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Preface

A good maintenance strategy is essential to keep complex engineering systems safe.
Historically, maintenance has evolved from post-failure repair to preventive
maintenance to Condition-Based Maintenance (CBM). Preventive maintenance is
an expensive and time-consuming process because it is carried out periodically
regardless of the health state of systems. For modern complex systems with high
reliability requirements, preventive maintenance has become a major expense of
many industrial companies. CBM has recently received much attention as a
cost-effective maintenance strategy, which is to perform maintenance only when
needed. Prognostics and Health Management (PHM) is the key technology to
accomplish CBM.

PHM is a new engineering approach that enables real-time health assessment of
a system under its actual operating conditions, as well as the prediction of its future
state based on up-to-date information, by incorporating various disciplines
including sensing technologies, physics of failure, machine learning, modern
statistics, and reliability engineering. It enables engineers to turn data and health
states into information that will improve our knowledge on the system and provide
a strategy to maintain the system in its originally intended function. While PHM has
roots from the aerospace industry, it is now explored in many applications including
manufacturing, automotive, railway, energy and heavy industry.

Since PHM is a relatively new research area, many researchers and students
struggle to find a textbook that clearly explains basic algorithms and provides
objective comparison between different algorithms. The objective of this book is to
introduce the methods of predicting the future behavior of a system’s health and the
remaining useful life to determine an appropriate maintenance schedule. The
uniqueness of this book lies not only in its introduction to various prognostics
algorithms, but also in its explanations of their attributes and pros and cons in terms
of model definition, model parameter estimation, and ability to handle noise and
bias in data. Therefore, beginners in this field can select appropriate methods for
their fields of application.

vii
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This book is suitable for graduate students in mechanical, civil, aerospace,
electrical and industrial engineering, and engineering mechanics, as well as
researchers and maintenance engineers in the above fields.

The textbook is organized into seven chapters. In Chap. 1, the basic ideas of
PHM are introduced along with historical backgrounds, industrial applications,
reviews of algorithms, and benefits and challenges of PHM. Before discussing
individual prognostics algorithms in detail, Chap. 2 provides prognostics tutorials
with a MATLAB code using simple examples. Even if simple polynomial models
are used with the least-squares method, they contain most of important attributes of
various prognostics algorithms. The tutorials include physics-based and data-driven
prognostics algorithms to identify model parameters as well as to predict the
remaining useful life. This chapter also introduces prognostics metrics to evaluate
the performance of different algorithms as well as uncertainty due to noise in data.

A key step in prognostics is to convert the measured data from health monitoring
systems into knowledge on damage degradation. Many prognostics algorithms
utilize Bayes’ theorem to update information on unknown model parameters using
measured data. Chapter 3 introduces Bayesian inference with an explanation of
uncertainty and conditional probability. For the purpose of prognostics, the chapter
focuses on how to utilize prior information and likelihood functions from measured
data in order to update the posterior probability density function (PDF) of model
parameters. Depending on how information is updated, both recursive and total
forms are discussed. The chapter ends with a method of generating samples from a
posterior PDF.

When a physical model that describes the behavior of damage is available, it is
always better to use it for prognostics. Chapter 4 presents physics-based prognostics
algorithms, such as nonlinear least squares, Bayesian method, and particle filter.
The major step in physics-based prognostics is to identify model parameters using
measured data and to predict the remaining useful life using them. The chapter
focuses on how to improve the accuracy of a degradation model and how to
incorporate uncertainty in the future. The chapter ends by discussing issues in
physics-based prognostics, which includes model adequacy, correlation between
parameters, and quality of degradation data.

Even if physics-based approaches are powerful, many complex systems do not
have a reliable physical model to describe the degradation of damage. Chapter 5
introduces data-driven approaches, which use information from observed data to
identify the patterns of the degradation progress and predict the future state without
using a physical model. As representative algorithms, the Gaussian process
regression and neural network models are explained. Data-driven approaches share
the same issues with physics-based approaches, such as model-form adequacy,
estimation of optimal parameters, and quality of degradation data.

In Chap. 6, these prognostics algorithms are applied to fatigue crack growth
problems to understand the attributes of different algorithms. In the case of
physics-based approaches, correlation between model parameters, initial conditions,
and loading conditions play an important role in the performance of algorithms. In
the case of data-driven approaches, the availability of training data and the level of



Preface ix

noise are important. Chapter 7 presents several applications of prognostics in
practical engineering systems, including wear in a revolute joint, fatigue crack
growth in a panel, prognostics using accelerated life test data, and fatigue damage in
bearings.

MATLAB programs for different algorithms as well as measurement data used
in the book are available on the companion website of the book http://www?2.mae.
ufl.edu/nkim/PHMY/. Each chapter contains a comprehensive set of exercise prob-
lems, some of which require MATLAB programs.

We thank the students who took various courses at the University of Florida and
Korea Aerospace University. We are grateful for their valuable suggestions,
especially those regarding the example and exercise problems. Finally, special
thanks to Ms. Ting Dong for her outstanding work to correcting many errors in the
manuscript.

Gainesville, USA Nam-Ho Kim
Yeongcheon-si, Republic of Korea Dawn An
Goyang-City, Republic of Korea Joo-Ho Choi

June 2016
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Chapter 1
Introduction

1.1 Prognostics and Health Management

Prognostics and health management (PHM) is a new engineering approach that
enables real-time health assessment of a system under its actual operating condi-
tions as well as the prediction of its future state based on up-to-date information by
incorporating various disciplines including sensing technologies, failure physics,
machine learning, modern statistics, and reliability engineering. It enables engineers
to turn data and health state into information that will improve our knowledge on
the system and provides a strategy to maintain the system in its originally intended
function. While it has rooted from the aerospace industry, it is now explored in
many applications including manufacturing, automotive, railway, energy, and
heavy industry.

Because PHM can predict the system’s actual remaining life during its operation,
it enables the condition-based maintenance (CBM), a new maintenance strategy that
can only repair/replace actually damaged parts, which can reduce the total life cycle
costs. CBM consists of automated hardware and software systems that monitor,
detect, isolate, and predict equipment performance and degradation without inter-
rupting systems daily operation. In CBM, maintenance of systems/components is
based on the actual condition of the equipment in contrast to breakdown or
scheduled maintenance. In order to make a timely decision on maintenance,
prognostics is a key enabling technology for CBM.

Every system deteriorates its performance over time subject to the stress or load
in operation. Therefore, maintenance should be exercised to assure satisfactory
level of reliability during the life of the system. The earliest maintenance has been
corrective maintenance (also called reactive, unplanned or breakdown mainte-
nance), which takes place only when failure has already occurred, hence, is passive
in nature. Corrective maintenance, which is often called the first generation
maintenance, has been placed since human made machines. Since corrective
maintenance occurs after the useful life of the system is all consumed, there is no

© Springer International Publishing Switzerland 2017 1
N.-H. Kim et al., Prognostics and Health Management of Engineering Systems,
DOI 10.1007/978-3-319-44742-1_1



2 1 Introduction

preparation time for maintenance. Unless replacement parts are already available, it
takes the longest time for maintenance, and the forced outage cost is highest. Since
it is hard to predict when the system will break down, the availability of the system
is poor. However, it only replaces parts that are actually broken down, the number
of replacement parts is the smallest.

A later maintenance technique is time-based preventive maintenance (also called
planned maintenance or the second generation maintenance), which sets a periodic
interval to prevent failures regardless of the health state of the system. Traditional
reliability engineering has been applied to set the proper interval, which uses the
reliability prediction methods based on the handbook or historical field data. This is
the most popular maintenance strategy where most replacements are prescheduled.
The most important aspect of the preventive maintenance is cost because it replaces
all parts even if many of them may not need to replace. Preventive maintenance is
cost-effective if all parts are expected to be failed about same time. However, this
strategy is inefficient when only a small number of parts fail because this strategy
enforces to replace many parts that are not going to be failed.

In order to illustrate the issue of wasted maintenance, consider the maintenance
of repairing cracks in airplane panels. The regulation from Federal Aviation
Administration requires to replace/repair cracks in the size of 0.1"” during type-C
inspection, which is performed every 6,000 flight cycles. This regulation is
designed from reliability assessment to keep the airplane frame safe in the reliability
level of 1077, which means one failure out of ten millions. If there exists a crack in
the size of 0.1", the probability that the crack grows and becomes unstable in next
6,000 flights is in the order of 10~’. Therefore, during type-C inspection, if any
crack in the size of 0.1” is detected, it has to be repaired or if several cracks are
detected, the panel must be replaced. This is a typical example of preventive
maintenance. But, an extreme scenario is that if there are ten millions of cracks in
the size of 0.1” in an airplane (this is a hypothetical assumption), only one of them
will grow and become unstable. However, in order to keep the airplane safe, all ten
millions of cracks should be repaired, which is a huge increase of maintenance cost!

With the rapid development of technology, modern systems become more and
more complex while maintaining higher reliability, and this results in the higher
maintenance cost. Eventually, preventive maintenance has become a major expense
of many industrial companies. In order to reduce maintenance cost while main-
taining the desired level of reliability and safety, the CBM has appeared as a
promising solution, which is to exercise the maintenance only when needed, and the
PHM is the key technology to accomplish this.

Figure 1.1 shows maintenance strategies versus cost plot. When the number of
failed parts is very small, it would be cost-effective to perform corrective mainte-
nance because only a small number of parts will need maintenance. When the
number of failed parts is large; that is, when most of the parts will fail, it would be
more efficient to perform preventive maintenance. However, in most engineering
applications, it would be more cost beneficial to perform condition-based
maintenance.



W

1.1 Prognostics and Health Management

Fig. 1.1 Maintenance
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For the case of the previous explanation of cracks in airplane panels, CBM only
repairs those cracks that actually grow and become unstable. Therefore, the
maintenance cost can significantly be reduced. Even if CBM reduces the number of
repaired or replaced panels the same as corrective maintenance, however, it still
shares the same problem of no preparation time for maintenance and long main-
tenance time due to delay in parts supply systems. In order to take a full advantage
of CBM, it is necessary to integrate it with prognostics. By predicting how cracks
will grow in the future, it is possible to schedule appropriate maintenance time.
Therefore, by combining CBM with prognostics, it is possible to take advantages
from both corrective and preventive maintenances.

Figure 1.2 illustrates such an evolution of maintenance strategy, which explains that
the maintenance is shifted from corrective (unscheduled, passive) or preventive (sched-
uled, active) maintenance strategy to the condition-based (predictive, proactive) ones.

The main steps of PHM include data acquisition, diagnostics, prognostics, and
health management as shown in Fig. 1.3. The first step is data acquisition, which is
to collect measurement data from the sensors and process them to extract useful
features for diagnosis. The second step is the diagnostics, in which the fault is
detected for any anomaly, isolated to determine which component is failing and to
identify how severe it is with respect to the failure threshold. Third step is the
prognostics that predicts how long it will take until failure under the current
operating condition. The last step is the health management to manage in optimal
manner the maintenance scheduling and logistics support. Among these, prog-
nostics is the key enabler that permits the reliability of a system to be evaluated in
its actual life cycle conditions. In other words, it predicts the time at which a system
or a component will no longer perform its intended function, thus giving users the
opportunity to mitigate system level risks while extending its useful life.

A number of different definitions of prognostics were proposed by several
communities (Sikorska et al. 2011). Among them, the most encompassing
description of prognostics is presented by ISO13381-1, which defines prognostics
as ‘an estimation of time to failure and risk for one or more existing and future
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failure modes’ (ISO 13381-1 2015). Standards or architectures of the PHM process
were also proposed. Among them, the Open System Architecture for Condition
Based Maintenance (OSA/CBM) is the most popular, which consists of six phases
or layers: data acquisition, manipulation, condition monitoring, health assessment,
prognostics, and decision-making (Callan et al. 2006; He and Lin 2012). The first
layer is data acquisition and is concerned with the activity of measuring data using a
variety of sensors. The data manipulation layer performs processing of raw data
which then feeds into the condition monitoring layer that calculates condition
indicators and provides alarm capabilities for anomaly. The health assessment layer
uses the condition indicators to determine health status describing how bad it is in
quantitative manner. An estimate of future progress is made including the remaining
useful life by the prognostics layer. Decision-making layer is to produce suitable
measures for replacement, and maintenance activities based on the data from the
previous layers. A conceptual CBM system functional architecture illustrating the
layers is shown in Fig. 1.4 (Callan et al. 2006). Comparing with Fig. 1.3, the first
two layers belong to the data acquisition, the next two are the diagnostics, and the
remaining two are the prognostics and health management, respectively.
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1.2 Historical Background

Initially, PHM was started to reduce a helicopter accident rate by the Civil Aviation
Authority of United Kingdom in the 1980s, and has been developed in 1990s based
on health and usage monitoring system (HUMS) that measures health conditions
and performance of helicopter. HUMS achieved good results to reduce accident rate
more than a half by being set on in-service helicopter (see Fig. 1.5, excerpted from
John Burt Associates Limited 2011 and Oil and Gas UK).

During 1990s, the concept of Vehicle Health Monitoring was adopted to the
aerospace research of NASA in USA, which is to monitor the health of outer space
vehicle. However, it was soon replaced by a more universal term Integrated Vehicle
Health Management or System Health Management to incorporate the prognostics
of various space systems (Pettit et al. 1999).

Non-Fatal Non-Fatal
‘nccitentrate | Revorable  CORETAA Reportatle
AccidentRate AccidentRate
LR 5.61 2.24 2.39 0.96
years
1991-2000 RE 0.82 0.49 0.35
years

Fig. 1.5 UKCS Offshore Helicopter Safety Record 1991-2000
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In the 2000s, the defense advanced research projects agency (DARPA) in USA has
developed the structural integrity prognosis system (SIPS) and condition-based
maintenance plus (CBM+) (Space Daily 2003), which have the same purpose. The
name prognostics and health management (PHM) was first adopted in the program for
joint strike fighter (JSF) development (Joint Strike Fighter Program Office 2016) (see
Fig. 1.6). The department of defense (DoD) made PHM system required by operation
of the defense acquisition system from 2003 (DoD Instruction 5000.2, 2003), which
states that “program managers shall optimize operational readiness through
affordable, integrated, embedded diagnostics and prognostics, and embedded
training and testing, serialized item management, automatic identification technology
(AIT), and iterative technology refreshment”.

Since then, the PHM technology has undergone significant development in
various aspects, which includes the fundamental study of failure physics, sensor
developments, feature extraction, diagnostics for fault detection and classification,
and prognostics for failure prediction. These techniques have been explored and
expanded to various industries. As the technologies are applied and matured in the
industry, articles are increasing that addresses successful applications in various
aspects (Sun et al. 2012; Yin et al. 2016).
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Fig. 1.6 PHM Architecture and Enabling Technologies (from Joint Strike Fighter Program
Office)
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In terms of success in the manufacturing sector for PHM solutions, there are
some economic numbers that can be reported. For example, the National Science
Foundation funded in independent economic impacts study on Industry/University
Cooperative Research Centers (I/lUCRC) and surveyed five industrial members of
the Center for Intelligent Maintenance Systems; the five companies (predominantly
manufacturing applications) reported a savings of over $855 Million U.S. dollars
based on the successful implementation of the predictive monitoring and PHM
solutions (Gray et al. 2012).

From few years ago, technical societies were established to gather and enhance
the knowledge in many research fields. As representative ones, the PHM society
holds the annual conference and publishes International Journal of Prognostics and
Health Management (IIPHM) since it has been founded in 2009 (PHM Society
2009). Also, the reliability society in IEEE holds conference on PHM annually
since 2011 (IEEE Reliability Society 2011). PHM study at the current time is being
led by diverse institutes, some of which are briefly introduced here.

Intelligent Maintenance Systems (IMS) Center (2001): IMS center was
established in 2001 by the University of Cincinnati, the University of Michigan,
and Missouri University of Science and Technology as the NSF Industry/University
Cooperative Research Center. The center focuses on the research for predictive
analytics and industrial big data modeling for lifecycle performance of industrial
systems. The center has coined the trademarked Watchdog Agent® prognostics
tools and Device-to-Business (D2B) predictronics platform for e-maintenance
applications.

Center for Advanced Life Cycle Engineering (CALCE) (1986): The CALCE,
established in 1986 at the University of Maryland, is recognized as the leader in the
reliability assessment of electronics based on the physics-based failure analysis.
Recently, the center is actively working on the PHM research for electronics
applications by the use of expendable devices, monitoring and reasoning of pre-
cursors to impending failure and life consumption modeling.

Prognostics Center of Excellence (PCoE) (2016): The PCoE, located at NASA
Ames Research Center, provides an umbrella for prognostic technology develop-
ment, specifically addressing prognostic technology gaps within the application
areas of aeronautics and space exploration. The PCoE is currently investigating
damage propagation mechanisms on safety-critical actuators for transport class
aircraft, damage mechanisms on aircraft wiring insulation, and damage propagation
mechanisms for critical electrical and electronic components in avionic equipment.

FEMTO-ST (2004): The FEMTO-ST Institute is a joint research institution,
created in 2004 in France through the merger of five local laboratories, and
restructured later into seven departments. The PHM team within the automatic
control department develops advanced algorithms for classification, prediction, and
decision on the problems such as the aging of fuel cells, composite materials, and
observations from sensor networks.

Integrated Vehicle Health Management (IVHM) center (2008): The IVHM
was established at Cranfield University by the support of Boeing in 2008 to act as a
world leading research hub for the aircraft PHM study. The center has since then
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offered the world’s first IVHM M.Sc. course and hosts several Ph.D. students
researching the application of IVHM to different fields.

1.3 PHM Applications

The PHM development was pioneered by the aerospace and defense industry due to
its unique requirements and history for safety-critical nature and high-maintenance
cost, as shown in Fig. 1.7 (Vachtsevanos et al. 2006). Since then, the technologies
have been applied broadly and matured in the industry. Many reviews and over-
views with different perspectives have been published in the literature over the past
decade. Sun et al. (2012) have surveyed some of the PHM practices and case
studies in their paper, which covers a wide range of applications like defense,
aerospace, wind power, civil infrastructure, manufacturing, and electronics. Yin
et al. (2016) have published a special section to collect the PHM applications in the
industrial electronics.

In aerospace and defense systems, PHM techniques have seen the most signif-
icant advances in several applications. The health and usage management systems
(HUMS) is an example of PHM solution for rotorcraft that detects several problems
from shaft unbalance to gear and bearing deterioration (UTC Aerospace Systems
2013). Vachtsevanos et al. (2006) has implemented prognostics to predict the RUL
of crack in the planetary gear plate of helicopter UH-60A (see Fig. 1.7). Pratt and
Whitney has implemented advanced PHM systems in their engine for the F135
multipurpose fighter (VerWey 2009). General Electric Aviation has monitored
aircraft engines for over 15 years and is providing diagnostic services to detect
early symptoms of engine problems before downtime. The prognostics technology
was included in the weapons platforms by the program from the US Army’s
Logistics Integration Agency (Greitzer et al. 2001), and in the transmission of
SH-60 helicopters by the Naval air systems command (NAVAIR) (Hardman 2004).

In the heavy and energy industries, prognostic approach was applied to the gas turbine
engines such as Rolls-Royce industrial AVON 1535 (Li and Nikitsaranont 2008).

Fig. 1.7 Prognostics of crack on a planetary gear plate in UH-60A helicopter (Vachtsevanos et al.
2006). © John Wiley and Sons, 2007, reprinted with permission. a Crack on a planetary carrier
plate, b prognosis result of crack growth
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Komatsu and Caterpillar have developed the advanced data analysis algorithms to detect
the vehicle problems at an early stage (Wang et al. 2007). In the renewable energy
applications, wind turbine drivetrain condition monitoring systems have seen much
progress (see Fig. 1.8) (Siegel et al. 2014; Bechhoefer and Mortom 2012).

In the manufacturing industry, in which the primary focus is on the reduced
down time, numerous reviews have been devoted to address the state of the art of
PHM technology for the manufacturing applications (e.g., see Jardine et al. 2006;
Lee et al. 2014; Peng et al. 2010). Some of specific applications are the health
monitoring of manufacturing equipment such as the spindle bearing of rotating
machinery (Liao and Lee 2010), machine tool wear (see Fig. 1.9) (Kao et al. 2011),
surge for air compressors (Sodemann et al. 2006) and the fleet health of industrial
robots (Siegel et al. 2009). Erosion of induction furnace was predicted in a copper
products manufacturing company (Christer et al. 1997). Failure of three water
pumps was predicted using vibration data in a large soft drinks manufacturing plant
(Wang et al. 2000).
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Fig. 1.8 Example application of prognosis in wind turbine (Bechhoefer and Mortom 2012).
a System layout, b health index (HI) for gear run to failure
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Fig. 1.9 Prognostics example of tool condition monitoring (TCM) application (Kao et al. 2011).
Engineering Asset Management Review, “Deployment of prognostics technologies and tools for
asset management: Platforms and applications,” 2, 2011, 1-29, Lee, Jay et al., with permission of
Springer. a Implementation framework of TCM, b screenshot of prognostics
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In the electronics industry, the PHM study was the most active in the Center for
Advanced Life Cycle Engineering (CALCE). Example applications are the failure
prognosis of laptop computers (Vichare et al. 2004), and power electronics devices
(IGBTs) used in avionics (Saha et al. 2009) to name a few.

Recently, there are also movements on the establishment of standards by the
professional societies. In IEEE, standards for the PHM are discussed by the relia-
bility subdivision and published a relevant article (Vogl et al. 2014). In the man-
ufacturing side, similar activity has been taken by National Institute of Standards
and Technology of USA, and published a report (Sheppard et al. 2009).

1.4 Review of Prognostics Algorithms

The PHM applications introduced in Sect. 1.3 can be facilitated based on a variety
of data analysis techniques. In this section, the techniques of prognostics, as a part
of PHM, are reviewed, which is what this book focuses on. Prognostics is to predict
future damage/degradation and the remaining useful life (RUL) of in-service sys-
tems based on the measured damage data.

In general, prognostics methods can be categorized into physics-based and
data-driven approaches based on the usage of information, which is illustrated in
Fig. 1.10. Physics-based approaches assume that a physical model describing the
behavior of degradation is available and combine the physical model with measured
data and usage conditions to identify model parameters and to predict the future
behavior. Since this approach needs to capture physical basis of failure in model
that relates the forces that cause damage to their effect, it requires a detailed
understanding of the problem.

The most important advantage of physics-based method is that the results tend to
be intuitive because they are based on modeled phenomenon. Also, once a model is
developed, it can be reused for different systems or different designs by tuning
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Fig. 1.10 Categorization and definition of prognostics methods
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model parameters. If incorporated early enough in design process, it can drive
sensor requirements; that is adding or removing sensors. The method is generally
considered as computationally efficient than the data-driven method. However, the
advantages of physics-based approaches can also work against them. For example,
model development requires a thorough understanding of the system. If any
important physical phenomenon is missed, then it can lead to failure of predicting
degradation behavior. Also, high-fidelity models, especially for numerical models,
can be computationally intensive.

Data-driven approaches use information from collected data at current and
previous usage conditions (called training data) to identify the characteristics of the
currently measured degradation state and to predict the future trend. The conceptual
understanding for data-driven approaches is an extrapolation with mathematical
function based on identified coefficients. Since this approach simply fits the trend of
data, there is no guarantee that extrapolation will be meaningful since failure
progression from current state forward may be unrelated to prior failure progres-
sion. The success of data-driven methods depends on collecting statistics of failures
as a function of current state, which requires volumes of data. Without having a
comprehensive understanding of the system, it is difficult to know how much data
are good enough for the purpose of prognostics.

In the viewpoint of practicality, data-driven approaches are easy and fast to
implement. In fact, several off-the-shelf packages are available for data mining and
machine learning. By collecting enough data, it is possible to identify relationships
that were not previously considered. Also, since the method works with objective
data, it can consider all relationships without any prejudice. However, this method
requires a lot of data that include all possible modes of failure for the same or
similar systems. Since no physical knowledge is involved, the results may be
counter-intuitive and it is dangerous to accept a result without understanding the
cause of the problem. The method can be computationally intensive, in both
analysis and implementation.

The application domains of the two methods can be illustrated in terms of reli-
ability of physics model and availability of data, as shown in Fig. 1.11. When a
highly reliable physics model is available, physics-based approaches will work well
even with a small number of data. When much data are available, both methods can
be applicable. The issue is when a reliable physics model is not available. In this
case, if much data are available, then data-driven approach can be applicable without
requiring physics model. However, if a small number of data are available, there is
no reliable prognostics approaches and thus health assessment will be unreliable.

There are two main differences between physics-based and data-driven
approaches; (1) availability of a physical model including usage conditions and
(2) use of training data to identify the characteristics of the damage state. Since
physics-based approaches require more information (physical model) than
data-driven ones, more accurate and long-term prediction is possible. Physical
degradation models are, however, rare in practice. Then data-driven approaches
should be employed, but it is not easy to obtain several sets of degradation data due
to expensive time and costs.
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Fig. 1.11 Application domains of physics-based and data-driven prognostics algorithms

Hybrid approaches are to integrate advantages of both physics-based and
data-driven methods to improve the prediction capability. For practical complex
systems, it might not be efficient to use physics-based or data-driven approaches
alone. Instead, both approaches are used together to maximize the prediction
capability. For example, the knowledge on physical behavior can be used to
determine the mathematical model (e.g., determining the order of polynomial or
exponential functions) in data-driven method. It is also possible to use data-driven
system model in conjunction with a physics-based fault model, or vice versa. This
approach, however, depends on a specific application domain, hence would not be
discussed in this book. More information about hybrid approaches can be found in a
review material by Liao and Kottig (2014).

A simple example of prognostics is depicted in Fig. 1.12 with Paris model (Paris
and Erdogan 1963) as a physics-based approach and a polynomial function as a
data-driven approach. Even though the given information is different from each
other, the prognostics procedure is almost the same: identifying parameters based
on damage data, and predicting future damage by substituting the identified
parameters to each physical degradation model or mathematical function. The
damage growth depends on model parameters (m, C) and usage condition (Ac) in
the Paris model. Equivalently, the coefficients (8’s) correspond to model parameters
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Fig. 1.12 Simple example of prognostics
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in the data-driven approach. However, the usage condition is not necessarily
required in data-driven approaches but can be utilized in the polynomial function as
an input variable.

While the algorithms of physics-based approaches are limited to methods for
parameter identification, data-driven approaches have a great variety of algorithms
based on the type of mathematical functions and how to utilize given information.
In fact, the algorithms of physics-based approaches can be used for data-driven
approaches since a mathematical function can be employed instead of a physical
model. Since, however, a form of the mathematical functions that can be employed
in physics-based approaches is limited to polynomial or exponential functions, there
is a typical categorization for algorithms between two approaches.

Since the behavior of damage depends on model parameters in physics-based
approaches, identifying them is the most important issue in predicting future
damage behaviors. Due to uncertainty in usage condition and noise in data, most
algorithms identify model parameters as probability distributions rather than
deterministic values based on Bayesian inference (Bayes and Price 1763) that is a
statistical method in which observations are used to estimate and update unknown
model parameters in the form of a probability density function. The most typical
technique is the particle filter (Doucet et al. 2001; An et al. 2013) that expresses the
distribution of parameters with a number of particles and their weights based on
sequential Bayesian updating. The Kalman filter (Kalman 1960) is also a filtering
method based on the sequential Bayesian updating, which gives the exact posterior
distribution in the case of a linear system with Gaussian noise. Other Kalman filter
family techniques, such as extended/unscented Kalman filter (Ristic et al. 2004;
Julier and Uhlmann 2004) have been developed to improve the performance for
nonlinear systems. Bayesian update also can be processed simultaneously, which is
called a Bayesian method (Choi et al. 2010) in this book. Finally, the nonlinear least
squares (Gavin 2016) that is a nonlinear version of the least squares is often
utilized, but in which the parameters are estimated with deterministic values and
their variance.

In data-driven approaches, the most common technique is the artificial neural
network (so-called neural network) (Chakraborty et al. 1992; Ahmadzadeh and
Lundberg 2013; Li et al. 2013) as an artificial intelligence method, in which a
network model learns a way to produce a desired output, such as the level of
degradation or lifespan, by reacting to given inputs, such as time and usage con-
ditions. Also, the Gaussian process (GP) regression (Mackay 1998; Seeger 2004) is
a commonly used method among regression-based data-driven approaches, which
is a linear regression like the least squares method (Bretscher 1995) with the
assumption that errors between a regression function and data are correlated.
Including the least squares regression, there are a wide variety of algorithms such as
the fuzzy logic (Zio and Maio 2010), relevance/support vector machine
(RVM/SVM) (Tipping 2001; Benkedjouh et al. 2015), gamma process (Pandey and
Noortwijk 2004), Wiener processes (Si et al. 2013), hidden Markov model (Liu
et al. 2012), etc. A comprehensive review about various data-driven algorithms can
be found in a reference by Si et al. (2011).
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1.5 Benefits and Challenges for Prognostics
1.5.1 Benefits in Life-Cycle Cost

There are many different ways to view the benefits of PHM. The biggest benefit
may be the reduction of total life-cycle cost as is addressed below.

Reduced operating cost: Because the maintenance costs of complex systems
can be extremely large, especially for a fleet of systems, the cost can be reduced by
the PHM substantially. More specifically, the PHM provides savings in two ways;
the first is through the CBM practices and the second is through a more automated
maintenance and logistics support system. In order to understand CBM, suppose a
simple example to change oil in your car. The old philosophy is to change your oil
at a specific period, every 3—5k miles, an example of a preventive maintenance. By
continuously monitoring the health of the oil through sensor readings, the CBM is
realized by replacing oil only when needed. The second is through the automated
maintenance and logistics system, which will allow for a more just-in-time main-
tenance environment. Spare parts can be ordered and maintenance can be planned
in advance when they are needed, instead of after a catastrophic failure. This will
realize more cost savings for increasingly complex support systems such as military
maintenance. Although it addresses the connected machine or internet of the things
(I0T) which is wider than the PHM concept, General Electric is claiming that only
1 % improvement in efficiency can make $276 billion in the five major industries as
shown in Fig. 1.13 (Evans and Annunziata 2012).

Increased revenue: Although this is not direct, the PHM can also help to
increase the revenue stream of a business. If a product seller can offer a more
reliable product that has equipped the PHM capability to their customers, they will
be able to gain a larger market share and therefore increase revenue. In fact, this is
taking place in the market such as the aircraft engines by GE and mining machines
by Komatsu. They are not only selling their products, but also providing PHM
services to the buyer companies from which more revenue can be made. An
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example is given in Fig. 1.14, in which the PHM system is imbedded in the mining
machines of Komatsu company (Murakami et al. 2002).

Sun et al. (2012) made more detailed analysis on the benefits in view of the
stages of the life cycle process, which are (a) system design and development,
(b) production, (c) system operations, and (d) logistics support and maintenance.
They are summarized as follows.

1.5.2 Benefits in System Design and Development

Optimum system design: When developing a new product, a large number of tests
including accelerated life tests are needed, which is time-consuming and costly, but
still is not truly representative of the actual conditions. Prognostics can provide
those data from the actual conditions throughout the system life cycle. This
information can be used to improve and optimize new design which is much less
costly. Furthermore, if the new system includes the PHM capability, it does not
have to be conservative in terms of safety and reliability because the faults are
monitored and insured against failure by the PHM.

Improved reliability prediction: Reliability prediction is of importance in the
design of safety-critical systems. Traditional methods are based on the database of
handbooks such as MIL-HDBK-217 and its derivatives, but they are often proven to be

Distribution of machine
information through the network

Customer service:
Providing of maintenance support and
supply of parts based on the R&M contract.

1) Notification of anomaly
2 i of machine
information via network

Early detection of
abnormal conditions and
taking of proper action.

WebCARE Development centers

P

; and plants
o 2 data base
Mining machines: » BB
Customer site a ! Tl_gj
(1) VHMS: 5\ 4 (3)§] Centralized control &
~ Common with all models : — = B of machine health
Onboard monitoring system: Communications (data collection) information _—
Collection of key machine information Satellite communication: e
(health condition, payload) Orbcomm system
Rt —t PC downloading and the Internet a ! 5

Lollection of

Field measurement T s i i --..a o
S ptrvicedats machine information o AL H %_
I e =l « iy |~ ‘Repssrreco
ervodical inspection, e — . a
ol analysis, PM clinic,ctc. | [EEEES. . .« e e e aea== it § 2
h 0il Support center

Sending of oil samples

Fig. 1.14 PHM capability in the mining machines of Komatsu company. From Murakami, Taku,
et al. “Development of vehicle health monitoring system (VHMS/WebCARE) for large-sized
construction machine” (2002): 15-21. Reprinted with permission
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misleading, providing incorrect life predictions. In contrast, the data collected from
PHM reflect the actual life cycle conditions of the system, which facilitates more
accurate damage and RUL assessment, hence, allows more accurate reliability pre-
diction. A better reliability plan can be made accordingly with more cost-effective way.

Improved logistics support system: In general, when a new system is devel-
oped, logistics support systems are designed together, which has a great impact on
the life-cycle cost. Prognostics can assist in constructing this system. For example,
in the electronic systems, belief has been that electronics failures cannot be antic-
ipated, and can only be dealt with as they occur. This has led to the large-scale
supply resources with scattered spare parts depots and their management, which is
another big source of increased cost. By using the PHM, the failure time and the
number of electronics can be predicted in advance, which enables a significant
reduction in the logistics.

1.5.3 Benefits in Production

Better process quality control: In practice, the quality deteriorates whenever the
parameter of a piece of machining equipment deviates from its nominal or optimal
value, such as the performance of a cutting tool, which degrades gradually. The
monitoring and prognostics of manufacturing equipment status (e.g., vibration,
strength, power, and operating mode), as well as the wear or fault status can provide
more information about equipment itself than traditional quality control, thus
promoting the quality control process and quality assurance.

Integrated maintenance development by OEMs: Most of the information used
for high-level system prognostics comes from subsystems and assemblies.
Therefore, it is necessary for system designers to work together with the suppliers to
define the variables to be monitored and develop the algorithms for the efficient
CBM. The suppliers then provide a component or subsystem level prognostics
solution for system manufacturers. By sharing and integrating the PHM informa-
tion, the system manufacturer can conduct CBM in practice.

1.5.4 Benefits in System Operation

Increased System Safety: Prognostics provides the ability to anticipate incipient
faults prior to their progressing to catastrophic failure of the system. These capa-
bilities enable more accurate management of the health of systems. Figure 1.15
shows an example of degrading health index and its prognosis. The prognostic
“distance,” which is the time interval between the advance failure warning time and
the estimated failure time, is shown in Fig. 1.15. The required advance time before
failure can vary from seconds to years. In the US space shuttle, the crew can have a
4-second window upon takeoff to eject for survival. In aircraft, prognostic warning
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may ensure a lead time of hours for unit replacement, while a couple of months for
corrosion maintenance.

Improved Operational Reliability: In original sense, with proper design and
effective production process control, the inherent reliability of a system can be
made. However, under actual operating conditions, the environmental and opera-
tional loads may sometimes be quite different from what the system was designed
for, and will affect the operational reliability of the system. In such cases, a system
designed with intended reliability and life under predicted usage will be exposed to
the risk of failure when subject to a severe usage. This is illustrated in Fig. 1.16.
The monitoring capability of PHM makes it possible to take proper actions under
different usage conditions, thus increasing service lifetime while maintaining the
intended reliability and achieving mission success.

1.5.5 Benefits in Logistics Support and Maintenance

Condition-based maintenance: As mentioned earlier, the primary benefit of PHM
is that it enables CBM, which minimizes unscheduled maintenance, eliminates
redundant inspections, reduces scheduled maintenance, extends maintenance
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interval, and most of all, reduces overall maintenance costs. Besides, it enhances
identifying failed components, which helps preparation for maintenance in advance.
In that case, the maintenance task can be prepared on ground while the airplane is
still in flight, for example. There is a report that the prognostics system for the joint
strike fighter (JSF) is expected to achieve a 20-40 % reduction in maintenance
manpower, and a 50 % reduction in the logistics of machinery to support the plane
(Scheuren et al. 1998).

Improved fleet-wide decision support: When the PHM is employed on a large
number of systems (fleet), there are many more benefits than just multiplying the
benefits for an individual system. Since the PHM will provide much more detailed
information for the operation of every single component of the fleet, specific
decisions can now be made in a variety of different situations. Where and when to
deploy maintenance personnel, how many spare parts needs to be ordered, and
where to perform opportunistic maintenance are only a few of the many fleet-wide
benefits. Optimization techniques applied to the fleet-wide decisions can only help
to realize greater overall system benefits of employing PHM.

Optimized logistics supply chain: Prognostics enables predictive logistics,
which can improve the planning, scheduling, and control of activities in the supply
chain. The main benefit comes from the fact that the operator can use information
about the components’ RUL to buy spare parts only when they are about to fail. By
applying the prognostic information, fewer spare parts are used than before and they
are delivered “just in time” thus, in-stock inventory levels are reduced, which leads
to a substantial simplification of the supply chain.

Reduced maintenance-induced fault: When a mechanic works on a system to
fix or replace a component, he may accidentally cause damage to another com-
ponent, which is called a maintenance-induced fault. If this is not noticed, unex-
pected system downtime or even the catastrophic failure can result. Prognostics
reduce the need for maintenance activities in the system, thus reducing the
occurrence of human-related issues.

1.5.6 Challenges in Prognostics

While there are so many benefits in the PHM, there are a number of challenges to be
explored in future studies, which are outlined as follows (Sun et al. 2012).
Implementing optimum sensor selection and localization: Data acquisition is
a first step and an essential part of prognostics. It often requires the use of sensor
systems to measure the environmental, operational, and performance parameters of
a system. Inaccurate measurements by improper sensor selection and location can
degrade the prognostic performance. The sensors should be able to accurately
measure the change in the parameters linked to the critical failure mechanisms. The
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possibility of sensor reliability and failures must also be taken into account. Some
strategies to improve the reliability of sensors have been presented, such as using
multiple sensors to monitor the same system (i.e., redundancy), and implementing
sensor validation to access the integrity of a sensor system and adjust or correct it as
necessary (Cheng et al. 2010).

Feature extraction: In order to have a meaningful prognostics, it is important to
collect data that is directly related to damage. However, in many cases, it is difficult or
impossible to collect damage data directly. For example, the cracks in the race of
bearings are virtually impossible to measure because the bearing is constantly rotat-
ing. In such a case, a system response that is related to damage is measured to estimate
the level of damage indirectly. For example, accelerometers are installed near the
bearing to monitor the level of vibration due to cracks. In such a case, it is important to
extract damage features out of vibration signals. Since the system vibration includes
entire response of the system including noise, it is difficult to extract signals that are
related to damage. Especially for complex systems, damage is only a tiny portion of
the system. The signals related to damage tend to be very small compared to the signals
related to system’s response. Therefore, it is challenging to extract a small signals
related to damage out of relatively large noise. In Chap. 7, a case study is presented to
extract effective signals from noisy data of bearings.

Conditions for prognostics approaches: Generally, methods for prognostics
can be grouped into physics-based and data-driven approaches as mentioned in
Sect. 1.4. Physics-based approaches utilize knowledge of failure mechanism models
or some other phenomenologically descriptive models of the system to assess the
system’s end of life. The advantage is its ability to predict the RUL accurately with a
small number of data. However, sufficient information about the failure mode is
needed for this. For example, in case of crack growth models, the materials,
geometry, and operational and environmental loading conditions are required. In
complex systems, these parameters may be difficult to obtain. Furthermore, the
models require deep knowledge of the physical processes leading to failure, but in
complex systems it is difficult to find such models, which is one of the limitations of
physics-based approaches. Data-driven approaches use information from observed
data to identify the characteristics of degradation progress and predict the future state
without using any particular physical model. Therefore, the accuracy in RUL pre-
diction results largely depends on the obtained data called training data. Usually
many training data (especially up-to-failure data) are required to identify the
degradation progress, but it is a challenge to obtain a large number of training data
from in-service systems due to time and cost. In conclusion, it is advised to develop
novel hybrid approaches by exploiting advantages of each approach to compensate
the limitations. In this book, the attributes of typical algorithms of physic-based and
data-driven approaches are introduced, which helps developing hybrid approaches
after understanding intrinsic characteristics of each algorithm.
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Addressing prognostic uncertainties and assessing its accuracy: Another
major challenge for the use of prognostics is to develop methods that are capable of
handling real-world uncertainties that lead to inaccurate predictions. Figure 1.17
shows some sources of uncertainty encountered in the prognostics, which are
generally grouped into three different categories: (1) model uncertainty caused by
model simplification and model parameters, (2) measurement and forecast uncer-
tainty induced by environmental and operational loading conditions, and (3) in-
herent uncertainties with the geometry and materials of products mainly caused by
the production process. These uncertainties can lead to the significant deviation of
prognostics results from the actual situation. The development of methods that can
be used to describe the uncertainty bounds and confidence levels for prognosis is
very important. Method for prognostic accuracy assessment is also necessary for
building and quantifying the confidence level of a prognostics system. In fact, the
prognostic life of the models is expressed as a distribution as shown in Fig. 1.15.
Although there is no general agreement as to an appropriate and acceptable metrics
to assess the prognostic performance, a few researchers have suggested some ways.
Ledo et al. (2008) proposed a set of metrics to evaluate the performance of prog-
nostics algorithms, including prognostics hit score, false alarm rate, missed esti-
mation rate, correct rejection rate, prognostics effectivity, etc. Saxena et al. (2009)
also suggested a list of metrics to assess critical aspects of RUL predictions, such as
prognostic  horizon, prediction spread, relative accuracy, convergence,
horizon/precision ratio, etc., which is given in Fig. 1.18. Although efforts have been
made to cover most PHM requirements, further refinements in concepts and defi-
nitions are expected as prognostics mature.

| Sources of Uncertainty |

! ¥

|Physical uncertainty| | Data Uncertainty | | Model Uncertainty |

Material Measurement FEA for physics &
properties noise & error surrogate model

Degradation model |

FEA discretization
error

Surrogate model
uncertainty

Fig. 1.17 Classification of uncertainty in the prognostics



References 21

Prognostic Horizon
¢ Does the algorithm predict within desired accuracy
around EoL and sufficiently in advance?

a — A Performance
* Further does the algorithm stay within desired
performance levels relative to RUL at a given time?

Relative Accuracy
¢ Quantify how well an algorithm does at a given time
relative to RUL

Convergence
o If the performance converges (i.e. satisfies above
metrics) quantify how fast does it converge

Fig. 1.18 Steps for the prognostics metrics. © (2012) IEEE. Reprinted, with permission, from E.
Bechhoefer and B. Morton, “Condition monitoring architecture: To reduce total cost of
ownership,” Prognostics and Health Management (PHM), 2012 IEEE Conference on, Denver,
CO, 2012, pp. 1-9
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Chapter 2
Tutorials for Prognostics

2.1 Introduction

The performance of many engineering systems is gradually degraded, and even-
tually, the systems will fail under repeated usage conditions. Consider that a
through-the-thickness center crack exists in an infinite plate under mode I fatigue
loading condition. In aircraft structures, for example, this corresponds to a fuselage
panel under repeated pressurization loadings (see Fig. 2.1), which is the main cause
of fatigue failure. One flight corresponds to one cycle of loading, and cracks grow
as the number of cycles increases. This is the major source of fatigue crack growth
for fuselage panels. When the safety of aircraft structure is considered as a per-
formance, it is gradually degraded as cracks grow. In this context, the crack is
considered as damage, and the structural performance is degraded as the damage
increases. That is, the structure is in a healthy state when there is no crack. Due to
repeated loadings, micro-size cracks are formed and grow. As the cracks grow,
damage increases and the structural performance is gradually degraded. Eventually,
the structure will fail when the damage grows beyond a certain threshold.

In damage tolerance design, it is allowed to have damage in the system as long
as it can be monitored and controlled so that it may not cause a system level failure.
To avoid catastrophic failure, cracks should be inspected and monitored, and panels
are required to be repaired or replaced before cracks grow beyond a certain level of
threshold. The objective of prognostics is to predict remaining cycles before the
damage grows beyond the threshold (called remaining useful life, RUL). In order to
predict the RUL, prognostics utilize the measured damage levels up to the current
cycle.

The graph in Fig. 2.1 illustrates the prognostics process. The circles and squares
are degradation/damage data such as, crack size, wear volume, and spall size,
measured at different cycles. Since the degradation data cannot be directly measured
in most cases, health monitoring data are obtained from sensors/actuators in the
form of electrical or vibration signals, acoustic waves, thermography, etc. Then
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Fig. 2.1 Illustration of prognostics concept

these signals are converted into degradation data based on signal processing
techniques, which is called featured data and will be discussed in Chap. 7. For
example, in the case of crack size data, the actual measurements are transient elastic
waves, and using calibration against known crack sizes, it is possible to estimate the
crack size from wave signals.

In the figure, the circles represent degradation data up to the current cycle of the
current system that are of interest to predict the RUL. These data are referred to as a
prediction set in the text. The grey squares are degradation data from similar
systems with the current one until the threshold (e.g., data from the same type of
airplanes, or from the same airplane but different panels, which connotes that usage
conditions can be different from the current one.), which are called training data and
help to increase the prediction accuracy of the current one. In this text, these data
are referred to as training set. Based on these data, future behavior of degradation is
predicted as the solid curve in the figure.

The process of predicting the future behavior of degradation includes numerous
sources of uncertainty, such as variability in material properties, data measurement
noise/bias, current/future loading conditions, and not the least, the predicting pro-
cess itself. Therefore, it is natural to consider the predicted degradation as a sta-
tistical distribution (the distribution is shown in the vertical line at the current cycle
k in the figure), whose prediction interval is shown as the dashed blue curves in the
figure. That is, even if degradation is measured as a single point at the current cycle,
the degradation is represented as a distribution due to uncertainty.

For the purpose of prognostics, it is a failure of the system when the degradation
level goes beyond the threshold (the red horizontal line in the figure). Due to
uncertainty, the time to reach the threshold (end-of-life, EOL) is uncertain and can
be represented as a probability distribution (blue bell-shaped curve). Then, for a


http://dx.doi.org/10.1007/978-3-319-44742-1_7

2.1 Introduction 27

given time, the area under the distribution up to the time is considered as a failure
probability or probability of failure. The failure probability increases as cycle
increases. For example, the portion of the degradation distribution beyond the
threshold (failure probability) at k +m cycles is greater than one at k+ 1 cycles
(I > m).

The end-of-life (EOL) is the corresponding cycle when the degradation reaches
to the threshold and the maintenance should be ordered for the system. Since the
degradation is a distribution, the cycle reaching to the threshold is not a deter-
ministic value. Therefore, EOL is also a distribution because of the same sources of
uncertainty, which is shown as the distribution on the threshold in the figure. The
RUL, the remaining time to the maintenance from the current time, is also predicted
as a distribution by subtracting the current cycle from the EOL distribution, as

IRUL = fEOL — %

The lower bound of RUL is considered as the maintenance time for a conser-
vative purpose. In a word, prognostics is to predict future behavior of degradation
and the RUL of the system based on the measured data up to the current time.

In general, prognostics methods can be categorized into two: physics-based and
data-driven approaches. There are three main differences between the two
approaches; (1) availability of a physical model that describes the behavior of
damage, (2) availability of field operating conditions, and (3) damage degradation
data from similar systems.

Physics-based approaches assume that a physical model describing the behavior
of degradation is available with usage conditions such as loading information.
Fatigue crack growth is the most common example used in this approach since the
physical models are relatively well developed compared to other failure mecha-
nisms. Consider again the crack on a plate ignoring the effect of finite plate size and
the curvature of the plate in Fig. 2.1. When the stress range due to the pressure
differential is Ag, the rate of damage growth can be written using the Paris model
(Paris and Erdogan 1963) as

da m
oy = C(Aov/7a) (2.1)

which can be rewritten by integrating it and solving for a as

a=[N-c(1-3)(8ovn)" +a f] - (2.2)

where ay is the initial half crack size, a is the half crack size at the number of cycles
N, and m, C are the model parameters. The model parameters govern the behavior
of crack growth, which can be identified based on measured crack sizes at certain
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interval of cycles with given loading information, Ac. The crack size at future
cycles can be predicted by substituting the identified parameters to the Paris model
with future loading conditions. Since identifying model parameters is the most
important step, algorithms of physics-based approaches can be considered as a
parameter estimation method. The simplest method will be introduced with a simple
example in Sect. 2.2, and more advanced methods will be discussed in Chap. 4.

Data-driven approaches can be considered when physical models are not
available or the failure phenomenon is too complex to be expressed as a model.
Now let us assume that degradation data only come from the dots in Fig. 2.1 and no
physical model is available. In this case, no one may know what the future behavior
would be without any information about degradation behavior with just a small
number of data. Therefore, several sets of run-to-failure data (shown as the squares
in the figure) are usually required to identify the degradation characteristics in
data-driven approaches, which are called training data. In contrast with
physics-based approaches identifying model parameters, there are a great variety of
data-driven methods to use information from training data. One simple way will be
introduced in Sect. 2.2.3, and typical algorithms will be discussed in Chap. 5.

This chapter provides a prognostics tutorial with a MATLAB code using simple
examples. To simplify the process, uncertainty sources in prediction results are not
considered at first. Therefore, degradation behavior and RUL at each cycle will be
predicted as deterministic values rather than distributions. After the prognostics
process is explained in terms of deterministic approach, probabilistic prediction is
performed by considering the uncertainty in degradation data.

This chapter is organized as follows: in Sect. 2.2, degradation behaviors are
predicted based on physics-based and data-driven approaches using least squares
method; in Sect. 2.3, RUL is predicted and its results are evaluated based on the
prognostics metrics; in Sect. 2.4, prognostics is performed by considering noise in
degradation data, and in Sect. 2.5, issues in practical prognostics are briefly
addressed, followed by exercises in Sect. 2.6.

2.2 Prediction of Degradation Behavior

2.2.1 Least Squares Method

In this section, a simple example of prognostics is introduced for both
physics-based and data-driven approaches. Before we discuss about the two
prognostics approaches, the least squares (LS) method (Bretscher 1995) is
explained first, which is to find unknown parameters (or coefficients) by minimizing
the sum of square errors (SSg) between measured data and simulation outputs from
the model/function.

Let y; denote the measured data of degradation (e.g., crack size) at time index k
and z; the corresponding simulation output at the same time. The difference
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between y; and z; is defined as error ¢. Therefore, the relationship between
measured data and simulation output can be written as

Y=zt &k (2.3)

In general, the error & can represent measurement error in y; as well as the error
in simulation output z;. For the moment, however, we assume that the simulation
model is correct and the error only comes from measurement. We further assume
that the measurement error does not include bias but noise, which is randomly
distributed with the mean being zero; that is, the noise is unbiased.

Let us assume that the simulation model z(z;0) is a linear function of input
variable ¢ (e.g., cycles) as

2(;0) =01+ 0, 0=1{0, 0,}", (2.4)

where 0 is a vector of unknown parameters to be identified using the degradation
data. The notation z(#;0) is used to emphasize the fact that the simulation model
takes time ¢ as input and depends on its parameter 0. If there is no measurement
error, then only two data points will be sufficient to identify unknown parameters.
However, due to measurement error, these parameters are determined so that the
sum of errors g at all data points is minimized. This is the same as conventional
regression. Since errors can be positive or negative, it is better to minimize the sum
of square errors.

Let us consider the case that there are n, data points, where the degradation is
measured. The pair of input variable and measured degradation at data points is
denoted as (f,y), k =1,...,n,. A vector of measured degradation data can be

denotedasy ={y1 y2 ... Yn }T. In the same way, the simulation model can

be evaluated at data points as z(#;0) = zx = 0; + 021, The collected simulation
outputs at all data points can be expressed as

21 151
2 I n
z= = 1. {OI}XO, (2.5)
: 0,
Zn 1 ¢,

where X is called the design matrix.
With the vectors of measured data and simulation outputs, the vector of errors in

Eq. 2.3 can be defined as e = {&1 & ... &, VT =y — 2. The sum of square
errors can be defined in the following vector operation:

SSe =e'e = {y —z}"{y — z} = {y — X0} " {y — X0} (2.6)

Note that the above SSg is a quadratic function of parameters. Therefore, its
minimum can be found from the stationary condition of SSg with respect to 0 as
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T
d(izE) _s B_(‘j e=2X"{y - X0} =0 (2.7)

Therefore, the parameters that minimize SSg can be obtained by solving the above
equation for 0, which is called the estimated parameters as

0 =[X"X]"{X"y} (2.8)

The estimated parameters are used to predict the degradation level, z(t; 0) at new
time ¢ from Eq. 2.4. The above process is called least squares method or linear
regression.

In order to generalize the above derivations, we will use the following con-
vention: y is a n, X 1 vector of measured data, 0 is a n, x 1 vector of the parameters
associated with the model, and X is a n, X n, design matrix.

A sample MATLAB code for LS is given in [LS], and it will be explained how
to use it for different approaches in the following subsections.! Blanks in the code
will be filled for a specific example.

[LS]: MATLAB code for Least Squares

1 %$%Identify parameters (theta)

2 y=[1"; % a vector of measured data
3 x=[ 1"'; % a vector/matrix of input
4 X=[ 1; % a design matrix, e.g., Eg. 2.5
5 thetaH= (X' *X)\ (X' *y) % Eq.2.8
6 % This is the same as: thetaH=regress(y,X):;

7

8 %%Degradation prediction at xNew

9 xNew=[ 1°';

10 XNew=[ ]; % same form as X, but use xNew instead of x
11 zH=XNew*thetaH; $ Eq. 2.4 or 2.5
12

13 %$%RUL prediction

14 thres=[ ]; % threshold level
15 currt=[ ]; % current cycle
16 syms xXEOL

17 XEOL=[ 1; % same form as X, but use XEOL instead of x
18 eolFuc=thres-XEOL*thetaH; % EOL func.
19 eol=double (solve (eolFuc, 'Real', true));
20 rul=min (eol (eol>=0))-currt

'All MATLAB codes in this book can be found in the companion website http:/www2.mae.ufl.
edu/nkim/PHMY/. The naming convention is functionname.m. For example, the MATLAB code for
least squares method is LS.m.


http://www2.mae.ufl.edu/nkim/PHM/
http://www2.mae.ufl.edu/nkim/PHM/
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2.2.2 When a Degradation Model Is Available
(Physics-Based Approaches)

Since damage is a part of physical phenomena, many researchers have tried to
model the evolution of damage; i.e., degradation, using physical models, such as
fatigue crack growth (An et al. 2012; Coppe et al. 2010; Sankararaman et al. 2009),
wear of mechanical joints (An et al. 2011), recharging capability of battery (Dalal
et al. 2011), etc. These models are developed based on understandings in physical
phenomena through numerous test data. The advantage of having a degradation
model is that we can expect the behavior of damage. However, since models are
usually developed under idealized conditions with many assumptions, its applica-
bility is limited. In addition, when damage is caused by interactions between many
systems, it is difficult to develop a physical model that fully describes the degra-
dation process. Since models are usually not perfect, it is possible to include the
effect of model error. However, we will only consider the case that the model error
is ignorable. We will discuss about the effect of model error in Chaps. 4 and 6.

2.2.2.1 Problem Definition

When a degradation model that describes the level of damage is available, the
measured data can be used to identify (or calibrate) model parameters. Once the
model parameters are identified, they can be used to predict the future behavior of
the damage. In order to show how to identify model parameters of a degradation
model, let us consider the following form of degradation model:

21;0) =0, + 0,17 + 058, 0={0, 0, 03}, (2.9)

where z(#;0) is the degradation level (e.g., crack size) at time cycle 7, L=1is a
constant representing loading condition, and 0 is a vector of model parameters.
Since a physical model is given with loading condition, the future degradation can
be predicted after 0 is identified based on the degradation data, which is a
physics-based approaches.

For the degradation model given in Eq. 2.9, let us assume that measured
degradation data are given as in Table 2.1. Under the assumption that the model is
perfect and the data do not have any noise, the data in Table 2.1 are generated by
using the true values of Oy, = {5 0.2 0.1 }T. However, the true values of
parameters are only used to generate the data and are not used in the fitting pro-
cess.” The objective is to identify model parameter 0 that fits the data best. After

’In this text, many data are generated from the assumed true parameters. This is useful to check if
the identified parameters are accurate or not, compared to the true parameters.


http://dx.doi.org/10.1007/978-3-319-44742-1_4
http://dx.doi.org/10.1007/978-3-319-44742-1_6
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Table 2.1 Degradation data  Tjme index. k 1 2 3 5
i to f 1 :
gven up fo four cycles Input, # (cycles) 0 1 2 3 4
Data, yi 5.0 53 6.6 9.5 14.6

estimating the model parameters, the accuracy can be evaluated by comparing with
the true values.

2.2.2.2 Parameter Estimation and Degradation Prediction

In order to use the MATLAB code [LS], the pairs (#,y;) of five data points are
implemented as

set in [LS]
y=[5 5.3 6.6 9.5 14.6]"';
x=[0 1 2 3 4]1';

Also, the vector of degradation model (Eq. 2.5) at all data points can be written
using Eq. 2.9, as

21 1 L 4
» 1 L2 2|0
2= || = , 0, | =x0 (2.10)
: Do 05
s 1 L2 2

The design matrix X can be implemented as

set in [LS]
L=1;
X=[ones(length(x),1) L*x."2 x.73];

Now since all variables required to use MATLAB code [LS] are available, the
unknown model parameters can be identified using Eq. 2.8 as

in [LS]
thetaH=(X'*X) \ (X' *y)
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Finally, we obtain varvectheta = {rix5.00.20.1}", which is identical to the true
values, and will predict the future prediction accurately. This is expected because
the data were generated from the same model with the true model parameters. This
case the case when both the model and data are accurate.

The major advantage of physics-based approach is that once the model
parameters are identified, it is trivial to predict the behavior of damage in the future
by providing future time cycles and loading conditions to the model. For example,

the model parameters varvectheta = {trix5.00.20.1}" were identified using mea-
sured data given up to 5 = 4 cycle in Table 2.1. If we want to predict the degra-
dation behavior from # = 4 to t = 15 cycles, the following MATLAB code can be
implemented in [LS] as

set in [LS]
xNew=[4:0.5:15]";
XNew=[ones (length (xNew) , 1) L*xXNew. "2 xXNew."3];

The variable, xNew, is used for prediction time. The red-dashed curve in Fig. 2.2
represents the degradation behavior predicted using five data (the dots), which is
obtained by

in [LS]
zH=XNew*thetaH;

The prediction results (red dashed curve) can be compared with the true
degradation curve (black solid curve) in Fig. 2.2, which can be obtained with the

true parameter values of varvecthetay, = {trix50.20.1}T and Eq.2.9 (the
MATLAB code is given [Fig. 2.21). Since the identified parameters are exactly
the same as the true one, two degradation curves are overlapped each other. The
following MATLAB code can be used to plot Fig. 2.2:

[Fig. 2.2]

thetaTrue=[5; 0.2; 0.1];

xXxTrue=[0:0.5:15]";

XTrue=[ones (length (xTrue) ,1) L*xTrue.”2 xTrue.”"3];
zTrue=XTrue*thetaTrue;

set (gca, 'fontsize',18)

plot(x,y,'.k', 'markersize',30);

hold on; plot (xTrue, zTrue, 'k', 'linewidth', 3);
plot (xNew, zH, '--r', 'linewidth', 3) ;

xlabel ('Cycles'); ylabel ('Degradation level');
legend('Data', 'True', 'Prediction',2);
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2.2.2.3 Effect of Noise in Data

In the previous example, data were generated from the exact model without noise,
and thus, the parameters were identified exactly. However, degradation data almost
always have a certain level of noise, which is called measurement error. When data
have noise, it is not guaranteed to identify the exact model parameters. There will
be an error in identifying model parameters. Since the noise is random, the iden-
tified parameters will be different if the fitting process is repeated with different sets
of data. In order to show the effect of noise, uniformly distributed noise between —5
and 5 are added to the data in Table 2.1, which is shown in Table 2.2 (see the case
of L = 1). The data in Table 2.2 are a particular realization due to the random noise.
A similar process of identifying model parameters using [LS] yields a new vector
of parameters varvectheta = {trix4.28—0.290.25}", which now are different from
the true parameters. Figure 2.3a shows the prediction result of degradation behavior
using data in Table 2.2 for L = 1. It is shown that prediction curve is different from
the exact one. Due to the randomness of noise, if the above process is repeated with
different sets of data but the same level of noise, different sets of degradation levels
can be obtained. Using these different degradation levels, it is possible to obtain a
probability distribution of degradation level at a given time cycle (refer to exercise

Table 2.2 Degradation data at three loading conditions with noise from U(-5,5)

Time 1 2 3 4 5 6 7 8 9 10 11
index, k
Input, x |0 1 2 3 4 5 6 7 8 9 10
(cycles)

Data, yy 6.99 |2.28 | 191 |11.94 |14.60 |22.30 |37.85 |50.20 |70.18 |97.69 128.05
atL=1
Data, yy 046 | 1.17 |9.43 |10.55 |11.17 |24.50 |25.54 |43.59 |61.42 |88.66 117.95
at

L=05
Data, yy 1.87 |5.40 |6.86 | 12.76 |19.89 |30.05 |38.76 |60.70 |83.35 |106.93 |141.19
at L =2
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Fig. 2.3 Prediction of degradation behavior when degradation model is given with noisy data

a five data b nine data

problem, P2.5). Since the random noise has a mean of zero, the error in prediction
can be reduced when more data are used. For example, Fig. 2.3b shows the pre-
diction curve with nine data points, whose prediction error is much smaller than that
of five data case in Fig. 2.3a.

Example 2.1 Least squares method for determining model parameters

Find model parameters in Eq. 2.9, (a) using data in Table 2.1 and (b) using
data in Table 2.2 at L = 1.

Solution: (a) For no-noise data, the following vectors and matrices are
obtained:

1 0 0
1 1 1 41.0
X]=|1 4 8|, {X'y}=1¢ 3508
1 9 27 1249.0
1 16 64

5 30 100

X'™X] = | 30 354 1300

100 1300 4890

Therefore, the model parameter in Eq. 2.8 can be calculated by

5.0
0.2
0.1

éno-noise = [XTX]il{XTy} =

Note that these identified parameters are identical to the true parameters
because the data are generated from the same model.
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(b) For data with noise in Table 2.2, the only vector that is changed is {XTy}:

37.7
{XTy} ={ 3510
1274.3

The matrices [X] and [X'X] remain unchanged. Therefore, the model
parameter in Eq. 2.8 can be calculated by

A 4.28
Owith—noise = [XTX]_I{XTY} = —0.29
0.25

Note that due to noise, the identified parameters are different from the true
parameters.

Example 2.2 When an incorrect loading condition is given

(a) Repeat Example 2.1(a) by assuming the loading condition is given as
L =2. (b) Compare the degradation prediction with L = 2 to the true

model (L =1, 8pe = {5 02 0.1}7).
Solution:

(a) The second column of X in Example 2.1 is changed by applying L = 2 to
the second order term in Eq. 2.9 as

1 0 O
1 2 1
X]=|1 8 8
1 18 27
1 32 64

Therefore the model parameter can be calculated as

A 5.0
0=X"X"{X"y} ={ 0.1
0.1

Even if no-noise data are used, the identified parameters are not the same
as the true ones because of the error in loading condition.
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(b) The following figure can be obtained with the result in (a) by utilizing
MATLAB code introduced previously.

% Example 2_2

37

0L=2; % with a wrong loading condition
v=[5 5.3 6.6 9.5 14.6]"'; % a vector of measured data
x=[0 1 2 3 41°'; % a vector/matrix of input
X=[ones (length(x),1) L*x."2 x.73]; % a design matrix
thetaH=(X'*X) \ (X' *y) % Eq.2.8

xNew=[0:0.5:15]"';
XNew=[ones (length (xNew) , 1) L*xNew. "2 XxXNew."3];
zNew=XNew*thetaH;

%

Q

LCorrect=1; % with a correct loading condition

X=[ones (length(x),1l) LCorrect*x.”2 x.731;
thetaCorrect=(X'*X)\ (X' *y)

XCorrect=[ones (length (xNew) ,1) LCorrect*xNew."2 xNew."3];

zCorrect=XCorrect*thetaCorrect;

%

set (gca, 'fontsize',18)

plot(x,y,'.k', 'markersize',30);

hold on; plot (xNew, zCorrect, 'k', 'linewidth',3);
plot (xNew, zNew, '--r', 'linewidth', 3) ;

xlabel ('Cycles'); ylabel ('Degradation level');

legend('Data', '\theta_{true} with L=1', '\theta_{pred} with

L=2"',2);

200 u
® Data
_Otrue with L=1

© 150 )
£>> —— Gpred with L=2
=
el
100
©
o
5
o 50

0

0 2 4 6 8 10 12

Cycles

Fig. E2.1 Degradation prediction with incorrect loading condition
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Note that the degradation prediction result under incorrect loading con-
dition (red dashed curve) is exactly the same as the true behavior (black solid
curve). This is because the model parameter 0, is correlated with the loading
condition L, thereby model parameters are identified differently from the true
ones under different loading condition. That is, L6, is the same for both
results. The correlation issue in parameter identification will be discussed in
more detail in Chap. 6.

2.2.3 When a Degradation Model Is NOT Available
(Data-Driven Approaches)

When a physical model that describes the behavior of damage degradation is
unavailable, the future behavior of damage has to be predicted using measured data.
This happens when the damage degradation phenomenon is too complicated or
when it is difficult to directly measure the damage. For example, in the case of the
failure of bearing, even if the cause of damage starts from small defects in the race
or in the rolling elements, it is very difficult to measure the crack sizes directly.
Instead, the vibration of bearing assembly is measured using accelerometer, from
which the level of damage is estimated. In such a case, it is true that the level of
vibration is related to the level of damage, but it is difficult to make a physical
relationship between the two because vibration can be caused by many different
sources, such as misalignment or external excitations. More advanced algorithms
for bearing prognostics will be introduced in Chap. 7.

2.2.3.1 Function Evaluation

Even if we want to predict the behavior of damage only using data, predictions still
require a functional relationship between input variables and output degradation. In
this case, however, the functional relationship does not have any physical mean-
ings. Now we consider the case when the physical degradation model as in Eq. 2.9
is not available, which means that we need to build a relationship between input
variables and output degradation using given data. For example, the data given in
Table 2.2 has a single input variable (time cycle), which is also shown in Fig. 2.4.
A typical way of making relationship between input variable and output is to
assume a functional form: not a physical model but a pure mathematical function.
For example, in the case of data given in Table 2.2, we can consider the following
three different types of functional relationships:


http://dx.doi.org/10.1007/978-3-319-44742-1_6
http://dx.doi.org/10.1007/978-3-319-44742-1_7
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Fig. 2.4 Function fitting with five training data a given degradation data b function fitting results

2V =0, + 0,1, (2.11)
2 =0, + 0s1 + 057, (2.12)
2O = 0, + 051 + 0582 + 047 (2.13)

It is also noted that the above mathematical functions do not include loading
conditions. It is obvious that the damage will evolve fast when the loading con-
dition is severe. Therefore, if the loading condition is available, more accurate
prediction is possible. But, for the moment, we only consider the case when the
loading condition is not a part of mathematical functions.

Once a mathematical function is selected, the next step is to identify the
unknown parameters in the function using given data, which is basically the same
as the method used in Sect. 2.2.2. In general, data-driven approaches require
training data obtained from similar systems. In this section, however, only previ-
ously measured data from the current system are used for the training purpose. The
first five data from Table 2.2 when L = 1 are used for the training purpose (see
Fig. 2.4a). The MATLAB code [LS] can be used to identify parameters (see
Exercise P2.3). Figure 2.4b shows the fitting results using the identified parameters.
The linear function shows a monotonic increase in degradation, but the quadratic
and cubic functions show an initial decrease, which is difficult to explain physically
(normally degradation is a monotonic function of time cycles). However, if a linear
function is selected, then the future prediction will be significantly underestimated
compared to the true degradation behavior in Fig. 2.2. Therefore, it would be hard
to tell which function is better than the others. When the degradation model is not
available, it is difficult to select an appropriate mathematical function as well as to
identify parameters accurately due to the influence of noise in data. The quality of
prediction depends on (1) the selection of function, (2) the number of data, and
(3) the level of noise.
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Possible ways of evaluating the quality of fitting for different mathematical
functions are from the comparison between the function prediction and data, such
as average and maximum errors, sum of squared errors, coefficient of determina-
tion, and cross-validation. Rigorous discussions are available in the literature of
surrogate modeling (Kohavi 1995; Saed 2010). For simplicity, we only introduce
the coefficient of determination, R%, which is the ratio between the variation of
function prediction to the variation of data as

SSk SSp

R=o=1- 2.14

SSt SS; (2.14)
ny ny ny

SSk=> (a—¥> SSr=> (—3° SSe=) -z’ (215)
k=1 k=1 =1

where SSr (the total sum of squares) is the variation of data with respect to the
mean of data y, SSg (the regression sum of squares) is the variation of the function
prediction z; with respect to the mean of data, and SSg (the residual sum of squares)
is the sum of square of errors remaining after the fit. The total sum of squares is the
sum of the regression sum of squares and the residual sum of squares, i.e.,
SSr = SSg + SSg, when the sum of y; is equal to the sum of zk.3 The coefficient of
multiple determination measures the fraction of the variation in the data that is
captured by the function prediction. From the fact that an accurate function should
have small error, R? close to one is considered an accurate function. However, the
accuracy of the function estimated by R? only measures its accuracy in data points,
which may not be related to the true accuracy of the function prediction. For
example, if a cubic polynomial with four coefficients fits four data points, the
polynomial can pass all four data points, which makes SSp = 0 and R* = 1, but
that does not mean the polynomial is accurate at prediction points. The only true
test to the predictive capability of a function is evaluating it at points not used in its
construction.

The coefficient of determination, R2, can be obtained from MATLAB using
‘regress’ in [LS]:

[thetaH, ~,~,~,stats]=regress(y,X) ;
R2=stats (1)

where the first component of the returned array stats contains the R-square statistic.
The higher value means the better fitting with the given data. Having said that, R? is not
directly used since it increases as the number of coefficients increase by fitting data
more closely. This, however, does not mean a good prediction at other points.

3More specifically, the following condition is required: y*§ = z'y, where ¥ is the constant vector
all of whose elements are the mean data and z is a vector of model predictions at xi.
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Therefore, to prevent this phenomenon, the adjusted R*> denoted as R? is employed
by penalizing the number of coefficients as

(”y - 1)

o U, )

- R?) , (2.16)

where n, and n, are, respectively, the number of data and coefficients. The results
are listed in Table 2.3. Based on these results with five data, the third-order
polynomial function is selected by expecting that this function with given data
makes the best prediction of the future behavior. Since the data in data-driven
approaches are used in determining the functional form and making a mathematical
function to have a degradation feature, they are called training data.

In addition to the three functions showing quite different fitting results, the
prediction beyond 7 =4 may yield a much larger error. Figure 2.5 shows the
prediction results up to time cycle t = 10 using the three polynomial functions in
Fig. 2.4 along with the true degradation model. The difference between linear and
quadratic polynomials was small in the range of training data, but now, the dif-
ference becomes huge in the prediction stage. When five data are used, the quality
of fitting using the coefficient of determination showed that the cubic polynomial
was the best fit, as shown in Table 2.3. However, in the prediction stage, the cubic
polynomial shows the largest error. In fact, the cubic polynomial predicts the
degradation decreases in the prediction stage even if the degradation is expected to
monotonically increase. This happens because in the process of identifying
parameters, the knowledge of monotonicity in degradation function is not used.

Table 2.3 R? calculation results

Ist order: Eq. 2.11

2nd order: Eq. 2.12

3rd order: Eq. 2.13

R? with five data

0.3071

0.6613

0.7482

R? with nine data - 0.9905 0.9887
R? with 31 data - 0.9589 0.9592
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Therefore, when the degradation model is not available, the prediction far from the
last measured data may be dangerous and possible to yield meaningless prediction
results.

2.2.3.2 Opverfitting

One important aspect in curve fitting is the relation between the number of data and
the number of unknown coefficients in the function. Normally, it is expected that
the number of data is much larger than that of unknown coefficients. In such a case,
the least squares method tends to compensate for the noise in data and try to find the
mean trend of the function. However, when the number of unknown coefficients
increases, the least squares method tends to fit the noise, not the trend. This phe-
nomenon is called overfitting. This is one of reasons that the cubic polynomial
function does not show the best prediction result as shown in Fig. 2.5. As an
extreme example, if a quartic polynomial is used to fit the five data points given in
Fig. 2.4a, since the number of unknown coefficients and the number of data are the
same, the polynomial perfectly fits all data points and the coefficient of determi-
nation becomes one. However, such a perfect fit does not mean perfect prediction at
un-sampled points.

Ovetfitting is a modeling error which generally occurs when the proposed
function is overly complex so that it fits noisy data (like the third-order function in
this example), and when the function has no conformability with the data shape
(Hawkins 2004). There are several techniques to avoid overfitting, such as
cross-validation, regularization, early stopping and pruning (Wu and Lee 2011).
These techniques try to explicitly penalize overly complex functions or to test the
capability of the function to generalize by evaluating its performance on a set of
data not used for training. However, these techniques are usually employed in the
training stage, which does not guarantee good results in predicting at future cycles.
Therefore, overfitting is usually prevented by two approaches in data-driven
prognostics: (1) the behavior of degradation is expressed with a simple function,
which will be explained in Chap. 5, and (2) more information, such as more
training data and usage conditions, is used for reliable prognostics results.

