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Preface

Most of the data a statistician uses is categorical in nature. In the realms of bio-
medicine and social sciences, ecology and demography, voting pattern and mar-
keting, to name a few, categorical data dominate. They are the major raw materials
for analysis for testing different hypotheses relating to the populations which
generate such data. Such data are generally obtained from surveys carried under a
complex survey design, generally a stratified multistage design. In analysis of data
collected through sample surveys, standard statistical techniques are often routinely
employed.

We recall the well-recited phrase which we chanted in our undergraduate days:
Let x1,…, xn be a random sample of size n drawn from a population with probability
density function f(x) or probability mass function pM(x), etc. This means that the
sampled units whose observations are x1, x2,…, xn, are drawn by simple random
sampling with replacement (srswr). This also implies that observed variables x1,…,
xn are independently and identically distributed (IID). In fact, most of the results in
theoretical statistics, including those in usual analysis of categorical data, are based
on these assumptions.

However, survey populations are often complex with different cell probabilities
in different subgroups of the population, and this implies a situation different from
the IID setup. Longitudinal surveys—where sample subjects are observed over two
or more time points—typically lead to dependent observations over time.
Moreover, longitudinal surveys often have complex survey designs that involve
clustering which results in cross-sectional dependence among samples.

In view of these facts, it is, therefore, necessary to modify the usual tests of
goodness of fit, like Pearsonian chi-square, likelihood ratio and Wald statistic to
make them suitable for use in the context of data from complex surveys. A host of
ardent researchers have developed a number of such tests for this purpose over
more than last four decades.

There are already a myriad number of textbooks and research monographs on
analysis of categorical data. Then why is another book in the area required?
My humble answer is that all those treatise provide excellent description of the
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categorical data analysis under the classical setup (usual srswr or IID assumption),
but none addresses the problem when the data are obtained through complex
sample survey designs, which more often than not fail to satisfy the usual
assumptions. The present endeavor tries to fill in the gap in the area.

The idea of writing this book is, therefore, to make a review of some of the ideas
that have blown out in the field of analysis of categorical data from complex
surveys. In doing so, I have tried to systematically arrange the results and provide
relevant examples to illuminate the ideas. This research monograph is a review
of the works already done in the area and does not offer any new investigation. As
such I have unhesitatingly used a host of brilliant publications in this area. A brief
outline of different chapters is indicated as under:

(1) Chapter 1: Basic ideas of sampling; finite population; sampling design; esti-
mator; different sampling strategies; design-based method of making infer-
ence; superpopulation model; model-based inference

(2) Chapter 2: Effects of a true complex design on the variance of an estimator
with reference to a srswr design or an IID-model setup; design effects; mis-
specification effects; multivariate design effect; nonparametric variance
estimation

(3) Chapter 3: Review of classical models of categorial data; tests of hypotheses
for goodness of fit; log-linear model; logistic regression model

(4) Analysis of categorical data from complex surveys under full or saturated
models; different goodness-of-fit tests and their modifications

(5) Analysis of categorical data from complex surveys under log-linear model;
different goodness-of-fit tests and their modifications

(6) Analysis of categorical data from complex surveys under binomial and
polytomous logistic regression model; different goodness-of-fit tests and their
modifications

(7) Analysis of categorical data from complex surveys when misclassification
errors are present; different goodness-of-fit tests and their modifications

(8) Some procedures for obtaining approximate maximum likelihood estimators;
pseudo-likelihood approach for estimation of finite population parameters;
design-adjusted estimators; mixed model framework; principal component
analysis

(9) Appendix: Asymptotic properties of multinomial distribution; asymptotic
distribution of different goodness-of-fit tests; Neyman’s (1949) and Wald’s
(1943) procedures for testing general hypotheses relating to population
proportions

I gratefully acknowledge my indebtedness to the authorities of PHI Learning,
New Delhi, India, for kindly allowing me to use a part of my book, Theory and
Methods of Survey Sampling, 2nd ed., 2009, in Chap. 2 of the present book. I am
thankful to Mr. Shamin Ahmad, Senior Editor for Mathematical Sciences at
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Springer, New Delhi, for his kind encouragement. The book was prepared at the
Indian Statistical Institute, Kolkata, to the authorities of which I acknowledge my
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Chapter 1
Preliminaries

Abstract This chapter reviews some basic concepts in problems of estimating a
finite population parameter through a sample survey, both from a design-based
approach and amodel-based approach. After introducing the concepts of finite popu-
lation, sample, sampling design, estimator, and sampling strategy, this chapter makes
a classification of usual sampling designs and takes a cursory view of some estima-
tors. The concept of superpopulation model is introduced and model-based theory of
inference on finite population parameters and model parameters is looked into. The
role of superpopulation model vis-a-vis sampling design for making inference about
a finite population has been outlined. Finally, a plan of the book has been sketched.

Keywords Finite population · Sample · Sampling frame · Sampling design · Inclu-
sion probability ·Sampling strategy ·Horvitz–Thompson estimator ·PPS sampling ·
Rao–Hartly–Cochran strategy · Generalized difference estimator · GREG · Multi-
stage sampling · Two-phase sampling · Self-weighting design · Superpopulation
model · Design-predictor pair · BLUP · Purposive sampling design

1.1 Introduction

The book has two foci: one is sample survey and the other is analysis of categorical
data. The book is primarily meant for sample survey statisticians, both theoreticians
and practitioners, but nevertheless is meant for data analysts also. As such, in this
chapter we shall make a brief review of basic notions in sample survey techniques,
while a cursory view of classical models for analysis of categorical data will be
postponed till the third chapter.

Sample survey, finite population sampling, or survey sampling is a method of
drawing inference about the characteristic of a finite population by observing only a
part of the population. Different statistical techniques have been developed to achieve
this end during the past few decades.

In what follows we review some basic results in problems of estimating a finite
population parameter (like, its total or mean, variance) through a sample survey. We
assume throughout most of this chapter that the finite population values are fixed

© Springer Science+Business Media Singapore 2016
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2 1 Preliminaries

quantities and are not realizations of random variables. The concepts will be clear
subsequently.

1.2 The Fixed Population Model

First, we consider a few definitions.

Definition 1.2.1 A finite (survey) population P is a collection of a known number
N of identifiable units labeled 1, 2, . . . , N ;P = {1, . . . , N }, where i denotes the
physical unit labeled i . The integer N is called the size of the population.

The following types of populations, therefore, do not satisfy the requirements
of the above definition: batches of industrial products of identical specifications
(e.g., nails, screws) coming out from a production process, as one unit cannot be
distinguished from the other, i.e., the identifiability of the units is lost; population of
animals in a forest, population of fishes in a typical lake, as the population size is
unknown.Collection of households in a given area, factories in an industrial complex,
and agricultural fields in a village are examples of survey populations.

Let ‘y’ be a study variable having value yi on i (= 1, . . . , N ). As an example,
in an industrial survey ‘yi ’ may be the value added by manufacture by a factory
i . The quantity yi is assumed to be fixed and not random. Associated with P we
have, therefore, a vector of real numbers y = (y1, . . . , yN )′. The vector y therefore
constitutes a parameter for the model of a survey population, y ∈ RN , the parameter
space. In a sample survey one is often interested in estimating a parameter function
θ(y), e.g., population total T (y) = T or Y (= ∑N

i=1 yi ), population mean Ȳ or ȳ
(= T/N ), population variance S2 = ∑N

i=1(yi − ȳ)2/(N − 1). This is done by
choosing a sample (a part of the population, defined below) from P in a suitable
manner and observing the values of y only for those units which are included in the
sample.

Definition 1.2.2 A sample is a part of the population, i.e., a collection of a suitable
number of units selected from the assembly of N units which constitute the survey
population P .

A sample may be selected in a draw-by-draw fashion by replacing a unit selected
at a draw to the original population before making the next draw. This is called
sampling with replacement (wr).

Also, a sample may be selected in a draw-by-draw fashion without replacing a
unit selected at a draw to the original population. This is called sampling without
replacement (wor).

A sample when selected by a with replacement (wr)-sampling procedure may be
written as a sequence:

S = i1, . . . , in, 1 ≤ it ≤ N (1.2.1)

where it denotes the label of the unit selected at the t th draw and is not necessarily
unequal to it ′ for t �= t ′(= 1, . . . , n). For a without replacement (wor)-sampling
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procedure, a sample may also written as a sequence S, with it denoting the label of
the unit selected at the t th draw. Thus, here,

S = {i1, . . . , in}, 1 ≤ it ≤ N , it �= it ′ for t �= t ′(= 1, . . . , N ) (1.2.2)

since, here, repetition of unit in S is not possible.
Arranging the units in the (sequence) sample S in an increasing (decreasing) order

of magnitudes of their labels and considering only the distinct units, a sample may
also be written as a set s. For a wr-sampling by n draws, a sample written as a set is,
therefore,

s = ( j1, . . . , jν(S)), 1 ≤ j1 < · · · < jν(S) ≤ N (1.2.3)

where ν(S) is the number of distinct units in S.
In a wor-sampling procedure, a sample of n-draws, written as a set, is

s = ( j1, . . . , jn), 1 ≤ j1 < · · · < jn ≤ N . (1.2.4)

As an example, if in a wr-sampling S = {2, 9, 4, 9}, the corresponding s is s =
(2, 4, 9) with ν(S) = 3, since there are only three distinct units. Similarly, if for
a wor sampling procedure, S = {4, 9, 1}, the corresponding s is s = (1, 4, 9) with
ν(S) = 3.Clearly, information on the order of selection and repetition of units which
is available in the (sequence) sample S is not available in the (set) sample s.

Definition 1.2.3 Number of distinct units in a sample is its effective sample size.
Number of draws in a sample is itsnominal sample size. In (1.2.3),ν(S) is the effective
sample size, 1 ≤ ν(S) ≤ n. For a wor-sample of n-draws, ν(S) = ν(s) = n.

Note that a sample is a sequence or set of some units from the population and it
does not include their y-values. Thus in an agricultural survey if the firms with labels
7, 3, and 11 are included in the sample and if the yields of these field are 231, 38,
and 15 units, respectively, the sample comprised the firms labeled 7, 3, and 11 only;
their yield figures have nothing to do with the sample in this case.

Definition 1.2.4 The sample space is the collection of all possible samples and is
often denoted as S. Thus S = {S} or {s} accordingly as we are interested in S or s.

In a simple random sample with replacement (srswr) of n draws (defied in
Sect. 1.3), S consists of Nn samples S. In a simple random sample without replace-
ment (srsowr) (defined in Sect. 1.3), S consists of (N )n samples S and

(N
n

)
samples

s where (a)b = a(a− 1) . . . (a− b+ 1), a > b. If the samples s of all possible sizes
are considered in a wor-sampling procedure, there are 2N samples in S.
Definition 1.2.5 LetA be theminimalσ -field overS and p be a probabilitymeasure
defined overA such that p(s) [or p(S)] denotes the probability of selecting s [or S],
satisfying

p(s)[p(S)] ≥ 0
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∑

S
p(s)

[
∑

S
p(S)

]

= 1. (1.2.5)

In estimating a finite population parameter θ(y) through sample surveys, one of the
main tasks of the survey statistician is to find a suitable p(s) or p(S). The collection
(S, p) is called a sampling design (s.d.), often denoted as D(S, p) or simply p. The
triplet (S,A, p) is the probability space for the model of the finite population.

The expected effective sample size of a s.d. p is, therefore,

E{ν(S)} =
∑

S∈S
ν(S)p(S) =

N∑

μ=1

μP[ν(S) = μ] = ν. (1.2.6)

We shall denote by ρν the class of all fixed effective size [FS(ν)] designs, i.e.,

ρν = {p : p(s) > 0 ⇐⇒ ν(S) = ν}.

A s.d. p is said to be noninformative if p(s)[p(S)] does not depend on the y-values.
In this treatise, unless otherwise stated, we shall consider noninformative designs
only.

Basu (1958) and Basu and Ghosh (1967) proved that all the information relevant
to making inference about the population characteristic is contained within the set
sample s and the corresponding y-values. For this reason we shall mostly confine
ourselves to the set sample s.

The quantities
πi =

∑

s	i
p(s),πi j =

∑

s	i, j
p(s)

πi1,...,ik =
∑

s	i1,...,ik
p(s) (1.2.8)

are, respectively, the first order, second order, . . . , kth order inclusion probabilities
of units in a s.d. p. The following lemma states some relations among inclusion
probabilities and expected effective sample size of a s.d.

Lemma 1.2.1 For any s.d. p,

(i) πi + π j − 1 ≤ πi j ≤ min(πi ,π j ),

(ii)
∑N

i=1 πi = ν,

(iii)
∑N

i �= j=1 πi j = ν(ν − 1) + V (ν(S)).

If p ∈ ρν,

(iv)
∑N

j (�=i)=1 πi j = (ν − 1)πi ,

(v)
∑N

i �= j=1 πi j = ν(ν − 1).



1.2 The Fixed Population Model 5

Further, for any s.d. p,

θ(1 − θ) ≤ V {ν(S)} ≤ (N − ν)(ν − 1) (1.2.9)

where ν = [ν] + θ, 0 ≤ θ < 1, θ being the fractional part of ν.
The lower bound in (1.2.9) is attained by a s.d. p for which

P[ν(S) = [ν]] = 1 − θ andP[ν(S) = [ν] + 1] = θ.

Mukhopadhyay (1975) gave a s.d. with fixed nominal sample size n[p(S) > 0 ⇒
n(S) = n∀S] such that V {ν(S)} = θ(1 − θ)/(n − [ν]), which is very close to the
lower bound in (1.2.9).

It is seen, therefore, that a s.d. gives the probability p(s) [or p(S)] of selecting a
sample s (or S), which, of course, belongs to the sample space. In general, it will be
a formidable task to select a sample using only the contents of a s.d., because one
has to enumerate all the possible samples in some order, calculate the cumulative
probabilities of selection, draw a random number in [0, 1], and select the sample
corresponding to the number so selected. It will be, however, of great advantages if
one knows the conditional probabilities of selection of units at different draws.

We shall denote by

pr (i) = probability of selecting i at the rth draw, r = 1, . . . , n;

pr (ir |i1, . . . , ir−1) = conditional probability of drawing ir at the rth draw given
that i1, . . . , ir−1 were drawn at the first, . . . , (r − 1)th draw, respectively;

p(i1, . . . , ir ) = the joint probability that (i1, . . . , ir ) are selected at the first,
. . . , r th draw, respectively.

All these probabilities must be nonnegative and we must have

N∑

i=1

pr (i) = 1, r = 1, . . . , n;

N∑

ir=1

pr (ir |i1, . . . , ir−1) = 1.

Definition 1.2.6 A sampling scheme (s.s.) gives the conditional probability of draw-
ing a unit at any particular draw given the results of the earlier draws.

A s.s., therefore, specifies the conditional probabilities pr (ir |i1, . . . , ir−1), i.e.,
it specifies the values p1(i)(i = 1, . . . , N ), pr (ir |i1, . . . ir−1), ir = 1, . . . , N ; r =
2, . . . , n.

The following theorem shows that any sampling design can be attained through
a draw-by-draw mechanism.

Theorem 1.2.1 (Hanurav 1962; Mukhopadhyay 1972) For any given sampling
design, there exists at least one sampling scheme which realizes this design.
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Suppose now that the values x1, . . . , xN of a closely related (related to y) aux-
iliary variable x on units 1, 2, . . . , N, respectively, are available. The quantity
Pi = xi/X, X = ∑N

i=1 xk is called the size measure of unit i(= 1, . . . , N ) and
is often used in selection of samples. Thus in a survey of large-scale manufacturing
industry, say, jute industry, the number of workers in a factory may be considered
as a measure of size of the factory, on the assumption that a factory employing more
manpower will have larger value of output.

Before proceeding to take a cursory view of different types of sampling designs
we will now introduce some terms useful in this context.

Sampling frame: It is the list of all sampling units in the finite population from
which a sample is selected. Thus in a survey of households in a rural area, the list
of all the households in the area will constitute a frame for the survey. The frame
also includes any auxiliary information like measures of size, which is used for
special sampling techniques, such as stratification and probability proportional-
to-size sample selections, or for special estimation techniques, such as ratio or
regression estimates. All these techniques have been indicated subsequently.
However, a list of all the ultimate study units or ultimate sampling units may not
be always available. Thus in a household survey in an urban area where each
household is the ultimate sampling unit or ultimate study unit we do not generally
have a list of all such households. But we may have a list of census block units
within this area from which a sample of census blocks may be selected at the first
stage. This list is the frame for sampling at the first stage. Each census block again
may consist of several wards. For each selected census block onemay prepare a list
of such wards and select samples of wards. These lists are then sampling frames
for sampling at the second stage. Multistage sampling has been discussed in the
next section. Sarndal et al. (1992), among others, have investigated the relationship
between the sampling frame and population.

Analytic and Descriptive Surveys: Descriptive uses of surveys are directed at the
estimation of summary measures of the population such as means, totals, and
frequencies. Such surveys are generally of prime importance to the Government
departments which need an accurate picture of the population in terms of its loca-
tion, personal characteristics, and associated circumstances. The analytic surveys
are more concerned with identifying and understanding the causal mechanisms
which underlie the picture which the descriptive statistics portray and are gener-
ally of interest to research organizations in the area. Naturally, the estimation of
different superpopulation parameters, such as regression coefficients, is of prime
interest in such surveys.
For descriptive uses the objective of the survey is essentially fixed. Target parame-
ters, such as the total and ratio, are the objectives determined even before the data
are collected or analyzed. For analytic uses, such as studying different parameters
of the model used to describe the population, the parameters of interest are not
generally fixed in advance and evolve through an adaptive process as the analysis
progresses. Thus for analytic purposes the process is an evolutionary onewhere the
final parameters to be estimated and the estimation procedures to be employed are
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chosen in the light of the superpopulation model used to describe the population.
Use of superpopulation model in sampling has been indicated in Sect. 1.5.

Strata: Sometimes, it may be necessary or desirable to divide the population into
several subpopulations or strata to estimate population parameters like population
mean and population total through a sample survey. The necessity of stratification
is often dictated by administrative requirements or convenience. For a statewide
survey, for instance, it is often convenient to draw samples independently from
each county and carry out survey operations for each county separately. In practice,
the population often consists of heterogeneous units (with respect to the character
under study). It is known that by stratifying the population such that the units
which are approximately homogeneous (with respect to ‘y′), a better estimator of
population total, mean, etc. can be achieved.
We shall often denote by yhi the value of y on the i th unit in the hth stra-
tum (i = 1, . . . , Nh; h = 1, . . . , H),

∑
h Nh = N , the population size; Ȳh =

∑Nh
i=1 Yhi/Nh, S2h = ∑Nh

i=1(Yhi − Ȳh)2/(Nh − 1), stratum population mean and
variance, respectively; Wh = Nh/N , stratum proportion. The population mean is
then Ȳ = ∑H

h=1 WhȲh .

Cluster: Sometimes, it is not possible to have a list of all the units of study in the
population so that drawing a sample of such study units is not possible. However,
a list of some bigger units each consisting of several smaller units (study units)
may be available from which a sample may be drawn. Thus, for instance, in a
socioeconomic survey, our main interest often lies in the households (which are
now study units or elementary units or units of our ultimate interest). However, a
list of households is not generally available, whereas a list of residential houses
each accommodating a number of households should be available with appropriate
authorities. In such cases, samples of housesmay be selected and all the households
in the sampled housesmay be studied.Here, a house is a ‘cluster.’A cluster consists
of a number of ultimate units or study units. Obviously, the clusters may be of
varying sizes. Generally, all the study units in a cluster are of the same or similar
character. In cluster sampling a sample of clusters is selected by some sampling
procedure and data are collected from all the elementary units belonging to the
selected clusters.

Domain: A domain is a part of the population. In a statewide survey, a district
may be considered as a domain; in the survey of a city a group of blocks may
form a domain, etc. After sampling has been done from the population as a whole
and the field survey has been completed, one may be interested in estimating
the mean or total relating to some part of the population. For instance, after a
survey of industries has been completed, one may be interested in estimating the
characteristic of the units manufacturing cycle tires and tubes. These units in the
population will then form a domain. Clearly, sample size in a domain will be a
random variable. Again, the domain size may or may not be known.
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1.3 Different Types of Sampling Designs

The following types of sampling designs are generally used.

(a) Simple random sampling with replacement (srswr): Under this scheme units
are selected one by one at random in n (a preassigned number) draws from
the list of all available units such that a unit once selected is returned to the
population before the next draw. As stated before, the sample space here consists
of Nn sequences S{i1, . . . , in} and the probability of selecting any such sequence
(sample) is 1/Nn .

(b) Simple random sampling without replacement (srswor): Here units are selected
in n draws at random from the list of all available units such that a unit once
selected is removed from the population before the next draw. Here again, as
stated before the sample space consists of (N )n sequences S and

(N
n

)
sets s and

the s.d. design allots to each of them equal probability of selection.
(c) Probability proportional to size with replacement (ppswr) sampling: a unit i is

selected with probability pi at the r th draw and a unit once selected is returned
to the population before the next draw (i = 1, . . . , N ; r = 1, 2, . . . , n). The
quantity pi is a measure of size of the unit i . This s.d. is a generalization of srswr
s.d. where pi = 1/N∀ i .

(d) Probability proportional to sizewithout replacement (ppswor): a unit i is selected
at the r th draw with probability proportional to its normed measure of size and
a unit once selected is removed from the population before the next draw. Here,

p1(i1) = pi1

pr (ir |i1, . . . , ir−1) = pir /(1 − pi1 − · · · − pir−1), r = 2, . . . , n.

For n = 2, for this scheme,

πi = pi

[

1 + A − pi
1 − pi

]

,

πi j = pi p j

(
1

1 − pi
+ 1

1 − p j

)

, where A =
N∑

k=1

pk
1 − pk

.

This sampling scheme is also known as ‘successive sampling.’ The correspond-
ing sampling design may also be attained by an inverse sampling procedure
where units are drawn by ppswr, until for the first time n distinct units occur.
The n distinct units each taken only once constitute the sample.

