


Michael S. Kramer 

Clinical Epidemiology 
and Biostatistics 
A Primer for Clinical Investigators 
and Decision-Makers 

With 37 Figures and 60 Tables 

Springer-Verlag Berlin Heidelberg New York 
London Paris Tokyo 



Michael S.Kramer, M.D. 

Professor of Pediatrics and of 
Epidemiology and Biostatistics 
McGill University Faculty of Medicine 
t020 Pine Avenue West 
Montreal, Quebec H3A tA2, Canada 

ISBN -13: 978-3-642-64814-4 e-ISBN -13 :978-3-642-61372-2 
DOl: 10.1007/978-3-642-61372-2 

Library of Congress Cataloging-in-Publication Data. Kramer, Michael 5., 1948 -
Clinical epidemiology and biostatistics 1 Michael S. Kramer. p. cm. Includes index. 
ISBN-13:978-3-642-64814-4 (U.S.) 
1. Epidemiology - Research - Methodology. 2. Epidemiology -
Statistical methods. 3. Biometry. I. Title. [DNLM: 1. Biometry - methods. 2. Epidemio­
logic Methods. 3. Research Design. WA 950 K89c] RA652.K73 1988614.4'028 -
dc 19 DNLM/DLC 

This work is subject to copyright. All rights are reserved, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, 
recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data 
banks. Duplication of this publication or parts thereof is only permitted under the provisions 
of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a 
copyright fee must always be paid. Violations fall under the prosecution act of the German 
Copyright Law. 

© Springer-Verlag Berlin Heidelberg 1988 
Softcover reprint of the hardcover 1st edition 1988 

The use of registered names, trademarks, etc. in this publication does not imply, even in the 
absence of a specific statement, that such names are exempt from the relevant protective laws 
and regulations and therefore free for general use. 

Product Liability: The publisher can give no guarantee for information about drug dosage 
and application thereof contained in this book. In every individual case the respective user 
must check its accuracy by consulting other pharmaceutical literature. 

Typesetting: Appl, Wemding 
2123/3145-543210 - Printed on acid-free paper 



Preface 

Does the world really need yet another textbook of epidemiology or 
biostatistics? Several new volumes have been published in the past 
few years, and the need for one more "me too" is far from obvious. 
The reason for adding to what is already a crowded field stems from 
my experience in coordinating a course in clinical epidemiology and 
biostatistics for first-year medical students at McGill. Unlike course 
offerings at most other medical schools, ours emphasized principles 
of analytic (cause-and-effect) inference. Unfortunately, no textbook 
was available for a clinical audience that focused on the acquisition 
of these analytic skills. Although several years have elapsed since, I 
still believe this to be the case. 

Another problem with existing textbooks is that they tend to be 
textbooks of epidemiology or biostatistics, but not of both. Epide­
miology texts are written by epidemiologists, biostatistical texts by 
biostatisticians. It is then usually left to the reader to make the 
important, but not always obvious, links between the two. One of 
the major goals of this book is to integrate epidemiologic and biosta­
tistical principles by using a common language and by interweaving 
common examples. 

Most epidemiology texts focus on the etiology of chronic dis­
eases. Little mention is made of the application of epidemiologic 
techniques to studies of diagnosis, prognosis, and treatment, to eval­
uation of health services, and to assessment of risks and benefits. 
Recent books on clinical epidemiology have dealt with some of these 
issues, but their goals and intended audiences are clearly different, 
e. g., helping practicing physicians to increase their skills at clinical 
appraisal of the medical literature. 

This book is also intended for a clinical audience, although not 
for those wishing only a superficial overview of epidemiologic and 
biostatistical concepts. It should be useful, however, to clinicians, 
clinicians in training, and clinical investigators who wish to develop 
their proficiency in the planning, execution, and interpretation of 
clinical and epidemiologic research, i. e., to the" doers" as well as to 

the "consumers" of such research. 
Many of my "classical" epidemiology colleagues have objected 

to what may appear to be a desire to incorporate classical epidemiol­
ogy within the "clinical epidemiology" rubric. My own view, devel-
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oped further in Chapter 1, is that the distinctions between clinical 
and classical epidemiology have been overstated and are often 
unhelpful. While it is certainly true that "classical" epidemiology has 
not traditionally concerned itself with many of the nonetiologic 
questions of primary interest to practicing clinicians and clinical 
researchers, the techniques and methodologic tools required for 
studying health phenomena in groups of human subjects are similar, 
whether investigating risk factors for endometrial cancer or optimal 
treatment strategies in patients with unstable angina pectoris. The 
main reason for the "clinical" in the title of this textbook is that all of 
the techniques presented, as well as the examples used to illustrate 
those techniques, should be comprehensible and relevant to a clinical 
audience. 

The material will be most readily understood if one begins with 
Chapter 1 and continues in sequence. Readers wishing to use the 
text only as a reference, without prior perusal, will probably find the 
smallest "digestible" unit to be a single chapter. Even then, many 
chapters refer to and build upon concepts discussed in earlier chap­
ters. 

The book is divided into three parts. Part I deals with epidemio­
logic research design and analytic inference, including such issues as 
measurement, rates, analytic bias, and the main forms of observa­
tional and experimental epidemiologic studies. Part II presents the 
principles and applications of biostatistics, with an emphasis on sta­
tistical inference. Part III comprises four chapters covering such 
"special" topics as diagnostic tests, decision analysis, survival (life­
table) analysis, and causality. 

Only time will tell whether this book meets an important need. I 
would of course enjoy hearing from clinicians and clinical investiga­
tors who have found it helpful but would also appreciate suggestions 
on how it can be improved. 

Michael S. Kramer 



Acknowledgements 

Although the scope, content, and intended audience of this text dif­
fer from those of previously available texts, little of the material pre­
sented can be considered original. In addition to the many col­
leagues whose direct help and encouragement are acknowledged 
below, I owe a great debt to many authors of other texts of epide­
miology or biostatistics and to numerous teachers and colleagues 
with whom I have come in contact over the years. 

I wish to thank, first and foremost, Dr. Alvan R. Feinstein, who 
first "turned me on" to clinical epidemiology as a viable academic 
discipline. I not only cut my epidemiologic teeth with Dr. Feinstein 
but have continued to benefit from his support and encouragement 
in the years since leaving his tutelage. 

I have also learned a great deal from collaborative teaching with 
other faculty in the McGill Department of Epidemiology and Bio­
statistics. Primary among these have been Drs. Tom Hutchinson and 
David Lane, but the list also includes Drs. John Hoey, Robert Osea­
sohn, and Walter Spitzer. 

Several colleagues gave me extremely helpful suggestions on pre­
vious drafts of this text. They include Drs. Jean-Fran<;:ois Boivin, 
F. Sessions Cole III, Erica Eason, James Hanley, David Lane, Abby 
Lippman, John McDowell, I. Barry Pless, and Stanley Shapiro. Drs. 
William Fraser, Tom Hutchinson, Paul Kramer, Sammy Suissa, and 
Sholom Wacholder also provided helpful advice on specific items. 

I cannot adequately acknowledge the peerless secretarial work of 
Mrs. Laurie Tesseris. Without her patience and thoroughness, this 
book could never have been completed, even in this era of word pro­
cessors. Ms. Lenora Naimark and Ms. Tiziana Bruni provided addi­
tional secretarial assistance. Many thanks are also due to Mr. Phillip 
Dakin, Ms. Artemis Karabelas, and Ms. Jennifer Morrison for pre­
paring the graphs and figures. 

Lastly, and possibly most importantly, I wish to thank my wife 
Claire and son Eric, whose support and encouragement are so valu­
able to me in all my work. 

To whatever extent this text succeeds in its goal, the above­
named persons deserve much of the credit. Any remaining inaccura­
cies or lack of clarity are entirely my own. 

Michael S. Kramer 



Table of Contents 

Part I 

Chapter 1: 
1.1 

1.2 
1.3 
1.4 

Chapter 2: 
2.1 
2.2 
2.3 
2.4 
2.5 
2.6 

Epidemiologic Research Design 

Introduction . . . . . . . . . . . . . . . . . . . . . 
The Compatibility of the Clinical 
and Epidemiologic Approaches . . . . . . . . . 
Clinical Epidemiology: Main Areas of Interest. 
Historical Roots . . . . . . . . . . . . . . . . 
Current and Future Relevance: Controversial 
Questions and Unproven Hypotheses 

Measurement. . . . . . . . . . . . . . 
Types of Variables and Measurement Scales 
Sources of Variation in a Measurement. 
Properties of Measurement . . . . . . . . . 
"Hard" vs "Soft" Data . . . . . . . . . . . . 
Consequences of Erroneous Measurement . 
Sources of Data .. . . . . . . . . . . . . . 

3 

3 
5 
8 

9 

11 
11 
11 
13 
15 
15 
17 

Chapter 3: Rates . . . . . . 25 
25 
27 
32 
36 

3.1 What is a Rate? . 
3.2 
3.3 
3.4 

Prevalence and Incidence Rates . 
Stratification and Adjustment of Rates 
Concluding Remarks ........ . 

Chapter 4: Epidemiologic Research Design: an Overview 37 
4.1 The Research Objective: Descriptive vs Analytic 

Studies .. . . . . . . . . . . . . . . . . . . . .. 37 
4.2 Exposure and Outcome . . . . . . . . . . . . .. 38 
4.3 The Three Axes of Epidemiologic Research Design 39 
4.4 Concluding Remarks ................ 45 

Chapter 5: 
5.1 

5.2 

Analytic Bias . . . . . . . . . . . . . . . . . . . .. 47 
Validity and Reproducibility of 
Exposure-Outcome Associations 47 
Internal and External Validity . . 48 



x Table of Contents 

5.3 
5.4 
5.5 
5.6 
5.7 

Sample Distortion Bias . 
Information Bias . . . . 
Confounding Bias . . . 
Reverse Causality ("Cart-vs-Horse") Bias 
Concluding Remarks .......... . 

49 
52 
53 
56 
57 

Chapter 6: Observational Cohort Studies 58 
6.1 Research Design Components. 58 
6.2 Analysis of Results . . . . . . . 62 
6.3 Bias Assessment and Control . 69 
6.4 Effect Modification and Synergism 74 
6.5 Advantages and Disadvantages of Cohort Studies 76 

Chapter 7: Clinical Trials. . . . . . . . . . . . . 78 
7.1 Research Design Components. . . . 78 
7.2 Assignment of Exposure (Treatment) 80 
7.3 Blinding in Clinical Trials 84 
7.4 Analysis of Results . . . . 85 
7.5 Interpretation of Results. 86 
7.6 Ethical Considerations. . 88 
7.7 Advantages and Disadvantages of Clinical Trials. 91 

Chapter 8: Case-Control Studies ..... 93 
8.1 Introduction . . . . . . . . . . 93 
8.2 Research Design Components. 93 
8.3 Analysis of Results . . . . . . . 96 
8.4 Bias Assessment and Control . 106 
8.5 Advantages and Disadvantages of Case-Control 

Studies .... . . . . . 110 

Chapter 9: Cross-Sectional Studies 113 
9.1 Introduction . . . . . . 113 
9.2 Research Design Components. 113 
9.3 Analysis of Results. . . . . . . 114 
9.4 Bias Assessment and Control . 115 
9.5 "Pseudo-Cohort" Cross-Sectional Studies 115 
9.6 Advantages, Disadvantages, and Uses 

of Cross-Sectional Studies . . . . . . . . . 116 

Part II Biostatistics 

Chapter 10: Introduction to Statistics. 
10.1 Variables ........ . 
10.2 Populations, Samples, and Sampling Variation. 
10.3 Description vs Statistical Inference 
10.4 Statistical vs Analytic Inference ........ . 

121 
121 
121 
122 
122 



Table of Contents XI 

Chapter 11: Descriptive Statistics and Data Display 124 
11.1 Continuous Variables 124 
11.2 Categorical Variables 133 
11.3 Concluding Remarks 136 

Chapter 12: Hypothesis Testing and P Values . . . . . . . .. 137 
12.1 Formulating and Testing a Research Hypothesis. 137 
12.2 The Testing of Ho . . . . . . . . . 138 
12.3 Type II Error and Statistical Power 141 
12.4 Bayesian vs Frequentist Inference . 143 

Chapter 13: Statistical Inference for Continuous Variables 146 
13.1 Repetitive Sampling and the Central Limit 

Theorem . . . . . . . . . . . . . . . . . . . . 146 
13.2 
13.3 
13.4 
13.5 

13.6 

Statistical Inferences Using the t-Distribution 
Calculation of Sample Sizes . . . . . . . . . 
Nonparametric Tests of Two Means .... 
Comparing Three or More Means: Analysis 
of Variance . . . . . . . . . . . . . 
Control for Confounding Factors . . . . . . 

148 
157 
159 

162 
163 

Chapter 14: Statistical Inference for Categorical Variables 165 
14.1 Introduction to Categorical Data Analysis . . 165 
14.2 Comparing Two Proportions . . . . . . . . . 166 
14.3 Statistical Inferences for a Single Proportion. 181 
14.4 Comparison of Three or More Proportions. 183 
14.5 Analysis of Larger (r X c) Contingency Tables 185 

Chapter 15: Linear Correlation and Regression 187 
15.1 Linear Correlation. . . . 187 
15.2 
15.3 
15.4 
15.5 
15.6 

Part III 

Linear Regression . . . . 
Correlation vs Regression 
Statistical Inference ... 
Control for Confounding Factors . 
Rank (Nonparametric) Correlation. 

Special Topics 

Chapter 16: Diagnostic Tests 
16.1 Introduction .. 

191 
192 
193 
195 
196 

· 201 
· 201 

16.2 Defining "Normal" and "Abnormal" Test Results . 201 
16.3 The Reproducibility and Validity of Diagnostic 

Tests. . . . . . . . . . . . . . . . . . . . . 205 
16.4 
16.5 
16.6 

The Predictive Value of Diagnostic Tests 
Bayes' Theorem . . . . . . . 
The Uses of Diagnostic Tests ..... . 

· 211 
· 213 
· 216 



XII 

Chapter 17: Decision Analysis ...... . 
17.1 Strategies for Decision -Making 
17.2 Constructing a Decision Tree 
17.3 Probabilities and Utilities 
17.4 Completing the Analysis . . 
17.5 Cost-Benefit Analysis ... 
17.6 Cost-Effectiveness Analysis 

Table of Contents 

.220 

.220 

.222 

.225 
· 230 
· 233 
· 234 

Chapter 18 : Life-Table (Survival) Analysis . . . . . . . .. . 236 
18.1 Introduction . . . . . . . . . . . . . . . . .. . 236 
18.2 Alternative Methods of Analysis: an Example . 237 
18.3 The Actuarial Method . . . . . . . . . . . . . 240 
18.4 The Kaplan-Meier (Product-Limit) Method . 245 
18.5 Statistical Inference ...... . 247 

Chapter 19: Causality . . . . . . . . . . . . . 254 
19.1 What is a "Cause"? . . . . . . . 254 
19.2 Necessary, Sufficient, and Multiple Causes. . 256 
19.3 Patterns of Cause ........ . 258 
19.4 Probability and Uncertainty . . . . . . . . . . 259 
19.5 Can Exposure Cause Outcome? . . . . . . . 261 
19.6 Is Exposure an Important Cause of Outcome? . 264 
19.7 Did Exposure Cause Outcome in a Specific Case? . 265 

Appendix Tables . . . . . . . . . . . . . . . . . . . . . . . 271 

Subject Index ........................ 283 



Part I 

Epidemiologic Research Design 



Chapter I: Introduction 

1.1 The Compatibility of the Clinical and Epidemiologic 
Approaches 

Mr. Jones, a 55-year-old man with a recent history of myocardial infarction (heart 
attack), has arteriographic X-ray evidence of severe occlusion of two of his three 
major coronary arteries. Should his physician prescribe drug treatment or refer him 
to a surgeon for a bypass operation? 

The traditional clinical approach to this question is based on pathophysiologic 
and pharmacologic reasoning. Using her! knowledge about coronary artery anat­
omy and physiology, the pathogenesis of arteriosclerotic and thrombotic changes in 
the arterial wall, and the mechanism of action of several potentially useful pharma­
cologic agents, as well as her familiarity with the individual patient (psychosocial 
factors, life style, personal preferences, probability of compliance with medication), 
the clinician arrives at a decision regarding a recommendation for medical or surgi­
cal therapy for that patient. 

Epidemiologic thinking differs conceptually from clinical thinking. Epidemiol­
ogy can be defined as the study of disease and other health-related phenomena in 
groups of persons. The word derives from the Greek epi (upon) and demos (people). 
The epidemiologist thus thinks in terms of groups, not individuals, and asks whether 
a group of patients with demographic, clinical, and psychosocial characteristics simi­
lar to Mr. Jones' will fare better, on average, if they receive medical or surgical ther­
apy. He! will then advocate that the patient receive the treatment with the higher 
average rate of success. 

A clinician caring for an individual patient needs to temper published data based 
on groups of patients with knowledge of factors about the particular case at hand. 
She must make decisions for that patient, not for some hypothetical group of pat­
ients, however similar the members of the group may appear to be to her patient. 
And her decisions are often all-or-none: whether to order a certain diagnostic test, 
whether to recommend surgery or medication, whether to continue or discontinue 
life-support measures. Since, in order to be effective, the clinician must believe that 
each of her decisions is best for her patient, she tends to think in terms of black and 
white, rather than shades of gray. Although she may be aware of uncertainty, she 

1 To avoid displays of male chauvinism or unwieldy prose (he/she, his/her), I have tried to vary the 
use of masculine and feminine pronouns in this text. 



4 Introduction 

cannot afford to act indecisively. Consequently, she views (albeit unconsciously) the 
range of choices as right ones and wrong ones. 

The epidemiologist is more comfortable with shades of gray. Since he is not 
obliged to make decisions for individual patients, he can live with uncertainty. He 
focuses on improving the health of populations and is less interested in the outcome 
of individuals within these populations; he prefers to think probabilistically. If 80% of 
patients like Mr. Jones have been shown to improve with surgery vs 60% with medi­
cal therapy, the epidemiologist would have no trouble advocating surgery for Mr. 
Jones. Mr. Jones' physician, however, may find it difficult to recommend a course of 
therapy that may not be unequivocally best for her patient. 

It is important to emphasize that some fundamental clinical facts can be 
observed only in groups. No amount of pathophysiologic, mechanistic reasoning 
would reveal that the sex ratio at birth is not 50: 50 but 51.5: 48.5, or that males 
have a higher overall mortality rate than females. Predicting the sex of an individual 
newborn or whether a given women will outlive a given man is subject to consider­
able error. But the sex ratio among the next 1000 newborns or the comparative mor­
tality of a large representative group of men and women can be predicted within a 
fairly narrow range. 

In the past, these two different approaches, individualized and mechanistic on 
the one hand, group-oriented and probabilistic on the other, have had little in com­
mon. Unlike the laboratory-based sciences, epidemiology tended to remain far from 
the bedside. Epidemiologists concerned themselves almost exclusively with investi­
gating the etiology of infectious and chronic diseases, and clinicians consequently 
found epidemiology to be of little relevance to their roles as caretakers and decision­
makers. Medical, dental, or nursing school courses in epidemiology were viewed 
with an attitude ranging from indifference to contempt. 

Recently, however, the essential compatibility and mutual benefit of the two 
approaches have become more evident, and this has given rise to the term "clinical 
epidemiology." Although all epidemiology is clinical in a broad sense, since it con­
cerns disease and other health-related phenomena, "classical epidemiology" has 
usually concerned itself with disease etiology. Clinical epidemiologists also study 
etiology, but are equally interested in diagnosis, prognosis, therapy, prevention, 
evaluation of health care services, and analysis of risks and benefits. 

Nonetheless, the distinction between clinical and classical epidemiology should 
not be overemphasized. The important point is that epidemiology and biostatistics 
are now recognized by clinical investigators as essential in the design and analysis of 
research and by practicing clinicians as useful in patient care and in interpreting and 
appraising the medical literature. These areas are receiving increased attention in 
clinical curricula, and postgraduate courses and seminars are in great demand by 
practitioners and researchers alike. 

Happily, this marriage of the epidemiologic and individual clinical approaches is 
proving fruitful not only to patients, their caretakers, and researchers, but also to the 
disciplines themselves. Inferences based on statistical associations can lead to new 
avenues of laboratory investigation. For example, knowledge that exposure to a cer­
tain solvent in the work place is associated with an increased risk of liver cancer can 
lead to animal and in vitro experiments aiming to determine its mechanism of car­
cinogenesis. Conversely, knowledge of underlying mechanisms can suggest novel 
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diagnostic or therapeutic options whose clinical utility will ultimately depend on evi­
dence from epidemiologic studies. A new drug shown to be a potent vasodilator in 
dogs will need to be tested in well-designed clinical trials in hypertensive patients to 
assess its efficacy and safety in lowering blood pressure and preventing stroke, heart 
attack, blindness, or kidney failure. 

1.2 Clinical Epidemiology: Main Areas of Interest 

The main areas of interest within clinical epidemiology are etiology, diagnosis, 
prognosis, treatment, prevention, analysis of the risks and benefits of diagnostic and 
therapeutic maneuvers, and evaluation of health care services. To illustrate how 
epidemiologic principles and methods may be applied to each of these areas, we 
return once more to Mr. Jones, now considering him and his heart disease from this 
wider perspective. 

1.2.1 Etiology 

What are the causes of coronary artery disease (CAD)? Most of what we know 
about this condition derives from long-term, population-based epidemiologic 
studies. For example, in the well-known Framingham study [1], a two-thirds sample 
of the 30- to 60-year-old population of that Massachusetts town was examined at 
the inception of the study and periodically thereafter to identify sociodemographic 
and clinical risk /actors for CAD. As a result of this and other similar studies, it is 
now widely acknowledged that smoking, hypertension, high blood cholesterol lev­
els, insufficient exercise, and a high-stress (so-called type-A) personality signifi­
cantly increase the risk of heart attack. 

1.2.2 Diagnosis 

How is CAD diagnosed? A variety of invasive and noninvasive diagnostic tests have 
been developed in an attempt to assess the anatomic state of the coronary arteries, 
the derangement in blood supply to the heart muscle, and the resulting tissue dam­
age. These include blood tests, roentgenographic studies, electrocardiograms (at rest 
and during exercise), and radioisotopic tracer uptakes. Before such tests achieve 
wide application, they should be subjected to appropriate epidemiologic study to 
ascertain their ability to discriminate accurately between individuals with and with­
out CAD or its sequelae. 

1.2.3 Prognosis 

What is the likelihood that Mr. Jones will still be alive in 5 years? Epidemiologic 
inquiry has made substantial contribution to our understanding of those clinical, 
demographic, and psychosocial variables in CAD patients that are significantly 
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related to future morbidity and mortality. These prognostic foctors are analogous to 
the risk factors discussed above in reference to etiology but include, in addition, var­
ious indicators of the extent and severity of the underlying disease in question. Some 
prognostic factors are causally related to the outcome (morbidity or mortality) of 
interest; others serve merely as markers of the underlying disease or other causal fac­
tors. Significant prognostic factors for Mr. Jones might include his age, the fact that 
he has significant obstruction of two of his three major coronary vessels, and the 
results of his postinfarction electrocardiogram exercise test. Fortunately, prognosis is 
a dynamic, rather than a static, process that can be influenced by treatment and pre­
vention. In other words, therapeutic and preventive interventions can themselves be 
prognostic factors. 

1.2.4 Treatment 

This facet of clinical epidemiology has already been mentioned in reference to 
whether Mr. Jones should receive surgical or medical therapy. Most questions about 
therapeutic efficacy (surgical vs medical, drug vs placebo, drug A vs drug B, treat­
ment vs no treatment) are best answered by means of experimental epidemiologic 
studies, also called clinical trials. In the past, many treatments that were recom­
mended for patients with CAD, based on "clinical experience" and "cumulative wis­
dom" rather than well-designed clinical trials, were subsequently shown to be use­
less or even harmful. Intramyocardial implantation of the internal mammary artery, 
for example, became a popular surgical treatment in the 1950s and 1960s, following 
the enthusiastic, but uncontrolled, experiences of its developers [2]. Later studies 
with longer-term follow-up showed far less impressive results [3, 4], and the proce­
dure was subsequently abandoned. By contrast, coronary artery bypass grafting 
using a portion of the saphenous vein from the leg has been the subject of several 
well-designed clinical trials. These trials have provided much useful information 
about its merits and limitations for specific groups of patients. 

1.2.5 Prevention 

How can CAD be prevented? Some epidemiologists distinguish here between pri­
mary prevention (preventing the disease from developing in the first place) and sec­
ondary prevention (preventing progression or complication of disease already pre­
sent). Unfortunately for Mr. Jones, primary prevention is no longer an option. 
Perhaps, had intervention been attempted when he was a young man, he might have 
been prevailed upon to stop smoking, improve his diet, get more exercise, and seek 
treatment for his hypertension (high blood pressure). Although the evidence is not 
clear-cut, most epidemiologic studies suggest that such changes can be effective in 
lowering the risk of developing CAD. In fact, many "experts" believe that recent 
changes in smoking, eating, and exercise behavior and improved control of hyper­
tension are responsible for the clearly perceptible decline in morbidity and mortality 
from CAD in North America. As for Mr. Jones, he may benefit from the secondary 
preventive efficacy of such changes, as well as (possibly) from taking aspirin or other 
anticlotting drugs. 
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1.2.6 Evaluation of Health Services 

When Mr. Jones suffered his recent heart attack, he was hospitalized in a specially 
staffed and equipped unit called a coronary care unit (CCU). Were his chances of 
surviving his myocardial infarction improved by the constant attendance of specially 
trained nurses and the continuous intra-arterial blood pressure and electrocardio­
graphic monitoring he received? Here we have the provision of a service (a certain 
mode of providing health care for coronary patients), rather than a specific treat­
ment, but many of the epidemiologic methods (especially clinical trials) for evaluat­
ing such a service are similar to those used to study efficacy of treatment. Older 
epidemiologic evidence suggests that CCUs are not effective in reducing postinfarc­
tion mortality [5], but new trials are required to assess the potential benefit of more 
recent monitoring and therapeutic techniques. 

1.2.7 Analysis of Benefits and Risks 

Suppose it could in fact be shown that CCUs result in a slightly lower rate of postin­
farction mortality. Suppose, however, that the constant noise, light, and tension of 
such units kept most patients from sleeping and resulted in some developing stress 
ulcers. How great a reduction in cardiac mortality would be necessary to justify this 
increase in non cardiac morbidity? Or, suppose it costs one million dollars in CCU 
expenses for each 10 years of life saved by the unit. Is it worth it? Since financial 
resources are limited, can a greater reduction in cardiovascular mortality be realized 
by spending that one million dollars on mobile emergency rescue vehicles? Or on an 
antismoking campaign? Weighing the potential benefits, risks, and costs of different 
diagnostic, therapeutic, and health care approaches comprises a set of activities 
including decision analysis, cost-benefit analysis, and cost-effectiveness analysis. With 
the growing recognition that no course of action is without adverse consequences 
and that choices are inevitable, these activities are receiving increased attention from 
clinical epidemiologists (as well as from economists and ethicists). 

1.2.8 Areas of Interest vs Epidemiologic Methods 

The epidemiologic section of this text could have been organized according to the 
areas of interest to clinical epidemiologists. Thus, I might have chosen, as several 
other authors have done [6, 7], to devote a chapter to etiology, another to diagnosis, 
a third to prognosis, and so on. A common set of principles and techniques can be 
applied to each of these areas, however, and the epidemiologic methods for their 
study often overlap. 

For example, clinical trials are often applicable to the study of treatment, preven­
tion, and health services evaluation. Rather than providing separate chapters for 
each of these areas of interest, I have chosen to present a general discussion of clini­
cal trial methodology, with examples of how the methodology can be applied. 
Although the chapter headings will thereby follow the pattern used in more tradi-_ 
tional (i.e., "classical") epidemiology texts, I have focused on applications and 
examples of interest to a clinical readership. 
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Before we take up the individual methodologic topics, let us briefly consider 
epidemiology's historical roots and its current and future role in responding to con­
troversial questions and testing unproven hypotheses. 

1.3 Historical Roots 

The science of epidemiology may be said to have originated with the ancient Greeks 
and their change from supernatural to natural explanations of disease. Hippocrates 
(in his On Airs, "Waters, and Places) [8] was perhaps the first to recognize the impor­
tant relationship between disease and environment, including the effects of climate 
and life style. Physicians over the next 2000 years were nonetheless hampered by 
two factors: (a) a tendency to "lump" distinct diseases together and (b) a failure to 
quantify (count) cases occurring in specific locations and time periods. Major 
advances on both of these fronts occurred in seventeenth-century London with the 
works of Thomas Sydenham and John Graunt respectively. 

Sydenham revived the Hippocratic practice of careful clinical observation and 
recording and became convinced of the individuality of different disease entities and 
of the need for their classification [9]. Graunt is often regarded as the founder of 
vital statistics. In 1662, he published his Natural and Political Observations Men­
tioned in a Following Index, and Made Upon the Bills 0/ Mortality [10]. By analyzing 
the weekly Bills of Mortality and registers of christenings collected by parish clerks, 
he may have bt::en the first to recognize the importance of denominators (the group 
or population at risk) in calculating rates and in deriving valid inferences about mor­
tality and fertility on the populational, rather than individual, level. 

The concept of rates of disease in population groups was extended in the eigh­
teenth century with the development of experimental studies (clinical trials), in 
which rates were compared in groups receiving or not receiving a given intervention. 
In 1747, James Lind carried out a famous controlled trial showing that citrus fruits 
were capable of curing scurvy among British sailors (subsequently nicknamed 
"limeys") [11]. In 1796, Edward Jenner conducted a small-scale clinical trial demon­
strating the efficacy of cowpox vaccination in preventing smallpox [12]. 

In the nineteenth century, modern epidemiology truly came into its own. Pierre 
Louis became probably the first physician to use what he called "La methode nume­
rique" (a statistical comparison of rates or other quantitative measures of disease) to 
derive inferences about disease etiology and treatment efficacy within his own clini­
cal practice [13]. His controlled observational study of bloodletting [14] clearly indi­
cated its lack of efficacy in treating disease and was instrumental in its eventual dis­
continuation. One of Louis's students, William Farr, organized the first vital 
statistics registry [15] and, by applying mathematical concepts, developed methods 
for measuring excess risk. He also identified potential biases in attributing causation 
to factors affecting different groups, as well as quantitative ways of reducing such 
biases. 

John Snow is regarded by many as the father of modern epidemiology, although 
"paternity" has also been claimed for Graunt, Syndenham, Louis, and Farr. Snow's 
studies of cholera deaths in London from 1849 to 1854 demonstrated a striking 
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association with a contaminated water supply [16], several decades before accep­
tance of the germ theory of disease and demonstration of the cholera Vibrio. 

The current century has seen the extension of epidemiologic principles and tech­
niques to the study of a variety of diseases, treatments, and preventive measures. In 
1920, Joseph Goldberger carried out a community trial of diet in the treatment of 
pellagra, thus demonstrating it to be a nutritional, rather than an infectious, disease 
[17]. This was long before the biochemical demonstration of the vitamin involved 
(nicotinic acid) and the understanding of its importance in intermediary metabolism. 
In 1941, N. M. Gregg, an astute Australian ophthalmologist, recognized the associa­
tion between certain congenital deformities and maternal rubella (German measles) 
infection early in pregnancy [18]. 

In more recent decades we have had the trials of poliomyelitis vaccines [19], the 
observational studies by the U. S. Public Health Service [20] and subsequent com­
munity trials by the New York State Department of Health [21] demonstrating that 
fluoride in drinking water protects against dental caries, the recognition by Doll and 
Hill of the strong association between cigarette smoking and lung cancer [22], and 
the Framingham and other studies of risk factors for the development of cardiovas­
cular disease [1]. Epidemiology has not abandoned its historical role in establishing 
the etiology of presumed infectious disease, however, and in the past few years, 
epidemiologists have been instrumental in discovering the causal agent in Legion­
naire's disease, the relationship between tampon use and toxic shock syndrome, and 
the importance of aspirin as a cofactor in causing Reye's syndrome in children with 
influenza or chicken pox. Much of what we know now about AIDS (acquired 
immunodeficiency syndrome) is based on epidemiological data obtained well before 
the recent discovery of the responsible human immunodeficiency virus (HIV). The 
efficacy of future vaccines and other preventive measures for AIDS will also require 
evaluation by epidemiologic studies. 

1.4 Current and Future Relevance: 
Controversial Questions and Unproven Hypotheses 

Many of the current controversies and unproven hypotheses in medicine will require 
epidemiologic research. Does coffee consumption increase the risk of developing 
pancreatic cancer? Will daily aspirin administration lower the risk of myocardial 
infarction or sudden cardiac death? What are the risks and benefits of home labor 
and delivery? Does tonsillectomy and/or adenoidectomy lessen recurrence of phar­
yngitis (throat infection) or otitis media (middle ear infection)? Does "tight" control 
of blood sugar improve long-term prognosis in patients with insulin-dependent dia­
betes? What are the diagnostic benefits of new imaging techniques, such as positron 
emission tomography (PET) and magnetic resonance imaging (MRI)? 

The~e are but a small sampling of the questions whose answers will require epi­
demiological data. Training and skill in research design and statistical analysis are of 
course essential to the researchers who will be providing these data. But practicing 
clinicians will also require considerable knowledge of epidemiology if they are to 
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interpret and apply published research to the best advantage of their patients. The 
goal of this volume is to help the "doers" of clinical research in improving the scien­
tific quality of their investigation, and the "users" of research in developing their 
skills of appraisal and application. 
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Chapter 2: Measurement 

2.1 Types of Variables and Measurement Scales 

The attributes or events that are measured in a research study are called variables, 
since they vary, i. e., take on different values in different subjects. Variables are mea­
sured according to two broad types of measurement scales: continuous and categori­
cal. 

Continuous variables (also called dimensional, quantitative, or interval variables) 
are those expressed as integers, fractions, or decimals, in which equal distances exist 
between successive intervals. Age, systolic or diastolic blood pressure, serum sodium 
concentration, and the number of children in a family are all examples of continu­
ous variables. 

Categorical variables, which are also called discrete variables, are those in which 
the entity measured is placed into one of two (dichotomous) or more (polychotomous) 
discrete categories. Examples of dichotomous categorical variables include vital sta­
tus (dead vs alive), yes vs no responses to a question, and sex (male vs female). Poly­
chotomous categorical scales can be either nominal or ordinal. Nominal scales con­
tain named categories that bear no ordered relationship to one another, e. g., hair 
color, race, or country of origin. In ordinal scales, the categories bear an ordered 
relationship to one another. Unlike continuous scales, however, the intervals 
between ordinal categories need not be equal. For example, an ordinal pain scale 
might include the following ranked categories of pain severity: none, mild, moder­
ate, and severe. Some ordinal scales are "pseudocontinuous," in that the intervals 
between categories appear equal. In a neurologic examination, for example, deep 
tendon reflexes are usually measured as absent, 1 + , 2 + , 3 + , or 4 + . Although cri­
teria exist for assigning these categories, the difference between 1 + and 2 + is not 
necessarily the same as that between, say, 2 + and 3 + . 

2.2 Sources of Variation in a Measurement 

When a measurement is performed on a single subject, two sources of variation can 
affect the result: biologic variation and measurement error. Biologic variation reflects 
the dynamic nature of most biologic entities and leads to differences between indi­
viduals of different age, sex, race, or disease status. Another source of biologic vari­
ation can occur within the same individual over time (temporal variation); unlike the 
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physical measurement of inanimate objects (e.g., the length of a desk), a subject's 
biologic attributes can vary over time in response to a variety of physiologic func­
tions and other factors. To the degree that such changes are regular and predictable, 
intraindividual temporal variation can be reduced by the investigator. For example, 
in measuring a variable such as plasma cortisol concentration, which is known to 
have a regular diurnal cycle, variability is reduced by drawing the blood sample at a 
specified time of day. 

Every measurement is subject to some degree of measurement error. There are 
two different types of measurement error: (a) random (chance) error and (b) bias. 
When a single (nonrepeated) measurement is obtained, there is simply no way of 
knowing if the difference (error) between the measured value and the true biologic 
value is due to chance or bias. The distinction can be made only when the measure­
ment is repeated. If the average value of a large number of repeated measurements is 
the same as the true biologic value, then the reason for the disparate single measure­
ments is random error. If the average value is also erroneous, then the explanation is 
bias (with or without additional random error). 

These relationships are illustrated in Fig.2.1. Each measurement has been 
repeated eight times. Measurement A is biased but subject to little random (chance) 
error. B is unbiased but subject to considerable chance variation. C is both biased 
and highly variable. Measurement D has the smallest propensity for error; it is both 
unbiased and relatively invariable. 

Measurement error can arise from either the method (measuring instrument!) or 
the observer (the measurer). When measurements are repeated, therefore, we can 
talk about the variability between methods of making the measurement or between 
the observers using those methods. We can also distinguish between the variability 
that occurs when the same method or observer is used to repeat the measurement 
(intramethod or intraobserver variability) and that which occurs between two or 
more methods or observers (intermethod or interobserver variability) . 
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Fig.2.t. The roles of chance and bias in 
measurement error. (Each measurement, 
A-D, has been repeated eight times) 

I A measurement "instrument" need not be a mechanical device. Death certificates, questionnaires, 
and psychologic tests are examples of instruments commonly used to measure subjects' attributes 
in epidemiologic studies. 
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When repeated measurements are obtained, biologic variation and measurement 
error interact to produce a phenomenon known as regression toward the mean. For 
many biologic attributes, most individuals in a group will have true values for that 
attribute closer to the group average, or mean, value than to either (high or low) 
extreme. Since each individual measurement is subject to both biologic variation and 
measurement error, an extremely high or low value obtained in an individual from 
that group is more likely to be in error than is an intermediate value. Thus, when the 
measurement is repeated, the tendency toward a less extreme repeat value, i. e., a 
"regression toward the mean," is greater than the tendency for an intermediate 
value to become more extreme. 

2.3 Properties of Measurement 

There are three essential properties of measurement: (a) validity, (b) reproducibility, 
and (c) detail. 

The validity of a measurement is the extent to which it corresponds to the "true" 
biologic value or some accepted "gold standard." (Some statisticians prefer the term 
accuracy for this property, although the common English usage of this term may 
cause confusion with the detail of the measurement). Validity depends on minimiz­
ing measurement error caused by bias. A valid measurement thus requires both a 
valid method (instrument for measurement) and a valid observer (measurer). 

Unfortunately, no gold standard exists for many of the variables of interest in 
clinical research. It is impossible to know with certainty how much pain or anxiety a 
patient is experiencing or the extent of cellular dysplasia in a cervical smear. The va­
lidity of such measures thus cannot be assessed. Instead, a variety of "proxy" indexes 
of validity are used. 

Face validity is the extent to which the measure appears apposite or appropriate 
to the entity measured. Content validity pertains to the appositeness of the individual 
items or components of the measurement, e. g., the individual questions in a ques­
tionnaire (scale) designed to measure depression. Concurrent criterion validity is the 
degree to which the measurement correlates with other accepted measures (criteria) 
of the entity obtained at the same time, e. g., the presence of tears in patients scor­
ing high on our depression scale. Predictive criterion validity is the extent to which 
the measurement predicts some accepted criterion of the entity that occurs in the 
future. If, for example, only those patients who appear severely depressed on our 
scale subsequently commit suicide, the depression scale measurement can be said to 
be a valid predictor of suicide. Finally, construct validity is the extent to which the 
underlying entity itself, i. e., the theoretical construct, is valid. The validity of 
depression as a construct is well accepted. Were it not, however, we would need to 
hypothesize relationships with other measurable variables, based on theoretical con­
siderations, and then design ways of testing these hypotheses. 

The reproducibility of a measurement is the degree to which the same results are 
obtained when the measurement is repeated. (In practical terms, however, few mea­
surements are actually repeated, and reproducibility represents the extent to which 
the same result would have been obtained had repeated measures been taken.) It 
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may reflect either (temporal) variation in the underlying biologic attribute or ran­
dom measurement error (due to method and or observers). Many other terms exist 
for the property of reproducibility, and this is a major source of confusion among 
persons encountering these concepts for the first time. The most commonly encoun­
tered term for this measurement property is reliability, but the term is misleading, 
since it seems unwise to rely on a measurement that may be invalid, merely because 
it is reproducible. Statisticians prefer the word precision, which unfortunately can be 
confused in its normal English usage with measurement detail. Perhaps the best 
word is consistency, but this has not achieved general acceptance. The important 
thing here, however, is the concept: the extent to which the same answer is obtained 
when the measurement is repeated. 

As shown in Fig.2.1, a measurement may be highly reproducible but biased, and 
therefore invalid (measurement A in the figure). It may be biased systematically 
upward or downward, e. g., an incorrectly calibrated serum glucose autoanalyzer 
that reproducibly gives values 30 mg/ dl above the true concentration. Or it may be 
consistently biased toward a given value; a broken watch, for example, will reprodu­
cibly give the time but will be valid only twice a day. 

As also shown in Fig. 2.1, a measurement may be poorly reproducible but unbi­
ased (measurement B). When such a measurement is taken with several replications, 
the average value of the replicates may have fairly good validity. This is common 
practice in epidemiologic studies for variables such as height and blood pressure, 
which are subject to considerable (random) intra- and interobserver error. 

The final measurement property of interest is detail. The detail of a measurement 
is equivalent to the amount of information provided. For continuous variables, this 
usually means the number of "significant figures" or decimal places. For categorical 
variables, detail refers to the number of categories contained in the scale. 

Ideally, a measurement should be sufficiently, but not excessively, detailed. 
Detail should be sufficient to distinguish individuals or groups with true differences 
in the entity of interest, but it should not be excessive, in the sense that measured 
differences are of no biological importance. Furthermore, the detail of a measure­
ment should not exceed its validity and reproducibility. Serum glucose concentra­
tion, for example, is usually measured to the nearest mg/ dl. Measurement to the 
nearest 100 mg/dl would be insufficient in distinguishing normal subjects from those 
with hypoglycemia, on the one hand, or diabetes, on the other. Even measurement 
to the nearest 10 mg/ dl might be insufficient to document improvement or deterio­
ration in diabetic control after changes in insulin dosage. Conversely, measurement 
to the nearest 0.1 mg/ dl would probably be excessive, since changes of this magni­
tude have no known clinical significance and since existing technology for measure­
ment does not yield this degree of validity or reproducibility. 

To illustrate the same concept using categorical variables, consider the question 
"How would you describe your mood today?" The range of responses (scale of 
categories) to a question of this type is often given according to what is called a 
Likert format, e.g., depressed, neutral, or happy. Such a 3-point scale might be 
insufficient to distinguish mildly depressed from suicidal patients, however, and 
expansion to five categories (e.g., severely depressed, mildly depressed, neutral, 
slightly happy, very happy) is probably preferable. A further increase in the number 
of categories, on the other hand, may exceed the respondent's ability to characterize 
his or her mood. 



Consequences of Erroneous Measurement 15 

2.4 "Hard" vs "Soft" Data 

Many laboratory measurements are performed by modern, highly sophisticated 
mechanical devices. With adequate quality control by the manufacturer and the 
measuring laboratory, the resulting measurements are often highly reproducible and 
valid. The data are usually displayed on a continuous scale as a digital readout or 
computer printout, thus effectively reducing or eliminating the effect of the techni­
cian or other observer making the measurement. Such data are often referred to as 
"hard" to distinguish them from more subjective ("soft") measurements with greater 
potential for bias or variability on the part of the observer. Most hard measurements 
are continuous, although a few categorical variables (e.g., vital status, sex, and race) 
have also been admitted to the "club," despite their dependence on human observa­
tion. 

Unfortunately, many of the variables that are most important in caring for pat­
ients are soft and subjective. In evaluating the efficacy of a new cancer chemother­
apeutic agent, for example, pain, mood, and ability to work may be of far greater 
concern to a patient and his family than the size of his tumor and may even be more 
important than the duration of his survival. As Feinstein has emphasized, the ten­
dency of clinical investigators to focus on hard rather than soft measurements can 
result in research that is both dehumanizing and irrelevant [1]. Furthermore, many 
data traditionally considered hard can be seen, at closer inspection, to have feet of 
softer clay. Roentgenographic and cytopathologic diagnosis, despite their reputation 
for hard objectivity, have repeatedly been shown to be subject to considerable intra­
and interobserver disagreement, even among experts [2, 3]. 

Much can be done to harden soft data. Scales can be constructed in which 
objective criteria are used to specify the score or category appropriate for each sub­
ject. Operational definitions are often helpful; they tell the observer (the measurer) 
what operations to perform to arrive at a correct classification. 

The use of objective criteria and operational definitions can result in substantial 
improvements in the reproducibility and validity of many soft measures. As an 
example, consider the problem of identification of adverse drug reactions (ADRs). 
Adverse events are unfortunately common in ill patients treated with drugs, and 
attribution of responsibility for such events in persons with several underlying dis­
eases under treatment with numerous drugs is exceedingly complex. Even experts 
disagree substantially when asked to assess the probability of an ADR in a given case 
or series of cases [4, 5]. The use of a diagnostic algorithm, however, which provides 
rules for ADR identification in response to information elicited about a specific 
case, results in considerable improvement in both reproducibility and validity [6, 7]. 

2.5 Consequences of Erroneous Measurement 

As we have seen, a measurement may be erroneous either because it is systematically 
biased or because it tends to vary (randomly) around its true value. When individu­
als are considered, the consequences are the same. If the measurement is wrong, it 
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makes little or no difference whether the error is systematic or random, and besides, 
we usually have no way of finding out. If a woman participating in a "hypertension 
screening clinic" in a local shopping center has her blood pressure erroneously 
recorded as 160/100 instead of her usual true pressure of 130/80, it matters little 
whether the reason is an insufficiently wide blood pressure cuff (bias), an inexperi­
enced person taking the reading (random measurement variation), or the fact that 
she is under some stress because the time has expired on her parking meter (biologic 
variation). Regardless of the reason for the error, she may be labeled as "hyperten­
sive" and suffer all the worries attendant upon receiving such a diagnosis, at least 
until such time as she is rechecked when calm by her own physician using a proper 
cuff. 

When groups instead of individuals are considered, however, the situation is 
quite different. Variability (poor reproducibility), in the absence of bias, should not 
change the average group value, since there is just as much a chance that any indi­
vidual measurement is too high or too low with respect to its true value. In the 
absence of bias, therefore, the average measurement for a group (if sufficiently 
large) will be valid even if many of the individual measurements from which it 
derives are not. To use engineering parlance, the "signal" may be correct despite 
considerable "noise." If adequate numbers of subjects are studied (to improve the 
signal-to-noise ratio), a valid measure of the group average will be revealed even in 
the presence of considerable random measurement error. When the individual mea­
surements are biased, however, the group signal will also be erroneous, despite 
inclusion of a large sample of study subjects. 

Random measurement error can nonetheless have deleterious consequences 
when one is seeking associations or correlations between two measured variables in 
a group of subjects. In these situations, random errors in the individual measure­
ments will lead to an analytic bias by diminishing the extent of association or corre­
lation between the two. Say, for example, that we wish to study the correlation 
between weight and systolic blood pressure. Poorly reproducible (i. e., randomly 
erroneous) but unbiased measurements of weight and/or blood pressure might 
reveal valid group averages for each of these variables, but the correlation between 
the two would be reduced below its true value. Similarly, in a study of a possible 
association between smoking and myocardial infarction (MI), random errors in 
classifying study subjects as to their smoking status and/or diagnosis (MI or no MI) 
will tend to reduce (bias) the measure of association between the two. The type of 
analytic bias that occurs in the statistical relationship between variables as a result of 
errors in measuring those two variables is called information bias and will be dis­
cussed in greater detail in Chapter 5. 

In summary, then, poorly reproducible measurements are more tolerable in 
epidemiologic research than in the assessment of individual patients for clinical pur­
poses. The effects of random measurement errors can be overcome, in part, by 
increasing the number of subjects measured, and statistical relationships between 
variables that result from such random errors will generally lead to conservative 
inferences. Thus, even "sloppy" measurements should not, in the absence of bias, 
create false statistical associations where none exist. Depending on one's point of 
view, this built-in conservatism can be considered either beneficial (preventing the 
too-ready acceptance of new findings) or harmful (hindering scientific progress). 
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2.6 Sources of Data 

In clinical research, measurement data may be gathered from a variety of sources. 
The choice of data source is often dictated by practical and economic, as well as 
scientific, considerations. It is important to distinguish between primary and second­
ary sources. Primary data derive from those measurements planned and carried out 
in the course of a research study by the study's investigators. Secondary data are 
those routinely collected by clinicians or public health authorities, as well as those 
obtained in the course of some other study. 

2.6.1 Clinical Observations 

Clinical observations include the elements of a medical history, physical examina­
tion, and laboratory data that are obtained in the clinical care of patients. They may 
be either primary or secondary, the latter usually being obtained from existing medi­
cal records. 

The quality of data obtained from medical histories depends on how the ques­
tions are asked, and therefore on language, understanding, alertness, and other 
characteristics of both the history taker and patient. These factors can affect either 
the reproducibility or validity of data obtained by history. As reviewed by Koran, 
interobserver agreement is often poor when two or more observers obtain a medical 
history from the same patient [8]. Furthermore, if the observer obtaining the history 
has a preconceived notion or hypothesis in mind, the resulting measurement is sus­
ceptible to bias, especially when that observer is not "blind" to the characteristics of 
the patient whose history is being taken. 

Suppose, for example, we wish to know whether our patient, Mrs. Jones, has 
experienced hemoptysis (coughing up blood) within the past year. Here are two 
(admittedly extreme) ways of asking her: 

1. Mrs. Jones, it is not at all uncommon for people with a bad cough or cold to 
notice, on occasion, the appearance of small flecks of blood in their phlegm. Has 
this happened to you at any time during the past year? 

2. Mrs. Jones, you haven't been so unfortunate, so obviously ill, so utterly doomed 
as to have coughed up blood in the past year, have you? 

It would hardly be surprising to receive opposite responses to these questions. 
Although such extreme examples of attempting to bias a response are probably rare, 
subtle shadings of wording and inflection can have a significant impact on the data 
obtained and can create statistical associations where none exist or eliminate those 
that do exist. The impact of this type of systematic information bias will be discussed 
more fully in Chapter 5. 

Even in the absence of observer bias, some items in the medical history tend to 
be biased by the subject. In particular, people are generally believed to overreport 
minor symptoms (abdominal pain, headache, insomnia) and to underreport bad 
habits (smoking, drinking, drug abuse). 
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Physical examination depends on the skill, training, experience, and mental state 
of the examiner, and many of the measurements obtained are thus somewhat subjec­
tive (e.g., the presence or absence of liver enlargement). As with history taking, 
interobserver agreement has been shown to be poor for a variety of aspects of the 
physical examination [8]. Here, too, the use of nonblind examiners increases the 
potential for biased measurement. 

Laboratory data are usually more valid and reproducible than those obtained by 
history and physical examination, but they depend on the quality control utilized by 
the clinical laboratory or X-ray facility. As reviewed by Koran, interobserver agree­
ment is not as high as one may be led to believe by the impressive technologic 
advances in recent years [8]. In general, the greater the potential for subjectivity 
("clinical judgment") in obtaining the laboratory measurement, the poorer the 
reproducibility and the greater the opportunity for bias. 

When clinical observations are planned and carried out by a study's investigators 
(i. e., the data source is primary), the reproducibility and validity of the measure­
ments can be improved by adequately training and blinding the observers (clinicians 
and laboratory personnel) and by providing objective, operational criteria for per­
forming and recording the measurements. When the data come from secondary 
sources, the recording of the observations cannot (by definition) be controlled by 
the investigators, but medical record abstractors should be provided with opera­
tional rules and criteria for extracting their observations and should be kept blind, as 
far as possible, to the study's principal hypotheses. Medical records may have the 
additional problem, of course, that data may be missing or insufficiently detailed for 
use in the study. 

2.6.2 Questionnaires and Interviews 

Since questionnaires and interviews are often highly structured and designed by 
investigators for a specific study, the resulting data are usually primary. These data 
sources share some of the same characteristics as the medical history. As with history 
taking, responses depend on how questions are asked. Similarly also, subjects are 
generally believed to overreport minor symptoms and underreport bad habits. 

Self-administered questionnaires suffer from three additional problems. First, 
since many questionnaires designed for a specific study utilize a fixed format (i. e., 
the range of possible responses to each question is limited to those printed on the 
questionnaire), they occasionally provide insufficient or excessive detail. The pre­
testing of such questionnaires prior to use in an actual research study is thus essen­
tial to improve the quality of data obtained therefrom. Second, inconsistent 
responses cannot be resolved, unless provision is made for follow-up contact by 
mail, telephone, or personal visit. Third, since self-administered questionnaires are 
usually sent by mail, nonresponse can be a major problem. Many people simply do 
not return questionnaires sent to them in the mail. Even with repeated mailings, 
response rates above 80% are unusual. Of even greater concern, those who do 
return the questionnaire may differ in important ways from those who do not, thus 
leading to a potential for bias due to nonresponse. 

The data presented in Table 2.1 are taken from a study by Burgess and Tierney 
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Table 2.1. Smoking habits among 1184 Rhode Island physicians [9] 

Subjects Number % of Total % Smoking 

Respondents 
First mailing 837 70.7 21.7 
Second mailing 189 16.0 26.5 

Total 1026 86.7 22.6 

N onrespondents 158 13.3" 45.5 

a Based on a sample of 33 of the 158 nonrespondents. 

[9]. In 1968, short questionnaires concerning (among other items) cigarette smoking 
were mailed to 1184 licensed physicians in Rhode Island. The first mailing produced 
a 70.7% response; 21.7% of the respondents admitted to being current cigarette 
smokers. A second mailing netted an additional 189 (16.0%) respondents, 26.5% of 
whom reported smoking. When a sample of the 158 (13.3%) remaining nonrespon­
dents (or their families or friends) were approached in person, it was found that 
45.5% were smokers. In other words, nonrespondents were about twice as likely to 
smoke as respondents. 

It should be emphasized, however, that nonresponse does not always lead to bias 
[10]; data based on low response rates can indeed be valid. The problem is that the 
characteristics of the nonrespondents are usually unknown, and the potential for 
bias is unassessable and therefore capable of undermining the findings of a study. 

Personal interviews, either by telephone or direct questioning (often in the 
home), have several advantages over mailed, self-administered questionnaires. The 
response rate is often higher when the study subject can meet, or at least talk to, the 
person asking the question. People are far more likely to throwaway or ignore a 
written questionnaire received by mail from an investigator or study group they have 
never met or talked to than to refuse to answer questions asked by telephone or in 
person by someone who adequately introduces him- or herself. Another advantage 
of the personal interview is that inconsistencies between two or more responses can 
be resolved by the interviewer. One disadvantage of personal interviews relative to 

self-administered questionnaires is their potential for systematic measurement bias. 
This can be minimized by thoughtful a priori structuring of the interviews and by 
careful training, periodic quality control, and "blinding" (to preselected characteris­
tics of study subjects and the study hypothesis) of interviewers. 

2.6.3 Reportable Diseases and Disease Registries 

In order to initiate control measures for outbreaks of communicable diseases, the 
reporting of a number of infectious diseases is mandated by public health authorities 
in most industrialized countries. Physicians, hospitals, and laboratories are required 
to report documented cases of these diseases. The major difficulty with the quality 
of data obtained from this source is that, except for rare and serious diseases like 
bubonic plague and rabies, most of these diseases are underreported, despite the 
legal mandate. 
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Furthermore, the degree of underreporting is variable and usually unknown. For 
example, socially embarrassing diseases (e.g., sexually transmitted diseases) are sys­
tematically underreported. Second, the detection of many diseases (e.g., tuberculo­
sis) depends on how actively they are looked for, that is, on the intensity of surveil­
lance. Third, diagnosis may require special diagnostic facilities or techniques (e.g., 
Legionnaire'S disease or AIDS). Nonetheless, reportable disease data can be useful 
for documenting secular trends in the local, regional, or national occurrence of the 
diseases reported. 

In disease registries, which may be legally required or voluntary, newly diag­
nosed cases meeting specific criteria are identified through reports submitted by 
physicians and hospitals to a central agency or repository. Baseline demographic and 
clinical data are recorded, and the registry is updated through periodic follow-up. 
As with reportable diseases, the quality of data obtained from disease registries 
depends on the intensity of surveillance and the availability of special techniques. 
Underreporting and even some overreporting are common. For example, the U. S. 
Food and Drug Administration maintains a registry of adverse drug reactions 
(ADRs) based on voluntary reports submitted by individual physicians, occasionally 
supplemented by follow-up information obtained by mail or telephone. Minor 
adverse reactions are, of course, systematically underreported, whereas rarer and 
more serious adverse events, which might be caused by underlying diseases or other 
factors, may be falsely labeled as ADRs. For some diseases, however, special regis­
tries appear to work quite well. The state of Connecticut has long had an excellent 
cancer. registry, and the Scandinavian countries are leading the way in registries for 
birth defects. 

2.6.4 Health Records for Defmed Population Subgroups 

This general category of (secondary) data source includes school and industry 
records of baseline and periodic physical examinations and of absenteeism, health 
records of the armed forces and the Veterans Administration, and data from insur­
ance programs. Although the data from such sources is often conveniently comput­
erized and of high quality, the major limitation concerns generalizability to persons 
outside of the specific group from which the data derive. Military data are highly 
nonrepresentative with respect to age and sex, employers and life insurance compa­
nies are likely to exclude persons with significant illness, and prepaid health insur­
ance plans (e.g., Kaiser Permanente in the Western United States and the Health 
Insurance Plan of Greater New York) underrepresent the economically disadvan­
taged. 

Nonetheless, the quality and size of these data bases have facilitated a number of 
important epidemiologic studies. For example, data on height and weight routinely 
collected by the Metropolitan Life Insurance Company have been useful in under­
standing the relationship between obesity and life expectancy. One of the best of 
these data sources has been the Mayo Clinic and the Olmstead Country Medical 
Group, which provide medical care for the vast majority of residents in the Roches­
ter, Minnesota, area. Although underrepresentative of poor and minority groups, 
the exploitation of this data source has contributed to our understanding of the nat­
ural history of several chronic diseases. 
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2.6.5 Vital Statistics and Other Population-Based Data Sources 

When their completeness and validity can be assured, as is the case in most industri­
alized countries, national or other population-based statistics can be valuable sec­
ondary data sources for epidemiologic investigation. The census is taken every 
10 years in the United States and Canada and includes data on age, sex, race, edu­
cation, and socioeconomic status. Although illegal immigrants are uncounted and 
certain other groups (e.g., infants, racial minorities, and vagrants) are under­
counted, the census often provides the best source of denominator data for many of 
the epidemiologic rates that will be discussed in the next chapter. 

Vital statistics consist of population-based data bearing on births, deaths, mar­
riages, and divorces. Birth and death certificates provide fairly valid data for count­
ing numbers of births and deaths, except in remote areas where such events occur 
without contact with hospitals or medical care personneL In addition to the fact of 
the birth, birth certificates also include useful information concerning the parents' 
race and education, the mother's pregnancy history and use of prenatal care, and 
evidence of (obvious) congenital anomalies. Death certificates include data on the 
age, sex, marital status, and occupation of the deceased. 

The main problem with death certificates concerns the cause of death, because it 
depends on the attribution of cause by the attending physician. One problem is that 
socially undesirable causes of death, such as suicide and alcohol or drug abuse, are 
systematically underreported. But even more importantly, death certificates require 
the physician to specify an underlying cause. Not only does this require a judgment 
by the physician as to which of several diseases the patient may have been suffering 
from was the underlying fatal one, but the cited cause is not usually changed by the 
results of autopsy or other data that may subsequently become available. Fortu­
nately, although published mortality statistics are based on the single underlying 
cause of death, data concerning other conditions listed on the death certificate are 
also entered into the computerized data base and are thus available to investigators 
having access to that data base. 

In an attempt at international standardization, most countries adhere to the clas­
sification codes established by the International Classification of Disease (ICD), 
which is now in its ninth revision. Secular changes in causes of deaths, however, may 
be confounded by changes in nosology. For example, the disease "dropsy" (swelling 
of the ankles) has, in this century, been replaced by more specific causes of death, 
such as heart, liver, or kidney failure. Important changes in diagnostic technology 
have also resulted in some artificial changes. The recent drop in the number of 
deaths from stomach cancer, for example, is probably at least partly attributable to a 
previous tendency to label any abdominal mass or tumor as stomach cancer. It is 
now known that most of these masses are caused by cancer of the colon, ovary, pan­
creas, or other intra-abdominal organs. Conversely, the death rate for hypertension 
increased about tenfold in English and Welsh men 45-54 years old between 1930 
and 1950. This increase did not reflect a true increase in either the occurrence 
or fatality of hypertension, but rather the increasing availability and use of the 
sphygmomanometer and the recognition of the role of hypertension in causing 
fatal heart disease and stroke. Finally, geographic differences in terminology may 
also lead to spurious differences in mortality. The same chronic obstructive lung 
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disease may be called emphysema in the United States and bronchitis in the United 
Kingdom. 

Abortion (fetal death) rates are worthy of special comment. Many early preg­
nancies go unrecognized, and requirements vary as to stage of gestation at which 
registration is required. Because of these factors, as well as the obvious difficulties in 
determining cause of death in many cases, data concerning fetal deaths (which 
require a distinct certificate form) are of notoriously poor quality and completeness. 

Because of the legal requirements for registration of births and deaths, popula­
tion-based data concerning fertility and mortality are both more complete and of 
higher quality than data concerning morbidity. For countries like the United King­
dom, where the National Health Service assigns each individual to one general 
practitioner, physicians' records can serve as a base for collecting morbidity data. In 
the United States, such data have been produced by the National Center for Health 
Statistics (NCHS) over the past 30 years by a series of interviews and examinations 
(the Health Interview Surveys and Health and Nutrition Examination Surveys) of 
random samples of the U. S. population. These data are supplemented by sampling 
physicians' offices (the National Ambulatory Care Survey). 

The NCHS data are limited by the fact that the surveys are cross-sectional in 
nature, i. e., they measure only morbidity present at the time of the interview, exami­
nation, or physician visit. Furthermore, the size of the samples studied is insufficient 
to study infrequent diseases. Nonetheless, they have provided a valuable source of 
national data concerning anthropometric measurements and nutritional status, 
minor illnesses and disabilities, and utilization of health care services. 

Perhaps the best population-based data sources are the extensive data linkage 
networks in the Scandinavian countries. In Sweden, for example, each person has a 
unique identification number assigned at birth. Information about birth, employ­
ment, health, and death is stored in computer data banks accessible through this 
number. Individuals listed in birth defects registries and cancer registries can also be 
identified through this number, and linkage to other data bases is readily achieved. 
The availability of such information for virtually the entire population is an invalu­
able resource for epidemiologic investigation. 

2.6.6 Sources of Data: Concluding Remarks 

An important distinction to be made concerning the various sources of data dis­
cussed above relates to whether group data that are aggregated for presentation can 
be disaggregated to obtain data on the individual members of that group. When a 
single variable is considered in isolation, this distinction is of little importance, since, 
as we have seen, the group average for that variable should be valid if the individual 
measurements are unbiased. When the main interest is in the possible association 
between two variables, however, aggregate data can lead to a spurious association 
that would not be found on analysis of the same two variables presented by individ­
ual subjects. 

For example, consider the relationship between death from colon cancer and 
dietary fiber intake. Analyses based on aggregated vital statistics and food consump­
tion data by country have revealed a very tight inverse association: the higher a 
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country's per capita fiber intake, the lower its colon cancer mortality [11 J. An obvi-
0us conclusion is that eating dietary fiber protects against colon cancer. This conclu­
sion might be false, however. It is possible that on an individual basis, no association 
exists between fiber intake and the development of colon cancer. In other words, 
within countries having a given per capita fiber intake, individuals consuming a 
high-fiber diet might be just as likely to develop colon cancer as those consuming a 
low-fiber diet. The spurious association derived from the country-by-country 
(aggregated) analysis might then be explained, for example, by the fact that high­
fiber foods are consumed (for cultural or climatic reasons) in countries lacking 
heavy industry, and that it is the industrial air pollution in other countries that leads 
to higher colon cancer death rates, rather than any protective effect of fiber in the 
nonindustrial countries. 

The false inference that can result from analysis of aggregate, rather than indi­
vidual, data is called an ecological fallacy. Data on individuals is always to be pre­
ferred to aggregated data on groups when investigating statistical associations 
between variables. 

Finally, I should re-emphasize here another important destinction among data 
sources: the distinction between primary and secondary data. Because secondary 
data are collected largely for general documentation and descriptive purposes, key 
data items may be missing or inadequately detailed to answer specific questions or 
test specific hypotheses. Furthermore, as we saw in Section 2.4, poorly repro­
ducible measurements tend to reduce the magnitude of statistical associations be­
tween measured variables. For these reasons, many epidemiologic studies make 
use of primary data collected by the study's investigators. Secondary and primary 
sources can often be profitably combined, however, as when follow-up data are 
obtained from patients with a specific tumor who are identified from a cancer 
registry. 

Whether individual or aggregated, primary or secondary, data concerning death, 
illness, recovery, and other discrete (i. e., categorical) events are usually expressed as 
epidemiologic rates. The definition and interpretation of these rates is the focus of 
the next chapter. 
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Chapter 3: Rates 

3.1 What is a Rate? 

Much of the last chapter focused on the principles, properties, and sources of indi­
vidual measurements on individual subjects. As emphasized in Chapter 1, however, 
epidemiology is primarily concerned with groups rather than individuals. Conse­
quently, methods are needed for summarizing or describing measurements in 
groups. For continuous variables, such summary measures include the mean, 
median, standard deviation, and other descriptors of the central tendency and 
spread of individual values within the group. These concepts and terms will be 
developed in Chapter 11. 

For categorical variables, the usual summary measure is called a rate, or propor­
tion, and is defined as the number of individuals in the category of interest divided 
by the total number of individuals in the group. For example, for the dichotomous 
variable vital status (alive vs dead), we can summarize the data for a group by 
reporting the death rate during a specified period of time, which is the number of 
deaths during the period divided by the total number of subjects in the group. Since 
vital status is dichotomous, we could equally well use the complement of the death 
rate [i. e., (1- death rate)], or survival rate, to provide a summary measure for the 
group. For polychotomous variables, a full description of a group requires a rate for 
each category contained in the scale. To describe the degree of retinopathy in a 
group of patients attending a hypertension clinic, for example, we would give rates 
for each of the grades 0 (none) to IV (severe), according to the Keith-Wagener clas­
sification. Because categorical attributes or events assume such an important role in 
clinical and epidemiologic research, an understanding of rates is an important pre­
requisite to discussions of research design and statistical analysis. 

A rate contains two essential components, a numerator and a denominator. 
Numerators alone convey little information and may be quite misleading. The num­
ber (or count) of individuals sharing some attribute or experiencing some event does 
not tell us whether that attribute or event is common or rare. Counts convey only 
anecdotes; rates are required to convey frequency. A report that ten patients with 
arthritis experienced a serious form of hepatitis (liver inflammation) while taking a 
certain medication might well alarm an unsophisticated public. The data become far 
less worrisome when this numerator is divided by the total number of arthritis pat­
ients taking the medication (e.g., 1000000) to yield a rate of 10/1000000, or 1 per 
100000. Our concern might disappear entirely if we then discover that this rate is no 
higher than the rate of hepatitis occurring in arthritis patients taking some other 
medication, or even in those taking no medication at all. 
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The importance of denominators can be illustrated further by analogy with bat­
ting averages. A baseball player's batting average is defined as the number of hits he 
obtains divided by his number of opportunities, i. e., appearances at bat, and is repre­
sented by a rate (to three decimal places) between 0 and 1. The professional baseball 
leagues award separate trophies for the player getting the most hits (counts) and the 
player achieving the highest average (rate). They are usually not the same player, 
however, since batters at the beginning of the lineup invariably get considerably 
more at bats, and thus a greater number of opportunities for hits. Their numerators 
are higher because their denominators are higher, but their average may be some­
what lower than those of players further down in the lineup, who have fewer at bats 
but a higher rate of success. 

In constructing rates, the nature of the relationship between the numerator and 
denominator is of crucial importance. There are two main requirements: 

1. The individuals counted in the numerator must be members of the group repre­
sented by the denominator. If we were interested in the rate of skin-test positivity 
for tuberculosis (TB) in a given community, the community census would provide 
the data for the denominator. Consequently, transients or recent immigrants not 
counted in the census should not appear in the numerator. Similarly, if the numer­
ator is restricted to certain characteristics, the denominator should be similarly 
restricted. Rates restricted in this manner are called specific rates. Rates may be 
specified by age, sex, race/ethnic origin, or any other attribute of interest. The 
rate of TB skin-test positivity among white men 20-34 years of age is an example 
of a race-, sex-, and age-specific rate. 

2. All "members" of the denominator group should be eligible to have the attribute 
or to experience the event counted in the numerator. In constructing uterine can­
cer rates, for example, women with prior hysterectomies and men should be 
removed from the denominator. (That this requirement is sometimes violated, 
however, is illustrated by the crude birth rate, in which the numerator is the num­
ber of live births, and the denominator is the total population rather than the 
number of women of child-bearing age.) 

Occasionally, the sources of data for the numerator and denominator are different, 
and the requirements for constructing a rate are violated. Such measures are more 
properly called ratios, rather than rates, although the latter term is often loosely (and 
incorrectly) applied. For example, the annual maternal mortality "rate" of a popula­
tion is defined as the number of deaths due to pregnancy, labor, or delivery divided 
by the number of live births occurring in that population during a given year. The 
true denominator is falsely lowered by excluding spontaneous and induced abor­
tions, as well as unrecognized pregnancies, and is falsely (although only slightly) 
inflated by twin and triplet births. 

I conclude this section with a semantic warning. As is unfortunately the case 
with many epidemiologic terms, rate can convey different meanings. For some 
epidemiologists, the notion of rate implies change over time, or slope, and they pre­
fer to restrict the use of the word to this context [1]. Since rate has achieved such 
wide acceptance, however, both within and outside the field of epidemiology, I shall 
continue to use the term in the traditional and more general sense discussed above. 
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The concept of change over time is nonetheless of great relevance to the mea­
surement of rates - so much so, in fact, that two different types of rates are used. 
One, called prevalence, is a static measure of rate at a single point in time. The other, 
incidence, is dynamic and measures the rate at which some attribute or event devel­
ops over a specific period of time. The distinction between prevalence and incidence 
is of fundamental importance in epidemiology and will be the focus of the following 
section. 

3.2 Prevalence and Incidence Rates 

3.2.1 DefInitions 

The prevalence rate (P) of an attribute or event in any group is the proportion of 
individuals in the group having that attribute or event at one point in time: 

P = number of individuals with attribute or event 
total number of individuals in group 

It is thus a static measure, or "snapshot," of the frequency that prevails at a given 
moment. 

In a fixed group of individuals, group membership is fixed at the beginning of the 
study, i. e., no new members are added during the study period. The incidence rate 
(I) is the proportion of any fixed group developing an attribute or event within a spec­
ified time period. The numerator consists of those individuals who were free of the 
characteristic at the beginning of the period and who developed it during the period. 
The denominator is the total number of individuals originally free of the characteris­
tic who could have developed it during the period: 

1= number of individuals who develop attribute or event 
total number of individuals in group who could have 

developed attribute or event 

per specified 
time period 

Incidence is thus a measure of frequency over time. It refers to change in status over 
a specified period, e. g., monthly incidence or annual incidence. Despite these clear 
differences between prevalence and incidence, clinicians and clinical investigators 
commonly confuse the two. In particular, "incidence" is often used as a generic term 
for "frequency," e.g., "The incidence [sic] of retinopathy among insulin-dependent 
diabetics at our medical center is 15%," or "The incidence [sic] of hepatic adenomas 
(benign liver tumors) in rats killed at 1 month was 4%." "Incidence" should be 
reserved for describing the frequency of newly occurring characteristics and should 
always be expressed as a function of time. 

A problem arises in measuring the incidence of attributes or events that are tran­
sient and recurrent. For such characteristics, a choice must be made between the 
proportion of individuals in a group who develop one or more episodes within a 
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period (the usual meaning of incidence) vs the number of episodes developing 
among group members within that period. The meaning of the two rates differs sub­
stantially: the proportion of individuals having at least one episode during the time 
period vs the average number of episodes per individual during the period. In mea­
suring the yearly incidence of gastroenteritis among 50 infants attending a day-care 
center, for example, the incidence for episodes might be 100 for the 50 infants, or 
200% per year. This figure might arise, however, as a result of five episodes each in 
20 infants. The incidence of ~ 1 episode for individuals would then be 40% per year. 
Unless otherwise specified, incidence rates are assumed to be based on individuals, 
rather than episodes. 

The distinction between prevalence and incidence can be more easily appre­
ciated if we consider the factors that can affect prevalence. In general, as incidence 
increases, so does prevalence. Duration of disease also has a marked effect, how­
ever: the longer the average duration (D) of an attribute or event, the higher the 
prevalence. Thus, 

Pa I·D 

i. e., prevalence is proportional to the product of incidence and average duration. 
The average duration of any characteristic is dependent on two primary determi­
nants: (a) its mortality and (b) its rate of disappearance (either spontaneously or in 
response to some treatment or other intervention). 

A disease with a high incidence may therefore have a low prevalence if it is of 
short duration, e. g., the common cold or lung cancer. Conversely, a disease of low 
incidence can attain a high prevalence if it is incurable but nonfatal. In fact, medical 
treatment can (paradoxically) increase the prevalence of disease. A good example is 
end-stage kidney disease, where the availability of dialysis and transplantation has 
turned a previously rapidly fatal disease into a chronic illness with a prevalence that 
continues to rise. 

