70 59 46 332 53 3 31

2 3 1 1 6 3 0 0 0

(A2) E[p(ei)] is finite.

(A3) For any 0, liminf^oo ± £r=1{E[p(e; - x\0) - p(e;)]} > g(0), where
g(-) is a nonnegative convex function and is strictly convex in a neighborhood of
0.

Let CT(-) be any choice of the subgradient of p(-) and denote by U the set of
discontinuity points of a, which is the same for all choices of a.

(Bl) The common distribution function F of e* satisfies F(U) = 0. E[cr(ei)] =
0, and

E[<r(ei + u)] = au + o(\u\), a s u ^ O ,

where a is a positive constant.

(B2) There exist positive constants C, and ho such that for any h € [0, ho] and
any u,

a(u + h) - a(u) < C

(B3) a is bounded by 0 < L < oo.
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Let Sn = XnXn and dn = maxi<j<n x<S^ Xi. Denote the eigenvalues of a
symmetric matrix B of order k by \i(B) > . . . > Xk{B).

(X) There are No and constants ai and 02 such that for n> No,

0 < am < Ap(Sn) < Ai(Sn) < o2n.

(XI) dn(loglogn)5 —» 0 as n —> 00.

Assume that (3k = 0. By the convexity of p, Lemma A3, Corollary A5 and
Theorem 3.1 of Wu & Zen (1999), it follows that

n n

53 P{Vi - x<(-*)'3-<(-fc)) - E " ( » - x'^-i)
i=i i=i
n

< Y, °(y< - *i(-*)'j9-i(-*))(x5/9_i - *<(-*)'£_<(-*))

r „ -I V2

ZL^YYlx'iP-i-Xii-kYP-il-Qn =Oa.s. (Vnloglogn) . (8)

Assume that /?* / 0. Note that for any fc,

J2 p(yi - xii-ky^-k)) > J2p(yi - Xi(-kYp(-k)),
i=l i=l

where J3(—k) is the M-estimate of /3(—k) in the model (2) based on the data
{(yi.si). •••, (Vn,xn)} so that

n

J3{-k) = arg min S~\ P(Vi ~ a3i/3(-'c))-

By the convexity of p, (3), (4), Lemma A3, Corollary A5, Theorem 3.1 and The-
orem 4.1 of Wu & Zen (1999), it follows that

n n

E p(w - xi(-fc)'3_i(-fc)) - E P(W - x^-i)
i = l i = l

> J2 p(vi - Xi{-kYfr(-k)) - J2 fa - *'iP-i)
i=l 1=1

n n n

> $>(lfc - Xi(-fc)^(-fc)) - E p(w - x^0) - L ^ | X 3 _ 4 - x5/30|
i=l i=l i=l

> cn - Oa.s. f \ / n l o g l o g n ) • (9)

where c > 0 is a constant.
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If the sequence {Cn} satisfies that

O n .-. O n /-IA\

> 0, -+ oo, (10)
n y n log log n

by (8), and (9), it follows that the model selection criterion eventually selects the
smallest true model with probability one. It is noticed that the second condition
in (10) may be further weakened.

Acknowledgments

This research was supported in part by a grant from the Natural Sciences and
Engineering Research Council of Canada.

References

Bai, Z. D., Rao, C. R. & Wu, Y. (1999). Model selection with data-oriented
penalty. J. Statist. Plann. Inference 77 103-117.

Li, K. C. (1987). Asymptotic optimality for Cp, CL, cross-validation and gener-
alized cross-validation: discrete index set. Ann. Statist. 15 958-975.

McQuarrie, A. & Tsai, C. L. (1998). Regression And Time Series Model Selection.
World Scientific, Singapore.

Rao, C. R. &: Wu, Y. (1989). A strongly consistent procedure for model selection
in a regression problem. Biometrika 76 369-374.

Rao, C. R. & Wu, Y. (2001). On model selection (with discussion). IMS Lecture
Notes 38 1-64.

Rao, C. R. & Wu, Y. (2004). Linear model selection by cross-validation. J. Statist.
Plann. Inference. In press.

Ronchetti, E., Field, C. & Blanchard, W. (1997). Robust linear model selection
by cross-validation. J. Amer. Statist. Assoc. 92 1017-1023.

Shao, J. (1993). Linear model selection by cross-validation. J. Amer. Statist.
Assoc. 88 486-494.

Shao, J. (1998). Convergence rates of the generalized information criterion. J.
Nonparametr. Statist. 9 217-225.

Stone, M. (1974). Cross-validatory choice and assessment of statistical prediction.
J. Roy. Statist. Soc. Ser. B. 36 111-133.

Wu, Y. (2001). An M-estimation-based model selection criterion with a data-
oriented penalty. J. Statist. Comput. Simulation 70 71-88.

Wu, Y. & Zen, M. M. (1999). A strongly consistent information criterion for linear
model selection based on M-estimation. Probab. Theory relat. Fields 113
599-625.





Order-dependent Thresholding with
Applications to Regression Splines

Jin-Ting Zhang1

Dept of Stat & Appl Prob., National Univ. of Singapore, Singapore
(stazjtflnus.edu.sg)

Summary. Donoho & Johnstone (1994) threshold a sequence of random vari-
ables, e.g., wavelet coefficients using a same thresholding parameter. In this paper,
we attempt to extend their thresholding technologies to threshold a sequence
of random variables using order-dependent thresholding parameters. Some in-
sights about the thresholding estimates are discussed. Applications of the pro-
posed methodologies to regression splines are investigated. A simple extension
to nonparametric additive models is briefly discussed. Illustrations are made via
applying the methodologies to two real data sets. Simulations are conducted to
assess the methodologies empirically.

Key words: Order-dependent thresholding, regression splines, thresholding pa-
rameter selection, thresholding rules.

1 Introduction

Given a sample of observations (ti,yi),i = 1,2,... ,n genera ted from the following
nonparamet r ic regression model :

V = f{t) + e, t€ [0 , l ] , t~N(0,a2), (1)

it is of great interest in many contexts to recover the unknown smooth function
/ . Without loss of generality, throughout this article, we assume / has a unit
support [0,1]. There exist many techniques in the literature that can be used to

Contemporary Multivariate Analysis and Experimental Design—In Honor Celebration of Pro-
fessor Kai-Tai Fang's 65th birthday. Edited by Jianqing Fan and Gang Li. The World Scientific
Publisher, 2005.
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recover / , including kernel, local polynomial, smoothing splines, regression splines
and wavelet-based methods among others. For the same end, these techniques use
somewhat different ideas. The first two use kernel, often taken as a probability
density function, and a smoothing parameter, called bandwidth, to specify a
neighborhood where a constant function or a polynomial function approximates
the unknown function well. The last three use linear combinations of a set of basis
functions to estimate the unknown function. Our work is related to the last three
techniques.

Smoothing splines essentially use the same number of basis functions as sam-
ple size, together with a roughness penalty and a smoothing parameter to balance
goodness-of-fit and model complexity. Smoothing splines have a nice Bayesian
interpretation. A drawback for smoothing splines is that it is often intensive in
computation especially when the sample size is large. Regression splines use fewer
basis functions. The balance between goodness-of-fit and model complexity is ob-
tained via proper knot locating. The number of knots is usually small. Penalized
splines are combinations of regression splines and smoothing splines, via penaliz-
ing the jumps of the truncated power basis functions of regression splines.

Wavelets are a group of orthogonal basis functions, constructed via rescale
or shift of a mother wavelet. When wavelets are used to recover / in (1), most
of the resulting wavelet coefficients are small and contain just noise. In order to
reduce estimation risk, Donoho & Johnstone (1994) propose thresholding methods
to truncate small wavelet coefficients to 0. Applications of wavelets are often
hampered by some usual requirements of wavelets: the design time points are
equally spaced and the sample size must be a power of 2. There exist many
techniques for relaxing these requirements, including the recent one by Antoniadis
& Fan (2001) where penalized ideas from smoothing splines (Green & Silverman
(1994), Wahba (1990) and penalized splines (Ruppert & Carroll (1997) are applied
to wavelet smoothing problems.

In this article, we attempt to extend the thresholding ideas of Donoho &
Johnstone (1994) to regression splines, i.e., to the coefficients of the induced or-
thonormal basis functions (i.e.,eigen vectors) resulted from the singular value
decompositions of the design matrix. The design matrix is formed via evaluating
the regression spline basis functions at design time points. According to the defi-
nition of singular value decomposition, the eigen vectors and hence the associated
coefficients are sorted in an order that the associated singular values are decreas-
ing so that the lower (higher) order coefficients contain more signal (noise) than
noise (signal). To take this into account, we threshold the coefficients using order-
depending thresholding parameters for each coefficient. That is, we threshold less
(more) those lower (higher) order coefficients. Since our thresholding technique
is componentwise, computation is less intensive than that for usual regression
splines.

This article is organized as follows. In Sect. 2, we review some basic ideas
about thresholding rules. Sect. 3 focuses on how to apply these ideas to regression
splines, the basis choice, model approximation, thresholding parameter selections,
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and constructions of approximate standard deviation bands. Sect. 4 presents some
simulation studies where we compare different thresholding rules, different thresh-
olding parameter selections, and different knot distribution rules. In Sect. 5, we
illustrate our methods using two real data examples. Extension to nonparametric
additive models is briefly discussed in Sect. 6.

2 Thresholding Rules

In this section, to explore more insights about thresholding rules, we first discuss
thresholding rules for a single normal random variable, and then extend them for
a sequence of normal random variables.