(e) Rejective sampling: n draws are made with ppswr; if all the units turn out to
be distinct, the selected sequence constitutes the sample; otherwise, the whole
selection is rejected and fresh draws made.
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(f) Unequal probability without replacement (upwor) sampling: A unit i is selected
at the r th draw with probability proportional to p(r)

i and a unit once selected is
removed from the population. Here

p1(i) = p(1)
i

pr (ir |i1, . . . , ir−1) = p(r)
ir

1 − p(r)
i1

− p(r)
i2

− · · · p(r)
ir−1

, r = 2, . . . , n. (1.3.1)

The quantities {p(r)
i } are generally functions of pi and p-values of the units

already selected. In particular, ppswor sampling scheme described in item (d)
above is a special case of this scheme, where p(r)

i = pi , r = 1, . . . , n. The
sampling design may also be attained by a inverse sampling procedure where
units are drawn wr, with probability p(r)

i at the r th draw, until for the first time
n distinct units occur. The n distinct units each taken only once constitute the
sample.

(g) Generalized rejective sampling: Draws are made wr and with probability {p(r)
i }

at the r th draw. If all the units turn out distinct, the solution is taken as a sample;
otherwise, the whole sample is rejected and fresh draws are made. The scheme
reduces to the scheme at (e) above, if p(r)

i = pi∀i.
(h) Systematic sampling with varying probability (including unequal probability).
(k) Sampling from groups: The population is divided into L groups either at random

or following some suitable procedure and a sample of size nh is drawn from the
hth group using any of the above-mentioned sampling designs such that the
desired sample size n = ∑

h nh is attained. Examples are stratified sampling
procedure and Rao–Hartley–Cochran (1962) (RHC) sampling procedure. Thus
in stratified random sampling the population is divided into H strata of sizes
N1, . . . , NH and a sample of size nh is selected at random from the hth stratum
(h = 1, . . . , H). The quantities nh and n = ∑

h nh are suitably determined.
RHC procedure has been discussed in the next section.

Based on the above methods, there are many unistage or multistage stratified
sampling procedures. In a multistage procedure sampling is carried out in many
stages. Units in a two-stage population consist of N first-stage units (fsu’s) of sizes
M1, . . . , MN , with the bth second stage unit (ssu) in the ath fsu being denoted ab
for a = 1, . . . , N ; b = 1, . . . , Ma , with its associated y values being denoted yab.
For a three-stage population the cth third stage unit (tsu) in the bth ssu in the ath
fsu is labeled abc for a = 1, . . . , N ; b = 1, . . . , Ma; c = 1, . . . , Kab. In a three-
stage sampling a sample of n fsu’s is selected out of N fsu’s and from each of the ath
selected fsu’s, a sample ofma ssu’s is selected out ofMa fsu’s in the selected fsu (a =
1, . . . , n). At the third stage from each of the selected ab ssu’s, containing Kab tsu’s
a sample of kab tsu’s is selected (a = 1, . . . , n; b = 1, . . . ,ma; c = 1, . . . , kab). The
associated y-value is denoted as yabc, c = 1, . . . , kab; b = 1, . . . ,ma; a = 1, . . . , n.
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The sampling procedure at each stage may be srswr, srswor, ppswr, upwor, sys-
tematic sampling, Rao–Hartley–Cochran sampling or any other suitable sampling
procedure. The process may be continued to any number of stages. Moreover, the
population may be initially divided into a number H of well-defined strata before
undertaking the stage-wise sampling procedures. For stratifiedmultistage population
the label h is added to the above notation (h = 1, . . . , H). Thus here the unit in the
hth stratum, ath fsu, bth ssu, and cth tsu is labeled habc and the associated y value
as yhabc.

As is evident, samples for all the sampling designs may be selected by a whole
sample procedure or mass-draw procedure in which a sample s is selected with
probability p(s).

A F.S.(n)-s.d. with πi proportional to pi = xi/X , where xi is the value of a
closely related (to y) auxiliary variable on unit i and X = ∑N

k=1 xk , is often used for
estimating a population total. This is, because an important estimator, the Horvitz–
Thompson estimator (HTE) has very small variance if yi is nearly proportional to pi .
(This fact will be clear in the next section.) Such a design is called a πps design or
I P PS (inclusion probability proportional to size) design. Since πi ≤ 1, it is required
that xi ≤ X/n for such a design.

Many (exceeding seventy) unequal probabilities without replacement sampling
designs have been suggested in the literature, mostly for use along with the HTE.
Many of these designs attain the π ps property exactly, some approximately. For
some of these designs, such as the one arising out of Poisson sampling, sample
size is a variable. Again, some of these sampling designs are sequential in nature
(e.g., Chao 1982; Sunter 1977). Mukhopadhyay (1972), Sinha (1973), and Herzel
(1986) considered the problem of realizing a sampling design with preassigned sets
of inclusion probabilities of first two orders.

Again, in a sample survey, all the possible samples are not generally equally
preferable from the point of view of practical advantages. In agricultural surveys,
for example, the investigators tend to avoid grids which are located further away
from the cell camps, which are located in marshy land, inaccessible places, etc.
In such cases, the sampler would like to use only a fraction of the totality of all
possible samples, allotting only a very mall probability to the non-preferred units.
Such sampling designs are called �Controlled Sampling Designs.

Chakraborty (1963) used a balanced incomplete block (BIB) design to obtain
a controlled sampling design replacing a srswor design. For unequal probability
sampling BIB designs and t designs have been considered by several authors (e.g.,
Srivastava and Saleh 1985; Rao andNigam1990;Mukhopadhyay andVijayan 1996).

For a review of different unequal probability sampling designs the reader may
refer to Brewer and Hanif (1983), Chaudhuri and Vos (1988), Mukhopadhyay (1996,
1998b), among others.
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1.4 The Estimators

After the sample has been selected, the statistician collects data from the field. Here,
again the data may be collected with respect to a sequence sample or set sample.

Definition 1.4.1 Data collected through a sequence sample S are

d ′ = {(k, yk), k ∈ S}. (1.4.1)

For the set sample data are

d = {(k, yk), k ∈ s}. (1.4.2)

It is known that data given in (1.4.2) are sufficient for making inference about θ,
whether the sample is a sequence S or a set s (Basu and Ghosh 1967). Data are
said to be unlabeled if after the collection of data its label part is ignored. Unlabeled
data may be represented by a sequence or a set of the observed values without any
reference to the labels.

It may not be possible, however, to collect the data from the sampled units cor-
rectly and completely. If the information is collected from a human population, the
respondent may not be ‘at home’ during the time of collection of data or may refuse
to answer or may give incorrect information, e.g., in stating income, age, etc. The
investigators in the field may also fail to register correct information due to their own
lapses.

We assume throughout that our data are free from such types of errors due to
non-response and errors of measurement and it is possible to collect the information
correctly and completely.

Definition 1.4.2 An estimator e = e(s, y) or e(S, y) is a function defined onS×RN

such that for a given (s, y) or (S, y), its value depends on y only through those i for
which i ∈ s (or S).

Clearly, the value of e in a sample survey does not depend on the units not included
in the sample.

An estimator e is unbiased for T with respect to a sampling design p if

Ep(e(s, y)) = T ∀y ∈ RN (1.4.3)

i.e., ∑

s∈S
e(s, y)p(s) = T ∀y ∈ RN

where Ep, Vp denote, respectively, expectation and variance with respect to the
s.d. p. We shall often omit the suffix p when it is clear otherwise. This unbiasedness
will sometimes be referred to as p-unbiasedness.
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The mean square (MSE) of e around T with respect to a s.d. p is

M(e) = E(e − T )2

= V (e) + (B(e))2
(1.4.4)

where B(e) denotes the design bias, E(e) − T . If e is unbiased for T, B(e) vanishes
and (1.4.4) gives the variance of e, V (e).

Definition 1.4.3 Acombination (p, e) is called a sampling strategy, often denoted as
H(p, e). This is unbiased for T if (1.4.3) holds and then its variance is V {H(p, e)} =
E(e − T )2.

A unbiased sampling strategy H(p, e) is said to be better than another unbiased
sampling strategy H ′(p′, e′) in the sense of having smaller variance, if

V {H(p, e)} ≤ V {H ′(p, e′)} ∀y ∈ RN (1.4.5)

with strict inequality for at least one y.
If the s.d. p is kept fixed, an unbiased estimator e is said to be better than another

unbiased estimator e′ in the sense of having smaller variance, if

Vp(e) ≤ Vp(e
′) ∀ y ∈ RN (1.4.6)

with strict inequality holding for at least one y.
We shall now consider different types of estimators for ȳ, when the s.d. is srswor,

based on n draws.

(1) Mean per unit estimator: ˆ̄Y = ȳs = ∑
i∈s yi/n

Variance: Var (ȳs) = (1 − f )S2/n
S2 = ∑N

i=1(yi − Ȳ )2/(N − 1)
Ȳ = ∑N

i=1 yi/N , f = N/n
(2) Ratio estimator: ˆ̄yR = (ȳs/x̄s)X̄

Mean square error: MSE ( ˆ̄yR) ≈ (
1− f
n )[S2y + S2x − 2RSyx ],

R = Y/X, S2y = S2, S2x = ∑N
i=1(xi − X̄)2/(N − 1), X = ∑N

i=1 xi ,

X̄ = X/N Sxy = ∑N
i=1(yi − Ȳ )(xi − X̄).

(3) Difference estimator: ˆ̄yD = ȳs + d(X̄ − x̄s), where d is a known constant.
Variance : Var ( ˆ̄yD) = (

1− f
n )(S2y + d2S2x − 2dSxy).

(4) Regression estimator: ˆ̄ylr = ȳs + b(X̄ − x̄s)
b = ∑

i∈s(yi − ȳs)(xi − x̄s)/
∑

i∈s(xi − x̄s)2.
Mean square error: MSE ( ˆ̄ylr ) ≈ (

1− f
n )S2y(1 − ρ2)

where ρ is the correlation coefficient between x and y.
(5) Mean of the ratios estimator: ˆ̄yMR = X̄ r̄

r̄ = ∑
i∈s ri/n
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Except for the mean per unit estimator and the difference estimator none of the
above estimators is unbiased for ȳ. However, all these estimators are unbiased in
large samples. Different modifications of the ratio estimator, regression estimator,
product estimator, and the estimators obtained by taking convex combinations of
these estimators have been proposed in the literature. Again, ratio estimator, dif-
ference estimator, and regression estimator, each of which depends on an auxiliary
variable x , can be extended to p(> 1) auxiliary variables x1, . . . , xp.

In ppswr-sampling an unbiased estimator of population total is the Hansen–
Hurwiz estimator,

T̂pps =
∑

i∈S

yi
npi

, (1.4.9)

with

V (T̂pps) = 1
n

N∑

i=1

(
yi
pi

− T
)2

pi

= 1
2n

∑ N∑

i �= j=1

(
yi
pi

− y j
p j

)2
pi p j = Vpps .

(1.4.10)

An unbiased estimator of Vpps is

v(T̂pps) = 1

n(n − 1)

∑

i∈S

(
yi
pi

− T̂pps

)2

= vpps .

We shall call the combination (ppswr, T̂pps) a ppswr strategy.
Clearly, different terms of an estimator will involve weights which arise out of

the sampling designs used in estimation. It will therefore be of immense advantages
if in the estimation formula all the units in the sample receive an identical weight.
Before proceeding to further discussion on different types of estimators we therefore
consider the situations when a sampling design can be made self-weighted.

Note 1.4.1 Self-weighting Design: A sample design which provides a single com-
mon weight to all sampled observations in estimating the population mean, total, etc.
is called a self-weighting design and the corresponding estimator a self-weighted
estimator. For example, consider two-stage sampling from a population consisting
of N fsu’s, the ath fsu containing Ma ssu’s. A first-stage sample of n fsu’s is selected
by srswor and from the ath selected fsu ma ssu’s are selected also by srswor. It is
known that for such a sampling design,

T̂ = N

n

n∑

a=1

Ma

ma

ma∑

b=1

yab = N

n

n∑

a=1

Ma ȳa (1.4.11)
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where ȳa = ∑ma
b=1 yab/ma is the sample mean from the ath selected fsu, which is

unbiased for population total T . This estimator is not generally self-weighted. If
ma/Ma = λ (a constant), i.e., a constant proportion of ssu’s is sampled from each
selected fsu,

T̂ =
(

N

nλ

) (
n∑

a=1

ma∑

b=1

yab

)

becomes self-weighted. Again,

λ =
∑N

a=1 ma
∑N

a=1 Ma

= Nm̄

M0
(1.4.12)

where m̄ = ∑N
a=1 ma/N , so that

T̂ = M0

n∑

a=1

ma∑

b=1

yab
nm̄

. (1.4.13)

In particular, if Ma = M∀ a, a constant number m of ssu’s must be sampled from
each selected fsu in order to make the estimator (1.4.11) self-weighted.

A design can be made self-weighted at the field stage or at the estimation stage.
If the selection of units is so done as to make all the weights in the estimator equal,
the design is called self-weighted at the field stage. The case considered above is
an example. Another example is the proportional allocation in stratified random
sampling. If self-weighting is achieved using some technique at the estimation stage,
the design is termed self-weighted at the estimation stage.

The procedures of designs self-weighted at the field stage have been considered
by Hansen and Madow (1953) and Lahiri (1954). The technique of making designs
self-weighted at the estimation stage has been considered byMurthy and Sethi (1959,
1961), among others.

1.4.1 A Class of Estimators

We now consider classes of linear estimatorswhich are unbiased with respect to any
s.d. For any s.d. p, consider a nonhomogeneous linear estimator of T ,

e′
L(s, y) = b0s +

∑

i∈s
bsi yi (1.4.14)

where the constants b0s may depend only on s and bsi on (s, i)(bsi = 0, i /∈ s). The
estimator e′

L is unbiased iff
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∑

s∈S
b0s p(s) = 0 (1.4.15a)

and
∑

yi
∑

s	i
bsi p(s) = T ∀y ∈ RN . (1.4.15b)

Condition (1.4.15a) implies for all practical purposes

b0s = 0∀ s : p(s) > 0. (1.4.16a)

Condition (1.4.15b) implies

∑

s	i
bsi p(s) = 1∀ i = 1, . . . , N (1.4.16b)

Note that only the designs with πi > 0∀ i admit an unbiased estimator of T .
Fattorini (2006) proposed a modification of the Horvitz–Thompson estimator

for complex survey designs by estimating the inclusion probabilities by means of
independent replication of the sampling scheme.

It is evident that theHorvitz–Thompson estimator (HTE) eHT is the only unbiased
estimator of T in the class of estimators {∑i∈s bi yi },

eHT =
∑

i∈s
yi/πi . (1.4.17)

Its variance is

V (eHT) =
N∑

i=1
y2i

1−πi
πi

+ ∑ N∑

i �= j=1

yi y j (πi j−πiπ j )

πiπ j

= VHT (say).

(1.4.18)

If p ∈ ρn , (1.4.18) can be written as

N∑

i< j=1

(
yi
πi

− y j
π j

)2

(πiπ j − πi j )

= VYG (say). (1.4.19)

The expression VHT is due to Horvitz and Thompson (1952) and VYG is due to Yates
and Grundy (1953). An unbiased estimator of VHT is
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∑

i∈s

y2i (1 − πi )

π2
i

+
∑ ∑

i �= j∈s

yi y j (πi j − πiπ j )

πiπ jπi j

= vHT . (1.4.20)

An unbiased estimator of VYG is

∑ ∑

i< j∈s

(
yi
πi

− y j
π j

)2 πiπ j − πi j

πi j
(1.4.21)

= vYG .

The estimators vHT , vYG are valid provided πi j > 0∀i �= j = 1, . . . , N . Both vHT

and vYG can take negative values for some samples and this leads to the difficulty in
interpreting the reliability of these estimators.

We consider some further estimators applicable to any sampling design.

(a) Generalized Difference Estimator: Basu (1971) considered an unbiased estima-
tor of T ,

eGD(a) =
∑

i∈s

yi − ai
πi

+ A, A =
∑

i

ai , (1.4.22)

where a = (a1, . . . , aN )′ is a set of known quantities. The estimator is unbiased
and has less variance than eHT in the neighborhood of the point a.

(b) Generalized Regression Estimator or GREG

eGR =
∑

i∈s

yi
πi

+ b

(

X −
∑

i∈s

xi
πi

)

(1.4.23)

where b is the sample regression coefficient of y on x . The estimator was first
considered by Cassel et al. (1976) and is a generalization of linear regression
estimator N ˆ̄ylr to any s.d. p.

(c) Generalized Ratio Estimator

eHa = X

∑
i∈s yi/πi

∑
i∈s xi/πi

. (1.4.24)

The estimator was first considered by Ha’jek (1959) and is a generalization of
N ˆ̄yR to any s.d. p.
The estimators eGR, eHa are not unbiased for T . It is obvious that the estimators in
(1.4.23) and (1.4.24) can be further generalized by considering p(> 1) auxiliary
variables x1 . . . , xp instead of just one auxiliary variable x . Besides all these,
specific estimators have been suggested for specific procedures. An example is
Rao–Hartley–Cochran (1962) estimator briefly discussed below.
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(d) Rao–Hartley–Cochran procedure The population is divided into n groups
G1 . . . ,Gn of size N1, . . . , Nn , respectively, at random. From the kth group
a sample i is drawn with probability proportional to pi , i.e., with probability
pi/�k where �k = ∑

i∈Gk
pi if i ∈ Gk . An unbiased estimator of population

total is

eRHC =
n∑

i=1

yi
pi

�i ,

Gi denoting the group to which a sampled unit i belongs. It can be shown that

V (eRHC) = n
(∑n

i=1 N
2
i − N

)

N (N − 1)
V (T̂pps) (1.4.25)

and variance estimator

v(eRHC ) =
∑n

i=1 N
2
i − N

N 2 − ∑n
i=1 N

2
i

n∑

i=1

�i

(
yi
pi

− eRHC

)2

. (1.4.26)

It has been found that the choice N1 = N2 = · · · = Nn = N/n minimizes
V (eRHC). In this case

V (eRHC) =
(

1 − n − 1

N − 1

)

V (T̂pps). (1.4.27)

We now briefly consider the concept of double sampling. We have seen that a
number of sampling procedures require advanced knowledge about an auxiliary
character. For example, ratio, difference, and regression estimator require a know-
ledge of the population total of x . When such information is lacking it is sometimes
relatively cheaper to take a large preliminary sample in which the auxiliary variable
x alone is measured and which is used for estimating the population characteristic
like mean, total, or frequency distribution of x values. The main sample is often
a subsample of the initial sample but may be chosen independently as well. The
technique is known as double sampling.

All these sampling strategies have been discussed in details in Mukhopadhyay
(1998b), among others.

1.5 Model-Based Approach to Sampling

So far our discussion has been under a fixed population approach. In the fixed popula-
tionor design-based approach to sampling, the values y1, y2, . . . , yN of the variable of
interest in the population are considered as fixed but unknown constants. Randomness
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or probability enters the problem only through the deliberately imposed design by
which the sample of units to observe is selected. In the design-based approach, with
a design such as simple random sampling, the sample mean is a random variable
only because it varies from sample to sample.

In the stochastic population or model-based approach to sampling, the values
y = (y1, y2, . . . , yN )′ are assumed to be a realization of a random vector Y =
(Y1,Y2, . . . ,YN )′,Yi , being the random variable corresponding to yi . The population
model is then given by the joint probability distribution or density function ξθ =
f (y1, y2, . . . , yN ; θ), indexed by a parameter vector θ ∈ �, the parameter space.
Looked in this way population total T = ∑N

i=1 Yi , population mean, Ȳ = T/N , etc.
are random variables and not fixed quantities. One has, therefore, to predict T, Ȳ ,
etc. on the basis of the data and ξ, i.e., to estimate their model-expected values.
Let T̂s denote a predictor of T or Ȳ based on s and E,V, C denote, respectively,
expectation, variance, and covariance operators with respect to ξθ. Three examples
of such superpopulations are

(i) Y1, . . . ,YN are independently and identically distributed (IID) normal random
variables with mean μ and variance σ2.

(ii) Y1, . . . ,YN are IID multinormal random vectors with mean vector μ and
covariance matrix �. Here, instead of variable Yi we have considered the p-
variate vector Yi = (Yi1, . . . ,Yip)′.

(iii) Let w = (u, x′)′, where u is a binary-dependent variable taking values 0 and
1 and x is a vector of explanatory variables. Writing Wi = (Ui ,X′

i )
′, assume

that U1, . . . ,UN are IID with the logistic conditional distribution:

P[Ui = 1|Wi = w] = exp(x′β)

[1 + exp(x′β)] .

Superpopulation parameters are characteristics of ξ. In (i) parameters are μ and σ2,
in (ii) μ and �, and in (iii) β.

As mentioned before, superpopulation parameters may often be preferred to finite
population parameters as targets for inference in analytic surveys. However, if the
population size is large there is hardly any difference between the two. For example,
in (ii)

ȲP = μ + Op(N
−1/2), VP = � + Op(N

−1/2)

where Op(t) denotes terms of at most order t in probability and the suffix P stands
for the finite population.

We shall briefly review here procedures of model-based inference in finite popu-
lation sampling.
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Definition 1.5.1 The predictor T̂s is model-unbiased or ξ-unbiased or m-unbiased
predictor of Ȳ if

E(T̂s) = E(Ȳ ) = μ̄(say) ∀θ ∈ � and ∀s : p(s) > 0 (1.5.1)

where μ̄ = ∑N
k=1 μk/N = ∑N

k=1 E(Yk)/N .

Definition 1.5.2 The predictor T̂s is design-model-unbiased (or pξ-unbiased or pm
unbiased) predictor of Ȳ if

EE(T̂s) = μ̄ ∀θ ∈ �. (1.5.2)

Clearly, a m-unbiased predictor is necessarily pm-unbiased.
For a non-informative design where p(s) does not depend on the y-values, order

of operators E and E can always be interchanged.
Two types of mean square errors (mse’s) of a sampling strategy (p, T̂s) for pre-

dicting T have been proposed:

(a)
EMSE(p, T̂ ) = EE(T̂ − T )2 = M(p, T̂ ) (say);

(b)
EMSE(p, T̂ ) = EE(T̂ − μ)2 where μ = ∑

kμk = E(T )

= M1(p, T̂ ) (say).