Figure 3.1 depicts the experience of 40 subjects followed up for 1 year for the 
development of a (hypothetical) disease lasting 1 month. The distinction between 
incidence and prevalence can be clearly seen if we examine the situation at 
6 months. The incidence of the disease over the first 6 months is 10/40, or 25%. The 
prevalence at 6 months, however, is 0%, i. e., none of the 40 subjects has the disease 
at that time. It is also apparent that if the average disease duration were, say, 1 year 
instead of 1 month, the prevalence would increase markedly. At 12 months, the 
prevalence would then be 20/40, or 50%, rather than 0%. 

In groups or populations in which the occurrence of attributes or events is stable, 

P a I·D becomes 
P=I·D 

"Stability" here means that incidence and average duration remain constant over 
time. Thus, if the incidence of a certain characteristic remains stable, and no change 
occurs in its rate of disappearance, its prevalence will also remain unchanged. In 
such situations, any two of these three quantities, if known, can be used to calculate 
the third. This is frequently the case for nonfatal, chronic illnesses such as arthritis 
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Disease -Free of Disease 

o 2 3 4 5 6 7 8 9 10 11 12 

Time (Months) 
Fig.3.t. Forty subjects followed up for 1 year for the development of a hypothetical disease with 
I-month duration 

and asthma. It is also true for fatal diseases (e.g., certain cancers) for which no 
effective treatment is available. 

3.2.2 Incidence Rates for Prolonged Follow-up and Dynamic Groups 

The definition of incidence presented so far applies only to fixed groups and out­
comes that develop quickly, i.e., where the period of follow-up is exceedingly short. 
For many outcomes, including many chronic diseases of interest to epidemiologists, 
longer periods of follow-up are required, and study subjects may die, withdraw, or 
be lost to follow-up during the study period. With prolonged follow-up, it is highly 
unlikely that the individuals constituting the group at the end of the period will be 
the same as those present at the beginning. Which numerators and denominators 
should then be used in calculating the incidence rate? 

The same questions arise in the study of dynamic groups. Dynamic groups differ 
from fixed groups in that new members can be added during the study period. If 
such individuals are counted in the numerator when they develop the outcome, how 
should the denominator be adjusted to reflect their shorter duration of follow-up? 
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In general, all individuals in a study group who develop the attribute or event 
during the follow-up period are placed in the numerator, even if they were not 
members of the group at the beginning of the period. For the denominator, the aver­
age number of group members during the period is usually used. If changes in group 
membership occur evenly throughout the period, the number at mid-period will 
serve adequately as the denominator. Thus, an incidence rate for a given calendar 
year would use the group membership (e.g., population) as of July 1 of that year for 
the denominator. 

When gains and losses for a dynamic group occur irregularly during the follow­
up period, however, a different denominator is often used. The duration of follow­
up of each individual in the group is summed to yield a total number of person­
durations. Person-durations (e.g., person-months or person-years) would then sub­
stitute for persons in the denominator, and the specification of time period is then 
no longer required. Incidence rates using person-durations as denominators are also 
called incidence density rates [2] and have special properties, to be discussed later in 
the text. 

Even incidence densities, however, assume the equivalence of equal units of fol­
low-up, i. e., that ten individuals followed for 1 year are equivalent to one individual 
followed for 10 years. For attributes or events with a long latent period (the period 
between exposure to a cause and the appearance of an effect), such an assumption 
can lead to an erroneous measure of incidence. For example, a group's adoption of 
a certain exercise or diet regimen may require many years before resulting in any 
subsequent reduction in cardiovascular mortality. If most individuals are followed 
up for only a year or two after beginning the diet, no beneficial effect may be seen, 
even if tens of thousands of individuals participate in the study. In other words, a 
large number of individuals followed up for a short period of time will lead to an 
underestimate of the true incidence. Adjustment of incidence for differential dura­
tions of follow-up is accomplished by means of life-table techniques. These will be 
taken up in Chapter 18. 

3.2.3 Incidence Rates: Specific Examples 

There are several attributes or events of particular interest to epidemiologists, and 
their incidence rates carry special names. The death rate (or mortality rate) is the 
number of individuals in a group who die within a given number of person-years of 
follow-up. When restricted to deaths caused by a specific disease, the incidence is 
referred to as the disease-specific death (or mortality) rate. This is to be distinguished 
from the disease-specific case fatality rate. Both rates have the same numerator, i. e., 
the number of individuals who die of the disease within the given period. The 
denominators are entirely different, however. For disease-specific mortality, the 
denominator consists of the total person-years of follow-up, whereas for case fatal­
ity, it is restricted to the number of individuals in the group who are affected by the 
disease. 

When the time period at risk for development of a given attribute or event is 
limited, the incidence may be expressed as an attack rate without specifying the 
duration of time during which cases developed. The attack rate is of particular use 
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in describing incidence during epidemics, when the susceptible population may be at 
risk only briefly following a single ("point") exposure to the responsible agent or 
until control measures (elimination of agent, quarantine of cases, or immunization 
of susceptibles) are successful in stopping the spread of the disease. For example, the 
incidence of staphylococcal "food poisoning" occurring after a picnic at which a 
contaminated food is consumed can be expressed as an attack rate, i. e., the propor­
tion of individuals attending the picnic who developed symptoms of gastroenteritis 
during the ensuing hours. For outbreaks of contagious diseases, the secondary attack 
rate is often used to describe the incidence among susceptible contacts after the 
occurrence of a primary case. 

The definitions of several kinds of annual incidence rates commonly used ill 

reporting vital statistics are contained in Table 3.1. 

3.2.4 The Uses of Incidence and Prevalence Rates 

The incidence rate of an attribute or event is the frequency measure of choice when 
interest focuses on the cause of that attribute or event. Because causal factors operate 
prior to the development of the effects they cause, causal reasoning is enhanced by 
knowing that individuals are free of a characteristic (effect) before being exposed to 
the causal factor under suspicion. Furthermore, rapid recovery or death from the 
characteristic of interest will prevent its detection if only prevalence is known. In 
order to ensure detection of all new cases, however, calculation of incidence 
requires measurement of the characteristic in all individuals within a group at the 
beginning of follow-up and systematic assessment of its occurrence until the end of 
follow-up. 

Table 3.t. Annual incidence rates used in vital statistics 

Name Numerator Denominator Expressed 

Crude birth rate Number of live birthsa Mid-year population per 1000 
General fertility rate Number of live birthsa Mid-year population per 1000 

to women 15-44 years of women 15-44 years 
Crude mortality rate Number of deaths Mid-year population per 1000 
Maternal mortality rate Number of deaths due Number of live birthsa per 100000 

to pregnancy, labor, 
and delivery 

Perinatal mortality rateb Number of fetal deaths Number of live births per 1000 
;;;; 20 wks gestationa plus fetal deaths 
plus infant deaths ;;;; 20 wks gestationa 

<7 days 
Neonatal mortality rate Number of deaths in Number of live birthsa per 1000 

infants < 28 days 
Infant mortality rate Number of deaths in Number of live birthsa per 1000 

infants < 1 year 

a The definitions of "live birth" and "fetal death" are far from uniform. Some U. S. states, for exam­
ple, require that a newborn or fetus weigh ;;;; 500 g to count as either a live birth or fetal death, 
respectively [3]. 

b This measure is more appropriately called a ratio, rather than a rate (see p. 26). 
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Prevalence, on the other hand, is much easier to calculate, since it requires only 
one measurement of individuals in a group at a single point in time. No follow-up or 
repeat measurements are required. Furthermore, prevalence is quite useful for 
describing the extent or "burden" of an attribute in a given community, clinic, etc. 
Prevalence is therefore of great importance from a public health perspective, since 
health care services are often distributed according to need, i. e., existing health and 
disease status. For example, conditions like arthritis and heart disease usually con­
sume far greater resources than do more commonly occurring but shorter-lived dis­
eases like the common cold or viral gastroenteritis. 

Finally, although not generally appropriate for making causal inferences, preva­
lence rates can occasionally be useful in suggesting hypotheses when incidence rates 
are unavailable. Comparison of the prevalence of cardiovascular disease among dif­
ferent types of societies, for example, might give rise to etiologic clues based on dif­
ferences in diet, physical activity, or other characteristics of those societies. 

One peculiar kind of rate, called the period prevalence rate, represents a hybrid of 
incidence and prevalence. It is defined as the proportion of individuals in a fixed 
group who either have a given characteristic at the beginning of a specified period or 
develop it during the period. It is thus the sum of the initial prevalence (also called 
the point prevalence) and the subsequent incidence. But since period prevalence has 
neither the etiologic advantages of incidence nor the public health utility of preva­
lence, it is little used in modern epidemiology. 

3.3 Stratification and Adjustment of Rates 

Comparisons are often made between rates in two or more groups for the purposes 
of generating or testing etiologic hypotheses. An important difference in death rates 
in two separate communities might, for example, lead to research into possible 
genetic, dietary, environmental, or psychosocial factors that might explain the dif­
ference. As in all comparisons, however, we must ensure that we are comparing like 
with like and that the presence of some extraneous factor is not biasing the compari­
son. 

When we speak of bias in this context, we are referring to bias that occurs in 
comparing groups on some measured attribute, rather than bias in the individual mea­
surements themselves. To be sure, as mentioned in Chapter 2, the latter can lead to in­
formation bias, which can indeed affect the statistical relationship between two vari­
ables. But even if the measurements themselves are perfectly valid, a comparison be­
tween groups on a given attribute can be biased if some extraneous factor that can 
affect that attribute independently of group membership is unequally distributed 
between the groups. This kind of bias is called confounding bias, and the factor re­
sponsible for creating the bias is called a confounding factor or confounding variable. 

The concept of confounding is fundamental in epidemiology, and I shall have 
much to say about it throughout this text (especially in Chapter 5). For now, I shall 
limit the discussion to showing how it may bias a comparison between rates and 
how so-called crude rates may be stratified or adjusted to reduce or eliminate such 
bias. 
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Consider the example shown in Table 3.2, which compares the annual death 
rates in two (hypothetical) small U. S. communities, one a northeastern industrial 
town (Millville), the other a sun-belt retirement colony (Sunnyvale). The overall 
crude death rates in the two communities are shown in the last row of the table (col­
umns 4 and 7). Contrary to what we might expect, Sunnyvale appears to be a con­
siderably more lethal habitat than Millville, with an annual death rate twice as high 
(23.8 vs 11.0 per 1000 per year). A closer examination of the individual rows corre­
sponding to different age groups or strata, however, reveals just the opposite. In 
each age stratum, the death rate in Sunnyvale is in fact lower than that in Millville. 
The discrepancy is caused by an age distribution that is quite different in the two 
communities, with Sunnyvale having a much older age structure (columns 2 and 5); 
74% of the Millville population is under 45, compared with only 28% in Sunnyvale. 
Age is thus a confounding factor here. It is unequally distributed between the two 
groups and is independently related to the attribute of interest (death). 

Stratification of rates is accomplished by comparing the stratum-specific, rather 
than overall, rates and is one method of eliminating bias due to confounding. We 
might, however, prefer some overall measure that combines the data from all strata 
without reintroducing bias. This is especially important when the stratum-specific 
rates reveal a mixed picture, with some rates higher in one group and other rates 
higher in the second. There are two frequently used methods for this overall type of 
adjustment: direct and indirect standardization. 

For direct standardization, the observed stratum-specific rates in the two groups 
are applied to a third ("standard") group or population with known stratum struc­
ture. In Table 3.3, the age-specific death rates in Millville and Sunnyvale are applied 
to a standard population of 12000 with an age distribution as shown in column 2. 
For each age stratum in column 1, the number of persons from the standard popula­
tion in each stratum (column 2) is multiplied by the age-specific death rate for Mill­
ville (column 3) and Sunnyvale (column 5) to yield the number of deaths (columns 4 
and 6, respectively) that would be expected if each community had the age structure 
of the standard population. The total number of "expected" deaths for each commu­
nity (last row, columns 4 and 6) is then divided by the total population of 12000 to 
yield the standardized death rates shown in the last row, columns 3 and 5. In con-

Table 3.2. Comparison of annual death rates in two (hypothetical) U. S. communities 

Millville Sunnyvale 

Age stratum Population Deaths Deaths/ 1 000 Population Deaths Deaths/1 000 
(1) (2) (3) (4) (5) (6) (7) 

0-14 500 } 2 4 400} 1 2.5 
15-29 2000 74% 8 4 300 28% 1 3.3 
30-44 2000 12 6 1000 5 5 
45-59 1000 } 10 10 2000} 18 9 
60-74 500 26% 20 40 2000 72% 70 35 
~75 100 15 150 400 50 125 

Total 6100 67 11.0 6100 145 23.8 
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Table 3.3. Direct standardization of annual death rates shown in Table 3.2 

Millville Sunnyvale 

Age Standard Deaths/ "Expected" Deaths/ "Expected" 
stratum population 1000 deaths 1000 deaths 
(1) (2) (3) (4) (5) (6) 

0-14 500 4 2 2.5 1.25 
15-29 2500 4 10 3.3 8.25 
30-44 3000 6 18 5 15 
45-59 3000 10 30 9 27 
60-74 2500 40 100 35 87.5 

;;:;;75 500 150 75 125 62.5 

Total 12000 19.6 235 16.8 201.5 

formity with the stratum-specific rates, the overall standardized rates reveal a higher 
annual death rate in Millville (19.6 vs 16.8 per 1000). 

Note that the choice of "standard" population is arbitrary. Generally speaking, 
the standard population should reflect the age distribution of the population to 
which one wishes to generalize the results. In the above example, the standardized 
rates tell us the deaths we could expect if the standard population of 12 000 lived in 
Millville or Sunnyvale. A better standard might have been the entire U. S. popula­
tion, as based on the most recent census. When no standard is available, the groups 
being compared are often combined into a single "standard." If the groups are of 
markedly unequal size, however, the larger group will have an undue influence on 
the adjusted overall rates. 

Indirect standardization is used in one or more of the following circumstances: 

1. When small numbers lead to potentially unstable (i.e., poorly reproducible) stra­
tum-specific rates. 

2. When the stratum structure (number of individuals in each stratum) of the stan­
dard population is unknown. 

3. When the overall death rates and stratum structures are known for the compared 
groups but their stratum-specific rates are unknown. 

Indirect standardization always requires knowledge of the stratum-specific rates for 
the standard population, however. 

The method is illustrated for our Millville-Sunnyvale example in Table 3.4. Col­
umn 2 lists the age stratum-specific death rates for the standard population. These 
rates are then multiplied by the population in each stratum for Millville (column 3) 
and Sunnyvale (column 6) to yield the number of deaths (columns 4 and 7 respec­
tively) that would be expected if the two communities experienced the same stra­
tum-specific rates as the standard population. The total number of observed deaths 
for each community (last row, columns 5 and 8) is then divided by the total number 
of expected deaths in that community (last row, columns 4 and 7) to obtain a stan­
dardized mortality ratio (SMR) for each community. [Note that, as cited under 
point 2 above, the number of observed deaths in each stratum (columns 5 and 8) is 
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Table 3.4. Indirect standardization of annual death rates shown in Table 3.2 

Millville Sunnyvale 

Age Deaths/ 1 000 Population "Expected" Observed Population "Expected" 
stratum in standard deaths deaths deaths 

population 
(1) (2) (3) (4) (5) (6) (7) 

0-14 3 500 1.5 2 400 1.2 
15-29 4 2000 8 8 300 1.2 
30-44 5 2000 10 12 1000 5 
45-59 10 1000 10 10 2000 20 
60-74 38 500 19 20 2000 76 
~75 140 100 14 15 400 56 

Total 18.5a 6100 62.5 67 6100 159.4 

. d .. Observed deaths 
Standardlzate mortality ratio (SMR) = d d h 

Expecte eat s 

For Millville, SMR= £ = 1.072 
62.5 

145 For Sunnyvale, SMR= -- =0.910 
159.4 

Indirectly standardized death rate = SMR x death rate in standard population 
For Millville, standardized rate = 1.072 x 18.5 = 19.8 per 1000 
For Sunnyvale, standardized rate=0.910x 18.5=16.8 per 1000 

35 

Observed 
deaths 

(8) 

1 
1 
5 

18 
70 
50 

145 

a Note that the overall death rate in the standard population must be known. It cannot be derived 
from the stratum-specific death rates without one also knowing the population in each stratum. 

not required in making this calculation. Only the total is necessary.] Finally, each 
community's SMR is multiplied by the overall death rate in the standard population 
to obtain the indirectly standardized death rate. Once again, we see that the stan­
dardized rate is lower in Sunnyvale (16.8 vs 19.8 per 1000) despite its higher 
observed overall crude (unstandardized) rate. 

In a way, the two methods of standardization are mirror images of one another. 
With the direct method, we calculate the number of "expected" deaths in the stan­
dard population based on its age distribution and the study group's stratum-specific 
death rates. With the indirect method, we calculate the number of "expected" deaths 
in the study group based on its age distribution and the standard population's stra­
tum-specific death rates. 

Since age affects many of the attributes and events of interest to epidemiologists, 
it is often a confounding factor when rates are compared. Depending on the attrib­
utes or events measured and the characteristics of the groups compared, other vari­
ables may have an equal or greater potential for confounding. For example, a com­
parison of death rates from lung cancer in asbestos vs coal miners should standard­
ize by cigarette smoking status unless there is good reason to believe that the two 
groups of miners have similar smoking habits. The choice of variables by which to 
standardize thus depends on existing biologic and clinical knowledge (e. g., of the 
relationship between cigarette smoking and lung cancer), and on how well those 
variables can be measured. 
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3.4 Concluding Remarks 

In this chapter I have discussed the intricacies of rates, summary descriptors of cate­
gorical variables measured in groups of individual subjects. The distinction between 
dynamic, time-dependent rates (incidence) and static rates (prevalence) measured at 
a single point in time has been emphasized. Finally, I have introduced the concept of 
confounding bias whenever rates are compared between two or more groups, as 
well as strategies for reducing such bias. 

Now, before rates (or corresponding summary measures for continuous vari­
ables) are obtained, the groups of individual subjects whose characteristics are to be 
compared must be assembled and measured. The epidemiologic strategies for 
accomplishing these goals will form the basis of the next six chapters. 
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Chapter 4: Epidemiologic Research Design: 
an Overview 

4.1 The Research Objective: Descriptive vs Analytic Studies 

Broadly speaking, an epidemiologic study has one of two objectives: description or 
analysis. In a descriptive study, data are assembled and reported to summarize infor­
mation (e.g., rate, mean, distribution) about one or more attributes in a group of 
subjects. No associations are sought, and no causes are inferred. Usually, the focus 
is on describing a target population having certain geographic, sociodemographic, 
and clinical attributes of interest. Since the entire target population is rarely available 
for study, however, the investigator must usually choose some method of selecting a 
study sample. Several aspects of sample selection will be discussed later in this chap­
ter and in Chapter S. For now, it suffices to say that the more representative the 
study sample is of the target population, the more valid will be the sample estimate of 
the population descriptor (e. g., rate or mean). Furthermore, the larger the size of 
the study sample, the more reproducible the sample estimate will be. Although 
assessing the reproducibility of a descriptor entails statistical inference (to be dis­
cussed further in Chapter 10), no causal inference is involved in descriptive studies. 

In an analytic study, one or more groups are studied for the express purpose of 
drawing inferences about the association between two or more variables, particu­
larly about a cause-and-effect association. In other words, the main objective in 
most analytic studies is causal inference. As in the case of descriptive studies, a sample 
must usually be selected from the relevant target population. The more representa­
tive the study sample is of the target population, the more valid will be the sample 
estimate of the association in the population. The larger the sample, the more repro­
ducible the estimate. 

The distinction between descriptive and analytic studies may not always be 
clear-cut. For example, a primarily descriptive study may compare and contrast 
descriptors between one or more subgroups within the study sample, thus examining 
the association (perhaps causal) between subgroup membership and the variable of 
interest. To the extent that inferences are drawn about such an association in the tar­
get population, such a study (or at least this aspect of it) should be considered ana­
lytic. 

Most of our attention in this text will be focused on analytic research, because 
causal inference is usually required in studying etiology, treatment, prognosis, pre­
vention, and health services evaluation. Even purely descriptive studies can be useful, 
however, in measuring the incidence and prevalence of important diseases in a pop­
ulation. Most of the vital statistics discussed in Chapters 2 and 3 are based on 
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descriptive studies (even if routinely obtained by health authorities outside of any 
"research" context). In addition, descriptive studies are useful in describing the natu­
ral history or spectrum of clinical findings in a group of patients with a particular 
disease. They may also serve to generate hypotheses for future analytic studies. 

In both descriptive and analytic research, the research objective must be clear 
and should be stated before the project is designed and before the data are collected. 
The importance of a clear objective cannot be overemphasized. If the purpose of 
the study is description, the target population and the variables to be described 
should be unambiguously identified. If the objective is analytic, the researcher 
should also indicate the attributes whose association is being investigated. The 
research objective for analytic studies can usually be phrased as a question and 
placed in the following format: "Does exposure of the target population to a putative 
causal agent or maneuver cause a certain outcome?" Thus, the target population, 
exposure, and outcome must all be clearly specified. Although I have already 
explained what I mean by target population, the concepts of exposure and outcome 
require fuller discussion. 

4.2 Exposure and Outcome 

The exposure is the putative causal factor, or effector, that the investigator believes 
may be (at least partly) responsible for the outcome under study. It may be a natural 
exposure, such as exposure to air pollution, cosmic rays, or environmental toxins. It 
may be an intrinsic characteristic of the subject, such as sex, race, or hemoglobin 
genotype. It may be a practice or exposure that the subject has selected for himself, 
such as smoking, jogging, or drunken driving. It might be a treatment that is pre­
scribed by the subject's clinician. Finally, it could be a treatment that is imposed by 
the investigator himself, such as an investigational new drug. Thus, the exposure 
may be either active or passive. 

In observational studies (also called surveys), the exposure is not assigned by the 
investigator. Because the exposure arises either naturally, by self-selection, or by pre­
scription from a clinician, the investigator cannot be certain that groups with differ­
ent exposures were equally susceptible to the outcome before they were exposed. 
This creates a potential for confounding bias, which, as we will see in the next chap­
ter, poses major problems for causality inferences. 

In an experiment, the exposure is assigned by the investigator. When assignment 
occurs in a randomized fashion, the potential for confounding bias is greatly 
reduced. This is the main reason why randomized experimental studies provide 
stronger evidence for causality than do observational studies. 

The outcome in an analytic study is the effect that the investigator believes may 
be caused by exposure. It may be the occurrence of death or some other health or 
disease state (e.g., the development of emphysema after many years of cigarette 
smoking) or its prevention (e.g., a lower incidence of whooping cough among vac­
cine recipients). It could be the amelioration of a clinical condition, such as the reso­
lution of acute otitis media (middle ear infection) following treatment with antibiot­
ics. It may be the relief of pain, anxiety, or discomfort provided by a pharmaceutical 
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agent or surgical procedure. Finally, it may be a change (for the better or worse) in 
quality of life associated with a certain treatment. 

Exposure and outcome each can be measured on a continuous or categorical 
scale. The quantitative expression of the exposure-outcome association will depend 
on whether both are continuous, one categorical and the other continuous, or both 
categorical. It will further depend on whether categorical exposures or outcomes are 
dichotomous or polychotomous. 

Regardless of the measurement scale, the study of an association between expo­
sure and outcome depends on the presence of variation in both factors. If all study 
subjects have the same exposure, for example, measurement of their outcomes 
becomes a descriptive rather than an analytic study. A comparison of outcomes in 
two or more groups with different exposures would be considered analytic, since the 
association between exposure (group membership) and outcome can be assessed. 

Finally, multiple exposures and outcomes can be investigated within the context 
of a single research study. For example, an investigator who wishes to study the 
therapeutic efficacy of a new cancer chemotherapeutic agent may be interested in 
studying the effect of that agent on survival, tumor size, relief of pain, and quality of 
life. All of these would be important outcome measures. Similarly, in studying possi­
ble causes (sometimes called risk factors) of a community outbreak of diarrhea, 
numerous food and water exposures might be investigated. Although efficient in 
practice and clinically sensible, such multiple testing for exposure-outcome associa­
tions creates certain problems for statistical inference, as we shall see in Chapter 12. 

4.3 The Three Axes of Epidemiologic Research Design 

Once the research objective for an analytic study has been adequately specified in 
terms of the target population, exposures, and outcomes, the next step is planning 
the research design. Epidemiologic research design can be considered from three dis­
tinct aspects: (a) directionality, (b) sample selection, and (c) timing. 

Directionality refers to the order in which exposure and outcome are investi­
gated: forward, from exposure to outcome; backward, from outcome to exposure; 
or simultaneously, exposure and outcome being determined at the same point in 
time, often without knowledge of which actually occurred first. Sample selection per­
tains to the criteria used to choose study subjects; it can be based on exposure, out­
come, or other criteria. Timing concerns the relation between the time of the study 
proper and the calendar times of exposure and outcome: historical (exposure and 
outcome both occurred prior to the study); concurrent (exposure and outcome are 
contemporaneous with the investigation); or mixed timing. Although these three 
aspects of research design have often been confused, with considerable overlap 
between terms, what follows is an attempt to organize them into a unified nosology 
by using a distinct classification "axis" for each [1 J. 



40 Epidemiologic Research Design: an Overview 

4.3.1 Axis I: Directionality 

A cohort study is a study in which subjects are followed forward from exposure to 
outcome. By definition, study subjects are free of the outcome at the time exposure 
begins. The inferential reasoning in cohort studies is from cause to effect. 

In case-control studies, the directionality is the reverse of that of cohort studies. 
Study subjects are investigated backwards from outcome to exposure. In case-con­
trol studies, we usually start with measurement of the outcome (often a classification 
of subjects into those with and those without the outcome), and we then ask or find 
out about prior exposure. The reasoning is from effect to cause. 

In cross-sectional studies, exposure and outcome are determined at the same point 
("cross section") in time, i.e., simultaneously. Since exposure and outcome have 
usually been present for some time prior to the study, it is not always obvious 
whether the exposure preceded the outcome. An outcome that occurs simulta­
neously with or precedes an exposure obviously cannot have been caused by that 
exposure. This well-recognized cart-vs-horse problem (reverse causality bias) often 
makes causality inference problematic in cross-sectional studies. 

The term "simultaneous" is an approximation; the investigation focuses on expo­
sure present around the same time as the outcome. A study subject questioned about 
current cigarette smoking habits is unlikely, of course, to be smoking during the 
actual interview. The important point is that in cross-sectional studies, the exposure 
measured corresponds roughly to the time at which the outcome is determined, 
rather than to a prior point or period of time consistent with the known or sug­
gested biologic mechanism of causation (the so-called latent period). 

4.3.2 Axis II: Sample Selection 

Researchers can rarely study the entire target population, and therefore they usually 
must choose some method of sample selection. Since the main interest in epidemio­
logic research is the association (and presumed causation) between exposure and 
outcome, most studies will select their sample by either exposure or outcome. If the 
exposure is rare, a selection procedure that ensures a sufficient number of exposed 
subjects is necessary to provide a statistically meaningful result. The study may com­
pare samples of exposed and unexposed subjects, subjects with different levels of 
exposure, or subjects exposed to two or more different agents or treatments. This is 
the kind of sample selection often employed in cohort studies. When the outcome is 
rare, selection by outcome may be necessary. This is the kind of sample selection 
usually employed in case-control studies; a sample of subjects with the outcome 
(cases) is compared with a sample without the outcome (controls) for their prior 
exposure. 

Thus, sample selection is not entirely independent of directionality. Most cohort 
studies sample by exposure, and most case-control studies sample by outcome, while 
cross-sectional studies can use either method. Any of the three directionality 
designs, however, can use some form of subject selection from the target population 
other than exposure or outcome. For example, an investigator can select any group 
("convenience" sample) of study subjects, measure their exposure, and then follow 
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them forward in time (i. e., cohort directionality) to the development of the out­
come. Similarly, in a case-control study, subjects can be selected without regard to 
exposure or outcome, classified by outcome, and then questioned about prior expo­
sure to an agent or treatment of interest. These would not be statistically efficient 
strategies, however, when exposure (in cohort studies) or outcome (in case-control 
studies) is rare. Although cross-sectional studies often use this type of sample selec­
tion, their statistical efficiency can often be improved by selecting a sample either by 
exposure or outcome, depending on which is rarer in the target population. 

Regardless of which criteria are used to select study subjects, those subjects 
should be representative of their counterparts in the target population. In other 
words, when a sample is selected by exposure, sample subjects should be representa­
tive of those members of the target population having the studied levels of exposure. 
When selected by outcome, sample cases and controls should be representative of 
cases and controls in the target population. Finally, when "other" criteria are used, 
sample subjects should be representative of the overall target population. If study 
subjects are truly representative of their counterparts in the target population, then 
the results of the study can be safely extended to that population. If the sample is not 
known to be representative, the main concerns are the potential for sample distor­
tion bias (discussed in Chapter 5) and uncertainty as to whom the study results may 
be applied. 

One way of ensuring representativeness is by random sampling. In simple random 
sampling, each member of the target population has an equal probability of being 
selected for the study, and that probability depends only on chance, i. e., a random 
event, and not on either the investigator or the subject. The usual way this is 
achieved is by obtaining a list of persons in the target population and then using a 
table (or computer-generated list) of random numbers to assign a number to each 
person. 

An example of a random number table is contained in Appendix Table A.1. The 
table can be entered at any point, e. g., at the beginning or by pointing while "blind­
folded." The investigator then continues through the table, either down the columns 
or across the rows, assigning successive numbers to the next person on the list. The 
"rules" for sample selection should be established beforehand and are based on the 
size of the desired sample. If a 50% simple random sample (of the target population) 
is needed, odd- or even-numbered persons could be selected. For a 25% sample, 
those persons whose number is evenly divisible by 4 could be chosen. A similar 
procedure can be used for any fixed fraction (e.g., 1110, 1130, 11100). If a specific 
number of sample subjects is desired, e.g., 137, then the subjects with the 137 high­
est (or lowest) numbers can be chosen. The main requirement is that the method of 
selection is decided before entering the table, so that neither the subject nor the 
investigator can exert any influence on the choice. 

In stratified random sampling, individuals from certain clinical or sociodemo­
graphic subgroups (strata) are selected more frequently. This strategy is often used 
to ensure that the study sample is representative of the target population with 
respect to subgroup (stratum) membership, e.g., race, sex, marital status. It is also 
essential in examining results separately in those subgroups that, owing to their small 
size, may require oversampling to provide more stable (reproducible) estimates. 

Finally, clustered random sampling involves the random selection of natural 
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groups (clusters) of subjects, such as households or villages. This method is often 
used for practical reasons: to reach a greater number of subjects with a limited 
amount of research personnel or other resources. 

4.3.3 Axis III: Timing 

When both exposure and outcome occur (or begin) prior to the selection of study 
subjects, the timing is historical. Alternatively, both exposure and outcome may 
occur as the investigator studies them (concurrently). Or, as is the case in many 
studies, the exposure may have occurred in the past, but the outcome is concurrent. 
This is an example of a mixed timing research design. Designs combining subjects 
with historical exposure and outcome and others with concurrent exposure and out­
come are also considered to have mixed timing. These distinctions are important 
only to the extent that measurement of exposure is enhanced (i. e., more valid and 
reproducible) when planned and implemented by the investigator. Historical studies 
may be more prone to misclassification of exposure and! or outcome than concur­
rent cohort studies and hence may be less sensitive for detecting a true exposure­
outcome association. 

As with sample selection, timing is somewhat dependent on the directionality of 
the study design. Its major relevance is for cohort studies, which can easily accom­
modate any of the three timing strategies. Most cross-sectional studies are concur­
rent, while most case-control studies use a mixed timing design. 

4.3.4 Summary of Three Axes 

Each axis thus has three different points: 

For directionality: cohort, case-control, or cross-sectional 
For sample selection: by exposure, outcome, or other criteria 
For timing: historical, concurrent, or mixed 

Seven designs are defined by directionality and sample selection (see Table 4.1). 
Cohort studies can select study samples by exposure or other criteria; case-control 

Table 4.1. Classification of epidemiologic research designs defined by directionality and sample 
selectiona 

Sample selection 
Exposure 
Outcome 
Other 

Directionality 

Cohort 

A 

B 

Case-control 

C 
D 

a Capital letters refer to examples in the text. 

Cross-sectional 

E 
F 
G 
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studies, by outcome or other criteria; and cross-sectional studies, by any of the 
three. 

Each of the directionalities can incorporate either incident or prevalent out­
comes. Incident outcomes develop de novo during subject enrollment or follow-up, 
whereas prevalent outcomes are those present at a single point in time. Most cohort 
studies use incident outcomes, although one could imagine a design in which the 
(prevalent) outcome was determined at a single point in time during follow-up after 
exposure. For example, current blood pressure might be measured in a group 
of adults followed since birth, with exposure defined as salt intake during infan­
cy or childhood. Cross-sectional studies generally utilize prevalent outcomes, but 
incident outcomes are also feasible. Patients presenting with myocardial infarction, 
for example, might be interviewed concerning their current smoking habits. 
Case-control studies are common using either incident or prevalent cases of the 
outcome. 

When prevalent outcomes are used and sample selection is by criteria other than 
exposure or outcome, the distinction between cohort and case-control studies disap­
pears. Directionality can be either forward or backward, and the results can be ana­
lyzed using either the cohort or case-control approach. A study of the relationship 
between current blood pressure and prior salt intake in a community random sample 
could therefore be classified as either a cohort or case-control design. 

Finally, the distinction between case-control and cross-sectional studies can also 
become blurred under certain circumstances. When sample selection is based on 
outcome and the exposure variable is a permanent attribute (e. g., sex, race, or blood 
group) that can be assumed to have been present prior to the outcome, simultaneous 
and prior exposure are equivalent. Similarly, whenever simultaneous exposure is a 
valid proxy for exposure occurring at a time in the past consistent with the known or 
suspected biologic mechanism of causation, the two designs become interchange­
able. Thus, it may sometimes be more useful to think about epidemiologic research 
designs not as discrete entitites, but as lying on a continuous spectrum without sharp 
boundaries. 

4.3.5 Examples 

The following examples constitute seven different ways of examining the same basic 
research question: 

Does occupational exposure to asbestos increase the risk of subsequent lung cancer? 

Each example listed in Table 4.1 (as indicated by its letter A to G) illustrates one of 
the seven basic designs defined by directionality and sample selection. Each of these 
seven basic combinations can incorporate historical, concurrent, or mixed timing, 
thus yielding a total of 21 different research designs. These are illustrated in Fig. 4.1, 
which represents a 3 X 3 X 3 cube with two "tunnels" indicating the six impossible 
combinations (sample selection cannot be by outcome in cohort studies or by expo­
sure in case-control studies). The figure also indicates the seven basic designs illus­
trated in the examples. 
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Fig .•. 1. The research design cube. The two tunnels represent the six impossible combinations of 
directionality and timing. Capital letters refer to the seven basic designs listed in Table 4.1 and illus­
trated in the text 

A. Cohort study with sample selection by exposure. In this type of study, a group of 
workers who were exposed to asbestos over 30-40 years might be followed up for 
development of lung cancer and compared with a group of workers who were not 
exposed to asbestos. 

B. Cohort study with "other" sample selection. This study would be similar to A, 
except that instead of sampling exposed and nonexposed workers, we might select 
all workers in a given plant, determine their cumulative exposure, and then follow 
them all up for subsequent development of lung cancer. 

C. Case-control study with sample selection by outcome. Workers who have developed 
lung cancer are compared with a group of those who have not for a history of prior 
exposure to asbestos. 

D. Case-control with "other" sample selection. This is similar to C, except that instead 
of choosing groups of cases and controls, all workers in a given plant are selected 
for study. Lung cancer status is determined, and workers with and without disease 
are compared for their history of prior asbestos exposure. This design would be 
inefficient relative to C, since very few workers would be expected to have lung can­
cer at any given point in time. 

E. Cross-sectional study with sample selection by exposure. Workers with and without 
exposure to asbestos are compared for the simultaneous presence or absence of lung 
cancer. This design would share the same inefficiency as D but would have the addi­
tional cart-vs-horse causality inference problem of not knowing whether the expo­
sure occurred at a biologically relevant time in the past (d. "latent period"). 
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F. Cross-sectional study with sample selection by outcome. The records of workers 
with and without lung cancer at a specific point in time are compared for simulta­
neous exposure to asbestos. This design would be more efficient than E because of 
the rarity of lung cancer but would share its inferential shortcomings. 

G. Cross-sectional study with "other" sample selection. All workers in a given plant are 
classified simultaneously by asbestos exposure and lung cancer status. This design 
would share the same inefficiency as D and E and the same causality inference prob­
lem as E and F. 

4.3.6 "Prospective" and "Retrospective" Studies 

"Prospective" and "retrospective" are two of the most familiar, and most confusing, 
terms used in describing epidemiologic research designs. These terms have been 
applied to all three of the methodologic aspects (axes) discussed above. For example, 
"prospective" has been interpreted by various authors as indicating forward direc­
tionality, sample selection by exposure, or concurrent timing. Conversely, "retro­
spective" has been used to indicate backward directionality, sample selection by out­
come, or historical timing. Some authors have even gone so far as to use a combined 
nomenclature, leading to such semantic difficulties as "historical prospective" 
studies. Furthermore, these two terms have also been used to indicate an important 
aspect of the statistical analysis, namely, whether the hypotheses tested were enun­
ciated prior to data analysis ("prospective") or were "generated" by the data ana­
lyzed, i. e., arose post hoc ("retrospective"). Thus, as shown in Table 4.2, there 
appear to be at least four current usages of these two terms. To prevent what would 
otherwise be inevitable confusion, I will avoid the terms entirely. 

4.4 Concluding Remarks 

Because both the logic of causal inference and the statistical expressions of expo­
sure-outcome associations depend largely on directionality, Axis I will serve as the 
major axis of classification, and hence as the basis for the chapter headings in the 
remainder of Part I of this text. I have devoted one chapter each to observational 
cohort studies and experimental cohort studies (also called clinical trials). These will 
be followed by chapters on case-control and cross-sectional studies. 

Table 4.2. Usages of the terms "prospective" and "retrospective" 

Methodologic aspect "Prospective" "Retrospective" 

Directionality forward backward 
Sample selection by exposure by outcome 
Timing concurrent historical 
Hypothesis testing a pnon post hoc 
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Before discussing these designs in further detail, we need to consider a methodo­
logic issue relevant to all epidemiologic research, regardless of design: analytic bias. 
The types, sources, and control of analytic bias are the focus of the following chap­
ter. 

Reference 

1. Kramer MS, Boivin J-F (1987) Toward an "unconfounded" classification of epidemiologic 
research design. J Chronic Dis 40: 683-688 



Chapter 5: Analytic Bias 

5.1 Validity and Reproducibility of Exposure-Outcome 
Associations 

In this chapter we are concerned with bias that arises in making inferences about the 
causal relationship between exposure and outcome in a particular target population, 
based on data in a study sample from that target population. As discussed in Chap­
ter 4, both exposure and outcome can be measured on either a continuous or a cate­
gorical scale, and the measure of their association usually takes one of two forms: 
(a) a difference in outcome means or rates in two or more exposure groups or (b) a 
statistical index of the exposure-outcome interrelationship. The purpose of an ana­
lytic epidemiologic study is to provide a valid estimate of this measure, and bias is 
the extent to which the sample estimate systematically differs from the true value of 
the association in the target population. A biased (invalid) inference can also occur if 
the temporal sequence between exposure and outcome is reversed in the target pop­
ulation, i. e., if the study outcome actually precedes and causes the hypothesized 
exposure. 

It is important to emphasize the distinction here between bias in estimating an 
association, which is called analytic bias, and bias in the performance of individual 
measurements. The latter was discussed extensively in Chapter 2. Although biased 
measurements are one source of analytic bias, perfectly valid measurements are no 
guarantee against a biased estimate of association. 

In addition to speaking about the validity of an association, we can also refer to 

its reproducibility. Because of random variation in the individual measurements and 
the size of the study sample, the magnitude of the estimate of an association might 
not be highly reproducible. Repetitive sampling of study subjects from the same tar­
get population would result in a range of estimates for different samples. This con­
cept is known as sampling variation and will be discussed in greater detail in 
Chapters 10 and 12. For now, it suffices to say that the smaller the sample, the less 
reproducible will be the sample estimate. In the absence of analytic bias, however, 
the average estimate should equal the true value of the association in the respective 
target population. Since we usually can study only single samples from the target 
populations of interest, we calculate a range in which we are reasonably confident 
that the true value must lie. The methods for making such calculations comprise an 
important aspect of statistical inference and will be taken up in Part II of this text. 
The important point here is that, as with individual measurements, exposure-out­
come associations can be highly reproducible without necessarily being valid. 
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5.2 Internal and External Validity 

The effect of analytic bias is to invalidate an inference about the causal effect of 
exposure on outcome in the target population. Internal validity is the extent to 
which the analytic inference derived from the study sample is correct for the target 
population. In other words, analytic bias impairs a study'S internal validity. Internal 
validity also depends on proper statistical inference about the target population 
based on data obtained in the study sample. 

The external population is a large group of persons with less restrictive attributes 
than those of the target population but to whom the investigators may wish to gen­
eralize the study's results. The external validity, or generalizability, of a study is the 
extent to which an exposure-outcome association found in the study sample is also 
true in the external population. Obviously, external validity is dependent on internal 
validity. Results that are not valid for the target population will not be valid for the 
external population. Thus, striving for internal validity by avoidance of analytic bias 
becomes the methodologic sine qua non for any analytic epidemiologic study. If 
internal validity is assured, an investigator can maximize external validity by select­
ing study subjects from a target population as similar as possible to the external pop­
ulation to which he (or others) may wish to generalize the study's results. 

The relationships between the study sample, target population, and external' 
population, and their relation to internal and external validity are shown in Fig. 5.1. 

A good illustration of these concepts is the Veterans Administration clinical trial 
of the treatment of hypertension (high blood pressure [1]). The study sample con­
sisted of 143 men who were 30-73 years of age and veterans of the U. S. armed 
forces, had average diastolic blood pressures ranging from 115 to 129 mmHg, were 
initially free of complications of hypertension, and were compliant with treatment. 
The results showed a reduction in complications (death, stroke, and eye, heart, or 
kidney damage) in those who received the active treatment (a combination of 
hydrochlorothiazide and reserpine). The reduction was statistically significant, i. e., 
chance (random variation) could be reasonably excluded as an explanation. The 
study was carefully designed and analyzed and seems free of analytic bias, so its 

Fig.5.1. Internal and external validity 
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Table 5.1. The four sources of analytic bias 

1. Sample distortion bias: estimate of exposure-outcome association is biased because the study sam­
ple is unrepresentative of the target population with respect to the joint distribution of exposure 
and outcome. 

2. Information bias: estimate of exposure-outcome association is biased as a result of error in mea­
surement of exposure or outcome. 

3. Confounding bias: estimate of exposure-outcome association is biased by one or more variables 
associated both with exposure and, independently of exposure, with outcome. 

4. Reverse causality bias: estimate of exposure-outcome association is unbiased in magnitude but 
biased in the inferred direction of causality, because the study outcome actually preceded and 
caused the exposure. 

internal validity is generally accepted. The main controversy concerns its external 
validity. Are the results also applicable to nonveterans? To women? To younger or 
older patients? To patients with lower or higher diastolic blood pressures? To those 
who already have complications? To those who are less compliant with treatment? 
These questions are difficult or impossible to answer from the study, and subsequent 
studies of antihypertensive therapy have been required to provide such answers. 

External validity, although useful conceptually, is often difficult to evaluate, 
since the degree to which results valid in one population can be generalized to 
another depends on clinical judgment and other factors beyond the realm of 
research design or statistical analysis. Therefore, the remainder of this chapter will 
concern internal validity and, in particular, sources of analytic bias and strategies to 
reduce it. Proper statistical inference, the second requirement for internal validity, 
will be the focus of Chapters 12-15. 

The sources of analytic bias can be classified into four broad categories: (a) sam­
ple distortion bias, (b) information bias, (c) confounding bias, and (d) reverse causality 
("cart-vs-horse") bias. They are summarized in Table 5.1 and will be discussed in 
turn. 

5.3 Sample Distortion Bias 

Neither an investigator nor the public he intends to benefit is particularly interested 
in results that apply only to the subjects participating in a given study. Unless the 
study subjects are representative of some target population of interest, the results 
will have little meaning. Since, for reasons of feasibility, the entire target population 
can rarely be studied, some sample selection procedure, whether explicit or implicit, 
must usually be employed. When the study sample is distorted either at the time that 
subjects are selected or (in cohort studies) during follow-up, sample distortion bias 
may occur. Sample distortion bias! is a systematic error in the estimation of the 

1 Many authors use the term selection bias to refer to what I have called sample distortion bias [2]. 
But "selection bias" has also been used by some epidemiologists to indicate the confounding effect 
that can occur when study subjects (or their families, physicians, or other proxies) select their own 
exposure. To avoid confusion, I will use the term "exposure selection bias" to refer to this type of 
confounding (see Section 5.5). 
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degree of exposure-outcome association in the target population caused by a study 
sample that is unrepresentative (with respect to the joint distribution of exposure 
and outcome) of that target population. 

As outlined in Chapter 4, sample selection can occur by exposure, outcome, or 
other criteria. If by exposure, the investigators want the sample subjects to be repre­
sentative of those persons in the target population exposed or not exposed (or 
exposed to different degrees) to the agent or treatment under study. If selected by 
outcome, the sample subjects should be representative of all those persons in the tar­
get population with the outcome under study. If sample selection is by other criteria, 
the investigator must ensure that he knows the characteristics of the target popula­
tion of which the sample is representative. 

In practice, it is often difficult to list, or even identify, all the members of the tar­
get population. In most instances, the investigator does not have access to the entire 
target population, even if he knows who or where they are. He usually chooses 
some accessible group or groups, characterizes them as best he can by relevant 
sociodemographic and clinical attributes, and then mentally attempts to construct 
the theoretical target population that he believes is represented by his sample. 

This process, however, is fraught with difficulty. As shown in Fig. 5.2, distortion 
can occur at several steps in the selection and assembly of the study sample. Persons 
in the investigator's geographic region may not be representative of those in the 
entire target population of interest. If the study sample is based on patients who are 
referred in from the community, further distortion may occur. Moreover, the inves-
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Fig. 5.2. Sources of possible distortion in the selection and 
(for cohort studies) follow-up of a study sample 
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tigator may be unable to identify all patients referred to his center, he may fail to 
contact some of those he can identify, and a sizeable number of those he does con­
tact may not agree to participate. 

It is important to point out, however, that nonrepresentativeness does not neces­
sarily lead to bias. In particular, the association between exposure and outcome will 
be biased only when the sample distortion is differential with respect to exposure and 
outcome. If sample selection is by outcome, for example, bias will be introduced 
only if, for a given outcome status, the exposures in subjects who are studied are dif­
ferent from those who are not. Suppose that we wish to use a case-control design to 
investigate the association between cigarette smoking and lung cancer. Even if our 
cases (lung cancer patients) and controls are not representative of all cases and con­
trols in the target population, no bias will occur in the estimate of the smoking-lung 
cancer association unless the cases (or controls) in the sample are either more or less 
likely to have a history of cigarette smoking than those in the target population. 

In cohort studies, sample distortion can occur owing to geographic maldistribu­
tion; referral patterns; selective identification or contact of potential subjects; selec­
tive participation (response); or death, withdrawal from the study, or other loss to 
follow-up (see Fig. 5.2). If subjects who die, withdraw, move away, or refuse to 
respond before the outcome is determined are different with respect to their expo­
sure-outcome relationship than those remaining in the study, bias will be introduced. 
For example, in a cohort study of the relationship between radiation exposure and 
subsequent leukemia, if many subjects with heavy exposure move away from the 
study site and are particularly likely to develop leukemia, the true magnitude of the 
association will be underestimated. 

Case-control and cross-sectional studies share the same sources of sample distor­
tion bias as cohort studies. The absence of follow-up in case-control and cross-sec­
tional designs, however, means that death, withdrawal, moving away, and other 
losses are "hidden," in the sense that they have already occurred by the time the 
study samples are selected. Since the outcome status is already determined at the 
time the study is begun, any distortion, and, hence, bias arising therefrom, has 
already occurred. 

A specific type of sample distortion bias can occur in case-control or cross-sec­
tional studies carried out in a referral setting. Consider, for example, the association 
between two factors (usually two diseases, one of which can be thought of as the 
"exposure" and the other, the "outcome," i. e., one disease that is hypothesized to 
cause, or predispose to, the other), each of which is subject to referral. The coinci­
dence of (positive association between) the two factors will then be falsely elevated. 
Persons with both factors have a higher probability of being referred into the study 
center than those with either factor alone, since they have two "chances" of referral 
instead of just one. For example, if 50% of patients with disease A and 50% of pat­
ients with disease B are referred, those with A or B alone will each have a 50% 
chance of referral, whereas those with both will have a 75% chance (50% referred 
for disease A and 50% of the remainder for disease B). Thus, among referred pat­
ients selected into a study sample, the proportion with both diseases will be higher 
than the proportion in the community. This problem was originally described by 
Berkson in case-control studies carried out in a hospital setting, and the resulting 
bias is often referred to as Berkson's bias [3, 4). 
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What can be done about sample distortion bias? Once the study is completed 
and the data are obtained, the problem may be beyond repair. The exposure and 
outcome status are unknown, of course, for members of the target population who 
were not selected or were lost to follow-up. Otherwise they would have been 
included. Unless at least the relative probabilities of initial inclusion and (for cohort 
studies) subsequent loss are known for all combinations of exposure and outcome, 
no adjustment can be made. Since specific data from previous studies concerning 
inclusion and loss as a function of exposure and outcome are not generally available, 
the best the investigator can do is to estimate the magnitude of the potential bias and 
mitigate his inferences accordingly. 

Sometimes, even the maximum possible bias would not affect a study's overall 
result. In the previously cited Veterans Administration trial of antihypertensive ther­
apy [1], the investigators ruled out possible sample distortion bias due to study drop­
outs by assuming a "worst case" scenario (complications in all dropouts from the 
active treatment group but in none of the dropouts from the control group). Even if 
this unlikely possibility had occurred, the results would still have favored the active 
treatment group. 

As elsewhere in medicine, however, prevention is preferable to cure. The best 
way to avoid bias due to sample distortion is to strive for random (or otherwise rep­
resentative) sampling when study groups are assembled and, in cohort studies, to 
minimize losses due to dropouts, nonresponse, or incomplete follow-up. 

5.4 Information Bias 

In/onnation bias, which was mentioned in Chapter 2, is the bias that occurs in assess­
ing the association between exposure and outcome as a result of error in measure­
ment of exposure or outcome status. If the errors are random (i. e., the measure­
ments have poor reproducibility), the bias will always be toward reducing the extent 
of association. In other words, highly variable but unbiased measurements will lead 
to an underestimate of the magnitude of the exposure-outcome association. In 
engineering parlance, the "signal-to-noise ratio" will be reduced. 

Systematically biased individual measurements will have different effects, 
depending upon whether the bias is nondiffirential (the same bias occurs with differ­
ent exposure-outcome combinations) or diffirential (the bias changes according to 
exposure and outcome status or occurs only with certain exposure-outcome combi­
nations). Nondifferentially biased individual measurements lead to a falsely low esti­
mate of the exposure-outcome association. Differentially biased measurements, 
however, can lead to either a falsely low or a falsely high estimate, depending on the 
pattern of bias within exposure-outcome combinations. 

Thus, "sloppy" or nondifferentially biased measurements usually lead to conser­
vative estimates of the exposure-outcome association. As discussed in Chapter 2, this 
can be considered either beneficial or harmful, depending on one's point of view. 
Differentially biased measurements, however, can create statistically significant asso­
ciations that do not, in fact, exist. Differentially biased measurements are particu-
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larly likely to occur when study subjects and/or observers are aware of (i. e., are not 
"blind" to) the research hypothesis and the subjects' exposure or outcome status. 

Differentially biased measurement can also occur whenever outcome detection 
procedures vary with exposure. This bias (which is also called detection bias) may 
result from more frequent or thorough surveillance (in cohort studies) or from the 
more frequent use of diagnostic tests and is particularly likely to occur when the 
outcome can occur "silently," i. e., when detailed examination or special tests may be 
required to detect it. In a cohort study comparing rates of subsequent breast cancer 
in users and nonusers of oral contraceptives, for example, more frequent physical 
examinations or roentgenography (mammograms) might occur in users, who 
require regular contact with their gynecologists in order to renew their oral contra­
ceptive prescriptions. Since many early breast cancers can be detected only by care­
ful examination or roentgenography, this source of information bias could create a 
false association between contraceptive use and breast cancer. 

As with sample distortion bias, little can be done about information bias once the 
study data are collected. Unless the direction and magnitude of the measurement 
errors are known for different exposure-outcome combinations (e. g., differences in 
surveillance and detection), the best the investigator can do is estimate the effect of 
the potential bias and moderate his inferences accordingly. Partial control for detec­
tion bias can sometimes be achieved, however, by stratification or multivariate statis­
tical control for the frequency or intensity of surveillance or diagnostic testing. 

On the other hand, much can be done in the design and execution stages to min­
imize information bias. Procedures for surveillance (in cohort studies) and detection 
of the outcome should be standardized, established before the study begins, and 
maintained until completion. Measurements of exposure and outcome should be 
carried out by trained observers using pretested methods, so that the reproducibility 
and validity of the measurements are maximized. Study subjects and observers 
should, whenever scientifically feasible and ethically defensible, be kept "blind" to 
the research hypothesis (the hypothesized exposure-outcome association). Observ­
ers should also be blind to the subjects' exposure (for cohort studies) or outcome­
(for case-control studies) status. In summary, information bias can be minimized by 
standardizing detection procedures, maintaining a high quality of individual mea­
surements, and adequately blinding subjects and observers. 

5.5 Confounding Bias 

5.5.1 Deftnition 

Confounding bias is present whenever the sample estimate of association between 
exposure and outcome is distorted by one or more extraneous variables. An extrane­
ous variable will confound the exposure-outcome association whenever the variable 
(a) is associated with exposure; (b) is associated with outcome, independently of 
exposure; (c) does not lie on the hypothesized causal path from exposure to out­
come. A variable that satisfies all three of these criteria is called a confounding vari­
able or confounding factor. 
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A variable related only to exposure will not confound the exposure-outcome 
association. For example, in studying the possible association between maternal 
alcohol (ethanol) consumption and low birth weight, investigators know that mem­
bers of certain religious groups are less likely to drink alcohol than others. Unless 
religion is a risk factor for low birth weight independently of its association with 
drinking, however, no bias will be introduced. 

Similarly, a variable related only to outcome, and not to exposure, will not con­
found the exposure-outcome association. It is known, for example, that short moth­
ers tend to have small babies. Unless short mothers differ in their drinking habits 
from taller mothers, however, the association between alcohol consumption and low 
birth weight will remain unbiased. 

Cigarette smoking, on the other hand, might indeed confound an association 
between maternal drinking and birth weight. Not only is smoking known to be an 
independent risk factor for low birth weight, but it is also associated with drinking, 
since drinkers are more likely to smoke than nondrinkers. Thus, criteria (a) and (b) 
are both satisfied. Since the causal path by which maternal alcohol consumption 
reduces fetal growth does not involve cigarette smoking, criterion (c) is also met. 

Control for a variable that lies on the causal path between exposure and out­
come will lead to a biased underestimate of exposure-outcome association. In a 
study of the association between maternal smoking and infant mortality, birth 
weight is not a confounder, even though it is positively associated with both mater­
nal smoking and infant death. Because smoking may cause infant death through its 
effect on reducing intrauterine growth (and increasing the risk of premature birth), 
control for birth weight would falsely reduce and perhaps even eliminate the effect 
on infant mortality. 

When a variable satisfies all three criteria for confounding, it should be con­
trolled for. When a variable not lying on the causal path from exposure to outcome 
is associated with either exposure or outcome, but not both, the estimate of expo­
sure-outcome association will be unbiased whether or not the variable is controlled 
for. In studies where the variable under consideration is continuous and is associated 
with a continuous outcome, controlling for that variable may enhance the reproduc­
ibility of the estimate of exposure-outcome association. In other types of studies, 
however, such control may yield no benefit or even reduce the reproducibility of the 
estimate. 

5.5.2 Sources of Confounding 

Confounding can arise in several ways: 

1. The underlying susceptibility or risk for developing the outcome is higher at base­
line, i. e., prior to exposure, in one exposure group than in another (susceptibility 
bias). A study designed to assess the effect of fishing (as an occupation) on the risk 
of skin cancer, for example, should ensure that the proportion of subjects with fair 
complexions is similar among the fishermen and in the control group. Because fair­
skinned persons are far more susceptible to skin cancer, their unequal distribution 
(fishermen vs nonfisherman controls) would confound any association between fish­
ing and skin cancer. 
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2. Study subjects or their families, physicians, or other proxies select their own expo­
sure, and the motive or reason for selection is associated with outcome (exposure 
selection bias). Exposure selection bias is, in fact, a special case of susceptibility bias. 
For example, an observational cohort study comparing maternal attachment behav­
ior in breast-feeding and bottle-feeding mothers is likely to be confounded if moth­
ers who select breast-feeding differ in important psychological ways that influence 
their behavior toward their infants. 

Observational studies of treatment effects are highly prone to this type of bias, 
because the clinical indications for certain treatments may be strongly related to the 
outcome, independent of treatment. Miettinen refers to this as confounding by indi­
cation [5]. As an example, many new and experimental, but toxic, cancer chemo­
therapeutic agents are given only to patients with advanced disease who have been 
resistant to all conventional treatments. An observational study would likely reveal 
that patients treated with such a drug were more likely to die. The result is con­
founded, however, by the selection of patients who were likely to die anyway as 
treatment subjects. 

3. The exposure is accompanied by other agents or maneuvers that can affect ("con­
taminate") the outcome (accompaniment bias or contamination bias). This source of 
confounding is particularly likely to occur in studies of treatment. Patients receiving 
a promising new treatment may receive more attention, better nursing care, and bet­
ter general supportive therapy than those receiving the "standard" treatment, and 
these accompaniments may be responsible for a more favorable outcome in the for­
mer group. 

5.5.3 Control for Confounding Bias 

Confounding can be controlled in either the research design or data analysis phase. 
In the design, the best way of eliminating susceptibility and exposure selection 
biases, where feasible, is to use an experimental design (i. e., clinical trial) and to ran­
domly assign exposure to study subjects. Although, as will be discussed further in 
Chapter 7, randomization does not guarantee that these sources of confounding will 
not occur, it renders the possibility far less likely. 

When a randomized clinical trial is infeasible, susceptibility and (to some extent) 
exposure selection bias can be reduced by restriction of the study sample according 
to certain characteristics (e.g., exclusion of men or nonsmokers) or by matching 
members of the compared groups according to the potentially confounding vari­
ables. Matching can be accomplished either within study groups (i. e., equalize the 
average value or distribution of the confounders within each group) or with individ­
uals (each subject in one group is matched to one or more subjects in the compari­
son group). Both approaches result in bias reduction. The choice between the two 
will depend on the type of confounding variable, i. e., continuous vs categorical, and 
if categorical, on the number of categories. 

Even if no control for susceptibility or exposure selection biases is incorporated 
in the study design, the investigator should attempt to measure factors that could 
potentially confound the exposure-outcome association. These factors can then be 
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controlled for later in the analysis. Furthermore, to control for contamination bias in 
concurrent cohort studies, study subjects and their care-givers should be blind, 
where feasible, to both the study hypothesis and the subjects' exposure status. 

Control for confounding in the data analysis stage can be accomplished in 
several, nonmutually exclusive ways: 

1. Restriction in the analysis is, of course, automatic if restriction was incorporated 
in the design. If not part of the design, a restricted analysis (e. g., analyzing only the 
results in women or nonsmokers, rather than in all study subjects) will "waste" data 
in subjects not meeting the restriction criteria. This not only reduces the sample size 
and, therefore, the reproducibility of the resulting estimate of the exposure-outcome 
association, but also distorts the original study sample so that it no longer represents 
the original target population. 

2. Matching should be used in the analysis if it was used in the design; otherwise, the 
resulting estimate of the exposure-disease association will be less reproducible. 
Matching in the analysis in a study without a matched design carries the same 
"waste" and'sample size penalties as mentioned for restriction. 

3. Stratification and standardization accomplish the same goal as restriction but do 
not waste data, because all study subjects can be included in one or another stratum. 
These methods were illustrated in Chapter 3 in comparing death rates in Millville 
and Sunnyvale. Community of residence is the "exposure" variable here, and death 
is the outcome. The overall death rates favor Millville but are confounded by age 
(the population of Sunnyvale being much older). The age stratum-specific and over­
all adjusted rates control for confounding bias and demonstrate that Sunnyvale, in 
fact, has a lower death rate for similarly aged persons. Stratification and standard­
ization will be illustrated futher in Chapters 6 and 8. 

One of the disadvantages of these methods is that simultaneous control of 
several confounders requires a separate stratum for the combination of each con­
founder with every other. This not only becomes computationally unwieldy, but also 
results in small (and thus poorly reproducible) numbers in each stratum. 

4. Multivariate statistical techniques can be used to control simultaneously for several 
confounding variables. Modern computer technology and readily available statistical 
software packages enable calculations of an unbiased estimate of exposure-outcome 
association after adjustment for the association of each confounder with exposure, out­
come, and other confounders. Although multivariate statistical techniques are large­
ly beyond the scope of this text, they will be discussed briefly in Chapters 13-15. 

5.6 Reverse Causality ("Cart-vs-Horse") Bias 

An internally valid inference about causality depends on temporal sequence; obvi­
ously, exposure can cause outcome only if it precedes it. Particularly in cross-sec­
tional studies (see Chapter 4), deciding which is the "cart" and which is the "horse" 
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is not always straightforward. Certain exposure factors are known to be present 
from birth, such as sex, blood type (ABO system), and racial origin. But for other 
factors, it may be difficult to be sure whether exposure preceded outcome or vice 
versa. 

Cohort studies can protect themselves against this problem by ensuring that 
study subjects are free of the outcome at the time exposure begins. Case-control 
studies can use incident outcomes and specifically inquire about prior exposure, 
although exposure histories depend on valid records or subject recall. An experi­
mental approach (clinical trial) provides the best evidence that exposure precedes 
outcome, since subjects are assigned their exposures by the investigator. 

5.7 Concluding Remarks 

Recognition of the sources of potential analytic bias and the appropriate methods 
for their avoidance and reduction are of fundamental importance in epidemiologic 
research. The study of human beings is far more complex than experimental studies 
of animals, cells, or biochemical extracts. Human behavior can influence the forma­
tion of groups, sampling, measurement, and the outcome itself. 

Total absence of analytic bias, however, is an illusory goal. Validity is not a 
dichotomous concept, and most studies are both valid and invalid to varying 
degrees. The presence of a small potential source of bias does not necessarily invali­
date a study's findings. Black and white answers are rare; most scientific advances 
depend on shades of gray. It requires considerable experience to interpret shades of 
gray, i. e., to appreciate which biases, real or potential, are serious. Since the perfect 
epidemiologic study has yet to be carried out, unfettered criticism can result in a 
rather depressing scientific nihilism. It is useful to reflect, however, that landmark 
epidemiologic studies that have changed the history of medicine would all, if placed 
under the epidemiologic "microscope," reveal imperfections. 

Epidemiologic knowledge advances in spite of analytic bias. It advances more 
surely, however, when careful attention is given to proper design and analysis. In the 
discussion of the specific research designs and statistical techniques that follow, I 
shall continue to emphasize the importance of controlling bias and the techniques 
for doing so. 

References 

1. Veterans Administration Cooperative Study Group on Antihypertensive Agents (1967) Effects of 
treatment on morbidity in hypertension: results in patients with diastolic blood pressures averag­
ing 115 through 129 mmHg. JAMA 202: 186-192 

2. Kleinbaum DG, Morgenstern H, Kupper LL (1981) Selection bias in epidemiologic studies. Am 
J Epidemiol113: 452-463 

3. Berkson J (1946) Limitations of the application of fourfold table analysis to hospital data. Biometr 
Bull 2: 47-53 

4. Walter SD (1980) Berkson's bias and its control in epidemiologic studies. J Chronic Dis 33: 
721-725 

5. Miettinen OS (1983) The need for randomization in the study of intended effects. Stat Med 2: 
267-271 



Chapter 6: Observational Cohort Studies 

6.1 Research Design Components 

6.1.1 Introduction 

An analytic cohort study is a study in which subjects are followed in a forward 
direction from exposure to outcome: 

exposure -+ outcome 

Analytic cohort studies can be either experimental (exposure assigned by the investi­
gator) or observational (exposure arises naturally, is selected by the subject, or is 
prescribed by the subject's clinician). Experimental cohort studies, which are usually 
called clinical trials, have achieved such widespread importance' that we will delay 
our discussion of them until Chapter 7. This chapter will be limited to a consider­
ation of observational cohort studies. 

6.1.2 Sample Selection (Assembling the Cohort) 

As discussed in Chapter 4, two methods are available for sample selection in cohort 
studies: by exposure status or by "other" criteria. If by exposure, the study sample 
should be representative of exposure groups in the target population. If by "other" 
criteria, the sample should be representative of the entire target population. A 
nonrepresentative sample makes it difficult to judge the population of individuals to 
whom the study's results apply. Of the two choices, sample selection by exposure is 
usually preferable when exposure is rare in the target population, in order to have 
enough exposed subjects in the sample to provide statistically meaningful results. For 
example, studying the carcinogenic effects of exposure to an unusual environmental 
toxin can best be achieved by finding as many exposed subjects as feasible, rather 
than by choosing a "convenience" or random sample of the entire target population. 

Sample selection by exposure implies the use of a discrete number of exposure 
categories, i. e., a dichotomous or ordinal measure of exposure. When the exposure 

1 In fact, when the term "cohort study" is otherwise unspecified, it usually refers to an observa­
tional, rather than an experimental, design. In accordance with this practice, we shall, in the 
remainder of this text, use "cohort study" for the observational design, and "clinical trial" for the 
experimental one. 
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under study is measured on a continuous scale, it is necessary to categorize the 
exposure data. For example, cigarette smoking can be measured as a continuous 
variable: the number of cigarettes smoked per day. It can be easily dichotomized or 
"ordinalized," however. We might compare outcomes in smokers vs nonsmokers or 
in light (;:;; 5 cigarettes/day) vs heavy (~6 cigarettes/day) smokers. Or we might 
use a four-category ordinal scale: nonsmokers, and those smoking 1-5, and 6-10, 
and ~ 11 cigarettes/day. 

The nonexposed (or least exposed) group in a cohort study is often called the 
control group or control cohort. When a new treatment is compared with some exist­
ing "standard" treatment, subjects receiving the standard treatment are also referred 
to as the control group. The degree of exposure-outcome association then becomes 
the difference in outcome occurring in the control and other exposure group(s). 

6.1.3 The Baseline State 

The baseline state of a cohort consists of the characteristics of its members before 
exposure. It includes geographic, sociodemographic (age, sex, race, marital status, 
socioeconomic status), and clinical attributes. Knowledge of the true baseline state is 
possible only when the cohort is assembled before exposure begins. In practice, 
however, cohorts are often assembled when exposure has already occurred, or at 
least begun. The investigator must then endeavor to define the baseline state that 
existed before onset of exposure to ensure that the study subjects' attributes are not 
in themselves caused by exposure. This poses no problem, of course, for "perma­
nent" attributes like race and sex, but may be quite difficult for various health and 
disease states (other than the outcome under study) that might be affected by expo­
sure. 

The main importance of an adequate description of the baseline state is the con­
trol for confounding bias, particularly the bias (susceptibility bias) that can occur in 
estimating the exposure-outcome association when the underlying susceptibility for 
developing the outcome is associated with exposure, e. g., is different in exposed vs 
nonexposed subjects. As explained in Chapter 5, this source of confounding can be 
controlled in either the design or analysis. Failure to describe the baseline state ade­
quately and to take the necessary design or analytic precautions can lead to analytic 
bias and an internally invalid inference regarding the exposure-outcome association. 

6.1.4 Exposure 

As explained in Chapter 4, the term "exposure" is to be interpreted in its broadest 
sense. It may represent a genetic, geographic, sociodemographic, or clinical attribute 
that the investigator believes to be associated with the outcome under study; a natu­
ral exposure to some environmental agent or event; a practice that the subject has 
chosen for himself; or an intervention prescribed by the subject's clinician. 

Exposure may be measured on either a categorical or a continuous measurement 
scale. Although many cohort studies use a dichotomous measure of exposure 
(exposed vs nonexposed, high vs low exposure, treatment A vs treatment B), causal-
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ity inferences can often be strengthened by finding a graded response (a dose­
response effect) according to exposure. This can be achieved by using three or more 
ordinal categories of exposure and demonstrating a monotonically increasing or 
decreasing outcome response with higher categories of exposure. It can also be 
achieved with continuous exposure measures by demonstrating an important posi­
tive or negative association with outcome. 

The exposure may be brief and occur only once (so-called point exposure), e.g., 
the atomic bomb explosions in Hiroshima and Nagasaki. It may consist of repeated 
episodes of brief exposure (recurrent exposure), such as habitual drunken driving. Or 
it may be continuous (chronic exposure), such as an infant's exposure to toxic lead 
paint in the home or the daily administration of estrogen to a postmenopausal 
woman. 

The potency of the exposure must be clinically appropriate for the exposure-out­
come association under investigation [1]. Studying the effect of an exposure that is 
too weak may result in a negative result (i. e., no exposure-outcome association) that 
may not represent the true biological consequences of degrees of exposure that 
commonly occur in the "real world." Conversely, the dramatic effect of an exposure 
that is too potent may have little clinical relevance to real-world consequences of 
commonly occurring exposure. 

Potency includes both the quantity and quality of the exposure. Quantity refers 
to how much of the agent, maneuver, or treatment is received, i. e., the dosage and 
duration of exposure. Drugs that are administered in doses that are too low or too 
high may yield results of little relevance for clinical practice, as are those adminis­
tered for too brief or too long a period of time. The quality of the exposure refers to 
how well, i. e., with what degree of skill, it is administered. An inexpert surgeon, 
psychotherapist, or physiotherapist may produce bad results even if the procedure 
performed is potentially efficacious. 

The timing of exposure is also important. Intrauterine rubella infection leads to 
severe congenital malformations when it occurs early in the first trimester of preg­
nancy but has few if any fetal consequences when it occurs later in gestation. 

When study subjects (or their clinicians) select their exposure, the opportunity 
arises for confounding due to exposure selection bias. This is particularly likely to 
occur when the exposure is a clinical treatment, and the reason for selecting the 
treatment is itself associated with the study outcome. Such confounding by indica­
tion, which was discussed in Chapter 5, is one of the reasons why clinical trials are 
usually preferable to observational cohort studies in investigating clinical treatments. 

Another source of confounding associated with exposure is contamination bias. 
If other agents or maneuvers with independent effects on the study outcome are also 
associated with exposure, the effects of the study exposure will be contaminated by 
those of the accompanying exposures. This is particularly likely to occur in studies 
of treatment. For example, patients with coronary heart disease who receive a "prom­
ising" new drug may do better than those not receiving the drug, not because the 
drug is efficacious, but because they are subjected to intensive monitoring that 
allows early detection and treatment of cardiac arrhythmias (rhythm disturbances). 
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6.1.5 Follow-Up 

The follow-up of subjects before, during, and after exposure is an important 
research design feature in cohort studies and can have a marked effect on the 
results. Follow-up begins at a point in time often referred to as zero time [2]. 
Although zero time may not be specified by name, the choice of time of entry and 
beginning follow-up of study subjects is often a crucial decision in the design of a 
cohort study. All other time measurements depend on it. 

The usual choice for zero time is the time at which exposure begins. Other 
choices, such as the time at which subjects agree to participate or the time they 
become "eligible" for exposure, may be better in some situations, however. This is 
particularly so in studies of treatments that may require a long waiting period. A 
comparison of dialysis and kidney transplantation in prolonging survival of patients 
with end-stage kidney failure thus needs to take into account that dialysis can begin 
almost immediately, whereas transplant patients may have to wait months or even 
years for a suitable donor to appear. 

Another important aspect of follow-up is that its duration should be adequate. 
Adequacy of the duration of follow-up is determined by the biological (clinical) 
relationship between exposure and outcome. It may be known from animal experi­
ments or previous clinical studies, for example, that the potential effect of a given 
exposure develops only after a certain period of time (the latent period). For infec­
tious diseases, the time between exposure to the infectious agent and the develop­
ment of clinical symptoms and signs of infection is called the incubation period. This 
usually represents the time required for the agent to multiply and for the host to 
mount its response. The latent period for other types of exposures (e.g., carcino­
genic, dietary, or "life-style" factors) may be years. Consequently, a cohort study of 
the alleged benefits of a diet low in animal fat should ensure follow-up for several 
decades if a difference in cardiovascular mortality is to be discerned. 

It is also important that the potential duration of follow-up not vary according to 
exposure status. (The actual duration of follow-up may be shorter in the exposed 
group, however, if exposure causes death. In that case, death should be included 
among the study outcomes.) 

Losses to follow-up (subjects who die from causes other than the study outcome, 
withdraw from study participation, or cannot be located by the investigators) create 
two kinds of problems. First, losses of large numbers of study subjects may result in 
a diminished sample size that prevents the exposure-outcome association from 
achieving statistical significance (discussed further in Chapter 12). If the oiItcome is 
categorical, too few outcome events may occur among remaining subjects to pro­
vide statistically meaningful results. The second problem is that losses may occur 
differentially by exposure and outcome (sample distortion bias), and the resulting 
measure of exposure-outcome association, even if statistically significant, may be 
invalid. Thus, cohort studies should attempt to maximize follow-up of study subjects 
and to characterize those who are lost in an attempt to estimate (if unable to quanti­
tate) the potential bias that might have occurred. 