2.1 Thresholding Rules for a Single Normal Random Variable

Let z ~ N(n, a2) be a single observation from a normal distribution with unknown
mean \i and unknown variance a. We want to estimate \i based on the z. From the
frequentist view, the best linear unbiased estimate is the least squares estimator z,
i.e., p, = z with a risk E(/z — p.)2 = a2. However, if we have some prior knowledge
about the relationship between fj, and a, we may have better estimates with
smaller risks. For example, if we know |/̂ | < a, we may estimate /i by 0 with a
risk E(fi — 0)2 = p2 which is smaller than a2. Of course, if we know \(i\ > a, we
still use z to estimate fi. The resulting estimate is known as the oracle estimate
of fi (Donoho & Johnstone (1994)):

fio(z) = zl{H/<r>i}> (2)

where 1̂4 is the indicator of A, and \n\/a is the signal-to-noise ratio. The rationale
of the oracle estimate (2) is that when the signal n is too small compared to the
noise level a, we better estimate it as 0 to avoid estimating noise.

The oracle estimate improves the ordinary least squares estimate, paying
a price losing the latter's linearity and unbiasedness. But its quadratic risk
<J2 min ( ̂ 4-, 1J is in general not attainable since both fj. and a are often unknown.
This risk, however, can be well approached via mimicking the oracle estimate (2)
by the following hard-thresholding rule (Donoho & Johnstone (1994)):

£ff(z) = zl{|*«l>i} =zl{ui><r}, (3)

where and throughout z* = z/cr rescales z so that Var(z*) = 1. When it is un-
known, a is also called thresholding parameter since it thresholds the least squares
estimate z at \z\ = a, i.e., \z*\ = 1 (see Fig. 1 (a) ). The rationale behind the hard-
thresholding rule (3) is that when a is known, the prior knowledge "|/i|/<7 > 1" is
estimated by "|z*| > 1 " via estimating fi by z; when it is unknown, a should be
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(a) (b)

(c) (d)

Fig. 1. Thresholding rules against the least squares estimator: (a) Hard-
thresholding; (b) Soft-thresholding; (c) Mixture thresholding; and (d) SCAD-
thresholding. The dashed diagonal line indicates how different a thresholding
rule is from the least squares estimator.

estimated too, together with other information. The hard-thresholding rule (3) is
a shrinking estimate of fi in the sense of |/2H (z)| < \z .

The hard-thresholding rule (3) has a strong connection with hypothesis test-
ing. Actually, \z*\ is the z-test score for the following simple hypothesis testing
problem:

f/0:/i = 0 vs ffi:/i/0, (4)

based on the observed z. The decision rule for accepting or rejecting Ho at the
significance level of a = i-"(jz* | > 1) « 30% is exactly the hard-thresholding rule
(3). That is, at that significance level, we accept Ho (i.e. accept /j, = 0) when
\z*\ < 1; otherwise, we reject HQ (i.e. accept fj, ^ 0) so that we may estimate fi
by z.

The hard-thresholding rule (3) is discontinuous at \z*\ = 1. The continuity of
a thresholding rule may be advantageous. For instance, to apply SURE technique
(Donoho & Johnstone (1994)) for selecting a thresholding parameter, a rule should
be at least weakly differentiable. To overcome this drawback, we may use the
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following soft-thresholding rule (Donoho & Johnstone (1994)):

"•'"-'('-^•-'('-wX- (5)
obtained via modifying the hard-thresholding rule (3) by an upward or down-
ward cr-shift according to the sign of z when \z*\ > 1 (see Fig. l(b)) where and
throughout u+ = ul{u>o} = max(u,0). The soft-thresholding rule (5) is also a
shrinking estimate of fj,.

The risk of the soft-thresholding rule (5) is 2<r2 when /x is large (see Fig. 2
(b)). This is due to the bias caused by the upward or downward <T-shift for z
when 12* | > 1. To reduce this bias and hence reduce the risk, we may do a further
modification of the soft-thresholding rule. That is, when \z*\ is very large, we do
not shift z upward or downward. This is because when \z*\ is large, say, \z*\ > UJ
for some w > 1, we have stronger evidence to believe that fj, is not zero. Thus,
in this case, it seems more appropriate to estimate \x by the hard-thresholding
rule (3) than the soft-thresholding rule (5). This results in the following so-called
mixture thresholding rule:

/ 1 M ( Z ) = Z 1-—7 l{|z*|<u,} + l{|z-|>u,W- (6)
I V \Z \J + )

That is, when 1 < \z*\ < w, the soft-thresholding rule (5) is applied; when
\z*\ > w, the hard-thresholding rule (3) is applied (see Fig. 1 (c)).

The mixture thresholding rule (6) is discontinuous at |z*| = w. Modification
can be made to make it continuous there. For this end, Fan (1997) proposed
the following so-called smoothed clipped absolute deviation (SCAD) rule (see
Fig. l(d)):

fiD{z) = Z I (l - —) 1{|Z.|<U}

l_ \ \z 1/ +

+ ( l + 1 ~a-u ) h»<\'-\<») + 1i\-'\>-}} • (7)
where 1 < UJ < a. When w = 2, Fan & Li (2001) suggested a = 3.7 based on a
Bayesian argument.

A general SCAD-type thresholding rule is:

A(z) = Z { ( 1 ~ | ? l ) + 1{|-|<u>
+ ( H ) l{u;<|z*|<a} + l{|z-|>o} \ , (8)

V a - w / j
where 0 < A < ui < a. When A, w, and a take proper values, (8) will reduce to
one of the foregoing thresholding rules. An example is when A = a; = a = 1, (8)
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reduces to the hard-thresholding rule (3). Other values taken by \,u> and o may
lead to some other thresholding rules, which are different from those foregoing
rules. For instance, when A = u> = 1, (8) reduces to the following thresholding
rule:

£(z) = * { ( l + 1 ~°^i ) 1U<\*'1«>} + 1{I**I>-}} • (9)

This rule is simpler than the SCAD rule (7) while keeps the continuity of the
SCAD rule.

All the foregoing thresholding rules can be expressed in the following general
form:

jl(z) = zc(z;a) = c(z;cr)z, (10)
where c(z; a) denotes the associated coefficient for a particular rule, which is
specified by some given parameters X,u> and a. We emphasize a in the coeffi-
cient c(z; a) since it acts as an unknown thresholding parameter and needs to be
estimated based on the data. All the foregoing thresholding rules are shrinking
estimates of p, since |c(z; a)\ < 1, and are nonlinear since c(z, a) depends on z.

The unified expression (8) allows a unified formula for the estimation risks of
the thresholding rules. For this end, we need the following notation. Denote

$r(x)= [ uT<f>{u)du, r = 0 , 1 , 2 , . . . , (11)
J — oo

where 0() denotes the standard normal density function. Let $(•) denote the
standard normal cumulative distribution function. Then it is easy to show that

<Po(x) = 4>(x), $i(x) — —4>{x),

<?2(z) = $(x) - x<j>{x), $3{x) = -{x2 + 2)4>(x),

<2>4(x) = 3£(z) - x(x2 + 3)4>(x),

and<Pr(-oo) = 0,<£2r+i(+oo) = 0,#2r+2(+oo) = l - 3 . . . - ( 2 r + l) = (2 r+ l ) ! ! for
r = 0 ,1 , 2 , . . . . Thus, &r(x) can be computed using $(x) and 4>(x). Let <Pr(x)\y =
<Pr(u) — <Pr(v). Then simple algebra shows that the estimation risk of the general
SCAD-type rule (8) is

p(AW,A») = E(£(*) - M ) 2 = W2 +caa2, (12)

where cM = <?o(a;)|ti> indicating the probability when a z is truncated to 0 and
causes bias, and

C = faoWal + A' (*0(*)|£ + ^O(X)|^) + d&oWlll

+2c0c1$1(x)|:23 + 2A (#i(s)|2 - #i(i) |^) + 2dod1^1(x)\bbl

+*i{*)\-*oo + ^2(^)\Z + *2(x)l2 + *2(s)|£ + d\4>2{x)\bbl

+$2(x)\t3X, (13)
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wi th

a i = - A - fx/a, fci = A - fi/a, c0 = A(^/cr + a)/(a - w),

02 = —a> — /i/<7, 62 = w — M/O'I <̂ O = A(^i/cr — a ) / ( o — w), (14)

03 = —0 — /U/CT, 63 = a — /Lt/cr, ci = di = (a — w + A) / (a — a;).

(a) (b)

(c) (d)

Fig. 2. Risks of thresholding rules against \i: (a) Hard-thresholding; (b) Soft-
thresholding; (c) Mixture thresholding; and (d) SCAD-thresholding. Notice that
risk reduction for |/z| around 0 goes with risk enlargement for moderately large
H

Fig. 2 depicts the estimation risks of the existing four thresholding rules
against \x when a = 1 so that the risk of the ordinary least squares estimator
is 1. Some simple observations may be listed as follows: (1) For all the threshold-
ing rules, the risks around /x = 0 are much smaller than 1 while the risks for those
moderately large /u are much larger than 1. This indicates that the achievement
of the risk reduction around n = 0 goes with the risk enlargement for moderately
large p. This is beneficial when the thresholding rules are applied to a sequence
of normal random variables which are small most of the time; (2) For a large fi,
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the risk for the soft-thresholding rule is 2. This is due to the bias caused by the
upward or downward shift of the soft-thresholding rule. However, when the soft-
thresholding rule is applied to a sequence of normal random variables which are
small most of the time, then it is still possible that the total risk reduction for the
sequence is larger than the total risk enlargement so that the soft-thresholding
is beneficial. Moreover, since the risk reduction made by the soft-thresholding
rule is much larger than those by other thresholding rules, it is expected that the
soft-thresholding rule may outperform other thresholding rules; (3) For large p.,
all the rules except the soft-thresholding rule have the same risk 1 as the least
squares estimator does. The rationale behind this is that when fj, is large, the
sample z is generally large so that z will not be thresholded. This is generally
true as stated in the following result.

Theorem 1. Assume fl(z) is a general thresholding rule as defined in (10) which
is not thresholded or shrunk to 0 when z is large. That is, there is some constant
c > 0 such that fi,(z) = z when \z\ > c. Let cM and ca be defined as in (12). Then
as \n\ —> oo, we have

c^ —» 0, and ca —* 1.