If T̂ is p-unbiased for T, M ismodel-expected p-variance of T̂ . If T̂ ism-unbiased
for T, M1 is p-expected model variance of T̂ .

The following relation holds:

M(p, T̂ ) = EV(T̂ ) + E{β(T̂ )}2 + V(T ) − 2E{(T − μ)E(T̂ − μ)} (1.5.3)

where β(T ) = E(T̂ − T ) is the model bias in T̂ .
Now, for the given data d = {(k, yk), k ∈ s}, we have

T =
∑

s

yk +
∑

s̄

Yi =
∑

s

yk +Us (say) (1.5.4)

where s̄ = P − s. Therefore, in predicting T one needs only to predict Us , the part∑
s yk being completely known.
A predictor

T̂s =
∑

s

yk + Ûs
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will, therefore, be m-unbiased for T if

E(Ûs) = E
(

∑

s̄

Yk

)

=
∑

s̄

μk = μs̄ (say) ∀θ ∈ �, ∀s : p(s) > 0. (1.5.5)

In finding an optimal T̂ for a given p, one has to minimize M(p, T̂ ) (or M1(p, T̂ ))

in a certain class of predictors. Now, for a m-unbiased T̂ ,

M(p, T̂ ) = EE(Ûs − ∑
s̄Yk)

2

= E
[
V(Ûs) + V (∑

s̄Yk
) − 2C

(
Ûs,

∑
s̄Yk

)]
.

(1.5.6)

If Yk’s are independent, C(Ûs,
∑

s̄ Yk) = 0(Ûs being a function of Yk, k ∈ s only).
In this case, for a given s, an optimal m-unbiased predictor of T (in the minimum
E(T̂s − T )2-sense) is (Royall 1970)

T̂+
s =

∑

s

yk + Û+
s (1.5.7)

where

E(Û+
s ) = E

(
∑

s̄

Yk

)

= μs̄, (1.5.8a)

and
V(Û+

s ) ≤ V(Û ′
s) (1.5.8b)

for any Ûs satisfying (1.5.8a). It is clear that T̂s , when it exists, does not depend on
the sampling design (unlike, the design-based estimator, e.g., eHT .)

An optimal design-predictor pair (p, T̂ ) in the class (ρ, τ̂ ) is, therefore, one for
which

M(p+, T̂+) ≤ M(p, T̂ ) (1.5.9)

for any p ∈ ρ, a class of sampling designs and any T̂ which is an m-unbiased
predictor belonging to τ̂ . After T̂+

s has been derived by means of (1.5.7)–(1.5.8b),
an optimal sampling design is obtained through (1.5.9). The approach, therefore,
is completely model-dependent, the emphasis being on the correct postulation of a
superpopulation model that will efficiently describe the physical situation at hand
and generating T̂s . After T̂s has been specified, one makes a pre-sampling judgement
of efficiency of T̂s with respect to different sampling designs and obtain p∗ (if it
exists). The choice of a suitable sampling design is, therefore, relegated to secondary
importance in this prediction-theoretic approach.
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Note 1.5.1 We have attempted above to find the optimal strategies in the minimum
M(p, T̂ ) sense. The analogymay, similarly, be extended to finding optimality results
in the minimum M1 sense.

Example 1.5.1 (Thompson 2012) Suppose that our objective is to estimate the pop-
ulation mean, for example, the mean household expenditure for a given month in
a geographical region. We may know from the economic theory that the amount
a household may spend in a month follows a normal or lognormal distribution. In
this case, the actual amount spent by a household in that given month is just one
realization among many such possible realizations under the assumed distribution.

Considering a very simple population model, we assume that the population vari-
ables Y1,Y2, . . . ,YN are independently and identically distributed (iid) random vari-
ables from a superpopulation distribution having mean θ, and a variance σ2. Thus,
for any unit i,Yi is a random variable with expected value E(Yi ) = θ and variance
V(Yi ) = σ2, and for any two units i and j , the variables Yi and Y j are independent.

Suppose now that we have a sample s of n distinct units from this population
and the object is to estimate the parameter θ of the distribution from which the finite
population comes. For the given sample s, the sample mean

Ȳs = 1

n

∑

i∈s
Yi

is a randomvariablewhether or not the sample is selected at random, because for each
unit i in the sample Yi is a random variable. With the assumed model, the expected
value of the sample mean is therefore E(Ȳs) = θ and its variance is V(Ȳs) = σ2/n.
Thus Ȳs is a model-unbiased estimator of the parameter θ, since E(Ȳs) = θ. An
approximate (1 − α)-point confidence interval for the parameter θ, based on the
central limit theorem for the samplemeanof independently and identically distributed
random variables, is, therefore, given by

Ȳs ± t S/
√
n (1.5.10)

where S is the sample standard deviation and t is the upper α/2 point of the t
distribution with n − 1 degrees of freedom. If further the Yi ’s are assumed to have a
normal distribution, then the confidence interval (1.5.10) is exact, even with a small
sample size.

In the study of household expenditure the focus of interest may not be, however,
on the superpopulation parameter θ of the model, but on the actual average amount
spent by households in the community that month. That is, the object is to estimate
(or predict) the value of the random variable

Ȳ = 1

N

N∑

i=1

Yi .



22 1 Preliminaries

To estimate or predict the value of the random variable Ȳ from the sample obser-

vations, an intuitively reasonable choice is again the sample mean ˆ̄Y = Ȳs =∑n
i=1 Yi/n. Both Ȳ and Ȳs have expected value θ, since the expected value of each

of the Yi is θ. Clearly, Ȳs is model-unbiased for the population quantity Ȳ .
It can be shown that under the given conditions on the sample (i.e., the sample

consists only of n distinct units), and under the given superpopulation model,

E(Ȳs − Ȳ )2 = N − n

nN
σ2. (1.5.11)

An unbiased estimator or predictor of the mean square prediction error is, therefore,

N − n

N

S2

n

since E(S2) = σ2.
Therefore, an approximate (1 − α)-point prediction interval for Ȳ is given by

Ȳ ± t
√

Ê(Ȳs − Ȳ )2,

where t is the upper α/2 point of the t-distribution with n−1 degrees of freedom. If,
additionally, the distribution of the Yi is assumed to be normal, the confidence level
is exact.

We also note that for the given superpopulation model and for any FES(n) s.d.
(including srswor s.d.), M1(p, Ȳs) is given by the right-hand side of (1.5.11). In fact
even if the s.d. is such that it only selects a particular sample of n distinct units with
probability unity, these results hold.

Example 1.5.2 Consider a superpopulation model ξ such that Y1, . . . ,YN are inde-
pendently distributed with

E(Yi |xi ) = βxi
V(xi ) = σ2xi ,

(1.5.12)

where xi is the (known) value of an auxiliary variable x on unit i(= 1, . . . , N ). An
optimal m-unbiased predictor of population total T is

T̂ ∗
s =

∑

s

yk + Û ∗
s

where

E(Û ∗
s ) = E

(
∑

s̄

Yk

)

= β
∑

s̄

xk (1.5.13)
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and V(Û ∗
s ) ≤ V(Û ′

s) for all Û
′
s satisfying (1.5.13). Confining to the class of linear

m-unbiased predictors, the BLUP (best linear (m)-unbiased predictor) of T is

T̂ ∗ = ∑
s yk + β̂∗∑

s̄ yk
= ∑

s yk +
∑

s yk∑
s xk

∑
s̄ yk = ȳs

x̄s
X

(1.5.14)

where ȳs = ∑
k yk/n, X = ∑N

k=1 xk and where we have written yk in place of
Yk(k ∈ s̄). Again,

M(p, T̂ ∗) = σ2E

[(∑
s̄ xk

)2

∑
s xk

+
∑

s̄

xk

]

. (1.5.15)

Themodel (1.5.12) roughly states that for fixed values of x , we have an array of values
of the characteristic y such that both the conditional expectation and conditional
variance ofY are each proportional to x . The regression equation ofY on x is therefore
a straight line passing through the origin with conditional variance of Y proportional
to x . In such cases, for any given sample, the ratio estimator would be the BLU
estimator of the population total T . Again, (1.5.15) shows that a ‘purposive’ design
which selects a combination of n units having the largest x-values with probability
one will be the best s.d. to use the ratio statistic T̂ in (1.5.14). We note that in
contrast to the design-based approach where a probability sampling design has its
pride of place, themodel-based approach relegates the samplingdesign to a secondary
consideration.

1.5.1 Uses of Design and Model in Sampling

Since, often very little are known about the nature of the population, design-based
methods, especially srs-based methods, have been being used for a long time. In
such a situation, most researchers find it reassuring to know that the estimation
method used is unbiased no matter what the nature of the population may be. Such a
method is called design-unbiased. The expected value of the estimator, taken over all
sampleswhichmight have been selected (but is not all actually selected), is the correct
population value. Here sampling design imposes a randomization which forms the
basis of inference. Design-unbiased estimators of the variance, used for constructing
confidence intervals, are also available for most sampling designs.

In many sampling situations involving auxiliary variables, it seems natural to
postulate a theoretical model for the relationship between the auxiliary variables
and the variable of interest. Thus in an agricultural context it is natural to postulate a
linear regressionmodel between yield of the crop and auxiliary variables like rainfall,
fertilizer used, nature of firm land, etc. In such situations model-based methods
are often (and should be) used in order to utilize the information contained in the
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population in sample selection and estimation. This is not to say that the design-based
methods are not useful in such cases. Sampling designs often provide a protection
against bias in case of model failures. Model-based approaches have, of late, been
very popular in connection with ratio and regression estimation. A model can, of
course, also be assumed for populations without auxiliary variables. For example,
if the N variables Y1, . . . ,YN can be assumed to be independent and identically
distributed, many standard statistical results apply without reference to how the
sample is selected. Generally, the models become mathematically complex though
often not suitably realistic. In particular, any model assuming that the Y -values are
independent (or having an exchangeable distribution) ignores the tendency in many
populations for nearby or related units to be correlated.

With some populations, however, it might have been found empirically and very
convincingly that certain types of patterns are typical of the y-values of that type of
population. For example, in spatially distributed geological and ecological popula-
tions, the y-values of nearby units may be positively correlated, with the strength of
the relationship decreasing with the distance. If such tendencies are known to exist,
they can be used inmodeling the nature of the population, devising efficient sampling
procedures and obtaining efficient predictors of unknown values of parameters. For
detailed reviews of design-based, model-based, and design-model-based approaches
to sampling interested readers may refer to Sarndal et al. (1992), Mukhopadhyay
(1996, 2000, 2007), among others.

1.6 Plan of the Book

The book rests on two pillars: sample surveys and categorical data analysis. The
first chapter makes a cursory review of the development in the arena of survey sam-
pling. It introduces the notions of sampling designs and sampling schemes, estima-
tors and their properties, various types of sampling designs and sampling strategies,
and design-based methods of making inference about the population parameters in
descriptive surveys. It then introduces the concept of superpopulation models and
model-based methods of prediction of population parameters generally useful in
analytic surveys.

It is known that the classical statistical models are based on the assumptions that
the observations are obtained from samples drawn by simple random sampling with
replacement (srswr) or equivalently the observations are independently and iden-
tically distributed (IID). In practice, in large-scale surveys samples are generally
selected using a complex sampling design, such as a stratified multistage sampling
design and this implies a situation different from a IID setup. Again, in large-scale
sample surveys the finite population is often considered as a sample from a superpop-
ulation. The sampling design may entail the situation that the sample observations
are no longer subject to the same superpopulation model as the complete finite pop-
ulation. Thus, even if the IID assumption may hold for the complete population, the
same generally breaks down for sample observations. After observing that the data
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obtained from a complex survey generally fail to satisfy IID assumption, Chap. 2
examines the effect of a true complex design on the variance of an estimator with
respect to srswr design and/or IID-model assumption. It introduces the concepts of
design-effects and misspecification effect of a parameter estimator and its variance
estimator pair. The concepts have been extended to the multiparameter case.

Since estimation of variance of an estimator is one of the main problems encoun-
tered in various applications in this book, the chapter also makes a brief review of
different nonparametric methods of variance estimation, like, linearization proce-
dure, random group method, balanced repeated replication, Jack-knifing, and Boot-
strap technique. Finally, we examine the impact of survey design on inference about
a covariance matrix, and we consider the effect of a complex survey design on a
classical test statistic for testing a hypothesis regarding a covariance matrix.

Chapter 3 makes a brief review of classical models of categorical data and their
analysis. After a glimpse of general theory of fitting of statistical models and testing
of parameters using goodness-of-fit tests, we return to the main distributions of cate-
gorical variables—multinomial distribution, Poisson distribution, and multinomial–
Poisson distribution—and examine the associated test procedures. Subsequently,
log-linear models and logistic regression models, both binomial and multinomial,
are looked into and their roles in offering model parameters emphasized. Finally,
some modifications of classical test procedures for analysis of data from complex
surveys under logistic regression model have been introduced.

Chapter 4 proposes to investigate the effect of complex surveys on the asymp-
totic distributions of Pearson statistic, Wald statistic, log-likelihood ratio statistic for
testing goodness-of-fit (simple hypothesis), independence in two-way contingency
tables, and homogeneity of several populations in a saturated model. In particular,
effects of stratification and clustering on these statistics have been examined. The
model is called full or saturated, as we assume that the t population proportions or
cell-probabilities π1, . . . ,πt do not involve any other set of unknown parameters. In
the next two chapters, the unknown population proportions are considered as gener-
ated out of some models through their dependence on s(< t) of model parameters
θ1, . . . , θs .

The core material of any categorical data analysis book is logistic regression and
log-linear models. Chapter5 considers analysis of categorical data from complex
surveys using log-linear models for cell-probabilities in contingency tables. Noting
that appropriate ML equations for the model parameter θ and hence of π(θ) are
difficult to obtain for general survey designs, ‘pseudo MLE’s have been used to
estimate the cell-probabilities. The asymptotic distributions of different goodness-
of-fit (G-o-F) statistics and their modification are considered. Nested models have
also been investigated.

Chapter 6 takes up the analysis of complex surveys categorical data under logistic
regression models, both binomial and polytomous. Empirical logit models have been
converted into general linear models which use generalized least square procedures
for estimation. The model has been extended to accommodate cluster effects and
procedures for testing of hypotheses under the extended model investigated.

http://dx.doi.org/10.1007/978-981-10-0871-9_2
http://dx.doi.org/10.1007/978-981-10-0871-9_3
http://dx.doi.org/10.1007/978-981-10-0871-9_4
http://dx.doi.org/10.1007/978-981-10-0871-9_5
http://dx.doi.org/10.1007/978-981-10-0871-9_6


26 1 Preliminaries

So far we have assumed that there was no error in classifying the units according
to their true categories. In practice, classification errors may be present and in these
situations usual tests of goodness-of-fit, independence, and homogeneity become
untenable. This chapter considers modifications of the usual test procedures under
this context.Again, units in a cluster are likely to be related. Thus in a cluster sampling
design where all the sampled clusters are completely enumerated, Pearson’s usual
statistic of goodness-of-fit seems unsuitable. This chapter considers modification of
this statistic under these circumstances.

Noting that the estimation of model parameters of the distribution of categori-
cal variables from data obtained through complex surveys is based on maximizing
the pseudo-likelihood of the data, as exact likelihoods are rarely amenable to max-
imization, Chap. 8 considers some procedures and applications which are useful in
obtaining approximate maximum likelihood estimates from survey data. Scott et al.
(1990) proposed weighted least squares and quasi-likelihood estimators for categor-
ical data. Maximum likelihood estimation (MLE) from complex surveys requires
additional modeling due to information in the sample selection. This chapter reviews
some of the approaches considered in the literature in this direction. After address-
ing the notion of ignorable sampling designs it considers exact MLE from survey
data, the concept of weighted distributions, and its application inMLE of parameters
from complex surveys. The notion of design-adjusted estimation due to Chambers
(1986), the pseudo-likelihood approach to estimation of finite population parameters
as developed by Binder (1983), Krieger and Pfeffermann (1991), among others, have
also been revisited. Mixed model framework, which is a generalization of design-
model framework, and the effect of sampling designs on the standard principal com-
ponent analysis have also been revisited.

Since multinomial distribution is one of the main backbones of the analysis of
categorical data collected from complex surveys, the Appendixmakes a review of the
asymptotic properties of the multinomial distribution and asymptotic distribution of
Pearson chi-square statistic X2

P for goodness-of-fit based on this distribution. Gen-
eral theory of multinomial estimation and testing in case the population proportions
π1, . . . ,πt−1 depend on several parameters θ1, . . . , θs(s < t − 1), also unknown,
is then introduced. Different minimum-distance methods of estimation, like, X2

P ,
likelihood ratio statistic G2, Freeman–Tukey (1950) statistic (FT )2, and Neyman’s
(1949) statistic X2

N have been defined and their asymptotic distribution studied under
the full model as well as nested models in the light of, among others, Birch’s (1964)
illuminating results. Finally, Neyman’s (1949) and Wald’s (1943) procedures for
testing general hypotheses relating to population proportions have been revisited.

http://dx.doi.org/10.1007/978-981-10-0871-9_8


Chapter 2
The Design Effects and Misspecification
Effects

Abstract It is known that the classical statistical models are based on the assump-
tions that the observations are obtained from samples drawn by simple random
sampling with replacement (srswr) or equivalently the observations are indepen-
dently and identically distributed (IID). As such the conventional formulae for stan-
dard statistical packages which implement these procedures are also based on IID
assumptions. In practice, in large-scale surveys samples are generally selected using
a complex sampling design, such as a stratified multistage sampling design and this
implies a situation different from an IID setup. Again, in large-scale sample surveys
the finite population is often considered as a sample from a superpopulation. Survey
data are commonly used for analytic inference aboutmodel parameters such asmean,
regression coefficients, cell probabilities, etc. The sampling design may entail the
situation that the sample observations are no longer subject to the same superpop-
ulation model as the complete finite population. Thus, even if the IID assumption
may hold for the complete population, the same generally breaks down for sample
observations. The inadequacy of IID assumption is well known in the sample survey
literature. It has been known for a long time, for example, that the homogeneitywhich
the population clusters generally exhibit tend to increase the variance of the sample
estimator over that of the estimator under srswr assumption, and further estimates of
this variance wrongly based on IID assumptions are generally biased downwards. In
view of all these observations it is required to examine the effects of a true complex
design on the variance of an estimatorwith reference to a srswrdesign or an IIDmodel
setup. Section2.2 examines these effects, design effect, and misspecification effect
of a complex design for estimation of a single parameter θ. The effect of a complex
design on the confidence interval of θ is considered in the next section. Section2.4
extends the concepts in Sect. 2.2 to multiparameter case and thus defines multivariate
design effect. Since estimation of variance of estimator of θ, θ̂ (covariance matrix
when θ is a vector of parameters) is of major interest in this chapter we consider
different methods of estimation of variance of estimators, particularly nonlinear esti-
mators in the subsequent section. The estimation procedures are very general; they
do not depend on any distributional assumption and are therefore nonparametric in
nature. Section2.5.1 considers in detail a simple method of estimation of variance of
a linear statistic. In Sects. 2.5.2–2.5.7 we consider Taylor series linearization proce-
dure, random group (RG) method, balanced repeated replication (BRR), jackknife
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(JK) procedure, JK repeated replication, and bootstrap (BS) techniques of variance
estimation. Lastly, we consider the effect of a complex survey design on a classical
test statistic for testing a hypothesis regarding a covariance matrix.

Keywords IID · Design effect · Misspecification effect · Design factor · Effective
sample size · Multivariate design effect · Generalized design effect · Variance esti-
mation · Linearization method · Random group · Balanced repeated replication ·
Jackknife (JK) procedure · JK repeated replication · Bootstrap · Wald statistic

2.1 Introduction

In analysis of data collected through sample surveys standard statistical techniques
are generally routinely employed. However, the probabilistic assumptions underly-
ing these techniques do not always reflect the complexity usually exhibited by the
survey population. For example, in the classical setup, the log-linear models are usu-
ally based upon distributional assumptions, like Poisson, multinomial, or product-
multinomial. The observations are also assumed to be independently and identically
distributed (IID). On the other hand, survey populations are often complex with dif-
ferent cell probabilities in different subgroups of the population and this implies
a situation different from the IID setup. A cross-tabulation of the unemployment
data, for example, by age-group and level of education would not support the IID
assumption of sample observations but would exhibit a situation far more complex
in distributional terms. However, the conventional formulae for standard errors and
test procedures, as implemented in standard statistical packages such as SPSS X or
SAS are based on assumptions of IID observations or equivalently, that samples are
selected by simple random sampling with replacement, and these assumptions are
almost never valid for complex survey data.

Longitudinal surveys where sample subjects are observed over two or more time
points typically lead to dependent observations over time. Moreover, longitudinal
surveys often have complex survey designs that involve clustering which results in
cross-sectional dependence among samples.

The inadequacy of IID assumption is well known in the sample survey literature.
It has been known for a long time, for example, that the homogeneity which the
population clusters generally exhibit tends to increase the variance of the sample
estimator over that of the estimator under srswr assumption, and further estimates
of this variance wrongly based on IID assumptions are generally biased downwards
(Example 2.2.1). Hence consequences of wrong use of IID assumptions for cluster
data are: estimated standard errors of the estimators would be too small and con-
fidence intervals too narrow. For analytic purposes test statistic would be based on
downwardly biased estimates of variance and the results would, therefore, appear to
be more significant than was really the case. Hence such tests are therefore conser-
vative in nature.
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Again, in large-scale sample surveys the finite population is usually considered as
a sample from a superpopulation. Survey data are commonly used for analytic infer-
ence aboutmodel parameters such asmean, regression coefficients, cell probabilities,
etc. The sampling design may entail the situation that the sample observations are no
longer subject to the same superpopulation model as the complete finite population.
To illustrate the problem suppose that with each unit i of a finite population P is a
vector (Yi,Zi)′ of measurements. Assume that (Yi,Zi)′ are independent draws from
a bivariate normal distribution with mean μ′ = (μY ,μZ) and variance–covariance
matrix �. The values (yi, zi) are observed for a sample of n units selected by a prob-
ability sampling scheme. It is desirable to estimate mean μY and variance σ2

Y of the
marginal distribution of Y . We consider the following two cases.