The final important issue in follow-up is related to clinical surveillance and 
detection of the outcome. If the intensity (quality and quantity) of surveillance dur­
ing follow-up varies according to exposure, then the observed exposure-outcome 
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association will be biased (detection bias). This is particularly relevant for outcomes 
that are "silent" and require physical examination or special diagnostic tests. Avoid­
ance of detection bias can best be achieved by ensuring that the frequency and 
extent of surveillance are standardized in the design protocol and are followed and 
maintained irrespective of exposure status. 

6.1.6 Outcome 

The outcome is the effect that the investigator suspects may be caused by exposure. 
As discussed in Chapter 4, it is usually the change (occurrence, disappearance, 
improvement, or relief) in some health or disease state. In many cohort studies, 
several outcomes are investigated simultaneously. In particular, it is often clinically 
important to measure "soft" as well as "hard" outcomes, especially in studying the 
effects of treatment. As indicated in Chapter 2, there has been a tendency in much 
clinical research to emphasize easily quantifiable outcomes, even if they do not best 
reflect the results of treatment. In a study of the effects of a new cancer chemother­
apeutic agent, for example, pain and quality of life may be even more important to 
patients than duration of survival or the size of the tumor. 

Measurement of the outcome in cohort studies provides the greatest opportunity 
for information bias. Although random measurement errors (for either exposure or 
outcome) will generally reduce the extent of exposure-outcome association, system­
atic errors in measuring outcome that vary according to exposure can create an 
exposure-outcome association in the study sample when none in fact exists in the 
target population (see Chapters 2 and 5). This is particularly likely to arise when 
observers of a "soft" (subjective) outcome are aware of both the association under 
investigation and the subjects' exposure status. Adequate blinding of observers is 
thus necessary to avoid this source of information bias. As indicated above, avoiding 
the assessment of "soft" outcomes is not a satisfactory solution. 

The quantitative expression of the exposure-outcome association is the subject 
of the following section. Since the expression and analysis of the results of a cohort 
study depend on the measurement scales in which exposure and outcome are 
expressed, the discussion will be organized accordingly. 

6.2 Analysis of Results 

6.2.1 Exposure: Categorical 
Outcome: Continuous 

The main result of interest in these studies is the mean (x) of the outcome variable in 
each of the exposure groups (Xl for exposure group 1, X2 for exposure group 2). The 
larger the difference in mean outcomes (X2 - Xl) between exposure groups, the 
greater the exposure-outcome association. 

Let us take as an example a hypothetical cohort study of the effect of exposure 
to asbestos on cardiopulmonary fitness as reflected by the time taken to run a 100-m 
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race. The study subjects are 100 exposed male asbestos miners and 100 nonexposed 
healthy men of similar age. The exposed and nonexposed cohorts had the same 
mean times for running the 100-m race before exposure occurred in the miners, and 
both groups have been observed for 10 years without loss to follow-up. After 
10 years, the mean time taken to run the 100 m in the exposed group is 14.4 sec, 
compared with 12.2 sec in the nonexposed (control) group. The difference of 2.2 sec 
is the magnitude of the effect of exposure on outcome and expresses the degree of 
association of the outcome with the exposure. Another way of expressing the results 
is a percent change from the control mean: 

X2-XI 14.4-12.2 percent change = -_- (100) = (100) = 18.0%, 
XI 12.2 

i. e., this type and extent of exposure to asbestos made the men 18.0% slower in the 
100-m race. 

If we had had three exposure groups (nonexposed, lightly exposed, and heavily 
exposed), we would have three means (xi, X2, X3) to compare instead of just two. 
Each exposure group could then be compared with the control (nonexposed) group 
to see if the mean were different. A monotonically graded dose-response effect 
(e.g., 12.2 sec in the nonexposed, 13.5 sec in the lightly exposed, and 15.6 sec in the 
heavily exposed) would strengthen the inference of causality between exposure and 
outcome (discussed further in Chapter 19). 

6.2.2 Exposure: Continuous 
Outcome: Continuous 

To illustrate this situation, we will use the same example for outcome as in Section 
6.2.1 (time to run 100 m), but the exposure of interest will now be cigarette smo­
king, expressed on a continuous scale as the number of cigarettes smoked per day. 
Although the investigator could choose to categorize the continuous exposure mea­
sure (e.g., 0, 1-5, 6-10, ;;:; 11 cigarettes/day) and then express and analyze the 
results as was shown in Section 6.2.1, a more direct approach involves the use of lin­
ear regression and correlation. This approach assesses the extent to which a unit 
change (increase or decrease) in exposure (number of cigarettes smoked) is accom­
panied by a corresponding change (in the same or opposite direction) in outcome 
(time to run 100 m). Linear regression and correlation will be discussed in detail in 
Chapter 15. 

6.2.3 Exposure: Continuous 
Outcome: Categorical 

Such a situation might occur, for example, if we wished to study the relationship 
between cigarette smoking, expressed as number of cigarettes per day, and myocar­
dial infarction (heart attack) expressed dichotomously as present or absent. This 
type of study is the inverse of the study described in Section 6.2.1, in which the 
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mean outcomes were compared between two exposure groups. One approach to the 
analysis of results of this type of study would be to compare the mean exposures in 
the two outcome groups, those with and without myocardial infarction. Such an 
analysis, however, ignores the forward directionality inherent in a cohort study. It 
bears a closer resemblance to an analysis that may be used in case-control (back­
wardly directed) studies. Comparing exposures among subjects experiencing differ­
ent outcomes is a rather indirect way of telling us what we really want to know, i. e., 
a comparison of outcomes among subjects experiencing different exposures. Thus, it 
would be preferable to take advantage of the forward directionality of a cohort 
study by categorizing exposure and then analyzing the results in the fashion demon­
strated in the following section. 

6.2.4 Exposure: Categorical 
Outcome: Categorical 

Many cohort studies utilize this format, the simplest example of which is a dichoto­
mous exposure and a dichotomous outcome. The general case is illustrated in 
Table 6.1, and a hypothetical example is shown in Table 6.2. The latter compares the 
rate of myocardial infarction (heart attack) in 200 smoking and 200 nonsmoking 

Table 6.1. Two-by-two table for analyzing results of a cohort study with dichotomous exposure 
and outcome 

o 0 

E a b a+b 

c d c+d 

a+c b+d N=a+b+c+d 

E, Exposed; E, nonexposed; 0, outcome; 0, absence of outcome 

Risk of outcome in exposed = _a_ 
a+b 

Risk of outcome in nonexposed = _c_ 
c+d 

a 

Relative risk (RR) = a + b 
c 

c+d 

Attributable risk (AR) = _a _ _ _ c_ 
a+b c+d 

(Eq.6.1) 

(Eq.6.2) 
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men followed up for 20 years (without losses). Tables such as 6.1 and 6.2, which 
characterize groups simultaneously by two dichotomous variables, are known as 
2 x 2 (two-by-two), or /ouifOld, tables. The totals to the right are called the row 
totals, those on the bottom are the column totals, and the total on the bottom right is 
the grand total (i.e., the total study sample). 

The rate of MI among the smokers is 321200, or 16%, compared with 151200, 
or 7.5%, among the nonsmoking controls. Note that these rates are, in essence, inci­
dence rates, since they express the occurrence of new events over a specified period 
of time. Thus, the incidence of MI among smokers is 16% per 20 years, or 0.8% per 
year. If the two cohorts (exposed and nonexposed) are fixed (i.e., no members are 
added during the period of follow-up), then the incidence of the outcome is equiva­
lent to an individual member's risk, or probability, of developing the outcome during 
the study period. When the cohorts are dynamic (i. e., members are added during 
follow-up), the term incidence density (see Chapter 3) is probably preferable, 
although "risk" is often used loosely for dynamic cohorts as well. 

There are various ways in which the two risks or incidence rates can be com­
pared. The two most common are their ratio and their difference. These are called 
the relative risk (also called the risk ratio) and the attributable risk respectively, 

Table 6.2. Cohort study of 200 smokers and 200 nonsmokers (controls) for occurrence of myocar­
dial infarction (MI) 

MI No MI 

Smokers 

Nonsmokers 

Risk of MI in smokers = R = 16% 
200 

Risk of MI in nonsmokers = ~ = 7.5% 
200 

32 

Relative risk (RR) = 200 = 2.13 
15 

200 

32 

15 

47 

Attributable risk (AR) = R - ~ = JZ.. = 8.5% 
200 200 200 

168 

185 

353 

200 

200 

400 
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a 

h .. risk in exposed a + b were relative fISk (RR) = = --
risk in nonexposed c 

c+d 

and attributable risk (AR) = risk in exposed - risk in nonexposed 

a c =-----
a + b c+ d 

(6.1) 

(6.2) 

The relative risk can take on any value ~ o. RR= 1 indicates no exposure-outcome 
association (thus, 1 is often called the null value). Values between a and 1 indicate a 
negative association, i. e., exposure protects against the outcome. Values above 1 
indicate a positive association, i. e., exposure increases the risk of the outcome. 

For our smoking-MI example, the relative risk is 

32 
200 --, or 2.13 
15 

200 

Th ·b bl . k· 32 15 17 OL eattn uta ens IS ---=-,or8.570 
200 200 200 

Both the relative risk and the attributable risk provide useful information, but their 
interpretations are quite different. In general, the relative risk provides the best esti­
mate of the strength or magnitude of the exposure-outcome association and is 
therefore useful for making causal inferences. The attributable risk is more useful 
for public health purposes, since it indicates the frequency with which the outcome 
can be attributed to exposure in the sample studied and, by extension, to the target 
population of interest. 

The contrast between RR and AR is illustrated in Table 6.3, which compares the 
two measures obtained from two cohorts, nonsmokers and heavy (> 25 cig­
arettes/ day) smokers among British male physicians from 1951 to 1961 [3). When 
relative risks are compared, the relationship between cigarette smoking and lung 
cancer (RR= 32.43) appears stronger than that between smoking and cardiovascular 

Table 6.3. Comparison of deaths from selected causes associated with heavy cigarette smoking by 
British male physicians 

Cause of death Death rate" in Death rate" in Relative Attributable 
nonsmokers heavy smokers risk risk" 

Lung cancer 0.07 2.27 32.43 2.20 
Cardiovascular disease 7.32 9.93 1.36 2.61 

" Annual death rate per 1000. 
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disease (RR= 1.36). A comparison of attributable risks, however, gives quite a dif­
ferent impression (AR = 2.20 per 1000 per year for lung cancer vs 2.61 per 1000 per 
year for cardiovascular disease). 

Given a constant relative risk, attributable risk rises with the incidence of the 
outcome in the nonexposed group. The results for lung cancer and cardiovascular 
disease shown in Table 6.3 are thus explained by the higher "natural" (i. e., in the 
nonexposed) annual incidence of cardiovascular death (7.32 per 1000) compared 
with lung cancer death (0.07 per 1000). 

An additional measure is sometimes used to indicate the impact of exposure on 
outcome in the target population from which the study sample derives. It is called 
the etiologic/raction (EF)I and measures the proportion of all cases of outcome in the 
target population that are attributable to exposure. Alternatively, the EF can be 
interpreted as the proportion of cases of the outcome that would disappear if expo­
sure were eliminated in the target population. It is defined as follows: 

EF= rT- rI:: 
rT 

(6.3) 

where rT is the risk of the outcome in the total target population and rI:: is the corre­
sponding risk in those who are unexposed. An algebraically equivalent form that is 
easier to calculate is: 

EF= PE(RR-l) 
PE(RR-l)+ 1 

(6.4) 

where RR is the relative risk and PE is the prevalence of exposure in the target popu­
lation [4]. If the relative risk is assumed to remain constant from one population to 
another, the etiologic fraction is useful in comparing the proportion of outcome 
attributable to exposure in settings with different prevalences of exposure. For 
example, if maternal smoking doubles the risk of giving birth to an intrauterine 
growth-retarded (IUGR) infant, one-third of the IUGR rate can be attributed to 
maternal smoking in a population in which half the women smoke during pregnancy 

(EF= 0.5(2-1) = 0.5 =0.33) vs one-eleventh in a population in which only 10% 
0.5(2 -1) + 1 1.5 

smoke. 
As mentioned earlier, RR, AR, and EF all refer to fixed cohorts without losses 

or additions during the period of follow-up. In practice, however, most cohorts are 
dynamic. Some attrition (death from causes unrelated to the study outcome, with­
drawal from study participation, loss to follow-up) is inevitable. Furthermore, sub­
jects may be enrolled in a study over time, rather than simultaneously. Thus, the 
period at risk may differ for many members of the cohorts. 

As discussed in Chapter 3, when the changes in cohort membership occur evenly 
during the period of follow-up, the average number of group members can be used 
in the denominator to calculate the incidence rate, and this will serve as an approxi-

Population attributable risk and attributable risk fraction (or percent) are frequently encountered 
synonyms. 
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mation of the risk. When group gains and losses occur irregularly during the follow­
up period, however, it is preferable to use person-durations in the denominator. The 
resulting rate is called an incidence density (ID) [5]. Although many investigators 
use IDs to calculate relative and attributable risks, the corresponding indexes are 
probably better referred to as the incidence density ratio (IDR) and incidence density 
difference (IDD) respectively. 

Another approach to the problem of unequal duration of follow-up is necessary, 
however, whenever equivalence of person-durations cannot be assumed. The exis­
tence of a prolonged latent period between exposure and outcome (particularly com­
mon with carcinogens and cancer) means that 100 subjects followed up for 1 year 
may not yield the same number of outcome events as ten subjects followed up for 
10 years, even though both cohorts contribute 100 person-years to the denominator. 
In such cases, risk calculations need to be adjusted for differential duration of fol­
low-up. The technique involved is called life-table (or survival) analysis, and this will 
be taken up in Chapter 18. 

Finally, to illustrate how a polychotomous ordinal measurement of exposure can 
demonstrate a dose-response effect of exposure on outcome, let us re-examine the 
smoking-MI question. Instead of dichotomizing study subjects as either smokers or 
nonsmokers, we shall now classify them according to a three-category ordinal scale 
as nonsmokers, light smokers (1-5 cigarettes/day), or heavy smokers (;;;;6 cig­
arettes/day). The (hypothetical) results for the 400 study subjects are shown in 
Table 6.4. We have assumed that the 200 subjects classified as smokers in Table 6.2 
distribute themselves equally between "light" and "heavy." The relative risk (RR) 
and attributable risk (AR) in the two smoking groups are calculated using the risk in 
the nonsmoking group as a "base," and the graded response is evident 
(RR= 1.60 among light smokers and 2.67 among heavy smokers). 

When exposure is measured on a continuous scale (e.g., number of cigarettes 
smoked per day), classification into three or more ordinal categories, as demon­
strated in Table 6.4, enables risks to be assessed as a function of exposure. Further­
more, such a classification still permits the demontration of a dose-response effect of 
exposure. This is the procedure often used for continuous exposures and categorical 
outcomes (see Section 6.2.3) 

Regardless of how the sample estimate of exposure-outcome association is 
expressed, we must also concern ourselves with its internal validity. Internal validity 
requires adequate control for analytic bias and sufficient reproducibility of the sam­
ple estimate of the exposure effect, which depends on the extent of variability within 
the exposure groups and on the size of the sample. Assessment of the role of chance 
(sampling variation) in producing an observed exposure-outcome association will be 
discussed in detail in Chapters 12-15. The assessment and control of analytic bias is 
the focus of the following section. 



Bias Assessment and Control 69 

Table 6.4. Cohort study of myocardial infarction and cigarette smoking using three-category ordi­
nal scale of exposure 

Heavy smokers 

Light smokers 

Nonsmokers 

Risk of MI in nonsmokers = ~ = 7.5% 
200 

Risk of MI in light smokers = ~ = 12% 
100 

12 

RR = lQQ. = 1.60 
15 

200 

AR=~-~=~=4.5% 
100 200 200 

Risk of MI in heavy smokers = ~ = 20% 
100 

20 

RR = lQQ. = 2.67 
15 

200 

AR= ~ - ~ = ~ = 12.5% 
100 200 200 

MI No MI 

20 80 

12 88 

15 185 

47 353 

6.3 Bias Assessment and Control 

100 

100 

200 

400 

As in other types of analytic studies, minimizing analytic bias is essential in assuring 
the internal validity of observational cohort studies. Three of the four general types 
of analytic bias are important considerations in cohort studies: information bias, 
sample distortion bias, and confounding bias. (The fourth type, reverse causality 
bias, is less of a concern, because the forward directionality of cohort studies indi­
cates that exposure precedes outcome, particularly if the study subjects are known 
to be free of the outcome in their baseline state.) 
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As to information bias, random measurement errors will bias the exposure-out­
come association (i. e., RR) toward unity (the null value), as will systematically 
biased measurements that are biased in the same direction, irrespective of exposure 
and outcome. Nonblind observation of the outcome, however, can bias the RR 
away from 1 when observers are aware of both the association under study and the 
exposure status of the study subjects. When surveillance (detection) differs byexpo­
sure status, systematic information bias can also occur. Consequently, the best pro­
tection against information bias in cohort studies is in their design. Measurements 
should be of proven reproducibility and validity and should be performed by observ­
ers who are blind to the subjects' exposure status. Detection bias can be minimized 
by standardizing both the frequency and content (e.g., examinations, special diag­
nostic tests) of all follow-up procedures, to ensure that they occur independently of 
exposure. 

Sample distortion bias can occur in assembling the cohort as a result of non­
representative sample selection from the target population. It may also occur during 
follow-up if losses occur preferentially in some exposure-outcome combinations or 
if the duration of follow-up varies according to exposure and is independently 
related to the outcome. It can be guarded against by using a sample selection proce­
dure that ensures representativeness of the target population, by standardizing fol­
low-up procedures, and by minimizing losses. 

Confounding bias may result from exposure selection, unequal (by exposure) 
susceptibility at baseline, or exposure contamination. 

Exposure selection bias can be controlled for only to the extent that the reasons 
for subjects' (or their clinicians') choice of exposure can be reproducibly and validly 
measured. In that (unusual) case, confounding from this source can be dealt with, in 
either the design or analysis stage, as any other sort of susceptibility bias (see below). 
The reasons for choosing a certain exposure are often unknown, however. Even if 
appreciated in a general way, the reasons often involve subtle psychological or moti­
vational factors that are difficult to measure. This is perhaps the major reason why 
experimental studies, particularly randomized clinical trials, are often preferable to 
observational cohort studies, since even unmeasurable factors are unlikely to be 
associated with exposure if exposure is assigned on a random basis. 

Measurable differences in susceptibility that vary according to exposure can be 
controlled at either the design or the analysis stage. When sample selection is by 
exposure, the resulting exposure groups can be matched, during the design, accord­
ing to the suspected confounding susceptibility factors. When matching is included 
in the design, the analysis should (as discussed in Chapter 5) take account of the 
matching. When exposure is dichotomous, the outcome is continuous, and the 
matching is by pairs, paired tests of group means can be performed, as will be shown 
in Chapter 13. 

When both exposure and outcome are dichotomous and the matching is by 
pairs, the results can be expressed in a matched 2 X 2 table (Table 6.5). This table 
superficially resembles the ordinary (unmatched) table (Table 6.1), but each of the 
four cells of the table represents the results of matched pairs rather than individual 
subjects. Cells a and d represent those matched pairs in which both the exposed and 
the nonexposed members develop the same outcome. In a pairs, both develop the 
outcome; in d pairs, neither does. Cells band c represent those matched pairs in 
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Table 6.5. Matched-pair analysis with dichotomous exposure and outcome (general case) 

E 

o 0 

o a b 

c d 

N=a+b+c+d 

E, Exposed; E, nonexposed; 0, outcome; 0, absence of outcome; a, matched pairs in which both 
exposed and nonexposed members develop the outcome; b, matched pairs in which the nonexposed 
member, but not the exposed member, develops the outcome; c, matched pairs in which the exposed 
member, but not the nonexposed member, develops the outcome; d, matched pairs in which neither 
the exposed nor nonexposed members develop the outcome; N, total number of matched pairs; 2N, 
total number of study subjects. 

which the members experience opposite results. In b pairs, only the nonexposed 
member develops the outcome; in c pairs, only the exposed member does. The 
matched-pair relative risk (RRmatched) is calculated as: 

a+c 
RRmatched = a + b 

and the matched attributable risk (ARmatched) as: 

c-b 
ARmatched = N 

(6.5) 

(6.6) 

The method is illustrated in Table 6.6 for our smoking-MI example. The 400 study 
subjects now consist of 200 matched pairs. For seven pairs, both the smoker and the 
nonsmoker developed an MI, and for 150 pairs, neither did. In 14 pairs, only the 
nonsmoker developed an MI, whereas in 29 pairs, only the smoker did. The 
matched-pair relative risk and attributable risk are 1.71 and 7.5% respectively. 

Confounding bias due to exposure contamination is best dealt with at the design 
stage by blinding study subjects, their care-givers, and observers of the outcome to 

both the association under study (if feasible and ethical) and the subjects' exposure 
status. But contamination bias and other sources of confounding can also be con­
trolled for in the analysis, assuming that differences in contaminating exposures and 
in susceptibility are measurable and have been formally assessed. Several multi­
variate statistical techniques are available for dealing with multiple confounders, 
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Table 6.6. Matched-pair analysis for smoking and myocardial infarction (MI) 

Nonsmokers 

7+29 36 
RRmatehed = -- = - = 1.71 

7+14 21 

AR hd=29-14=~=7.5% 
mate e 200 200 

MI 

NoMI 

Smokers 

MI No MI 

7 14 21 

29 150 179 

36 164 200 

depending on the measurement scales used for expressing exposure and outcome. 
These will be mentioned briefly in Chapters 13-15. 

When exposure, outcome, and confounding variables are all categorical and the 
number of confounding variables is small, stratification is usually the control proce­
dure of choice. When a standard population exists (or can be created), then the rate 
of outcome in each exposure group can be standardized, using either the direct or 
indirect methods described in Chapter 3. 

A more commonly used approach is the Mantel-Haenszel procedure [6], in which 
the results from each stratum are weighted approximately according to the sample 
size of the stratum to yield an overall relative risk. This procedure does not depend 
on any standard population. When both exposure and outcome are dichotomous, 
the Mantel-Haenszel relative risk (RRMH) is defined as follows: 

RR L:aj(cj + dj)/Nj 
MH= 

L:ci(ai+ bj)/Ni 
(6.7) 

where ai = the number of subjects in the ith stratum who are positive for both 
exposure and outcome 

bi = the number of subjects in the ith stratum who are positive for exposure 
but negative for outcome 

Ci = the number of subjects in the ith stratum who are negative for exposure 
but positive for outcome 

di = the number of subjects in the ith stratum who are negative for both 
exposure and outcome 

and Ni = the total number of subjects in the ith stratum 

The expressions are then summed (L:) over all strata to arrive at the numerator and 
denominator. 
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Table 6.7. Success (S) and failure (F) for two medical treatments (Tl and T2): control for con­
founding (by sex) using Mantel-Haenszel procedure 

A. Overall 
(" crude") results 

B. Results stratified 
by sex 

Q 

d 

S 

40 

60 

100 

S 

24 

58 

82 

S 

16 

2 

18 

F 

60 

40 

100 

F 

3 

30 

33 

F 

57 

10 

67 

100 

100 

200 

27 

88 

115 

73 

12 

85 

Relative "risk" (RR) of success 

(T :T)= 40/100 =0.67 
1 2 60/100 

Relative "risk" (RR) of 

success = 24127 = 1.35 
58/88 

Relative "risk" (RR) of 

success = 16/73 = 1.32 
2112 

Overall Mantel-Haenzel relative "risk" of success (RRMH) = 

Laj(e; + dj)/Nj 24(58 + 30)/115 + 16(2+ 10)/85 = 20.62 = 1.34 
LCj(aj+bj)/Nj 58(24+3)/115+2(16+57)/85 15.34 
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The procedures and calculations are illustrated in Table 6.7. The overall results 
of an observational cohort study comparing success (S) and failure (F) rates with 
two treatments (TJ and T 2) are shown in 6.7 A. T J clearly appears to be the less effi­
cacious treatment, with a 40% vs 60% success rate, or a "relative success rate" (anal-

I · . k) f 40/100 ogous to re auve ns 0 --- = 0.67. 
60/100 

The overall crude results are confounded by sex, however. Women have a much 
higher success rate than men, irrespective of treatment, and women are less likely to 

receive T J. Since sex does not lie on the causal path between treatment and out­
come, it fulfills all three criteria for a confounding variable. The stratified analysis 
shows the clear superiority of TJ in both men and women. Although the absolute 
rates of success are lower in men for both treatments, the relative success rates (TJ 
relative to T 2) are similar in both sexes, i.e., 1.35 and 1.32. The Mantel-Haenszel 
analysis combines the stratum-specific results to yield an unconfounded overall 
result, with a relative success rate (RRMH= 1.34) intermediate between the two sex­
specific rates. 

Fortunately, such extreme examples, in which the crude result is opposite in 
direction to the adjusted (unconfounded) one, are rare. This type of situation is 
often referred to as Simpson's paradox. More commonly, the crude exposure-out­
come association is biased upwards or downwards to a lesser degree. As we shall see 
in Chapter 14, however, a small bias can sometimes spell the difference between sta­
tistical significance and nonsignificance. The Mantel-Haenszel procedure protects 
against such an eventuality and can be used for any number of strata. 

6.4 Effect Modification and Synergism 

Variables other than exposure and outcome can modify the exposure-outcome asso­
ciation without confounding it. In such cases, the overall crude measure of associa­
tion is unbiased but represents the average effect of the modifying variables (so­
called effect modifiers) [7], and the overall measure may "hide" important effects. 
More information can often be revealed by reporting the association measure within 
categories of the effect modifier. 

This form of uncombined stratified analysis (also called subgroup analysis) is illus­
trated in Table 6.8. We return to our smoking-MI example but with the addition of 
age as an effect modifier. Part A of the Table represents the overall results (identical 
to Table 6.2). As shown in part B, smoking has only a small effect (RR= 1.40) on 
the risk of MI in the younger men (~50 years) but a very large effect (RR = 3.60) in 
the older men (> 50 years). Because the older group is smaller than the younger 
one, the overall result (RR=2.l3) is "diluted". 

This is not a confounding effect. Although age is associated with outcome inde­
pendent of exposure, it is not associated with exposure (the proportion of smokers is 
50% in both age groups). The important point is that the overall relative risk, though 
an unbiased weighted average of the two stratum-specific rates, hides important 
information revealed by the stratified, subgroup analysis. 

This is in contrast to the example of confounding illustrated in Table 6.7, where 
the stratum-specific relative risks were similar to each other but very different from 
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Table 6.8. Effect modification (by age) in cohort study of smoking and myocardial infarction (MI) 

A. Overall results 

B. Results stratified 
by age 

Younger 
(~50 years) 

Older 
(> 50 years) 

Smokers 

Nonsmokers 

Smokers 

Nonsmokers 

Smokers 

Nonsmokers 

MI No MI 

32 168 

15 185 

47 353 

MI No MI 

14 126 

10 130 

24 256 

MI No MI 

18 42 

5 55 

23 97 

200 

200 

400 

140 

140 

280 

60 

60 

120 

RR= 32/200 =2.13 
15/200 

RR= 14/140 = 1.40 
10/140 

RR= 18/60 =3.60 
5/60 

the overall crude measure. Although Tables 6.7 and 6.8 illustrate "pure" confound­
ing and "pure" effect modification respectively, the two phenomena are not mutu­
ally exclusive and may coexist. 

When two or more exposure variables are positively associated with outcome, 
their presence in combination will usually produce a greater effect than any will 
alone. This combined effect is called synergism. In our example of Table 6.8, older 
age can be considered a kind of "exposure," and the combined effects of smoking 
and old age appear to be synergistic. The statistical demonstration of such a com-
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Table 6.9. Advantages and disadvantages of cohort studies 

A. Advantages 
1. Can provide more accurate picture of baseline state 
2. Sample selection by exposure essential for rare exposures 
3. Can minimize losses to follow-up and assess their effect 
4. If concurrent, can protect against contamination and detection biases 

B. Disadvantages 
1. Poorly suited to the study of rare outcomes 
2. If long latent period, prolonged follow-up required 
3. Careful follow-up is labor intensive and costly 

bined effect is called statistical interaction. The quantification of statistical interaction 
depends on whether the underlying etiologic model (how the exposures combine to 
cause the outcome) is additive (the effects add arithmetically) or multiplicative (the 
effects multiply geometrically). A detailed discussion of this issue is beyond the 
scope of this text but is available in several references [7-1 OJ. 

6.S Advantages and Disadvantages of Cohort Studies 

Cohort studies have several major advantages over other types of observational 
studies (Table 6.9). First, cohort directionality is the only directionality that permits 
identification of subjects prior to exposure, thereby providing a more accurate pic­
ture of the baseline state. This often enables better control for susceptibility bias than 
is possible with case-control or cross-sectional studies. Second, the possibility of 
sample selection by exposure (which is not available for case-control studies) is 
essential for studying the effects of rare exposures. Third, losses to follow-up can be 
minimized, and those that do occur can be assessed for their effect on the exposure­
outcome association. This is not possible in case-control or cross-sectional studies. 
Fourth, concurrent cohort studies can protect against contamination and detection 
biases by standardizing exposure and follow-up procedures and by blinding subjects, 
observers, and care-givers. 

Cohort studies also have their disadvantages, however. They are not as suitable 
for studying rare outcomes as case-control or cross-sectional studies that select their 
samples by outcome. Huge cohorts would be required to ensure adequate numbers 
of outcome events to yield statistically meaningful results. For concurrent cohort 
studies, the existence of a long latent period between exposure and outcome 
requires prolonged follow-up. Finally, careful follow-up procedures (in concurrent 
studies) are expensive in terms of time and money. Thus, cohort studies are both dif­
ficult and costly when the outcome is rare and when prolonged follow-up is 
required. 

One disadvantage shared by cohort and other observational studies is the diffi­
culty in controlling for exposure selection bias and other forms of confounding 
caused by unmeasured (and perhaps unknown) variables. When such sources of 
confounding are important, an experimental study (clinical trial) is far preferable. 
The following chapter discusses the design, analysis, and application of clinical tri­
als. 
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Chapter 7: Clinical Trials 

7.1 Research Design Components 

As discussed at the beginning of Chapter 6, a cohort study may use either an obser­
vational or experimental design. Having dealt with observational cohort studies in 
some detail in the last chapter, we shall now focus our attention on experimental 
cohort studies, or clinical trials. In clinical trials, exposure is assigned by the study 
investigators, rather than occurring naturally or being selected by the subject or his 
clinician. Consequently, exposure in clinical trials is often referred to as treatment. 

7.1.1 Sample Selection 

Assignment of treatment defines the method of sample selection for clinical trials. 
Sample selection is by exposure, and two or more groups defined by the treatments 
are compared for the development of the study outcome (Fig.7.1). 

7.1.2 Baseline State 

Issues concerning the baseline state are similar to those in observational cohort 
studies, except that the study sample must, by definition, be assembled before expo­
sure. In other words, the timing of a clinical trial is always concurrent. This is an 
advantage over historical and mixed-timing observational studies, in which the sam­
ple is assembled when exposure has already occurred and in which it may not be 
known, therefore, whether some subject characteristics might be a result, rather 
than a cause, of exposure. Depending on the method used for assigning treatment, 
baseline susceptibility factors may assume greater or lesser importance. As we shall 
see, random assignment markedly reduces the potential for confounding due to sus-

Study sample 

Treatment A I 
~~------+' Outcome 

Treatment B 

Fig.7.1. The classical clinical trial design comparing two treatments (A and B). Asterisk, Random­
ization (or other mode of treatment assignment) 
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ceptibility bias, and particularly for confounding by indication. For this reason, the 
randomized clinical trial, or RCT, has become the design of choice in comparing 
two or more clinical treatments. 

7.1.3 Exposure (Treatment) 

Because it serves as the basis of sample selection in clinical trials, exposure is mea­
sured on a categorical scale, with each category representing an exposure (treat­
ment) group. When a new treatment is compared with an existing standard treat­
ment, the new one is often referred to as the experimental treatment and the standard 
as the control treatment. An inactive control treatment that is indistinguishable 
(regarding appearance, sensation, smell, and taste) from the experimental treatment 
is called a placebo. As with observational cohort studies, ordinal treatment groups 
(e.g., placebo, low-dose treatment, high-dose treatment) permit evaluation of a 
dose-response effect. 

Issues of treatment potency are similar to those discussed for observational 
studies but with one important difference. Because treatments are assigned by the 
study investigators, many clinical trials have attempted to standardize treatment 
comparisons by using a rigid, fixed-dose treatment schedule. Good clinicians usually 
adjust the dosage regimen of a given treatment in individual patients in order to 

maximize benefits and minimize side effects. When fixed regimens dictated by the 
trial protocol prevent this flexibility, treatment potency may be insufficient to result 
in clinical benefit [1]. The result ma~ be a false inference that a treatment is not effi­
cacious. Consider, for example, the University Group Diabetes Program (UGDP) 
clinical trial comparing various treatments for diabetes [2]. Critics have suggested 
that the ineffectiveness of the two oral agents (tolbutamide and phenformin) might 
be explained by the fact that dosage was not optimized, i. e., not tied to attempts to 
control the blood or urine glucose concentration [3]. 

It is often a good idea to include, in the trial protocol, the measurement of vari­
ables that reflect the potency of the treatments studied. Such variables are called 
intermediate outcomes and permit the investigator to assess, for example, whether the 
treatment produced the physiologic effect required to achieve the study outcome. In 
the UGDP trial, for instance, measurement of the blood glucose concentration 
would have revealed whether the agents administered had actually produced the 
desired decrease. Failure to lower blood glucose would indicate inadequate potency. 

Even if the potency of the assigned treatment is adequate, the treatment actually 
received by the study subjects may be too weak to affect the outcome because of 
poor compliance. A negative trial result may occur because a treatment is not taken, 
rather than because it is not efficacious. A drug cannot be expected to produce its 
desired clinical effect if it is not taken or is taken in inadequate dosage. It is gener­
ally advisable to measure treatment compliance in clinical trials, either directly or 
indirectly, e. g., by periodic "pill counts" or urine testing for presence of the study 
drug or some inert but easily detectable "marker," such as riboflavin. The impor­
tance of compliance should be stressed at the time of subject enrollment and period­
ically during treatment. When only "super compliers" are studied, however, the trial 
results may be poorly generalizable to the "real" clinical world. In any case, mea-
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surement of compliance is essential in interpreting a trial's results, be they positive or 
negative. I will return to this issue in Section 7.5. 

Contamination bias is a danger as much in clinical trials as in observational 
cohort studies. Assignment of treatment, even if randomized, provides no protection 
against treatment "accompaniments" by the subjects' care-givers. Only blinding the 
latter to treatment assignment can prevent this potential source of confounding bias. 

7.1.4 Follow-Up 

Because of their cohort directionality, clinical trials include a period of follow-up in 
their design. As with observational studies, follow-up must be sufficiently long to 
include the latent period for the study treatments, i. e., to permit the biological 
expression of their effects. Losses to follow-up should be minimized both to maxi­
mize statistical efficiency and to avoid sample distortion bias, and those losses that 
do occur should be characterized well enough to permit estimation of bias that 
might have occurred. 

As in observational cohort studies, the potential duration of follow-up (as dis­
tinct from its actual duration) should not vary according to treatment (see Sec­
tion 6.1.5). Finally, detection bias can best be avoided by standardizing the fre­
quency and extent of follow-up visits, examinations, and diagnostic tests, and by 
ensuring that the standard protocol is followed and maintained irrespective of treat­
ment. 

7.1.5 Outcome 

The issues related to outcome for a clinical trial are identical to those in a cohort 
study. The outcomes are usually incident outcomes and develop de novo during fol­
low-up in subjects free of the outcome at the time the cohorts were assembled. 

The investigator has the usual difficult choice between "hard" (objective, easily 
measurable) and "soft" (subjective, not so easily measurable) outcomes. The latter in 
particular provide an opportunity for differential information bias in favor of a new 
experimental treatment, and appropriate blinding of both study subjects and observ­
ers of the outcome is necessary to protect against such bias. 

7.2 Assignment of Exposure (Treatment) 

7.2.1 Nonrandom vs Random Assignment 

The main advantage of experimental studies over observational studies is the oppor­
tunity for reducing confounding bias due to exposure selection or other reasons for 
unequal susceptibility in the different exposure (treatment) groups. Such bias reduc­
tion can occur, however, only when neither the study subjects, nor their clinicians, 
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nor the investigators control the treatment assignment. In observational studies, 
treatment is usually determined by some combination of subject and clinician prefer­
ence. The mere substitution of investigator preference for subject or clinician prefer­
ence in a clinical trial is insufficient to protect against bias, because the investigator's 
treatment allocations may be affected (consciously or unconsciously) by knowledge 
of the subject's underlying susceptibility. Thus, treatment assignment must occur 
according to a pre-established protocol that cannot be controlled by the investiga­
tors, the study subjects, or the subjects' clinicians. 

Systematic assignment of treatment would, on the surface, seem to meet these 
requirements. If trial enrollment occurs sequentially over time, for example, alter­
nate treatments could be assigned to subjects successively as they are enrolled. With 
alternate assignment, however, a subject might present himself (or be referred by his 
clinician) for enrollment only when the new or "preferred" treatment was next to be 
assigned. Similar opportunities for bias could arise if alternate enrollment dates are 
used instead of alternate subjects. Even the use of "unit" or "chart" numbers (e. g., 
odd vs even last digits) would not be totally immune from bias if such numbers 
could be influenced by the order in which subjects present themselves in the study 
institution. 

Use of an alphabetic rule (e.g., the first letter of the last name) would, of course, 
place treatment assignment beyond control of subjects, clinicians, and investigators. 
But it is conceivable that the association of certain letters with certain ethnic groups 
could lead to an unequal distribution of ethnicity between the treatment groups. If 
ethnicity is independently (of the treatment) related to the outcome, confounding 
would then occur. Thus, systematic treatment assignment can lead to bias even when 
outside the influence of the relevant parties. 

The best means of reducing susceptibility bias is by assigning treatment on a ran­
dom basis, i.e., by ensuring that assignment occurs by the laws of chance. In this 
way, every subject will have the same probability of receiving a given treatment. 
Neither subjects, clinicians, nor investigators can affect the treatment received, and 
important susceptibility factors should distribute themselves randomly. To ensure 
that this has in fact occurred, investigators should always compare the treatment 
groups created by the randomization according to prognostically important socio­
demographic and clinical factors. Such a comparison is often summarized in tabular 
form and is an essential part of the presentation of the report of the trial's results. 
The example shown in Table 7.1 is taken from the Veteran's Administration (VA) 
Cooperative Study Group placebo-controlled RCT of treatment with antihyperten­
sive agents [4]. 

7.2.2 Methods of Randomization 

The most common method of randomization makes use of published tables or com­
puter-generated lists of random numbers. Instructions for using such tables (see 
Appendix Table A.l) or lists are identical to those for random sampling and were 
discussed in Chapter 4. If equal numbers are desired in both of two treatment 
groups, the random numbers corresponding to each subject can be arranged in 
numerical order. The first half of the group will then receive treatment A, the sec-
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Table 7.1. Comparison of treatment groups (active vs placebo) created by randomization, VA anti-
hypertensive trial [4] 

Characteristic Active Placebo 

(n) (%) (n) (%) 

Race 
White 31 42.5 35 50.0 
Black 42 57.5 35 50.0 

Family history of hypertension 
None 23 31.5 19 27.1 
Present 49 67.1 48 68.6 
Unknown 1 1.4 3 4.3 

Cardiac symptoms 
None 52 71.2 48 68.6 
Present 21 28.8 22 31.4 

Heart size by chest roentgenogram 
Normal 44 60.3 39 55.7 
Enlarged 29 39.7 31 44.3 

Diabetes 
Absent 65 89.0 65 92.9 
Present 8 11.0 5 7.1 

Total randomized 73 100 70 100 

ond treatment B. When three treatments are involved, the ordered subjects are 
divided into thirds, and so on. 

Once the randomization schedule has been devised, the assigned treatments 
must, of course, be communicated to the clinicians who administer them. One of the 
best and most frequent methods for accomplishing this involves the use of opaque 
envelopes that must be opened to reveal the assigned treatment. Upon enrollment of 
each subject, the next envelope in numbered sequence is opened to determine the 
treatment for that subject. When the treatments involve look-alike tablets, capsules, 
or liquids, another method involves sequentially numbering each bottle or package. 
The treatment corresponding to each number is obtained from the random number 
table, and the code remains unknown to the personnel dispensing the treatments. 

Coin flips, dice, or playing cards can also be used to randomize treatment 
assignment, but such methods are used far less frequently than random numbers. 
Regardless of which method of randomization (and communication) is used, that 
method should be indicated whenever the trial is described and reported. The mere 
use of the term "random assignment" is insufficient, because some authors have used 
the term "random" in a rather loose sense to indicate "without any pre-established 
order." As we have seen, however, assignment must be truly random to be immune 
from bias. 

7.2.3 Stratified and Blocked Randomization 

Unfortunately, even true randomization of treatment assignment does not guarantee 
that confounding will not occur. The only guarantee is that confounding factors will 
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distribute themselves randomly. Randomly does not mean evenly. Ten coin flips do 
not guarantee 5 heads and 5 tails, or even that the result will not be more extreme 
than 4 and 6, or even 3 and 7. The chance occurrence of 0 heads and 10 tails 
is unlikely, but not impossible. In fact, the probability can be calculated as 
P = (Yl) 10 = 0.00977. Similarly, random assignment can occasionally result in the 
uneven distribution of important confounding variables. Since a chance occurrence 
of lout of 20 (i. e., P = 0.05) is the usual threshold for establishing its "statistical sig­
nificance," a statistically significant difference in the distribution of a given con­
founding variable will occur once out of every 20 randomizations. 

To protect against possible bias by the chance maldistribution of one or more 
important potential confounding factors, some trials use a stratified randomization in 
which subjects are first assigned to a stratum defined by the confounder(s). A sepa­
rate randomization is then carried out for each stratum. This procedure is analogous 
to stratified random sampling (see Section 4.3.2). 

To maximize statistical efficiency by ensuring that approximately equal numbers 
of subjects receive each study treatment, randomization is occasionally carried out 
within blocks of specified size. For example, in a two-arm RCT, randomization by 
blocks of ten will ensure that for every ten subjects enrolled, five will receive each of 
the two treatments. Blocking is often particularly helpful in the setting of multiple 
strata by preventing large within-stratum imbalances in treatment assignment. 

7.2.4 Individual vs Group Randomization 

Randomization of individual subjects is entirely appropriate for the classic drug-effi­
cacy trial. In such a trial, subjects are treated individually, treatment groups remain 
distinct, and an unbiased comparison of drug vs placebo, or drug A vs drug B, is 
thus likely. For some types of treatment, however, random assignment by individuals 
can actually be detrimental, because interaction among subjects may lead to sys­
tematic errors in classifying the treatment actually received (i. e., the treatments 
actually received will be more similar than those allocated), and hence a biased com­
parison. Psychosocial, educational, and health care service interventions are particu­
larly prone to this problem, since subjects are likely to interact with one another 
between administration of the intervention and measurement of the outcome. For 
such trials, treatment assignment by hospital room or ward, school, or geographic 
region may be preferable to randomization of individuals [1]. 

Group randomization appears preferable whenever relatively closed, naturally 
formed groups are capable of modifying the treatment allocated to individuals 
within those groups. For example, of the dozen or so controlled clinical trials assess­
ing the effect of early maternal-infant contact on subsequent maternal attachment 
behavior (so-called bonding), most randomized individual women, rather than 
entire postpartum wards. Thus, mothers receiving different treatments (early contact 
vs usual "routine") were housed on the same ward, and often in the same room. 
Communication among these mothers might well be expected to reduce the differ­
ence between the treatments actually received and thereby reduce the difference in 
outcome [5]. Randomization by group (in this example, postpartum ward) can avoid 
this source of (information) bias. 
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Unfortunately, however, group randomization results in a markedly reduced 
sample size, because the unit of statistical analysis becomes the group, rather than 
the individual [6, 7]. One alternative, which provides the scientific advantages of 
group randomization while permitting the statistical advantages of analysis by indi­
vidual, involves the use of a pretrial study period to demonstrate that individuals in 
different groups experience similar outcomes when exposed to the same treatment. 
Equivalent pretrial results increase the plausibility that any differences in outcome 
that occur when the same groups are exposed to different treatments during the trial 
are attributable to the treatments, rather than to potentially confounding differences 
between the groups. 

7.2.5 Parallel vs Crossover Designs 

In the clinical trial designs we have considered thus far, a group of subjects receiving 
a given treatment is compared with other groups receiving one or more different 
treatments. Such a design is called a parallel design, because the study groups receive 
their respective treatments simultaneously, i. e., in parallel. In a crossover design, 
however, each study subject receives each treatment in series by "crossing over" in 
sequence from one to the other. For example, patients with asthma might each 
receive, in sequence, two different treatment regimens to see which of the two treat­
ments is more efficacious among the group as a whole. 

Crossover trials have a major advantage over parallel trials in statistical effi­
ciency, in that a given treatment difference is demonstrable with fewer subjects. 
There are two reasons for this: (a) each subject receives both treatments (in a two­
treatment comparison) and thus "counts" twice, and (b) variability in treatment 
response due to individual subject characteristics is eliminated and the "signal-to­
noise ratio" thus enhanced. Proper conduct of crossover trials, however, requires 
randomization of treatment sequence (A,B vs B,A) , time-dependent (rather than 
outcome-dependent) crossover of treatments, and elimination of (or control for) 
carry-over effects from the first treatment [8]. 

The statistical analysis of crossover trials is similar to that of matched pairs and 
will be discussed in Chapters 13 and 14. 

7.3 Blinding in Clinical Trials 

Randomized treatment assignment is only one of the design features in clinical trials 
that help minimize analytic bias. By randomly distributing susceptibility factors, con­
founding bias from this source is rendered unlikely. Randomization can also reduce 
sample distortion bias, because even if the study sample is unrepresentative of the 
target population, the resulting distortion will be nondifferential with respect to 
exposure, and thus the treatment effects will be unbiased. Protection against infor­
mation bias, however, as well as other sources of confounding bias, depends on ade­
quate blinding of subjects, observers, and care-givers. 
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Blinding of study subjects is necessary to protect against contamination (con­
founding) of the true treatment effect by the so-called placebo effect. The placebo 
effect is the nonspecific effect that any treatment can have on the outcome, espe­
cially when the subject believes it to be efficacious. The main reason for providing 
look-alike, feel-alike, smell-alike, taste-alike placebo treatments when comparing an 
experimental treatment with no treatment is to facilitate subject blinding. 

Blinding of observers is also necessary to prevent the information bias that would 
occur if the outcomes were determined by observers who are aware of the treatment 
received. As discussed previously, such awareness can influence the outcome assess­
ment, either consciously or unconsciously, especially if the outcome is subjective. 

When a clinical trial incorporates blinding of both the subjects and the observers, 
the trial is said to be double-blind. When care-givers other than the observers are 
aware of treatment status, however, even double blinding is insufficient, because the 
study treatment can be contaminated (confounded) by doctors, nurses, physical 
therapists, or others who may alter the quantity or quality of their care according to 
the study treatment received. Failure to protect against this source of bias was one of 
the major defects in the maternal-infant "bonding" trials alluded to earlier [5]. 

Unfortunately, blinding may be infeasible for some treatments. This is obviously 
true for most surgical procedures but also pertains to many behavioral (e.g., exercise 
vs no exercise in a trial to prevent myocardial infarction) and health care (e. g., care 
by nurse practitioner vs physician) interventions. Furthermore, unblinding can arise 
owing to differences in side effects that occur with different treatments, even if those 
treatments originally seem indistinguishable. This is especially likely to create a bias 
when the control treatment involves a placebo. One strategy for measuring potential 
bias due to unblinding involves asking subjects, after they have completed treatment, 
to guess whether they received the active treatment or placebo; bias should be sus­
pected whenever treatment effects appear only in subjects who are unblinded. A 
good example of the use of this strategy was one of the RCTs of vitamin C in the 
prevention and treatment of the common cold [9]. Unblinded subjects who received 
vitamin C reported a shorter duration and lesser severity of colds; in subjects who 
remained blind, no such differences were found. 

7.4 Analysis of Results 

Because treatment assignment automatically creates categorical exposure (treat­
ment) groups, the exposure-outcome association is assessed by comparing the out­
come among the groups. For continuous outcomes, this involves a comparison of 
means. For categorical outcomes, the comparison is of rates, with relative and attrib­
utable risks applicable in the case of dichotomous outcomes. Statistical inference for 
means and rates will be discussed in Chapters 13 and 14 respectively. 

Randomized treatment assignment and adequate blinding reduce the potential 
for confounding bias; consequently, stratified or multivariate statistical analyses are 
not usually required. In the absence of stratified randomization, however, any given 
confounding factor has a 1 in 20 chance of a statistically significant association with 
treatment. When one or more potential confounders are associated with treatment 
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after simple (nonstratified) randomization, a stratified analysis or multivariate 
adjustment may be necessary to avoid confounding.! For continuous confounders 
and outcomes, such procedures may also help to improve the reproducibility of the 
resulting treatment difference (increase the signal-to-noise ratio) and thus to 
enhance its statistical significance. Furthermore, stratification may be desirable in 
assessing effect modification; i.e., treatment may affect outcome in some subgroups 
but not others. 

7.5 Interpretation of Results 

7.5.1 Efficacy vs Effectiveness 

One of the major problems likely to arise during a clinical trial is that subjects either 
may not have received or complied with the treatment to which they were assigned 
or, having received it initially, may have switched to another. Another problem is 
that subjects may withdraw from participation in the trial before treatment or fol­
low-up are complete. These realities of clinical research create major problems in 
interpreting the trial's results. 

Such problems have led to two different ways of analyzing the results of a clini­
cal trial and, consequently, to two different interpretations. Which of the two 
approaches is taken depends on whether one is interested in treatment efficacy or 
treatment effectiveness. 

Efficacy refers to the potential effect of treatment under optimal circumstances, 
i. e., whether treatment can have an effect on outcome. Thus, an analysis for efficacy 
would compare subjects according to the treatment actually received (rather than 
the one assigned) and would exclude subjects who complied poorly, those who 
switched over (and thus received both treatments), and those who withdrew during 
the trial. An analysis for efficacy is also called an explanatory trial analysis [10-12]. 

Effectiveness refers to the actual effect of treatment in the "real world" of people 
who comply poorly, change treatment (owing to unsatisfactory results or side effects 
of initial treatment), or become lost to follow-up - i.e., whether treatment does have 
an effect on outcome. An effectiveness analysis compares all subjects according to 
their original, assigned treatment and thus includes poor compliers, switch-overs, 
and withdrawals. Other terms for effectiveness analysis include pragmatic, manage­
ment, and intention-to-treat trial analysis [10-12]. 

Both efficacy and effectiveness may be important. Efficacy is usually of primary 
interest to biologists, physiologists, and (to some extent) pharmacologists, i. e., to 
those interested in biologic potency and mechanisms of action. It is also a sine qua 

! It is important to emphasize that some variables are bound to distribute themselves asymmetrically 
by treatment. This will occur, on average, with 1 of every 20 variables examined. But control for 
all such asymmetrically distributed variables is unnecessary, since random differences between 
treatment groups are already taken into account in calculating the probability of an erroneous sta­
tistical inference. Thus, in-depth searches for such variables are not indicated. Control for con­
founding, whether by stratified randomization or by adjustment in the analysis, is necessary only 
for those few potential confounders identified a priori as important candidates. 
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non of effectiveness, since a treatment that cannot work under optimal circum­
stances will not work in clinical practice. Treatments can be efficacious without 
being effective, however, and it is effectiveness that is of primary concern to patients 
and clinicians. Nonetheless, efficacious but ineffective treatments may still be useful 
for certain patients (e. g., those without side effects and those with good compli­
ance). 

7.5.2 Selective Subject Participation 

To an even greater extent than in observational studies, subjects (or their clinicians) 
may be unwilling to participate in clinical trials, and especially in RCTs. Treatment 
assignment by the study's investigators means that neither the subject nor his or her 
clinician can choose, and many subjects therefore decline to participate. Not only 
does this result in smaller numbers of participants, with consequent statisticallimita­
tions, but those who participate may be quite different from those who do not. The 
trial's external validity, or generalizability, thus may not extend beyond the narrow 
confines of a highly selective target population [1]. 

A common example of this type of problem arises whenever low-risk or high­
risk patients are preferentially enrolled in a trial. A treatment comparison in one of 
these risk strata may not be generalizable to the other. In an RCT of a new cancer 
chemotherapeutic agent, for example, only patients with advanced disease resistant 
to conventional treatment may be enrolled. Failure of the agent among such high­
risk cases does not indicate whether it is efficacious in lower-risk patients without 
previous treatment. The problem is even more insidious whenever motivational dif­
ferences responsible for selective participation can also affect the study outcome, 
because the nature of these differences may not be known and, even if appreciated 
qualitatively, may be difficult to measure. 

Trial investigators should keep track of, and include in all reports, both the num­
bers and relevant characteristics of all participants and nonparticipants. Such charac­
teristics include any sociodemographic or clinical factors that can affect the out­
come. Unless participation rates are exceptionally high (80%-90%), investigators 
should compare participants and nonparticipants and indicate characteristics of the 
target population to whom the results appear to apply. 

7.5.3 The Hawthorne Effect 

The Hawthorne effect refers to the tendency of study participation per se to affect 
outcome. The term originated in studies carried out in the 1920s at the Hawthorne 
Works of the Western Electric Company in Chicago. A variety of interventions 
(e. g., changing the light intensity) were used in an attempt to improve workers' pro­
ductivity, but the investigators found that productivity increased regardless of what 
intervention was introduced. Although a Hawthorne effect can arise in any study 
concerned with behavioral outcomes or outcomes that can be influenced by behav­
ioral changes, RCTs carry with them the sense of uncertainty and risk (randomiza­
tion), which may be more potent behavior modifiers than mere observation. 
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If participation affects outcome equally in all treatment groups, no systematic 
bias is introduced in the treatment comparison, and internal validity is maintained. 
But because the potential magnitude of the treatment effect may be limited (the so­
called ceiling effict), the end result may be either a smaller treatment difference or 
no significant difference, and thus an externally invalid inference concerning the 
treatment's effectiveness in a more general population. 

To minimize the potential for a Hawthorne effect, trial subjects can be kept 
unaware that they are being studied, or at least unaware of the precise treatment 
comparison or the research hypothesis. For many types of treatments, however, such 
blinding is not ethically defensible. In such cases, the possibility of a Hawthorne 
effect should be acknowledged by the trial's investigators, and inferences concerning 
external validity modified accordingly. 

7.6 Ethical Considerations 

Ethical issues are of importance in all types of epidemiologic studies, because the 
sociodemographic and clinical data that constitute the primary products of such 
studies are often of a sensitive nature. Although the data are almost always analyzed 
and reported in the aggregate without identification of individual subjects, some 
persons are reluctant to be interviewed or examined for purposes other than their 
own health care, and a few object even to allowing investigators (other than their 
Own clinicians) access to their medical records. Clinical trials pose even greater ethi­
cal problems, however, because their experimental design means that treatments are 
assigned by the trial's investigators, rather than by the subjects or their clinicians [13, 
14]. When assignment is randomized, the problems are compounded by the aspect 
of risk or chance. And, when blinding of subjects, observers, and care-givers is fur­
ther added, the ethical considerations often become more complex, and perhaps 
even more important, than the scientific ones. 

In order for an RCT to be ethically justifiable, none of the trial treatments 
should be known to have superior efficacy, based on the available evidence at the 
time the trial begins. Even though convincing "proof" of superiority of one treat­
ment may be lacking, however, prior equality of treatments is the exception, rather 
than the rule. In the routine development of new drugs, for example, manufacturers 
must present evidence of efficacy from small uncontrolled trials (so-called Phase II 
studies) before proceeding to an RCT (Phase III). For both legal and economic rea­
sons, they often have good evidence of efficacy (vs nO treatment) before instituting 
placebo-controlled RCTs. Yet the latter are required by the U. s. Food and Drug 
Administration, for example, before the drugs can be marketed. 

Furthermore, the requirements of randomization and blinding often place clini­
cians in the conflicting role of attempting to care for an individual patient, on the 
One hand, and of wishing to contribute to the advancement of knowledge (and per­
haps of their own careers), on the other. It is probably rare for a clinician to be neu­
tral concerning treatment, and if he does indeed have a preference, can he support 
randomization of his patient? This becomes especially problematic when the trial is 
not the first to test a particular treatment. Although it is always preferable to base 
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treatment preferences in clinical practice on more than a single study, it may be dif­
ficult for a subject or clinician to accept a 50-50 chance of receiving a new treat­
ment when a previous trial, or even two or three previous trials, have shown the 
treatment to be superior to the existing "standard." 

Nonetheless, many thoughtful (and ethical) scientists make the opposite argu­
ment. According to them, it is more ethical to allow subjects to receive a standard 
treatment before convincing evidence favors a new one than to allow unproven, 
potentially harmful and costly therapies to be adopted prematurely. We need only 
adduce the now-abandoned practices of purging and blood-letting to remind us that 
the annals of medical history are replete with ineffective and even harmful remedies 
staunchly defended over long periods by the best clinicians of their time. The diffi­
culty comes in defining the threshold for "convincing" and "proven," which is likely 
to be lower for clinicians wishing to do the most good and least harm by their 
patients than for researchers wishing to establish scientific "truth." 

Although these ethical dilemmas are not easily resolved, the recent insistence, in 
many developed societies, on informed consent and institutional review boards has 
provided important ethical safeguards. Informed consent is required by most research 
funding agencies and clinical journals whenever studies involve human experimenta­
tion and usually consists of a full disclosure of trial procedures, including random­
ization and blinding. Informed consent means that the subject is given a chance to 
ask questions, is under no pressure or obligation to participate, and is informed that 
his or her care will not suffer if he or she declines participation or later decides to 
withdraw. A signed statement of informed consent is often required. Despite these 
requirements, however, the complexities of modern medicine and other clinical dis­
ciplines, as well as those of trial design, often prevent the consenting subject from 
being fully informed. 

Institutional review boards (IRBs), also called human investigation committees, 
usually consist of committees composed of lay persons, clinicians, administrators, 
lawyers, and ethicists and are based within a hospital, research institute, or academic 
institution. Their purpose is to review trial (and other human study) protocols, to 
ensure the protection and ethical treatment of study subjects, and to suggest appro­
priate changes in informed consent procedures or study design. The IRB may also 
request that the trial's data be analyzed periodically by an outside statistician or 
committee, so that a clear difference in treatment efficacy is recognized promptly, 
further enrollment is halted, and subsequent patients can receive the better treat­
ment. IRB approval is often required by the institution at which the trial will be car­
ried out, as well as by the agency providing the funding. 

Variations in the classic ReT design (Fig.7.l) have been proposed in an effort to 
overcome some of its inherent ethical difficulties. Zelen has proposed a design 
(Fig.7.2) in which subjects are randomized to "consent not sought" vs "consent 
sought" groups. Those in the former group receive the existing standard treatment, 
while those in the latter are o./fored the new experimental treatment, with the stan­
dard treatment given if they decline [15]. This design retains the scientific benefits of 
randomization while allowing those subjects in the "consent sought" arm to choose 
whether or not they want the new treatment. In addition to preventing blinding, 
however, such a design also creates problems of statistical efficiency and interpreta­
tion, since the groups should be compared according to the randomization arms, 
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and the "consent sought" arm contains subjects receiving both treatments, i.e., the 
effect of the new treatment is contaminated with that of the standard. 

The sequential design differs from the classic design in that sample sizes are not 
fixed in advance but are determined by the cumulative trial results [16). The results 
are analyzed in successive pairs in which the two subjects are assigned different 
treatments until either one of the two treatments is shown to be statistically superior 
or it becomes clear that the difference between the two is small enough to ignore. 
The method of analysis is illustrated in Fig. 7.3. The outcome in the first subject ran­
domized to receive treatment A is compared with that of the first subject random­
ized to treatment B. A "step" is then taken off the line of equality (the x axis, corre­
sponding to 0 excess preferences) toward the treatment favored in the first pairwise 
comparison. Subsequent pairs are compared similarly until the path defined by the 
cumulative "steps" crosses one of the lines indicating either superiority of A, superi­
ority of B, or no important difference. Sequential designs were originally devised in 
World War II to minimize the sample size necessary to demonstrate a treatment dif­
ference, but they also have ethical advantages, because the trial is stopped as soon as 
the results are clear. Their advantages are limited, however, to treatments of short 
duration (so that many subjects are not enrolled needlessly while the results of previ­
ous enrollees are awaited). Furthermore, smaller trials, while beneficial in some 
respects, do not convey as much information as larger trials, both because the results 
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Table 7.2. Advantages and disadvantages of clinical trials 

A. Advantages 
1. Reduced potential for confounding bias 
2. Reduced potential for sample distortion bias 
3. Conducive to blinding of subjects, observers, and care-givers 

B. Disadvantages 
1. May be impracticable 
2. May be unethical 
3. Often expensive 
4. May reduce generalizability 

may not be as widely applicable (generalizable) and because limited numbers may 
prevent analysis of smaller subgroups or detection of rare adverse outcomes of treat­
ment. 

7.7 Advantages and Disadvantages of Clinical Trials 

The main advantage of clinical trials (Table 7.2) over observational cohort studies is 
that trials, especially if randomized, allocate exposure (treatment) without respect to 
susceptibility f~ctors or to how the study sample was selected. Trials thus provide 
considerable protection against confounding bias and sample distortion bias. Fur­
thermore, the design of the ReT is more conducive to blinding of subjects, observ­
ers, and care-givers than is an observational study of patients whose treatments are 
discussed and prescribed by their own clinicians. 

Practical or ethical considerations may render clinical trials infeasible. For exam­
ple, it would be impossible to assign blood type or other genetic traits, impracticable 
to attempt to direct mothers to breast feed or bottle feed their newborn infants, and 
unethical to expose subjects purposefully to potential toxins or carcinogens. Another 
problem with clinical trials is their cost. An observational study of treatments occur­
ring in clinical practice can usually be accomplished for a small fraction of the cost 
required by a clinical trial, because the costs of treatment and follow-up in a trial 
must usually be borne by the trial itself. A large-scale, multicenter ReT can thus 
cost hundreds of millions of dollars. Finally, as alluded to earlier in this chapter, the 
contrived setting in which treatment takes place can affect the external validity (gen­
eralizability) of a trial's results. 

Despite their imperfections, clinical trials remain the "gold standard" for evalu­
ating clinical treatments. They have contributed enormously to the evolution of 
more effective therapeutic and preventive measures for a variety of clinical condi­
tions and are represented by an increasing proportion of articles published in leading 
medical journals [17]. Although use of a clinical trial design, even with randomized 
treatment assignment, does not confer certainty on the conclusions of a study, the 
ReT is the epidemiologic research design of choice whenever randomized assign­
ment is feasible and ethical. 
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Chapter 8: Case-Control Studies 

8.1 Introduction 

In cohort studies (and clinical trials), subjects are followed in a forward direction 
from exposure to outcome. Inferential reasoning is from cause to effect. 

In case-control studies, on the other hand, we start with the outcome and ask or 
find out about prior exposure. The directionality is backward, and the reasoning is 
inductive, from effect to cause. In some ways, therefore, case-control studies can be 
thought of as the chronological and logical inverse of cohort studies. Feinstein has 
coined the term trohoc (cohort spelled backwards) to illustrate this relationship [1]. 
Another frequently encountered synonym is case-referent study. The generally 
accepted term case-control study derives from the usual dichotomous categorization 
of outcome as present (cases) or absent (controls). 

8.2 Research Design Components 

8.2.1 Sample Selection in Case-Control Studies 

In case-control studies, prior exposure status is ascertained after the study subjects 
have been assembled. Thus, the study sample may be selected from the target popu­
lation by either outcome status or other criteria. If the outcome is rare, random sam­
pling or other mode of sample selection is far less efficient than selection by out­
come, because many more subjects would be required to provide statistically 
meaningful results. 

Regardless of which sample selection method is used, study subjects are usually 
classified (i. e., categorized) according to their outcome status. In the majority of 
case-control studies, outcome is dichotomously assessed as either present or absent, 
and subjects are classified as cases or controls respectively. (The terms diseased and 
nondiseased have also been applied to these two outcome categories but are best 
reserved for true diseases or other adverse health outcomes.) 

Because the outcome has already occurred (among the cases) when study sub­
jects are sampled, opportunities abound for sample distortion bias in case-control 
studies. Differential surveillance or selective loss to follow-up, which can usually be 
guarded against in the design and execution of cohort studies, have already 
occurred in case-control studies when the study sample is assembled. Sample distor­
tion bias will be discussed in some detail in Section 8.6. 
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8.2.2 Outcome: Selection of Cases 

When sample selection is based on outcome, the investigator can choose study sub­
jects according to either incident or prevalent outcomes. Incident outcomes are those 
that develop de novo over time. Consequently, case-control studies with sampling by 
incident outcomes usually require the assembly of cases over a period of time. Preva­
lent outcomes include all subjects with the outcome at a given point in time, regard­
less of when they developed the outcome or how long they have had it at the time 
they are studied. When sample selection occurs by criteria other than outcome, out­
come status is determined at the time the sample is assembled, and all outcomes are 
therefore prevalent. 

The difference between incident and prevalent cases is entirely analogous to the 
difference between incidence and prevalence rates. The prevalence of an outcome 
depends on its average duration as well as its incidence and is thus influenced by 
mortality, treatment, and spontaneous resolution. Prevalent cases will thus underrep­
resent cases who died rapidly, those who were successfully treated, and those 
who recovered on their own. Incident cases will include all those newly occurring 
over a given period and will therefore be more representative of the entire spectrum 
of disease or other outcome under study. 

Cases should be selected according to predetermined strict objective criteria, and 
they should be representative of cases in the target population. When prevalent cases 
are used, the resulting exposure-outcome association tends to become a measure of 
the relationship between exposure and nonfatal, chronic, and irremediable cases of 
the outcome. Although this is fine for outcomes such as birth defects (at least those 
not leading to spontaneous abortion or stillbirth) or conditions for which most or all 
cases are mild and permanent (e.g., male-pattern baldness, hay fever), it is often 
unsatisfactory in epidemiologic studies. Most health outcomes comprise a clinical 
spectrum of cases, and associations between exposure and the entire spectrum can 
often be sought only by using incident outcomes as the basis for case selection. 

8.2.3 Outcome: Selection of Controls 

As with cases, controls should be selected according to predetermined criteria to 
ensure the absence of the outcome ("nondiseased" status). Similarly, they should be 
representative of controls in the target population. The choice of controls, however, 
remains one of the thorniest methodologic issues in case-control studies. Although it 
might appear that normal, healthy subjects would constitute the best control group, 
it may be better to choose subjects with similar referral, surveillance, and other fac­
tors capable of distorting the study sample (see Section 8.6). 

One approach that is sometimes taken is to have a healthy community control 
group, as well as another control group from a similar source as the case group 
(e. g., hospital-based). If the measure of exposure-outcome association is similar in 
both case-control comparisons, the investigator can have more confidence in the 
conclusions. If the two results differ, however, it is difficult to know which to 
believe. 



Research Design Components 95 

Perhaps the best control group would consist of a representative sample of sub­
jects free of the outcome who would have been included as cases if they had devel­
oped the outcome [2]. Defining and locating such a sample, however, may be diffi­
cult. 

8.2.4 Exposure 

As in other epidemiologic studies, definition of exposure requires an appreciation of 
the underlying biologic model for how exposure causes outcome. An exposure can 
cause an outcome only if it precedes it, of course. Consequently, the primary expo­
sure of interest is prior exposure, rather than contemporaneous (exposure at the time 
outcome status is assessed). To the extent that contemporaneous exposure is a valid 
proxy for prior exposure, it may be substituted. Sex, race, blood groups, or inherited 
enzyme deficiencies are permanent characteristics that can be presumed to predate 
the outcome. Contemporaneous smoking, drinking, or dietary habits, however, may 
not validly reflect the prior habits that may have caused the study outcome. 

The period and duration of exposure that is investigated should relate to the 
known or suspected latent period of the exposure factor. Cancer initiation and 
promotion are known to require years or even decades between exposure to a carcin­
ogen and the clinical appearance of a cancer. Thus, a case-control study of asbes­
tos exposure and lung cancer should focus on exposure to asbestos that occurred 
years or decades earlier, rather than in the immediately preceding months. On the 
other hand, oral contraceptives (OCs) are believed to augment the risk of myocar­
dial infarction (MI) by increasing blood coagulation (clotting) factors. Thus, the 
relevant exposure in a case-control study of OCs and MI should include OC use 
occurring up to the time immediately before (or, for practical purposes, at the time) 
the MI occurred. 

There is a theoretical danger that an outcome present in an unrecognized, early 
stage might actually provoke the exposure, and thus lead to a significant exposure­
outcome association. The horse and cart would be reversed here, since the outcome 
would be the cause of the exposure, rather than the other way around. Failure to 
recognize such reverse causality bias can result in the erroneous inference that expo­
sure has caused the outcome. For example, Horwitz and Feinstein have pointed out 
that endometrial (uterine) cancer may result in postmenopausal uterine bleeding 
before other symptoms develop. They argue that since estrogens are often pre­
scribed for postmenopausal bleeding, the uterine cancer detected some time later 
may be falsely ascribed to the estrogen exposure [3]. (Other investigators, however, 
have argued that endometrial cancer is usually detected rather quickly [4]. Further­
more, the association with estrogen exposure persists even when exposure is defined 
by past, discontinued estrogen use [5].) 

If exposure is measured on a categorical scale, strict a priori criteria should be 
established for assigning cases and controls to exposure categories. This is particu­
larly important when study subjects are classified dichotomously as exposed vs non­
exposed, because substantial misclassification may result from nebulous or errone­
ous criteria of exposure. The dose, duration, and period of exposure should 
therefore be specified ahead of time. Although different definitions of exposure can 
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be used in the context of a single study to investigate several types of exposure-out­
come causal models, multiple hypotheses increase the possibility of chance associa­
tions being declared "statistically significant" (see Chapter 12). In any case, the var­
ious definitions or criteria of exposure should be specified a priori to permit the 
testing, rather than the mere generation, of etiologic hypotheses. 

Ascertainment of exposure provides the main source of information bias in case­
control studies. This will be discussed, along with other aspects of bias assessment 
and control, in Section 8.4. 

8.3 Analysis of Results 

8.3.1 Relationship to Measurement Scales 

The presentation and analysis of the results depends on the types of measurement 
scales in which exposure and outcome are expressed. As mentioned earlier, outcome 
is usually expressed categorically. A study of the relationship between the two con­
tinuous variables of infant birth weight and maternal cigarette smoking during ges­
tation, however, would still qualify as a case-control study, if the directionality of 
the study was from outcome to exposure. The linear correlation between the aver­
age number of cigarettes smoked per day by the mothers and their infants' birth 
weights would nicely reflect the degree of exposure-outcome association. This type 
of case-control study is unusual, however, and would be similar (except for 
unknown losses to follow-up) to a cohort study in which pregnant women were fol­
lowed forward to delivery. 

When the outcome is continuous and the exposure is categorical, the results can 
be analyzed by comparing the mean outcomes in each exposure group. Although 
such an analysis appears similar to a comparison of mean outcomes in cohort studies, 
the exposure groups defined in a case-control study are not representative of expo­
sure groups in the target population, and their corresponding means are difficult to 
interpret. 

The use of ordinal outcomes is also rare in case-control studies but permits the 
assessment of dose-response effects. One recent example is a study of the relation­
ship between adolescent adiposity (fatness) and a history of having been breast-fed 
as an infant [6 J. Subjects were classified by outcome as either obese, overweight, or 
normal based on their weight-for-height and skinfold thicknesses. Their mothers 
were then interviewed about the type of feeding (breast vs bottle) the subjects 
received as newborns, and the major analysis was a comparison of breast feeding 
rates among the three outcome groups of normal, overweight, and obese subjects. 

Categorical outcomes and continuous exposures yield a comparison of mean 
exposure. While the information conveyed by such a comparison does provide a test 
of exposure-outcome association, the result is difficult to interpret in the usual 
sequence of causal inference, because our primary interest is not the average level of 
exposure preceding a given effect. Rather, the major inference concerns the effect of 
a particular level of exposure in the target population. Since, for a continuous expo-
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sure variable, the distributions of exposures in cases and controls are likely to over­
lap, and since the distribution of exposure in the target population will be a mix of 
the case and control distributions, no inference can be made concerning the effect of 
a given level of exposure merely by comparing the mean exposures in cases and con­
trols. 

The usual method of analyzing the results of a case-control study uses dichoto­
mous outcomes and categorical (usually dichotomous) exposures. Continuous expo­
sures can be categorized to permit the use of this strategy. As we shall see, such a 
method does indeed provide a good estimate of the effect of exposure in the target 
population. When both outcome and exposure are dichotomous, the results can be 
displayed in a 2 x 2 table (see Table 8.1). At first glance, the table appears identical 
to the cohort study 2 x 2 table illustrated in Table 6.1. The cases and controls corre­
spond to the presence and absence of the outcome respectively. The difference is in 
the directionality of the research design: backward from outcome to exposure in the 
case-control study, forward from exposure to outcome in the cohort study. 