Proof. Assume the required condition is satisfied. Then as |/i| —> oo, by (14), we
have aT,bT —• —oo,r = l,2,3,co,do —> oo, and c\,d\ are finite. It follows that
c^ —> 0 since <Po(x) — $(x). Notice that in the expression (13) of cCT, only the last
term $2(x)\£^° —» 1 as 63 —> —00 and other terms all tend to 0. The theorem is
proved.

When A < w = a = +00, (10) defines a soft-thresholding rule. It does not
satisfy the condition required by the above theorem. Thus, the above theorem is
not applicable for the soft-thresholding rule. However, similar calculations show
that cM has the same asymptotic behavior but ca tends to A2 4-1, which is 2 when
A = 1. The latter defines the soft-thresholding rule (5).

2.2 Thresholding a Sequence of Normal Random Variables

For practical applications, thresholding rules are often applied to a sequence of
normal random variables which may result from, say, wavelet applications to some
nonparametric smoothing problems (Donoho & Johnstone (1994)). Let a sequence
of independent normal random variables be

Zi~N(iu,(T?), i = l , 2 , . . . , n . (15)

Then a direct application of the general thresholding rule (10) will result in fol-
lowing thresholding sequence:

£ i = fri(zi) = c ( z i ; o - i ) z i , i = l , 2 , . . . , n . (16)

When a,,! = 1,2,... ,n are not the same, the associated thresholding parameters
are naturally different, resulting in the so-called order-dependent thresholding;
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and when they are the same, the associated thresholding parameters are the same,
resulting in the case of Donoho &; Johnstone (1994) where the same thresholding
parameter is used. In some other situations such as the one we shall investigate in
next section, we must use different thresholding parameters for different compo-
nents although all the <Ji,i = 1,2,... ,n are the same. This is to take some other
information into account for efficient estimation of the underlying quantities.

Due to the independence of the components, the estimation risk is the sum
of the componentwise risks. That is,

n n

i=l i = l

Theoretically, we can compute the estimation risk of ft using the formula (12)
componentwisely. When most of /^'s are small, it is expected that the total esti-
mation risk for using any thresholding rule will be small too. This is the basis for
thresholding rules' application.

3 Thresholding Regression Splines

In regression spline smoothing, we approximate / in (1) using a linear combination
of a set of truncated power basis functions as described below. Given a sequence
of K interior knots 0 < T\ < ... < TK < 1, the regression splines basis functions
of order q are

l,t,t2,...,tq,(t-n)l,...,(t-TK)l. (17)

Denote the K + q + 1 basis functions as aT(t),r = 0,1, 2 , . . . , K + q, and let 9(t)
be the vector of the basis functions. The regression spline smoothing is to model
/ in (1) using a linear combination of the basis functions:

s(t) = *(*)T/3, (18)

where /3 = (/30,/3i, • • • ,PK+q)T denoting the basis coefficients. The function s
defined above is a piecewise polynomial. That is, within any two neighboring
knots, s is a polynomial of order q while at any interior knot Tk, s has up to
(q — l)-times continuous derivatives. When / has up to (q — l)-times continuous
derivatives, it can be well approximated by some s of order q.

In practice, the degree of smoothness of / is usually unknown. To form a basis
adaptive to various degrees of smoothness of / , we may combine basis functions
of various orders, say, from order q up to order p. The resulting basis may be
expressed as follows:

1, t, t2,..., tp, (t - n)l, ...,(t- TK)%, ...,(t-n)p+,...,(t- TK)\. (19)

The total number of basis functions is K(p — q+ 1) -f- (p+1). Any / that has up to
(r— l)-times continuous derivatives where q < r < p can be well approximated by
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some linear combination of the above basis functions. Therefore, the basis denned
in (19) is more flexible than the usual regression spline basis (17).

Let *(t) denote a basis vector denned either in (17) or (19). Then the model
(1) may be further written as:

Vi = *(ti)T/3 + eu tiG[O,l], €i~iV(0,<72), i = l ,2 , . . . ,n . (20)

Let Xi = *(ti) and X = (Xi , . . . , X n ) T . The model (20) essentially becomes the
following multiple linear regression model:

y = X(3 + e, e~iV(0,a2In) , (21)

where and throughout, y = (yx,..., yn)T, e = (ei , . . . , en)T and ln is the n x n
identity matrix. Unlike the design matrix in a general multiple linear regression
model, the design matrix X here is induced from evaluating the smooth basis
function vector *&(t) at the design time points.

Without loss of generality, let the number of basis functions be m, which is
smaller than n. The singular value decomposition (SVD) of X is

X = UDVT, (22)

where U = (ui, U2,... , un) and V = (vx, v 2 , . . . , vm) are n x n and mx m
orthonormal matrices so that U T U = In and V T V = Im, D = (Di,D2)T where
Di = diag(di, d.2,..., dm) with d\ > di > ... > dm, and D2 : (n — m)xm is a zero
matrix. For convenience, let di• = 0, i = m + 1, m + 2 , . . . , n. Then u i , . . . , un are
the n-dimensional orthonormal eigenvectors of XXT, associated with eigenvalues
d\,d\,...,d\ while v i , . . . , vm are the m-dimensional orthonormal eigenvectors
of XTX, associated with eigenvalues d\, d\,..., d2 .̂

Let
z = UTy, e = UTe, (23)

be the orthogonal transformation of y and e respectively. They are the projection
coefficients of y and e on the space spanned by the eigen vectors u i , . . . , un

respectively. Then

Zi = ufy = fn + ei, a ~ AT(0,<72), i = 1, 2 , . . . ,n. (24)

Moreover,
n n

y = ^ z ; U i , e = ^ e i U i . (25)

Based on the model (24), the usual least squares estimators for fj,i,i =
1, 2 , . . . ,n are

fii = Z i , i = 1 , 2 , . . . , n . (26)

However, it is obvious that Ez, = in = 0 for i = m+1, m+2,..., n; the associated
zt's are purely noise, normally distributed with mean 0 and variance a2. Therefore,
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the least squares estimators (26) for (li,i = m + 1,... ,n are estimating noise and
hence are not favorable.

Based on the model (24), it is seen that z\,Z2,... ,zn are homogeneous since
the noise terms e\, e2, . . . , en have the same variance a2. A simple application of
the general thresholding rules (10) to the projection coefficients Zi,i = 1,2,... ,n
using the same thresholding parameter A will result in the following estimators
for m,i = l ,2 , . . . ,n:

p,i = c(zi;\)zi,i = l,2,...,n. (27)

Fig. 3. Some selected eigen-vectors Uj with the associated eigenvalues ck. Notice
that with decreasing di, the associated u, changes in a more wiggly manner.

However, the above method may fail since it does not take into account the
order of the projection coefficients z;,i = 1,2,... ,n to construct more efficient
estimates for ^,, i = 1, 2,..., n. There are at least two reasons that we should do
so. First of all, the amount of the signal that the projection coefficients z,,i =
1, 2 , . . . , n contain is mainly determined by their orders.

According to the definition of the singular value decomposition, the eigen
vectors Uj,i = 1,2,... ,n and hence the associated projection coefficients Zi,i =
1,2,.. . ,n are sorted in the order that the associated singular values d\ < 6,2 <
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... < dn so that the lower (higher) order projection coefficients contain more (less)
signal than noise out of the response vector y and the design matrix X. Secondly,
the roughness of the eigen vectors Ui,i = 1, 2, • • • ,n are also closely related to the
orders of the associated projection coefficients Zi,i = 1,2,... ,n, or equivalently
the associated singular values di,i = 1,2,... ,n. Fig. 3 displays some selected u,'s
(resulted from n = 200 equally spaced time points ti's) with associated di's. It is
seen that with decreasing dt, the associated Ui is generally getting rougher (the
curve changes in a higher frequent manner, i.e., with more wiggly waves). Similar
situations can be observed for unequally spaced i*'s and/or for other sample
sizes n. Therefore, to construct an informative and smooth estimate [see (31) for
example] for the underlying function / in (1), we should threshold less (more)
the lower (higher) order projection coefficients Zi's. In particular, as mentioned
previously, Zi, i = m+1,..., n (associated with di = Q,i = m+1,..., n) are purely
noise and hence they should be thresholded as 0. In other words, we should treat
Zi's differently according to their ordersj i.e., the values of di's. A natural way
to reflect this is to use the following thresholding parameters A; for different
projection coefficients Zi's:

\i = X/d!l,i= 1,2,.. . , n, (28)

where k > 0 is some given integer and A a common thresholding parameter.
We then define the following order-dependent thresholding estimators for m,i =
1,2,--- ,n:

fti = c(zi;Xi)zi,i = 1,2,... ,n, (29)

by applying the general thresholding rule c(z; A) as defined in (10). It is worthwhile
to notice that when d» are larger (smaller), the associated thresholding parameters
Aj are smaller (larger) so that there is a less (more) chance for the associated Zi's
to be thresholded; in particular, when dj = 0, the associated A< = oo (as usual,
we interpret A/0 as oo) so that the associated z; are definitely thresholded as 0
as desired.

When we allow k = 0 in the formula (28), it indicates all the \i are the
same. This reduces to the case of simple application of the thresholding rules,
i.e., (27). This is equivalent to ignoring the order of the zt's and hence may result
in undesired estimates [see Fig. 11 (d) in Sect. 5]. However, when A; > 0, all the
Zi's are treated differently and according to their di's values. In general, we can
take k = 1 or k = 2 for simplicity. A small-scale simulation study presented in
Sect. 4 shows that k = 1 is slightly better than k = 2 while they both are better
than k — 0; see Fig. 7. Thus, it is beneficent to take the order of z,, i = 1, 2 , . . . , n
into account.

Denote
Zi =fn = c(zi-\/di)zi, i = l,2,...,n. (30)

In matrix notation, that is,

z = (z 1 , . . . , z n ) T = C(z;A,d,fc)z,
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where C(z;A, d,fc) is a diagonal matrix with diagonal elements c(z.i\ X/di),i =
1, 2 , . . . , n. The fitted y is then

y = Uz = UC(z; A, d, fc)z = UC(UTy; A, d, k)UTy = SA(y)y, (31)

where d = (di, d2,..., dn)T and

SA(y) = UC(UTy; A, d, fc)UT (32)

is the associated smoother matrix. Notice that y is a nonlinear shrinking estimator
off since ||y || < ||y||.