(A) The sample is selected by srswr and only the values {(yi, zi), i ∈ s} are known.
This is the case of IID observations. Here, the maximum likelihood estimators
(MLE’s) of the parameters are

μ̂Y = ȳs =
∑

i∈s
yi/n; σ̂2

Y =
∑

i∈s
(yi − ȳs)

2/n. (2.1.1)

Clearly, E(μ̂Y ) = μY and E[nσ̂2
Y/(n− 1)] = σ2

Y where E(.) defines expectation
with respect to the bivariate normal model. Thus, standard survey estimators
are identical with the classical estimators in this case.

(B) The sample is selected with probability proportional to Zi with replacement
such that at each draw i = 1, . . . , n,Pi = Prob. (i ∈ s) = Zi/

∑N
i=1 Zi. The

data known to the statistician are {(yi, zi), i ∈ s; zj, j /∈ s}. Suppose that the
correlation coefficient ρY ,Z > 0. This implies that Prob.(Yi > μY |i ∈ s) > 1/2
since the sampling scheme tends to select units with larger values of Z and hence
large values of Y . Clearly, the distribution of the sample Y values, in this case,
is different from the distribution in the population and the estimators defined in
(2.1.1) are no longer MLE.

Recently, researchers in the social science and health sciences are increasingly show-
ing interest in using data from complex surveys to conduct same sorts of analyses
that they traditionally conduct with more straightforward data. Medical researchers
are also increasingly aware of the advantages of well-designated subsamples when
measuring novel, expensive variables on an existing cohort. Until recent times they
would be analyzing the data using softwares based on the assumption that the data
are IID.

In the very recent years, however, there have been some changes in the situation.
All major statistical packages, like, STATA, SUDAAN, now include at least some
survey analysis components and some of the mathematical techniques of survey
analysis have been incorporated in widely used statistical methods for missing data
and causal inference. The excellent book by Lumley (2010) provides a practical
guide to analyzing complex surveys using R.

The above discussions strongly indicate that the standard procedures are required
to be modified to be suitable for analysis of data obtained through sample surveys.
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In Sects. 2.2–2.4 we consider the effects of survey designs on standard errors of
estimators, confidence intervals of the parameters, tests of significance as well as the
multivariate generalizations of these design effects.

Since the estimation of variance of an estimator under complex survey designs
is one of the main subjects of interest in this chapter and in subsequent discussions
we make a brief review of different nonparametric methods of estimation of vari-
ance in Sect. 2.5. Section2.5.1 considers in detail a simple method of estimation of
variance of a linear statistic. In Sects. 2.5.2–2.5.6 we consider Taylor series lineariza-
tion procedure, random group method, balanced repeated replication, jackknife, and
bootstrap techniques of variance estimation. All these procedures (except the boot-
strap resampling) have been considered in detail in Wolter (1985). In this treatise we
do not consider estimation of superpopulation-based variance of estimators. Interest
readers may refer to Mukhopadhyay (1996) for a review in this area.

2.2 Effect of a Complex Design on the Variance
of an Estimator

Let θ̂ be an estimator of a finite population parameter θ induced by a complex
survey design of sample size n with Vartrue(θ̂) as the actual design variance of θ̂.
Let VarSRS(θ̂) be the variance of θ̂ calculated under a hypothetical simple random
sampling with replacement (srswr) (also, stated here as SRS) design of the same
sample size (number of draws) n. The effect of the complex design on the variance
of θ̂ (relative to the srswr design) is given by the design effect (deff) developed by
Kish (1965),

deff (θ̂)Kish = Vartrue(θ̂)

VarSRS(θ̂)
. (2.2.1)

Clearly, if deff (θ̂)Kish < 1, the true complex design is a better design than a corre-
sponding srswr design with respect to θ̂, the estimator of θ under the true design.
Note that Kish’s deff (2.2.1) is completely a design-based measure.

At the analysis stage one is, however, more interested in the effect of the design
on the estimator of the variance. Let v0 = V̂ arSRS(θ̂) = V̂ arIID(θ̂) be an estimator
of VarSRS(θ̂) which is derived under the SRS assumption or under the equivalent
IID assumption, that is E(v0|SRS) = E(v0|IID) = VarSRS(θ̂). Clearly, v0 may be a
design-based estimator or a model-based estimator. The effect of the true design on
the estimator pair (θ̂, v0) is given by the bias of v0,

Etrue(v0) − Vartrue(θ̂), (2.2.2)

where expectation in (2.2.2) is with respect to the actual complex design. However,
for the sake of comparability with (2.2.1) we define themisspecification effect (meff)
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of (θ̂, v0) as

meff (θ̂, v0) = Vartrue(θ̂)

Etrue(v0)
. (2.2.3)

This measure is given by Skinner (1989).

Note 2.2.1 Kish’s design effect (2.2.1) is a design-based measure, while Skinner’s
misspecification effect may be defined either as a design-based measure or a as a
model-basedmeasure.When taken as amodel-basedmeasure, the quantitiesEtrue and
Vartrue in (2.2.3) should be based on the true model distribution. Thus the measure
(2.2.3) can also be used to study the effect of the assumed model on the variance of
the estimator relative to the IID assumption. Clearly, under model-based approach
meff(θ̂, v0) depends only on the model relationship between the units in the actual
sample selected and not on how the sample was selected. �
It has been found that in large-scale sample surveys using stratified multistage sam-
pling design with moderate sample sizes, Etrue(v0) ≈ VarSRS(θ̂). Hence, for such
designs, the values of measures (2.2.1) and (2.2.3) are often very close. Also,

ˆdeff (θ̂) ≈ ˆmeff (θ̂, v0) = v

v0
(2.2.4)

where v is a consistent estimator of Vartrue(θ̂) under the true sampling design. Thus,
even though the values of (2.2.1) and (2.2.3) may be unequal, the estimated values
of deffKish and meff are often equal.

We shall henceforth, unless stated otherwise, assume that all the effects on the
variance are due to sampling designs only. The misspecification effect may now be
called a design effect. Following Skinner (1989) we shall now define the design effect
(deff) of (θ̂, v0) as

deff (θ̂, v0) = meff (θ̂, v0) = Vartrue(θ̂)

Etrue(v0)
. (2.2.5)

Note that measures in (2.2.5) may be based on both models and designs.
We can generalize (2.2.1) to define the general design effect (deff) of an estimator

θ̂ as

deff (θ̂) = Vartrue(θ̂)

Var∗(θ̂)
(2.2.6)

where Var∗(θ̂) is the variance of θ̂ under some benchmark design representing IID
situations.

Example 2.2.1 In this example we shall clarify the distinction between design-based
deff of Kish and model-based misspecification effect of Skinner.

Consider an infinite population of clusters of size 2 (elementary units) withmean θ
(per elementary unit), variance σ2 (per elementary unit), and intracluster correlation
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(correlation between two units in a cluster) τ . Suppose that a sample of one cluster is
selected for estimating θ and observations y1, y2 on the units in the cluster are noted.
An estimator of θ under this cluster sampling design is θ̂ = (y1 + y2)/2. The true
variance of θ̂ is

Vartrue(θ̂) = V

[
y1 + y2

2

]

= σ2

2
(1 + τ ).

Under the hypothetical assumption that the two elementary units have been drawn
by srswr (or under the model assumption that y1, y2 are IID with mean and variance
as above) from the population of elementary units in the hypothetical population,

VarSRS(θ̂) = VarSRS

(
y1 + y2

2

)

= σ2

2
.

Again, an estimator of VarSRS(θ̂) = VarIID(θ̂), also based on a srswr design, is

v0 = 1
2 [(y1 − θ̂)2 + (y2 − θ̂)2]

= (y1 − y2)2

4
.

Also,

Etrue(v0) = Etrue

[
(y1 − y2)2

4

]

= σ2 1 − τ

2
.

Therefore, by (2.2.1), Kish’s design effect is

deff (θ̂)Kish = Vartrue(θ̂)

VarSRS(θ̂)
= 1 + τ .

Also, at the analysis stage, by (2.2.3),

meff (θ̂, v0) = Vtrue(θ̂)

Etrue(v0)
= 1 + τ

1 − τ
.

Thus, if τ = 0.8, deff (θ̂)Kish = 1.8, meff Skinner(θ̂, v0) = 9. This means that the
true design variance is 80% higher than the SRS-based variance under the design-
based approach; but its true-model-based variance is 800% higher than the average
value of the IID-based variance estimator v0. �

Example 2.2.2 Consider the problem of estimating the population mean θ by a sim-
ple random sample without replacement (srswor)-sample of size n. Here θ̂ = ȳs =∑

i∈s yi/n, the sample mean with

Vartrue(θ̂) = (N − n)σ2/{n(N − 1)}, VarSRS(θ̂) = σ2/n,



2.2 Effect of a Complex Design on the Variance of an Estimator 33

v0 = V̂ arSRS(θ̂) = estimator of VSRS(ȳ) under srswr = s2/n,

Etrue(v0) = Nσ2/{(N − 1)n},

where σ2 =∑N
i=1(Yi − Ȳ)2/N, s2 =∑i∈s(yi − ȳ)2/(n − 1). Hence

deff (θ̂) = Vartrue(ȳ)

VarSRS(ȳ)
= N − n

N − 1
,

deff (ȳ, v0) = Vartrue(ȳ)

Etrue(v0)
= N − n

N
,

which is the finite population correction factor.

Example 2.2.3 Suppose we want to estimate θ = Ȳ = ∑
h WhȲh by stratified ran-

dom sampling of size n with proportional allocation, where Wh = Nh/N , etc. Here
θ̂ = ȳst = ȳ, the sample mean and the true variance,

Vartrue(ȳ) = N − n

nN

∑

h

WhS
2
h,

where S2h is the population variance of the hth stratum. If we assume that the sample
has been drawn by srswor, an unbiased estimator of VarSRS(ȳ), also calculated under
srswor, is

vSRS = N − n

nN
s2 = v0.

Note that srswor is the benchmark design here. Its expectation under the true design
is

Etrue(v0) ≈ N − n

nN
S2 = N − n

nN

∑

h

Wh{S2h + (Ȳh − Ȳ)2}

where S2 = (N − 1)−1∑
h

∑
i(yhi − Ȳ)2 is the finite population variance. Hence the

design effect is

deff (ȳ, v0) =
∑

h WhS2h∑
h Wh[S2h + (Ȳh − Ȳ)2] .

The deff is always less than or equal to one and can be further reduced by the use of
an appropriate allocation rule.

Example 2.2.4 Consider the cluster sampling design in which n clusters are selected
by srswor from a population of N clusters each of sizeM. An unbiased estimator of
population mean (per element) θ =∑N

c=1

∑M
l=1 ycl/(MN) is
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ȳ =
n∑

c=1

M∑

l=1

ycl/(nM). (2.2.7)

Hence,

Vtrue(ȳ) = N − n

n(N − 1)
σ2
b where σ2

b = 1

N

N∑

c=1

(ȳc − θ)2, ȳc = 1

N

M∑

l=1

ycl.

Now,

σ2
b = σ2

M
{1 + (M − 1)τ }, σ2 = 1

MN

N∑

c=1

M∑

l=1

(ycl − θ)2

where τ is the intraclass correlation among units belonging to the same cluster (vide,
Mukhopadhyay 2009). Hence,

Vartrue(ȳ) = N−n
n(N−1)

σ2

M {1 + (M − 1)τ }

= (
1
n − 1

N

)
Nσ2

(N−1)M {1 + (M − 1)τ }.

Also,

τ = E(ycl−θ)(ycm−θ)
E(ycl−θ)2

= 1
(M−1)MNσ2

n∑

c=1

∑ M∑

l �=m=1
(ycl − θ)(ycm − θ).

(2.2.8)

In srswor of nM elements from the population of MN elements,

Vwor(ȳ) = N − n

nNM
σ2.

An estimator of Vwor(ȳ) based on without replacement sampling is

vwor(ȳ) =
(
1 − n

N

) n∑

c=1

M∑

l=1

(ycl − ȳ)2/[nM(MN − 1)], (2.2.9)

(assuming MN ≈ MN − 1). Again,

Etrue[vwor(ȳ)] =
(
1 − n

N

) σ2

(nM − 1)

[

1 − (N − n){1 + (M − 1)τ )}
Mm(N − 1)

]

.

(2.2.10)
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Hence,

deff (ȳ, vwor) = Vartrue(ȳ)
Etrue[vwor(ȳ)]

= N(nM−1){1+(M−1)τ }
nM(N−1){1−[(N−n)/(nN)(N−1)][1+(M−1)τ ]} .

(2.2.11)

If n is large, this gives approximately,

deff (ȳ, vwor) = 1 + (M − 1)τ .

The above derivation of deff is based on the randomization due to sampling design.
We now consider the corresponding result in a model-based setup. Consider the
one-way random effect superpopulation model

ycl = θ + αc + εcl, c = 1, . . . ,N; l = 1, . . . ,M, (2.2.12)

where θ is a constant overall effect, αc is a random effect due to cluster, and εcl
is a random error effect. We assume that αc, εcl are mutually independent random
variables with zero means and

V (αc) = τσ2
0, V (εcl) = (1 − τ )σ2

0 .

The quantity τ can be interpreted as the intraclass correlation coefficient among the
units belonging to the same cluster.

Here, θ̂ = ȳ, the mean of the nM sampled elements. Under model (2.2.12),

Vartrue(ȳ) = V
(

1
nM

∑n
c=1
∑M

l=1 ycl
)

= 1
n2M2 [nMσ2

0 +∑n
c=1
∑M

l �=l′=1 Cov (ycl, ycl′)]

= 1
n2M2 [Mnσ2

0 + nM(M − 1)τσ2
0]

= σ2
0[1+(M−1)τ ]

nM .

(2.2.13)

On the contrary, the IID model is

ycl = θ + ecl (2.2.14)

where ecl are independently distributed random variables with mean 0 and variance
σ2
0. Hence

VIID(ȳ) = σ2
0

nM
.
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An unbiased estimator of VIID(ȳ) under the IID assumption is

vIID(ȳ) = 1

(nM − 1)nM

n∑

c=1

M∑

l=1

(ycl − ȳ)2. (2.2.15)

Etrue[vIID(ȳ)] = 1

(nM − 1)nM

n∑

c=1

M∑

l=1

E{y2cl + ȳ2 − 2ȳ(ycl)}

= 1

(nM − 1)nM

n∑

c=1

M∑

l=1

{

θ2 + σ2
0 + σ2

0

nM
[1 + (M − 1)τ ]

+ θ2 − 2

(
σ2

nM
+ (M − 1)τσ2

nM
+ θ2

)}

= σ2
0

nM(nM − 1)
{nM − 1 − (M − 1)τ }

≈ σ2
0

nM
(2.2.16)

if n is large. Hence,
deff (ȳ, vIID) ≈ 1 + (M − 1)τ

as in the case of design-based approach.

Example 2.2.5 Consider the linear regression model

E(Y |X = x) = α + x′β (2.2.17)

where Y is the main variable of interest, X = (X1, . . . ,Xk)
′, a set of k auxiliary vari-

ables. The ordinary least square (OLS) estimator of β which is best linear unbiased
estimator (BLUE) when V (Y |X) is a constant (model A) is

β̂OLS = β̂ = V−1
xx Vxy (2.2.18)

where

Vxx = n−1
∑

i∈s
(xi − x̄)(xi − x̄)′, Vxy = n−1

∑

i∈s
(xi − x̄)yi, x̄ = n−1

∑

i∈s
xi,

n being the size of the sample s, xi = (xi1, . . . , xik)′, yi being observations on unit
i ∈ s.

It is known that

vOLS(β̂) = {n(n − k)}−1

(
∑

i∈s
e2i

)

V−1
xx (2.2.19)
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where ei = yi − ȳ − (xi − x̄)′β̂, ȳ =∑i∈s yi/n, has expectation

E{vOLS(β̂)|A} = V (β̂|A). (2.2.20)

Now, if heteroscedasticity is present, i.e., if V (Yi|X = xi) = σ2(xi) (model B), then
vOLS(β̂) may be inconsistent for V (β̂|B) even under simple random sampling and

E[vOLS(β̂)|B] ≈ {n(n − k)}−1

{
∑

i∈s
σ2(xi)

}

V−1
xx . (2.2.21)

Hence, in the multivariate case,

meff (β̂, vOLS(β̂)) = (E{vOLS(β̂)|B})−1V (β̂|B). (2.2.22)

For k = 1,

meff (β̂, vOLS(β̂)) = V (β̂|B)
E(vOLS(β̂)|B)

≈ 1 + ρCσCx (2.2.23)

where Cσ is the coefficient of variation (cv) of σ2(xi),Cx is the cv of (xi − x̄)2, and ρ
is the mutual correlation between x and y. This misspecification effect is due to the
inconsistency of vOLS(β̂) under heteroscedastic model B. This inconsistency occurs
even under simple random sampling and hence it is not proper to call Eq. (2.2.23) a
design effect.

Now, under simple random sampling with replacement, a linearization estimator
which is unbiased for V (β̂|B) in large samples is

vB(β̂) = n−2V−1
xx

∑

i∈s
(xi − x̄)e2i (xi − x̄)′V−1

xx . (2.2.24)

Therefore, in large samples,

meff (β̂, vB(β̂)) = {E{vB(β̂)|B)}−1V (β̂|B) = {V (β̂|B)}−1V (β̂|B) = Ik. (2.2.25)

Hence, there is no inconsistency under simple random sampling in this case.

2.3 Effect of a Complex Design on Confidence Interval for θ

Let θ̃ be an unbiased estimator of θ under the hypothetical SRS design (IID model
assumption) and v0 an estimate of VarSRS(θ̃). Then



38 2 The Design Effects and Misspecification Effects

t0 = θ̃ − θ√
v0

(2.3.1)

is approximately distributed as a N(0, 1) variable and 95% confidence interval for
θ under the IID assumption is

C0 = {θ : |θ̃ − θ| ≤ 1.96
√
v0}. (2.3.2)

Our aim is to study the properties of C0 under the effect of true complex design.
Under the true design θ̃ may be assumed to be normal with mean θ and variance

Vartrue(θ̃). Again, in large samples, v0 ≈ Etrue(v0) so that, from (2.3.1),

t0 ≈ θ̃ − θ√
Etrue(v0)

= θ̃ − θ
√

Vartrue(θ̃)

√
Vartrue(θ̃)

Etrue(v0)
.

Hence the distribution of t0 under the true design would be approximately

t0 ∼true N

(

0,
Vartrue(θ̃)

Etrue(v0)
= deff (θ̃, v0)

)

. (2.3.3)

Therefore, under the complex design, true 95%-confidence interval for θ is

θ̃ ± 1.96
√

deff (θ̃, v0) · Etrue(v0). (2.3.4)

Hence, the actual coverage probability of a confidence interval obtained from the IID
assumption would be different from its nominal value depending on the deff (θ̂, v0).
If an estimated ˆdeff (θ̂, v0) is available then an adjusted confidence interval for θ
with approximately 95% coverage is

θ̃ ± 1.96
√

v0 · ˆdeff . (2.3.5)

Thus the deff(θ̂, v0) measures the inflation or deflation of IID-based pivotal statistic
due to the use of true design. Table2.1 adopted from Skinner et al. (1989) shows
some such values.

We note that if deff = 1, C0 has the same coverage probability as its nominal
value. If deff > (<)1,C0 has coverage less (more) than its nominal value and hence
its significance level is more (less) than the nominal significance level.

Suppose we want to test the null hypothesis H0 : θ = θ0 using data collected
through a sampling design whose design effect is 1.5 and we shall use tests with
nominal level 95%. If we assume srswr or IID assumption, ignoring the true complex
design we will use the confidence interval C0 whose true coverage probability is
89%, much below the nominal 95% value. Therefore, in many cases H0 will be
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Table 2.1 Coverage of
IID-based confidence
intervals C0

Design effect Nominal level 95 % Nominal level 99 %

0.9 96 99.3

1.0 95 99

1.5 89 96

2.0 83 93

2.5 78 90

3.0 74 86

rejected though we should have accepted the same in those cases. Test based on IID
assumption is therefore conservative.

In practice, it is generally considered more desirable to have a conservative test
(actual coverage probability less than the nominal coverage probability), than to use a
liberal test. Therefore when using data from a complex survey, one should be careful
of the large design effect. Even a design effect of 1.5 canmake the actual significance
level more than double its nominal value.

We now consider two definitions.

Definition 2.3.1 The design factor (deft) of a survey design is defined as

deft = √
deff. (2.3.6)

This is the appropriate inflation factor for standard errors and confidence intervals.

Definition 2.3.2 The IID-effective sample size or simply, effective sample size is
defined as

ne = n

deff
, (2.3.7)

and has the property that the SRS formula given by (2.3.2) becomes correct for the
true design if n is replaced by ne. (This definition is not to be confused with the
Definition 1.2.3 which is concerned with the with-replacement sampling.)

Say

v0 = A

n
.

Then, if we replace n by ne, v0 becomes

v′
0 = A

ne
=
(
A

n

)

(deff).

Therefore, if we use v′
0 in place of v0 in (2.3.1), and use the modified statistic

t′0 = (θ̂ − θ)/v
′1/2
0

http://dx.doi.org/10.1007/978-981-10-0871-9_1
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the adjusted confidence interval (θ̃ − 1.96
√
v′
0, θ̃ + 1.96

√
v′
0) obtained from (2.3.2)

has approximately the correct coverage probability.