The backward directionality imposes a backward method of analysis. Thus, we 

cannot compare the "rate" of cases in the exposed and nonexposed subjects ~b vs 
a+ 

_c_, because the exposure groups were formed by the exposure histories ascer­
c+d 
tained in the study, not by sampling from the target population. Only the outcome 

Table 8.1. Two-by-two table for analyzing results of a case-control study with dichotomous out­
come and exposure 

Cases Controls 
(0) (0) 

E a b a+b 

e d c+d 

a+e b+d N=a+b+c+d 

E, Exposed; E, nonexposed; 0, outcome present; 0, outcome absent 

Rate of exposure in cases = _a_ 
a+e 

Rate of exposure in controls = b! d 
Odds of exposure in cases = !! 

e 

Odds of exposure in controls = ~ 

dd ' we ad 
Exposure 0 s ratio (ORE) = - = -b 

bid c 
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groups (cases and controls) are representative of the target population, and thus the 
. .. h f' I a b major comparIson IS t e rate 0 exposure In cases vs contro s: -- vs -b--' 

a+c +d 
Although such a comparison in itself provides a valid test of the exposure-outcome 
association, it shares the same difficulty in interpretation as a comparison (for con­
tinuous exposures) of mean exposures. That is, it does not allow a direct inference 
about the effects or risks of exposure in the target population. As we shall see, the 
use of odds, instead of rates, will allow us to estimate the relative risk of exposure in 
the target population. 

8.3.2 Odds and Odds Ratios 

As in horse racing or other forms of betting, the odds of a given event is the ratio of 
the probability of its occurrence to the probability of its nonoccurrence. In horse 
racing, the odds are usually given as the odds against a given horse's winning the 
race. Thus,S: 1 odds indicates that the horse is five times more likely to lose than to 
win; hypothetically, if the race were to be run six times, the horse would lose five 
and win one. Conversely, the odds in /avor of the horse's winning is 1: 5. Since 
ratios can also be expressed as fractions, these odds can be expressed as 115. 

Similarly, in Table 8.1, the odds of exposure in the cases can be expressed as ale 
and that in controls as bid. We can also form a ratio of these two odds, called the 

. alc ad 
exposure odds ratlO (ORE) = bid = Tc' (8.1) 

Why do we compare the odds, rather than the rates, of exposure in cases and 
controls? As we have seen, the risks of outcome in exposed and nonexposed sub­
jects, which would provide direct information about the relative risk of exposure in 
the target population, cannot be directly derived from the data supplied by a case­
control study. In fact, the "rates" of cases in the two exposure groups are uninter­
pretable quantities that reflect the proportion of cases and controls sampled from the 
target population rather than the true risks of the outcome among the exposed and 
nonexposed in that population. The reason for using odds is that the odds ratio is a 
/airly good estimate 0/ the true relative risk 0/ exposure in the target population, pro­
vided the outcome is rare. The algebraic proof of this assertion forms the basis of the 
following section. Readers not interested in seeing this proof may skip to Sec­
tion 8.3.4 without loss of continuity. 

8.3.3 The Relationship Between the Sample Odds Ratio 
in a Case-Control-Study and the Target Population Relative Risk 

The best way to illustrate this relationship is by demonstrating the results in the 
entire target population (i. e., without sampling), and then seeing how a cohort 
study and a case-control study arrive at similar expressions for the relative risk of 
exposure in the target population. I will use capital letters to indicate the population 
values, lowercase letters to indicate values obtained in the cohort study, and lower­
case letters with primes (') for values in the case-control study. 



Analysis of Results 99 

In the target population, a large group of individuals are followed up for a 
period of time for the development of the study outcome. The results in the popula­
tion can be displayed in a 2 x 2 table (Table 8.2). Since everyone in the target popu­
lation can be classified both by their exposure status and their outcome status at the 
end of follow-up, the same 2 x 2 table would be obtained if the population study 
were done as a cohort or case-control study, provided there is no loss to follow-up. 

The relative risk in the target population is given by AI (A + B) . If the outcome 
C/(C+D) 

is rare, then A is very small relative to B (A -< B) and C is very small relative to D 
(C -< D). Consequently, we can define the estimated relative risk (RRest) as 

Table 8.2. Relationship between the relative risk and the odds ratio: target population 

o 0 

E A B A+B 

C D C+D 

A+C B+D N=A+B+C+D 

E, Exposed; E, nonexposed; 0, outcome present; 0, outcome absent 

Rate (risk) of outcome among exposed = ~ 
A+B 

Rate (risk) of outcome among nonexposed = ~ 
C+D 

Relative risk (RR) = ~ /~ 
A+B C+D 

If outcome is rare, then A....: Band C"": D 

Then ~""~ and ~""~ 
A+B B C+D D 

Estimated relative risk (RRest) = AlB = AD 
CID BC 

Odds of outcome among exposed = AlB 
Odds of outcome among nonexposed = C/D 

. AlB AD 
Outcome odds ratio (ORo) = C/D = BC 

Odds of exposure among those with outcome=A/C 
Odds of exposure among those without outcome = BID 

. A/C AD 
Exposure odds ratio (ORE) = BID = BC 

(8.2) 
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We can also calculate odds and odds ratios in the target population. The odds of 
exposure among subjects with the outcome is A/C, the odds among those without 

the outcome is BID, and the ORE = A/C = AD. We can also consider the odds of 
BID BC 

developing the outcome among the exposed (AlB) and the nonexposed (C/D), as 
well as the outcome odds ratio (ORo): 

ORo= AlB =AD 
C/D BC 

Note that RR"st, ORE, and ORo are equivalent. 

(8.3) 

Let us now consider what happens in a cohort study derived from this target 
population (Table 8.3). We may select the study sample either by exposure or by 
other criteria. If exposure is rare in the target population, we may wish to sample by 
exposure to ensure an adequate number of exposed subjects in the study sample. If 
exposure is common, representative (e.g., random) sampling will produce similar 
results. Since the sample is representative of exposed and nonexposed subjects in the 

target population and is obtained irrespective of (i.e., before) outcome, ~ =~. That 

is, the odds of outcome among the exposed is the same as in the target population. 

Similarly, .£. = C for the nonexposed. In the sample, the exposure odds ratios (ORE) 
d D 

~ ~ dh dd' ~ ~ can be calculated as -b = -b ,an t e outcome 0 s ratio (ORo) as - = -. But, 
M c ~ k 

Table 8.3. Relationship between the relative risk and the odds ratio: cohort study 

o ° 
E a b a+b 

e d e+d 

a+e b+d N=a+b+e+d 

E, Exposed; E, nonexposed; 0, outcome present; 0, outcome absent 

Outcome odds ratio (ORo) = ~;= 1c 
. ale ad 

Exposure odds ratio (ORE) = b/d= be 

Since the sample is representative of exposed and nonexposed subjects in the target population, 

!!:=~ and ~=~ 
b B d D 
Thus ad=AD 

be BC 
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since -ba = ~ and ~ = C, both of these expressions are also equivalent to AD. Thus, 
B d D BC 

in a cohort study without sample distortion, the exposure and disease odds ratios in 
the study sample are equivalent to the odds ratios and estimated relative risk in the 
target population. 

Finally, let us consider what happens in a case-control study derived from the 
target population (Table 8.4). We may select the study sample either by outcome or 
by other criteria, with the former preferred whenever the outcome is rare. Since the 
sample is representative of cases and controls in the target population, and is 

b . d· . f a' A d b' B I h d h o tame Irrespective 0 exposure status, - = - an - = -. n ot er wor s, t e 
e' C d' D 

exposure odds among cases and controls is the same in the sample as in the target 
a 'Ie' a'd' population. The exposure odds (ORE) can be calculated as -- = --. Since 
b'Id' b'e' 

a' A b' B a'd' AD (. . . a'lb' - = - and - = -, -- = -. Similarly, the outcome odds ratio = -- = 
e' C d' D b' e' BC e'ld' 

ab'd' = AD.) In a case-control study without sample distortion, therefore, the sam-
'e' BC 

pie odds ratio is equivalent to the odds ratio and estimated relative risk in the target 
population. 

As we have seen, if the outcome is rare, all these expressions will be very close to 
the true relative risk. What is meant by "rare"? The rarer the outcome, of course, 
the closer the odds ratio will approximate the true relative risk. In general, if 10% or 
less of the target population develop the outcome during the period of follow-up, 

Table 8.4. Relationship between the relative risk and the odds ratio: case-control study 

Cases Controls 
(0) (0) 

E a' b' a'+b' 

c' d' c'+d' 

a' +c' b' +d' N = a' + b' + c' + d' 

E, Exposed; E, nonexposed; 0, outcome present; 0, outcome absent 
a 'Ie' a'd' 

Exposure odds ratio (ORE) = b d =-b 
'/ ' 'e' 

S· hi· . f d I· hi· a' A d b' B Illce t e samp e IS representative 0 cases an contro s III t e target popu atlon, - = - an - = -
c' C d' D 

a'd' AD Thus-=-
b'c' BC 
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the approximation is fairly good [7]. In fact, many authors use the term "relative 
risk" rather loosely to indicate the estimated relative risk or odds ratio determined in 
a case-control study. It is probably better, however, to restrict the term "relative risk" 
to the true relative risk determined in a cohort study. (Miettinen has shown that if 
incident cases are used, and controls are selected periodically over the same dura­
tion of study as the cases, the odds ratio is actually equivalent to the incidence den­
sity ratio (see Section 6.2.4) without requiring the rare disease assumption [8].) 

8.3.4 An Illustrative Example 

To illustrate the algebraic concepts discussed in the previous section, let us consider 
a hypothetical example. (Three decimal places are retained to demonstrate the mag­
nitude of the "error" in using the odds ratio as an estimate of the relative risk.) Let 
us imagine that newly published laboratory experiments demonstrate that rats who 
are fed tea with their regular diets have an increased incidence of renal (kidney) 
cancer. Because tea consumption represents such a widespread exposure in humans, 
we decide to mount an epidemiologic study to test the hypothesis that tea drinkers 
have an increased risk for developing renal cancer. 

Because the rats did not develop their renal cancers until late in life, because we 
know that carcinogenesis is a process that may require years or even decades, and 
because renal cancer is a rather rare disease, we decide that a case-control study 
would be the most feasible approach to this question. Table 8.5 shows the hypotheti­
cal results that we would have obtained had an entire birth cohort of 300000 from a 
given community been followed to age 60. For simplicity, we shall assume a fixed 
population without migration or loss to follow-up and without other causes of mor­
tality before age 60. Two out of three individuals in this population are tea drinkers. 

The relative risk of renal cancer in tea drinkers is 2.000, and the attributable risk 
due to tea consumption is 0.001, or 1 per 1000. The exposure odds ratio and out­
come odds ratio are both 2.002, which is very close to the true relative risk (2.000). 
This is exactly what we would expect, because renal cancer is a rare disease (cumu-

lative incidence through age 60 = 500 = 0.00167, or 1.67 per 1000). 
300000 

Now let us see what happens when we do a case-control study with sampling of 
500 controls from this target population. Let us assume that the medical records for 
this entire population are available and that we can identify all 500 cases of renal 
cancer that have occurred up to the time of study, when all surviving subjects would 
be 60 years old. By using the medical records to identify all new cases, rather than 
assessing all surviving subjects at age 60 for the presence or absence of renal cancer, 
we are selecting incident cases and thus should be in a better position to make causal 
inferences about tea consumption and the entire disease spectrum of renal cancer. 

The results of this case-control study are shown in Table 8.6. Because we expect 
the control group to be representative of controls in the target population (i. e., the 
sample is undistorted), we expect the same proportion of exposure in our sample of 
controls as we obtained in the population. Thus, the 500 controls are divided into 
333 tea drinkers and 167 nontea drinkers. The exposure odds ratio (ORE) is 2.006. 
This is quite similar to the ORE, ORo, and RR."st obtained in the target population. 
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Table 8.5. Tea drinking and renal cancer: target population 

RC, Renal cancer 

Tea 
drinkers 

Nontea 
drinkers 

RC No RC 

400 199600 

100 99900 

500 299500 

200000 

100000 

300000 

Risk of RC among tea drinkers = 400/200 000 = 0.002 (2 per 1000) 
Risk of RC among nontea drinkers = 10011 00000 = 0.001 (l per 1000) 

Relative risk (RR) = 4001200000 = 2.000 
100/100000 

Attributable risk (AR) = 4001200000 -100/100 000 = 0.001 (1 per 1000) 
Odds of RC among tea drinkers = 400/199600 = 0.002004 
Odds of RC among nontea drinkers = 100/99900 = 0.001001 

. 400/199600 
Outcome odds ratio (ORo) = =2.002 

100/99900 
Odds of tea drinking among subjects with RC = 400/100 =4.000 
Odds of tea drinking among subjects without RC = 199600/99900 = 1.998 

. 400/100 
Exposure odds ratio (ORE) = = 2.002 

199600/99900 
Estimated relative risk (RRest) = ORE = ORo = 2.002 

Table 8.6. Tea drinking and renal cancer: case-control study 

RC No RC 

RC, Renal cancer 

Tea 
drinkers 

Nontea 
drinkers 

400 333 

100 167 

500 500 

Odds of tea drinking among cases = 400/100 = 4.000 
Odds of tea drinking among controls = 333/167 = 1.994 

. 400/100 Exposure odds ratio (ORE) = --- = 2.006 
333/167 

733 

267 

1000 

103 
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(The slight difference, 2.006 vs 2.002, occurred because our sampling resulted in a 
need to round off the proportion of tea drinkers to 333 of 500, or 0.6660 for the 
proportion of exposed controls. In the target population, however, 199600 of 
299500, or 0.6664 of the controls were exposed.) 

As alluded to earlier, there is one extremely important trap to be aware of when 
analyzing a 2 x 2 table from a case-control study. The unwary "cohort-prone" 
reader may be tempted to calculate a relative risk directly from such a table. For 
example, in Table 8.6 some persons might naively calculate a "risk" in the exposed as 
4001733, or 546 per 1000. This is obviously a ridiculously high risk, nowhere near 
the 2 per 1000 in the target population. Similarly, they would calculate the "risk" in 
the nonexposed as 1001267, or 375 per 1000, which is also ridiculous. Such persons 

ld h d · d' "I' . k" 4001733 1 47Th" . d'ff wou t en eflve a Irect re ative flS as ,or . 5. IS IS qUite I er-
1001267 

ent from the population value of 2.000, but not as ridiculous as the individual 
"risks." 

This entire procedure, of course, is totally incorrect. In a case-control study we 
do not begin with a representative sample of exposed and nonexposed individuals in 
the target population. Instead, we begin with a representative sample of subjects 
with and without the outcome (cases and controls). The only true rates or risks we 
can calculate, therefore, are the rates of exposure in cases and controls, not the rates 
of outcome in the exposed and nonexposed. (We use odds instead of rates, however, 
to derive an estimate of the true relative risk.) . 

8.3.5 Analysis of Ordinal Exposure Categories 

If exposure is measured on a polychotomous ordinal scale, a case-control study can 
be analyzed for dose-response effects. This is analogous to the assessment of dose­
response effects in cohort studies (see Section 6.2.4 and Table 6.4). Odds ratios are 
calculated by comparing each exposure category with the lowest exposure, or 
"base," category (e.g., nonexposed). Rising (or falling) odds ratios with increasing 
categories of exposure indicate a dose-response relationship between exposure and 
outcome and thus strengthen causal inferences. 

To illustrate, Table 8.7 presents data from our hypothetical case-control study of 
tea consumption and renal cancer (Table 8.6), but with tea drinking measured on a 
three-category ~rdinal scale: heavy (~ 3 cupsl day), light ( < 3 cupsl day), and none. 
The exposure odds ratio for light vs nontea drinking is 1.61, and that for heavy vs 
nontea drinking is 2.76. Thus, the greater the tea drinking, the higher the estimated 
risk of renal cancer. 

8.3.6 Interpretation of the Odds Radio 

Since the odds ratio is an estimate of the relative risk, a value of OR> 1 indicates 
that exposure is associated with an increased risk of developing the outcome. The 
higher the value of OR, the greater the risk. Conversely, a value of OR < 1 indicates 
that exposure is associated with a reduced risk, i. e., it protects against developing the 
outcome. The closer the value of OR is to 0, the greater the protection. 
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Table 8.7. Tea drinking and renal cancer: case-control study with ordinal exposure 

Tea 
drinking 

RC, Renal cancer 

Heavy 
(;;; 3 cups/day) 

Light 
( < 3 cups/day) 

None 

Cases Controls 
(RC) (no RC) 

190 115 

210 218 

100 167 

500 500 

Exposure odds ratio (ORE) for light vs nontea drinking = 210/100 = 1.61 
218/167 

Exposure odds ratio (ORE) for heavy vs nontea drinking = 190/100 = 2.76 
115/167 

305 

428 

267 

1000 

105 

The odds ratio will rarely equal exactly 1, even in the absence of true risk or 
protection. In particular, small increases or decreases from 1 may occur by chance; 
this is especially true if the sample size is small. In Chapter 14 we will see how the 
odds ratio can be tested for statistical significance, i. e., how to assess whether its dif­
ference from 1 could have occurred by chance. 

8.3.7 Calculating Etiologic Fractions from Case-Control Studies 

The etiologic fraction (EF) can be derived in an entirely analogous fashion to cohort 
studies (see Eq. 6.3): 

EF= PE(OR-l) 
PE(OR-l)+ 1 

(8.4) 

where PE is the prevalence of exposure in the target population and OR is the odds 
ratio determined in the case-control study. The rate of exposure in the control 

group, b! d' can be used to estimate PE under the assumption that this rate will be 

fairly close to the rate of exposure in the overall target population. For the tea 
drinking and renal cancer example (Table 8.6), 

EF= 333/500(2.01-1) =0.40 
333/500 (2.01-1) + 1 
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In other words, 40% of the cases of renal cancer in our (hypothetical) target popula­
tion can be attributed to tea drinking. 

8.4 Bias Assessment and Control 

8.4.1 Sample Distortion Bias 

Because case-control studies begin with the outcome, many of the sources of sample 
distortion bias are "hidden," in the sense that they have already occurred when the 
case and control subjects are assembled for study, rather than occurring during the 
course of follow-up. Thus mortality, migration, and referral that differ according to 
both exposure and outcome will lead to a biased sample, and unless the investigator 
knows the pattern of these differences, she can neither assess the magnitude of the 
bias nor protect against it in the design or analysis. 

In cohort studies, unequal surveillance can lead to information bias through 
biased detection of the outcome, but standardized examination and testing proce­
dures, as well as appropriate blinding, can be incorporated into the design to mini­
mize this bias. In case-control studies, however, the outcome has already been 
detected, and any systematic difference in ascertainment of outcome according to 
exposure will result in a biased sample for which the investigator has no opportunity 
for control or reduction. 

Referral is also a potential source of sample distortion bias in case-control 
studies, because the outcome is often the very reason for referrals that may, inde­
pendently, be associated with exposure. This is most likely to occur if the cases are 
referred by a clinician who also prescribes the exposure agent. For example, if cases 
are referred by a gynecologist, whereas controls are not, cases may be more likely to 
be taking estrogen than controls, even if there is no true association between 
estrogen exposure and the study outcome. 

Finally, as discussed in Chapter 5, case-control studies are prone to Berkson's 
bias, a form of sample distortion bias that occurs when both the exposure factor and 
the outcome are causes for referral [9, 10]. This is particularly likely to occur when 
the exposure factor is itself a disease or other adverse health state. The exposure­
outcome association becomes falsely inflated because subjects with both exposure 
and outcome are more likely to be referred (they can be referred for either the 
exposure condition or the outcome), and therefore included in the study sample, 
than subjects with either or neither. For example, a hospital clinic-based case-control 
study of hypertension (high blood pressure) as a risk factor for breast cancer may 
reveal a false association (or an association of inflated magnitude) merely because 
patients with both conditions have a "double" chance of being referred (selected). 

Sample distortion bias is best reduced by preventive planning in the study design. 
Use of incident outcomes as cases will reduce bias due to differential follow-up by 
including fatal cases. Choosing cases and controls from the same referral source will 
remove one source of referral bias but will not affect Berkson's bias. Control for the 
latter requires information about the rates of referral for both the exposure and out­
come conditions, which unfortunately is rarely available to the investigator. Finally, 
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detection bias can be reduced by ensuring that cases and controls had the same 
opportunity for detection of the outcome. For example, a study of the risk of gall­
stones in patients taking cholesterol-lowering drugs might sample cases and controls 
by selecting patients with positive and negative ultrasound studies respectively. 

8.4.2 Information Bias 

Case-control studies are prone to information (misclassification) bias in the ascer­
tainment of exposure, especially when exposure history is obtained directly from the 
study subjects, rather than from their medical records. The reason is that, unlike 
cohort studies, such case-control studies require the subjects to remember accurately 
their past exposures. Nondifferential (between cases and controls) errors in recall 
will result in random misclassification of exposure (i. e., "noise") and thus bias the 
exposure-outcome association toward a null result (OR= 1). 

Differential recall bias is a graver concern, however. Theoretically, cases might 
be more likely to remember exposure than controls. It is often argued, for example, 
that the mother of a baby who has just been born with a severe congenital anomaly 
is more likely to search her memory for a history of past exposure to a drug or a 
potential toxin than a woman who has just given birth to a perfectly healthy baby. 
Empirical verification of the existence, frequency, and magnitude of this bias is 
sorely lacking, however [11]. 

Observers are another potent source of information bias in case-control studies. 
Knowledge of the case vs control status on the part of the person obtaining the 
exposure history (either from medical records or by personal interview) can affect 
the diligence with which positive or negative histories are obtained. If an investigator 
is under a strong impression that a certain exposure is associated with a given out­
come, she may press (even if unconsciously) cases much harder for their recollection 
of exposure than she will controls. 

Misclassification of outcome can occur when prevalent outcomes are selected as 
cases and the outcome is transient (may be cured or may resolve on its own). Sub­
jects who experienced the outcome in the past but are free of it at the time of study 
will then be misclassified as controls. This is best avoided by selecting incident out­
comes as cases. 

Misclassification of exposure can be reduced considerably by establishing a pri­
ori criteria of exposure, by incorporating standardized methods for stimulating 
memory in all subjects (cases and controls), and by blinding observers to both the 
case vs control status of the subjects and (if possible) the exposure-outcome associa­
tion under study. The latter can be accomplished by inquiring about prior exposure 
to a number of factors, with the study factor thus "hidden" among the rest. 

8.4.3 Confounding Bias 

Confounding bias arises whenever factors associated with exposure are indepen­
dently associated with outcome (providing that such factors do not lie on the causal 
path from exposure to outcome). The principal sources of confoundi"ng in case-con­
trol studies are (a) exposure-associated differences in background variables with 
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independent effects on outcome (susceptibility bias), and (b) exposure accompani­
ments with independent effects on outcome (contamination bias). Such sociodemo­
graphic and clinical factors as age, sex, and socioeconomic status, disease severity, 
and comorbidity (the coexistence of other diseases or conditions) are the types of 
baseline susceptibility factors that are particularly likely to confound the exposure­
outcome association in case-control studies. Examples of accompaniments would 
include associated toxic exposures (e. g., cigarette smoking among asbestos miners) 
and medical treatments (e.g., radiation and chemotherapy). 

As with cohort studies, confounding in case-control studies can be controlled at 
either the design or the analysis stage. Design features include restriction and 
matching (see Chapter 5). Restriction tends to limit the target population to which 
the results of the study may be applied. Matching is a powedul strategy for control­
ling confounding, provided the number of factors and levels of those factors are 
small enough to ensure "matchability" of all (or most) of the cases. As previously 
mentioned, matched designs should receive matched analyses to enhance statistical 
efficiency. 

A matched analysis in case-control studies is similar to the analysis of matched 
cohort studies with dichotomous exposure and outcome (see Tables 6.5 and 6.6). 
Table 8.8 shows a matched analysis from a hypothetical case-control study of breast 
feeding as a possible protective factor against subsequent gastroenteritis (intestinal 
infection) in the first year of life in 100 pairs (200 total subjects) of infants matched 
for age, sex, and socioeconomic status. The matched odds ratio (ORmatched) is 
defined as the ratio of the number of pairs discordant for exposure history, i. e., 

-be =.2.. = 0.35. (The OR < 1 here indicates a protective effect of breast feeding.) The 
26 

reader is referred to other sources for analytic strategies pertaining to matched trip­
lets, quadruplets, or variable numbers of controls per case [12, 13]. 

A stratified (Mantel-Haenszel) analysis [14] is another powedul analytic tool for 
controlling confounding and requires no adjustments in the design, providing that 
potentially confounding variables are recognized and measured reproducibly and 

Table 8.8. Breast feeding and gastroenteritis case-control study: matched-pair analysis 

Controls 

c 9 
ORmatched = b = 26 = 0.35 

BF 

NotBF 

Cases 

BF Not BF 

6 26 

9 59 

100 
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validly. The analytic method is analogous to that shown for cohort studies (see 
Table 6.7): 

OR J:.aid;!N i 
MH= 

J:.bic/Ni 

where ai = the number of exposed cases in the ith stratum, 
bi = the number of exposed controls in the ith stratum, 
Ci = the number of nonexposed cases in the ith stratum, 
di = the number of nonexposed controls in the ith stratum, 

and Ni = the total number of subjects (ai + bi + Ci + di) in the ith stratum. 

(8.5) 

The procedure is illustrated in Table 8.9. We return to our hypothetical case­
control study of tea drinking and renal cancer. The crude results were shown in 

Table 8.9. Tea drinking and renal cancer: Mantel-Haenszel analysis after stratification by cigarette 
smoking status 

Smokers 

Nonsmokers 

RC, Renal cancer 

OR = ad = (350)(20) = 1 17 
smokers be (80)(75) . 

OR = ad = (50)(147) = 1 16 
nonsmokm be (253)(25) . 

Tea 
drinkers 

Nontea 
drinkers 

Tea 
drinkers 

Nontea 
drinkers 

Cases Controls 
(RC) (no RC) 

350 80 

75 20 

425 100 

Cases Controls 
(RC) (no RC) 

50 253 

25 147 

75 400 

OR = 'f.a;d/N; = (350)(20)/525 + (50)(147)/475 = 1.16 
MH 'f.b;e/N; (80)(75)/525 + (253)(25)/475 

430 

95 

525 

303 

172 

475 
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Table 8.6 and suggested that tea drinkers have double the risk (ORcrude=2.01) of 
developing renal cancer that nontea drinkers have. We suspect, however, that the 
effect may be confounded by cigarette smoking, since tea drinkers are more likely to 

smoke than nontea drinkers, and cigarette smoking is an independent risk factor for 
renal cancer. Table 8.9 shows the Mantel-Haenszel analysis when the data are strati­
fied by smoking status (smokers vs nonsmokers). 

The tea drinkers are indeed more likely to be smokers (430 of 733) than the 
nontea drinkers (95 of 267). The stratum-specific odds ratios are similar in both 
smokers and nonsmokers (1.17 vs 1.16), indicating no effect modification (interac­
tion) by smoking status and little, if any, remaining association between tea drinking 
and renal cancer. The Mantel-Haenszel odds ratio (ORMH) is the same, of course, 
since it is merely a weighted average of the two stratum-specific ORs. 

The final approach to controlling confounding uses multivariate statistical 
adjustment techniques, which permit assessment of the exposure-outcome associa­
tion while simultaneously adjusting for any number of confounding or interacting 
variables. The technique usually employed is multiple logistic regression. Although a 
full discussion of the method is beyond the scope of this text, it will be mentioned 
briefly in Chapter 14. 

8.5 Advantages and Disadvantages of Case-Control Studies 

In many situations, case-control studies have distinct advantages over cohort studies 
(Table 8.10). The ability to sample by outcome makes the case-control study ideally 
suited to investigating rare outcomes. When outcomes are rare, huge cohorts would 
be required to ensure that a sufficient number of subjects develop the outcome for 
significant differences to emerge. For example, suppose agent A leads to disease D 
with an attack rate of 0.6 per 1000, and that the natural (nonexposed) rate of occur­
rence of disease D is 0.2 per 1000. A cohort study would require over 38000 sub­
jects to detect a significant difference between subjects exposed and those not 
exposed to agent A. With a case-control study, we can start with a much smaller 
number of cases and controls and still achieve statistical significance (providing 
exposure to agent A is not rare among the cases). 

Secondly, case-control studies offer an advantage whenever outcomes are 
delayed, even if they are not rare. Although a historical cohort study would theoret­
ically get around this problem, many exposures (e.g., tea drinking) may not be 

Table 8.10. Advantages and disadvantages of case-control studies (vs cohort studies) 

A. Advantages 
1. Statistically more efficient when outcomes are rare 
2. Quicker when outcomes are delayed 
3. Less costly 

B. Disadvantages 
1. Enhanced potential for sample distortion 
2. Exposure ascertainment more prone to error and bias 
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ascertainable in routine medical records. With a concurrent cohort study, we might 
have to wait many years for the development of an outcome before getting an 
answer to the question under investigation. With a case-control study, however, we 
start with the outcome, and the answer is available as soon as exposure histories are 
obtained. The only necessary waiting occurs when incident cases are being accumu­
lated. 

Finally, case-control studies are usually cheaper to carry out than cohort studies. 
This advantage follows logically from the first two, because large numbers of sub­
jects and prolonged follow-up are usually expensive. 

The disadvantages of case-control studies center on their higher potential for 
sample distortion bias and information bias. Although bias due to omission of fatal 
and transient cases can be avoided by using incident cases, the opportunities for re­
ferral, detection, and Berkson's biases, as well as biased ascertainment of exposure, 
require careful strategies for sample selection and study design and even then may 
not be entirely avoided. Confounding, however, can be controlled as in observa­
tional cohort studies, provided that potentially confounding variables are considered 
and their measurement is sufficiently reproducible and valid. A helpful approach for 
reducing bias in case-control studies is to model certain features of their design on 
the randomized clinical trial [15]. By using strict inclusion and exclusion criteria, 
standardized memory "probes," interviewer blinding, and unbiased procedures to 
detect the presence or absence of the outcome, case-control studies can come closer 
to the methodologic "gold standard" of the randomized experiment. 

On balance, the case-control study represents an important investigative strategy 
in epidemiologic research. When outcomes are rare or delayed, it is often the only 
feasible approach. In other circumstances, it can often provide an interim answer to 

a question of exposure-outcome association while awaiting the results of more 
definitive cohort studies or clinical trials. Adequate attention to sources of bias in 
both the design and analysis stages of case-control studies should help maximize the 
validity of their results [16-18]. 
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Chapter 9: Cross-Sectional Studies 

9.1 Introduction 

In cohort studies, subjects are followed in a forward direction from exposure to out­
come, and inferential reasoning is from cause to effect. In case-control studies, sub­
jects are investigated in a backward direction from outcome to exposure; inference 
is from effect to cause. In cross-sectional studies, the exposure and outcome are 
both determined at the same point, or cross section, in time [1]. (Hence, another 
name for this design is prevalence study.) Cross-sectional studies share many of the 
features of case-control studies. They carry an additional disadvantage, however; 
since exposure is ascertained at the same point in time as the outcome, the investiga­
tor cannot be certain that exposure preceded outcome. As we shall see, this disad­
vantage has important implications for causal inference. 

9.2 Research Design Components 

9.2.1 Sample Selection 

As discussed in Chapter 4, the study sample in cross-sectional studies can be selected 
by exposure, outcome, or other criteria. Random sampling or some other form of 
representative sample selection is often used in such studies. In fact, the use of the 
term "representative cross section" to refer to how sample subjects are selected from 
the target population has led to some of the confusion between sample selection and 
directionality in the classification of epidemiologic research design (see Chapter 4). 
But both cohort and case-control studies can also use this method of sample selec­
tion. Furthermore, cross-sectional studies may profit by basing subject selection on 
either exposure or outcome if either is rare in the target population. When exposure 
is rare, statistical efficiency is enhanced when selection is by exposure. Conversely, 
selection by outcome is preferable when the outcome is rare. 

9.2.2 Outcome 

Cross-sectional studies usually measure prevalent outcomes. Fatal cases, dropouts, 
and migrants are not counted, nor are cases that were successfully treated or that 
resolved spontaneously. Consequently, cross-sectional studies are best suited to 
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chronic, nonfatal conditions. Incident cases could be investigated for simultaneous 
exposure, however, and such a design would still be considered cross-sectional. For 
example, new patients with myocardial infarction could be interviewed concerning 
their (then) current smoking habits. 

9.2.3 Exposure 

Exposure is measured at the same point in time as outcome. (As explained in Chap­
ter 4, the "same point in time" is an approximation.) Since exposure and outcome 
have usually been present for some time prior to the study, the investigator cannot 
be certain that exposure preceded outcome. Consequently, any inference that expo­
sure caused outcome rests on the unknown true temporal sequence of events. 

When the exposure variable is a genetic, anatomic, or otherwise permanent 
attribute, the issue of temporal sequence becomes less problematic for the investiga­
tor. Thus race, sex, blood type, or glucose-6-phosphate dehydrogenase (G-6-PD) 
genotype, for example, can usually be assumed to precede the study outcome. For 
these kinds of exposures, cross-sectional studies are equivalent to case-control 
studies. 

This is also true whenever exposure determined at a particular point in time is a 
valid proxy for exposure occurring in the past. To the extent that dietary, smoking, 
or drug-taking practices measured at one point in time accurately reflect such prac­
tices within a time range consistent with the latent period for the outcome, the 
results of a cross-sectional study should be similar to the results of a case-control 
study. Since such practices often change over time, however, and may even change 
in response to the study outcome (i. e., as effect rather than cause), use of the cross­
sectional design is best suited to outcomes with short latent periods. 

9.3 Analysis of Results 

The analysis of the results of a cross-sectional study depends on the method of sam­
ple selection and on the measurement scales for exposure and outcome. When selec­
tion is by exposure, analysis is similar to that used for cohort studies. For continuous 
outcomes, mean outcomes are compared between the groups defined by exposure 
status. For incident categorical outcomes, the outcome rates are compared in expo­
sure groups; if dichotomous, relative and attributable risks can be calculated. When 
selection is by exposure and outcomes are prevalent rather than incident, the relative 
risk derived from a cross-sectional study is often referred to as a prevalence rate 
ratio. 

When sample selection is by outcome, analysis is similar to that used for case­
control studies. Outcome is usually dichotomized (case vs control), and odds ratios 
can be calculated. The classification of outcome status as "case" vs "control" does 
not render the design truly case-control, however, since the exposure ascertained in 
cross-sectional studies is simultaneous with, rather than prior to, the outcome. As 
noted earlier, these two designs do in fact become equivalent when the exposure 
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variables are permanent characteristics or when the latent period from exposure to 
outcome is very short. As with case-control studies, the outcome must be rare for 
the odds ratio to be a reasonable estimate of the relative risk (see Section 8.5.3). 

When sample selection is by random, representative, or other criteria, the results 
of a cross-sectional study can be analyzed using either of the above strategies 
(cohort or case-control). In general, the cohort approach is preferred, because it 
usually permits a direct comparison of means or rates in groups defined by expo­
sure, as well as calculation of true relative risks when the outcome is dichotomous. 

9.4 Bias Assessment and Control 

Cross-sectional studies are generally prone to the same sources of sample distortion 
bias, information bias, and confounding bias as case-control studies. Since ascertain­
ment of exposure is based on contemporaneous exposure, however, there is less 
opportunity for information bias in the exposure measurement. Since cross-sectional 
studies do not rely on the subject's memory of exposure, its measurement is less 
likely to be randomly erroneous or differentially selective (those with the outcome 
being more likely to recall exposure) than in case-control studies. Adequate blinding 
of interviewers and clear, a priori criteria for exposure are usually sufficient to guard 
against this form of bias in cross-sectional studies. 

Design strategies for reducing sample distortion bias are identical to those dis­
cussed for case-control studies in Chapter 8. Restriction, matching, stratification, or 
multivariate adjustment techniques can be used to control for confounding bias in 
cross-sectional studies. The choice of a statistical procedure depends on the method 
of sampling and on whether the results are analyzed by the cohort or case-control 
approach (see Section 9.3). 

The potential for reverse causality bias is of crucial importance in cross-sectional 
studies and is the major reason why causal inferences are more tenuous than in 
cohort or even case-control studies. Imagine, for example, a cross-sectional study of 
obesity as a possible risk factor for osteoarthritis (degenerative joint disease) of the 
hips and knees. Without knowing that the obesity preceded the arthritis, an equally 
tenable inference (following demonstration of a statistical association) would be that 
osteoarthritis is a risk factor for obesity. Persons who develop painful hips or knees 
might limit their physical activity and secondarily become obese. 

9.5 "Pseudo-Cohort" Cross-Sectional Studies 

One type of cross-sectional study can be made to look like a cohort study. Instead 
of following one group over time, different age groups are studied cross-sectionally. 
Data are obtained as a function of age but are based on different subjects rather 
than on the same subjects over time. Such studies are called pseudo-cohort studies 
because the data look longitudinal (i. e., based on the same subjects followed over 
time) even though they are cross-sectional. 



116 Cross-Sectional Studies 

An example of this design is insurance company life tables; such tables list the 
number of people surviving for 1 year at each year of age. These data are then used 
to calculate the chances of dying or living for specific periods of time after any given 
age. The problem is that this approach assumes that risk factors, medical care, and 
other aspects of public health are also constant, so that current mortality trends will 
remain unchanged for decades to come. The assumption is of course untrue. With 
general improvements in health in developed societies over the past few decades, 
persons at any age today will (on average) live longer than did those of the same age 
50 years ago. Since life insurance premiums are based on the current mortality expe­
rience of earlier birth cohorts, the insurance companies benefit from the lower 
future mortality of later birth cohorts. 

This example illustrates the effect that a given age cohort (i. e., those persons 
born at the same calendar time) can have on the cross-sectional age distribution of a 
clinical attribute: the so-called cohort effect. Another example of a cohort effect is the 
apparent deterioration in measured intelligence with age demonstrated in several 
cross-sectional studies [2]. More recent cohort studies, however, have shown that 
intelligence does not diminish with aging. Since intelligence tests reflect education 
and since successive generations have received more and better education, the el­
derly appear less intelligent than the young at any cross section in time. Cohort 
effects thus represent a confounding bias of calendar time on age. Such a bias can be 
discovered (and thus removed) only by analyzing the data longitudinally by age 
cohort, a technique known as cohort analysis. Consider once again our example of 
age and intelligence. Repeated intelligence testing of the same individuals within 
each age cohort would show no decrease in scores over time, whereas members of 
earlier birth cohorts would have lower scores at any given age than members of later 
cohorts tested at the same age. 

9.6 Advantages, Disadvantages, and Uses of Cross-Sectional 
Studies 

The major advantages of cross-sectional studies (see Table 9.1) are their rapidity and 
low cost, compared with cohort studies, and their relative freedom (vis a vis case­
control studies) from faulty or biased memory. Since exposure and outcome are 
both ascertained at a single point in time, no follow-up is required. Data can there­
fore be obtained quickly and at little expense to the investigators. Furthermore, the 
potential for information bias in ascertaining exposure is less than in case-control 
studies, since subjects do not have to rely on their memory of past exposure. If 
observers are adequately blinded, contemporaneous exposure is likely to be mea­
sured reproducibly and validly. 

Perhaps the main contribution of the cross-sectional design is in descriptive, 
rather than analytic, epidemiologic studies. Disease or other clinical phenomena can 
be classified by person (age, sex, race, ethnicity, socioeconomic status), place 
(nation, region, province, city, neighborhood, dwelling), or time. Cross-sectional 
studies are also useful for describing the clinical spectrum (symptoms, signs, labora­
tory test results, pathologic findings) of a given disease entity. For example, an 
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Table 9.1. Advantages and disadvantages of cross-sectional studies 

A. Advantages 
1. Useful for descriptive studies 

a. Clinical spectrum of disease 
b. Prevalence surveys (public health) 

2. Rapid, inexpensive analytic studies provide early "clues" 
3. Less prone (than case-control studies) to exposure recall error and bias 

B. Disadvantages 
1. May be unable to sort out cart vs horse (temporal sequence of exposure and outcome) 
2. Enhanced potential (vs cohort studies) for sample distortion bias 

investigator might carry out a cross-sectional study of a large defined group of dia­
betic patients to describe the proportion with retinal, renal, cardiac, or peripheral 
vascular complications. Much of what we know about the varied clinical manifesta­
tions of many diseases, especially rare diseases, is based on such descriptive cross­
sectional "case series." Furthermore, as discussed in Chapter 3, ascertaining the 
prevalence of a variety of diseases and conditions is of great importance to public 
health personnel in making their decisions about allocation of resources and targets 
for preventive or other intervention strategies. 

Cross-sectional designs also have a role in analytic studies. Because they can be 
done quickly and inexpensively, cross-sectional studies can often provide the first 
clue to an exposure-outcome association, which can serve as a stimulus for more 
definitive cohort or case-control studies. In addition, in situations involving perma­
nent exposure characteristics, short latent periods, or exposure measures that are 
valid proxies for past exposures, cross-sectional and case-control studies become 
equivalent. In such situations, cross-sectional studies have the advantage of being 
less prone to random error and bias in measurement of exposure. 

The major disadvantages of cross-sectional studies are their frequent inability to 
distinguish cause from effect and their potential for sample distortion bias. The lat­
ter problem is one shared by case-control studies. The problem of distinguishing the 
horse from the cart, i. e., whether exposure preceded outcome or vice versa, is 
unique to cross-sectional studies and constitutes their major limitation in analytic 
research. Unless the exposure variable is a permanent attribute or the latent period is 
very short, causality inferences are rather tenuous. The importance of temporal 
sequence in causal reasoning will be discussed further in Chapter 19. 
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Chapter 10: Introduction to Statistics 

10.1 Variables 

In Chapter 2 I defined the different types (scales) of epidemiologic variables and 
discussed principles of their measurement. In particular, I classified variables as 
either continuous or categorical, subdividing categorical variables into dichotomous 
vs polychotomous and further subdividing polychotomous variables as either nomi­
nal or ordinal. This framework will be retained in our discussion of statistical analy­
SIS. 

10.2 Populations, Samples, and Sampling Variation 

As has been repeatedly emphasized, almost all epidemiologic studies are carried out 
on a sample that is presumed to be representative of a particular target population. 
Since investigators (and the public) are usually interested in applying the results of a 
study beyond the actual subjects participating in the study, they must make infer­
ences about the target population based on the data from the sample. In Chapters 4 
and 5 I discussed the extent to which such inferences depend on the representative­
ness of the sample selection procedure and the absence of subsequent distortion of 
the sample. Also considered were the various methods of sample selection, the use of 
random sampling (including simple, stratified, and clustered random sampling) 
being emphasized as providing the best assurance of representativeness. 

Another aspect of samples and sampling is sampling variation. Assuming a purely 
stochastic (i. e., probabilistic) mechanism for obtaining a sample from its source pop­
ulation, statistics for that sample will differ from the corresponding population sta­
tistics in a predictable way. In fact, if repeated random samples were selected from 
the same source population after replacing such samples (so that the same individual 
could be sampled more than once), the distribution of sample statistics (e.g., mean, 
rate, relative risk, odds ratio) that would be obtained can be described. This distri­
bution of sample statistics describes a phenomenon known as sampling variation. 
Although sampling variation is based on a theoretical process of repeated sampling, 
the reproducibility of a statistic from a single sample remains an important consider­
ation. 

Since individuals in a population do not all have the same value for a given vari­
able but rather exhibit a distribution of values, a small sample (even if randomly 
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selected) might, just by "the luck of the draw," have a mean or rate that differs con­
siderably from that of the entire population. Consequently, small samples from the 
same population are likely to exhibit considerable sampling variation. On the other 
hand, repeated large samples would yield sample means or rates very close to the 
population value and, therefore, to each other. Thus, sampling variation is inversely 
related to the sample size. 

10.3 Description vs Statistical Inference 

Descriptive statistics are numbers intended to describe a study sample by summariz­
ing and condensing a set of measurements on the individuals in that sample. They 
are analogous to, and often derive from, descriptive epidemiologic studies. Con­
trasts can be made between groups (e. g., a comparison of outcome in groups 
defined by exposure status), but no inferences are drawn about the unobserved 
source populations from which the groups derive. Rates (e.g., birth rates, death 
rates, rates of successful treatment) are used to describe categorical variables. Con­
tinuous variables are usually described by summary measures of central location and 
spread. Mean birth weight and median survival time are examples of central location 
statistics. Ranges, standard deviations, and percentile ranges are the kinds of statis­
tics used to describe spread. 

Statistical inference comprises a range of procedures and techniques that are used 
to draw conclusions about populations based on data from samples. Statistical infer­
ence can be classified under two main headings: (a) parametric estimation and (b) 
significance testing. In parametric estimation, inferences are drawn about parameters' 
(mathematical descriptors such as the rate, mean, relative risk, odds ratio, slope, 
correlation, or standard deviation) in the target population based on the analogous 
statistics (estimators of these parameters) obtained in the sample. Such inferences 
assume either a stochastic mechanism for generating the variable(s) being analyzed 
or a random sampling distribution. Parametric estimation includes the calculation of 
confidence intervals around sample statistics. In significance testing, probabilities 
(often called P values) are calculated based on hypotheses about the exposure-out­
come association in the target population. 

10.4 Statistical vs Analytic Inference 

In Chapter 5 I distinguished between statistical inference and analytic inference as the 
two "arms" of internal validity in epidemiologic research. This distinction is worth 
re-emphasizing here and is analogous to that between measurement reproducibility 
and validity. Statistical inference applies various aspects of statistical theory, such as 

1 Many people use the term "parameter" as a synonym for "variable" or "factor." Although this is 
common in everyday parlance, I will avoid it in this text and restrict the use of "parameter" to its 
accepted statistical meaning. 
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parametric models of frequency distributions, to data obtained in a sample in order 
to draw conclusions about the existence and magnitude of exposure-outcome asso~ 
ciation in the target population from which it derives. Statistical inference assumes 
that the sample was randomly selected from the target population. In analytic infer­
ence, we also draw conclusions about associations in a target population based on 
evidence adduced in a sample, but the basis for inference is the absence of analytic 
bias. 

In examining an exposure-outcome association demonstrated in a study sample, 
the "p value approach" of statistical inference addresses the following question: 
"How likely is an association at least as large as the one observed to have arisen 
solely as a result of sampling variation (i. e., by chance) from a target population in 
which no such association exists?" Alternatively, the confidence interval approach 
asks: "Based on the sample data, what is the likely range of estimates of association 
in the target population?" With both approaches, neither the specific research design 
(e. g., experimental vs observational cohort vs case-control vs cross-sectional) nor 
analytic bias are taken into account. The process is the application of statistical the­
ory (a test of statistical significance), and the result is a mathematical probability. 

Ensuring that chance alone is unlikely to explain an observed association is nec­
essary, but not sufficient, for internal validity. In other words, once sampling varia­
tion has been dismissed as an explanation for the findings (because its probability is 
deemed sufficiently low), the exposure-outcome association must be demonstrated 
to be reasonably free of bias due to measurement error, sample distortion, con­
founding, and reverse causality. As we have seen, this depends largely on the careful 
design and execution of the study. Statistics and mathematics may be used in adjust­
ment procedures to reduce confounding, but judgments about which factors require 
adjustment and which techniques should be used rest with the investigator. 



Chapter 11: Descriptive Statistics and 
Data Display 

11.1 Continuous Variables 

11.1.1 Frequency Distributions 

As outlined in Chapter 10, the major aim of descriptive statistics is to condense and 
summarize a set of measurements on a large number of individuals. Suppose we 
wished to describe the variable "age" (in completed years) in 250 patients who 
underwent cholecystectomy (gallbladder removal) at City Hospital during a 
6-month period. Merely listing the 250 patients with their corresponding ages would 
convey very little useful information, because the number of individual measure­
ments makes it difficult to discern any overall patterns in the data. In other words, it 
is difficult to see the forest for the trees. 

Making sense out of so many numbers requires that the data be summarized. 
Perhaps the most informative method for summarizing and displaying a set of mea­
surements for a continuous variable is by constructing a frequency distribution. This 
is accomplished by categorizing the continuous data (i. e., breaking down the range 
of observed values into a series of successive categories) and counting the number of 
study subjects whose measurements fall within each category. When proportions or 
percentages of the total group are given instead of counts, the resulting distribution 
is called a relative frequency distribution. 

Once a frequency distribution has been constructed, it can be displayed in either 
tabular or graphic form. Table 11.1 summarizes both the frequency and relative fre­
quency (percentage of total) distributions by age of the 250 postcholecystectomy 
patients described above. Figure 11.1 is the corresponding histogram, or bar graph, in 
which frequency (ordinate on left) and proportions (ordinate on right) are repre­
sented by the areas of the respective bars. 

Several guidelines should be kept in mind in constructing frequency distributions 
and histograms: 

1. The number of categories should be sufficient, but not excessive, relative to the 
total number of measurements. If too many categories are used, little data reduc­
tion (summary) is achieved; if too few are used, important information may be 
obscured. 

2. Overlapping categories must be avoided, i.e., the limits (cutoff boundaries) for 
each category must be mutually exclusive. (For example, in a frequency distribu­
tion of systolic blood pressure measurements that included categories of 100-110 
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Table 11.1. Age distribution of 250 postcholecystectomy patients 

Age (completed years) 

16-20 
21-25 
26-30 
31-35 
36-40 
41-45 
46-50 
51-55 
56-60 
61-65 

Total 

100 
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2 0.8 
2 0.8 
5 2.0 
9 3.6 

17 6.8 
31 12.4 
83 33.2 
46 18.4 
35 14.0 
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Fig. 1 i.1. Age histogram for 250 postcholecystectomy patients 

125 

.40 '2 
(J)O 

'C :s 
.32 .~ ,g 

c; _~ 
a... 0 

.24 _ >-
o g 
r:::~ 

.16 g ~ 
o u.. 

,08 g- .~ 
.... '" a...., 

o ~ 

and 110-120 mmHg, one would not know in which of the two categories to 

place a subject with a systolic pressure of 110 mmHg. 
3. Although not an essential requirement, interpretation is aided by the use of equal 

category intervals (upper minus lower limits) and by the avoidance of open-ended 
intervals (e.g., ~ 140 or 140+ mmHg for systolic blood pressure). 

Histograms provide a method for adjusting for unequal intervals in a frequency dis­
tribution. Because there are only nine total patients in the three youngest age cate­
gories in our example, it might seem advisable to "collapse" them into a single cate­
gory, 16-30 years. In that case, however, the height of the corresponding histogram 
bar should be 3 (or .012), rather than 9 (or .036), so that the total area of the bar 
remains proportional to the overall frequency (or proportion) for the enlarged cate­
gory. The area under a single bar spanning ages 16-30 would be (3)(15) = 45, which 
is the same total area as the sum of the areas for the first three bars in Fig. 11.1, i. e., 
(2)(5) + (2)(5) + (5)(5). Similarly, for the relative frequency distribution, (.012) 
(15) =.18 = (.008)(5) + (.008)(5) + (.020)(5). 
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11.1.2 Summary Statistics 

In addition to tabular and graphic methods, continuous variables can often be sum­
marized using simple statistics that describe the frequency distribution without actu­
ally displaying it. In the interest of parsimony (data reduction), we attempt to 

describe the essential attributes of a distribution using the fewest possible descrip­
tors. Three major attributes of the distribution are usually described: central ten­
dency, shape, and spread. 

Three measures are in common use for describing central tendency: the mean, 
the median, and the mode. The sample mean or average (x) is defined as follows: 

- 1: Xi 
X=- (11.1) 

n 

where Xi = the value for the ith subject in the sample 
1: = the Greek letter sigma, indicating a summation over all XiS 

and n = the number of subjects in the sample (also called the sample size). 

The median is the midmost value of the distribution, i. e., the value for which 50% of 
the group have higher values and 50% have lower values. It is calculated by rank 
ordering (from lowest to highest) the values and then determining the value corre-

sponding to the middle rank, i. e., the rank order n + 1 . Thus, if the group contains 
2 

an odd number of subjects, the median will be the value of the subject with the mid­
dle rank. If the group contains an even number of subjects, the median will fall half­
way between the values of the two midmost subjects. 

The mode is the most common single value, i. e., the peak of the frequency distri­
bution. It is the least used of the three measures of central tendency because it is not 
readily manipulated mathematically. 

The calculation of each of the three central tendency descriptors is illustrated 
below for the following serum creatinine measurements (in mg/ dl) in a group of 
15 patients, arranged here in ascending order: 

0.3, 0.6, 0.6, 0.7, 0.8, 0.8, 0.8, 0.9, 1.0, 1.0, 1.1, 1.3, 1.4, 1.6, 2.1 

1:X' 15.0 mean = -' = -- = 1.0 mg/ dl 
n 15 

d· n+1h 15+1 h h me lan= --t value = --t value = 8t value=0.9 mg/dl 
2 2 

mode = 0.8 mg/ dl (the only value that appears three times) 

The main characteristics of the shape of a frequency distribution are the number of 
peaks (modes) and the degree of asymmetry around its center. A distribution with 
two or more modes is referred to as bimodal, trimodal, etc. The asymmetry charac­
teristic is called skewness. A distribution is said to be skewed to the right when the 
mean exceeds the median and the right "tail" is longer than the left. This type of dis­
tribution is typical of variables with a fixed lower bound but without upper bound, 
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such as length of hospital stay. A distribution is skewed to the left when the mean is 
lower than the median and the left tail is longer than the right. An example is the 
age distribution in many developing countries, where high birth rates and short life 
expectancy result in a distribution skewed toward younger ages. 

Three types of statistics are commonly used to describe the spread of a fre­
quency distribution: range, percentile ranges, and standard deviation. The range is 
the interval between the lowest and highest value in the distribution (0.3-2.1 mg/dl 
in the above example of serum creatinine). A percentile range is an interval between 
two specified percentile points. The inner 90 percentile range includes all values 
between the 5th and 95th percentiles; the inner quartile range includes those between 
the 25th and 75th percentiles. 

To calculate a percentile point, we rank the values from lowest to highest and 
number each observation 1, 2, 3 .. . n. The pth percentile is the value corresponding 

to the [( n + 1) P] th rank. Thus, the median is equivalent to the 50th percentile 
100 

. . (n + 1) (n + 1) 50 pomt smce --- = . 
, 2 100 

Perhaps the most useful way of describing the spread of a distribution is to indi­
cate the average or typical "distance" between the individual measurements and the 
center of the distribution. For example, one could subtract each individual value 
from the group mean. How could the resulting deviations (differences) then be sum­
marized? Obviously, the average deviation would be zero, since the positive and 
negative differences around the mean would cancel. The average absolute value of 
the deviation would do nicely, but absolute values are difficult to manipulate mathe­
matically. Squaring the deviations and then taking the average of the squared devia­
tions also accomplishes the goal of eliminating the plus and minus signs. This is the 
basis of the formula for calculating a sample variance. 

For a sample, the variance is denoted by S2 and is defined as follows: 

2 L(Xi-XY s = --'--'-----''--
n-1 

(11.2) 

where Xi is the value for the ith subject in the sample, x the sample mean, L, the 
Greek letter sigma indicating a summation over all x/s, and n the sample size. The 
quantity n-1 is called the number of degrees 0/ freedom. (For a given mean ~ n-1 
x/s are considered "free" or independent. The nth value of Xi is determined by x and 
the previous n- 1 x/s.) The formula uses n- 1 instead of n because the variance of 
the sample calculated in this way better approximates the variance of its source pop­
ulation. 

Because the variance is based on squared deviations, it obviously does not repre­
sent the average or expected deviation of an individual from the sample. A better 
representation is achieved by taking the square root of the variance. The resulting 
quantity is called the standard deviation (abbreviated SD). The standard deviation 
for a sample is denoted by s and is defined as: 

(11.3) 
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The standard deviation appears no easier to compute than the average absolute 
value of the deviations. Its justification lies in a computationally simpler formula that 
is algebraically equivalent to Eq. 11.3: 

(11.4) 

In other words, one sums the squares of each value, subtracts the quotient of the 
squared sum of the values divided by the sample size, divides the resulting difference 
by the degrees of freedom, and then takes the square root. 

The sample standard deviation can also be expressed as a proportion, or percent-

age, of the mean value. This entity [i or i (100)] is called the coefficient 0/ varia­

tion (abbreviated CV). It is useful for describing measurement variation, since its 
value is independent of the measurement units used. For example, the standard devi­
ation of a set of height measurements will differ according to whether height is mea­
sured in inches or centimeters, whereas the coefficient of variation will be the same. 

The range and percentile ranges can be used for describing the spread of any 
frequency distribution, regardless of its shape. The choice of which percentile range 
to report depends on the shape of the distribution. For example, the inner quartile 
range would poorly describe the spread of a bimodal distribution in which the two 
modes were widely separated. The standard deviation is best reserved for data that 
are distributed fairly symmetrically around the group mean (i. e., data with a non­
skewed distribution), because it is affected by extreme (very high or very low) val­
ues. It is most appropriate when the distribution is what statisticians call nonn-al. We 
shall have more to say about the normal distribution in Section 11.1.3. 

There is one other sample statistic that is often erroneously used in the clinical 
literature as a descriptor of spread: the standard error 0/ the mean (SEM). It is 
defined as: 

s 
SEM= Vn (11.5) 

Because the SEM decreases with increasing sample size, however, it is not a good 
descriptor of the spread of a frequency distribution, despite its popularity. A large 
sample with a high standard deviation (i. e., a wide spread) may have a small stan­
dard error. Since the SEM is always smaller than the SD, it gives the impression that 
the spread of the data is less than it really is. Consequently, it may be favored by 
authors who wish to minimize, rather than summarize, the variability of their data. 
The use of so-called "error bars" (defined by ± 1 SEM) above and below mean val­
ues displayed on a graph is a common example of this practice. 

The SEM is actually the standard deviation of a distribution of means obtained 
in repeated sampling from a source population. As we shall see in Chapter 13, it is 
important in making statistical inforences based on sample means. As a descriptor, 
however, it should be avoided. 
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11.1.3 The Normal Distribution 

The normal distribution (the familiar "bell-shaped" curve) is the most important dis­
tribution in statistics. There are several reasons for this. First, although it is a theoret­
ical distribution based on an infinitely large population (this is called a probability 
distribution), it describes the empirical distribution of certain measurements, such as 
height and weight, performed on subjects from actual populations. It also closely fits 
the distribution of repeated measurements obtained from the same individual (ran­
dom measurement variation or error). In addition, the normal distribution serves as 
the basis of statistical inference for means (Chapter 13). Its theoretical basis and 
mathematical properties were first investigated by de Moivre, Laplace, and Gauss. 
In honor of the latter, the normal distribution is also called the Gaussian distribution. 
It must be emphasized that the term "normal" to describe this distribution has abso­
lutely nothing to do with the usual clinical connotation of the word, indicating 
absence of disease or other adverse condition. We shall return to this point in Chap­
ter 16. 

The most important property of the normal distribution is that it is completely 
specified by two population parameters: the mean (I!) and standard deviation a.' As 
shown in Fig. 11.2, the proportions of values lying within SD intervals of the mean 
are as follows: 

68.3% lie within± 1 SD from the mean (i.e., I!±a) 
95.4% lie within ± 2 SD from the mean (i. e., I! ± 2a) 
99.7% lie within ± 3 SD from the mean (i. e., I! ± 3a) 

For any probability distribution, the proportion (or percentage) of values lying 
within the interval defined by any two values of x is equivalent to the area under the 
curve subtended by those two values. The area under the entire curve is equal to 1 
(or 100%), since the entire population is defined by the curve. The area under the 
curve above the median is 0.5. The area under any segment of the curve is also 
equivalent to the probability that any member of the group, chosen at random, will 
have a value of x lying between the two values defining that segment. Thus, the 
probability that any individual member of a population whose values are normally 
distributed will have a value within one, two, or three standard deviations from the 
group mean is 0.683, 0.954, and 0.997, respectively. 

I Although I have tried to avoid excessive use of algebraic symbols, a certain minimum is required 
for clarity and economy of expression. In particular, formulas for statistical tests written out in 
text would be quite unwieldy. This text will follow the usual convention of using small Roman let­
ters to indicate sample statistics and small Greek letters for the corresponding population parame­
ters. Here is a table summarizing the symbols introduced thus far: 

Sample Population 

Mean x 11 
Standard deviation (SD) (J 

Variance 52 (J2 

Sample size n (usually infinite) 
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Fig. 11.2. The normal distribution 

Fig. 11.3. Three different 
normal distributions 

Since each normal curve is specified by its mean and standard deviation, differ­
ent normal curves may differ from one another in either or both parameters 
(Fig. 11.3). Curves A and B have the same mean but different standard deviations. 
Curves Band C have the same standard deviation but different means. Curves A and 
C differ on both parameters. These differences can be eliminated, however, by 
transforming any normal distribution to a single standard normal distribution (also 
called the z-distribution). The transformation is called a z-trans/ormation (or z-score) 
and is achieved by taking the x value, subtracting the population mean, and dividing 
by the standard deviation: 

z= X-!l 
cr 

(11.6) 

Consequently, the z-score corresponds to the number of standard deviations that 
any value of x lies from the population mean. Hence: 
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The areas under the curve of the z-distribution are thus: 

0.683 between z= -1 and z= + 1 
0.954 between z= - 2 and z= + 2 
0.997 between z= - 3 and z= + 3 
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Many times we need to calculate proportions or probabilities for values that lie other 
than exactly one, two, or three standard deviations from the mean. Such calcula­
tions are available in z-tables. These tables usually show the area under the curve for 
values of x that are at least as far from the mean as the value of x used in the z-trans­
formation. These areas are called the tails of the standard normal distribution. 

Some z-tables give one-tailed values and others give two-tailed values. The area 
in a one-tailed table is equivalent to the probability of obtaining (by random selec­
tion from the population) a value ;;;:; + z [or, equivalently, the probability of obtain­
ing a value ;;:;; - z]. The area in a two-tailed table shows the probability of getting a 
value at least as extreme as z in either the positive (;;;:; + z) or negative (;;:;; - z) 
direction. Two-tailed areas are therefore twice as large as one-tailed areas.2 

Values of z are usually tabulated to two decimal places. Interpolation can be 
used to calculate z to three decimal places. One- and two-tailed z-tables are pro­
vided in Appendix Tables A.2 and A.3. You should examine and compare the two 
tables and confirm for yourself that two-tailed values are exactly twice the corre­
sponding one-tailed values. 

To illustrate the use of the z-distribution and z-tables, we shall consider the 
example of diastolic blood pressure in a sample of healthy adolescent boys. The dis­
tribution of these diastolic pressures in the source population of healthy adolescent 
boys is quite close to a normal distribution with ~=70 mmHg and cr= 10 mmHg. 
Using the normal approximation, first let us find the pressure that "cuts off" the 
upper 10% of the group (Fig. 11.4). We need to find the value of z corresponding to 
0.100 in the one-tailed z-table, which is 1.28, and then solve for x: 

z= x-~ 
cr 

Therefore, x=z(cr)+~=(1.28)(10)+70=82.8 mmHg. 
Next, let us consider the probability that a boy chosen at random from this pop­

ulation will have a diastolic pressure between 55 and 95 mmHg (Fig. 11.5). We first 
must transform these x values into z-scores: 

z\=55-70= -15=_1.50 
10 10 

Z2= 95-70 = 25 = +2.50 
10 10 

2 You should also be aware that some z-tables show the area between the two tails, i. e., between 
- z and + z. This is just 1 minus the area in the two tails. All z-tables should contain a description 
of which areas are tabulated. 
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=.100 

70 82 .8 
Diastolic Blood Pressure (mm Hg) 

I I z-score 
o + 1.28 

Fig. 11.4. Diastolic blood pressure in adolescent boys: finding the upper 10% "cutoff" 
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Fig. 11.5. Diastolic blood pressure in adolescent boys: probability of randomly choosing a boy with 
a value between 55 and 95 mmHg 

The corresponding areas in the tails beyond these two z values are: 

0.067 for z, 
0.006 for Z2 

The area between these two values is 1- (0.067 + 0.006) = 0.927. Thus, the probabil­
ity is 0.927. 

Finally, to illustrate the use of the two-tailed z-tables, let us calculate the inner 
95 percentile range of this distribution (Fig. 11.6). The total area in the upper and 
lower tails must be 0.05, which corresponds to Z= 1.96 in the two-tailed table. Thus, 
the lower and upper z-scores will be -1.96 and + 1.96 respectively. We then solve 
for the corresponding x's: 

XI = z,(cr)+J.1=( -1.96)(10) +70=50.4 mmHg 
X2 = Z2(cr) + J.1= (+ 1.96)(10) + 70 = 89.6 mmHg 
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70 89.6 
Diastolic Blood Pressure (mm Hg) 
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- 1.96 o + 1.96 

Fig. 11.6. Diastolic blood pressure in adolescent boys: finding the inner 95 percentile range 

11.2 Categorical Variables 

11.2.1 Rates (Proportions) 

As discussed in Chapter 3, a categorical variable for a sample is best described by 
listing the rate or proportion of individuals in the sample within each category of the 
variable. Consider again the group of 250 postcholecystectomy patients whose age 
distribution was discussed in Section 11 .1.1. Suppose we are interested in describing 
their outcome 6 months postoperatively in terms of the (dichotomous) presence or 
absence of right upper quadrant abdominal pain. The result can be expressed as a 
proportion (P) or percentage (100 p). If 140 patients are pain-free at 6 months, the 

overall rate for the group is p = 140 = 0.56, or 56%. Although such a result could be 
250 

represented visually in a table or graph, a single rate or percentage usually suffices to 
convey the information. (The proportion of patients still experiencing pain is under­
stood to be the complement (q) ofthe rate given, where q= 1- p, i. e., 1- 0.56 = 0.44 
or 100-56=44%.) 

When describing rates for a polychotomous variable, more information must be 
provided. Suppose, for example, that the postoperative pain variable comprises the 
following four ordinal categories: more pain, no change, less pain, and no pain. 
(Assume that this scale has clear, specific criteria that yield reproducible, valid mea­
surements.) The hypothetical results in the 250 study patients might then be 

described as follows: ...!i. (6%) with more pain, ~ (10%) with no change, !..9... 
250 250 250 

(28%) with less pain, and the same 140 (56%) with no pain. The sum of the propor-
250 

tions must equal 1, and that of the percentages, 100%. 
When many categories are involved, the use of a table, histogram, or pie chart 

can often aid the reader in appreciating the relative magnitudes of the proportions in 
each category. The principles for constructing a table or histogram are the same as 
those discussed in Section 11.1.1, since continuous variables must first be catego-
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More pain 

No change 

No pain 

Fig. 11.7. Pain outcome in 
250 postcholecystectomy patients 

rized in order to use these methods. The pie chart achieves the same effect by divid­
ing a circle into "slices" whose size corresponds to the proportion or percent in each 
category. The size of each slice can be determined by calculating the angle formed 
by the two "edges" of the slice; each percent = 360/100= 3.6°. For our postopera­
tive pain study, the angles would be 6%, 10%, 28%, and 56% of 360°, or 21.6°, 
36.0°, 100.8°, and 201.6°, respectively, for the four pain categories (see Fig. 11.7). 

11.2.2 Discrete Frequency Distributions 

The number of sample subjects in each category constitutes the empirical frequency 
distribution for a categorical variable. Such a distribution is termed discrete, because 
the possible values of the variable are limited to the categories comprising the mea­
surement scale. A histogram is an example of a discrete distribution. The shapes of 
discrete empirical frequency distributions will depend on the choice of categories 
chosen and the proportion of subjects in each category. Thus, unlike the normal dis­
tribution, which describes the empirical distribution of certain continuous attributes, 
these discrete distributions will not necessarily correspond to a symmetrical shape 
with definable mathematical properties. 

Nonetheless, some discrete probability (i. e., for populations) distributions do 
have a mathematically definable shape. For example, for dichotomous variables 
whose value is determined by a pure stochastic mechanism (i. e., by chance), the 
resulting probability distribution is called the binomial distribution. It describes the 
number of target outcomes, t, that can be expected among a number of individuals, 
n, when the probability of achieving the target in anyone individual is n. The proba­
bility (P) of any t can be calculated as follows: 

P= n! nt(l_n)n-t 
t!(n-t)! 

where n!=nfactorial [=n(n-l) (n-2) ... 1] 
t! = t factorial 
(n-t)!=(n-t) factorial 
and O!= 1 
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Fig. 11.8. The binomial distribution: expected numbers (and their probabilities) of affected children 
in families of ten children with one parent having Huntington's chorea 

To illustrate, Fig. 11.8 depicts the binomial probability distribution for the expected 
number of affected children (t) in families of ten children (n= 10) in which one par­
ent has Huntington's chorea, a fatal degenerative brain disorder. Because the inheri­
tance pattern of Huntington's chorea is autosomal dominant, the probability of any 
one child eventually developing the disease is 0.5 (n = 0.5). Thus, the probability of 
having exactly three affected children in a family of ten children is: 

P= 10! (0.5)3 (O.sf =0.117 
3!7! 

Of all such ten-children families, 11.7% will have three affected children. 
The binomial probability distribution shown in Fig.11.8 is symmetrical. The 

highest probability is associated with having five affected children out of ten, with 
probabilities of having more or less than five affected children decreasing symmetri­
cally on either side. This is the same distribution that would be expected for the 
number of "heads" in ten flips of a coin. Apart from its discrete nature (a histo­
gram), it resembles the normal distribution. In fact, as the sample size (n) increases, 
the binomial distribution for n = 0.5 is very closely approximated by the normal dis­
tribution. 

When n * 0.5, and the sample size is small, however, the binomial distribution is 
skewed, rather than symmetrical. It will be skewed to the right whenever n < 0.5 and 
skewed to the left whenever n> 0.5. When n approaches 0 (i. e., for rare events) and 
the sample size is large, the binomial distribution approaches another discrete proba­
bility distribution called the Poisson distribution, which has convenient mathematical 
properties that enable calculation of expected numbers and probabilities. The inter­
ested reader will find useful discussion of these properties and calculations in the 
references for this chapter [1, 2]. 
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11.3 Concluding Remarks 

For some descriptive studies, construction of frequency distributions and calculation 
of group means, medians, percentiles, standard deviations, or proportions are all the 
statistical analysis required. Often, however, an investigator wishes to make descrip­
tive inferences about the target population from which his study group is a sample, 
e. g., estimation of the population mean or rate based on the mean or rate in the 
sample. 

Most epidemiologic studies are analytic and involve an inference about the asso­
ciation between some exposure and outcome in the target population, based on the 
strength of association observed in the study sample. In addition to constructing 
confidence intervals around the observed estimate of association, that estimate is 
often tested for its plausibility under certain hypotheses about the true association in 
the target population. The next chapter discusses the principles of hypothesis testing 
and the interpretation of the "p values" that result from such testing. 
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Chapter 12: Hypothesis Testing and P Values 

12.1 Formulating and Testing a Research Hypothesis 

There are four stages in the execution of an analytic study. The first is the statement 
of a research hypothesis, i. e., the association that the investigator believes may exist 
between exposure and outcome in the target population. It can usually be posed in 
the form of a statement or question. Consider the example from Chapter 6 of ciga­
rette smoking as a risk factor for myocardial infarction (MI), or heart attack. The 
research hypothesis might be expressed in terms of either a statement ("Cigarette 
smoking increases the risk of subsequent MI.") or a question ("Does cigarette smok­
ing increase the risk of subsequent MI?"). 

The second stage is to design the study in such a way as to test the research 
hypothesis validly (without bias) and efficiently (using sufficient, but not excessive, 
resources). Research design and the reduction of analytic bias were the main topics 
of Chapters 4-9. The efficiency aspect relates primarily to calculation of required 
sample sizes and, for continuous outcome variables, reduction in variability (in­
crease in reproducibility) by use of matching, stratification, and multivariate adjust­
ment techniques. The latter issue was briefly discussed in Chapter 5; sample size cal­
culations will be considered in Chapters 13 and 14. 

After the design has been carefully laid out (and the necessary financial support 
has been secured), the study proper is begun and the data are collected (third stage). 
The final step is the statistical analysis of the data. The statistical analysis for an ana­
lytic study usually involves both descriptive statistics (data summary and display) 
and statistical inf~rence, which includes both estimation of confidence intervals and 
hypothesis testing. The latter will be the focus of the remainder of this chapter. 

In the conventional or /requentist approach to testing for statistical significance, 
the researcher usually examines the study data with respect to a null hypothesis 
(abbreviated Ho) that refers to the target population from which the study sample is 
assumed to be a random sample. The term "frequentist" arises from the frequency 
with which a particular sample statistic would be obtained by repeated random sam­
pling (with ~replacement) from its source population. Although random sampling 
tends to be a rather infrequent method for subject selection in epidemiologic studies, 
study samples that are representative of their target populations should result in rea­
sonably valid statistical inferences. 

The null hypothesis is a theoretical construct that no association exists between 
exposure and outcome in the target population. Note that the null hypothesis is 
usually quite different from the research hypothesis. The investigator plans the 
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research either because she thinks an exposure-outcome association exists, or be­
cause she or others are suspicious enough that it might exist to make such a study 
worthwhile. He> however, is an artificial "straw man" that provides a reference for 
examining the departure of the data actually obtained from the data that would be 
expected under Ho. For our smoking-MI example, the null hypothesis is that ciga­
rette smoking is not a risk factor (i. e., does not alter the risk) for subsequent MI in 
the target population. 

On occasion, the null hypothesis can be similar to the research hypothesis if the 
researcher believes that there is no exposure-outcome association in the target popu­
lation. In general, however, the research and null hypotheses are entirely different 
and need to be kept separate. Once this distinction is clear, the testing of Ho then 
becomes the basis for assessing the "statistical significance" of an association 
observed in the study sample. 