When S}, does not depend on y, i.e., y is a linear smoother, we have

Var(fc) = < x 2 e f S ^ , (33)

where ej denotes an n-dimensional vector with its i-th component to be 1 and 0
otherwise. The above variance expression is in general not true for the nonlinear
thresholding smoother (31), and we expect that the variance for jji in (31) should
be larger than the one given in (33) due to the dependence of SA on y. Neverthe-
less, it is noticed that the dependence is generally weak since C is just a diagonal
matrix containing some indicator functions specifying the relationship between y
and the thresholding parameters. Thus, we may use the following approximated
2 standard deviation bands to give some basic feeling about the variability of y,:

yi±2Var1/2(j/i),i = l ,2 , . . . ,n , (34)

where Var(j/;) is obtained using (33) with a2 replaced by a proper estmator, for
example,

a2 = £ { 1 - c(Zi; \/d^)}2z2/(n - £ c(*; A/d?)); (35)
i=l i-1

When c{zi\ A/d*) are independent of Zi, it is easy to show that a2 is an unbiased
and consistent estimator of a2.

The / in (1) can also be estimated using the following penalized regression
spline: /(£) = <&(t)T(5 where /3 is the solution to the following penalized likelihood
problem:

n

Y,{Vi - *(^)T/3)2 + A/3T/3. (36)
i= l

That is,
/3 = (XTX + AIm)-1XTy, (37)

where m is the number of basis functions in 4/(£). Therefore,

y = X(XTX + AIm)-1Xry. (38)

Using the singular value decomposition (23) and let z = UTy,z = UTy, and
di — 0, i = m + 1, . . . , n, we have
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* = T + W < S = 1 ' 2 - - B ' (39)

so that y = Uz. This expression can be unified into (30) using c(z,;A/d2) =
(1 + A/d,2)"1 but bear in mind that c(z;; X/dj) = 0 when dt = 0.

The regression spline smoother (38) is obtained via penalizing all the coeffi-
cients in P equally. It is slightly different from the one proposed and studied by
Wand and Carroll (1998) where they penalize just those /3,'s reflecting jumps of
the regression spline (18).

3.1 Locating the Knots

To recover / in (1), at the initial stage of modeling, one often uses a large number
of knots, i.e. K is large. In general, we take K such that m < n where m is the
total number of basis functions so that all the di's are positive.

There are several ways to locate the knots r/t, k = 1, 2 , . . . , K, often depending
on the designs of the time points ti's or the structure of the regression function
/ . For instance, when the it's are uniformly scattered in [0,1], the knots can be
uniformly scattered in [0,1], i.e., Tjt = k/(K + 1), k = 1, 2 , . . . , K. This method is
widely used due to its simplicity even when the ti's are not uniformly scattered.
To be adaptive to the designs of the ti's, the fc-th knot iVs are usually chosen
as the k-th sample quantile of U,i = 1,2,... ,n. That is, let t^,i = 1,2,... ,n
be the order statistics of U,i = 1, 2, . . . ,n. Then Tk = t[kn/^+i)], k = 1,2,...,K
where \x] denotes the largest integer that is smaller than x. The above procedure
allows to scatter more (fewer) knots where more (fewer) design time points are
around. When / is spatially imhomogeneous, the knots iVs may be chosen to be
adaptive to the structure of/. For instance, for the "Doppler" function of Donoho
& Johnstone (1994) [see Fig. 4(a), the solid curve) in Sect. 4], the left side of /
has more wiggly waves than its right side and hence we should put more knots
at the left side of the support of / to improve the performance of the estimate.
For this end, we may choose r^'s such that log(r/c)'s are uniformly scattered. We
term the above three knot location procedures as "uniformly scattered", "quan-
tiles as knots" and "log-uniformly scattered" respectively for easy reference. A
small-scale simulation study conducted in Sect. 4 shows that the "quantiles as
knots" procedure generally works well while the third procedure works well for
the "Doppler" function; see Fig. 9.

3.2 Thresholding Parameter Selection

For each given thresholding parameter A, the smoother y of / in (1) is given by
(31) and (30). Whether y is a good estimate for f = ( / ( t i ) , . . . , f(tn))T depends
strongly on the choice of A. A measure for the accuracy of y estimating f is the
mean squared error (MSE):
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n n n

E E ( & - nti))2 = E B i a s 2 ( & ) + E Var^)> (4°)
i=l i=l i=l

where all the expectations involved are taken conditional to the given f. The first
(bias) term in the right-hand side represents the goodness of fit of the estimator
y and the second (variance) term its total variation. As seen from (30), when
A is large, most of the Zi's are thresholded or shrunk to 0 so that the variance
term can be made as small as possible; on the other hand, when A is small,
only few of the zt's are thresholded or shrunk to 0 so that the bias term can
be made as small as possible. Therefore, choosing A is equivalent to balancing
the model complexity and the goodness of fit of the estimator. That is, a good
A should be chosen to minimize the MSE. Unfortunately, the above MSE is not
computable since f is unknown. This motivates proposals of many model selection
criteria which mimic the MSE or other accuracy measures for estimates. All these
criteria consist of two parts: one represents the goodness of fit and the other the
model complexity. These two parts can be balanced by some proper choice of the
thresholding parameter A.

The most popular measure for goodness of fit of the estimator (31) is the sum
of squared errors (SSE):

n n

SSEA = Y,(vi - y>? = E * 1 - <Zi' V4)}24, (4i)
i=l i=l

using the singular value decomposition (23). As seen from (41), when A increases,
more Zi's will be truncated or shrunk to 0 so that the SSE A increases. Thus, use
of large A worsens the goodness of fit due to fewer of the Zi's are used in the
model.

A popular measure for model complexity is the trace of the smoother matrix
SA as defined in (31):

n
tr(SA) = £>(zi ;AMf c). (42)

»=i

As seen from the above expression, when A increases, the trace will decrease
due to fewer of the Zi's involved so that the model becomes less complicated.
In particular, when the smoother is the hard-thresholding rule (3), the trace is
exactly the number of the Zj's that are not truncated into 0.

To select good A, some model selection criterion that tradeoffs the goodness
of fit and the model complexity of an estimator should be applied. The existing
model selection criteria include cross-validation (CV), generalized cross-validation
(GCV), Akaike information criterion (AIC), Bayesian information criterion (BIC),
Cp statistics and Stein's unbiased risk estimator (SURE) among others. Although
not all of these criteria are constructed based on SSEx and tr(S;k), they all aim
to tradeoff the goodness of fit and the model complexity of an estimator.

Cross-validation is a popular model selection criterion due to its simplicity.
The CV score of the smoother y (31) is computed as follows:
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CV(A) = £(w-fc(-°)a*E(Fr)a ' (43)
i = l i = l V 1 ~ S i i '

where y\~1' denotes the prediction of yt computed using (31) based the data with
the i-th observation excluded and su the i-th diagonal element of the smoother
matrix SA as in (32). We expect the second relationship in the expression (43)
approximately holds although y is a nonlinear smoother; alternatively, we may
directly define the CV score as the right-hand side of the expression. Based on
this and for saving computation, we may define the generalized cross-validation
(GCV) score as:

G C VW-[.- .^P- <44>
The above expression is actually obtained via replacing all the su's in the CV
score (43) by their average n"1 J2"=i s» = «"1tr(SA). The CV and GCV ideas
are widely used in nonparametric smoothing such as smoothing splines, regression
splines, kernel and local polynomial smoothings.

AIC and BIC are two other popular model selection criteria, which, in our
context, may be defined respectively as follows:

AIC(A) = log(SSEA) + 2n-1tr(SA), (45)

BIC(A) = log(SSEA) + 2n~1 log(n)tr(SA), (46)

where tr(SA) is used to represent the model complexity, replacing the number of
the parameters as in AIC and BIC for multiple linear regression model selection.
It is seen that BIC is more parsimonious than AIC since it puts more weights on
the model complexity, tr(SA), than AIC does. Consequently, the A chosen by BIC
is larger than the A by AIC. That is, BIC yields a smoother y.

Cp-statistic is also a popular model selection criterion. It is defined based on
an unbiased estimator of the MSE (40):

SSEA + <r2(2tr(SA)-n).

That is, given a good estimate of the a2, the Cp statistic is constructed as

C(A) = SSEA + <72(2tr(SA) - n), (47)

where A replaces the p in the usual Cp statistic for multiple linear model selection.

SURE (Stein's Unbiased Risk Estimate) criterion was proposed in Donoho
& Johnstone (1998) for wavelet thresholding parameter selection. Johnstone &
Silverman (1997) extended it to correlated data analysis using wavelets. Let Zi ~
N{6i,a2) be independent, and ii = Zi + g{zi) be estimates of #,, i = 1, 2 , . . . , n
where <;(•) is a weakly differentiate function. It is easy to show that

n n

E0||z - 0\\2 = no2 + 2a2Ee J^g'izi) + % $>2(zi) ,
i=l i=l
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where z = (zi,... ,zn)T, 0 = {d\,...,dn)T and Eg indicates the conditional
expectation given 0. Applying this rule to the sequence (30), we got the SURE
criterion defined as follows:

n n

SURE(A) = a2 + 2O-V1 ^ g'(Zi) + n~x ] T g2{zi), (48)
i=l i=l

where g(Zi) = {c{zi\ A/d*) - l}z« using (30) so that g'{zi) = c'(zi; A/d*>i +
c(zi; X/di) — 1, and a1 is some consistent estimate of a2 such as the one defined
in (35). Note that the SURE in Donoho & Johnstone (1998) and Johnstone &
Silverman (1997) was defined for the soft-thresholding rule only. However, since
c(zi; X/di) has at most a finite number of discontinuity points such as the hard-
thresholding rule, we expect SURE applies for all thresholding rules and the usual
regression splines. Simulations presented in Sect. 4 show that SURE performed
quite well for all the thresholding rules including the hard-thresholding rule.