2.2.3.3 Prognosis with More Training Data

Additional challenge in data-driven approaches is that removing overfitting does
not always improve prediction accuracy at future time cycles. To use more data as a
remedy for overfitting, assume nine data are given as in Fig. 2.3b. Since the trend of
data clearly shows that the degradation behavior is no longer a linear function, the
second- and third-order polynomial functions are considered. Using ‘regress’
MATLAB function, these two functions are obtained as


http://dx.doi.org/10.1007/978-3-319-44742-1_5
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7% =5.83 — 3.59¢ + 1.457,
723 =599 —3.93:+1.567 — 0.017

Table 2.3 shows that both functions yield similar R*> values. Indeed, the pre-
diction results from these two functions are very similar as shown in Fig. 2.6, in
which the prediction result is improved compared to ones using five data, but still
less accurate than those from the physics-based approach in Fig. 2.3b.

One of the reasons that the prediction results of data-driven approaches were not
as good as that from physics-based approaches is from the fact that the former does
not have any information on the future behavior of degradation. That is, the selected
function behaves similarly for the training region, but not for the prediction region.
If a degradation history of identical systems up to failure is available, then that can
greatly improve the prediction accuracy in data-driven approaches. In data-driven
approaches, several sets of training data up to the failure are usually required to
predict degradation behavior as accurate as the physics-based approaches. The best
training data can be obtained from the identical system under identical usage
condition. However, the data-driven approaches can utilize data from similar sys-
tems under different usage conditions.

In order to show the effect of training data from other systems on prediction
accuracy, it is assumed that two sets of data are given, which are obtained under
L =0.5, 2 in Eq. 2.9 with the same level of noise (uniformly distributed between
—5 and 5). These training data are shown as squares and the triangles in Fig. 2.7a.
In addition to the two sets of training data, the nine data from the current system are
given, which is also shown as dots in Fig. 2.7a (this is the same data in Fig. 2.6).
These data are listed in Table 2.2, and a total 31 pairs of input x; and data y; are
provided in [LS], which is composed of two sets of 11 data and 9 data from the
current system. Now using all 31 training data, R> and the degradation prediction
results are shown in Table 2.3 and Fig. 2.7b, respectively. It is shown that the cubic
function with higher values of R> makes the better results in degradation prediction
in the case that additional training data sets are used. Additional sets of training data
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Fig. 2.7 Prediction of degradation behavior using two additional sets of training data without a
physical model a training data b degradation predictions

can compensate for the absent of a physical model. Note that the reason for better
results with additional training sets is that the degradation rate of the current system
is in between the additional sets as well as they are close to each other. When there
is a significant difference in degradation rate, loading information is additionally
required to utilize the additional sets of training data to improve prediction accu-
racy, which will be discussed in Chap. 6.

2.3 RUL Prediction

Once the model parameters are identified in physics-based approaches or the
mathematical function is trained in data-driven approaches, the model/function can
be used to predict the remaining useful life (RUL), which is the remaining time until
the degradation grows to a threshold. The threshold of degradation is determined so
that the system is still safe but needs maintenance. Since determining the threshold
depends on specific application with experience, we do not discuss about how to
choose the threshold. Instead, we assume that the level of threshold is given and
will discuss about how to predict RUL accurately. In this section, RUL prediction is
performed based on the physics-based approach in Sect. 2.2.2. Also, prognostics
metrics (Saxena et al. 2009) are introduced to evaluate RUL prediction results.

2.3.1 RUL

We used the physics-based degradation model in Eq. 2.9 to predict RUL. When data
have uniformly distributed noise as in Table 2.2, the following parameters were

identified: 0 = {428 —-0.29 0.25 }T, which was different from the true param-
eters Oye = {5.0 02 0.1 }T. Such an error in model parameters leads to an error
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in predicting RUL. To illustrate the effect of the error in parameters on RUL pre-
diction, it is assumed that the maintenance is ordered when the degradation level
reaches 150. As an instance, from Fig. 2.3a, the current time cycle is 4, and the
end-of-life (EOL), the cycle when the prediction result reaches 150, is 8.7 cycles.
Therefore, RUL is predicted as 4.7 cycles (8.7(EOL) — 4(current cycle)), while the
true RUL is 6.7 cycles (10.7(true EOL) — 4(current cycle)) (see Table 2.4).

In order to calculate the RUL, it is necessary to find the time cycle when the
level of degradation reaches a threshold. The degradation model in Eq. 2.9 or
Eq. 2.13 is given in such a way that the degradation can explicitly be calculated for
a given cycle. However, calculating the time cycle when the degradation reaches a
certain level is not straightforward as the relation is nonlinear and implicit.
Therefore, in order to find the end-of-life, the following nonlinear equation has to
be solved to find time cycle fgor:

Ythreshold — Z(IEOL; 6) =0 (217)

In general, the above nonlinear equation is solved numerically using
Newton-Raphson iterative method. In MATLAB code [LS], the function solve
is used to find the time cycle tgor that satisfies the above relation, where the
solution g, is called the end-of-life (EOL). The remaining useful life (RUL) can

be determined from frur = fEoL — feurrent- Since z(7; ﬁ) is a monotonic function, the
above equation will have a unique solution.

In order to calculate EOL, the MATLAB code [LS] is modified as shown in the
following program list:

in [LS]

thres=150;

currt=4;

syms XEOL

L=1;

XEOL=[1 L*xXEOL.”"2 xEOL."3];
eolFuc=thres-XEOL*thetaH; % EOL func.
eol=double (solve (eolFuc, 'Real', true)) ;
rul=min (eol (eol>=0) ) -currt

In the above code, the MATLAB code ‘solve’ calculates a symbolic solution
of algebraic equation with xEOL being symbolic variable for #gor. Since the

Table 2.4 Prediction of Data Table 2.1 Table 2.2
remaining useful life from
data Parameters [5.0, 0.2, 0.1] [4.28, -0.29, 0.25]
Threshold 150 150
EOL (cycles) 10.7 8.7
RUL (cycles) 6.7 4.7
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degradation model is monotonic, Eq. 2.17 should have a single real solution. Since,
however, the third-order polynomial function is employed in this example, it is
possible to have more than one solution. Therefore, a minimum value of positive
real numbers is considered as the EOL out of three possible solutions (see the last
two lines). The RUL obtained from the above code is 4.76.

As shown aforementioned procedure, prognostics can be performed at every
time cycle until the RUL becomes zero at which the maintenance has to be ordered.
In an early time cycle, the prediction of model parameters and thus RUL might be
inaccurate because of the lack of data. But, as more data are available the prediction
results can be more accurate. Note that the RUL results at zeroth and first cycle are
predicted as infinite because the number of data is smaller than that of unknown
model parameters (proving this remains in the exercise problem, P2.9). Therefore,
the results are shown from the second cycle, which is shown in Fig. 2.8. In Fig. 2.8,
the black solid line represents the true RUL. The true RUL is a negative 45° line as
the RUL decreases by one cycle at every cycle. The red-dashed line is the predicted
RUL using the aforementioned procedure (data including later cycles are given in
Table 2.2). Note that the prediction has significant error in early cycles because of
inaccuracy in identifying model parameters. However, the prediction results con-
verge to the true one after the seventh cycle.

Example 2.3 RUL prediction
Predict RUL at every measurement cycle using data in Table 2.2 when L = 2.
The degradation model is given in Eq. 2.9 and the threshold is 150.

Solution:

Since the number of model parameters is three in Eq. 2.9, we can estimate
them from the three cycles (three data). When the first three data are used, the
unknown parameters are estimated as
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1 0x2 0 1.87 A 1.87
X=|[1 1x2 1|,y={540%=0=X"X"{X"y} ={ 291
1 4x2 8 6.86 —-2.28

which is also obtained by adding the given information to the Matlab code
[LS] as

% Example 2 3 RUL prediction using LS

L=2;

y=[1.87 5.40 6.86 12.76 19.89 30.05 38.76 60.70 83.35 106.93
141.191"';

x=[0:1:1071";

% At xk = 2

X=[ones (length(x(1:3)),1) L*x(1:3).72 x(1:3).731;
thetaH= (X"*X) \ (X'*y (1:3))

In the above MATLAB code, all data are given in array y, but only the first
three, y (1:3), are used for least squares. Using the estimated parameters,
RUL can be predicted using the same way explained in the previous text
around Eq. 2.17 and the MATLAB code [LS]. In this case, the current time
needs to be changed as currt=2;.

However, the RUL result cannot be obtained in this case since the degra-
dation predicted based on the estimated parameters does not reach the
threshold, which is shown in Fig. E2.2 that is obtained from the MATLAB
code [LS] with the following modifications:

% Degradation prediction at xNew
xNew=[0:0.1:12]";

XNew=[ones (length (xNew) ,1) L*xNew.”"2 xNew."3];
yvH2=XNew*thetaH;

%

% At xk = 3

X=[ones (length(x(1:4)),1) L*x(1:4).72 x(1:4).73];
thetaH=(X'*X)\ (X'*y (1:4))

yvH3=XNew*thetaH;

o

% plotting degradation predictions (Fig. E.2.2)

figure (1) ;

plot(x(1:4),y(1:4),'.k', 'markersize',30)
hold on; plot (xNew,yH2,'k',6 'linewidth',?2)
plot (xNew,yH3, '--r', 'linewidth', 2)

plot ([0 10],[150 150],'g', 'linewidth',2)

axis ([0 10 -50 160])

legend('Data', 'Pred. at xk=2',6 'Pred. at xk=3', 'Threshold') ;
xlabel ('Cycles') ;ylabel ('Degradation level');

47
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Fig. E2.2 Degradation prediction at two and three cycles

10

In this figure, the blue solid curve is the degradation prediction in this case
(at two cycles), which goes down as cycles increase. That is, the number of
data is too small to have any meaningful prediction. Likewise, the degrada-

tion prediction with one more data denoted as

red-dashed curve dose not

reach the threshold either. These two cases predict an infinite life, which is

caused by insufficient number of data. Therefore,

RUL is predicted from four

cycles (five data) as the same way explained so far, and the prediction results
are shown in the following table and figure. The following MATLAB code

can be used to calculate and plot the RUL:

0P

$RUL prediction

thres=150; % threshold level
rul=zeros(size(x));

syms xEOL

for i=4:11

currt=1i-1;

X=[ones (length(x(1:1)),1) L*x(1:1i).72 x(1:1).731]1;
thetaH= (X'*X)\ (X'*y (1:1));
XEOL=[ones (length (XxEOL) , 1) L*XEOL."2 xEOL."3];
eolFuc=thres-XEOL*thetaH; % EOL func.
eol=double(solve (eolFuc, 'Real’, true)) ;
rul (i)=min(eol (eol>=0)) -currt;
end
%
figure(2)
plot(x(4:11),rul(4:11),"'.--r', 'markersize',25, 'linewidth',2);

hold on; plot([0 10],[10 0],'k', 'linewidth',2);

axis ([0 10 0 101]);
legend ('Prediction', 'True') ;
xlabel ('Cycles') ;ylabel ('RUL') ;
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Table E2.1 RUL results
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Cycle 0,1,2,3 4 5 6 7 8 9 10
RUL N/A 12.21 6.56 11.46 3.50 2.20 1.33 0.27
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Fig. E2.3 RUL prediction when L = 2 in Eq. 2.9

Note that the predicted RULSs still have a large error when the time cycle is up to
6 because the model parameters are not estimated accurately. However, starting

from seventh time cycle, it is shown a good prediction of RUL. In general, it is true
that more data can yield more accurate prediction.

2.3.2 Prognostics Metrics

In general, when different methods are employed to predict RUL, their performance
can be compared with known true RUL using five prognostics metrics (Saxena et al.
2009): prognostic horizon (PH), pha—A accuracy, relative accuracy (RA), cumu-
lative relative accuracy (CRA), and convergence. These metrics are illustrated in
Fig. 2.9 with the RUL results in Fig. 2.8. It is noted that these metrics are possible
only when the true RUL is available. Therefore, these can be used to evaluate the
performance of prognostics algorithms with the true RUL.

2.3.2.1 Prognostic Horizon (PH)

Prognostic horizon (PH) is defined as the difference between the true EOL and the first
time when the prediction result continuously resides in the pha accuracy zone, which
is shown in Fig. 2.9a. The accuracy zone has a constant bound with a magnitude of
+pha error with respect to true EOL, shown as two parallel dotted lines when
pha =5 %. In this example (the RUL results in Fig. 2.8), the first time when the RUL
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Fig. 2.9 Prognostics metrics with o = 0.05, A = 0.5 a PH, b a—/ accuracy, ¢ Relative error and
convergence

resides in the accuracy zone is at the seventh cycle, and the true EOL is 10.7 cycles,
thereby PH is 3.7. The prognostics method with a larger PH indicates the better
performance, which allows earlier prediction for EOL with more reliability.

2.3.2.2 a—A Accuracy

The a— 4 accuracy determines whether a prediction result falls within the o accuracy
zone at a specific cycle #;, which is shown in Fig. 2.9b. The accuracy zone is not
constant but varies with £ ratio to the true RUL, which is shown as two dotted
lines when o = 0.05 in the figure. It becomes smaller as cycle increases by
reflecting that the prediction accuracy increases as more data are available. This
expects that if the prediction results are proper, they will fall within the accuracy
zone at any cycle. For this, the specific cycle, ¢; is employed, which is expressed
with a fraction of 1 between starting cycle of RUL prediction, 75 (4 = 0) and the
true EOL (4 = 1), which is

t, =ts+ }v(EOLTme — Zs)
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In this example, 5 =2 cycles, and /4 is usually considered as 0.5, thereby
t;, = 6.35. Since RUL is predicted at every cycle (no result at 6.35 cycles), inter-
polated RUL value from two RULs at both side of ¢; is used, or #, is adjust as the
closest cycle. In this example, #; = 6 cycles is used as the adjusted one. The result
of a—/ accuracy becomes true or false, and true is when a prediction result is
included in the a— /4 accuracy zone, otherwise it is false. It is false in this example as
the RUL result at ¢, = 6 cycles does not fall in the zone.

2.3.2.3 (Cumulative) Relative Accuracy (RA, CRA)

Relative accuracy (RA) is the relative accuracy between the true and prediction
RUL at ¢;, which is expressed as

RUL1ne — RUL
RA = | _ [RULtue = RUL| f
RULTrue

The relative error at each cycle is shown as the dotted curve in Fig. 2.9c. From this
figure, the relative error is 0.17 at ¢, = 6 cycles, and therefore RA is 0.83 (=1—-0.17).
Cumulative relative accuracy (CRA) is the same as the average of RA values accu-
mulated at every cycle from s to the last cycle of RUL prediction (end of prediction,
tg). In other words, CRA is the mean of unity minus the errors in Fig. 2.9c. When RA
and CRA are close to one, the prediction accuracy is high.

2.3.2.4 Convergence

Finally, convergence can be considered with a nonnegative error metric of pre-
diction accuracy or precision between the prediction and true RUL. In this example,
the relative error, E(k), shown as the dotted curve in Fig. 2.9c is employed. With
this error curve, convergence is defined by the Euclidean distance between the point
(t5,0) and the center of mass of the area under the error curve (f¢, Ec). The center
of mass is calculated as

CoM = (lc — ls)z +E%,
where

_ 125:s (61 — R)E(K) _ lZ/f:s (te+1 — 0 E (k)
23 s (e — t)E(K) 2 3 s (e — t)E(K)

The lower the distance is, the faster the convergence is.

) EC

Ic
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Table 2.5 Prognostics metrics

PH o—A accuracy RA CRA Convergence
(e = 0.05) (¢ =0.05, 1 =0.5) (4=0.5)
3.6896 False 0.8310 0.7698 2.044

2.3.2.5 Results with MATLAB Code

The results from the five metrics are listed in Table 2.5, which can be obtained by
setting the following information into [Metric]:

in [Metric]

rul=[inf inf 2.4596 2.3471 4.7615 5.7584 3.8970 3.6922
2.7779 1.6149 0.6115]"';

cycle=[0:10]";

eolTrue=10.6896;

t_s=2;
t_e=10;
alpha=0.05;
lambda=0.5;

Prognostics metrics for one method (physics-based approach with LS) are given
in this section. However, these metrics are to compare different prognostics
methods when the true RUL/EOL is known. The comparison between different
prognostics methods are remained to exercise problem (see Exercise P2.12).

Example 2.4 Prognostics metrics
Obtain five prognostics metrics introduced in this section for the RUL results
in Example 2.3.

Solution:
The usage of the MATLAB code [Metric] is explained in the previous
text, but the RUL and the starting cycle for evaluation are changed to

rul=[0 0 0 0 12.2072 6.5588 11.4634 3.4997 2.2000 1.3270
0.26741"';
t_s=4;

Since the staring cycle (t_s) is four, it does not matter what values are used
for the RUL at zero to three cycles. With this setting five metrics are cal-
culated as the results in Table E2.2.

Table E2.2 Prognostics metrics when L =2 in Eq. 2.9

PH o—/ accuracy RA CRA Convergence
(o = 0.05) (¢ =10.05, 2=10.5) (A=0.5)
3.6896 False 0.9485 0.5025 2.8079
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For this problem, the specific time #,(t_lam) is calculated as seven, so

RA is high as shown in Fig. E2.3, but CRA is low.

NelioBEN o)WV, I SNV I (O R

[Metric]: MATLAB code for prognostics metrics

%=== Required Information ===================================
rul=[ 1'; %[k x 1] or [k x ns]
cycle=[ ]'; %[k x 1] at rul prediction
eolTrue=[ ]; % true EOL
t_s=[ 1; % starting cycle
t_e=[ 1; % ending cycle
alpha=[ 1;

lambda=[ 1;

%%% PH: Prognostic Horizon

rulTrue=eolTrue-cycle;

alphaZone=eolTrue*alpha;

loca=find( rulTrue-alphaZone<rul & rul<rulTrue+alphaZone ) ;

a=find( [0 diff(loca')]>1,1, ' 'last' ); if isempty(a); a=1; end
ph=eolTrue-cycle(loca(a)) ;
disp(['PH= ' num2str(ph)]);

%$%% ALA: Alpha-Lambda Accuracy
t_lam=t_s+ (eolTrue-t_s) *lambda;
[~, 1dx_lam]=min (abs(cycle-t_lam)); t_lam=cycle(idx_lam) ;
a=find( rul (idx_lam)>rulTrue(idx_lam) * (1-alpha)
& rul (idx_lam)<rulTrue (idx_lam) * (1+alpha) );

if isempty(a);

disp('ALA: False');
else disp ('ALA: True');
end
%%% RA & CRA: Relative & Cumulative Relative Accuracy
ra=1-abs (rulTrue (idx_lam)-rul (idx_lam) ) /rulTrue (idx_lam) ;
si=find(cycle>=t_s,1); ei=find(cycle<=t_e,1, 'last');

cra=mean (l-abs(rulTrue(si:ei)-rul(si:ei))./rulTrue(si:ei));
disp(['RA= ' num2str(ra) ', CRA= ' num2str(cra)l)

%$%% Cvg: Convergence

errCurve=abs( rulTrue(si:ei)-rul(si:ei) )./rulTrue(si:ei);
cyclel=[cycle(si+l:eil); eolTrue];

numer=sum( (cyclel - cycle(si:ei)).*errCurve ) ;

xc=0.5*sum( (cyclel.”2 - cycle(si:ei).”2).*errCurve )/numer;

yc=0.5*sum( (cyclel - cycle(si:ei)).*errCurve.”2 )/numer;
cvg=sqgrt ( (xc-t_s)"2 + yc™2 );
disp(['Cvg= ' num2str (cvg)])

2.4 Uncertainty

Uncertainty in prognostics is an inevitable part. Numerous sources of uncertainty exist
in practical cases, such as material variability, data measurement noise/bias, current/
future loading conditions, error in model form, uncertainty in estimation algorithm, and
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the prediction process itself. Therefore, it is critically important to treat these sources of
uncertainty properly in order to have reliable prognostics results. Throughout this
book, these sources of uncertainty will be addressed in detail. Among them, uncer-
tainty due to noise in measured data will be discussed in this section.

Noise in measured data is caused by measurement variability, which represent
uncertain measurement environment. That is, even if the same health monitoring
system is used to measure the degradation, measured data can be different every
time. Noise in measured data is random in nature, and often a statistical distribution
is used to describe it. In particular, most of noise in this book is assumed to be
Gaussian noise, which is statistical noise having a probability density function
equal to that of the normal distribution. A special case is white Gaussian noise, in
which the values at any pair of times are identically distributed and statistically
independent (and hence uncorrelated). Principal sources of Gaussian noise arise
during data acquisition, such as sensor noise caused by poor illumination and/or
high temperature, and/or electronic circuit noise.

The objective is to estimate the level of uncertainty in estimated model
parameters as well as the uncertainty in remaining useful life when measure data
have noise. In the following, discussions are limited to the case when measured data
are normally distributed with zero mean and variance ¢?. Depending on situations,
sometime it is assumed that the variance of data is known in order to make the
calculation simple. In reality, however, the variance of data is unknown and has to
be identified along with the model parameters. In such a case, the number of
unknown parameters increases from n, to n, + 1.

In order to show how to quantify uncertainty due to noise in measured data, the
previous processes—parameter identification, degradation and RUL prediction and
applying metrics—are repeated with the model in Eq. 2.9 and the data for L = 1 in
Table 2.2. The uncertainty in model parameters will be identified first, followed by
generating samples of model parameters. These samples can be used to generate
samples of RUL through degradation model.

For uncertainty quantification using LS regression, it is assumed that the noise is
normally distributed with zero mean and they are independent and identically
distributed (i.i.d.). The variance of error, &, in Eq. 2.3 can be estimated using the
sum of square errors in Eq. 2.6 as follows:

PR - (2.18)

ny —n,

where n, — n, represents the degree of freedom, the number of unknown parameters
n, subtracted from the total number of data n,. This is required to have unbiased
estimation of variance. If the variance of data is also unknown, it has to be con-
sidered as an additional unknown parameter and the denominator in Eq. 2.18
should be changed to n, —n, +1 (Refer to line 22 of MATLAB code [NLS] in
Chap. 4). This is because the unknown variance is not included in the degrees of
freedom for the regression process.
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In order to quantify uncertainty in prognostics, it is necessary to quantify the
uncertainty in model/function parameters first. For the case of a linear model with
two parameters (z(x) = 0; + 0,x), the variance of parameters can be derived using
the variance of the error in Eq. 2.18 and the parameter estimation in Eq. 2.8. The
design matrix for a linear model is

1 X1
1 X2
X = :
1 x,

Therefore

ny
ny > % DoV
i=1 XTy = | /=

X™X =
Z XiYi
i=1

ny

n,
Soxi X
i=1 i=1

)

and from Eq. 2.8, the two estimated parameters become

-1

~ n ] -xi yi ny
- {91 } |7 X 5 () 0r-)

ny i=1

ny ny
2 T —
Z: Xi ; X 1:21 XiYi i: (Xi*/?)Z

i=1

Since Sy = >0, (6 — %) (v — ¥) and Sy = Y1, (xi — %)%, the two parameters

can be expressed as
0 é )7 - 7va/Sxx
0=q°1 %= p 2.19
{ 0 } { Siy/ S } 219

The estimated parameters in the above equation depend on measured data y,
which include measurement variability. Therefore, if a different set of data is used,
the estimated model parameters will also be different. That is, the variability in data
is propagated into the variability in model parameters. The uncertainty in model
parameters can be calculated by considering y; as a random samples and calculating
variance. By using a theorem for variance calculation of a random variable (A) with
a constant c,

Var(cA) = *Var(A), Var(A — c¢) = Var(A),
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the variance of the two parameters can be obtained as

Var (i) = m(z (i — %) (i - y)) Ym0 Sud® o

Si s2 T2 S

XX

Var(él) = Var(jz— @2)’5) ZZ— + X —

In the above equations, the terms related with x are constants because the source of
uncertainty is from noise in data, and thus, the terms related with data y; are random
variables. Therefore, the variance of two parameters in a linear model is obtained as

ny

— o_2
Var(é) =" +f2§ ; Se=d ()’ (2.20)

o
Ser i=1

The above equation means that when the variance of data y; is ¢2, the variance of
estimated model parameters can be calculated using the above equation. It is
obvious that when there is no variance in data; i.e., ¢ = 0, there is no variance in the
estimated model parameters. Also, the variance in model parameters is linearly
proportional to the variance of data. It is also interesting to note that having a large
number of data reduces uncertainty in model parameters and eventually makes them
deterministic because as n, — 00, Sy — 00.

The above derivations can be generalized to the case with many unknown
parameters. In such a case, the derivation is complicated and the following equation
can be employed to describe the correlation between parameters as”

3y = [XTX] 7, (2.21)

which is a n, X n, covariance matrix of the unknown parameters. Since the vari-
ance of error in data (o) is unknown due to limited number of data, usually its
estimated value (¢) in Eq. 2.18 can be used instead. The diagonal elements rep-
resent the variance of each estimated parameters, and the off-diagonal elements are
the covariance between each parameter, whose normalized version is correlation.

Example 2.5 Variance in a linear model

Calculate the variance of two parameters in a linear model, z = 0, + O,x
using the data in Table 2.2 based on Egs. 2.20 and 2.21 for each, and
compare the results.

“More detailed information on the variance of the parameters are found in Montgomery et al.
(1982).
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Solution:
First, it is necessary to estimate the two parameters in order to estimate their
variance. Using least squares method, the two parameters can be estimated as

Lo 6.99
L1 2.28
X= |1 2fiy=4 1o b0y = {3501
13 11.94 .
1 4 14.60

Also the following MATLAB code can be used in [LS]:

y=[6.99 2.28 1.91 11.94 14.60]"';
x=[0 1 2 3 4]';

X=[ones (length (x),1) x];
thetaH=(X'*X)\ (X'*y)

In order to estimate the variance in parameters, the variance of error in
data, g, is first calculated using Egs. 2.6 and 2.18:

SSg = {y — X0} {y — X0} = 66.97

SS 66.97
g2 S5 0697 _ 4
ny — 1, 5-2

Also, the mean and variance of data points can be obtained as

=2
—1
0 »=10
i=1 1
2

The above calculations can be done using the following MATLAB code

ny=length (y) ;

np=size(X,2) ;

sse=(y-X*thetaH) ' * (y-X*thetaH)
sigmaH2=sse/ (ny-np)

sxx=sum( (x-mean(x)) ."2);
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Now, the variances and covariance matrix of two parameters can be cal-
culated using Eqgs. 2.20 and 2.21 as

&_2+XZ&_2
Var(ﬁ) = || S =

Sex

22.32 -
2.3 2.23

232 422 x%] 3 [13.39}

—-02 0.1

0.6 —0.2
Ty = XX =22.32
—4.46 223

{ 13.39 —4.46}

thetaVar=sigmaH2* [1/ny+mean (x) "2 /sxx; 1/sxx]
thetaCov=sigmaH2*inv (X' *X)

The variances in Eq. 2.20 derived for the case of two parameters are the same
as the diagonal components of covariance matrix obtained from Eq. 2.21. The
covariance —4.46 in the matrix represents a measure of linear correlation
between 0; and 6,, whose normalized version is known as the correlation
coefficient. Usually, the correlation between parameters makes estimating
parameters difficult, which will be discussed in Chap. 6.

By using a covariance matrix in Eq. 2.21, the distribution of model parameters
can be obtained. In order to do that, it is first necessary to understand the difference
between population and samples in statistics. Let us assume that a random variable,
A, is normally distributed with a mean, u, and standard deviation, . In statistics, A
is often referred to as a population. The basic assumption is that it is possible to
generate samples from the population, but the mean and standard deviation of
population are unknown. Then, the objective is to estimate the mean of population
using a finite number of samples.

Let us assume that n, number of samples are generated from the population, A.
In general, the mean of samples, A, may be different from the mean yu of population
A. As the number of samples increases, however, the mean of samples converges to
that of population. In addition, if different sets of n, samples are used, the sample
means may be different from each other. Therefore, it is natural to consider that the
sample mean is also a random variable as it changes at every set of samples. It is
known that when a random variable, A, is normally distributed with a population
mean, u, and standard deviation, o, its sample mean, A, from n, data is also
normally distributed with a mean u and variance ¢/ ny.5

SA sample mean of ny data from the population A is not the same if another n, data are collected,
which means the sample mean is also arandom variable and denoted by A. In this case, the mean and
standard deviation of A is y and o/, /n5, respectively. See a book by Haldar and Mahadevan (2000).
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In practice, however, the mean and standard deviation of population are
unknown. They have to be estimated from the mean and standard deviation of
samples. In addition, it is hard to obtain different set of samples. Therefore, the
objective is when the sample mean, A, and sample standard deviation, s, are given
from a single set of samples, it is required to estimate the mean and standard
deviation of population. In such a case, an opposite argument can be made between
population and samples. When the sample mean, A, and standard deviation, s, are
given, the mean of population follows a normal distribution with mean of A and
variance of 62 /n,, i.e., u~N(A,?/ny). Since the populations’ standard deviation
is generally unknown, the standard deviation of samples, s is used instead of ¢. In
this case, the normalized distribution of u with its mean and standard deviation
follows the Student #-distribution (or #-distribution) with n, — 1 degree of freedom

u—A
NG

When the number of data n, increases, the sample mean, A, converges to the
population mean, u. It is clear that when n, — oo, the sample mean converges to
the population mean. More details of the relationship between sample distribution
and population distribution will be discussed in Chap. 3.

The above discussion can be applied to estimating the population mean of
parameters, 0. Note that the mean of parameters is given in Eq. 2.19 and variance in
Eq. 2.20. These mean and variances are based on a single set of n, measured data.
Therefore, they can be considered as sample mean and sample variance. Therefore,
the unknown population mean of parameters can be estimated by

~ tny—l

0; — 0;
0j.

i

~tny iy, = O~ O+t - 0, (2.22)

where 7, is the r-distribution with a degree of freedom n, — n,, and o, is the
square root of sample variance in Eq. 2.20; i.e., the standard deviation. Based on
Eq. 2.22, samples of the parameter distribution can be obtained by generating
samples from z-distribution, which are then applied to the model equation to predict
the damage and RUL as distributions.

The bound between «% and (100 — a)% of the distributions, including param-
eters, degradation level and RUL, is called (100 — 22)% confidence interval. For
example, 90 % confidence interval is the range of distribution from 5 to 95 %. The
confidence interval reflects the error caused by limited number of data. As the
number of data increase, the identified parameters converge to the deterministic true
values, thereby, the confidence interval becomes zero. On the other hand, the
prediction interval considers the measurement error (noise) of data in Eq. 2.18. As
the number of data increase, the error in Eq. 2.18 converges to the population’s one,
and the prediction interval converges not to zero but to the magnitude of the noise.


http://dx.doi.org/10.1007/978-3-319-44742-1_3
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The prediction interval is used to quantify the uncertainty in degradation level and
RUL.°

Example 2.6 Uncertainty quantification using samples of the identified
parameters

The model equation is given in Eq. 2.9 with known 0; = 5 and unknown
two parameters, 0,, 03 as z(t) = 5+ 0,L¢> + 0313, Use five noisy data (i.e.,
the current time index is kK = 5) in Table 2.2 in the case of L =1 for the
following problems.

(a) Identify the two unknown parameters 6,, 03 and their covariance using
Eq. 2.21.

(b) Estimate the distribution of the parameters with 5000 samples by using
Eq. 2.22. Calculate the median and the 90 % confidence intervals of
each parameter. Plot the histogram of each parameter and the correlation
between the two parameters.

(c) Predict the future damage growth at every time from the current time
(t = 4) to t = 15 using the results in (b), and plot the results of median,
90 % confidence and prediction intervals with the true one.

(d) Predict RUL when the degradation threshold is 150.

Solution

(a) Since 0; is known, Eq. 2.9 can be modified as
F=z-5= 92l2+9313

Then, the design matrix, X, and the vector of data, respectively, can be
written as

0 0 6.99
11 2.28
X=|4 8|,yy=y—-5={191 y—5
9 27 11.94
16 64 14.60

5The confidence/prediction intervals are meaningful under the assumption that the model form is
correct. If most degradation data are obtained only at early stage, the intervals will be narrow, but
the error of degradation prediction at future cycles can be large when the prediction performed
based on a different model form from true behavior. Usually, however, more data reflect more
degradation behavior, which means the degradation prediction taking account of uncertainty
becomes more reliable as more data are employed.



2.4 Uncertainty

Therefore, the unknown parameters can be identified as
f T =l oTosq ) —0.58
oot xiyy = {

The square sum of errors and variance of data can be calculated using
Eqgs. 2.6 and 2.18

SSg = {y* — X0} {y* — X0} = 35.78,
;o _ SSe 3578

=11.93
ny—n, 5-2

The covariance matrix of estimated parameters can be obtained from
Eq. 2.21 as

oreTeol | 142 —038] , (142
2y = XX _[—0.38 0.10 | %~ Y 0.10

The following MATLAB code can calculate the estimated parameters as
well as their covariance matrix

v=[6.99 2.28 1.91 11.94 14.60]"';
ys=y-5;

x=[0 1 2 3 4]°';

X=[x.72 x.731;
thetaH=(X"'*X) \ (X' *ys)

ny=length(y); % num. of data
np=size(X,2); % num. of unknown parameters

sse=(ys-X*thetaH) ' * (ys-X*thetaH)

sigmaH2=sse/ (ny-np)

thetaCov=sigmaH2*inv (X' *X) $covariance matrix using Eg.2.21
sigTheta=sqgrt (diag(thetaCov)) %Standard error of theta

(b) First, samples are drawn by using multivariate t random numbers,
mvtrnd with 2, the degree of freedom, and the number of samples in
MATLAB function. Then, samples of the two parameters are obtained by
multiplying with the standard deviation of parameters, 3, and adding the
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estimated parameters, 0. The MATLAB program is given below with
results obtained in (a).

ns=5000; % num. of samples
mvt=mvtrnd (thetaCov,ny-np,ns) ';
thetaHat=repmat (thetaH, 1,ns)+mvt. *repmat (sigTheta, 1,ns) ;

The array thetaHat is a 2 x 5000 (n,, X ns) matrix containing sampling
results from the distributions of two parameters. The median is 50 percentile,
and 5, 95 percentiles are calculated for 90 % confidence interval as

alpha=0.05;
thetaCI=prctile(thetaHat', [alpha 0.5 l-alpha]*100)"

The results are listed in Table E2.3, which can slightly vary since it is
based on random number generation.

Table E2.3 Median and 90 % confidence intervals of identified parameters

5 percentile Median 95 percentile
0, —-3.40 —-0.59 2.27
05 —0.46 0.31 1.08

Finally, the distribution of the two parameters can be obtained using the
following MATLAB code:

2000 2000 2

- Sampling
@ Contour
1500 1500 1 * True
1000 1000 s’ 0
500 500 -1
L S
RN T % 0 5 -10 -5 0 5 10
0, 05 0,
(a) histogram of each parameter (b) correlation

Fig. E2.4 Distribution of identified parameters
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i=1; subplot(l,2,1i); hist(thetaHat(i,:),30);

i=2; subplot(l,2,1); hist(thetaHat(i,:),30);

figure;

plot (thetaHat (1, :), thetaHat(2,:),"'."', 'coloxr',[0.5 0.5 0.5]);

(c) The future degradation level is obtained as the red-dotted (confidence
interval) and blue dash-dotted (prediction interval) lines in Fig. E2.5 (they
are overlapped each other). The 90 % confidence interval reflects the
uncertainty in the parameters due to limited numbers of data with noise,
which is obtained by substituting the identified parameters in the model
equation as

5=+ 5=0,2+ 05 +5

XNew=[4:15]"'; XNew=[xNew.”"2 xNew."3];

nn=length (xNew) ;

zHat=XNew*thetaHat +5*ones (nn,ns);
zHatCI=prctile(zHat',6 [alpha 0.5 l1l-alpha]*100)'; % nn x 3

The blue dash-dot curve is the prediction interval that includes the noise
level in data in Eq. 2.18. Since it was assumed that the error in data is
normally distributed and since the variance of error is estimated, the pre-
dictive distribution would be a t-distribution with mean of z and standard
deviation of ¢ in Eq. 2.18. However, since the estimated variance of error is
given, the degree of freedom would be n, — n,.

zPredi= zHat+trnd (ny-np,nn,ns) *sqgrt (sigmaH2) ;
zPrediPI=prctile(zPredi', [alpha 0.5 l-alpha]l*100)"';

The MATLAB code to obtain Fig. E2.5 is given as
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thres=150;

xTrue=[0:15]";

XTrue=[ones (length (xTrue) , 1)

zTrue=XTrue*[5 0.2 0.1]"';

plot(x,y+5,"'.k', 'markersize',30);

plot (xTrue, zTrue, 'k') ;

plot (xNew, zHatCI(:,2),'--r');

plot (xNew, zHatCI(:,1),"':x");
(
(
(

xTrue.”2 xXTrue.”"3];

hold on;
$from samples

plot (xNew, zPrediPI(:,1),"'-.b");

plot ([0 20], [thres thres], 'g')

plot (xNew, zHatCI(:,3),':x"');

plot (xNew, zPrediPI(:,3),"'-.b');

xlabel ('Cycles'); ylabel ('Degradation level')
legend('Data', 'True', 'Median', '90% C.I.',6'90% P.I.',
'Threshold"')

axis ([0 15 -50 200])

In this example, the error in data is relatively small compared to the error
in parameters due to a small number of data (actually, the error itself is small
compared to the degradation level), so the two intervals are very close each
other.

200 .

i
! /
_ 150 ,! A
[ H 1
> [ U
o i
= 100 iy
2 ! g e Data
© i
g 50 S —True.
> £ L === Median
o 0 AT 90% C.I
, ==290% P.I.
Y Threshold
-50 S— :
5 10 15
Cycles

Fig. E2.5 Degradation prediction by considering uncertainty in data k = 5

(d) RUL can be predicted based on the program given in Sect. 2.3.1 by
repeating the process for all samples of parameters. However, it is
inefficient to solve the equation for 5000 times by 5000 samples of the
parameters. Therefore, the following program is used instead. The line 6
is to find the first location where cycle is greater than or equals to the
threshold. The line 7 is the case when RUL is infinite (this case is not
included in the RUL results) because the degradation does not reach to
the threshold, while the line 8 is when RUL is the same as the current
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cycle, i.e., RUL = 0. Except for these two cases, RUL is predicted by
interpolating the two points nearby the threshold, which is in the lines
10-11.

k=5; % current time index
currt=x(k); % current cycle
thres=150; % threshold
10=0;
for i=1:ns
loca=find(zPredi(:,1i)>=thres,1);
if isempty(loca); i0=1i0+1;
elseif loca==1; rul(k,i-10)=0;
else
rul (k,1-10)=interpl ([zPredi (loca,i) zPredi(loca-1,1)],
[xNew (loca) xNew(loca-1)],thres)-currt;
end
end

Finally, the distribution of RUL is obtained as shown in Fig. E2.6, which

can be plotted by hist (rul (k, :),30).

600

500 M

400 M

300

200

100

0
0 5 10 15

RUL

Fig. E2.6 Distribution of RUL prediction

Minor modifications are required to employ the prognostics metrics for dis-
tributed RUL from the deterministic case explained in Sect. 2.3.2. PH is defined as
the difference between the true EOL and the first time when more than % of the
predicted RUL distribution continuously resides in the o accuracy zone. In the a— A
accuracy, the result of o—/ accuracy becomes true when more than % of the
predictions distribution at ¢, is included in the accuracy zone. Finally, the median of
the RUL distribution is used for RA, CRA, and the convergence.
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Example 2.7 RUL prediction with prediction interval
Repeat Example 2.6 from identifying parameters to RUL prediction at every
cycle from k =3 to k = 11.

(a) Predict degradation and obtain confidence and prediction interval curves
as given in Fig. E2.5 of Example 2.6 when k =7 and k = 11.

(b) Predict RUL at every cycle from k =3 and k = 11 and obtain RUL
curve as given in Fig. E2.3, including prediction interval to account for
uncertainty.

(c) Evaluate the RUL results in (b) using the prognostics metrics.

Solution

(a) The solution to obtain the degradation prediction like Fig. E2.5 is given
in Example 2.6. The following figures can be obtained by using different

data.
200 Ay i 200
e Data iy / s e Data
—_ i/ ’ _
T 150(| Inmg' L T 150 ___I/Iruée-
E eo lan __i: K /, 2 e(; 1an
c aonll 90% C.1 i o c 90% C.I
S 100|--00% Pl | f/ S 100(|-.- 00% P,
Y Threshold | 4~/ e Threshold
g 50 A S 50
()] ()]
[0
8 0 a 0
500 5 10 15 50O 5 10 15
Cycles Cycles
@k=T17 () k=11

Fig. E2.7 Degradation prediction by considering uncertainty in data

Since the error in data is small compared to the degradation level, the
prediction and confidence intervals are very close to each other. On the other
hand, the difference between two intervals will be distinct when there is a
large error in data (see Exercise P2.14). Both intervals become narrow as
cycle/data increases.

(b) Example 2.6(d) explained how to predict RUL at a cycle. The following
figure is obtained by repeating the RUL calculation for k = 3 : 11 and
calculating 90 % prediction intervals. The samples of RUL at different
time cycles are stored in array rul (11,ns). The following program
can be used to obtain Fig. E2.8 after calculating RUL for k =3 : 11.
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k1=3; k2=11;alpha=0.05;

x=0:10;

eolTrue=10.69;

rulPct=prctile(rul', [alpha 0.5 l-alpha].*100)"';

plot ([0 eolTruel], [eolTrue 0], 'k', 'linewidth',3);

hold on; plot(x(kl:k2),rulPct(kl:k2,2),'--or', 'linewidth',3);
plot(x(kl:k2),rulPct(kl:k2,1:2:3),"':r', " 'linewidth',3);
xlabel ('Cycles'); ylabel ('RUL'); axis ([0 eolTrue 0 eolTruel)
10} —True
-o- Median
8 IR 90% Pl j
o o ,
é ,,,,,
o
4 TN
f”
2 o-"®
0O 2 4 6 8 10
Cycles

Fig. E2.8 RUL prediction results for k =3 : 11

(c) Evaluating RUL prediction can be done by replacing several lines in
[Metric]. This is because now the RUL is given as ns number of
samples. After setting all required information, beta=0.5 is added after
line 8 in [Metric] for the fraction as a criterion when a distribution of
RUL is considered (50 % is usually employed, but it can depend on
users). This is equivalent to take the median of RUL samples.

cycle=[0:10]";
t_s=2;
eolTrue=10.6896;
t_e=10;
alpha=0.05;
lambda=0.5;
beta=0.5;

For the PH, lines 13-15 are replaced with
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for i=1:size(xrul, 1)
loca=find (rulTrue (i) -alphaZone<rul (i, :)
& rul (i, :)<rulTrue(i)+alphaZone) ;
probPH (1, :)=1length(loca) /size(rul, 2);
end
loca=find (probPH<beta,1l, 'last')+1;
ph=eolTrue-cycle(loca) ;

which is to find the first cycle when more than 50 % of samples continuously
fall within the accuracy zone. For a—/ accuracy, lines 20-22 are replaced
with
a=find( rul (idx_lam, :)>rulTrue (idx_lam) * (1-alpha)
& rul (idx_lam, :)<rulTrue (idx_lam) * (1+alpha) ) ;

probAL=length(a) /size(rul, 2) ;
if probAL<beta;

Finally, for RA, CRA, and the convergence, line 27 is replaced with

ra=1l-abs (rulTrue (idx_lam) -
median (rul (idx_lam, :))) /rulTrue (idx_lam) ;

and the following code is added after line 28, and rul after this line is
replace by rulA to use median of the RUL distribution.

if size(rul,2)==1; rulA=rul; else rulA=median(rul')'; end

The metrics results are listed in Table E2.4.

Table E2.4 Prognostics metrics when RUL is predicted as a distribution

PH (o = 0.05) o—A accuracy RA (A1 =0.5) CRA Convergence
(2 = 0.05, 1 =0.5)
3.6896 False 0.7794 0.6969 2.4684

2.5 Issues in Practical Prognostics

In this chapter, a least squares-based prognostics method is explained, which is a
simple and effective method for the case of linear regression with Gaussian noise
(normally distributed error). However, practical cases require more than polynomial
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functions and Gaussian noise, which cannot be solved by the linear regression
method. For more practical conditions, Bayesian-based approaches are usually
employed, which will be introduced in Chaps. 3 and 4.

Also, there are several issues to be considered for a practical prognostics. First,
the noise and bias have an effect on the prognostics results. Noise comes from
various sources such as variable measurement environment and measurement
variability, while the bias comes from calibration error in measurement equipment.
The effect of small level of noise with a simple example is shown in Sect. 2.2.2. In
reality, there can be a large level of noise and bias in complex systems. Also, it is
difficult to identify model parameters accurately when they are correlated each
other. Even with the simple example used in this chapter, the two parameters are
correlated each other (see Example 2.6). Not only model parameters themselves but
also loading conditions can be correlated with the parameters (see Example 2.2),
whose effect on prognostics results will be discussed in the following chapters.

The abovementioned two issues are under the assumption that physic-based
approaches are available. Physical degradation models are, however, rare in prac-
tice. When no physical model that describes the degradation behavior is available,
data-driven approaches should be employed. In data-driven approaches, it is critical
to utilize many sets of degradation data, but it is not easy to obtain several sets of
degradation data due to expensive time and costs. More fundamental issue is that
degradation data cannot be directly measured in most case and need to be extracted
from sensor signals. These four issues, noise and bias, correlation, rare physical
models and expensive data, and indirect data will be discussed in more detail
through Chaps. 4 and 7.

2.6 Exercises

P2.1 What is the definition of prognostics? Use the terms: degradation/damage
data, RUL, EOL, threshold. Also, define the meaning of these terms.

P2.2  Explain physics-based and data-driven approaches. What are the differences
between the two approaches?

P2.3 Identify parameters in Eq. 2.11 using the first five data in Table 2.2 when
L = 1. Repeat the process for Eqgs. 2.12 and 2.13.

P2.4 The same data used in P2.3 are used for Fig. 2.3. Obtain the same results as
Fig. 2.3 using [LS].

P2.5 Repeat the process five times to obtain degradation prediction in Fig. 2.3a
with different sets of data but the same level of noise such as Table 2.2.
Obtain a probability distribution of degradation level at a given time cycle
(4 cycles). Show how the distribution changes as this process is repeated
more times, e.g., 100, 1000.

P2.6 Explain about overfitting. Which ways are preferred to avoid overfitting in
data-driven approaches?


http://dx.doi.org/10.1007/978-3-319-44742-1_3
http://dx.doi.org/10.1007/978-3-319-44742-1_4
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P2.7  Obtain the same results as listed in Table 2.3 using Eq. 2.16. Use Egs. 2.14
and 2.15 to calculate the coefficient of determination, R?, and compare the
results to ones obtained from the MATLAB function, regress.

P2.8 Obtain the same plot in Fig. 2.7b. Additional data are given in Table 2.2.

P2.9 Predict the degradation behaviors and RUL at zeroth and first cycles with
the degradation model given in Eq. 2.9 and data in Table 2.2 when L = 1.

P2.10 Obtain the RUL results in Fig. 2.8 with the same approach and the same
data used for the figure.

P2.11 Repeat P2.10 with data-driven approach using the third-order polynomial
function in Eq. 2.13 . Repeat this process again with additional two sets of
data in Table 2.2 when L = 0.5, 2.

P2.12 Compare the RUL results from three different ways (results of P2.10 and
P2.11) with five prognostics metrics. Which one is better in each metric?

P2.13 Derive Eq. 2.20 by using Eq. 2.21 with the moment matrix, X’ X for a
linear model.

P2.14 Repeat Example 2.7 with larger level of noise, U(-15,15) in data than them
in Example 2.7, and compare confidence and prediction intervals from the
different levels of noise.

P2.15 A random variable A is normally distributed: A ~ N (10, 12). Generate 10, 20,
50, and 100 samples from the population distribution. Estimate the 90 %
confidence intervals of the estimated mean based on four sets of samples.

P2.16 When crack sizes are measured as a function of time, as shown in the table,
estimate the model parameters and their confidence intervals. Use a cubic
polynomial function z(¢) = 0; + 0t + 031% + 042°.

Time |0 100 200 300 400 500 600 700 800
Size | 0.01 |0.0104 |0.0107 |0.0111 |0.0116 |0.012 |0.0125 |0.0131 |.0137
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Chapter 3
Bayesian Statistics for Prognostics

3.1 Introduction to Bayesian Theory

One of the key ideas in prognostics is how to utilize the information obtained from
health monitoring systems in order to predict the behavior of damage; i.e., degrada-
tion. In general, health monitoring systems measure the level of degradation (the size
of crack, the depth of corrosion, the amount of wear, etc.) continuously or in
fixed/variable time intervals. In the case of physics-based prognostics, the model that
describes degradation is assumed to be known, but its model parameters are unknown.
Then, the most important step in prognostics is to identify these unknown model
parameters using health monitoring data. Once these model parameters are deter-
mined, it is possible to predict how damage will grow in the future, which is prog-
nostics. In the case of the method of least-squares in the previous chapter, for example,
the parameters of degradation model are determined by minimizing the error between
measured damage sizes and model predictions. This process yields a set of deter-
ministic model parameters that can represent measured degradation most closely.

The above-mentioned process of determining degradation model parameters
works fine when the health monitoring systems measure the damage size accurately
and when the degradation model is correct. In reality, however, the data always
have measurement error and variability, and the degradation model may not be
correct; that is, the model has so-called a model form error. In such a case, the
identified degradation model parameters are not accurate and can be changed with
different sets of measured data. Therefore, instead of identifying deterministic
degradation model parameters, it makes more sense to characterize them
probabilistically.

At this point, it might be a good idea to discuss about how to interpret the
probabilistic representation of model parameters. In the viewpoint of frequentist, a
probability distribution means that the variable is random in nature so that it can
have different values every time when the variable is realized. For example, if we
make many identical specimens of metal for tensile tests, the strength of each
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specimen is different. In such a case, we can represent the strength of the material
using a statistical distribution. In this text, this type of uncertainty is called aleatory
uncertainty, type-A uncertainty or variability.

The probabilistic representation of model parameters, however, has a different
interpretation from the frequentist viewpoint. In the probabilistic viewpoint, there is
a true deterministic value of model parameters, but their values are unknown.
Therefore, the values are estimated using measured data, which include measure-
ment error and noise. If the measured data have no error and the model is perfect, it
is possible that the estimated model parameters are also perfect. With imperfect data
and model, the estimated model parameters have uncertainty, which is represented
by probability distribution. In such a case, the probability distribution does not
mean that the model parameters are random. Rather, it represents the level of our
knowledge on the unknown model parameters. For example, if the probability
distribution of a parameter is wide, then it means that our knowledge on that
parameter is not accurate. In this text, this type of uncertainty is called epistemic
uncertainty, type-B uncertainty or reducible uncertainty. Different from aleatory
uncertainty, since epistemic uncertainty represents the level of knowledge, it can be
reduced by improving our knowledge. For example, if a model parameter is going
to be estimated using measured data, the uncertainty with 10 data would be smaller
than that with 5 data.

Historically, many different approaches have been proposed to identify model
parameters using measured data. The least-squares introduced in Chap. 2 is one of
them, which is a typical technique among regression-based methods. Also, the
Bayesian statistics has been practically used to identify parameters as different
techniques. There are popular algorithms such as Particle filter, Kalman
filter-family, and Bayesian method, which are all based on the Bayesian approach.
These algorithms can be used to identify unknown parameters and effectively
reduce epistemic uncertainty in the identified parameters when more data are
available. Therefore, the Bayesian statistics is introduced in this chapter before we
consider prognostics methods in detail.

Bayes’ theorem (Bayes and Price 1763) was named after the Thomas Bayes
(1701-1761), who studied how to compute a distribution for the probability
parameter of a binomial distribution using observed data, but his work was pub-
lished by Richard Price later. For more than 100 years, however, Bayes’ concept of
“degree of belief” was rejected because it is vague and subjective. Instead, objective
“frequency” was accepted in statistics for a long time. It was Jeffreys (1939) who
rediscovered the Bayes’ theorem and made it a modern theory (Jeffreys 1961). Until
1980s, however, Bayes’ theorem has mostly stayed only as a theory because it
requires a quite amount of computation for practical problems. It was starting from
1990s that the Bayes’ theorem became practical due to the rapid growth of com-
puters. Bayesian techniques for practical use have been developed by mathemati-
cians and statisticians, and applied to areas of science (economics, medical) and
engineering.

In this chapter, Bayesian inference is utilized to probabilistically identify
unknown model parameters, from which the remaining useful life of the system can
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be predicted. Here, inference is a process of determining a value of parameter based
on collected evidence, which is in this case measured data using health monitoring
systems. Bayesian inference is a statistical method to express degrees of belief on a
certain event rather than a deterministic decision, which is based on information
such as data and our knowledge using probability model (Gelman et al. 2004).
Although there are different ways of using Bayesian inference, in this chapter it is
used to update the probability distribution of unknown model parameters.

The Bayesian inference process is composed of building a prior distribution and
likelihood. The former is the initial estimate of probability distribution of model
parameters, which represents a prior knowledge or information of the parameter
before taking any measurement. This can be established using expert’s opinion,
previous experience or physical reasoning. When there is no prior information, the
prior distribution can be assumed to be constant for all range, which is called
non-informative prior distribution. The latter, likelihood, represents the effect of
measured data on the probability distribution. Its value is calculated by the prob-
ability to obtain the measure data with a given value of model parameter. The
outcome of Bayesian inference is the posterior distribution, which can be obtained
by combining the likelihood with the prior distribution.

In a prognostics point of view, Bayesian inference is used to estimate and update
unknown parameters based on measured degradation data using health monitoring
systems. The unknown model parameters are represented as a probability density
function (PDF), which is updated with more data and prior knowledge or infor-
mation. The more data are available, the more accurate estimation of model
parameter would be possible. This PDF represents epistemic uncertainty; that is, the
shape of knowledge regarding the model parameters. Once the PDF of model
parameters are obtained, it can be used to predict the remaining useful life before
the system fails. As expected, since the model parameters are given in the form of
PDF, the remaining useful life will also be in the form of PDF. In order to maintain
a certain level of safety, the operator may take a conservative value of remaining
useful life to request for maintenance. Therefore, if the uncertainty in PDF is large,
the conservative estimate of remaining useful life would be short, which means
frequent maintenance. That is, if our knowledge on the model parameters that
describe damage degradation is not good, then the system has to go through the
maintenance process frequently. Therefore, it is important to reduce the uncertainty
in remaining useful life, which comes from the uncertainty in model parameters.
The performance of prognostics method is therefore determined based on the level
of uncertainty in estimated model parameters.

The chapter is organized as follows. In Sect. 3.2, the concept of aleatory and
epistemic uncertainty is explained. Section 3.3 introduces the conditional proba-
bility, which is a key concept used in the Bayesian theory. Section 3.4 explains the
Bayesian theorem. Section 3.5 introduces two different methods of utilizing
Bayesian update: recursive Bayesian update and overall Bayesian update. In
Sect. 3.6, an example of the Bayesian parameter estimation is explained using the
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simple example used in Chap. 2; and in Sect. 3.7, the inverse CDF method as one
of sampling methods are introduced to utilize the posterior distribution for RUL
prediction, followed by exercises in Sect. 3.8.

3.2 Aleatory Uncertainty versus Epistemic Uncertainty

3.2.1 Aleatory Uncertainty

The treatment of uncertainty is essential in prognostics because the exact value of
model parameters are unknown, data from health monitoring system have mea-
surement error and noise, and future loading/operating conditions are also uncer-
tain. These sources of uncertainty contribute to the uncertainty in estimated model
parameters and thus the remaining useful life. Therefore, how to quantify various
sources of uncertainty and how to manage them are critically important in prog-
nostics. In this section, two different ways of modeling uncertainty is discussed
based on the nature of uncertainty.

In general, uncertainty is categorized into two different types, mainly because of
convenience of handling them: aleatory and epistemic uncertainty. Aleatory
uncertainty is also called as random variable, variability, type-A uncertainty, or
irreducible uncertainty. Inherent randomness which cannot be reduced by further
data is called aleatory uncertainty. Generally, a physical quantity with aleatory
uncertainty is modeled by a random variable. For example, even if test specimens
are made of a same material, the tensile strengths of different specimens are dif-
ferent. This happens because the micro-structures of grains are all different and
random. Theoretically, although it is possible to model the behavior of
micro-structures, it is often ignored and modeled as a homogeneous material with
variability. In such a case, the variability in tensile strength of a material can be
modeled as aleatory uncertainty. Variability in material properties, noise in mea-
surement, and variability in applied loads can be considered as aleatory uncertainty.
In general, a variable with aleatory uncertainty can be expressed using a probability
distribution, which comes with a distribution type and distribution parameters.
A probability distribution can be completely described using probability density
function (PDF) or cumulative distribution function (CDF).

In general, aleatory uncertainty cannot be reduced by having more samples. The
variability is still there, but having more samples can help to accurately estimate the
true distribution parameters. When a variable is random, it is often required to take
a conservative estimate. For example, when the failure strength is randomly dis-
tributed, it is safe to design based on a conservative value.
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Example 3.1 Normal distribution

The variability of failure strength of aluminum material is given as a normal
distribution with mean = 250 MPa and coefficient of variance = 10 %. Plot
the PDF and CDF of the failure strength. Also, estimate the probability that
the failure strength is larger than 200 MPa.

Solution:
First, the relationship between the coefficient of variance and the standard
deviation is given as

o
CoV = —, 3.1
” (3.1)

where u is the mean and o is the standard deviation of the failure strength.
Therefore, the standard deviation can be calculated as 250 x 0.1 = 25 MPa.
When a random variable X is normally distributed with mean = p and
standard deviation = o, it is written as

X ~N(u, ). (3.2)

The PDF of a normal distribution with mean = u and standard devia-
tion = ¢ can be given as

709 =—=exp| -5 (22)'] (33)

e
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Figure E3.1 shows the plot of failure strength PDF. The probability is
defined as the area under the PDF curve. For example, the probability of
failure strength being between u = 1o is about 68 %, u + 2¢ about 95 %, and

1=+ 30 about 99 %.
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Fig. E3.1 Probability density function of normally distributed failure strength
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The CDF of a distribution can be obtained by integrating the PDF. For example,
the CDF, F(x), is defined as the probability of failure strength X being less than x:

F(x) = P(X <x). (3.4)

From the definition that the area under the PDF is probability, the CDF can also
be written in terms of PDF as

Fx) = / (@), (3.5)

Unfortunately, there is no explicit integral form of the PDF f(x) in Eq. 3.3.
However, the following MATLAB commands can be used to plot the CDF
function:

x=150:5:350;
y=cdf ('normal', x,250,25) ;
plot(x,VY);

Figure 3.1 shows the CDF of failure strength. Based on its definition, the
probability that the failure strength is less than 200 MPa is 2.5 % because 200 MPa
is 20 location from the mean. Therefore, the probability that the failure strength is
larger than 200 MPa is P(X >200) =1 — P(X <200) =97.5% .

3.2.2 Epistemic Uncertainty

Epistemic uncertainty is different from randomness of a variable. In fact, the
variable of interest may not be random at all, but the true value of the variable is
unknown, and therefore, uncertain. For example, the elastic modulus for a material
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is considered to have a fixed value but unknown or poorly known. In such a case,
the elastic modulus has epistemic uncertainty. Even if the variable is random, the
exact distribution parameters can often be unknown. In such a case, epistemic
uncertainty exists in the random variable, which is often called sampling uncer-
tainty or statistical tolerance.

Epistemic uncertainty is often referred to as state of knowledge uncertainty,
subjective uncertainty, type-B, or reducible uncertainty. Epistemic uncertainty,
sometimes referred to as the lack of knowledge, is often more important than
aleatory uncertainty in scientific computation and estimating the remaining useful
life of a system. The epistemic uncertainty can be reduced through better under-
standing physics, or collecting more relevant data (Helton et al. 2010; Swiler et al.
2009).

In general, classifying aleatory and epistemic uncertainty is often unclear and
depends on situation. An interesting observation between aleatory and epistemic
uncertainty can be illustrated using a compressive strength of concrete material. For
an existing building, the compressive strength of a concrete wall may have a
deterministic value. However, since the strength is unknown, it can be said that the
compressive strength of the wall has epistemic uncertainty. In order to find the
value of compressive strength (i.e., to reduce or remove epistemic uncertainty), it is
possible to take specimens from the building and test them to find the actual
compressive strength. If the test itself is perfect, the true compressive strength can
be found and the epistemic uncertainty can disappear. However, due to measure-
ment error and noise, the epistemic uncertainty cannot completely be removed, but
can be reduced if the measurement error and variability is relatively small. If the
building is not built yet, on the other hand, then the compressive strength of a
concrete wall has aleatory uncertainty because its strength can randomly be chan-
ged depending on its building process. Until the building will be realized, no
additional testing will reduce variability of concrete strength. Therefore, aleatory
uncertainty in the future building transforms into epistemic uncertainty as the
building is constructed.

Another example is manufacturing tolerance. For a given manufacturing method,
tolerance is considered as aleatory uncertainty because different parts may have
different dimensions. Making more parts would not change the tolerance. However,
if more advanced manufacturing method is employed and then it is possible to
reduce the level of tolerance. Therefore, since some portion of tolerance can be
reducible, it is not aleatory, but epistemic uncertainty.

Different approaches should be used to appropriately represent and model
uncertainty according to its specific characteristics and information available about
it. While the probability theory is widely used for modeling aleatory uncertainty,
there is no dominant approach to model epistemic uncertainty. The probability
theory (Helton and Breeding 1993) is the most prevalent due to its long history,
sound theoretical foundation and deep root in the research on non-deterministic
design. Non-probabilistic or imprecise probability approaches represent uncertainty
without sharp numerical probabilities. Fuzzy sets or possibility theory (Zadeh
1999), and evidence theory (Shafer 1976; Dempster 1967) are in this category.
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In this text, the probability theory is used to represent epistemic uncertainty.
Even if the probability theory is used to represent both aleatory and epistemic
uncertainty, the interpretation should be different. Figure 3.2 shows three examples
of probability density function (PDF). For aleatory uncertainty, a large uncertainty
means that when samples are generated, they tend to be widely distributed, while no
uncertainty means that the variable or function is deterministic. For epistemic
uncertainty, a large uncertainty means that the information related to a parameter or
a quantity is ambiguous. Therefore, the shape of PDF is the shape of information
for the parameter. No uncertainty means that the information is fully known, and
there is no need to improve any knowledge regarding the parameter.

In this chapter, the main focus is on the epistemic uncertainty in degradation
model parameters, which represents a lack of knowledge about the appropriate
value to use for the model. This epistemic uncertainty is represented by a PDF. For
example, material handbooks often show a lower and upper bound of a material
parameters. In such a case, a uniform distribution can be used. This epistemic
uncertainty represents the range of generic material. However, a particular batch of
a material may have a narrow range of distribution. Therefore, if a specimen is
taken from the same batch, a narrower range of material property can be found. In
the later section, it will be shown that the epistemic uncertainty will be reduced
using Bayesian inference when measurement data on degradation are available.

3.2.3 Sampling Uncertainty in Coupon Tests

When a material property has variability, it is important to characterize the statis-
tical distribution of it so that designers can compensate for this aleatory uncertainty.
In aerospace industry, it is common to take dozens of coupons to estimate the
statistical distribution. However, since a finite number of coupons are used, the
estimated statistical distribution may not be accurate, which means there exists
epistemic uncertainty in the estimation process using coupons. Therefore, when
designers want to compensate for uncertainty, it is important to consider both
aleatory and epistemic uncertainty. In this subsection, a process of estimating

Large uncertainty Less uncertainty No uncertainty

Fig. 3.2 Representation of epistemic uncertainty using probability distribution
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conservative failure strength of a material is used to illustrate how to quantify
aleatory and epistemic uncertainty from coupon tests.

The failure strength of a material has inherent variability. In order to find the
distribution of the variability of material strength, a number of coupons (i.e.,
samples) are tested to measure the failure strength. However, the mean and standard
deviation of coupons can be different from that of the true material distribution (i.e.,
population) because only a finite number of coupons are used. The population
distribution can only be found when an infinite number of coupons are tested,
which is practically impossible. Therefore, an important question is how to estimate
the population material distribution based on the distribution obtained from cou-
pons. This is traditionally called sampling uncertainty.

In order to explain sampling uncertainty, the process of characterizing the
uncertainty in material strength is discussed as an example. Due to inherent variability
of the material, it is assume that the failure strength is normally distributed; that is,

Strue ~ N(,umlea Ugme) . (36)

where . and oy are, respectively, the mean and standard deviation of the true
strength of the material, which are also called the distribution parameters. The
uncertainty in Sy iS inherent variability and called aleatory uncertainty.

Unfortunately, the true distribution parameters of failure strength are unknown,
and they can only be estimated through tests. When n number of specimens are
used to estimate the failure strength, the estimated distribution of the failure strength
becomes

Stest ~ N (ﬂtesn 0-12651) ) (3.7)

where . and o are, respectively, the sample mean and standard deviation of
test. Due to sampling error, the distribution parameters from test are different from
the true ones. Of course, when infinite test samples are used, Sy Will converge to
Swue. However, since a finite number of samples are used, the estimated distribution
parameters have epistemic uncertainty (i.e., sampling uncertainty or statistical
uncertainty). From the classical probability theory (Neyman 1937), the uncertainty
in the estimated mean and variance can be expressed by

2
Mg ~ N (/“ttesn TES‘) (3.8)

22 ~Inv-y(n — 1,02, (3.9)

7 U test

where Inv-z%(n — 1,02,) is the scaled inverse chi-squared distribution of n — 1

degrees-of-freedom with the sample standard deviation as a scale parameter. Note
that as the number of specimens increases, the uncertainty in Egs. 3.8 and 3.9

. _ 2 _ 2
decreases. When n — oo, it can be shown that Mey = pieq and 25 = 0
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The source of epistemic uncertainty in Eqs. 3.8 and 3.9 are from sampling error.
In general, however, different sources of epistemic uncertainty exist, such as
modeling error, numerical error, etc. Although the statistical uncertainty in Eqs. 3.8
and 3.9 is given in the form of a distribution, epistemic uncertainty is not random by
nature; that is, the true mean and standard deviation will be a single value, but their
values are unknown. In this regard, the PDF of the distributions in Egs. 3.8 and 3.9
should be interpreted as the shape of knowledge about the parameter. For example,
Eq. 3.8 can be interpreted that the likelihood of p. being pi,. is higher than any
other values.

When both aleatory and epistemic uncertainties exist, designer must determine
conservative failure strength in order to compensate for both uncertainties. For
example, when there exists aleatory uncertainty only, designer can determine the
90th percentile of the distribution as conservative failure strength. When epistemic
uncertainty also exists, however, the 90th percentile cannot be determined as a
single value, rather it becomes a distribution by itself. This is because the mean and
standard deviation are uncertain. A designer must consider the effect of epistemic
uncertainty when he or she chooses conservative failure strength.

The conservative estimate of failure strength for both aleatory and epistemic
uncertainty has already been implemented aircraft design. When coupon tests are
used to estimate conservative failure strength of an aluminum material, it is required
to be estimated using A- or B-basis approach (U.S. Department of Defense 2002).
In the case of B-basis, for example, the conservative failure strength is estimated by
90th percentile with 95 % confidence. The 90th percentile is for aleatory uncer-
tainty, while 95 % confidence is for epistemic uncertainty.

Example 3.2 Failure strength

The distribution of failure strength and its estimated mean of population are
given as in Table E3.1, calculate the mean and 90th percentile of probability
of failure using double-loop MCS. Assume that there is no epistemic
uncertainty in the estimated standard deviation; that is, the estimated standard
deviation is the true one.

Table E3.1 Distribution parameters for aleatory and epistemic uncertainty

Failure strength Sest ~ N (Mesi, Z5,)
Estimated mean M. ~ U(200,250)
True mean Mo = 225
Estimated standard deviation Oest = Ogrue = 20
Applied stress R =190
Solution:

The problem formulation is based on the situation where the form of prob-
ability distribution for an uncertain variable is known, but the distribution
parameters governing the distribution are uncertain. In such a case, the
estimated failure strength essentially becomes a distribution of distributions.
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The estimated distribution of the failure strength can be obtained using a
double-loop Monte Carlo simulation (MCS), as shown in Fig. E3.2. In the
figure, the outer loop generates n samples from the estimated mean distri-
bution, My ~ U(200,250), from which n sets of normal distributions,
S~ N (i, Oest), Of failure strength can be defined. In the inner-loop, m
samples of failure strengths are generated from each N(ly,deq), Which
represents aleatory uncertainty. Since the failure strength is normally dis-
tributed, it is also possible that the inner-loop can be analytically calculated
without generating samples.

The Outer Loop The Inner Loop

- ,mp'//L !
'uest y PF ]
R
200 250
2 sampling 2
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n = P J
L Hey — __ K

Fig. E3.2 Double-loop Monte Carlo simulation for estimated distribution of failure strength

sampling The probability of failure

For each given sample from epistemic uncertainty, the aleatory uncertainty
is used to build a probability distribution, N(pi,d?%,), from which the
probability of failure, P%., can be calculated.

P.=P[S<R], i=1,...n (3.10)

By collecting all samples, a distribution of probability of failure can be
obtained, which represents the epistemic uncertainty. A conservative estimate
of the probability of failure, P}°, can be obtained by taking the 90th percentile
of the distribution. Therefore, the effect of aleatory uncertainty is considered
by calculating Pi,, while that of epistemic uncertainty is considered by cal-
culating PY°.

For the given example, the PDF of the probability of failure and its 90th
percentile conservative estimate is shown in Fig. 3.3. It is noted that since the
PDF of the probability of failure is highly skewed, the conservative estimate,
P, is far from its mean value, P. The following MATLAB code generates
n = 100,000 samples of means and calculates probability of failure
analytically.
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m=le5;sigma est=20;
mu_est=50*rand(m,1)+200;

Pf=sort (cdf ('norm',190,mu_est,sigma est)):;
PDF=hist (Pf,50) / (m*max (Pf) /50) ;
x=linspace (0, max (Pf), 50) ;

plot (x, PDF) ;

Pf mean=mean (Pf)

Pf 90=P£(90000)

In the probability-based method, the epistemic and aleatory uncertainties are
treated separately, which can have both advantages and disadvantages.
Disadvantages are the computational cost related to the double-loop MCS and the
increase in dimensionality. That is, the number of uncertain input variables
increases. Advantages are the separate treatment of epistemic and aleatory uncer-
tainty such that it is clear to identify the sources of uncertainty. Also, it is possible
to reduce epistemic uncertainty further using additional data.

It is also possible that aleatory and epistemic uncertainty can be combined to
estimate the probability of failure. In the estimated distribution method, the epis-
temic and aleatory uncertainties are combined together and represented as a single
distribution. Because of that, the advantages and disadvantages of the probability
method are interchanged in this method. That is, the estimated distribution method
is computationally inexpensive with a less number of uncertain input variables,
while it cannot separate epistemic uncertainty from aleatory uncertainty.

If MCS-based sampling method is used to calculated the estimated true distri-
bution, all n x m samples in Fig. E3.2 are used to obtain the estimated distribution
of failure strength, which includes both aleatory and epistemic uncertainty.
However, the real advantage of the estimated distribution method is when an

Fig. 3.3 PDF of the 50
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analytical method is used to calculate the combined distribution, which eliminates
sampling error. In order to model the above MCS process analytically, the esti-
mated failure strength is first defined as a conditional distribution as

Sest| (Hests stt) ~ N (Uests stt)v (3.11)

where the left-hand side is a conditional random failure strength given p. and oeg.
The PDF of the estimated distribution can be calculated by integrating the condi-
tional distribution with its parameters. Since only the uncertainty in the mean is
considered, the PDF of the failure strength can be expressed as

[o¢]

fS(SCSt) - / ¢(565t‘Mest = MeSt)fMesl (Auesl) d:uesn (312)

—0Q

where ¢ (Sest|Mest = [legt) 1S the normal PDF of failure strength with given fi., and
S (fegr) 18 the PDF of the mean parameter, which is uniformly distributed as given
in Table E3.1. For mathematical details when both the mean and standard deviation
have epistemic uncertainty, readers are referred to Park et al. (2014). Once the PDF
of the estimated failure strength is obtained, the probability of failure can be cal-
culated as

R

P;Et = / fs(sest) dses[. (313)

—00

As the estimated distribution includes both aleatory and epistemic uncertainty,
the probability of failure is a single value. Park et al. (2014) showed that Gauss
quadrature with 50 segments are accurate enough when the level of probability of
failure is in the order of 10~7, while MCS has more than 200 % COV with a million
samples.