12.2 The Testing of Ho 

12.2.1 Rejecting Ho 

We begin testing the null hypothesis by assuming it to be true, i. e., that no exposure­
outcome association exists in the target population from which the study sample is 
(hypothetically) randomly selected. We then calculate the probability under that 
assumption of obtaining, by chance alone, a degree of association between exposure 
and outcome at least as strong as that observed in the sample. In other words, we 
calculate the probability of obtaining such an association by chance if the study sam­
ple had been randomly chosen from a target population with no such association. 
This probability is called the P value. If P is less than a certain amount (by conven­
tion, 0.05), we consider Ho to be so unlikely that we reject it. 

To recapitulate, we start out with the assumption that exposure and outcome are 
not associated (i.e., that Ho is true). If, under that assumption, the probability of 
obtaining, by chance, an exposure-outcome association at least as large as the one 
observed is very small, we then reject our initial assumption (Ho). Rejecting Ho 
means that we infer that the study sample is not a random sample from a target pop­
ulation in which Ho is true, but rather from a different target population in which 
exposure and outcome are associated. 

Many investigators erroneously interpret the P value as the probability that the 
null hypothesis is true, which is actually the probability the investigator would like 
to know. Unfortunately, the frequentist approach to hypothesis testing is conditional 
on (i.e., assumes) the truth of the null hypothesis. The Pvalue thus provides a very 
indirect measure of the probability that Ho is true. It represents the plausibility of the 
data given H o, not the plausibility of Ho given the data. I will have more to say 
about the indirectness of this approach (and discuss an alternative approach) in Sec­
tion 12.4. 

The P value threshold for rejection of the null hypothesis should be established a 
priori. This threshold is called the a-level and, as indicated above, it is convention­
ally set at 0.05. We reject Ho if the probability of obtaining the observed or more 
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extreme results by chance, under the assumption that Ho is true, is less than 0.05. 
Conversely, we are unwilling to reject Ho (i. e., we do not consider it sufficiently 
unlikely) if P> 0.05. 

There is nothing "magic" about 0.05. It has come to be the accepted a-level for 
most studies in the medical and scientific literature. The difference, however, 
between a P value of 0.04 and 0.06 is very small; yet, this small difference can affect 
whether a scientific manuscript is accepted or rejected for publication or whether its 
results are believed or not. The sensible scientist will keep these artificial distinctions 
in their proper place and will not discard results if the P value is above 0.05, or auto­
matically accept them as proven merely because the P value is below 0.05. 

12.2.2 Type I Error 

Even if P< 0.05, we may be wrong by rejecting H o, but we consider that the proba­
bility of being wrong is acceptably low. A P value of 0.05 simply means that the 
results obtained in the study sample could have occurred by chance 5% of the time 
when the null hypothesis is true for the target population. Once out of every 
20 samples, on average, rejecting a null hypothesis when P= 0.05 will result in an 
error. In other words, we will be rejecting the null hypothesis when, in fact, the null 
hypothesis is true. This type of error (erroneous rejection of the null hypothesis) is 
called a Type I error [1,2]. Whenever we reject the null hypothesis, we run the risk 
of a Type I error. The lower the Pvalue, the lower the risk. When we' reject the null 
hypothesis with a Pvalue of 0.001, we have only one chance in a thousand of mak­
ing a Type I error. 

Because clinical investigation is usually expensive and time consuming, studies 
are often used to answer several questions at once, that is, to test several hypotheses. 
Interventions may be compared for multiple outcomes, or a variety of clinical, 
sociodemographic, or treatment factors may be examined for their effects on one or 
more outcomes. When multiple tests of significance are performed, some signifi­
cant exposure-outcome associations are likely to arise merely by chance. In fact, 
for every 20 independent tests of Ha> one (on average) will result in statistical 
significance just by chance. If 100 tests are carried out, and ten are associated 
with P values < 0.05, it is impossible to know which of the ten are mere chance find­
ings and which represent "truly" significant associations. Similarly, in the usual sit­
uation of a single study on a single sample, there is no way to be certain whether 
an observed association represents a true (for the target population) finding or a 
Type I error. 

To protect against a plethora of Type I errors, some statisticians advocate divid­
ing the threshold a-level for rejecting Ho by the number of tests performed. Because 
many of the outcomes are associated with one another, however, the probabilities of 
their joint occurrence is usually greater then the product of their individual proba­
bilities (i. e., they are not statistically independent). Thus, such a procedure may be 
overly conservative; it tends to attribute true differences to chance. At the very least, 
however, the investigator should indicate the number of tests performed in addition 
to the number achieving statistical significance and should modify his inferences 
accordingly. 
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Multiple testing becomes an even greater problem when the research hypothesis 
arises post hoc, i. e., after the data are collected, rather than a priori. When observed 
data are used to generate hypotheses for statistical testing, the calculated P values 
do not accurately reflect the true probability of an exposure-outcome association 
occurring by chance. After all, it is virtually certain (P= 1) that some association will 
occur by chance. But betting on a horse after a race is not usually rewarded at the 
ticket window. Similarly, performing a statistical test of significance on an observed 
association because it "looks interesting" will result in significant P values that bear 
no relationship to the chance occurrence (given Ho) of an association hypothesized 
a priOri. 

12.2.3 Statistical Significance vs Clinical Importance 

Regardless of whether we are correct or not in rejecting the null hypothesis, a statis­
tically significant exposure-outcome association mayor may not be clinically impor­
tant. For example, suppose we wished to test the hypothesis that consumption of a 
new infant formula leads to a reduction in the serum sodium concentration. We 
might then compare the mean serum sodium concentration in a group of babies fed 
this formula with that in a group of babies fed a standard commercial formula. If the 
results were 139 and 140 mEq/1 respectively, the association between the new for­
mula and a lower serum sodium would be clinically trivial, despite the fact that with 
a large sample size such a difference might be statistically significant. As will be dis­
cussed in Section 12.3, the reverse situation can also arise; a clinically important 
association may not achieve statistical significance. 

Thus, the clinical importance of an observed association or difference is a clini­
ca~ not a statistica~ decision [3]. A clinical investigator should never let a consultant 
or journal editor convince him that a very low (highly significant) P value can com­
pensate for a difference too small to be useful. 

12.2.4 Directional vs Nondirectional Testing of Ho 

I have already discussed the important distinction between the research hypothesis 
and the null hypothesis. I have also indicated that the research hypothesis can be put 
in the form of a statement or a question. What I shall now consider is the direction­
ality or nondirectionality of the research hypothesis, and what that implies in terms 
of testing for statistical significance, i. e., testing of H o . 

In directional (or unidirectional) hypothesis testing, the research hypothesis 
implies not only that there is an association between exposure and outcome but also 
indicates the direction (positive or negative) of that association. In our smoking-MI 
example, the research hypothesis is that smoking increases the risk of myocardial 
infarction. In other words, we suspect that smoking might either increase the risk of 
MI or have no effect, but we have no suspicion whatsoever that it protects against 
MI. A directional test of Ho would thus be appropriate. 

In nondirectional (or bidirectional) hypothesis testing, the investigator may have 
no a priori knowledge of the direction of the association under study. Consider, for 
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example, a clinical trial of surgical (coronary artery bypass grafting) vs medical 
(drug) therapy for patients with coronary artery disease, in which the duration of 
survival is the principal outcome. We may have no way of knowing beforehand 
which treatment leads to a better outcome. Thus, a non directional test of Ho will be 
indicated. 

The P values listed in most statistical tables apply to nondirectional testing of 
Ho. This is called a two-sided test of the null hypothesis. It is also called a two-tailed 
test, because the distributions of the test statistics used to test Ho often contain two 
tails, and the Pvalue is equal to the area under the curve in these two tails. 

When the research hypothesis is directional, however, and the observed expo­
sure-outcome association is in the expected direction, a one-sided (one-tailed) test of 
Ho can be used. To obtain a one-sided P value, the P value listed in a two-sided sta­
tistical table is simply divided by 2. It is essential that the observed association be in 
the expected direction, i. e., the direction hypothesized in the directional research 
hypothesis. If exposure is hypothesized to cause the outcome, but the data actually 
show a protective effect, the derived one-sided P value will be highly misleading. 
The investigator would then do better to refrain from reporting any P value and 
explain that the direction of the association was opposite to the one hypothesized. 

The frequentist approach demands that if the research hypothesis implies a cer­
tain direction, that direction must be specified before the research is actually carried 
out, in other words, before the data are collected [1]. When in doubt, it is probably 
better to use a two-sided test. When the research hypothesis is nondirectional, a 
two-sided test must be used. When the research hypothesis is directional and the 
results are concordant with the direction hypothesized, a one-sided test can be justi­
fied. This distinction can be important, because dividing a P value by 2 (for exam­
ple, P= 0.08 to P= 0.04) can create a "statistically significant" (P< 0.05) result that 
can favorably alter the fate of a scientific paper. 

12.3 Type II Error and Statistical Power 

So far we have talked about what happens when P< 0.05 and about the rejection of 
the null hypothesis. When P> 0.05 (or some other chosen a-level), we do not reject 
Ho. The fact that the chance probability of obtaining an observed or greater expo­
sure-outcome association is greater than 0.05 does not prove that the null hypothesis 
is correct, however. It merely indicates that the probability is not low enough to 

reject it. 
Failure to reject Ho does not confirm it. If P= 0.1 0, for example, the probability 

of obtaining an association at least as large as the one observed, under the assump­
tion that Ho is true, is low. A Pvalue of 0.10 is equivalent to a horse with 9: 1 odds 
winning a race. By convention, however, we do not consider the observed result suf 
ficiently unlikely to reject Ho. Whenever we accept the null hypothesis, i. e., when­
ever the P value is not low enough to reject it, we risk making another sort of error. 
This is called a Type II error or beta error [1, 2]. 

A Type II error can occur only when the null hypothesis is not rejected. This is 
important to remember. When we reject HQ) we run the risk of committing a Type I 
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Table 12.1. The two errors of hypothesis testing 

Inference 

Reject Ho 

Do not 
reject Ho 

Hypothesis Testing and P Values 

"Truth" 

Ho False 

Correct 
Type I 
error 

Type II Correct 
error 

error, the probability of which is equal to the P value. When we do not reject Hoo 
Ho might still be untrue. In other words, exposure and outcome might indeed be 
associated in the underlying target population. The erroneous inference that Ho is 
true when it is not is called a Type II error. 

Thus, the decision either to reject or not reject Ho is an inference, an inference 
that may be correct or incorrect. Depending on which inference we make, we are at 
risk for committing either a Type I or a Type II error. We are never at risk for both 
types of erroneous inference. These relationships are illustrated in the 2 x 2 table 
shown in Table 12.1. 

The actual probability of a Type II error is signified by the Greek letter ~ (hence 
the alternative term, "beta error"). In the design phase of a study, ~ can be calcu­
lated by constructing an alternative hypothesis, H A, which postulates a clinically 
important degree of association in the target population. The alternative hypothesis 
is usually directional and is often the same as the research hypothesis. ~ is the proba­
bility of failing to detect, by chance, a degree of association at least as large as the 
degree specified by H A • "Detect" here indicates rejection of the null hypothesis, so ~ 
can also be defined as the probability of not rejecting Ho when HA is in fact true. 
1 - ~ is called the statistical power and is the probability of detecting the specified 
association in the study sample, i. e., the probability of rejecting Ho when HA is true. 

If a researcher wants to show that exposure and outcome are not associated to a 
clinically important degree (i. e., the research hypothesis is similar to the null 
hypothesis), the probability of failing to detect the degree of association specified by 
HA should be very low. Ho can never be "proved," but the lower the plausibility of 
H A, the higher the statistical power and the greater the assurance that exposure and 
outcome are not associated to a clinically important degree. Minimizing the poten­
tial for Type II error is essential to avoid missing such an association. 

In designing a study, the probability of a Type II error is determined by three 
factors. ~ will be higher (and 1- ~ correspondingly lower): 

1. The smaller the hypothesized degree of association under HA 
2. The smaller the sample size n 
3. The largerthe sample variance S2 (for continuous variables) 
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The first of these factors is based on judgment of the magnitude of an association 
that would be clinically important. The second factor is the only one over which the 
investigator has absolute control, since the sample variance (third factor) largely 
reflects the underlying variability of the measured attribute. (The component of 
sample variance due to measurement variation can often be reduced substantially by 
improving the reproducibility of the measurements; see Chapter 2.) Thus, sample 
size is an essential consideration for the investigator who wishes to minimize the 
possibility of a Type II error and maximize statistical power. 

To illustrate these concepts, let us recall our clinical trial of coronary artery 
bypass surgery vs medical therapy in patients with coronary disease. Suppose the 
investigator planned to include only three patients in each group. Because sampling 
variation is very large with such small sample sizes (see Chapter 10), and because the 
duration of survival is likely to be highly variable from one patient to another, even a 
large, clinically important difference in mean survival time between the two groups 
is unlikely to be statistically significant. Any investigator who wants to "show" that 
exposure and outcome are not associated merely needs to restrict the number of 
study subjects to guarantee that no statistically significant association will be found. 
His argument remains convincing, however, because his risk of committing a 
Type II error is considerable. 

The calculation of sample sizes required to detect a given association is one of 
the most important statistical considerations in the planning (design) stage of a 
research project. Because these calculations derive from the same theoretical frame­
work and formulae used in inferential statistical analysis, they will be discussed in 
that context in Chapters 13 and 14. 

12.4 Bayesian vs Frequentist Inference 

The frequentist approach to hypothesis testing outlined in this chapter is the conven­
tional one used today by most biostatisticians, epidemiologists, and clinical investi­
gators. As we have seen, the approach is an indirect, and even backward, one. We 
calculate the probability of obtaining the data observed in the study sample, assum­
ing that the sample has been randomly selected from a target population in which 
the null hypothesis is true (this is called conditional on the null hypothesis). In other 
words, if Ho is true in the target population, the probability of obtaining the sample 
data (or a more extreme result) is the P value. But what is the likelihood that the 
null hypothesis is in fact true? The frequentist approach provides no answer to this 
question. 

The same problem arises in testing the alternative hypothesis. The frequentist 
approach enables calculation of a P value conditional on HA being true, i. e., the 
probability of obtaining the sample data (or a result even more inconsistent with HA) 
under the assumption that the sample was randomly selected from a target popula­
tion in which HA is true. The question the investigator would really like to answer 
is: What is the probability that the research hypothesis (often the same as HA) IS 

true? Once again, frequentist methods fail to provide a response. 
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Bayesian inference takes its name from Rev. Thomas Bayes, an eighteenth-cen­
tury clergyman and mathematician who discovered an important relationship 
between conditional probabilities and expressed this relationship in what is now 
referred to as Bayes'theorem. Bayesian inference has two features that make it an 
attractive alternative to the frequentist approach. First, instead of the observed sam­
ple data being referred to either Ho or HA, the data are simultaneously examined for 
their consistencies with both Ho and HA [4]. The probability (called the likelihood) 
of obtaining the exact degree of observed exposure-outcome association given (i. e., 
conditional on) HA is compared with the likelihood of those data given Ho by form­
ing what is called a likelihood ratio, or LR: 

LR = P (observed association I H A) 

P (observed association I Ho) 
(12.1) 

where the vertical lines preceding HA and Ho are read as "given" or "conditional 
on." 

The second attractive feature of the Bayesian approach is that the likelihood 
ratio is combined with the ratio of the prior probabilities of HA and Ho (i. e., before 
the study was carried out and the data were obtained) to yield the ratio of the poste­
rior (after the data) probabilities. As discussed in Chapter 8, the ratio of a probability 
to its complement is called an odds. Thus, given that either HA or Ho is true, the 

ratio of their probabilities, P(HN, is the odds of H A. According to Bayes' theorem, 
P(Ho) 

the posterior odds of HA (which is what the investigator really wants to know) is the 
product of the prior odds and the likelihood ratio: 

Pposterior(HN = Pprior(HA) X P (observed association I HA) 
Pposterior(Ho) PpriolHo) P (observed association I Ho) 

posterior odds = prior odds x likelihood ratio 

(12.2) 

The only difficulty in using the Bayesian approach is the need to estimate the 
prior odds. What were the probabilities of HA to Ho before the study data were 
obtained? Sometimes the answer to this question can be addressed from previous 
investigations of the hypothesized association in similar study samples. Otherwise, 
evidence from animal studies or deductions from general physiologic or pathologic 
principles can be applied. Usually, however, some subjective judgment is required in 
estimating prior probabilities. 

This requirement for subjectivity is the main reason why Bayesian inference is 
not used as often as it perhaps deserves to be. In fact, however, the frequentist 
approach to hypothesis testing and the Bayesian calculation of likelihoods also 
involve subjective judgment, because they depend on the choice of theoretical mod­
els (i. e., probability distributions for the population) used to examine the data 
obtained in a sample. The point is, all scientific inference includes subjective infer­
ence, even if the subjectivity is implicit, rather than explicit. No sensible scientist or 
clinician is going to suspend his critical judgment and all that he has learned from 
his training and previous research findings by making an inference based on the data 
from a single study, no matter how good that study may be. 
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If I tossed a coin five times and got five successive "heads," few people would 
conclude that the coin was unbalanced, despite the significant "p value" of 
(112)5 = 1132 = 0.03. Most would attribute the occurrence to chance, that is, a run 
of good (or bad) luck. Similarly, a single study that comes up with a very surprising 
finding should make the investigator or clinician alter his view of the world (at least 
to the extent of being less surprised if a similar result occurs in a subsequent study) 
but should not turn it upside down. 

Since scientific inference inevitably involves incorporating new observations with 
prior beliefs, the only thing new about Bayesian inference is that the prior beliefs are 
made explicit and require quantification. Many researchers are uncomfortable with 
being forced to quantify their uncertainty, and this may be why the frequentist 
approach to statistical inference still predominates. Recent application of Bayesian 
principles to other aspects of clinical epidemiology, however, such as the interpreta­
tion of diagnostic tests (see Chapter 16), has resulted in an increased awareness and 
appreciation of the Bayesian approach [5]. It would not be surprising to see this 
approach applied increasingly in the future by clinical epidemiologists and statisti­
cians. 
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Chapter 13: Statistical Inference for Continuous 
Variables 

13.1 Repetitive Sampling and the Central Limit Theorem 

13.1.1 The Sampling Distribution of Means 

Suppose, hypothetically, we chose a random sample of n subjects from some infi­
nitely large population of known mean Il and standard deviation cr, determined the 
mean (x) of that sample, replaced the same subjects back into the source population, 
then chose another random sample of the same size n, and repeated this process 
over and over again. What distribution would the repeated sample x's have? It turns 
out that if n is large enough, then the x's form a normal distribution, regardless of 
the distribution of the source population. The mean of this normal sampling distribu­
tion of x's is Il, the population mean; its standard deviation (called the standard error 

0/ the mean, or SEM) is ~. 

These interesting and useful facts derive from the Central Limit Theorem, one of 
the pillars of statistical theory. What requirements must be met for the Central Limit 
Theorem to apply? The main requirement is that n be large enough. How large is 
"large enough" depends on the distribution of the source population. If it is very 
close to normal, n can be as small as 2 or 3; if it is symmetric but not bell shaped, n 
should be 10 or 15; if it is quite non-normal (particularly if highly skewed in one 
direction), n may have to be 50 or even 100 [1]. 

These properties of the Central Limit Theorem would remain of only theoretical 
interest if their application depended on actual repetitive sampling. In the "real 
world" of clinical and epidemiologic investigation, research studies are carried out 
only once on a single sample of subjects, and the investigator has no chance to 
observe the distribution of x's of repeated samples. The Central Limit Theorem, 
however, tells us the mean and standard deviation of the normal distribution that 
would result from repetitive sampling. 

By comparing the actual x obtained in a study sample with the mean (Il) and 

standard deviation ( Fn = SEM) of the theoretical sampling distribution of x's, 

the investigator can determine how likely it is (i.e., the probability, or P value) that 
his sample originated from a source population with the same mean as the theoreti­
cal sampling distribution. This is equivalent to the probability that the sample mean 
observed (x) would occur in random sampling from a source population with a 
given mean Il and standard deviation cr. 
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Calculating this P value is easily accomplished by constructing a critical ratio 
analogous to the z-score described in Chapter 11 : 

x-Il 
z= cr/Vn 

In other words, the observed sample mean x is compared with its expected (under 
Ho) value Il by dividing its deviation from Il by its standard ("expected") deviation. 
The only difference in this critical ratio from the z-score introduced in Chapter 11 is 
that the probability distribution here is a sampling distribution of means (x's), rather 

than a distribution of individual values (x's). Thus, the SD of the distribution is ~ 

rather than cr. Since this sampling distribution is normal (Gaussian) according to the 
Central Limit Theorem, the same z-tables can be used to interpret the resulting val­
ues of z (the critical ratio) and to calculate P values. 

13.1.2 The t-Distribution 

Unfortunately, the use of the standard normal z-distribution to test the statistical 
significance of x, given a known Il, also depends on knowing cr, the population SD. 
When cr is unknown, a different probability distribution, the t-distribution, is 
required to test the significance of x. The t-distribution was discovered by William 
S. Gossett, a statistician working at the Guinness Brewery in the early years of this 
century who published his observations under the pseudonym of "Student." 

The t-distribution differs from the z-distribution in that, although its mean is the 
same (namely, Il), it uses the sample standard deviation s as an estimate of cr in the 
SEM. It is based on the following critical ratio: 

x-Il t=--slVn 
Like the z-distribution, the t-distribution is bell shaped. Its two "tails," however, are 
higher than the tails of the normal distribution. Thus, the calculated P values (which 
correspond to the area under the curve of the tails) are higher, i. e., less significant, 
for a given difference between x and Il. Like the z-distribution, the t-distribution 
depends on the requirements of the Central Limit Theorem. The assumption that 
the underlying population distribution (of x values) is normal is particularly impor­
tant for small samples. 

The value of t is interpreted using the I-distribution with n-l degrees of freedom, 
and P values can be calculated accordingly. Unlike the z-distribution, there is a dif­
ferent I-distribution according to the number of degrees of freedom. For small 
samples, the difference from the z-distribution is quite marked. For large samples 
(n~ 30), the t-distribution becomes extremely close to the z-distribution, and the 
latter can be used for making inferences. 

Although there is a different t-distribution for each different number of degrees 
of freedom (d!), it would be extremely cumbersome to have a separate !-table for 
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each df t-Tables, therefore, provide the various important P values (0.10, 0.05, 0.01, 
0.001) in the columns. The minimum values of t necessary to yield those P values are 
listed in the rows according to the number of degrees of freedom. Such a table is 
Appendix Table A.4. 

13.2 Statistical Inferences Using the t-Distribution 

13.2.1 Estimating J1 from x: Calculation of Confidence Intervals 

As discussed in Chapter 12, one of the goals of statistical inference is parametric 
estimation, the estimation of a population parameter from data in a sample from 
that population. The parameter of interest to us here is the population mean J.L. 
Given the sample mean x and sample standard deviation s, how can we estimate J.L? 

The procedure is straightforward. We begin by constructing the critical ratio t: 

x-J.L t= 
slyln 

We then solve for J.L: 

J.L=x-t(slyln) 

Since t can be either positive or negative, depending on whether x> J.L or J.L > ~ and 
since the t-tables list only positive values: 

J.L= x± t(sl yin) (13.1) 

x ± t( sl yin) is called a confidence interval around x. Depending on how" confident" 
we want to be about the value of J.L, the confidence interval will be more or less 
wide. A 95% confidence interval uses the value of t for P= 0.05 at n-1 degrees of 
freedom. Using Eq.13.1, we calculate the interval in which we are "95% confident" 
that J.L would lie if the study sample were randomly selected from the target popula­
tion. 

To illustrate, suppose we have a random sample of 17 healthy adult male subjects 
with a mean hemoglobin concentration of 14.7 g/dl and a standard deviation of 
1.12 g/dl. What would be the 95% confidence interval for the mean hemoglobin 
concentration in the population of healthy adult males? At 17 -1 = 16 degrees of 
freedom, the value of t required for P= 0.05 is 2.120. Thus: 

J.L=x± t(slyln) = 14.7±2.120 ( ~) 
= 14.7±0.6 g/dl 
= 14.1 to 15.3 g/dl 
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If we wished to be 99%, instead of 95%, "confident" about J.1, we would use the t 

required for P=0.01 in Eq.13.1. For the above example, t=2.921, and the resulting 
confidence interval is: 

14.7±2.921 ( ~) 
=14.7±0.8 g/dl 
= 13.9 to 15.5 g/ dl 

When n ~ 30, we can use the standard normal (z-) distribution to calculate confi­
dence intervals. We merely substitute z for tin Eq. 13.1. The "critical" values of z for 
95% and 99% confidence are 1.96 and 2.58 respectively. 

13.2.2 Inferences Based on a Single Sample Mean: The One-Sample t-Test 

Suppose we know the mean J.1o of some reference population of interest. We have a 
study sample with mean x and standard deviation s. We want to know whether the 
difference between x and J.1o is statistically significant, i. e., whether there is only a 
small probability that a difference at least as large as the one observed could arise by 
chance if the sample was randomly selected from the reference population. If our 
research hypothesis is directional, i. e., if we expect a difference between x and J.1o in 
only one direction (x> J.1o or x< J.1o), this should be specified beforehand. 

To test whether x differs significantly from J.1o, we proceed as follows: 

1. Construct a null hypothesis (Ho). Ho states that J.1, the mean of the source popula­
tion of which the study sample is a random sample, is the same as J.1o. In other 
words: 

2. Set up a critical ratio, 

t= x-J.1o 
s/Vn 

and calculate the value of t. 

(13.2) 

3. Consult the t-tables to find the P value corresponding to the t calculated in step 2 
at n-1 degrees of freedom. (The z-table can be used when n ~ 30.) A one-tailed 
P value can be used if the research hypothesis was directional and the observed 
data are concordant with the hypothesized direction. 

4. If P<0.05 (i.e., t is greater than the minimum value required for P=0.05), we 
reject Ho and conclude that J.1'~ J.1o. If P> 0.05, we conclude that the observ­
ed difference (x- J.1o) could have arisen by chance, in other words, that the 
sample could be a random sample of the reference population, and we do not 
reject Ho. 
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This procedure is called the one-sample t-test. 
To illustrate, let us return to our example of serum hemoglobin concentration. 

Suppose we have a representative sample of 30 healthy men living in the mountains 
between 2000 and 2500 m above sea level. Because the partial pressure of oxygen is 
lower at high altitudes, and because increased hemoglobin production is an adaptive 
physiologic response to hypoxia, our directional research hypothesis is that healthy 
men living at 2000-2500 m will have elevated serum hemoglobin. The study data 
show a mean hemoglobin concentration of 15.3 g/dl, with a standard deviation of 
1.17 g/dl. We wish to know whether the mean of 15.3 is significantly higher than 
the known mean of 14.7 g/dl for the reference adult male population living at sea 
level. From Eq. 13.2, 

t=X-!lo 
s/Vn 
15.3-14.7 

- 1.17/ y30 
= 2.809 

By consulting the t-table at n-l = 29 degrees of freedom, we can see that the one­
sided Pvalue lies between 0.005 and 0.01. (If we had used z instead of t, the one­
sided P value would have been 0.002. This is perfectly consistent with the results of 
the t-test, thus illustrating the equivalence of z and t with large sample sizes. I) We 
therefore reject the null hypothesis that our study sample is a random sample of the 
reference (sea-level) population and conclude that it derives from a different popu­
lation having a higher mean hemoglobin concentration, i. e., that !l> !lo. 

13.2.3 Inferences Based on a Difference Between Two Independent Sample 
Means: The Two-Sample t-Test 

The most common use of the t-distribution is in the significance testing of two inde­
pendent sample means. If one were randomly to choose two simultaneous samples 
of sizes nl and n2 from two infinitely large (hypothetical) source populations, 
replace the samples, choose two new samples of the same size, replace them, and so 
on, the differences (d's) between the two sample means Xl and X2 would be nor­
mally distributed, provided the source populations and sample sizes did not grossly 
violate the assumptional requirements of the Central Limit Theorem. 

In the "real world" of clinical and epidemiologic research, an investigator has a 
study sample selected (not necessarily randomly) to be representative of some target 
population. In a cohort study, for example, the two groups being compared are 
defined by their exposure status (e.g., exposed vs nonexposed, treatment A vs treat­
ment B), and their outcomes are believed to be representative of similar exposed 
members of the target population. The investigator wants to know if the observed 
difference in the outcome means of the two study groups, d = Xl - X2, is "statisti­
cally significant." 

I When the standard deviation cr of the reference population is known, z can be used even if n is 
small. 
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To translate this real-world situation to the hypothetical world of infinitely large 
source populations and random sampling, we assume that the exposure dichotomy 
defines two distinct subgroups of the target population, and that each of these sub­
groups can be imagined to be an infinitely large source population of which the 
exposure groups selected in the study are a random sample. 

The null hypothesis is that the mean outcomes in these hypothetical source pop­
ulations are identical: 

Ho: III = III (or equivalently, 0 = III - III = 0) 

Because of the relationship between these source populations and the two actual 
exposure subgroups in the target population, this is equivalent to saying that expo­
sure has no "effect" on (is not associated with) outcome in the target population. 
The investigator then tests the observed difference d to calculate the probability (P 
value) of obtaining a difference at least as large as d under the null hypothesis that 
0=0. If P< 0.05, she rejects Ho and concludes that 8 =1= 0, and thus III =1= Ill' i. e., the 
source population outcome means are not equal. The corresponding epidemiologic 
inference is that exposure affects outcome in the target population. 

To test H o, the observed difference (d= XI - Xl) is compared with the difference 
under Ho (8 = 0) by constructing a critical ratio, using the standard error of the 
observed difference: 

d-8 
Z=--

SEed) 
= (XI-Xl)-O 

SE(xl- Xl) 
XI-Xl 

SE(xl- Xl) 

The only remaining difficulty is the calculation of SE(xl - Xl). Now, the variance of 
a difference between two independent variables equals the sum of the variances of 
the two variables. Since the variance of the sampling distribution of means is crl / n, 
the variance of the sampling distribution of a difference between two means is: 

- - crt cr~ Var(xl-xl)= - +-
nl nl 

The standard error of the difference is the standard deviation of this sampling distri­
bution, i. e., the square root of the variance: 

Since we do not know crl and O"l, the respective source population SDs, we estimate 
the standard error of the difference using the SDs of the two study (exposure) 
groups: 
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where the ",,, (read "hat") indicates an estimate. The use of 5, and 52 instead of a, 
and a2 obliges us once again, for small samples, to use the t-, rather than the Z-, dis­
tribution. Thus 

One more complication remains. Unfortunately, the conventional t-test for two 
independent means is based on a null hypothesis that assumes aT = a~, as well as 
~,= ~Z. Usually this is not a problem; unless the difference in means is large, the 
variances often tend to be similar. To provide the best estimate of aZ (which, under 
our assumption, = aT = a~), we pool the two sample variances by weighting them 
according to their respective degrees of freedom. We then compute the pooled vari­
ance (5~) as follows: 

2 (n,-1)5T+(n2-1)5~ (n,-1)5T+(nz-l)5} 
~= = 

(n,-I)+(nz-l) n,+nz-2 
(13.3) 

Then SE(x, - XZ) = V5~ (~ +~) 
n, n2 

Finally, we have: 

(13.4) 

Equation 13.4 is called Student's (after Gossett) t-test of two independent sample 
means. The corresponding P value is determined by interpreting the value of t at 
n, + nz-2 degrees of freedom. 

To illustrate, let us once again consider the effect of altitude on the serum hemo­
globin concentration. Let us assume that no applicable reference population value 
exists, and that we randomly select a group of 17 healthy adult men living at sea 
level and 30 similar men living at 2000-2500 m above sea level. These are the same 
groups considered earlier in this section, and their respective means and standard 
deviations are as follows: 

x, = 14.7 g/dl 
xz= 15.3 g/dl 

5, = 1.12 g/dl 
5z= 1.17 g/dl 

Our directional research hypothesis. is that exposure to high altitude results in a 
higher hemoglobin concentration, i. e., ~, < ~z or 0 < o. The null hypothesis is that 
the two groups are random samples from source populations with identical means, 
i.e., ~,= ~z and 0=0. 
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We first compute the pooled sample variance from Eq.13.3: 

s~= (nl-l)sr+ (n2 -1)s~ = (16)(1.12)2+ (29)(1.17)2 = 1.33 
nl+n2-2 17+30-2 

Then we solve for t, using Eq.13.4: 

t- XI - X2 _ 14.7 -15.3 = -1.714 

- Vs~ (~ +~) - V(1.33) (~ + ~) 
nl n2 17 30 

(The negative sign is a consequence of our labeling the sea-level group as group 1; t 
would have been + 1.714 had the labeling been reversed.) Consulting the !-table at 
17 + 30 - 2 = 45 degrees of freedom, the one-sided P value corresponding to 

t= 1.714 is P<0.05. Consequently, we reject H o and conclude that the groups are 
not random samples from source populations with the same mean hemoglobin con­
centration. We infer that 1!2> I!I and, therefore, that high altitude results in a rise in 
serum hemoglobin. Of course, such a cross-sectional study cannot exclude the possi­
bility that the elevated hemoglobin concentration in fact preceded the second 
group's living at high altitude. In fact, the statistical significance of the difference 
relates only to the role of chance in producing the study results. Any analytic bias or 
other problem in study design would, naturally, invalidate our inference. 

It is worth re-emphasizing that the significant difference observed above is based 
on a one-sided test of significance. If the t of 1.714 had been interpreted in a two­
sided fashion, the resulting P value would have exceeded 0.05, and we would have 
been unable to reject H o' This illustrates the importance of stating a research 
hypothesis in directional terms, if appropriate. Had we carried out a two-sided test, 
we would have failed to reject Ho, and the probability of a Type II error would have 
been considerable. Stated in another way, the statistical power to exclude ,a clinically 
important difference would have been unsatisfactorily low. 

Another important point can be gleaned by comparing the results of this test 
with the one-sample t-test shown in Section 13.2.2. The high-altitude group is the 
same in both examples: n= 30, X= 15.3, and 5 = 1.17. In the one-sample test, how­
ever, this group is compared with a known reference population mean (14.7), 
whereas in the two-sample test, the same group is compared with a group of 17 sub­
jects with the same mean. The corresponding values of t in the two tests are 2.809 
and 1.714 respectively. 

Assuming the reference population has the same SD (= 1.12) as the 17 sea-level 
study subjects, we could, in fact, carry out a "mock" two-sample test, assuming an 
infinite sample size in the reference population (nl = 00). The "pooled variance" 
then becomes, essentially, the variance of the population = 1.122 = 1.25. Since 
1 - = 0, the value of t becomes: 
nl 

t= 14.7-15.3 =-2.939, 

V 1.25 (3~) 
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i. e., a result very close to that obtained in the one-sample test (with the sign 
reversed). The result is quite different from that of the "real" two-sample test, how­
ever, owing to the marked increase in sample size in going from a study group of 
17 subjects to an infinitely large population, and the consequent reduction in the 
standard error term in the denominator. This once again illustrates the critical 
importance of sample size in achieving the statistical power to detect a difference. 

Although significance testing using the t-test is the most commonly encountered 
approach to statistical inference for comparing two means, estimating a confidence 
interval around an observed sample difference is often more helpful. No null 
hypothesis is required, and the resulting inference therefore allows greater flexibility 
than the all-or-none decision about whether or not to reject Ho. The confidence 
interval is calculated as follows: 

(13.5) 

where t is the two-tailed tvalue required for the 100(1- a)% confidence interval at 
n 1 + n2 - 2 degrees of freedom. 

For our example, the 95% confidence interval (a=0.05) around the observed 
difference in hemoglobin concentration is: 

O=(14.7-15.3)±2.016 V(1.33)(~+~) 
17 30 

= -0.6±2.016(0.350) 
= -0.6±0.7 g/dl 
= -1.3 to + 0.1 g/dl 

13.2.4 Inferences Based on a Difference Between Two Paired Sample Means 

When the two means arise from a study of matched pairs, the paired t-test is a statis­
tically more efficient technique than the t-test for independent sample means.2 Sta­
tistical efficiency refers to the power to detect (i. e., demonstrate the statistical sig­
nificance of) a difference with a given (fixed) sample size. The more efficient the 
technique, the smaller the sample required to detect a given difference, and the 
smaller the difference that can be detected with a given sample size. 

As we discussed in Chapter 5, a matched-pair analysis is one method of reducing 
confounding. When comparing outcome in two exposure groups, pairwise matching 
renders each pair as similar as possible concerning variables independently (of expo­
sure) associated with the study outcome, so that any difference in outcome is more 
likely to be attributable to exposure, rather than to potential confounders. In addi­
tion to this reduction in confounding bias, matching for variables that are indepen­
dently associated with outcome, even if they are not differentially associated with 
exposure (and therefore not confounding), succeeds in reducing the variability in 

2 In fact, the matching creates variables that are no longer independent, thus violating an underly­
ing assumption of the t-test for independent sample means. 
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the outcome due to such variables. Although the difference in means is unaffected, 
the standard error of the difference is thereby reduced, thus raising the value of t 
and lowering the corresponding P value. Statistical power is increased because var­
iability is reduced, without increasing the sample size; i. e., the analysis is more effi­
cient. 

A matched-pair analysis of means is appropriate whenever (a) each subject from 
one exposure group is matched to a subject from the other exposure group, or (b) 
the same subject receives each of the two study exposures. In our example of the 
effect of high altitude on the serum hemoglobin concentration, the first type would 
be exemplified by 30 sea-level subjects, each matched (paired) with a high-altitude 
subject by such variables as age, race, and smoking habits. The second type of pair­
ing would be typified by a crossover clinical trial in which 30 subjects had their 
serum hemoglobin measured both at sea level and after living for several weeks at 
high altitude. Differential treatment of paired organs represents another example of 
this second (self-pairing) type of study, e.g., the use of two different topical anti­
glaucoma agents in the two eyes of patients with bilateral disease. 

To carry out the paired t-test, the investigator merely calculates the difference 
(retaining the plus or minus sign) for each matched pair (dj = Xli- X2;, where i rep­
resents each of n successive pairs). By computing the mean difference (a) and the 
estimated standard error of the difference (Sdl Vn), the null hypothesis (0 = 0) can 
be tested. Thus: 

(13.6) 

The calculated value of t is then interpreted by comparing it with a reference t-dis­
tribution with n-l degrees of freedom. Note that n here is the number of pairs, not 
the total number of subjects or observations. Despite the reduced number of degrees 
of freedom, the reduction in variability (Sd) achieved by pairing will usually result in 
a marked improvement in statistical efficiency. 

This will be illustrated once again using our example of high altitude and hemo­
globin concentration. We shall use the example of self-pairing by showing the results 
of a hypothetical crossover trial in which six healthy men have their serum hemoglo­
bin concentration measured both at sea level and at 2000-2500 m. To control for 
possible temporal effects, we randomize the sequence of the two exposures. Thus, 
some of the six will first be tested at sea level, while the others will begin at high alti­
tude. To allow time for physiologic response, we have them live at their respective 
altitudes for several weeks before testing. The results are summarized in Table 13.1 
and have been chosen to resemble those in the independent sample t-test seen in 
Section 13.2.3: X, = 14.7 g/dl, s, = 1.12 g/dl, X2= 15.3 g/dl, and S2= 1.17 g/dl. 

The mean difference is - 0.6 gl dl, thus illustrating the mathematical equivalence 
between the mean of the differences and the difference in the means 
(14.7-15.3=-0.6g/dl). The SD of the differences is only 0.28, i.e., only one 
fourth of the two group SDs. Using Eq.13.6: 

J -0.6 
t= Sdl Vn = 0.281 V6 = - 5.249 
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Table 13.t. Results of a crossover trial of the effect of high altitude on serum hemoglobin (Hb) 
concentration (in gl dl) 

Subject no. 
(i) 

1 
2 
3 
4 
5 
6 

d= -3.6 = -0.6 
6 

Sd=VI.(di -Jj2 =0.28 
n-l 

Hb at sea level 
(Xli) 

13.8 
16.1 
14.6 
15.0 
13.1 
15.6 

d -06 t=--= . =-5.249 
Sdl Vn 0.28 I V6 

at n-l = 5 df, P< 0.001 

Hb at high altitude Difference 
(X2i) (di= Xli- X2i) 

14.1 -0.3 
16.4 -0.3 
15.1 -0.5 
15.8 -0.8 
13.8 -0.7 
16.6 -1.0 

I.di= -3.6 

At 6 -1 = 5 degrees of freedom, a t of - 5.249 corresponds to a one-sided P value 
< 0.001. 

The absolute value of this t is much higher than the 1.714 obtained in the inde­
pendent sample test, despite identical means and SDs and despite a much smaller 
sample size. In fact, if the data in Table 13.1 are analyzed by the independent sample 
t-test, i.e., with the pairing ignored, the resulting value of t is only - 0.907, which is 
far from being statistically significant. This is a striking illustration of the statistical 
efficiency of the paired design and analysis. 

As with inferences about mean differences based on unpaired samples, confi­
dence intervals can be estimated from the observed mean difference from two paired 
samples: 

(13.7) 

For the above example, the 95% confidence interval around the observed mean dif­
ference is 

0= - 0.6 ± 2.571 (0.28/ y'6) 
= -0.6±0.3 
= -0.9 to -0.3 g/dl 
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13.3 Calculation of Sample Sizes 

In the planning (design) stage of any clinical or epidemiologic investigation, one of 
the most important questions that the investigator needs to ask himself (or his statis­
tical consultant) is, "How many subjects do I need to study in order to test my 
research hypothesis?" When the main comparison of interest is a comparison of two 
group means, the Central Limit Theorem can usually be used to answer this ques­
tion. The method to be described is approximate. For small samples, it will underes­
timate the required sample size because it is based on the z-distribution. The t-distri­
bution cannot be easily used for such calculations, since the value of t required for, 
say, a P of 0.05 depends on the sample size (actually on n-1, the degrees of free­
dom), which is unknown. 

The investigator will need to protect himself against a Type II error. In particu­
lar, he will need to avoid obtaining a difference that is clinically important but fails 
to achieve statistical significance. He must, therefore, specify in advance the smallest 
difference in means he considers clinically worth detecting, as well as the statistical 
power (1- P) he wishes to detect this difference. He must also estimate the standard 
deviation, cr, he expects in the underlying source population. This may be pure 
guesswork, or it may be based on a sample standard deviation (s) reported in previ­
ous studies. When uncertainty is great, sample sizes can be calculated for a range of 
values expected to include the true cr. 

The formula for the calculation of required sample size (N) when the primary 
statistical test of significance will be an unpaired t- or z-test is: 

(13.8) 

where nt and nz are the number of subjects in each exposure group (these are 
assumed to be equal, i.e., nt = nz); 
Za is the value of z required for the chosen level of a (Type I error) for either a one­

or a two-sided test. Since P= 0.05 is the conventional a level chosen for most 
studies, Za will be 1.96 for a two-sided test and 1.65 for a one-sided test; 

zil is the value of z required for the chosen level of P (Type II error). Since 1-P is 
the probability of detecting a difference at least as large as that specified under 
the alternative hypothesis, zil is inherently one-sided. Commonly chosen levels of 
pare 0.20 or 0.1 0, corresponding to statistical power (1- P) of 0.80 and 0.90 
respectively. The one-sided z values corresponding to Ws of 0.20 and 0.10 are 
0.84 and 1.28; 

cr is the value of the source population SD (crt = crz) and is best estimated from sam­
ple SDs in previous studies; 

{) is the clinically important difference, under the alternative hypothesis, that the 
investigator wishes to detect (the difference will be statistically significant at 
P;:;a 0.05) with probability 1 - p. 
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From Eq.13.8, it can be seen that the higher the statistical power, or the greater the 
variability (cr), or the smaller the difference the investigator wishes to detect, the 
greater the required sample size. 

To illustrate the use of Eq.13.8, we return to our example of serum hemoglobin 
in healthy men living at sea level vs high altitude. Let us assume that a difference (0) 
of 0.5 g/ dl is clinically important. We want to be sure to have a sufficient number of 
study subjects to render such a difference statistically significant at P ~ 0.05 or, if the 
difference is smaller, be 80% sure (~= 0.20) that the true difference in the source 
population is not ~ 0.5 g/ dl; zp is thus 0.84. Since we plan a one-sided test of Ho, Za 

is 1.65. We estimate cr from our previous studies as the square root of the pooled 
variance (s~= 1.33), or 1.15 g/dl. 
Then 

Since N must be divided equally between the two exposure groups, and since we 
cannot study fractions of an individual, we would need 29 subjects in each group. 
(We probably should anticipate several "dropouts" and thus plan to enroll 32 or 35 
subjects in each group.) 

In general, a far greater (often two-fold or more) sample size is required to pro­
tect against both Type II and Type I errors than to protect against Type I error 
(demonstrate "statistical significance") alone. The temptation to ignore Type II error 
is thus strong, especially when patients are involved, because the calculated sample 
sizes are smaller and therefore easier to achieve at a single center over a reasonable 
period of time. Despite its attractions, however, such a practice is perilous for the 
investigator, because she may well find herself unable to reject Ho or H A . 

Consider the example of a clinical trial of arterioplasty (surgical arterial repair) 
vs medical (drug) therapy in patients with hypertension caused by renal artery steno­
sis (narrowing). Suppose the principal investigator specifies 10 mmHg in diastolic 
blood pressure reduction as a clinically important difference worth detecting. She 
estimates the standard deviation and, ignoring Type II error (i. e., leaving z~ out of 
Eq.13.6), calculates her required sample size. 

But suppose when the study is actually carried out with the calculated sample 
size, the results show a 9-mmHg difference favoring surgery over medical therapy. 
Because the sample size was calculated based on a 1 O-mm Hg difference, the 
9-mm Hg difference will not be statistically significant. The investigator may not 
consider the 9-mm Hg difference clinically important, but how sure can she be that 
the true difference in the treatments is not 10 mmHg or even larger? Not very sure, 
unfortunately. So she is left in a situation where she can infer neither that there is a 
clinically important difference nor that there is not. The danger of this Scylla and 
Charybdis can be avoided only by considering Type II error (i. e., including zp) in 
the sample size calculation. 

Many investigators faced with the above results (d=9 mmHg; P>0.05) would 
be tempted to enroll additional patients in the study in an effort to achieve statistical 
significance. There are two problems with such an approach, however. First, 
repeated significance testing increases the risk of detecting a significant difference 
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arising solely by chance, i. e., of committing a Type I error. If results are repeatedly 
analyzed, the P value calculated from the test will underestimate the true risk of a 
Type I error (see the discussion of multiple significance tests in Chapter 12). Second, 
if the null hypothesis is in fact true, subsequent results may show a difference smaller 
than 9 mm Hg, and the difference may fail to achieve statistical significance despite 
the larger sample size. 

This example reveals one of the problems with the hypothesis-testing approach 
to data analysis: it is based on "dichotomous" thinking. The investigator must 
choose between Ho and HA, even if the data are not very compatible with either. 
The use of confidence intervals, however, is often a more helpful approach to statis­
tical inference. No Ho or HA need be postulated. Instead, the confidence interval 
indicates the range of differences in the target population compatible with the dif­
ference observed in the study sample. In the above example, the confidence interval 
around the observed difference of 9 mm Hg would include both 0 and 10 (i. e., nei­
ther Ho nor HA could be rejected with confidence). But it would be centered at 9, 
with an upper bound considerably higher than 10 and a lower bound just below O. 

13.4 Nonparametric Tests of Two Means 

The t-test (paired or unpaired) is the significance test of choice in comparing two 
means, provided the requirements of the Central Limit Theorem are not grossly vio­
lated. Unless the sample size is quite small, the source population may exhibit con­
siderable departure from a normal distribution without disturbing, to an important 
degree, the sampling distribution of means or differences in means [1). In statistical 
parlance, we say that the t-test is robust. Many researchers who have had some 
exposure to statistics have the quite mistaken notion that the t-test can be used only 
when source populations are normally distributed. Such is not the case. 

When the requirements of the Central Limit Theorem are violated, however, 
alternative analytic strategies are required. This is particularly likely to occur when 
source populations exhibit extreme skewness in their distributions, that is, with a 
much larger tail in one direction than in the other [1). Variables with 0 as the obliga­
tory lower boundary, but without an upper boundary, exhibit distributions skewed 
to the right, with many low values and fewer and fewer high values extending into a 
long tail. Examples include length of hospitalization and the dose of a drug required 
to produce a given effect. Length of gestation, on the other hand, is skewed to the 
left, with very few above 42 or 43 weeks, and decreasing proportions at shorter and 
shorter gestations. 

Faced with a highly skewed distribution, the investigator has two main choices. 
Either he can transform the original data in a way that normalizes the distribution 
(e.g., by taking their logarithms), or he may use a nonparametric test. A nonparamet­
ric test differs from the t-test and other parametric tests that use a sampling distribu­
tion of statistics (such as X) obtained in samples to make inferences about the corre­
sponding population parameters (such as I!). 

To use a nonparametric test of two means, the actual magnitudes are ignored, 
and only the ranks (i. e., the relative magnitudes) are used to determine statistical 
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significance. In the unpaired test, called the Mann- Whitney U-test, the two groups 
are combined and ranks are assigned (the lowest value gets a rank of 1). Each mem­
ber of both groups is then compared one by one with every member of the other 
group, and a "winner" is declared for each comparison. The total number of wins in 
each group (called the "V statistic") is then calculated and is interpreted by referring 
to the number that would be expected under the null hypothesis that the wins were 
distributed by chance. For two groups of sample sizes nl and n2, the chance-

expected value of V is nln2. When the sample size is so large as to make this one-
2 

by-one comparison unwieldy, the two values of V can be calculated by determining 
the sums of the ranks (RI and R2) in the two groups. The two values of V are then: 

(13.9) 

(13.10) 

To determine the P value, the smaller of the two values of V is referred to the tabu­
lated values (see Appendix Table A.5) required for the usual thresholds of P (0.10, 
0.05, 0.01, 0.001) with different sample sizes nl and n2. The smaller the observed V 
compared with the chance-expected value, the lower the P value. 

To illustrate, the results of a hypothetical study comparing length of hospitaliza­
tion in stroke victims receiving or not receiving physical therapy (PT) are shown in 
Table 13.2. One subject from each group had a hospitalization lasting 55 days. Since 
these values occupy the eighth and ninth ranks, each subject receives the tied rank­
ing of 8.5. The V statistic can be calculated for the PT group as follows. The first 
PT subject wins three head-to-head comparisons with members of the non-PT 
group (members 2, 4, and 5) and loses the rest; the result is thus three wins. The sec­
ond PT subject wins one and loses seven. The third has three wins, one tie (non-PT 
group member 8), and four losses. (Total wins = 3.5, since each tie counts as half a 
win). The fourth PT subject has 0 wins; the fifth, six wins; the sixth, four wins; the 
seventh, three wins; and the eighth, four wins. The total number of wins among the 
eight PT subjects (= VI) is thus 3 + 1 + 3.5 + 0 + 6 + 4 + 3 + 4 = 24.5 wins. The total 
number of possible wins is 8 X 8 = 64, whereas the chance-expected number is 32. 
The reader may verify that the number of wins in the non-PT group is V 2 = 39.5. 
The same results for V could be obtained using the sums of the ranks RI and R2, 

i.e., Eqs. 13.9 and 13.10: 

VI = nln2+ n2(n~+ 1) -R2 =64+ 8~) -75.5=24.5 

V 2=nln2+ nl(nl+l) -RI =64+ 8(9) -60.5=39.5 
2 2 

The smaller of the two V values (24.5) is then referred to the V table (Appendix 
Table A.5) for nl = 8 and n2 = 8. It can be seen that 24.5 is not low enough (V = 13) 
to reject the null hypothesis, and we conclude that PT does not lead to a shorter 
hospitalization in stroke victims. The potential for Type II error, however, is consid-
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Table 13.2. The effect of physical therapy (P1) on length of hospitalization (in days) in stroke vic-
tims: Mann-Whitney U-test 

Subject PT group Rank "Wins" Non-PT group Rank "Wins" 
no. (days) (days) 

1 41 6 3 118 16 8 
2 23 3 1 15 2 1 
3 55 8.5 3.5 84 13 7 
4 12 1 0 38 5 2 
5 91 14 6 33 4 2 
6 68 11 4 79 12 7 
7 47 7 3 94 15 8 
8 65 10 4 55 8.5 4.5 

Rt =60.5 Ut =24.5 R2 =75.5 U2 =39.5 

For nt=8 and n2=8, P>0.05 

Table 13.3. The effect of physical therapy (P1) on length of hospitalization (in days) in stroke vic­
tims: matched-pair analysis (Wilcoxon signed rank test) 

Pair no. PT group (days) Non-PT group (days) Difference Rank 

1 41 33 + 8 2.5 
2 23 38 -15 4 
3 55 79 -24 6 
4 12 15 - 3 1 
5 91 118 -27 8 
6 68 94 -26 7 
7 47 55 - 8 2.5 
8 65 84 -19 5 

Sum of + ranks = 2.5 
Sum of - ranks=4+6+ 1 +8+7+2.5+5=33.5 
For n=8 pairs, P<0.05 

erable, considering the small sample size and the fact that four of the five highest 
rankings are found in the non-PT group. 

In the paired nonparametric test of two means, called the Wzlcoxon signed rank 
test, the differences between each matched pair are ranked with the sign (+ or -) 
of the difference ignored, assigning the rank 1 to the smallest difference. The sums 
of the ranks with positive signs is then compared with the sum of the ranks with 
negative signs. Under the null hypothesis, these sums should be equal, and the actual 
results can be referred to the distribution of sums around a median of 0 that would 
be expected by chance. These are tabulated according to the number of matched 
pairs and the sum of ranks required to achieve a given P value (see Appendix 
Table A.6). 

To illustrate using our physical therapy example, the data of Table 13.2 have 
been rearranged as matched pairs in Table 13.3. Each PT subject has been matched 
with a non-PT subject for age, sex, severity of stroke, and co-morbidity (the pres­
ence or absence of cardiovascular or other serious diseases in addition to the stroke). 
The matching is intended to reduce any bias due to these potential confounders, as 
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well as to reduce other sources of variation in the length of hospitalization. The sec­
ond and third ranked differences (pair numbers 1 and 7) are tied at 8, and thus each 
receives a ranking of 2.5. Seven of the eight differences are negative, and the sum of 
the negative ranks is 4 + 6 + 1 + 8 + 7 + 2.5 + 5 = 33.5, while the sum of the positive 
ranks is 2.5. As can be seen in Appendix Table A.6, for eight pairs a sum of ranks of 
~ 3 or ~ 33 is required for a P value of 0.05. Since 2.5 ~ 3 and 33.5 ~ 33, we reject 
the null hypothesis. This significant result once again demonstrates the enhanced 
statistical efficiency of the paired approach. 

Another approach to the analysis of these data involves merely examining the 
signs of the differences for each matched pair. Since, under Ho, the probabilitiy of a 
positive (or negative) difference for any matched pair is 0.5, the probability of seven 

or more (i.e., seven or eight) negative differences out of eight pairs is ~(0.5)8 
7!1 ! 

+ ~ (0.5)8 = 0.035, which is statistically significant. This is called the sign test. 
8!0! 

(The P value of 0.035 is one-sided; the corresponding two-sided P value, corre­
sponding to a nondirectional research hypothesis, is 0.070.) 

Nonparametric tests of means have the advantage of requiring no assumptions 
about source population distributions. Although they can be cumbersome to calcu­
late by hand for large sample sizes, most computer software packages now include 
these tests in their repertoire, and calculation difficulties have become less impor­
tant. (With large samples, however, t- or z-tests can usually be used without grossly 
violating the assumptions of the Central Limit Theorem.) Another disadvantage of 
nonparametric tests is that their use of relative magnitudes (ranks) rather than actual 
magnitudes results in a slight loss of statistical efficiency. To maximize statistical effi­
ciency, it may occasionally be preferable to use a t-test, even if prior logarithmic or 
other transformation of highly skewed data is required. 

13.5 Comparing Three or More Means: Analysis of Variance 

To compare the mean outcomes in three or more exposure groups, the investigator 
uses a procedure called a one-way analysis 0/ variance (ANOVA). The assumptions 
underlying the one-way ANOV A are similar to those required for the t-test, and the 
null hypothesis is that the groups are equivalent, i. e., that they represent random 
samples from hypothetical source populations with identical outcome means. In 
essence, the procedure divides the total variance among all study subjects (with 
group membership ignored) into two portions: (a) the portion accounted for by the 
differences between the groups, the intergroup variance; and (b) the portion due to 
the differences among the subjects within the same group, the intragroup variance. 
The larger the former relative to the latter (this ratio of variance is called an F-ratio, 
and the corresponding test of significance, an F-test), the less likely the differences 
among group means are due to chance. The t-test for two independent group means 
is merely the special case of the one-way ANOV A F-test when the number of 
groups is two. 
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The primary result of a one-way ANOV A is a P value representing an overall 
test of the null hypothesis. If P< 0.05, we infer that the source population means are 
not equivalent. The investigator is usually interested in going further, however, to 
find out which group or groups are responsible for the overall difference. Different 
pairs of groups (or combinations of groups) can then be compared, but P values 
must be adjusted to account for multiple testing, unless all tests are statistically inde­
pendent of one another and are decided upon a priori. Several procedures are avail­
able for carrying out such secondary analyses, and the interested reader may wish to 
consult one or more appropriate references [2, 3]. 

Sometimes an investigator may wish to study the effects of two or more expo­
sures or treatments simultaneously. Suppose we wished to assess the effects of both 
gender (male vs female) and a new antidepressant drug on depression (as measured 
by a pretested depression score) 6 months after initiating treatment. Although we 
could carry out a separate t-test for treatment effect in men and women, a two-way 
analysis 0/ variance (ANOVA) provides both greater statistical efficiency and an 
opportunity to test for a sex difference independent of treatment [2, 3]. (The analy­
sis of the main effect, the treatment difference, is more statistically efficient because it 
uses data from both sexes simultaneously, instead of from just one at a time.) 

When two main effects are being studied, both can be assessed simultaneously 
without requiring the doubling of sample size that would be necessary in two sepa­
rate studies. If, for example, we wished to assess the effects of both our new antide­
pressant drug and psychotherapy, we could randomize both treatments, thus pro­
ducing four treatment groups: drug alone, psychotherapy alone, both treatments, 
and neither treatment. In addition to providing an assessment of each treatment 
alone, the two-way ANOVA would also examine the effect of interaction (effect 
modification) between the two treatments. This type of study design is called a two­
way factorial design. Provided that the sample size is sufficient to yield adequate 
numbers of subjects in each subgroup formed by the combinations of different expo­
sures, ANOVA methods can be extended (three-way, four-way, etc.) for larger 
numbers of study effects. 

13.6 Control for Confounding Factors 

In many studies, a simple comparison of two or more group means may be biased by 
confounding differences between the groups. This is far more likely to occur in 
observational than in experimental studies, but, as we have seen, even randomized 
clinical trials are not immune. Consider once again the outcome of depressive symp­
tomatology (score) at, say, 6 months after initiating treatment. If the group receiving 
the new antidepressant drug is younger on average than the control group, and 
young depressed patients are known to have a better prognosis independent of 
treatment, then a result favoring the drug group might be due to the confounding 
effect of age rather than to a benefit of the drug. 

In Chapter 5 we discussed several strategies for controlling for confounding fac­
tors. Pairwise matching is one such strategy; each patient receiving the new antide­
pressant could be matched by age (e. g., ± 5 years) with a control patient, and a 
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paired t-test could be used to test for a significant difference. A second approach 
would be to stratify all study patients according to age (e.g., <20,21-30,31-50, 
and > 50 years) and compare the stratum-specific mean depression scores in the two 
treatment groups. 

Perhaps the most convenient strategy, in this day of prepackaged computer pro­
grams, is to acijust the group means according to the outcome each subject would 
have if he had the mean value of the confounder. This adjustment assumes a linear 
correlation (see Chapter 15) between the confounder and the outcome (age and 
post-treatment depression scores, respectively, in our example). This procedure is 
called analysis 0/ covariance (ANCOVA) or covariate adjustment and can be used for 
any number of continuous and dichotomous categorical variables [2-4]. It can be 
combined with an assessment of two (or more) study effects by using two- (or more) 
way ANCOVA. 

Whenever extraneous variables (i.e., variables other than exposure or outcome) 
are being considered, it is important to distinguish effect modifiers from confoun­
ders. As discussed in Chapter 5, effect modifiers do not bias the overall estimate of 
exposure-outcome association. Instead, the magnitude of the estimate differs with 
different values of the effect modifiers. In that case, reporting and testing a single 
difference in means for the entire study sample is rather uninformative (i. e., it hides 
important information), even if unbiased. Suppose, for example, that in our ran­
domized clinical trial of a new antidepressant drug, the drug is not efficacious in 
patients with bipolar depression (manic-depressive disease) but is extremely effica­
cious in those with unipolar depression. Assuming the unipolar and bipolar patients 
are distributed evenly in the drug and placebo group, the results should be tested 
and reported for the two subgroups separately. (If the possibility of this difference in 
efficacy is appreciated in the design stage, the investigator would do better to restrict 
the trial to unipolar patients.) 
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Chapter 14: Statistical Inference for Categorical 
Variables 

14.1 Introduction to Categorical Data Analysis 

As discussed in Chapter 2, many variables are naturally measured on a categorical 
rather than a continuous scale. This is true for outcome variables as well as exposure 
variables. In the last chapter, we focused our attention on the comparison of two or 
more means, usually representing the mean outcomes in two or more exposure 
groups. In such cases, exposure is categorical (e. g., medical vs surgical treatment for 
renovascular hypertension), and the outcome is continuous (e.g., post-treatment 
blood pressure). The conventional approaches to comparing the mean outcomes 
include t- and z-tests, analysis of variance, and various nonparametric tests. 

In many clinical studies, however, exposure and outcome are both categorical. 
Comparisons of survival, complication rates, or pain relief in patients treated with 
two or more different regimens are common examples. For such studies, the statisti­
cal methods discussed in the last chapter are not generally applicable. Although for­
mulas exist for t-tests and related techniques to test for significant differences 
between simple proportions for dichotomous variables, such formulas depend on 
distributional assumptions about the source populations and cannot be extended to 
analyses of polychotomous variables. As we shall see, however, these techniques are 
commonly used for estimating confidence intervals around single proportions and 
differences between two proportions, and for computing required sample sizes. 

The conventional approach to assessing an association between a categorical 
exposure and a categorical outcome involves (for cohort studies) a comparison of 
the observed distribution of subjects in each outcome category among the groups 
defined by exposure (or the reverse for case-control studies). The observed distribu­
tion is then compared with the distribution that would be expected under the null 
hypothesis (Ho) of no exposure-outcome association: a random distribution of out­
come in each exposure group and vice versa. If the observed distribution differs suf­
ficiently from that expected by chance under H o, i. e., if the probability of the 
observed (or a more extreme) distribution is less than 0.05, Ho is rejected. 

In most clinical and epidemiologic studies involving categorical exposure and 
outcome, both variables are dichotomous. In a cohort study, an exposed group and 
a nonexposed group, or two groups receiving different treatments, are compared for 
their rate of a given outcome, e. g., death, wound infection, or premature delivery. 
In case-control studies, two different outcome groups (cases and controls) are com­
pared for a history of prior exposure to the agent or maneuver under investigation. 
Most of our attention in this chapter will center on the statistical analysis of the 
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assoCiation between a dichotomous exposure and a dichotomous outcome. This 
major discussion will then be followed by a brief consideration of analogous meth­
ods applicable to polychotomous variables. 

14.2 Comparing Two Proportions 

14.2.1 Association in 2 X 2 (Fourfold) Tables 

Suppose we wish to compare postoperative wound infection rates in laparotomy 
(abdominal surgery) patients treated with either a broad-spectrum antibiotic or a 
placebo. We have randomized treatment assignment in 500 consecutive patients, 
with 240 receiving the antibiotic and 260 receiving the placebo, and the resulting 

infection rates are PI=!J...=~ (2.9%) and P2=~=~ (8.1%), respectively, 
nl 240 nz 260 

where nl and nz are the numbers of subjects in the first and second exposure groups 
and tl and t2 are the numbers within those groups who experience the "target" out­
come. 

These data can also be displayed in a 2 x 2, or fourfold, table, as shown for our 
example in Table 14.1 arid in general statistical notation in Table 14.2. The row 
totals 'I and '2 represent the total numbers of patients receiving antibiotic and 
placebo, while the column totals CI and Cz represent the total numbers of patients 
with and without wound infections. Any two proportions being compared can be 
displayed in a 2 x 2 table; conversely, any 2 x 2 table can be "translated" into two 
corresponding proportions. 

In the tabular format, the greater the difference between the two proportions, 
the greater the association between the columns and the rows (the outcome and the 
exposure, respectively, in the format used throughout this text). In our example, we 
are interested in testing for a statistically significant association between preopera­
tive treatment (antibiotic or placebo) and postoperative wound infection (yes or no). 

To carry out such a test, we first establish a null hypothesis of no association in 
the underlying target population and then assess the probability that the association 

Table 14.1. Postlaparotomy wound infection in patients receiving antibiotic vs placebo 

Infection No infection 

Antibiotic 7 233 240 

Placebo 21 239 260 

28 472 SOD 
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Table 14.2. Statistical notation for data displayed in a 2 x 2 table 

Exposed 

Nonexposed 

Outcome 
present 

a 

c 

Outcome 
absent 

b 

d 

a+b(=rl) 

c+ d (= r2) 

167 

a+c b+d N= rl + r2= CI + c2=a+ b+ c+d 
(= CI) (= C2) 

r" row total for 1st row; r2, row total for 2nd row; c" column total for 1st column; C2, column 
total for 2nd column. 

observed in the study sample arose by chance, assuming that the sample was ran­
domly selected from the target population. Stated in terms of the two proportions, 
the null hypothesis states that the source populations of which the two exposure 
groups represent random samples have equal outcome rates, i. e., Ho: 1t, = 1t2, with 
the 1t'S corresponding to the p's in the study sample. The Ho of no association indi­
cates that the columns should be statistically independent of the rows. We thus calcu­
late the frequency with which we would expect (under Ho) subjects to fall into each 
of the four cells of the 2 X 2 table. If the observed cell frequencies differ sufficiently 
from the frequencies expected under H o, we reject Ho and conclude that the col­
umns and rows are not independent, i. e., that they are associated, in the target pop­
ulation. 

How do we calculate the expected cell frequencies? The probability that two 
independent events will both occur is the product of their individual probabilities. 

Under H o, the probability of a subject being in a given row is ll, the row total 
N 

divided by the total sample size. Similarly, the probability of a subject being in a 

given colum is .!:i. Thus, under H o, the probability of being in a given cell (i. e., a 
N 

given row and a given column) is (~) (~) = f!{1. The expected cell frequency, Eij, 

is then simply the probability of being in that cell times the total sample size: 

Eij= ([$) (N)= ~ (14.1) 

In each cell of the table we then have both an observed (Oij) and an expected (Eij) 
frequency. Now we require a statistical method for comparing the OJs with the EJs 
that will guide us in our inference to reject, or not reject, the null hypothesis. The 
usual method for carrying out this comparison is the X2 test. 
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14.2.2 The X2 Test: Deftnition and Calculation 

Chi square is a statistic whose known frequency distribution under Ho enables us to 
calculate P values. It is defined as follows: 

(14.2) 

It can be calculated by computing the expected frequency (Eij) for each cell, sub­
tracting it from the observed frequency (Oij) in the table, squaring the resulting dif­
ference, dividing by the expected frequency, and then summing this ratio over all 
four cells in the table. 

Because this method of calculating X2 can be computationally unwieldy, several 
algebraically equivalent formulas may be preferable. Using our customary a, b, c, d 
notation to depict the four cells of the 2 X 2 table, as shown in Table 14.2, 
(0··-E·)2 I, I, for the first cell is: 

E·· !J 

[a- (a+ b)(a+ c)/Nf 
(a+ b)(a + c)/N 

If we repeat this for each of the four cells and then sum the algebraic terms, we end 
up with the following formula: 

2 (ad-bc)2N 
X= 

(a +b)(c+ t4(a+ c)(b+ t4 
(14.3) 

(The denominator can be seen to be the product of the two row totals and the two 
column totals). 

If the data are not already displayed in a 2 x 2 table, the easiest way to calculate 

X2 is to compare the two proportions, PI =!.! and P2 = !..1.., directly: 
nl n2 

(14.4) 

Equation 14.4 is probably the easiest of the X2 formulas to compute using a hand­
held calculator. 

To illustrate the mathematical equivalence of Eqs. 14.2-14.4, let us calculate X2 
for our postlaparotomy wound infection trial (Table 14.1). To use Eq. 14.2, we must 
first calculate the expected frequencies (Eijs) for each of the four cells according to 
Eq. 14.1. These are shown in Table 14.3. Next, using Eq. 14.2, 

X2=I(Oi;-Ei,)2 = (7-13.44)2 + (233-226.56f + (21-14.56)2 + 
Eij 13.44 226.56 14.56 

(239 - 245.44)2 
-'--------------'- = 3.09+0.18 + 2.85+ 0.17 =6.29 

245.44 
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Table 14.3. Expected cell frequencies (Ei/s)' for data shown in Table 14.1 

Infection No infection 

Antibiotic 13.44 226.56 240 

Placebo 14.56 245.44 260 

28 472 500 

Using Eq. 14.3 and the notation shown in Table 14.2, 

2_ (ad-bc)2N _ [(7)(239)-(233)(21)]2(500) =6.29 
X - (a+ b)(c+ d)(a+ c)(b+ d) - (240)(260)(28)(472) 

Using Eq. 14.4 and the two native proportions, PI =..!...... and P2 = l.l, 
240 260 

Thus, the three equations yield precisely the same result for the value of X2. Regard­
less of which method is used to calculate X2, however, we need to know how to 
interpret the value calculated. In other words, how can we determine a P value from 
a given value of X2? This is discussed in the following section. 

14.2.3 The 'l Test: Statistical Inferences 

On inspection of Eq. 14.2, it is evident from the squared term in the numerator that 
X2 is always ~ O. The minimum value of X2 = 0, which is the value obtained when 
Oij=Eij (observed = expected) for each cell of the table. The maximum value will 
depend on the sample size, since larger numbers in each cell will permit greater 
absolute values for Oij- Eij, and hence for (Oij- Eij)2. The empirical frequency dis­
tribution for X2 is discrete; only certain values of X2 are possible, depending on the 
specific OJs and Eij's for each cell. With larger sample sizes, however, the discrete 
distribution is closely approximated by the smooth curve representing the theoretical 
probability distribution for the source population. 

Since large values of X2 indicate a large deviation of observed from expected, the 
higher the X2, the less likely it is that the study sample represents a random sample 
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from a target population (represented by the expected frequencies) in which no 
association exists between exposure and outcome. In other words, the higher the 
value of X2, the lower the P value, and the greater our confidence in rejecting the 
null hypothesis. 

The P value is the area under the curve of the smoothed X2 probability distribu­
tion above the obtained value of X2. In order to determine this P value we need one 
further piece of information: the number of degrees of freedom. 

In calculating the degrees of freedom, marginal (row or column) totals are con­
sidered to be fixed. In fact, we have already made use of these fixed marginals in 
calculating the expected cell frequencies (EJs) according to Eq. 14.1. In a 2 X 2 
table, having fixed marginals means that anyone cell automatically determines the 
other three, and thus the number of degrees of freedom equals 1. 

This can be illustrated by considering Table 14.1 with only the marginal totals 
provided: 

Infection No infection 

Antibiotic 240 

Placebo 260 

28 472 500 

Now let us see what happens when we are given the value of 21 in the left lower 
cell. Because of the fixed marginals, this 21 automatically determines the values of 
the three other cells, yielding the entire Table 14.1: 

Infection No infection 

Antibiotic 7 233 240 

Placebo 21 239 260 

28 472 500 

The general formula for determining the number of degrees of freedom is: 

d/= (r-1)(c-1) (14.5) 
where r= the number of rows 

c= the number of columns 

Thus, for a 2 X 2 table, d/= (2 -1)(2 -1) = 1 
As with the t probability distribution, the shape of the X2 distribution varies 

according to the number of degrees of freedom. Unlike t, however, X2 is always pos­
itive, and the P values always corresponds to the area in the upper tail of the distri­
bution above the obtained value of X2. This P value will change for a given value of 
X2 according to the number of degrees of freedom, increasing (becoming less signifi­
cant) with increases in df 

Because of this dependence of P on both the obtained value of X2 and the num­
ber of degrees of freedom, X2 tables have been constructed in which the minimum 
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value of X2 is given for a given df and the usual "threshold" P values (0.10, 0.05, 
0.01, 0.001). In this regard, it is set up like the !-table. A representative X2 table is 
provided in Appendix Table A.7. 

As we have mentioned, the P value determined from a X2 test corresponds to the 
area in the upper tail of the smoothed X2 probability distribution. But since 
(Eij- Oij)2, and hence X2, is always ~ 0 regardless of whether PI> Pl or Pl > PI> i. e., 
regardless of which proportion is larger, the X2 test is inherently two-sided. (In other 
words, there is no equivalent to the negative value of t obtained when X2> XI. See 
Eq.13.3.) In comparing two proportions, therefore, the P value obtained from a X2 
test represents the probability of obtaining the observed difference in the two pro­
portions (P I - Pl) by chance under Ho, regardless of whether PI> Pl or Pl > P I· 
Although one-sided P values are rarely reported for X2 tests, a research hypothesis 
that was stated a priori as clearly unidirectional (11:1> 11:2 or 11:2> 11:1) and was subse­
quently supported by the data could justify a one-sided test. The one-sided P value 
is obtained by dividing the tabulated (two-sided) P value by 2. 

To illustrate the use of the X2 table, let us determine the P value corresponding 
to the X2 of 6.29 obtained in our wound infection trial. At 1 df, a X2 of 6.29 yields a 
(two-sided) P value between P= 0.05 and P= 0.01. By convention, this is sufficiently 
small to reject the null hypothesis, and, if the design and execution are adequate to 
exclude analytic bias as an explanation for the findings, we conclude that the study 
antibiotic is indeed efficacious in reducing postlaparotomy wound infection. 