2.4 Multivariate Design Effects

Suppose now that θ is a p × 1 vector, θ̂ an estimator of θ under the true design,
and V0 a p × p matrix of estimators of covariance matrix of θ̂ derived under the
IID assumption or equivalently under the simple random sampling with replacement
(SRS) assumption. The estimator V0 is also derived under the IID assumption. We
maydefine themultivariate design effectsmatrix (in Skinner’s sense) of the estimator-
pair θ̂ and V0 as

deff (θ̂,V0) = (Etrue(V0))
−1Covtrue(θ̂). (2.4.1)

The eigenvalues of this matrix δ1 ≥ δ2 ≥ · · · ≥ δp are called the generalized design
effects (in Skinner’s sense) and has the property that δ1, δp denote the bounds for the
univariate design effects of any linear combination c′θ̂ of elements of θ̂,

δ1 = max deffc(c′θ̂, c′V0c),

δp = min deffc(c′θ̂, c′V0c).
(2.4.2)

In the special case when the deff (θ̂,V0) is a p×p identity matrix, δ1 = · · · = δp = 1
so that the univariate design effects of all linear combinations of elements of θ̂ are
unity.

Note 2.4.1 The calculation of the design effect involves variance estimation and
hence requires second-order inclusion probabilities. It also depends on how aux-
iliary information is used, and needs to be estimated one at a time for different
scenarios. Wu et al. (2010) present bootstrap procedures (discussed in Sect. 2.5.7)
for constructing pseudo empirical likelihood ratio confidence intervals for finite pop-
ulation parameters. The proposed method bypasses the need for design effects and
is valid under general single-stage unequal probability sampling designs with small
sampling fractions. Different scenarios in using auxiliary information are handled
by simply including the same type of benchmark constraints with the bootstrap pro-
cedures.

Since estimation of variance of θ̂ (covariance matrix of θ̂, when θ is a vector
parameter) is of major interest in this context we shall in the next section consider
different methods of estimation of variance of estimators, particularly for nonlinear
estimators. The estimation procedures are very general, they do not depend on any
distributional assumption and are, therefore, nonparametric in nature.
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2.5 Nonparametric Methods of Variance Estimation

Modern complex surveys often involve estimation of nonlinear functions, like pop-
ulation ratio, difference of ratios, regression coefficient, correlation coefficient, etc.
Therefore, the usual formulae for unbiased estimation of sampling variance of simple
(linear) estimators of, say, totals and means are inadequate for such surveys. There
are two approaches to the estimation of variance of a nonlinear estimator. One is
linearization, in which the nonlinear estimator is approximated by a linear one for
the purpose of variance estimation. The second is replication in which several esti-
mators of the population parameter are derived from different comparable parts of
the original sample. The variability of these estimators is then used to estimate the
variance of the parameter estimator.

We review these results in this chapter. Section2.5.1 considers in detail a simple
method of estimation of variance of a linear statistic. In Sects. 2.5.2–2.5.7we consider
Taylor series linearization procedure, random group (RG)method, balanced repeated
replication (BRR), jackknife (JK) procedure, JK repeated replication, and bootstrap
(BS) techniques of variance estimation. All these procedures (except the bootstrap
resampling) have been considered in detail in Wolter (1985). Sarndal et al. (1992)
have also considered in detail the problem of variance estimation in their wonderful
book. We do not consider estimation of superpopulation-based variance, the topic
being outside the scope of this book. Interested readers may refer to Mukhopadhyay
(1996) for a review in this area. We review these results in this section.

2.5.1 A Simple Method of Estimation of Variance of a Linear
Statistic

In a stratified three-stage sampling consider a linear statistic of the form

θ̂ =
H∑

h=1

nh∑

a=1

mha∑

b=1

khab∑

c=1

uhabc (2.5.1)

where uhabc is the value associated with the cth unit (ultimate-stage unit) belonging
to the bth sampled ssu (second-stage unit) in the ath sampled fsu (first-stage unit)
belonging to the hth stratum. For example, θ̂ may be the estimator of a population
mean of a variable ‘y’, when

uhabc = yhabc
Nπhabc

(2.5.2)

where N is the number of ultimate units and πhabc is the inclusion probability of the
unit (habc).
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A simple unbiased estimator of the design variance of θ̂ can be obtained under
the following assumptions:

(1) Samples are selected independently from one stratum to the other.
(2) The nh sampled psu’s within stratum h are selected with replacement (wr). (At

each of the nh draws there is a finite probability pha of selecting the ath psu,∑Nh
a=1 pha = 1, where Nh is the total number of psu’s in the hth stratum.)

(3) nh ≥ 2.

We may rewrite Eq. (2.5.1) as

θ̂ =
H∑

h=1

nh∑

a=1

uha (2.5.3)

where

uha =
mha∑

b=1

khab∑

c=1

uhabc. (2.5.4)

By assumption (2), the variables uh1, . . . , uhnh are identically and independently dis-
tributed (IID) random variables within stratum h and therefore, by virtue of assump-
tion (1),

Var (θ̂) =
H∑

h=1

nh Var (uha). (2.5.5)

Therefore, by (1) and (3), an unbiased estimator of Var (θ̂) is

v(θ̂) =
H∑

h=1

nh
1

nh − 1

nh∑

a=1

(uha − ūh)
2, (2.5.6)

where ūh =∑nh
a=1 uha/nh.

The estimator v(θ̂) can be readily computed from the aggregate quantities uha
formed from the ultimate units. If the psu’s are selected with replacement, one need
not care about in how many subsequent stages sampling is carried out and/or if the
sampling at the ultimate stage is by systematic sampling or any other procedure.

For the special case where nh = 2∀ h,

v(θ̂) =
H∑

h=1

(uh1 − uh2)
2. (2.5.7)

Even in surveys with nh > 2, the ultimate sampled units can often be grouped in
two groups (on the basis of some criteria), the assumptions (1) and (2) made and
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the formula (2.5.7) applied. The groups are often called Keyfitz groups after Keyfitz
(1957). The grouping of clusters, however, lead to some loss of efficiency.

The assumption (1) is often valid. In case nh = 1 for some strata, such strata are
often collapsed to form the new strata for which nh ≥ 2. Defining v(θ̂) with respect
to the new strata then gives a conservative variance estimator.

Assumption (2) is almost always violated since the nh psu’s are generally selected
by some without replacement procedure. In this case an unbiased variance estimator
of θ̂ often involves complex formula with components for each stage of sampling.
Some simplified procedures for the case nh = 2 have been proposed by Durbin
(1967) and Rao and Lanke (1984). One approximation is based on the assumption
that the nh psu’s within stratum h are selected by srswor (h = 1, . . . ,H). In this case
an estimator of Var(θ̂) is

vwor(θ̂) =
H∑

h=1

(

1 − nh
Nh

)
nh

nh − 1

nh∑

a=1

(uha − ūh)
2. (2.5.8)

obtained by inserting a finite population correction factor in (2.5.6). Often the sam-
pling fraction nh/Nh is small and the difference between v(θ̂) and vwor(θ̂) is negli-
gible. In any case, v(θ̂) is often a conservative estimator.

In analytic surveys, where the parameter of interest is often a superpopulation
model parameter, the finite population correction nh/Nh is inappropriate and v(θ̂) is
to be used.

We shall now show that under a measurement error model, the estimator v(θ̂) is
a better estimator of the total variance rather than vwor(θ̂). Consider the model

uha = Uha + εha (2.5.9)

whereUha are the true values and εha are random variables distributed independently
with mean 0 and variance σ2

h . The errors εha arise, for example, from interviewers’
errors and other non-sampling errors. Now, by (2.5.3),

Vp(θ̂) = Vp

(
H∑

h=1

nh∑

a=1

Uha

)

+ Vp

(
H∑

h=1

nh∑

a=1

εha

)

(2.5.10)

where Vp means variance due to joint randomization of sampling design and mea-
surement error distribution. Now, if the psu’s are selected by srswosr,

Vp

(
H∑

h=1

nh∑

a=1

Uha

)

=
H∑

h=1

n2h

(
Nh − nh
Nhnh

)

S2h

=
H∑

h=1

nh

(

1 − nh
Nh

)

S2h (2.5.11)
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where

S2h = (Nh − 1)−1
Nh∑

a=1

(Uha − Ūh)
2, Ūh =

Nh∑

a=1

Uha/Nh.

Also

Vp

(
H∑

h=1

nh∑

a=1
εha

)

= V
(

H∑

h=1

nh∑

a=1
εha

)

=
H∑

h=1
nhσ2

h,

(2.5.12)

where V(.) denotes variance wrt error distribution and σ2
h denotes the fixed variance

of εha. Hence,

Vp(θ̂) =
H∑

h=1

nh

[(

1 − nh
Nh

)

S2h + σ2
h

]

. (2.5.13)

Here, from (2.5.6)

Ev(θ̂) =
H∑

h=1

nh
(
S2h + σ2

h

)
. (2.5.14)

From (2.5.8)

Evwor(θ̂) =
H∑

h=1

nh

(

1 − nh
Nh

)
(
S2h + σ2

h

)
. (2.5.15)

Therefore,

E[vwor(θ̂)] ≤ Vp(θ̂) ≤ E(v(θ̂)). (2.5.16)

The estimator v(θ̂) is preferred, since it is a conservative estimator.
In the multivariate case, where θ̂ = (θ̂1, . . . , θ̂p)

′, we can write θ̂ as

θ̂ =
∑

h

∑

a

∑

b

∑

c

uhabc (2.5.17)

where uhabc is a vector of values associated with the unit ‘habc’. Corresponding to
v(θ̂) in (2.5.6) in the univariate case, we have the covariance matrix estimator

v(θ̂) =
H∑

h=1

nh
nh − 1

nh∑

a=1

(uha − ūh)(uha − ūh)′ (2.5.18)
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where

uha =
∑

b

∑

c

uhabc, ūh =
nh∑

a=1

uha/nh.

Clearly, assumptions (1) and (2) above are of vital importance and the procedure
can be applied to any sampling design based on sampling at any arbitrary number
of stages. The above results are derived following Wolter (1985) and Skinner et al
(1989).

2.5.2 Linearization Method for Variance Estimation
of a Nonlinear Estimator

We now consider the problem of estimation of variance of a nonlinear estimator,
like ratio estimator, regression estimator. In the estimation of variance of a nonlinear
estimator we adopt the method based on Taylor series expansion. The method is also
known as linearization method.

Let Y = (Y1, . . . ,Yp)′ where Yj is a population total (or mean) of the jth variable
and let Ŷ = (Ŷ1, Ŷ2, . . . , Ŷp)′ where Ŷj is a linear estimator of Yj.We consider a finite
population parameter θ = f (Y) with a consistent estimator f (Ŷ). A simple example
is a population subgroup ratio, θ = Y1/Y2 with θ̂ = Ŷ1/Ŷ2,Y1,Y2 are population
totals for groups 1 and 2.

Suppose that continuous second-order derivatives exist for the function f (Y).
Now,

f (Ŷ) = f (Y) +
p∑

j=1

(Ŷj − Yj)
∂f

∂Yj

+
∑ p∑

j,k=1

(Ŷj − Yj)(Ŷk − Yk)
∂f

∂Yj

∂f

∂Yk
+ . . . . (2.5.19)

Thus using only the linear terms of the Taylor series expansion, we have an approx-
imate expression

θ̂ − θ =
p∑

j=1

(Ŷj − Yj)
∂f

∂Yj
. (2.5.20)

Using the linearized equation (2.5.20), an approximate expression for variance of
θ̂ is

E(θ̂ − θ)2 = V (θ̂) ≈
p∑

j=1

(
∂f

∂Yj

)2

V (Ŷj) +
∑ p∑

j �=k=1

(
∂f

∂Yj

)(
∂f

∂Yk

)

Cov (Ŷj, Ŷk).

(2.5.21)
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We have thus reduced the variance of a nonlinear estimator to the function of
the variance and covariance of p linear estimators Ŷj. A variance estimator v(θ̂)
is obtained from (2.5.21) by substituting the variance and covariance estimators
v(Ŷj, Ŷk) for the corresponding parameters V (Ŷj, Ŷk). The resulting variance esti-
mator is a first-order Taylor series approximation. The justification for ignoring the
remaining higher order terms has to be sought from practical experience derived
from various complex surveys in which sample sizes are sufficiently large. Krewski
and Rao (1981) have shown that the linearization estimators are consistent.

Basic principles of the linearization method for the variance estimation of a non-
linear estimator under complex sampling designs are due to Keyfitz (1957) and other.
A criticism against the method is about the convergence of the Taylor series used
to develop (2.5.20). For ratio estimator Koop (1972) gave a simple example where
the convergence condition is violated. Again, for complex estimators, the analytic
partial differentiation needed to derive the linear substitute has been found to be
intractable. Woodruff and Causey (1976) describes a solution to this problem that
uses a numerical procedure to obtain the necessary partial derivative. Binder (1983)
provides a general approach to the analytic derivation of variance estimators for lin-
ear Taylor series approximations for a wide class of estimators. Empirical evidences
have shown, however, that the linearization variance estimators are generally of ade-
quate accuracy, particularly, when the sample size is large. The approximation may
be unreliable in the case of highly skewed population.

Example 2.5.1 Ratio Estimator: Let

Y = (Y1,Y2)
′, θ = f (Y) = Y1

Y2
, θ̂ = f (Ŷ) = Ŷ1

Ŷ2
,

∂f (Y)
∂Y1

= 1

Y2
,
∂f (Y)
∂Y2

= − Y1
Y 2
2

,
∂f (Y)
∂Y1

∂f (Y)
∂Y2

= − Y1
Y 3
2

.

Hence,

V (θ̂) = V (Ŷ1)

Y 2
2

+ Y 2
1 V (Ŷ2)

Y 4
2

− 2Y1
Y 3
2

Cov (Ŷ1, Ŷ2)

= Y 2
1

Y 2
2

[
V (Ŷ1)

Y 2
1

+ V (Ŷ2)

Y 2
2

− 2 Cov (Ŷ1, Ŷ2)

Y1Y2

]

.

(2.5.22)

Example 2.5.2 Combined and Separate Ratio Estimator in Stratified Two-Stage
Sampling: The population consists ofH strata, the hth stratum containingNh clusters
(which consist of Mh elements,

∑H
h=1 Mh = M). A first-stage sample of nh(≥ 2)

clusters is drawn from the hth stratum and a second-stage sample of mh elements
is drawn from the nh sampled clusters, m = ∑

h mh. The quantity mh is a random
variable.
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We assume that the sampling design is self-weighing, i.e., inclusion probability of
each of M elements in the population is a constant over the strata and adjustments
for nonresponse is not necessary. Let

mha = number of elements in the ath cluster in the hth stratum in the sample;
yha = ∑mha

b=1 yhab = sum of the response variable y over the mha elements in the ath
cluster belonging to the hth stratum in the sample (a = 1, . . . , nh; h = 1, . . . ,H).

Let Yha,Mha denote the respective population totals. A combined ratio estimator
of population ratio (mean per element)

r =
∑H

h=1

∑Nh
a=1 Yha

∑H
h=1

∑Nh
a=1 Mha

= T

M
(2.5.23)

is

r̂com =
∑H

h=1

∑nh
a=1 yha

∑H
h=1

∑nh
a=1 mha

=
∑H

h=1 yh
∑H

h=1 mh

= y

m
(2.5.24)

where y = ∑H
h=1 yh, yh = ∑nh

a=1 yha is the sample sum of the response variable for
the hth stratum and m = ∑H

h=1 mh and mh the number of sample elements in the
hth stratum. For a binary 0–1 variable, r = P = M1/M, the population proportion
whereM1 is the count of elements each having value 1. In estimator (2.5.24) not only
the quantities yha vary, but also the quantities mha and m in the denominator. Hence,
r̂com = r̂ is a nonlinear estimator.

A separate ratio estimator is a weighted sum of stratum sample ratios, r̂h =
yh/mh which themselves are ratio estimators of the population stratum ratios, rh =∑Nh

a=1 Yha/
∑Nh

a=1 Mha. Thus,

r̂sep =
H∑

h=1

Whrh (2.5.25)

with Wh = Mh/M. A linearized variance for the combined ratio estimator r̂com =
r̂ = y/x in (2.5.24) is, according to (2.5.22),

V (r̂) = r2
[
V (y)

y2
+ V (m)

m2
− 2 Cov (y,m)

ym

]

. (2.5.26)

Hence, an estimator of V (r̂) can be written as

vdes = r̂2[y−2V̂ (y) + m−2V̂ (m) − 2m−1y−1 ˆCov(y,m)] (2.5.27)

as the design-based variance estimator of r̂ is based on the linearization method. The
estimators V̂ ’s depend on the sampling design.

The variance estimator (2.5.27) is a large-sample approximation in that good
performance can be expected if not only the number of sampled elements is large,
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but also the number of sampled clusters is so. In case of a small number of sampled
clusters the variance estimator can be unstable.

The variance estimator vdes is consistent if V̂ (y), V̂ (m), V̂ (m, y) are consistent
estimators. The cluster sample sizes should not vary too much for the reliable per-
formance of the approximate variance estimator (2.5.27). The method can be safely
used if the coefficient of variation of mha is less than 0.2. If the cluster sample
sizes mha are all equal, V̂ (m) = 0, V̂ (y,m) = 0, and V̂ (r̂) = V̂ (y)/m2. For a 0–1
binary response variable and for sampling under IID conditions, r̂ = p = m1/m,
sample proportion, where m1 is the number of elements in the sample each hav-
ing value 1 and m is the number of elements in the sample. Assuming m is a fixed
quantity, the variance estimator (2.5.27) reduces to the binomial variance estimator
vdes(p) = vbin(p̂) = p(1 − p)/n.

Assuming that nh(≥ 2) clusters are selected by srswr from each stratumwe obtain
relatively simple variance and covariance estimators in (2.5.27). We have

V̂ (y) =
∑

h

nhs
2
yh, V̂ (m) =

∑

h

nhs
2
mh,

V̂ (y,m) =
∑

h

nhs
2
y,mh

where

s2yh = (nh − 1)−1∑nh
a=1(yha − ȳh)2,

s2y,mh = (nh − 1)−1∑nh
a=1(yha − ȳh)(mha − m̄h)

2,
(2.5.28)

ȳh = ∑
a yha/mh and s2mh, m̄h have similar meanings. Note that by assuming srswr

of clusters we only estimate the between-cluster components of variances and do
not account for the within-cluster variances. As such the variance estimator (2.5.27)
obtained using (2.5.28) will be an underestimate of the true variance. This bias is
negligible if the first-stage sampling fraction nh/Nh in each stratum is small. This
happens if Nh is large in each stratum.

2.5.3 Random Group Method

The random group (RG) method was first developed at the US Bureau of Census.
Here, an original sample and other k(≥2) samples, also called random groups, are
drawn from the population, usually using the same sampling design. The task of these
last k random samples or random groups is to provide an estimate for the variance
of an estimator of population parameter of interest based on the original sample. We
shall distinguish two cases:

(a) Samples or Random Groups are mutually independent: Let θ̂, θ̂1, . . . , θ̂k be the
estimators obtained from the original sample and k random groups respectively, all
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the estimators using the same estimating procedure. Here θ̂1, . . . , θ̂k are mutually
independent. We want to estimate Var(θ̂), variance of the estimator θ̂ based on the
original sample.

The RG estimate of θ is ¯̂
θ = ∑

i θ̂i/k. If θ̂ is linear, ¯̂
θ = θ̂. Now an estimate of

Var ( ¯̂θ) is

v(
¯̂
θ) = 1

k(k − 1)

k∑

i=1

(θ̂i − ¯̂
θ)2. (2.5.29)

Note that for the above formula to hold it is neither required to assume that all θ̂i’s
have the same variance nor to assume that θ̂i are independent. It is sufficient to assume
that all θ̂i’s have finite variances and that they are pairwise uncorrelated.

Now, by Cauchy–Schwarz inequality

0 ≤
[√

Var( ¯̂θ) −
√

Var(θ̂)

]2

≤ Var[ ¯̂θ − θ̂] (2.5.30)

and Var( ¯̂θ − θ̂) is generally small relative to both Var( ¯̂θ) and Var(θ̂). Thus, the two
variances are usually of similar magnitude.

To estimate Var (θ̂) one may use either v1(θ̂) = v(
¯̂
θ) or

v2(θ̂) = 1

k(k − 1)

k∑

i=1

(θ̂i − θ̂)2. (2.5.31)

Note that v2(θ̂) does not depend on ¯̂
θ. When the estimator of θ is linear v1(θ̂) and

v2(θ̂) are identical. For nonlinear estimators we have,

k∑

i=1

(θ̂i − θ̂)2 =
k∑

i=1

(θ̂i − ¯̂
θ)2 + k( ¯̂θ − θ̂)2. (2.5.32)

Thus,

v1(θ̂) ≤ v2(θ̂). (2.5.33)

If a conservative estimator of Var (θ̂) is desired, v2(θ̂) is, therefore, preferable to

v1(θ̂). However, as noted above, Var( ¯̂θ − θ̂) = E( ¯̂θ − θ̂)2 will be unimportant in
many complex surveys and there should be little difference between v1 and v2. It has
been shown that the bias of v1 as an estimator of Var(θ̂) is less than or equal to the
bias of v2.

Inferences about parameter θ are usually based on normal theory or Student’s t
distribution. The results are stated in the following theorem.
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Theorem 2.5.1 Let θ̂1, . . . , θ̂k be independently and identically distributed (iid)
N(θ,σ2) variables. Then

(i)
√
k( ¯̂θ−θ)

σ
is distributed as a N(0,1) variable. (Obvious modification will follow if

θ̂i’s have different but known variances.)

(ii)
√
k( ¯̂θ−θ)√
v1(θ̂)

is distributed as a t(k−1) variable.

If Var ( ¯̂θ) = σ2/k is known, or k is large, 100(1 − α)% confidence interval for θ is

¯̂
θ ± τα/2σ/

√
k

where τα/2 is the upper 100(α/2) percentage point of the N(0, 1) distribution. When
Var θ̂i is not known or k is not large 100(1 − α)% confidence interval for θ is

¯̂
θ ± tk−1;α/2

√

v(
¯̂
θ)

where tk−1;α/2 is the upper 100(α/2) percentage point of the t(k−1) distribution.