4 Simulation Studies

In the previous sections, we have carefully discussed the methodologies for order-
dependent thresholding and its applications to regression splines. These method-
ologies include the construction of thresholding rules, the selection of the order
k, the methods for knot locating, and the methods for thresholding parameter
selection. In this section, we aim to investigate their performance via simulations.

The testing functions include Doppler, Heavisine, Bumps and Blocks, which
are defined and depicted in Donoho & Johnstone (1994). These functions carica-
ture spatially imhomogeneous functions that arise in imaging, spectroscopy and
other scientific signal processing. They have been extensively used for illustrat-
ing variable bandwidth selection (Fan and Gijbels (1996)) or wavelet smoothing
methodologies (Antoniadis & Fan (2001); Donoho and Johnstone (1994) etc.).

In Fig. 4, four noisy data (dots) sets, which were respectively simulated from
the four functions (solid curves), are displayed. The noise level a was chosen such
that the associated signal to noise ratio is about 7. The sample size is n = 1000
and the design time points U were uniformly sampled over [0,1]. As an example,
we illustrate how we fit these data sets using our methodologies. First of all, to
fit these highly spatially imhomogeneous functions with small biases, we chose K
as large as n/4 = 250 knots. We then located these knots using the "quantiles
as knots" method except for the Doppler function, we used the "log-uniformly
scattered" method to put more knots at the left end of the function support.
We then constructed the basis functions using (19) with q = 1 and p = 2 so
that we have as many as m = K(p — q + 1) + (p + 1) = 502 basis functions.
After singular value decomposition, we applied the soft-thresholding rule (5) to
the zt's computed using (24). The Zi's were computed using (30) with k = 1. The
thresholding parameter A was chosen by the GCV rule (44).
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Fig. 4. Noisy simulated data for : (a) Doppler, (b) Heavisine, (c) Bumps, and
(d) Blocks. The noise level a1 was chosen respectively so that the signal to noise
ratio is about 7.

The resulting fits are presented in Fig. 5. These fits are reasonably good al-
though they appeared undersmoothed. This is probably due to the fact that these
functions are too spatially imhomogeneous. This difficulty may be overcome via
more carefully locating the knots. Nevertheless, for less spatially imhomogeneous
functions such as those presented in Sect. 5, our approach performs rather well.
The accuracy of a smoother / of an underlying function / is often measured using
the mean squared error of the smoother, defined as

n

MSE(/) = n-1£(/(fc)-/(t0)2-

The smaller the MSE is, the more accurate the smoother is. In what follows,
MSE is used to compare smoothers based on different thresholding rules, different
order fc, different methods for thresholding parameter selection, or different knot
locating methods. The four testing functions mentioned previously were used. For
each testing function, we first generated a sample of size n = 300 with a signal-
to-noise ratio about 7. We then fit the sample using our methodologies and then
computed the MSE using (40). The whole process was repeated N = 100 times
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Fig. 5. The fitted curves using the soft-thresholding rule: (a) Doppler, (b) Heav-
isine, (c) Bumps, and (d) Blocks, where k = 1 and the A's were chosen by GCV.

so that we have N = 100 MSEs for each testing function. The performance of a
smoother is then summaried by a boxplot of these MSEs; see Fig. 6 for example.

For simplicity, we defaulted the following choice for the parameters involved
in simulations, unless they were the targets of the comparison. The number of
knots was set to be K = n/3 = 100, and they were located using the "quantiles
as knots" method except for the Doppler function, the "log-uniformly scattered"
method was used. We used the basis (19) with q = 1 and p = 2. The fc = 1, and
the soft-thresholding rule (5) were used. The thresholding parameter was chosen
using the GCV rule (44).

We first present the simulation results for comparing different thresholding
rules. Fig. 6 displays the boxplots of the MSEs for the usual regression spline (39),
hard (3), soft (5), mixture (6), SCAD-new (9) and SCAD (7) rules as defined in
Sect. 2.

For the first three testing functions, it seems that the usual regression spline
and the soft-thresholding performed better than the other thresholding rules,
while the others performed similarly. However, for the Blocks function, the usual
regression spline performed worse than all the thresholding rules significantly.
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Fig. 6. Boxplots for the MSEs for (a) Doppler, (b) Heavisine, (c) Bumps, and
(d) Blocks for thresholding rules (from left to right): usual regression spline, soft,
hard, mixed, SCAD-new and SCAD.

This shows that when the testing function is seriously discontinuous, the usual
regression spline will usually perform worse than the thresholding rules. Among
the thresholding rules, the soft-thresholding rule performed best. This is due to
the fact that most of the coefficients are small. We can also see that the soft-
thresholding rule is comparable with the usual regression spline: when the testing
function is highly discontinuous and highly spatially imhomogeneous, the soft-
thresholding performed better, while when the testing function is less spatially
imhomogeneous and less discontinuous, the usual regression spline performed bet-
ter.

We now examine the effect of the different k. For simplicity, we just con-
sidered three different k's: k = 0,1, and 2. When k = 0, the thresholding is
order-independent. That is, all the Zi's in (30) are treated in a same manner.
Fig. 7 displays the boxplots of the MSEs for k = 0,1 and 2 respectively for the
four testing functions. It is seen that except for the Blocks function which is se-
riously discontinuous, the order-independent thresholding estimates (A; = 0) were
worse than those order-dependent thresholding estimates (fc > 0). This says that
if the underlying function is reasonably smooth, the order-dependent threshold-
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Fig. 7. Boxplots for the MSEs for (a) Doppler, (b) Heavisine, (c) Bumps, and
(d) Blocks for (from left to right): fc = 0, k = 1, and k = 2.

ing is preferred to order-independent thresholding. Another observation is that
thresholding estimates with k = 1 generally outperformed those with k = 2. This
is the reason why in general we used k = 1 in the examples and simulation studies.

Which thresholding parameter selection rule is preferred? We used another
small-scaled simulation study to answer this question. Fig. 8 presents the box-
plots of the MSEs for the six thresholding parameter selection rules: CV, GCV,
BIC, AIC, SURE and Cp. The lessons are as follows. First of all, for the four
testing functions, the GCV rule performed better or not worse than the CV rule.
Second, the SURE and the Cp rules performed similarly; they are both based
on the estimates of the noise variance a2. Third, the BIC and AIC rules per-
formed much worse than others, probably due to the reason that they generally
oversmoothed the testing functions while the testing functions should generally
be undersmoothed due to their spatial imhomogeneity. Finally, we can see that
among all these criteria, the GCV is definitely preferred due to good performance,
less intensive computation, and lack of the need for estimating the noise variance.

Finally, we examined the use of the knot locating methods. We have three
possible knot locating approaches: "uniformly scattered", "quantiles as knots"
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Fig. 8. Boxplots for the MSEs for (a) Doppler, (b) Heavisine, (c) Bumps, and
(d) Blocks for the criteria (from left to right): CV, GCV, BIC, AIC, SURE, and
Cp.

and "log-uniformly scattered". Fig. 9 displays the boxplots of the associated MSEs
for the three methods. For the Doppler function, the third method is definitely
better than the other two methods. This is due to the Doppler function is varying
more and more rapidly as approaching the left end, and hence needs more knots
at the area closer to the left end. For the Heavisine and Bumps functions, all
the three methods performed similarly but the third method seems have smaller
variation. It is hard to interpret this observation however. For the Blocks function,
the first method outperformed the second, and the second outperformed the third.
This is probably caused by the so many discontinuous points of the underlying
function.

5 Two Real Data Examples

In this section, two real data examples are used to illustrate our methodologies.
The first data set is displayed in Fig. 10 (d) as dots. It has been analyzed exten-
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Fig. 9. Boxplots for the MSEs for (a) Doppler, (b) Heavisine, (c) Bumps, and
(d) Blocks for the knots' distributions (from left to right): uniformly scattered,
quantiles as knots, and log-uniformly scattered.

sively in the area of nonparametric regression smoothing and consists of n — 133
observations from a crash test and shows the acceleration of a motorcyclist's
head during a crash. Silverman (1985) used it to illustrate his spline smoothing
technique while Hall & Turlach (1997), Kovac & Silverman (2000), and Antc-
niadis & Fan (2001) used it to illustrate their wavelet-based methodologies for
smoothing unequally sampled noisy data. As showed in Fig. 7 of Antoniadis &
Fan (2001), classical wavelet thresholding or the interpolation method of Hall &
Turlach (1997) produce wiggly estimates, while the robust thresholding method
of Kovac & Silverman (2000) and the ROSE method of Antoniadis & Fan (2001)
gave reasonable estimates. The solid curve in Fig. 10(d) is our estimate and is
comparable to the good estimates in the literature. In addition, we also provided
the approximate 2 standard deviation bands showed as dashed curves.

As in simulations presented in Sect. 4, our estimate was obtained as follows.
We used K = n/3 ss 44 interior knots which were located using the "quantiles as
knots" method as described in Sect. 3.1. These knots can be denoted as

rr = t(i+3,(r-i))ir = 1, 2 , . . . , K,
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Fig. 10. The motocycle data example: order-dependent soft-thresholding, (a)
The Zi's; (b) The c(zi; A/d*) with k = 1; (c) The Zi's; (d) The data (dots), fitted
curve (solid curve) and approximate 2 standard deviation bands (dashed curves).

where t(i),z = 1,2,... ,n are the order statistics of the design time points U,i =
1,2,-- ,n.

These knots were then used to specify a design matrix X =
[*(£i),..., * ( t n ) ] T using the following basis constructed according to (19) with
q = 1 and p = 2:

*(t) = [1, t, t2, (t - n ) + , . . . , ( * - 7*)+, (t - n)2+, . . . , ( * - TK)2+]T.