14.2.4 The Continuity Correction for Small Samples 

As mentioned above, the (theoretical) X2 probability distribution is a smooth, contin­
uous curve. Observed frequencies, however, are discrete and so, therefore, are the 
possible calculated values of X2 from any study. When N is very large, many more 
values are possible for the OJs and EJs (and thus for X2), and the frequency distri­
bution of possible X2 values begins to approach the smooth, theoretical probability 
distribution. For example, the wound infection rate in our antibiotic-treated patients 
of 7 out of 240 might represent theoretically any number from 6Y2 to 7Y2, i. e., a sim­
ilar group of 2400 antibiotic-treated patients could have a rate anywhere from 65 to 
75 out of 2400. 

When N is small, many statisticians advocate the use of a continuity correction to 
compensate for the fact that the discrete possible values are not closely approxi­
mated by the continuous theoretical distribution. In 1934, Yates decided to subtract 
Y2 from the absolute value of each Oij- Eij to provide a better approximation. The 
resulting X2 with continuity correction (X~) is defined as follows. 

x ~ = 1: (10;;- Eijl- Y2f 
Eij 

where the symbol 1 1 indicates absolute value. 
The equivalent form of Eq.14.3 is: 

2_ (lad- bcl-NI2)2N 
Xc-

(a+ b)(c+ d)(a+ c)(b+ d) 

(14.6) 

(14.7) 
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The continuity correction is used only for comparing two proportions (i. e., for 
2 x 2 tables), and X~ is interpreted at 1 dfin the same way as the uncorrected X2. The 
continuity correction results in smaller values for X2, and resulting statistical infer­
ences will thus be more conservative. In other words, Ho is less likely to be rejected. 
The lower risk of Type I error must, as always, be balanced against a greater risk of 
Type II error. For large samples, the continuity correction is probably unnecessary, 
but for small samples the P values calculated using X~ are closer to the exact proba­
bility (see following section) obtained using a pure stochastic (chance-generated) 
model. 

14.2.5 The Fisher Exact Test 

When the expected cell frequency in one or more cells of a 2 x 2 table is below 5, 
the smoothed X2 probability distribution, even with the continuity correction, does 
not provide a sufficiently accurate approximation of the true P value. In such cases, 
many statisticians recommend using the Fisher exact test. The Fisher test is based on 
the hyper geometric distribution, which is produced when two independent binomials 
(i.e., the two sample proportions) are inserted in a 2 x 2 table with fixed marginal 
totals. The test provides the probability of obtaining, by chance, an association 
between the columns and rows at least as large as the one observed, under the null 
hypothesis of no association and the condition of fixed marginals. 

Given a hypergeometric distribution, the probability of the observed cell fre­
quencies a, b, c, and d, given the row totals r1 and r2 and the column totals C1 and C2, 

IS: 

(14.8) 

This formula, however, provides only the probability of the table obtained. As with 
the t and X2 tests, we are usually interested in calculating the probability (Pvalue) 
of getting the results obtained or results more deviant from H o, i. e., the area 
in the entire "tail" of the probability distribution of tables beyond the observed 
one. 

To compute the P value for the Fisher exact test, we construct further 2 x 2 
tables having more extreme cell frequencies than the observed one, while keeping 
the marginal totals constant. We then calculate the probability associated with each 
of these tables, using Eq.14.8, and add these probabilities to that of the observed 
table. The resulting sum is the exact P value. Because the "more extreme" tables are 
those deviating from Ho in the same direction as the observed table, the calculated P 
value is, by definition, one-sided. To get the two-sided P value, the result is usually 
multiplied by 2. 

As an example, consider the evaluation of a new cancer chemotherapeutic regi­
men in the treatment of advanced acute lymphoblastic leukemia (ALL) in children. 
In a randomized trial of 27 patients, 12 received the new treatment and 15 the exist­
ing standard regimen, and the results are shown in Table 14.4 in terms of "successes" 
(here defined as elimination of tumor cells from the bone marrow after treatment) 
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Table 14.4. Results of a clinical trial of two chemotherapy regimens for advanced acute lympho­
blastic leukemia (ALL) in children 

Success Failure 

New regimen 6 6 12 

Standard regimen 2 13 15 

8 19 27 

and failures. The success rate in children receiving the new regimen is ~, or 50%, 
12 

compared with 2., or 13%, with the standard treatment. Could these results have 
15 

occurred by chance if the two treatment groups are random samples from hypothet­
ical source populations in which the two treatments are equally efficacious? 

Using Eq.14.8 we can calculate the probability of Table 14.4 as: 

p= r1!r2!c1!c2! = 12!15!8!19! = 3.072 x 1042 =0.0437 
N!a!b!c!d! 27!6!6!2!13! 7.030 x 1043 

Maintaining the fixed marginals, there are only two possible tables with more 
extreme distributions favoring the new treatment: 

Success Failure 

New regimen 7 5 12 

Standard regimen 1 14 15 

8 19 27 

Success Failure 

New regimen 8 4 12 

Standard regimen 0 15 15 

8 19 27 

The probabilities for these tables are calculated as follows, using the expressIOn 

r1!r2 !c1!c2! =4.821 X 1014, which remains constant for all tables: 
N! 
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p= 2.821 X 1014 =0.0054 and p= 2.821 X 1014 =0.0002 
7!5!1!14! 8!4!0!15! 

The one-sided P value associated with the observed table is thus: 

P= 0.0437 + 0.0054 + 0.0002 = 0.0493, 

which just barely qualifies for conventional statistical significance. Because, how­
ever, we could not be sure, a priori, that the new treatment would not be worse than 
the existing standard, a one-sided test is probably inappropriate. The two-sided P 
value is 2 X 0.0493 = 0.0986, and we should not reject Ho. Consequently, we con­
clude that the observed difference in results might have arisen by chance. 

If we had (inappropriately) used the X2 test to analyze the data from this trial, 
we would have calculated 

2_ (ad-bcj2N _ [(6)(13) - (6)(2)]2(27) 
X - (a+ b)(c+ d)(a+ c)(b+ d) - (12)(15)(8)(19) = 4.299, 

which corresponds to P< 0.05, and we would have erroneously rejected the null 
hypothesis. 

Although the calculations required for the Fisher exact test are fairly straightfor­
ward using hand-held calculators and factorial tables, the construction of additional 
2 x 2 tables, and the computation of the probability for each, can entail considerable 
time and effort when the results are less extreme than those in our example. Fortu­
nately, most standard software computer packages include the Fisher exact test in 
their "menus," and thus this calculational inconvenience pertains only to data ana­
lyzed by hand. 

14.2.6 Matched-Pair Design 

As discussed in Chapter 5, pair matching is often used in observational studies to 
reduce confounding. If pair matching is used in the design, the statistical analysis 
will be more efficient (i. e., have greater statistical power) if the matching is retained. 
The matched-pair X2 test, also called the McNemar X2 test, is the test generally used 
for comparing proportions in two pair-matched groups. It is the analog for categori­
cal data of the paired t-test for continuous variables. 
Using the notation given in Table 6.5, the formula is as follows: 

2 (b-c)2 
XMcNemar = -b-­

+c 

or, using the continuity correction: 

X~McNemar= (Ib-cl- V 
b+c 

(14.9) 

(14.10) 
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The value of X2 depends only on the observed frequencies in the two "discordant" 
cells b (nonexposed pair member with the outcome, exposed member without the 
outcome) and c (nonexposed member without the outcome, exposed member with 
the outcome). It is interpreted in the same way as the usual X2 (Appendix Table A.7) 
with one degree of freedom. 

I shall illustrate the calculation of XttcNemar using the data of Table 6.6, which 
shows the results of a cohort study of myocardial infarction (MI) in 200 smoking 
and 200 nonsmoking men matched by age, blood pressure, and serum cholesterol 
concentration. Of the 200 matched pairs, both members experienced an MI in seven 
pairs, neither member in 150 pairs, only the nonsmoking member in 14, and only 
the smoking member in 29. Thus, 

2 = (14-29)2 = (-IS? = '5233 
XMcNemar 14+29 43 . . , 

which corresponds to a P value < 0.05. The null hypothesis is therefore rejected, 
and we conclude that the smokers are indeed at greater risk for subsequent MI. 

14.2.7 Testing the Statistical Significance of the Relative Risk and Odds Ratio 

As discussed in Chapters 6 and 7, relative risks or odds ratios above 1 indicate that 
exposure is associated with an increased risk of developing the study outcome. Con­
versely, relative risks or odds ratios less than 1 indicate that exposure protects 
against development of the outcome. It is rare to obtain an RR or OR of exactly 1, 
however, and values less than or greater than 1 may well occur by chance even if the 
null hypothesis is true. 

By performing a X2 test (matched or unmatched) on the same 2 x 2 table used to 
generate the RR or OR, the statistical significance of the observed value of RR or 
OR is automatically assessed. If RR (or OR) > 1 and X2 ~ 3.84, then exposure is 
associated with a significantly increased risk of the outcome. If RR (or OR) < 1 and 
X2 ~ 3.84, the exposure is associated with a significantly decreased risk of, i. e., pro­
tection against, developing the outcome. 

Another approach to testing the significance of an observed RR or OR is to con­
struct a confidence interval (usually 95% or 99%) around the observed value. If the 
interval excludes 1, then the RR or OR is declared statistically significant at the cho­
sen level (a) of significance. There are several methods for calculating the confi­
dence interval, but the easiest computationally is that proposed by Miettinen [1]: 

CI= RRI ±(z,,1x) or OR1±(<\-,1x) (14.11) 

where Za is the two-sided Z value corresponding to the chosen width of the confi­
dence interval (1.96 for 95% and 2.57 for 99%), and X is the square root of the 
observed value of X2. 

For example, the relative risk of MI in smokers vs nonsmokers based on the 
nonmatched cohort study whose results are shown in Table 6.2 is 2.13. The calcu­
lated value of X2 is 
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2_ (ad-bc)2N _ [(32)(185)-(168)(15)]2(400) 
X - (a+ b)( c+ d)(a+ c)(b+ d) - (200)(200)( 47)(353) = 6.968, 

which corresponds to a P value < 0.01. Thus, we conclude that the relative risk of 
2.13 is significantly greater than 1. 

Using the confidence interval approach of Eq.14.11, 

95% CI= RR(1±1.96/X)= 2.13(1 ±1.961 y'6.968) = 1.21 to 3.73 

Since this interval excludes 1, we again conclude that the relative risk of 2.13 is sta­
tistically significant. 

The confidence interval derived from Eq.14.11 is often called "test-based," 
because it is based on the calculated value of X2. This fact also leads to another mar­
ginal advantage (besides computational ease) of the test-based method, namely, that 
conclusions about statistical significance are always identical to those achieved using 
the X2 test. The major disadvantage of the method is that it yields narrower confi­
dence limits than those obtained using more exact (and computationally far more 
difficult) methods. The computational disadvantages of the other methods have 
been largely overcome by many statistical software packages, which provide stan­
dard errors for RRs and ORs that can be used to estimate confidence intervals. 
Readers interested in exploring these other methods are referred to Fleiss [2] and 
Kleinbaum et al. [3]. 

14.2.8 Control for Confounding Factors 

All with comparisons of means, comparisons of proportions can be biased by con­
founding differences between the study groups. A fair test of the statistical signifi­
cance of an association between exposure and outcome should always control for 
potentially important confounders. One such method of analysis has already been 
mentioned in Section 14.2.6, namely, the matched-pair (McNemar) X2 test. A 
matched-pair analysis, of course, either depends on pair matching in the design or 
wastes data already collected on subjects who cannot be matched. Furthermore, a 
matched-pair design is not always feasible when many confounders are involved and 
may not be worth the effort if large numbers of potential subjects are rejected 
because they do not meet the matching criteria. 

Another method of controlling for confounding is stratification, which requires 
that the confounders be categorical variables or, if continuous, that they be catego­
rized. In Chapters 6 and 8 we described the Mantel-Haenszel procedure for com­
puting the summary relative risk and odds ratio, respectively, for stratified 2 x 2 
tables. Mantel and Haenszel [4] also provide a formula for computing the stratified 
X2 for i strata: 

(14.12) 
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The resulting X2 is interpreted at 1 degree of freedom. This formula can be applied 
to either cohort or case-control studies and is the appropriate test of significance for 
Mantel-Haenszel relative risks and odds ratios, respectively. 

To illustrate the use of the Mantel-Haenszel X2, let us return to the stratified 
analysis presented in Table 6.7, which displays the results of an observational cohort 
study comparing success (5) and failure (F) rates with two treatments (T\ and T 2). 
The overall ("crude") relative "risk" of success of T \ vs T 2 is 0.67, which is biased by 
the confounding effect of sex. In the stratified analysis, the RR for women is 1.35, 
and that for men is 1.32. The Mantel-Haenszel RR is 1.34. The Mantel-Haenszel X2 
can then be calculated as follows: 

2 _ [(24)(30) - (3)(58) + (16)(10) - (57)(2)]2 
XMH- 115 85 27.974 

=---
(27)(88)(82)(33) + (73)(12)(18)(67) 6.005 

(114)(115f (84)(8W 

= 4.658, which corresponds to a P value < 0.05. 

We thus should reject the null hypothesis and conclude that the higher success rate 
of T\ observed in the sample did not arise by chance from a target population in 
which T\ and T2 are of equal efficacy. 

The Mantel-Haenszel procedure just described is the most appropriate and 
widely used technique for controlling for a small number of categorical (or catego­
rized) confounding factors. It can be readily appreciated, however, that as the num­
ber of confounding factors increases, the computation becomes unwieldy (when 
done by hand). Furthermore, there may be some loss of control when continuous 
confounding variables are arbitrarily categorized. 

Two multivariate statistical techniques are commonly used to adjust for multiple 
confounding variables: discriminant function analysis and multiple logistic regression. 
Both techniques provide simultaneous control for any number and combination of 
continuous and categorical confounders; both can be used for cohort, case-control, 
or cross-sectional designs; and both are commonly available in many standard statis­
tical software packages. Logistic regression is usually preferred over discriminant 
function analysis, because the latter depends, to some extent, on the assumption of 
normally distributed predictor variables (exposure and confounders) in the source 
populations. Logistic regression has the further advantage that the resulting coeffi­
cient for each factor (exposure and all potential confounders) is the natural loga­
rithm of the odds ratio for that factor's association with the study outcome. Most 
computer software packages also provide standard errors for the logistic coefficients 
that permit estimation of confidence intervals around the odds ratios. Both discrimi­
nant function analysis and multiple logistic regression are beyond the scope of this 
text, but the interested reader will find excellent discussions in several references 
[5-8). 

As was discussed for differences in means, effect modification must be distin­
guished from confounding. If the difference between two proportions (or the rela­
tive risk or odds ratio) differs substantially in two or more subgroups of the study 
sample, reporting a single difference for the overall study sample will hide relevant 
information, even though no bias is introduced. For example, in comparing the dif-
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ference in rate of myocardial infarction in smoking vs nonsmoking men, it might be 
found that the difference is far greater among older men than younger men. Data 
demonstrating modification of the smoking effect by age were shown in Table 6.8. 
In this case, the investigator would do better to test and report the smoking effect 
separately for the two age subgroups, even though the sample size (and hence statis­
tical power) would be reduced for the separate subgroups. 

14.2.9 The Dovetailing of Categorical and Continuous Data Analysis 

So far, I have separated the approaches to analysis of continuous and categorical 
data. In particular, I have described the use of z- and t-tests for comparing two 
means, and the X2 and Fisher exact tests for comparing two proportions. But the two 
approaches can actually be shown to be quite similar. 

For example, in studies with a dichotomous outcome variable, consider the "tar­
get" (e. g., "success") to have a value of 1, and the absence of the target ("failure") to 
have a value of O. Then the mean outcome will be: 

- . h . f t number of successes 
X= p, where p IS t e proportIOn 0 successes = - = . 

n number of subjects 

and the standard deviation will be: 

5= ypq, where q= 1-P 

Using these formulas for the mean and SD, z- and t-tests can be constructed just as 
if the data were continuous. This is considered legitimate as long as the number of 
expected (under Ho) successes and failures, i. e., np and nq, are both ;;;:; 5, because 
then the binomial distribution (representing the exact probability for any given pro­
portion) can be closely approximated by a t- or normal (z-) distribution. Formulas 
for these z- and t-tests are given in several standard texts [2, 9J. 

In fact, there is a direct mathematical relationship between the normal approxi­
mation of the binomial distribution and the X2 distribution: Z2 = X2. For example, for 
p= 0.05, a z value of 1.96 is required. If we square 1.96, the result is 3.84, which is 
the X2 value necessary for P= 0.05. Similarly, t 2 = X2 at an infinite number of degrees 
of freedom. 

When the data are continuous to begin with, they can be converted to categori­
cal data by choosing a "cutoff" point to define the two categories. We can then 
carry out a X2 test on the resulting proportions instead of a t-test on the native con­
tinuous data. For example, instead of doing a t-test for measuring a difference in 
systolic blood pressure between two groups, we could dichotomize the variable into 
"normal" « 140 mmHg) vs hypertensive (;;;:; 140 mmHg). There are three problems 
with this approach, however: 

1. Transforming continuous to categorical data involves some "waste." We are sub­
stituting a "lower-order" scale, and this is statistically inefficient (i. e., has less sta­
tistical power). 

2. There is a greater opportunity for misclassification. A pressure measurement that 
is "off" by 1 mmHg will have very little impact on a mean or a t-test, but it could 
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result in a change in category, and hence a change in the group proportion and XZ 

test, if a true systolic pressure of 139 is measured as 140. 
3. The result of the statistical analysis depends on the choice of the cutoff point, thus 

leading to a potential for bias. In other words, the X2 test could lead to a different 
conclusion from the t-test, depending on where we draw the category boundaries. 
It is thus essential that these boundaries be decided a priori, i. e., before calcula­
tion of the X2 test, so that the investigator is not at liberty to pick a cutoff point 
that optimizes his chances for demonstrating statistical significance. 

14.2.10 Confidence Interval Around a Difference in Two Proportions 

Although significance testing is the most frequently encountered aspect of statistical 
inference when two proportions are compared, estimating a confidence interval 
around the observed difference is often more informative. Instead of testing how 
consistent the observed difference is with a "true" state of no difference, the confi­
dence interval demonstrates how big the "true" difference is likely to be. 

The estimation of such a confidence interval is based on the normal approxima­
tion of the binomial distribution. As discussed in Section 14.2.9, the sample standard 
deviation of a proportion p is given by ypq, where q = 1-p. Consequently, the 

standard error = ~ = V pqln. Hence, the standard error for the difference 

between two proportions PI and pz is VI!.J!J.J. + h!i1. The 100 (1- a)% confi-
nl nz 

dence interval is then computed as follows: 

For our postlaparotomy wound infection trial (Table 14.1), the 95% CI 

= 0.029 - 0.081 ± 1.96 

= - 0.052 ± 0.039 
= -0.091 to -0.013 

(0.029)(0.971) + (0.081)(0.919) 
240 260 

14.2.11 Calculating Sample Sizes for Comparing Two Proportions 

Although several of the formulas for the XZ test can be used for calculating approxi­
mate sample sizes required for achieving statistical significance when comparing two 
proportions, such formulas take no account of Type II error. Instead, sample sizes 
are usually calculated using the normal approximation of the binomial distribution. 
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Assuming an a-level of 0.05, the investigator must specify three additional com­
ponents: 11:1 and 11:2, the proportions he estimates in the hypothetical source popula­
tions, such that 11:1 - 11:2 represents the minimum threshold for a clinically important 
difference; and 1- p, the statistical power he wishes to ensure that a difference as 
large as 11:1-11:2 will be detected. Assuming two study groups of equal size (nl = n2), 
the total required sample size (N) is then: 

[Za \1211:(1-11:) + z~ Y11:I(1-11:I) + 11:2(1-11:2) r 
N = nl + n2 = 2------------=--------­

(11:1-11:2? 
(14.14) 

where 1t = 11:1 + 11:2 , and Za and Z~ are the Z values corresponding to the chosen levels 
2 

of a and p. As an alternative to this equation, Fleiss [2] has published sample sizes 
(for each group, i. e., n 1 or n2) in the form of tables for specified values of 11:b 11:2, a, 
and 1-p. 

A "shortcut," approximate equation is the following: 

(14.15) 

As an example, suppose we were planning a case-control study of parental divorce 
before a child's tenth birthday as a risk factor for adolescent suicide. Suppose the 
divorce rate in the overall population is known to be 30%. Assuming an equal num­
ber of cases and controls, we wish to be 90% (1- P = 0.90) certain of detecting a 
divorce rate of 40% among the parents of cases. (Note that this is based on a direc­
tional research hypothesis, and one-sided Z values are indicated.) Thus: 

Za (one-sided) = 1.65 for a = 0.05 
z~ (one-sided) = 1.28 for p = 0.10 
11:1 =0.30 
11:2=0.40 
1t =0.35 

Using Eq.4.14, 

[1.65 y2(0.35)(0.65) + 1.28 y (0.30)(0.70) + (0.40)(0.60) r 
N=2 =777.5 

(0.30 - 0.40)2 

Rounding up to 778, we require 389 cases and 389 controls. 
Using the shortcut equation (Eq.14.15): 

N = 4(1.65 + 1.28?[(0.35)(0.65)] = 781.2 
(0.30 - 0.40)2 ' 

or 391 cases and 391 controls. 
Thus, the shortcut method comes quite close to the more mathematically correct 

procedure. 
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In case-control studies with dichotomous exposure and outcome, the measure of 
association of primary interest is the odds ratio (OR). Based on an equal number 
(= n) of cases and controls, a known rate of exposure in the controls (1t,), and the 

OR considered to represent a clinically important effect, the formula OR= ~: can 

be used to solve for 1t2' For our adolescent suicide example, the 2 x 2 table would 
look like this: 

Suicides Controls 

Divorce 1t,n=0.30n 

No divorce 

n n 

OR= ad = (1t2n)(1-1t,)n _ 1t2(1-1t,) 
be (1t,n)(1-1tz)n 1t,(1-1tz) 

If we chose 1.5 as a clinically important OR, we could then solve for 1tz as follows: 

1.5 = 1t2(0.70) 
(0.30)(1 -1t2) 

0.45(1-1t2) = 0.701t2 
0.45 - 0.451t2 = 0.701t2 
0.45= 1.151t2 

1t2= 0.45 =0.39 
1.15 

We then calculate N using Eq.14.14 or 14.15. Schlesselman has provided tables 
based on this approach that indicate the number of cases and controls required to 
detect a given OR once a, ~, and 1t, have been specified [10]. 

A similar approach can be used for cohort studies using the relative risk (RR). 1t, 
and 1t2 would then represent the proportion of nonexposed and exposed subjects, 

respectively, developing the outcome, and RR= 1t2. Thus, if 1t, is known, 1t2 can be 
1t, 

computed directly from the chosen value of RR. 

14.3 Statistical Inferences for a Single Proportion 

14.3.1 Testing the "Significance" of a Single Proportion 

Suppose we know the proportion 1to of some reference population. We have a study 
sample measured on the same variable with proportion p. We want to know the 
probability that a difference at least as large as p-1to could have arisen by chance, 
under the null hypothesis that the sample was randomly selected from the reference 
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population (Ho: 1t=1to). If the probability is less then 0.05, we will reject H o, and 
conclude that the observed difference p-1to is statistically significant. This proce­
dure is exactly analogous to testing the significance of a single sample mean from a 
known population mean (see Section 13.2.2). 

To accomplish this test of Ho. we merely calculate, for each of the two catego­
ries of the variable, the frequencies expected under Ho and then compute X2 as 

1: (Oi;- EiJ 2 over the two "cells." This X2 test for a single proportion is thus similar 
Eij 

to the usual X2 test, except that it uses only two observed and two expected frequen­
cies, instead of the four seen with the 2 x 2 table for comparing two proportions. 

To illustrate, suppose the prevalence of hypertension among white men in the 
United States is known to be 15%. An investigator believes that industrial effluent 
from a certain factory may be contaminating the water supply of a nearby town, and 
that some of the components of this effluent are capable of raising the blood pres­
sure. In a random sample of 100 white men from this town, 21 are found to be 
hypertensive. Is the prevalence of hypertension truly elevated, or could the differ­
ence (21% vs 15%) have arisen by chance? 

The observed frequencies of hypertensive and nonhypertensive are 21 and 79, 
respectively, compared with the expected frequencies of 15 and 85. Then 

which, using the conventional two-sided P value, corresponds to P> 0.05. There­
fore, we should not reject the null hypothesis. 

This procedure of comparing an observed proportion with an expected one can 
also be used to test theoretical models. The procedure is called "testing for goodness 
of fit" and can be expanded to an entire distribution (instead of just two) of 
observed and expected frequencies. If the difference between the observed distribu­
tion and that expected under the model is small, as indicated by a nonsignificant 
value of X2, the model is thereby "supported" (provided the sample size is adequate 
to protect against an important Type II error). 

For example, suppose we believed a given disease to be inherited as an auto­
somal recessive. This hypothesis could be tested by observing the frequency of the 
disease among full siblings of patients known to have the disease. In the absence of 
any bias of ascertainment, selective abortion or mortality, etc., the proportion of 
affected siblings should be 0.25. If a large sample of siblings could be studied, a test 
of the difference between the observed and expected rate should provide a good test 
of the theory. If carriers could also be identified, then the distribution of normal, 
carrier, and diseased frequencies could be tested against the expected ratio of 1 : 2 : 1 
(0.25, 0.50, 0.25). 
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14.3.2 Confidence Interval Around a Single Proportion: Estimating 1t from p 

When we have a single sample from a target population of interest, we may wish to 
calculate the range in which the population rate is likely to fall. This parametric esti­
mation of 1t from p is analogous to estimating Jl from x (see Section 13.2.1) and is 
the activity usually engaged in by opinion pollsters; a certain number of subjects are 
(preferably randomly) sampled for their political preference or their opinion about a 
prominent issue, and the result is expressed as a 95% or other confidence interval 
(often around a percentage, rather than a proportion). 

To estimate such a confidence interval, we rely on the normal approximation of 
the binomial distribution. As discussed in Section 14.2.10, the standard error of a 

proportion = -t. = y pqln, where q= 1-p. The 100(1- a)% confidence interval 

can then be calculated as follows: 

(14.16) 

where Za is the two-sided Z value required for the desired confidence interval. For a 
95% CI, Z= 1.96; for a 99% CI, Z= 2.58. 

To illustrate, let us return to the random sample of 100 men in our suspect town, 
21 of whom were determined to be hypertensive. What is the 95% CI for the preva­
lence of hypertension among the town's men? 

95% CI = p± 1.96 Y pqln = 0.21 ± 1.96 Y(0.21)(0.79)/100 
=0.21 ± 0.08 
=0.13 to 0.29 

14.4 Comparison of Three or More Proportions 

The X2 test is easily extended to comparison of three or more proportions, i. e., 
dichotomous outcome with polychotomous exposure. X2 is still defined as 

(O·-EY I: l/ I, and is interpreted at (r-l)(c-1) = r-1 degrees of freedom, where the 
Eij 

data are displayed in 2 columns (c= 2) and r rows. The easiest formula for comput­
ing X2 is a modification of Eq.14.4: 

(14.17) 

As an example, suppose our postlaparotomy wound infection trial included three 

treatments, two different antibiotics and a placebo, with infection rates of ~, ~, 
250 240 

and 1l, respectively. Then 
260 
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2= [~+~+~_ 382 ] [ 7502 ] =7796 
X 250 240 260 750 38(712) ., 

which at 2 d/corresponds to a P value between 0.01 and 0.05. 
The r x 2 X2 test is analogous to a one-way analysis of variance. The result is the 

extent of overall departure from equivalence of proportions. The overall X2 can be 
partitioned, however, to allow testing of pairs of proportions and other post hoc 
comparisons. On inspection of our example, it is evident that the wound infection 
rates in patients receiving either antibiotic are similar, but both are lower than the 
placebo rate. This "visual test" can easily be confirmed by comparing the contribu­
tions to the total X2. 

When the exposure variable is ordinal, however, the usual X2 test does not take 
into account the inherent order among the categories. It merely tests the overall 
departure of observed from expected across the r x 2 cells of the table. A test of 
mere association between columns and rows will be statistically inefficient, because 
it fails to distinguish between one- and two-category differences. 

A preferable alternative is the X2 test for linear trend. Several versions of this test 
exist, but the most convenient is that given by Armitage [11]: 

X2 _ N(N~tiWi- T~niwi? 
L - T(N - T)[N~niw7 - (~niwi)2] 

(14.18) 

where nj is the number of subjects in the ith exposure category, tj is the number of 
subjects within the ith category who experience the "target" outcome, Wi is the 
"weight" (or "score") assigned to the ith category, N is the total number of subjects, 
and T is the total number who experience the outcome. Although somewhat arbi­
trary, the Wi'S are usually assigned whole integers with equal intervals symmetrical 
around o. Thus, for three ordinal groups, the weights would be -1, 0, and + 1; for 
four groups, - 3, - 1, + 1, and + 3; and so on. The value of X2 is then interpreted 
at 1 df 

To illustrate, let us calculate XL for the data shown in Table 14.5, which summa­
rizes the results of a cohort study in which children with otitis media (middle-ear 
infection) were treated with oral amoxicillin in either the dosage range recom­
mended by the manufacturer, a dosage above that recommended ("high dose"), or a 
dosage below the recommended dose ("low dose"). The children were followed for 
the duration of their la-day course of treatment for the occurrence of diarrhea, a 
well-known side effect of oral amoxicillin. The ordinary X2 test yields a X2 value of 
5.53, which at 2 d/is not statistically significant. The X2 for linear trend (xL) of 5.16 
at 1 dj, however, yields a P value < 0.05, indicating a significant dose-response rela­
tionship. Failure to consider the ordinal nature of the exposure variable in the analy­
sis would thus have led to a loss of statistical efficiency. 

Another approach to analyzing these data without losing the ordinal nature of 
the exposure would be to compare the ranks of exposures (dosage ranges) in the two 
outcome groups (children with and without diarrhea) using the Mann-Whitney U­
test (see Section 13.4). Although such a procedure would be tantamount to analyz­
ing the data like a case-control study, the test would be an appropriate test of asso­
ciation between exposure and outcome. 
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Table 14.5. Diarrhea occurring in children with otitis media treated with three different dosages of 
amoxicillin (see text) 

Diarrhea No diarrhea 

12 38 50 
w1=+1 High dose =t1 =n1 

13 87 100 
W2 = 0 Recommended dose = t2 =n2 

4 46 50 
W3= -1 Low dose = t3 =n3 

29 171 200 
=T =N-T =N 

Using Eq.14.17: 

2=[122+l£.+£_292] [ 2002 
] =5.53At2 d/,P>0.05 

X 50 100 50 200 (29)(171) , 
Y..tjWj= (12)( + 1) + (13)(0) + (4)( -1) = + 8 
Y..njwj= (50)( + 1) + (100)(0) + (50)( -1) = 0 
Y..njw; = (50)( + 1) + (100)(0) + (50)( + 1) = + 100 
Using Eq.14.18: 

2 = 200[(200)(8) - (29)(0)]2 = 5.16 At 1 d/, P< 0.05 
XL (29)(171)[(200)(100) - (W] , 

When the axes of the table are reversed, i. e., the oUtcome is ordinal and the 
exposure is dichotomous (a 2 x c table), the Mann-Whitney test is even more appro­
priate [12]. The X2 for linear trend can be used here too, however, provided the 
analyst makes the following "substitutions": 

1. tj now becomes the number of subjects in the index exposure groups in each out­
come category 

2. nj now becomes the total number of subjects in each outcome category 
3. Wj now applies to the weights assigned to the outcome categories 

14.5 Analysis of Larger (r X c) Contingency Tables 

When exposure and outcome are each measured on a polychotomous nominal scale 
(O··-EY containing three or more categories, the ordinary X2 test summing II II over 

Eij 
all cells in the r x c contingency table can be used to test the null hypothesis at 
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(r- 1)( c- 1) degrees of freedom. A significant value for X2, however, will indicate 
only an overall tendency for deviation of observed frequencies from those expected 
under Ho. It will not indicate which exposure and outcome categories are most 
responsible for the overall association. 

Although visual inspection of the r X c table can often provide an impression, 
that impression can be confirmed by partitioning the overall table into smaller tables 
such that the degrees of freedom among all these "subtables" sum to (r-l)(c-l). 
The X2 value in each subtable can then be assessed for statistical significance. Armi­
tage [11] provides a good discussion of this procedure. 

When exposure and outcome are both ordinal, the most appropriate test of asso­
ciation involves a test of linear correlation using ranks. Rank correlation will be dis­
cussed, along with other forms of linear correlation and regression, in Chapter 15. 
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Chapter 15: Linear Correlation and Regression 

15.1 Linear Correlation 

15.1.1 Introduction 

The main objective in most epidemiologic studies is the measurement of the associa­
tion between exposure and outcome. Chapter 13 focused on testing the difference in 
outcome measured on a continuous scale in two (or more) exposure groups. The 
difference between the group means reflects the extent of association between the 
continuous outcome and the categorical exposure, and the corresponding P value 
derived from a t- or z-test indicates the probability of obtaining the observed or 
stronger degree of association by chance under the null hypothesis. In Chapter 14, 
both outcome and exposure were categorical (often dichotomous). The usual mea­
sures of association between a dichotomous exposure and a dichotomous outcome 
are the difference in proportions in those subjects with and without the outcome in 
the two exposure groups and the relative risk (RR) for cohort studies and the odds 
ratio (OR) for case-control studies. These measures are then usually tested for sta­
tistical significance using the X2 test or Fisher exact test. 

How do we measure the association between exposure and outcome when both 
are continuous variables? One of the variables (usually exposure) could be dichot­
omized, and the means of the other variable (outcome) in the groups defined by 
that dichotomy could be compared by means of a t- or z-test. But as we saw in 
Chapter 14, categorization of continuous data may be statistically inefficient. The 
initial strategy for measuring the association between two continuous variables is 
usually to examine the extent to which the relationship between the two can be 
described by a straight line, i. e., the extent of their linear correlation. 

Linear correlation measures the degree to which an increase in one of the vari­
ables is associated with a proportional increase or decrease in the second variable. 
Consider a cross-sectional study of the effect of impairment in renal function on the 
hemoglobin concentration. The investigator hypothesizes that progressive decre­
ments in renal function (as measured by rises in the serum creatinine concentration) 
will be associated with a proportional fall in hemoglobin. The data on ten patients 
with chronic renal failure are shown in Table 15.1, and the corresponding scatter dia­
gram is displayed in Fig. 15.1. If every point fell exactly on a straight line, the two 
variables would be said to be perfectly correlated. 

It should be emphasized that linear correlation is strongly influenced by a few 
extreme values of the two variables whose correlation is being assessed. Suppose, for 
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Table 15.1. Serum creatinine and hemoglobin concentrations in ten subjects with chronic renal fail­
ure 

Subject no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

c:: 
o 

12.0 

~ 11.0 -c:: 
Q) 

g - 10.0 
0-
u~ 
c::,9 
:0 9.0 
.2 
Cl 

~ B.O 
Q) 

::I: 

7.0 

Creatinine (mg/dl) Hemoglobin (g/ dl) 

• 

• 

4.1 
2.8 
6.5 
2.4 
3.7 
8.0 
5.3 
7.9 
4.4 
3.2 

• 

• 

• 

• • 
• 

9.0 
9.5 
8.4 

11.7 
10.8 

8.2 
8.8 
8.9 

10.1 
11.5 

• 
• 

2.0 3.0 4.0 5.0 6.0 7.0 B.O 

Serum Creatinine Concentration 
(mg/dl) 

Fig.15.1. Hemoglobin and serum creatinine concentrations in ten patients with chronic renal failure 

example, the scatter diagram shows that most of the data points lie in a circle (indi­
cating no correlation) but that a few lie bunched together in an area on a "diagonal" 
from, i. e., above or below and to the left or right of, the circle representing the 
majority of the points. The linear correlation may then be fairly high and may be a 
poor summary of the relationship between the two variables. A good rule of thumb, 
therefore, is to plot the data and examine them visually before reporting the linear 
correlation. 

15.1.2 Dependent and Nondependent Correlation 

In examining the relationship between exposure and outcome, we are testing the 
research hypothesis that the outcome depends on exposure. In our creatinine-hemo­
globin example, hemoglobin is being tested for its dependence on renal function (as 
measured by the serum creatinine concentration). Even though the study is cross-
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sectional, the temporal relationship between the two seems clear on biologic 
grounds. Renal failure may cause anemia, but anemia does not usually (short of 
massive hemolysis) cause renal failure. Serum creatinine is the exposure variable, 
and hemoglobin is the outcome. 

In the parlance of linear correlation and regression, exposure is usually called 
the independent variable, and outcome the dependent variable. In our example, it is 
as if the creatinine were "allowed" to vary independently, and the hemoglobin then 
depended on the observed value of creatinine. By convention, the independent vari­
able is usually represented by x and the dependent variable by y. Thus, in Fig.1S.l, 
the serum creatinine concentration is indicated by the x-axis (abscissa), and hemo­
globin by the y-axis (ordinate). 

By way of contrast to the obviously dependent relationship between hemoglobin 
and creatinine, consider the relationship between blood urea nitrogen (BUN) and 
creatinine concentrations. The two are usually highly positively correlated, because 
they represent two different tests of renal function, even though other factors (e. g., 
state of hydration for BUN and muscle mass for creatinine) prevent the correlation 
from being perfect. In a cross-sectional study of these two variables, it would be dif­
ficult indeed to label one as "exposure" and the other as "outcome." Because both 
depend on renal function and neither depends on the other, their relationship with 
each other is nondependent. In a graphical display of the relationship, either one 
could be represented by the y-axis. 

The decision that a relationship is dependent or nondependent thus arises from 
clinical reasoning, not from statistical inference. Because most clinical and epidemi­
ologic studies are based on a hypothesized association between exposure and out­
come, our major focus here will be on dependent relationships. 

15.1.3 Measuring the Extent of Linear Correlation 

The Pearson correlation coefficient, which is abbreviated by the letter 1; is a descriptive 
statistic indicating the extent of linear correlation between two continuous variables. 
It is defined mathematically as follows: 

r= I.(Xi-X)(Yi-Y) 
YI.( Xi - x) 2I. (Yi - Ji)2 

(15.1) 

where x and yare the two continuous (independent and dependent, respectively) 
variables being correlated on each of the i study subjects. 

The correlation coefficient r can range in value from - 1 to + 1, with 0 repre­
senting no correlation, -1 a perfect inverse correlation (negatively sloping line), 
and + 1 a perfect positive correlation (positively sloping line) between the two vari­
ables. For our hemoglobin-creatinine example, r= - 0.779, indicating a strong 
inverse correlation. 

Since the linear correlation between two variables is rarely perfect (i. e., r rarely 
equals + 1 or -1), we are often interested in measuring the extent to which the 
relationship between the two is explained by a straight line. To do this, we make use 
of a concept known as explained variance. As will be recalled from Chapter 11, the 
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total variance of any continuous variable is the square of its standard deviation and 
is a measure of the spread of a group's set of values around its mean. 

We can interpret r in these terms by measuring the proportion of total variance 
in one (usually the dependent) variable that is due to its linear relationship with the 
other (independent variable). Using our example of hemoglobin and creatinine, we 
can thus divide the varianc~ in hemoglobin into two components: (a) that compo­
nent due to the linear relationship between hemoglobin and creatinine and (b) that 
component due to sampling (random) variation or other sources. It can be shown 
that y2 equals the proportion of variance in either variable due to its linear correla­
tion with the other. In our example, r= - 0.779, and thus y2 = 0.607. Our interpreta­
tion of this value of r2 is that approximately 61 % of the variance in hemoglobin is 
"accounted for" by the serum creatinine. 

The interpretation of r requires some further discussion. The correlation 
between two continuous variables x and ~ as expressed by the correlation coeffi­
cient, refers to the degree of linear relationship between x and y. Now, there might 
be a very close relationship between the two variables but one that is not well 
described by a straight line. In that case, linear correlation might be very poor, 
despite the close mathematical relationship. 

For example, consider the following equation: 

y=1+(x-3? 

which is graphically depicted in Fig. 15.2. In this example, y is a perfect quadatric 
function of x (all points lie on the curve), but not a linear one (at least, not over the 
range of x's shown in the figure). Despite the obvious closeness of the relationship, 
r=O. 

10 

6 

y 
4 

2 

o 2 3 
X 

4 5 6 

Fig. 15.2. Graphic representation of Y= 1 + (x- 3)2 
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15.2 Linear Regression 

Linear regression is the process of fitting a straight line to two continuous variables x 
and y. Specifically, we wish to determine the statistics a and b in the equation: 

:9=a+ bx 

where :9 (y "hat") indicates the fitted estimate of y based on a, b, and x. This is the 
general equation for a straight line, in which a is the intercept (the average value of y 
when x= 0) and b is the slope (the average change in y per unit change in x). 
Another name for b is the regression coefficient. 

Mathematically, a and b can be computed as follows: 

b= 'L(Xi-X)(Yi-Y} 
'L(Xi- X/ 

a=y-bx 

In our example of hemoglobin (y) and creatinine (x), 

:9= 12.042 - 0.487 x 

(15.2) 

(15.3) 

This means that, on average, for every increase in serum creatinine concentration of 
1 mg/ dl, the decrease in hemoglobin concentration is 0.487 g/ dl, at least over the 
range of measurements shown in Fig. 15.1. (It is hazardous to extrapolate the linear 
relationship between x and y beyond the observed measured ranges of x and y.) 

As discussed in Section 15.1.2, the relationship between hemoglobin and creati­
nine is a biologically dependent one, in the sense that we believe that renal function 
(as measured by the serum creatinine) affects the hemoglobin concentration, rather 
than the reverse. It is for this reason that we have regressed hemoglobin (y) on creat­
inine (x). This follows the usual convention of regressing the depe'ndent variable (y) 
on the independent variable (x). 

Mathematically, however, we could regress x on y: 

x=a' + b'y 

where the "primes" are used to indicate the intercept and slope of the "inverted 
regression" and are computed as follows: 

b'= 'L(Xi-X)(Yi-Y} 
'L(Yi-Y/ 

a'=x-b'y 

For our creatinine-hemoglobin example, 

x= 16.900 - 1.246y 

(15.4) 

(15.5) 
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Fig. 15.3. Regression of hemoglobin concentration (y) on serum creatinine concentration (x) and 
vice versa 

The two different regression lines are illustrated in Fig.lS.3. As we have seen, 
the regression of y on x is the biologically sensible one reflecting our hypothesis 
regarding exposure (renal failure) and outcome (anemia). The other regression line, 
though mathematically correct, is biologically nonsensical. The choice would have 
been more difficult, however, in our example of BUN and creatinine. In that 
(nondependent) case, either regression line would have been appropriate for dis­
playing the relationship. 

15.3 Correlation vs Regression 

We now have two different descriptive statistics, or coefficients, to describe the 
extent of linear relationship between two continuous variables x and y. The correla­
tion coefficient r is useful for describing the degree of linear" closeness," i. e., linear 
correlation, between x and ~ irrespective of which is the dependent variable and 
which is the independent variable. A major advantage of r is that its value is the same 
regardless of the units in which x and yare measured. In our example, r= - 0.779 
no matter whether creatinine is measured in mg/ dl or mmolli. The one disadvan­
tage of r is that it is not useful for predicting the value of y from a value of x. 

To predict y from x, regression is required. The value of the regression coeffi­
cient b, however, will change with changes in the units in which x and yare mea­
sured. The value of b in our example would be entirely different from - 0.487 if 
creatinine were measured in mmolll instead of mg/ dl. 

The correlation coefficient r indicates the extent to which a relationship between 
x and y can be described by a straight line, whereas b is the rate of rise in y for every 
unit rise in x. The contrast in interpretation between the two coefficients is illus­
trated by the three regression lines shown in Fig.lS.4. Each of the three regressions 
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Fig. 15.4. The distinction between 
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r=l, b=O.5 

x 

is represented by a perfect straight line. In other words, r= + 1 for all three. The 
slope of b differs considerably among the three, however. 

The invariable nature of r, irrespective of which variable is regressed on which, is 
easily appreciated from the mathematical relationship between r, on the one hand, 
and band b', on the other. As can be seen from inspection of Eqs. (15.1), (15.2), and 
(15.4): 

r= I:.(Xj-X)(Yi-j) 
..,jI:.(Xi- XYI:.(Yi-y)2 

(15.6) 

Equation 15.6 indicates that b is not the mere inverse of b' (that is, b+ ~,), unless 

the linear relationship between x and Y is perfect (i. e., r= + 1 or -1). 

15.4 Statistical Inference 

As we have seen, rand b are descriptive statistics that describe different aspects of 
the linear relationship between two continuous variables, x and y. When r= ° or 
b= 0, there is no linear correlation or mutual interdependence between x and y. 
When values are obtained that differ from 0, however, we need to ask ourselves 
whether such a difference is statistically significant; i. e., what is the probability that 
a difference as large or larger would arise by chance under a null hypothesis of no 
correlation? 
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Since rand b are calculated on a sample, we must tum once again to hypothesis 
testing to provide statistical inferences about the linear relationship between x and y 
in the target population of which the study subjects are a (hypothetically) random 
sample. We test the statistical significance of r or b by postulating the null hypothesis 
that p (the population correlation coefficient) or p (the population regressioncoeffi­
cient) is equal to o. 

We can do a t-test on the value of b or r in the study sample, and derive the 
probability (P value) of obtaining this value of b or r in a random sample from a 
population in which p= 0 and p= o. As it turns out, the formula for t is the same for 
testing either b or r. This makes sense, since the two are mathematically related and 
since no correlation means no regression (and vice versa). 

The formula is as follows: 

l~ 
t=rV 1=? 

The value of t is then interpreted at n- 2 degrees of freedom. 
For our hemoglobin-creatinine example, r= - 0.779. Then: 

V 16-2 t= - 0.779 2 = - 4.658 
1- (-0.779) 

(15.7) 

At 10 - 2 = 8 df, this value of t corresponds to a (two-sided) P value between 0.001 
and 0.002. (A one-sided test could be defended here, since the research hypothesis is 
directional, i. e., increasing renal failure would lead to a lower hemoglobin concen­
tration.) 

As is evident from Eq.15.7, the statistical significance of r or b is highly depen­
dent on the sample size. For a given value of r, t rises proportionately with {n. 
Thus, with very large samples, even small degrees of correlation can yield "signifi­
cant" P values. As in other types of significance tests, the clinical importance of a 
correlation needs to be considered, as well as its statistical significance. Conversely, 
even high values of b or r may not achieve statistical significance with very small 
samples, and the potential for Type II error needs to be kept in mind whenever a 
decision not to reject Ho is based on small samples. 

As discussed previously, the estimation of a confidence interval around an 
observed measure of association is often more informative than a test of the null 
hypothesis. For the correlation coefficient, this can be accomplished using Fisher's 
z-transformation of r: 

Viln(l+r) 
l-r 

(15.8) 

which is normally distributed when the sample size is sufficiently large (n~ 20). 
Then the 100(1'- a)% confidence interval for the corresponding population parame­
ter can be computed as follows: 
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1h In (1 + P) = 1h In (1 + r) ± Zah/ n'- 3 
1-p 1-r 

(15.9) 

and the equation then solved for p. 

Let us work through the calculation of a 95% confidence interval for our hemoglo­
bin-creatinine example: 

1h In (1 + P) = 1h In (1- 0.779) ± 1.96/ y16 - 3 
1-p 1+0.779 

= 1h In (0.124) ± 0.544 
= - 1.043 ± 0.544 
= - 1.587 to - 0.499 

Hence In (1 + P) = - 3.174 to - 0.998 
1-p 

( 1 + P) = 0.042 to 0.369 
1-p 

1 + P = (0.042)(1- p) to (0.369)(1- p) 
P = (0.042)(1- p) -1 to (0.369)(1- p)-1 

= -0.042p-0.958 to -0.369p-0.631 

Therefore, at the two confidence limits, 1.042p = - 0.958 and 1.369p = - 0.631 

or p= -0.919 and -0.461 

and the 95% confidence interval is - 0.461 to - 0.919 

15.5 Control for Confounding Factors 

Just as in the comparison of means or proportions, one or more extraneous variables 
can confound the linear relationship between two continuous variables. Although 
matching or stratification can be used to control for such confounding factors, a 
powerful multivariate statistical technique exists for simultaneous control of any 
number of confounders: multiple linear regression. In addition to this purpose, multi­
ple regression also allows the investigator to assess the separate unconfounded 
effects of several independent variables on a single dependent variable. 

The technique models the dependent variable (y) as a linear function of all the 
(k) independent variables (x;'s): 

The x;'s may be any continuous or dichotomous variables, and the h;'s represent the 
corresponding regression coefficients. Each hi is "corrected" simultaneously for the 
linear relationship between its corresponding Xi and every other Xi, as well as for the 
linear relationship between the other x;'s and y. An overall r2 can be calculated for 
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the model and represents the proportion of the total variance of y accounted for by 
its linear relationship with all the x/so Multiple regression is commonly included 
among the available techniques contained in standard statistical software packages. 
Further details are available in standard texts [1-3]. 

As with other measures of exposure-outcome association, including differences 
in means and proportions, relative risks, and odds ratios, extraneous variables may 
modify the linear correlation between exposure or outcome without confounding 
(biasing) the overall correlation. Two variables may be poorly correlated in the over­
all study sample but highly correlated within one or more subgroups, or the correla­
tion may be "statistically significant" in both but quantitatively much greater in one 
than the other. In such cases, the magnitudes and significance of the correlation 
should be reported separately for the different subgroups. 

15.6 Rank (Nonparametric) Correlation 

The use of r calculated on a study sample to make inferences about the degree of 
correlation p between two continuous variables x and y in the target population is 
based on the assumption that the joint distribution of x and y is bivariate normal. In 
other words, y should be normally distributed at all values of x and vice versa. Most 
minor departures from this assumption will not seriously affect the validity of con­
ventional correlation and regression techniques. When the joint distribution shows 
major departures from normality, however, the investigator has two main choices. 
Either she can transform (using a logarithmic or other mathematical transformation) 
x or y or both so that the bivariate normal distributional assumption holds, or she 
can use a nonparametric form of correlation that does not depend on such an 
assumption. 

Nonparametric correlation is based solely on the ranks of x and X and thus can 
be used not only for continuous data that violate the assumption of bivariate nor­
mality, but also when x and yare both ordinal variables. It is also useful in examin­
ing whether there is a monotonic (i. e., consistently in one direction but not necessar­
ily linear) relationship between two continuous or ordinal variables. Moreover, it is 
far less influenced than r by extreme values of x and y. The usual (Spearman) tech­
nique compares the ranks for each of the two variables for each study subject. The 
closer the ranks, the greater the correlation. 

To compute rs, the Spearman rank correlation coefficient (also called Spearman's 
rho), each of the two variables is ranked from lowest (rank= 1) to highest. Subjects 
with tied values for either of the two variables receive the average of their corre­
sponding ranks (i. e., two subjects tied for the 7th and 8th position would each 
receive a rank of 7.5). For each subject, we compute the difference d between the 
ranks of the two variables and then use the following formula: 

r = 1- 6r.df 
s n3 -n (15.10) 
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Table 15.2. Rankings (from Table 15.1) of serum creatinine and hemoglobin concentrations in ten 
subjects with chronic renal failure 

Subject no. Creatinine (rank) Hemoglobin (rank) d~ d1 

1 5 5 0 0 
2 2 6 -4 16 
3 8 2 +6 36 
4 1 10 -9 81 
5 4 8 -4 16 
6 10 1 +9 81 
7 7 3 +4 16 
8 9 4 +5 25 
9 6 7 -1 1 

10 3 9 -6 36 

:r.d1 = 308 

a di = creatinine rank - hemoglobin rank for each subject. 

The magnitude of r, can vary between - 1 and + 1 and is interpreted in the same 
way as the Pearson correlation coefficient, r. Its statistical significance can be 
assessed by consulting tabulated (see Appendix Table A.8) minimum values of r, 
required for the usual threshold P values at varying sample sizes (n' s). For sample 
sizes of ten or more, the sampling distribution for the r,'s under the null hypothesis 
of no correlation is approximated by the standard normal distribution, and a z-test 
can be used: 

z= r, Vn-1 (15.11) 

To illustrate the Spearman procedure, the hemoglobin-creatinine data in Table 15.1 
have been converted to ranks in Table 15.2. The sum of the squared differences in 
ranks, 'Ld;, is 308. Then 

r,= 1- 6'Ldf = 1- 6(308) = - 0.867 
n 3 - n 1000 - 10 

which is not far from the calculated value for r (- 0.779). The corresponding 
P value for this value of r, can be seen from the Appendix Table A.8 to be < 0.01. 
Or alternatively, using Eq.1S.l1: 

z= r, yn=l = - 0.867 yI1C)=1 = - 2.60, 

which corresponds (see Appendix Table A.3) to a two-tailed P value of 0.009. 
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Special Topics 



Chapter 16: Diagnostic Tests 

16.1 Introduction 

Until about 100 years ago, the history and physical examination were the only 
sources of information available to the clinician confronted with a diagnostic deci­
sion. He was thus limited to what he could see, hear, feel, smell, or taste - in other 
words, to what his own senses could tell him. The development of radiology and 
bacteriology around the turn of the century enabled him to amplify and extend his 
sensory input. More recently, with the refinement of sophisticated radiographic, bio­
chemical, and immunologic techniques, the diagnostic test has become an invaluable 
tool in the detection and definition of disease. 

On the other hand, not all tests are equally illuminating, and many are very 
expensive. Modern clinicians are under increasing attack in many quarters for their 
indiscriminate use of diagnostic tests. Humane patient care and limited economic 
resources both demand a more thoughtful, critical approach to testing that examines 
the relative merits of different tests and their respective costs and benefits. 

If we accept the proposition that some tests are better than others for certain dis­
ease conditions, and that in certain situations there may be tests that are better left 
undone, the question is: How do we go about making these comparisons and deci­
sions? This chapter will provide an epidemiologic and statistical framework for eval­
uating the worth of diagnostic tests. 

16.2 Deftning "Normal" and "Abnormal" Test Results 

Most diagnostic tests have an important requirement in common: the classification 
of the results of the test as "normal" or "abnormal." Before we consider other 
requirements of testing, we must first consider how these terms are defined. Many 
tests consist of the measurement of a continuous variable, such as serum thyroxine 
or systolic blood pressure. Yet the results of the test are interpreted dichotomously, 
that is, positive vs negative, abnormal vs normal. This means that so-called normal 
limits must be established, often arbitrarily. How these limits are defined depends on 
the statistical model postulated for the distribution of the variable measured. 

One of the most commonly used models is a single normal, or Gaussian, distri­
bution. As discussed in Chapter 11, the Gaussian curve was found to describe the 
distribution of certain measurements, such as height and weight, performed on dif-
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ferent subjects, as well as the distribution of results when repeated measurements 
were performed on a single subject. Gauss and other statisticians of the time used 
the word "normal" to refer to the bell shape of this distribution. But the word "nor­
mal" had already been well established in clinical medicine long before its statistical 
usage, in reference to a quite different connotation: the distinction between health 
and disease. These two different meanings of the word "normal," the clinical one 
and the statistical one, have become blurred over the years, resulting in a number of 
unfortunate consequences, especially in the interpretation of the results of diagnostic 
tests. 

This statistical model of "abnormality" assumes a single population, with test 
results falling symmetrically around a mean according to the number of standard 
deviations from the mean (Fig. 16.1). Approximately 2.5% of the population will lie 
more than two standard deviations above the mean, and 2.5% will lie more than two 
standard deviations below the mean. Labeling 2.5% or 5% of the population as dis­
eased (abnormal) merely because of their position in such a postulated distribution 
makes neither good clinical nor statistical sense, however. For example, use of this 
model for interpreting the results of serum calcium determinations will automati­
cally establish the prevalence of hypercalcemia and hypocalcemia as 2.5% for each. 
These prevalences may bear no relation to the proportions of persons with symp­
toms or with derangements in parathyroid, kidney, or other metabolic functions. 
Elveback et al. have referred to the frequent use of this inappropriate statistical 
model of abnormality as the "ghost of Gauss" [1]. 

The havoc wreaked by Gauss' ghost becomes magnified when multiple diagnos­
tic tests are performed on the same subject. For example, suppose that a "multi­
phasic screening battery" of 20 serum tests is ordered. If the single Gaussian distri­
bution model is used (as it often is) and the test results are independent of one 
another, then a subject has a one in 20 chance of having an abnormal value for each 
test. When the 20-test battery is administered, the same subject has a probability of 
1- (0.95?O = 0.64 of having at least one abnormal result. 

Such "statistogenic" disease often results in further testing and occasionally in 
unnecessary therapy. One wry observer has termed this phenomenon the "Ulysses 
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syndrome" [2]. Ulysses, you will recall, underwent a two-year odyssey between the 
end of the Trojan War and his return home, during which time he experienced a 
number of needless, dangerous, but entertaining adventures. The Odyssey may make 
good reading, but foisting such adventures on unsuspecting test subjects makes bad 
medicine. 

The statistical model easiest to deal with is that of two nonoverlapping indepen­
dent distributions, which mayor may not be Gaussian (Fig. 16.2). In this model, 
there are two distinct populations, a disease-free one and a diseased one, without 
overlap, so that a given test result will allow a certain decision as to the disease sta­
tus of the subject tested. Unfortunately, although such a model avoids arbitrary 
decisions, most diseases do not afford us this luxury. Genetic diseases due to missing 
or abnormal enzymes may show this pattern. For example, patients with phenyl­
ketonuria lack the enzyme tyrosine hydroxylase and are therefore unable to metab­
olize the amino acid phenylalanine to tyrosine. The distribution of such patients' 
serum phenylalanine levels is much higher than, and does not overlap with, the dis­
tribution of levels in normal subjects. 

A more attractive statistical model, and one that seems to pertain to many dis­
eases, is that of a diseased population and a disease-free population with partially 
overlapping (Gaussian or non-Gaussian) distributions. The overall distribution of 
test results can take one of two forms, depending on the relative sizes of the two dis­
tributions and their degree of overlap: (a) a unimodal distribution skewed toward 
the direction of abnormality; or (b) a bimodal distribution with recognizable 
"peaks" corresponding to the modes of the diseased and disease-free populations. 

With the unimodal skewed form (Fig. 16.3), it can be exceedingly difficult to dis­
tinguish the diseased and disease-free distributions by visual inspection, because they 
are both "buried" in the overall observed distribution. When the two distributions 
are both Gaussian, one approach to solving this problem is to plot the overall distri­
bution on cumulative probability graph paper. By "squeezing" the extremely low and 
high probabilities (y-axis) and "stretching out" the middle ones, a Gaussian distribu­
tion will be represented by a perfect straight line. A "buried" population with a dif­
ferent Gaussian distribution will appear as a linear deviation from the main line. 
This procedure is illustrated in Fig. 16.4 with data from a study by Pethybridge et al. 
of birth weights in southwest England in 1965 [3]. Above about 2500 g, the points 
fall on a straight line, representing the "normal-birth-weight" ("disease-free") popu-
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distribution 

Fig. 16.4. Distribution of birth weights 
in southwest England, 1965 (plotted on 
cumulative probability scale) 

lation. Below 2000 g, the points also fall on a fairly straight line and indicate a dis­
tinct "low-birth-weight" population. Between 2000 and 2500 g, the points appear 
less linear. This range represents the area of overlap. 

When the overall distribution is clearly bimodal (Fig. 16.5), separation of the two 
populations is somewhat easier. There are some test values that rule out or rule in the 
disease. In Fig. 16.5, values below A would lie only within the distribution of the dis­
ease-free population, thus ruling out the disease. Conversely, a value above B would 
lie only within the distribution of the diseased population. The problem remains, 
however, of how to classify subjects with test values between A and B. Some misclas­
sification is inevitable regardless of what "cutoff" point is used, and the choice will 
depend largely on the purposes to which the result will be put, as well as on the rela­
tive consequences and costs of the two types of misclassification. We will return to 
this point in Section 16.6. 
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As discussed in Chapter 2, the major statistical attributes of any measurement, 
including the results of diagnostic tests, are reproducibility and validity. The repro­
ducibility of a test is its ability to yield the same result on retesting. In general, diag­
nostic tests that are not reasonably reproducible will have little utility. 

The validity of a test indicates how close the test result corresponds to some 
objective diagnostic standard of the disease. Unfortunately, some diseases do not 
have a readily available "gold standard" by which to assess a test's validity. It is diffi­
cult to assess a diagnostic test for pancreatitis, for example, without performing a 
microscopic examination of a biopsy specimen of the pancreas, and few surgeons 
are eager to perform a biopsy procedure in patients with suspected pancreatitis. In 
these types of conditions, the test may have to be validated by its ability to predict 
prognosis or response to therapy. 

When a feasible gold standard does exist, validity can be assessed by comparing 
the test results with that standard [4]. Validity is usually evaluated conditionally, i. e., 
separately in those subjects with and those without the disease. The proportion of 
correctly identified diseased persons is called the sensitivity, and the proportion of 
correctly identified disease-free persons is called the specificity. 

16.3.1 Sensitivity and Specificity 

The statistical indices of sensitivity and specificity can be derived from a standard 
2 x 2 table, as illustrated in Table 16.1. Disease presence or absence forms the col­
umn headings and test positivity ("abnormal") or negativity ("normal") comprises 
the rows. a is the number of subjects with the disease and a positive test, the so­
called true positives (TP). Similarly, b is the number of false positives (FP), c the false 
negatives (FN), and d the true negatives (TN). 
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Table 16.1. Two-by-two table for evaluating the validity of diagnostic tests 

Disease 

Present Absent 

+ a b a+b 

Test 

c d c+d 

a+c b+d N 

a, true positives (TP); b, false positives (FP); c, false negatives (FN); d, true negatives (TN). 

Sensitivity is defined as the proportion (or percentage)! of diseased subjects who 
have a positive test: 

.. . TP a 
sensItivity = = --

TP+FN a+c 
(16.1) 

Specificity is the proportion of disease-free subjects who have a negative test: 

T· TN d 
speci IClty = TN + FP d + b (16.2) 

The perfectly valid diagnostic test would have a sensitivity and specificity both equal 
to 1. Few if any tests attain these lofty heights, however, and most involve a trade­
off between sensitivity and specificity. Usually, the more sensitive a test is (fewer 
false negatives), the less specific (more false positives) and vice versa. In fact, 
depending on the setting and purpose of the test (see Section 16.6), the cutoff point 
for defining positivity or negativity can be changed to increase one or the other of 
these indexes. These trade-offs will be addressed in greater detail in the following 
subsection. 

16.3.2 The Receiving Operator Characteristics (ROC) Curve 

As discussed in Section 16.2, many test results are measured on a continuous scale. 
The values are then often dichotomized into a normal (negative) or abnormal (posi­
tive) result. I have already mentioned the vagaries involved in choosing a cutoff 
point for defining normal and abnormal. Any single cutoff is by necessity arbitrary, 

I These statistical indexes can be expressed as either proportions or percentages. Equations 16.1 and 
16.2 yield proportions; the corresponding percentages are obtained by multiplying by 100. 
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with the consequence that subjects whose test results lie just below or above the 
cutoff may be misclassified. 

In tests for which higher values reflect greater degrees of abnormality, choosing 
a lower cutoff will result in greater sensitivity, i. e., in missing fewer cases of the dis­
ease. Conversely, higher values of the cutoff will result in greater specificity, i. e., less 
misclassification of people who do not have the disease. This reciprocal relationship 
between sensitivity and specificity is always found when a cutoff point is chosen for 
the value of a test measured on a continuous scale and can be represented by the 
test's receiver operating characteristics curve, an example of which is shown in 
Fig. 16.6. Sensitivity is graphed on the y-axis and 1 - specificity on the x-axis. The 
greater the sensitivity, the lower the specificity and vice versa. 

The term "receiver operating characteristics (ROC) curve" originated in describ­
ing performance characteristics of observers using mechanical devices, especially 
radar detection instruments. Different points on the ROC curve represent different 
choices of cutoff points, each balanced between maximizing sensitivity and specific­
ity. Point A in Fig. 16.6 represents a point on the curve that results in a specificity of 
1 but only .30 sensitivity. At the other extreme, point D represents a point on the 
curve where sensitivity is 1 but specificity is only .20. Points Band C are intermedi­
ate. 

It is important to point out that the choice of which of these cutoff points is most 
appropriate for a diagnostic test may be governed by the purpose for which the test 
is obtained (see Section 16.6). If sensitivity is important, a point on the curve near C 
or D is appropriate. When specificity is more important, point A or B would be pref­
erable. It is thus the curve itself, rather than a specific point on the curve, that is 
characteristic of the test. In other words, the choice of one specific point on this 
curve does not make the test better or worse. A better test (i. e., one with better over­
all sensitivity and specificity) would have an ROC curve that lies above and to the 
left of the curve shown in the graph. 

In fact, the position of the curve with respect to the diagonal (shown by the 
dashed line in Fig. 16.6) is an indicator of its informational value. The diagonal rep-
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Table 16.2. Die-casting as a "diagnostic test" 

Die roll 

S ... 10 017 ensltlV1ty = - = . 
60 

S ·f·· 500 083 pecl lClty= - = . 
600 

6 

1-5 

Sensitivity + specificity = 0.17 + 0.83 = 1 

Disease 

Present Absent 

10 100 

50 500 

60 600 

Diagnostic Tests 

110 

550 

660 

resents the line for which sensitivity= I-specificity. Rearranging terms, sensitiv­
ity+specificity= 1. A test for which sensitivity and specificity sum to 1 contributes 
no more information than pure chance. If our "diagnostic test" consisted of flipping 
a coin, with heads corresponding to a "positive" (abnormal) test and tails to a "neg­
ative" (normal) test, we would expect the test to label half the subjects as diseased 
and half as disease-free, regardless of whether they do or do not actually have the 
disease. Thus, the sensitivity and specificity of our "test" would both be 0.5. 

Alternatively, if our "test" consisted of casting a die and calling a 6 "positive" 
and anything below 6 "negative," one out of six subjects would be labeled as dis­
eased and five out of six as disease-free, regardless of their true status. The results of 
testing 60 diseased and 600 disease-free subjects are shown in Table 16.2. Sensitivity 
is 0.17, specificity is O.~, and the total is 1. 

The closer a test's ROC curve lies to the diagonal, the less information it pro­
vides. The further above and to the left of the diagonal, the more informative it is. 
(A test whose ROC curve lies below and to the right of the diagonal yields results 
that are worse than those due to chance. In that case, the criteria for "positive" and 
"negative" should be reversed!) 

16.3.3 Spectrum and Bias 

The sensitivity and specificity of a diagnostic test are often regarded as "fixed" char­
acteristics of the test. Such is not the case, however. Many tests that appear highly 
sensitive and specific when first described eventually prove considerably less so after 
their introduction into the "real world" of clinical practice. Why does such disillu-
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sionment occur? The main source of the problem is the design of the studies in 
which the tests are originally evaluated. 

As described in an excellent article by Ransohoff and Feinstein [5], the defects in 
design of these studies concern spectrum and bias. Spectrum means: Is the range of 
patients or subjects tested adequate? A broad spectrum of cases, or persons with the 
disease, is required to assess adequately the sensitivity of a test, while a broad spec­
trum of controls, or persons without the disease, is necessary for the adequate 
assessment of its specificity. Bias means: Are the diagnosis and test result determined 
independently of one another? Bias can affect both sensitivity and specificity. 

Spectrum includes a number of components. First, we must consider the spec­
trum of cases studied. An inadequate case spectrum may result in a misleading sensi­
tivity. Here we should examine the pathologic spectrum of the disease under study, 
in other words, its extent, location, and histology. A test for cancer should thus 
include both patients with local and patients with metastatic disease. The clinical 
spectrum of a disease, that is, its chronicity and severity, are also of obvious impor­
tance. If a test is more related to cachexia than to cancer, it may look more sensitive 
than it really is if only severely cachectic cancer patients are studied. The co-morbid 
spectrum of a disease, that is, the presence of coexisting ailments, can also affect a 
test's sensitivity. Test results may be different in cancer patients with and without 
cardiovascular disease, for example. 

The spectrum of the controls studied can have profound effects on the specificity 
of a diagnostic test. An adequate control spectrum should include patients with the 
same disease process as the cases, but in a different location (for example, patients 
with breast cancer in a test for colon cancer) and should also include patients with 
different disease processes in the same location (such as patients with ulcerative coli­
tis in a test for colon cancer). The latter is particularly important, because it is pre­
cisely in those patients with similar symptoms (e. g., diarrhea, bloody stools, abdomi­
nal pain, and weight loss in the case of colon cancer) that the clinician will want to 
use the test in practice. 

The importance of spectrum in both cases and controls underlines an important 
principle. The purpose of a diagnostic test, at least in the clinical setting, is to detect 
a disease that is not otherwise obvious in patients with compatible symptoms. No 
competent clinician requires a test to distinguish a person with advanced cancer 
from one who is perfectly healthy. Yet many tests are originally evaluated in a study 
sample containing just such extreme "cases" and "controls." In attempting to con­
vince their audience of the diseased and disease-free status of their cases and con­
trols, respectively, the original authors may obtain results for both sensitivity and 
specificity far higher than those to be seen when the test is applied in the real clinical 
world of patients with less obvious symptoms and early disease. 

The second type of design defect in testing a test is bias. Bias can lead to falsely 
high sensitivity or specificity; it can manifest itself in four ways. In workup bias, the 
result of a test affects the intensity of the subsequent "workup" (i. e., further diag­
nostic procedures) of the patient, thus increasing the chances for diagnosing the dis­
ease. Nonblind diagnosis means that the persons making the diagnosis are aware of 
the test result at the time of diagnosis. This is a potent source of bias when the diag­
nosis involves a subjective judgment. Nonblind test interpretation means that the per­
sons interpreting the test results are aware of the true diagnosis at the time of test 
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interpretation, which is a problem whenever a test is interpreted subjectively. Finally, 
in incorporation bias, the test results are actually incorporated as part of the evidence 
used to make the diagnosis, i. e., the inferential reasoning is circular. 

Ransohoff and Feinstein [5] have shown how problems of spectrum and bias can 
lead to unjustified enthusiasm for diagnostic tests by examining two prominent 
examples from the recent past: the CEA test for colonic cancer and the NBT test for 
bacterial infection. After an optimistic introduction into the medical community, 
both these tests proved to be disappointing for their originally intended uses. The 
CEA (carcinoembryonic antigen) test is a blood test that determines (immunologi­
cally) the presence or absence of a substance that is normally present only in fetal 
life. When a cancer of the colon develops, however, the gene for synthesis of this 
protein is "turned on," and the antigen once again becomes detectable in the blood. 
When this test was first discovered, it was hoped that it would be a useful marker for 
the early diagnosis of colonic cancer, thereby enabling early institution of treatment 
and, hopefully, ultimate cure. 

For the CEA test, an adequate spectrum of cases should include patients with 
both localized and extensive disease. As it turned out, those studies including pa­
tients with localized disease reported lower sensitivity than those restricted to pa­
tients with extensive and metastatic disease. An adequate spectrum of controls should 
include patients with other cancers and patients with nonmalignant colonic diseases. 
Studies including such patients reported low specificity for the CEA test. Since both 
the CEA test results and the diagnosis of colonic cancer are made fairly objectively, 
bias did not appear to be a major cause of the decline and fall of this test. 

The NBT (nitroblue tetrazolium) test for bacterial infection examines the ability 
of leukocytes (white blood cells) to reduce the NBT dye to a bluish-black color that 
is visible on a microscope slide containing these cells. When leukocytes are stimu­
lated during a bacterial infection, the metabolic machinery responsible for dye 
reduction is "turned on," thus yielding a markedly increased percentage of NBT­
positive leukocytes. 

For this test, the pathologic spectrum of cases should include patients with infec­
tions in different sites, with different bacteria, and with and without bacteremia 
(bacteria in the blood), while the clinical spectrum should include patients with 
infections covering a range of severity, and those with and without fever. In most of 
the studies of the NBT test, the pathologic features were well specified and ade­
quate, but those including a wide clinical spectrum reported lower sensitivity than 
those studying only febrile patients with severe infections. The control spectrum for 
the NBT test should include patients with viral and fungal infections and those with 
other sources of fever, and such a spectrum was investigated in almost all the 
reported studies. Bias seemed to be a major problem with the studies of NBT. Since 
the test is interpreted subjectively, it is "at risk" for bias due to nonblinding. Predic­
tably, those studies employing blind test interpretation reported lower sensitivity and 
specificity of the NBT test. 
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16.4 The Predictive Value of Diagnostic Tests 

As we have seen, the statistical indexes of sensitivity and specificity are extremely 
useful in assessing the validity and informational value of a diagnostic test. For the 
clinician, however, these indexes have a major drawback, because the reasoning 
upon which they are based is the reverse of usual diagnostic reasoning. Sensitivity 
and specificity start from subjects with and without the disease and determine how 
often the test is either positive or negative respectively. Unfortunately, a clinician's 
patients do not usually come to her already bearing labels indicating "diseased" or 
" disease-free." 

Instead, the clinician begins with patients whose disease status is unknown and 
whose test results must be used to decide whether the disease is present or absent. 
Clinicians are interested, therefore, in the predictive value of a diagnostic test. Posi­
tive predictive value is defined as the proportion of subjects with a positive test who 
have the disease. Using the symbols shown in Table 16.1, 

. . d·· I TP a 
posltlve pre lCtive va ue = TP + FP = a + b (16.3) 

Negative predictive value is the proportion of subjects with a negative test who are 
disease free: 

. d·· I TN d 
negative pre lCtive va ue = TN + FN d + c (16.4) 

Positive and negative predictive value can thusbe considered "horizontal" indexes, 
since they are defined by row proportions, whereas the "vertical" indexes of sensitiv­
ity and specificity are defined by column proportions. 