It is interesting to note that the probability of failure in Eq. 3.13 is indeed the
mean of the probability of failure distribution, P%, from the probability method. It is
relatively easy to show this fact by using MCS process, as

PP SIORY

i=1

nxm

:%ZI(S’;( <R), (3.14)

k=1

where I(a) = 1 when a is true, otherwise zero. In the above equation, Sj is the j-th
sample of random variable S~ N(pi,, Ges ), and Sp = S]’
In the above equation, the term on the left-hand side corresponds to Py =

0.0789 from the probability method, while the term on the right-hand side is
P$''=0.0789 in Eq. 3.13. Table 3.1 compares the estimated probability of failure
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Table 3.1 Comparison of uncertainty in the probability of failure between different methods

Method Estimated probability of failure
Probability method P =0.0789, P =0.23
Combined distribution method P$t = 0.0789

from the abovementioned two methods. The following MATLAB code can cal-
culate the probability of failure using Eq. 3.14:

n=1000; m=10000; sigma est=20;
mu est=50*rand (n,m)+200;
R=normrnd (mu_est,sigma est,n,m);
Pf=sum (sum(R<190)) / (n*m)

In terms of computational cost, the estimated distribution method is more effi-
cient than the probability method because the former can obtain the probability of
failure through numerical integration. However, since the former can only estimate
the expected value of epistemic uncertainty, it is difficult to take a conservative
estimate. Especially when the distribution is severely skewed, such as the distri-
bution of the probability of failure in Fig. 3.3, it can be dangerous to use a mean
value. Therefore, it is not easy to find the confidence interval due to epistemic
uncertainty.

3.3 Conditional Probability and Total Probability
3.3.1 Conditional Probability

Before introducing Bayesian inference, it is necessary to explain the conditional
probability first, which is the foundation of Bayes’ theorem. Let A and B are any
two events, not necessarily mutually exclusive. In the theory of probability, the
probability that A or B will occur is the sum of their separate probabilities minus the
probability that they both occur; that is,

P(AUB) = P(A) + P(B) — P(ANB), (3.15)

where P(A) is the probability of event A being occurred, P(A N B) is the probability
of both A and B being occurred, and P(AUB) is the probability of either A or
B being occurred.

The above relation can easily be explained using the Venn diagram shown in
Fig. 3.4. The numbers represent the frequencies that each event occurs, and the
probability can be defined as the ratio between the frequency of an event and the
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Fig. 3.4 Venn diagram for
two events A and B (The A B
numbers represent the
frequencies that each event
occurs)

15

total frequency. For example, the probability of occurring event A can be calculated
by P(A) = 16/48 = 0.333. Similarly, P(B) = 22/48 = 0.458 and the intersection
probability, P(ANB) =5/48 = 0.104. Therefore, from Eq. 3.15 the union of
A and B is P(AUB) = 0.333 +0.458 — 0.104 = 0.678. This can be verified from
direct calculation as P(AUB) = (11454 17)/48 =0.687.

The key point of Bayesian inference is how to calculate the intersection prob-
ability P(ANB) in Eq. 3.15. The law of multiplication of probabilities states that if
A and B are two events, then the probability that both A and B will occur is equal to
the probability that A will occur multiplied by the conditional probability that B will
occur given that A has occurred; that is

P(ANB) = P(A) - P(B|A), (3.16)

In the above equation, P(BJA) is called the conditional probability, which is the
probability that B will occur if we consider only those occasions on which A also
occurs. In the case of Fig. 3.4, the conditional probability can be calculated by
P(BJA) = 5/16 = 0.3125. Therefore, the intersection probability of A and B can be
obtained as P(ANB) = P(A) - P(B|A) = 0.333 x 0.3125 = 0.104, which is the
same result obtained before.

From the property of P(ANB) = P(BNA), it is possible to express Eq. 3.16
based on the probability of event B as

P(ANB) = P(B) - P(A|B). (3.17)

Using the conditional probability P(A|B) = 5/22 = 0.227, the intersection proba-
bility of A and B can be obtained as P(ANB) = P(B) - P(A|B) =0.458 x
0.227 = 0.104, which is again the identical result.

When the conditional probability of B given A is equal to the unconditional, or
absolute, probability of B, the two events are said to be statistically independent.
This means that the occurrence of A does not alter the probability that B will occur.
If events A and B are statistically independent, the conditional probability becomes
identical to the unconditional probability; that is, P(B|A) =P(B), and thus,
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P(ANB) = P(A) - P(B). (3.18)

For example, when two dice are thrown, the probability of yielding 6 of one die
is independent of yielding 6 of another die. Therefore, the probability of both dices
yielding 6 will be { x § = 4. Although the assumption of statistical independence is
often applied for the purpose of simplicity, this is not desirable in the viewpoint of
Bayesian update. When two events are statistically independent, no information can
be obtained because one event cannot affect the other.

Example 3.3 Failure probability of turbine disk blades

Calculate the probability of failure of turbine disk blade. Field data are listed
in Table E3.2. The events A and B, respectively, represent the number of
failed blades and an inspection within 1.5 (normalized) operating hours, and
A and B are their complementary events; i.e., the number of unbroken blades
and an inspection after 1.5 (normalized) operating hours.

Solution:
Based on Table E3.2, the probability of each event is calculated as

Blades failed: P(A) = 66/520 = 0.1269

Blades not failed: P(A) = 454/520 = 0.8731
Inspection within 1.5 h: P(B) = 280/520 = 0.5385
Inspection after 1.5 h: P(B) = 240/520 = 0.4615

When A and B are independent, the probability of the intersection of A and
B is the same as the multiplication of each probability of A and B. In this
example,

e Blades failed within 1.5 h: P(ANB) = 20/520 = 0.0385
e P(A) P(B) = 0.1269 x 0.5385 = 0.0683

which means that A and B are dependent on each other, and the conditional
probability should be considered to calculate the probability of the intersec-
tion of A and B as

P(ANB) = P(A|B)P(B) = P(B|A)P(A), (3.19)
where P(A|B) is the conditional probability of A given B, and P(B|A) is the
conditional probability of B given A, i.e.,

__num. of A given B 20
* PAIB) = SoTmum of B = 280 Ot

__num. of B given A 20
* PBIA) = Toalmum of A = 66 US050




3.3 Conditional Probability and Total Probability

Now Eq. 3.19 can be verified with above results, as

P(ANB) = P(A|B)P(B) = 0.0714 x 0.5385 = 0.0385
= P(B|A)P(A) = 0.3030 x 0.1269 = 0.0385

The data in Table E3.2 can be represented as a Venn diagram in Fig. E3.3,
and the probability calculations above can be done with the Venn diagram.
More information on the basic of probability is found in a reference by
Wackerly et al. (2008).

Table E3.2 Number of inspected turbine blades

A (failed) A (not failed) Sum
B (1.5 > hours of use) 20 260 280
B (1.5 < hours of use) 46 194 240
sum 66 454 520
A B
194

Fig. E3.3 Venn diagram for the data in Table E3.2

Example 3.4 Proof load testing

Due to manufacturing variability, the tensile strength of an aluminum bar is
known as a random variable that follows a normal distribution with
mean = 350 MPa and standard deviation = 50 MPa; that is, S ~ N (350, 502).
When a proof test finds that the aluminum bar is safe until s* = 350 MPa,
calculate the conditional probability of the strength given the proof test and
compare it with the original probability of the strength. It is assumed that the
bar is intact after the proof test; that is, no damage is occurred because of the
proof test.

Solution:

Let S be the random variable that represents the strength of the bar, and s be a
realization of S. Then, the probability of strength being greater than s is
defined as P(S > s), which can be a monotonically decreasing graph as a
function of s, starting from one when s =0 and ending zero when s
approaches infinity. The following MATLAB commands can calculate the
initial probability:
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s=200:10:600;
P ini=l-cdf ('norm',s,350,50);
plot(s,P ini, 'b")

In the above MATLAB code, cdf function calculates the probability of
S < s. Therefore, 1-cdf becomes the probability of S > s. The solid curve
in Fig. E3.4 shows the initial probability curve for the strength of the bar. In
practice, the strength cannot be negative, but a random variable with a normal
distribution can go to a negative infinity. However, since the zero strength
corresponds to 7-sigma location, it can practically be considered as zero.

In order to calculate the conditional probability, the relation in Eq. 3.17 is
used. In this case, event A corresponds to S > s, while event B to S > s*.
Therefore, the conditional probability can be expressed as

P(S >sNS > s*)

P(S > s|S > s*) = PS> )

(3.20)

Since even A and event B are related to the strength of the bar, it would
help to separate the calculate into two cases: when s < s* and s > s*. When
s < s%, it is obvious to show that the probability of intersection becomes
P(S>sNS>s*) =P(S>s") because the probability is monotonically
decreasing function. On the other hand, when s > s*, it can be concluded that
P(S > sNS > s*) = P(S > s) because of the same reason. Therefore, the
conditional probability can be summarized as

P(S >s) . %
P(S>s|S>s") =4 Pssw) 18>8 (3.21)
1, if s<s*

The following MATLAB commands can calculate the conditional prob-
ability, and plot the comparison between the two probabilities with and
without proof test.

s _proof=350;

P proof = l-cdf('norm',s proof,350,50);

P post = P ini/P proof;

P post(l:16) =1;

plot(s,P ini,s,P post)

legend ('without proof test','with proof test');
xlabel('s'); ylabel ('Probability")

In this simple example, the probability density functions (PDF) before and
after the proof test can also be plotted. Initially, the PDF is normally dis-
tributed with mean of 350 MPa and standard deviation of 50 MPa. Since the
proof test removes the probability of failing less than 350 MPa, the PDF
becomes zero in this region. In addition, the remaining PDF needs to be
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scaled in order to maintain the area under PDF curve to be one. The following
MATLAB code can plot PDFs before and after the proof test.

s=[200:10:350 350:10:6007] ;

p_ini=pdf ('norm',s,350,50);

p_post(1l:16) = 0;

p _post(17:42)=2*pdf ('norm',s(17:42),350,50) ;
plot(s,p ini,s,p post)

legend ('without proof test','with proof test');
xlabel ('s'); ylabel ('PDF')

Figure E3.4 shows the two probability plots. It is noted that the proof test
cuts off the left half of probability density function because the probability of
strength being less than 350 MPa is zero due to the proof test. In order to
satisfy the property of probability, the probability density function after proof
test is scaled so that the area should be one.

1 0.016
— without proof test
08 — with progf test || 0.014
’ 0.012
>
= 0.01
= 0.6 i
I E 0.008
© 04
o 0.006
02 | 0.004
proof test J 0.002
0 0
200 300 400 500 600 200 250 300 350 400 450 500
S S

Fig. E3.4 Probability graph of the strength of a bar with and without proof test

The above example shows a very important nature of aleatory and epistemic
uncertainty. In general, the variability of material strength can be considered as
aleatory uncertainty; that is, if coupons are made from a batch of aluminum
material, individual strengths will be different due to material variability. This is the
traditional definition of aleatory uncertainty.

On the other hand, the material strength of a specific coupon is not random, but
unknown before it is actually tested until it breaks. In that regards, the material
strength of a specific coupon has epistemic uncertainty. If any evidence related to
the strength of the coupon is collected, it is possible to improve our knowledge of
the strength, or equivalently, the epistemic uncertainty can be reduced, as we
demonstrated in the proof load test. This is the basic concept of Bayes’ theorem,
which will be discussed in the following section.
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Fig. 3.5 Cantilevered beam
under two random loads that
are mutually exclusive

F,~N(35, 42 kN F,~N(25, 22) kN

N

L1=6|T| |
|
L2=9m

NN

3.3.2 Total Probability

The conditional probability is a very useful concept when the occurrence of an
event depends on the occurrence of other events. For example, a beam is under two
possible loadings, F| and F», as shown in Fig. 3.5. Let the probability of occurring
these two loads be P(F;) and P(F;), respectively. Also, let the probability of the
beam being failed by each loading be P(D|F;) and P(D|F,), respectively. Then, the
total probability of the beam being failed can be calculated by

P(D) = P(D|F\)P(F1) + P(D|F2)P(F).

In calculating the total probability, it is important to satisfy the following two
conditions. That is, all events should be non-overlapping (mutually exclusive) and
their union constitutes the entire sample space (collectively exhaustive). The first
condition requires that F; and F, should not occur at the same time, and the second
condition requires that there is no other source of failures. The total probability can
be generalized to n mutually exclusive and collectively exhaustive events E;, i =
1,...,n as

P(D) = P(D|E\)P(E)) + P(D|E2)P(Es) + - + P(DIE)P(E,).  (3.22)

The above equation is called the theorem of total probability.

Example 3.5 Total probability

Consider the two loads applied to a cantilevered beam in Fig. 3.5. The two
loads are mutually exclusive, and the beam can only failed by the two loads.
The two loads are randomly distributed F;~N(35,4%)kN and
F, ~N(25,2?)kN. The beam is considered to be failed when the maximum
bending moment reaches 235 kN-m. When the probability of occurring F; is
P(F;) = 0.7, and that of occurring F, is P(F,) = 0.3, calculate the total
probability of failure of the beam.

Solution:

The maximum bending moment occurs at the wall, whose magnitude becomes
M = L F, when F; occurs or M = L,F, when F» occurs. Since F; and F, are
mutually exclusive, they cannot occur at the same time. When F; occurs,
M =L\F; is a random variable with mean puy = L; X pp, =6 X 35 =
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210kN m and variance o3, = 6% X 07, = 576 = 24*. Also due to linearity, the
bending moment is also normally distributed; that is, M|F; ~N(210,24?).
Using the same way, when F, occurs, M|F, ~ N(225,182).

Since the failure event is defined as M > 235kNm, the conditional
probabilities of failure when F; occurs can be calculated as

M- 235 —
P(M2235|F1)_P< o “M>

oM oM
= P(X* >1.0417)
=1-—P(X*<1.0417)
=1-—®(1.0417)
= 0.149,
where X* is the standard normal random variable and ® is the CDF of X*.

When F, occurs, the same process can be used to calculate the following
conditional probability:

P(M >235|F,) =1 — P(X* <0.5556) = 0.2893.
Therefore, the total probability can be calculated as

P(M >235) = P(M >235|F,)P(F}) + P(M > 235|F,)P(F,)
=0.141 x 0.7 +0.2893 x 0.3 = 0.1909.

3.4 Bayes’ Theorem
3.4.1 Bayes’ Theorem in Probability Form

In general, there are two approaches to determine a probability of an event. The
traditional method, often called the frequentist’s method, is to generate a large
number of samples (or experiments) and postulate its probability based on the
number of times the event occurs. For example, when experiments are performed n
times, out of which event A occurs k times, its relative frequency is k/n. Then, the
probability of event A is postulated that

P(A) = lim . (3.23)

In the frequentist’s approach, only the statistical evidence is used; that is only
objective information is used in determining the probability of an event. No sub-
jective information, such as a prior knowledge on the event, is used.
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Different from the frequentist’s approach, the Bayesian approach employs a
degree-of-belief, which is subjective information. For example, the strength of an
aluminum material is initially believed to be greater than 350 MPa with 50 %
certainty. This belief may come from various sources, such as previous experience,
expert’s opinion or data from material handbook. As shown in Example 3.2, if
tensile tests are performed using the aluminum material, the initial belief can change
based on test results. This degree-of-belief can be increased or remain the same
based on test results. That is, the prior knowledge or the initial degree-of-belief
changes based on observations.

Even if there are many different ways of utilizing the Bayesian method, in this
text, it is used in the context of Bayesian inference, which is a method of statistical
inference in which Bayes’ theorem expresses how a subjective degree-of-belief
should rationally change to account for evidence. In particular, the subjective
degree-of-belief is expressed in the form of probability density function (PDF) and
observations are used to change or update the PDF. For example, epistemic
uncertainty in material property is changed or reduced by using test results. In that
sense, Bayesian inference is a rational method for updating beliefs.

In the case of estimating a probability of A given B, Eq. 3.19 can be used to
derive the following relation:

P(B|A)P(A)

PB) = "E

(3.24)

which is called Bayes’ theorem (Bayes and Price 1763). The above equation is valid
when P(B) # 0. In the viewpoint of Bayesian inference, event A is called postulate
or hypothesis, and event B is called evidence. P(A) is the initial degree-of-belief in
event A or called the prior. P(A|B) is the degree-of-belief after accounting for
evidence event B or called the posterior. In this viewpoint, the Bayes’ theorem is
modifying or updating the prior probability P(A) to the posterior probability P(A|B)
after accounting for evidence. Because of this nature, the Bayes’ theorem is also
referred to as Bayesian update. Note that when event A and event B are indepen-
dent, from Eq. 3.18, P(A|B) = P(A); that is, the prior probability is not improved
by event B. P(B|A), the conditional probability or likelihood, is the degree-of-belief
in B, given that the proposition A is true.

In many applications, for instance in Bayesian inference, the event B is fixed in
the discussion, and we wish to consider the impact of its having been observed on
our belief in various possible events A. In such a situation the denominator of the
last expression, the probability of the given evidence B, is fixed; what we want to
vary is A. Bayes’ theorem then shows that the posterior probabilities are propor-
tional to the numerator

P(A|B)  P(B|A)P(A). (3.25)
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Example 3.6 Ebola epidemic

The outcome of Bayes’ theorem can often be counterintuitive from our
common sense. As an example, the recent epidemic of Ebola virus is con-
sidered. During an Ebola epidemic in Africa, it was estimated that a passenger
arriving from Africa has 107> chance of being infected by the virus. In USA,
the test for detecting Ebola virus has 99 % accuracy; that is, 1 % of the time a
positive results is false and 1 % of the time a negative result is false. Calculate
the probability that a person testing positive is indeed infected.

Solution:

Let event E, be the case infected by Ebola virus and E; be the case tested
positive. Then the probability that a person testing positive is infected cor-
responds to P(E||E;). Using the Bayes’ rule, it can be written as

P(E,|E|)P(E)

P(E1|E2) = P(Ez)

In the above equation, it is known that P(E;|E;) = 0.99 because it is the
accuracy of test when a person is infected and test can detect it. Also P(E;) =
107> because it is a chance to be infected by the virus. However, the prob-
ability P(E») is not straightforward. In order to calculate it, the following
property can be used:

P(E;) = P(E,NE;)+P(E;NE;) =0.99 x 107> +0.01 x (1 —107°)
=0.01001.

Therefore, P(E, |E;) can be calculated using Bayes’ rule as

P(EzlEl)P(El) . 0.99 x 1073

= = 0.000989.
P(E,) 0.01001 o8

P(E\|Ey) =

The above result says that even if a person has a positive result from Ebola
test with 99 % accuracy, the actual probability the person is infected is less
than 0.1 %! This happens because the baseline probability of a person being
infected is extremely small.

3.4.2 Bayes’ Theorem in Probability Density Form

Bayes’ theorem in Eq. 3.24 can be extended to the continuous probability distri-
bution with probability density function (PDF), which is more appropriate for the
purpose of the present text. Let fx be a PDF of uncertainty variable X. If the test
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measures a value 7, it is also a random variable, whose PDF is denoted by fy. Then,
the joint PDF of X and Y can be written in terms of fy and fy, as

Sy (x,y) = (Y = y)fr(y) =X = x)fx (x). (3.26)

For example, X can be a fatigue life of a coupon, which has epistemic uncer-
tainty, and Y is a test result of fatigue life. Normally test results have measurement
variability, and thus, Y is considered as a random variable. Y = y represents the case
when test show a fatigue life of y.

When X and Y are independent, the joint PDF can be written as
Sxr(x,¥) =fx(x) - fr(y) and Bayesian inference cannot be used to improve the
probabilistic distribution of fx(x). Using the above identity, the original Bayes’
theorem can be extended to the PDF as (Athanasios 1984)

_FOIX = ()

The interpretation of the above equation in the context of fatigue life is as
follows. Initially the fatigue life of X has epistemic uncertainty in the form of fy(x).
After measuring a fatigue life y of a specimen, our knowledge on fatigue life of X
can be changed to fx(x|Y = y).

Note that it is trivial to show that the integral of fx(x|Y = y) is one by using the
following property of marginal PDF:

oo

fr(v) = /fy(yIXZ Efx(E)dE. (3.28)

—00

Thus, the denominator in Eq. 3.27 can be considered as a normalizing constant.
By comparing Eqs. 3.24 with 3.27, fx(x|Y = y) is the posterior PDF of X given test
Y =y, and fy (y|X = x) is the likelihood function or the probability density value of
test ¥ given X = x.

When the analytical expressions of the likelihood function, fy(y|X = x), and the
prior PDF, fx(x), are available, the posterior PDF in Eq. 3.27 can be obtained
through simple calculation. In practical applications, however, they may not be in
the standard analytical form. In such a case, either numerical integration or sam-
pling method can be effectively used, which will be addressed in Sect. 3.7 in detail.

When the prior distribution is normal and the likelihood is also normal, the
posterior distribution also follows a normal distribution. In this case, analytical
calculation of posterior distribution is possible. In order to show this, let us consider
that the prior distribution is given as fx(x) = N (1, 63) and the likelihood is defined
using a normal distribution as fy(y|X = x) = N(y, 62). Therefore, the posterior
distribution can be calculated as
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frIX = x)fe(x) =2 (=)’
o] - 20%0 . (6329

KY =y) =

Although derivation is complicated, but it is possible to show that the above
expression can be rearranged to the PDF of a normal distribution. In order to do
that, the following weight is defined first:

Co
co+c’

(3.30)

where ¢o = 1/¢} and ¢ = 1/0? are the inverse of variance of the prior and data. Then,
the posterior distribution in 3.29 can be written as in the following normal distribution:

(x - H)Z]

1
fX(X|Y:y)NN(.“»0'2):\/Zwexl’l_ 752

(3.31)

where the mean is i = wy, + (1 — w)y and variance is 6> = 1/(co + ¢). That is, the
posterior mean is the weighted average of prior mean p, and observed y with
weights inversely proportional to the variance. It is interesting to note that when
69 — 00, co =w =0, and thus, u =y and ¢* = 05. That is, the posterior distri-
bution is the same as sample distribution.

Example 3.7 Bayes’ theorem for independent variables
Let X and Y are statistically independent. Show that Bayes’ theorem yields the
same posterior distribution with the prior distribution.

Solution:
When two variables are statistically independent, the joint PDF can be written as

Frer(x,y) = fx(x) - fr ().
Therefore, the Bayes’ theorem in Eq. 3.27 can be written as

_fr(ny) KO -HO)
fr(y) fr(»)

Sx (&Y =) = fx(x):

That is, when two variables are statistically independent, having an
observation in Y cannot affect the knowledge in X.

Example 3.8 Bayes’ theorem for failure strength
A tensile test of a steel coupon shows 570 MPa for failure strength. Use
Bayes’ theorem to calculate the posterior distribution of failure strength. It is
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known that test variability is normally distributed with standard deviation of
10 MPa, and the prior distribution is unknown (non-informative).

Solution:
In the view of Eq. 3.27, the Bayes’ theorem can be modified as

F(lY =) = 2 OIX =X

where the normalizing constant K can be calculated to satisfy the requirement
of the area under a PDF being one. Since the prior distribution is unknown
(non-informative), it can be possible to set it as a constant; that is,
fx(x) = constant. Or, it can simply be ignored because it can be incorporated
into the normalizing constant K. Therefore, the Bayes’ theorem boils down to
calculate the likelihood fy(y|X = x), which means the value of PDF of Y at
y = 570 MPa when X = x.

Jx(x]Y = 570) = fy(y = 570|X = x)

(x—570)*] .
200

1
= ex
10v2n P

Note that due to symmetry of normal distribution of fy, the posterior
distribution is also a normal distribution centered at the test value and the
standard deviation the same as test one.

Example 3.9 Conjugate distributions for failure strength
Repeat Example 3.8 when the prior distribution of failure strength is known to
follow a normal distribution, fx(x) = N(550,20?).

Solution:

Since both the prior and likelihood follow normal distribution, they are con-
jugate and the posterior distribution is also a normal distribution. The weight
from Eq. 3.30 becomes w = 0.2. That is, since the variance of prior is eight
times larger than that of test data, more weight is given to the data. Therefore,
the mean and variance of posterior distribution become yu = 566 MPa and
o = /80 MPa, respectively. Figure E3.5 shows the plots of prior, likelihood
and posterior distribution. It is noted that the variance of posterior distribution
is smaller than that of prior as well as that of test data. The following
MATLAB code can be used to calculate and plot the posterior distribution.

m0=550; s0=20; y=570; sy=10; x=500:1:620;
c0=1/s0%2; c=1/sy”2; w=c0/ (c0+c);

m=w*m0+ (1-w) *y; s=sqrt(1l/ (c0+c));

pdf pr=exp (- ((x-m0) ."2)./(2*¥s072))/ (sqgrt (2*pi) *s0) ;
pdf li=exp (- ((x-y)."2)./(2%sy"2))/ (sqgrt(2*pi)*sy);
pdf_po=exp(—((x—m).A2)./(2*SA2))/(sqrt(2*pi)*s);
plot (x,pdf pr,'-b',x,pdf 1i,'-g',x,pdf po,'-r');
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Fig. E3.5 Prior, likelihood and posterior distribution of normally distributed failure strength

In Bayes’ theorem, if the posterior distribution fx (x|Y = y) is in the same family
of distribution as the prior fx(x), the prior and posterior are then called conjugate
distributions. In the above example, the normal distribution family is conjugate to
itself (or self-conjugate) with respect to a normal likelihood function. That is, if the
likelihood function is normal, choosing a normal prior over the mean will ensure
that the posterior distribution is also a normal distribution. This is, however, a
choice of convenience, which was useful in old days to obtain a closed-form
expression for the posterior distribution. Due to the development of computation,
this requirement is not important anymore.

3.4.3 Bayes’ Theorem with Multiple Data

When multiple, independent tests are available, Bayesian inference can be applied
either iteratively or all at once. When N number of tests are available; i.e.,
y = {», y2, -, yn}, the Bayes’ theorem in Eq. 3.27 can be modified to

N

FeelY = y) = =T[5 011X = 0)f(), (3.32)

K i=1

where K is a normalizing constant. In the above expression, it is possible that the
likelihood functions of individual tests are multiplied together to build the total
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likelihood function, which is then multiplied by the prior PDF followed by nor-
malization to yield the posterior PDF. On the other hand, the one-by-one update
formula for Bayes’ theorem can be written in the recursive form as

i 1 i .
K6y =y) = hbilX =00, i=1. N (333)

where K; is a normalizing constant at i-th update and f§i71)(x) is the PDF of X,

updated using up to (i — 1)th tests. In the above update formula, f)((0> (x) is the initial
prior PDF, and the posterior PDF becomes a prior PDF for the next update.

In the view of Egs. 3.32 and 3.33, it is possible to have two interesting obser-
vations. First, the Bayes’ theorem becomes identical to the maximum likelihood
estimate when there is no prior information; e.g., fy(x) = constant. Second, the
prior PDF can be applied either first or last. For example, it is possible to update the
posterior distribution without prior information and then to apply the prior PDF
after the last update.

When there are multiple data whose variability is normally distributed with a
known variance and when the prior is also normally distributed, it is possible to
calculate the exact expression of posterior distribution using the concept of con-
jugate distributions. Let N be the number of test data y = {yy, y2, ..., yv}, whose
mean is y and the standard deviation of data is known to be ,. Then, similar to
Eq. 3.29, the posterior distribution can be written as

N

_ _ i — x)2 _ (x— ,u0)2
Sy =y)~exp| = o | (3.34)
y

i=1

Similar to the case of a single test, it can be shown that the posterior distribution
is normally distributed as

fX(X‘Y:y)NN(:uaGZ)’ (335)

where the mean and variance are, respectively, u = wypy+ (1 —wy)y and
0> = 1/(co+cy). In the above equation, wy = co/(co +cy) is the weight and
co=1/03 and cy = N/ 05 are the inverse of variance of prior and test data.

It is interesting to note that when there is no prior knowledge, i.e.,
non-informative prior, the posterior distribution becomes
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o2
Sx(xY =y) ~N<y7]\'} : (3.36)
That is, the mean of posterior is the same as the mean of data, and the variance is
divided by the number of data. Note that Eq. 3.36 is identical to Eq. 3.8 for
sampling uncertainty.

Example 3.10 Conjugate distributions with multiple data

Four tensile tests of steel coupons show 558, 567, 573, and 582 MPa for
failure strengths. Use Bayes’ theorem to calculate the posterior distribution of
failure strength. It is known that test variability is normally distributed with
standard deviation of 10 MPa, and the prior distribution is known to follow a
normal distribution, fy(x) = N(550,20?).

Solution:

The mean and variance of four data are y = 570 and o; /N = 100/4 =25.
Note that the variance is not calculated from the data because it is assumed that
the variance of test is known. Due to more number of data, the weight becomes
wy = ¢o/(co + cy) = 0.0588. Therefore, the mean of posterior distribution
will be close to the mean of data; i.e., = wyyy+ (1 — wy)y =568.8 MPa.
The variance of posterior distribution also reduces to > =1/(co +cy) = 23.5.
Therefore, the posterior distribution is given as

s - 568.8)2] |

1
=y) = ex
V= 235vn pl 47

Figure E3.6 shows the plots of prior, likelihood and posterior distribution.
Due to the fact that four test data are available, the product of likelihoods
shows much narrower distribution, and thus, the posterior distribution. As
more data are used, the effect of prior distribution is reduced.

x=500:1:620; m0=550; s0=20;

y=[558, 567, 573, 582]; sy=10;

c0=1/s0"2; c=4/sy”2; w=c0/ (c0+c);

ybar=mean (y); sli=sqrt(sy”*2/4);

m=w*m0+ (1-w) *mean (y) ; s=sqgrt(1l/(cO+c));

pdf pr=exp (- ((x-m0)."2)./(2*s072))/ (sqgrt (2*pi) *s0) ;

pdf li=exp (- ((x-ybar).”2)./(2*s1i”2))/ (sqrt (2*pi)*sli);
pdf po=exp (- ((x-m)."2)./(2*s"2))/ (sqgrt (2*pi) *s);

plot (x,pdf pr,'-b',x,pdf 1i,'-g',x,pdf po,'-r');
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Fig. E3.6 Prior, likelihood and posterior distribution with multiple test data

An important advantage of Bayes’ theorem over other parameter identification
methods, such as the least-squares method and maximum likelihood estimate, is its
capability to estimate the uncertainty structure of the identified parameters. These
uncertainty structures depend on that of the prior distribution and likelihood
function. Accordingly, the accuracy of posterior distribution is directly related to
that of likelihood and prior distribution. Thus, the uncertainty in posterior distri-
bution must be interpreted in that context.

3.4.4 Bayes’ Theorem for Parameter Estimation

So far, Bayes’ theorem has been used to obtain a posterior distribution using a prior
distribution and experimental observation. It is important to note that in such a case,
it is assumed that the direct observation is possible to update the uncertainty
information. For example, to predict failure strength distribution, the failure
strength of a coupon is directly measured. In many cases, however, measured
quantity can be different from the quantity of interest. For example, in structural
health monitoring, natural frequency is measured to estimate the change in stiffness
due to damage. Therefore, engineers try to find the stiffness that can yield the same
natural frequency observed in experiment. Conventionally, this is called calibration
of parameters. This is very common in many engineering fields especially in
engineering computation, because most engineering computation requires model
parameters, which need to be identified based on experimental observations.

The major use of Bayes’ theorem in this book is for the purpose of parameter
estimation or calibration of model parameters. For example, as shown in Chap. 2,
structural health monitoring systems can measure crack sizes at different flight
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cycles. Then, using this information, the Paris model parameters are estimated first.
Once the model parameters are identified, these parameters are used to predict the
future behavior of crack sizes, which is the basic concept of prognostics. The
conventional regression technologies can be used for identifying model parameters,
but Bayes’ theorem can provide more comprehensive information. It can provide
not only the most likelihood value but also uncertainty associated with it. When
multiple parameters are involved, the Bayes’ theorem can also provide correlation
between parameters.

For the purpose of parameter estimation, the vector of unknown model param-
eters is denoted as 0, while the vector of measured data is denoted as y. Then, the
Bayes’ theorem in Eq. 3.27 can be written in the following form:

o) ="V (3.37)

As discussed before, the denominator in the above equation is independent of
unknown parameters and it can be considered as a normalizing constant to make the
integral of posterior PDF to be one. Therefore, the practical form of the Bayes’
theorem can be written in the following form:

f(0ly) o< f(y]0)/(9), (3.38)

where f(y|0) is a likelihood function that is the PDF value at y conditional on given
0. £(0) is the prior PDF of 0, which is updated to f(0|y), the posterior PDF of 0
conditional on y.

The Bayes’ theorem in Eq. 3.38 is also called Bayesian inference or Bayesian
update. It is called Bayesian inference because the process is inferring unknown
model parameters using observation. It is also called Bayesian update because the
prior distribution is updated to the posterior distribution after having an observation.

The major difference in Bayesian parameter estimation from the previous Bayes’
theorem is that the posterior distribution and likelihood represent different variables.
That is, the posterior distribution is about model parameters, while the likelihood is
measurement of a physical quantity. In the case of Bayes’ theorem in the previous
section, the posterior distribution and likelihood both are related to the same
physical quantity, such as failure strength. In such a case, the likelihood simply
represents test variability. However, when posterior and likelihood represent dif-
ferent quantities, a physical model must be employed to relate the model parameters
with measured data. For example, in the case of estimating Paris model parameters
using crack size data, the Paris model can be used to calculate the likelihood, that is
the probability to obtain measured crack sizes y for given parameter values 0. This
can be done by selecting different values of parameters 0 and calculating the
probability of getting y when the parameters are given.
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3.5 Bayesian Updating

In this section, a simple example is employed to demonstrate the process of
Bayesian update. The basic process to obtain the posterior distribution is simply to
multiply the likelihood function with the prior distribution. However, the readers
should focus on the likelihood function, which looks similar to probability density
function, but it is actually different from it. In the view of Eqgs. 3.32 and 3.33, it is
possible to implement Bayesian updating in two different ways when more than one
data are available. Equation 3.32 shows the final expression of the posterior dis-
tribution that is obtained by multiplying likelihood of all data with the prior dis-
tribution. In this book, this method will be referred to as overall Bayesian method.
On the other hand, Eq. 3.33 shows that Bayesian update is employed one data point
at a time. In this case, the posterior distribution from the previous update is used as
a prior distribution and likelihood includes only a single test data. In this book, this
method will be referred to as recursive Bayesian method. Mathematically, these two
Bayesian updating methods are equivalent and should yield the identical posterior
distribution. However, they become different in numerical implementation, espe-
cially when a PDF is represented by samples. In this section, these two Bayesian
updating methods are explained using a simple example.

3.5.1 Recursive Bayesian Update

In order to demonstrate the Bayesian updating process graphically, a simple case is
considered where the prior is uniformly distributed as well as two data are assumed
to be obtained when test variability is uniformly distributed. The left column in
Fig. 3.6 graphically shows the Bayes’ theorem in Eq. 3.38 with one unknown
parameter (0) and one data (y;). For example, it can be assumed that y; is the
measured crack size, and 6 is the estimated mean of crack size.

The prior PDF of 6 can be set based on the previous information/knowledge, or be
non-informative. In the illustration, it is assumed that the prior is uniformly distributed
between certain intervals. Any probability models, such as uniform, normal, or beta
distribution can be employed for the likelihood function. It is assumed that the data are
also uniformly distributed within the range of +v. That is, if the mean crack size is
given as 0, then the test variability is uniformly distributed in the range of
[0 — v, 0+ v]. If the test data y; is within the range, then the likelihood will have a
constant value, otherwise it will be zero. In order to build the posterior distribution, the
likelihood needs to be calculated for all possible values of 0 for given y;.

As shown in the left column in Fig. 3.6, for example, when @ = §“, the test
variability is in the range of [0 — v, 8 + v], but the test data y; is out of the range.
Therefore, the likelihood function is zero; i.e., f(y1|0*) = 0. This means that if the
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Fig. 3.6 Recursive Bayesian updating process

mean crack size is 6, the probability to have a measured crack size at y; is zero
because the distance between 0“ and y; is larger than the possible variability v of
test. The range of 6 to be nonzero probability at y; is between 6 and 6°, which is in
the distance of v from y,. Therefore, the likelihood function as shown in the figure
can be obtained. It is noted that the likelihood function looks like a PDF whose
center is at y, and the range is [y; — v, y; +v] = [0”, 0°]. Therefore, it might be
confused that the likelihood is a PDF constructed around the test data with test
variability. This happens because the uniform distribution of test variability is
symmetry. If the test variability is not symmetry, the likelihood function would
have been different from the PDF of test variability. Since the posterior is obtained
by multiplying the prior and the likelihood, the posterior distribution becomes the
overlapped range of 6 from the two distributions, whose distribution is narrower
than the prior one.

When another data y, is available, the distribution of the unknown parameter can
be updated in two ways: recursive Bayesian update or overall Bayesian update.
Figure 3.6 illustrates the recursive Bayesian update, where each test data is used to
update the posterior distribution. Therefore, when n, number of data are available,
the recursive Bayesian update needs to be performed 7, times. The right column in
Fig. 3.6 shows the recursive Bayesian process at cycle index k = 2. The posterior at
k =1 is used as the prior at k = 2, and the same process is repeated with a new
data. For a given test data at y,, the new likelihood function is nonzero when the
parameter 0 of mean crack size is in the range of [Hd, 0°]. Therefore, the posterior
distribution is the common range between the prior distribution and likelihood
function.



106 3 Bayesian Statistics for Prognostics
The recursive Bayesian update can be written as

F(Oy1) oc f(y110)1(0)

f(Oly12) o< f(y2]0)f (B]y1)
(3.39)

FOlyy) oc f(yelO)F (Olyy—y)-

As explained before, in the recursive Bayesian update, the posterior distribution
from the previous data is used as a prior distribution for the next data. In the above
equation, the notation 0|y,., means 0|y;, y2, ..., yx. Note that the posterior distri-
bution of @ becomes narrower as more data are used.

Example 3.11 Recursive Bayesian update for failure strength

Three tensile tests are performed to measure the failure strength of a material.
After normalization, the three measured failure strengths are 1.05, 1.10, and
1.15. Use the recursive Bayesian update to calculate the posterior distribution
of failure strength. The prior distribution is assumed to be uniformly dis-
tributed ~ U(0.9,1.1). Also, the test variability is uniformly distributed
~U(-0.15,0.15).

Solution:

Figure E3.7a shows the prior distribution and the likelihood function for the
first data y; = 1.05. The likelihood function is a constant in the range of
[0.9, 1.2]. Since the prior is within the likelihood, the posterior becomes
identical to the prior. That is, the first data cannot improve any information
for the failure strength. Therefore, the posterior distribution is uniformly
distributed in the range of [0.9, 1.1].

When the second data is used, Fig. E3.7b shows the prior, likelihood and
posterior distribution. The prior is the same as the posterior in the previous
update, that is [0.9, 1.1]. The likelihood is constant function in the range of
[0.95, 1.25]. The multiplication of the prior and likelihood becomes the
posterior distribution in the range of [0.95, 1.1].

For the third data, the prior is in the range of [0.95, 1.1], and the likelihood
is in the range of [1.0, 1.3], which yields the posterior distribution in the
range of [1.0, 1.1]. Note that the range of posterior distribution is reduced
from the initial prior distribution by 50 %.

The following MATLAB code shows how to calculate and plot the pos-
terior distributions using three measured failure strengths.
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Fig. E3.7 Recursive Bayesian update of failure strength. a Update with the first data.
b Update with the second data, ¢ Update with the third data

3.5.2 Overall Bayesian Update

Different from the recursive Bayesian update, the overall Bayesian update utilizes
all data simultaneously, and updates the posterior distribution at the same time,
which is shown in Fig. 3.7. The procedure starts from the same prior and the same
type of likelihood function that are used in Fig. 3.6. The difference is the data used
in the likelihood; both of y; and y, are considered together to determine the like-
lihood function. As shown in Fig. 3.7, the lower and upper bounds of 6 should be
0/ and 0° to include both data y; and y,, which corresponds to f(y;|0) x f(v2]6). In
the case of k data (cycle index, k can be considered as the number of data, n, in the
overall update), the posterior distribution becomes

FOy1) o< f(3110) X f(v2]0) > - - X f(:[0) < £ (6)

= f(y14(0)f (). (3.40)

Eventually, the posterior obtained by multiplying the prior and the likelihood
becomes the same as the one in Fig. 3.6.
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Example 3.12 Overall Bayesian update
Repeat Example 3.11 using the overall Bayesian update.

Solution:

The posterior distribution is expressed by a single equation by multiplying the prior
and all likelihood functions in the overall Bayesian update. Therefore, the prior
distribution is uniformly distributed ~ U(0.9, 1.1). The likelihood is also uni-
formly distributed ~ U(1.0, 1.2) that is obtained by multiplying three likeli-
hoods given in Fig. E3.7. Finally, the posterior is in the range of [1.0, 1.1],
which is shown in Fig. E3.8 and can be obtained from the following MATLAB
code by replacing it for the two lines, testl and 1ikelihood given in
Example 3.11.

x=0.8:0.001:1.3;

prior=pdf ('unif',x,0.9,1.1);

test=[1.05 1.10 1.15]; ny=length (test);
likelihood=1;

for k=l:ny
likelihood=pdf ('unif', test (k),x-a,x+a).*likelihood;

end

arealL=sum(likelihood) *0.001;
likelihood=likelihood/areal;

posterior=prior.*likelihood;

area=sum (posterior) *0.001;

posterior=posterior/area;

plot (x,prior, 'r-',x,likelihood, 'b--"',x,posterior, 'm-");

axis ([0.85 1.25 0 117])
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Fig. E3.8 Overall Bayesian update of failure strength

3.6 Bayesian Parameter Estimation

In the previous section, Bayesian update for a simple distribution parameter is
shown. However, the main purpose of Bayesian update in this text is to update the
model parameters. As an example for the Bayesian estimation of model parameters,
the same example used in Chap. 2, Eq. 2.9 is considered again, which has three
model parameters to be identified, as

2(t;0) = 0, + L+ 0:°, 0=1{0, 0, 05}". (3.41)

First of all, the type of likelihood function is assumed as a normal distribution

Ol o) = lexp<— ““”) (3.42)
’ g\/Q_ﬂ; 20’2 ’ '

where p and o are the mean and the standard deviation, which are probability
parameters of normal distribution. The degradation data y is normally distributed
with mean of u and standard deviation of ¢, which corresponds that the mea-
surement error p — y is normally distributed with zero mean and o. Therefore, p
becomes the model output from Eq. 3.41, and ¢ is the measurement error that
should be estimated along with the unknown parameters. Therefore, the equivalent
form of Eq. 3.42 for this example can be expressed as

f( |9) _ ;CX _ (Zk - yk)z
SRR 207 (3.43)

= N(yk;Zk, 0'2), 7y = 0, —|—92Ll‘]% + 93!2, o = 04.
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where k is time index and N (yi; zk, 02) is the value at y; of normal PDF N(z, 0?).
The degradation data and model output depend on time as system is degraded, but
the model parameters and the standard deviation are assumed as time-independent.
Since the normal distribution is an exponential function, its multiplication of several
terms can be expressed with a sum of all exponents. Therefore, the likelihood
function for the overall Bayesian update can be written as

F(31,10) =F(110) % £(0210) x -+ x £ (7,,10)

S . <_ w) (3.44)
(ov2m) & :

The total number of unknown parameters to be identified is four including
measurement error, o. The prior distribution should be given, assumed, or not
considered for each parameter. Let us assume the distribution of each parameter is
the uniform distribution formulated as

110) = vty = { O TR

)

where a, b are the probability parameters of uniform distribution. The prior dis-
tribution is obtained by multiplying all prior distributions as

70) =11r0) =[] (@i, bo), (3.45)

where n, is the number of unknown parameters, in this example n, = 4.

Consequently, the posterior becomes a multiplication of the likelihood and prior
equations in Egs. 3.43 and 3.45. When n, data are given, the unknown parameters
can be updated in two ways, a recursive method by using Eq. 3.39 and an overall
method by using Eq. 3.40.

Let us assume that only 0; in Eq. 2.9 is the unknown parameter by using the true
values for the others and ¢ = 2.9. The loading condition L = 1 and five no noisy
data are given in Table 2.1. The likelihood function is a normal distribution, and the
prior of the unknown parameter is uniformly distributed between 0 and 10. The
posterior distribution based on the recursive method in Eqgs. 3.39 and 3.43 can be
obtained as


http://dx.doi.org/10.1007/978-3-319-44742-1_2
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t=[0 1 2 3 4]1;
y=[5.0 5.3 6.6 9.5 14.6];

sigma=2.9;
theta=-5:0.01:15; ng=length (theta);

% [Recursive]

prior=unifpdf (theta, 0, 10);

for k=1:5;
z (k, :)=theta+0.2*t (k) *2+0.1*t (k) "3;

postS (k, :)=normpdf (y (k) ,z(k, :),sigma) . *prior;
prior=postS(k, :);

end

plot (theta, postS./repmat (0.01*sum (postS,2),1,ng));

The posterior distributions at each time are shown in Fig. 3.8a. When ¢ =0
(k = 1), the given model is the same as 0 (f(0; 0) = 0). Therefore, the unknown
parameter can be identified accurately with just one data without noise. The blue
dashed curve shows that the most likely value for 0 is 5, but the distribution
represents uncertainty caused by using just one data whose measurement error,
o = 2.9. The cut-off at both ends is an effect of the prior distribution, U(0, 10). The
results show that as more data are used, the distribution becomes narrower.

The red solid curve at k = 5 is the finally updated posterior distribution with five
data, which can be obtained with the overall method based on the Egs. 3.40 and 3.44.

% [Overall]
ny=length (y);
for i=l:ng
z=theta (1)+0.2*t.”24+0.1*t."3;
prior=unifpdf (theta(i),0,10);
postO(1l,i)=(sigma*sqgrt (2*pi))*-ny* ...
exp (-0.5/sigma”2* (z-y) * (z-y) ') *prior;
%postO(1l,1i)=prod (normpdf (y, z, sigma) ) *prior;
end
plot (theta, postO/ (0.01*sum (post0))) ;
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Fig. 3.8 Posterior distribution from Bayesian updating for one parameter. a recursive Bayesian
update, b overall Bayesian update
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The result is in Fig. 3.8b, which is the exactly same as the red solid curve in Fig. 3.8a.

Example 3.13
Parameter estimation based on Bayesian updating

Obtain and plot the posterior distribution of unknown parameters 6, and 63
in Eq. 2.9 based on Bayesian approach (a) recursive method and (b) overall
method. Assume €; = 5, non-informative prior, and normal distribution with
o = 2.9 for the likelihood function. Use five noisy data in Table 2.2 in the
case of L = 1 (this is the same problem as Example 2.6)

Solution:

The MATLAB code [Recursive] and [Overall] can be employed to
obtain the posterior distribution of the unknown parameters. Since the number
of unknown parameters is two here, a modification is required to obtain a 2-D
joint posterior distribution. The 2-D grid points are generated with mesh-
grid, at which posterior probability is calculated in the same manner as
[Recursive] and [Overalll], and then contour is used to plot the
results. As the results, Figure E3.9 is obtained with the following code.

t=[0 1 2 3 4];

y=[6.99 2.28 1.91 11.94 14.60];

sigma=2.9;

ng=200;

th2B=[-10 10]; th3B=[-2 2];

[theta2 theta3]=meshgrid(linspace (th2B(1l),th2B(2),ng)"',
linspace (th3B (1), th3B(2),ng)) ;

oe

%% Recursive
prior=1;
for k=1:5;
z (k, :)=5+theta2 (:)*t (k) *2+thetal3 (:) *t (k) *3;
postS (k, :)=normpdf (y(k),z(k, :),sigma) .*prior;
prior=postS(k, :);
C=sum (postS(k,:))*
(th2B(2)-th2B (1)) / (ng-1)* (th3B(2) -th3B (1)) / (ng-1) ;
contour (theta2, theta3, reshape (postS (k, :) /C,ng,ng)); hold on;
end
plot(0.2,0.1, 'pk', 'markersize',18);

$%% Overall

ny=length (y) ;

for i=1:ng; for j=1l:ng

z=5+theta2 (i,J) *t.”2+theta3 (i,]j) *t."3;

postO (i, j)=(sigma*sqgrt (2*pi)) "—-ny*

exp (-0.5/sigma”2* (z-y) * (z-y) ") ;
end; end
C=sum (sum (postO) ) *
(th2B(2)-th2B (1)) / (ng-1) * (th3B(2) -th3B (1)) / (ng-1) ;

figure;

contour (theta2, theta3,post0/C); hold on;
plot(0.2,0.1, 'pk', 'markersize',18);
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Fig. E3.9 Joint posterior distribution from Bayesian update for two parameters. a Recursive
Bayesian update, b overall Bayesian update

3.7 Generating Samples from Posterior Distribution

The Bayesian parameter estimation in the previous section shows how to obtain the
posterior distribution, i.e., PDF, of unknown parameters in terms of the prior distribution
and likelihood. Except for a small number of exceptional cases when the prior and
posterior are conjugate, the posterior distribution cannot be expressed in terms of standard
probability distributions. It is often expressed using multiplication of different functions.

In prognostics, once the posterior distribution of degradation model parameters is
obtained, it is used to calculate degradation behavior and predict the remaining useful
life. In general nonlinear degradation models, it is difficult to analytically propagate
uncertainty in the model parameters to degradation model. Instead, samples that
follow the posterior distribution of model parameters are generated first, and then,
each sample of model parameters is substituted into the degradation model to calculate
a sample of remaining useful life. If this substitution is repeated for all samples of
model parameters, they can represent the distribution of remaining useful life, which is
the eventual goal of prognostics. Therefore, it is important to generate samples that
follow the posterior distribution of model parameters. In this section, different ways of
drawing samples from the posterior distribution are explained. The inverse CDF
method is a well-known method to generate samples from non-standard probability
distributions. The grid approximation method is a discrete version of the inverse CDF
method (Gelman et al. 2004).

3.7.1 Inverse CDF Method

When a CDF of a continuous posterior distribution is available with a closed form;
samples from the posterior can easily be drawn using the inverse CDF method,
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which is illustrated in Fig. 3.9. First, a CDF is constructed from the posterior PDF
by integrating the area under the PDF, which is illustrated as solid curve in the
figure. Therefore, this method is only applicable when a closed-form expression of
CDF is available.

Second, a uniformly distributed random variable u ~ U(0, 1) is mapped into the
CDF. The basic idea is that the range of CDF is the same as that of u, and it is a
monotonically increasing function. Therefore, the following relation can be
established:

F0)=us F'(u)=0. (3.46)

This means that a sample 6 can be obtained by calculating the inverse of a CDF.
A random sample is generated from uniform distribution, which becomes a CDF
value (e.g., u = us = 0.45 in the figure). Then, a sample (05) is drawn by using
Eq. 3.46. By repeating this process n, times, n; samples are obtained (in the
illustration, ng = 10). It is shown that the samples are more concentrated in the
region where the PDF is higher.

Example 3.14
Inverse CDF method

Draw 5000 samples from N(5,2.9%) by using the inverse CDF method,
and compare the result with exact PDF.

Solution:

Since the CDF of normal distribution and its inverse can be calculated from
its closed-form equation or by using MATLAB function, this problem can be
solved easily. With mu=5, sig=2.9, the first three lines of MATLAB code
are a part of the inverse CDF method.
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ns=5000; % num. of samples
u=rand (1, ns) ;
thetaS=norminv (u,mu,sig); % samples by inv. CDF

[fre val]l=hist (thetaS,30); bar(val,fre/ns/ (val (2)-val(l)))

%%% exact PDF
theta=linspace(-10,20,200) ;
pdf=normpdf (theta,mu, siqg) ;
hold on; plot(theta,pdf,'r'");
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Fig. E3.10 Sampling result using the inverse CDF method

Note that since a closed-form expression of CDF is available for this
example, samples can be drawn very easily by using inverse CDF method. It
is, however, not easy to obtain a CDF equation and its inverse in most cases.

In this case, approximation method is employed, which is explained in
Sect. 3.7.2.

3.7.2 Grid Approximation Method: One Parameter

The inverse CDF method is a convenient method to generate samples from an
arbitrary distribution, but the closed-form expression of CDF is rarely available in
practice. Especially when the posterior distribution is given in terms of the product
of likelihood and prior, the closed-form expression of PDF is available, but
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Fig. 3.10 Illustration of grid approximation: one parameter

analytical integration of PDF is not trivial. When a posterior CDF is not given as a
closed-form expression, a discrete version of the inverse CDF method called the
grid approximation method can be employed, which is illustrated in Fig. 3.10. This
is the same concept as the inverse CDF method, but the CDF is approximated by
piecewise linear polynomials at several grid points. For example, the CDF can be
approximated by numerically integrating the posterior PDF. In Fig. 3.10, the PDF is
divided into n, (n, = 5 in this illustration) to calculate CDF, which means available
CDF information is at the five points denoted as blue circles. In this case, the
samples in the inverse CDF method are approximately obtained, either selecting the
closest CDF value or using an interpolation. For example, when u = us, F(g;) is
selected as the closest values to us, then g, is obtained as 605, or 65 can be obtained
by interpolating neighboring two CDF data as

Os = g1 + us — Fls1) ) X (g2 —&1)- (3.47)

F(g2) — F(g1

Example 3.15
Grid approximation method for one parameter

Use the grid approximation to draw samples (n; = 5000) from the pos-
terior distribution in Fig. 3.8b when n, = 10 and 50.

Solution:

The sampling results in Fig. E3.11 are obtained from the MATLAB code
below, and the exact PDF can be plotted with the MATLAB code
[Recursive] or [Overall].
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t=[0 1 2 3 41;
y=[5.0 5.3 6.6 9.5 14.6]; ny=length(y):;
sigma = 2.9;

ng=10; % num. of grid

thl=-5; thU=15; theta = linspace (thL,thU,ng+l) ;
wt= (thU-thL) /ng/2; % half-grid width
thetaP=wt+theta(l:ng); % point for pdf

post=unifpdf (thetaP, 0, 10) ;

for k=l:ny;
f=thetaP+0.2*t (k) *2+0.1*t (k) *3;
post=normpdf (y (k) , £, sigma) . *post;

end

pdf=post/ ( (thU-thL) / (ng-1) *sum (post)) ;
cdf (2:ng+1) =cumsum (pdf) /sum (pdf) ;

ns=5000;

for i=1:ns

u=rand;

loca=find (cdf>=u, 1) ;

thetaS (i)=interpl ([cdf (loca) cdf (loca -1)],
[theta (loca) theta(loca -1)],u); % Eg. 3.47

end

[fre val]l=hist (thetaS,30); bar(val,fre/ns/(val(2)-val(l)))

(a) (b)
04 0.4
[ Sampling [ Sampling
— Exact — Exact
0.3 0.3
= a
o 0.2 " 0.2
0.1 0.1
0 0
-5 0 5 10 15 -5 0 5 10 15
64 64

Fig. E3.11 Sampling results based on grid method: one parameter. a n, = 10, b n, = 50

As the number of grids increases, the sampling results become close to the
exact PDF by reducing the approximation error. It is, however, inefficient
when the number of gird increases especially with increase in the number of
unknown parameters.
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3.7.3 Grid Approximation: Two Parameters

In Sect. 3.7.2, the grid approximation method is presented when the posterior
distribution is available for a single parameter. However, when the model has
multiple parameters, the Bayesian update will yield the joint posterior distribution
of all parameters. This joint posterior distribution also shows the correlation
between parameters.

In this section, a method of generating samples from a joint PDF with two
parameters is explained. A joint PDF of two parameters can be expressed using
marginal PDF and conditional PDF as

fas(a,b) = fa(a|B = b)fp(b) = f3(b|A = a)fa(a),

where f4(a) and f3(b) are marginal PDFs of A and B, as

fula) = / fupla,b)db

and f4(a|B = b) and f5(b|A = a) are conditional PDFs.
The following procedure explains the steps to generate samples from the grid
approximation method for two parameters:

Step 1. Draw a sample from a marginal PDF of A as the same way explained in
Sect. 3.7.2.

Step 2. Construct a PDF of B conditional on the sample of A in Step 1.

Step 3. Draw a sample from the PDF in Step 2 as the same way explained in
Sect. 3.7.2.

Repeat Steps 1-3 n; times.

Example 3.16
Grid approximation method for two parameters

Use the grid approximation to draw samples (rn; = 5000) from the pos-
terior distribution in Fig. E3.9b when n, = 10 and 50. Assume the ranges of
the two parameters are 0, € [-5,5], 05 € [—1,2].

Solution:

The sampling results in Fig. E3.12 are obtained from the following MATLAB
code that is based on the solutions in Examples 3.13 and 3.15. Additionally,
the steps for marginal PDF of 0,, given as fg,(0;) = ffl fo,.0,(02,03)d0s
and PDF of 03 conditional on 6, are required.
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ng=50; % num. of grid
ns=5000; % num. of samples

t = [0 1 2 3 4];
y=[6.99 2.28 1.91 11.94 14.60]; ny=length(y);
sigma 2.9¢

thlL=[-5; -1]; thUu=[5; 2];

theta (1, :)=linspace (thL(1),thU(1l),ng+1);
theta (2, :)=linspace (thL(2),thU(2),ng+l) ;

wt= (thU-thL) /ng; % grid width
thetaP=repmat (wt/2,1,ng)+theta(:,1:ng)
[thetaP2 thetaP3]=meshgrid (thetaP (1, :)

% point for pdf
,thetaP(2,:));

-~

o\

%% joint PDF

post=1;

for k=l:ny;
z=5+thetaP2 (:) *t (k) "2+thetaP3 (:) *t (k) *3;
post=normpdf (y (k) , z,sigma) . *post;

end

C=sum (post) *wt (1) *wt (2) ;

jPdf=reshape (post/C,ng, ng) ;

$%% marginal PDF of theta 2
mPdf2=sum (jPdf) *wt (2) ;
mCdf2 (2:ng+l)=cumsum (mPdf2*wt (1)) ;

for i=l:ns

u=rand;

loca=find (mCdf2>=u,1) ;

thetaS(1l,i)=interpl ([mCdf2 (loca) mCdf2 (loca-1)1],
[theta(l,loca) theta(l,loca-1)],u); % Eq. 3.47

z=5+thetaS(1,1i) *t (k) *"2+thetaP (2, :) *t (k) *3;
post=normpdf (y (k) ,z,sigma) . *post;
end
C=sum (post) *wt (2) ;
mPdf3=post/C;
mCdf3 (2:ng+l)=cumsum (mPdf3*wt (2)) ;
u=rand;
loca=find (mCdf3>=u, 1) ;
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thetaS(2,1i)=interpl ([mCdf3 (loca) mCdf3 (loca-1)],
[theta(2,loca) theta(2,loca-1)],u); % Eq. 3.47
end

figure;
[fre val]l=hist (thetaS (1, :),30);
bar (val, fre/ns/ (val (2)-val(1l)))
figure;
[fre val]=hist (thetaS(2,:),30);
bar (val, fre/ns/ (val(2)-val(1l)))

figure;

plot (thetaS(l,:),thetaS(2,:),".

")
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Fig. E3.12 Sampling results based on the grid method: two parameters. a 0, n, = 10,
b 05, ny =50, ¢ 03, n, = 10, d 03, n, = 50, e correlation, n, = 10, f correlation, n, = 50
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Although the grid approximation method is useful for many applications, it is
difficult to find the correct location and scale for the grid points. Also, the method is
relatively easy for one or two parameters, but it becomes quickly difficult for
high-dimensional problems, where computing at every point in a dense multidi-
mensional grid becomes prohibitively expensive. Lastly, the correlation between
parameters can be complicated when several sets of correlation exist. In such a case,
it is difficult to find interval visually in multidimensional space.

3.8 Exercises

P3.1 Repeat Example 3.2 when the estimated mean is normally distributed as
M,,, ~ N(220, 10?). Plot the PDF of probability of failure and calculate its mean
and 90th percentile values.

P3.2 Random variable X has the PDF of fx(x) = 12(x2 - x3) for x in [0, 1]. Calculate
the mean, median, mode and CDF of X.

P3.3 Show that when n — 00, Meg = i, and X%, = g2 in Egs. 3.8 and 3.9.
Assume p. = 250 MPa and oy = 25 MPa.

P3.4 Generate 100 samples of failure strength from Syue ~ N(220, 20%). Assuming
that the true distribution is unknown, estimate the true mean and standard deviation
using these samples. Using the estimated distribution of mean and standard devi-
ation, plot the distribution of probability of failure using 100,000 samples from
epistemic uncertainty. Use applied stress R = 190. Calculate the mean and 90th
percentile of probability of failure

P3.5 Repeat Problem P3.4 using the combined method. Compare the calculated
probability of failure with the mean of probability of failure calculated in Problem
P3.2.

P3.6 A building can have structural damage (D) during its lifetime only from fire
(F), high wind (W), and strong earthquakes (E). Thus, F, W, and E are collectively
exhaustive events. Further assume that the building will not be structurally damages
simultaneously by F, W, and E, thus making them mutually exclusive events. The
probabilities of structural damage to the building if these events occur are estimated
to be 0,005, 0.01, and 0.05, respectively. The probabilities of occurrence of F, W,
and E during the life of the building are 0.5, 0.3, and 0.2, respectively. (a) What is
the probability that the building will suffer structural damage during its lifetime?
(b) If the building has suffered structural damage, what is the probability that it was
caused by F? By W? By E?

P3.7 A concentrated load on a cantilever beam may be placed in either location A
or B, with probabilities P(A) = 0.3 and P(B) = 0.7. If the load is placed at A, the
probability of bending failure of the beam is 0.01, and the probability of shear
failure is 0.001. If the load is placed at B, the probability of bending failure of the
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beam is 0.02, and the probability of shear failure remains the same. If the beam has
shear failure, then the probability of bending failure is 0.9. What is the overall
probability of failure of the beam?

P3.8 Find how many samples of normally distributed numbers you need in order to
estimate the mean and standard deviation with an error that will be less than 10 %
of the true standard deviation most of the time.

P3.9 In the Ebola epidemic in Example 3.6, what is the probability of being infected
when test shows negative?

P3.10 A passenger can travel from home to another city by car (C), ship (S), plane
(F), or train (T). In a given year, the passenger made such a trip 80, 15, 100, and 50
times by C, S, F, and T, respectively. The probability of an accident (A) during a
trip using these modes of transportation is estimated to be 1E-5, SE-5, 1E-6, and
SE-5, respectively. (a) What is the probability of an accident during a trip? (b) What
is the probability of an accident in the next 10 trips? (c) If there was an accident,
what is the probability that the passenger was traveling by car?

P3.11 A building can suffer structural damage by fire (event F) or strong earth-
quakes (event E). Let F and E denote the events, with corresponding probabilities
0.005 and 0.05, respectively. F and E are statistically independent events. Calculate
the probability of structural damage to the building.

P3.12 A bridge can be damaged by failure in the foundation (F) or in the super-
structure (S). The corresponding failure probabilities for a particular bridge are
estimated to be 0.05 and 0.01, respectively. Also, if there is foundation failure, then
the probability that the superstructure will also suffer some damage is 0.50.
Calculate probability P(FUS).

P3.13 A patient who had received a flu shot shows up at a doctor’s office com-
plaining of flu symptoms. It is known that for his age group the vaccine is 70 %
effective. It is also known that people with flu experience these symptoms 80 % of
the time, and people free of flu experience these symptoms 20 % of the time. What
is the probability that the patient does not have the flu? Use Bayes’ rule.

P3.14 Repeat Example 3.9 with three different test variabilities: o, = 10, 100, 1000.
Show that as o, increases, the posterior approaches the posterior with
non-informative prior.

P3.15 When three test data 550, 570 and 590 MPa were obtained from tensile test
of Aluminum, (a) use Bayesian method to calculate the posterior distribution of
failure strength, (b) calculate the mode of posterior distribution, and (c) Calculate
the ratios of posterior distribution P(550)/P(570) and P(590)/P(570). It is known
that test variability is normally distributed with standard deviation of 10 MPa, and
the prior distribution in unknown (non-informative).

P3.16 A failure strength of aluminum is known to be uniformly distributed between
400 and 600 MPa. Two AL tensile specimens failed at 520 and 570 MPa. Tensile
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test is known to have uniformly distributed variability of & 40 MPa. Using
Bayesian inference, calculate 2 likelihood functions and the posterior distribution.

P3.17 Generate 20 samples from N(2.9, 0.2%). Using these samples, plot posterior
PDF of unknown population mean conditional on the observations. Use (1) the
analytical expression and (2) randomly generated 100,000 samples. Superpose the
two PDFs in one graph. Also plot CDF of the two together and compute the
maximum difference of the two.

P3.18 When a posterior PDF is given as

X, 0<x<1
px(x)=4¢2—x, 1<x<2
0, otherwise.

(a) Find CDF and the standard deviation of X analytically. (b) Generate 10,000
samples using the inverse CDF method and plot histogram with the interval 0.1
between grid points. Find a scale factor so that the histogram can approximate the
exact PDF. Plot both scaled histogram and exact PDF.

P3.19 Repeat P3.18 when a posterior PDF is given as
px(x) = 30x(1 — x)4, 0<x<1

P3.20 Repeat Example 3.11 when test variability is normally distributed. Calculate
the posterior distribution using (a) recursive Bayesian update and (b) overall
Bayesian update.

P3.21 Repeat Example 3.11 (a) when the prior uncertainty is increased from 10 %
to 15 % and (b) when test variability is increased from 15 % to 20 %. Compare
these results with that of Example 3.11.

P3.22 Using the grid approximation method, calculate 10,000 samples from the

following p(x) o 0.3exp(—0.2x2) +0.7 exp(—0.2(x — 10)?). Plot the PDF using
samples and compare it with the exact PDF.
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Chapter 4
Physics-Based Prognostics

4.1 Introduction to Physics-Based Prognostics

In this chapter, physics-based prognostics approaches are discussed. The funda-
mental assumption is that there exists a physical model that describes the evolution
of damage or degradation. For this reason, the physical model is often referred to as
a degradation model, and the physics-based prognostics is often referred to as a
model-based prognostics. The objective of this chapter is to introduce basic
physics-based prognostics algorithms and to discuss challenges to apply the algo-
rithms in practice.

If an accurate physical model that describes damage degradation as a function of
time exists, then that basically completes prognostics because the future behavior of
damage can be determined by progressing the degradation model in the future time.
In practice, however, the degradation model is not complete and the usage condition
in the future is uncertain. Therefore, the key issues in physics-based prognostics are
how to improve the accuracy of degradation model and how to incorporate
uncertainty in the future. For example, the Paris model in Chap. 2 describes how a
crack grows as a function of fatigue loading, which is represented using the range of
stress intensity factor. The crack growth rate depends on the level of the stress
intensity factor, which may have some variability due to different usage conditions.
Also, two model parameters, m and C, determine how fast the damage will grow.
These parameters have uncertainty due to manufacturing variability. In addition, the
Paris model itself is designed for an infinite plate under mode I fatigue loading. In
practice, all plates are finite in size and under constrained boundary conditions with
other parts. Therefore, the model itself may have some error (i.e., epistemic
uncertainty). Therefore, the decision-making process of prognostics should include
these sources of uncertainty and should be based on conservative estimate of
damage degradation.

The process of the physics-based prognostics is illustrated in Fig. 4.1.
The degradation model is expressed as a function of usage (or, loading) conditions,
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Fig. 4.1 Illustration of physics-based prognostics

L, elapsed cycle or time, ¢, and model parameters, 0. Although the most significant
source of uncertainty is from usage conditions due to unknown future usages, it is
often assumed that the usage conditions and time are given for the purpose of
physics-based model development. Under this assumption, the major focus of this
chapter is on identifying model parameters and predicting the future behavior of
degradation.

Even if the model parameters can be obtained from laboratory tests, the actual
model parameters that are used in a system might be different from the model
parameters that are obtained from laboratory test. For example, different batches of
materials show different properties. Therefore, the material tested in the laboratory
may have different properties from the one used in a system. In order to
acknowledge the variability of material properties for different batches and different
companies, material handbook usually shows a wide variability in material prop-
erties. For example, the material handbook shows that the variability of Young’s
modulus of a steel is about 18 %. However, the specific material that is used for a
system may have much smaller variability in material properties. Therefore, it is
important to identify the actual material properties that are used for a system.

In particular, uncertainty in model parameters can significantly affect the per-
formance of prognostics. For example, among the two Paris model parameters, the
exponent, m, of aluminum alloys is known to be in the range of 3.6 and 4.2. This
only corresponds to 16 % variability, but the life cycle can differ by 500 %. If a
conservative estimated is made, then it is possible that maintenance has to be
ordered only after 20 % of actual life has been consumed. Therefore, it is important
to reduce the uncertainty in model parameters to predict more accurate remaining
useful life, and thus, maintenance time.

As discussed in Chap. 3, the uncertainty in model parameters is mostly from
epistemic uncertainty. In structural heal monitoring, on-board sensors and actuators
are used to measure damage growth. The fundamental concept of physics-based
prognostics is to use these measurements to reduce the uncertainty in degradation
model parameters, which was the main focus of Chap. 3. Therefore, measurement
data can be used to reduce the uncertainty in degradation model parameters using
the Bayesian framework. Therefore, most physics-based prognostics methods have
their foundation on Bayesian inference.
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For the real-time estimation of the model parameters, the Bayesian statistics
explained in Chap. 3 is employed. Once the model parameters are identified after
updating process, the future behavior of degradation can be easily predicted by
propagating the model to the future time, i.e., substitute the identified parameters to
the degradation model with future time and loadings. Finally, the remaining useful
life is predicted by propagating the degradation state until it reaches a threshold.

In fact, parameter estimation algorithms become criteria to classify different
physics-based approaches. There are several methods for model parameter identi-
fication such as nonlinear least squares (NLS) (Gavin 2016), the Bayesian method
(BM) (Choi et al. 2010), and several filtering-based techniques, such as Kalman
filter (KF) (Kalman 1960), extended/unscented Kalman filter (Ristic et al. 2004,
Julier and Uhlmann 2004), and particle filter (PF) (Doucet et al. 2001). NLS is a
nonlinear version of the least squares method introduced in Chap. 2, and BM is the
overall Bayesian approach given in Chap. 3. The filtering methods are based on the
recursive Bayesian method. KF gives the exact posterior distribution in the case of a
linear system with Gaussian noise, and other KF family techniques, such as
extended/unscented Kalman filter, have been developed to improve the perfor-
mance for nonlinear systems.

He et al. (2011) employed the extended Kalman filter for lithium-ion battery
prognostics. Orchard and Vachtsevanos (2007) estimated the crack closure effect
using PF for RUL prediction of a planetary carrier plate based on a vibration-based
feature. Daigle and Goebel (2011) used PF to estimate wear coefficients by con-
sidering multiple damage mechanisms in centrifugal pumps. Zio and Peloni (2011)
used PF for RUL prediction of nonlinear systems with a crack growth example. On
the other hand, the Bayesian method is used to implement batch estimation using all
the measurement data up to the current time. Choi et al. (2010) applied the Bayesian
method to several structural problems for parameter estimation. An et al. (2011)
estimated wear coefficients to predict the joint wear volume of a slider-crank
mechanism using this method.

Among the aforementioned algorithms, Kalman filter-family and PF are based
on the filtering technique that updates parameters recursively by taking one mea-
surement data at a time. The performance of Kalman filter-family largely depends
on the initial condition of the parameter and variance of the parameter in addition to
the approximation in linearization. On the other hand, PF can be employed without
any restrictions for systems and noise type. Therefore, this book focuses on PF as
one of the filtering methods.

The organization of this chapter is as follows. Throughout the chapter the battery
degradation model (Sect. 4.1.1) is used to explain physics-based prognostics
algorithms. First, the nonlinear least squares method is used to identify model
parameters and predict RUL in Sect. 4.2. The overall Bayesian update is explained
in Sect. 4.3, followed by particle filter method in Sect. 4.4. Section 4.5 extends the
battery degradation problem to other applications, such as crack growth prognos-
tics. Finally, Sect. 4.6 presents challenges and issues in physics-based prognostics
algorithms.
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4.1.1 Demonstration Problem: Battery Degradation

As an example of physical models, a battery degradation model is employed. In a
strict sense, there is no well-defined physical model describing battery degradation as
afunction of variable charging—discharging cycles. Empirical degradation models are
widely used when a certain assumption is applied for usage conditions. In this chapter
an empirical degradation model is considered as a physical model in physics-based
approaches. In the degradation of a battery, it is well known that the capacity of a
secondary cell such as a lithium-ion battery degrades over cycles in use, and the
failure threshold is defined when the capacity fades by 30 % of the rated value.

A simple form of the empirical degradation model is expressed by an expo-
nential growth model as follows (Goebel et al. 2008):

y = a exp(—bt), (4.1)

where a and b are model parameters, ¢ is the time or cycles, and y is the internal
battery performance, such as electrolyte resistance Rp or transfer resistance Rcr.
When the usage condition of battery is fully charging—discharging cycles, the time
t can be considered as the number of charging—discharging cycles. The internal
battery performance is normally measured in terms of capacity. Also, there is a
relationship between Rg + Rcr and C/1 capacity (capacity at nominally rated cur-
rent of 1A); Rg + Ry is typically inversely proportional to the C/1 capacity. In this
case, the exponent —b is changed to b without a change of the model form, but a
sign of the exponent does not have an effect on the model since the parameter b can
have a positive or negative value. Therefore, it is assumed that Eq. 4.1 represents
the capacity degradation behavior, and measured data are given as a form of C/1
capacity in this chapter. Lastly, a is the initial degradation state (when t = 0,y = a),
and the initial state can have a significant effect on the degradation rate. However, it
is assumed to be known because the 30 % threshold is a relative value and inde-
pendent of a. Since C/1 capacity is considered, it is assumed that @ = 1 is given.
Eventually, Eq. 4.1 can be rewritten as

Zk = exp(—btk), (42)

where z; is the degradation level, i.e., C/1 capacity at a time index .