We took g = l because the left sided data (see Fig. 10 (d), dots) suggest a
linear model, and took p = 2 because the middle part of the data suggest a
quadratic model. The total number of the basis functions in *(£) is then m =
K(p — q + 1) + (p + 1) = 91, which is quite large. Denote the singular value
decomposition of X as UDVT where U = [ui , . . . , un] and V = [vi , . . . , vm]
and D = diag(di,... ,dn) denned as before and in particular di's are sorted so
that d\ > cfe .. -dn. We then got the z,'s using (24), i.e. z, = ufy,i = 1,.. . ,n.
Fig. 10 (a) displays those m Zi's. It is seen that only a few of the |ZJ|'S are large,
say the first 8 in this example, and the rest are quite small. The large |ZJ|'S are
expected to contain signal while those small ones to be noise. To threshold these



ORDER-DEPENDENT THRESHOLDING 421

Zi's, we used the order-dependent soft-thresholding rule (5) since most of the zt's
are small. The associated c(z,; X/dt) with k = 1 were computed following (30)
using the common thresholding parameter A = .54 selected by the GCV rule (44)
and were displayed in Fig. 10 (b). Only a few of them are nonzero and they are
decreasing to 0 from 1 with decreasing the associated di's. This well characterizes
the soft-thresholding rule (5). The associated i,'s as defined in (30) were displayed
in Fig. 10 (c). There are about 12 of them being nonzero. The final estimate of
the underlying function was then constructed using (31) shown as the solid curve
in Fig. 10 (d).

Fig. 11. Similar caption as that of Fig. 10 but now for the order-independent
soft-thresholding.

As mentioned in the previous sections, the k = 0 means order-independent
thresholding with all the .z,'s being treated the same. Fig. 11 presents such a kind
of thresholding. Although the z^s (shown in panel (a)) are the same as those
presented in Fig. 10 (a), the resulting c(zi, A/df )'s (with k = 0 and A selected by
GCV) are quite different as shown in panel (b) where lots of high frequent noise
was not thresholded to 0. Consequently, the resulting fit is very noisy as shown in
panel (d) (solid curve). Thus, the order-independent thresholding does not work
and the order-dependent thresholding is preferred.
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Fig. 12. Similar caption as that of Fig. 10 but now for the usual regression spline
smoothing.

How is our fit comparing with the usual regression spline fit? Fig. 12 displays
the usual regression spline fitting process. Compared with Fig. 10, we can see
that although the C(ZJ, A/df) are slightly different for large |z;|'s (see Panel (b)
in both figures), the 2,'s are quite similar (see Panel (c)) and hence the resulting
fits (see Panel (d), solid curve) are almost the same.

As a second example, we now apply our methodologies to a more complicated
data set of unequally sampled time series. The response is light magnitude and
the predictor is Julian day. The data set is accessible on the World Wide Web at
www.aavso.org. Due to blockage of the star by sunlights, weather conditions,
and availability of telescope time, the magnitudes of the star were measured at
irregularly spaced times. Thus, usual wavelet smoothing is not directly applicable.
This data set has been used by Sardy, Percival, Bruce, Gao, & Stuelzle (1999)
and Antoniadis & Fan (2001) for illustrating their wavelet-based methodologies
for denoising unequally sampled noisy signal.

The data set has 295 observations in total but three of them are known to
be the upper limits on the star's magnitude and hence were deleted since their
error properties are quite different from the remaining observations. We then
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Fig. 13. The Julian data example: order-dependent soft-thresholding. The data
are presented as dots, together with the fitted curve (solid curve) and the approx-
imate 2 standard deviation bands (dashed curves).

applied our methodologies to the remaining n = 292 observations. As usual, we
used defaults for the parameters involved. For example, we used K = n/3 = 94
knots which were located using the "quantiles as knots" method. We used the
basis (19) with q = 1 and p = 2. We used k = 1 and selected the thresholding
parameter A by the GCV rule (44). The resulting fit is displayed in Fig. 13 (solid
curve), together with approximate 2 standard deviation bands (dashed curves). It
seems that our fit is comparable with the one given by Antoniadis & Fan (2001).
Moreover, we offered approximate 2 standard deviation bands.

6 Extension to Nonparametric Additive Models

It is straightforward to extend our methodologies to some multivariate nonpara-
metric regression models such as additive models. Additive models (Buja, Hastie
& Tibshirani (1989)) are useful in data analysis since they allow involving several
covariates without suffering the "curse of dimensionality". A general nonpara-
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metric additive model may be expressed as:

yi = a + f1(tn) + f2(ti2) + ... + fm(Um) + ei, i=l,2,...,n, (1)

where a is an unknown constant, and / fk(t)dt = 0, k = 1, 2 , . . . , m are imposed
so that the above additive model is identifiable. Similar to (18), we can model fk

using a basis vector #&(£) for each k:

fk(t) = #k(t)Tpk,k = l,2,...,m.

Then (1) can be approximated by

Vi =a + #1(til)Tpi +... + #m(Um)T0m + ei,i = l,2,...,n.

In matrix form, we have
y = X/3 + e,

where/3 = (a, /3f , . . . , /3^)T and X = ( l n ,Xi ,X 2 , . • • ,Xm) with

Xfc = (*k(tik),#k(t2k),---,#k(tnk))T,k= l , 2 , . . . , m .

This transforms the nonparametric additive model (1) into the general linear
model (21) and hence the associated thresholding methodologies can be applied
directly.
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Summary. For a power transformation family (xx — 1)/A, Box & Cox (1964)
proposed to use the pseudo maximum likelihood estimation method to determine
a value of A. This approach is intended to transform the non-normal data to
normal data and then construct the i-test based on the transformed data in ,the
two-sample problem. In this article, a new procedure of estimating A, hence a new
transformed i-test, is proposed. The idea of the new approach is to select directly
a value of A such that the transformed i-test is as close to the i-distribution as
possible. Simulation results show that the new transformed i-test is appropriate
to use a i-distribution to determine a threshold and much more powerful than
the Box-Cox transformed i-test when the model is nearing a transformed nor-
mal model, while two approaches are comparable if the model is far-fetched for
transformation to normality.
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1 Introduction

Consider two independent r andom samples: Xi,--- ,Xm and Y\,-- ,Yn. One

wishes to test t he null hypothesis t h a t t he two popula t ions from which t he two
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samples come have the identical mean, namely,

Ho : /ix = My

where fj,x = E(Xl) and fj,y = E(Yi).

The standard statistical models usually assume that the two population dis-
tributions are normal with the same variance. In this case, the Student t-test
is often recommended and proved to be the uniformly most powerful unbiased
test (see, e.g., Lehmann (1994)). When the normality assumption is weakened
or invalid, it is common practice to re-express the data to implement the i-test
(Mosteller & Tukey (1977) and Atkinson (1985)). In an oft-cited paper, Box &
Cox (1964) suggested to use a power transformation. Suppose that all observa-
tions are nonnegative. The Box-Cox power transformation is defined as follows:

!

(X? - 1)/A, if A / 0
(1)

logXi, ifA = O

and similarly Y,(A). If such a transformation is successful to transform the data
to fit a normal model, the profiled log-likelihood function for the transformation
parameter A is

l{\) = -{( m + n)/2}logS2(A) + (A- 1) I f ) log* + ^ l o g ^ } ,

where S2(A) is the pooled sample variance of the transformed data Xi(A)'s and
Y,(A)'s defined by (1). Box & Cox (1964) proposed to estimate A by the maximizer
A of/(A), i.e., the so-called maximum likelihood estimator (MLE). The two-sided
transformed i-test is to reject Ho if |T(A)| is greater than the Student i-critical
value £a/2,m+n-2i where

T(A) = y/mn/(m + n){X{\) - Y(A)}/S(A)

with X(A) and Y(\) being the sample means of the transformed data.

Theoretical studies on the Box-Cox transformed data analysis described above
have been reported in the literature. Hinkley (1975) and Hernandez fe Johnson
(1980) investigated the asymptotic properties; Bickel & Doksum (1981) examined
critically the behavior of the asymptotic variances of parameter estimates includ-
ing A for regression and analysis of variance situations; Chen & Loh (1992) and
Chen (1995) studied the asymptotic testing power. The conclusions are mostly
positive. For example, Hernandez & Johnson (1980) discovered that the MLE
A minimizes the Kullback-Leibler asymptotically; Chen & Loh (1992) and Chen
(1995) proved that the Box-Cox transformed i-test is typically more efficient
asymptotically than the i-test without transformation.

In this article, we propose an innovative procedure for estimating the transfor-
mation parameter A. The new approach is expected to result in an even more effi-
cient i-test with the transformed data. The simulation results presented in Section
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3 show that the new transformed t-test is appropriate to use a t-distribution to
determine a threshold and much more powerful than the Box-Cox transformed t-
test when the model is nearing a transformed normal model, while two approaches
are comparable if the model is far-fetched for transformation to normality.

2 The New Transformed t-Test

The idea of the Box-Cox t-test is to first transform the non-normal model to
normal model (or nearing normal model) and then perform the t-test. If the
transformation is successful, the transformed t-test is expected to follow a t-
distribution under the null model. However, as far as the t-distribution is of
concerns, we do not have to require the transformed model to be normal. That
is, as long as the transformed t-test statistic follows the t-distribution under the
null model, it does the job. Since normality is only a sufficient model condition
for the t-test to follow the t-distribution, we expect that transforming the test
statistic to t-distribution model directly is an easier task to do than transforming
the data to the normal model, so a more efficient procedure than the Box-Cox
procedure. For example, the t-test statistic follows the t-distribution under the
entire elliptically contoured distribution family that includes multivariate normal
distributions. See Anderson & Fang (1987) and Fang, Kotz & Ng (1990).

Viewing the problem of transforming to t-distribution as a fitting problem to
the t-distribution, we propose to select the value of A to minimize the Pearson's
X2 statistic of goodness-of-fit. In order to calculate the Pearson's \2 statistic,
we need to have a random sample from the null distribution of the transformed
t-test statistic T(A). The bootstrap method can be used to obtain such a random
sample.