Unlike sensitivity and specificity, positive and negative predictive value are not 
true indexes of validity, because they depend on the relative proportions of diseased 
and disease-free persons being tested. Since they are governed by the ratio of true 
and false positives (positive predictive value) or true and false negatives (negative 
predictive value), a test with high specificity (few false positives among the disease­
free) can have low positive predictive value if the ratio of disease-free to diseased 
subjects is high. Similarly, a test with high sensitivity (few false negatives among the 
diseased) can have low negative predictive value if the ratio of disease-free to dis­
eased subjects is low (a very unlikely testing situation). 

These relationships are illustrated in Table 16.3. In A, diseased (D) and disease­
free (D) subjects are equally represented, i. e., D: D = 1 : 1. Sensitivity, specificity, 
positive predictive value, and negative predictive value are all high. In B, disease-free 
subjects predominate (D: D = 1 : 9). Sensitivity and specificity remain the same (since 
they are characteristics of the test in diseased and disease-free persons respectively), 
but positive predictive value falls, while negative predictive value rises. In fact, in the 
common clinical situation in which the disease being tested for is rare, D: D may be 
lower than 1 : 9, even among patients for whom the clinician is suspicious enough to 
request the test, with a consequent further reduction in the positive predictive value. 
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Table 16.3. Sensitivity, specificity, and positive and negative predictive values with three different 
ratios of diseased (D) and disease-free (0) subjects 

A. 0:0=1:1 
Disease 

o 0 

+ 450 100 

Test 

50 400 

500 500 

B. D:0=1:9 
Disease 

o 0 

+ 90 180 

Test 

10 720 

100 900 

C. 0:0=9:1 
Disease 

o 

+ 810 20 

Test 

90 80 

900 100 

550 

450 

1000 

270 

730 

1000 

830 

170 

1000 

S ... 450 090 
enSItlVlty = 500 = . 

S ·f·· 400 080 pecllclty= 500 = . 

P .. d·· I 450 2 osltlve pre lCtiVe va ue = - = 0.8 
550 

N . d·· I 400 egatlve pre lCtiVe va ue = - = 0.89 
450 

S ... 90 090 
enSItlVlty= 100 = . 

S ·f·· 720 080 pecllclty= 900 = . 

Positive predictive value = 1Q.. = 0.33 
270 

Negative predictive value = 720 = 0.99 
730 

S ... 810 
enSltlVlty= - =0.90 

900 

S ·f·· 80 pecllclty=-=0.80 
100 

P .. d·· I 810 osltlve pre lCtiVe va ue= - =0.98 
830 

N . d·· I 80 egatlve pre lCtiVe va ue= - =0.47 
170 
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Finally, just to demonstrate the mathematical relationship, C illustrates the rarely 
encountered situation in which diseased subjects predominate (D: D = 9 : 1). Positive 
predictive value becomes very high, while negative predictive value falls. 

Many tests are originally evaluated using approximately equal numbers of pa­
tients with the disease and disease-free controls, i. e., a disease prevalence of 50% in 
the evaluation sample. (Even a flip of a coin will have a positive predictive value of 
50% in such a sample.) Since most tests intended for clinical diagnosis will be subse­
quently applied in settings where the disease prevalence is far lower, clinicians are 
bound to be disappointed by their low positive predictive value. To avoid such disap­
pointment, the test should be evaluated in a setting similar to the one in which it will 
be applied. 

16.5 Bayes' Theorem 

The Reverend Thomas Bayes was an eighteenth-century mathematician interested 
in conditional probability, the probability that an event would occur under a given 
condition. Although neither diagnostic tests nor other aspects of clinical epidemiol­
ogy were known at the time, Bayes' theorem of conditional probabilities has proved 
useful in these and other domains. In fact, it is the basis of the branch of statistics 
known as Bayesian statistics, which was discussed briefly in Chapter 12. 

Before discussing the relevance of Bayes' theorem for diagnostic tests [6], we 
must explain the notation used to express a conditional probability. Our main inter­
est from the clinical standpoint is the positive predictive value of a diagnostic test. In 
the language of conditional probability, the positive predictive value of a test is the 
probability of the disease (D) given (i. e., conditional on) a positive test result (T+). 
In Bayesian notation, this is written as P(DIT+), where the vertical line between D 
and T+ is read as "given" or "conditional on." 

Bayes' theorem applied to diagnostic tests is then expressed as follows: 

(16.5) 

In other words, Bayes' theorem says that the probability of disease, given a positive 
test, is the product of the probability of a positive test result given disease, times the 
probability of disease, divided by the probability of a positive test. That Eq.16.5 
expresses an algebraic truism can be easily seen by converting these probabilities into 

the familiar symbols of Table 16.1. Thus, P(DIT+)= ~b' P(D) = _a_, 
a+ a+c 

a+c + a+b P(D) = -, and P(T ) = --. Hence: 
N N 

a a+c a --.-- -
a a+c N N a -- =--=--

a+b a+b a+b a+b --
N N 
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Each of the four components of Eq.16.5 can be made easily recognizable. As we 
have already seen, P(DIT+) is the positive predictive value of the test. Bayesians 
often refer to it as the posterior (or post-test) probability of disease, because it is 
known only after (a posteriori) the test result is known. P(T+ ID) is also familiar to 
us already as sensitivity. Sensitivity is the proportion of diseased subjects with a posi­
tive test, which is exactly the same thing as the probability of a positive test given 
disease. 

The third component, P(D), is also called the prior (or pre-test) probability of 
disease, because it is the probability that the test subject has the disease before (a pri­
ori) the test result is known. We use everything we know about the subject prior to 
the test to arrive at this probability. If we know nothing about the subject other than 
the population group from which he or she comes, P(D) is the same as the preva­
lence of the disease in that population. 

The fourth and last component in Eq.16.5 is P(T+), which can be made more 
easily recognizable by expressing it as the sum of two conditional probabilities. Since 
any subject must either be diseased (D) or disease-free (D), the law of total proba­
bility states that P(T+) = P(T+ ID). P(D) + P(T+ ID). P(D). As we have seen, 
P(T+ ID), the probability of a positive test in diseased subjects (i. e., given disease) is 
already known to us as the sensitivity of the test. P(T+ ID), the probability of a posi­
tive test among the disease-free, is just 1- specificity, since specificity = P(T-ID). 
Thus, Bayes' theorem can be written alternatively as follows: 

positive predictive value ( = posterior probability of D) = 
(sensitivity)(prior probability of D) 

(sensitivity)(prior probability of D) + (1- specificity)(prior probability of D) 
(16.6) 

where the prior probability of D = 1-prior probability of D. In other words, the 
positive predictive value of a test depends on its sensitivity and specificity and on the 
prior probability of the disease (the prevalence of disease among those tested). For a 
given sensitivity and specificity, positive predictive value will fall as the proportion of 
diseased subjects falls. This is exactly what we found empirically in Table 16.3. 

Bayes' theorem can also be used to calculate the probability that a subject will be 
disease-free if he has a positive test result: 

(16.7) 

Although P(DIT+) may be of some interest to clinicians in its own right, the reason 
for introducing Eq.16.7 here is that it allows the probabilities in which Eq.16.5 is 
written to be expressed in terms of odds. An odds, you will recall from Chapter 8, is 
merely the ratio of a probability to its complement. If we divide Eq.16.5 by Eq.16.7, 
we obtain the following: 

P(DIT+) _ P(T+ ID) . P(D) 
P(DIT+) - P(T+ID) P(D) 

(16.8) 

since the two P(T+) terms cancel. In other words, Eq.16.8 says that the odds of dis­
ease given a positive test (also called the posterior odds) is the product of the odds of 
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a positive test under the competing alternatives of disease and nondisease (the so­
called likelihood ratio) multiplied by the relative proportion of diseased and disease­
free subjects tested (the prior odds). The Bayesian "translation" of Eq.16.8 is: 

posterior odds = likelihood ratio x prior odds 

It can be seen that the likelihood ratio is nothing more than the ratio of sensitivity to 
1 - specificity. 

To illustrate the use of Eq. 16.8, let us work through the calculation of positive 
predictive accuracy for the test results shown in Table 16.3 B. The sensitivity of the 

. h ·f··· d h . dd f d· . 100 Th test IS 0.90, t e speci IClty IS 0.80, an t e prior 0 s 0 Isease IS -. us: 
900 

. dd f d· 0.90 100 posterior 0 s 0 Isease = . - = 0.50 
(1 - 0.80) 900 

To convert an odds to a probability, we merely use the formula: 

b b·l· odds 
pro a Ilty= dd 

o s+ 1 

(4: 1 odds against a horse is the same as a 1/5 probability that the horse will win). 
Hence: 

. . d·· I . b b·l· f d· 0.50 posItIve pre IctIve va ue = posterior pro a I Ity 0 Isease = = 0.33, 
0.50+ 1 

which is the same result we obtained from the 2 x 2 table. 
Formulating Bayes' theorem in terms of odds (Eq.16.8) provides an instant 

index of the informational value of a positive test result, since of the two terms on 
the right side of the equation, the test contributes only to the first (the likelihood 
ratio). If the test adds no information (likelihood ratio = 1), the posterior odds and 
the prior odds are the same. In other words, the test result does not change the 
probability that the subject has the disease. If the likelihood ratio = 1, then sensitiv­
ity = 1 - specificity, and sensitivity + specificity = 1. This is exactly the same situation 
as that represented by the diagonal line in the ROC curve (Fig. 16.6). As we saw in 
Section 16.3.2, a test whose sensitivity and specificity sum to 1 provides no informa­
tion. 

The overall usefulness of a diagnostic test depends on both its informational 
content and the prior odds of disease. The informational content is determined by 
the likelihood ratio (LR). Although we have focused on the LR associated with a 
positive test result (LR +), Eq.16.8 could be recast using a negative test result. Then: 

LR - = P(T-ID) = I-sensitivity 
P(T-ID) specificity 

The lower (i. e., the closer to 0) the LR -, the greater the informational value of a 
negative test. The total information content of a diagnostic test can therefore be 
defined by either its LR + or its LR - . 
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When combined with the prior odds, LR + and LR - provide an instant index to 
the impact of a positive or negative test result. If the prior odds is low (e.g., testing 
an asymptomatic, healthy "volunteer") and the test is highly discriminatory (high 
LR + and low LR -), a positive test result will yield a large increase in the posterior 
odds (relative to the prior odds), but a negative test result will succeed only in mak­
ing a remote possibility even more remote. Conversely, if the prior odds is very high 
(e.g., a patient with "classic" signs and symptoms), a positive test will result in very 
little change in the posterior odds, although a negative test will substantially reduce 
it. 

The overall clinical utility of a test is therefore greatest when the prior odds is 
near 1, i.e., when the clinician is most uncertain (a virtual "toss-up" between disease 
presence or absence) prior to the test. A positive test then makes the disease likely, 
and a negative test makes it unlikely. This is consistent with common sense: the less 
certain we are, the more we are swayed by new information. 

Another advantage of the Bayesian approach to the interpretation of diagnostic 
tests is that it is not necessarily tied to the dichotomous ("positive" vs "negative," 
"abnormal vs normal") characterization of the results (see Section 16.2). For diag­
nostic tests whose results are expressed on a continuous scale, no cutoff point is nec­
essarily required. Instead, the actual result can be evaluated in terms of its differen­
tial diagnostic value, i. e., its consistency with disease vs nondisease. The likelihood 
merely needs to be expressed as the probability of obtaining the observed test result 
T j under the competing hypotheses of disease and nondisease: 

LR= P(Tj ID) 
P(TiID) 

with the probabilities estimated from the underlying distribution of values for the 
diseased and disease-free populations. 

In addition to its use in evaluating diagnostic tests, Bayes' theorem has applica­
tions to other aspects of clinical decision-making and to causality inference. These 
will be considered in Chapters 17 and 19 respectively. 

16.6 The Uses of Diagnostic Tests 

As outlined by Sackett and Holland [7], diagnostic tests can be used for clinical 
diagnosis, case-finding, screening, or epidemiologic study. Each of these different 
settings has its own characteristics and requirements, and the criteria used for evalu­
ating a test will depend not only on the setting but also on the nature of the disease 
and its treatment. 

The main use of diagnostic tests in clinical practice is in clinical diagnosis, i. e., to 
identify the disease responsible for causing a specific complaint. A patient with a 
persistent cough, for example, may consult a physician. In addition to taking a care­
ful medical history and performing a physical examination, the physician may obtain 
a chest roentgenogram. It is this use of diagnostic tests that has been the focus of 
our discussion thus far. 
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Case-finding is the testing of patients for diseases unrelated to their specific com­
plaint. A woman who consults her physician because of pain and stiffness in her 
knees may have her blood pressure taken, not because the physician suspects hyper­
tension as the cause of her symptoms, but because hypertension that is undetected 
and untreated carries a significant risk of subsequent morbidity and mortality. 

The major purpose of case-finding is early (presymptomatic) detection. Obvi­
ously, the disease tested for should have a treatment that does more good than harm 
to those who are afflicted by it; there is no advantage to early detection of an 
untreatable disease. A treatment that improves survival, reduces morbidity, or 
improves physical or social functioning (performance) should therefore exist before 
case-finding is undertaken. Merely advancing the time of diagnosis without delaying 
death, morbidity, or functional impairment (the so-called zero-time shift or lead-time 
bias) does not constitute an improvement in outcome. In fact, early detection by 
itself may do more harm than good if it results in adverse psychological effects due 
to "labeling." 

The zero-time shift is illustrated in Fig. 16.7. The top diagram represents the nat­
ural history of a disease without effective treatment. The time axis runs from left to 
right, and the usual sequence is seen of onset of disease, followed by onset of symp­
toms. The symptoms lead to a visit to a clinician who then establishes the diagnosis. 
Death or morbidity occurs at some later time. The lower diagram shows what hap­
pens when a test leads only to early detection. Note that onset of disease, onset of 
symptoms, and death or morbidity occur at exactly the same points along the time 
axis. The sole change has been an earlier time of diagnosis. If survival time (or mor­
bidity-free time) is measured from the time of diagnosis, the patient whose disease 
was detected early will appear to go longer before experiencing death or morbidity. 
We must be on the lookout for this artifact of early detection; such a change does 
not qualify as a beneficial change in outcome. 

Screening is the testing of asymptomatic subjects from the general population for 
the purpose of early detection of a particular disease. Although it is similar to case­
finding in its aim to detect disease in asymptomatic subjects, it is different in several 
important respects. In case-finding, the patient seeks health care, and the clinician's 

Fig. 16.7 . The zero­
time shift (lead-time 
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Natural History 
Onset of 
disease 

I 

Early Detection 
Onset of 
disease , 

i 
Time of 

diagnosis 

Onset of 
symptoms 

I 

Onset of 
symptoms 

i 

i 
Time of 

diagnosis 

Death or 
morbidity , 

Death or 
morbidity 

I 



218 Diagnostic Tests 

main responsibility relates to the symptom or other problem that prompted the pa­
tient's visit. Early detection of an unrelated disease may be useful to the patient but 
is clearly secondary to the main "contract" [7]. 

In screening, on the other hand, early detection of asymptomatic disease is the 
main goal. False-negative test results are far less acceptable with screening, since 
failure to detect the disease screened for vitiates the principal objective. Conse­
quently, the sensitivity of a screening test must be very high [8]. 

As with case-finding, screening requires the prior existence of a treatment with 
an overall favorable effect on mortality, morbidity, or performance. Early detection 
of an untreatable disease not only is of no benefit, but may even prolong the suffer­
ing caused by a patient's awareness of his diagnosis. Once again, the zero-time shift 
artifact should be considered in evaluating any screening test to ensure that outcome 
is truly improved. 

One major difference from case-finding, however, is that even if a potentially 
beneficial treatment exists, true improvement in outcome requires referral of the dis­
eased subject to an appropriate clinician, a decision by the clinician to prescribe the 
treatment, and adequate compliance by the patient. In case-finding, no referral is 
required, the clinician can decide a priori to treat patients in whom she detects the 
disease, and she may be selective in testing only those patients for whom her prior 
experience indicates a high probability of treatment compliance. Although the dis­
tinction between case-finding and screening can sometimes be blurred, e.g., in the 
case of the periodic health examination ("annual checkup"), their differences should 
be kept in mind. 

Diagnostic tests can also be used to measure disease incidence or prevalence as 
part of an epidemiologic study. Whenever a given disease represents the study out­
come, the results of a diagnostic test can be used to classify study subjects as dis­
eased or disease-free. Descriptive surveys in representative samples of defined popu­
lation groups can be used to provide incidence and prevalence rates for particular 
diseases. This may be important for public health purposes, such as in allocating 
resources, providing baseline data prior to some planned intervention, or supporting 
(or refuting) claims of a perceived epidemic in communities exposed to a suspected 
toxic agent. In analytic cohort studies and clinical trials, diagnostic tests can be used 
to standardize surveillance and provide an unbiased outcome assessment in different 
exposure groups. The main interest here is the rate of disease in the study groups 
rather than the presence or absence of disease in any individual. Thus, reproducibil­
ity, sensitivity, and specificity are less important than in other settings. If these index­
es are too low, however, the resulting misclassification may lead to erroneous rates 
and inferences. 

For all of the above test settings, the advantages and disadvantages of each test 
should be carefully weighed before deciding whether or not to perform the test. In 
addition to the probabilities of disease given the possible test results, which are 
determined by the prevalence of the disease and the test's sensitivity and specificity, 
the clinician or public health policy maker must also consider the consequences of 
correct and incorrect disease classification, the values that individual patients and 
society as a whole attach to these consequences, and the monetary costs involved. 
Issues such as the acceptability (risk of serious adverse consequences, pain, con­
venience, embarrassment) and complexity (logistic and mechanical difficulties, 
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required expertise of personnel) of the test will weigh heavily in these evaluations [7, 
8]. The technique for balancing the benefits and risks of available management 
options is called decision analysis and forms the basis of the following chapter. 
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Chapter 17: Decision Analysis 

17.1 Strategies for Decision-Making 

Mrs. Smith is a 75-year-old widow with mitral stenosis (narrowing of the left atrio­
ventricular heart valve) complicated by left ventricular dysfunction (markedly 
reduced ejection fraction), which has been leading to progressive heart failure for 
the past 2 years. She is being treated by her cardiologist with standard medical ther­
apy (digitalis and diuretics), but she is finding it increasingly difficult to climb the 
stairs to her apartment and often wakes up at night short of breath. A cardiovascular 
surgeon has seen Mrs. Smith in consultation. He believes that a successful commis­
surotomy (a surgical operation to widen the valvular opening) would relieve her 
symptoms and prolong her survival but is worried that her age and unstable cardio­
vascular status would substantially increase the risk of operative death. What should 
her physicians do, continue medical therapy or operate? 

A variety of strategies could be used for making this decision. Several of the 
most common are discussed in the following subsections (D.A. Lane, 1983, The 
Foundations of Decision Analysis, unpublished manuscript). 

17.1.1 Distilled "Clinical Judgment": Global Introspection 

The decision strategy most commonly used by practitioners is based on global "clin­
ical judgment," by which the knowledge base and previous experience of a seasoned 
clinician are somehow carefully weighed and considered to yield the proper course 
of action. The factors considered by Mrs. Smith's cardiologist and surgeon would 
probably include knowledge of her previous medical history, the extent of her cur­
rent suffering, estimates of her probable survival with continued medical therapy, 
the expertise and experience of the surgeon, Mrs. Smith's chances of surviving the 
operation, and published studies in which the two treatments are compared. The 
physicians would discuss the case between them, perhaps consulting the views of 
other colleagues at a joint medical-surgical conference, and eventually reach a deci­
sion. The various considerations are mixed up together in the cauldron of the clini­
cians' brains, and the end product is a brew that hopefully represents the best deci­
sion for Mrs. Smith. 
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17.1.2 Avoid Disaster: The Conservative Approach 

Another approach seeks to minimize the risk of the worst possible outcome. In sta­
tistical parlance, this strategy is called minimax; it chooses the decision with the 
minimum probability of the maximum loss. In Mrs. Smith's case, the decision would 
be to continue medical therapy. Although her condition is slowly deteriorating, her 
risk of dying in the next few weeks or months is low with her current treatment. 
Since she might not survive an operation, her risk of early death is much higher with 
surgery. Even if a successful operation prolongs her life, avoidance of early death 
mandates a decision for medical therapy. 

17.1.3 "Go for Broke": The Gambling Approach 

The opposite to the conservative (or minimax) decision strategy is the approach of 
the gambler: "go for broke." The gambler chooses the decision that maximizes the 
probability of the most favorable outcome. This approach is often frowned upon by 
clinicians, who are understandably reluctant to recommend risk-taking by their pat­
ients, even in the face of substantial potential gains. Nonetheless, Mrs. Smith, along 
with her cardiologist and surgeon, might decide that her expected course under 
medical therapy is so inexorably downhill that the potential gain in survival with sur­
gery is worth the risk of operative death. 

17.1.4 Is P<O.05? The "Significance" Approach 

A more "scientific" strategy would assemble evidence from the published literature, 
preferably from randomized clinical trials comparing surgical and medical therapy 
for mitral stenosis. If the evidence suggests that the outcome is different with one 
therapy vs another, and sampling variation can be safely ruled out as an explanation 
for the difference (i. e., P< 0.05), then this strategy would select the treatment asso­
ciated with the better outcome. But what about Mrs. Smith's case? Does the pub­
lished literature pertain to 75-year-old women with Mrs. Smith's poor left ventricu­
lar function arid current symptoms? If (as is likely) medical treatment is significantly 
better for short-term survival, while surgery is better for long-term survival, which is 
better overall for Mrs. Smith? And how are her current suffering and impaired func­
tioning to be weighed against the chances of either short- or long-term survival? 
Unfortunately, the significance strategy does not provide answers to these questions. 

17.1.5 Decision Analysis: Maximize Expected Utility 

Decision analysis (or risk-benefit analysis) is a systematic strategy by which the rami­
fications of each possible decision are compared for all relevant outcomes [1-4J. 
After estimating the probability of these outcomes for each decision and assigning a 
utility to each outcome, the decision is chosen that maximizes expected utility. For 
Mrs. Smith, decision analysis would consider not only the short-term risks of sur-
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gery, the probabilities of long-term survival, the persistence of relief of symptoms, 
and her ability to care for herself, but also the relative value (i. e., utility) that she 
and her physicians attach to these outcomes. 

Of all the decision strategies considered thus far, decision analysis is the only 
one that guarantees logical consistency in balancing benefits and risks. Another way 
of saying this is that use of any other strategy will, on average, yield a lower utility. 
Global introspection may result in maximum utility, but since all relevant outcomes 
(along with their probabilities and utilities) are not necessarily considered, there is 
no guarantee that it will do so. The significance approach will maximize utility only 
if the difference in the outcome chosen as a basis for comparison outweighs the 
probabilities and utilities of all other outcomes. Avoiding disaster will often result in 
suboptimal average utility, because the utilities of outcomes other than the disastrous 
one are not considered. The gambling approach yields suboptimal results for the 
opposite reason; i. e., it does not take account of outcomes other than the favored 
one. 

As we have seen, the basic building blocks of decision analysis consist of proba­
bilities and utilities. Before these building blocks can be assembled, the decision 
analyst requires a "blueprint" indicating how and where they are to be used. This 
blueprint is called a decision tree, and its construction is the subject of the following 
section. 

17.2 Constructing a Decision Tree 

A decision tree is a visual representation of the logical and temporal consequences of 
each decision being considered. It reads from left to right, with smaller branches 
representing consequences of the larger branch from which they originate. The first 
(left-most) branch point represents the decision being analyzed. This point is called 
the decision node and is usually represented by a square. The number of choices 
available to the decision maker is the number of initial "branches" emanating from 
the decision node. In our example, Mrs. Smith's physicians have two choices: medi­
cal therapy or surgery, as shown schematically in Fig. 17.l. 

The next step in constructing the tree is to list the possible consequences of each 
decision. These are shown as branches emanating to the right from a chance node 
along each main branch defined by the decision node. Chance nodes are designated 
as such because the events taking place beyond them (i. e., to the right of them in the 
tree) are determined by chance or are otherwise beyond the control of the decision­
maker. Chance nodes are conventionally represented by a circle or point. Each 
immediate consequence may give rise to further consequences, and these are repre­
sented by chance nodes lying along the corresponding branches. Further branching 
is accomplished by adding subsequent chance nodes until the terminal branches rep­
resent the final clinical outcomes of interest. 

The end result is a tree with smaller branches lying to the right of larger ones. 
The event represented by each branch is conditional upon the branch that precedes 
(i.e., gives rise to) it. Both the logical and temporal sequences proceed from left to 
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Fig.17.1. The decision node: medical therapy vs surgery for Mrs. Smith 
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Fig. 17 .2. Full decision tree: medical therapy vs surgery for Mrs. Smith 

right, from the largest branches representing the decisions to the smallest terminal 
branches representing the final outcomes. 

In our example, we shall simplify the decision tree by considering five final out­
comes: death before 1 year, survival for 1-5 years with morbidity, survival for 
1-5 years without (significant) morbidity, survival for more than 5 years with mor­
bidity, and survival for more than 5 years without morbidity. Operative death will be 
included in the "death before 1 year" category. The full decision tree incorporating 
these outcomes is shown in Fig. 17.2. 

Two of the branches shown in Fig. 17.2 are superfluous. Although we have not 
yet discussed how we estimate the probabilities associated with each branch of the 
tree, it is apparent that morbidity-free survival with medical therapy is virtually 
impossible (i.e., probability=O), since Mrs.Smith has severe symptoms now with 
medical treatment. Consequently, the branches corresponding to morbidity-free sur­
vival for 1-5 years and> 5 years with medical therapy can be "pruned." The final 
decision tree obtained after pruning these branches is shown in Fig. 17.3. 

The decision tree we have constructed has been simplified for heuristic purposes. 
Outcomes have been limited to five categories, and neither the morbid sequelae of 
surgery nor the side effects of medication have been considered. If the probabilities 
and utilities of other outcomes might affect the decision, including them would be 
important. The resulting tree would then be "bushier" (i.e., have more branches) 
and hence more comprehensive. 

It is also important to point out that decisions may involve diagnostic, as well as 
therapeutic, choices, such as the decision to order a certain diagnostic test. Four 
outcomes arise from each decision mode involving a diagnostic test, corresponding 
to the true and false positives and true and false negatives discussed in Chapter 16. 
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Fig. 17 .3. Pruned decision tree: medical therapy VS surgery for Mrs. Smith 
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Successful Tocolysis ~ Survival, no morbidity 
Survival, no morbidity 

-E Death 
False positive gDS Survival, morbidity 

Survival, no morbidity 
Unsuccessful Tocolysis S . __ ~ Death 

epsls~ Survival, no morbidity 
Survival, no morbidity 

. ~Death 
True negative" SepsIs 'L- Survival, no morbidity 

L_ ------------- Survival, no moribldlty 

-E Death 
RDS Survival, morbidity 1 Survival, no morbidity 

False negativB . ~ Death 
I---------Sep.sls~ Survival, no morbidity 
L-_____________ Survival, no morbidity 

Fig. 17.4. Decision tree for L:S ratio test vs immediate tocolysis in women with spontaneous rup­
ture of membranes and preterm labor 

Consider the following example, the decision tree for which is shown in 
Fig. 17.4. Pregnant women who present with spontaneous rupture of fetal mem­
branes (i. e., the amniotic sac) and premature labor represent a difficult dilemma for 
the obstetrician. If she lets nature take its course, many of these women will deliver a 
premature infant, with a high risk of respiratory distress syndrome (RDS), a condi­
tion caused by lung immaturity and associated with significant morbidity and mor­
tality. If the obstetrician administers tocolytic (labor-inhibiting) drugs, she may suc-
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ceed in delaying delivery until the lungs have matured and thus avoid RDS. But 
prolonged membrane rupture increases the risk of neonatal sepsis (systemic bacterial 
infection), which has an even higher mortality than RDS. (We will assume for sim­
plicity that a neonate who survives a bout of sepsis will have no residual morbidity, 
and that the coincidence of RDS and sepsis is sufficiently unlikely to ignore.) 

An alternative to immediate tocolysis is a diagnostic test of fetal lung maturity. 
The amniotic fluid is tested for the ratio of lecithin to sphingomyelin (called the L: S 
ratio). An L: S ratio;:;; 2: 1 (a positive test) indicates immature fetal lungs and a high 
risk of RDS. But, like other diagnostic tests, the L: S ratio is neither perfectly sensi­
tive nor specific for RDS. In particular, many infants with a positive test will not 
develop RDS (i. e., the positive predictive value of the test is not high). If the test is 
positive (whether true positive or false positive), the obstetrician will institute toco­
lytic therapy, which mayor may not be successful in delaying delivery until the lungs 
have matured. In the case of the false positives, successful tocolytic therapy will have 
unnecessarily increased the risk of sepsis. If the test is negative (true negative or false 
negative), the obstetrician will attempt to deliver the baby as soon as possible, using 
oxytocin augmentation if necessary, to minimize the risk of sepsis. In the case of 
false negatives, however, this will result in the birth of some infants with RDS. 

The decision tree for this analysis is obviously more complicated than the one we 
constructed for our first example involving Mrs. Smith. Even the tree shown in 
Fig. 17.4 is an oversimplification, however, since it does not consider such issues as 
amniocentesis prior to tocolytic therapy, the use of betamethasone (a corticosteroid) 
to promote lung maturation, the differential morbidity and mortality of preterm and 
full-term infants, or the range of possible morbidities. In fact, many clinical deci­
sions would look almost impossibly complex if displayed in their full arboreal splen­
dor. 

What this means, though, is that the decisions themselves are complex. The deci­
sion tree merely displays the complexities; it does not create them. Decisions can be 
(and usually are) made without decision trees. But all decisions weigh probabilities 
and utilities, although most do so only implicitly. Even if the tree is not used to carry 
out the full analysis, however, its construction can be helpful to the clinician by forc­
ing her to consider all relevant consequences of her decision choices. Finally, many 
complex trees can be made more manageable by careful pruning of nonessential 
branches. 

17.3 Probabilities and Utilities 

Once the decision tree has been constructed, the next step in decision analysis is to 
estimate the probabilities of its branches and assign utilities to the possible final out­
comes. These will be discussed in the following two subsections. 
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17.3.1 Probabilities 

A variety of sources exist for estimating the probabilities of events occurring as con­
sequences of the decisions being analyzed. Published clinical trials, observational 
studies, and descriptive case series can all be used, with priority given to data repre­
senting the best combination of methodologic rigor and clinical relevance to the case 
or cases being analyzed. In Mrs. Smith's case, for example, our preference would be 
for a randomized trial in which surgery and medical therapy were compared for 
short-term and long-term mortality, relief of symptoms, and functional perfor­
mance, preferably in women around 75 years of age with similar past history, cur­
rent symptomatology, and associated left ventricular dysfunction. 

The chance of finding such a trial, of course, is slim. Instead, a variety of pub­
lished literature must often be searched to provide the best probability estimates. In 
the absence of reliable published data, it may be necessary to solicit the opinion of an 
expert or panel of experts. Although such a process might appear dangerously similar 
to the global introspection approach discussed earlier, there are important differences. 
For one thing, the introspection is far less global. The expert is being asked for an 
opinion concerning a specific probability, not a recommendation for an overall deci­
sion. By breaking down a global task into a series of small ones, each becomes more 
manageable (i. e., the branch probability assessment is more reproducible and valid). 
Second, the expert is consulted only in the area of his or her expertise. No one person 
is being asked to know and properly weigh all the relevant facts. 

Although such procedures for estimating probabilities may appear "sloppy" after 
the epidemiologic and statistical principles outlined earlier in this text, there is no 
readily available alternative. After all, some decision has to be made. Decision analy­
sis provides a logical framework for weighing the available information, even if that 
information is fuzzy. To be sure, the better the probability estimates, the more reli­
ance we can place on the results of the analysis. As we shall see later on, however, 
ranges of feasible probability estimates can be assessed to see if the preferred deci­
sion changes with different estimates. 

Regardless of how the individual probability estimates are derived, their combi­
nation must conform to the rules of probability theory. Since the branches emanat­
ing from a given chance node represent mutually exclusive events, the probability of 
either of two such events occurring is the sum of their individual probabilities. If the 
two events are represented by A and B, then using the probability notation intro­
duced in Chapter 16: 

P(A or B) = P(A) + P(B) (17.1) 

Furthermore, since a chance node gives rise to a branch for each possible conse­
quent event, and one of the events must occur, the sum of the probabilities of all the 
branches emanating from a chance node must sum to 1. If there are n such branches. 

P(A or B or C ... or n)= P(A) +P(B)+P(C) ... + P(n)= 1 (17.2) 

Returning to our example, let us estimate the probabilities for the branches at each 
of the three chance nodes shown in the Fig. 17.3 decision tree. Let us say that, based 
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Death < 1 yr E(P=.15) 

(P=.25) 
Survival 1-5 yrs, morbidity 
Survival > 5 yrs, morbidity 

[

Medical therapy----------- (P= .60) 

-[
(P= .30) Dies at surgery ------Oeath < 1 yr 

Surgery (P= .10) Survival 1-5 yrs, morbidity -i(P= .05) Death < 1 yr 

(P=.70) Survives surgery (P=.20) Survival 1-5 yrs, no morbidity 
(P= .25) Survival> 5 yrs, morbidity 
(P= .40) Survival> 5 yrs, no morbidity 

Fig. 17.5. Figure 17.3 decision tree containing branch probabilities 

on our review of the literature and consultation with experts, the probabilities of 
death before 1 year, survival for 1-5 years (with morbidity), and survival for more 
than 5 years are 0.15, 0.60, and 0.25, respectively, for medical therapy. Note that 
these three probabilities sum to 1. For surgery, the first chance node concerns the 
probability of surviving surgery. The literature and expert opinion indicate that a 
75-year-old woman in Mrs. Smith's current condition would have only a 70% (i. e., 
P= 0.70) chance of surviving a mitral valve commissurotomy. By the law of additiv­
ity (Eq. 17.2), the probability of operative death must be 0.30. 

If she survives surgery, Mrs. Smith may experience any of the five possible out­
comes. Let us say that our estimates of the probabilities of these outcomes, condi­
tional on her surviving the operation, are 0.05 for death before 1 year, 0.10 for sur­
viving 1-5 years with morbidity, 0.20 for surviving 1-5 years without morbidity, 
0.25 for surviving more than 5 years with morbidity, and 0.40 for surviving more 
than 5 years without morbidity. Note once again that these probabilities sum to 1. 
The branch probabilities are often written into the decision tree just after the branch 
point (chance nodes), as shown in Fig. 17.5. 

The second rule for combining probabilites concerns events that occur subse­
quent to, and possibly conditional upon, prior events. This rule will tell us how to 
calculate overall probabilities for the final outcomes representing the terminal 
branches of the decision tree. If B is an event that can occur in a person who has 
already experienced event A, then the probability that both A and B will occur is the 
product of the probability of A and the conditional probability of B (given A). In the 
notation of conditional probability, 

P(A and B) = P(A) x P(BIA) (17.3) 

The probability of each branch of the tree is conditional on the probabilities of the 
preceding larger branches, i. e., the branches lying to its left on the tree, all the way 
back to the first chance node. Thus, the number of probabilities multiplied together 
for each terminal branch is the same as the number of chance nodes occurring 
between the decision node and the terminal branch. 

In our example, the terminal branches representing the possible final outcomes 
for surgery are conditional on surviving the operation. The overall probabilities 
associated with these terminal branches are calculated by multiplying the probability 
of surviving surgery (P= 0.70) by the conditional probability of each outcome. 
Thus, for death before 1 year the overall probability is (0.70)(0.05) = 0.035. The 
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Table 17.1. Overall probabilities of terminal branches in decision tree shown in Fig. 17.5 

Terminal branch 

Medical therapy 
Death < 1 year 
Survival 1-5 years, morbidity 
Survival > 5 years, morbidity 

Surgery 
Dies at surgery (death < 1 year) 
Survives surgery 

Death < 1 year 
Survival 1-5 years, morbidity 
Survival 1-5 years, no morbidity 
Survival > 5 years, morbidity 
Survival > 5 years, no morbidity 

Probability 

0.15 
0.60 
0.25 

0.30 

0.035 
0.070 
0.140 
0.175 
0.280 

probabilities of each of the nine terminal branches of the decision tree in Fig. 17.5 
are listed in Table 17.1. Note that, consistent with the additivity rule, the sum of the 
overall probabilities for the five terminal branches for operative survival is 0.70, the 
probability of operative survival itself. 

17.3.2 Utilities 

The other major constituents required for decision analysis are utilities. When only a 
single dichotomous outcome is involved, utility assessment is straightforward. One 
need only decide which of the two outcome categories is preferred, and the decision 
that yields the highest average probability of that outcome category is favored. In 
the case of Mrs. Smith, if 5-year survival (yes or no) were the single outcome of 
interest, we would need "only" find out whether medical therapy or surgery is asso­
ciated with a higher 5-year survival rate in women like Mrs. Smith, and then act 
accordingly. 

As we have seen, however, other outcomes are important. Mrs. Smith is already 
75 years old and may care far more about I-year survival than 5-year survival. Since 
she is a widow who lives alone, she is also likely to prefer a treatment that reduces 
her breathlessness and enables her to go out, walk up the stairs to her apartment, 
and care for herself without assistance. Decision analysis requires that all outcomes 
be rated on a single utility scale. How can this be achieved? In other words, how can 
we consider all these outcomes simultaneously, and how do we go about weighting 
their relative utilities? 

The best way of answering these questions is to consult the persons who will be 
directly affected by the decision under analysis. Whereas clinicians, researchers, and 
other experts are required for estimating probabilities, patients and the "general 
public" are often best able to assign utilities to various outcomes. In the case of 
Mrs. Smith, the best decision for herwill depend on the relative weight she places on 
1-year survival, 5-year survival, symptoms, and functional independence. Similarly, 
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if the decision is a public health intervention, it might be wise to poll a representative 
sample of the community in which the intervention will take place. 

Assignment of utilities according to a single utility scale is usually facilitated by 
first ranking the outcomes in order of preference. Although any scale can be used, a 
frequent strategy is to "anchor" the utility scale by assigning a utility of zero (u=O) 
to the least desirable outcome and u= 1 to the most desirable outcome. People 
usually have no trouble deciding the outcomes they find least and most desirable, so 
this "anchoring" is easily accomplished. 

Assigning utility weights for intermediate outcomes is a bit trickier. Nonmathe­
matically inclined persons may find it difficult to assign numerical values to the pos­
sible outcomes, and clinicians often feel awkward asking them to do so. Translating 
each outcome into a lottery provides an operational definition of utility: given the 
"anchoring" outcomes assigned utilities of 0 and 1, the utility of any intermediate 
outcome is equivalent to the probability of winning the most favored outcome (i. e., 
the one with u= 1) over the least favored one (u=O) in a lottery in which the 
respondent would be indifferent between trying the lottery and being guaranteed 
the outcome of unknown utility. For example, if the patient is indifferent between a 
0.7 chance of winning the lottery and a promise of the outcome of unknown utility, 
the latter outcome has a utility of 0.7. 

In fact, if this "indifference point" accurately reflects the patient'S values, the 
assignment of any utility other than 0.7 would lead to incoherence. If the utility 
scale were in dollars, and the patient were willing to pay any price other than 
70 cents for the outcome in question, another party could make a "dutch book" 
against him (i. e., would be guaranteed to make money off him) if the lottery were 
repeated many times. The other party would choose the lottery (with a probability 
of 0.7 of winning a dollar) whenever the patient's price dropped below 70 cents and 
would choose the outcome in question whenever the price rose above 70 cents. 

Returning to the decision tree for Mrs. Smith, her physicians would need to elicit 
her utilities for each of the five possible final outcomes: (1) death before 1 year; 
(2) survival for 1-5 years with continued morbidity (symptoms and functional 
impairment); (3) survival for 1-5 years without significant morbidity; (4) survival 
for > 5 years with morbidity; and (5) survival for > 5 years without morbidity. 
Mrs.Smith would have no trouble ranking (1) as the least desirable and (5) as the 
most desirable, so these would be assigned utilities of 0 and 1 respectively. 

She might then be asked how many years with morbidity she would trade (i. e., 
be indifferent to exchanging) for 1 year without symptoms or functional impair­
ment. Suppose she said two, indicating that morbidity-free survival was worth twice 
as much to her as survival with morbidity. Then outcome 2 should have a utility half 
that of outcome 3, and outcome 4 should have a utility half that of outcome 5. 

The only problem remaining is asking her to indicate and quantitate her prefer­
ence for outcome 3 vs outcome 4. Would she prefer 1-5 years without morbidity or 
> 5 years with morbidity, and by how much? If we assume that the average length 
of survival in patients in outcome group 4 (> 5 years) is double that in group 3 
(1-5 years), then consistency dictates that their respective utilities should be equiva­
lent. 

So the entire utility scale problem is now solved. According to Mrs. Smith's pref­
erence, the five outcomes should have utilities of 0, 0.25, 0.50, 0.50, and 1 (see 
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Table 17.2. Assigned utilities (u;'s) of five possible final outcomes for Mrs. Smith 

Outcome 

1. Death < 1 year 
2. Survival 1-5 years, morbidity 
3. Survival 1-5 years, no morbidity 
4. Survival > 5 years, morbidity 
5. Survival > 5 years, no morbidity 

o 
0.25 
0.50 
0.50 
1 

Decision Analysis 

Table 17.2). The combination of morbidity and mortality into a single utility scale is 
analogous to a concept known as quality-adjusted lifo years. Instead of using a utility 
scale from 0 to 1, we might have "translated" each outcome into an equivalent num­
ber of quality-adjusted life years and used the latter itself as the scale. The advan­
tage of the 0-to-1 u-scale, however, is the equivalence to the "indifference" lottery 
probabilities discussed earlier. 

17.4 Completing the Analysis 

17.4.1 Maximizing Expected Utility 

To complete the decision analysis, we simply calculate the expected utility UE, for 
each of the k decision branches of the tree by multiplying the probability Ph of each 
terminal branch by its corresponding utility Uik and then summing over all terminal 
branches leading to that decision: 

(17.4) 

Table 17.3 shows the calculation of expected utilities for our example. For medical 
therapy, UEm =0+0.150+0.l25=0.275. For surgery, UE,=0+0+0.0175+0.070+ 
0.0875 + 0.280 = 0.455. 

The final step is to choose the decision that maximizes average utility. Since 
0.455 is higher than 0.275, surgery is chosen over medical therapy for Mrs. Smith. 

17.4.2 Sensitivity and Threshold Analyses 

The "correctness" of a decision based on maximizing expected utility depends on 
the probability and utility assessments used in the analysis. Both types of assessments 
are fraught with uncertainty. The subjective nature of utility assessments is readily 
apparent, but even probabilities often require either expert opinion or subjective 
adjustment of frequency data reported in epidemiologic studies that contain 
methodologic imperfections and whose pertinence to the particular type of patient 
under analysis may be questionable. Faced with such uncertainty, it is important to 
consider the impact that different probability or utility assessments could have on 
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Table 17.3. Expected utilities (UE;'s) for decision tree shown in Fig. 17.5 

Terminal branch 

Medical therapy 
Death < 1 year 
Survival 1-5 years, morbidity 
Survival > 5 years, morbidity 

Surgery 
Dies at surgery 
Survives surgery 

Death < 1 year 
Survival 1-5 years, morbidity 
Survival 1-5 years, no morbidity 
Survival > 5 years, morbidity 
Survival > 5 years, no morbidity 

PiX Ui 

0.15xO =0 
0.60 X 0.25 = 0.150 
0.25 X 0.50=0.125 

0.30 X 0 =0 

0.035 X 0 =0 
0.070 X 0.25 = 0.0175 
0.140 X 0.50 = 0.070 
0.175 X 0.50 = 0.0875 
0.280 X 1 = 0.280 

UE,=I.(Pi,X ui)=0.455 
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the analysis, especially when the expected utility of the preferred decision is only 
slightly higher than the others. The process of varying the probabilities and utilities 
is called sensitivity analysis. 

Sensitivity analysis assesses whether the decision choice would change with (i. e., 
is sensitive to) feasible changes in the component probabilities or utilities. It is some­
what analogous to using confidence intervals around means, proportions, or relative 
risks. We may be able to provide reasonable ranges for probabilities and utilities that 
incorporate our uncertainties, and we may be far more comfortable with the range 
than we are with any single point estimate. If the decision associated with the maxi­
mum expected utility remains unchanged, we can then be more confident that that 
decision is the correct one. 

Returning to our example, if the probability of dying at surgery were 0.50 
instead of 0.30, would surgery still be preferred over medical therapy? The expected 
utility for the surgical decision branch now becomes five sevenths (i. e., 0.50/0.70) of 
0.455 (the value obtained with a probability estimate of surviving surgery of 0.70), 
or 0.325. Since 0.325 is still higher than 0.275, surgery would still be preferred over 
medical therapy for Mrs. Smith. In other words, the decision favoring surgery is not 
sensitive to an operative mortality of 50%. If operative mortality were as high 
as 70%, however, the average utility of surgery would be only (0.30/0.70) of 
0.455 = 0.195, and medical therapy would be preferred. 

We can also test the sensitivity of the decision to changes in utilities. In 
Mrs. Smith's case, we need only consider a reduction in the utility of morbidity-free 
survival (since any increase in that utility would further favor surgery) and an 
increase in the relative "disutility" of death in less than 1 year. If, for example, sur­
vival for at least 1 year were of paramount importance to Mrs. Smith, and subse­
quent survival with morbidity were only slightly less valuable to her than survival 
without symptoms, the utilities of the five outcomes listed in Table 17.2 might be 0, 
0.60, 0.70, 0.90, and 1, instead of 0, 0.25, 0.50, 0.50, and 1. If the probabilities 
remained unchanged from those shown in Fig. 17.5, the expected utility for medical 
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therapy would be (0.15)(0) + (0.60)(0.60) + (0.25)(0.90) = 0.585, and that for 
surgery (0.30)(0) + (0.70)(0.05)(0) + (0.70)(0.10)(0.60) + (0.70)(0.20)(0.70) + 
(0.70)(0.25)(0.90) + (0.70)(0.40)(1) = 0.5775. In other words, the two decisions 
would have approximately equal expected utilities, with medical therapy very 
slightly preferred. 

Finally, probabilities and utilities can be varied simultaneously. Although changes 
in individual probability or utility assessments may not alter the final decision, the 
effect of combined changes in several utilities and probabilities can create a "worst­
case" scenario that maximally stresses the sensitivity of the analysis. If the "worst­
case" combination does not result in a change in decision, the analyst can be quite 
confident that the decision chosen is the correct one. 

Usually, however, sensitivity analysis will indicate that the decision would change 
under different probability or utility assessments. This does not signal defeat for the 
analyst. Rather, it helps focus the attention of the decision-maker on the crucial fac­
tors upon which the decision hinges. If changes in one key probability estimate 
would lead to a different decision, for example, attempts should be made to obtain a 
more confident estimate (i.e., better information), perhaps by carrying out further 
research. If utility values are the key, more careful questioning of the patient or the 
target population may yield more valid utility assessments. Even when better assess­
ments are not achievable, however, it is often helpful for the decision-maker to rec­
ognize the sources of uncertainty leading to the chosen decision. 

Once it is apparent that some change can affect a decision, it is often useful to 
determine the threshold probability or utility at which two decisions will have equal 
expected utilities, i. e., the point at which the decision-maker would be indifferent 
between the two. This aspect of sensitivity testing is known as threshold analysis and 
is achieved by assigning an unknown value to the probability or utility in question, 
expressing the expected utility for each decision algebraically, setting the algebraic 
terms for the two decisions as equal, and solving for the unknown (threshold) value. 

For our example, suppose we wanted to know the operative survival rate 
at which Mrs. Smith's physicians should be indifferent between surgery and med­
ical therapy. We assume that all other probabilities and utilities remain unchang­
ed. The expected utility for medical therapy would still be 0.275, of course. If we 
let x be the probability of surviving surgery, then the expected utility of surgery 
would be: 

(1 - x )(0) + (x)(0.05) (0) + (x)(0.1O)(0.25) + (x)(0.20)(0.50) + (x) (0.25)(0.50) + 
(x)(0.40)(1) = 0.65x 

We then set the two expected utilities as equal: 

0.65x= 0.275 

Solving for x, X= 0.275 = 0.423 
0.65 

Thus, at a surgical survival rate of 42.3%, the two decisions result in equal expected 
utilities. This is useful information. It indicates that, assuming the other probabilities 
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and utilities are valid, any surgical survival rate above 42.3% should favor surgery. If 
the surgeon is sure that Mrs. Smith's chance of surviving the operation is higher than 
this figure, he should operate; if it is lower, he should not. 

17.5 Cost-Benefit Analysis 

Comparing the average utility of two or more decisions is not the only type of anal­
ysis required by the decision-maker. Even if a decision analysis indicates which deci­
sion among two or more is to be preferred, it does not indicate the financial costs of 
carrying out the decision or whether the expected health benefits of the decision will 
be worth those costs. 

Cost-benefit analysis is a method of computing the net costs or benefits of a 
given clinical decision or health practice [5-7). These costs and benefits can be con­
sidered from the vantage point of the individual patient or of society at large 
(depending on who is paying and who is benefiting), although the societal perspec­
tive is far more frequent. Like decision analysis, it makes use of expected utilities. 
Since costs and benefits must be compared directly, however, it requires that all utili­
ties, including years of life, morbidity, and functional performance, be valued mone­
tarily. This may be fairly straightforward for such benefits as savings in hospitaliza­
tion and other medical costs associated with a given favorable outcome, but how 
does one go about assigning monetary values to increased life span or freedom from 
pain or disability? 

Putting price tags on human life, death, and suffering is exceedingly difficult at 
best. Many clinicians or patients may consider it distasteful or even unethical. None­
theless, financial resources for health care are not unlimited and must be balanced 
against other needs of individuals and societies. Just because a given practice pro­
duces health benefits does not necessarily justify paying for it. No one would spend 
his or her life savings to get rid of a hangnail. Similarly, some cost threshold must 
exist above which the expected benefit of a decision or practice is not worth its price. 
Furthermore, even if the price of a certain benefit is reasonable, a society may not be 
able to afford all such benefits. Priority may have to be given to those with the high­
est ratio of benefits to costs. 

Cost-benefit analysis can facilitate these types of decisions by making costs and 
benefits explicit [5-7). Health benefits (the differences in expected utility achieved 
when the health service or practice is provided vs when it is not) are expressed in 
monetary terms. They include savings in medical care costs realized by the health 
service or practice under analysis. Prolonged survival and decreased morbidity are 
often valued by considering the anticipated corresponding increase in productivity, 
i. e., earning power. (Unfortunately, relief of pain, anxiety, and functional depen­
dence then count for nothing unless productivity is affected.) 

On the cost side of the "ledger" are included such items as equipment, person­
nel, and indirect costs (e.g., paying for rent, utilities, and other overhead at the site 
at which the practice or service will be carried out). Choices have to be made 
between using average costs or marginal costs (the costs of paying for one addi­
tional unit of the service) for these items, and expenditures must be adjusted for 
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future inflation and discounted over the duration of the service to compensate for 
the lost future earning power of the money expended. Sensitivity analysis can be 
carried out to assess the extent to which the service becomes more or less cost bene­
ficial with changes in the underlying assumptions about expected benefits, costs, and 
discount rates. 

As an example, consider the example of annual mammography (breast roentgen­
ography) screening for breast cancer. The anticipated benefits associated with early 
diagnosis and treatment of breast cancer include lower mortality and less need for 
subsequent hospitalization, surgery, radiation therapy, and chemotherapy. The 
lower mortality must be valued in monetary terms by estimating the average increase 
in earnings, plus the savings of costs that would have been incurred in paying some­
one else to carry out usual domestic tasks, associated with the number of women­
years gained by screening. The costs are all the direct and indirect costs incurred by 
the population-wide screening program. If the monetary value of the total antic­
ipated benefits exceeds the costs (after adjustment for inflation and the discount 
rate), the screening is declared to be cost-beneficial. 

Cost-benefit analyses are best accomplished by collaboration among clinicians, 
economists, and medical or public health administrators. Politicians are often partic­
ularly interested in such analyses, because it is they who have to determine budgets 
and thus make choices about how much to spend on medical care in general and 
specific services in particular. The major problem with cost-benefit analysis, how­
ever, arises in considering the value of human life and physical and psychological 
suffering. The analyst must either give them a price tag or ignore them completely. 
Neither of these solutions is entirely satisfactory, either ethically or scientifically. 

17.6 Cost-Effectiveness Analysis 

Cost-effectiveness analysis is a hybrid between cost-benefit analysis and decision anal­
ysis [7-9]. As in cost-benefit analysis (with which it is often confused), utility is 
expressed in terms of expected health benefit, i. e., the difference in expected utility 
obtained when a service is provided and when it is not, and expected health benefits 
are balanced against expected costs. It is also similar to cost-benefit analysis in that 
costs and benefits are usually considered from a societal vantage point (although 
either technique can be based on the perspective of the individual patient if he or she 
will be paying the bill out of pocket). Like decision analysis, cost-effectiveness anal­
ysis compares two or more health services or policies. Also like decision analysis, but 
unlike cost-benefit analysis, health benefits are valued on a nonmonetary utility 
scale. The service or practice associated with the lowest monetary cost per unit of 
benefit achieved is judged to be most cost-effective. 

As an example, consider the decision of a public health official in a developing 
country who wishes to reduce the infant mortality rate (IMR) in his country. He has 
only a limited budget and wants to know whether he would be better off providing 
caloric supplementation or tetanus immunization to pregnant women. His country 
cannot afford both, so he wants to provide the service with the greatest impact for a 
given monetary input. Caloric supplementation would increase intrauterine growth; 
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since infant mortality is inversely proportional to birth weight, the IMR would be 
correspondingly reduced. Tetanus immunization would not affect birth weight, but 
birth weight-specific IMR should be reduced by eliminating the neonatal tetanus 
that can occur after deliveries in unsanitary settings (often at home in developing 
countries). 

To carry out the analysis, each service must be assessed in terms of the target 
benefit and the associated costs. It is often convenient to base the calculations on an 
arbitrary number of persons served. For a population of 10000, the benefit of each 
service would be the number of infants who would die without the service but live 
with it. The cost of each service would be calculated as in cost-benefit analysis and 
would include personnel, equipment, and indirect costs and would take both infla­
tion and the discount rate into account. The service associated with the lower cost 
per unit benefit is then declared more cost-effective. For our example, the public 
health official would choose between caloric supplementation and tetanus immuni­
zation by comparing the cost of saving one infant life with one service vs the other. 
Sensitivity analyses could then be carried out by varying estimates both of the costs 
and the reduced IMR achieved for each service and observing the effect on the 
overall result. 

As with decision analysis, morbidity, pain, suffering, and functional impairment 
can be combined with mortality on a single health utility scale. The benefits can be 
expressed in terms of quality-adjusted life years, for example, with the target popu­
lation polled to derive the formula for quantitative adjustment. The fact that such 
outcomes do not have to be valued in monetary terms makes cost-effectiveness anal­
ysis more palatable than cost-benefit analysis to many clinicians and lay persons. 
Since procedures for estimating costs are identical to those used.,in cost-benefit anal­
ysis, consultation with a health economist is often essential to arrive at valid esti­
mates. 
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Chapter 18: Life-Table (Survival) Analysis 

18.1 Introduction 

In Chapter 6 we considered a variety of ways of analyzing the results of a cohort 
study. When the outcome variable is continuous and the exposure is dichotomous, 
the main comparison is the mean outcome in the two groups defined by exposure 
status. We later devoted nearly an entire chapter (Chapter 13) to inferential statisti­
cal techniques used in testing an observed difference in means. 

When the exposure is dichotomous and the outcome variable is categorical, the 
main analysis is a comparison of rates in the two exposure groups. In the common 
situation of a dichotomous outcome, the ratio of the two rates becomes a relative 
risk, the statistical significance of which can be tested using a X2 or Fisher exact test 
or by constructing an appropriate confidence interval (see Chapter 14). 

In this chapter, we shall once again focus on cohort studies with dichotomous 
outcomes. But the kind of cohort study we are considering here is a special, albeit 
quite common, type in which the duration of follow-up varies among individuals in 
the cohort. Rarity of "exposure" may require that enrollment of the study cohort be 
spread over a considerable period of time, such as in studying survival among pa­
tients with a rare disease or the risks and benefits of a complex or costly treatment. If 
the outcome requires many months or years to develop, study subjects will have 
been followed for varying lengths of time. The first subject enrolled will have the 
longest potential duration of follow-up (i. e., if he does not develop the outcome and 
does not withdraw from the study), and the most recently enrolled subject will have 
the shortest. Since the investigator must close the study at some date, she cannot 
know if the subjects who have not yet developed the outcome at study termination 
would have done so had they been followed up longer. 

Lifo-table analysis (also called survival analysis) is a statistical technique that 
allows the investigator to calculate a probability of developing a given outcome that 
takes into account the duration of follow-up. It makes maximum use of all data on a 
cohort, including those members who withdraw from the study or are lost to fol­
low-up for other reasons. Although the technique owes its origin and name to vital 
status as the study outcome (death vs survival, hence the terms lifo-table and survival 
analysis), it can be used to examine the distribution of time to occurrence of any 
dichotomous outcome. It can be used for either descriptive (single exposure group) 
or analytic (two or more exposure groups) cohort studies and applies equally well to 
observational and experimental (clinical trial) designs. 
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Before discussing the anatomy and physiology of life tables, I shall begin with a 
clinical example and then examine the various ways in which the data could be ana­
lyzed. After a review of the limitations of each of the alternative strategies, the ration­
ale for life-table analysis should be evident. 

18.2 Alternative Methods of Analysis: an Example 

Consider a descriptive study of survival in a cohort of 15 adolescents with osteo­
genic sarcoma (a rare bone cancer) of the femur treated with a combination of leg 
amputation and a new chemotherapy regimen at a single tertiary care referral cen­
ter. The first patient to receive the regimen began treatment on October 9, 1979. As 
shown in Fig. 18.1, 14 additional patients received a similar treatment, with the most 
recent enrolled on January 18, 1985. The study was terminated on October 9, 1985, 
exactly 6 years after its inception. 

How could the survival experience of this cohort best be summarized? Several 
commonly used approaches are listed below, along with a brief discussion of their 
strengths and limitations. 

Beginning of study End of study 
I 

Patient number 
I 

19791 
1980 1981 1982 1983 1984 1985 1 

Years followed 

1 I Death 1 3.5 
1 ~live 2 
1 

5.8 

3 1 IWithdrawn 
1 1.4 

4 
1 

Death 1 4.4 
1 

5 1 Death 4.3 
1 

I I 
6 ~live 4.1 

1 1 I 
7 1 f'\Fve 3.9 

8 IAlive 3.6 
I I 

9 Withdrawn 2.5 

10 
I I 

r-\ive 2.6 

11 Death 2.4 

12 
1 I 
f'\jive 2.3 

13 IAlive 1.8 

14 Hive 1.2 

15 -!Alive 0.7 

1 Total = 44.5 
I I 

Fig.1S.1. Survival of 15 osteogenic sarcoma patients receiving new treatment regimen 
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18.2.1 Mean (Average) Duration of Survival 

Mean survival is probably the least desirable alternative. The main problem is what 
to do about the two patients who moved away and the nine who are still alive at the 
end of the study. Should they be used in calculating the mean? Their duration of 
survival is, of course, unknown. If the duration of their follow-up is used instead, 
the overall mean will be underestimated, since all of the lost or still-living patients 
would have lived at least slightly longer than they were actually followed up. If, on 
the other hand, these patients are omitted, the mean will be based only on the four 
patients who were known to have died during the 6 years of follow-up. This mean 
would be unrepresentative of the entire cohort and would be biased toward short 
survivals, since it was based on those patients who were known to have died soonest. 

The other problem with using the mean is the effect of outliers. Patients with 
very short or very long survival will have an undue impact on the mean for the 
cohort. The four deaths in our example occurred at 2.4, 3.5, 4.3, and 4.4 years after 
the start of treatment, for an overall mean of 3.7 years. If the first patient had died at 
0.2 years instead of 2.4 years, the mean would have been only 3.1 years. Mean sur­
vival time is probably the least desirable method of analysis. 

18.2.2 Median Duration of Survival 

Although use of the median instead of the mean eliminates the potent effect of out­
liers (if the first death had occurred at 0.2 years instead of 2.4 years, the median sur-

. I h f . h d· d Id . 3.5 + 4.3 ) . . viva among t e our patients w a Ie wou remain = 3.9 years, It IS 
2 

impossible to calculate for the entire cohort unless at least half of the subjects are 
known to have died at the time follow-up is terminated. 

18.2.3 Overall Rate of Survival 

Here the data are expressed in categorical, rather than continuous, form, i. e., as a 
rate. But a rate consists of a numerator and a denominator, and here again we get 
into difficulty. Who should be counted in the denominator? If we include the two 

patients lost to follow-up, the survival rate will be .!.!, or 73%. This may be too opti-
15 

mistic, because one or both of the lost patients may have subsequently died without 
our knowing it. But even in the absence of study losses, overall survival rate is un­
satisfactory because it contains no information about the duration of follow-up. If 
our patients had been followed up for a maximum of 2 years, for example, instead 
of 5.8 years, all (i. e., 100%) would have been classified as survivors. Conversely, if 
all had been followed for 100 years, survival (including that of the investigator!) 
would have been 0%. 
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18.2.4 n-Year Survival Rate 

The most commonly used approach is to calculate a rate of survival for a given 
length of time (less, of course, than the duration of the study). For our example, we 
could calculate a I-year, 2-year, or 5-year survival rate. This approach overcomes 
the major objection to the overall survival rate, because it includes duration of fol­
low-up in its definition. It does not resolve the "denominator problem," however, of 
how we deal with patients who are lost to follow-up before n years elapse or with 
those patients who are still alive at study termination but who have been followed 
for fewer than n years. 

For example, only one of the osteosarcoma patients in our example was known 
to survive 5 years or more. Four more were known to have died in less than 5 years, 
while the remaining ten either were lost (two) or were still alive at the end of the 
study (eight). If the latter ten are included in the denominator, the 5-year survival 

rate is only 1.., or 6.7%. This is overly pessimistic, since one or more of the ten lost 
15 

or remaining patients might well have lived G; 5 years. Conversely, the 5-year mor-

tality of -±-, or 27%, is overly optimistic, since it assumes that the ten incompletely 
15 

followed patients would all have survived at least 5 years. If the ten patients are 

excluded from the denominator, the 5-year survival rate becomes 1., or 20%. This is 
5 

also too low, however, because it does not take into account the known years of sur­
vival among the exclusions. The same result would have been obtained if all ten had 
been lost immediately after enrollment and had had no observed survival. 

18.2.5 Person-Years Approach 

Another approach (discussed in Chapter 6) uses the length of follow-up for each 
subject, sums this value for each member of the cohort to obtain a total number of 
person-years of follow-up, and then uses this figure as the denominator. Subjects 
lost to follow-up or remaining alive at study termination thus contribute to the 
denominator and appropriately reduce the mortality rate. Consequently, this 
method is generally superior to the four discussed previously. In our example, the 

total number of person-years is 44.5, and the mortality would thus be _4_, or 
44.5 

0.090 deaths per person-year. 
The major limitation of the person-years approach arises in situations where the 

risk of death (or other study outcome) is not constant over time. Since the same 
100 person-years can accumulate from two subjects followed for 50 years or 50 sub­
jects followed for 2 years, a mortality expressed in terms of person-years can be mis­
leading. In our example, eight of the 15 patients contributed < 3 years to total fol­
low-up time for the cohort. If relapses and death are expected to occur mostly after 
3 years, the calculated mortality of 0.090 per person-year may be too optimistic. 

This type of problem is particularly likely to occur for exposures with long latent 
periods. If most radiation-induced cancers occur 20 years or longer after exposure, 
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for example, a cohort study with a sample size of 1000 but only a IS-year average, 
and a 20-year maximum, follow-up might detect few or no excess cases of cancer 
per 15 000 person-years. A cohort of 500 followed for an average of 30 years, how­
ever, would detect a much higher number of excess cases for the same 15 000 per­
son-years. 

18.2.6 Life-Table Analysis 

Life-table analysis has many of the same attractive features as the person-years 
approach. It utilizes information available on all study subjects, including those 
withdrawn from the study, regardless of duration of follow-up. But it has one addi­
tional advantage: it does not require a constant risk over time. All person-years are 
not treated as equivalent; those occurring soon after exposure are counted differ­
ently from those occurring later in the course of follow-up. It is thus the analysis of 
choice whenever there are unequal duration of follow-up and study withdrawals 
and when constancy of risk over time cannot be assumed. 

There are two principal techniques for carrying out a life-table analysis: the actu­
arial method [1, 2] and the Kaplan-Meier (or product-limit) method [2-4]. These will 
be described in turn in the following two sections. 

18.3 The Actuarial Method 

18.3.1 Requirements and Assumptions 

The first requirement for any life-table analysis is a clear indication of the starting 
point. This is often called the zero time and usually corresponds to the time of first 
exposure. When the exposure is a treatment and the study is a randomized clinical 
trial, the time of randomization is usually preferred. 

When the exposure is a disease, ascertainment of zero time becomes problem­
atic. Should it be the onset of symptoms? Time of diagnosis? First presentation for 
treatment? Since patients often differ as to when symptoms are first noticed (or ret­
rospectively recalled) in the course of their disease, onset of symptoms is usually a 
poor choice for zero time. Similarly, time of diagnosis will vary with the intensity of 
medical surveillance, the diagnostic acumen of the patient's clinician, and the use of 
laboratory tests capable of early detection (i. e., screening or case-finding). Date of 
first treatment for the disease is often used as zero time, because it is usually easy to 
determine objectively and because treatment is often (although not always) begun at 
a similar point in the disease's natural history. 

The second requirement is a well-defined study outcome. Not only must it be 
dichotomous; it must also not be subject to multiple episodes. Thus, death and 
chronic diseases are outcomes ideally suited to analysis by life tables. Diseases sub­
ject to multiple remissions and relapses can be studied using this technique, provid­
ing the outcome is defined as the occurrence or nonoccurrence of a first relapse. 
Examples of other outcomes for which life-table analysis is appropriate include first 
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metastasis, first hospitalization, and first physician visit. When several dichotomous 
outcomes are involved, each must be analyzed separately or the outcome must be 
defined in such a way as to incorporate a specific combination of interest, e. g., 
death or first relapse. 

Regardless of what outcome event is chosen, a decision must be made about 
whether all such events will be counted, only those from specific causes (e.g., death 
from myocardial infarction), or only those "attributable" to exposure. Suppose, for 
example, that one of the osteosarcoma patients in our example had died in an auto­
mobile accident. If the investigator is convinced that this death was totally unrelated 
to the underlying disease, then it should probably be counted as a loss to follow-up 
(withdrawal). Suppose further, however, that the patient was depressed because his 
disease was progressing and that he deliberately crashed the family car into a tele­
phone pole. Counting the death as a study withdrawal would lead to an overly opti­
mistic estimate of survival for the cohort. In other words, the suicide was actually 
caused by the osteosarcoma. 

This leads us more generally to the third requirement for the life-table analysis: 
losses to follow-up should be independent of the study outcome. If subjects who 
drop out are those doing particularly well or particularly poorly, then their loss will 
bias the results in the overall cohort. If our osteosarcoma patients had been trans­
ferred to a hospice facility as soon as their disease became unresponsive to treat­
ment, all four deaths would have been counted as withdrawals, and survival would 
have been calculated as 100%! Thus, life-table analysis assumes that lost subjects 
have an identical prognosis to those remaining in the cohort at that time. Actually, 
this assumption is also shared by other cohort analytic approaches (i. e., mean or 
median survival, overall or n-year survival rates, and person-years) whenever losses 
to follow-up occur. 

The fourth requirement is that the risk of the outcome is independent of calen­
dar time. In other words, the prognosis of subjects entering the study early should 
be no different from that of those enrolled toward the end. Although life tables do 
not assume that risk remains constant for any given subject over time, they do 
assume no major secular changes in prognosis for the overall cohort. If advances in 
supportive care or in treatment of adverse reactions to therapy resulted in a better 
prognosis among our osteosarcoma patients enrolled since 1982, for example, the 
overall survival of the cohort would largely reflect deaths occurring among patients 
treated earlier and thus would be overly pessimistic. 

The fifth and final requirement is that the risk of the study outcome remain con­
stant within intervals used in constructing the life table (see following subsection). 
Risk need not be constant from one interval to the next, but it must remain so within 
each interval. This is not a major restriction, since intervals of any length can be 
constructed and can vary within a given life table. Consequently, if the investigator 
suspects a possible variation in risk within one or more intervals, these intervals 
should be subdivided into smaller ones with constant risk, so that the constant risk 
requirement is satisfied. 

With these five requirements and assumptions in mind, we are now ready to 
construct the life table. 
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18.3.2 Constructing the Actuarial Life Table 

The first step in constructing the life table is to refer the timing of all "events" 
(including time to outcome, loss to follow-up, or end of study) to the zero time, 
rather than to calendar time. Figure 18.2 makes this conversion for the 15 patients of 
the osteosarcoma cohort. The corresponding life table is shown in Table 18.1; each 
column of the table will be discussed in turn. 

Years since zero time 

Patient number 0 2 3 4 5 6 

1 
I 

Death 

AIL I 2 

3 I Withdrawn 

4 I -JDeath 

5 I I Death 

6 I Alive 

7 I Alive 
I I 

8 Alive 

9 I Withdrawn 

I I 
10 Alive 

11 I Death 

12 I Alive 

13 
I Alive 

14 I Alive 

15 ~Alive 
I I 

Fig.lS.2. Survival of 15 osteogenic sarcoma patients with respect to time of initiating treatment 
(zero time) 

Table IS.1. Life table for 15 patients with osteogenic sarcoma (actuarial method) 

(1) (2) (3) (4) (5) (6) (7) (8) 
x Ix Wx r =/_ Wx dx qx=~ Px=l-qx Sx;=(Px,) 
Interval Subjects Subjects x x 2 Deaths 'x Survival (Px,) . .. (Px) 
(years) living at withdrawn Subjects at during Death rate rate Cumulative 

start of during risk during interval during during survival rate to 
interval interval interval interval interval end of interval 

0-1 15 1 14.5 0 0 1 1 
1-2 14 3 12.5 0 0 1 1 
2-3 11 3 9.5 1 0.105 0.895 0.895 
3-4 7 2 6 1 0.167 0.833 0.746 
4-5 4 1 3.5 2 0.571 0.429 0.320 
5-6 1 1 0.5 0 0 1 0.320 
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Column (1): Interval (x) 
This is the interval since zero time. As discussed in Section 18.2, the intervals need 
not be of equal length, but they should be short enough so that the risk of outcome 
is constant throughout (requirement 5). The intervals should be established a priori, 
i. e., before examination of the data. Otherwise, the investigator could influence the 
calculated survivals just by changing the interval boundaries. For our osteosarcoma 
example we have chosen yearly intervals. 

Column (2): Subjects Living at Start of Interval (Ix) 
For the first interval, this is the number of total subjects enrolled in the study. For 
succeeding intervals, 

(18.1) 

i. e., the number of subjects entering the previous interval minus the number with­
drawn (w) or developing the outcome (d) in the previous interval. 

Column (3): Subjects Withdrawn During Interval (wx) 

Withdrawn subjects include not only those who drop out or are lost to follow-up 
during the interval but also those still free of the outcome who were in that interval 
when the study ended. Withdrawn subjects are also referred to as censored subjects 
in much of the life-table literature. 

Column (4): Subjects at Risk During Interval (rx) 
Under the assumption that the risk remains constant within intervals (require­
ment 5), subjects who withdraw during an interval will be at risk, on average, for 
half the interval. Thus, the effective number at risk will be the number who enter the 

interval (Ix) minus half the number who withdraw (~x). 

Column (5): Deaths During Interval (dx) 

This is simply the number of subjects developing the outcome (e.g., death) during 
the interval. 

Column (6): Death Rate During Interval (qx) 
This is also called the hazard and is equivalent to the probability of a subject's devel­
oping the study outcome (death or other) during the given interval, conditional on 
his or her being free of the outcome (e.g., alive) at the start of the interval (i.e., 

qx= dx). 
rx 

Column (7): Survival Rate During Interval (Px) 
Since the outcome is dichotomous, the probability of not developing the outcome 
(e. g., of surviving) during the interval is simply 1 - qx. It, too, can be thought of as a 
conditional probability, since it depends on a subject being free of the outcome at 
the start of the interval. 
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Column (8): Cumulative Survival Rate to End of Interval (Sx) 
Because the Px's (column 7) represent successive conditional probabilities of remain­
ing outcome-free (e.g., of survival), the cumulative probability can be calculated 
using Eq.17.3, the multiplicative rule for combining conditional probabilities: 

(18.2) 

The Sx's are the main quantities of interest in life-table analysis. They represent the 
rates (or probabilities) of survival through the end of each interval in the table. Thus, 
for our osteosarcoma cohort, the I-year life-table survival rate is 100%, the 3-year 
rate is 89.5%, and the 5-year rate is 32.0%. Note that the latter rates are substantially 
different from (in this case, better than) those calculated without using the life table. 
For example, the ordinary (i. e., non-life-table) 5-year survival rate, even excluding 
the ten subjects not observed for;;;:; 5 years, was 20% (see Section 18.2). The differ­
ence arises because outcome-free duration is included for subjects lost to follow-up 
and for those followed for < 5 years at the end of the study. 