The C/1 capacity data measured at every 5 charging—discharging cycles are
given in Table 4.1. The data are generated by (a) assuming that the true model
parameters bgye = 0.003; (b) calculating the true C/1 capacity according to Eq. 4.2
for the given time steps; and (c) adding Gaussian noise ¢~ N(0,0.02?) to the true
C/1 capacity data. The true values of parameters are only used to generate observed
data. Then, the goal of prognosis is to estimate b using the data. As shown in
Fig. 4.2, the end of life (EOL) of the battery is 118 cycles. If 45th cycle, the last
measured data point, is considered as the current time, then the remaining useful life
is 118 — 45 = 73 cycles.
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Table 4.1 Measurement data for battery degradation problem
Time step, k Initial, 1 |2 3 4 5 6 7 8 9 10

Time (cycles) 0 5 10 15 20 25 30 35 40 45
Data, y (C/1 (Ahr)) |1.00 099 (099 094 |0.95 [0.94 | 091 [091 |0.87 |0.86
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4.2 Nonlinear Least Squares (NLS)

When a degradation model can be written as a linear combination of unknown
model parameters, the regression process to find the unknown parameters is called
(linear) least squares as explained in Chap. 2. When the degradation model is a
nonlinear function of model parameters as shown in Eq. 4.2, the regression process
is called nonlinear least squares (NLS). In other words, it is considered as NLS
when the partial derivatives of the degradation model with respect to the model
parameters/coefficients are functions of model parameters. The derivative of Eq. 4.2
with respect to b is 9z(t;b)/0b = —texp(—bt), where the derivative also depends
on parameter b on the right-hand side. In linear model, for example, the derivatives
of the linear problem in Eq.2.9 are obtained as 0z/90, = 1,0z/00, =
Lt?,0z/005 = £, which are either constant or function of only the input variable,
t (L is given loading information).

NLS finds model parameters by minimizing the sum of squared errors (SSg)
same as LS, but a weighted sum of square errors (SSg w) is considered as a general
approach for NLS:

ny _ 2
SSpw = Z(ykwijk) = {y —z}"W{y —z}, (4.3)
k=1 k
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where w? is a weight at measurement point y;, W is a diagonal matrix with the
inverse of weights 1/ w% as diagonal elements, and z; is a simulation output from the
degradation model. When all weights are same for all measurements, W can be
considered as a constant and can be ignored since it does not have any effect on the
minimizing process to find parameters. For such a case, Eq. 4.3 shows the same
form as Eq. 2.6. In this section, it is assumed that wﬁ is a constant that can be
determined by the estimated variance of noise in data in Eq. 2.18.

In the case of linear least squares, Eq. 2.6 is a quadratic form ({y — X0} {y — X0})
and a global optimum can be found, e.g., it is a parabola for one-parameter case, and
the global optimum is where the gradient is zero (see Eq. 2.7). The zero-derivative
condition becomes a linear system of equations with model parameters as unknown.
Therefore, by solving this linear system of equation can yield the optimum parame-
ters. Then, Eq. 2.8 is given as the general form of the global optimum.

On the other hand, for nonlinear least squares, z in Eq. 4.3 is not a linear
combination of unknown parameters anymore, and the zero-derivative conditions,
d(SSg,w)/d0 = 0, cannot be expressed as a linear system of equations, such as
Eq. 2.7. For this case, the parameters have to be determined using an iterative
process based on optimization techniques. There are several algorithms, and the
Levenberg—Marquardt (LM) method (Gavin 2016) that combines the gradient
descent method and the Gauss—Newton method is a popular one, which is
employed in this chapter. The detailed explanation for the optimization process is
not introduced in this book, but the MATLAB function 1sgnonlin is used
instead. The process for parameter estimation using LM is explained with the
MATLAB function in the following subsection.

In general, the optimization process is deterministic, which means that the
process yields a single set of parameters’ values that minimize the SSgw error.
However, the optimum parameters depend on measured data, which include mea-
surement variability. Therefore, if a different set of data are used, the optimized
parameters can be changed. That is, the estimated parameters have uncertainty. In
nonlinear least squares, the uncertainty of estimated model parameters can be
estimated based on its variance given in the following equation:

T = [I"WI T, (4.4)

where J is a Jacobian matrix, [0z(;0)/00]
design matrix X in Eq. 2.5 for linear problems. In order to make the following
calculation simple, it is assumed that the magnitudes of the errors at all measured
points are the same. Then, wf becomes constant and identical to the variance of
noise in the measured data, 6% in Eq. 2.18. That is,

ny which plays the same role as the

T
Wt =52 = SSg :{y—z} {y—z}.
¢ ny —np ny — np

(4.5)
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Finally, Eq. 4.4 can be rewritten as
Ty =T (4.6)

Once the model parameters and its variance are obtained, the distribution of
parameters also can be obtained based on multivariate 7-random numbers (See
Example 2.6 in Sect. 2.4 for more information). For the Jacobian matrix, it is
calculated by numerical approximation when analytical expressions are not avail-
able. In this book, we exploit the Jacobian matrix provided from 1sgnonlin. The
degradation and RUL are predicted based on the samples of estimated parameters
(explained in Sects. 2.3 and 2.4), and the overall procedure of NLS-based prog-
nostics is explained with the MATLAB code [NLS] in the following subsection.

4.2.1 MATLAB Implementation of Battery Degradation
Prognostics Using Nonlinear Least Squares

In this section, the usage of the MATLAB code [NLS] is explained. The code is
divided into three parts: (1) problem definition for user-specific applications,
(2) prognostics using NLS, and (3) post-processing for displaying results. Different
algorithm can replace the second part, which will be discussed in later sections.
Only the problem definition part needs to be modified for different applications,
which are further divided into two subparts: variable definition and model defini-
tion. Once these two subparts are completed, users can obtain the results of
parameter estimation and degradation and RUL prediction. In the following
explanation, ‘line’ or ‘lines’ indicates the line number of the MATLAB code given
in the last part of this section. Also, i, j, and k in MATLAB codes are indices for
samples, parameters and time, respectively. This convention is same for Bayesian
method and particle filter algorithms. Detailed explanations for using NLS are given
in the following subsections with the example of battery degradation.

4.2.1.1 Problem Definition (Lines 5-14, 48)

For the battery degradation example, Battery_ NLS is used for WorkName,
which is the name of the result file. The capacity is measured at every 5 cycles, so
C/1 Capacity and cycles, respectively, are used for DegraUnit and
TimeUnit. The array time includes both the measurement and future times and
should be long enough for RUL prediction. The C/1 capacity data in Table 4.1 are
stored in y, which is a n, x 1 vector. The array size of time should be larger than
that of y. According to the definition of failure threshold in Sect. 4.1.1, 0.7 (70 %
of C/1 capacity) is used for thres. ParamName is the name of the unknown
parameters to be estimated: model parameter b and the standard deviation of
measurement noise s.
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In Chap. 3, several examples are assumed to have a known variability of
observed data. In reality, however, the variability of observed data is often
unknown and it also has to be estimated during the parameter estimation process. In
the case of [NLS], the variability of observed data is not in the part of parameter
estimation process. Rather, it is calculated after parameter estimation. However, it is
included in ParamName in order to make the problem definition consistent with
other algorithms.

Although ParamName is an array of character strings, it will be used as an
actual variable name in the code using eval () function in MATLAB. Therefore,
the name of parameters must satisfy the requirement of variable name in MATLAB.
When determining the parameters’ name, there are three cautions: (1) the user can
define anything for the parameter’s name but the length of parameters’ name should
be the same as each other, and when assigning a one letter name, be careful not to
use 1, j, k because they are already used in the code; (2) the parameter’s name
representing the model parameters should be used as the model equation in line 48;
and (3) the parameter’s name of the standard deviation of measurement error should
be placed on the last row.

When the true values of parameters are available, thetaTrue can be used as a
n, x 1 vector; if not, leave it as an empty array, []. The rest of the required
parameters are significance level signilLevel and the number of samples ns.
The significance level is for calculating the confidence interval (C.1.) or prediction
interval (P.I.), and the values of 5, 2.5, or 0.5 significance level means 90 %, 95 %,
or 99 % intervals. Usually, 1,000-5,000 samples are used for ns. In this example, 5
and 5000 are set for signiLevel and ns, respectively.

WorkName="'Battery NLS';

DegraUnit='C/1 Capacity';

TimeUnit="'Cycles';

time=[0:5:200]";

y=[1.00 0.99 0.99 0.94 0.95 0.94 0.91 0.91 0.87 0.86]"';
thres=0.7;

ParamName=['b'; 's'];

thetaTrue=[0.003; 0.02];

signilevel=5;

ns=5e3;

The damage model equation in Eq. 4.2 is used in line 48 as

z=exp (-b.*t);

In the damage model, the time #, is expressed as t in the script. Also, the model
parameter b and the degradation state z;, respectively, are expressed as b (as defined
in line 11) and z. Note that the parameter name b is identical to the string defined in


http://dx.doi.org/10.1007/978-3-319-44742-1_3

4.2 Nonlinear Least Squares (NLS) 135

ParaName. The algebraic expressions should use componentwise operations (i.e.,
using “.”) since degradation state is a vector with ns samples.

4.2.1.2 Prognosis Using NLS (Lines 17-32)

As mentioned before, 1sgnonlin is utilized to estimate the battery model
parameter, b. To use the LM method, the setting in line 19 is required.' The
optimization process is performed in line 20 with objective function (FUNC) to be
minimized, starting from the initial parameters (theta0). In FUNC (lines 39—43),
the residual vector, {y — z}, for given model parameters is calculated at all mea-
sured ny data points. In order to calculate the model prediction, function MODEL
(lines 44-50) is used. Line 48 should be modified for different degradation models.
Then 1sgnonlin MATLAB function builds the objective function SSg using the
residual vector and minimizes it. As the outputs from the process, the deterministic
estimation of parameters (thetaH), residuals at the estimated parameters (resid),
and the Jacobian matrix (J) are obtained. These results are used to predict the future
damage behavior and to estimate the uncertainty of parameters.

The process to obtain the uncertainty of parameters in the form of samples was
explained in Sect. 2.4. A brief summary of the process is as follows. (1) Calculate
SSg and the standard deviation in data (lines 21-23). (2) Obtain the standard
deviation of parameters (line 25) from their covariance matrix (line 24). (3) Then,
the distributions are obtained by adding the deterministic results and z-random
samples multiplied with the standard deviation (lines 26, 27). In calculating the
standard deviation of data, dof = ny — np + 1 is used in line 22 because np
includes the standard deviation, which is not used in the estimation process. Even
though the standard deviation in data (sigmaH) is deterministically estimated
based on the estimated parameters, it is included in the final sampling results (line
28) to maintain consistency in the results with other prognostics methods.

Once the distribution of model parameters are estimated using ns samples, the
degradation prediction is done by using the results in the model equation (line 30),
which reflects the parameter (or model) uncertainty and is related with the confi-
dence intervals. On the other hand, the error in data is added to degraPredi (line
31), which is considered as the final degradation prediction results. The prediction
of degradation behavior is obtained by repeating this process at other future times
up to the last time given in line 8 (line 29), from which the prediction interval can
be calculated.

'"The number 0. 01 in line 19 is a default value for the initial LM parameter 1. As / is smaller, the
Gauss—Newton update is more dominant in the LM method, while the gradient descent update is
for the opposite case. Also, as the parameters are close to the optimal results, the update method
is changed from the gradient descent to the Gauss—Newton update. Thereby, the LM parameter 4
changes during the update process. See Gavin (2016) for more detailed explanation about the
LM method, and see the Help in MATLAB for other options in the optimization process.
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The Levenberg—Marquardt algorithm in MATLAB function 1sgnonlin finds
a local optimum, the parameter identification results depend on the initial param-
eters. It is expected that the users provide the initial values of parameters when
[NLS] is called. To run the code [NLS], enter the following code in the command
window (In this example, theta0=0.01).

[thetaHat, rul]=NLS (0.01) ;

Although there are two parameters, b and s, only the initial estimate of b is
required when [NLS] is called, because the standard deviation of measured data is
not used in [NLS].

4.2.1.3 Post-processing (Lines 34-37)

Once model parameters are identified and degradation is predicted, their graphical
results as well as RUL predictions can be obtained by using the MATLAB code
[POST] (line 36). Finally, all results are saved in the results file named with
WorkName and the current cycle. In this example case, the saved file name is
“Battery_NLS at 45.mat.”

In MATLAB code [POST], the distribution of identified parameters and
degradation prediction results are plotted (lines 6-20). The PDF of the parameters
in line 9 can be obtained from the histogram results in line 8 by dividing the
frequency (£rq) by the distribution area (ns/ (val(2)-val (1) )). This scaling
makes the histogram consistent with the probability density function. Even if NLS
does not calculate the distribution of standard deviation of measure data, it is plotted
as a constant value: the square root of the variance of noise in Eq. 4.5.

The RUL should be calculated based on the degradation prediction results
degraPredi (lines 21-33). The parameter 10 (line 21) is used to count the
number of samples not reaching to the threshold, which is displayed (line 26). This
means that the end of prediction time is not long enough or the RUL is predicted as
an infinite life. Therefore, when there are many samples not reaching to the
threshold (10 is large compared to the total samples ns, such as more than 5 % of
ns), it is required either to increase the ending time (line 8 in [NLS]) or to update
model parameters with more data. Since degradation behaviors can monotonically
increase (e.g., crack size) or decrease (e.g., battery capacity), coeff (line 22)
reflects this difference: coeff = -1 for decreasing degradation or coeff = +1
for increasing degradation.

RUL prediction is performed for each sample (line 23) to find time/cycle where
the degradation prediction meets the threshold. First, the time/cycle location where
the degradation prediction from one sample degraPredi(:,1i) meets the
threshold first time is saved in 1oca (line 24). When loca is empty, it means the
degradation of the particular sample does not reach the threshold (lines 25, 26) until
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the end of time, while Loca==1 means the current time/cycle is the end of life
(EOL), thereby RUL is zero (line 27). A general case for RUL calculation is in lines
28-30, where the precise RUL is interpolated using two degradation levels before
and after the threshold. This process is repeated for all ns samples. Once the RUL is
calculated for all samples, three percentiles (line 5) of RUL are calculated (line 33),
and the PDF of RUL (lines 34-39) and its percentiles (lines 40—42) are displayed.

If the true values of parameters are given in line 12 in [NLS], the true
parameters (lines 44-47) and true degradation behavior (lines 49-52) are plotted
with their prediction results. Also, the true RUL is calculated (lines 54-56) and
plotted with the prediction result (line 57). The [POST] will be used throughout
this book for other algorithms.

The results for battery degradation prognostics are shown in Figs. 4.3 and 4.4,
which can be obtained again by typing POST (thetaHat,yHat, degraTrue)
in the command window after loading the saved results with Name (line 37 in
[NLS]). The standard deviation s of data is deterministically obtained as 0.0125,
which is 37.26 % error with respect to the true value ((thetaHat
(2,1)-thetaTrue(2))/thetaTrue (2)*100). In the figures, the star
markers represent the true values.

16
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Fig. 4.4 RUL prediction results: NLS
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[NLS]: MATLAB Code for Nonlinear Least Squares

function [thetaHat,rul]=NLS (thetal)
clear global; global DegraUnit TimeUnit
time y thres ParamName thetaTrue signilevel ns ny nt np

%=== PROBLEM DEFINITION 1 (Required Variables) ==============
WorkName="' '; % work results are saved by WorkName
DegraUnit=" '; % degradation unit
TimeUnit=" '; % time unit (Cycles, Weeks, etc.)
time=[ ]'; % time at both measurement and prediction
y=[1"; % [nyxl]: measured data
thres= ; % threshold (critical value)
ParamName=[ ]; $[npxl]: parameters' name to be estimated
thetaTrue=[ ]; $[npxl]: true values of parameters
signilLevel= ; % significance level for C.I. and P.I.
ns= ; % number of particles/samples

o° oo

% % PROGNCSIS using NLS
ny=length(y); nt=ny;

np=size (ParamName, 1) ; %% Deterministic Estimation
Cptio=optimset ('algorithm', {'levenberg-marquardt',0.01});
[thetaH, ~, resid, ~, ~, ~, J]=1lsgnonlin (QRFUNC, thetaO, [], []1,Cptio) ;
sse=resid'*resid; %% Distribution of Theta
dof=ny-np+1;
sigmaH=sqgrt (sse/dof) ; % Estimated std of data
W=eye (ny) *1/sigmaH”2; thetaCov=inv (J'*W*J) ;
sigTheta=sqrt (diag (thetaCov)) ; % Estimated std of Theta
mvt=mvtrnd (thetaCov,dof,ns)'; % Generate t-dist
thetaHat=repmat (thetaH,1l,ns) +tmvt.*repmat (sigTheta,l,ns) ;
thetaHat (np, :) =sigmaH*ones (1,ns) ; %% Final Sampling Results
for k=1l:length (time (ny:end)) ; %% Degradation Prediction
)

zHat (k, :) =MCODEL (thetaHat, time (ny-1+Xk)) ;

degraPredi (k, :)=zHat (k, :) +trnd (dof, 1,ns) *sigmaH;
end;
% % % POST-PRCCESSING
degraTrue=[]; %% True Degradation
if ~isempty(thetaTrue); degraTrue=MCDEL (thetaTrue,time); end
rul=POST (thetaHat,degraPredi,degraTrue); %% RUL & Result Disp
Name=[WorkName ' at ' num2str(time(ny)) '.mat']; save (Name) ;
end

function objec=FUNC (theta)

global time y ny

z=MCDEL (theta, time (1:ny)) ;

objec=(y-z);
end

function z=MCDEL (theta,t)

global ParamName np

for j=l:np-1; eval ([ParamName (j,:) '=theta(j,:);']); end
$===== PRCBLEM DEFINITION 2 (model equation) ===============
end
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[POST] : MATLAB Code for RUL Calculation and Results Plot

function rul=POST (thetaHat,degraPredi,degraTrue)
global DegraUnit
TimeUnit time y thres ParamName thetaTrue signilevel ns ny nt
np=size (thetaHat,1);
perceValue=[50 signiLevel 100-signiLevel];
figure (1) ; %% Distribution of Parameters
for j=l:np; subplot(l,np,j):
[frg,val]l=hist (thetaHat (j,:),30);
bar (val, frg/ns/ (val (2)-val(1l)));
xlabel (ParamName (J, :));
end;
figure (2); %% Degradation Plot
degraPI=prctile (degraPredi', percevValue)';
f1(1,:)=plot (time(l:ny),y(:,1),"'.k"); hold on;
£f1(2,:)=plot (time(ny:end),degraPI(:,1), " '--r');
£f1(3:4,:)=plot (time (ny:end),degraPI(:,2:3),"':x");
f2=plot ([0 time (end)], [thres thres],'g');
legend([£f1(1:3,:); £f2],'Data', 'Median', ...
[num2str (100-2*signilevel) '% PI'], 'Threshold')
xlabel (TimeUnit); ylabel (DegraUnit) ;
10=0; %% RUL Prediction
if y(nt(1l))-y(1l)<0; coeff=-1; else coeff=1;end;
for i=l:ns;
loca=find (degraPredi (:, i) *coeff>=thres*coeff, 1) ;
if isempty(loca); 10=1i0+1;
disp ([num2str (i) 'th not reaching thres']):;
elseif loca==1; rul (i-i0)=0;
else rul(i-i0)=...
interpl ([degraPredi (loca,i) degraPredi (loca-1,1i)],
[time (ny-1+loca) time (ny-2+loca)],thres)-time (ny);

end
end;
rulPrct=prctile(rul, perceValue) ;
figure (3); %% RUL Results Display
[frg,val]=hist (rul,30) ;
bar (val, frg/ns/ (val(2)-val(l))); hold on;
xlabel (['RUL" ' (' TimeUnit ') ']);
titleName=['at ' num2str (time(ny)) ' ' TimeUnit];

title(titleName)
fprintf (['\n Percentiles of RUL at %g ' TimeUnit], time (ny))
fprintf('\n %gth: %g, 50th (median): %g, %gth: %g \n',
perceValue (2) , rulPrct (2) ,rulPrct (1) ,perceValue (3) ,rulPrct (3))
if ~isempty(degraTrue) ; %% True Results Plot

figure(l); % parameters

for j=l:np; subplot(l,np,j); hold on;

plot (thetaTrue (j),0, 'kp', 'markersize', 18);

end;

figure(2); % degradation

s1=0; if ~isempty(nt); sl=ny-nt(end); end

f3=plot (time (sl+l:sl+length (degraTrue)),degraTrue, 'k'");
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51 legend ([f1(1:3,:); f2; £3],'Data', 'Median',

52 [num2str (100-2*signilevel) '$ PI'], 'Threshold', 'True')
53 figure(3); % RUL

54 loca=find (degraTrue*coeff>=thres*coeff, 1) ;

55 rulTrue=interpl ([degraTrue (loca) degraTrue (loca-1)],

56 [time (sl+loca) time(sl+loca-1)],thres)-time (ny);
57 plot (rulTrue, 0, "'kp', 'markersize',18);

58 end

59 end

4.3 Bayesian Method (BM)

In this section, the overall Bayesian method (BM) is employed to estimate the PDF
of model parameters using measured data up to the current time. As discussed in
Chap. 3, the posterior distribution of parameters at the current step is obtained by a
single equation, in which all the likelihood functions of measured data up to the
current step are multiplied.

For conjugate distributions that have the same distribution type for the prior and
posterior, it is possible to generate samples from standard probability distributions.
For a single parameter estimation, it is also possible to generate samples using the
inverse CDF of grid approximation methods as in Sect. 3.7. However, these methods
are not general enough for practical engineering applications where the posterior
distribution may not follow a standard probability distribution, or the posterior
distribution is complicated due to correlation between multiple parameters.

In such a case, it would be necessary to use a sampling method that can generate
samples from arbitrary posterior distribution. Several sampling methods are avail-
able, such as the grid approximation (Gelman et al. 2004), rejection sampling
(Casella et al. 2004), importance sampling (Glynn and Iglehart 1989), and the
Markov chain Monte Carlo (MCMC) method (Andrieu et al. 2003). In this section,
the Markov chain Monte Carlo (MCMC) method is employed, which is known as
an effective sampling method.

Once the samples of parameters are obtained from the posterior distribution, they
can be substituted into the degradation model to predict the behavior of degradation
and to find a future time when the degradation level reaches a threshold, which
defines the remaining useful life.

4.3.1 Markov Chain Monte Carlo (MCMC) Sampling
Method

The MCMC sampling method is based on a Markov chain model in random walk as
shown in Fig. 4.5. It starts from an arbitrary initial sample (old sample) and a new
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Fig. 4.5 Illustration of Markov chain Monte Carlo sampling

sample is drawn from an arbitrary proposal distribution centered at the old sample.
The two consecutive samples are compared with each other based on an acceptance
criterion, from which either the new sample is selected or the old sample is
re-selected. In Fig. 4.5, two dashed circles mean that these new samples are not
selected according to the criterion. In such a case, the old sample is selected again.
This process is repeated as many times as necessary until a sufficient number of
samples are obtained.

In order to generate samples, the following Metropolis—Hastings (M-H) algo-
rithm is used:

Generate initial sample 6°
2. Fori =1 to n,

— Generate sample from proposal distribution 8* ~ g(8* 01

— General acceptace sample u ~ U(0, 1)

it u<o 0 = min{1 AP 0 ) 7
0 =0

else
0 =0""

In the algorithm, 8° is a vector of initial values of the unknown model param-
eters to be estimated, n; is the total number of samples, f(0]y) is the target distri-
bution which is the posterior distribution after Bayesian update, and g(6*|0i_1) is
an arbitrarily chosen proposal distribution which is used when a new sample 0*
is drawn conditional on the previous point 8°'. When a symmetric distribution is
selected for the proposal distribution, g(6"'|0") is the same as g(0°6"").
For example, the PDF at b of N(a,s?) is the same as the PDF at a of N(b,s?).
The same is true when a uniform distribution is used for the proposal distribution.
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The proposal distribution, g, is usually chosen to be a uniform distribution U(0* —
w, 0" +w), where w is a vector of weights for setting the sampling interval and is
selected arbitrarily based on the experience. For the case of symmetric proposal
distribution, the acceptance criterion, Q(O’;l, 6*) can be reduced as

gy i [ SO)
00,07 = {l’f(e“y)}' (4.8)

The selection process is based on comparing the above acceptance criterion with
a randomly generated probability. If the result in Eq. 4.8 is greater than a randomly
generated sample u from U(0, 1),0" is accepted as a new sample. It is possible to
think of two cases. First, when the PDF value at the new sample is greater than that
of the old sample, the new sample is always accepted since Q is 1. This means that
the new sample is always accepted if the new sample increases probability. Second,
when the PDF value at the new sample is less than that of the old sample, the
acceptance depends on the random sample u and the ratio of PDF values. If the new
sample 0% is not accepted as an ith sample, the i — 1th sample becomes the ith
sample; that is, the particular sample is doubly counted. After sufficient iterations,
this results in samples that approximate the target distribution.

MCMC simulation results are affected by the initial value of parameters and the
proposal distribution. If the initial values are set with largely different values from
the true ones, many iterations (samples) will be required to converge to the target
distribution. Also, small weight means narrow proposal distribution, which can
yield destabilization in the sampling results by not fully covering the target dis-
tribution, while large weight (wide proposal distribution) can yield many duplica-
tions in sampling result by not accepting new samples. The effects of the initial
samples and weight are introduced in Example 4.1.

Example 4.1 MCMC method: one parameter
Draw 5000 samples from A ~ N(5,2.9%) by using the MCMC method, and
compare the scaled histogram with the exact PDF.

Solution:

This problem can be solved by following the steps in Eq. 4.7. First, in order
to start with an initial sample, the mean of A can be utilized, i.e., setting
para0=5. Next, one sample is drawn from U(0, 1) using u=rand, and then
a new sample of the parameter is extracted from a proposal distribution.
When the uniform distribution is employed for the proposal distribution, a
new sample with given para0 can be obtained as paral=unifrnd
(para0-weigh, paraO+weigh), in which weigh determines the range
of the proposal distribution, and thus it should be properly chosen. The
weight is set as 5 based on the relation between the standard deviation and the

interval of the uniform distribution (¢ = interval/+/12 ). Since the proposal
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distribution is symmetric, Eq. 4.8 is used to assess the new sample. The target
distribution, f'is usually updated with given data y, but it is already given as
N(5,2.9%). Therefore, the PDF values of target function can be calculated as

at new sample f(0"|y), pdfl=normpdf (paral,5,2.9) ;
at old (initial) sample £(0'|y), pd£0=normpdf (para0,5,2.9) ;

and then, Q(0"",0") can be calculated. If u is less than Q(6""',0"), the
new sample is accepted as a current one, if not the old (initial) sample is
stored again. The accepted sample becomes the old one for the next step, and
this process is repeated 5000 times. The overall process for the MCMC
simulation is given as

para0=5; weigh=5;
for 1i=1:5000
paral=unifrnd(paral0-weigh, paraO+weigh) ;
pdfl=normpdf (paral,5,2.9);
pdf0=normpdf (paral,5,2.9);
Q=min (1, pdfl/pdfo0);
u=rand;
if u<Q; sampl(:,i)=paral; else sampl(:,1i)=paral; end
paral=sampl (:,1) ;
end

The sampling results are stored in sampl, and Fig. E4.1 is obtained using
the following code:

20 0.2
] Sampling
— Exact
15 0.15
10 "Q"
< & 0.1
5 i
0 0.05
-5 " ! ! ! 0
0 1000 2000 3000 4000 5000 -10 0 10 20
Iteration (samples) A
(a) Sampling trace (b) PDF

Fig. E4.1 MCMC sampling results for N(5,2.9%). a Sampling trace, b PDF
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plot (sampl); xlabel('Iteration (samples)'); ylabel('A'")
figure; [frqg,val]=hist (sampl,30) ;

bar (val, frq/5000/ (val (2) -val (1))); hold on;
a=-10:0.1:20; plot (a,normpdf(a,5,2.9), 'k")

xlabel ('A'); legend('Sampling', 'Exact')

The results in Fig. E4.1 show that the initial sample and the weight are
properly chosen. For example, Fig. E4.1a shows fluctuating samples within a
constant bound around the mean value, which means the sampling results are
stabilized and Fig. E4.1b proves this by agreeing the histogram with the exact
PDF. However, it is not easy to know the proper values for the initial sample
and the weight in practical problems, and improper settings may yield
destabilized results. For example, when para0=0.5, weigh=0.5 are
used for this problem, the results in Fig. E4.2 are obtained. As can be seen in
Fig. E4.2a, the sampling trace is not fluctuating with respect to the mean, and
as a result, the histogram in Fig. E4.2b does not agree with the exact PDF.

15 0.2
[sampling
—Exact
10 1 0.15
5
<< 5 & 0.1
0r 1 0.05
= ‘ ‘ ‘ ‘ 0
0 1000 2000 3000 4000 5000 -10 20
lteration (samples)
(a) Sampling trace (b) PDF

Fig. E4.2 MCMC sampling results for N(5,2.9%) with improper settings (destabilization).
a Sampling trace, b PDF

One of important advantages of MCMC sampling method is that it is convenient
to generate samples from multidimensional, correlated joint PDF. Example 4.2
shows how to generate samples from two-parameter joint PDF with five
measurements.
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Example 4.2 MCMC method: two parameters
A posterior joint PDF of two model parameters, 8 = {6, HZ}T, is given as

5 (o — i)
f(elylzn),) Zmexp< 3 Z"Zaf" ) ¢ =29,

k=1
where the degradation model and five measured data are given as

a=54+0124+0,68, t=[0 1 2 3 4]
=699 228 191 11.94 14.60].

Draw 5000 samples of parameters by using the MCMC method, and
compare the result with exact PDF.

Solution:

The process is the same as the one-parameter case in Example 4.1, but the
initial samples and weights are vectors, e.g., para0=[0; 1], weigh=
[0.05; 0.05], and accordingly, the sampling results sampl become a
2 x 5000 matrix. In this problem, the target distribution is a posterior dis-
tribution with normal likelihood function and five data, which is the same
problem as Example 3.13. The joint PDF at old and new samples can be
calculated as

para0=[0; 1]; weigh=[0.05; 0.05];

t = [0 1 2 3 4]1;
y=[6.99 2.28 1.91 11.94 14.60];
s=2.9;

f0=5+paral (1) *t."2+paral (2)*t."3;
pdf0=(s*sqgrt (2*pi) ) *-5*exp (- (£0-y) * (£0-y) '/ (2*s"2)) ;

paral=unifrnd(paral0-weigh, paraO+weigh) ;
fl1=5+paral (1) *t."2+paral (2)*t."3;
pdfl=(s*sqrt (2*pi))"-5*exp (- (fl-y) * (fl-y) '/ (2*s"2)) ;

The sampling results are shown in Fig. E4.3, (see Example 3.13 to plot the
results). The samples in the red rectangles are caused by improper initial
value. To prevent this, an initial portion of the samples has to be discarded,
which is called the burn-in. Also, there are very small fluctuations in the
sampling trace, which means the magnitude of weight is too small.
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5 . . . : 1.5

0 1000 2000 3000 4000 5000

/A P

. N 0.5
Iteration (samples) =
2
il 0
o Sampling
H 1 i (S Exact
ni—— : : : 05 : ; : ‘
-ab 1000 2000 3000 4000 5000 -3 -2 -1 0 1 2
Iteration (samples) 9,
(a) Sampling trace (b) Sampling results: correlation

Fig. E4.3 MCMC sampling results for two parameters

Instead of discarding the samples at the initial stage, the initial values are
adjusted and the weight are increased as para0O=[0; 0], weigh=[0.3;
0.31], whose results are shown in Fig. E4.4. Since the two parameters are
correlated each other, it is not easy to obtain the PDF of each parameter
accurately and the trace results of each parameter are not stabilized. However,
the correlation can be identified well, which is more important to predict
degradation and RUL accurately. The issue of identifying correlated param-
eters will be discussed in Chaps. 6 and 7 in more detail.

5 . . . . 1
(a) (b) Sampling
o 0 @ Exact
5 0.5
0 1000 2000 3000 4000 5000 o
Iteration (samples) D
! 0
o' 0
-1 : ‘ : : -0.5 ‘ : : :
0 1000 2000 3000 4000 5000 -3 -2 -1 0 1 2
Iteration (samples) 9,
(a) Sampling trace (b) Sampling results: correlation

Fig. E4.4 MCMC sampling results for two parameters.
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4.3.2 MATLAB Implementation of Bayesian Method
Jor Battery Prognostics

According to the Bayesian parameter estimation method explained in Chap. 3, the
likelihood and prior distribution should be defined in order to obtain the posterior
distribution. In this section, normal and uniform distributions are employed for the
likelihood and prior distribution, respectively. The likelihood function can be
expressed in the following form for the battery model given in Eq. 4.2:

f<yke>=%mexp<—w>, w—ew(-by),  (49)

202

where @ = {b, ¢}", the model parameter and the standard deviation of measure-
ment noise, are the unknown parameters to be estimated, and their prior distribu-
tions are assumed as:

7(0) = f(b) x f(a), f(b)~U(0,0.02), f(c)~U(le-5,0.1),  (4.10)

which means that both parameters are initially assumed to be independent.

In the MATLAB code [BM] at the end of this section, the default options for the
prior distribution (lines 56-57) and the likelihood function (lines 58-59), respec-
tively, are uniform and normal distribution as introduced here. However, the other
probability distributions can also be employed, and this will be explained in
Sect. 4.5.

4.3.2.1 Problem Definition (Lines 5-16, 52)

Most parameters in the problem definition part are identical to that of [NLS] code
in Sect. 4.2.1, but two more parameters are required to be set in lines 12 and 16 in
[BM] as

initDisPar=[0 0.02; le-5 0.1];
burnIn=0.2;

initDisPar that is a n, X 2 matrix of probability distribution parameters of
initial/prior distributions, where 7, is the number of unknown parameters. For
example, the probability parameters of uniform distribution and normal distribution
are lower and upper bounds and mean and standard deviation, respectively. Even
though there are distributions having three and four probability parameters, such as
exponentiated Weibull and four-parameter beta, the number of probability
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distribution parameters are fixed as two since most types of distribution have two
parameters. The battery problem has two unknown parameters to be estimated. As
given in Eq. 4.10, initDisPar=[0 0.02; le-5 0.1] is set in line 12. The
first row is the lower- and upper bounds of uniformly distributed parameter b, while
the second row is the bounds for standard deviation of data s. It is noted that the
lower bound of s has a small number because zero standard deviation is not
allowed. As a MCMC-specific parameter, burnIn (line 16) is the ratio for burn-in
that is to discard the initial samples before stabilizing. When it is set 20 %,
burnIn=0.2. The degradation model is the same as the case of NLS with Eq. 4.2,
which should be given in line 52.

4.3.2.2 Prognosis Using BM with MCMC (Lines 19—41)

The structure of [BM] is based on the MCMC simulation algorithm in Eq. 4.7. As
explained in Sect. 4.3.1, the sampling results depend on the initial parameter
(para0) and the weight in a proposal distribution (weigh); thereby these two
parameters are used as the input variables in the function (line 1). For the battery
problem, the initial parameters [0.01 0.05]" and the weight [0.0005 0.01]"
are used for para0 and weigh, respectively. The following command can be used
to run [BM] in MATLAB command prompt:

[thetaHat,rul]=BM([0.01 0.05]',[0.0005 0.011");

Different from [NLS], the function MODEL (lines 48—62) returns the degrada-
tion prediction z as well as posterior PDF value poste for each given sample of
model parameter param and time/cycle t. The degradation prediction is the same
as [NLS], where the physical model is used to predict the degradation at given
time/cycle. If an array of times/cycles is given, the function MODEL returns an array
of predictions. The function MODEL can also calculate the posterior PDF value
using ny measured data. Using the prior given in Eq. 4.10 (line 56) and the like-
lihood in Eq. 4.9 (line 58), the posterior is calculated by multiplying these two (line
60). It is noted that the likelihood uses all ny data simultaneously, which is why it
is called the overall Bayesian method. In the function MODEL, it is assumed that
the prior is the product of independent uniform distributions, and the likelihood is
from normally distributed noise. Other types of distributions will be handled in
Sect. 4.5.

The function MODEL can be used for two purposes. The first usage is to call
MODEL with the first ny x 1 times/cycles, which is the parameter estimation stage.
In this stage, MODEL will return the posterior PDF value (lines 22 and 27) for given
parameter values. This stage is used to generate the posterior samples in MCMC.
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The other usage is to call MODEL with future times, where MODEL will return
degradation predictions in the future times (line 39).

The generated posterior PDF samples are stored in samp1l (line 32), and it starts
with the initial sample of model parameters para0 (line 21). After setting the initial
values of parameters and the joint PDF value at the initial values (line 22), the same
calculations are repeated for new samples. A new sample of parameters is drawn
from a proposal distribution (it is the uniform distribution in the code) with weigh
(line 25), and a joint posterior PDF value is calculated for the new sample (line 27).
The criterion in Eq. 4.8 is used to determine whether the new sample is accepted or
not, by comparing with a random sample from U(0, 1) (lines 29-31). If the Q in
Eq. 4.8 is greater than a random sample, rand (line 29), the new sample is accepted
(line 30) and stored in sampl (line 32). Otherwise, the current sample is duplicated
in sampl without replacing with the new sample (line 32). Since the joint PDF at the
current samples, jPdf0 already exists with para0, the sampling process is repe-
ated by drawing a new sample and the joint PDF. The number of total samples is
ns/ (1-burnIn) in line 23 and the number of burn-in samples is nBurn=ns/
(1-burnIn) -ns, which makes the number of final samples becomes ns.

The sampling traces of the two parameters are plotted in lines 34-36, as shown
in Fig. 4.6, in which the red vertical lines indicate the burn-in location. By using
sampling results after the lines, the initial effects can be avoided, which is stored in
thetaHat (line 37). Once the final samples of the parameters are obtained,
degradation levels at future cycles can be predicted as the same way explained in
Sect. 4.2.1 (lines 38-41).

4.3.2.3 Post-processing (Lines 43—46)

The post-processing is basically the same as that of [NLS]. Therefore, the same
MATLAB code [POST] can be used. The results from BM are shown in Figs. 4.7
and 4.8, which are similar with them from [NLS] except for the standard deviation
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o of data noise that is obtained as a distribution as shown in Fig. 4.7a. The median
of ¢ is 0.0137 that can be calculated with median (thetaHat (2, :) ), which is
closer to the true values than NLS result. Since the distribution has a positive
skewness (lower values of ¢), the prediction bound from BM in Fig. 4.7b is not
wider than that from NLS in Fig. 4.3b even if ¢ is identified as a distribution. The
90 % prediction interval of BM is about 10 % smaller than that of NLS.
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[BM] : MATLAB Code for Bayesian Method

function [thetaHat,rul]=BM (paral,weigh)
clear global; global DegraUnit initDisPar TimeUnit
time y thres ParamName thetaTrue signilevel ns ny nt np

%$=== PROBLEM DEFINITICN 1 (Required Variables) ==============
WorkName=" "'; % work results are saved by WorkName
DegraUnit=" "'; % degradation unit
TimeUnit="' "'; % time unit (Cycles, Weeks, etc.)
time=[ ]1°'; % time at both measurement and prediction
v=[ 1"; % [nyx1l]: measured data
thres= ; % threshold (critical value)
ParamName=[ ]; %[npxl]: parameters' name to be estimated
initDisPar=[ ]; %[npx2]: prob. parameters of init./prior dist
thetaTrue=[ ]; % [npxl]: true values of parameters
signilLevel= ; % significance level for C.I. and P.I.
ns= ; % number of particles/samples
burnIn= ; % ratio for burn-in

% % PROGNCSIS using BM with MCMC
ny=length(y); nt=ny;
np=size (ParamName, 1) ;

o
5
o
c

sampl (:,1)=paral; %% Initial Samples
[~,JPdf0]=MCDEL (paral, time (1:ny)) ; %% Initial (joint) PDF

for i=2:ns/ (l-burnln) ; %% MCMC Process
% proposal distribution (uniform)
paral (:,1)=unifrnd(paraO-weigh, paraO+weigh) ;
% (joint) PDF at new samples
[~,JPdf1]=MCDEL (paral, time (l:ny)) ;
% acception/rejection criterion
if rand<min (1, jPdfl/jPdf0)
paralO=paral; jPdf0=jPdfl;

end;

sampl (:,1i)=paral;

end;

nBurn=ns/ (1-burnln)-ns; %% Sampling Trace
figure (4); for j=l:np;subplot (np,1,]j) ;plot (sampl(j,:)) ;hold on
plot ([nBurn nBurn], [min (sampl (j,:)) max(sampl(j,:))1,'r") ;end
thetaHat=sampl (:,nBurn+l:end); %% Final Sampling Results
for k=1:length (time (ny:end)) ; %% Degradation Prediction

[zHat (k, :) ,~]=MCDEL (thetaHat, time (ny-1+k)) ;
degraPredi (k, :) =normrnd (zHat (k, :) , thetaHat (end, :)) ;

end;
% % % POST-PRCCESSING
degraTrue=[]; %% True Degradation

if ~isempty(thetaTrue); degraTrue=MCODEL (thetaTrue,time); end

rul=PCST (thetaHat, degraPredi, degraTrue); %% RUL & Result Disp
Name=[WorkName ' at ' num2str(time(ny)) '.mat']; save (Name) ;

end
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48 function [z,poste]=MCDEL (param, t)

49 global y ParamName initDisPar ny np

50 for j=l:np; eval ([ParamName (j,:) '=param(j,:);']); end

51 $===== PROBLEM DEFINITICN 2 (model equation)

52

53 G=== ======== == == s========= ======= == ==
54 if length (y)~=length(t); poste=[];

55 else

56 prior= ... $% Prior
57 prod (unifpdf (param,initDisPar(:,1),initDisPar(:,2)));
58 likel=(1./(sqrt(2.*pi).*s)) . ny.* ... %% Likelihood
59 exp(-0.5./s8.72.% (y-2z) "*(y-2));

60 poste=likel.*prior; $% Posterior
61 end

62 end

4.4 Particle Filter (PF)

Particle filter (PF) is the most popular method in the physics-based prognostics,
whose fundamental concept is the same as the recursive Bayesian update in Sect. 3.
5.1. The difference is that in PF the prior and posterior PDF of parameters are
represented by particles (samples). When a new measurement is available, the
posterior at the previous step is used as the prior at the current step, and the
parameters are updated by multiplying it with the likelihood from the new mea-
surement. Therefore, PF is also known as the sequential Monte Carlo method. In
this section, the algorithm for PF is explained with MATLAB code.

It would be better to explain the importance sampling method (Glynn and
Iglehart 1989) first to understand PF. In sampling-based methods, a number of
samples are used to approximate the posterior distribution. In order to approximate
the distribution better with a limited number of samples, the importance sampling
method assigns a weight to each sample (or particle) in proportion to an arbitrarily
chosen importance distribution; therefore, the quality of estimation depends on the
selected importance distribution. The weight of particle @' is expressed as

(@) = f;((a;y)) f (ylgﬁ(i()’fi‘) ) 7 (4.11)

where f (6i| y) and g (Oi) are the ith particle’s PDF value of the posterior distribution
and an arbitrarily chosen importance distribution, respectively. The second equality
is from the Bayes’ theorem, f(0'|y) = f(v|0°)f(0'), where the posterior is expressed
as the product of the likelihood and the prior distribution. From the viewpoint of
Bayes’ theorem, it is possible to use the prior distribution as an importance
distribution because it is already available and close to the posterior distribution.
Then, Eq. 4.11 is reduced to the likelihood function by substituting the prior f ((-)i)
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for g(ﬁi); this is called the Condensation (CONditional DENSity propagATION)
algorithm, which is employed here. In this method, the weight in Eq. 4.11 becomes
the likelihood.

PF can be considered as a sequential importance sampling method, in which the
weights are continuously updated whenever a new observation is available. However,
updating weights with the same initial samples yield the degeneracy phenomenon that
decreases the accuracy in the posterior distribution with a large variance. This degen-
eracy phenomenon will be explained in the next section in detail. A resampling process
called sequential importance resampling (SIR) (Kim and Park 2011) can be employed
to resolve the degeneracy phenomenon. In SIR, those particles with a small weight are
eliminated, while those particles with a high weight are duplicated. Even though there
is a particle depletion problem in SIR caused by the elimination/duplication process,
SIR is a typical PF method and is employed in this book.

Conventionally, PF has been used to estimate the system state using measured
data based on model parameters that are obtained from laboratory tests. However,
the parameters from laboratory tests can be different from those in service due to
environmental conditions. In such a case, PF can also be used to estimate both the
system state and model parameters; the detailed procedure can be found in the
literature (Zio and Peloni 2011; An et al. 2013), which will be explained here.

The general process of PF is based on the state transition function d that is
referred to a degradation model and the measurement function 4:

7 = d(z-1,9) (4.12)
Vi = h(Zk) +é, (413)

where k is the time step index, z; is the system state (degradation level), 0 is a vector
of model parameters, and ¢ is the measurement noise. In a classic PF, the current
system state is a function of the previous system state, z;_;, and process noise that
is required for the case of using given model parameters. However, in the purpose
of prognostics in this chapter, model parameters are updated and identified with
measured data to handle uncertainty, and therefore, the process noise is ignored. On
the other hand, measurement noise ¢ is considered in the measurement system. In
the case of Gaussian noise, the noise is represented as ¢ ~ N (0, 6%), where ¢ is the
standard deviation of measurement noise. The measurement function in Eq. 4.13 is
needed when the system state cannot be measured directly. When the system state
can be directly measured, h(z;) in Eq. 4.13 simply becomes z.

In order to use PF, the battery degradation model in Eq. 4.2 needs to be rewritten
in the form of the transition function. First, the degradation states at k — 1 and k are
defined as

-1 = exp(—bty_1), z = exp(—bty), (4.14)
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and then z;/z;—; can be calculated as:
2/zi—1 = exp(—bty)/ exp(—bty_1) = exp(—bty + bty_1). (4.15)

Finally, the state transition function, i.e., degradation function for PF can be
obtained from Eq. 4.15 as:

Ik = exp(—bAt)zk,l, At =t — 1. (416)

Note that it is generally possible to convert any degradation model in the form of
transition function.

4.4.1 SIR Process

The process of PF is illustrated in Fig. 4.9 with one parameter estimation. Since PF
can update the degradation state and model parameter, the parameter 0 in the figure
can be understood either as a degradation state or a model parameter. In the fol-
lowing, the subscript & is used to denote the time step #.

The process starts from assuming the initial distribution of degradation state z;
based on initial measurement data y;. The initial distribution of degradation state
can be determined with an assumed distribution type and the level of noise. For
example, if the level of noise is assumed to be v, then the initial distribution of
degradation state can be defined as f(z1) ~ U(y1 — v, 1 +v). The initial distribution
of model parameters 0; at r; = 0” can also be defined using the prior distribution
based on experience or expert opinion as f(0;). Then, n, particles/samples (n, = 10
in the illustration) are randomly generated from the initial distributions for both
degradation states and model parameters. In the initial step, all particles/samples are
assumed to have the same weight, w(0') = 1/n;.

(1) Prediction. The initial distributions at k = 1 are utilized as a prior distribution
at k = 2 in the prediction process. In this step, it is assumed that the infor-
mation from previous step is fully available. That is, n, samples (or particles)
that represent the two PDFs, f(0r_1|y,_;) and f(zx—1]y,4_1), are available.
The subscript 1 : k — 1 means 1,2, ...,k — 1, which is the convention used in
MATLAB. In this case, since k = 2, it is equivalent to y;. These are the
posterior distributions from k£ = 1, now used as prior distributions at k = 2.

In this step, the degradation state at the previous time #,—; is propagated to
the current time #; based on the degradation model such as the transition
function in Eq. 4.16. For this, samples of the prior distribution need to be
generated. First, n; samples of 0, are generated from f(0;|0;_;), which means

“Model parameters are considered as time independent variables. However, the model parameters
undergo updating process, and the subscripts are just to denote the time step during the process.
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Fig. 4.9 Illustration of Particle Filter process

a predicted distribution of the 0, conditional on the previous distribution,
Sf(0r_1). It, however, should be noted that model parameters inherently do not
depend on time evolution. Therefore, n; samples of 8; become the same as the
previous n, particles. In other words, there is no transition between 0,_; and 0.
Next, draw n, samples of z; based on f(zx|zx—1, 0x), that is, n, samples of the
previous degradation level, z;_; and model parameters, 0, are used in the
degradation model (Eq. 4.16) to propagate ny samples of z;. In summary, the
posterior distributions at the previous (k—1)-th step are used to calculate the
prior distributions at the current k-th step in the prediction step.

(2) Update. Model parameters and degradation state are updated (i.e., corrected)
based on the likelihood function from measured data y, at the current step. For
this, the probability of obtaining y, is calculated conditional on each sample in
the prediction step based on the likelihood function. The weight is defined by
normalizing the likelihood so that the sum of weights is equal to one. In the
case of normally distributed noise, ¢~ N(0, %), the likelihood function and
weight become

D 1 L —h(2))*| .
f(yk|Zkvek):meXp[_§w‘|’ i=1,....n (4.17)

wi = M (4.18)
> (velai 67)

The length of the vertical bars of the likelihood in the update process in
Fig. 4.9 represents the magnitude of weights, and the samples from the pre-
diction step are assigned with the weights, which is the update process. Once
the update process is done, the posterior distribution is given in the form of
samples and their weights.

Ideally, this process can be repeated for additional measurements in fol-
lowing times. This update process, however, causes the degeneracy
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phenomenon that decreases the accuracy in the posterior distribution and
causes the lack of reducing the range of distribution by keeping samples with
low weights. To solve this problem, the resampling process is required. The
ideal situation is that all samples have the same weight so that samples, not
weight, can represent the posterior distribution of model parameters and
degradation state.

(3) Resampling. The idea of resampling is to maintain all samples (i.e., particles)
with the same weight. In order to do that, samples at the update step are
duplicated or eliminated based on the magnitude of the weights. Among
several methods, the so-called inverse CDF method introduced in Chap. 3 is
used (see Fig. 3.9/3.10), which is explained as follows: (a) Construct CDF of
¥x from the likelihood function in Eq. 4.17. In other words, CDF is based on
the weights in Eq. 4.18 which corresponds to the PDF of the y, conditional on
(2, 0}() (b) Find samples of (zx, 0;) which make the CDF of y, be the same
value as (or the closest to) the randomly chosen value from U(0,1). By
repeating this process n, times, n, samples of (zx,0;) with a constant weight
are obtained, which represent an approximation of the posterior distribution,
which was based on the weighted samples (z},0}|w}). After resampling
process, every sample is assigned with the same weight of wi = 1/n;.

Note that in Bayesian method the posterior distribution is composed of the
product of the prior distribution with the likelihood. In PF, the prior distribution is
represented using particles, and the likelihood information is stored in weights. The
resampling process is then equivalent to generate a new set of samples that follow
the posterior distribution. Those particles with a large weight are likely duplicated,
and those particles with a small weight are likely removed. Since these new samples
follow the posterior distribution, all samples are assigned with the same weight.

The posterior distribution at the current step is used as a prior distribution at the next
(k + 1)-th step, which means that the Bayesian update is processed recursively in PF.

Example 4.3 PF process with 10 samples

Demonstrate the PF process for the battery problem using Eq. 4.16 with ten
samples. It is assumed that the initial distributions are given as
z1~U(0.9,1.1),b; ~ U(0,0.005), and the noise in data is normally dis-
tributed with ¢ = 0.02. Use three capacity and time data at k = 1, 2, 3 in
Table 4.1 to update the model parameter b and degradation state z;.

Solution:
From Table 4.1, the first three measured data are given as .
y=[1.00 0.99 0.99]"';.

Atk = 1:
The initial distribution of the degradation is uniformly distributed between
0.9 and 1.1, which is based on the information from the data v (1) with
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assumed range of data noise of 0.1. In addition, the initial distribution of the
model parameter needs to be properly assumed. Here the initial distribution of
model parameters is assumed to be uniformly distributed between 0 and
0.005. The PF process starts from generating ten samples from the given
initial distribution, which is shown in Fig. E4.5 and obtained from the fol-
lowing code. Note that the actual values of samples will be different due to
random number generation.

e o O o o @ P e o o @0 o0
0 1 2 3 4 5 09 0.95 1 105 11
b (parameter) x 107 z (degradation)

Fig. E4.5 Sampling results of initial distributions (posterior at k = 1)

k=1;

ns=10;

b(k, :)=unifrnd (0,0.005,ns,1);
z(k,:)=unifrnd(0.9,1.1,ns,1);

figure;

subplot(1,2,1);

plot (b(k,:),zeros(l,ns), 'ok'); xlabel('b (parameter)"')
subplot (1,2,2);

plot (z(k,:),zeros(l,ns), 'ok'); xlabel('z (degradation)')

Atk =2,

(1) Prediction: The samples of model parameters are the same as the previous
time k = 1, while degradation state is propagated based on the model
equation in Eq. 4.16. The samples of model parameter are in b (2, :)
and that of the previous degradation level are in z (1, : ). In Fig. E4.6,
the samples of parameter are exactly same as those in Fig. E4.5, but the
samples of degradation are not, which is obtained from the following
code.

e O O @ e @ e @ o o o @
0 1 2 3 4 5 09 0.95 1 1.05 1.1

b (parameter) x107° z (degradation)

Fig. E4.6 Sampling results of prediction step (prior at k = 2)
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k=2;

dt=5;

b(k,:)=b(k-1,:);
z(k,:)=exp(-b(k,:).*dt) .*z(k-1,:);

[)

% for figure plot, use the same code given in k=1

(2) Update: Since the error in data is normally distributed, the likelihood of
data is calculated based on Eq. 4.17, in which h(z}) =z, o = 0.02,
i=1,...,10. At this stage, the posterior distribution is in the form of
samples (prior) with weights (likelihood). The sum of weights is one by
normalizing the likelihood as shown in Eq. 4.18. In order to simplify the
resampling process, the weights are expressed as the number of samples
by multiplying the total number of samples to the weights. Therefore, the
weights in this example represent the number of samples to be duplicated,
which is shown in Fig. E4.7 and can be obtained in the following code.

8 8
2 = 2
D D
) )
= 1 = 1

0 sa—lo = 0le—e &

0 1 2 8 4 5 0.9 0.95 1 1.05 11
b (parameter) %102 z (degradation)

Fig. E4.7 Weight calculation (likelihood at k = 2)

likel=normpdf(y(k,:),z(k,:),0.02);
weigh=round(likel/sum(likel) *ns) ;

figure;

subplot(1,2,1); stem(b(k,:),weigh,'r");
xlabel ('b (parameter)'); ylabel ('Weight')
subplot(1,2,2); stem(z(k,:),weigh,'r");
xlabel ('z (degradation)'); ylabel ('Weight')

(3) Resampling: As explained before, the inverse CDF method can be
employed as a practical resampling method. However, to make the
resampling concept easier, samples having zero weight are simply
eliminated, and other samples are duplicated as many as the weight in
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Fig. E4.7. The results are shown in Fig. E4.8, which is obtained from the

following code. In the figure, several samples are overlapped, which
yields the particle depletion phenomenon.

o o o O e O o8
0 1 2 3 4 5 0.9 0.95 1 1.05 1.1
b (parameter) x10°

z (degradation)
Fig. E4.8 Resampling results (posterior at k = 2)

sampl=[b(k,:); z(k,:)]1;
loca=find (weigh>0); ns0=1;
for i=1:length(loca) ;
nsl=sum(weigh (loca(l:1)));

b(k,ns0:nsl)=sampl (1, loca(i)) *ones (1l,weigh (loca(i)));

z (k,ns0:nsl)=sampl (2, loca(i)) *ones (1l,weigh (loca(i)));
nsO=nsl+1;

end

% for figure plot, use the same code given in k=1

Atk =3,

The same process (prediction, update, and resampling) is done at k = 3,
and the results are given in Fig. E4.9 that is updated results from Fig. E4.5.

o @ o © o OO
0 1 2 3 4 5 0.9 0.95 1 1.05 1.1
b (parameter) x10° z (degradation)
(a) prior
1 1
5 5
o 0.5 o 0.5
= =
0 0
0 1 2 3 4 5 0.9 0.95 1 1.05 1.1
b (parameter) x10° z (degradation)
(b) likelihood
o o © QO
0 1 2 3 4 5 0.9 0.95 1 1.05 1.1
b (parameter) x 107 z (degradation)
(c) posterior

Fig. E4.9 Sampling and weight at k = 3
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Once the model parameters and degradation state are updated using given data
up to the current time, the degradation state z; y; at a future time # ; is predicted
based on the degradation function with the degradation state at the previous time,
Zk+1—1 and estimated model parameters, 0;. In the prediction stage, the model
parameters are not updated any more. The degradation state is continuously
propagated until reaching the threshold. Let us assume that the model parameter
b in Eq. 4.16 is updated as 0.004 based on measured data up to the current time
(time index is k), the degradation state z; = 0.85, and time interval Az = 5. This
case can be considered as n; = 1, and future degradation can be propagated as:

at k+ 1, zx+1 = exp(—brAr)zy = exp(—0.004 x 5) x 0.85 = 0.83,

at k+2, zx 42 = exp(—brAt)zx+1 = exp(—0.004 x 5) x 0.83 = 0.81.

which is repeated until the degradation state reaches the threshold. When the
threshold is 0.7, the degradation propagated up to k+ 10 as below.

at k+ 10, zx 410 = exp(—brAt)zx +9 = exp(—0.004 x 5) x 0.71 = 0.70

Since the time interval is 5 cycles, and the degradation is propagated 10 steps
further, RUL can be predicted as 50 (5 x 10) cycles.

4.4.2 MATLAB Implementation of Battery Prognostics

In this section, the MATLAB implementation of PF is explained using the same
battery problem in Sect. 4.1.1. Problem definition and post-processing parts are
similar to BM with minor modifications. Therefore, focus is on the prognosis part of
the code.

4.4.2.1 Problem Definition (Lines 5-16, 64)

The required variables for PF are almost the same as those of BM, but the time
interval for degradation propagation dt is introduced because PF uses incremental
form of degradation. It can be different from the measurement time interval, but the
current implementation assumes that the interval of health monitoring is an integer
multiple of dt (variable nk in line 27). The model error is reduced with a smaller
interval. Mathematically, this time interval is used to integrate the differential form
of degradation model using the forward finite difference method, which is stable
and accurate when the time interval is small. In the PF process, the degradation
state, z, is included in the parameters to be estimated. Therefore, the term for
degradation should be placed on the last row in ParamName, initDisPar, and
thetaTrue as listed below.
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dt=5;

ParamName=['b'; 's'; 'z'];
initDisPar=[0 0.02; le-5 0.1; 1 1];
thetaTrue=[0.003; 0.02; 1];

The degradation variable is named as z, and its true initial value 1 is assigned to
thetaTrue (3). For the initial distribution, the lower and the upper bounds are
set as the same value as the true initial value, that is f(z) ~ U(1, 1). This is because
it was assumed that the initial capacity is given as 1 (C/1 capacity) without con-
sidering uncertainty in it.

The degradation model equation in Eq. 4.16 is used in line 64. In the equation,
the time interval Az is expressed as dt in the script, which is defined in line 9. Also,
the degradation state at the previous step zx—; and the current step zi, respectively,
are denoted as z (should be the same as the notation defined in line 12) and z1 (can
vary, but should be consistent with z1 in line 60). The following code is used to
express the battery degradation model for PF.

zl=exp (-b.*dt) .*z;

4.4.2.2 Prognosis Using PF (Lines 19—45)

Once problem is properly defined, the code can be run with the following command
in MATLAB:

[thetaHat, rul] =PF;

The prognostics process is started by drawing ns samples from initial/prior
distributions of the parameters (lines 21-23), and then degradation is propagated
until reaching the ending time in the for-loop (lines 24—41). Within the for-loop, the
parameters are updated when the measured data are available (lines 29-37). During
the for-loop, since there are ny data are available, the model parameters are updated
when time step k <= ny (training stage). On the other hand, when k > ny, there is
no measurement data available and the degradation level is propagated without
updating model parameters (prediction stage) (line 39).

As explained in the previous section, there are three steps in the training stage.
At the prediction step (lines 26-28), the parameters at the previous step param
(:,:,k-1) are copied to the parameters at the current step, paramPredi (line
26). On the other hand, the degradation levels, paramPredi (np, : ) need to be
propagated from the previous step using MODEL function. This propagation is based
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on the previous model parameters and time interval dt (line 28). Since the prop-
agation has to be done from time (k-1) to time (k), this propagation has to be
repeated nk times with dt interval. The samples in this step correspond to f(6y) in
Fig. 4.9.

Next is the updating step (line 31), which is related to the likelihood of mea-
surement data given in Eq. 4.17 and f(y|0;) in Fig. 4.9. This likelihood is cal-
culated for every sample of degradation level paramPredi (np, :) with the
sample of measurement noise paramPredi (np-1, :).

Finally, the resampling step based on the inverse CDF method is given in lines
33-37. In this step, the cumulative CDF of likelihood samples is calculated first
(line 33), and then, a sample from uniform distribution between zero and one is
used to find the approximate location of likelihood sample based the inverse CDF
method (line 36). The location found in the inverse CDF becomes a new sample.
This inverse CDF method is repeated by ns times to generate new ns samples,
which is the resampling step. In this way, a sample with a large likelihood (weight)
has more probability to be duplicated, while a sample with a small likelihood may
not be reproduced. This process is repeated for all measurement data.

After both the training and prediction stages are finished, model parameters and
the standard deviation of measurement noise are stored in thetaHat (line 42). For
the purpose of calculating prediction interval, first the samples of degradation levels
are stored in array zHat (41, ns) in line 44. Since the prediction interval includes
the effect of measurement noise in the future, normal random noise is added to the
degradation levels in the prediction stage (line 45).

4.4.2.3 Post-processing (Lines 47-58)

The post-processing in PF is the same as the NLS and BM. When the true
degradation is given, it can be used in the same was as in NLS and BM. However, if
the true degradation is not available but only true model parameters are available,
the degradation model is integrated to generated the true degradation level (lines
47-56). As with NLS and BM, the MATLAB function POST can be used to plot
the histograms of model parameters, the degradation history as a function of time
cycles, and the histogram of RUL. The distributions in the estimated parameters in
Fig. 4.10a are not as smooth as ones in Fig. 4.7a from BM, which is because of the
particle depletion phenomenon. It does not have an effect on the prediction results
in this problem though as shown in Figs. 4.10b and 4.11. The prediction results of
degradation and RUL are similar with ones from NLS and BM.
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[PF] : MATLAB Code for Particle Filter

function [thetaHat,rul]=PF
clear global; global DegraUnit initDisPar TimeUnit
time y thres ParamName thetaTrue signilevel ns ny nt np

%=== PROBLEM DEFINITICN 1 (Required Variables) ==============
WorkName=" "'; % work results are saved by WorkName
DegraUnit="' '; % degradation unit
TimeUnit="' "'; % time unit (Cycles, Weeks, etc.)
time=[ ]'; % time at both measurement and prediction
dt= ; % time interval for degradation propagation
v=[1"; % [nyx1l]: measured data
thres= ; % threshold (critical value)
ParamName=[ ]; % [npxl]: parameters' name to be estimated
initDisPar=[ ]; %[npx2]: prob. parameters of init./prior dist
thetaTrue=[ ]; % [npxl]: true values of parameters
signilevel= ; % significance level for C.I. and P.I.
ns= ; % number of particles/samples

% % % PROGNCSIS using PF
ny=length(y); nt=ny;
np=size (ParamName, 1) ;
for j=1l:np; %% Initial Distribution
param(j, :,1l)=unifrnd(initDisPar(j,1l),initDisPar(j,2),1,ns);
end;
for k=2:length (time) ; %% Update Process or Prognosis
% stepl. prediction (prior)
paramPredi=param(:, :,k-1);
nk=(time (k) ~time (k-1)) /dt;
for kO=1l:nk; paramPredi (np, :)=MODEL (paramPredi,dt); end
if k<=ny % (Update Process)
% step2. update (likelihood)
likel=normpdf (y (k) ,paramPredi (np, :),paramPredi (np-1,:));
% step3. resampling
cdf=cumsum (1likel) ./sum(likel);
for i=l:ns;
u=rand;
loca=find (cdf>=u,1l); param(:,i,k)=paramPredi (:,loca);
end;
else % (Prognosis)
param(:, :, k) =paramPredi;
end
end
thetaHat=param(l:np-1,:,ny);
paramRearr=permute (param, [3 2 1]);
zHat=paramRearr (:, :,np);
degraPredi=normrnd (zHat (ny:end, :), paramRearr (ny:end, : ,np-1) ) ;
% % % PCST-PROCCESSING
degraTrue=[]; %% True Degradation

Final Sampling Results
Degradation Prediction

oo
5o
[3°3
]
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48 if ~isempty(thetaTrue); k=1;
49 degraTrue0 (1) =thetaTrue (np) ; degraTrue (1)=thetaTrue (np);
50 for k0=2:max (time) /dt+1;
51 degraTrue0 (k0, 1) =
52 MCDEL ( [thetaTrue (1:np-1); degraTrue0 (k0-1)],dt);
53 loca=find((k0-1) *dt==time, 1) ;
54 if ~isempty(loca); k=k+1l; degraTrue (k)=degraTruel (k0) ;end
55 end
56 end
57 rul=POST (thetaHat, degraPredi,degraTrue); %% RUL & Result Disp
58 Name=[WorkName ' at ' num2str(time(ny)) '.mat']; save (Name) ;
59 end
60 function z1=MODEL (param, dt)
61 global ParamName np
62 for j=1:np; eval ([ParamName (j,:) '=param(j,:);"']); end
63 $===== PROBLEM DEFINITICN 2 (model equation)
64
65 S
66 end
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Fig. 4.11 RUL prediction results: PF
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4.5 Practical Application of Physics-Based Prognostics

Although the three programs, [NLS], [BM] and [PF], are written for battery
degradation prognostics, they can easily be modified by users for different appli-
cations. As an example, the usage of three algorithms with a crack growth example
is discussed in the following subsections. Users are expected to modify the problem
definition section as well as model equation in function MODEL.

4.5.1 Problem Definition

4.5.1.1 Crack Growth Model

The crack growth model introduced in Chap. 2 is employed here to explain how this
model can be used in the three prognostics algorithms. For [NLS] and [BM], it is
necessary to have a model that can calculate the crack size as a function of
time/cycle, while a transition function (incremental form) is required for [PF].
Equation 2.2 can be used as a degradation model for NLS and BM as

a = {Nkc(1 _ %) (Aoy/m)" + a{ﬂﬁ, (4.19)

which expresses the crack size a; after Ny cycles of fatigue loading (this is the same
as Eq. 2.2). On the other hand, this model can be rewritten in the form of the state
transition function for PF:

ay = C(Aa\/nak,l)mdN—i—ak,l. (420)

It is assumed that the crack size y, is measured at every 100 cycles under loading
condition Ac = 75 MPa, which is listed in Table 4.2, and is obtained with the
following steps. First, the true crack size data are generated at every 100 cycles
using Eq. 4.19 with myye = 3.8, Cie = 1.5 x 1071 and @ e = 0.01 m. The
measured crack size data are then generated by adding Gaussian noise

Table 4.2 Measurement data for crack growth problem

Time step, k Initial, 1 |2 3 4 5 6 7 8
Time (cycles) |0 100 200 300 400 500 600 700
Crack size (m) |0.0100 0.0109 |0.0101 |0.0107 |0.0110 [0.0123 |0.0099 |0.0113
Time step, k 9 10 11 12 13 14 15 16
Time (cycles) | 800 900 1000 1100 1200 1300 1400 1500
Crack size (m) |0.0132 |0.0138 |0.0148 |0.0156 |0.0155 [0.0141 |0.0169 |0.0168
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e~N(0,0%),6 = 0.001m to the true crack sizes. The generated data are used to
identify two model parameters, ® = {m In(C)}". In Paris model, the y-intercept
C is very small but changes its magnitude by several orders. Therefore, it would be
better to identify logarithm of C. For simplicity of presentation, the initial crack
size, ay, and the magnitude of noise, g, are assumed to be known. For RUL cal-
culation, the critical crack size is determined as 0.050 m.

4.5.1.2 Likelihood and Prior Distribution

For the Bayesian method and particle filter, it is necessary to define the prior
distribution and the likelihood function. In the previous chapters, it is often assumed
that noise in data follows a normal distribution. However, when the distribution
type of measurement noise is unknown, it is possible that the likelihood function
might be different from the true noise distribution. The same is true for the
prior/initial distribution. Therefore, it would be a good exercise to study the effect of
different distribution types by changing the MATLAB codes. In this example, the
lognormal distribution is employed for the likelihood function as:

A 2
f(ykm;;,c;;)zmexp —%(h‘y"éik”ﬁ . i=1,..,n,  (421)
where
. o 2
A=\ 1+ (o ep)
and

. . . . 1, .
oy = In[al m, €] =5 (6)”

are standard deviation and mean of lognormal distribution, respectively. In the
above equations, ai(mi, Ci) is the model prediction from Eq. 4.19 at time # with
given model parameters m} and C;.

Also, the prior/initial distributions of the parameters are assumed as normal
distributions as:

f(m) =N(4,02%), f(logC) = N(-23,1.1%). (4.22)
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4.5.2 Modifying the Codes for the Crack Growth Example

4.5.2.1 NLS

Based on the given information in Sect. 4.5.1, the problem definition part (lines 5—
14) in the code [NLS] is changed as follows:

WorkName='Crack NLS';

DegraUnit='Crack size (m)';

TimeUnit='Cycles';

time=[0:100:3500]";

y=[0.0100 0.0109 0.0101 0.0107 0.0110 0.0123 0.0099 0.0113...
0.0132 0.0138 0.0148 0.0156 0.0155 0.0141 0.0169 0.0168]"';

thres=0.05;

ParamName=['m'; 'C'; 's'];

thetaTrue=[3.8; log(l.5e-10); 0.001];

signilevel=5;

ns=5e3;

Even though the standard deviation of noise in data, ¢, is not an unknown
parameter in this example and it is calculated based on the identified parameters in
NLS. Also as mentioned in Sect. 4.2, it is added to ParamName to maintain
consistency with other codes. Accordingly, the true value of ¢ is added to
thetaTrue.

For the model equation, the following code is used in line 48:

a0=0.01; dsig=75;

z=(t.*exp(C) .*(1-m./2) .* (dsig*sqgrt (pi))."m ...
+a0.”(1-m./2)) .7 (2./(2-m)) ;

loca=imag(z)~=0; z(loca)=1;

This corresponds to Eq. 4.19, but note that log(C) is used instead of C. The above
model equation from Eq. 4.19 can yield a complex number when crack size grows
too large. Therefore, when a crack size becomes a complex number, it is replaced
with an arbitrary large crack size, which is taken here as 1.0 m.

Even though the likelihood function is not necessary for parameter estimation
process in NLS, it is used to predict degradation in line 31. The lognormal distri-
bution in Eq. 4.21 is used instead of normal distribution as:
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mu=zHat (k, :);

C=chi2rnd(ny-1,1,ns);

s=sqgrt ( (ny-1) *thetaHat (np, :) .%2./C) ;

zeta=sqrt (log(l+(s./mu) .”2)); eta=log(mu)-0.5*zeta.”2;
degraPredi (k, :)=lognrnd(eta, zeta) ;

Once all required information are defined, the following code is used to run
[NLS]. Note that only the initial values of model parameters are used in theta0
(line 1) since the measurement error ¢ is calculated after the model parameters are
estimated regardless of whether ¢ is known or unknown.

[thetaHat, rul]=NLS ([4; -23]);

The results of NLS algorithm will be discussed with other algorithms in the
result section.

4.5.22 BM

The required variables (lines 5-16) and model definition (line 52) for BM are the
same as those for NLS, but the following three are additionally required for BM.

WorkName="'Crack BM';
initDisPar=[(4.0 0.2; -23 1.1; 0.001 1e-5];
burnIn=0.2;

The initDisPar corresponds to Eq. 4.22, which are the probability param-
eters of normal distribution, the mean, and the standard deviation. The last two
values, 0.001 and le-5 are for ¢ (=s). In this example, even if ¢ is a deter-
ministic value (the true value is known and/or not need to be estimated), it should
be included in initDisPar. In order to have the same effect of known deter-
ministic o, its standard deviation is set to be zero (le-5 is used to prevent numerical
error).