For a fixed value of A, let X?(A), • • • , X^(A) and Y{{\), ••• , Y*{\) be a boot-
strap sample from the X,(A)'s and yj(A)'s, respectively. Note that the null dis-
tribution of T(A) is that of

VW(m + n)W)-^;>-^-^>.
6(A)

A bootstrap "observation" on the null distribution of the transformed t-test statis-
tic T(A) is given by

T-(A) = v^^a'W-HA)}-{IW-rW ) ! (2)

where X*{\) and Y*{\) are the sample means of the bootstrap samples and
5* (A) is the pooled sample standard deviation of the bootstrap samples. Repeat
the bootstrap procedure B times and denote the B bootstrap observations on the
null distribution of T(A) by T*(A), • • • , Tg(A).
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Let Fo be the t-distribution with m + n — 2 degrees of freedom. Let ti < £2 <
• • • < tk be k varieties of Fo and put pi — Fo(U) — Fo(U-i). For i = 1, • • • , k + 1,
define

B

ni(\) = ^I{ti-1<T;(\)<ti},
J=I

where to = —00 and tk+i = 00 and /(•) is the indicator function. Then the
Pearson's x2 statistic is defined as

x2(A) = g M A ^ ) ! (3)

We propose to estimate A by the minimizer A of X2(^) a nd reject the null hy-
pothesis against the two-sided alternative if |T(A)| is greater than the Student
^-critical value ia/2,m+n-2-

An algorithm to obtain the estimate A is summarized as follows:

Step 1. Compute pt, i = 1, • • • , k + 1.
Step 2. For a fixed value A, draw a bootstrap sample of size 771 from

Xi(A), • • • , Xm(A) and a bootstrap sample of size n from Yi(A), • • • , Yn(\).
From the bootstrap two samples, compute the statistic T*(A) defined by (2).

Step 3. Repeat Step 2 independently B times. Denote the B bootstrap values
ofT*(A)by7T(A),---,TS(A).

Step 4. Compute the Pearson's x2-statistic X2(^) as defined by (3).
Step 5. The estimate A is the minimizer of X2(-^)-

In Step 5, if an exhaustive procedure of minimization is utilized, one needs to
run Steps 2-4 for a set of A values, say A = —1.0(. 1)1.0.

3 Simulation and Discussion

In this section, we present a simulation study to compare the new transformed
t-test procedure with the Box-Cox transformed t-test procedure. The simulation
settings and arrangements are as follows:

1. Sample sizes considered are (25,30), (50,75) and (100,150). A nominal sig-
nificance level of 5% is used. With k = 5, six varietes of a i-distributions are
chosen such that p\ = .0250, pi = P3 = p± — ps = .2375, and pe = .0250.

2. In all cases, the Monte Carlo size is 4,000 and the bootstrap size is B = 500.
3. In each case, the estimate A is obtained by an exhaustive search over A €

[-1,1] with A = -1.0(0.1)1.0.
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All simulations are performed by using the MatLab software. One remark we
would like to make is that the bootstrap size of 500 was determined not by a
bootstrap theory, but by following common practice of a bootstrap size in the
literature.

The following null models are considered: log-normal LN (0,0.01) and
LN(0,1); Gamma G(l,1); exponential Exp(l). The simulated rejection rates un-
der these models are reported in Table 1.

Alternative models considered are as follows:

Al: X ~ LN{0, .724) and Y ~ LN(0, .01).
A2: X ~ G(l, 1.2) and Y ~ G(l, 1).
A3: X ~ Exp{\) and Y ~ Exp(1.3).
A4: X ~ 7V(2,1|.5) and Y ~ JV(2,1|.5) + .3,

where iV(2,1|.5) stands for the truncated.normal N(2,1) from below at 0.5. Note
that all the alternative models Al, A3 and A4 are chosen to have fj,x — fiv = .3
and A2 to have \xx — \iy = .2 to ensure a testing power is well away from 0 and 1
for the comparison purposes. The simulated powers are reported in Table 2.

Table 1. Simulated rejection rates of the null distributions. The nominal signific
ance level is 0.05.

Sample size (m,n) (25,30) (50,75) (100,150)

Null model Box-Cox New Box-Cox New Box-Cox New

ZJV(O,.O1) .0462 .0460 .0550 .0550 .0535 .0533

LN (0,1) .0515 .0460 .0512 .0430 .0468 .0362

G(l, l) .0495 .0400 .0500 .0410 .0525 .0450

Exp(l) .0545 .0485 .0520 .0500 .0485 .0435

From the simulation results, the new transformed t-test is appropriate to use
a ^-distribution to determine a threshold and much more powerful than the Box-
Cox transformed (-test when the models are nearing a transformed normal model,
while the two tests are mostly comparable when the models are far-fetched for
transformation to normality. One explanation for this can be that if a model is
far-fetched for transformation to normal by a power function, the transformed
tests are not very sensitive to choices of A.

Chen &: Loh (1991) pointed out that a transformed t-test in the two-sample
problem may not render a correct significance level when the two population
distributions have different shapes. They proposed a bootstrap transformed t-test
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Table 2. Simulated powers of the Box-Cox transformed t-test and the new trans-
formed i-test. The significance level is 0.05.

Sample size (m, n) (25,30) (50, 75) (100,150)

Alternative model Box-Cox New Box-Cox New Box-Cox New

Al .0548 .1375 .0755 .2560 .0850 .3907

A2 .0995 .0925 .1450 .1260 .2365 .2200

A3 .1405 .1290 .2290 .2195 .4450 .4185

A4 .8220 .8410 .9065 .9725 .9175 .9995

to achieve robustness for the Box-Cox transformed t-test. The transformed t-test
this paper proposes is not intended to improve the robustness against violation
of the distribution shape assumption. However, Chen and Loh (1991)'s bootstrap
idea can also be used similarly in the new transformed t-test to gain the robustness
advantage.
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Summary. Suppose that (X',U')'/<7 has a spherically symmetric distribution
about (#',0')', where X and U are p x 1 and raxl random vectors, respectively,
8' = (0i , . . . , 9P) is an unknown vector and a is an unknown scale. Under the
loss function /(||<5 — 0\\2/a2), where f(t) is a nondecreasing concave function of
t, Brandwein Sz Strawderman (1991a) have investigated conditions under which
estimators of the form X + oU'Ug(X) dominate X. Their technique requires
that t" f'(t) is a nondecreasing function of t for some a £ (0, (p — 2)/2). Because
of this assumption, their bound on a depends on a which is related to the loss
function / . This paper, without making the monotone assumption on the function
taf'(t), investigates the dominance conditions of the estimators X + aU'Ug(X)
and obtains a bound of a which is independent of the loss function. Examples
related to this problem are also considered.

Key words: James-Stein estimation; Location vector; Nondecreasing concave
loss; Quadratic loss; Spherical symmetry; Superharmonic functions.
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1 Introduction

Let X' = (Xi,..., Xp) and U' = (U\,..., Um) be observed random vectors such
that X', = (X',U') has a spherically symmetric distribution about 0', = (0',O'),
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X, ~S.S . (0 , ,<T 2 / ) , (1)

where 8' — {6\,..., Op) and a are unknown parameters. This paper is concerned
with estimating the location vector 0' = (Oi,... ,9P) when the unknown scale
parameter a is estimated from the residual vector U. To be specific, we investigate
the conditions under which estimators of the form

<5a(X») = X + oU'Ug(X) (2)

dominate X under the loss function

L(6,9) = f(\\d-0\\2/<r2), (3)

where /(£) is a nondecreasing concave function of t.

The assumptions on X» coincide with the canonical form for the general lin-
ear model (see Scheffe (1959)). The setup and notation agree with Brandwein &
Strawderman (1991a) (also see Section 5 of Brandwein & Strawderman (1991b)).
When the loss function is quadratic (f(t) = t), Brandwein & Strawderman
(1991b) have investigated conditions under which estimators <5a(X*) defined by
(2) dominate X. dominate X. Their result extends elegantly the robustness prop-
erty of James-Stein type estimators in this setting shown by Cellier, Fourdrinier
& Robert (1989) to the class of estimators studied in Stein (1981).

The extension from the quadratic loss to the loss function (3) has been in-
vestigated by Brandwein & Strawderman (1991a) and a nice result has been
obtained (see Theorem 2.1 of Brandwein & Strawderman (1991a)). Their tech-
nique, however, requires that the loss function / in (3) does not flatten out too
quickly. Mathematically, they assume that taf'(t) is nondecreasing in t for some
a G (0, (p — 2)/2). Because of this additional assumption on the loss function
/(£), their bound of a also depends on a. Meanwhile, an interesting example of
loss function /(£) in which ta/'(£) is not nondecreasing in t is also given by them.
Some other related studies can be found in Fan and Fang (1990a,b,c) and a review
article given by Brandwein & Strawderman (1990). The objective of this paper
is to investigate the bound for a which doesn't depend on the loss function /(£)
such that the estimators <5O(X,) dominate X.

In Section 2 we present the main result while its proof is deferred to Section 4.
To illustrate the performance of the main result, two examples are also presented
in Section 2. To shorten the proof of the main result, we prove a lemma in Section
3. Finally, some concluding remarks are given.

2 Main Result

In this section, we present the main result which states conditions under which
the estimators 5O(X*) of 6 defined by (2) dominate X for loss function (3), and
discuss two related examples.
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Theorem 1. Suppose that X is apxl fp > 5) random vector and U is anmxl
random vector such that X', = (X',U') ~ s.s.(0,,<r2J) as defined by (1). Let
the estimators Sa(X.) and the loss function L(6,0) be defined by (2) and (3),
respectively. Then <5a(X») dominate X if

(i) ||g(X)||2/2 < -h(X) < - V °g(X), where -h{X) is superharmonic and

(ii) E-w[—R2h(W)} is a nondecreasing function of R, where W has a uniform
distribution in a sphere centered at 6 with radius R and (iii) 0 < a < l/(pJ), where

j . . . 2/(P~2)
p/(m + 2) + 2/(p + m + 2)

provided
2/Q - 2) < p + m - 2

p/(m + 2) + 2/(p + m + 2) ~ p + 2m + 2'

To illustrate the performance of this theorem, we present two examples below.
Brandwein & Strawderman (1991a) Theorem 2.1 cannot be applied to the first
example since the condition that taf'(t) be nondecreasing is not satisfied. The
loss function in the second example is also studied by Brandwein & Strawderman
(1991a).