Life tables can be used to calculate cumulative rates of survival up to and includ­
ing the longest duration of follow-up. We were able to calculate an overall 5-year 
survival for the entire cohort even though only one patient was followed for 5 or 
more years. Therein lies the great advantage of life-table analysis. The paucity of 
observations at long durations, however, will lead to a loss in reproducibility of the 
sample estimate, i. e., a wide confidence interval (see Section 18.5). Life tables can­
not, of course, be used to estimate survival beyond the longest duration of follow­
up. 

The Sx's are often depicted graphically, as shown for our example in Fig. 18.3. 
The graph is also sometimes called a "life table" but usually goes under the name of 
survival curve. 
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6 Fig. 18.3. Survival curve for 
15 patients with osteogenic 
sarcoma (actuarial method) 
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18.4 The Kaplan-Meier (Product-Limit) Method 

The Kaplan-Meier (or product-limit) method [2-4] of life-table analysis is very simi­
lar to the actuarial method. There are two main differences: 

1. The Kaplan-Meier method does not group the times in which outcome events 
occur into intervals. Each row in the life table is defined by the time at which the 
next subject (or subjects) experiences the study outcome. Obviously, the exact 
time the outcome occurs must be known for each subject. (With the actuarial 
method, we need know only in which pre-established interval to place each sub­
ject experiencing the outcome.) This feature, of course, obviates the assumption 
of constant risk within intervals (requirement 5). 

2. Withdrawn subjects (once again, including those lost to follow-up and those still 
free of the outcome at the end of the study) are assumed to be at risk for the out­
come up to and including the time they are withdrawn. Since the rows in the table 
are determined by the next occurring outcome event(s), subjects who are with­
drawn between the times corresponding to two successive rows are used to calcu­
late the outcome rate for the first of the two rows, but not the second. In other 
words, only those subjects known to be at risk at the time each outcome event 
occurs are used to calculate the rate at that time. 

The data from Figs. 18.1 and 18.2, depicting survival times in 15 osteosarcoma pat­
ients, have been analyzed using the Kaplan-Meier approach in Table 18.2. Patients 
who are known to have died during the period of follow-up are ranked in ascending 
order of the time of death. The columns are then calculated as follows: 

Column (1): Time of the Next Occurring Death (t) 
The shortest time after beginning treatment at which death was known to occur was 
2.4 years. The other three deaths observed during follow-up occurred at 3.5, 4.3, 
and 4.4 years after the start of treatment. 

Column (2): Number at Risk for Death at Time t (r/) 
This includes all patients known to be alive just prior to time t and is thus equal to 
the number known to be alive at t plus the number of deaths at t. 

Table 18.2. Kaplan-Meier life-table analysis of survival in 15 osteogenic sarcoma patients 

(1 ) (2) (3) (4) (5) (6) 
r, d, d, p,=I-q, S'i = (p,,)(p,,) ... (p,) 

Time Number at Deaths 
q,=-

Survival rate Cumulative survival r, 
(years) risk Death rate rate 

2.4 10 0.100 0.900 0.900 
3.5 7 0.143 0.857 0.771 
4.3 3 0.333 0.667 0.514 
4.4 2 0.500 0.500 0.257 
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Column (3): Number of Deaths at Time t (dx) 

For our example, no two patients died at exactly the same time after beginning 
treatment, and thus all the entries in this column are 1's. 

Column (4): Death Rate at Time t (qt) 
This is analogous to the interval death rate or hazard (qx) calculated using the actu­
arial method. It can be interpreted as the instantaneous hazard at time t and is the 
probability of dying at time t conditional on having survived until t. 

Column (5): Survival Rate at Time t (Pt) 
The instantaneous survival rate Pt is analogous to the actuarial (interval) survival 
rate Px and is calculated as 1 - qt. 

Column (6): Cumulative Survival Rate up to and Including Time t (St) 
As with the actuarial method, the cumulative survival is obtained by multiplying Pt 
by the survival rates at all previous times. 

Because the S/s are computed for exact times, rather than for time intervals, survival 
curves based on the Kaplan-Meier method show abrupt drops ("steps") in percent 
survival corresponding to the times at which deaths actually occurred in the cohort 
under analysis. These steps become progressively larger as the number of subjects 
still at risk diminishes, i.e., toward the right side of the curve. Figure 18.4 shows the 
survival curve drawn from Table 18.2, along with the curve derived using the actuar­
ial method (Fig. 18.3) for comparison. As can be seen, the two methods yield fairly 
similar curves. 

As with the actuarial method, Kaplan-Meier life-table analysis can be used for 
dichotomous outcomes other than death. When exact times for outcome events are 
known, the Kaplan-Meier method obviates the need for arbitrary intervals. It may 
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Fig. 18.4. Comparison of Kaplan-Meier and actuarial survival curves for 15 osteogenic sarcoma 
patients 
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also result in improved statistical efficiency (analogous to analyzing continuous data 
in their native continuous form vs after they have been categorized), but this gain is 
counterbalanced by the fact that follow-up that ends between times when outcome 
events occur is ignored. In general, however, the Kaplan-Meier and actuarial meth­
ods give comparable results. 

18.5 Statistical Inference 

The techniques used for statistical inference are identical for the actuarial and 
Kaplan-Meier methods of life-table analysis, and they will thus be presented 
together. Interpretation of the results will differ somewhat for the two methods, 
however, corresponding to their basis on either time intervals (x's) or exact time 
points (t) respectively. 

18.5.1 Parametric Estimation 

Peto et al. [4] provide an easily calculated approximation for the standard error (SE) 
of Sx or St: 

(18.3) 

Thus, the SE for the 3-year survival in Table 18.1 can be computed as follows: 

S£(S3) = 0.895 VI -0.895 = 0.094 
9.5 

That for the 5-year survival is 

S£(S5) = 0.320 VI -0.320 = 0.141 
3.5 

As is often the case with longer durations of follow-up and correspondingly fewer 
observations, the standard error is larger for the 5-year survival. 

Once the standard error has been calculated, the standard normal (z-) distribu­
tion can be used to estimate a confidence interval around the Sx or St observed in the 
study sample. (This assumes a normally distributed sampling distribution of Sx's or 
S/s.) The 100(1- a)% confidence interval will include the "true" (target population) 
Sx or St with a probability of 1-a, where a is 0.05, 0.01, or some other chosen 
value. The 95% confidence intervals for the 3- and 5-year actuarially derived surviv­
als from our example are: 
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S3 = 0.895 ± 1.96(0.094) = 0.895 ± 0.184 = 0.711 to 1.000 
(since the survival rate cannot exceed 100%) 

S5 = 0.320 ± 1.96(0.141) = 0.320 ± 0.276 = 0.044 to 0.596 

18.5.2 Differences Between Two Survival Curves: z-Test 

Life tables can also be used to calculate the difference in survival (or other outcome) 
between two exposure or treatment groups. To illustrate, we shall introduce a new 
example of a randomized trial comparing first-relapse rates (defined as need for 
hospitalization) in chronic schizophrenics in remission treated with antipsychotic 
drugs alone (n= 18) vs those treated with drugs plus individual psychotherapy 
(n=22). The trial was terminated 48 months after inception, and the remission 
durations (times of first relapse) in months were as follows, with withdrawals (pat­
ients lost to follow-up or still in remission at the end of the trial) indicated with an 
asterisk: 

Drug therapy alone: 1*, 3, 6~·, 7, 7*, 7*, 11, 14*, 15, 18, 24, 27*, 30, 32, 
35*, 40, 42, 45'~ 

Drug plus psychotherapy: 3'~, 4, 7~·, 9, 9~·, 10'~, 11 *, 12~·, 17, 19*, 20'~, 22, 25'~, 
30':·,34,38,38'\ 39*, 41*, 42, 42, 44'~ 

The actuarial life tables and survival curves for the two groups are shown in 
Table 18.3 and Fig. 18.5. Patients relapsing or withdrawing at the common bound­
aries between intervals (e.g., 6 months) are assumed to have been in remission at 
that time but to have relapsed or withdrawn sometime in the succeeding month. 
They are thus "credited" to the next succeeding interval. 

Judging from Fig. 18.5 or from the last column of Table 18.3, the combination 
treatment (drug plus psychotherapy) appears superior. How likely is it that the 
observed difference is due to chance? In other words, what is the probability of 
obtaining a difference at least as large as the one observed, under the null hypothesis 
that the treatment groups represent random samples from target populations having 
the same probability of survival? 

There are two main approaches to testing two Sx's or S;s for a statistically sig­
nificant difference, i. e., to calculating the probability that sampling variation can 
explain the observed difference under the null hypothesis of no difference. The first 
assumes a normally distributed sampling distribution of S;s or S;s and involves a 
z-test of the difference between two Sx:s or St:s at any given Xi or ti: 

(18.4) 

where Sx;, and Sx;, (or S4, and S4,) are the Sx:s (or St:s) in the two groups being com­
pared. 
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Table 18.3. Actuarial life tables for randomized clinical trial comparing drug therapy alone with 
drug plus psychotherapy in 40 chronic schizophrenics 

(1) (2) (3) (4) (5) (6) (7) (8) 
x Ix Wx rx dx qx Px Sx 
Interval Number Number Number Relapses Relapse Contin- Cumula-
(months) entering with- at during rate ued tive 

interval drawn risk interval remis- continued 
slon remission 
rate rate 

1. Drug 0- 6 18 1 17.5 1 0.057 0.943 0.943 
therapy 6-12 16 3 14.5 2 0.138 0.862 0.813 
alone 12-18 11 1 10.5 1 0.095 0.905 0.736 

18-24 9 0 9 1 0.111 0.889 0.654 
24-30 8 1 7.5 1 0.133 0.867 0.567 
30-36 6 1 5.5 2 0.364 0.636 0.361 
36-42 3 0 3 1 0.333 0.667 0.241 
42-48 2 1 1.5 1 0.667 0.333 0.080 

2. Drug plus 0- 6 22 1 21.5 1 0.047 0.953 0.953 
psychotherapy 6-12 20 4 18 1 0.056 0.944 0.900 

12-18 15 1 14.5 1 0.069 0.931 0.838 
18-24 13 2 12 1 0.083 0.917 0.768 
24-30 10 1 9.5 0 0 1 0.768 
30-36 9 1 8.5 1 0.118 0.882 0.677 
36-42 7 3 5.5 1 0.182 0.818 0.554 
42-48 3 1 2.5 2 0.800 0.200 0.111 

100 
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Fig. 18.5. Su·rvival curves for RCT comparing drug therapy alone with drug plus psychotherapy in 
40 chronic schizophrenics (actuarial method) 
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For the actuarial continued remission rate at 24 months in our example: 

V
1-0.654 

S24, = 0.654 and SE(S24,) = 0.654 9 = 0.128 

S24,=0.768 and SE(S24,)=0.768V1-0.768 =0.107 
12 

Z= 0.654 - 0.768 = _ 0.683 
V (0.128)2 + (0.107)2 

The corresponding two-tailed P value is 0.495, and thus the difference is not statisti­
cally significant. In other words, we cannot reject the null hypothesis. A one-tailed 
test could be justified here, since there is no reason to think that drug therapy alone 
would be more efficacious than drug plus psychotherapy. The one-tailed P value 
would remain nonsignificant at P=0.247. A relative risk can also be calculated for 
the outcome through the end of any interval x or at any time t: 

RRx= l-S"", 
1- S"", 

RRt = l-S~, 
l-S~, 

For our example, the actuarial relative risk for relapse through 24 months is 

RR = 1-0.654 = 1.49 
24 1-0.768 

(18.5) 

Of course, the time at which the curves are to be tested should be established a pri­
ori, i. e., before the data are collected. Otherwise, the temptation would be great to 
examine the two curves visually and choose the interval where they are farthest 
apart. This would maximize the opportunity for finding a statistically significant dif­
ference, but the P value resulting from such post hoc significance testing would no 
longer correspond to the probability of obtaining the observed result by chance 
under the null hypothesis (see Chapter 12). If, for example, we had tested the two 
schizophrenic treatment regimens at 36 months, instead of 24 months, we would 
have obtained the following result: 

S36,=0.361 and SE(S36,)=0.361V1-0.361 =0.123 
5.5 

S36, = 0.677 and SE(S36,) = 0.677 V 1 - 0.677 = 0.132 
8.5 

Z= 0.361-0.677 =-1.751 
V (0.123)2 + (0.132)2 

RR = 1-0.361 = 1.98 
36 1-0.677 
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The corresponding two-tailed P value = 0.080, and the one-tailed P value = 0.040. 
We thus might have (unfairly) rejected the null hypothesis. 

The other approach to significance testing is called the log-rank test [2,4]. 
Despite its being a nonparametric test, the log-rank test is more efficient than the 
z-test, because it compares the entire survival curve, rather than just a single point 
on the curve (such as 24 months). It is also, therefore, less arbitrary. For each inter­
valor time in the table, the observed (0) number of relapses (or deaths, or other 
outcome) in each group is compared with the number expected (E) based on the 
total number of relapses observed and the number of subjects at risk in each group: 

(18.6) 

Thus, if there are an equal number of subjects at risk for a given interval, half of the 
observed relapses would be expected to occur in each group. The observed (0) and 
expected (E) relapses for each group are then summed over all intervals in the table 
and an overall X2 is calculated as follows: 

X2 = (1:01 - 1:E1)2 + (1:02 - 1:E2)2 
1:E1 1:E2 

(18.7) 

Finally, the calculated value of X2 is compared with tabulated critical values at one 
degree of freedom to obtain the corresponding P value. 

The log-rank test will be illustrated using our same example. The calculations 
using the actuarial life table (Table 18.3) are shown in Table 18.4. Despite the 
improved efficiency of the log-rank test, the calculated value of X2 is only 1.573 and 
does not achieve statistical significance, even with a one-tailed test. Similar results 
are obtained using the Kaplan-Meier life table. 

An overall relative risk can also be calculated using the log-rank approach: 

RO _ 1:01/1:E1 
~"overall- 1:02/1:E 2 

(18.8) 

1017.383 
For Table 18.4, RR,verall = = 1.80 

8/10.617 

This relative risk is probably clinically important. It indicates an 80% higher risk of 
relapse with drug therapy alone as compared with drug plus psychotherapy. The fact 
that this difference between the two treatments is not statistically significant, how­
ever, should make us concerned about inferring that the two treatments are equiva­
lent. Although P is not low enough to warrant rejection of the null hypothesis, the 
small sample size (low statistical power) has enabled a clinically important difference 
to "escape" statistical significance. In other words, the risk of a Type II error is high 
(see Chapter 12). 
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Table 18.4. Calculation of log-rank test for RCT comparing drug therapy alone (group 1) with 
drug plus psychotherapy (group 2) in 40 chronic schizophrenics (actuarial method) 

Interval Expected 
(months) Number at risk Observed relapses relapses = [ ~ ] (01 + O2) 

rXI + rXl 

x rx , rx, Total 0 1 O 2 Total El E2 Total 
(rx, + rx,) (01 +02) (El +E2) 

0- 6 17.5 21.5 39 1 2 0.897 1.103 2 
6-12 14.5 18 32.5 2 1 3 1.338 1.662 3 

12-18 10.5 14.5 25 1 1 2 0.840 1.160 2 
18-24 9 12 21 1 1 2 0.857 1.143 2 
24-30 7.5 9.5 17 1 0 1 0.441 0.559 1 
30-36 5.5 8.5 14 2 1 3 1.179 1.821 3 
36-42 3 5.5 8.5 1 1 2 0.706 1.294 2 
42-48 1.5 2.5 4 1 2 3 1.125 1.875 3 

l:= 10 l:=8 l:= 18 l:=7.383 l:= 10.617 l:= 18 

X2 = (l:01-l:El)2 + (l:02 -l:E2)2 = (10-7.38W + (8 -10.617)2 
l:El l:E2 7.383 10.617 

1.573; at 1 df, P> 0.10 

RR= l:O/l:El 1017.383 = 1.80 
l:02/l:E2 8/10.617 

18.5.3 Control for Confounding Factors 

Just as in the case of comparing two means or two proportions, a comparison of two 
survival curves may be biased by one or more confounding factors associated with 
both exposure and (independently of exposure) outcome. There are two main meth­
ods used for controlling for such confounding effects. 

The first method is stratification [4]. A separate life table is constructed for each 
stratum defined by the confounder or combination of confounders. (Obviously, 
continuous confounders must first be categorized.) Equation 18.6 is used to calcu­
late stratum-specific expected values for each interval or time in the life table. The 
stratum-specific observed and expected totals are then added together for all strata 
to get an overall total of observed and expected for each exposure group. These 
totals can be used in Eq.18.7 to calculate an overall X2, which is referred to critical 
values of X2 at one degree of freedom to derive the corresponding P value. This 
technique is analogous to the Mantel-Haenszel procedure (see Sections 6.3 
and 14.2.8). Finally, the overall relative risk can be estimated by applying the 
observed and expected totals to Eq.18.8. 

The second method of controlling for confounding is a multivariate statistical 
technique based on the proportional hazards model. As we have seen, life-table analy­
sis does not require that the risk (hazard) of the outcome remain constant through­
out the period of follow-up. Use of the actuarial method does assume a constant 
risk within intervals defining the life table, but not necessarily between intervals. 
That is why the slope of the actuarial survival curve changes from one interval to 
another, as seen in Figs. 18.3 and 18.5. 
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In comparing two survival curves, however, it is reasonable to assume that RR, 
the relative risk of developing the outcome, does remain constant over time. In other 
words, even if the slope (instantaneous hazard) of a given curve changes over time, 
the ratio of two slopes (the proportional hazard) corresponding to the survival of two 
exposure groups should remain fairly constant. Cox has formulated a regression 
procedure somewhat analogous to multiple logistic regression analysis (see Sec­
tion 14.2.8) that models the proportional hazard (relative risk) as a function of 
exposure and any number of continuous and categorical confounders. The details of 
the Cox regression procedure are beyond the scope of this text, and the interested 
reader is referred to more specialized references [5,6]. 
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Chapter 19: Causality 

19.1 What is a "Cause"? 

Most of this text has concerned the design and analysis of epidemiologic studies of a 
possible relationship between exposure to an agent, maneuver, or treatment and the 
development of a particular health outcome. Usually the hypothesis of interest is 
whether exposure is causally related to the outcome, which we can indicate by the 
following symbols: 

E - 0 

It is important to realize that the terms "exposure" and "outcome" do not denote 
distinct types of events or states. A variable considered an exposure in one situation 
can serve as the putative outcome in another. For example, in a study of cigarette 
smoking as a cause of lung cancer, the exposure variable is obviously cigarette smok­
ing. In a study of some health education intervention intended to reduce smoking, 
however, smoking is the outcome. Thus, deciding which variable is the exposure and 
which is the outcome involves a choice by the clinician or investigator. The only a 
priori constraint on this choice is temporality: exposure must be known to precede 
outcome. 

Given this understanding of the terms "exposure" and "outcome," the following 
definition of cause can then be offered: 

Exposure is a cause of outcome if exposure at a given level results in a different 
outcome (or level of outcome) than would have occurred without that (level of) 
exposure. 

We can summarize this definition as follows: 

E1 --.. - 0 1 if and only if E2 --.. - O2 

where E1 *" E2 and 0 1 *" O2. 
Although the definition seems unobjectionable, it is different from some conven­

tional notions of cause in that it insists on an alternative. No exposure-outcome rela­
tionship can be thought about in isolation. Before making a causal inference about 
whether a given exposure is the cause of an outcome, one must ask: "Compared with 
what?" For example, smoking one pack of cigarettes per day is a cause of lung cancer 
compared with not smoking, but not compared with smoking two packs a day. 
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At first glance, the definition may appear truly operational, because it indicates 
the steps that should be taken before making a causal inference. Change the expo­
sure (E1 to E2) and observe the outcome; if the outcome changes (01 to O 2), then 
causality can be inferred. The definition has intuitive appeal, because it is based on 
an experimental paradigm. The experimenter changes one factor and observes the 
effect on another. 

But things are not as straightforward as they appear. The definition is based on 
what would have occurred if the same exposed individuals had instead experienced 
the comparative exposure. But this is obviously not possible, at least not at the same 
period of time; the same individuals cannot experience two mutually exclusive expo­
sures simultaneously. Even a crossover experiment in which the same individuals 
successively experience different exposures cannot exclude the possibility that 
something else changed either in the individuals or in the environment to 
explain an observed change in outcome. It was just this impossibility, in fact, that 
led the philosopher Hume to argue for the empirical nonverifiability of cause and 
effect [1]. 

It is evident that the choice of the comparative exposure requires a choice by the 
clinician or investigator. How should the comparative exposure differ from the 
observed one? Should the difference be qualitative (e.g., a different agent) or 
quantitative (a different dose of the same agent)? If quantitative, should the level be 
higher or lower? By how much? Should it be total nonexposure? There are no right 
or wrong answers to these questions. The choice of comparative exposure is neces­
sarily subjective and fraught with uncertainty. But it is also unavoidable. 

The choice of comparative exposure can and should be guided by prior notions 
about what changes in exposure are feasible in the "real" world. After all, why is 
causal inference important in the first place? 

Two principal justifications can be offered. First, an understanding of cause is 
essential for change. In fact, we even defined the causal relationship between expo­
sure and outcome in terms of the change in the latter that occurs when the former is 
altered. A deliberate intervention (change in exposure) will be successful in altering 
outcome only to the extent that the exposure is a true cause of that outcome. 

We need to understand cause in order to act in the best interest of individual 
patients and of society at large. Engineers refer to this as "control" to distinguish it 
from "prediction." Exposure can be an excellent marker, or predictor, of outcome 
without necessarily being a true cause. But prediction does not necessarily imply 
control. (This is another way of relating the familiar epidemiologic maxim that asso­
ciation does not prove causation, and I shall have more to say about this issue later 
in discussing how causality assessments are actually made.) 

So, either as clinicians intervening to improve the health of individual patients or 
as a society implementing a policy to improve the public health, causal inference is 
essential. This orientation toward change dictates which comparative exposures 
should be contemplated. It is pointless to compare outcome between two exposures 
unless both of those exposures can be feasibly implemented. For example, in 
addressing the question of whether a serum cholesterol level of 350 mg/dl is a cause 
of coronary artery disease, it makes little sense to compare individuals with a serum 
cholesterol of 0 mg/ dl, since there is no real possibility of reducing serum choles­
terol to that level. 
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The second justification for studying cause is to learn about mechanism. For 
exposures that are not manipulable by man, change occurs, but it is nature's doing, 
not ours. When nature is doing the controlling, causal inference should involve a 
comparison of outcomes between two exposures that occur naturally. Thus, in infer­
ring whether the presence of a valine residue at position 6 of the beta chain of 
hemoglobin is the cause of sickle cell anemia, the appropriate comparison involves 
otherwise identical individuals with a glutamic acid residue in position 6, since it is 
glutamic ;rcid (and not some other amino acid) that is usually found in this position. 

Understanding fundamental biological processes is important not only to satisfy 
human curiosity about what makes nature "tick," but also to enable us to adapt our­
selves better to its requirements. Moreover, the history of science in general and of 
medical science in particular has amply demonstrated that knowledge of underlying 
causal mechanisms often serves as a basis for generating new hypotheses for inter­
ventions. For example, elucidation of the biochemical pathways of intermediary 
metabolism has led to specific nutritional and pharmacologic interventions to cor­
rect, at least partially, a variety of inborn metabolic errors. Consequently, this sec­
ond justification for understanding cause "feeds back" to the first. Epidemiologic 
research and clinical practice have always benefited, and should continue to benefit, 
from a knowledge of basic biologic mechanisms and the resulting improvement in 
the ability of the human species to adapt to and change the world around us. 

19.2 Necessary, Sufficient, and Multiple Causes 

In the definition offered in Section 19.1, the locus of cause was considered to be a 
group of individuals. This is the conventional framework for causal inference in 
epidemiology. But as discussed in Chapter 1, clinicians are primarily concerned with 
individual patients and thus often make causality assessments about individuals. An 
exposure that is known to cause a given outcome in groups can be necessary, suffi­
cient, both, or neither as a cause of that outcome in a given individual. 

A given exposure is considered a necessary cause of an outcome if the outcome 
does not occur in its absence. It is a sufficient cause if it always (i. e., in all individ­
uals) leads to the outcome without requiring the presence or absence of any other 
factors. 

Exposure to the tubercle bacillus is a necessary cause of tuberculosis in any indi­
vidual, but it is usually not sufficient. Otherwise, all family members and health 
providers who came in contact with the organism would develop the disease, which 
fortunately is not the case. Nutrition, living conditions, and immune status all playa 
role in determining whether an exposed person becomes infected. As discussed in 
Section 6.4, such factors are called effect modifiers, because they modify the effect of 
exposure among the individuals within a group [2]. Using our usual notation: 

E • 0 

t 
X 



Necessary, Sufficient, and Multiple Causes 257 

In biologic terms, we refer to such a relationship as synergism. Statistically, the rela­
tionship is identified by demonstrating an interaction between the two factors. (In a 
multivariate statistical model, inclusion of the product of the two variables would 
explain a significantly greater proportion of the total variance in outcome than a 
model containing only the two variables by themselves.) 

Intrauterine rubella infection at a critical time during the first trimester of preg­
nancy is sufficient to cause intrauterine growth retardation (IUGR) in all fetuses of 
nonimmune women. No other factor is required; the infected mother may not be 
short or undernourished and may not smoke or engage in other harmful practices 
during pregnancy. Since these other factors, alone or in combination, can themselves 
suffice to cause IUGR, however, intrauterine rubella infection cannot be considered 
a necessary cause of IUGR. 

For exposure to be both necessary and sufficient as a cause, its relationship with 
outcome must be perfectly specific, i. e., one-to-one. In other words, an individual 
can never be exposed without developing the outcome, and the outcome can never 
occur in a person who has not been exposed. We can then in fact consider the expo­
sure to be the cause of the outcome. This kind of exposure-outcome specificity is 
extremely rare. The relationship between microorganisms and specific infectious dis­
eases was originally thought to be a one-to-one correspondence and formed the 
basis of the famous Koch postulates. But as we have seen, even the organism that 
Koch discovered (the tubercle bacillus) does not automatically result in infection in 
persons who are exposed to it. Certain (but not all) genetic mutations causing so­
called inborn errors of metabolism, however, probably fit the bill; the inability to 
synthesize a particular enzyme results in a metabolic derangement that is highly spe­
cific for the missing enzyme. 

For many health outcomes, causality is multifactorial; causes are neither neces­
sary nor sufficient for any given individual. Such is the case for many chronic dis­
eases. For example, cigarette smoking, high blood pressure, a diet high in saturated 
fat, insufficient exercise, high serum cholesterol, stress, and genetic predisposition 
may all contribute to coronary artery disease. Coronary artery disease can occur in 
the absence of anyone of these factors, and none by itself may suffice. Each factor 
may independently contribute to augment the risk, however, and thus each can be 
considered a true cause. As we have seen, IUGR is another outcome with a com­
plex, multifactorial "web of causation." 
The multifactorial model can be represented as follows: 

E1 .. 
E2 
E3 .. 

0 
E4 .. 

I 
I 
I 

En .. 

As in the case of single exposure factors, the multifactorial model can be compli­
cated by interactions (effect modification) among the various factors, as well as 
between one or more of them and other variables. 
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19.3 Patterns of Cause 

19.3.1 Causal Paths 

Exposure may cause a certain outcome by first affecting an intermediate factor (also 
called a mediating variable) that in turn leads to the outcome: 

E ----<.~ X ----< .. ~ 0 

A series of causally linked variables is called a causal path or causal chain. Causal 
paths can be contemplated either in terms of the individual or in terms of the group. 

Very young maternal age, for example, appears to affect birth weight through its 
impact on several mediating variables. Pregnant adolescents who have just recently 
passed their menarche have not completed their physical growth and tend, there­
fore, to be shorter and thinner than older women. Their caloric intake may also be 
less. Short stature, low weight-for-height, and low caloric intake then subsequently 
lead to impaired intrauterine growth. In other words, young teenage mothers are 
likely to have lighter babies because they are short and thin and consume an insuffi­
cient diet [3]. 

Socioeconomic status (SES) is a typical example of an exposure variable that 
tends to lie somewhat removed from ("distal" to) the outcome in most causal paths. 
For many health outcomes, persons of low SES fare worse than those of higher SES. 
It is difficult to imagine a biologic mechanism, however, whereby low educational 
attainment, income, or social standing has a direct influence on health. Rather, it 
appears that low-SES persons have more crowded living conditions, consume 
poorer diets, have less access to medical care, and experience more psychological 
stress, and that these latter factors are the mediators (more "proximal" causes) of the 
SES effects. 

Many authors refer to exposures whose effect on an outcome is not known to be 
mediated by other factors as direct causes [4]. Exposures lying more distal on the 
causal path, i. e., those whose causal effects involve recognized mediating variables, 
are called indirect causes [4]. In fact, however, if one continues to probe at a more 
basic scientific level, most of the factors we consider "directly" causal are mediated 
by physiologic or biochemical processes. In this narrower sense, only the last molec­
ular event preceding an outcome can be called a direct cause, and even then such an 
inference must remain tentative, pending possible discovery of further intermediate 
steps in the final molecular pathway. Thus, the distinction between direct and indi­
rect causes is somewhat artificial. It depends on both the "level" of factor (environ­
mental agent, personal characteristic, biochemical reaction) and the state of knowl­
edge at the time of inference. But within a given level (e.g., two environmental 
factors such as SES and nutrition), such a distinction can be useful in constructing 
causal paths and, hence, in understanding biologic mechanisms and contemplating 
possible interventions. 
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Some exposures may operate through more than one causal path: 

E .. X 

~~! 
Y • 0 

In this diagram, exposure causes outcome through three different paths: one medi­
ated by X, a second mediated by Y, and a third "direct" (i. e., without any identified 
mediating variable). To return to our birth weight example, maternal cigarette smok­
ing is believed to reduce intrauterine growth (as reflected in birth weight) by several 
mechanisms, including carbon monoxide-mediated fetal hypoxia, nicotine-induced 
uterine vasoconstriction, and appetite suppression (the latter also in part due to nic­
otine). A statistical technique known as path analysis is sometimes useful for testing 
postulated causal paths. It is based on multiple linear regression, and interested 
readers are referred to several standard references [5, 6). 

19.3.2 Causal Networks 

A description of all the known causal paths and effect modifiers leading to a given 
outcome (in groups of individuals) is called a causal network or causal web. The 
causal network for an outcome for which a given exposure constitutes a necessary 
cause will consist of a single causal path (accompanied by relevant effect modifiers). 
For multifactorial outcomes, causal networks may be represented by several expo­
sure variables, linked through numerous causal paths and interacting with a variety 
of effect modifiers. 

A multifactorial causal network can also include one or more exposures that are 
sufficient to cause the outcome. As we have seen, intrauterine growth retardation 
(IUGR) can be caused by a variety of factors. First-trimester rubella infection is a 
sufficient cause (assuming the mother is nonimmune), and thus the causal path to 
IUGR is a single line without effect modifiers. Since rubella infection is not a neces­
sary cause, however, the causal network for IUGR also contains numerous other 
causal paths involving other exposures and their effect modifiers, such as maternal 
short stature, low prepregnancy weight, insufficient caloric intake during pregnancy, 
primiparity, and cigarette smoking [3). 

19.4 Probability and Uncertainty 

Most persons tend to think about causality in dichotomous terms: either an expo­
sure causes an outcome or it does not. Clinicians in particular tend to think this way, 
because many of the events they observe and the decisions they make are yes-or-no 
dichotomies. A patient either lives or dies, a surgeon decides either to operate or 
not. In nature, of course, an exposure is either a cause or not, and an omniscient 
being would know which. Unfortunately, we mortals can never be certain beyond all 
doubt. If I throw a stone into a window and it breaks, I am reasonably certain that 
my missile caused the window to break. For all practical purposes, I can assign a 
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probability (P) of 1 to such a statement. It is possible (although exceedingly improb­
able), however, that the window would have broken on its own at that very 
moment, perhaps from some inherent structural defect, or that, unbeknownst to me, 
someone else simultaneously fired a bullet at the same window. 

Absolute proof of causality is thus elusive, and assessment of causality inevitably 
involves a statement of probability, i. e., uncertainty, rather than certainty. The fact 
that causality is more continuous than dichotomous, however, need not result in 
nihilism or paralysis. The probability need not be 1 to justify action. Clinicians may 
institute treatment to combat a cause that seems reasonably likely, such as beginning 
antibiotic treatment for suspected bacterial meningitis before the diagnosis is con­
firmed by bacteriologic culture results one or two days later. Similarly, an industrial 
plant may reduce potentially hazardous vapor or dust levels based on a preliminary 
epidemiologic study demonstrating adverse health effects. In these situations and 
many others like it, the probability of causality needs to be weighed in a decision 
analysis (risk-benefit analysis) along with the efficacy and side effects of available 
treatments, as well as the consequences of withholding treatment. 

Deciding that exposure causes outcome, therefore, usually requires a probability 
assessment. Even for genetic diseases where a given mutation appears to be both 
necessary and sufficient, the laboratory evidence may not be completely unequivo­
cal. The probability assessment is most useful when it is made quantitative, in the 
sense of assigning a probability P between 0 and 1. Such a quantitative assessment 
expresses the degree of belief in causality. It usually involves a subjective component, 
but pretending that causality is either yes (P= 1) or no (P= 0) is usually neither 
helpful for understanding nor necessary for action. Dichotomous causality thinking 
can in fact be harmful, because it is likely to lead to errors in clinical or public health 
decisions and consequent disillusionment with the clinician or scientific community 
supplying the "evidence." 

The probability of causality can be assessed in terms of three different questions 
relating exposure to outcome [7, 8]: 

1. Can it? (potential causality assessment): What is the probability that exposure can, 
at least in certain persons under certain circumstances, cause the outcome? 

2. Will it? (predictive causality assessment): What is the probability that the next per­
son exposed will develop the outcome because of the exposure? In more general 
terms, is the exposure a quantitatively important cause of the outcome? 

3. Did it? (retrodictive causality assessment): What is the probability that a given per­
son who has already developed the outcome did so because of exposure? 

Each of these three types of causality assessment may be important, depending on 
the setting and the intended purpose (e. g., decision). All three depend, at least in 
part, on evidence gathered from epidemiologic studies. As we shall see, even the Did 
it? assessment, which appears to bridge the gap between epidemiologic and clinical 
reasoning (see Chapter 1), makes use of such evidence. The three assessments, Can 
it?, Will it?, and Did it? will be discussed in turn in the following sections. 
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19.5 Can Exposure Cause Outcome? 

Because the Can it? question is not posed with respect to any individual in particu­
lar, its response usually requires assessment of groups or populations of sufficient 
size and diversity to enhance the likelihood of propitious effect modifiers. The data 
bearing on these population-based assessments are often obtained in epidemiologic 
studies. If reduction or elimination of exposure alone leads to a lower risk (when 
dichotomous) or to a lesser degree (if continuous) of the outcome in a given popula­
tion, the exposure can cause the outcome in that population. Since the "if" part of 
this statement can never be known with absolute certainty, however, some probabil­
ity must be assigned to it. The statement is cast in a way that suggests two important 
and interrelated features of Can it? probability. First, an experimental design (clini­
cal trial) provides the strongest evidence for or against causality. Second, it leads to 
a prediction: intervening on exposure should lead to a change in outcome. 

Epidemiologic studies traditionally focus on the Can it? question, and the ele­
ments relevant to weighing the evidence from such studies have been discussed by 
many authors, most notably Sir Austin Bradford-Hill [9]. Although Hill did not 
conceptualize causality in probabilistic terms, the stronger the epidemiologic evi­
dence favoring causality, the higher the Can it? probability. These relevant elements 
are summarized below. 

19.5.1 Analytic Bias 

Analytic bias exists in four types (see Chapter 5): information bias, sample distortion 
bias, confounding bias, and reverse causality ("cart-vs-horse") bias. Given an asso­
ciation between exposure and outcome, the evidence that the association is causal 
will be strengthened to the extent that each of these sources of bias is eliminated or 
reduced. Measurements of exposure and outcome should be reproducible and valid, 
and neither measurement should be influenced by the other. Sloppy (imprecise) 
measurements may obscure true causal relationships; systematically biased measure­
ments may either create or obscure associations, depending on the direction of the 
bias. Sample distortion bias can arise in assembling the study sample or from differ­
entialloss to follow-up. 

Confounding bias is an ever-present danger in observational studies, and its con­
trol requires adequate design and statistical analytic techniques. Confounding results 
in an exposure-outcome association because exposure and outcome are both caused 
by a third factor X: 

For example, anemia and iron deficiency have frequently been reported to be asso­
ciated with low birth weight (birth weight < 2500 g). The evidence suggests, how-
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ever, that iron deficiency is a result of generally poor nutritional status, and that 
insufficient caloric intake is often accompanied by low iron intake. The deficient 
diet causes both iron deficiency and low birth weight, but the iron deficiency itself 
has no causal role [3). Iron deficiency or anemia may thus be an indicator or marker 
of risk for low birth weight, but it is not a cause. The distinction is important, 
because iron supplementation will correct the iron deficiency and anemia but have 
no effect on birth weight. 

Confounding also occurs whenever the exposure factor is tightly linked to a 
third factor that, although unrecognized, is the true cause of the outcome. This is 
merely a special case of the general concept of confounding that can be indicated as 
follows: 

x "0 
I 
E 

This type of confounding can occur, for example, when an adverse reaction attrib­
uted to the active pharmacologic ingredient of a drug is actually caused by a preser­
vative or other component contained in the preparation administered. As another 
illustration, consider the relationship between alcohol consumption and lung cancer. 
Because heavy drinkers are likely to be cigarette smokers, failure to consider the 
confounding effect of smoking might lead to the erroneous inference that heavy 
drinking causes lung cancer. High alcohol consumption may be a marker of risk, but 
it is not a true causal factor. 

Randomized clinical trials (RCTs) provide the best protection against confound­
ing bias. When combined with double blinding, standardized detection methods (to 
protect against information bias), and vigorous follow-up (to reduce sample distor­
tion occurring after randomization), RCTs provide the most convincing epidemio­
logic evidence of Can it? causality. 

A given exposure can cause an outcome only if it precedes it. Sorting out which 
is the cart and which is the horse is occasionally quite difficult, especially in cross­
sectional studies. Unless the exposure factor is known to have been present since 
birth (e.g., sex, blood type, or racial origin), uncertainty as to whether exposure pre­
ceded outcome or vice versa will result in a lower probability estimate for Can it? 
Case-control studies can protect themselves against reverse causality bias, at least to 
some extent, by using newly occurring (incident) outcomes and specifically inquir­
ing about prior exposure. Such exposure histories, however, depend on adequate 
records or valid subject recall. Cohort studies can avoid this problem if the study 
sample is known to be free of the outcome at the time exposure begins. Once again, 
clinical trials provide the best evidence, since exposure is assigned by the investiga­
tor. 

19.5.2 Strength of Association 

The strength of association between exposure and outcome relates to the size of the 
effect on outcome produced by a given amount of exposure. For dichotomous expo­
sures and outcomes, this refers to the relative risk. For dichotomous exposures and 
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continuous outcomes, the mean difference in outcome is the corresponding indica­
tor. All else (i.e., other elements for weighing the epidemiologic evidence) being 
equal, the larger the effect size; the greater the likelihood that exposure can cause 
the outcome. Small relative risks or mean differences always raise the question as to 
whether some hidden or incompletely controlled source of bias might explain the 
results. Large effects are less likely to be entirely explained away by such factors. 

19.5.3 Biologic Gradient 

When exposure is ordinal (ranked) or continuous, the probability of Can it? causal­
ity is often increased by demonstrating a graded effect on outcome with different 
degrees of exposure, i. e., a dose-response relationship. When the outcome is dichot­
omous, the relative risk should increase with higher categories of exposure. When 
both exposure and outcome are continuous, the slope (regression coefficient) indi­
cates the amount of change in outcome resulting from a given increase or decrease 
in exposure. It should be emphasized, however, that threshold, ceiling, optimum 
(inverted "U"), and nonlinear graded effects are possible. Consequently, steady 
increases in relative risk or a constant slope are not necessary to demonstrate a bio­
logic gradient. Furthermore, even the total absence of any dose-response relation­
ship may not weigh heavily against the Can it? probability if the underlying biologic 
mechanism is independent of the dose of exposure, such as with anaphylactic or idi­
osyncratic adverse drug reactions. 

19.5.4 Statistical Significance 

When exposure-outcome associations are found, causality is obviously strengthened 
by demonstrating a low probability of obtaining an association at least as large as 
the one observed merely by chance. The lower the P value obtained in a test of sta­
tistical significance, the less likely the association is to be a chance occurrence if the 
null hypothesis is in fact true, i. e., the less likely the risk of a type I error. The 
absence of statistical significance, however, is not proof that an association does not 
exist. A clinically important effect may not achieve statistical significance if the sam­
ple size is small or (for continuous variables) the variance is high. Any claim that 
exposure and outcome are not associated, and hence not causally related, should 
therefore be backed up by demonstrating an appropriately low risk of type II error, 
and the relative likelihoods of the null (no effect) and alternative (clinically impor­
tant effect) hypotheses should be kept in mind before accepting the null. 

19.5.5 Consistency 

No matter how unbiased, strong, graded, and statistically significant a given expo­
sure-outcome association appears to be from a single epidemiologic study, Can it? 
causality is strengthened by replication. If several investigators in different settings 
and (preferably) using different methods all find a significant association, the proba-
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bility that exposure can cause outcome is increased. In Bayesian terms, positive 
results of each previous study increase the prior odds favoring the alternative 
hypothesis (H,0, and new data favoring HA continue to raise its posterior odds. 
Replication is particularly helpful in excluding chance as an explanation. Repeated 
failure to control for sources of bias, however, can lead to consistent findings that 
are invalid. Many studies from developing countries, for example, have reported an 
association between maternal anemia and low birth weight. None that reported such 
an association, however, controlled for the confounding effect of poor prep regnant 
and gestational nutrition. Consistency alone, therefore, is an insufficient criterion of 
causality. 

19.5.6 Biologic Plausibility and Coherence 

The exposure-outcome association should be plausible and coherent with current 
knowledge about the biology of the exposure and outcome. The physiologic or 
molecular mechanism need not be known, but the Can it? probability should be 
reduced whenever an association contradicts established biologic facts or principles, 
at least until the alleged association has been confirmed. John Snow provided con­
vincing evidence that cholera was transmitted by contaminated water long before 
microbiologic demonstration of the infecting organism. Similarly, aspirin was used 
by countless arthritis victims generations before prostaglandins were discovered. On 
the other hand, given the known proliferative effects of estrogen on the endome­
trium, a single study showing that postmenopausal estrogens protect against subse­
quent endometrial cancer should be considered dubious, even in the absence of 
obvious bias or other explanation. 

19.5.7 Similarity to "Known" Cause 

This is a corollary to the previous criterion and concerns the biologic similarity of 
the exposure factor under assessment to another factor whose causal effect on the 
outcome is well established. Suppose, for example, that an association is demon­
strated between a newly marketed drug and neutropenia (a low concentration of 
neutrophilic white blood cells). Knowledge that the new agent has a chemical struc­
ture very similar to that of one or more long-standing drugs with recognized neu­
tropenic effects will increase the probability that the association with the new drug is 
indeed causal. 

19.6 Is Exposure an Important Cause of Outcome? 

The quantitative importance of a given exposure as a Cause of outcome obviously 
depends on the answer to the Can it? question (Section 19.5). If the probability is 
very low that E can cause 0, then it follows that the probability is also very low that 
it is an important cause. If the Can it? probability is sufficiently high, then its impor­
tance also merits consideration. 
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It is the magnitude of the causal effect that will enter into risk-benefit calcula­
tions in making decisions about preventing an undesirable outcome or promoting a 
desirable one (see Chapter 17). If a particular treatment or preventive maneuver is 
dangerous, painful, or expensive, for example, the benefits will not be worth the 
risks or costs if only a marginal change in outcome can be expected. 

How do we go about assessing the importance, i. e., measuring the magnitude, 
of a causal effect? Actually, this issue has already been discussed, to some degree, in 
Chapters 6-9. The answer depends on whether the outcome under consideration is 
categorical (usually dichotomous) or continuous, and these will be discussed sepa­
rately. 

For dichotomous outcomes, the importance of a cause can be gauged by assess­
ing the probability that the next exposed person will develop the outcome because of 
the exposure (or, equivalently, the number of persons out of the next 100 exposed 
who will develop the outcome because of the exposure). In other words, Will it? 

The Will it? probability is the difference in the probability of the outcome 
occurring in an exposed person, i. e., the probability of outcome given exposure 
[P(OIE)], and the probability of it occurring without exposure [P(OIE)]: 
P(OIE) -P(OIE). It can thus be estimated by the attributable risk, i.e., the differ­
ence in incidence of the outcome in otherwise similar exposed and nonexposed per­
sons, which depends on both the relative risk of exposure and the incidence of the 
disease in the unexposed population. In Table 6.3, we examined data on lung cancer 
and cardiovascular disease mortality among smoking and nonsmoking male British 
physicians. Despite a very high relative risk (32.43) for lung cancer death among 
smokers, the attributable risk was only 2.20 per 1000 per year. In other words, smok­
ing can be expected to add 2.2 lung cancer deaths per year for each 1000 smoking 
male British physicians. The cardiovascular death attributable risk is higher at 2.61 
per 1000 per year, despite a much lower relative risk (1.36), because cardiovascular 
deaths occur far more frequently than lung cancer deaths (7.32 vs 0.07 per 1000 per 
year among nonsmokers). 

For continuous variables, the importance of exposure as a cause of outcome can 
be formulated by the question How much will it? and is determined by the differ­
ence in outcome due to exposure. Although the expected difference in outcome 
actually represents an entire probability distribution of expected differences in out­
come between exposed and nonexposed persons, we usually base our estimate on 
the mean difference. Thus, if the mean difference in birth weight between infants of 
smoking and those of nonsmoking mothers that is attributable to smoking (i. e., 
unconfounded by other factors) is 150 g, the estimate of the expected smoking 
effect will be - 150 g. 

19.7 Did Exposure Cause Outcome in a Specific Case? 

In essence, this is the setting of clinical diagnosis, in which the clinician attempts to 
determine the cause of a given complaint. The Did it? causality assessment is neces­
sarily individualized, since it refers to a specific case in which the outcome is already 
known to have occurred. Despite this focus on individuals, evidence from epidemio-
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logic studies can be very useful in carrying out a Did it? probability assessment. In 
fact, Bayes' theorem enables the merging of individual case information with 
epidemiologic data in assessing the Did it? causality question. 

Suppose that a given individual has developed the outcome. Without knowing 
whether that individual was exposed, what is the probability that the exposure was 
the cause? Although this question is posed in terms of the individual, the Did it? 
probability can be estimated by measuring the proportion of persons developing the 
outcome who do so because of exposure. This proportion is called the etiologic frac­
tion (EF) or population attributable risk; it is already familiar to us from Chapter 6 
and can be calculated as follows, using Eq. 6.4: 

EF= Jt(RR-l) 
Jt(RR-l)+ 1 

where RR is the relative risk of the outcome in otherwise similar exposed vs nonex­
posed individuals and Jt is the probability (i. e., prevalence) of exposure in the popu­
lation ofinterest [10]. 

For a fixed relative risk, EF increases as the probability of exposure increases, 
reaching a theoretical maximum of 1. Consequently, even an exposure with a high 
relative risk may not have a high EF if the exposure is rare. First-trimester intrauter­
ine rubella infection is associated with a very high relative risk of intrauterine 
growth retardation (IUGR), but because such infection is rare, the corresponding 
EF is quite low. Conversely, maternal cigarette smoking may only double or triple 
the risk of IUGR, but it is so common that a large proportion of IUGR may be 
caused by it in populations where many women smoke during pregnancy [3]. 

When outcome and exposure are both known to have occurred in an individual, 
an improved (over the EF) estimate of the probability that exposure caused outcome 
in that individual can be derived using the etiologic fraction among the exposed (EFE) 
obtained from epidemiologic data [11]. EFE represents the proportion of all exposed 
persons in a population developing the outcome who do so because of exposure. It 
can be calculated as follows: 

RR-l EFE=--
RR 

(19.1) 

Thus, in the absence of any other information about a specific individual from that 
population who developed the outcome other than the fact that he or she was 
exposed, EFE provides an estimate of the probability that the exposure caused the 
outcome. If the relative risk of lung cancer is 10 in smokers vs nonsmokers, for 
example, the probability that a smoker who develops lung cancer did so because of 

10-1 smoking would be -- =0.90. 
10 

Often, however, we know much more relevant information about a specific case 
of an outcome than merely whether or not exposure occurred. We also probably 
know something about the dose of exposure (if not purely dichotomous) and its tim­
ing, in addition to background factors concerning the subject's age, sex, socioeco-
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nomic status, and past medical history. How can these be used to refine our Did it? 
probability assessment? 

Various informal and formal methods have been used in this regard. In fact, clin­
icians usually take into account some, if not all, of the above factors in making a 
causality assessment. But a clinician's "global introspection" tends to become less 
reliable as the problem gets more complex. It is difficult or impossible for most clini­
cians to simultaneously consider and properly weigh all the relevant facts, let alone 
possess those facts. 

The construction of algorithms (branched logic trees) can be helpful in improv­
ing the reproducibility and validity of diagnostic judgments. One particular area that 
has received considerable attention in this regard is that of adverse drug reactions 
(ADRs). A variety of algorithms or equivalent checklists have been developed to 
help clinicians, drug manufacturers, and regulatory agencies judge whether a given 
drug caused an observed adverse event in specific cases [12]. Although these 
schemes appear to yield more reproducible causality assessments than global intro­
spection (even that of clinical pharmacology experts), their assessment procedures 
are somewhat arbitrary and often lead to different results from one method to 
another. 

A potentially more rewarding approach is to use Bayesian techniques for mani­
pulating conditional probabilities (see Chapter 16). The posterior odds that an out­
come was caused by exposure can be decomposed into a prior odds and a likelihood 
ratio (see Eq.16.8). The knowledge that a specific case was exposed can be incorpo­
rated into the prior odds, i. e., the odds that exposure caused the outcome given only 
the background information (B): 

prior odds = P(E-+OIB) 
P(E-,40IB) 

where E -+0 and E frO denote the opposing propositions that exposure did and did 
not, respectively, cause the outcome. As with the etiologic fraction in the exposed 
(EFE), the prior odds is usually based on epidemiologic data derived from other­
wise similar exposed individuals. In fact, P(E-+OIB)=EFE and P(E-,40IB)= 
1- P(E-+OIB) = 1-EFE. 

The specific case information (C) concerning dose, timing, background, and 
other relevant factors can then be included in computing the likelihood ratio (LR): 

LR= P(qE-+O) 
P(qE7+0) 

The posterior odds then incorporates both the background and case information: 

P(E-+OIB,C) = P(E-+OIB) X P(QE-+O) 
P(E-f+OIB,C) P(E-f+OIB) P(qE~O) 

(19.2) 

For ADRs, for example, the likelihood term would include information about the 
age, sex, and medical history of the patient; the dosage and timing of drug adminis-
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tration; and the results of dechallenge (stopping the drug) and rechallenge (restart­
ing it). 

For continuous outcomes, Did it? usually means How much did it? If a smoking 
mother delivers an infant whose birth weight is 2800 g, what is our best estimate of 
what the weight would have been had the mother not smoked during pregnancy? 
Once again, we should use all the relevant factors at our disposal to make this esti­
mate. Based on the mean difference in birth weight in infants of smoking vs non­
smoking mothers, or far better, the decrease in birth weight per cigarette smoked 
per day for the precise time during pregnancy that the mother smoked, an average 
expected effect of her pregnancy smoking history can be estimated. This estimate 
can be further refined by knowledge about any factors known to modify the effect 
of exposure (effect modifiers). 

Did it? causality assessments are assuming increasing prominence for a variety of 
scientific and nonscientific reasons. One major reason is that clinicians are seeking 
to improve on global introspection as a diagnostic method. Another reason is related 
to liability. Harmful exposures or treatments can be caused by industry, government, 
or individuals. Even if it is known (P= 1) that a given exposure can cause an out­
come, exposed persons who develop the outcome will naturally wish to know 
whether their exposure was the cause. They may even wish to sue the party they be­
lieve to be responsible for exposing them. A patient developing a serious adverse reac­
tion to a drug, for example, may bring suit against the treating physician, the drug's 
manufacturer, and perhaps even the government agency regulating its availability on 
the market. Although the courts do not easily deal with concepts such as numerical 
probabilities or average expected differences, Did it? causality assessment will prob­
ably become more important in the future for legal, as well as scientific, reasons. 

In this regard, one major difference between Did it? and either Can it? or Will 
it? is that the Did it? assessment cannot be used for prediction and therefore cannot 
be tested. Sensitivity testing or distributional assumptions can be used to estimate a 
range of Did it? probabilities (analogous to a confidence interval). The figures can 
even be revised in the light of new epidemiologic evidence. But the probability esti­
mate remains a hypothesis; it can never be confirmed or refuted. 

A final comment about Did it? causality assessment will bring us back full circle 
to the introductory remarks made in Chapter 1. The discussion there focused on the 
clinical vs the epidemiologic approaches to problem solving. Clinical reasoning is 
fundamentally individualized and attempts to answer a question based on the facts 
of a single case. Epidemiologic reasoning is probabilistic; it is founded on relation­
ships in groups between exposure and outcome. In deciding whether a given expo­
sure caused an observed outcome in a specific case, the Bayesian approach brings 
epidemiologic reasoning to the clinical "bedside," the individual subject. The best 
estimate of the prior odds of causality is usually based on the best epidemiologic, 
probabilistic data available. But the facts of the individual case are then used to alter 
the prior odds (through the likelihood ratio) to arrive at a final assessment of the 
posterior odds of causation for that case. 

Did it? causality assessment represents an excellent example of the essential 
compatibility of the clinical and epid~miologic approaches. The marriage is quite 
recent, and the two parties have much to learn from one another, but the prospects 
for fertility appear excellent. 
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Table A.t. Random numbers arranged in groups of 5 digits 

85967 73152 14511 85285 36009 95892 36962 67835 63314 50162 
07483 51453 11649 86348 76431 81594 95848 36738 25014 15460 
96283 01898 61414 83525 04231 13604 75339 11730 85423 60698 
49174 12074 98551 37895 93547 24769 09404 76548 05393 96770 
97366 39941 21225 93629 19574 71565 33413 56087 40875 13351 

90474 41469 16812 81542 81652 45554 27931 93994 22375 00953 
28599 64109 09497 76235 41383 31555 12639 00619 22909 29563 
25254 16210 89717 65997 82667 74624 36348 44018 64732 93589 
28785 02760 24359 99410 77319 73408 58993 61098 04393 48245 
84725 86576 86944 93296 10081 82454 76810 52975 10324 15457 

41059 66456 47679 66810 15941 84602 14493 65515 19251 41642 
67434 41045 82830 47617 36932 46728 71183 36345 41404 81110 
72766 68816 37643 19959 57550 49620 98480 25640 67257 18671 
92079 46784 66125 94932 64451 29275 57669 66658 30818 58353 
29187 40350 62533 73603 34075 16451 42885 03448 37390 96328 

74220 17612 65522 80607 19184 64164 66962 82310 18163 63495 
03786 02407 06098 92917 40434 60602 82175 04470 78754 90775 
75085 55558 15520 27038 25471 76107 90832 10819 56797 33751 
09161 33015 19155 11715 00551 24909 31894 37774 37953 78837 
75707 48992 64998 87080 39333 00767 45637 12538 67439 94914 

21333 48660 31288 00086 79889 75532 28704 62844 92337 99695 
65626 50061 42539 14812 48895 11196 34335 60492 70650 51108 
84380 07389 87891 76255 89604 41372 10837 66992 93183 56920 
46479 32072 80083 63868 70930 89654 05359 47196 12452 38234 
59847 97197 55147 76639 76971 55928 36441 95141 42333 67483 

31416 11231 27904 57383 31852 69137 96667 14315 01007 31929 
82066 83436 67914 21465 99605 83114 97885 74440 99622 87912 
01850 42782 39202 18582 46214 99228 79541 78298 75404 63648 
32315 89276 89582 87138 16165 15984 21466 63830 30475 74729 
59338 42703 55198 80380 67067 97155 34160 85019 03527 78140 

58089 27632 50987 91373 07736 20436 96130 73483 85332 24384 
61705 57285 30392 23660 75841 21931 04295 00875 09114 32101 
18914 98982 60199 99275 41967 35208 30357 76772 92656 62318 
11965 94089 34803 48941 69709 16784 44642 89761 66864 62803 
85251 48111 80936 81781 93248 67877 16498 31924 51315 79921 

66121 96986 84844 93873 46352 92183 51152 85878 30490 15974 
53972 96642 24199 58080 35450 03482 66953 49251 63719 57615 
14509 16594 78883 43222 23093 58645 60257 89250 63266 90858 
37700 07688 65533 72126 23611 93993 01848 03910 38552 17472 
85466 59392 72722 15473 73295 49759 56157 60477 83284 56367 

Source: Daniel WW (1974) Biostatistics: a foundation for analysis in the health sciences. John Wiley 
& Sons, New York, p 417. 
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TableA.2. Areas in one tail (~ + z or ;:;a - z) of the standard normal distribution 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 0.500 0.496 0.492 0.488 0.484 0.480 0.476 0.472 0.468 0.464 
0.1 0.460 0.456 0.452 0.448 0.444 0.440 0.436 0.433 0.429 0.425 
0.2 0.421 0.417 0.413 0.409 0.405 0.401 0.397 0.394 0.390 0.386 
0.3 0.382 0.378 0.374 0.371 0.367 0.363 0.359 0.356 0.352 0.348 
0.4 0.345 0.341 0.337 0.334 0.330 0.326 0.323 0.319 0.316 0.312 

0.5 0.309 0.305 0.302 0.298 0.295 0.291 0.288 0.284 0.281 0.278 
0.6 0.274 0.271 0.268 0.264 0.261 0.258 0.255 0.251 0.248 0.245 
0.7 0.242 0.239 0.236 0.233 0.230 0.227 0.224 0.221 0.218 0.215 
0.8 0.212 0.209 0.206 0.203 0.200 0.198 0.195 0.192 0.189 0.187 
0.9 0.184 0.181 0.179 0.176 0.174 0.171 0.169 0.166 0.164 0.161 

1.0 0.159 0.156 0.154 0.152 0.149 0.147 0.145 0.142 0.140 0.138 
1.1 0.136 0.133 0.131 0.129 0.127 0.125 0.123 0.121 0.119 0.117 
1.2 0.115 0.113 0.111 0.109 0.107 0.106 0.104 0.102 0.100 0.099 
1.3 0.097 0.095 0.093 0.092 0.090 0.089 0.087 0.085 0.084 0.082 
1.4 0.081 0.079 0.078 0.076 0.075 0.074 0.072 0.071 0.069 0.068 

1.5 0.067 0.066 0.064 0.063 0.062 0.061 0.059 0.058 0.057 0.056 
1.6 0.055 0.054 0.053 0.052 0.051 0.049 0.048 0.048 0.046 0.046 
1.7 0.045 0.044 0.043 0.042 0.041 0.040 0.039 0.038 0.038 0.037 
1.8 0.036 0.035 0.034 0.034 0.033 0.032 0.031 0.031 0.030 0.029 
1.9 0.029 0.028 0.027 0.027 0.026 0.026 0.025 0.024 0.024 0.023 

2.0 0.023 0.022 0.022 0.021 0.021 0.020 0.020 0.019 0.019 0.D18 
2.1 0.018 0.017 0.017 0.017 0.016 0.016 0.D15 0.015 0.D15 0.014 
2.2 0.014 0.014 0.013 0.013 0.013 0.012 0.012 0.012 0.011 0.011 
2.3 0.011 0.010 0.010 0.010 0.010 0.009 0.009 0.009 0.009 0.008 
2.4 0.008 0.008 0.008 0.008 0.007 0.007 0.007 0.007 0.007 0.006 

2.5 0.006 0.006 0.006 0.006 0.006 0.005 0.005 0.005 0.005 0.005 
2.6 0.005 0.005 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 
2.7 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 
2.8 0.003 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 
2.9 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.001 0.001 0.001 

3.0 0.001 

Source: Colton T (1974) Statistics in medicine. Little, Brown, Boston, p 345. 
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TableA.3. Areas in two tails (;;:; + z plus;:;; - z) of the standard normal distribution 

z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 

0.0 1.000 0.992 0.984 0.976 0.968 0.960 0.952 0.944 0.936 0.928 
0.1 0.920 0.912 0.904 0.897 0.889 0.881 0.873 0.865 0.857 0.849 
0.2 0.841 0.834 0.826 0.818 0.810 0.803 0.795 0.787 0.779 0.772 
0.3 0.764 0.757 0.749 0.741 0.734 0.726 0.719 0.711 0.704 0.697 
0.4 0.689 0.682 0.674 0.667 0.660 0.653 0.646 0.638 0.631 0.624 

0.5 0.617 0.610 0.603 0.596 0.589 0.582 0.575 0.569 0.562 0.555 
0.6 0.549 0.542 0.535 0.529 0.522 0.516 0.509 0.503 0.497 0.490 
0.7 0.484 0.478 0.472 0.465 0.459 0.453 0.447 0.441 0.435 0.430 
0.8 0.424 0.418 0.412 0.407 0.401 0.395 0.390 0.384 0.379 0.373 
0.9 0.368 0.363 0.358 0.352 0.347 0.342 0.337 0.332 0.327 0.322 

1.0 0.317 0.312 0.308 0.303 0.298 0.294 0.289 0.285 0.280 0.276 
1.1 0.271 0.267 0.263 0.258 0.254 0.250 0.246 0.242 0.238 0.234 
1.2 0.230 0.226 0.222 0.219 0.215 0.211 0.208 0.204 0.201 0.197 
1.3 0.194 0.190 0.187 0.184 0.180 0.177 0.174 0.171 0.168 0.165 
1.4 0.162 0.159 0.156 0.153 0.150 0.147 0.144 0.142 0.139 0.136 

1.5 0.134 0.131 0.129 0.126 0.124 0.121 0.119 0.116 0.114 0.112 
1.6 0.110 0.107 0.105 0.103 0.101 0.099 0.097 0.095 0.093 0.091 
1.7 0.089 0.087 0.085 0.084 0.082 0.080 0.078 0.077 0.075 0.073 
1.8 0.072 0.070 0.069 0.067 0.066 0.064 0.063 0.061 0.060 0.059 
1.9 0.057 0.056 0.055 0.054 0.052 0.051 0.050 0.049 0.048 0.047 

2.0 0.046 0.044 0.043 0.042 0.041 0.040 0.039 0.038 0.038 0.037 
2.1 0.036 0.035 0.034 0.033 0.032 0.032 0.031 0.030 0.029 0.029 
2.2 0.028 0.027 0.026 0.026 0.Q25 0.024 0.024 0.023 0.023 0.022 
2.3 0.021 0.021 0.020 0.020 0.019 0.019 0.018 0.018 0.017 0.017 
2.4 0.016 0.016 0.016 0.015 0.015 0.014 0.014 0.014 0.013 0.013 

2.5 0.012 0.012 0.012 0.011 0.011 0.011 0.010 0.010 0.010 0.010 
2.6 0.009 0.009 0.009 0.009 0.008 0.008 0.008 0.008 0.007 0.007 
2.7 0.007 0.007 0.007 0.006 0.006 0.006 0.006 0.006 0.005 0.005 
2.8 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.004 
2.9 0.004 0.004 0.004 0.003 0.003 0.003 0.003 0.003 0.003 0.003 

3.0 0.003 

Source: Colton T (1974) Statistics in medicine. Little, Brown, Boston, p 346. 
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TableA.4. Critical values of t required for certain P values, according to number of degrees of 
freedom (df) 

P value 
df One-tailed 0.25 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005 

Two-tailed 0.5 0.2 0.1 0.05 0.02 0.01 0.005 0.002 0.001 

1 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62 
2 0.816 1.886 2.920 4.303 6.965 9.925 14.089 22.327 31.598 
3 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.214 12.924 
4 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610 

5 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869 
6 0.718 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959 
7 0.711 1.415 1.895 2.365 2.998 3.499 4.029 4.785 5.408 
8 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041 
9 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781 

10 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587 
11 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437 
12 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318 
13 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221 
14 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140 

15 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073 
16 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015 
17 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965 
18 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.922 
19 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883 

20 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850 
21 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819 
22 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792 
23 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767 
24 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745 

25 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725 
26 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707 
27 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690 
28 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674 
29 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659 

30 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646 
40 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551 
60 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460 

120 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373 
00 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 

Source: Pearson ES, Hartley HO (eds) (1976) Biometrika tables for statisticians, voL I. Biometrika 
Trust, London, p 146. 
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Table A.5. Critical values of U for certain P values, according to sample sizes (nl and n2) of two 
compared groups (for Mann-Whitney U-test) 
A. P=0.05 (one-tailed) or 0.10 (two-tailed) 

n2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

nl 
2 0 0 0 0 1 1 1 2 2 2 3 3 3 4 4 4 
3 0 0 1 2 2 3 3 4 5 5 6 7 7 8 9 9 10 11 
4 1 2 3 4 5 6 7 8 9 10 11 12 14 15 16 17 18 
5 3 5 6 8 9 11 12 13 15 16 18 19 20 22 23 25 

6 7 8 10 12 14 16 17 19 21 23 25 26 28 30 32 
7 11 13 15 17 19 21 24 26 28 30 33 35 37 39 
8 15 18 20 23 26 28 31 33 36 39 41 44 47 
9 21 24 27 30 33 36 39 42 45 48 51 54 

10 27 31 34 37 41 44 48 51 55 58 62 

11 34 38 42 46 50 54 57 61 65 69 
12 42 47 51 55 60 64 68 72 77 
13 51 56 61 65 70 75 80 84 
14 61 66 71 77 82 87 92 
15 72 77 83 88 94 100 
16 83 89 95 101 107 
17 96 102 109 115 
18 109 116 123 
19 123 130 
20 138 

B. P= 0.025 (one-tailed) or 0.05 (two-tailed) 

nz 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

nl 
2 0 0 0 0 1 1 1 1 1 2 2 2 
3 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 
4 0 1 2 3 4 4 5 6 7 8 9 10 11 11 12 13 13 
5 2 3 5 6 7 8 9 11 12 13 14 15 17 18 19 20 

6 5 6 8 10 11 13 14 16 17 19 21 22 24 25 27 
7 8 10 12 14 16 18 20 22 24 26 28 30 32 34 
8 13 15 17 19 22 24 26 29 31 34 36 38 41 
9 17 20 23 26 28 31 34 37 39 42 45 48 

10 23 26 29 33 36 39 42 45 48 52 55 

11 30 33 37 40 44 47 51 55 58 62 
12 37 41 45 49 53 57 61 65 69 
13 45 50 54 59 63 67 72 76 
14 55 59 64 67 74 78 83 
15 64 70 75 80 85 90 
16 75 81 86 92 98 
17 87 93 99 105 
18 99 106 112 
19 113 119 
20 127 
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Table A.S. (continued) 
C. P=O.Ol (one-tailed) or 0.02 (two-tailed) 

1Iz 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

nl 
2 0 0 0 0 0 0 1 
3 0 0 1 1 2 2 2 3 3 4 4 4 5 
4 0 0 1 2 3 3 4 5 5 6 7 7 8 9 9 10 
5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

6 3 4 6 7 8 9 11 12 13 15 16 18 19 20 22 
7 6 8 9 11 12 14 16 17 19 21 23 24 26 28 
8 10 11 13 15 17 20 22 24 26 28 30 32 34 
9 14 16 18 21 23 26 28 31 33 36 38 40 

10 19 22 24 27 30 33 36 38 41 44 47 

11 25 28 31 34 37 41 44 47 50 53 
12 31 35 38 42 46 49 53 56 60 
13 39 43 47 51 55 59 63 67 
14 47 51 56 60 65 69 73 
15 56 61 66 70 75 80 
16 66 71 76 82 87 
17 77 82 88 93 
18 88 94 100 
19 101 107 
20 114 

Source: SmartJV (1963) Elements of medical statistics. Charles C. Thomas, Springfield, MA, 
pp 125-127. 
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Table A.6. Critical values of sums of ranks for certain P values, according to sample size (n) in each 
of two pair-matched groups (for Wilcoxon signed rank test). Entry before comma represents maxi-
mum value for lower sum; entry after comma is minimum value for higher sum 

n One-tailed 0.Q25 0.01 0.005 
(number Pvalue 
of pairs) Two-tailed 0.05 0.02 0.01 

6 0,21 
7 2,26 0,28 
8 3,33 1,35 0,36 
9 5,40 3,42 1,44 

10 8,47 5,50 3,52 

11 10,56 7, 59 5,61 
12 13,65 9,69 7, 71 
13 17,74 12,79 9, 82 
14 21,84 15,90 12,93 
15 25,95 19,101 15, 105 

16 29, 107 23, 113 19, 117 
17 34, 119 28, 125 23, 130 
18 40, 131 32,139 27, 144 
19 46,144 37, 153 32,158 
20 52, 158 43, 167 37, 173 

21 58, 173 49, 182 42, 189 
22 66, 187 55, 198 48,205 
23 73,203 62,214 54,222 
24 81,219 69,231 61,239 
25 89,236 76,249 68,257 

Source: Colton T (1974) Statistics in medicine. Little, Brown, Boston, p 350. 
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TableA.7. Critical values of "l required for certain P values (two-tailed only), according to num-
ber of degrees of freedom (df) 

Two-tailed P value 
df 

0.10 0.05 0.01 0.001 

2.71 3.84 6.63 10.83 
2 4.61 5.99 9.21 13.82 
3 6.25 7.81 11.34 16.27 
4 7.78 9.49 13.28 18.47 
5 9.24 11.07 15.09 20.52 

6 10.64 12.59 16.81 22.46 
7 12.02 14.07 18.48 24.32 
8 13.36 15.51 20.09 26.13 
9 14.68 16.92 21.67 27.88 

10 15.99 18.31 23.21 29.59 

11 17.28 19.68 24.73 31.26 
12 18.55 21.03 26.22 32.91 
13 19.81 22.36 27.69 34.53 
14 21.06 23.68 29.14 36.12 
15 22.31 25.00 30.58 37.70 

16 23.54 26.30 32.00 39.25 
17 24.77 27.59 33.41 40.79 
18 25.99 28.87 34.81 42.31 
19 27.20 30.14 36.19 43.82 
20 28.41 31.41 37.57 45.32 

21 29.62 32.67 38.93 46.80 
22 30.81 33.92 40.29 48.27 
23 32.01 35.17 41.64 49.73 
24 33.20 36.42 42.98 51.18 
25 34.38 37.65 44.31 52.62 

Source: Colton T (1974) Statistics in medicine. Little, Brown, Boston, p 348. 
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Table A.S. Critical values of Spearman rank correlation coefficient (r,) for certain P values, accord­
ing to sample size (n) 

n One-tailed 0.025 0.005 
(number Pvalue 

of pairs) Two-tailed 0.05 0.01 

6 0.886 1.000 
7 0.786 0.929 
8 0.738 0.881 
9 0.683 0.833 

10 0.648 0.794 

11 0.623 0.818 
12 0.591 0.780 
13 0.566 0.745 
14 0.545 0.716 
15 0.525 0.689 

16 0.507 0.666 
17 0.490 0.645 
18 0.476 0.625 
19 0.462 0.608 
20 0.450 0.591 

21 0.438 0.576 
22 0.428 0.562 
23 0.418 0.549 
24 0.409 0.537 
25 0.400 0.526 

26 0.392 0.515 
27 0.385 0.505 
28 0.377 0.496 
29 0.370 0.487 
30 0.364 0.478 

Sources: Colton T (1974) Statistics in medicine. Little, Brown, Boston, p 353. 
Snedecor GW, Cochran WG (1980) Statistical methods, 7th edn. Iowa State University 
Press, Ames, p 478. 
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for comparing two means 157-159 
for comparing two proportions 179-181 

Scatter diagram 187-188 
Sensitivity (see Diagnostic tests) 
Sign test 162 
Simpson's paradox 74 
Skewness 126-127, 159 
Spearman's rho 196-197 
Specificity (see Diagnostic tests) 
Standard deviation 127-130 
Standard error of the mean 128, 146 
Standard normal distribution (see z-Distribu-

tion) 
Standardization (see Rates) 
Statistical inference 122, 137-145 
Statistical power 142-143, 157, 180 
Statistical significance 138-141, 157-159,263 
Stratification 32-35,56,72-75,83,108-110, 

164, 176-177,252 
Survival analysis (see Life-table analysis) 

t-Distribution 147-148 
t-Test 

for correlation coefficient 194 
one-sample t-test 149-150 
paired t-test 154-156 
two-sample t-test 150-154 

Subject Index 

Target population 37-38,47-52, 121 
Timing (in research design) 39,42,44 
Treatment (see Exposure) 
Two-by-two (fourfold) tables 

matched 70-72, 108, 166-174 
stratified 72-75,108-110, 176-178 
unmatched 64-66,97-104, 174-175 

Type I error 139-142, 157-159, 180-181 
Type II error 141-143, 157-159, 179-181 

Validity (also see Measurement) 
external validity 48-49 
internal validity 48-49 
of diagnostic tests 205-206 
of exposure-outcome associations 37, 47 
of individual measurements 13-16 

Variables 
definition 11 
dependent 189-190 
independent 189-190 
types of 11,121 

Variance 127, 129, 151 
Vital statistics 21-22,31 

Wilcoxon signed rank test 161-162 

z-Distribution 130-133 
z-Test 150, 157,248-251 
Zero time 61,217-218,240,242 
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