The degradation prediction in line 40 is also modified with the same code as
given in NLS part based on Eq. 4.21. The difference between BM and NLS is that
the likelihood and prior distribution are used to identify the model parameters not
only for the degradation prediction in BM, thereby lines 56-59 are replaced with
the following code:



4.5 Practical Application of Physics-Based Prognostics 169

prior=prod (normpdf (param, initDisPar(:,1),initDisPar(:,2)));
likel=1;
for k=1l:ny;
zeta=sqrt (log (1+(s./z(k)) ."2)); eta=log(z(k))-0.5*zeta."2;
likel=lognpdf (v (k) ,eta, zeta) .*1likel;
end

To run the code [BM], the initial samples of parameters para0 and the weights
weigh are typed in line 1 as

[thetaHat]=BM([4 -23 0.001]',[0.1 0.2 01");

Note that ¢ is included here but the weight for ¢ is zero to fix it during the
sampling process, which corresponds to unifrnd (0.001-0,0.001+0) in line
25. In this example, the proposal distribution is still a uniform distribution, but it
can be other forms, e.g., for the case of normal distribution, line 25 can be replaced
with normrnd (para0, abs (para0. *weigh) ) ;.

4523 PF

The required variables (lines 5-16) for PF are given below (the variables other than
these are the same as NLS/BM.):

WorkName=" Crack_PF' 8

dt=20;

ParamName=['m'; 'C'; 's'; 'a'l;

initDisPar=[4.0 0.2; -23 1.1; 0.001 O; 0.01 O];
thetaTrue=[3.8;1log(1.5e-10); 0.001; 0.01];

As explained before, the degradation state term a is included in ParamName,
initDisPar, and thetaTrue. Since the initial crack is assumed as 0.01 m, its
standard deviation is also set to be zero.” The model definition in line 64 is replaced
with the code corresponding Eq. 4.20 as

*In PF, zero standard deviation is not need to be corrected as 1e-5 because it is related with random
sampling rather than a PDF calculation.
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dsig=75;
zl=exp (C) .* (dsig.*sqgrt (pi*a)) . m.*dt+a;

In the same manner as NLS and BM, lognormal distribution is employed to
predict degradation in line 45.

mu=zHat (ny:end, :); s=paramRearr (ny:end, :,np-1) ;
zeta=sqrt (log(1l+(s./mu) .”2)); eta=log(mu)-0.5*zeta.”"2;
degraPredi=lognrnd (eta, zeta) ;

For the initial distribution in line 22, the following code is used,

param(j, :,1)=normrnd(initDisPar(j,1l),initDisPar(j,2),1,ns);

and line 31 is replaced with the following code.

mu=paramPredi (np, :); s=paramPredi (np-1,:);
zeta=sqrt (log (1+(s./mu) .”2)); eta=log(mu)-0.5*zeta.”2;
likel=lognpdf (y (k) ,eta, zeta);

There are no specific inputs required in PF, therefore the code to run [PF] is the
same regardless of different applications as.

[thetaHat, rul]=PF;

4.5.3 Results

The results of parameter identification and degradation prediction from NLS, BM,
and PF are shown in Figs. 4.12, 4.13 and 4.14, respectively. The correlation plots
are obtained from the final sampling results in thetaHat with
plot (thetaHat (1, :),thetaHat(2,:),"'."), The most notable difference in

results is that there are very large uncertainties in the results from NLS compared to
the others. This is because there is a very wide range of correlation between m and
C, but it cannot be reduced since the prior information cannot be employed in NLS.
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The parameters estimated in a very wide range can yield a huge difference in the
degradation prediction. On the other hand, the parameters from BM and PF are
identified in a narrow range compared to NLS by employing the prior information,
and thereby the prediction uncertainty is much smaller than that of NLS.

Another important issue needed to be mentioned is about the model error caused
by discontinuous transient function in PF. In this example, the time interval dt=20
is used, but there is a difference in the degradation rate between the models in
Eq. 4.19 and in Eq. 4.20, which is shown in Fig. 4.14b. In the figure, the black
solid curve and the blue dot-dashed curves correspond to Eq. 4.19 and Eq. 4.20,
respectively. If the transition function is viewed as a differential equation, Eq. 4.20
corresponds to the forward Euler finite difference method, which requires small
time intervals to be accurate. This gap can be reduced with smaller time interval.*
More in-depth comparison between each method will be discussed in Chap. 6.

4.6 Issues in Physics-Based Prognostics

Compared to data-driven methods that will be discussed in Chap. 5, physics-based
prognostics algorithms have several advantages. First, physics-based methods can
make a long-term prediction. Once the model parameters are identified accurately, it
is possible to predict the remaining useful life by propagating the physical model
until degradation reaches a predetermined threshold. Second, physics-based
methods require relatively small number of data. Theoretically, it is possible to
identify model parameters when the number of data is the same as the number of
unknown model parameters. In reality, however, due to noise in data and due to
insensitivity of degradation behavior to parameters, a more number of data are
required. Still, the required number of data in physics-based prognostics algorithms
is much less than that of data-driven methods.

On the negative side, there are three important issues in physics-based prog-
nostics to be practical: model adequacy, parameter estimation, and quality of data.
In this section, these issues are addressed with some literature reviews. More
comprehensive discussions will be presented in Chaps. 6 and 7.

“Smaller time interval means more iterations, which requires more computational time and prone
to yield numerical error. To prevent this error, the initial distribution of model parameters should
be set properly.
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4.6.1 Model Adequacy

Model adequacy is an issue addressing if the physical model is good enough to
predict the future behavior of degradation. This is slightly different from the con-
ventional curve-fitting issue in regression because regression pays attention to
accuracy between data, which is in a sense the error in interpolating region. In
prognostics, however, the interest is in beyond measure data points, which is the
error in extrapolation.

A model that can fit the data very well in the interpolating region does not mean
it can also predict the trend in the extrapolating region. A crack growth example is
used to demonstrate the model adequacy issue. In the following MATLAB code, a
Paris model is used to generate six crack size data at flight cycles between 10,000
and 20,000 with intervals of 2,000. These data are shown as blue circles in
Fig. 4.15. For a physical model, a cubic polynomial with four unknown coefficients
is selected for the purpose of explanation. The MATLAB function regress can
find the unknown coefficients that minimize error between the six data and poly-
nomial prediction. The solid black curve in Fig. 4.15 shows the model prediction,
which is very accurate as the difference between data and model prediction is
almost zero. Therefore, in the viewpoint of curve-fitting, this model is considered to
be good. However, in the extrapolating region, the conclusion can be completely
different. In the figure, the same model is used to predict the crack growth at flight
cycles between 20,000 and 30,000 with the same coefficients, which is shown as a
red curve in the figure. However, as shown in red circles, the actual crack grows
much faster than the model prediction. Since the model predicts a slower crack
growth, it would be dangerous to rely on it. Therefore, the adequate model in the
interpolating region can be inadequate in the extrapolating region. Therefore, it is
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very important to validate that the physical model is accurate for the purpose of
prognostics.

m=3.6; C=1E-10;a0=2E-3;dels=80; % Paris model parameters
N=[10000:2000:20000] '; % Training cycles
a=(N.*C.*(1-m/2) * (dels*sqgrt(pi)) . m+a0” (1-m/2)) .~ (2/ (2-m) ) ;
X=[ones(size(N)) N N.*N N."3];

b=regress(a,X) ; % Fitting cubic polynomials
afit=b (1) + b(2).*N + b(3).*N."2 + b(4).*N."3;

plot (N,a,'o',N,afit, 'b"'); hold on;

M=[20000:2000:30000] '; % Prediction cycles
ap=(M.*C.* (1-m/2)* (dels*sqgrt (pi)) . " m+a0” (1-m/2)) .~ (2/(2-m)) ;
apfit=b(1l) + b(2).*M + b(3).*M."2 + b (4).*M."3;

plot (M,ap, 'or',M,apfit, 'r'");

Since physics-based approaches employ a physical model describing the
behavior of damage, they have advantages in predicting long-term behaviors of
damage. However, model validation should be carried out first, since most models
contain assumptions and approximations. There has been much literature on model
validation using statistical methods, such as the hypothesis test and the Bayesian
approach (Oden et al. 2013; Rebba et al. 2006; Sargent 2013; Ling and Mahadevan
2013).

In general, as the model complexity increases, the number of model parameters
increases, and estimation of parameters becomes more difficult. Recently, Coppe
et al. (2012) showed that the issue of model adequacy can be relaxed by identifying
equivalent parameters from a simpler model. A simple Paris model was used with
an assumed stress intensity factor to predict crack growth of complex geometries in
which the model parameters were adjusted to compensate for the error in the stress
intensity factor. Although this is limited to the case of a similar damage behavior
between the simple and complex model, additional efforts to validate model
accuracy can be avoided.

4.6.2 Parameter Estimation

Parameter estimation is the most important step in physics-based prognostics
because once model parameters are determined, predicting the remaining useful life
is straightforward. There are two specific issues in physics-based parameter esti-
mation: (1) estimation accuracy that is related to characteristics of different algo-
rithms, such as NLS, BM, and PF in this chapter, and (2) correlations between
model parameters and also between model parameters and loading conditions that
hinders identifying accurate parameters. A good prognostics algorithm can identify
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accurate model parameters with a less number of data. For correlation, Chaps. 6 and
7 will show that even if the accurate identification of parameters might be difficult,
it is possible that accurate prediction in degradation and remaining useful life are
still possible. Since comparison and case study are required to introduce these two
issues, more details will be discussed in Chaps. 6 and 7.

4.6.3 Quality of Degradation Data

In order to estimate model parameters of system in service, structural health
monitoring (SHM) data are often used to collecting data that are used for the
purpose of prognosis. SHM data could include a high level of noise and bias due to
the sensor equipment and measurement environment. Noise is a random fluctuation
in measured data or signal due to interference or unwanted electromagnetic fields in
electronic devices. Bias is static deviation of signals from correct ones, which can
happen due to calibration error. Noise makes it difficult to identify signals related to
degradation, while bias induces error in prediction. In fact, filtering noise and
compensating bias has been the major research issues in prognostics using SHM
data.

Gu et al. (2008) presented a prognostics approach that detects the performance
degradation of multilayer ceramic capacitors under temperature—humidity-bias
conditions. Coppe et al. (2009) showed that the uncertainty in structure-specific
damage growth parameters can be progressively reduced, in spite of noise and bias
in sensor measurements. Guan et al. (2009) considered various uncertainties from
measurements, modeling and parameter estimations to describe the stochastic
process of fatigue damage accumulation based on a maximum entropy-based
general framework. It was found that large noise induces slow convergence, and
bias shifts parameter distribution.

Noise in sensor signals hinders the detection of degradation features, which
adversely affect the prognostic capability in both the physics-based and data-driven
approaches. To relieve this, de-noising is usually conducted in signal processing.
Zhang et al. (2009) proposed a de-noising scheme for improving the signal-to-noise
ratio and applied it to vibration signals obtained from a helicopter gearbox test-bed.
Qiu et al. (2003) introduced an enhanced robust method for bearing prognostics,
which includes a wavelet filter-based method for extraction of a weak fault feature
from vibration signals and a self-organizing map based method for bearing
degradation assessment. Abouel-seoud et al. (2011) introduced a robust prognostics
concept based on an optimal wavelet filter for fault identification of a gear tooth
crack by acoustic emission. The quality of data issues will be discussed further in
Chaps. 6 and 7.


http://dx.doi.org/10.1007/978-3-319-44742-1_6
http://dx.doi.org/10.1007/978-3-319-44742-1_7
http://dx.doi.org/10.1007/978-3-319-44742-1_6
http://dx.doi.org/10.1007/978-3-319-44742-1_7
http://dx.doi.org/10.1007/978-3-319-44742-1_6
http://dx.doi.org/10.1007/978-3-319-44742-1_7
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4.7 Exercise

P4.1

P4.2

P4.3

P4.4

P4.5

P4.6

P4.7

P4.8

Find the model parameter and its variance of z; = exp(—b#;) when the
following three data are available: {(%,z)} = {(0,1), (25,0.94),
(45,0.86)}. In order to find the model parameter, plot the sum of squared
errors as a function of model parameter b and find the minimum point in the
plot. Using the optimum parameter, plot the degradation model in the range
of ¢t = [0,45] overlapped data. Assume that weights are constant.

From true model of battery degradation z; = exp(—0.003#), generate exact
degradation data between cycles ¢ = [0,45] at every five cycles and add
random noise from a normal distribution N(0,¢?). By changing the
standard deviation of noise by ¢ = {0.0, 0.01, 0.02, 0.05}, compare the
identified model parameter as well as the remaining useful life, especially
for their confidence and prediction intervals. Use a threshold of 0.7.
Sometimes nonlinear model can be transformed into a linear one. For
example, the battery degradation model in Eq. 4.2 can be transformed into
a linear model by taking logarithms: log zx(#,b) = —bt;, where b is a
model parameter. Perform a linear regression using [LS] to find the model
parameter b and find the distribution of remaining useful life after taking
logarithms of data in Table 4.1. Compare these results with the results from
nonlinear least squares [NLS] in Sect. 4.2.1.

When a degradation model is given as z(f) = a} — ajt, it is possible to
estimate the two parameters using nonlinear least squares (treat ao and a; as
unknown parameters) or linear least squares (treat ag and @} as unknown
parameters). Identify the two model parameters using linear and nonlinear
regressions and compare their results. Use the following degradation
data:{(z%,z)} = {(0,1), (2,0.91), (3,0.78),(4,0.71)}.

Markov chain Monte Carlo (MCMC) sampling can be used to generate
sample from nonstandard PDF. Consider a PDF, p(x)x

0.3exp(—0.2x2) + 0.7 exp(—0.2(x — 10)?). Use a normal distribution with
the standard deviation of 10 as a proposal distribution. Generate 10000
samples and plot the PDF from samples with the exact PDF.

Repeat P4.5 with 100 and 500 samples and compare the sample PDFs. Also
repeat the same problem with the standard deviation of the proposal
distribution of 1 and 100.

Generate the PDF of U(0,20) using Markov chain Monte Carlo (MCMC)
sampling. Use the proposal PDF of U(x — 1,x+ 1). Plot the sample PDF
with 1000, 10,000 and 100,000 samples.

Generate 3 samples of PDF p(x) = 2x, x € [0, 1] manually using MCMC,
starting at x = 0.1. Use the proposal distribution of U(x — 0.25,x+ 0.25).
Use MATLAB program to generate 1000 samples and plot the sample
PDF.
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P4.9 Markov chain Monte Carlo MCMC) sampling can be extended to multiple
variables. In the case of two variables, the following steps are followed to
generate a sample of x; and x,. At a current iteration (i), two sample values

from (i — 1) iteration are availble. (1) First draw x5i> conditional on given x(zi’l);

ie., p(xgi) |x§H>). (2) Next draw xéi) conditional on new x(li) sle., p(x(zi) |x<1i) ).
Using this method, generate 500 samples of bivariate normal distribution

(@ )~(G)-(5 7))

where y = {0, 0}" and the correlation coefficient p =0.8. Hint:
Conditional distribution can be given as

01102,y ~N(y1 + p(0> — y2), 1 — p?)
02101,y ~N(y2 + p(0; —y1),1 — p?).

P4.10 The joint PDF of two random variables is given as p(x,y) = 4xy, x €
[0,1], vy € [0, 1]. Explain how to generate n, samples of (x, y).

P4.11 Proceed the update process up to k = 6 in Example 4.3. Discuss the results.

P4.12 Perform the battery prognostics with PF, but without the resampling
process. In this case, the posterior distribution is expressed with the initial
samples and updated weights. Compare the results with ones in Figs. 4.10
and 4.11.
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Chapter 5
Data-Driven Prognostics

5.1 Introduction to Data-Driven Prognostics

The physics-based prognostics approaches in Chap. 4 is a powerful tool for pre-
dicting the future behavior of damage degradation with a relatively small number of
observed data. However, they are limited to the case when a physical model that
describes the damage degradation behavior is available. In addition, the measured
data must be directly related to the physical model. In the case of crack growth
prognostics, for example, the measured data (crack size) is the same as model
prediction from the Paris model. Therefore, the physics-based prognostics may
anticipate challenges when predicting failure of a complex system without
well-defined physical model to describe degradation and when direct measurement
of damage is impossible.

In the case of bearing failure prognostics, for example, common damage is
caused by a spall phenomenon where the rolling elements or race surface is
damaged due to surface cracks. An initial small surface crack quickly propagates
into other regions of surface and gradually increases vibration of the shaft and
system. The excessive vibration eventually leads to the system failure. For struc-
tural health monitoring purpose, however, these surface cracks cannot be measured
directly while the bearing is rotating. Therefore, accelerometers are often installed
in the stationary parts of the system to monitor the level of vibration. That is, the
damage degradation is measured indirectly through the level of vibration. In
addition, there is no clear physical relationship between the degradation level and
vibration level. In such a case, physics-based prognostics may not be applicable.
Instead, based on experience, if the level of vibration of a particular bearing system
increases beyond a certain level, engineers learned that the system is going to fail.
Therefore, without having a physical model to describe degradation, it is possible to
determine when the system needs maintenance. This is the basic concept of
data-driven prognostics. Of course, in order to make a reliable prediction, it requires
many failure data of similar systems.

© Springer International Publishing Switzerland 2017 179
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Data-driven approaches in prognostics use information from observed data to
identify the patterns of degradation progress and predict the future state without
using a physical model. Even if a physical model is not used, data-driven
approaches still use some sort of mathematical model that works only for a par-
ticular system under monitoring. Similar to physics-based prognostics, the
data-driven approaches can be considered as an extrapolation (prediction) method
based on mathematical functions (degradation progress).

In general, several sets of additional degradation data up to the end of life as well
as the data from the current system are required to identify the degradation char-
acteristics, which is called training data. Even though degradation data are also
required to identify model parameters in physics-based approaches, which are not
called training data. Training data are used to make mathematical models learn the
degradation behavior without a physical model, which is a main difference from
physics-based approaches. It is clear that physics-based approaches are more
accurate than data-driven ones in prediction results with the same data since they
have more information, i.e., physical models and loading conditions. Nevertheless,
data-driven approaches are practical since physical degradation models are rare in
practice.

The process of the least squares-based data-driven approach was introduced in
Sect. 2.2.3, and Fig. 5.1 illustrates an overall process of data-driven approaches.
A mathematical model output (z) is a function of input variables (x) and parameters
(0) associated with the mathematical model. First, the mathematical model that
represents the relation between input variables and degradation state as the output
should be determined, which can be based on polynomial/sigmoid functions or
correlation functions. Different data-driven algorithms are distinguished from how
to express the relation between inputs and output. Once the mathematical model is
determined, parameters associated with the mathematical model are identified by
combining with training data via an optimization process. The training data are
obtained under various usage conditions as shown in gray squared markers from
similar systems (let us call them training sets) or at previous times under a given
usage condition as shown in black dotted markers from the current system (let us
call them prediction set) in Fig. 2.1. Usually, many sets of training data are required
to prevent overfitting (see Sect. 2.2.3). The future degradation state is predicted
based on the identified parameters and the mathematical model. Since the param-
eters are usually obtained as deterministic values, prediction uncertainties are
separately included to the deterministic degradation prediction based on individual

Fig. 5.1 Illustration of Training process
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algorithms. Lastly, Based on identified parameters and uncertainty, RUL is pre-
dicted as the same manner with physics-based approaches.

There are a whole variety of algorithms in data-driven approaches since any
extrapolation method can be used for the data-driven prognostics. In general,
data-driven approaches are divided into two categories: (1) the artificial intelligence
approaches that include neural network (NN) (Chakraborty et al. 1992;
Ahmadzadeh and Lundberg 2013; Li et al. 2013) and fuzzy logic (Zio and Maio
2010; Silva et al. 2014); and (2) the statistical approaches that include the Gaussian
process (GP) regression (Mackay 1998; Seeger 2004), relevance/support vector
machine (Tipping 2001; Benkedjouh et al. 2015), least squares regression
(Bretscher 1995; Coppe et al. 2011), the gamma process (Pandey and Noortwijk
2004), the Wiener processes (Si et al. 2013), hidden Markov model (Liu et al.
2012a), etc. Among these algorithms, NN as an artificial intelligence method has
been used in wide fields and applications, such as time series prediction,
classification/pattern recognition, and robotics/control. It is also the most common
algorithm used for prognostics, while the preference for the others might depend on
researchers. A comprehensive review about various data-driven algorithms can be
found a reference by Si et al. (2011).

Among aforementioned algorithms, GP and NN will be discussed in this chapter.
These two algorithms are popular for prognostics. The algorithms will be explained
with the same battery example as in Chap. 4, and their practical use will be dis-
cussed in Sect. 5.4.

5.2 Gaussian Process (GP) Regression

5.2.1 Surrogate Model and Extrapolation

When many measured data are available at different times of health monitoring, a
simple way is to fit the data using a mathematical function. For example, the least
squares method in Chap. 2 fits data with a polynomial function by finding coeffi-
cients that minimizes the error between data and predictions from the model. In
general, fitting data with a mathematical function is referred to as a surrogate model.
Since the surrogate model is approximation of physical phenomena, accuracy is
uttermost important criterion. If more data are available and if the surrogate model
is flexible enough to follow all data, then an accurate surrogate model can be
obtained. Once a surrogate model is fitted with given data, evaluating function
values at different input values are extremely cheap. The main purpose of surrogate
modeling is to reduce the computational time for numerous calculation of the
quantity of interest at different input values.

Surrogate modeling is popular in various engineering fields, such as engineering
design and reliability assessment. In design applications, the cost and constraint
functions are modeled as a function of multiple design variables. Then, during
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optimization, design variables are repeatedly changed to find an optimum design,
which requires numerous evaluations of functions. Also, reliability analysis requires
generating numerous samples of input random variables and estimates the proba-
bility that the function output cannot satisfy a requirement.

In prognostics, however, the surrogate model is used for a different purpose.
First, time is often used as an input variable because the main purpose of prog-
nostics is to predict the remaining useful life of a system in service. Therefore,
measured data are given as a pair of (time, degradation). Second, the main purpose
of surrogate is not reducing computational time, but accurate prediction. Even if
many predictions are performed in order to estimate the statistical distribution of the
remaining useful life, still accurate prediction of the remaining useful life is the
main objective of surrogate in prognostics. Lastly, surrogate models in other
applications usually predict the quantity of interest within the range of input data
(interpolation"). However, the usage of surrogate model in prognostics is to predict
the degradation level in future time (extrapolation). If degradation levels are
measured up to the current time, they are used to fit a surrogate model to predict the
degradation level in future time. It is noted that a surrogate behaves quite different
between interpolation and extrapolation region. A surrogate model with a good fit
in interpolation region can miserably fail in predicting in the extrapolation region.

As an example, Fig. 5.2 shows an approximation of function y(x)=
x+0.5sin(5x). First, 21 equally spaced samples are generated from the exact
function expression in the range of [1, 9]. And then, the MATLAB function newrb
is used to fit 21 samples with a radial basis network surrogate model. The exact
function and surrogate predictions are plotted in the range of [0, 10] as shown in
Fig. 5.2. The figure shows that the surrogate predictions are extremely accurate in
the interpolation region [1, 9]—in fact the root-mean-square error in this range is
zero, while it miserably fails at the extrapolation regions [0, 1] and [9, 10], even if
the extrapolation region is very close to the sample locations. The following
MATLAB code is used to generate the surrogate:

x=linspace (1,9,21); y=x+0.5*sin(5*x) ;
net=newrb (x,Vy) ;

xf=1linspace(0,10,101); yf=xf+0.5*sin (5*xf) ;
ysim=sim (net, xf) ;

plot (xf,yf); hold on; plot (xf,ysim,'ro'")

Therefore, it is important to evaluate surrogates for the perspective of extrapo-
lation in prognostics. As shown in Fig. 5.2, the radial basis network may not be a
good surrogate as it does not carry the trend of degradation. Also, the polynomial
response surface may follow the trend relatively well, but it tends to change the

'In high-dimensional problem, though, the conventional surrogate model often ends up extrapo-
lating most of regions. In 10-dimensional space, for example, if 1024 samples (data) are generated
randomly, then it is likely more than 90 % of domain is in the extrapolation region.
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curvature quickly in the extrapolation region. Therefore, based on the numerical
tests for different surrogates, the GP regression surrogate model turns out to be most
robust in terms of extrapolation. In this section, the GP regression is used for
predicting the progress of degradation in future time. Since no physical model is
used, this is considered as a data-driven approach.

5.2.2 Gaussian Process Simulation

The Gaussian process (GP) regression is one of regression-based methods used for
data-driven prognostics, which is a linear regression like the least squares method.
The difference between GP and ordinary linear regression is whether the correlation
in errors between a regression function and data are considered or not. It is assumed
that errors are independent and identically distributed (i.i.d.) in the ordinary linear
regression, while they are assumed to be correlated in GP.

Correlation is an important concept in GP, which is directly related to covariance
of two random variables. The covariance of two random variables, X and Y, can be
defined as

cov(X,Y) = E[(X — ux)(Y — uy)] = E[XY] — puxpy, (5.1)

where E[ -] is the expected value of a random variable, uy and p, are mean values
of X and Y, respectively. The covariance of a random variable itself is the square of
the standard deviation, which is also called variance. Note that the variance of a
random variable is the second moment around its mean, or the square of the
standard deviation. The covariance of a pair of random variables is the mixed
moment of the two variables.
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Using covariance, the correlation of two random variables can be defined as

Rix,v) = V&) (5.2)

Ox0y

where gx and gy are the standard deviation of X and Y, respectively. Note that
—1<R(X,Y) < 1. The correlation measures their propensity to move together. So a
correlation of 1 means that they increase and decrease in perfect synchrony. The
most common case is when X = oY with a positive constant o. Similarly, a cor-
relation of —1 also means perfect synchrony, but in the opposite direction, and in
the case of X = aY with a negative constant o. Finally, a correlation of 0 means that
they are not related. The common case is when the random variables are inde-
pendent, but not all uncorrelated variables are independent. Zero correlation relates
to the first moment, but there may be dependence through higher order effects.

Example 5.1 Correlation between function values

The fitting process in GP needs to estimate how fast the correlation between
function values decays with distance. This depends on the wavelength of the
function; that is, the correlation quickly decays for a function with a short
wavelength. In order to check how fast the correlation decays for sin(x) that
has a wave length of 27, (a) generate 10 random numbers, x;,i = 1, ..., 10,
between 0 and 10, (b) move x; by a small amount, x]°*" = x; + 0.1, and a large
amount, xfar = x; + 1.0, and (c) calculate correlations between y = sin(x;) and
y = sin(x™*) and between y = sin(x;) and y = sin(x2").

i
Solution:

Different random numbers may be generated, but the following MATLAB
code can be used to generate random numbers and calculate correlations:

x=10*rand (1,10);

xnear=x+0.1; xfar=x+1;

y=sin (x) ;

ynear=sin (xnear)

yfar=sin (xfar)

rnear=corrcoef (y, ynear) $rnear=0.9894;
rfar=corrcoef (y, yfar) Srfar=0.4229

The following table shows 10 values of random numbers along with y =
sin(x;),y = sin(x™*) and y = sin(xf).
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X 8.147 9.058 1.267 9.134 6.324 0.975 2.785 5.469 9.575 9.649

ynear | 09237 | 0.2637 | 0.9799 | 0.1899 | 0.1399 | 0.8798 | 0.2538 | -0.6551 | -0.2477 | -0.3185
y 0.9573 | 0.3587 | 0.9551 | 0.2869 | 0.0404 | 0.8279 | 0.3491 | -0.7273 | -0.1497 | -0.2222
yfar 0.2740 | -0.5917 | 0.7654 | -0.6511 | 0.8626 | 0.9193 | -0.5999 | 0.1846 | -0.9129 | -0.9405

It is clear that the pattern between y and ynear is similar, but not between
v and yfar. That is, y and ynear is strongly correlated, but not for y and
yfar. Indeed, the correlation coefficient between y and ynear is 0.9894,
while it is 0.4229 between y and yfar. This reflects the change in function
values, as illustrated by the pairs of points marked in red in the table. In GP,
finding the rate of correlation decay is part of the fitting process. This
example shows that with a wavy function the correlation decays to about 0.4
over one sixth of the wavelength, (1 : 27).

In GP, a simulation output, z(x), is composed of a global function output, &(x)0,
that often takes the form of constant or polynomials and its local departure, s(x) :

2(x) = §(x)0 + s(x), (5.3)

where X is a row vector of input variables, &(x) is a 1 x n, vector of bases asso-
ciated with n, x 1 vector of global function parameters/coefficients, 0, and s(x) is a
local departure, i.e., an error between the global function and measurement data.
For example, when the global function is assumed to be a linear polynomial,
ap+ax in one-dimensional GP, &(x) = [1, x] and 0 = [ag, a;]". In practice, a
simple polynomial function is used for the global function.

One may think that Eq. 5.3 is similar to Eq. 2.3, but they are significantly
different in terms of the fundamental assumptions. The polynomial-based least
squares method in Eq. 2.3 assumes that the model form z(x) = &(x)0 is correct, but
the data have errors ¢, that are normally distributed as N(0, ¢*). These errors are
assumed to be statistically independent; that is, the error in one point is not related
to the error in other points. On the other hand, GP assumes that the measured data
are correct but the model form is uncertain. Since data are correct, GP fits all data.
That is, the model prediction and measured data match at data points: y, = z(x;) =
&(xx)0 + s(xx). In prediction points, the uncertainty or error in GP can be described
using the local departure, s(x), in Eq. 5.3, which is a realization of the Gaussian
stochastic process with zero mean, variance a2, and nonzero covariance as

s(x) ~N(0,0%), (5.4)

where o is the standard deviation of data with respect to the global function. The
standard deviation is small when the data is dense. The data is considered to be
dense, when there are more than enough points to describe the waviness of the
function. In order to be dense, the distance from one point to the nearest one should
be an order of magnitude less than the wavelength of the function.


http://dx.doi.org/10.1007/978-3-319-44742-1_2
http://dx.doi.org/10.1007/978-3-319-44742-1_2

186 5 Data-Driven Prognostics

The key concept of GP is that the functional form of z(x) is unknown, except for
the form of correlation between the value of the function at nearby points. In
particular, the correlation depends only on the separation distance between points
and decays as they are further apart. The correlation matrix between n, data can be
defined as

R = [R(Xk,X[)], k, = 1,...,ny, (55)

where R(x,x;) is correlation between two data points, which will be defined using
correlation function later. Note that the diagonal components of R are one because
they represent correlation between the same point. The correlation is strong
between two points nearby and weak between two points far away. The correlation
between a prediction point, X, and data points can be defined in a similar way as

r(x) = [R(xr,x)], k=1,...,n,, (5.6)

which is a n, x 1 vector that represents correlation between the data points x; and
prediction point X, which makes different magnitude in departure at different pre-
diction points.

Because of the correlation in the local departure, GP has an outstanding feature
that the simulated output, denoted by the blue-dashed curve in Fig. 5.3, passes
through the set of measured data (training data) [X.,,¥}., |- When the prediction
point (a new input), x"%, is located at a measurement point A, xi(i =1,2,..., ny),
the magnitude of departure is the same as the difference between measured data,
yi(i =1,2,..., ny) and the global function output (the global function is constant in
the figure); hence, the prediction output z(x;) becomes measured data, y;. When the
prediction point is different from measured points as in point B, the magnitude of
departure is changed based on the correlation between B and the measured points.
As a result, if the prediction point is in between measured points, the simulated
output smoothly interpolates the measured data. If, however, the prediction point
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moves away from measured points, which is extrapolation, the influence of this
departure is reduced as correlation decreases and the GP becomes closer to the
global function. Therefore, the case of extrapolation is not so different from an
ordinary linear regression, which follows the global model. For interpolation,
correlation between data points is an important factor to characterize GP’s attribute,
which is determined by selecting an appropriate type of correlation function and
estimating its hyperparameters. The hyperparameters in GP control the effect of
correlation between two points, which affect the smoothness of the surrogate model.
The hyperparameters are usually determined using an optimization algorithm based
on the measured data (training data). A typical correlation function and estimating
hyperparameters will be discussed later part in this section.

5.2.3 GP Simulation

5.2.3.1 Global Function Parameter and Distribution of Errors

In this section, GP simulation function is derived using measured data points. First,
the global function parameters, 0, in Eq. 5.3 and the variance of data with respect to
the global function, ¢, in Eq. 5.4 can be estimated by using maximum likelihood
estimation (MLE). Once the global function is determined, the local departure is
calculated by minimizing the unbiased mean squares error.

As explained in Egs. 5.3 and 5.4, the errors between the global function and data
are assumed to be normally distributed. At n, data point, the errors can be defined as

1 —i(xl)— 0,

2 —é(Xz)— 0,
e=y-X0=9¢ . - : C (0

Yny _};(Xny )— Qn,,

where X is the design matrix, the values of basis vector at all data points. It is noted
that the above errors depend on the global function parameters, 0.

The assumption in GP is that the error e follows a Gaussian distribution with
zero mean, variance o> and correlation between data points. As explained in
Bayesian inference in Chap. 3, the likelihood is the value of probability density of
obtaining measured data y for given parameters, @ and ¢2. Therefore, the joint
probability density function of correlated n, data points can be used to define the
likelihood as

— TR-1 —
£(516, ) = (y —X0)'R'(y xe>> 57)

€X —
@0 ()" R p( 202
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which is multiplication of n, Gaussian distributions. This is the likelihood function
of y with given 0 and ¢ with a the correlation matrix, R. In the above equation, |R|
is the determinant of the correlation matrix.

The parameters, 0 and 62, can be found by maximizing the likelihood function.
For the purpose of handling an algebraic function instead of exponential function, a
logarithm of the likelihood is often used. Since logarithm is a monotonically
increasing function, it may change the value of likelihood, but it will not change the
parameters’ location that yields the maximum value. The logarithmic likelihood is
defined as

In[f(y|0,0%)] = — %ln(Zn) - %ln(az)

(y — X0)'R™!(y — X0)
202

(5.8)

1
3R] -

The maximum location can be found by differentiating Eq. 5.8 with respect to 0
and ¢ as

onf X'R'(y — X0)

90 ) =0,

T (5.9)
onf_ _ml (y-XO)R'(y-Xo)
da2 242 264 =V

Therefore, the estimated parameters that maximize the likelihood function can be
obtained by solving the above equation for @ and ¢ as

0=(X"R™'X) ' {X"R"'y}
- X0)"R"!(y — X0) (5.10)

ny — 1,

Note that the estimated parameter, 0, is the same form as Eq. 2.8 except for the
inverse of correlation matrix, and the degree of freedom n, — n, is used instead of
the number of data n, in 62 for the unbiased estimation, which is basically the same
with Eq. 2.18 except for the inverse of correlation matrix. It is noted that the
estimated parameters depend on the correlation matrix R, which will be discussed
later.

In deriving Eq. 5.10, it is assumed that the wavelength of the function is uniform
in all regions of input space. In such a case, the covariance matrix that is found
using the initial data is constant throughout the input space, which is called sta-
tionary covariance. For nonstationary covariance, readers are referred to Xiong
et al. (2007).

Polynomial functions are often used for the global function. Kriging surrogate is
a different name of Gaussian process because a South African geostatistical engi-
neer Daniel G. Krige developed the surrogate to estimate distance-weighted average
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gold grades. A specific term, ordinary Kriging, is provided when a constant
function is used for the basis; that is the estimated parameter 0 is a scalar. When the
main purpose of the surrogate is for estimating function in interpolating region, the
choice of global function might not be important as the local departure will model
such a way that the prediction passes through data points and prediction between
data points are determined based on correlation between data points. However, for
the purpose of prognostics, this is not a good choice of the global function because
the purpose of GP in prognostics is for extrapolation where the correlation between
data points are quickly diminished as the extrapolation distance increases and the
prediction goes back to the global function. Knowing that degradation shows a
monotonically increasing or decreasing behavior, it would be better to choose bases
with such a property. In this book, either linear or quadratic polynomial is sug-
gested, which shows a monotonic behavior when input variable is positive.

5.2.3.2 Local Departure

In the previous subsection, the global function parameters, 0, and the variance, 62,

were estimated using maximum likelihood estimation, whose results are given in
Eq. 5.10. Therefore, at this point, the form of global function in Eq. 5.3, is deter-
mined. Now then, the local departure term s(x) in Eq. 5.3 is considered, which
eventually makes a GP simulation function. From the property that GP simulation
passes measured data point, GP simulation can be expressed by a linear combi-
nation of measured data and weight functions. Then, the weight function can be
found by minimizing the mean squared error (MSE) between outputs from a GP
simulation function and the true function. First, the error between GP simulation
and true function is defined as

e(x) = 2(x) — z(x) = w(x)y — z(x), (5.11)

where z(x) and z(x) are, respectively, the GP simulation function and true function.
The GP simulation function can be expressed as the dot product of a n, x 1 vector
of weight functions, w(x), and a ny x 1 vector of measurement data, y (i.e.,
w(x)"y). The goal is to determine the weight function that minimizes the error in
Eq. 5.11. Even if the GP simulation function is shown in the form of z(x) =
W(X)Ty, this form will be expressed in terms of the global function and local
departure as shown in Eq. 5.3.

From the basic assumption that there is no error in data, the data can be

expressed in the form of GP simulation function in Eq. 5.3. That is, y = X§+s,
where s = {s(x,), s(x2), ..., s(x,)}" is the vector of local departures at data
points. Note that s(x) is a function, while s is a vector of s(x) at all sampling points.

Similarly, the true function can also be expressed as z(X) = &(x)0+ s(x).
Therefore, Eq. 5.11 can be expressed as
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q@:w@fmﬁ+q—(agﬁmwﬁ

A (5.12)
= (w(x)TX - &(x))ﬂ +w(x)'s — s(x).

In Eq. 5.12, (W(X)TX—&,(X))G and w(x)'s — s(x) are the global and the
departure error terms, respectively. To keep the global function unbiased, a con-
straint for the weight function is demanded so that the global error term is zero.

Since the global function parameters 0 cannot be all zero, the following equation is
obtained as the constraint:

w(x)"X — &(x) = 0. (5.13)

Now the MSE of Eq. 5.12 becomes>
MSE = E [a(x)z] —E [(wTs - s)z] —E[w'ss’w—2wTss+ 2. (5.14)

In the above equation, E[*] is the expectation operator. By using the definition of
the second central moment (the variance) and the covariance,’ the MSE can be
obtained as

MSE = ¢* (W' Rw — 2w'r + 1), (5.15)

which represents uncertainty in simulated GP outputs, and thus, it becomes the
variance of the GP simulation.

The weight function can be found by minimizing the MSE in Eq. 5.15, while
satisfying the unbiased constraint in Eq. 5.13. The method of Lagrange multipliers
that is an optimization method with equality constraints is employed to find w by
minimizing the MSE in Eq. 5.15 with the constraint in Eq. 5.13. The Lagrange
function is defined by introducing a Lagrange multiplier, A thatis a 1 x n, vector in
this case:

L(w,1) = o*(W'Rw —2w'r+1) — A(X"w — Y;T). (5.16)
The minimum can be found by differentiating Eq. 5.16 with respect to w and A as

OL(w, L)

2 o
o= 20°(Rw—r) X =0. (5.17)

’In this equation, even though w and s are function of inputs, it is not indicated to simplify the
equation.

*The covariance between different inputs are as follows: Cov[s(x),s(x)] = o2,
Cov[s(xt), s(x)] = o1, Cov[s(xi),s(x;)] = ¢’R, k, 1= 1,...,n,.
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OL(w, 1)

=X'w—£eT=9. 1
5 w—Egl=0 (5.18)

By solving Eq. 5.17 for w, the following equation is obtained:

w:R_lr—i—R_lXx—T. (5.19)
202

To obtain A" /262, Eq. 5.19 is substituted into Eq. 5.18 and solve for A" /262 as

A’ To—lvy\—1feT Tp-1

e X'R™'X) {& —X'R r}. (5.20)
Therefore, the weight vector, w can be obtained with Egs. 5.19 and 5.20, which

is used for the GP simulation in Eq. 5.11 as

2(x) = w(x)'y

-1 -1 )\'T

(5.21)

A
=r'Rly+ =X"Ry
202

— "Ry + (& — r"R7'X) (X"R'X) T {X"R 'y}

Note that the symmetric property of the correlation matrix is used. In Eq. 5.21,

the underlined term is the estimated parameter, 0 in Eq. 5.10. Finally, the equation
is obtained for GP simulation as

2(x) = E(x)0+r(x)"R™! (y — X0), (5.22)

where y is a n, x 1 vector of measured data, X is a n, X n, design matrix, R is a

ny X n, correlation matrix between the measurement points, and @ is a , x 1 vector
of global function parameters/coefficients, which are determined based on the
measurement data, while r(x) is a n, x 1 correlation vector between the prediction

point and the measurement points. In Eq. 5.22, the first term, &(x)é represents a
global function term and the second term is the local departure. To calculate the
departure at a new input, the errors between the data and the global function outputs,

(y — Xﬁ) is weighted and summed based on the correlation term, r(x)TR’l.

If Eq. 5.22 is written in the form of z(x) = &(x)0 4 r(x)"p, only &(x) and r(x)
are a function of prediction point x; all other terms are fixed for a given set of
sampling data. Therefore, GP is similar to linear regression, which is a linear
combination of unknown coefficients multiplied by known basis functions.
However, there are two important differences. First, the basis function, r(x),
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is unknown, in that the correlation matrix, R, needs to be estimated from the data
(in the next subsection). Second, the coefficients are not found by minimizing the
root-mean-square-error (RMSE) at the data points; in fact, RMSE is zero because
the prediction interpolates the data exactly.

5.2.3.3 Correlation Function and Hyperparameters

There are different types of correlation functions available, including radial basis (or
squared exponential), rational quadratic, neural network, Matern, periodic, constant,
linear functions, and a combination of these (Rasmussen and Williams 2006). Even
though the quality of GP simulation depends on the correlation function,
one-parameter radial basis function that is common and simple is employed in this
book. The radial basis function depends on the distance between inputs, i.e., the
Euclidean norm as

R(x,x") = exp(—(xd/h)2>, Xy =[x — x|, (5.23)

where £ is a hyperparameter that is a scale parameter in this function, which is used
to control the smoothness of the function.

A small & means a fast decay of the correlation with distance. The correlation
should decay to about 0.4 at one-sixth of the wavelength, ¢ (see Example 5.1).
Since e~! = 0.37 is close to 0.4, the hyperparameter must satisfy (£/6h)2 ~1,
which yields & = ¢/6. That is, if a function has a wavelength ¢, then the hyper-
parameter should be close to & = ¢/6. For example, for z(x) = sin(x), & ~ 1, while
for z(x) = sin(5x),h ~ 0.2.

In general, the hyperparameters are determined via an optimization algorithm by
maximizing a log-likelihood (or minimizing a negative log-likelihood) function
corresponding to the error between global function outputs and data, which is given
in Eq. 5.8. The following equation is obtained by omitting the first and the fourth®
terms in Eq. 5.8 since they are constant with respect to the correlation matrix, i.e.,
the hyperparameters (Toal et al. 2008). Therefore, the hyperparameter, i, can be
found by maximizing the following equation:

, 1
h = arg max —%ln(&z) - Eln|R| . (5.24)

The optimum value of / can be obtained by maximizing Eq. 5.24 or minimizing
equivalent function of Eq. 5.24 as

“Even if the fourth term include the inverse of correlation matrix, it will be canceled out when o2 is
substituted with 6% in Eq. 5.10.
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h = arg min [m (&“(”f”ﬁ X |R|)] : (5.25)

In this equation, the degree of freedom, n, — n, is used instead of the number of
data n, for the purpose of unbiased estimation in variance.

Maximizing a log-likelihood function is a challenging optimization problem
because the likelihood function normally varies slowly in a wide range of argument.
Instead of using a maximum likelihood approach, cross-validation can also be used.
The cross-validation method leaves out one of the points, fits the rest with the
parameters, and calculates the error at the left-out point. This process is repeated for
every point to produce a total error measure. Then, the set of parameters that yields
the lowest cross-validation error is chosen. The optimization problem to solve for
maximum likelihood or minimum cross-validation error in GP regression is often
ill-conditioned, which can lead to either a poor fit or poor estimate of the prediction
variance. Poor estimate of the prediction variance can be checked by comparing it
to the cross-validation error. A poor fit can often be found in GP regression when
the curvature changes significantly near data points.
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@ Data points

8 6 4 -2 0 2 4 6 8

X
(b) (c)
100 — True fur.u:tlon * 100 }|— True function d
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60 [ 26 bounds 601 25 bounds
o 40 > 40
20 20
[
0 o <y ¥
20 -20
8 6 -4 -2 0 2 4 6 8 8 6 4 -2 0 2 4 6 8

Fig. 5.4 Effect of hyperparameters in Gaussian process regression. a True function and sample
locations, b GP regression with too large hyperparameter, ¢ GP regression with too small
hyperparameter
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For example, Fig. 5.4a shows a simple quadratic polynomial y(x) = x* 4 5x —
10 where the curvature changes relatively quickly. Nine data points are generated
from the polynomial (only a portion of data are shown), and GP regression is used
to fit the data with a constant global function &(x) = 0. Figure 5.4b shows GP
regression with unreasonably large hyperparameter, 7, while Fig. 5.4c shows the
case with too small hyperparameter. When 4 is too large, the fit is good, but the
estimated prediction variance is too large. On the other hand, when £ is too small,
the fit is poor and the prediction variance fails to cover the true function. Therefore,
it is always recommended to visualize by plotting the GP regression with its
uncertainty.

Example 5.2 Deterministic GP simulation
Using GP simulation, perform the following steps with the first five data
given in Table 4.1.

(a) Calculate the global function parameter for a constant form and the
variance of data with respect to the global function. Use the radial basis
correlation function given in Eq. 5.23 and assume & = 5.2.

(b) Obtain an optimum value of the scale parameter, .

(c) Calculate the GP simulation results at # = 10, 14 after obtaining the
global and departure terms separately.

Solution:
This problem can be solved by using the given equations in this section.
Before solving the problems, the data and design matrix need to be defined as

y=[1 099 099 094 095]"
x(=t)=[0 5 10 15 20]"
X=[1 111 1]

Note that the global function is defined as a constant in the problem, which
means the global function outputs will be the same for any input and there
will be one parameter. That is, §(x) = {1} and 6 = {0}. In MATLAB, these
terms are defined as

y=[1 0.99 0.99 0.94 0.95]"'; % measurement data
x=[0 5 10 15 201"'; % input variable, t
X=ones (5,1); % design matrix

ny=length(y); np=size(X,2);
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(a) The equations for solving this problem are given in Eq. 5.10, and all
terms were defined previously except for the correlation matrix, R that is
obtained from Eq. 5.23 as R = [R(x,x;)], k,I =1, ..., n,. This follow-
ing MATLAB commands calculate the correlation matrix:

h=5.2;
for k=1l:ny; for 1=l:ny;

R(k, 1) =exp (- (norm(x(k,:)-x(1,:))/h)"2);
end; end;

and the results become

1 0.3967 0.0248 0.0002 0
0.3967 1 0.3967 0.0248 0.0002
R = [ 0.0248 0.3967 1 0.3967 0.0248
0.0002 0.0248 0.3967 1 0.3967

0 0.0002 0.0248 0.3967 1

The diagonal elements should be one because they represent the correla-
tion between themselves, e.g., R(1, 1) and R(2, 2) are correlations between x;
and x;, and between x, and x, respectively. On the other hand, the
off-diagonal elements are determined based on the distance between two
different inputs; e.g., R(1,2) and R(2, 1) are calculated from x; and x,, which
makes the correlation matrix symmetric.

Now the global function parameter and the variance of data with respect to
the global function can be calculated by using Eq. 5.10 as

b= (X"R™'X) " {X"R 'y} = 3.0080" x 3.0226 = 0.9754

—X0)"R ! (y — X6
20 ) R™(y ) _ 708 % 10,6 = 0.0270

ny — ny

Rinv=inv (R) ;
thetaH=(X'*Rinv*X) \ (X'* Rinv*y) ;
sigmaH=sqgrt (1/ (ny-np) * ( (y-X*thetaH) ' *Rinv* (y-X*thetaH))) ;

(b) During the process in part (a), the value of 7 = 5.2 is given. In fact, this is
the optimum results, which can be obtained by minimizing Eq. 5.25.
Note that the two variables, ¢ and R depend on £ as shown in Eq. 5.10
and Eq. 5.23, and how to calculate these variables are shown in part (a).
Since this is a one-parameter optimization problem, it can be solved
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approximately by plotting the objective function (Eq. 5.25) at different
values of h. By calculating Eq. 5.25 for 2 > 0, Fig. ES.1 is obtained. In
the figure, the dot marker represents the optimum point, from which the
optimum value of the scale parameter is approximately obtained as Agp =
5.2. The following MATLAB code can be used to calculate Fig. E5.1.

h=zeros (20,1); Obj=zeros (20,1);
for i=1:20
h(i)=0.5%i;
for k=1l:ny; for 1l=l:ny;
R(k,1)=exp (- (norm(x(k, :)-x(1,:))/h(i))"2);
end; end;
Rinv=inv (R) ;
thetaH=(X'*Rinv*X) \ (X'* Rinv*y) ;
sigmaH=sqgrt (1/ (ny-np) * ( (y-X*thetaH) ' *Rinv* (y-X*thetaH)) ) ;
Obj (1) =log (sigmaH”" (2* (ny-np) ) *det (R)) ;
end
plot (h,0bj, 'linewidth',2); grid on;
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Fig. E5.1 Objective function with respect to h

(c) Since the global function is a constant, the design vector, & = [1] and
there is a single function parameter. Therefore, the global term &é in
Eq. 5.22 becomes &0 =1x0.9754. For the departure  term,
r'R! (y — Xé) in Eq. 5.22, the correlation vector between ¢ = 10, 14 (¢

is input variable, x) and the measurement data points should be calculated
as (R is given in Eq. 5.23):
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r={R(x,x)}, k=1,..,n,
and thus at # = 10;

r=1[0.0248 03967 1 03967 0.0248]"
r'R™! (y _ Xé) —0.0146

Note that since 7 = 10 is the same as one of the measurement points (the
third point), the correlation vector, r, is identical to the third column of
correlation matrix, R.

In the same manner, at t = 14

r=1[0.0007 0.05 05534 0.9637 0.2641]"
'R (y _ Xé) — _0.0272

The correlation vectors can be calculated with the following MATLAB
code:

xNew=10; %or xNew=14
for k=1:ny; r(k,1)=exp (- (norm(x(k, :)-xNew) /h)"2); end;
gpDepar=r'*Rinv* (y-X*thetaH) ;

Therefore, the GP simulation results in Eq. 5.22 become as follows:

at t = 10; z(10) = 0.9754 +0.0146 = 0.99
at t = 14; z(14) = 0.9754 — 0.0272 = 0.9482

The results are shown as blue star markers in Fig. ES5.2a, which are
departures from the global function. By repeating the aforementioned process
for r € [—5,25], the red solid curve in Fig. E5.2a is obtained. Note that the
GP simulation results pass through the measurement data and make a smooth
curve.
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Fig. E5.2 GP regression with five data in Table 4.1.a h =5.2. b h = 0.5

Figure E5.2b shows the GP simulation results when an inappropriate scale
parameter is used. Too small value, 2 = 0.5 in this case, reduces the corre-
lation between inputs. When the correlation is reduced, GP regression
approaches a linear regression, and thus follows the global function. The both
ends and in the middle of data points are overlapped with the global function.
But still, the GP regression pass through the data points since the distance
between the same points is zero, which makes the correlation value one from
Eq. 5.23. It is given as an exercise problem (see P5.4) to consider the
opposite case, i.e., when the scale parameter is very large.

Note that since the exponential form of correlation decays away from the data
points, when the prediction point is far from all data points, it will converge to the

global function @(x)é Therefore, GP is not good for long-term prognostics unless
there is enough training data from other similar systems.

5.2.3.4 Uncertainty

An important attribute for GP compared to other surrogate models is that it allows
to estimate uncertainty in prediction points. In the viewpoint of uncertainty,
Eq. 5.22 provides a mean prediction of GP regression. The variance of the GP
simulation is introduced in the form of MSE in Eq. 5.15. The uncertainty in GP
simulation follows a Gaussian distribution with mean at the deterministic model in
Eq. 5.22 and the variance given in Eq. 5.15 as

Z(x) NN(aé TR (y - Xé), o (WRw — 2w'r + 1)). (5.26)

Note that the true variance of the GP simulation is unknown but estimated from
the limited number of data. When the variance is estimated from a small number of
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samples, the distribution of mean follows Student’s ¢-distribution. Therefore,
Eq. 5.26 is modified with the Student’s z-distribution with a degree of freedom,
ny — n, as

Z(x)~E0+r' R (y - Xé) F ity - 6V WIRW — 2WTr 4 1, (5.27)

which represents the distribution of simulation outputs that is caused by the
uncertainty in function parameters. Due to the assumption in GP, the above
uncertainty does not include any noise in data, and thus, the prediction interval is
not considered in GP simulation. Equation 5.27 can be used to calculate the con-
fidence interval of simulation outputs. The confidence interval, however, can be
considered as a prediction interval at the same time because the simulation results
pass through measurement points. Therefore, the prediction uncertainty for prog-
nostics is performed based on Eq. 5.27, whose interval is called a prediction
interval.

It is interesting to note that the prediction variance is zero at data points in GP. In
order to show this, the prediction point is chosen at a data point; X = X;. From the
expression of Lagrange multiplier in Eq. 5.20, it can be shown that

g(xe)" — X"R'r(xt) = 0.

This is because R™'r(x;) becomes a unit vector whose kth component is one and
all other components are zero, and kth column of design matrix X is nothing but
&(xx). With zero Lagrange multiplier at kth data point, the interpolating weight w in
Eq. 5.19 becomes a unit vector whose kth component is one and all other com-
ponents are zero. Finally, the MSE at the kth data point becomes

MSE(x¢) = o* (W' Rw — 2w'r + 1) = 0.

In the above equation, w'Rw = 1 because the diagonal component of correla-
tion matrix is one, and w'r = 1 because the kth component of correlation vector is
also one. Therefore, at data points, the prediction variance becomes zero and there
is no uncertainty at data points.

Example 5.3 Uncertainty in GP simulation
Calculate 90 % confidence interval at + = 10, 14 for the problem given in
Example 5.2.

Solution:
To calculate the prediction interval, Eq. 5.27 can be used, and the mean of the
GP regression is obtained in Example 5.2. For the uncertainty part, the weight
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function, w, is given in Eq. 5.19, and then the standard deviation of the

prediction uncertainty, 6, = 6v/'W/Rw — 2w’r + 1 can be calculated as

xi=1;
w=Rinv*r+Rinv*X* ( (X'*Rinv*X) \ (x1i'-X'*Rinv*r));
zSigmaH=sigmaH*sqgrt (w' *R*w-2*w'*r+l) ;

Since there is no uncertainty at measurement points, ¢, should be zero at
t = 10, and the 5th and 95th percentiles are the same as the mean value, 0.99
(given in Example 5.2). On the other hand, ¢, is calculated as 0.0041 at
t = 14, and the confidence interval can be obtained with two ways based on
the inverse CDF of Student’s ¢ or the random samples from the 7-distribution.
The following is MATLAB commands to calculate the confidence interval.

% using the inverse calculation

gpMean=0.9482; % from Example 5.2

PI=[ gpMean + tinv (0.05,ny-np) *zSigmaH,
gpMean + tinv (0.95,ny-np) *zSigmaH]

% using the random samples

ns=5e3;

tDist=trnd(ny-np,1,ns);

yHat=gpMean+tDist*zSigmaH;

PI=prctile (yHat, [5 95])

The results are listed in Table ES.1, and the red-dashed curves in Fig. ES.3
are obtained by repeating the process for ¢ € [—5,25]. Note that the confidence
intervals are zero at data points, and they increases at the extrapolation region.

Table ES.1 Prediction intervals in GP regression

e 5 percentile 95 percentile 90 % P.I.
t=10 0.99 0.99 0
t=14 0.9394 0.9570 0.0176
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Fig. E5.3 Uncertainty in GP regression with five data in Table 4.1

5.2.4 MATLAB Implementation of Battery Prognostics
Using Gaussian Process

In this section, a MATLAB code [GP] is introduced that can utilize GP simulation
to predict the degradation of damage and the remaining useful life. The usage of the
code is explained with the same battery prognostics introduced in Chap. 4. The
code is divided into three parts: (1) problem definition for user-specific applications,
(2) prognostics using GP, and (3) postprocessing for displaying results, which is the
same as physics-based algorithms in Chap. 4.

5.2.4.1 Problem Definition (Lines 5-15, 17, 27-31)

The MATLAB code for GP simulation is given in the code [GP]. Most variables in
problem definition section were explained in Sect. 4.2.1, and a few ones are newly
introduced for data-driven algorithms. In lines 10 and 11, nT is the number of
training sets including prediction set, nt is a nT X 1 vector of the number of
training data in each data set. It is possible that data-driven approaches can take
multiple sets of data in GP regression. For example, let us assume that two batteries
have been measured for degradations until they fail, and we want to predict the
remaining useful life of the third battery. Let us also assume that 20 degradation
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data are available for each of battery 1 and 2 until they fail and the current battery
has been measured up to 10 degradation data. In such a scenario, nT = 3 because it
includes all batteries that have degradation data, including the current one. Since the
number of data are different for different batteries, specifies the number of
available data at each set. When multiple data sets are used, the last data set is
always considered as the prediction set; i.e., the current system of interest. For
multiple training data sets, readers are referred to Sect. 5.4.

Instead of true parameters in physics-based methods, true degradation level of
the prediction set can be given in line 13, same array size with time. If the true
degradation is unknown, degraTrue can be an empty array. The variable
signiLevel is used to calculate confidence intervals using ns number of sam-
ples. For the battery problem, a code for the first parameter definition part (lines 5—
15) is given as

WorkName='Battery GP';
DegraUnit='C/1 Capacity';
TimeUnit='Cycles';
time=[0:5:200]";

y=[1.00 0.99 0.99 0.94 0.95 0.94 0.91 0.91 0.87 0.86]"';
nT=1;

nt=[10]";

thres=0.7;

degraTrue=exp (-0.003.*time) ;
signilevel=5;

ns=5e3;

Since there is no physical model available, the given information, i.e., mea-
surement data and/or usage conditions’ need to be properly utilized. Prediction
quality depends on the utilization of given information, which is related to the
definition of input and output matrices. Therefore, it is one of important tasks to
define input and output matrices in the data-driven approaches. Because of its
importance, the definition of input and output matrices are in the problem definition
section in lines 17 and 27-31. In this section, measurement time and the mea-
surement data at the time are, respectively, used in inputs (xTrain) and outputs
(yTrain) as a simple example. In this case, the line 17 can be modified with

5The data-driven approach with usage conditions is not handled in this chapter, but its effect on the
prediction results will be discussed in Chaps. 6 and 7.
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y0=(y-min(y))/ (max(y)-min(y));
timeO= (time-min (time)) / (max (time)-min (time)) ;
xTrain=time0 (1:length(y)); yTrain=y0;

Note that the first two lines in the above code normalize the input and output data
between zero and one, which is required to find the scale parameter properly. New
input values are required to predict degradation, which is defined in line 28 as

xNew=timeO (ny—-1+Kk) ;

Again the normalize time, time0 is used instead of time.

5.2.4.2 Prognosis Using GP

The process for GP is based on the derived equations in Sect. 5.2.3, and simple
example was introduced in Example 5.2 to obtain the mean prediction using GP
model and Example 5.3 to quantify the uncertainty in the model. Since the pre-
diction results can largely depend on the scale parameter and the global function,
they are used as the input variables in the function (line 1). For the battery problem,
the following code is used to run [GP].

rul=GP (1,0.05) ;

The order of global function, funcOrd defines global function with the
GLOBAL in lines 42-48. There are three polynomial functions that is determined by
functOrd = 0, 1, or 2, but this part can be modified with any polynomial
function. Since functOrd = 1 in this example, the first-order polynomial function
in line 45 is used, which makes the design matrix from training data (line 21) and
new inputs (line 73).

The initial value of scale parameter, h0 is set as 0. 05 to find the optimum value
of hH (lines 23-24) that is estimated based on an optimization function fmincon
to find minimum value of the scale parameter between —2 and 2. The maximum
magnitude of the scale parameter, hMax = 2 (line 23) make a correlation of the
maximum distance become 0.7788.° This is to prevent ridiculously large value of

%The maximum distance, Xgmax 1N Eq. 5.23 is one since the training data are normalized between
zero and one. Therefore, when h=2(or —2), the correlation is calculated as

exp(—(1/2)2> = 0.7788.
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the scale parameter (when it is large, the correlation of the maximum distance close
to one), and hMax can be adjusted. The objective function is given in Eq. 5.25 (line
53), which is minimized in the FUNC (lines 50-54). The required parameters to
calculate the objective function are the correlation matrix, R and the magnitude of
error between global function and data, sigma that calculated in the RTHESIG
(lines 56-61). The correlation matrix, R (line 58) is calculated in the CORREL (lines
63-68) based on the correlation function given in Eq. 5.23 (line 66). Then, the
function parameters, theta and the error, sigma (lines 59, 60) can be calculated
by using Eq. 5.10. These three parameters depend on the scale parameter, and they
are finally calculated (line 25) after finding the optimum value of hH (line 24).

Now that GP simulation results in terms of mean, zMean, and the magnitude of
simulation error, zSig (line 29), can be calculated via GPSIM (lines 70-78). The
x1i (line 73) and r (line 74) are, respectively, a design vector and a correlation
vector, which depend on the new inputs, x. The mean of GP simulation, zMean
(line 75), the weight vector, w (line 76) and the magnitude of simulation error,
zSig (line 77) are given in the Egs. 5.15, 5.19, 5.20 and 5.21.

Once the mean and the error are obtained, the prediction uncertainty (lines 33—
36) is quantified based on Eq. 5.27 and the random sampling method explained in
Example 5.3. Since normalized data are used, the final results of degradation pre-
diction are rescaled to the original values (line 35). As mentioned before, the error
in simulation results is considered the prediction uncertainty (line 36).

5.2.4.3 Postprocessing

The postprocessing is the same as that used for the physics-based approaches in
Chap. 4, [POST], but thetaHat in the code for physics-based approaches is
replaced with a blank here since the function parameters are deterministically
estimated and the comparison with the true values is not possible. As the results, the
degradation and RUL are predicted as shown in Fig. 5.5, and the percentiles of
RUL distribution at 45 cycles are obtained as

Percentiles of RUL at 45 Cycles
5th: 39.5361, ©50th (median): 49.9718, 95th: 58.7455


http://dx.doi.org/10.1007/978-3-319-44742-1_4

5.2 Gaussian Process (GP) Regression 205

(b) at 45 Cycles
0.1
0.08
P
-g 0.06
E? 06
> ° DMQ 0.04
) === Median
0.4 { e 90% PI 0.02
—— Threshold :
—True
0.2 0
0 50 100 150 200 0 20 40 60 80 100 120
Cycles RUL (Cycles)

Fig. 5.5 GP prediction results for the battery problem

[GP] : MATLAB Code for Gaussian Process

1 function rul=GP (funcOrd, h0)

2 clear global; global DegraUnit

3 TimeUnit time y thres signilevel ns ny nt xTrain yTrain X dof
4 %$=== PROBLEM DEFINITION 1 (Required Variables) ==============
5 WorkName="' "'; % work results are saved by WorkName
6 DegraUnit="' "'; % degradation unit
7 TimeUnit="' "'; % time unit (Cycles, Weeks, etc.)
8 time=[ 1°'; %[cv]: time at both measurement and prediction
9

10 v=[1"'; $[ny x 1]: measured data
11 nT= ; % num. of training set including the current one
12 nt=[ ]1';%[nT x 1]: num. of training data in each training set
13 thres= ; % threshold (critical wvalue)
14 degraTrue=[ ]'; %[cv]: true values of degradation
15 signilevel= ; % significance level for C.I. and P.I.
16 ns= ; % number of particles/samples
17 %=== PROBLEM DEFINITION 2 (Training Matrix)

18 xTrain=[ ]; yTrain=[ ];

20 % % % PROGNOSIS using GP

21 ny=length(y) ;

22 X=GLOBAL (xTrain, funcOrd) ; %% Determine Hyperparameter
23 dof=size (yTrain,1l)-size(X,2);

24 nMax=2; hBound=hMax*ones (1, length (h0));

25 hH=fmincon (@FUNC,hO, [1,[], []1,[], -hBound, hBound) ;

26 [R,thetaH, sigmaH]=RTHESIG (hH) ; %% R, Theta, and Sigma
27 %=== PROBLEM DEFINITION 2 (Input Matrix for Prediction ======
28 for k=1l:length (time (ny:end)) ; %% Degradation Prediction
gg xNew=[ ];

[zMean (k, :),zSig(k,:)]1= ...
32 GPSIM(xNew, funcOrd, hH, R, thetaH, sigmaH) ;
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end;

o

tDist=trnd (dof,size (zMean, 1) ,ns) ; %% Prediction Uncertainty
zHatO=repmat (zMean, 1l,ns)+tDist.*repmat (zSig, 1,ns) ;
zHat=zHat0* (max (y) -min (y)) +min (y) ;

degraPredi=zHat;

% % % POST-PROCESSING

rul=POST ([],degraPredi,degraTrue) ; %% RUL & Result Disp
Name=[WorkName ' at ' num2str(time(ny)) '.mat']; save (Name) ;
end

% % % GLOBAL FUNCTION
function X=GLOBAL (x0, funcOrd)
nx=size (x0,1);
if funcOrd==0; X=ones (nx,1);
elseif funcOrd==1; X=[ones(nx,1l) x0];
elseif funcOrd==2; X=[ones(nx,1l) x0 x0.72];
end
end
% % % OBJECTIVE FUNCTION TO FIND H
function objec=FUNC (h)
global dof
[R,~,sigma] =RTHESIG (h) ;
objec=log (sigma” (2*dof) *det (R)) ;
end
% % % R, THETA, and SIGMA
function [R,theta, sigma]=RTHESIG (h)
global xTrain yTrain X dof
R=CORREL (xTrain,h); Rinv=R"-1;
theta= (X'*Rinv*X) \ (X' *Rinv*yTrain) ;
sigma=sqrt (1/dof* ((yTrain-X*theta) '*Rinv* (yTrain-X*theta))) ;
end
% % % CORRELATION FUNCTION
function R=CORREL (x0,h)
global xTrain
for k=l:size(xTrain,1l); for 1l=l:size(x0,1);
R(k,1)=exp (- (norm(xTrain(k,:)-x0(1,:))/h)"2);
end; end;
end
$ % % GP SIMULATION at NEW INPUTS
function [zMean,zSig]=GPSIM(x, funcOrd,h,R,theta,sigma)
global yTrain X
Rinv=R"-1;
x1=GLOBAL (x, funcOrd) ;
r=CORREL (x, h) ;
zMean=xi*theta+r'*Rinv* (yTrain-X*theta) ;
w=Rinv*r+Rinv*X* ( (X' *Rinv*X) \ (xi'-X'*Rinv*r)) ;
zSig=sigma*sqrt (w'*R*w-2*w'*r+1);
end
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5.3 Neural Network (NN)

The earliest artificial neural network was introduced in 1943 by Warren McCulloch,
a neurophysiologist, and a mathematician Walter Pitts. In 1949, Donald Hebb
published a book, “The Organization of Behavior,” where he formulated the
classical Hebbian rule, which is proved to be the basis of almost all neural learning
procedures. Perceptron, a simple mathematical representation of neuron, was
developed by Frank Rosenblatt in 1958. Unfortunately, this concept is proved to be
limited and can only solve linearly separable problems in Marvin Minsky and
Seymour Papert’s book Perceptrons, resulting research on neural network to an
abrupt halt.

After long silence in this area, John Hopfield invented associative neural net-
work in 1982, which is now more commonly known as Hopfield Network. He
applied this technology into useful device and persuaded many scientists to join this
area. At the same time, backpropagation algorithm, a generalization of
Widrow-Hoff learning algorithm, was invented by Rumelhart, Hinton, and
Williams. These events caused the renaissance of research in neural network.
Today, neural network is used to solve wide variety of problems such as fore-
casting, classification and statistical pattern recognition. In this section, the neural
network is introduced as a tool for prognostics.

The Neural Network (NN) algorithm is a representative data-driven prognostics
method, in which a network model learns a way to produce desired outputs, such as
the level of degradation or lifespan, by reacting to given inputs, such as time and
usage conditions. The relationship between inputs and outputs depends on how the
NN architecture is constructed and which functions (called the transfer or activation
function) are associated with the architecture. Once the network model learns
enough about the relationship between inputs and outputs, it can be used for the
purpose of prognosis.

There are many different types of NN, such as the feedforward NN (Svozil et al.
1997) that conveys the information in one direction, the radial basis function net-
work (Orr 1996) that usually uses the Gaussian radial basis function, the recurrent
NN (Bodén 2001) that has local feedback connections between the input and
outputs, and so forth. There are other neural networks, such as fuzzy-neural (Liu
and Li 2004), wavelet (He et al. 2004), associative-memory (Bicciato et al. 2001),
modular (Happel and Murre 1994), and hybrid (Zhang and Yuen 2013; Rovithakis
et al. 2004) neural networks. Among these types, the feedforward NN is the most
common one, and it is introduced in this book.
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5.3.1 Feedforward Neural Network Model

5.3.1.1 Concept of Feedforward Neural Network

The basic processing units in neural network is called neurons or nodes. For dif-
ferent functions of nodes, they can be grouped into different layers such as input
layer, output layer and hidden layer. The first layer is input layer which is used for
receiving input data from outside, while the last layer is output layer used to send
processed data out of the neural network. Hidden layer, existing between input and
output layer and as the name suggested, is invisible from outside and do not have
any interaction with outside.

The most popular architecture of NN is feedforward neural network (FFNN),
which means that information only moves in forward direction from input layer,
through hidden layer and to output layer. There is no feedback or flow within
layers. A two-layer feedforward neural network (FFNN) is illustrated in Fig. 5.6,
which is a basic form of it. In the figure, circles represent nodes, which can belong
to three different layers: input, hidden, and output layers. The input nodes and
output nodes represent the input and output variables, respectively. The hidden
nodes connect the input and output variables; i.e., they are fed input information,
and then forward the information to the output node. This is why it is called a
feedforward neural network. The number of nodes in the hidden layer should be
determined to properly express the mechanism between the inputs and output.

There are two different ways of defining layers in NN. First, each set of nodes in
the same column can be called a layer, i.e., input, hidden, and output layers. Also, a

Hidden layer Output layer
5
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= 3
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2
17}
=z
Output Output
Transfer Transfer
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Update parameters Update parameters Error
in Hidden layer in Output layer btw y

Fig. 5.6 Illustration of a typical network model: feedforward-backpropagation neural network
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layer can be understood as an interface between different columns of nodes. These
two definitions are basically the same, but we follow the second one as shown in
Fig. 5.6. That is, the hidden layer is located between input and hidden nodes, while
the output layer is between hidden and output nodes.

There are two types of parameters to be estimated in Fig. 5.6; the rectangles and
the ellipses are called weights and biases, respectively. Weight is an interconnection
parameter between different nodes, which represents the contribution for each input
data when calculating the weighted sum of all inputs. It can be either positive or
negative, where positive weight is considered as excitation and negative one as
inhibition. For each node in hidden nodes and output node, there is a bias attached
on it. Bias is usually used as threshold value added after weighted sum of inputs
from previous layer is calculated.

We define the name of weights and biases as follows. Weights in the hidden
layer are input weights (w,) since they are associated with the input nodes. On the
other hand, weights in the output layer are hidden weights (wj). Also, there are
hidden biases (b,) and an output bias (b,), which are biases for function inputs in
each layer. These parameters are integrated into some functions called transfer or
activation functions to determine the relation between input and output variables.
The input variables with input weights and hidden biases become the input for a
transfer function in the hidden layer, and whose outputs are assigned into the hidden
nodes. Again, the hidden nodes (outputs in the hidden layer) with the hidden
weights and output bias are used as the input for a transfer function in the output
layer, and whose outputs are the final network output. The mechanism of FFNN
will be explained in the following section in more detail.

The training process is equivalent to finding the optimal parameters, weights and
biases, such that the network model accurately represents the relationship between
inputs and outputs. Once the network model is trained enough, the model is
functionalized using transfer functions, weight and bias parameters. For this pro-
cess, the backpropagation is typically employed, which propagates the error
between training data and the network outputs backward. That is, updating-related
parameters (gradient or Jacobian) for hidden weights and output bias (output layer)
are updated first, and then the parameters for input weights and hidden biases
(hidden layer) are updated next based on the updated parameters in the output layer.
This is basically an optimization process to find the best weights and biases to
minimize the mean-square-error between network predictions and training data.
Since the FENN is usually trained with backpropagation method, it is often called
the backpropagation neural network. The process of the backpropagation will be
explained in the following section.

5.3.1.2 Feedforward Mechanism

The basic mathematical relationship in the feedforward network model is a linear
combination of input nodes with weights and biases as an input to the transfer
function in the next layer. The weights are usually multiplied with the value at their
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associated nodes, and then the biases are added to the sum of the multiplication
results to be an input to the transfer function. The feedforward mechanism can be
explained as

h=d,(Wx+b,), z=d,(Wh+b,), (5.28)

where W, is an nj, x n, (n, and n, are the number of hidden nodes and input
variables, respectively) input weight matrix associated with a n, x 1 vector of input
variables, x, and by, is a n;, X 1 hidden bias vector, which is the input for a transfer
function, d, in the hidden layer, whose function outputs are in h, a n;, x 1 vector of
hidden layer outputs. The h is combined with W), that is a n, X n;, (n, is the number
of output variables, and n, = 1 in Fig. 5.6) hidden weight matrix to be the input for
the transfer function, d, in the output layer with a n, x 1 output bias vector, b,.
Then, z is a n; x 1 vector of the output variables.