(b) Random groups are not independent: In practical sample surveys, samples are
often selected as a whole using some form of without replacement sampling instead
of in the form of a series of independent random groups. Random groups are now
formed by randomly dividing the parent sample into k groups. The random group
estimators θ̂i’s are no longer uncorrelated because sampling is performed without

replacement. Theorem 2.5.1 is no longer valid. Here also ¯̂
θ, v1(θ̂), v2(θ̂) as defined

above are used for the respective purposes. However, because the random group

estimators are not independent, v1(θ̂) = v(
¯̂
θ) is not an unbiased estimator of Var ( ¯̂θ).

The following theorem describes some properties of v( ¯̂θ).
Theorem 2.5.2 If E(θ̂i) = μi(i = 1, . . . , k),

E{v( ¯̂θ)} = Var ( ¯̂θ) + 1

k(k − 1)

⎡

⎣
k∑

i=1

(μi − μ̄)2 − 2
∑ k∑

i<j=1

Cov(θ̂i, θ̂j)

⎤

⎦ .

(2.5.34)

Proof It is obvious that

E( ¯̂θ) = μ̄ =
k∑

i=1

μi/k.

Again,

v(
¯̂
θ) = 1

k(k−1)

[
k∑

i=1
θ̂2i − k ¯̂

θ2
]

= ¯̂
θ2 − 2

k(k−1)

∑ k∑

i<j=1
θ̂iθ̂j.
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Now,

E[ ¯̂θ2] = Var( ¯̂θ) + μ̄2

and
E[θ̂iθ̂j] = Cov (θ̂i, θ̂j) + μiμj.

Therefore, the result follows. �

Theorem 2.5.2 gives the bias of v( ¯̂θ) as an estimator of Var ( ¯̂θ). For large popula-
tions and small sampling fractions, the term 2

∑∑
i<j Cov (θ̂i, θ̂j) will tend to be a

relatively small negative quantity. The quantity

1

k(k − 1)

k∑

i=1

(μi − μ̄)2

will also be relatively small if μi ≈ μ̄(i = 1, . . . , k). Thus the bias of v( ¯̂θ) will be
unimportant in many large-scale sample surveys and will tend to be slightly positive.

Work by Frankel (1971) suggests that the bias of v( ¯̂θ) is often small and decreases as
the size of the groups increase (or equivalently as the number of groups decreases).

The RG procedure was initiated by Mahalanobis (1946) and Deming (1956).
Mahalanobis called the various samples as Interpenetrating samples, Deming pro-
posed the term replicated samples. They selected k independent samples using the
same sampling design and used the estimator of the type (2.5.29) to estimate the
variance of the overall estimator. In RG method, the major difference is that the
replicates are not necessarily formed independently.

It has been found that if θ̂1, . . . , θ̂k are independently and identically distributed

random variables, then coefficient of variation (cv) of the RG estimator v( ¯̂θ), which
measures its stability is

cv[v( ¯̂θ)] = [Var{v( ¯̂θ)}]1/2/Var( ¯̂θ)

=
{

β4(θ̂1)−(k−3)/(k−1)
k

}1/2
.

The cv is thus an increasing function of kurtosis β4(θ̂1) of the distribution of θ̂1
and a decreasing function of k for a wide range of complex surveys (when N, n are
large and n/N ≈ 0, the result holds even for nonindependent RG’s). As a result,
the larger the number (k) of groups, the higher the precision, though computational
cost will increase at the same time. The optimum value of k is a trade-off between
cost and precision. The RG method is suitable for surveys using a large number of
primary-stage units (psu’s) where many psu’s are selected per stratum.
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2.5.4 Balanced Repeated Replications

The method of balanced half-sample repeated replications (BRR) has proved very
useful for surveys in which two primary-stage units (psu’s) are selected per stratum.
Following Plackett and Burman (1946), McCarthy (1966, 1969a, b) introduced the
concept of BRR, also known as balanced half-samples, balanced fractional samples,
and pseudoreplication.

Suppose that two units are selected by srswr from each of H strata for estimating
Ȳ = ∑

h WhȲh where Wh = Nh/N,Nh(nh) is the stratum population (sample) size,
Ȳh =∑Nh

i=1 Yhi/Nh,Yhi, being the value of ‘y’ on the ith unit in stratum h.
By selecting one unit from the sampled units in each stratum at random we can

form 2H sets of two half-samples (HS’s) each such that each set forms a complete
replicate.

In a set α denote the two HS’s as Sα, Sα′ with the corresponding estimates ȳst,α =∑
h Whyh1,α and ȳst,α′ =∑h Whyh2,α. (Amore complicated notation is given below).

The customary estimator is

ȳst(α) = ȳst,α + ȳst,α′

2
.

The αth replicate estimate of V (ȳst) is

vα(ȳst) = 1
2 [(ȳst,α − ȳst(α))2 + (ȳst,α′ − ȳst(α))2]

= 1
4 (ȳst,α − ȳst,α′)2.

(2.5.35)

The estimator vα is unbiased for V (ȳst) (Exercise 2.2).
Now,

ȳst,α =
∑

h

Whyh1 =
∑

h

Wh{Yh1δh1α + Yh2δh2α} (2.5.36)

wherein we denote the values of y on the two units selected from the hth stratum as
Yh1,Yh2, respectively, in some well-defined manner. The term Yh1 becomes yh1 if the
corresponding unit goes to Sα. Also,

δh1α = 1(0) if the unit (h, 1) ∈ Sα (otherwise)
δh2α = 1 − δh1α.

(2.5.37)

Now,

ȳst,α − ȳst = 1

2

∑

h

Whδ
α
h dh (2.5.38)
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where

δα
h = 2δh1α − 1
dh = yh1 − yh2.

(2.5.39)

Hence,

vα = 1
4

(
∑

h
Whδ

α
h dh

)2

= 1
4

[
∑

h
W 2

h d
2
h + 2

∑ ∑

h<h′
WhWh′δα

h δα
h′dhdh′

]

.

(2.5.40)

It follows that

1

2H

2H∑

α=1

ȳst,α = ȳst,
1

2H

2H∑

α=1

vα = v(ȳst). (2.5.41)

When H is large, computation of v(ȳst) as the average of vα over 2H HS’s becomes
formidable. However, if we choose a set η of K HS’s such that

∑

α∈η

δα
h δα

h′ = 0, h < h′ = 1, . . . ,H, (2.5.42)

then

v̄(K) =
∑

α∈η

vα/K = v(ȳst). (2.5.43)

Plackett and Burman (1946) developed a method for constructing m×m orthogonal
matrices with entries +1,−1 where m is a multiple of 4. These can be used directly
to obtain values of δα

h satisfying (2.5.42). The orthogonal matrix of size K where
K is a multiple of 4, between H and H + 3, can be used dropping the last K − H
columns. The entries in the matrix can be substituted as δα

h , each column standing
for a stratum. McCarthy referred to the set η as balanced. If, further, the condition

∑

α∈η

δα
h = 0, h = 1, . . . ,H (2.5.44)

is satisfied, then ȳst,α/K = ȳst . The set of replicates satisfying (2.5.42) and (2.5.44)
is set to be in full orthogonal balance.

For designs with wor sampling of psu’s, vα is positively biased. In this case, a
separate adjustment is necessary to account for this bias, though the bias is generally
negligible.
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In the nonlinear case, in which the BRR is most useful, let θ̂, θ̂α, θ̂α′ be the esti-

mates of θ basedon thewhole sample,Sα, andSα′ , respectively. Let ¯̂θα = (θ̂α+θ̂α′)/2.

We note that even for a balanced set of HS’s,
∑

α∈η θ̂α/K = ˆ̂
θα �= θ̂ in general.

Empirical studies by Kish and Frankel (1970), among others, however, show that ¯̂
θα

is very close to θ̂ in general. Writing

v̄(K)(θ̂) = ∑

α∈η
(θ̂α − θ̂)2/K

v̄′
(K)(θ̂) = ∑

α∈η
(θ̂α′ − θ̂)2/K,

(2.5.45)

we have the following alternative variance estimators:

(i) v̄(K)(θ̂)

(ii) v̄′
(K)(θ̂)

(iii) [v̄(K)(θ̂) + v̄′
(K)(θ̂)]/2 = ¯̄v(K)(θ̂)

(iv)
∑

α∈η
(θ̂α − θ̂α′)2/(4K) = v̄+

(K)(θ̂).

(2.5.46)

The estimators (i), (ii), (iii) are sometimes regarded as estimators of mse(θ̂), while
(iv) is regarded as estimator of Var (θ̂).

Since (iii) is the average of (i) and (ii), it is at least as precise as the others and
equally biased. However, (iii) is comparatively costlier than (i) (and (ii)) and perhaps,
significantly so, when many estimators are produced.

Another set of variance estimators can be attained by replacing θ̂ by ˆ̂
θ =∑α θ̂α/K

or
∑

α θ̂α′/K in (i), (ii), and (iii) of (2.5.46). Such estimators are unbiased for linear θ̂
only if the number of HS’s is T > H. If H is a multiple of 4, T(= H + 4) HS’s must
be used to maintain the unbiasedness (Lemeshow and Epp 1977). The estimators

using ˆ̂
θ are generally not preferred to those using θ̂, since they give smaller and less

conservative estimates of mse, as they do not include the components for bias of θ̂.
Empirical works of McCarthy (1969a, b), Kish and Frankel (1970), Levy (1971),
Frankel (1971) and others show that BRR provides satisfactory estimates of the true
variance.

All the above-mentioned BRR estimators become identical in the linear case.
Two modifications of BRR has been proposed, that require fewer replicates but

the corresponding estimates are less precise and equally biased as the full BRR
estimate. In one modification strata are combined into groups, not necessarily of the
same size. For each replicate all strata into a group g are assigned the same value
δα
h . The constraints (2.5.42) are imposed for pairs h, h′ of strata which are not in the
same group g. Thus if G groups are formed, the number of replicates required is the
multiple of 4, which lies in the range G to G + 3. The Plackett and Burman matrices
of size K may then be used to derive the values of δα

h .
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The second procedure for reducing the number of replicates, discussed by
McCarthy (1966) and developed by Lee (1972, 1973) is the method of partially
balanced repeated replications (PBRR). Here the strata are divided into groups and
full balancing are applied to the strata within each group. If T replicates are required
for H strata, G = H/T groups are formed with T strata in each. A T ×T orthogonal
matrix is then used to ensure a full balance within each group. Lee (1972, 1973),
Rust (1984) suggested methods of implementing PBIB that would minimize the loss
in precision over fully balanced BRR.

Rust (1984, 1986) shows that the method of PBRR and combined strata are equiv-
alent. However, the combined strata method has a greater flexibility in the sense that
the number of strata per group varies.

For general designs in which strata sample sizes vary, BRR can be implemented
by dividing the psu’s in each stratum into two groups of equal sizes (assuming nh =
2mh,mh an integer), and then using these groups as units (Kish and Frankel 1970).
In this case the BRR variance estimator is somewhat less precise than the customary
variance estimator. Valliant (1987) considers the large-sample prediction properties
of the BRR separate ratio and regression estimator under a superpopulation model
when nh is large and compares these with jackknife and linearization procedure.

Example 2.5.3 Let us consider BRR for estimation of population ratio R = Y/X. A
ratio estimator of R based on the set Sα is

r̂α =
∑

h yh1∑
h xh1

=
∑

h(Yh1δh1α + Yh2δh2α)
∑

h(Xh1αδh1α + Xh2αδh2α)
, α = 1, . . . , 2H .

Consider variance estimator for the mean of α-HS estimators

¯̂rα =
2H∑

α=1

r̂α/2
H .

The parent estimator of population ratio R is

r̂ =
∑

h(yh1 + yh2)
∑

h(xh1 + xh2)
.

Estimator of V (r̂) is

(i) v̄(r̂) =
2H∑

α=1
(r̂α − r̂)2/2H ,

(ii) v̄′(r̂) =
2H∑

α′=1
(r̂α′ − r̂)2/2H ,

(iii) ¯̄v(r̂) = [v̄(r̂) + v̄′(r̂)]/2,

(iv) v̄+(r̂) =
2H∑

α=1
(r̂α − r̂α′)2/[4(2H)].

(2.5.47)
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Three other estimators are obtained by replacing in (i), (ii), and (iii) of (2.5.47) r̂
by ˆ̂r(=∑α r̂α/2

H or
∑

α′ r̂α′/2H ). Since these estimators are nonlinear, they are not
identical. For example,

¯̄v(r̂) = v̄+(r̂) +
2H∑

α=1

( ¯̂rα − r̂)2/(2H)

where ¯̂rα = (r̂α + r̂α′)/2 and hence

¯̄v(r̂) ≥ v̄+(r̂).

One problem that occasionally arises in BRR is that one or more replicate estimates
will remain undefined due to division by zero. This happens particularly often when
ratio estimator has been used with very small cell sizes. Fay suggested a solution to
this problem: Instead of increasing the weight of one HS by 100% and decreasing
the weight of the other HS to zero, he recommended perturbing the weights by
+/− 50%. Judkins (1990) evaluated Fay’s techniques through simulation and also
discusses further modification to the techniques that are used for variance estimation
when only one psu is selected per stratum.

2.5.5 The Jackknife Procedures

Quenouille (1949, 1956) originally introduced jackknife (JK) as amethod of reducing
the bias of an estimator. Tukey (1958) suggested the use of this technique for variance
estimation. Durbin (1953) first considered its use in finite population. Extensive
discussion of JK method is given in Miller (1964, 1974), Gray and Schucany (1972)
and in a monograph by Efron (1982).

Let θ be the parameter to be estimated. An estimator θ̂ is obtained from the full
sample. Assuming n = mk(m, k integers), we partition the sample into k groups of
m original observations each. Let θ̂(α) be the estimator of θ computed from the whole
sample except the αth group. Define pseudo-values θ̂α as

θ̂α = kθ̂ − (k − 1)θ̂(α). (2.5.48)

Quenouille’s estimator is

¯̂
θ = 1

k

k∑

i=1

θ̂α. (2.5.49)
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Tukey suggested that θ̂α are approximately independently and identically distributed.
The JK estimator of variance is

v1(θ̂) = 1

k(k − 1)

k∑

α=1

(θ̂α − ¯̂
θ)2

= k(k − 1)

k

k∑

α=1

(θ̂(α) − θ̂(.))
2

(2.5.50)

where θ̂(.) =∑k
α=1 θ̂(α)/k. In practice, v1(

¯̂
θ) is used not only to estimate the variance

of ¯̂
θ, but also of θ̂. Alternatively, one may use

v2(θ̂) = 1

k(k − 1)
(θ̂α − θ̂)2 (2.5.51)

which is always at least as large as v1(θ̂).
The number of groups k is determined from the point of view of computational

cost and the precision of the resulting estimator. The precision is maximized when
each dropout group is of size one and each unit is dropped only once. Rao (1965),
Rao and Webster (1966), Chakraborty and Rao (1968), Rao and Rao (1971) in their
studies on ratio estimator based on superpopulation models showed that both bias

and variance of ¯̂
θ are maximized for the choice k = n.

Brillinger (1966) showed that both v1 and v2 give plausible estimates of the asymp-
totic variance. Shao and Wu (1989), Shao (1989) considered the efficiency and con-
sistency of JK variance estimators. For nonlinear statistic θ̂ that can be expressed
as functions of estimated means of p variables, such as ratio, regression, correlation
coefficient, Krewski and Rao (1981) established the asymptotic consistency of vari-
ance estimators from JK, the linearization, and BRR methods. In the case of two
samples psu’s per stratum, Rao and Wu (1985) showed that the linearization and
JK variance estimators are asymptotically efficient. In case of item nonresponse in
sample surveys, Rao and Shao (1999) considered jackknife variance estimation for
stratifiedmultistage surveys which is obtained by first adjusting the hot deck imputed
values for each pseudoreplicate and then applying the standard jackknife formulae.
Rao and Tausi (2004) considered variance estimation for the generalized regression
estimator (GREG) of a total based on p auxiliary variables under stratifiedmultistage
sampling. Customary resampling procedures, like jackknife, balanced repeated repli-
cation, and bootstrap (Sect. 2.5.7) for estimating the variance of a GREG estimator
requires the inversion of a p×pmatrix for each subsample. This may result in illcon-
ditioned matrices for some subsamples. The authors applied the estimating function
resampling methods to obtain variance estimators using jackknife resampling.
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2.5.6 The Jackknife Repeated Replication (JRR)

This is a combination of JK and BRR techniques. We assume as in the case of BRR,
that two clusters are selected with replacement from each of H strata. We construct
the pseudo-samples following the method suggested by Frankel (1971).

For the first pseudo-sample, we exclude the cluster (1, 1) (i.e., the cluster 1 in
stratum 1), weigh the second cluster (1, 2) by 2 and leave the sampled clusters in the
remaining H − 1 strata unchanged. By repeating the procedure for all the strata we
get a total of H pseudo-samples. These are

First Pseudo-sample : {(2y12); (y21, y22), (y31, y32), . . . (yH1, yH2)},
Second Pseudo-Sample : {(y11, y12), (2y22), (y31, y32), . . . , (yH1, yH2)},

. . .

Hth Pseudo-Sample : {(y11, y12), (y21, y22), (y31, y32), . . . , (2yH2)}.

Changing the order of excluded clusters we get another set of H pseudo-samples.
The JRR variance estimators are derived using these two sets of pseudo-samples.

We illustrate this by the example of finding the variance estimator of combined ratio
estimator r̂.

For this, we first construct ratio estimator for each pseudo-sample. The estimator
of population ratio r based on the hth pseudo-sample in the first set is

r̂h = 2yh2 +∑H
h′(�=h)=1

∑2
α=1 yh′α

2xh2 +∑H
h′(�=h)=1

∑2
α=1 xh′α

, h = 1, . . . ,H. (2.5.52)

Similarly, the estimator of the population ratio based on the hth pseudo-sample of
the second set is

r̂ch = 2yh1 +∑H
h′(�=h)=1

∑2
α=1 yh′α

2xh1 +∑H
h′(�=h)=1

∑2
α=1 xh′α

, h = 1, . . . ,H. (2.5.53)

Using the pseudo-sample estimators r̂h, r̂ch, h = 1, . . . ,H we get different JRR esti-
mators of variance of r̂. These are

v1,jrr(r̂) = 1

H

H∑

h=1

(r̂h − r̂)2, (2.5.54)

v2,jrr(r̂) = 1

H

H∑

h=1

(r̂ch − r̂)2, (2.5.55)

v3,jrr(r̂) = 1

2
(v1,jrr + v2,jrr). (2.5.56)
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Another set of variance estimators can be obtained by using the estimator r̂ first
corrected for its bias using pseudo-values as in the JK procedure. The pseudo-value
of r̂h is, following (2.5.52),

r̂ph = 2r̂ − r̂h, h = 1, . . . ,H. (2.5.57)

A bias-corrected estimator of r is, therefore,

¯̂rp = 1

H

H∑

h=1

r̂ph . (2.5.58)

Similarly, the pseudo-value of r̂ch is

r̂pch = 2r̂ − r̂ch, h = 1, . . . ,H. (2.5.59)

A bias-corrected estimator based on r̂ch(h = 1, . . . ,H) is, therefore,

¯̂rpc = 1

H

H∑

h=1

r̂pch . (2.5.60)

Following (2.5.54)–(2.5.56) we, therefore, get the following variance estimators
of r̂:

v4,jrr(r̂) =
H∑

h=1

(r̂ph − ¯̂rp)2/{H(H − 1)}, (2.5.61)

v5,jrr(r̂) =
H∑

h=1

(r̂pch − ¯̂rpc)2/{H(H − 1)}, (2.5.62)

v6,jrr(r̂) = (v4,jrr + v5,jrr)/2. (2.5.63)

Finally, from all the 2H pseudo-samples we obtain

v7,jrr(r̂) =
H∑

h=1

(r̂h − r̂ch)
2/4. (2.5.64)

For a nonlinear estimator, the bias-corrected JRR estimators and the parent estimator
coincide. In practice all the JRR variance estimators should give closely related
results.

The method can be extended to a more general case where more than two clusters
are selected from each stratum without replacement (see Wolter 1985, Sect. 4.6).
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2.5.7 The Bootstrap

The bootstrap (BS) method is the most recent technique of variance estimation for
complex sample surveys. The technique uses a highly computer-intensive resampling
procedure to mimic the theoretical distribution from which the sample is derived.
The method does not need any prior assumption about the distribution of observa-
tions or the estimators. It provides estimates of bias and standards errors and other
distributional properties of the estimators, however complex it may be.

The naive BS technique was suggested by Efron (1979) who indicated that the
method may be better than its competitors. The BSmethod for finite population sam-
pling was introduced and discussed by Gross (1980), Bickel and Freedman (1984),
Chao and Lo (1985), McCarthy and Snowdon (1985), Booth et al. (1991), among
others. Rao and Wu (1988) showed the application of the BS in design-based survey
sampling under different sampling designs including stratified cluster sampling with
replacement, stratified simple random sampling without replacement, unequal prob-
ability random sampling without replacement, and two-stage cluster sampling with
equal probabilities andwithout replacement. Rao (2006) showed that BSmethod pro-
vides an alternative option to the analysis of complex surveys for taking account of
the design effects and weight adjustments.We consider here the elements of variance
estimation by BS.