Example 1. Consider

W ) = l-exp(-J!i=^).

Thus the loss, f(t) = 1 — exp(—t), is a nondecreasing concave function of t.
However, as mentioned by Brandwein & Strawderman (1991a), the condition
that taf'(t) be nondecreasing is not satisfied because the derivative is decreasing
faster than any power oft at oo. Therefore, Brandwein and Strawderman's (1991a)
Theorem 2.1 is not applicable to this example. However, one can see from theorem
above that Ja(X») dominate X for 0 < a < /(pJ), where J is given by Condition
(iii) of theorem 1.

More generally, we can consider the loss function (3) with /(£) = P[UZ <
t], t > 0, where the random variable U has a uniform distribution on the interval
(0,1), Z is an arbitrary nonnegative random variable, and U and Z are indepen-
dent. It is easy to check that f(t) = 1 — exp(—t) when the random variable Z has
a Gamma distribution Gamma(2,1). Note that Brandwein and Strawderman's
(1991a) Theorem 2.1 cannot be applied if the function ta J™(l/z)dN(z) is not
nondecreasing nondecreasing for a < (p — 2)/2, where N(z) is the distribution
function of the random Z. However, one can see that the theorem above provides
a positive answer about dominance of Ja(X,) with respect to X.
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Example 2. Consider L(6,0) = \\S - d\\2rl/a2i} for 0 < rj < 1. Thus, the loss,
f(t) = tv, is a nondecreasing concave function if t. Applying the theorem above
yields that <5a defined by (2) dominates X when 0 < a < l/(pJ) with J =
[2/(p - 2)][p/(m + 2) + 2/(p + m + 2)]~\ while Brandwein and Strawderman's
(1991a) result gives 0 < a < (p - 4)/[p(m + 2)].

3 A Lemma

In this section, we prove a lemma which is needed to shorten the proof of theorem
1.

Lemma 1. Assume that /3 has a Beta-distribution )3 ~ Beta(A, B), where A > 2.
For t € [0,1], let the functions Ni(t) and N2(t) be defined by

Nl(t)=(A+B-i~^y-^,

(4)

N2(t) =A + B - 1 - ^ ^

with Ni(Q) = limt-o+Ari(<) = -oo for i = 1,2. Then

E0{N1(P)f(yP)} < JE(3[N2(0)f(i/3)}, (5)

where y is a positive number, /(•) is defined by (3), and

B(B + 1) A + B+l
A-l AB(A + B+1) + B(B + 1) (>

provided
B(B+1) A + B+l A + B-l

A-l AB(A + B+1) + B(B+1) ~ A + 2B + 1' { '

Proof. For te [0,1], let

Q(t) = J(A + B)(t-^E).

Then
E0[Q(P)f(^)} > E/,[Q(0)]E0[f(yl3)] = 0 (8)

for any 7 > 0. Here the equality in (8) follows from the fact that Ep[Q(/3)] =
0, while the inequality in (8) follows from an application of Wijsman's (1985)
theorem 2 with fi(t) = Q(t), f2(t) = 1, 51 (z) = f(-yt), g2(t) = 1 with probability
measure d^i = fA,B{t)dt, a pdf of the Beta-distribution Beta(A, B).
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Write N(t) = Ni(t) - JN2(t) and M{t) = Q{t) + N(t) for t € [0,1]. Then one
can see from (8) that

3s W)/(7 /?) ] < E0{{Q(P) + JV(0)]/(70)} = E0[M(f3)f(jp)]. (9)

Note that the function M(t) can be expressed as

M(t) = Q(t) + N(t) = ±K{t), (10)

where K(t) = C2t2 + C\t + Co + C-it"1, and

Ci = J(A + B),

Ci = -[JA + (J + 1)(A + B- 1)],

Co = 2A + B - 3 + J( i4-1) ,

C_i = -(A - 2 ) .

Now we prove that /C(i) is first nondecreasing and then nonincreasing in t. In
fact,

K'(t) = 2C2t + Ci- C-it~2 = r2fc(i), (11)

where
k(t)=2C2t3 + C1t2 -C-L

Note that fc'(t) = 2t(3C2t + Cx) < 0 because

3C2t + Ci < 3C2 + Ci = J(A + 25 + 1) - (A + B - 1) < 0

under conditions (6) and (7). Therefore, k(t) is nonincreasing in t. Since

jfc(0) = -C1=A-2>0,

fc(l) = 2C2 + Ci - C_i = (B + 1)(J - 1) < 0,

there exists a unique *i £ (0,1) such that k(t) > 0 for t £ [0,ti), fc(t) < 0
for t e (ti,l], and fc(ti) = 0. Thus, one can see from (11) that K[t) is first
nondecreasing and then nonincreasing in t. Because

K(0) = limt^0+i(t) = -oo,

K{\) = C2 + Cx + Co + C-x = 0,
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there exists a unique t2 € (0,h) such that K{t) < 0 for t 6 [0,t2), -&"(*) > 0 for
t € (£2, l]i and Kfa) = 0. Since /(jtf/t is nonincreasing in t, one can obtain from
(10) that

which implies that

E0[M(P)f(ll3)} < f-^-E0[K{f3)] = 0

because

~ ( ^ - l ) ( ^ + B) V (^ + B)(^ + B+1) )

= 0

under condition (6).

4 Proof of the Theorem

Let R[S,0] = E[L(6,8)} = E[f{\\5-0\\2/a2)] be the risk of <5. Using the argument
of Brandwein & Strawderman (1991a) with a verbatim copy of their (2.1)-(2.4)
yields that the difference between the risks of two estimators <5a(X.) and X is
given by

A = R[Sa(X,),G]-R[X,e}

= Ex, [/(IIMX.) - 0 | |> 2 ) - /(lix - e\\2/a2)}

< Ex. {/'(||X - e\\2/a2) [||«O(X.) - 0\\2/a2 - ||X - 6\\2/a2}} (12)

2a f , ^ 2 \ (a(T2-RY T2 - R2\ 2 \

= 2oZ\i,
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where T2 = R2 + S2,R2 = | |X-6»||2,S2 = ||U||2, G(R2) = -EW[R2 fc(W)] with
W ~ W{||X — 6\\2 < R2}, a uniform distribution in a sphere centered at 0 with
radius R, and

(See (2.4) of Brandwein & Strawderman (1991a), page 308).

Let A = p/2,B = m/2 and let /3 = R2/T2. Then /? is independent of T2

and /? ~ Beta(^,B) (see Kelker (1970) or Fang, Kotz & Ng (1990)). Because of
independence of T2 and 0, we evaluate A\ when T2 is given. Set A = a + 1/p and
7 = T2/a2. Then (13) can be expressed by

A1 = Ep [7/'(7/?)(a - ^)\P~\l ~ 0)}G(T2(3)]

= [B/(A - l)]E01 [7/ '(7A)(o " A0i)G(T2/?i)]

(14)

< [B/(^ - 1)] G(T2a/A)£5l [7/'(7/?i)(a - XPi)]

= [B/(yl-l)]G(T2a/A)Zi2,

where /?i ~ Beta(>4 — 1, B + 1) and Ẑ2 is defined by

A2 = ES3i [7/'(7/3i)(a-A/3i)]. (15)

The last inequality of (14) follows from the condition (ii) and the fact that
f'ilPi) > 0. To prove A < 0, one can see from (12), (13), (14) and (15) that it
suffices to show that Ai < 0.

Let C(r,s) = r(r + s)/[r(r)r(s)} for any r > 0, s > 0. Then using the
integration-by-parts yields that

A2 = Egi[7f'(7p1)(a-*0l)}

= f (a-\z)fA^B+1(Z)df(jz)
Jo

(16)

C(A-1,B + 1)A

C{A,B) 3 l

(13)
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where A3 = E^-aN^/3) + N2{0)/p]f(yP)}, and ATi(t) and N2(t) are defined
by (4). One can see from (16) that Zi2 < 0 is equivalent to A3 > 0. In fact, using
Lemma 1 yields that

4J = ̂ (-aAT1(/?) + ^ ) / ( 7 0 ) }

> (-aJ+^Ee[N2(0)fW))

(17)

> (-aJ+^E0[N2{l3)}E0[fW))

= 0

if the condition (iii) of theorem 1 holds because Ep[N2(/3)] = 0. Here the last
inequality of (17) follows from the condition (iii) of theorem 1 and an application
of Wijsman's (1985) theorem 2 with fi(t) = N2(t), hit) = 1, gi(t) = f(jt),
g2(t) = 1, and probability measure d\i = fA,B(t)dt. The proof is complete.

5 Concluding Remarks

This article presents conditions under which the estimators <5a(X») of 0 defined
by (2) dominate X for loss function (3). The range of a given by theorem 1 which
is free of the loss function is by no mean optimal. If we know the form of the
loss function f(t), then it is possible to get better bounds for a. For example,
the bound of a obtained by Brandwein & Strawderman (1991b) for f(t) = t is
(p — 2)/[p(m + 2)] which does not have any constraint between p and m. On the
other hand, our method requires p > 5 (A > 2 in Lemma 1) which is necessary.
This requirement can also be seen from Example 2.1 of Brandwein & Strawderman
(1991a). As a final point, it would be interesting to extend Theorem 1 above to
nondecreasing concave loss functions of general quadratic loss (X — 0)'D(X. —
0)/a2, where D is a known pxp positive definite matrix. Although this extension
looks very natural, we have been unable to prove such a result.
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