For the purpose of prognostics, the number of output variables, n, is usually
considered as one for the degradation level. During the training step, the vector of
n, training data, y, is available. These data measure the same degradation at n,
different times. For a given weight and bias parameters, the vector of outputs, z, can
be calculated at the same n, times. Then, the optimization algorithm finds the
weights and bias parameters that minimize the difference between the outputs, z,
and the training data, y. The training process utilizes n, training data in a batch
process. Therefore, Eq. 5.28 that is for one set of data can be rewritten by con-
sidering the number of measurement/training data, n, as:

H=d,(W,X+B,), z=d,(w,H+b,), (5.29)

where W, is a n, X n, input weight matrix, X is a n, X n, matrix of training input
data, B, =[b, b, ... by] is a hidden bias matrix, H is a n, x n, matrix
of hidden layer outputs, w;, is a 1 x n, hidden weight row vector, b, =
[b, b, ... by
network simulation outputs.

nyXny

1xn, 18 @ 1 X ny output bias vector, and z is a 1 x n, vector of

Example 5.4 Two-layer FFNN with linear transfer functions

Write the expression of the output of a two-layer FFNN with two input and
one hidden nodes as a function of input variables, weights, and biases. Use a
pure linear function, z = x for the transfer functions in both layers.

Solution:
This problem can be modeled as shown in Fig. E5S.4, which can be formu-
larized with n, = 2, n, = 1 and n, = 1 in Eq. 5.28 (or n, = 1 in Eq. 5.29).
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Fig. E5.4 Illustration of two-layer FENN with two input and one hidden nodes

The input, weight and bias matrices/vectors are given as:

W, =[w w], x= [il}, b, = b1, W, =w3, b, = b,
2

The input for the transfer function in the hidden layer is the same as its
output since the function is a pure linear, therefore the following equation can
be obtained:

h = WxX+bh = WX +W2X2+b1.
Then, the input and output in the output layer are obtained as

z=W;h+ bz
= w3(wix; +woxo +b1) + by
= (W1W3X1 T W2W3)C2) +w3by + bs.

Note that the two-layer FFENN with linear transfer functions can be
reduced to a one-layer network model with a pure linear function, as

Z = Wix1 +wixa + b, wiws = wi, waws = w5, w3by + by = b}

The above example can be generalized for pure linear transfer function. In such a
case, Eq. 5.29 can be rewritten as

=Wy, (WvX + Bh) + bz = (wth)X + (WhBh + bz)7 (530)

which is a one-layer network model with (w,W,) being input weights and

1xn,
(wiByr +b,), xn, being the output bias. In general, for any multilayer network model
with pure linear transfer functions, it is always possible to convert it to a
single-layer network model. When the transfer function is nonlinear, such as tan-
gent sigmoid function, such a simplification cannot be possible.

In the case of prognostics, structural health monitoring system measures damage
degradation in a sequence of times. Let us consider that n, 4 3 degradation data are
available as y = {y1,¥2, .- s Yn,>Yn,+1,Vn, +2:Vn,+3} that are measured at times
t={t1,10,. . tuta, 4 1,10, 42,1, + 3. It Will be shown later that n,+4-2 data are
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required to generate n, sets of training data. The simplest network model would
have the time as an input and the level of degradation as an output. However, this
may not be a good idea because different systems under different loading conditions
may have different degradation for the same time.

From the fact that damage degradations are given in a sequence of times, it might
be a good idea to estimate the degradation at time #; using degradation data at
previous times. For example, in order to predict degradation z; at time f;, the
previous three measured degradations, x = {y_ 17yk,2,yk,3}T can be used as an
input (n, = 3). That is, the network model predicts the degradation level at next
time step using measured degradations at previous times. As a sequence, 7+ can
be predicted using x = {yk,yk,l,yk,z}T. This sequence can be continued until
Zn, +3- In such a case, the input matrix in Eq. 5.29 can be defined as

yr y2 - Yny
X= |y y3 - Yn+1
Y3 Y4 0 Yn, 42 neXn,.

Even if a total n, + 3 measured data are available, only n, columns can be used
because the first n, data cannot be used as a prediction. For the training purpose, the
difference between n, number of predictions, z = {z, zs, . . ., Zn, +3} and the same
number of measured data y = {y4,ys,...,y,, +3} are defined as an error, which
needs to be minimized by changing weights and biases. Therefore, in prognostics,
ny + n, number of sequential data are required to have n, number of training set.

5.3.1.3 Transfer Function

The transfer functions characterize the relationship between two adjacent layers.
For mathematical reason, the transfer functions should be differentiable because the
gradient of mean-square-error with respect to weight parameters is needed in
backpropagation training process. There are several types of transfer functions
available, such as the sigmoid, inverse, and linear functions (Duch and Jankowski
1999). The choice of transfer functions mainly depend on the complexity and
performance of neural network model. In the viewpoint of prognostics, the
degradation normally does not have a complex behavior. Most cases, the degra-
dation monotonically increases or decreases. Even though a multilayer network
model with different types of transfer functions is available, a two-layer model with
sigmoid and linear functions will be enough to characterize degradation behavior.
By combining these two transfer functions and linear combination of input vari-
ables, it is possible to represent a variety of model forms in a two-layer network
model.

The pure linear and tangent sigmoid functions are shown in Fig. 5.7, which can
be obtained with the following equations:
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Fig. 5.7 Typical transfer functions. a Pure linear function (Eq. 5.31), b tangent sigmoid function
(Eq. 5.32)

Z=x. (5.31)
1_872x
Z:m. (532)

In order to show the capability of representing a complex behavior using a
simple transfer function, a two-layer network model is considered that has one input
node, one (or five) hidden node, and one output node. The weights and biases are
randomly generated from a uniform distribution: U(—5,5), which is used to cal-
culate the network model output at an arbitrary input based on Eq. 5.28 when
n; = 1. Then Fig. 5.8 can be obtained for x € [—1, 1] by repeating the process to
calculate the network output five times with randomly generated weights and biases

(a) (b)
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Fig. 5.8 Various shapes of the network outputs. a Network output with one hidden node
b Network output with five hidden node
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(Obtaining this figure remains as the Exercise problem P5.11), Fig. 5.8a, b are
when the number of hidden nodes is one and five, respectively. The model com-
plexity depends on the number of hidden nodes. Considering that the degradation
behavior is in general monotonic, a two-layer network model with the tangent
sigmoid and pure linear functions should be general enough to model the degra-
dation behaviors. Therefore, the neural network model for the purpose of prog-
nostics is not expanded with more than one hidden layer in this book. For the
transfer functions, other forms can be used, but the pure linear and the tangent
sigmoid functions are usually employed.

5.3.1.4 Backpropagation Process

The backpropagation is a training method to determine weights and biases through
a learning/optimization algorithm by backward propagation of the errors between
the training data and the network outputs. The backpropagation can be understood
as a layer-by-layer updating, which is more effective to find optimum values of the
parameters than updating all of them together. The steps for training process with a
ny X n, matrix of training input data X and a 1 X n, vector of training output data
y as follows:

Step 1. Initial values of the parameters (weights and biases) are set. Selection of
initial weight parameters is important as it affects whether neural network can find the
global optimum and how fast the convergence rate is. Too large initial weights are
likely to make them fall in the saturation region easily and the network barely learns,
while too small weights lead to a low learning rate. For optimum results, initial weight
parameters are usually set as random numbers chosen between —1 and 1.

In the case of damage prognostics in this book, damage is monotonically
increases or decreases, but it stays in a positive number. In addition, the level of
damage in previous times are often used as inputs to the next time. Therefore, it is
difficult to end up negative weights, which means that the damage in next time is in
different sign from previous times. An increasing damage may have w, > 1, while
decreasing damage may have w, < 1. Because of this reason, the initial estimates of
weight parameters are set to be one.

Step 2. Network simulation outputs z are calculated with the weights and biases
in Step 1 through the feedforward process (see Fig. 5.6 and Eq. 5.29). This step is
performed for all n, x n, training data. The dimension of zis a 1 x n,.

Step 3. The errors between the training output data y and the simulation outputs
z are calculated. Different errors can be used, such as mean squared error (MSE),
mean-absolute-error, and sum of squared errors. For example, the following MSE
can be used:
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MSE = — Y [i — (W, By, Wi, b, (5.33)

Step 4. The changes of weights and biases, Aw;, and Ab,, of the output layer are
calculated. In the backpropagation stage, the weights and biases at the output layer
are updated first. Different optimization algorithms have different methods of cal-
culating Aw;, and Ab,. For example, the gradient descent and the Levenberg—
Marquardt (LM) algorithms respectively, calculate a gradient and a Jacobian of
MSE with respect to the parameters (see the reference by Yu and Wilamowski
(2011) for more details). The gradient descent is a basic learning algorithm used
with the backpropagation, but the LM algorithm is commonly used since it is fast
and stable in convergence.

Step 5. The changes of weights and biases, AW, and AB,, of the hidden layer
are calculated. Calculation of AW, and ABj, depends on Aw,, and Ab, in Step 4 and
also MSE in Step 3.

Step 6. The weights and biases are updated by adding the changes in Step 4 and
Step 5.

Step 7. Steps 1-6 are repeated until the network performance reaches to the
stopping criterion.

5.3.1.5 Introduction to MATLAB Functions for Feedforward Neural
Network

A sequence of MATLAB functions can be used to define a network model, to set up
configurations, to train the network model (i.e., to determine weights and biases),
and to predict future degradation behavior. The following is four steps of making
predictions using FFNN.

In the following steps, the italic letters represents options that can be modified,
but the default options explained so far will be mostly adopted in this book. For
more options and understanding the neural network process, see the MATLAB
user’s guide (Beale et al. 2015).

(1) The function feedforwardnet creates a two-layer network model with
user-defined number of hidden nodes. Transfer functions have default options;
the tangent sigmoid and the pure linear functions are used for the hidden and
the output layers, respectively. Once a network model is created, all other
required information are automatically assigned with default options, which is
explained in the following steps.
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(2) The function configure normalizes input and output data and assigns them
to each node. This step is optional. It automatically normalizes the input and
output data between —1 and 1, and the initial values of weights and biases are
randomly selected. Configuration is automatically done when the next step
(training) is run, but this step can be added to assign the initial values of the
parameters instead of random selection.

(3) The function train’ trains the network model with the LM backpropagation
for training method and the MSE for the error function (or performance
evaluation function). For MATLAB implementation, early stopping option has
several criteria. One of stopping criteria is based on validation error, which is
the most critical criterion of preventing overfitting. In this criterion, training
data are divided into three sets based on random data division method, 70 %
for training, 15 % for validation, and 15 % for test. The training sets are used
to update the weights and biases based on their error in the network output.
The error of the training set keeps decreasing during the training process, and
the error in the validation set also decreases, which means the training process
goes well. On the other hand, the error in the validation set starts to increase
after some phase of training process, i.e., good performance at the training set
but bad performance at the validation set (new points, prediction points),
which means that the network model overfits the training data. Therefore, the
training process stops when the validation error starts increasing. The test data
sets are not used during the training process but used for testing the prediction
accuracy with trained parameters.

(4) The function sim simulates/predicts the network outputs at new inputs based
on the identified weights and biases during the training process.

Example 5.5 feedforwardnet

Consider the same problem given in Example 5.2. Perform the feedforward
neural network by using the MATLAB function feedforwardnet with
one hidden node and plot predictions at X,y € [—5, 23].

Solution:
The following MATLAB script shows how to use the feedforwardnet
MATLAB toolbox to perform FENN introduced in Sect. 5.3.1.

"The function train uses all data at once, while adapt that is another learning method uses data
one by one and is suitable for online learning. For real problems, adapt can be utilized since it
does not require to store tremendous amount of monitoring data, but train is used in this book
since it is more efficient for most practical problems.
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x=[0 5 10 15 207 ; %$[1 x 5] training input data
y=[1 0.99 0.99 0.94 0.95]; $[1 x 5] training output data
nh=1; % num. of hidden node
net=feedforwardnet (nh) ; % creat two-layer network model
net=configure (net, x,v) ; % this is optional
[netModel, trainRecor]=train(net,x,y); % train the model ‘net’
xNew=-5:0.1:25; % new input points
z=sim (netModel, xNew) ; $ simulation results

The process itself is quite simple. First, the measurement times (cycles)
and the degradation data are defined as training input data, x, and output data,
v, respectively. The network model, net is created with function feed-
forwardnet after defining the number of hidden node in nh = 1. The next
configuration step, configure, is optional, but with this we can extract the
initial values of weights and biases by using the following variables: net . iw
for input weights, net . 1w for hidden weights, and net . b for biases, which
are shown in Fig. ES.5 (blue-colored values). Note that the initial values can
be different every time when configure is called since they are randomly
generated.

Initial 1.40 0 -0.13 0.02

O= O 6

& &>

Optimum 1.54 -0.22 -1.04 0.05

Fig. E5.5 Feedforward network model with initial and, optimum values of parameters

Now, the network model is trained based on function train and the
trained model is named as netModel. The optimum values of parameters
can be shown as the same way, but using netModel instead of net, which
are also shown in Fig. E5.5 (red-colored values). The results can also vary
every time since the initial values of parameters and the training sets will be
different.

The number of training data that is three in this problem is too small,
which is even less than the number of parameters to be estimated. In such a
case, the estimated network model is not accurate. In general, it is required
that the number of training data must be larger than that of network model
parameters. Especially, since only 70 % of training data are used for the
purpose of training, it is important to have enough training data to have a
robust training results.
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Training records are stored in trainRecor. For example, the indexes for
training, validation, and test sets can be shown by using trainRecor.
trainInd, trainRecor.valInd, and trainRecor.testInd,
respectively, whose results are 2, 3, 4 for training, 5 for validation, 1 for test
sets (again, these results can vary). Also, the performance (MSE) of training,
validation, and test sets are recoded, and it can be plotted with plotperf
(trainRecor) ; which is shown in Fig. E5.6. There is a total 8 epochs that
can be known with trainRecor .num_epochs, and the training stops at 2
epochs that can be known with trainRecor.best_epoch based on the
early stopping. Since the performance of validation sets are recoded in
trainRecor.vperf, the circle in the figure can be plotted with the fol-
lowing codes:

bestE=trainRecor.best epoch;
bestP=trainRecor.best vperf; % or trainRecor.vperf (bestE+1l)
hold on; plot (bestE,bestP, '0o");

Note that the performance of the validation set starts to increase after the
best epoch at the circle in the figure, while that of the training set still
decreases.

Performance is 9.93509e-09

Train
3 Validation
107 ¢ Test

Performance

8 Epochs

Fig. E5.6 Performance plot for training, validation and test sets
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Once training the network model is completed, simulation outputs can be
obtained with sim for xyew € [—5,25], which is shown in Fig. E5.7.

1.02

Degradation level

® Data
— NN simulation

0.92
-5 0 5 10 15 20 25

X

Fig. E5.7 FENN simulation results

5.3.1.6 Uncertainty

As explained earlier, the network model prediction can vary due to the randomly
chosen initial values of weight and bias parameters as well as randomly chosen
70 % of training data set. Because of these randomness, the network model pre-
diction has uncertainty. There are several ways to consider uncertainty in NN
simulation results, which will be discussed in Sect. 5.5.3. In this book, uncertainty
in the prediction results is obtained by repeating the NN process several times.
Detailed process is explained in Example 5.6.

Example 5.6 Uncertainty in NN simulation

Plot all simulation results by repeating the process in Example 5.5 5 times.
Record the initial and optimum values of weights and biases, and the indexes
of train, validation, and test sets.

Solution:

Whenever the network model is configured or initialized with net = init
(net), the initial values of parameters are assigned differently. Also, the
train, validation, and test sets change when the training is restarted. These two
are the sources of uncertainty in the neural network process and make dif-
ferent results. Figure ES.8 can be obtained by repeating the process given in
the solution in Example 5.5, and the initial/optimum values of parameters and
the indexes of data sets are listed in Table E5.2. In the figure, most results
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follow the trend of data except for the fifth simulation result (magenta dashed
curve). This is because of the early stopping, which sometimes hinders to
obtain proper optimization results. As shown in Fig. E5.9 and the last column
in Table ES5.2, it practically stops at the initial stage. The optimization
algorithm can be modified to resolve this problem, e.g., modifying the
parameters associated with the optimization algorithm or using other opti-
mization algorithms. In this book, however, regulations are applied based on
the property that degradation should increase or decrease along with the
cycles rather than modifying the optimization algorithm. This will be further
explained in MATLAB code [NN] .
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Fig. E5.8 FFNN simulation results with 5 repetitions
Table ES.2 Prediction intervals in NN simulation
Repetition 1 2 3 4 5
W init 1.4000 —1.4000 1.4000 —1.4000 1.4000
b init 0.0000 0.0000 0.0000 0.0000 0.0000
W2 init —0.1332 0.6697 0.7417 —0.3831 0.9438
b2 init 0.0179 —0.9266 —0.8994 0.6767 —0.1827
W1 opti 1.5431 —1.4141 1.1967 —1.3651 1.4000
b1 opii —0.2173 0.2205 —0.0467 0.0674 0.0000
W2, opti —1.0414 0.7558 —0.8837 0.9658 0.9438
b opii 0.0480 —0.3632 —0.1038 0.1140 —0.1827
Train set 2,3, 4 1,3,5 1,4,5 3,4,5 1,2,3
Validation set 5 4 3 1 4
Test set 1 2 2 2 5
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o5 Performance is 4.48403e-06
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Fig. E5.9 Performance plot for fifth result

5.3.2 MATLAB Implementation of Battery Prognostics
Using Neural Network

In this section, the MATLAB implementation of neural network code [NN] is
explained using the same battery problem in Sect. 4.1.1. Problem definition and
post-processing parts are similar to that of [NN] with minor modifications.
Therefore, focus is on the prognosis part of the code.

5.3.2.1 Problem Definition (Lines 5-15, 17, 30-33)

All required variables for NN are the same as that of GP. It is noted that even
though the repetition of the NN process replaces for the uncertainty quantification,
thousands of repetition may not be appropriate. Therefore, 30-50 repetitions are
employed for the number of samples, ns in NN (line 15), which might be the
proper repetition number to capture different simulation results caused by the dif-
ferent data sets and initial values of weights and biases (ns = 30 in this problem).
Since NN automatically normalize the input and output matrix between —1 and 1,
additional process is not required as in the GP. Therefore, codes for the input
training matrix (line 17) and the new input (line 31), respectively, become
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xTrain=time (1l:length(y)); yTrain=y;

and

xNew=time (ny-1+k) ;

5.3.2.2 Prognosis Using NN

The MATLAB functions for NN are already introduced in Example 5.5, but some
modifications are included in the MATLAB code [NN]. First of all, the following
command line is used to run the battery prognostics problem (line 1).

rul=NN ({ 'purelin'; 'purelin'},1,2);

There are three input variables to run [NNJ]. For this problem, two linear
functions are used for TransFunc with one hidden node, nh=1. 8 Also,
outliCrite=2 is the criterion to handle outliers that are improper prediction
results such as the magenta dashed curve in Fig. E5.8. Its value represents the level
of standard deviation to remove predictions. That is, out1iCrite=2 means the
results beyond the bound of 2¢ are eliminated from the final results (will be
explained later).

The transfer functions are assigned after creating the network model (lines 24-25).
Since a test set is not used for training but for comparison between different models,
it is not considered. Instead, the test set is added to the validation set by adjusting the
ratio of validation data to 30 % (line 26). This can improve prediction results with
small number of training data. Then, training process can be performed (line 28) with
the input and output matrices defined in line 17.

Even though the early stopping is employed to prevent overfitting, it cannot
control the underfitting in which the fitting results cannot follow the data trend well
with a contrast to the overfitting. The magenta dashed curve/lines in Figs. E5.8 and
5.9a show that case. All samples for degradation prediction including gray and
magenta lines in Fig. 5.9a can be plotted with plot (time (ny:end), zHat)

8Since two linear functions are used, it is always a linear function, and thus more than one hidden
node are not necessary. Besides, increasing the number of hidden nodes increases the number of
parameters to be estimated, which can make prediction results worse.
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Fig. 5.9 Illustration of prediction outliers. a Case 1, b case 2

after loading the saved work file. To prevent having these improper results, regu-
lations are added in lines 36—44. If a prediction among ns repetitions cannot satisfy
the regulations, it is removed from the prediction results. First, the outliers deviated
from the majority of prediction results are determined based on the results at the last
prediction step, z1 (line 36). The samples located within 2¢ that is from the
criterion option, out1iCrite = 2 are selected in local (line 37), which can be
considered as a 97.72 % confidence interval. Those predictions that are out of 2¢
confidence interval are removed from the prediction samples. Also, another regu-
lation is added (lines 38-44) to consider the case that simulation results do not
monotonically increase/decrease as shown in Fig. 5.9b. Based on the codes in lines
38-44, samples that monotonically increase/decrease in the prediction results are
selected in 1oca2 (line 43).

The final prediction results that satisfy both two regulations are saved as
degraPredi (lines 45-46). The number of final samples is displayed to check
how many outliers are eliminated (lines 47—48). In this case 3 our of 30 are
eliminated as outliers (can vary). The remaining process is the same as GP.

5.3.2.3 Postprocessing

As results, the degradation and RUL are predicted as shown in Fig. 5.10, and the
percentiles of RUL distribution at 45 cycles are obtained as
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Fig. 5.10 NN prediction results for the battery problem. a Degradation b RUL

Percentiles of RUL at 45 Cycles
5th: 38.0446, 50th (median): 50.8084, 95th: 89.8012

In Fig. 5.10, all prediction results from 30 repetitions are plotted along with the
median and the 90 % prediction interval. Three magenta solid lines in the figure
represent outliers excluded to calculate the median and the prediction interval. The
final prediction results (gray lines) and excluded ones (magenta lines) can be plotted
after loading the saved work file with the following code.

plot (time (ny:end), zHat, 'm") ;
plot (time (ny:end) ,degraPredi, 'color',[.5 .5 .5]);

From Figs. 5.5 and 5.10, it is shown that the uncertainty in the prediction results
is larger than that of GP. The main reason is that in NN, there are more parameters
to be estimated with a less number of training data than GP. In NN, there are four
parameters (one input weight, one hidden weight, one hidden bias, and one output
bias), and seven data in the training sets (70 % of total ten training data), while
there are three parameters (one scale parameter and two coefficients) and ten
training data in GP.



5.3 Neural Network (NN) 225
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[NN] : MATLAB Code for Neural Network

function rul=NN(TransFunc,nh,outliCrite)
clear global;
global DegraUnit TimeUnit time y thres signilevel ns ny nt

%=== PROBLEM DEFINITION 1 (Required Variables) ==============
WorkName="' "'; % work results are saved by WorkName
DegraUnit=' '; % degradation unit
TimeUnit=" "'; % time unit (Cycles, Weeks, etc.)
time=[ ]1'; $[cv]: time at both measurement and prediction
v=[1"; %[ny x 1]: measured data
nT= ; % num. of training set including the current one
nt=[ ]1';%[nT x 1]: num. of training data in each training set
thres= ; % threshold (critical value)
degraTrue=[ ]'; %[cv]: true values of degradation
signilevel= ; % significance level for C.I. and P.I.
ns= ; % number of repetition for NN process

%=== PROBLEM DEFINITION 2 (Training Matrix)

xTrain=[ ]; yTrain=[ ];

% % % PROGNOSIS using NN
ny=length(y);
for i=l:ns; %% NN Process
disp(['repetition: ' num2str(i) '/' num2str(ns)]);
% create FFNN
net=feedforwardnet (nh) ;
net.layers.transferfcn=TransFunc;
net.divideParam.valRatio=0.3; net.divideParam.testRatio=0;
% train FFNN
[netModel, trainRecod]=train (net, xTrain', yTrain');

’

%=== PROBLEM DEFINITION 2 (Input Matrix for Prediction) =====
for k=l:length(time (ny:end)); %% Degradation Prediction

xNew=[ ];

zHat (k,1)=sim(netModel, xNew') ;

end;
end
zl=zHat (end, :) ; %% Prediction Results Regulation
local=find (abs (zl-mean(zl)) < outliCrite*std(zl))
i0=1;

for i=l:ns;
if y(1)-y(nt(1l))>0; z2=wrev(zHat(:,1));
else z2=zHat (:,1i);

end;

if issorted(z2)==1; loca2(i0)=i; 10=i0+1; end
end

loca=intersect (local, loca2?) ; %% Final Results

degraPredi=zHat (:, loca) ;
ns=size (degraPredi,?2);
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disp(['Final num. of samples: ' num2str(ns)])

% % % POST-PROCESSING

rul=POST ([],degraPredi, degraTrue) ; %% RUL & Result Disp
Name=[WorkName ' at ' num2str(time (ny)) '.mat']; save (Name) ;
end

5.4 Practical Use of Data-Driven Approaches

In the previous section of Gaussian process regression, cycle or time is used as the
input variable, which might work well for a simple problem with one data set. It,
however, cannot be proper for most practical cases with complex behaviors. It is not
reasonable to use cycle/time as an input without additional input information when
there are training data sets obtained under different usage conditions, because dif-
ferent operating conditions may lead to different degradation rates. Therefore, a
practical method for data-driven approaches is introduced in this section, i.e.,
degradation levels are used as both input and output. The current degradation state
as an output can be expressed with several previous degradation states as the inputs,
which can utilize the information included in different degradation rates from the
different data sets. These inputs are similar to that of NN model. Also, having
previous degradation states as inputs can allow to use a simpler functional form
than when times/cycles are used as inputs, which can help to prevent overfitting.
Therefore, prediction results can be more accurate with given information. Detailed
description is explained in the following subsections.

5.4.1 Problem Definition

The crack growth problem introduced in Sect. 4.5.1 is employed again for the
practical use of data-driven approaches. Degradation data are generated with the
same manner as the data given in Table 4.2, but the Gaussian noise is not added this
time. These data are considered as the prediction set. For the training set, one
additional data set are generated with the same model parameters, My = 3.8,
Cie = 1.5 x 10719 and initial crack size, aome = 0.0lm but different loading
condition, Ac = 79 MPa (Ac = 75 MPa for the prediction set). This set has 26 data
measured at every 100 cycles from zero to 2500 cycles. The training data including
both prediction and training sets are shown in Fig. 5.11 along with the true
degradation of the prediction set.

As the method used by Chakraborty et al. (1992), the previous degradation data
are employed as input variables. When the previous three data are used as inputs,
the fourth data become the output, and this is performed sequentially to make input
and output matrices, which is explained in Table 5.1 for the case of one data set.
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Fig. 5.11 Training data for crack growth problem

Table 5.1 Input and output data

Training Prediction
Cycle 4 5 |k k+1 k+2 k+3
Input i, »2, - V-3, Yk-2, Vk-1, Vis
Y2, Y3, Vk-2, Yi—15 Yis Zk+15
Y3 Ya V-1 Yk Tk+1 Tk +2
Output V4 ys .. Yk Zk+1 Zk+2 Zk+3

In the table, k is the current time index, and there are k — 3 training data sets since
the previous three data are the input, which makes input and output training
matrices. After the training process is completed, inputs for prediction are set with
the same manner. At k + 1th cycles, the simulation output, zz 1 is predicted with
the three most recent measurement data, y;_,.;.

Two different predictions are possible. The first one is called short-term pre-
diction, where measured three data at previous cycles are used to predict the
degradation at the current cycle. This is one-step ahead prediction. The difficulty of
short-term prediction is that it is not possible to predict the degradation in future
time because measurement data are not available. However, short-term prediction is
accurate because it uses actual measured data and extrapolation distance is short.
The second one is called long-term prediction, where predicted degradations are
used to predict the degradation at further future time. In Table 5.1, training data are
available up to kth cycle. Starting from k 4 2th cycle, there is no three measurement
data available. In this case, the simulation output (prediction result at the previous
step) is utilized (see k+2th and k+ 3th cycles) for a long term prediction. Of
course, since prediction degradation is used for inputs, the accuracy will be worse
than short-term prediction, but it allows to predict the degradation in long future
time. This book considers the long-term prediction only.
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5.4.2 MATLAB Codes for the Crack Growth Example

Based on the given information in Sect. 5.4.1, the problem definition part (lines 5—
15) in the codes [GP] and [NN] is changed as follows:

WorkName='Crack GP'; % or 'Crack NN'
DegraUnit='Crack size (m)';
TimeUnit='Cycles';

time=[0:100:2500, 0:100:1600, 1700:100:4000

T .
’

1
y=[0.01 0.0104 0.0107 0.0111 0.0116 0.0120 0.0125
0.0131 0.0137 0.0143 0.0150 0.0158 0.0166 0.0176
0.0186 0.0198 0.0211 0.0226 0.0243 0.0263 0.0287
0.0314 0.0347 0.0387 0.0437 0.0501 ...
0.0100 0.0103 0.0106 0.0109 0.0112 0.0116 0.012 0.0124
0.0128 0.0133 0.0138 0.0143 0.0149 0.0155 0.0162 0.0169]"';
nT=2;
nt=[26 16]"';
thres=0.05;

mTrue=3.8; cTrue=1.5e-10; aTrue=0.01; dsig=75; t=0:100:3500;

degraTrue= (t'.*cTrue.* (1-mTrue./2) .* (dsig*sqrt (pi)) . "mTrue. ..
+aTrue.” (1-mTrue./2)) .” (2./ (2-mTrue)) ;

signilevel=5;

ns=5e3; % or 30 for NN

There are 42 measurement data in y, 26 from the training set (first four lines) and
16 from the prediction set (last two lines). The measurement data from the training
set should be inputted first, and followed by data from the prediction set. This is the
same for the cycle/time, the first (0:100:2500) and the second (0:100:1600)
portions in time correspond to the training set and the prediction set, respectively.
The last one (1700:100:4000) is for the degradation prediction, i.e., it is pre-
dicted at every 100 cycles from 1700 cycles to 4000 cycles. For this problem, the
total number of data sets, nT = 2, and the number of training data in each set is
inputted as nt = [26 16]".

In data-driven approaches, one of the important things is to properly build the
input and output matrices to make good use of given information, which is related
to modify the second problem definition parts, lines 17 and 27-31 in the code [GP]
and lines 17 and 30-33 in the code [NN]. Any variation will be possible based on
users’ application and novel ideas, but the way introduced in Sect. 5.4.1 is
implemented. The training input and output matrices explained in Table 5.1 can be
programed as
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nx=3; % num. of previous data as the input
y0=(y-min(y))/ (max (y) -min(y)) ; % normalization of data
nm=size(y,2); a=0; b=0;

for 1=1:nT;

for k=1l:nt(l)-nx;
xTrain (k+a, l:nx*nm)=reshape (y0 (k+b: (k-1) +nx+b, :), 1, nx*nm) ;
yTrain (k+a, :)=y0 (k+nx+b, :) ;

end; a=size (xTrain,1l); b=sum(nt(l1:1));

end

which replaces line 17 in the code [GP]. The number of input (previous data) can
be modified with nx in the code above. Note that even if time is defined in the
problem definition section, it is not used as an input. Instead, previous measured
data are used as inputs. Therefore, the GP predicts the degradation level when nx
previous degradation data are given as inputs. Therefore, the functional form of GP
becomes

Zr = GP(Yi—3, Yi—2, Yi—1)

For the input for prediction part, the lines 27-31 in [GP] are replaced with the
following code.

input=y0 (end-nx:end, :) ;
for k=1:length (time(ny:end)) ;
xNew=reshape (input (k: (k-1) +nx, :), 1, nx*nm) ;
[zMean (k, :),zSig(k,:) ]=
GPSIM (xNew, funcOrd, hH, R, thetaH, sigmaH) ;
if k>1 input (k+nx, :)=zMean(k, :); end
end;

The code modification for NN is basically the same as that of GP. For input and
output training matrices, normalization is not considered in this case, and the fol-
lowing code is applied to line 17 in the code [NN].

nx=3; % num. of previous data as the input
nm=size(y,2); a=0; b=0;
for 1=1:nT;
for k=l:nt(l)-nx;
xTrain (k+a, l:nx*nm)=reshape (y (k+b: (k-1) +nx+b, :),1,nx*nm) ;
yTrain (k+a, :)=y (k+tnx+b, :) ;
end; a=size (xTrain,l); b=sum(nt(l:1));
end
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For the input for prediction part, lines 30-33 in [NN] are replaced with the
following code.

input=y(end-nx:end, :);

for k=1:length (time(ny:end)) ;
xNew=reshape (input (k: (k-1) +nx, :), 1, nx*nm) ;
zHat (k,i)=sim (netModel, xNew') ;
if k>1, input (k+nx, :)=zHat(k,1); end

end;

There is an addition modification required in GP. A value of the exponent, 2, in
the correlation equation in Eq. 5.23 often causes singularity in the correlation
matrix. Therefore, it usually adjusted with a value less than 2. In this problem, the
exponent is adjusted with 1.9, and line 66 in [GP] is replaced with the following
code.

R(k,1)=exp (- (norm(xTrain(k,:)-x0(1,:)) /h)*1.9);

Now the codes [GP] and [NN] can respectively be run with

rul=GP(1,0.1);

and

rul=NN ({'purelin'; 'purelin'},1,2);

in which linear functions are used for both hidden and output layers in [NN]. Also,
a linear global function is used in [GP].

5.4.3 Results

The results for degradation predictions are shown in Fig. 5.12 for both GP and NN.
Note that linear functions are used for both global function in GP and transfer
functions in NN, but they can predict nonlinear behavior of degradation well. This
is because the relation between previous three degradation data and the current
degradation data can be captured by a linear function. The GP predicts degradation
accurately with very small uncertainty as shown in Fig. 5.12a. However, the
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Fig. 5.12 Degradation prediction. a GP, b NN

prediction lower bound after 3000 cycles does not follow the true behavior. This
may happen because the largest input crack size is 0.05 m, and beyond this size, the
GP simulation becomes extrapolation. In the extrapolation region, the correlation is
reduced, and GP tends to follow the global function. Also, the results are largely
affected by the correlation function including different scale parameter and the
exponent in Eq. 5.23. The degradation result from NN is shown in Fig. 5.12b. Out
of 30 repetitions (ns = 30), 19 of them failed to satisfy two regulations: outliers and
monotonicity. Therefore, only 11 degradation results are used to calculate the 90 %
prediction intervals in the figure.

RUL prediction results from GP and NN are shown in Fig. 5.13, and the per-
centiles of RUL distribution at 1500 cycles are obtained from GP:

(a) at 1500 Cycles (b) at 1500 Cycles
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Fig. 5.13 RUL prediction at 1500 cycles. a GP, b NN
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Percentiles of RUL at 1500 Cycles
5th: 1511.83, 50th (median): 1524.44, 95th: 1554.58

And from NN:

Percentiles of RUL at 1500 Cycles
5th: 1246.77, 50th (median): 1495.7, 95th: 1832.39

5.5 Issues in Data-Driven Prognostics

In the following, three important issues are discussed for GP- and NN-based
prognostics, which are basically the same as the issues in physics-based prognos-
tics. Many options and variations are possible for data-driven algorithms, but this
book introduces the basic ones. Therefore, it is important that users are aware of
these issues in order to use the algorithm properly.

5.5.1 Model-Form Adequacy

5.5.1.1 GP: Global and Covariance Functions

In GP-based prognostics, the performance largely depends on the selection of
global and covariance functions. Since GP has usually been employed in interpo-
lation, a global function often takes the form of constant, and it has been considered
as less important than the covariance function. In prognostics, which is equivalent
to extrapolation, the global function in GP is as much important as the covariance
function. However, there is not much literature on selecting or updating the global
function to improve the prediction capability in the extrapolation region.

On the other hand, covariance functions determine GP simulation quality for
entire regions, and there are many researches to study the effect of the covariance
function and to use a better covariance function. Mohanty et al. (2009) compared
the prediction results of crack length under variable amplitude loading using the
radial basis function (RBF) and NN-based covariance function, and showed that
RBF-based GP model outperformed the NN-based model in their application.
A few articles have also introduced nonstationary covariance function, which
adapts to variable smoothness by adding or multiplying simple covariance func-
tions. Paciorek and Schervish (2004) showed that the results by nonstationary
covariance functions are better than those by the stationary GP, but pointed out the
loss of simplicity of the algorithm, as the nonstationary GP requires more param-
eters. Brahim-Belhouari and Bermak (2004) employed nonstationary GP to predict
respiration signals and compared them with those from an exponential covariance
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function. Liu et al. (2012b) used the combination of three covariance functions to
predict lithium-ion battery degradation.

5.5.1.2 NN: Network Model Definition

The definition of the network model includes selecting the number of hidden nodes,
hidden layers, and input nodes. Although there is no general selection procedure for
the number of hidden nodes, Lawrence et al. (1996) investigated the usage of mean
squared errors in order to find the optimal number of hidden nodes. Gémez et al.
(2009) used the idea of measuring complexity of function to determine the number
of nodes and showed that the results were close to the optimum. More studies on
the number of hidden nodes are summarized in the literature by Sheela and Deepa
(2013). While one or two hidden layers are commonly used, Ostafe (2005) pre-
sented a method using pattern recognition to determine the number of hidden
layers.

The problem of determining the number of input nodes always exists in the
data-driven approach since all available information, such as time, loading condi-
tions, and degradation data can be considered as inputs. It is natural to use
degradation data as inputs, but Chakraborty et al. (1992) concluded that it was
unclear how many past values should be used as inputs. Chang and Hsieh (2011)
explored the optimal number of input nodes using particle swarm optimization. In
conclusion, there is no universal procedure to establish a proper NN model, which
may be difficult for new users without much experience. In recent years, there have
been efforts to find proper model/method for each application rather than a study of
selecting number of nodes and layers (Guo et al. 2012; Hodhod and Ahmed 2013;
Kang et al. 2014).

5.5.2 Optimal Parameters Estimation

5.5.2.1 GP: Scale Parameters

Determining the scale parameters (or hyperparameters) in the covariance function is
also important, since they determine the smoothness of the GP function. For
example, in Eq. 5.23, the function becomes smoother as & is increased, but sin-
gularity is encountered for the correlation matrix if it is too high. In general, the
parameters are determined via an optimization algorithm by minimizing a likeli-
hood function corresponding to the error between a global function and data.
Finding optimal parameters, however, is not guaranteed, and even if they are found,
they are not always the best selection (An and Choi 2012). Since the scale
parameters are seriously affected by the magnitudes of input and output values, a
common practice is to normalize the input and output variables. Mohanty et al.
(2009) studied the performance of predicting crack growth according to three
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different types of scaling: logarithmic, normalized and log-normalized scaling. Neal
(1998) considered the scale parameters as distributions rather than deterministic
values, and An and Choi (2012) found that the result with distributions outperforms
the one by deterministic values.

The current parameter estimation schemes were developed for the purpose of
surrogate modeling where the main objective is to predict accurately in the inter-
polation region. There is no literature available to estimate the scale factor for the
purpose of extrapolation, which is the main interest in prognostics. For example, if
many health monitoring data are available with a small time interval, it is likely that
the scale parameter becomes a small value because enough data are available with a
small distance. However, when extrapolation is used with a small-scale parameter,
the prediction quickly converges to the global model because the correlation
decreases quickly. Therefore, it is likely that the prediction in the extrapolation
region will be inaccurate.

5.5.2.2 NN: Weights and Biases

Once a network model is defined, the next issue is to find the weights and biases
that are related with the model using a learning/optimization algorithm. In NN, no
matter how complex the relationship between the input and output layer is, it is
possible to express the relationship by augmenting the number of hidden layers and
hidden nodes. However, more complex NN model ends up with more numbers of
unknown parameters, which requires more training data. When the backpropagation
algorithm is used especially, the following problems occur: (1) the global optimum
is extremely difficult to find in the case of many parameters and (2) the convergence
rate is very low and depends on the initial estimates. For these reasons, there have
been many efforts to improve the drawbacks of this algorithm, such as a dynamic
self-adaptation algorithm (Salomon and Hemmen 1996), a simulated annealing
algorithm (Chen et al. 2006), combined genetic and differential evolution algorithm
(Subudhi et al. 2008), and a technique combining the conjugate gradient opti-
mization algorithm with the backpropagation algorithm (Nawi et al. 2008). There
are many ensemble techniques to improve the performance of algorithms (Soares
et al. 2013; Jacobs 1995; Drucker et al. 1994; Krogh and Vedelsby 1995; Chao
et al. 2014; Naftaly et al. 1997), as well as other efforts in Refs. (Wilamowski et al.
2001; Salomon and Hemmen 1996; Nawi et al. 2008).

While the aforementioned methods are to find the parameters in a deterministic
sense, there have been probabilistic approaches based on the Bayesian learning
technique (Hernandez-Lobato and Adams 2015; de Freitas 2003), in which
uncertainty in the parameters are handled with an analytical method or a sampling
method. Even though probabilistic approaches can cover the local optimal problem,
the analytical method is limited to a specific case and the sampling error grows as
the number of weight parameters increases. Therefore, finding optimal weights and
biases is still challenging, and the performance of the NN algorithm quickly
deteriorates with local optimal weight parameters.
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5.5.3 Quality of Degradation Data

Last but not the least, uncertainty caused by bias and noise in data is an important
issue regardless of prognostics approaches, which has a significant effect on the
prediction results. Unfortunately, the bias cannot be handled with data-driven
approaches because there are no parameters related to it, which is one of the
drawbacks of data-driven approaches. The data quality issues for noise will be
discussed in Chap. 6. Here, several issues related with data quality are addressed.

5.5.3.1 GP: Number of Data and Uncertainty in Data

Even though a large number of training data are usually good for increasing the
accuracy of prediction results, it is not always true for GP because it also increases
computational cost to calculate the inverse of the covariance matrix and may cause
singularity as well. The direct matrix inversion may become computationally
prohibitive when the number of data is greater than 1000 (MacKay 1997). To
relieve this problem, only a portion of the whole data sets can be used (Lawrence
et al. 2003; Foster et al. 2009). Melkumyan and Ramos (2009) suggested also a new
covariance function based on the cosine function that inherently provides a sparse
covariance matrix. Sang and Huang (2012) proposed an approximation method of a
covariance function for both large and small number of training data based on a
reduced rack covariance.

Even though the typical GP assumes that the data is accurate, the nugget effect
representing the noise in data is sometimes considered by adding a value greater
than zero to the diagonal terms of the covariance matrix, so that the simulated
outputs do not pass noisy data points (Gramacy and Lee 2012; Andrianakis and
Challenor 2012). Even though the value of the nugget effect is also found via
optimization along with the scale parameters, the value cannot be determined
uniquely due to the correlation with scale parameters. In addition, in the case of
small data, it is inherently difficult to figure out how much noise exists in the data.
Considering most health monitoring data include noise (often a significant level),
GP inherently anticipates a difficulty to compensate for the effect of noise.

5.5.3.2 NN: Uncertainty in Prediction Results

It is common to provide confidence bounds based on nonlinear regression and/or
the error between NN outputs and training data (Chryssoloiuris et al. 1996; Veaux
et al. 1998; Rivals and Personnaz 2000). It, however, is difficult to find global
optimum of parameters due to measurement noise, a small number of data com-
pared to the number of parameters, and the complexity of damage growth, which
can yield a significant error in prediction results. Bootstrapping (Efron and
Tibshirani 1994; Khosravi et al. 2013) is also employed, which can easily be
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implemented by running MATLAB NN toolbox several times because MATLAB
uses different subsets of the training data to obtain weights and biases. Furthermore,
this process can relieve the concern related to selecting initial weight parameters for
optimization because the process automatically selects different initial parameters.
For example, Liu et al. (2010) used this method with 50 attempts to predict a
battery’s RUL with uncertainty. Actually, a systematic method to handle the
uncertainty in NN is the probabilistic neural network (PNN) (Specht 1990) using
the Parzen estimator (Parzen 1962). However, most papers employ the PNN for
classification or risk diagnosis (Giurgiutiu 2002; Mao et al. 2000), and the PNN for
prognosis is rarely found, except for the study by Khawaja et al. (2005). They
introduced a way to obtain not only confidence bounds but also confidence dis-
tributions based on PNN to predict a crack on a planetary gear plate. Khosravi et al.
(2011) reviewed aforementioned methods, and considered combined intervals from
the methods. On the other hand, Bayesian NN (Hernandez-Lobato and Adams
2015; de Freitas 2003) has been proposed to resolve local optimum problem, which
provides distribution of prediction results caused by measurement error and
uncertainty in parameters that are identified as distributions based on Bayes’ the-
orem instead of deterministic values given by an optimization process.

5.6 Exercise

P5.1 Repeat fitting function y(x) = x+ 0.5 sin(5x) in Sect. 5.2.1 with radial basis
networks surrogate using 21 equal-interval points in the range of [1, 9] and
the goal of mean squared error of 0.1. Compare the prediction results in the
range of [0, 10] with Fig. 5.2.

P5.2 Generate 10 random numbers, X, in [0, 10], shit them by 0.1 to define
Xpear = X+ 0.1 and by 1.0 to define xg, = x+ 1.0. Calculate the sine
functions at the three sets: y = sin(X), Ypecar = Sin(Xnear)s Year = SI0(Xfar)-
Compare correlation between y and y, ..., as well as the correlation between
y and yg,.

P5.3 Obtain the same results as Fig. ES.2 in Example 5.2

P5.4 Repeat Example 5.2 for & = 140. Discuss the results.

P5.5 Repeat Example 5.2 for the case of linear global function, 0; + 0,x.

P5.6 When a true function is given as z(x) = x* + 5x — 10 with x € [—8, 8], use
five data at x = {—8,—4,0,4,8} to fit GP simulations with different scale
parameters & = 1,10 and different constant global functions &0 = 0, 10.
Plot them together and compare them.

P5.7 Derive the following equation for uncertainty in linear regression model
referring the GP case. Compare it with the results from sampling method
introduced in Chap. 2.
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P5.8

P5.9

P5.10

P5.11

P5.12

P5.13

P5.14

P5.15

P5.16

For each case of Problem 5, plot the prediction intervals and actual error
together.

Implement the GP for the same problem in Sect. 5.2.4 but use different
global functions, (a) constant and (b) second-order function. Compare and
discus about the three results including in Fig. 5.5a.

The true degradation of battery is given as d = exp(—0.0037). Generate 10
training data at time t= {0, 5, 10, ..., 50} using the true degradation
equation and add random noise that follows a normal distribution N (0, ¢2).
Using these training data, predict the median and 90 % confidence intervals
of remaining useful life using Gaussian process regression. Use ¢ =
0.01,0.02,0.05. Use 0.7 for the threshold of degradation.

Repeat the process to obtain different functions like given in Fig. 5.8 by
changing the number of hidden nodes. Note that the results are not the
exactly same as the figure because of the random weight and bias
parameters.

Consider one layer (no hidden layer) with one input node, and input and
output data are given as

x={0 1 2 3 4} y={127 392 387 743 9.16}"

Find weight and bias parameters in the network function newlind that
designs a linear model and compare the results with the least squares
method.

Obtain Fig. ES.7 in Example 5.5 by a manual calculation with the optimum
results of weights and biases that is given in Table E5.2. Note that the
optimum results are based on the input and output ranged between —1 and 1.
Repeat Example 5.6 without the test set, but 70 % of training set and 30 %
of validation set instead. Compare the results with Fig. E5.8 and Table E5.2.
Compare the degradation prediction results from (a) using time information
and (b) using previous n data as the input. Solve this problem by using both
GP and NN with only the data in prediction set in Fig. 5.11.

There is a relatively large uncertainty in the prediction result from NN in
Fig. 5.12b even though no noise data are used. Discuss what the uncertainty
sources are in this case.
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Chapter 6
Study on Attributes of Prognostics
Methods

6.1 Introduction

In this chapter, the attributes of various prognostics algorithms introduced in
Chaps. 4 and 5 are discussed in details. Specifically, the following five algorithms
will be considered in this chapter: three physics-based methods including nonlinear
least squares (NLS), Bayesian method (BM) and particle filter (PF), and two
data-driven methods including Gaussian process (GP) regression and neural net-
work (NN). The goal is to provide guidelines so that the readers can choose an
appropriate algorithm for their field of application.

Since there are many variations of each algorithm, the most common and basic
ones are employed to understand each algorithm’s attributes. Therefore, the five
MATLAB codes that were provided in Chaps. 4 and 5 will be utilized in this
chapter. Each algorithm is tested using crack growth problems including simple and
complex degradation behaviors, which are explained in Sect. 6.2. Their attributes,
advantages, and disadvantages are discussed based on the logic of their algorithms.
The choice of the crack growth problem is because the damage growth model is
available, and hence, it enables comparison of all the algorithms. The discussions
are not limited to the crack growth problem and can be interpreted in a general
context, since the results are caused by the algorithms’ inherent attributes.

Even if all prognostics algorithms have the same goal of predicting the future
behavior of degradation, different prognostics algorithms have different character-
istics. For example, in physics-based methods, some algorithms use an explicit form
of degradation as a function of model parameters, loading/usage condition and
time/cycle. On the other hand, some algorithms use a differential equation form of
degradation model, where degradation level can be obtained by integrating the
differential equation. The former is referred to as a total form, while the latter is an
incremental form. In the case of battery degradation model in Chap. 4, Eq. 4.2 is an
example of a total form degradation model and Eq. 4.16 is an incremental form.
Although the total and incremental forms are mathematically equivalent, they are
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different in numerical implementation. In particular, the incremental form will have
an error in time integration. Therefore, it is important to make sure that the time
interval of health monitoring should be small enough so that the error in integrating
the differential equation is in an acceptable range. Otherwise, the incremental form
of physical model has to be integrated with a different time interval than the interval
of health monitoring.

An important question in physics-based approaches is what if the degradation
model is not perfect; that is, how to handle model-form errors. For example, in the
case of Paris model for crack growth, the original model is presented for an infinite
flat panel under mode I fatigue loading condition. In reality, however, there is no
infinite flat panel; all panels are in a finite size, and in airplanes most panels are not
flat. Unfortunately, many model parameters are not intrinsic material properties;
they depend on boundary conditions and loading conditions. This is why the model
parameters that are estimated in laboratory tests are different from the model
parameters of the panel used in an actual system. Therefore, it is important how
physics-based prognostics algorithms can correct or compensate for the model-form
error.

In physics-based prognostics, it is important to understand how different algo-
rithms identify model parameters, especially uncertainty in model parameters and
correlation between them. Some algorithms represent this uncertainty in the form of
samples, while other algorithms assume Gaussian distribution with estimated
variance. In addition, the prior knowledge on model parameters plays an important
role in the performance of prognostics algorithm. Bayesian inference-based algo-
rithms have a systematic way of considering the prior knowledge, but
regression-based algorithms do not have a feasible way of considering it. Even if
Bayesian inference-based algorithms have the same theoretical basis, numerical
implementation can yield quite different prediction outcomes. An example is the
Bayesian method versus particle filter where both methods are based on Bayesian
inference but their prediction process and outcomes are quite different. The attri-
butes of physics-based algorithms will be discussed in Sect. 6.3.

In the first look, data-driven approaches seem to be more attractive than
physics-based approaches because they do not require accurate physical model. In
fact, many complex systems, there is no good physical model available to describe
the degradation behavior. However, data-driven approaches have their own issues.
It sounds like data-driven approaches do not use a model, but in reality data-driven
approaches also employ a mathematical model to represent the degradation
behavior. The difference is that the mathematical model does not have any physical
meaning. However, since a mathematical model is used to describe the behavior of
degradation, data-driven approaches also have a similar question as with
physics-based approaches; is the mathematical model good enough to represent the
behavior of degradation? Of course, a straightforward answer to this question is to
use a complex model so that any kinds of degradation behavior can be modeled.
However, a complex model comes with many parameters, which need to be
identified using measured data. A model with many parameters causes many
challenges because it requires more data and it is difficult to identify them unless the
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mode is linear with respect to the parameters. Also, when the available number of
data is not enough, it often causes an overfitting phenomenon. In the theory of
regression, it is normally suggested to have about 2-3 times more number of data
than the number of unknown coefficients. For example, if a model is composed of
polynomial function with 10 coefficients and if 10 data are available, it is possible
to find 10 coefficients and the model exactly passes the 10 data points, but it does
not mean the model is accurate at prediction points. Therefore, data-driven
approaches move the decision of selecting model form to users. In order to find an
appropriate form of mathematical model in data-driven approaches, it requires
in-depth understandings of the degradation behavior as well as data-driven prog-
nostics algorithms. The attributes of data-driven algorithms will be discussed in
Sect. 6.4.

Using a complex crack growth example, both physics-based and data-driven
prognostics algorithms will be compared in Sect. 6.5. In general, physics-based
approaches always have advantage if an accurate physical model is available. This
is because physics-based algorithms usually require a less number of data to
identify model parameters. However, it would be informative to estimate how many
data would be required by the data-driven approaches to produce a similar level of
accuracy with physics-based algorithms so that the users can estimate how many
data would be required.

6.2 Problem Definition

Physics-based approaches assume that a physical model describing the behavior of
degradation is available with usage conditions such as loading information. Fatigue
crack growth problem is the most common example used in these approaches since
the physical models are relatively well developed compared to other failure
mechanisms. In this section, two different physical models, the Paris model (Paris
and Erdogan 1963) and Huang’s model (Huang et al. 2008), are employed to
describe the crack growth behavior under constant and variable amplitude loading
conditions, respectively.

6.2.1 Paris Model for Fatigue Crack Growth

The Paris model introduced in Sects. 2.1 and 4.5 describes the rate of crack growth
under constant amplitude cyclic mode I loading of an infinite plate, as shown in
Fig. 6.1. A common application is a fatigue crack growth in fuselage panel of
airplanes. Due to repeated pressurizations during take-off and landing, fuselage
panels experience fatigue loading. When the stress range due to the pressure dif-
ferential is Ag, the rate of crack growth can be written using the Paris model (Paris
and Erdogan 1963) as
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Fig. 6.1 Fatigue crack growth under mode I loading (Paris model)

da

N C(Aoy/ma)", (6.1)

where a is a half crack size shown in Fig. 6.1, m and C are model parameters, N is
the number of loading cycles, and AK = Ac+/7ma is the range of stress intensity
factor. Although the number of cycles N is a discrete number, it is considered as a
continuous number. Equation 6.1 is a differential equation, which needs to be
integrated to obtain a crack size as a function of loading cycles. In order to integrate
Eq. 6.1, the initial condition (initial crack size, ag) is required. When the initial
crack size is also unknown, it has to be included as unknown parameters. Therefore,
the Paris model in Eq. 6.1 has three unknown parameters (m, C, ay).

The slope in Fig. 6.1 corresponds to exponent m, while C is the y-intercept at
AK = 1. Note that the figure is in log—log scale. It is well known that the stress
intensity factor is the main contributor to fatigue crack growth. In the case of
airplanes, the fuselage is often approximated by a cylinder, and the range of hoop
stress can be calculated using the pressure differential as A = Ap - r/t, where r and
t are radius and thickness of fuselage panel, respectively.

Note that the above physical model is given in a rate form. A total form of
physical model can be obtained by integrating Eq. 6.1 and solving for a as

2
a(N) = [NC(1 =) (Aov)" +a; *| ", (6.2)
where qg is the initial half crack size, a(N) is the half crack size at the number of
cycles N. In aluminum material, for example, the exponent m is in the range of 3.0—
4.0. Therefore, the exponent in Eq. 6.2 is negative. In addition, the first term in the
bracket is negative, while the second term is positive. In order to make the crack size
to be a real number, it is necessary that the term in the bracket should be positive. As
the number of cycles N increases, the term in the bracket becomes negative and the
crack size a becomes a complex number, which is physically not possible. This
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happens because the crack will grow faster as N increases. That is, the crack growth
becomes unstable and the crack size goes infinity. Therefore, Eq. 6.2 is valid only up
to Nmax cycles that makes the term inside the bracket positive.

In practice, the crack is considered unstable when the crack grows in a size
called a critical crack size. A critical crack size is defined when the stress intensity
factor reaches the fracture toughness, K;c, which describes the ability of a material
containing a crack to resist fracture, and is one of the most important properties of
any material for many design applications. In the case of mode I loading, the critical

crack size is defined as
Kie \’
= . 6.3
ac ( X ﬁ) (63)

The model parameters govern the behavior of crack growth, which need to be
identified using measured crack size data at different loading cycles with given
loading information, Ac. As shown in Fig. 6.1, the test results show some level of
variability. Therefore, it is expected that the identified model parameters may show
a statistical distribution. The crack size at future cycles can be predicted by sub-
stituting the identified parameters to the Paris model with future loading conditions.
Therefore, algorithms of physics-based approaches can be considered as a param-
eter estimation method.

For simplicity, the effect of finite plate size and the curvature of the plate is
ignored in the above Paris model. However, these can be the source of model-form
error, which is an important issue in physics-based prognostics.

6.2.2 Huang’s Model for Fatigue Crack Growth

The basic assumption in the Paris model is that the fatigue loading is in constant
amplitude. Therefore, the range of stress, Ag, or the range of stress intensity factor,
AK, is good enough to describe loading conditions. In practice, however, loadings
with different amplitudes are often applied to the system, which makes the crack
growth much more complicated than the Paris model. Huang et al. (2008) proposed
a fatigue crack growth model under variable amplitudes using an equivalent stress
intensity factor and a modified Wheeler model. This method leads to a fatigue life
prediction model that depends mainly on the stress ratio and the plastic zone size
ahead of the crack tip. An important capability of this model is that it can describe
the phenomena of retardation and arrest due to overload, and the acceleration due to
a state of underload following an overload. In this chapter Huang’s fatigue model is
used as a complex physical model, compared to the Paris model.

In Huang’s model, the governing differential equation for crack growth is
defined as
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da

v — CLAK,)" — (AKw)"], (6.4)
where C and m are model parameters and AKj, is the threshold of stress intensity
factor range. In practice, since the crack size cannot be reduced, the right-hand side of
Eq. 6.4 must be positive. That is, when AK,, < AKj,, itis considered that da/dN = 0.
In Eq. 6.4, the range of equivalent stress intensity factor includes the effect of crack
tip plasticity as well as crack closure after overloading, and is defined as

AK,, = MgMpAK, AK = YAc/7a, (6.5)

where Y is the geometry factor related with the specimen geometry, and My and Mp,
respectively, are scaling and correction factors for the loading ratio and the loading
sequence interaction. These factors are defined as

(1-R)™H (=5<R<0)

M=% (1-R)" (0<R<0.5), (6.6)
(1.05 — L4AR+0.6R)) " (0.5<R<1)

(#)” (a+ry<aor+roL —ra)

Mp = aor +roL—a—ra
1 (a+ry>aoL+roL —ra), (6.7)
Ko\ > KOL\?
ry = oc< max) and rop = a(ﬂ> ,
oy ay
0.29
o=035— (6.8)

2.15°
L+ [L08KZ,/ (102)]
where R = 0ynax/ Omin 18 the load ratio; oy, and oy, respectively, are the maximum
and minimum stress at every cycle; ff and f§; are shaping exponents; r, is the plastic
zone size ahead of the crack tip; r, is the increment in the plastic zone size ahead of
the crack tip caused by under loading, which is ignored here since there is no under
loading in this example; 7 is the shaping exponent in the present model; « is the plastic
zone size factor; K, is maximum stress intensity factor; o, is tensile yield stress; and
OL placed on subscript or superscript is the case at which the overload occurs.
Note that there is no total form corresponding to Huang’s model because ana-
lytical integration of 6.4 is not available for general variable loadings. The rate form
of physical model in Eq. 6.4 can be calculated using different integration algo-
rithms. In this section, a simple forward Euler integration method is used to cal-
culate the crack size at a given cycle. The following MATLAB code [Huang] can
be used to calculate crack sizes for given model parameters. In the code [Huang],
problem definition is already filled to generate data in Set 1 in Sect. 6.2.3. It is
assumed that the plate has a 4 mm-thickness and 150 mm-width (line 12), and a
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geometry factor for finite plate is employed (lines 30-31). Other than these, the

code [Huang] can be understood with Eqgs. 6.4 and 6.8.

[Huang] : MATLAB Code for Huang’s Model

1 %$=== PROBLEM DEFINITION (Loading and Model Parameters) ======
2 dN=1; % transition cycle interval
3 dtMeasu=1000; % measurement cycle interval
4 dSmin=5; $ min. load
5 sNomin=65; % nominal load
6 sOverl=[125 100 100 125 125]; % overload
7 cNomin=[5 5 5 5 45]; % num. of cycle in a block: nominal load
8 cOverl=[45 45 95 95 5]; % num. of cycle in a block: overload
9 cBlock=[5000 10000 15000 20000 25000];% cycles for each block
10 a0=0.01; % true model param including initi crack, a0
11 m=3.1; C=log(5.5e-11); dKth=5.2; beta=0.2; n=2.8; sY=580;

12 thick=4e-3; width=150e-3/2; % geometry dimension
13 % =

14 cycle=[0:dtMeasu:cBlock(end)]"';
15 $ % $ LOAD RATIC, R

16 nb=length (cBlock) ;

17 cInter (1)=cBlock (1) ;

18 if nb>1; for i=2:nb; cInter (i)=cBlock(i)-cBlock(i-1); end;end

19 dSmax=[];
20 for i=1:nb;

21 B=[sNomin*ones (cNomin (i), 1); sCverl (i) *ones (cCverl(i),1)];
22 dSmax (length (dSmax) +1:cBlock (i) ,1)=

23 repmat (B, cInter (i) / (cNomin (i) +cOverl (i)),1);
24 end;

25 dSmax=dSmax (1:dN:end); R=dSmin./dSmax;
26 % % % HUANG's MODEL

27 aCurre (1)=a0; akOL(1l)=a0; rOL(1)=0;

28 for k=1:max (cycle) /dN;

29 ak=aCurre (k) ;

30 Y=(l-ak./ (2*width)+0.326.* (ak./width) .~2) ...%geometry factor
31 ./sart (1-ak./width); loca=ak./width>1; Y (loca)=0;

32 Kmax=Y.*dSmax (k) . *sqrt (pi*ak) ; $SIF from Eg. 6.5
33 Kmin=Y.*dSmin.*sqrt (pi*ak) ;

34 % Scaling factor, Mr (Eg. 6.6)

35 Mr=(1-R(k)) .” (-beta) ;

36 % Correction factor, Mp (Egs. 6.7 and 6.8)

37 alpha=0.35-0.29./(1+(1.08.*Kmax.”"2./ (thick.*sY.”2))."2.15);
38 ry=alpha.* (Kmax./sY) . 2;

39 if R(k)~=dSmin/sNomin;

40 loca=ry>rCL; rCL(loca)=ry(loca); akCL(loca)=ak(loca);

41 end

42 Mp= (ry./ (akCL+rOL-ak)) .”n; loca=ak+ry>=akCL+rCL; Mp (loca)=1;
43 % Calculate crack size

44 dKeg=Mr.*Mp. * (Kmax-Kmin) ; $ Eg. 6.5
45 rate=exp (C) . * (dKeq.”m - dKth.”"m) ; $ Eq. 6.4
46 loca=dKeg<=dKth; rate (loca)=0;

47 aCurre (k+1)=aCurre (k) +rate. *dN;

48 end;

49 crackHuang=aCurre (1:dtMeasu/dN:max (cycle) /dN+1) ;
50 % % % DATA PLOT
51 plot (cycle, crackHuang) ;
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The shaping exponent f5; in Eq. 6.6 is not considered since the load ratio, R is
between 0 and 0.5 in the following example. Also, uncertainties in loading,
thickness, and width of plate are ignored. Therefore, m, C, AKy,, 5, n, and oy are
selected as model parameters in this example. As expected, Huang’s model can
describe a complicated behavior of crack growth under variable amplitude loadings.
However, the number of model parameters increases to six, compared to two in the
Paris model. Therefore, it would be more difficult to identify parameters from
Huang’s model. In addition, the correlation structure between parameters would be
more complicated than that of Paris model.

6.2.3 Health Monitoring Data and Loading Conditions

Instead of measured data from health monitoring system, synthetic data are used in
this chapter. Synthetic data can be generated based on the following three steps:

(1) The true values of model parameters and loading conditions are assumed

(2) The true parameters and loading conditions are substituted in the physical
model at different times to generate true degradation data

(3) Random noise and deterministic bias are added to the true degradation data.

There are several advantages of synthetic data. First, it is possible to compare the
identified parameters from data with the true parameters. Second, since the true
degradation data are given, it is possible to evaluate the accuracy of the predicted
remaining useful life. Finally, it is possible to control the level of noise and bias
such that their effect can be studied.

The following true parameters are used to generate synthetic data:

Paris model parameters: m = 3.8, C = 1.5e—10
Huang’s model parameters:

m=3.1,C=55—11, AK;, =52, =02, n=2.8, oy = 580.

For the Paris model (simple model), ten sets of true crack growth data are
generated using the above model parameters with an interval of 100 cycles under
ten different loading cases. These ten sets are generated by gradually increasing the
stress range from 65 to 83 MPa with 2 MPa increments. Results are given in
Fig. 6.2a, in which the 26 data points are available in a set until the end of 2500
cycles, and ten sets are available with the set ID denoted by the number in a circle.
Set 1 corresponds to Ae = 65 MPa, while Set 10 corresponds to Ag = 83 MPa. For
the critical crack size, ac = 0.05m is used throughout all cases.

For Huang’s model (complex model), ten data sets are given in Fig. 6.2b, which
exhibit crack retardation and acceleration due to complex loadings as defined by
Fig. 6.3. In the figure, a loading block is composed of the minimum load fixed at a
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Fig. 6.3 Variable load amplitude spectrum for Huang’s model

constant of 5 MPa and two maximum loads (we call these nominal load and
overload, respectively) varying in terms of cycles. The loading block is applied with
five different scenarios in terms of the cycles as specified in the table, each block
lasting over the period of 5000 cycles. In each of the scenarios, load ranges are
given, all with the width of 10 MPa, which represent the values of ten loading cases
with increment of 1.0 MPa. For example, the first loading case consists of a loading
block of the nominal load 65 MPa and overload 125 MPa lasting 5 and 45 cycles,
respectively, during the period of 0-5000 cycles. This is applied the same way, as
indicated in the table, over the rest of the period until it reaches 25,000 cycles.
Other loading cases are made by increasing the load magnitude with 1.0 MPa
increments in each of the scenarios, which makes ten loading sets, and yields the
crack growth results in Fig. 6.2b.
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Figure 6.2b shows a complicated behavior of crack growth. The rate of crack
growth is different at different loading blocks and the crack does not grow at all
between 5000 and 15,000 cycles. Due to the high amplitude of overloading up to
5000 cycles, retardation (crack arrest) occurs between 5000 and 15,000 cycles,
where crack does not grow. After 15,000 cycles, the crack grows fast because
underloads are followed by overloads. The crack grows slowly after 20,000 cycles
because the number of cycles for overloads is reduced. These data are available in
the companion website.' In the companion website, CrackData.m file stores
matrices of these data. In CrackData.m file, the array CrackSimple is 10 x 26 array
that stores 10 sets of crack size data from the Paris model, while the array
CrackHuang is 10 x 26 array from the Huang’s model. Note that these arrays store
exact crack size data.

In order to simulate measured crack size data, different levels of noise and bias
are added to the true crack sizes that are calculated from the model with true
parameters. A deterministic bias of —3mm is added first, after which random noise is
uniformly distributed between —v mm and + v mm, where v of 0, 1, and 5 mm are
considered. For data-driven approaches, Set 6 and Set 8 are considered as the
prediction sets in Paris and Huang’s model, respectively, while other sets are
considered as training sets. The following MATLAB commands add the
above-mentioned noise and bias:

b=-0.003; v=0.001;
crackSimpleMeas=crackSimple + v* (2*rand(10,26)-1

) log
crackHuangMeas=crackHuang + v* (2*rand(10,26)-1) + b;

6.3 Physics-Based Prognostics

In this section, physics-based prognostics algorithms are compared in terms of
accuracy in parameter estimation and RUL prediction. In particular, focus is on the
uncertainty and correlation in model parameters as well as model-form errors.
For BM and PF in physics-based approaches, a normal distribution is employed for
the likelihood function, and the prior distributions of unknown parameters (model
parameters and noise) are assumed as listed in Table 6.1. The distributions of
parameters are represented using 5000 samples in the three methods, NLS, BM, and
PF, and future damage growth and RUL are predicted by applying individual
samples to the physical model. In the case of NLS, the deterministic values of
parameters and their covariance matrix are identified from optimization. Then 5000
samples are generated from Student’s z-distribution, which is multiplied by the
standard deviation that is the square root values of diagonal terms in the covariance

'All MATLAB codes and data used in the book can be found in the companion website http://
www2.mae.ufl.edu/nkim/PHM/.
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Table 6.1 Prior distributions of model parameters and noise

Paris model | f(m) = U(3.3,4.3) f(InC) = U(In(5 x 10711),1In(5 x 10719))
(true: 3.8) (true: 1.5e-10)
Huang’s f(m)=U(2.8,3.4) f(InC) = U(In(3 x 10711)1n(8 x 10711))
model (true: 3.1) (true: 5.5e-11)
F(AKy) = U(2,8) £(B) = U(0.1,0.4)
(true: 5.2) (true: 0.2)
f(n) = U(1.5,4) floy) = U(400,600)
(true: 2.8) (true: 580)
Noise f(o) = U(0,0.02)
Initial crack | f(ag) = U(0.008,0.012)
size (true: 0.01)

matrix and added by the identified parameters as a mean. In the case of BM, 6250
MCMC samples are generated based on the posterior joint PDF, and then first 1250
samples are removed as burn-in samples. In the case of PF, 5000 particles are
generated from the initial distributions of each parameter as the prior PDFs. The
samples as the prior PDFs are evaluated by the likelihood function, and weight
values are assigned to the samples. The joint PDF is obtained after resampling
based on the evaluated weights.

6.3.1 Correlation in Model Parameters

Since a physical model that describes the degradation behavior is available in
physics-based approaches, the performance of different algorithms can be evaluated
based on their ability to identify model parameters. This is reasonable because the
prediction of RUL in physics-based approaches is simply substituting samples of
model parameters in the physical model to obtain samples of RUL. Therefore, main
focus on physics-based prognostics is how to identify model parameters accurately
with a less number of measured data.

One of the most challenging aspects of model parameter identification is the
correlation between parameters. In general, due to uncertainty in model form and
noise in data, model parameters are identified as a probability distribution. It is
possible to estimate the probability distribution of individual parameters, but this is
not enough in general. Not only probability distribution, but also the correlation
between different parameters should be identified. Without properly identifying the
correlation, the predicted RUL can be significantly different from the real one.

An important observation with correlated parameters is that even if the accurate
value of each parameter may not be identified, the prediction results of degradation
and RUL can be reliable when all combinations of the correlated parameters can
yield the same prediction results. Before we compare three physics-based algo-
rithms, the attributes of the correlation are addressed with the Paris model.
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6.3.1.1 Correlation Between Model Parameters

As shown in Fig. 6.4a, It is well known that Paris model parameters, m and C, are
strongly correlated, and parameters can be identified with their correlation rather
than individual values. In log—log scale graph shown in Fig. 6.4a, the exponent m is
the slope and C is y-intercept at AK = 1. Therefore, when a crack growth rate is
measured at a given AK, it is possible to generate multiple lines that pass through
the measured point as shown in Fig. 6.4a. This is the basic property of correlated
parameters. It would be interesting if a functional relationship can be found between
parameters; in other words, if their correlation is unique under given usage con-
dition. In this text, the usage condition and loading condition mean the applied load.
In the case of crack growth, it means the range of stress intensity factor, AK, or the
range of stress, Ag. If the correlation changes over cycles, it is also doubted how the
prediction results that are based on current correlation can be affected. To find the
answer to this question, correlations between m and In(C) are considered, which
can be obtained by taking logarithm of Eq. 6.1 as

In(C) +m In(Acy/na) = In(da/dN). (6.9)

Since a crack growth rate at a cycle can be expressed by a combination of m and

In(C) (see Fig. 6.4a), the same crack growth rate in Eq. 6.9 can also be expressed
with the true model parameters as

In(Cyue) + Myue In(Acy/na) = In(da/dN). (6.10)

By subtracting Eq. 6.10 from Eq. 6.9, the following equation can be obtained:

In(C) = In(Cine) + (Mirue — m) In(Acv/7a). (6.11)
(a) 2((?2 <1010
m; .
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Fig. 6.4 Illustration of correlation attribute between m and C. a same crack growth rate with
different combinations of parameters b correlation change with cycle
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The above equation can be considered as a linear relationship between m and
In(C) for a given cycle. Note that myye = 3.8, Cyye = 1.5 x 1071 and Ao =
83 MPa can be considered constants, but the crack size a can change as cycle
N increases, which can be calculated from Eq. 6.2 with mye and Cyye. Therefore,
the correlation in Eq. 6.11 may gradually change as crack grows. That is, the
relationship between m and In(C) is explicit for a given AK but it gradually changes
as the crack grows.

The correlation between m and In(C) can be plotted with respect to cycles by
changing the crack size, a. The results are shown in Fig. 6.4b, in which the square
marker is the true parameters, and the six different lines represent the correlation
between m and In(C) based on Eq. 6.11 at different cycles: from 0 to 2500 cycles
with interval of 500 cycles (green dashed line is at 2500 cycles). As shown in the
figure, the correlation between m and In(C) changes as cycle increases. Therefore,
there is no deterministic relationship between parameters, and the relationship
evolves as the crack size increases.