Suppose we have p variables y1, . . . , yp with Yhij(yhij), Ȳj, Ȳhj, ȳhj as the value
of yj on the ith unit in the hth stratum in the population (sample), population mean,
stratumpopulationmean, stratum samplemeanof yj, respectively (h = 1, . . . ,H; j =
1, . . . , p; Ȳj = ∑

h WhȲhj, Ȳhj = ∑Nh
i=1 Yhij/Nh, ȳhj = ∑

i∈sh yhij/nh,Nh, nh being,
respectively, the size of sample sh and population in stratum h). Suppose we want to
estimate θ = g(Ȳ1, . . . , Ȳp) = g(Ȳ), a nonlinear function of Ȳ = (Ȳ1, . . . , Ȳp)′. This
includes population ratio, regression, correlation coefficient, etc. A natural estimator
of θ, whenever nh(≥ 2) psu’s are selected with replacement from each stratum

is g( ˆ̄Y) = g(ȳ) where ȳ = (ȳ1, . . . , ȳp)′, ȳj = ∑
h Whȳhj. We denote by ȳh =

(ȳh1, . . . , ȳhp)′.
In this case, the random vector yhi = (yhi1, . . . , yhip)′, i = 1, . . . , nh are iid with

E(yhi) = Ȳh = (Ȳh1, . . . , Ȳhp)′. The vectors yhi, yh′k(h �= h′) are independently but
not necessarily identically distributed. The BS sampling procedure is as follows:

(a) Draw a random sample wr {y∗
hi, i = 1, . . . , nh} of size nh from the given

sample {yhi, i = 1, . . . , nh} independently from each stratum. Calculate ȳ∗
h =

∑
i y

∗
hi/nh, ȳ

∗ =∑h Whȳ∗
h and θ̂∗ = g(ȳ∗).

(b) Repeat step (a) a large number of times, say B times and calculate the corre-
sponding estimates θ̂∗1, . . . , θ̂∗B of θ.
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(c) Calculate the Monte Carlo estimate of V (θ̂),

vb(a) =
B∑

b=1

(θ̂∗b − θ̂∗.)2/(B − 1) (2.5.65)

where θ̂∗. =∑B
b=1 θ̂∗b/B.

The estimator vb(a) is a fair approximation to the BS variance estimator of θ̂,

vb = var∗(θ̂∗) = E∗(θ̂∗ − E∗(θ̂∗))2 (2.5.66)

where E∗ denotes expectation with respect to BS sampling. The BS estimator E∗(θ̂∗)
of θ is approximated by θ̂∗..

In the linear case with p = 1, θ = Ȳ , θ̂∗ =∑h Whȳ∗
h = ȳ∗ and vb reduces to

var∗(ȳ∗) =
∑

h

W 2
h σ2

h/nh (2.5.67)

where σ2
h = ∑nh

i=1(yhi − ȳh)2/nh. Comparing (2.5.67) with the customary esti-
mator v(ȳst) = ∑

h W
2
h s

2
h/nh where s2h = ∑

i(yhi − ȳh)2/(nh − 1), it follows that
var∗(ȳ∗)/v(ȳst) does not converge in probability to 1 when nh is bounded. Hence,
var∗(ȳ∗) is not a consistent estimator of V (ȳst) unless nh and fh = nh/Nh are con-
stants for all h. Moreover, vb in (2.5.66) is not a consistent estimator of the variance
of a general nonlinear estimator.

Recognizing this problem Efron (1982) suggested to draw BS sample of size
nh − 1 with srswr sampling design instead of nh independently from each stratum.
The rest of the procedure is the same as before.

To get rid of this difficulty, Rao andWu (1988) suggested the following resampling
procedure.

(i) Draw a random sample {y∗
hi, i = 1, . . . ,mh} with replacement (mh ≥ 1) from the

original sample {yhi, i = 1, . . . , nh}. Calculate

ỹhi = ȳh +
√
mh√

nh−1
(y∗

hi − ȳh)

ỹh = ∑

i
ỹhi/mh = ȳh +

√
mh√

nh−1
(ȳ∗

h − ȳh)

ỹ = ∑

h
Whỹh, θ̃ = g(ỹ).

(2.5.68)

(ii) Repeat the step (i) B times independently and calculate the corresponding esti-
mates θ̃1, . . . , θ̃B.TheBS estimatorE∗(θ̃) of θ is approximated by θ̃. =∑b θ̃b/B.
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(iii) The BS variance estimator of θ̂,

ṽb = E∗(θ̃ − E∗(θ̃))2

is approximated by the Monte Carlo estimator

ṽb(a) =
B∑

b=1

(θ̃b − θ̃.)2/(B − 1).

In the linear case of θ = Ȳ with p = 1, ṽb reduces to the customary unbiased variance
estimator v(ȳst) for any choice of mh, because,

ṽb = E∗(ỹ − ȳ)2 =∑
h
W 2

h · mh
nh−1E∗(ȳ∗

h − ȳh)2

= ∑

h
W 2

h · mh
nh−1 · (nh−1)s2h

mhnh
=∑

h
W 2

h
s2h
nh

= v(ȳst).

Thus, Rao and Wu (1988) applied the previously stated algorithm of a naive BS
procedure with a general sample sizemh not necessarily equal to nh, but rescaled the
resampled values appropriately so that the resulting variance estimator is the same
as the usual unbiased variance estimator in the linear case.

In the nonlinear case it has been shown that under certain conditions

ṽb = vL + 0(n−2)

where vL is the customary linearization variance estimator,

vL =
∑ p∑

j,k=1

gj(ȳ)gk(ȳ)
H∑

h=1

W 2
h

nh
shjk,

where for t = (t1, . . . , tp)′gj(t) = ∂g(t)
∂tj

, shjk =∑i∈sh(yhij − ȳhj)(yhik − ȳhk). Since vL

is a consistent estimator of the variance of θ̂, ṽb is consistent for Var (θ̂).
It has also been found that the estimate of bias of θ̂,B(θ̂) = E(θ̂) − θ, based on

the suggested BS procedure, which is B̃(θ̂) = E∗(θ̃) − θ̂ = θ̃. − θ̂, is consistent,
while the same based on the naive BS procedure is not consistent.

The choice mh = nh − 1 gives ỹhi = y∗
hi(i = 1, . . . ,mh) and the method reduces

to the naive BS. For nh = 2 and mh = 1, the method reduces to the well-known
random half-sample replication. For nh ≥ 5,mh ≈ nh − 3 Rao and Wu made some
empirical studies on the choice of mh.

The method can be easily extended to simple random sampling within stratum by
changing ỹhi in (2.5.68) to
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ỹhi = ȳh +
√
mh√

nh − 1
·√1 − fh(y

∗
hi − ȳh) (2.5.69)

where fh = nh/Nh, h = 1, . . . ,H. Here, even by choosing mh = nh − 1, we do not
get ỹhi = y∗

hi. Hence, the naive BS using y∗
hi will still give a wrong scale.

The method has been extended to any unbiased sampling strategy including Rao–
Hartley–Cochran sampling procedure.

Apart from these with replacement procedures, a without replacement BS tech-
nique was proposed by Gross (1980) in the case of a single stratum. His method
assumes that N = Rn for some integer R and creates a pseudopopulation of size N
by replicating the dataR times.However, themethoddoes not yield the usual unbiased
estimate of variance in the linear case. The difficulty was corrected by Bickel and
Freedman (1984) who proposed a randomization between two pseudopopulations
and also allowed an extension of the method for H > 1. Sitter (1992) developed a
BS procedure which retains the desirable properties of both with replacement BS and
without replacement BS techniques but extends to more complex without replace-
ment sampling designs.

Hall (1989) considered three efficient bootstrap algorithms: these are balanced
bootstrap and the linear approximation method proposed by Davison et al. (1986)
and a centering method proposed by Efron (1982) in the context of bias estimation.
He compares the asymptotic performance of these methods and show that they are
asymptotically equivalent. Hall prove that the variances and mean square errors of
all these three algorithms are asymptotic to the same constant multiple of (Bn2)−1,
where B denotes the number of bootstrap resamples and n is the size of the original
sample. The convergence rate (Bn2)−1 represents a significant improvement on that
for the more usual, unbalanced bootstrap algorithm, which has mean square error of
only (Bn)−1. These results apply to smooth functions of means.

Ahmad (1997) suggested a new bootstrap variance estimation technique, rescal-
ing bootstrap without replacement technique and also proposed an optimum choice
of bootstrap sample size for his proposed procedure. Canty and Davison (1999) con-
sidered labor force surveys to demonstrate the advantages of resampling methods
in estimation of variance. Labor force surveys are conducted to estimate, among
others, quantities such as unemployment rate and the number of people at work.
Interest focusses typically both in estimates at a given time and in changes between
two successive time points. Calibration of the sample to ensure agreement with
the known population margins results in random weights being assigned to each
response, but the usual method of variance estimation do not account for this. The
authors describe how resampling methods, such as jackknife, jackknife linearisation,
balanced repeated replication and bootstrap can be used to do so. Robert et al. (2004)
suggested a design-based bootstrapping method for the estimation of variance of an
estimator in longitudinal surveys.

Multiple imputation is a method of estimating the variance of estimators that are
constructed with some imputed data. Kim et al. (2006) give an expression for the
bias of the multiple imputation variance estimator for data that are collected with a
complex survey design. A bias-adjusted variance estimator is also suggested.
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2.6 Effect of Survey Design on Inference About Covariance
Matrix

In this section we shall look into the effect of sampling design on a classical test
statistic for testing a hypothesis regarding a covariance matrix.

Let V = ((vij)) be a consistent estimator of a p × p covariance matrix � under
the IID assumption. For example, for a self-weighing design, V may be the usual
sample covariance matrix. Let

ω̃ = Vech(V) = (v11, v21, v22, v31, v32, v33, . . . , vpp)
′ (2.6.1)

be the u × 1 vector of distinct elements of V where u = p(p + 1)/2. Suppose we
may write ω̃ as

ω̃ = 1

n

∑

i∈s
ωi (2.6.2)

where ωi is a vector of sample square and cross-product terms, each term centered
around the corresponding sample mean, and also possibly weighted, say, for unequal
selection probabilities and n is the sample size. Thus, for equal selection probability
sampling,

ωk(k ∈ s) = ((y1k − ȳ1)
2, . . . , (ypk − ȳp)

2, (y1k − ȳ1)(y2k − ȳ2),

. . . , (yp−1,k − ȳp−1)(yp,k − ȳp))
′

where yjk denotes the value of yj on the unit k in the sample. Then ω̃ is consistent
for Vech� = μ (say).

Under IID assumptions, ω̃ will generally be asymptotically normally distributed
with mean μ and the linearization asymptotic covariance matrix estimator of ω̃,

Var(ω̃) may be expressed as the u × u matrix

V∗ = 1

n(n − 1)

∑

i∈s
(ωi − ω̃)(ωi − ω̃)′. (2.6.3)

Consider a linear hypothesis about� whichmay be expressed as, say,Aμ = 0where
A is a given q × u matrix of rank q. An IID procedure for testing H0 is the Wald
statistic

X2
W = (Aω̃)′[AV∗A′]−1(Aω̃), (2.6.4)

which follows the central chi-square distribution,χ2
(q) in large sample. (Wald statistic

has been introduced in Chap. 4).

http://dx.doi.org/10.1007/978-981-10-0871-9_4
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Under a complex design this procedure may be modified by replacing V∗ by the
linearization estimator VL of Var(ω̃) which accommodates the sampling design.
This gives a modified Wald statistic X2

W0 (Pervaiz 1986). This approach which also
assumes near normality of ω̃ is constrained by the fact that the d.f. ν of VL(ω̃) may
be low compared to u, particularly if p is moderate to large, in which caseVL(ω̃)may
become very unstable and even singular. As a result X2

W may deviate considerably
from χ2

(q). It is therefore suggested to correct X
2
W for its first moment, that is, to refer

X2
W1 = (q)X2

W

tr[(AV∗A′)−1AVL(ω̃)A′] (2.6.5)

as χ2
(q) (Layard 1972).

Note 2.6.1 Graubard and Korn (1993) considered the problem of testing the null
hypotheses H0 : θ = 0, where the p-dimensional parameter θ = g(λ) and λ is a r-
dimensional vector of means. The authors used replicated estimates of the variances
that take into account the complex survey design. The Wald statistic can be used
to test H0, but inference for θ may have very poor power. They used an alternative
procedure based on classical quadratic test statistic. Another reference in the area is
due to Korn and Graubard (1990).

2.7 Exercises and Complements

2.1 Suppose that yabc is the value of the cth sampled unit belonging to the bth second-
stage unit sampled from the ath sampled first-stage unit in a three-stage sample
(a = 1, . . . , n; b = 1, . . . ,m; c = 1, . . . , k.) Consider the superpopulation model

yabc = θ + αa + βb + εabc

where αa,βb, εabc are independent random variables with mean zero and

Cov (yabc, ya′b′c′) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

σ2
0 if (a, b, c) = (a′, b′, c′)

τ2σ
2
0 if (a, b) = (a′ · b′), c �= c′

τ1σ
2
0 if a = a′, b �= b′, c �= c′

0 if a �= a′, b �= b′, c �= c′

Here τ2 is the inter-second-stage-unit correlation, τ1 is the inter-first-stage-unit cor-
relation. Then show that

Vartrue(ȳ) = Vartrue

[
n∑

a=1

m∑

b=1

k∑

c=1
yabc/nmk

]

= σ2
0

nmk [1 + (m − 1)kτ1 + (k − 1)τ2].
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For the IID model
yabc = θ + eabc

with eabc independently distributed with zero mean and variance σ2
0, show that (using

the notations of Example 2.2.4)

Etrue[vIID(ȳ)] ≈ σ2
0

nmk
,

if n is large. Hence, deduce that

deff (ȳ, vIID) ≈ 1 + (m − 1)kτ1 + (k − 1)τ2.

(Skinner 1989)

2.2: Show that the estimator vα given in (2.5.35) is unbiased for V (ȳst).



Chapter 3
Some Classical Models in Categorical
Data Analysis

Abstract This chapter makes a brief review of classical models of categorical
data and their analysis. After a glimpse of general theory of fitting of statistical
models and testing of parameters using goodness-of-fit tests, Wald’s maximum like-
lihood statistic, Rao’s statistic, likelihood ratio statistic, we return to the main dis-
tributions of categorical variables—multinomial distribution, Poisson distribution,
and multinomial-Poisson distribution and examine the associated test procedures.
Subsequently, log-linear models and logistic regression models, both binomial and
multinomial, are looked into and their roles in offering model parameters empha-
sized. Lastly, some modifications of classical test procedures for analysis of data
from complex surveys under logistic regression model have been introduced.

Keywords Categorical random variable · Full model ·Nested model · Information
matrix · Goodness-of-fit statistics · Wald’s maximum likelihood statistic · Rao’s
statistic · Likelihood ratio statistic · Multinomial model · Poisson model · Log-
linear models ·Binomial logistic regression models · Polytomous logistic regression
models

3.1 Introduction

In this chapter, we will make a brief review of the classical theory of categorical data
analysis which is based on the assumption that the variables are independently and
identically (IID) distributed. Equivalently, the samples are assumed to be drawn by
simple random sampling with replacement.

The purpose of most investigations is to assess relationships among a set of vari-
ables. The choice of an appropriate technique for that purpose depends on the type
of variables under investigation. Suppose we have a set of numerical values for a
variable.

(i) If each element of this set may lie only at a few isolated points, we have a
discrete or categorical data set. In other words, a categorical variable is one for
which measurement scale consists of a set of categories. Examples are: race,
sex, age-group, etc.

© Springer Science+Business Media Singapore 2016
P. Mukhopadhyay, Complex Surveys, DOI 10.1007/978-981-10-0871-9_3

67



68 3 Some Classical Models in Categorical Data Analysis

(ii) If each element of this set may theoretically lie anywhere in this numerical
scale, we have a continuous data set. Examples are blood pressure, blood sugar,
cholesterol level, etc.

Here we shall consider analysis of categorical data under classical setup.
A categorical random variable X is a random variable that takes values in one of

k categories. The entire probabilistic behavior of X is summarized by its probability
distribution

P(X = i) = πi , i = 1, . . . , k

where the πi are (usually unknown) parameters that add up to unity. There are thus
really only k − 1 of these fundamental parameters. For two categorical variables
X1, X2, we introduce the notation

P(X1 = i, X2 = j) = πi j , i = 1, . . . r; j = 1, . . . , l

so that the marginal probability P(X1 = i) = πi0 = ∑l
j=1 πi j , etc. A two-way table

of categorical data is called a contingency table.

3.2 Statistical Models

We are concerned here with categorical data and so we shall take the data to be a set
of counts Y1, . . . ,Yk of k different categories of events. A statistical model is a set of
assumptions about the joint distribution of the data. This set of assumptions usually
has two components.

The first component of a statistical model is an assumption that the distribution
of the data, commonly called the error distribution comes from a specific set, often
a parametric family of distributions. The error distribution describes the random
variation of the data about any systematic features or patterns. For categorical data, the
most common error distributions are Poisson andMultinomial. The error distribution
describes the random variation of the data Yi about their mean values E(Yi ) = ei .

The second component of a statistical model, called the systemic component, is
a statement about the underlying pattern of the data. Commonly, this is a statement
about the mean value of the Yi , called a regression function. For instance we might
assume E(Yi ) is a linear function of xi , the value of a covariate x on units in the
i th category. One goal of statistical analysis is to discover such simple regression
functions which summarize the main pattern of the data reasonably well. (We note
that the expectation used above is in the superpopulation-sense (Chap. 1) and we
shall use the same notations E, V , etc., when there is no ambiguity.)

A statistical model with as many parameters as the data values are called a full or
saturatedmodel. Though thismodel is rarely of intrinsic interest in itself, we compare
more refined models with it in goodness-of-fit tests. A model is intermediate if it

http://dx.doi.org/10.1007/978-981-10-0871-9_1
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neither specifies all the fundamental parameters nor leaves them entirely unrestricted,
i.e., it is neither a full model nor a simple model.

We say that one model is a sub-model of another if it is a special case of the other
model. A sequence of models M1, M2, M3, . . . where each model is a sub-model of
the previous one is said to be nested. Nested models have also been defined in the
Appendix (Sect.A.6).

3.2.1 Fitting Statistical Models

The general problem is that we have a set of data Y1, . . . ,Yk and a model which
specifies the distributions of these random variables in terms of a set of p unknown
parameters θ = (θ1, . . . , θp). The aim is to estimate θ.

The mean value of Yi depends on θ and once θ is estimated we can estimate this
mean value. We use the notation

ei (θ) = E(Yi ; θ), êi = ei (θ̂),

where the êi ’s are called fitted values. If one imagines the data as being made up
of a systematic component or trend with random error added, then the best-fitted
values estimate the trend as closely as possible. They are a smoothed version of the
data. Throughout this section, we shall only consider the maximum likelihood (ML)
method of estimation of θ.

3.2.2 Large Sample Estimation Theory

Let X = (X1, . . . , Xn) be a set of independent random variables with distribution
depending on a vector of parameters θ = (θ1, . . . , θp) ∈ �. We emphasize that in
this case the sample is drawn by simple random sampling with replacement so that
the above assumption is satisfied. The variables X1, . . . , Xn are therefore IID and all
the results in this chapter therefore hold under these assumptions only. These results
do not necessarily hold if the sample is drawn by some complex design, say stratified
multistage cluster sampling design.

It is convenient to work with the logarithm of the likelihood function rather than
the likelihood function itself. The log-likelihood function

L(θ) = log L(θ) =
n∑

i=1

log pi (Xi ; θ), θ ∈ � (3.2.1)

where pi is the probability function of the i th random variable Xi . The derivative of
L with respect to θ j is denoted by
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Uj =
n∑

i=1

∂ log pi (Xi ; θ)

∂θ j
, j = 1, . . . , p (3.2.2)

and its mean is zero almost in all cases. The p-dimensional derivative vector
U = (U1, . . . ,Up)

′ is called the score function. The likelihood is maximized by
simultaneously equating all elements of the score function to their zero expectation.
This system of equations is known as the likelihood equations.

We now introduce the concept of information about a parameter θ. The observed
information matrix is a symmetric matrix J (θ) with the ( j, k)th element

Jjk = −∂Uj

∂θk
= − ∂2L

∂θ j∂θk
(X; θ). (3.2.3)

Since θ̂ is amaximumof the log-likelihood function, J (θ̂) is also nonnegative definite
when evaluated at θ̂. The expected information matrix is given by I whose ( j, k)th
element is

I jk = −E

(
∂Uj

∂θk

)

. (3.2.4)

It can be shown that

Cov (Uj (θ),Uk(θ)) = −E

(
∂Uj (θ)

∂θk

)

so that I may be viewed as the variance-covariance matrix of U .

3.2.3 Asymptotic Properties of ML Estimates

It follows that U is asymptotically distributed as

Np(0, I (θ)). (3.2.5)

Now, by Taylor expansion

Uj (θ̂) = Uj (θ) +
p∑

k=1

∂Uj (θ)

∂θk
(θ̂k − θk) + · · · . (3.2.6)

Since Uj (θ̂) = 0 ∀ j where θ̂ is the mle of θ, we have

U (θ) ≈ J (θ)(θ̂ − θ) ≈ I (θ)(θ̂ − θ).
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Isolating θ̂ and noting thatU (θ) is asymptotically normal with variance I (θ), we get
two variations of a central limit theorem for θ̂. These are

θ̂ →d Np(θ, I
−1(θ)),

and
θ̂ →d Np(θ, J

−1(θ)), (3.2.7)

where the inverse of either the expected or observed information may be used as
the asymptotic variance of θ̂. One may also estimate θ by θ̂ in these information
matrices.

3.2.4 Testing of Parameters

Suppose we want to test an hypothesis H0 which specifies exactly r ≤ p restrictions
on the parameters θ1, . . . , θp. Consider a function g(θ) = ω from Rp to Rr such
the for the hypothesized value of θ, g(θ) = ω0. Therefore, such an hypothesis can
be written as H0 : g(θ) = ω = ω0. The components of ω, namely, ω1, . . . ,ωr are
now the parameters of interest and the null hypothesis specifies the values of these
parameters. We are interested in testing the H0 against the bothsided alternative
hypothesis H1 : ω �= ω0. Let ω̂ = g(θ̂) be the ml estimate of ω with j th component
ω̂ j . We can certainly test each ω j separately using ω̂ j , but we want to test them
simultaneously.