As the cycle increases, the correlation gradually evolves with the true values at
the center, which makes the correlation to be identified as a narrow-banded ellipse
as shown in Fig. 6.4b. Therefore, the true parameters can eventually be identified
since the correlation converges to the true value by intersecting many correlation
lines during the update process as more data are used.

Because of this strong linear correlation, the true values of two model parameters
m and C can be obtained with only three exact degradation data (crack size at zero
cycle is independent on m and C, therefore three data is required to estimate
two model parameters). The exact three data in Set 6 can be calculated from
Eq. 6.2 with N={0, 100, 200} as a={0.010000000000000,
0.010286799119103, 0.010589640425939}. Note that the exact crack
size data have 15 digits of accuracy, which is impractical, but for the moment it is
assumed that such an accurate data are available. In this case, even if the three data
are in early stage of degradation, accurate parameters as well as accurate RUL can

be predicted. The model parameters are identified as 7 = 3.8 and In(C) =
—22.6204 with very small values of the covariance matrix as

0.1825 —0.4746

—18
—04746 12339 | X107

5 =

which makes the degradation prediction very accurate as shown in Fig. 6.5.

In practice, however, most measured data include noise. When degradation data
include noise, the linear relationship as in Eq. 6.11 cannot be obtained. To explain
the effect of noise in parameter identification, let us consider measured crack size
data at two different cycles. Since crack sizes are different, the slopes in correlation
Eq. 6.11 are slightly different. Figure 6.6a shows the case when there is no noise in
measure crack sizes. In this case, since the two correlation equations have different
slopes, it is possible to find an intersection between two lines, which is the true
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values of the two parameters. In this case, there is no uncertainty, and the two
parameters can be identified deterministically.

On the other hand, when data have measurement noise, the correlation rela-
tionship in Eq. 6.11 has uncertainty, which can be represented by a line with
thickness. The thickness of line is proportional to the level of noise. As shown in
Fig. 6.6b, c, when data have measurement noise, the intersection of two correlation
lines is not a point, but an area. The model parameters can be identified anywhere
inside the area. Therefore, there will be uncertainty in identified model parameters,
which can be represented using probability distribution or samples. Note that the
uncertainty in identified model parameters increases when the level of noise is large
and when the two slopes are not much different. The latter case happens when two
measured crack sizes are not much different.

In order to show the sensitivity of parameter identification with a small number
of data, the three exact data used in Fig. 6.5 are used after rounding off at fourth
decimal places, as a={0.0100, 0.0103, 0.0106}. Therefore, the level of
noise is in the order of 10~*m, which is smaller than the capability of modern
structural health monitoring systems. Therefore, the error in data can be considered
to be very small. Using MATLAB code NLS, Fig. 6.7 shows the samples of
identified model parameters and the predicted RUL with confidence intervals. Even
if the measured data have very small errors, the identified parameters are distributed
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Fig. 6.7 Degradation prediction with exact data up to four decimal places. a parameter
identification, b degradation prediction

in a very wide range. Based on uncertainty in model parameters, the negative values
of exponent m happen, which means the crack barely grows. This happens because
only three data are used, and the slopes of correlation lines are very close to each
other; that is, the crack does not grow much during the three cycles.

Due to a wide range of identified parameters, the predictions in Fig. 6.7b show
meaningless results; the 90 % confidence intervals are too wide, and the median
failed to follow the trend of the true degradation. As the level of noise increases, the
correlation itself cannot be found well. Since measurement error is always involved
in the data in practice, more data are required to identify the correlation well, which
may depend on the level of noise. In addition, it is important to have data with
significantly different crack sizes because the slope in correlation equation in
Eq. 6.11 is proportional to crack size. As the crack grows slowly in early stage, it is
likely that the uncertainty would be large in early stage. As the crack grows fast, the
slope changes significantly, and thus, a better parameter identification can be
possible.

6.3.1.2 Correlation Between Model Parameters and Loading
Condition

In physics-based approaches, there is also a correlation between model parameters
and loading conditions. In Fig. 6.8, the true behavior of crack growth is shown in
black solid line, where the correct model parameters and loading condition are used.
Note that the two parameters for Paris model represent the slope, m, of the line and
y-intercept, C, at AK = 1. In this case, loading condition means the range of stress
intensity factor, AK(=Ac+/ma). If a smaller AK than the correct one is used and if
the same crack growth is observed from measured data, then the black solid line
will shift to the left, as shown in red dashed line in the figure. This can happen by
increasing parameter C. That is, in order to predict the same crack growth rate,
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different combinations of AK and C can be used, which means these two are
correlated. More specifically, AK and In C are negatively correlated.

The notion of this correlation is somewhat different implication than the corre-
lation between parameters, m and C. In the case of correlation between parameters,
it was difficult to identify the true values of parameters. However, it was shown that
an accurate RUL can be predicted even if the true values of parameters may not be
identified. However, in the case of correlation between model parameters and
loading conditions, the loading conditions are normally input, not something to be
identified. Therefore, the issue occurs when incorrect loading conditions are used in
prognostics. If a smaller stress intensity factor than the correct one is used, the two
square markers move to two circle markers in the figure. Therefore, m and C; that
make a line passing through two circle markers are considered as equivalent
parameters under incorrect loadings. As long as the loading is constant, this is the
same as identifying correlation between (equivalent) model parameters.
Consequently, prediction results from physics-based approaches can be accurate
even under incorrect loadings because the model parameters are updated to the
equivalent parameters to the incorrect loading (smaller one) conditions.

In order to show how prognostics algorithm can identify equivalent model
parameters and accurately predict the remaining useful life when an incorrect
loading condition is given, data Set 10 for Paris model (simple model) given in
Sect. 6.2.3 is employed here. Even if data Set 10 is obtained under 83 MPa loading
condition, it is assumed that incorrect loading condition of 65 MPa is used, which is
the loading condition of data Set 1. Based on the previous discussion of Paris model
given in Fig. 6.8, it is expected that y-intercept C will be identified with a higher
value than the true one, while m will remain the same. Figure 6.9 shows the
prognostics results using NLS for identified model parameters as well as the
remaining useful life. In Fig. 6.9a, the true parameter values are at the star marker
location, while blue dots are samples from estimated model parameters with cor-
relation. Even though the samples are distributed due to correlation, the median of
m is 3.8020, which is close to the true value, 3.8, while the result of C is higher than
the true value. Since the equivalent parameters are identified under incorrect
loading conditions, the prediction result can still be accurate as shown in Fig. 6.9b.

Fig. 6.8 Illustration of Pis
equivalent parameters to e
different loading

cycle
increase
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Fig. 6.9 Prediction data Set 10 with incorrect loading condition given in Set 1. a parameter
identification, b degradation prediction

The aspect of equivalent model parameters can further be discussed using the
following two logarithms of Paris model:

In(C) +m In(Aoy/na) = In(da/dN),
In(C’) +m' In(Ac’\/na) = In(da/dN).

The first equation is with the correct loading condition Ac = 83 MPa, while the
second one is with the incorrect one Ag’ = 65 MPa. When the same measured data
are used, the crack growth rates on the right-hand side of both equations are the
same. The goal is to obtain the relationship between two sets of parameters. As we
discussed previously, let us assume that the slope parameter remains the same; i.e.,
m = m’, By equating the above two equations, we have

In(C') =In(C)+m In (%). (6.12)

Using the true value of m = 3.8 and the ratio between loading conditions, the
equivalent y-intercept is increased by In(C’) = In(C) 4+ 0.93. In Fig. 6.9a, if the
true values of parameters (star marker) are shifted by 0.93 in the vertical direction, it
will exactly match with the samples of identified equivalent parameters.

In practical point of view, this correlation works favorable to physics-based
prognostics. As mentioned before, the most important issue in physics-based
approaches is the model-form error. That is, the actual behavior of degradation is
different from the physical model due to simplifications and assumptions imposed
in developing the physical model. The error in model-form can often be transferred
to an error in loading conditions. For example, in the case of crack growth, the Paris
model is considered to be accurate when mode I fatigue loading is applied to a flat
plate with infinite size. In reality, there is no infinite plate, and the accuracy of Paris
model depends on geometrical effects, boundary conditions, crack shape, and crack
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location. A more general expression of the range of stress intensity factor can be
written as

AK = YAK,

where Y is the correction factor, given as the ratio of the true stress intensity factor
to the value predicted by AK = Acg+/ma. The correction factor depends on the
geometry of the crack and plate and the loading conditions. Therefore, the apparent
stress intensity factor AK is different from correct stress intensity factor AK .
However, the process of identifying model parameters can compensate for this error
by identifying equivalent model parameters that can yield the same remaining
useful life.

The capability of compensating error in loading condition by identifying
equivalent model parameters is limited to the case when the correction factor
remains constant. In reality, however, the correction factor is a function of crack
size, and it will evolve as the crack grows, as shown in Fig. 6.10. Therefore, the
capability is limited but still it will help alleviating the error.

6.3.1.3 Correlation Between Initial Crack Size and Bias in Data

Bias occurs in measured data due to various reasons, such as calibration error in
sensor signals. In structural health monitoring, bias error often occurs when the
location of crack is unknown. In actuator/sensor-based health monitoring systems,
the actuator sends signals in the form of wave, and the sensor receives reflected
signals from a crack. In such a system, the amplitude of signals is often used to
determine the size of crack. However, the amplitude of signals quickly diminishes
as a function of distance from the actuator to the crack to the sensor. Therefore, the
distance has to be considered in calibrating the signal strength with crack size. If the
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actual distance is shorter than the used distance, the structural health monitoring
system may estimate the crack size larger than the actual one, and vice versa.
Another example is the orientation of crack. When the crack direction is perpen-
dicular to the sensor/actuator, the signal from reflected wave is the strongest. The
same size crack with different directions may have different signal strengths.
Therefore, it is possible to have a bias due to crack orientation.

Bias in measured data can be handled in physics-based approaches but not in
data-driven approaches. The mathematical model in data-driven approaches does
not have any physical meaning, and thus, no distinction between actual damage and
bias. Theoretically, it is possible to include bias in data-driven approaches, but
practically it does not mean much because data-driven approaches focus on finding
the trend of data. For example, if all measured data are shifted by a constant,
data-driven approaches may yield the same prognostics results because the trend of
data is identical. The only difference would be the threshold, but the threshold will
also be shifted in data-driven approaches because it is also calculated by experiment
using the same system.

In physics-based approaches, however, the bias can play an important role. In
the case of crack growth, for example, let us assume that there is a positive bias in
the measured crack size. The effect of this positive bias ends up overestimating the
range of stress intensity factor, AK = Ao+/ma. Even if the crack size is overesti-
mated, the crack growth may remain the same. Therefore, from Eq. 6.9 the expo-
nent m may be underestimated. For the same reason, if negative bias is applied, the
exponent will be overestimated.

In order to identify the bias systematically, it is necessary to include a deter-
ministic bias to the physical model. In the case when the physical model is given in
the rate form, Eq. 6.1, the measured crack size and actual crack size have the
following relationship:

meas
ay © =ay+Db,

where b is the deterministic bias, and ay is the actual crack size at loading cycle
N. When the measured crack size has a bias, the actual crack size has to be used in
calculating the range of stress intensity factor; that is, ay = ay®® — b has to be
used. In general, the magnitude of bias is unknown, and it has to be included to the
unknown parameters. Therefore, the total number of parameters are now four
(m, C,ag,b).

In the case when the physical model is given in the total form, the measured
crack size can be expressed by adding a constant bias to crack size in Eq. 6.2 as

2
A" = gt b = [NkC(l - %) (Aov/m)" + af{ﬂ 4. (6.13)

An interesting observation at the parameter estimation stage is that the bias is
correlated with the initial crack size in the physical model that has an effect on the
degradation behavior. Let the initially detected crack size be ¢j*® and let the
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Fig. 6.11 Degradation prediction with biased data. a before bias correction, b after bias correction
(final result)

measurement data have no noise. This measured size is the outcome of the initial
damage size and bias:

A = gy + b, (6.14)

For a given measured crack size, there is an infinitely possible combinations of
initial crack sizes and biases that can yield the same measured crack size. Therefore,
there is a linear correlation between them.

When two Paris model parameters are known, true values of initial crack size
and bias can be found with two exact measured data. In Fig. 6.11, two measured
data are biased by —3 mm; measured crack sizes are consistently less than the true
sizes. NLS is employed by setting the initial values of agiiia = 0.02m and
binitiat = 0.0 m with two exact damage data. After optimization, the two parameters

are estimated as ay = 0.0lm and b= —0.003m, which are the same as the true
values. If the bias is included in predicting the degradation, the result follows the
biased data as shown in Fig. 6.11a. Therefore, once the bias is identified, the bias
term has to be subtracted in prediction, as shown in Fig. 6.11b, which the prediction
curve is offset by —b = 0.003 m from the measure data.

As mentioned before, identifying parameters is hindered by noise in data. Also,
several sets of correlation, e.g., the case that model parameters, initial crack size,
bias, and loading condition are considered as unknown parameters together, make
identifying parameters challenging. In the following section, three physics-based
algorithms are compared based on identifying model parameters in the Paris model.
Further study for identification of correlated parameter under noise and bias will be
discussed in Sect. 7.3.
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6.3.2 Comparison of NLS, BM, and PF

In the previous section, it is shown that correlations are intrinsic nature in the
physics-based prognostics. However, different algorithms show different perfor-
mances in identifying correlations. In this section, the three physics-based algo-
rithms, NLS, BM, and PF, are compared in terms of their capability in identifying
correlations as well as predicting degradation in terms of samples.

6.3.2.1 Prior Information and Sampling Error

An important distinction between regress-based methods (e.g., NLS) and
Bayesian-based methods (e.g., BM and PF) is the usage of prior information. Prior
information is preexisting knowledge for unknown parameters. This includes
expert’s opinion, previous experience, or knowledge from similar systems. In the
case of initial crack size, for example, the traditional nondestructive inspection
technology can provide an approximate range of initial crack size existing in air-
plane panels. For the case of bias, an approximate range of bias can be estimated by
testing measurement equipment at known crack sizes. In the case of Paris model
parameters, C and m, laboratory tests for different batches from different manu-
factures can be used to estimate the approximate range. In fact, the ranges of Paris
model parameters are available in several material handbooks.

Utilizing the prior information is a unique characteristics of Bayesian-based
methods because there is no similar concept in regress-based methods. In that sense,
regress-based methods are similar to the frequentist’s method in Chap. 3, where
only objective information (i.e., measured data) is used in estimating parameters.
On the other hand, Bayesian-based methods use subjective information, which is
the prior information. In Bayesian-based methods, this prior information is repre-
sented in the form of prior distribution. Table 6.1 shows the prior distributions that
are used in this chapter. Without prior distribution, parameter estimation using
Bayesian methods becomes identical to maximum likelihood estimation, which
becomes the same as regression-based parameter estimation when variability in
measured data has a Gaussian distribution.

The performance of Bayesian inference is determined by the uncertainty in prior
and the variability in measured data. If uncertainty in the prior is very small,
measured data may not contribute in improving the uncertainty in the posterior
distribution. In this case, the prior distribution contributes the most to the posterior
distribution. If the variability in measured data is very small, there is not much use
for the prior. In this case, the posterior distribution is dominated by measured data.

The prior distribution can affect the posterior distribution in both positive and
negative ways. If the uncertainty in prior is small and it covers the true value of
parameter, the prior can help accelerating the convergence of the posterior distri-
bution. If the uncertainty in prior distribution is too big, it will not help to reduce
uncertainty in the posterior distribution. In fact, when the uncertainty in the prior is
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infinity, it is called noninformative prior; that is, it is unnecessary to consider the
prior distribution in Bayesian update. In such a case, only likelihood functions
contribute to the posterior, and that is why the estimation result is identical to the
maximum likelihood estimation.

When the prior information is wrong or inconsistent with measured data, it can
actually prevent parameters from being accurately identified or slow down the
parameter estimation process. In the case of Paris model exponent, m, for example,
let us assume that the prior distribution is given as a uniform distribution,
m~U(3.0,3.5), but the true value is supposed to be my,. = 3.8. In such a case, no
matter how many measured data are used, there is no way the posterior distribution
to include the true value because the value of prior distribution is zero at the true
value. This is an extreme case, but in general a wrong prior can make the posterior
distribution converge slowly or converge to a wrong value. More detailed discus-
sion can be found in Sect. 7.2

In order to compare the effect of prior distribution, NLS, BM, and PF are used to
predict the degradation behavior of Paris model using data Set 6 with a level of
noise, v = 1 mm in Fig. 6.2a. It is assumed that 1500 cycle is current, and the future
crack growth is predicted using the three different methods in Fig. 6.12. It is shown
that the predictions are similar between BM and PF, but NLS clearly shows dif-
ferent prediction with much wider uncertainty, and the median is far away from the
true degradation curve. Such an inferior performance of NLS can be explained by
its inability to utilize the prior information. In order to explain the effect of prior
information clearly, the identified parameters from three methods are shown in
Fig. 6.13. In the figure, the black rectangular box represents the bounds of uniform
prior distributions given in Table 6.1. Since the prior is given as a uniform dis-
tribution, the posterior distribution cannot go beyond this box. Because of this
bounding prior distribution, the parameters can be identified within the box for BM
and PF, and thus, the prediction results can be accurate with small uncertainty.

The influence of prior distribution, however, is gradually reduced as more data
are used. For example, when measured data up to 2500 cycles are used, the pre-
diction results from NLS and BM/PF become similar to each other, which is shown
in Fig. 6.14. The difference in the distribution of updated parameters between NLS
and BM is significantly reduced as shown in Fig. 6.15a.The difference will further
be reduced as more data are used.

On the other hand, when prior information is not available and there is small
number of data available, NLS can actually perform better than BM and PF. This is
because the limited number of samples in BM and PF cannot cover the wide range
of correlation as with NLS result shown in Fig. 6.13a, and there will be a huge
sampling error.

An interesting observation from Fig. 6.14c is that the prediction result from PF
is worse than the other two. This is due to accumulated sampling error during the
updating process; i.e., the particle depletion phenomenon introduced in Chap. 4. As
shown in Fig. 6.15b, only a few samples remain after 25 updating process for PF
(blue dots). In fact, the prediction results can be accurate even with few different
samples when they are laid on the correlation line close to the true values. However,
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Fig. 6.12 Degradation prediction at 1500 cycles.
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the location of few samples cannot be ensured, and the prediction result easily
varies whenever PF is performed.

The phenomenon of particle depletion has been the major drawback of PF.

A common practice to avoid particle depletion is to add random samples from an
arbitrary distribution during the prediction step so that duplicated particles are not
generated (Kitagawa 1987, Higuchi 1997, Wang et al. 2009). This method,
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however, can change probabilistic characteristics of parameters and can increase the
variance of parameters. Gilks and Berzuini (2001) proposed a resample-move
algorithm based on the PF and Markov chain Monte Carlo (MCMC) method. Kim
and Park (2011) introduced the maximum entropy particle filter and demonstrated
its effectiveness by applying it to highly nonlinear dynamical systems.



6.3 Physics-Based Prognostics 267

In BM, even though there is no accumulated sampling error like the particle
depletion phenomenon, more sampling error exists compared to NLS due to the
random walk process in MCMC sampling. The location of the initial sample, the
proposal distribution to draw a new sample and the acceptance ratio to the old
sample have an effect on the sampling results; improper settings or inadequate
selection may lead to a convergence failure or show a stationary chain where the old
sample is selected constantly. Rubin (1998) and An and Choi (2013) used the
marginal density function for the proposal distribution in order to reduce these
effects. Gelfand and Sahu (1994) presented two distinct adaptive strategies to
accelerate the convergence of the MCMC algorithm. More literature can be found
in the reference by Andrieu et al. (2003).

6.3.2.2 Uncertainty Representation and Updating Process

An important comparison between different physics-based methods is the way to
representing uncertainty in identified parameters. For this aspect, NLS handles
uncertainty differently from BM and PF. In BM and PF, the uncertainties in the
unknown parameters are considered with a joint posterior distribution, and thus, the
correlation between parameters as well as the distribution of each parameter can be
identified at once. In NLS, on the other hand, each parameter is deterministically
estimated via optimization process, and then, a linear correlation is added to the
deterministic results based on the covariance matrix. The deterministic parameters
are considered as the mean of distribution. Since samples are generated from
Student’s t-distribution directly, there is negligible sampling error in the process.
Therefore, NLS can be an efficient and effective prediction method when there is a
strong linear correlation between unknown parameters. However, correlations may
not be linear (see Exercise problem P6.4), and it is not easy to find accurate
correlations when there are many unknown parameters in a degradation model.

Also, the posterior distributions for parameters from BM and PF are not limited
to standard distribution types, such as normal or exponential distribution. They may
not have any particular type of distribution. In fact, the posterior distribution is
represented using samples or particles. However, in the case of NLS, the posterior
distributions of parameters are assumed, especially, as a normal distribution, and a
t-distribution is practically employed with estimated variance. The issue of distri-
bution type, however, is less important than accurately identifying correlation
between parameters since prediction accuracy is more sensitive to correlation than
uncertainty type. Also, as more data are used, the uncertainty in the parameter is
reduced and the error distribution approaches to a normal distribution, which makes
the assumption for parameter distribution in NLS is valid.

The difference between BM and PF is usually negligible in terms of prediction
results because the two methods have the same theoretical foundation with the same
physical model. The key difference between BM and PF is the way of updating
distributions. When the degradation model is given as a closed form (i.e., total
form) like the Paris model, BM is faster than PF because the posterior distribution is
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given as a single expression. However, BM can be impractical when the degra-
dation model is given in the rate form, like Huang’s model because of tremendous
computational costs caused by integrating damage for every cycle with thousands
of samples separately. This also applies to NLS. Therefore, PF that is based on
sequential updating process is only a practical method for the rate form of degra-
dation model.

The sequential updating process in PF is straightforward when updating Paris
model parameters or bias. However, when the initial damage size is unknown
parameter, it is difficult because when a new distribution of initial damage is
considered, the samples have to be propagated from the start. Since the degradation
rate depends on the initial damage, the initial distribution of initial damage should
be properly assumed based on the measurement data at zero cycle.

6.3.2.3 Results Summary

Based on discussions in the previous sections, the following conclusions can be
made for physics-based prognostics algorithms. NLS can be a simple and accurate
prediction method when the parameters are linearly correlated. Since it assumes that
uncertainty in parameters is a Gaussian distribution, this method is good when the
distribution of noise in data is Gaussian and nonlinearity in the physical model is
relatively small. This is because when input distribution is Gaussian in a linear
system, the output distribution is also Gaussian.

BM is an efficient method when the degradation model is given as a total form
equation, because the degradation model is used in calculating likelihood at indi-
vidual measured data. Since this likelihood is calculated at each samples of MCMC
simulation multiplied by the number of data, the degradation model has to be
computationally inexpensive. If the number of parameters is small, such as two or
three, the grid approximation method in Sect. 3.7.3 can be used. However, since a
simple Paris model can have five parameters, m,C, ay, b, o, almost all practical
models use a family of MCMC sampling methods. When the number of parameters
are too many, the joint posterior distribution becomes a high dimension, and many
MCMC samples are required to have a good convergence.

For practical purpose, the real challenge in BM is to choose appropriate options
for MCMC sampling process, such as initial values of unknown parameters and the
width of proposal distribution. If the initial values of parameters are far away from
the true parameters, MCMC requires many iterations (samples) to converge to the
target distribution. Too small width of proposal distribution can yield destabiliza-
tion in the sampling results by not fully covering the target distribution, while too
large width can yield many duplications in sampling result by not accepting new
samples. The rule of thumb is to choose the width of proposal distribution as 1 % of
the initial values of parameters, and then to add a factor to consider the variability in
data as well as the number of data. That is, the width of proposal distribution
depends on the expected uncertainty in unknown parameters. Therefore, BM
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Table 6.2 Summary of the difference between the three methods

269

NLS BM PF
Likelihood No Yes Yes
(distribution of
noise)
Prior No Yes Yes
information
Ability for Limited to linear Unlimited Unlimited
correlated correlation Gaussian
parameter distributions
identification
Levels of Low (need to start with High (difficult to find | Medium/low (need to
difficulty for good initial parameters) | initial parameters and | start with good initial
execution weights) distributions)

Computational
costs (rate-form
model)

High (number of
function calls x number
of cycles)

Very high (number
of samples x number
of cycles)

Low (number of
cycles)

Proper usage

Total-form model linear
correlation

Total-form model
general correlation

Rate-form model
general correlation

requires a good level of knowledge on parameters’ estimated values as well as the
level of noise in measured data.

PF is considered easy to use, as much as NLS, because it does not require to
select many options as with BM. PF uses the state transition function as a physical
model, which is given in the form of differential equation (i.e., rate form). However,
this cannot be a limitation because if the degradation model is given in the total
form, it is often possible to convert the total form into the rate form. The only
difficulty in PF is particle depletion problem when many measured data are
available. Therefore, PF is the most popular method in practical applications. The
differences between three methods are listed in Table 6.2.

6.4 Data-Driven Prognostics

In this section, data-driven prognostics algorithms, Gaussian process (GP) and
neural network (NN), are compared in terms of accuracy and uncertainty in
degradation prediction. In particular, focuses are on the selection of model form,
performance under noise, and the number of training data. For GP, a first-order
polynomial is used for the global function. This choice is made because the main
purpose of GP in prognostics is for extrapolating degradation in future time, where
the correlation between data points are quickly diminished as the extrapolation
distance increases and the prediction goes back to the global function. Knowing that
degradation shows a monotonically increasing or decreasing behavior, it would be
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better to choose bases with such a property. In this book, either linear or quadratic
polynomial is suggested, which shows a monotonic behavior when input variable is
positive. The distributions and prediction intervals of degradation are calculated
using 5000 samples from Student’s #-distribution.

For NN, pure linear functions are used for both hidden and output layers. This
choice is made because the degradation of crack size shows a monotonically
increasing behavior. For the network model, only one hidden node is considered
with the degradation information (either measured data or predicted value) from
previous three time increments that is used as inputs for both GP and NN. In order
to screen out outliers, outliCrite=2 is used, which means that the results
beyond the bound of 2¢ are eliminated from the final results. The distributions and
prediction intervals of degradation are calculated by repeating NN process 30 times.

6.4.1 Comparison Between GP and NN

In order to compare the prediction capability of GP and NN for the simple crack
growth, data Set 6 in Fig. 6.2a are used. Since data-driven approaches do not
require loading condition, the information of stress range is not used. In this case, it
is assumed that there is no training data set, and only prediction data up to 1500
cycles are used. In order to see the effect of a small level of noise, uniformly
distributed random noise U(—0.001,0.001) is added to the exact damage growth
data using the following MATLAB commands:

v=0.001;
crackSimpleMeas=crackSimple(6,1:16) + v* (2*rand(1l,16)-1);

Figure 6.16 shows the comparison between GP and NN using measured data up
to 1500 cycles under small level of noise. GP shows little more accurate prediction
result with much smaller prediction interval than that of NN. As this is an
extrapolation without any training data, the prediction result is considered to be
good for both methods. This is because three degradation data at previous times are
used as input rather than cycles (comparing the difference remains in Exercise
problems in P6.19 and P6.20). The reason for the lower performance of NN
compared to GP is that NN has a lower ratio of data to parameters. In the case of
GP, two global function parameters and one scale parameter. Therefore, these three
parameters need to be identified using 16 data, which makes the data to parameters
ratio to be more than five. On the other hand, NN has six parameters (three input
weights, one hidden weight, one hidden bias and one output bias). In addition, NN
uses 70 % of data for the purpose of training, in which only 11 data are used, which
makes the data to parameters ratio to be less than two. In such a case, it is highly
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Fig. 6.16 Degradation prediction at 1500 cycles under small noise in data. a GP with h0 = 0.05,
b NN with ns = 26
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Fig. 6.17 Degradation prediction at 500 cycles of data Set 6 under zero noise with training Sets 5
and 7. a GP with h0 = 0.5, b NN with ns = 28

likely the training process ends up a local minimum, not the global minimum.
Therefore, when the number of data is small and the level of noise is low, GP is
favorable than NN.

Figure 6.17 is the prediction results using data up to 500 cycles of data Set 6
under zero noise (rounded to four decimal places) with training Sets 5 and 7. Up to
2500 cycles, this is the case of interpolation, since the prediction set (data Set 6) is
in-between training sets (data Sets 5 and 7) and the level of input values of the
prediction points is within the training input points. Basically, data-driven
approaches can yield good prediction results in the interpolation regions.
Especially, the prediction results from GP can be very accurate in the interpolation
region with a small level of noise in data since correlation can be well defined,
which is proved in Fig. 6.17a. In the figure, the median of GP prediction is very
close to the true degradation with a small prediction interval. This is, however, up to
around 2500 cycles that is the last cycle of training set. Beyond the cycle, the input
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Fig. 6.18 Degradation prediction at 500 cycles under large noise with training Sets 5 and 7. a GP
with h0 = 0.5, b NN with ns = 28, ¢ GP with h0 = 0.001, d NN with ns = 27, time input and
sigmoid function

points for prediction approach to the extrapolation region and correlation is
reduced, thereby the quality of the results deteriorated. When the regulation of
monotonicity is applied up to 4000 cycles, none of prediction results satisfy the
regulation. Therefore, the results beyond 2500 cycles cannot be improved in
GP. On the other hand, the results from NN are not deteriorated since they depend
on function form, but the accuracy (median) is worse than GP. This result shows
that GP is good for the purpose of interpolation in terms of prediction accuracy and
prediction intervals, while NN performs better in extrapolation region.

The good results as in Fig. 6.17 cannot be obtained when a large level of noise
exists as shown in Fig. 6.18, where uniformly distributed random noise U =
(—0.005,0.005) is applied to all training and prediction data sets. Especially, as
shown in Fig. 6.18a, the prediction performance of GP is significantly deteriorated
since input variables fail to show a consistent behavior due to the large level of
noise; thus, the correlation cannot clearly be identified. In this case, NN outper-
forms GP, as shown in Fig. 6.18b.

When the initial value of scale parameter changes to a low value like 0.001 in
GP, the prediction results can be improved as shown in Fig. 6.18c. However, this
result is from zero correlation matrix due to very low scale parameter (the optimum
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value of the scale parameter remains the same as the initial value), and thus the
prediction results totally depend on the linear global function (compare the results
with different global model in Exercise problem P6.21). When there is a large level
of noise in data, having training sets may not help much in improving prediction
accuracy. However, when the level of noise is large, it may help to use time/cycle as
an input in NN instead of using the previous data as input as shown in Fig. 6.18d,
whose prediction is much better than the one in Fig. 6.18b. The transfer functions
for Fig. 6.18d are the tangent sigmoid and the pure linear function with one hidden
node. This result show that when the level of noise is large, NN with time input is
favorable than GP.

6.4.1.1 Results Summary

Based on numerical tests in this section, the following conclusions can be made. GP
is an efficient and accurate prediction method when a small number of data are
given with a small level of noise. This is strong foundation when the prediction
point is within the range of training points with a properly defined correlation
matrix. It is, however, not an easy task to build a proper correlation matrix since not
only a large level of noise, but also a large number of data adversely affect handling
the correlation matrix. On the other hand, NN is less sensitive in the level of noise
than GP, and a large number of data increase the accuracy in prediction results
because the transfer functions in NN fit degradation behavior based on the trend of
data rather than fluctuation of each data point. Finally, it is important to consider
types of input variables and global/transfer functions in data-driven prognostics.
Table 6.3 summarizes the difference between GP and NN for the purpose of pre-
dicting degradation.

Table 6.3 Summary of the difference between GP and NN

GP NN
Levels of difficulty Medium (not easy to find proper vales | low
for execution of the scale parameter)
Computational costs | Low Medium (depends on
number of repetitions)
Proper usage Small noise Large noise
Small number of data Large number of data
Simple degradation behavior Complex degradation
behavior

(but not limited to)
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6.5 Comparison Between Physics-Based and Data-Driven
Prognostics

In this section, the performance and attributes of physics-based and data-driven
approaches are compared using the damage growth data Set 8 of Huang’s model
(complex model) in Fig. 6.2b. As discussed before, since the physical model is
given in a rate form, it is expected that NLS and BM are not computationally
attractive. Therefore, only PF is considered as a physics-based approach. For a
data-driven approach, NN is chosen because GP becomes the same as the global
function (a polynomial function) at the extrapolation cycles, while different com-
binations of transfer functions of NN can predict better than a polynomial function.

The prediction result from PF using data up to 16,000 cycles is presented in
Fig. 6.19a. Seven parameters including six model parameters and standard devia-
tion are identified with 17 data. Therefore, the ratio between data and model
parameters are about 2.5. A total of 5000 particles are used to represent the cor-
related joint PDF of seven parameters.
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Fig. 6.19 Comparison of PF and NN for a complex degradation growth at 16,000 cycles under
small noise. a PF with distributed initial damage size, b NN with ns = 8 training Sets 2, 7 and 9,
¢ PF with true value of initial damage size, d NN with ns = 23 training Sets 2, 7 and 9 and loading
conditions
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It is obvious that data-driven approaches may not perform as good as
physics-based approaches because the latter can take advantage of important
physical model information. Therefore, it would be natural to provide more mea-
sured data to the data-driven approach. The question is how many additional data
are required so that the prediction accuracy of data-driven approach can be com-
parable with that of physics-based approach. Based on trial-and-error approach, it is
found that the three training data set can provide comparable prediction accuracy
with that of physics-based approach. Therefore, in this section, NN is used with
three training data sets.

Next question is the proximity of training data with the prediction data, which
plays a critically important role for the prediction accuracy. For example, when data
Set 8 is prediction set, if data Sets 7 and 9 are provided as training sets, then it is
expected that the prediction accuracy will be good because the behavior of data Set
8 is close interpolation between data Sets 7 and 9. On the other hand, if data Sets 1
and 2 are provided, the prediction accuracy may not be as good as the case with
data Sets 7 and 9. Therefore, three training sets are randomly selected from
available ten data sets. Based on this process, Fig. 6.19b shows the prediction of
degradation of Huang’s model using NN. For this prediction, tangent sigmoid and
pure linear functions are employed with five hidden nodes. The result from NN can
even be better, but the result is obtained based on eight samples out of 30 repetitions
because remaining 22 cases did not satisfy regulations. This means that prediction
of complex behavior with only damage size information is not straightforward. In
this case, the regulation of monotonicity in degradation should be used to select
valid predictions.

The results in Fig. 6.19a, b which can further be improved. If the distribution of
initial damage size in PF is updated to be close to the true initial damage, the
median will be close to the true curve because the physical model largely depends
on the initial damage size. It is, however, a time-consuming process to update the
initial damage in PF. Therefore, Fig. 6.19¢ shows the results using the true value of
initial damage instead. For NN, if the loading conditions are added to training in
NN, the prediction behaves can be improved, as shown in Fig. 6.19d. Even though
physics-based approaches undoubtedly outperform data-driven ones if both a
physical model and loading conditions are available, data-driven approaches with
more training data (three training sets in this case) and additional information
(loading condition in this case) can outperform physics-based ones, as shown in
Fig. 6.19d.

6.6 Results Summary

In terms of algorithms, results from case studies can be summarized as follows.
Physics-based methods are less affected by the level of noise and model complexity,
but they can be employed only when a physical model and loading conditions are
available. NLS is different from BM and PF in the process of identifying correlation
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between parameters, which works favorable for a linear correlation case. In the
comparison between BM and PF, the results from the two methods are not much
different, but PF has a wide range of applications and BM is fast when the
expression of posterior distribution is available explicitly.

The GP works well when the covariance function is well defined, such as the
case of low noise in data and simple behavior of the damage growth. However, all
other algorithms work as well for such a benign case. The GP can outperform other
algorithms if interpolation conditions can be considered with the given information.
The GP is easy to implement and quick to calculate, which gives prediction results
with interval within around 2 o. This is, however, limited to the case that the
process to find an optimum scale parameter works well. On the other hand, NN
does not require choosing various tuning parameters, even though the computa-
tional cost depends on each training case (a few seconds to minutes for one training)
and the number of repetitions to account for prediction uncertainty. The NN is
advantageous for cases with high levels of noise and complex models with many
training data sets.

Finally, here is a note about prognostics methods. When loading conditions and
physical models are not available, prediction can be done by using data-driven
approaches with at least three data sets, and loading conditions improve the pre-
diction results. However, it would be challenging to obtain many sets of training
data, and also physical degradation models are rare in practice. Hybrid approaches
or fusion methods that combine the two approaches or prediction results can be
considered to improve the prediction performance, detailed explanation can be
found a review material by Liao and Koéttig (2014). But still there is no effective
method to handle the case of limited number of data without physical model.

6.7 Exercise

P6.1 Using the true model parameters given in Sect. 6.2.3, generate 10 sets of crack
growth data as shown in Fig. 6.2a for the Paris model.

P6.2 Using the true model parameters given in Sect. 6.2.3, generate 10 sets of crack
growth data as shown in Fig. 6.2b for the Huang’s model.

P6.3 A physical model is given as z = 0; + 0,. The measurement data is given as
y = 5. When 0; ~N(0,2?), Find the correlation between 0; and 0, (a) by gener-
ating 20 samples of 0, and 0, and plotting them in 2D graph, and (b) by calculating
correlation coefficients.

P6.4 When the degradation model of battery is defined as z(¢) = a exp(—bt) with
a and b being two model parameters, identify correlation between the two model
parameters at a given cycle/time #;. Using the data given in Table 4.1, identify two
model parameters. Discuss why in this case, the accurate model parameters can be
identified.
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P6.5 Sinclair and Pierie (1990)* showed that the two Paris model parameters are
related by In(C) = —3.2m — 12.47 when stress and crack size are in the unit of
MPa and meters. Therefore, it is possible to reduce the number of Paris model
parameters from two to one. Using NLS and data Set 6 in Fig. 6.2, compare the
estimated parameters and the remaining useful life for one and two parameter Paris
model.

P6.6 Fig. 6.7 shows the difficulty of identifying model parameters and remaining
useful life when three measured data a={0.0100, 0.0103, 0.0106} at N=
{0, 100, 200} are available. Repeat the same process with three data a=
{0.0100, 0.0116, 0.0138} at N={0, 500, 1000} and explain why the
estimated parameters and remaining useful life are significantly improved.

P6.7 Using NLS and data Set 6 in Fig. 6.2a up to 1500 cycles, identify the two
Paris model parameters and covariance matrix. (a) Assuming that the two param-
eters are independent, calculate the median and 90 % confidence interval of RUL.
(b) Using the covariance matrix, calculate the median and 90 % confidence interval
of RUL and compare them with the results from (a).

P6.8 Using NLS and data Set 10 in Fig. 6.2a, identify the equivalent model
parameters C' when an incorrect loading condition of Ag = 65MPa is used, and
compare the identified parameter value with that in Eq. 6.12.

P6.9 The correction factor for a center crack of a plate with finite width can be

given as
7 23
Y = \/sec(T) (1 10 + %>,

where A = a/W is the ratio between crack size and plate width. When plate width is
0.1 m, initial crack size is 0.01 m, the exact model parameters are my = 3.8 and
Ciue = 1.5 x 10719, (a) generate true crack growth data at N = 0:100:2500 and
identify equivalent model parameters using the Paris model, and (b) compare the
crack growth curve with estimated parameter with the exact one.

P6.10 In data Set 6 in Fig. 6.2a, add normally distributed random noise
N(0,0.005%) and a positive deterministic bias of » = 0.01m. Using Bayesian
method, identify exponent m of Paris model. Use the prior as a uniform distribution
U(3.3,4.3), C=Cype = 1.5 x1071° and ap = 0.0lm. Compare the mode of
identified parameter m with its true value my,e = 3.8.

G.B. Sinclair and R.V. Pierie (1990) On obtaining fatigue crack growth parameters from the
literature, International Journal of Fatigue, Vol. 12, No. 1, pp. 57-42.
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P6.11 Repeat P6.10 with a negative deterministic bias of b = 0.01m.

P6.12 In data Set 6 in Fig. 6.2a, add normally distribute random noise N (0, 0.0052)
and a positive deterministic bias of » = 0.0lm. Using Bayesian method, identify
the initial crack size and bias with their correlation. Assume that the true model
parameters are given; that is, m = my,e = 3.8 and C = Cyye = 1.5 X 10710,
Compare the identified results with their true values.

P6.13 For data Set 6 in Fig. 6.2a, add normally distributed random noise
N(0,0.005%) and estimate the posterior distribution of Paris model exponent
m using Bayesian method when the prior distribution is given as U(3.0,3.5).
Assume the true values of other parameters.

P6.14 Repeat P6.13 with the prior distribution of U(3.7,4.2). Compare the two
results in terms of mean, median, and mode of estimated parameter distribution.

P6.15 Use BM and PF without prior to predict the degradation of a simple crack
growth with three degradation data at previous times as inputs. Use data Set 6 in
Fig. 6.2a up to 1500 cycles with uniformly distributed random noise
U(—0.001,0.001). Compare the prediction results with that from NLS in
Fig. 6.12a.

P6.16 Use NLS to identify four unknown parameters, i.e., the initial crack size,
bias, and two model parameters in the Paris model. Use data Set 6 in Fig. 6.2a up to
1500 cycles with uniformly distributed random noise U(—0.001,0.001), and
training data sets if they are needed.

P6.17 Repeat P6.16 using BM.

P6.18 Repeat P6.16 using PF without updating the initial crack size. Compare the
result with those from NLS and BM in P6.16 and P6.17.

P6.19 Use GP to predict the degradation of a simple crack growth when input is the
number of cycles. Use data Set 6 in Fig. 6.2a up to 1500 cycles with uniformly
distributed random noise U(—0.001,0.001). Compare the prediction results with
that in Fig. 6.16a when three previous degradations are used as inputs.

P6.20 Repeat P6.19 using NN.

P6.21 Consider the same problem in Fig. 6.18c. Predict the degradation using GP
with a quadratic global function.

P6.22 Compare the performance of five algorithms, i.e., NLS, BM, PF, GP, and NN
based on the prognostics metric introduced in Chap. 2. Use data Set 6 in Fig. 6.2a
up to 1500 cycles with uniformly distributed random noise U(—0.001,0.001).

P6.23 Based on the differences of each algorithm listed in Tables 6.2 and 6.3, make
a selection tree for proper use of different algorithm in terms of given information,
such as physical model, loading conditions, noise level, etc.
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Chapter 7
Applications of Prognostics

7.1 Introduction

This chapter introduces several prognostics applications based on the real test data
or data that are generated by simulating practical cases. Three major challenges are
addressed for prognostics methods to be practical throughout this chapter.

D

(@)

(©)

In physics-based approaches, the degradation behavior depends on model
parameters. It is, however, difficult to accurately identify these parameters due
to the correlation between them and a large level of noise and bias in data. An
interesting observation is that even if accurate values of individual parameters
may not be found, the prediction of remaining useful life (RUL) can still be
accurate. Also, when the physical model has a model form error, prognostics
algorithms can identify equivalent values of parameters that can compensate
for the model form error. Most physics-based algorithms use Bayesian method
in estimating model parameters. One of important advantages as well as dis-
advantages of Bayesian method is its capability to utilize the prior information.
A good prior information can help to reduce uncertainty in the estimated
parameters, but inaccurate prior can prevent from converging accurate values.
Data-driven approaches are also affected by the level of noise, but obtaining a
large number of training data is a challenge because it is expensive to obtain
data due to time and cost. Instead of obtaining data from the same or similar
systems, it is possible to utilize the data obtained from accelerated life tests
during the development of the current system design. Since accelerated life
tests are performed much severe operating conditions, it is necessary to con-
vert them corresponding to the nominal operating conditions in order to be
used as training data.

The third challenge is prognostics using data indirectly related to damage. In
many cases, the damage data cannot be measured directly, but system
responses that are affected by damage are measured instead. For example,
vibration data are often measured to monitor any cracks on bearings and gears,
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from which the level of damage in bearings is to be predicted. It is difficult to
extract degradation features from indirectly measured data. In such a case, it is
important to separate signals from noise. Therefore, signal-to-noise ratio
becomes an important issue.

This chapter is organized as follows: in Sect. 7.2, wear volume in a revolute joint
is predicted based on the Bayesian method with Archard’s wear model; in Sect. 7.3,
crack growth parameters are identified under various levels of noise and bias; in
Sect. 7.4, practical usage of accelerated test data is presented for the purpose of
prognostics; in Sect. 7.5, bearing prognostics is performed based on featured data
extracted from vibration signals; and other applications are introduced in Sect. 7.6.

7.2 In Situ Monitoring and Prediction of Joint Wear"

In this section, the prognostics of wear volume in a revolute joint is presented using
a physics-based approach; i.e., the Bayesian method. Special in situ measurement
devices are designed to measure the progress of wear as well as loading conditions.
The Bayesian inference technique is used to update the distribution of wear coef-
ficients, which incorporates in situ measurement data to obtain the posterior dis-
tribution. The Markov chain Monte Carlo (MCMC) technique is employed to
generate samples from the given distribution. The results show that it is possible to
narrow the distribution of wear coefficients and to predict the future wear volume
with reasonable confidence. The effect of the prior distribution on the wear coef-
ficient is discussed by comparing with the noninformative case.

7.2.1 Motivation and Background

Most mechanical systems are characterized by motion. In order to fulfill their
design function, the individual components of a system must move relative to one
another, which inevitably produces sliding along the mating surfaces and causes
wear. Wear is the gradual removal of material from contacting surfaces in relative
motion, which eventually causes failure of the system. Since mechanical wear
occurs for most systems in motion, it is important to predict its effects and estimate
the service life of the system before failure.

The common approaches for predicting wear volume are (a) estimating wear
coefficient from tribometer tests, (b) calculating contact pressure and sliding dis-
tance, and (c) using a wear model to calculate wear depth as well as wear volume.
Although this process is commonly applied, the fundamental limitation of wear

'An D, Choi JH, Schmitz TL, Kim NH (2011) In situ monitoring and prediction of progressive
joint wear using Bayesian statistics. Wear 270(11-12):828-838.
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prediction is that it applies only when the actual contact pressure condition matches
the tribometer test (constant) pressure condition. In practice, however, the contact
pressure usually varies as a function of time. Furthermore, it often varies over the
contact surface. Since the wear coefficient is not an intrinsic material property, it
depends on the operating conditions. Calculating wear coefficients at all possible
operating conditions requires numerous wear tests and is extremely time-
consuming. In addition, the variability of wear coefficients is significant even if
different parts are made of the same material (Schmitz et al. 2004). Thus, it is a
preferred approach to measure the wear coefficient directly from the mechanical
component in question. Since calculating the wear coefficient requires kinematic
information (wear volume and sliding distance) as well as kinetic information
(contact force/pressure), it is important to design an in situ measurement apparatus
to measure both factors. In this study, an instrumented slider-crank mechanism
(Mauntler et al. 2007) is used to measure these factors. Since in situ measurements
inherently include uncertainty, the statistical distribution of wear coefficient is
updated based on the Bayesian method, and future wear is predicted based on the
updated wear coefficient.

This section is organized as follows. In Sect. 7.2.2, the simple wear model used
in this section is summarized. Although a linear model is used, the main concept of
this study can be extended to more complex wear models. In Sect. 7.2.3, in situ
measurements of joint force and wear volume are presented. Section 7.2.4 describes
the Bayesian inference technique along with the MCMC sampling method. In
Sect. 7.2.5, the wear coefficient is statistically identified and validated.
Section 7.2.6 includes a discussion of the results and conclusions.

7.2.2 Wear Model and Wear Coefficient

Wear is a common physical phenomenon when two or more mechanical parts are
under relative motion (sliding) on the interface with contact pressure. When plastic
deformation is a dominant mechanism of material removal, Archard’s wear model
(Archard 1953) can be applicable as discussed by Lim and Ashby (1990) and
Cantizano et al. (2002). Archard’s wear model assumes that the volume of material
removed is linearly proportional to the product of the sliding distance and the
normal load. The traditional method for calculating the wear coefficient is based on
plotting wear volume versus sliding distance as shown in Fig. 7.1. In this model,
the worn volume is considered to be proportional to the normal load. The model is
expressed mathematically as

Vv F,
—=K— 7.1
=Ko (7.1)

where V is the worn volume, [ the slip distance, K the dimensionless wear coeffi-
cient, H the Brinell hardness of the softer material, and F,, the applied contact force.
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Since the wear coefficient is the quantity of interest, Eq. 7.1 is often written in the
following form

(7.2)

The nondimensioned wear coefficient K and the hardness are grouped into the
dimensioned wear coefficient k. Therefore, the main objective of wear analysis is to
identify the wear coefficient for given normal load and slip distance. Since the worn
volume is relatively small, it is often measured in the unit of mm?. Thus, the units of
Kk become mm>/N m.

In calculating wear coefficient, the applied normal force and contact area remain
constant through the entire process. If the normal force varies within the slip
distance, the definition of wear coefficient in Eq. 7.2 must be modified as

1%

K=—F—. (7.3)
[TEa

In this definition, it is assumed that the wear coefficient is independent of normal
force, which is not true in general. However, the wear coefficient x in Eq. 7.3 can
be interpreted as an average wear coefficient for a given load profile.

The wear coefficient is not an intrinsic material property, but instead depends on
operating conditions, such as the normal force and slip speed. The value of x for a
specific operating condition and given pair of materials may be obtained through
experiments (Kim et al. 2005). However, experimentation does not often represent
the real conditions of a machine, especially when loading conditions vary due to the
progress of wear. Thus, a difference may exist between the wear coefficient mea-
sured in the tribometer test and that observed from the real machine.

The wear coefficient from the tribometer test is reliable as it is performed under a
well-controlled environment, but it may not reflect the real operating conditions. On
the other hand, the wear coefficient observed from the real machine reflects real
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operating conditions, but uncertainty in the field measurements is relatively large as
it is not performed under laboratory conditions. The main objective of this study is
to reduce the effect of uncertainty in the field measurements by using a statistical
tool to identify the wear coefficient more accurately. The identified wear coefficient
can be used to predict the wear volume in the future and, thus, to schedule main-
tenance intervals.

7.2.3 In Situ Measurement of Joint Wear for a Slider-Crank
Mechanism

The slider-crank test apparatus used in this study is shown in Fig. 7.2. In order to
minimize dynamic contributions from the other components in the mechanism,
porous carbon air bearings are used for the revolute joint between the follower link
and the slide stage, as well as the prismatic joint for the linear slide.

The revolute joint under study consists of a 19.0 mm diameter instrumented steel
pin and a polymer bushing. The pin is clamped in the crank link at one end and
rotates, subject to sliding friction, in the bushing clamped in the follower link. The
pin is made of hardened steel and is assumed to be hard enough so that no
appreciable wear occurs on its surface. The bushing, on the other hand, is made of
polytetrafluoroethylene (PTFE) which is soft and is subject to considerable wear.
To enable the wear debris to escape the contact area and prevent it from affecting
the wear progression, grooves are machined into the bushing.
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Fig. 7.2 The layout of slider-crank mechanism used in the experiments. Reprinted from Wear,
270/11-12, Dawn An, Joo-Ho Choi, Tony L. Schmitz and Nam H. Kim, “In situ monitoring and
prediction of progressive joint wear using Bayesian statistics,” 828-838, © (2011), with
permission from Elsevier
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The added mass and springs affect the joint force, which can accelerate wear. In
practice, mechanisms are usually operated under added masses and additional
constraint forces. The wear pattern or process depends on three factors: (1) wear
coefficient, (2) joint force, and (3) relative motion in the interface. Because different
joints may have different joint forces and relative motions, they need to be
measured.

Forces transmitted through the joint of interest are measured via a load cell built
into a steel pin. Two full-bridge arrays of strain gages mounted to a necked down
portion of the pin monitor transverse loads while canceling out bending stresses.
The necked portion of the pin, along with a hollow cross section, also serves to
localize the strain to the region where the gages are attached. A slip ring mounted to
the free end of the pin allows power and signals to be transmitted to and from the
strain gages. The load cell is deadweight calibrated and has a full scale capacity of
400 N with a resolution of 2 N.

Simultaneously, two orthogonally mounted capacitance probes monitor the
position of the pin relative to bushing. These probes are clamped to the follower
arm and are electrically insulated by polymer bushings. These probes have a range
of 1,250 um and a resolution of 40 nm. Additionally, the pin and target are elec-
trically grounded. The angular position of the crank is measured by a hollow shaft
incremental encoder attached to the spindle shaft.

Figure 7.3 shows the joint force as a function of crank angle at Cycle 1 and
Cycle 20,500. The measured joint force agrees well with the multibody dynamic
simulation with the coupled evolution wear model (CEWM) (Mukras et al. 2010).
High-frequency oscillation is observed when the slider changes its velocity direc-
tion. However, there is no significant variation of joint forces between different
cycles. Thus, the profile of joint forces is fixed throughout all cycles.

It is well known that uncertainty in applied loading is the most significant factor
in prognosis. Without knowing future loadings, the uncertainty in prediction can be
so wide that the prediction may not have significant meaning. This issue can be

(a) cycle 1 (b) cycle 20,585
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Fig. 7.3 Joint force predictions and measured data. a Cycle 1, b cycle 20,500
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addressed in two ways. First, although the loading condition is variable, if there is
enough proof that the future loadings will be similar to the past loadings, then the
collected data for past joint forces can be used to predict the future loadings. In this
case, the future loadings can be represented using statistical methods. Of course, the
uncertainty in predicted life will be increased due to the added uncertainty. Second,
wear parameters can be characterized using only the past loading history. This
approach is applied here. Note that this method will also work for a variable load
history. In this case, the computation will be more expensive than the current
example.

Figure 7.4 shows measured displacements of the pin center using the capaci-
tance probe. The wear volume is computed based on the values of d, and J,. Due to
the pretensioned springs, the contact points are located at only one side of the
bushing. However, the location of pin center varies according to crank angle. This
can be explained by the rounded pin surface and different amounts of elastic
deformation due to variation in spring forces with crank angle. The measured
forces, computed wear volume from the measured displacement, sliding distance,
and wear coefficient are shown at six cycles for crank angles O and 7 radians in
Tables 7.1 and 7.2, respectively. Although the wear coefficient converges for both
cases, the converged results do not match. This is because the joint force is not
constant with angle and the measured wear volume includes uncertainty. In the
following section, a statistical approach is introduced to improve the wear coeffi-
cient estimate. The idea is to estimate a wear coefficient incorporating uncertainty
based on the first five sets of measured data and then predict the wear volume in the
sixth cycle using the information. Since the actual data at this cycle are also
measured, we can evaluate the accuracy of the method by comparing the measured
and predicted results.

capacitance probe data
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Fig. 7.4 In situ measurements of pin displacement. a Profile of pin center locations, b wear
volume from the overlapped area
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Table 7.1 Wear coefficient calculation using pin locations at O rad

Cycles Force (N) Volume (mm?) Slip distance (m) k x 10* (mm*/N m)
1 64.41 1.59 0.06 4134.80
100 62.80 2.57 5.99 68.25
1000 63.17 8.10 59.85 21.44
5000 64.77 24.48 299.24 12.63
10,000 62.65 46.21 598.47 12.32
20,585 59.96 93.90 1232.00 12.71

Table 7.2 Wear coefficient calculation using pin locations at 7 radian

Cycles Force (N) Volume (mm?) Slip distance (m) k x 10* (mm*/N m)
1 103.87 7.29 0.06 11731.00
100 106.90 7.64 5.99 119.43
1000 114.04 9.55 59.85 13.99
5000 138.77 23.87 299.24 5.75
10,000 143.50 44.41 598.47 5.17
20,585 147.85 91.56 1232.00 5.03

7.2.4 Bayesian Inference for Predicting Progressive Joint
Wear

7.2.4.1 Likelihood and Prior

The Bayesian technique introduced in Chap. 3 is employed to identify the wear
coefficient k using wear volume measurements. The wear volume corresponds to
the observed data, and the wear coefficient corresponds to the model parameters.
The procedure to obtain the posterior distribution consists of proper definition of the
probability distribution for the likelihood and prior. The choice of likelihood can
affect the analysis results. In this context, Martin and Pérez (2009) studied about a
generalized lognormal distribution to provide flexible fits to many types of
experimental or observational data. Moreover, there are many approaches to select
the appropriate distribution type for likelihood. For example, Walker and
Gutiérrez-Pefia (1999) suggested a simple one to select a model when no infor-
mation on variability of experimental data is available.

In this study, two types of likelihood are assumed for the simplicity: normal and
lognormal distributions. In addition to the wear coefficient, the standard deviation
of the measured wear volume is also considered as an unknown model parameter.
In likelihood calculation, the actual wear volume at a given cycle is computed by
averaging the values at 0 and = radians (see Tables 7.1 and 7.2). Denoting the wear
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volume measured at the specific cycle as V, the likelihoods of the data for a given
wear coefficient and standard deviation can be defined as

f(V|k,0) NN(u,Uz) (7.4)

and

f(VIK,0) ~LN(n,0%), (7.5)

where p and o are the mean and standard deviation of wear volume, and # and ( are
two parameters of the lognormal distribution. Note that N(u,c?) represents a
normal distribution, while LN (7, C2) indicates a lognormal distribution. In Eq. 7.4,
the likelihood is defined with mean and standard deviation. In reality, a single wear
volume is measured using in situ capacitance probes, but this measured data has
errors. In the likelihood definition, the measured volume is used as a mean value,
but the error is unknown. Therefore, the standard deviation of the likelihood is
considered unknown and needs to be updated through the Bayesian inference.
Therefore, the distribution of standard deviation represents the error in data.

According to Eq. 7.3, the mean wear volume is expressed as the integral of
contact force and slip, multiplied by x. In practice, this integral is computed dis-
cretely by dividing the cycle into g equal intervals:

H = KN (Zq: F,LkAlk> y (76)

k=1

where F,; and Al are the contact force and incremental slip at kth segment,
respectively, and N is the number of cycles. In order to simplify the above
expression, it is assumed that the sum of contact force and sliding distance can be
expressed by an average normal contact force times the accumulated sliding dis-
tance. That is,

u=xF,l, (7.7)

where F, is the average contact force and [ = > Al; is the accumulated sliding
distance. Because the force profile is consistent from one cycle to the next, the sum
in Eq. 7.6 is obtained as a constant with the value 5.966 (N m) based on experi-
mental data. In Eq. 7.5, n and { are given as

1, a2
nzln,u—EC and (= /In 1+E. (7.8)

Note that the mean is only a function of « since all other terms are given or fixed
in Eq. 7.6. This makes sense given that k¥ and ¢ are unknown parameters to be
estimated conditional on the observed data V.
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For the prior distribution of x, the wear coefficient from the literature (Schmitz
et al. 2004) is employed:

f(x) ~N(5.05,0.74) x 107*, (7.9)

This prior distribution was obtained from tribometer tests under a constant
contact pressure to determine x for the bushing with the same material as the
current study. In the Bayesian technique, the posterior distribution of x is obtained
by multiplying equation 7.4 or 7.5 with the prior distribution f(x) provided in
Eq. 7.9. Since the Bayesian technique can be sensitive to the prior, the case with no
prior knowledge (a noninformative prior) is also considered to study the effect of
prior information. Additionally, the noninformative prior is considered for the
standard deviation ¢ of likelihood because no knowledge is available. The nonin-
formative prior is equivalent to the uniformly distributed prior that covers entire
range. In practice, however, it is possible to consider the first likelihood as a prior
distribution.

7.2.4.2 Markov Chain Monte Carlo (MCMC) Simulation

The MCMC simulation is employed to realize the posterior distribution, which is
introduced in Chap. 4. Since the MCMC method is a sampling-based one, it has to
include enough samples so that the statistical characteristics of the distribution can
be well captured. There are some methods available to determine the convergence
condition, such as Adlouni et al. (2006) and Plummer et al. (2006). In this study, the
convergence condition is determined graphically as the simplest method. It involves
discarding the values at the initial stage of iteration, and monitoring the traces and
histogram plots for later iterations from which the subjective judgment is made as to
the convergence to a stationary chain. As an example of MCMC simulation, we
consider a posterior distribution which is given as

1y 1S~ (Vi — kFul)?
p(k,0) x (\/2_71:0) exp[—E;T .

Equation 7.10 is the posterior distribution with noninformative prior when the
error, &, between obtained data (in situ wear volume, Vol;) and estimated values
from wear volume equation (xF,l;) is normally distributed with zero mean and
standard deviation, ¢. Therefore, the measured wear volume can be represented by

(7.10)

Voly = kF,lx +¢&, &~N(0,07). (7.11)
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When n, measured data are used, Eq. 7.10 can be written in a general form as

)nyexp l—%i(vk_a#lk)z] (7.12)

k=1

p(K,0) o (—

2no

If n, is one, the equation is exactly same with normal distribution. Equation 7.10 is
the case that n, is five.

Figure 7.5 and Table 7.3 show the sampling result of [k,a] for Eq. 7.10.
Figure 7.5a represents traces of 10,000 iterations. As mentioned previously, the
initial stages are discarded (burn-in) because they are not converged; the discarding
value can be selected as an arbitrary value, in this case we select 4,000 as the
discarding value (40 % of total samples). Figure 7.5b gives the estimated PDF with
6,000 samples starting from 4,001 iterations, while Fig. 7.5¢ shows the analytical
PDF from Eq. 7.10. It can be seen that the MCMC sampling result follows the
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Fig. 7.5 Joint posterior PDF. a Trace of iteration, b using MCMC, ¢ exact solution

Table 7.3 Statistical moments

W, Uy O O cov(k, a)
MCMC 7.82 x 1074 5.61 0.93 x 1074 2.59 0
Exact sol. 7.76 x 1074 5.63 0.92 x 1074 2.51 0
Error (%) 0.79 0.47 1.09 3.13 0
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analytical distribution quite well. Table 7.3 shows that the first statistical moments
have less than 1 % error.

Once the samples are obtained from the posterior distribution of [k, a], the
samples of wear volume can be obtained by using Eq. 7.3 or Eq. 7.6. In Eq. 7.6, u
represents the wear volume which is obtained as a distribution due to the uncer-
tainty of unknown parameter, x, and the 90 % interval is defined as a confidence
interval (CI). The level of prediction interval (PI) can also be calculated by adding
the measurement error ¢ to the wear volume in Eq. 7.6.

7.2.5 Identification of Wear Coefficient and Prediction
of Wear Volume

7.2.5.1 Posterior Distribution of Wear Coefficient

The posterior distributions of x and ¢ are obtained as the results of five times
updating using the MCMC technique with the first five sets of data in Tables 7.1
and 7.2. The last data set is remotely located and is used for the prediction vali-
dation. In the MCMC process, the number of iterations is fixed at 10,000. The
resulting PDFs are given in Fig. 7.6. Both normal and lognormal distributions are
considered for the likelihood, and both noninformative and normal distribution are
considered for the prior. In the case of a noninformative prior, the PDF shape in
Fig. 7.6¢ with the lognormal likelihood is narrower than that of Fig. 7.6a with the
normal likelihood. As shown in the fifth set of Table 7.4, the standard deviation
from the lognormal likelihood (0.51 x 10~* mm?/N'm) is 43 % less than that of
normal likelihood (0.9 x 10~* mm? /Nm), whereas the mean values are nearly
equal; i.e., 7.89 and 7.88, respectively. These results show that the lognormal
likelihood exhibits increased accuracy over the normal likelihood. The reason that
the former is better than the latter may be attributed to the nonnegative nature of the
lognormal distribution, which is the case of the wear coefficient.

By comparing the results for the two priors, i.e., Figs. 7.6a versus b and 7.6c
versus d, it is seen that the use of a normal prior leads to underestimation of the
mean for x. It is noted that the actual x values at the last data set are found to vary
between 5.03 x 10~* and 12.71 x 10™* (see Tables 7.1 and 7.2), of which the
average is 8.5 x 107%. The reason that the results with a prior are worse than the
noninformative results may attribute to the inaccurate prior distribution; as men-
tioned previously, the tribometer wear tests were performed under the uniform
pressure condition, while the contact pressure in the bushing is not constant. In
addition, the wear coefficient is not an intrinsic material property, but depends on
contact pressure and contact area. It is also observed that the posterior distributions
of x in Fig. 7.6a, c are close to Laplacian distribution with heavy tails. Although the
case with lognormal likelihood has narrower distribution, the shape of posterior
distribution is close. On the other hand, the posterior distributions with the normal
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Fig. 7.6 Posterior distribution when using the first five data sets. a Normal likelihood with
non-informative prior, b Normal likelihood with normal prior, ¢ Lognormal likelihood with
non-informative prior, d Lognormal likelihood with normal prior
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Table 7.4 Mean and standard deviation of x (1074 mm*/N m)

Likelihood Prior Data set no. 3 4 5 6
Normal Non-inform Mean 17.49 8.28 7.89 7.57
Std. 10.02 2.32 0.90 0.40
Prior Mean 5.11 5.42 5.93 6.89
Std. 0.73 0.73 0.76 0.57
Lognormal Non-inform Mean 20.81 8.89 7.88 7.64
Std. 5.82 1.17 0.51 0.25
Prior Mean 5.46 5.67 6.29 7.41
Std. 0.72 0.75 0.77 0.25

prior in Fig. 7.6b, d show quite different distribution shape from that of Fig. 7.6a, c.
Therefore, it can be concluded that the prior contributes significantly to the pos-
terior distribution. This is partly related to the fact that the prior information is not
consistent with observed data.

In order to investigate the effects of the prior in more detail, the posterior
distributions of x are obtained after updating at each data set. Values of the mean
and standard deviation are given in Table 7.4, and 5-95 confidence intervals
(CI) as well as maximum likelihood values are plotted in Fig. 7.7. In Fig. 7.7, the
star maker denotes the mean value of the distribution after the last update; i.e., using
the sixth data set. This is used as a target value for correct prediction of the earlier
stage. In Fig. 7.7a, b, the ClIs with the normally distributed prior are located much
lower than the ones without a prior (noninformative) and do not include the target
value. What is remarkable from this observation is that, although the use of prior
knowledge is usually recommended for reducing uncertainty and accelerating
convergence, it should be used with caution. In this study, the wear coefficient is not
an intrinsic material property but can vary with operating conditions. This turned
out to be the cause of incorrect prediction, and should be avoided. It should be
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Fig. 7.7 Confidence intervals of the wear coefficient in terms of the data set number.
a Likelihood: normal distribution, b likelihood: lognormal distribution



7.2 In Situ Monitoring and Prediction of Joint Wear 295

noted, however, that this is not always the case. Unlike the present case, if only
limited data are available, the user may have to depend more on prior knowledge
than the likelihood of the data.

7.2.5.2 Prediction of Wear Volume

Once the posterior distribution of x and ¢ are obtained, the information can be used
to predict the wear volume at the next stage. For that purpose, the wear volume for
the sixth data set (at 20,585 cycles) is predicted using the posterior distribution for
the wear coefficient from previous data sets. Due to uncertainty in x and o, the
predicted wear volume becomes a probability distribution. Figure 7.8 shows
5-95 CI and maximum likelihood values of the wear volume distribution. In the
figure, the actual value of wear volume measured at the sixth data set (92.73 mm®)
is used as a target value. As noted previously, the use of selected prior does not
predict the wear volume well. Even the upper confidence limit is below the target
value, which can cause unexpected failure if the value is carelessly used in the
design decision.

Comparing the results of normal and lognormal likelihood, the size of the
interval is quite large at the third stage of data in the case of the normal likelihood.
However, the size of the interval is quickly reduced as the number of data set
increases. Overall, the size of the interval of the lognormal likelihood is smaller
than that of the normal likelihood.

In Fig. 7.9, the predicted distributions of the wear volume at the sixth stage
using the posterior distributions from the fifth stage are given with different com-
binations of likelihoods and priors; the vertical line indicates the measured value. It
can be seen that the result with the noninformative prior is better than that with the
normally distributed prior. Due to the underestimation of the wear coefficient in the
normally distributed prior, the predicted wear volumes with the prior are less than
the actual one.
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Fig. 7.8 Prediction intervals of the wear volume at 20,585 cycles in terms of the data set number.
a Likelihood: normal distribution, b likelihood: lognormal distribution
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Fig. 7.9 Predicted distributions of wear volume at cycle = 20,565. a Likelihood: N and
noninform, b likelihood: N and prior, ¢ likelihood: LN and noninform, d likelihood: LN and prior

In Fig. 7.10, the CI and PI of the wear volumes at all stages are given using the
posterior distribution at each stage along with the measured data (denoted by dots).
In both cases of likelihoods, the CI and PI have a tendency to gradually decrease
from 1,000 cycles as the cycles increase. The results at the first and second stages,
which are 1 cycle and 100 cycles respectively, exhibit smaller intervals than other
high cycles even if they are results with small number of data. The reason is that the
variances of the parameters are large, but the wear volume itself is very small at low
cycle compared to higher cycles. Although these early stages are not of interest in
terms of prognosis, the estimation results are fairly exact. In Table 7.5, the
numerical values of CI and PI are provided. The CIs and PIs of the lognormal case
are smaller than that of the normal case, which demonstrates improved accuracy.

7.2.6 Discussion and Conclusions

In this study, the Bayesian inference technique is used to estimate the probability
distribution of wear coefficients from in situ measurements. The first five sets of
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Table 7.5 C.I. and P.I.

of wear volume

Data set no. 1 2 3 4 5 6
Measured 4.44 5.105 8.825 24.175 45.31 92.73
wear V
C.L N 95 % 6.61 12.13 22.14 35.75 56.25 100.38
5% 0.75 0.35 2.03 12.78 38.87 85.09
Inter 5.86 11.77 20.11 22.97 17.38 15.28
LN |95 % 6.61 7.06 18.73 32.88 52.27 99.04
5 % 2.50 3.60 7.66 21.52 42.31 88.78
Inter 4.11 3.46 11.07 11.36 9.96 10.26
P.IL N 95 % 9.19 20.32 30.96 40.34 60.64 104.04
5 % -2.84 [-9.18 =7.01 7.56 33.78 81.22
Inter 12.03 29.50 37.97 32.78 26.87 22.82
LN |95 % 9.90 12.22 23.72 36.06 55.18 101.86
5% 0.24 1.23 5.18 19.36 39.87 86.70
Inter 9.66 10.99 18.53 16.70 15.30 15.15

data up to 10,000 cycles are used to reduce uncertainty in wear coefficient and the
last set of data at 20,585 cycles is used for the prediction validation. The numerical
results show that the posterior distribution with a noninformative prior is more
accurate than that with the prior distribution from the literature. This result is
obtained because the converged posterior distribution is quite different from the
prior distribution. In order to predict the wear coefficient of a mechanical compo-
nent, it has been suggested that the wear volume, slip distance, and applied load
must be measured simultaneously.
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7.3 Identification of Correlated Damage Parameters
Under Noise and Bias Using Bayesian Inference”

7.3.1 Motivation and Background

In Chaps. 4 and 6, we discussed that the most important step of physics-based
prognostics is to identify model parameters. In this section, statistical model
parameter identification is presented based on the Bayesian method when param-
eters are correlated and observed data have noise and bias. For Paris crack growth
model, it will be shown that a strong correlation exists (a) between two parameters
of the Paris model, and (b) between initially measured crack size and bias. As the
level of noise increases, the Bayesian inference is not able to identify the correlated
parameters. However, the RUL is predicted relatively accurately. It will also be
shown that the Bayesian identification process converges slowly when the level of
noise is high.

In this study, a physics-based model for structural degradation due to fatigue
damage is applied for prognostics, since damage grows slowly and the physics
governing its behavior is relatively well known. The main purpose of this study is
to present the usage of Bayesian inference in identifying model parameters and
predicting the RUL—the remaining cycles before maintenance. The study focuses
on crack growth in a fuselage panel under repeated pressurization loading, which
can be considered regular loading cycles. In this type of application, the uncertainty
in applied loading is small compared to other uncertainties. Therefore, the crack
growth behavior and the RUL can be predicted based on the identified model
parameters before the crack becomes dangerous. The improved accuracy in these
model parameters allows more accurate prediction of the RUL of the monitored
structural component.

Identifying the model parameters and predicting damage growth, however, is not
a simple task due to the noise and bias of data from SHM systems and the corre-
lation between parameters, which is prevalent in practical problems. The noise
comes from variability of random environments, while the bias comes from sys-
tematic departures of measurement data, such as calibration error. However,
research for identifying model parameters under noise and bias, without mentioning
correlated parameters, is limited.

The main objective of this study is to demonstrate how Bayesian inference can
be used to identify model parameters and to predict RUL, especially when the
model parameters are correlated. In order to find the effects of noise and bias on the
identified parameters, numerical studies utilize synthetic data; i.e., the measurement
data are produced from the assumed model of noise and bias. The key interest is
how the Bayesian inference identifies the correlated parameters under noise and
bias in data.

2An D, Choi JH, Kim NH (2012) Identification of correlated damage parameters under noise
and bias using Bayesian inference. Structural Health Monitoring 11(3):293-303.
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This section is organized as follows: in Sect. 7.3.2, a simple damage growth
based on Paris model is presented in addition to the uncertainty model of noise and
bias; in Sect. 7.3.3, parameter identification and RUL prediction using the Bayesian
method are presented with different levels of noise and bias; and conclusions are
presented in Sect. 7.3.4.

7.3.2 Damage Growth and Measurement Uncertainty
Models

7.3.2.1 Damage Growth Model

In this study, a simple damage growth model is used to demonstrate how to char-
acterize damage growth parameters. It is assumed that a through-the-thickness center
crack exists in an infinite plate under the mode I loading condition. Loading con-
ditions and fracture parameters of 7075-T651 aluminum alloy are shown in
Table 7.6. In Table 7.6, the two model parameters are assumed to be uniformly
distributed, whose lower- and upper bounds were obtained from the scatter of
experimental data (Newman et al. 1999). They can be considered as the damage
growth parameters of generic Al 7075-T651 material. In general, it is well known
that the two Paris parameters are strongly correlated (Sinclair and Pierie 1990), but it
is assumed initially that they are uncorrelated because there is no prior knowledge on
the level of correlation. Using measured data of crack sizes, the Bayesian inference
will show the correlation structure between these two parameters. Since the scatter is
so wide, the prediction of RUL using the initial distributions of parameters is
meaningless. The specific panel being monitored using SHM systems may have
much narrower distributions of the parameters, or even deterministic values.

7.3.2.2 Measurement Uncertainty Model

In SHM-based inspection, the sensors installed on the panel are used to detect the
location and size of damage. A crack in the fuselage panel grows according to the
applied load, pressurizations in this case. Then, the structural health monitoring
(SHM) systems detect the crack. In general, the SHM system cannot detect a crack

Table 7.6 Loading and fracture parameters of 7075-T651 aluminum alloy

Property Nominal Fracture toughness | Damage Damage parameter In(C)
stress (Kic (MPay/m)) parameter
Ao (MPa) m
Distribution | Case 1: 86.5 | Deterministic 30 U(3.3,4.3) |U(In(5e—11),In(5e—10))
type Case 2: 78.6
Case 3: 70.8
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when it is too small. Many SHM systems can detect a crack as small as the size of
5-10 mm. Therefore, the necessity of identifying the initial small crack size
becomes unimportant. In practice when SHM system detects a crack with size ay,
this can be considered as the initial crack size with that time being the initial cycle.
However, ay may still include noise and bias from the measurement. In addition, the
fracture toughness, Kjc, is also unimportant because airliners may want to send the
airplane for maintenance before the crack becomes critical.

The main objective of this study is to show that the measured data can be used to
identify crack growth parameters, and then, to predict the future behavior of the
cracks. We simulate the measured crack sizes from SHM. In general, the measured
damage includes the effect of bias and noise. The former is deterministic and
represents a calibration error, while the latter is random and represents noise in the
measurement environment. The synthetic measurement data are useful for param-
eter study, that is, the different noise and bias levels show how the identification
process is affected. In this context, bias is considered as two different levels,
42 mm, and noise is uniformly distributed between —v mm and + v mm. Four
different levels of v are considered: 0, 0.1, 1, 5 mm. The varying levels of noise
represent the quality of SHM systems.

The synthetic measurement data are generated by (a) assuming that the true
parameters, myye and Cyye, and the initial half crack size, ay, are known; (b) cal-
culating the true crack sizes according to Eq. 4.19 for a given N, and Ac; and
(c) adding a deterministic bias and random noise to the true crack size data
including the initial crack size. Once the synthetic data are obtained, the true values
of crack sizes as well as the true values of parameters are not used in the prognostics
process. In this study, the following true values of parameters are used for all
numerical examples: #gye = 3.8, Cipe = 1.5 X 107'° and ap = 10 mm.

Table 7.6 shows three different levels of loading; the first two (Ag = 86.5 and
78.6 MPa) are used for estimating model parameters, while the last (Ao = 70.8) is
used for validation purposes. The reason for using two sets of data to estimate
damage growth parameters is to utilize more data having damage propagation
information at an early stage. Theoretically, the true values of parameters can be
identified using a single set of data because the Paris model is a nonlinear function
of parameters. However, random noise can make the identification process slow,
especially when parameters are correlated; i.e., many different combinations of
correlated parameters can achieve the same crack size. This property delays the
convergence of Bayesian process such that meaningful parameters can only be
obtained toward the end of RUL. Based on preliminary study, two sets of data at
different loadings can help the Bayesian process converge quickly. This situation
corresponds to two fuselage panel with different thickness.

Figure 7.11 shows the true crack growth curves for three different levels of
loading (solid curves) and synthetic measurement data ¢;"*** (triangles) with noise
and bias. It is noted that the positive bias shifts the data above the true crack growth.
On the other hand, the noises are randomly distributed between measurement
cycles. It is assumed that the measurements are performed at every 100 cycles. Let
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Fig. 7.11 Crack growth of three different loading conditions and two sets of synthetic data. a bias
= +2 mm and noise = 0 mm, b bias = +2 mm and noise = 5 mm

there be n, measurement data. Then, the measured crack sizes and corresponding
cycles are represented by
ameas — {ameas meas meas meas

0 , ,ay ,...,any

(7.13)
N = {No = 0,N; = 100, N, = 200,...,N,, }.

It is assumed that after Ny, the crack size becomes larger than the threshold and
the crack is repaired.

7.3.3 Bayesian Inference for Characterization of Damage
Properties

7.3.3.1 Damage Growth Parameters Estimation

Once the synthetic data (damage sizes vs. cycles) are generated, they can be used
to identify unknown damage growth parameters. As mentioned before, m, C, and ag
can be considered as unknown damage growth parameters. In addition, the bias and
noise are also unknown because they are only assumed to be known in generating
crack size data. In the case of noise, the standard deviation, ¢, of the noise and
deterministic bias, b, are considered as an unknown parameters. The identification
of ¢ will be important as the Bayesian process depends on it. Therefore, the
objective is to identify (or, improve) these five parameters using the measured crack
size data. The vector of unknown parameters is defined by 0 = {m, C, a9, b,a}.

Bayesian method introduced in Chap. 4 is used to identify the unknown
parameters as well as the level of noise and bias based on the measured crack sizes
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a™*®. The joint posterior PDF is obtained by multiplying the prior PDF with the
likelihood as

For prior distribution, the uniform distribution is used for the damage growth
parameters, m and C, as described in Table 7.6. For other parameters, no prior
distribution is used; i.e., noninformative. Therefore, the prior PDF becomes
f(8) = f(m)f(C). The likelihood is the probability of obtaining the observed crack
sizes a™* given values of parameters. For the likelihood, it is assumed to be a
normal distribution for the given five parameters including the standard deviation of
the measured size, o:

meas 1 » 1 & ameas —a; 914) ?
F(am™(9) (\/2——7195) exp [_5, 1 <7> ] (7.15)

where 0 = {m, C, ao,b,d} and

ai(014) = [Nic(1-5) (Aov/m)” +a(‘,‘“}° "b (7.16)
is the crack size from the Paris model with bias and ;"** is the measurement crack
size at cycle N;. In general, it is possible that the normal distribution in Eq. 7.15
may have a negative crack size, which is physically impossible; therefore, the
normal distribution is truncated at zero.

A primitive way of computing the posterior PDF is to evaluate Eq. 7.14 at a grid
of points after identifying the effective range. This method, however, has several
drawbacks such as the difficulty in finding correct location and scale of the grid
points, the spacing of the grid, and so on. Especially, when a multivariable joint
PDF is required, which is the case in this study, the computational cost is pro-
portional to M3, where M is the number of grids in one dimension. On the other
hand, the MCMC simulation can be an effective solution as it is less sensitive to the
number of variables (Andrieu et al. 2003). Using the expression of posterior PDF in
Eq. 7.14, 5,000 samples of parameters are drawn by using the Metropolis—Hastings
(M-H) algorithm, which is a typical method of MCMC.

7.3.3.2 The Effect of Correlation Between Parameters

Since the original data of crack sizes are generated from the assumed true values of
parameters, the objective of Bayesian inference is to make the posterior joint PDF
converge to the true values. Therefore, it is expected that the PDF becomes nar-
rower as n, increases; i.e., more data are used. This process seems straightforward,
but the preliminary study shows that the posterior joint PDF may converge to
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values different from the true ones. It is found that this phenomenon is related to the
correlation between parameters, which is explored in Chap. 6. There are many
correlations between unknown parameters, but only the strongest correlated rela-
tionships are considered: the two Paris model parameters and a( and b. First, it was
well known that the two Paris model parameters, m and C, are strongly correlated
(Carpinteri and Paggi 2007). Their true values can be identified well with only three
data with perfect data in Chap. 6. However, the embedded noise can make it
difficult to identify the two model parameters because the crack growth rate may not
be consistent with the noisy data. In addition, this can slow down the convergence
in the posterior distribution, because when the crack is small, there is no significant
crack growth rate. The effect of noise is relatively diminished as the crack growth
rate increases, which occurs toward the end of life (EOL). Next, let the initially
detected crack size be aj** when the measurement environment has no noise. This
measured size is the outcome of the initial crack size and bias:

are™ = ag +b. (7.17)

Therefore, there exist infinite possible combinations of ay and b to obtain the
measured crack size. It is generally infeasible to identify the initial crack size and
bias with a single measurement when the measured data is linearly dependent on
both parameters.

In order to overcome the above-mentioned difficulty in identifying correlated
parameters, two different strategies are used in this study. First, the two Paris model
parameters are kept because they can be identified as the crack grows. Second, the
relationship between ay and b has different characteristics from the model param-
eters (m, C). ap and b are time independent, and the sum of the two parameters are
constant. Therefore, the bias is removed from the Bayesian identification process
using Eq. 7.17, assuming that the bias and initial crack size are perfectly correlated.
This process seems straightforward, but the difficulty exists from the fact that the
constant ¢y in Eq. 7.17 is unknown. Below is the procedure of estimating ag'***.

(a) Assume that the measured initial crack size is ap = ag*®

(b) With given ay, use the Bayesian method to update the posterior joint PDF of
m,C,b,o

(c) Calculate the maximum likelihood value b* of b from the posterior joint PDF

(d) Estimate ag®® = ag + b*

(e) Eliminate b using b = aj*®
m, C,agp, 0.

—ap and update the posterior joint PDF of

Figure 7.12 shows the posterior PDFs for the case of true bias of +2 mm
(a) when n, = 13 (N, = 1,200 cycles) and (b) when n, = 17 (N;¢ = 1,600 cycles).
The posterior joint PDFs are plotted separately into three groups for the plotting
purpose. In this case, it is assumed that there is no noise in the data. The true values
of parameters are marked using a star symbol. Similar results were also obtained in
the case with bias = —2 mm. First, it is clear that the two Paris model parameters are
strongly correlated. The same is true for the initial crack size and bias; in fact, the
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Fig. 7.12 Posterior distributions of parameters with zero noise and true bias of +2 mm.
an,=13,bn, =17

PDF of bias is calculated from Eq. 7.17 with the initial crack size. Second, it can be
observed that the PDFs at n, = 17 is narrower than that of n, = 13, although the
PDFs at n, = 13 is quite narrow compared to the prior distribution. Lastly, the
identified results look different from the true values due to the scale, but the errors
between the true values and the median of identified results are at a maximum of
around 5 %, except for bias. The error in bias looks large, but that is because the
true value of bias is small. The error in bias is about 0.5 mm. The same magnitude
of error exists for the initial crack size due to the perfect correlation between them.
Table 7.7 lists all six cases considered in this study, and all of them show a similar
level of errors. It is noted that the identified standard deviation of noise, o, does not
converge to its true value of zero. Zero noise data can cause a problem in the
likelihood calculation, as the denominator becomes zero in Eq. 7.15. However, this
would not happen for practical cases in which noise always exists.

The next example is to investigate the effect of noise on the posterior PDFs of
parameters. The results of identified posterior distributions with different levels of
noise are shown in Fig. 7.13 when the true bias was +2 mm. Similar results were
obtained when bias is —2 mm. The black, blue and red colors, respectively,
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Fig. 7.13 Posterior distributions with three different levels of noise (bias = +2 mm)

represent noise levels of 0.1, 1, and 5 mm. The median location is denoted by a
symbol (a circle for 0.1 mm noise, a square for 1| mm noise, and a star for 5 mm
noise). Each vertical line represents a 90 % CI of posterior PDF. The solid hori-
zontal line is the true value of the parameter. In the case of noise level = 0.1 mm, all
parameters were identified accurately with very narrow CIs. In the case of noise
level = 1 mm, the initial crack size and bias were identified accurately as the
number of data is increased, whereas the CIs of two Paris parameters were not
reduced. In addition, the median values were somewhat different from the true
parameter values. This happened because the large noise prevents identifying
correlated parameters accurately. Increasingly inaccurate results were observed as
the level of noise increased to 5 mm. Therefore, it is concluded that the level of
noise plays an important role in identifying correlated parameters using Bayesian
inference. However, this does not mean that it is not able to predict RUL. Even if
these parameters were not accurately identified because of correlation, the predicted
RUL was relatively accurate, which will be discussed in detail next subsection.

7.3.3.3 Damage Propagation and RUL Prediction

Once the parameters are identified, they can be used to predict the crack growth and
estimate RUL. Since the joint PDF of parameters are available in the form of 5,000
sample, the crack growth and RUL will also be estimated using the same number of
sample. First, using 5,000 sets of parameters obtained from the MCMC method,
Eq. 4.19 is utilized to calculate 5,000 numbers of crack size a; after Nj cycles.
Then, random measurement errors are added to the predicted crack sizes. For that
purpose, 5,000 samples of measurement errors are generated from normal distri-
bution with zero mean and identified 5,000 samples of ¢. Then, the quality of
prediction can be evaluated in terms of how close the median is to the true crack
growth and how large the PI is. The results of crack growth are shown in Fig. 7.14
when the true bias is +2 mm. Different colors represent the three different loading
conditions. The solid curves are true crack growth, while the dashed curves are
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Fig. 7.14 Prediction of crack growth with bias = +2 mm. a noise = 1 mm, n, = 13, b noise =
1 mm, n, = 17, ¢ noise = 5 mm, n, = 13, d noise = 5 mm, n, = 17

medians of predicted crack growth distribution. The results are obtained as a dis-
tribution due to the uncertainty in parameters, but the medians of predicted crack
growth are only shown in the figures for visibility. In addition, the critical crack
sizes with different loadings use horizontal lines. Different from the previous
chapters, different critical crack sizes are used here for different loading conditions.
Since the posterior distributions of parameters are symmetric, there was no dif-
ference between the mean, mode, and maximum likelihood estimates.

Figure 7.14 shows that the results closely predicted the true crack growth when
noise is less than 1 mm. Even if the level of noise is 5 mm, the results of predicted
crack growth become close to the true one as the number of data increases. This
means that if there are many data (much information about crack growth), the future
crack growth can be predicted accurately, even if there is much noise. However,
when the level of noise is large, the convergence is slow such that the accurate
prediction happened almost at the EOL.

As can be seen from Fig. 7.14, crack growth and RUL can be predicted with
reasonable accuracy, even though the true values of the parameters are not accu-
rately identified. The reason is that the correlated parameters m and C work together
to predict crack growth in Eq. 4.19. For example, if m is underestimated, then the
Bayesian process overestimates C to compensate for it. In addition, if there is large
noise in the data, the distribution of estimated parameters becomes wider, which
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can cover the risk that comes from the inaccuracy of the identified parameters.
Therefore it is possible to safely predict crack growth and RUL.

In order to see the effect of the noise level on the uncertainty of predicted RUL,
Fig. 7.15 plots the median and 90 % PI of the RUL and compared them with the
true RUL. The RUL can be calculated by solving Eq. 4.19 for N when the crack
size becomes critical; a = ac:

1-m/2 1—-m/2
m/ _a m/

N = U Dby (718)

The RUL is also expressed as a distribution due to the uncertainty of the
parameters, which is obtained by replacing a; and model parameters, m and C in
Eq. 7.18 with 5,000 predicted crack growth and identified model parameters. In
Fig. 7.15, the solid diagonal lines are the true RULSs at different loading conditions
(Ao = 86.5,78.6,70.8). The precision and accuracy are fairly good when the noise
is less than 1 mm, which is consistent with the crack growth results. In the case of a
large noise, 5 mm, the medians are close to the true RUL, and the wide intervals are
gradually reduced as more data are used. Therefore, it is concluded that the RULs
are predicted reasonably in spite of large nose and bias in data.
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Fig. 7.15 Median and 90 % of prediction interval of the predicted RUL (bias = +2 mm). a noise
= 0.1 mm, b noise = 1 mm, ¢ noise = 5 mm
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7.3.4 Conclusions

In this study, Bayesian method is used for identifying the Paris model parameters
that govern the crack growth in an aircraft panel using SHM systems that measure
crack sizes with noise and bias. Focuses have been given to the effect of correlated
parameters and the effect of noise and bias. The correlation between the initial crack
size and bias was explicitly imposed using analytical expression, while the corre-
lation between two Paris parameters was identified through Bayesian inference. It is
observed that the correlated parameter identification is sensitive to the level of
noise, while predicting the RUL is relatively insensitive to the level of noise. It is
found that greater numbers of data are required to narrow the distribution of
parameters when the level of noise is high. When parameters are correlated, it is
difficult to identify the true values of the parameters, but the correlated parameters
work together to predict accurate crack growth and RUL.

7.4 Usage of Accelerated Test Data for Predicting
Remaining Useful Life at Field Operating Conditions®

Prognostics predicts future damage/degradation and the RUL of in-service systems
based on damage data obtained during previous usage. General prognostics methods
are physics-based approaches when physical models and loading conditions are
available and data-driven approaches when only the damage data are available.
Damage data are of great importance regardless of prognostics methods used, but it
is expensive to obtain data from in-service systems because of time and cost. Instead,
companies frequently perform accelerated life tests under severe operating condi-
tions for the purpose of design validation. This section presents a method of utilizing
degradation data obtained during accelerated life tests for the purpose of prognostics.
As an example, crack growth data are synthetically generated under overloaded
conditions, which are utilized to predict damage growth and RUL at field operating
conditions. Four different scenarios are considered based on the availability of a
physical model and field loading conditions. Using accelerated test data increases
prediction accuracy in the early stages of physics-based prognostics and also com-
pensates for the insufficient data problem in data-driven prognostics.

3An D, Choi JH, Kim NH (2013) Practical use of accelerated test data for the prognostics methods,
Annual conference of the Prognostics and Health Management Society, Oct. 14-17, 2013,
New Orleans, LA.
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7.4.1 Motivation and Background

Prognostics predicts future damage/degradation and the RUL of in-service systems
based on the damage data obtained during previous usage. Even though prognostics
facilitates condition-based maintenance that is considered as a cost-effective
maintenance strategy compared to periodic preventive maintenance, there are
several challenges in order for it to be viable in practice. One of them to be
considered in this study is a limited number of damage data in-service systems,
since it is expensive to obtain data due to time and cost. Instead, it is easy to obtain
damage data from accelerated life tests under severer operating conditions than
in-service ones, since companies frequently use them for the purpose of design
validation.

Even though studies on life estimation using accelerated life test data are
available in the literature (Nelson 1990; Park and Bae 2010), they are mostly used
to estimate the average life of a fleet of systems, not the life of a specific system that
can experience different loading histories from other systems. It is difficult to use
them for the purpose of prognostics because in-service usage conditions are not
reflected. Prognostics may produce too conservative life prediction if the acceler-
ated life test data are directly used as degradation data by considering accelerated
loading conditions as field operation conditions. This issue has been recognized by
researchers in the prognostics field (Celaya et al. 2011). As another case of uti-
lization of accelerated life test data, the data are used to build a degradation model
when physical models are not available (Skima et al. 2014). In such a case, how-
ever, the degradation model is good for predicting the RUL at the accelerated
loading conditions, but not for the nominal operating conditions.

This study presents several methods of utilizing progressive damage data
obtained from accelerated life tests in predicting the RUL of a particular system
operating in the field. It is assumed that during the accelerated life tests, sensors are
placed in the system or periodic inspections are performed such that the history of
damage growth is measured until the damage grows up to a threshold. The
threshold is determined at which the system cannot be operated further without
maintenance. The time when the damage grows to the threshold is called the EOL.
It is also assumed that the current system in the field has a similar damage data up to
the current time. Then the objective is to predict the EOL of the current system so
that maintenance can be ordered before the system reaches inoperable situation.
Since this prediction involves numerous uncertainty, the prediction needs to be
given in the framework of probability. Four different scenarios are considered based
on available information, such as physical models and field loading conditions.
Especially, this study focuses on the last scenario when neither a physical model
nor loading conditions are available and presents a mapping method to compensate
for the lack of accuracy due to insufficient data in data-driven approaches.

This section is organized as follows: in Sect. 7.4.2, the problem is defined with a
crack growth example; in Sect. 7.4.3, it is suggested how accelerated condition data
can be used under different scenarios, followed by conclusions in Sect. 7.4.4.
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7.4.2 Problem Definition

7.4.2.1 Prognostics Approaches

Physics-based approaches assume that a physical model describing the behavior of
damage is available and combine the physical model with measured data to predict
the future behavior of damage. The physical degradation model is expressed as a
function of usage conditions, elapsed cycle or time and model parameters.
Normally, usage conditions and time are given, while the model parameters should
be identified. Since the behavior of damage depends on model parameters, iden-
tifying them is the most important issue in predicting future damage behaviors.
Among several algorithms, the particle filter (PF) explained in Chap. 4 is used in
this study.

Data-driven approaches use information from collected data (training data) to
identify the damage state and predict the future state without using any specific
physical model. In general, previous damage states are employed for the input
variables, which allow to create a relation between damage data without requiring
information from physical model or loading conditions. The selection of input
variables, however, is flexible: for example, loading information can be included if
it is available, which increases the accuracy of prediction.

Among several algorithms, the neural network (NN) explained in Chap. 5 is
used, but the Bayesian batch method is employed in this study. Therefore, the
weights and biases are identified as distributions based on Bayes’ theorem instead
of deterministic values given by an optimization process. In implementation, the
network model is constructed with two input nodes (the previous two damage data
sets are used for input variables), one hidden node with one hidden layer and one
output node, and the tangent sigmoid and pure linear functions are employed. Two
types of predictions are considered: short-term and long-term predictions. The
former is to predict just one step ahead; that is, the damage state at time k+ 1 is
predicted using measured damage information up to time k. On the other hand, the
latter is to predict several steps ahead by using the predicted damage states for the
input instead of real measurement data, which is implemented in Chap. 5.

The performance of data-driven approaches depends on the number and quality
of training data. If damage growth data of the same system under same loading
condition are available, then the data-driven approaches can predict the damage
growth of the current system accurately. In practice, however, such data are rarely
available. An important objective of this study is to show that accelerated life test
data can be used as training data for data-driven approaches. Then, a technical
challenge is that how to use the accelerated life test data, which are obtained in
severer loading conditions, can be used for training the current system that is being
operated under nominal loading conditions.
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7.4.2.2 Crack Growth Example

To illustrate the main idea of this study, a crack growth problem in a fuselage panel
of aircraft under repeated pressurization loadings is employed, whose damage
growth is based on the Paris model given in Eq. 2.1. Synthetic measurement data
are generated using Eq. 2.2/4.19 with assumed true damage growth parameters,
Mye = 3.5 and Ciye = 6.4 x 107!, and the initial half crack size, ¢y = 10 mm.
These true parameters are only used to generate the synthetic data. It is assumed that
accelerated life tests are performed under three high stress ranges, Ac = 145, 140,
and 135 MPa, and the real operating condition is under Ac = 68 MPa. In order to
simulate the real-life situation, a uniformly distributed random noise between +v
mm is added to the synthetic data generated using Eq. 4.19. Since accelerated life
test environment in a laboratory is more controlled than that of a field, v = 0.7 mm
is used for the accelerated life test data, while v = 1.5 mm for the field operating
condition. Figure 7.16 shows synthetic data that are used in the numerical example.
The three sets of accelerated life test data in Fig. 7.16a are utilized to increase the
accuracy of damage prediction of an in-service system, shown as star markers in
Fig. 7.16b. The uniqueness of the current work is to use the accelerated test data in
Fig. 7.16a to predict the damage state under field operating conditions with much
lower stress levels in Fig. 7.16b.

7.4.3 Utilizing Accelerated Life Test Data

Four methods of utilizing accelerated life test data are presented in the following
subsections. They are based on the availability of a physical model and field loading
conditions, as listed in Table 7.8.
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Fig. 7.16 Synthetic crack growth data under different loading conditions with random noise.
a Accelerated life tests, b field operating conditions
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Table 7.8 Four scenarios considered in the numerical study

Case 1 Case 2 Case 3 Case 4
Physical model O (6] X X
Field loading O X O X
Available method Physics-based (PF) Data-driven (NN)

7.43.1 Case 1: When Both Physical Model and Loading
Conditions Are Available

This is the conventional case of physics-based prognostics using the Paris model
given in Eq. 2.1. In such a case, accelerated life test data are unnecessary for
prognosis; that is, the future damage state can be predicted using only the field data.
The accelerated test data, however, can be used to improve prognostics accuracy
and to reduce uncertainty in the early stage because the additional data can give
better prior information for the damage parameters.

In order to illustrate the effect of accelerated life test data, it is assumed that the
Paris model parameters, m and C, are unknown for a specific fuselage panel of
interest. Therefore, it is natural to start with the values of these parameters from a
generic Al 7075-T651 material. From Newman et al. (1999), it is assumed that
these material parameters are uniformly distributed due to manufacturing vari-
ability: m~ U(3.3,4.3) and In(C) ~ U(In(5 x 10711),1n(5 x 10719)). A total of
5,000 random samples of these parameters are shown in Fig. 7.17a. The star mark
in the figure represents the true value of the parameters, which needs to be found
using crack growth measurement data. The initial distribution of model parameters
in Fig. 7.17a is so large that the crack growth prediction using them does not
provide useful information.

The objective is to narrow the initial parameter distribution by incorporating the
accelerated life test data into the PF. Figure 7.17b shows the narrowed distribution
using the three accelerated life test data in Fig. 7.16a. It is noted that the scatter of
distribution is much narrower than that of the initial distribution. It is also noted that
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Fig. 7.17 Prior distribution of two Paris model parameters. a From the literature, b from
accelerated life test
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due to a strong correlation between the two Paris parameters, the Bayesian process
cannot identify the true value of the parameters. Instead, the process converges to a
narrow band between the two parameters. As pointed out in Sect. 7.3, the crack
propagation behavior will be similar for different combinations of the two Paris
parameters along this band. The advantage of accelerated life test data is that the
prognostics of the current system can start with much better initial distribution, as
shown in Fig. 7.17b.

For the purpose of comparison, the two distributions in Fig. 7.17a, b are used as
an initial distribution, and the PF is used to update the distributions at each mea-
surement cycle with the data in the field operating condition. Then, the updated
distributions are used to predict the distribution of RUL, as shown in Fig. 7.18a, b.
Due to the uncertainty in model parameters, the predicted RUL is also uncertain,
and the figure shows the median as well as 90 % PIs. Figure 7.18b is the case when
the prior information from the accelerated life test data is used, which shows fairly
accurate and precise results starting from an early stage. Also, Table 7.9 shows the
difference between Fig. 7.18a, b quantitatively based on the prognostics metrics
(Saxena et al. 2009) that is introduced in Chap. 2, in which the performance is better
when the values of prognostics metrics are larger.
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Fig. 7.18 RUL prediction of Case 1. a Based on prior from literature, b based on prior from
accelerated life tests

Table 7.9 Prognostics metrics for Case 1

PH o — A accuracy (o = 10 %, RA CRA
(@=10%) |7.=05) (h=0.5)
Prior from 11,000 False (0.2504) 0.9161 0.8479
literature
Prior from test 22,000 True (0.6046) 0.9240 0.9285
data
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7.4.3.2 Case 2: When Only Physical Model Is Available
but not Loading Condition

In prognostics, loading conditions are as important as physics model because the
loading conditions are input to the model. In the accelerated life tests, it is a
standard process that a specific load (or the history of loads) is applied to the
system. In the field operation, however, it is difficult to measure the real operating
loads, and the loads may be different at different times. Therefore, the second case is
when the physics model is available (its model parameters are still unknown) but
the real operating loadings are unknown. In the following, the case when the real
loading is constant but its magnitude is unknown is considered.

When real operating loading is uncertain, it makes a sense to assume its range. It
is assumed that the uncertain loadings are uniformly distributed between 50 and
90 MPa, while the true loading is 68 MPa. With a given physical model, there are
three ways to predict RUL: (A) updating both parameters and uncertain loadings,
(B) updating loadings with a given distribution of parameters, and (C) updating
parameters with given uncertain loadings. However, the last case, Case 2-C, does
not make sense because there are no ways to reduce the uncertainty from uncertain
loadings. Therefore, Case 2-A and Case 2-B are considered in the following.

For Case 2-A, the accelerated test data are used to improve the prior distribution
of the two parameters, and then, the field data are used to update both the uncertain
loading and the two parameters. Therefore, Bayesian inference updates the joint
PDF of all three variables. Comparison of RUL prediction using the two different
priors (Fig. 7.17a, b) as in the previous section is shown in Fig. 7.19 and
Table 7.10. Although it is difficult to figure out the differences between the two
clearly, numerical results in Table 7.10 show the case using prior from accelerated
life test data yields slightly better results than that using the prior from literature. It
is interesting that using a much narrower prior only slightly improves the RUL
prediction. It is because of the correlation between model parameters and loading.
Even if the case with a uniform prior from literature may converges slower in
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Fig. 7.19 RUL prediction of Case 2-A. a Prior from literature, b prior from test data
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Table 7.10 Prognostics metrics for Case 2-A

7 Applications of Prognostics

PH (¢ = 10 %) o—A accuracy RA (2=0.5) CRA
(2 =10%, 2 =0.5)
Prior from literature 11,000 False (0.3246) 0.8739 0.8116
Prior from test data 13,000 False (0.4728) 0.9704 0.8643

finding accurate values of parameters and loading than that of the prior with
accelerate life test data, the prediction of RUL can be accurate when the correlation
is well identified. If there are more model parameters and many correlations
between parameters, however, it is possible that narrow priors may outperform
uniform priors.

The best way to utilize accelerated life test data for Case 2 would be Case 2-B.
Parameters are given as distributions, as shown in Fig. 7.17, and only the loading
condition is updated with measured data. Figure 7.20 and Table 7.11 show that the
results using prior information from accelerated life test data are significantly better
than ones using the prior information from the literature, and show the best pre-
diction among all cases (see Tables 7.10 and 7.11). Also, since the distributions of
parameters are obtained from correct loadings (accelerated life tests), the true
loading can be identified.
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Fig. 7.20 RUL prediction of Case 2-B. a Prior from literature, b prior from accelerated life tests

Table 7.11 Prognostics metrics for Case 2-B

PH o — A accuracy (¢ = 10%, RA CRA
(0 = 10%) 2 =0.5) (2=0.5)
Prior from 2000 False (0.0578) 0.4627 0.4450
literature
Prior from test 11,000 True (0.5182) 0.9727 0.8751
data
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7.4.3.3 Case 3: When Only Loading Conditions Are Given,
but not a Physical Model

As a comparison to the previous case, this corresponds to the case when the
physical model is not available, but accurate loading information is. Since the
physics model is not available, a data-driven approach would be a natural choice.
This case can be handled with NN by adding loading conditions to the input
variables. First, Fig. 7.21 shows damage prediction results without using the
accelerated life test data; that is, training data are available only from field operating
conditions. In this case, short-term predictions become valid after 13,000 cycles, as
shown in Fig. 7.21a, but long-term predictions diverge from the true damage
growth. This trend is similar to the data up to 19,000 cycles, as shown in Fig. 7.21b.
Even if the PIs are narrowed than that of 13,000 cycles, the median of long-term
prediction diverges from the true damage growth, and the 90 % PIs failed to include
the true damage growth.

In contrast, when the accelerated life test data are used as training data, good
results are obtained for short-term predictions at early cycles, as shown in
Fig. 7.22a. Also, long-term predictions become close to the true damage growth
with a narrow CI at 19,000 cycles, as shown in Fig. 7.22b. These results show that
the accelerated life test data can be used as training data, even if the loading
conditions in accelerated life tests are different from that of the nominal loading
conditions.

7.43.4 Case 4: When Neither a Physical Model nor Loading
Conditions Are Available

This case is also data-driven prognostics, like Case 3, but the loading condition is
not available and cannot be updated since there is no physical model. In such a case,
many training data under similar loading conditions to the field operating condition
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Fig. 7.21 Damage prediction without using the accelerated life test data. a At 13,000 cycles, b at
19,000 cycles
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Fig. 7.22 Damage prediction using the accelerated life test data. a At 2000 cycles, b at 19,000
cycles

are required, but it would be expensive to obtain such data because of time and cost.
In this section, the damage data at the accelerated life test conditions are mapped
into the damage data at the field operating condition so that they can be used as
training data.

The inverse power model is employed for mapping between the accelerated test
data and field data. This model is widely used in problems such as an electric
insulator, bearing, and metal fatigue. The inverse power model has a linear relation
between the logarithm of life and load (Nelson 1990):

B

Life = T
Load”

log(Life) = log(f;) — B, log(Load), (7.19)

where Life is the life span of a system and f,, f§, are coefficients, which need to be
found using life data under at least two different loading conditions. Once the
coefficients are identified, the life span under field operating conditions can be
calculated from Eq. 7.19.

To apply the inverse power model for prognosis, the two coefficients in Eq. 7.19
should be determined. First, the life span is defined as when the damage size
reaches a threshold. For example, when the damage threshold is 50 mm (dashed
line in Fig. 7.23a), the life span of three loads, 145, 140 and 135 MPa, are 1734,
1947 and 2241 cycles, respectively. The three different markers in Fig. 7.23b show
these three points. The slope of this line corresponds to the coefficient f3,, while the
y-intercept at log(Load) = 0 corresponds to log(f5;). When only two sets of data
are available, the two parameters can be found by connecting a straight line in the
logarithmic scale graph. When more than two sets of data are available, regression
can be used to find these parameters.

Once these parameters are identified, the life span at the real operating load can
be calculated using Eq. 7.19, whose examples at loadings from 50 to 90 MPa with
an equal interval of 5 MPa are shown as star markers in Fig. 7.23c. This process
can be repeated for different thresholds as shown by many dashed lines in
Fig. 7.23a, b, and then the solid curves in Fig. 7.23c can be obtained by connecting
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Fig. 7.23 Mapping process based on linear relation between logarithm of life and load.
a Accelerated test data, b inverse power model, ¢ mapping with estimated life

the lifespan results having the same loads. The uncertain loading range,
50-90 MPa, however, turned out to be too wide because Fig. 7.23c shows sig-
nificantly different rates of damage growth over the range. Instead, if there are field
damage data up to 10,000 cycles, it is easy to reduce the range of the real operating
load between 65 and 75 MPa. In this study, therefore, three sets of mapping data are
generated at three loads, 65, 70 and 75 MPa, and used for training data.

There are three uncertainty sources caused by three mapping steps, which cor-
respond to Fig. 7.23a—c:

(1) Uncertainty in regression of accelerated life test data: Since accelerated test
data (markers in Fig. 7.23a) are given as damage size at every 100th cycle,
they are required to make regression models for calculating lifespan (cycle) at
given threshold (damage size). Thirty regression models for each loading
condition are constructed by randomly selecting initial weight parameters in
NN, and the medians of the regression results at each loading condition are
shown as three curves in Fig. 7.23a.

(2) Uncertainty in the inverse power model: Uncertainty in calculated life span
data has an effect on identifying the coefficients of mapping. In fact, a small
change in coefficients can yield a large difference in mapping results due to the
logarithm relation. However, only the uncertainty in the y-intercept, log(f,),
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will be considered due to the following reasons: (a) as shown in Fig. 7.23b,
the slopes at different thresholds are almost the same, and (b) the slope and the
y-intercept have a strong linear relation. The mean slope of —3.5 is determined
out of 630 slopes caused by 21 thresholds between 20 and 50 mm and 30 sets
of regression models, which is illustrated as a solid line in Fig. 7.23b with an
arbitrary y-intercept. The uncertainty in log(f,) with a fixed slope is identified
from 30 samples using the Bayesian approach.

(3) Uncertainty in inverse regression: The first regression model is to calculate the
life span cycle for a given damage threshold. However, in order to estimate the
uncertainty in damage size for a given cycle, it is necessary to make an inverse
regression model. Therefore, 30 sets of second regression models are con-
structed to calculate damage size at given cycles in common with real load data.

Finally, mapping uncertainty from 27,000 possibilities (30 x 30 x 30) are
shown in Fig. 7.24a. In the figure, the effect of uncertainty is represented by the
height of markers, which is the 90 % CI. For reference, the true damage growths are
shown using solid curves at three different load levels. The mapped data are close to
the true ones, and the level of uncertainty is comparable to the level of noise in the
field data. For final mapping data to be used for training, one set of damage growth
can be randomly selected out of 27,000 sets, or other methods considering uncer-
tainty in damage data can be developed. Nevertheless, note that mapping results are
close to the true damage growth with narrow uncertainties, and training data having
a level of noise similar to data under real operating loads are of help to predict
damage growth at a real operating load. Even though the possible sources of
uncertainty are discussed for academic purposes, it would be fine to consider only
the median in the mapping process and add noise. Figure 7.24b shows the final
mapping data to be used for training, which is obtained by adding noise to the
median of mapping results. The noise is uniformly distributed between 1 mm,
whose level can be roughly determined based on field data up to current time.
Figure 7.25 shows damage prediction results, where using mapped data is much
better than not using mapped data in both short-term and long-term predictions.
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Fig. 7.24 Mapping between nominal and accelerated conditions data. a Mapping uncertainty,
b mapping into field operating conditions
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Fig. 7.25 Damage prediction results for Case 4. a Without using mapping data, b using mapping
data

These results show that accelerated test data can show damage growth and RUL
under field operation conditions through mapping and can be utilized as training
data for nominal conditions through proper mapping methods.

7.4.4 Conclusions

This section presents four different methods of utilizing accelerated life test data for
the purpose of prognostics in order to compensate for the limited number of
in-service damage data. Four different cases are: (1) both the physical model and
loading conditions are given, (2 and 3) either the physical model or loading con-
ditions is given, and (4) neither the physical model nor loading conditions are
given. Using accelerated life test data increases prediction accuracy in the early
stages in all cases. Especially, proper mapping between nominal and accelerated
conditions data can cover insufficient data for the last case, which is the most
practical situation.

7.5 Bearing Prognostics Method Based on Entropy
Decrease at Specific Frequencies*

7.5.1 Motivation and Background

Spall failure in bearing is one of the foremost causes of failure in rotating
machineries, as 80-90 % of aircraft engine failures are caused by bearing failure. If

“An D, Choi JH, Kim NH (2014) Bearing prognostic method based on entropy decrease at specific
frequency, Second European Conference of the Prognostics and Health Management Society
2014, July 8-10, 2014, Nantes, France.
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bearings are not repaired properly, it can lead to a catastrophic failure. Since
bearings cannot be disassembled once they are installed, it is not easy to know how
much degradation is progressed and when the maintenance is required. System
responses, such as vibration signals, oil debris and thermography, that are influ-
enced by damage are measured to evaluate the level of damage indirectly.
Especially, vibration signals have been used for damage evaluation for several
decades (Haward 1994). These signals can be used to find the relationship between
bearings’ failure mechanism and signal strength at a specific frequency, from which
the current damage level can be estimated. In the case of spall damage, however,
since the damage grows rapidly, it is difficult to detect the damage early enough to
prepare for maintenance.

Many efforts have been made to predict bearing’s life. Yu and Harris (2001)
proposed a stress-based fatigue life model for ball bearings, which outperformed the
previous bearing life models (the Lundberg and Palmgmn model and the
Inannidcs-Hnrris model), but the uncertainties during in-service were not consid-
ered. Bolander et al. (2009) developed a physical degradation model for the aircraft
engine bearing, but this is limited to a spall on the outer raceway of a typical roller
bearing. Since it is challenging to develop a physical degradation model, most
researches on bearing prognostics rely on degradation feature extraction methods
from vibration signal (Loutas et al. 2013; He and Bechhoefer 2008; Li et al. 2012;
Kim et al. 2012; Boskoski et al. 2012; Sutrisno et al. 2012). Some of the results
from previous studies show good RUL prediction results, but they are difficult to
generalize and largely depend on the given vibration signals that can differ even
from the nominally identical bearings under the same usage conditions.

Figure 7.26 from FEMTO bearing experimental data (Nectoux et al. 2012)
shows the challenges in predicting bearing failure. The data shown as blue in the
figure are vibration signals measured by accelerometer until failure occurs, and the
red horizontal line represents a threshold (20 g). Note that the two quite different
signals are obtained under the same usage conditions and from the nominally
identical bearings. In general, it is difficult to find any consistency in the behavior of
signals, life span and even a threshold. The life span of test 1 (Fig. 7.26a) is around
2800 cycles, but it is 870 cycles for test 2 (Fig. 7.26b) even before the acceleration
signal reaches the threshold.

In this section, a new method is introduced to extract degradation feature of
bearings from vibration signals, which is based on entropy change in the frequency
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Fig. 7.26 Vibration signal from the nominally identical baring and the same usage conditions.
a Test 1, b test 2
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domain. Entropy of a system changes when system’s characteristics change, such as
mechanical and/or chemical energies. However, it is difficult to find these changes
from raw data that is a result of combination of system dynamics, damage, and
noise signals. From the observation that the nature of vibration signals changes as
the mechanical condition changes, the signals are decomposed into various fre-
quencies, and those frequencies that show a consistently change with respect to
damage are selected and analyzed. More detailed explanations and procedures are
presented in Sect. 7.5.2.

FEMTO bearing experimental data (Nectoux et al. 2012) are employed to
demonstrate the entropy-based method, whose experimental platform and bearing
information are shown in Fig. 7.27 (more detailed explanation of test apparatus can
be found in IEEE PHM 2012 Prognostic challenge 2012). Vibration signals are
monitored during 0.1 s with a sampling rate of 25.6 kHz every 10 s. Therefore, the
0.1 s in every 10 s is considered as one cycle, and there are 2560 samples in each
cycle. This setting is necessary because otherwise the amount of data would be huge.

The information of usage conditions and the number of experimental data are
listed in Table 7.12. Two different usage conditions in terms of the radial force
applied on the tested bearing and rotating speed are used in this study. The usage
conditions of Conditions 1 and 2 are respectively, 4 kN and 1800 RPM and 4.2 kN
and 1650 RPM. Seven sets of experimental results from each condition are obtained
until failure occurs. Three sets of data from each condition are used as training data
to predict RUL of other bearings. Based on the raw vibration signals, it is considered
that failure is occurred when the magnitude of acceleration reaches 20 g.
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Fig. 7.27 Experimentation platform: PRONOSTIA (Nectoux et al. 2012)
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concition anc Cata usage Radial force (N) 4000 4200
Rotating speed (RPM) 1800 1650

Num. of data set 7 (Set 1-Set 7) 7 (Set 1-Set 7)
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With the experimental information, this section is organized as follows: in
Sect. 7.5.2, the method for degradation feature extraction and its attributes are
explained; in Sect. 7.5.3, prognostics is performed based on the results from
Sect. 7.5.2; in Sect. 7.5.4, a generality of the proposed method is discussed; and
conclusions and future works with limitation of the proposed method are presented
in the final section.

7.5.2 Degradation Feature Extraction

It is difficult to define vibration signals from raw data as a degradation feature since
there is no change in signals even just before failure in many cases. In this study, a
new method is proposed to extract degradation feature from the raw data based on
entropy changes in the frequency domain.

7.5.2.1 Information Entropy for Degradation Feature Extraction

Entropy is a measure of disorder and randomness of the system. In physical inter-
pretation, entropy change is explained using energy flow. When a system absorbs
energy from others, its entropy increases and the counterpart decreases. The total
entropy of an isolated system, however, never decreases. There is also a mathe-
matical concept of entropy called information entropy or Shannon entropy, which is
the average amount of information (Shannon 1948). In this concept, the increase in
entropy means the increase in uncertainty by missing information contained in data.
Many researchers argue that physical and information entropy are related to each
other (Brillouin 1956; Bao et al. 2010), but an opposite argument also exists (Frigg
and Werndl 2010). For the bearing problem, the total energy in bearing increases as
the work done by external force is consumed by damage initiation/propagation
(Wang and Nakamura 2004), which makes entropy increases (Bao et al. 2010).
However, the information or data used in this research are decomposed vibration
signals rather than the total thermodynamic energy during degradation process of
bearings, which means that the information entropy fits better. Since it is a debatable
topic whether there is a relation between physical and information entropy, infor-
mation entropy is only considered here as a tool to express changes in vibration
signals rather than to connect physical interpretation with information entropy.

Information Entropy
In information theory, entropy is calculated based on the following equation
(Shannon 1948):

H(X) = = 3 f(x) logs /(3 (7.20)
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where X is an information source, n is the number of possible outcomes from X, and
f(x;) is the probability of each outcome. In this case, X in bearing problem rep-
resents bins of acceleration data. After normalizing acceleration data between
minimum and maximum values, the normalized range between O and 1 is divided
by 255 intervals, which are referred to as bins as shown in Fig. 7.28. There are total
256 bins initially and the magnitude of data that can be located in each bin is also
listed in the figure. Data whose magnitude is less than 1/500 and in between 1/500
and 3/500 are, respectively, included in the first and the second bin, and the same
for the last bins (the reason for the criteria of number of initial bins and data
magnitude is that Eq. 7.20 is developed based on computer usage). After data
allocation, the number of bins having nonempty data becomes the number of
possible outcomes, n; that is, 256 — n bins are empty. The probability, f(x;) is the
number of data in ith bin divided by total number of data; this is basically the same
concept as the probability mass function in statistics.

Equation 7.20 denotes that entropy increases as the number of bin, n, increases
and the probability of each bin is even, which corresponds to the case that the data
are spread from zero to one as illustrated in Fig. 7.29a. The entropy at k 4 1 cycle is
higher than that of k cycle, since the amplitude data are allocated in more bins with
even probability. Note that entropy is calculated using all data from cycle zero to
the current cycle. That is, entropy calculation uses accumulated data. Figure 7.29b
shows where opposite case. The number of bins at k and k£ + 1 cycles are the same,
but the data at k + 1 cycle are more located in the middle bins, which makes entropy
decrease.

Entropy as a Degradation Feature
Figure 7.30 shows normalized raw data for Sets 1 and 2 at Condition 1 and the
change in their entropy in the time domain using accumulated data up to the current

1 2 3 256
| | | |
[ I I |
0 1/255 | 2/255 | ... 1

| |
1/500  3/500

Bins indexes:

Data magnitude:

Fig. 7.28 Illustration of information source of bearing problem

(a)1 (b)1
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Fig. 7.29 Illustration of two cases of entropy change. a Entropy increase, b entropy decrease
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Fig. 7.30 Entropy calculation with raw data. a Condition 1 and Set 1, b Condition 1 and Set 2

cycle. In Fig. 7.30a, the entropy increases as the vibration energy increases (the
magnitude of amplitude increases). Since the entropy change is related to vibration
energy, which is related to damage degradation, it seems that the entropy can be
used as a degradation feature. However, note that the entropy starts changing as
vibration signals change, which means entropy change cannot be observed unless
there is a change in vibration signals. However, many vibration signals from
bearing test do not show a significant change until just before failure under large
noise as shown in Fig. 7.30b. Therefore, it seems difficult to use the entropy change
in time domain as a damage feature.

Instead of entropy change in time domain, 2560 raw data at each cycle (0.1 s) of a
bearing are transformed to the frequency domain, and the entropy at each frequency
can be plotted with respect to cycles. If there are Nf frequencies in fast Fourier
transformation (FFT), there are Nf curves of entropy versus cycle. The idea is that
among these entropy curves at different frequencies, those frequencies that show
consistent change in entropy for all bearing test sets are selected as a damage feature.
When the vibration signals are decomposed into various frequencies, the amplitude at
some frequencies increases and that of other frequencies decreases as cycle increases.
Figure 7.31a, b show, respectively, an example of increasing and decreasing
amplitude and entropy at a frequency of Condition 1 and Set 1. The amplitude in the
frequency domain more clearly increases than that in the time domain, which is
because the signals in time domain are the sum of amplitudes of all frequencies
including both increasing and decreasing amplitudes. This is more clearly exhibited
in the case of Condition 1 and Set 2 in Fig. 7.30b with Fig. 7.31c, d.

It is expected that the amplitude increases as the level of damage increases. This
is true in the time domain even if it is difficult to observe it at early stages. In
frequency domain, this may true only for localized defects. In practice, system
vibration characteristics continue to change as degradation progresses. The natural
frequency changes as the stiffness decreases due to damage growth, and the periodic
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Fig. 7.31 Entropy calculation with amplitude at specific frequency. a Cond. 1 and Set 1:
increasing entropy, b Cond. 1 and Set 1: decreasing entropy, ¢ Cond. 1 and Set 2: increasing
entropy, d Cond. 1 and Set 2: decreasing entropy

nature of localized defects can diminish since the motion of rolling elements
becomes irregular and disturbed as damage progresses (Haward 1994).

The following illustrative example can be used to explain different behaviors of
amplitude change in frequency domain due to damage growth. Let us assume that
as damage grows, the natural frequency of system gradually changes. Figure 7.32
shows the change in vibration characteristics in terms of natural frequency from 2.4
to 2.2 Hz. If the time domain data in Fig. 7.32a are continuous, then the frequency
amplitude in Fig. 7.32b will be a Dirac delta function with amplitude of 5 at 2.4, 2.3
and 2.2 Hz. Since the resolution of this example is 0.5 Hz and the frequencies are
not multiples of 0.5, noisy responses exist in Fig. 7.32b, which can also be common
for real applications. From Fig. 7.32b, it is shown that the amplitude at frequency
2.0 increases (like Fig. 7.31a, c), while the one at frequency 2.5 decreases (like
Fig. 7.31b, d) as the natural frequency changes from 2.4 to 2.2 Hz.

Based on entropy plots in Fig. 7.31 and the discussion in Fig. 7.32, it seems that
amplitude increases at some frequencies, while it decreases at other frequencies. In
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Fig. 7.32 Amplitude change at specific frequency as vibration characteristics changes. a Time
domain, b frequency domain

fact, both can be used as a degradation feature. After examining 14 FEMTO data
sets, it is found that the decreasing trends in entropy are consistent for all data sets,
and some important attributes can be found. On the other hand, no common
characteristics can be found from increasing trends in entropy. Even though the
entropy clearly increases, its behavior is unpredictable. Therefore, decreasing
amplitudes are more stable and consistent than increasing ones. In addition, it is
found that the frequencies showing decreasing entropy are around 4 kHz for all data
sets, which may depends on the structure of the systems, such as the bearing types
and number of rolling elements. Therefore, the decreasing entropy in the frequency
domain is used as a degradation feature. The detailed procedure to extract degra-
dation feature based on entropy change in the frequency domain is explained in the
following section.

7.5.2.2 Procedure of Degradation Feature Extraction

The procedure of the proposed degradation feature extraction method is illustrated
in Fig. 7.33, whose detailed explanation is as follows:

Step 1: Convert signals in time domain into frequency domain using FFT. As
mentioned before, one cycle includes 2560 samples of vibration signals (data
acquisition during 0.1 s with sampling rate 25.6 kHz), which is converted into
frequency domain using FFT (Walker 1996). There are 1401 different FFT results
from different cycles (0-1400 cycles), such as the example in Fig. 7.33.

Step 2: Reshape FFT results frequency-wise (frequency-wise plot). At a fixed
frequency (e.g., Frq: 1 in the figure), plot acceleration amplitude versus cycle graph.
Amplitudes at different cycles are collected at a fixed frequency, which is called
frequency-wise plot here. Since FFT results are symmetric with 2560 different
frequencies between 0 Hz and 25.6 kHz, there are 1280 frequencies to be con-
sidered as candidates for degradation feature; that is, there are 1280 amplitude cycle
plots.
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Fig. 7.33 Illustration of degradation feature extraction

Step 3: Calculate entropy and select frequencies showing decreasing entropy.
The frequency-wise amplitude versus cycle graphs from Step 2 are used to calculate
entropy using Eq. 7.20, which ends up 1280 graphs for entropy versus cycle.
Different traces of entropy are illustrated in Step 3 of Fig. 7.33. Among them, those
frequencies showing decreasing entropy, such as Frq: 1, are selected. If multiple
frequencies show decreasing entropy, then a median of these entropies at each cycle
is taken as a damage feature.

There are two points to be considered in calculating entropy. First, a starting
cycle for entropy calculation needs to be determined based on amplitude at fre-
quency domain, which is to avoid the initial effect. For example, a point where
amplitude or trend changes significantly at an early cycle is selected as a starting
cycle since this can be related to a large vibration due to initial misalignment of the
system, as shown in Frq: 1 at Step 2 in Fig. 7.33. The starting cycle can differ for
different sets, but it is usually located between 12 and 100 cycles. Second, the
method to select frequencies is based on a slope of linear regression using entropy
data. If too few frequencies whose slope is large are selected, then the degradation
feature becomes clear, but at the same time common attributes from different test
sets cannot be clearly found since the number of frequencies is too small to rep-
resent the general characteristics. In this study, frequencies whose entropy slope is
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in top 25 are selected. The starting cycle and selected frequencies have an effect on
calculation results of a particular data set, but overall attributes (will be discussed
later in this section) of bearing problem from the proposed methods do not change.

7.5.2.3 Results of Feature Extraction and Its Attributes

Degradation features extracted based on the procedure in the previous section are
shown in Fig. 7.34, in which entropy of all 14 sets decreases as cycle increases.
Each curve is obtained by taking a median of 25 entropy values at each cycle that
are calculated from selected frequencies, showing a consistent decrease in entropy.
From the entropy curves, the maximum and minimum entropy and EOL is defined
as shown in Fig. 7.35.

There are two main findings when the proposed method is used. First, EOL is
proportional to the maximum entropy, which is shown in Fig. 7.36a. It is possible
that a higher energy at initial stage may be related to a longer life. The RUL can be
predicted by utilizing the linear relationship between the maximum entropy and
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Fig. 7.34 Results of the degradation feature. a Condition 1, b condition 2
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entropy and EOL, b two groups of degradation rate

EOL based on training data. Second, when the degradation rate is defined using the
maximum and minimum entropy, as

min. Entropy

dr=1 (7.21)

 max. Entropy

It turns out that the degradation rate can be classified into two groups, as shown
in Fig. 7.36b. It is possible that the two groups are related to two different failure
mechanisms. The two groups of the degradation rate are distributed around 20 and
40 %, which can be used for a threshold. In the following section, RUL is predicted
based on the two approaches using the linear relation and the degradation rate with
the entropy trend.

7.5.3 Prognostics

Even though the vibration signals until failure (true EOL) are available, it is
assumed that the threshold is 90 % of the true EOL for the purpose of maintenance
scheduling. The procedure of feature extraction in Fig. 7.33 is repeated every 50
cycles to select featured frequencies. Even though the selected frequencies can be
different at each cycle, they gradually become stable and converge to around 4 kHz
as cycles increase, as shown in Fig. 7.37. Therefore, RUL prediction is performed
after the selected frequencies are converged; that is, after the red vertical line in the
figure. RUL is predicted in two methods: (1) using the linear relationship between
the maximum entropy and EOL and (2) using the entropy trend with a threshold.

As mentioned before, three sets of data (Sets 1, 2, and 3) from each condition are
used as training data. These sets are utilized to construct a linear relationship
between the maximum entropy and EOL, which is shown in Fig. 7.38a. In the
figure, three different colors represent different sets (red: Set 1, blue: Set 2, and
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black: Set 3), and square and triangle markers, respectively, represent Conditions 1
and 2. The black solid and blue dashed lines are, respectively, mean of regression
results and 10th percentile lower confidence bound obtained by using three data
from each condition. The 10th percentile lower confidence bound is used for a
conservative prediction. For example, when the maximum entropy is obtained as 4
at the current 700 cycles, the EOL and the RUL are predicted as 1000 and 300
cycles, respectively.

7.5.3.1 E.trend Method: Entropy Trend with Threshold

In this method, the future behavior of entropy is predicted based on the following
model:

Entropy = f3; exp {ﬁz(Cycle)ﬂ-’} , (7.22)

whose expression can follow the entropy trend in Fig. 7.34. Three unknown
parameters, f3,, 3,, 5 in the equation are identified based on nonlinear regression
using the data from the cycle at the maximum entropy to the current cycle.
The RUL is predicted by extrapolating the model with identified parameters until it
reaches the threshold. The threshold is determined using the degradation rate from
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three sets of data (Sets 1, 2, and 3) from each condition, as shown in Fig. 7.38b.
Degradation rates of total six training data are classified into two groups, and the
mean of each group is considered as a threshold; they are 21 and 41 %.

It can be determined whether the current data trend belongs to either 21 or 41 %
threshold based on the linear regression model, as shown in Fig. 7.38a. As an
illustration, the prediction result of future entropy trend of Condition 2 and Set 3 is
shown in Fig. 7.39. In Fig. 7.39a, black solid curve, black circles and green dotted
horizontal line are, respectively, true trend up to EOL, used data to identify
b1, Ba, B3 in Eq. 7.22 and the threshold calculated from 21 % degradation rate. The
red dashed curve from the current cycle (700 cycles) is a predicted entropy trend
based on Eq. 7.22 with identified parameters (, = 6.15 x 10°, B, = —12.14,
f3 = 0.0244). The intersection of the predicted entropy trend and the threshold is a
predicted EOL, which is shown as the red dashed vertical line. This result shows
RUL is —9 cycles using 21 % threshold (i.e., a total of 691 life cycles), which does
not make sense because the degradation rate at the current 700 cycle is already more
than 21 %.

The outcome can be different if the threshold is estimated using the linear
regression in Fig. 7.38a. The maximum entropy is 5.08 from Fig. 7.39, which
corresponds to 1780 cycles EOL from the mean of regression model
(max. Entropy = 1.70+0.0019 - EOL, since this is just for threshold classification,
the solid line is used) in Fig. 7.38a. Compared to this result, 691 cycles is too short
as the EOL. The new threshold is estimated as 43 % by considering minimum
entropy at 1780 cycles, which is obtained by extrapolating entropy trend (red
dashed curve in Fig. 7.39a) to 1780 cycles. Since the newly estimated threshold is
close to the threshold in the other group (41 %) from the training data, the RUL is
re-predicted using 41 % threshold, which is shown in Fig. 7.39b. With 41 %
threshold, the RUL is predicted as 833 cycles whose error with the true RUL (1059
cycles) is 0.2137, which is calculated by dividing the true RUL minus the predicted
one by the true one.
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Fig. 7.39 Results of degradation prediction. a Threshold 21 %, b threshold 41 %
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7.5.3.2 RUL Prediction Results

The results of RUL prediction for all prediction sets are shown in Fig. 7.40, in
which black solid lines are the true RUL, green vertical line indicate the cycles
when the frequencies are converged, and blue dotted lines and red dashed lines are
prediction results based on Max.E-EOL and E.trend methods, respectively. The
results from the Max.E-EOL method of Condition 1 are closer to the true RUL than
those from the E.trend method, while the Max.E-EOL method does not perform
well for Condition 2 since EOL of Condition 2 is short and maximum entropy is
small, but 10-%o at small entropy gives very conservative prediction (see in
Fig. 7.38a).
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Fig. 7.40 RUL prediction using three training data. a Condition 1, b Condition 2
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It is considered that the RUL results can be reliable after selected frequencies are
converged (the green vertical lines). However, the RUL prediction of some cases
change from negative value to positive. For example, E.trend result of Set 5 in
Fig. 7.40a is negative at 1500 cycles, but it becomes positive at 1800 cycles.
Since RUL at future cycles is unknown, it is assumed that when RUL is less than 50
cycles, maintenance is ordered. In this case, the used life is calculated at the cycle
when maintenance is ordered. The ratio of used life to the EOL is listed in
Table 7.13; the higher the ratio is, the better the prediction is. However, it is failed
to predict the RUL of Condition 2 and Set 7, in which failure occurs before the
selected frequencies are converged. By considering the EOL of this set is very
short, it seems that there were significant initial defect in this bearing. Except for
this bearing, the mean of the ratio from seven results is calculated. The mean of the
ratio of used life is 0.56 by considering conservative results between the Max.
E-EOL and the E.trend methods (0.47, 0.29, 0.45, 0.52 from Condition 1 and 0.67,
0.78, 0.71 from Condition 2). On the other hand, when the optimistic results are
selected by ignoring conservative results and going to next prediction steps, the
mean is 0.78 (0.81, 0.32, 0.72, 1.08 from Condition 1 and 1.04, 0.79, 0.71 from
Condition 2). That is, bearings can be used 56 or 78 % of their whole life in
average. The choice between the Max.E-EOL and the E.trend methods can be made
depending on the trade-offs between maintenance cost and risk.

So far, the first three data sets are used for training. Lastly, the prediction results
from different combination of three training data sets are provided to validate the
proposed method, which is listed in Table 7.14. There are total ten cases among
total 35 possible combinations (selecting 3 out of 7). In each case, three training sets
are randomly selected, but the combinations of which three data do not show
proportional relation between maximum entropy and EOL are excluded. From the
three sets, threshold levels and the linear relation between maximum entropy and
EOL (see Fig. 7.38) are determined for each condition and utilized to predict RUL
of remaining four bearings in each condition, which is repeated for all cases.

The mean of conservative and optimistic results from each case are listed in
Table 7.14, which is calculated in the same manner as in Table 7.13. The statistical
results (3 %o, minimum and maximum values) from the ten cases are also

Table 7.13 Ratio of used life Set4 |SetS |Set6 |Set7
to EOL using three training —
data Condition 1 Max. 0.81 029 [0.72 |1.08
E-EOL
E.trend 047 (032 [045 |0.52
Condition 2 Max. 0.67 [0.79 |0.71 |Fail
E-EOL
E.trend 1.04 |0.78 |0.71 |Fail
Conservative 0.56
mean
Optimistic mean 0.78
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Table 7.14 Ratio of used life to true EOL using different combination of three training data

Case 1 Case 2 Case 3 Case 4 Case 5
Training set # [123] [345] [134] [257] [137]
Conservative mean 0.56 (7) 0.67 (7) 0.60 (7) 0.58 (8) 0.54 (8)
Optimistic mean 0.78 (7) 0.71 (5) 0.72 (7) 0.71 (7) 0.68 (8)
Fail to be predicted with Two sets One set
optimistic result

Case 6 Case 7 Case 8 Case 9 Case 10"
Training set # [125] [235] [145] [267] [45 6]
Conservative mean 0.63 (7) 0.56 (7) 0.70 (7) 0.45 (8) 0.64 (6)
Optimistic mean 0.87 (7) 0.84 (6) 0.75 (6) 0.55 (6) 0.80 (3)
Fail to be predicted with One set One set Two set Three sets
optimistic result

Min 25th prc Median 75th pre Max
Conservative mean 0.45 0.56 0.59 0.64 0.70
Optimistic mean 0.55 0.71 0.74 0.80 0.87

“One set fails to be predicted with the proposed method

calculated. Based on these results, 56-64 and 71-80 % of bearings’ life from
conservative way and optimistic way, respectively, can be used in average.
However, note that there are several sets that are failed to be predicted by relying on
the optimistic results, and the mean results in Table 7.14 are obtained by excluding
those ones (the numbers in the parenthesis denote the total number of bearings to
calculate the mean values). It is required to be very careful when relying on the
optimistic results with high safety systems. Also, the proposed method cannot
predict the RUL for one set in Case 10.

7.5.4 Discussions on Generality of the Proposed Method

The main findings from the proposed method are that the entropy gradually decreases
to a certain level of thresholds, and the EOL is proportional to the maximum entropy.
If these attributes are also found in the other applications, the proposed method might
be widely applicable. In addition, if the effect of usage conditions on these attributes is
found, it is expected that more accurate prediction is possible with less number of
training data. In this section, these three issues are discussed.

7.54.1 Another Bearing Application
Additional experimental results from another bearing application are employed to

validate the attributes of the proposed method, which are provided by the NSF
I/UCR Center for Intelligent Maintenance Systems (IMS) (Lee et al. 2007). Four
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Fig. 7.41 Illustration of IMS Accelerometers Radial Load
bearing (Qiu et al. 2006)
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double row bearings (16 rollers) are installed on a shaft, and the rotating speed and
radial load are, respectively, 2000 RPM and 6000 Ibs (see Fig. 7.41). The test stops
when the accumulated debris exceeds a certain level, and there are three sets of
experimental data available. A run-and-stop operation is repeated for experimental
Set 1 and Set 3 (Set 2 is continuously monitored to EOL).

Threshold, EOL, and maximum entropy of the failed bearings in each set are
listed in Table 7.15. The maximum entropy of Set 3 is too small compared to its
EOL. However, it is difficult to conclude that the EOL is not proportional to the
maximum entropy since three sets of data are very small and there were several
run-and-stop during the operation. At least, failure occurs at bearings having the
lowest maximum entropy among four bearings in each set. Also, the thresholds of
Set 2, Set 3 and bearing 4 of Set 1 are around 70 %. The difference between bearing
3 (48 %) of Set 1 and all other bearings (70 %) is similar to the difference in
FEMTO bearing (20 and 40 %). Since the number of data set is too small, the
run-and-stop of the operation has an effect on vibration signal and entropy calcu-
lation, and four bearings on a shaft can interact with each other in the failure
process, it is difficult to make any definite conclusions.

7.5.4.2 The Relation Between Threshold/Max.E-EOL and Usage
Conditions

In the previous section, the threshold of the IMS bearing is around 50-70 %, which
differs from that of the FEMTO bearing, 2040 %. The cycle of the FEMTO

Table 7.15 Failure summary of three data sets

Data Minimum Failed Failed Threshold (%) EOL Max.

set Max.E bearing element E

Set 1 Bearing 4 Bearing 3 Inner race 48 1940 1.37
Bearing 4 Roller 65 1.00

element
Set 2 Bearing 1 Bearing 1 Outer race 73 886 0.81
Bearing 4
Set 3 Bearing 3 Bearing 3 Outer race 71 4003 0.68
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bearing is based on seconds, and the EOL is around 2—7 h, while the EOL of IMS
bearing is around 7-30 days. That means, FEMTO bearings are under the accel-
erated test conditions, while IMS bearings are under the nominal operation con-
ditions. Therefore, it seems that there is a relationship between the degradation rate
(threshold) and the applied load, which cannot be found in the research due to the
lack of test data. However, if this relationship can be established, then it can help to
determine a threshold with a small number of training data.

It seems like the slope is proportional to the load based on Conditions 1 and 2 in
Fig. 7.36a. If a relation between the slope and usage conditions can be found, it can
help decision-making to utilize the relation between maximum entropy and EOL for
prediction. However, two conditions are not enough to validate the relation. This
will be considered in near future with more data sets under various usage
conditions.

7.5.5 Conclusions and Future Works

As a summary, the proposed method is based on entropy changes at fixed fre-
quencies to extract degradation feature from vibration signals and to predict the
RUL of bearing applications. The main contributions and attributes of the proposed
method are as follows:

e Degradation feature is found from vibration signals, which gradually decreases
as cycle increases.

e Degradation rate of different experimental sets from the same application are
similar each other, which can be used as a threshold.

e EOL is proportional to the maximum entropy, which can be used another pre-
diction method without a threshold.

The proposed method is demonstrated using 14 sets of bearing experimental data
under two different conditions. By considering used life, 59-74 % of bearings’ life
can be used based on the proposed method.

The results from the proposed method are noticeable by considering the current
level of prediction capability in the literature, but there are still several limitations to
be solved. First of all, the entropy trend decreases exponentially, which can make a
large difference in life prediction with a small perturbation of threshold. Second, the
proposed method is based on the accumulated vibration data. Since the bearing
systems under real operating conditions may last very long time, tremendous
amount of data should be stored. Lastly, the proposed method has been developed
based on the vibration signal. Physical explanations of the observed attributes are
not available yet.

As future works, the proposed method may be improved by resolving the
aforementioned limitations. Also, a generality of the method will be demonstrated
by studying the effect of usage conditions on the level of threshold and the slope of
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Max.E-EOL. Even though the proposed method has not been demonstrated using
the other bearing applications yet, the general usage of this method is promising by
judging the results from 14 sets of bearing data, and the results in Sect. 7.5.4 show
the possibility.

7.6 Other Applications

There are several sets of real test data available in the NASA website (http://ti.arc.
nasa.gov/tech/dash/pcoe/prognostic-data-repository/). For example, wear data from
a milling machine are available (Agogino and Goebel 2007), in which both directly
measured wear depth and indirectly measured signals from three different types of
sensors (acoustic emission, vibration and current sensors) are provided. These data
can be a good source to extract degradation feature or health index from sensor
signals. Also, the data of two bearing applications in Sect. 7.5 are provided in the
website. If the sensor signals show some changes with respect to cycles, they can be
used as degradation data. Most of the data given in the website require feature
extraction processes as with the bearing problems in Sect. 7.5 since they are
measured by sensors as practical cases.

In practical applications, heath monitoring data may not be a deterministic value
but can be distributed. There are cases when health monitoring data for prognostics
can be distributed. For example, many sets of damage data are given at the same
usage conditions from the same system, and usage conditions such as loading
conditions can also have uncertainties and need to be considered as distributions. In
this section, damage feature extraction and prognostics will be discussed with
distribution-type data.

When distributed data are given at a given time cycle, the best way is to
parameterize the distribution and to use the distribution parameters, which are
deterministic, for the purpose of prognostics. Since the type of distribution may
change in the course of damage degradation, it is important to use a flexible
distribution type so that it can model different distribution shapes. Among many
standard distribution types, Johnson distribution has four parameters and very
flexible in terms of representing different distribution shapes, and thus, it will be
used here.

The distributed data can be replaced with four parameters based on the Johnson
distribution (Johnson 1949), in which 4 %o corresponding to probabilities 0.0668,
0.3085, 0.6915 and 0.9332 (let us call these four quantiles) are employed to rep-
resent the distribution. Figure 7.42 shows examples of Johnson distribution for
normal and beta distribution. The black solid curves are exact probability density
function (PDF) from each distribution, and the bars are the results from Johnson
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Fig. 7.42 Example of Johnson distribution. a Standard normal distribution, b beta distribution
witho =2, =35

distribution using four quantiles represented as red star markers. Johnson distri-
bution can express any other distribution types when the four quantiles are correctly
given.

As an example of distributed data, the crack growth example is considered.
Distributed synthetic measurement data are generated using Eq. 4.19 with assumed
true damage growth parameter, Cyye = 1.5 X 10719, the initial half crack size,
ap = 10 mm, load magnitude, Ac = 78 MPa, and the distributed model parameter,
m~U(3.8 —0.027, 3.8+ 0.027), and then a small level of noise uniformly dis-
tributed between —1 and 1 mm is added, whose result is shown in Fig. 7.43. Each
cycle has 5000 samples as the measurement data, whose distribution at 0, 800,
1500, and 2200 cycles are shown in Fig. 7.43b with their true damage size (when
m = 3.8) shown as black square marker. It is shown that the shape of distributions
is changed as cycle increases.
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Fig. 7.43 Distributed synthetic data. a Measured data at every 100 cycles, b distribution of
measured data
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Degradation prediction with distributed data is performed with one of
data-driven approaches, the NN that can easily handle multivariate outputs by
adding output nodes. In this example, the four quantiles of Johnson distribution are
considered as outputs. Four quantiles whose example at 2500 cycles is shown as red
star markers in Fig. 7.43a represent degradation data at each cycle, which makes the
number of input and output variables increase by four times. When the previous two
data are considered as input variables, total numbers of inputs and outputs become
eight (2 x 4) and four (1 x 4), respectively.

Figure 7.44 shows damage prediction results from NN with Johnson distribution
at 1500 cycles. In Fig. 7.44a, the median of future damage growth is very close to
the true one, and 90 % PI also covers damage distribution at every cycle.
Figure 7.44b, ¢ show comparison of damage distribution between predicted one
and measured one at 1600 and 2400 cycles, and their errors are listed in Table 7.16.
The maximum magnitude of error is 5.75 % at 2400 cycles that is 900 cycles ahead
prediction from 1500 cycles. These results show that NN using Johnson distribution
is applicable for predicting damage distribution with distributed data.
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Fig. 7.44 Damage prediction results. a Damage growth prediction, b damage distribution at 1600
cycles, ¢ damage distribution at 2400 cycles
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Table 7.16 Errors between prediction results and measurement at 1500 cycles

Cycles 1600 1800 2000 2200 2400
6.7Q Measurement 0.0186 0.0210 0.0239 0.0276 0.0327
Prediction 0.0186 0.0210 0.0240 0.0279 0.0332
Error (%) 0.03 0.02 0.58 0.95 1.82
30.9Q Measurement 0.0196 0.0221 0.0253 0.0296 0.0354
Prediction 0.0197 0.0225 0.0261 0.0308 0.0374
Error (%) 0.63 1.54 2.89 4.18 5.75
69.1Q Measurement 0.0207 0.0237 0.0278 0.0333 0.0413
Prediction 0.0207 0.0237 0.0276 0.0329 0.0402
Error (%) 0.10 0.01 0.59 1.35 2.66
93.3Q Measurement 0.0218 0.0251 0.0296 0.0363 0.0463
Prediction 0.0218 0.0253 0.0299 0.0363 0.0453
Error (%) 0.32 0.82 0.78 0.09 2.20
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