Goodness-of-Fit Statistics: Goodness-of-fit statistics assess the distance between
the observed distribution and the distribution that a model proposes. Under the null
hypothesis, this distance is only randomly higher than zero. Using a significance
test, researchers estimate the probability that the observed frequencies or frequencies
with even larger distances from those estimated based on the model under the null
hypothesis occurs. This probability or P-value is termed the size of the test. The
P-value can indeed be used to make a formal test of size α by simply rejecting H0

if and only if it is smaller than α.
Many tests have been proposed for the evaluation of model parameters. Some of

these tests are exact, others are asymptotic. In the context of categorical data, most
software packages offer exact tests only for small contingency tables, such as 2 × 2
tables and asymptotic tests for log-linear modeling, logistic regression modeling.We
shall therefore consider here some asymptotic tests.

Wald’d Maximum Likelihood Statistic

We shall write the parameter vector θ as θ = (ω,ψ) where ψ represents all the other
p − r parameters besides the interest parameter ω. Let ψ̂0 denote the restricted ml
estimator of ψ assuming ω = ω0 and let θ̂0 = (ω0, ψ̂0).

As we have seen, the ml estimator θ̂ has an approximately multivariate normal
distribution Np(0, I−1(θ)). Let V (ω,ψ) denote the r × r sub-matrix in the upper
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left-hand corner. Then the ml estimator of ω, �̂ is approximately r -variate normal
with mean ω and variance-covariance matrix V (ω,ψ). Under H0 we may estimate
this variance by V̂0 = V (θ̂0). The quadratic form

W = (�̂ − ω0)
′V̂−1

0 (�̂ − ω0) (3.2.8)

is called theWald statistic and was proposed byWald (1941). Under the null hypoth-
esis, W follows approximately a χ2

(r) distribution. In the simple case, where ω is a
scalar, testing H0 is a test of a single parameter, and W is the square of the usual
z-statistic where z = (�̂ − ω0)/s.e(�̂).

Rao’s Score Statistic

The score unctionU (θ) is a vector of length p. We have seen that under mild restric-
tions,U (θ) has mean zero and variance equal to the expected information matrix and
that further the distribution is approximately multivariate normal. The score statistic,
proposed by Rao (1947) is the standardized quadratic form

S = U (θ̂0)
′ Î−1
0 U (θ̂0)

where Î0 = I (θ̂0) is the information matrix with θ̂0 substituted for θ.
The score statistic judges the hypothesis H0 by assessing how far U (θ̂0) is away

from its full mean zero. The null distribution of S is approximately χ2
(r) and it tends

to be larger when H0 is false. A computational advantage of S is that only the model
H0 needs to be fitted.

The Likelihood Ratio Statistic

The likelihood function L(θ) assesses the likelihood of a particular value of θ in the
light of the given data. Under the hypothesis H0, the likelihood function takes its
maximum value L(θ̂0). Under the more general hypothesis H1, the maximum value
of the likelihood is L(θ̂) where θ̂ is the mle of θ under H1. Clearly, L(θ̂) > L(θ̂0),
because H1 imposes less severe restrictions on θ than H0. The ratio L(θ̂)/L(θ̂0)mea-
sures how much more probable are the data under H1 than under H0. A sufficiently
large ratio casts doubt on the tenability of H0 itself. The statistic

LR = −2(L(θ̂0) − L(θ̂)) (3.2.9)

is often called the generalized likelihood ratio statistic or simply likelihood ratio
statistic as it generalizes the simple likelihood ratio for testing two simple hypotheses
as proposed by Neyman and Pearson. The null distribution of LR in large samples is
again χ2

(r) and it tends to be larger when H0 is false. A computational disadvantage of
the LR statistic is that both the null and alternative models must be fitted to compute
the LR statistic.

Pearson’s Goodness-of-Fit Statistic holds only for categorical data and we shall
introduce it after a glimpse of a multinomial or Pearson formulated categorical data
model.
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3.2.5 Transformation of the Central Limit Theorem

It can be shown that if θ̂ has an approximate normal distribution, then any reasonable
function �̂ = g(θ̂) of θ̂ has also an approximate normal distribution (vide, e.g., Lloyd
1999).

Suppose that g(θ) is differentiable in θ and let G(θ) be the Jacobian, G = ∂g(θ)
∂θ

.

Then,
Var(�̂) = GVG′

where V is the covariance matrix of θ̂. It follows that

�̂ →d Nr (ω, GV̂G′). (3.2.10)

3.3 Distribution Theory for Count Data

We shall now outline the basic distribution theory ofmultinomial and Poissonmodels
for a single categorical data set, and subsequently give the specific form of the
statistical data set associated with one of these models.

3.3.1 Multinomial Models

If X is multinomially distributed and if the probability parameters in π = (π1, . . . ,

πk)
′ are fully known, we can make precise statements about the future behavior of

X , which are subject only to the unavoidable natural random effects.
In practice, the probability parameters in π are at least partially unknown and to

infer their values we need data. A random sample is a single sample of n independent
observations on X . These n observations form simply a list of n responses on the
k categories. Denoting by Yi the number of responses in category i , the statistics
Y1, . . . ,Yk, (

∑
k Yk = n) are jointly sufficient forπ. Hence, by sufficiency principle,

the data may be summarized by these counts. The joint distribution of the sufficient
statistics Y1, . . . ,Yk is given by the probability mass function

PM(y1, . . . , yn; n, k,π) = n!
y1!y2! . . . yk !π

y1
1 π

y2
2 . . . π

yk
k ,

k∑

i=1

yi = n (3.3.1)

which is called the multinomial distribution with parameters n, k,π1 . . . ,πk and is
here denoted by M(n, k,π). Usually, k and n are known and it is the probability πi

that are unknown. These fundamental parameterswill usually be related or restricted
in some way by the statistical model assumed. Thus πi ’s may depend on a smaller
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number p < k − 1 of model parameters, or basic parameters denoted by θ =
(θ1, . . . , θp)

′. The joint distribution of the data under the model is then Eq. (3.3.1)
with the expressions πi (θ) substituted for πi . Hence the log-likelihood function is

LM(θ; y) = log PM(y1, . . . , yn) = c +
k∑

i=1

yi logπi (θ) (3.3.2)

where c is a constant, independent of θ. We denote derivatives of πi with respect to
components of θ by superscripts. For instance, π12

3 is the mixed derivative of π3(θ)
with respect to θ1 and θ2. Hence the score function whose j th component is

UMj (θ) = ∂LM

∂θ j
=

k∑

i=1

yi
π

j
i (θ)

πi (θ)
. (3.3.3)

It is readily seen that E(UMj ) = 0. In most regular cases equating the score function
to zero, one gets a unique solution which maximizes the likelihood. The MLE θ̂

determines the fitted value êi = nπi (θ̂). The maximized log-likelihood is therefore

LM(θ̂) = c +
k∑

i=1

yi log(êi ) − n log(n). (3.3.4)

Again, the (l,m)th component of the observed information matrix is

Jlm = − ∂LM

∂θl∂θm
=

k∑

i=1

yi
πl
iπ

m
i − πlm

i πl

(πi )2
. (3.3.5)

Using the fact that the πlm
i sum to zero and E(Yi ) = nπi , we find that

Ilm = E

(

− ∂LM

∂θl∂θm

)

= n
k∑

i=1

πl
iπ

m
l

πi
, (3.3.6)

This can also be obtained by finding the covariance of Ul and Um using Var (Yi ) =
nπl(1 − πl) and Cov(Yl ,Ym) = −nπlπm .

In the full model, the fundamental parameters are also the basic parameters and
we take them to be

θ = (π1, . . . ,πk−1)

without loss of generality, though their values are unknown. Thus

πk(θ) = 1 − π1 − · · · πk−1
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and πi (θ) = πi for i = 1, . . . , k − 1 and so

π
j
k = −1, π

j
i = δi j , i < k, πlm

i = 0

where the Kronecker delta δi j equals 1 when i = j and zero otherwise. Substituting
this into (3.3.4) gives

UMj = ∂LM(π)

∂π j
= y j

π j
− yk

πk
, j = 1, . . . , k − 1 (3.3.7)

and so the estimates of the πi are proportional to the yi . Thus, π̂i = yi/n, the sample
proportion. The fitted values are êi = nπ̂i = yi , i.e., the data value themselves.
Therefore, from Eq. (3.3.4) the maximized log-likelihood is

L(θ̂) = c +
k∑

i=1

yi log yi − n log n. (3.3.8)

Substitution into Eqs. (3.3.5) and (3.3.6) for the observed and expected information
functions gives

Jlm = yk
π2
k

+ δlm
yl
π2
l

, Ilm = n

(
1

πk
+ δlm

πl

)

. (3.3.9)

The inverse of the expected information matrix has entries πi (1 − πi )/n on the
diagonal and entries −πlπm/n off the diagonal. According to asymptotic theory,
these are the approximate variances and covariances of the estimates π̂i . In fact, they
are actually the exact variance covariances of the estimated parameters which follow
easily from the known covariances of the Y i .

When the fundamental parameters π = (π1, . . . ,πk) have known values

π0 = (π10,π20, . . . ,πk0)

everything about the behavior of the categorical variable X and the counts Yi is
known and summarized in the known multinomial distribution Eq. (3.3.1). Here all
the parameters are specified and therefore no parameter to estimate; such a model
is called a simple model. Since there is no parameter to estimate, there is no score
function or information matrices. The estimates of the πi are the known values πi0.
The fitted values will be êi = nπi0, which will generally disagree with the data
values. The log-likelihood function at these “estimates” equals

l(π0) = c −
k∑

i=1

yi logπi0.



76 3 Some Classical Models in Categorical Data Analysis

3.3.2 Poisson Models

The most common distribution for modeling counts in time (space) is the Poisson
distribution. Since the values of a Poisson variables are nonnegative integers, the
distribution is generally used to describe experiments in which the observed variable
is a count. The Poisson distribution may also be used to to describe number of events
occurring randomly and independently in time (space), e.g., number of α-particles
emitted by a radioactive substance reaching a given portion of space during a given
period of time.

Suppose events of k different types occur singly and independently during a
sampling interval [0, T ]. The probability of an event of type i occurring during time
interval [t, t + δ] is supposed to be βiδ for small δ. Let Yi denote the total number
of events of type i that occur. Then it can be shown that Y1, . . . ,Yk are sufficient
for the parameters β1, . . . ,βk and so by sufficiency principle we may ignore the
precise time of events and simply analyze the total counts. The distribution of each
Yi will be Poisson with mean μi = βi T and since the Yi ’s are independent their joint
distribution is

PP(y1, . . . , yk; k,μ) = e−μ μ
y1
1 . . . μ

yk
k

y1! . . . yk ! . (3.3.10)

Here, unlike Multinomial distribution, the k fundamental parameters μ1, . . . ,μk

are functionally independent. These parameters will usually be restricted or related
somehow by p ≤ k basic parameters, θ = (θ1, . . . , θp). The statistical model for
the data Y1, . . . ,Yk comprises the independent Poisson distribution Eq. (3.3.10) with
μi (θ) substituted for μi , i = 1, . . . , p.

From (3.3.10) the log-likelihood function

LP(θ; y) = c −
k∑

i=1

μi (θ) +
k∑

i=1

yi logμi (θ) (3.3.11)

where θ = (θ1, . . . , θp) are now the main parameters of interest. As before, we
denote the derivative of μ(θ) wrt components of θ by superscripts. Thus, μ14

2 is the
mixed derivative of μ2 wrt θ1 and θ4. Unlike the multinomial model, the μi are not
constrained in their total and so the sums of these derivatives need not equal zero.
Taking the derivative of Eq. (3.3.11) wrt θ j we get the j th component of the score
function,

UPj (θ) = ∂LP

∂θ j
=

k∑

i=1

{
yi

μi (θ)
− 1

}

μ
j
i (θ).

It is readily seen that E(UPj ) = 0. Equating the score function to zero, one gets
a unique solution which maximizes the likelihood. The ML estimate θ̂ determines
fitted values êi = μi (θ̂). The maximized log-likelihood is then
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LP(θ̂) = c +
k∑

i=1

yi log(êi ) −
k∑

i=1

êi . (3.3.12)

Expressions for the information follow upon further differentiatingUj . The (l,m)th
component of the observed information matrix is

Jlm =
k∑

i=1

yi
μl
iμ

m
i

μ2
i

+ μlm
i

(
yi
μi

− 1

)

(3.3.13)

and on taking expectation the expected information matrix has (l,m)th entry

Ilm =
k∑

i=1

μl
iμ

m
i

μi
= T

k∑

i=1

βl
iβ

m
i

βi
. (3.3.14)

The information thus increases proportionately with the sampling time T which, for
Poisson sampling, is analogous to the sample size.

In the full Poisson model, the fundamental parameters μ1, . . . ,μk are also the
basic parameters, thus μi = θi , i = 1, . . . , k, though their values are unknown.
Hence, μ j

i = δi j and the score function for θ j is

UPj (θ) = ∂LP

∂θ j
= y j

μ j
− 1 (3.3.15)

with solution μ j = y j and so the fitted values are the observed data values. The
maximized log-likelihood is

LP(θ̂) = c +
k∑

i=1

yi log yi −
k∑

i=1

yi . (3.3.16)

If, however, the μi are assumed to have known values μi0 then everything about the
distribution of the data is known and the model is simple. The fitted values are the
assumed model parameter values μi0 and so the log-likelihood is

LP(μ0) = c +
k∑

i=1

yi logμi0 −
k∑

i=1

μi0.

An intermediate model will neither assume values for all the fundamental parameters
(as in a simple model) nor leave them entirely unrestricted (as in a full model), but
will impose some r restrictions among the μi ’s where 0 < r < k. The maximized
likelihood will then be less than the maximized likelihood for the full model and
the difference between the two forms the basis of a goodness-of-fit test discussed in
Sect. 3.4.
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3.3.3 The Multinomial-Poisson Connection

Suppose we observe a sample of k independent Poisson variables Yi each with mean
μi . The total number of observed counts N = Y1 + · · · + Yk will therefore be
considered as a random variable whose mean value is μ1 + · · · + μk and whose
observed value is n. However, if N is fixed at n, the Yi ’s would no longer be Poisson,
since there would be a restriction onmaximum value of each Yi (< n) and they would
not be independent, since a larger value of Yi would imply a smaller value for the
other Y j . Now,

P(Y1 = y1, . . . ,Yk = yk |N = n) = P(Yi = yi , . . . ,Yk = yk and
∑

i yi = n)

P(
∑

i Yi = n)

= �i e−μi μ
yi
i /yi !

e− ∑
i μi (

∑
i μi )n/n!

=
(

n!
�i yi !

)
�iπ

yi
i ,

where πi = μi/(
∑

j μ j ). This probability function is, of course, the multinomial
probability function (3.3.1). Thus Poisson sampling conditional on the total sample
size is therefore equivalent to the multinomial sampling.

3.4 Goodness-of-Fit

Amodel once fitted, forms the basis for statements about parameters of interest, their
structural relations and for predictions of future behavior. A goodness-of-fit test of
model M is a test of

H0 : M is true against H1 : full model.

Goodness-of-fit tests are based on comparing the observed number of observations
falling in each cell to the number that would have been expected if the hypothesized
model was true. If the observed and the expected numbers differ greatly, it is evi-
denced that the hypothesized model is not correct, that is, it does not fit well. We
now consider different tests for goodness-of-fit.

3.4.1 Likelihood Ratio Statistic

The likelihood ratio (LR) test statistic is

LR = 2(L1 − L0)
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whereL1 is the maximized log-likelihood under the more general hypothesis H1 and
L0 is the maximized log-likelihood under the restrictive hypothesis H0. Clearly, L0

is necessarily less than L1. For multinomial model we have from (3.3.2) and (3.3.8)
the LR statistic

LRM = 2
k∑

i=1

yi log

(
yi
êi

)

, (3.4.1)

where the êi are the fitted value nπi (θ̂0) under the null hypothesis. This statistic
may be used to test the goodness-of-fit of any multinomial model. If the number
of parameters in the model is p (and the number of parameters in the full model is
k − 1) then the degrees of freedom of the approximating chi-square distribution will
be r = k − 1 − p.

For Poisson models, Eqs. (3.3.12) and (3.3.16) give the LR statistic

LRP = 2
k∑

i=1

yi log

(
yi
êi

)

− 2
k∑

i=1

(yi − êi ) (3.4.2)

where êi are the fitted values μi (θ̂0) under the null hypothesis. This statistic may be
used to test the hypothesis of goodness-of-fit of any Poisson model. If the number
of parameters in the model is p (and the number of parameters in the full model is
k), then the degrees of freedom of the approximating chi-square distribution will be
k − p.

The LR goodness-of-fit statistic is a measure of how close the vector of expected
values is to the vector of observed values, and it will equal zero if, and only if, the
two vectors agree exactly. Naturally, there are many other ways of measuring the
agreement of two vectors giving alternative statistics (vide Sect.A.4). However, only
the LR statistic measures the relative likelihood of the observed data under the two
hypotheses.

3.4.2 Pearson’s Goodness-of-Fit Statistic

For either a multinomial model or Poisson formulated categorical data model, the
Pearsonian goodness-of-fit statistic is

X2
P =

k∑

i=1

(yi − êi )2

êi
(3.4.3)

where yi is the frequency in the class i and êi = ei (θ̂) = E(Yi ; θ̂) under the given
model. The distribution of (3.4.3) is approximately x2(r) where r is the difference in
the number of free parameters under the model to be tested and under the full model.
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The approximation applies as n increases for fixed k, or more accurately, as the
smallest of the fitted values êi grows unbounded.

The large sample properties of both G2 and X2
P in the classical situation, that is,

when the independent samples are drawn from an identical population, have been
stated explicitly in the Appendix.

Both LR statistic G2 and Person’s statistic X2
P are special cases of a general

class of statistics called the power divergence statistics, defined by Cressie and Read
(1984) and Read and Cressie (1988). The statistic takes the form

I (λ) = 2

λ(λ + 1)

k∑

i=1

yi

[(
yi
êi

)λ

− 1

]

, −∞ < λ < ∞, (3.4.4)

which measures the distance of the vector of fitted values êi from the vector of
observed yi values. While (3.4.4) is undefined for λ = 0 or −1, these forms can be
defined as the limits of (3.4.4) as λ → 0 and λ → −1, respectively. When λ = 1,
(3.4.4) is Pearson’s X2

P statistic. When λ → 0, I (λ) converges to the LR G2. As
λ → −1, I converges to Kullback’s minimum discrimination information statistic
GM,

GM = 2
∑

i

êi log

(
êi
yi

)

;

when λ = 1/2, it is the Freeman-Turkey (1950) statistic (FT )2,

(FT )2 = 4
∑

i

(√
yi −

√
êi

)2

;

when λ = −2, it is the Neyman or modified Pearson statistic X2
N , as proposed by

Neyman (1949),

X2
N =

∑

i

(yi − êi )2

yi
.

The statistic with λ = 2/3 has some commendable properties when êi values are
all greater than one and n ≥ 10. All members of the power divergence family are
asymptoticallyχ2

(k−1) under the null hypothesis and under some regularity conditions
when n → ∞.

Besides, there exist a number of other goodness-of-fit tests, like the Kolmogorov–
Smirnoff test, the Cramer–von Mises test, run tests. We shall however mostly con-
centrate on X2

P and G2 tests, as these are of frequent use.
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3.5 Binomial Data

Wewill now have a relook at themodels for binomial data as it explores the potential-
ity of modeling the probability of an event, so-called π or p as a regression function
on some auxiliary variable x . This concept will be taken up in Sect. 3.7. For the time
being, we consider the form of binomial data.

3.5.1 Binomial Data and the Log-Likelihood Ratio

We assume that the data Y1, . . . ,Yk are independent binomial variables, Yi ∼
B(ni ,πi )with respective parameters (ni ,πi ), The likelihood for k independent bino-
mial random variables Y1, . . . , Yk is then the product of the individual binomial
probability functions, i.e.,

PB(y1, . . . , yk;π1, . . . ,πk) = �k
i=1

(
ni
yi

)

π
yi
i (1 − πi )

ni−yi . (3.5.1)

The MLE of πi from this likelihood is the observed proportion Yi/ni .
One is often interested in models that restrict the πi ’s in some way. For example,

a common null hypothesis of interest is that the πi have equal value π. The above
probability distribution then reduces to

πy(1 − π)n−t�k
i=1

(
ni
yi

)

(3.5.2)

where n = ∑
i ni , t = ∑

i yi . The MLE of π is π̂ = T/n and T is the sample total.
The statistic T is sufficient for π with B(n,π) distribution. The fitted values for this
model are êi = ni π̂ = ni (t/n). For a hypothetical model H0 with fitted values êi ,
and for the saturated or full model, where π̂i = yi/ni , the LR statistic

LR = 2
k∑

i=1

{

yi log

(
yi
êi

)

+ (ni − yi ) log

(
ni − yi
ni − êi

)}

, (3.5.3)

is used for testing fit of H0 to the data. When yi = 0 or ni , we define 0 log 0 as 0.
It is often advantageous to transform the probabilities πi to

logit πi = log

(
πi

1 − πi

)

= νi (say), (3.5.4)

which is also called as the logistic, logit, or log-odds transformation. Note that while
πi necessarily takes values in [0, 1], its transformation νi can take any value between
−∞ to +∞. Also,

logit (1 − π) = − logit (π) = −νi .
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Again, we can write
πi = exp{νi }/(1 + exp{νi }). (3.5.5)

In terms of the parameters ν1, ν2, . . . , νk , the log-likelihood function (3.5.1) becomes

LB(ν1, . . . , νk) =
k∑

i=
{yi logπi + (ni − yi ) log(1 − πi )}

=
k∑

i=1
{yiνi − ni log(1 + eνi )}

(3.5.6)

In Sect. 3.7, we will consider different forms of ν functions.
In considering models for categorical data we noted that the distribution of count

data Y1, . . . ,Yk depend on k or k−1 cell- probabilities, which themselves depend on
p parameters θ = (θ1, . . . , θp), p < k (or≤ k). Therefore in the likelihood function,
we replaced πi by πi (θ). We considered estimation of θ and hence of πi as πi (θ̂).
We have not considered any special form of θ so far. Of course, the form of θ will
depend on the choice of model. In Sects. 3.6 and 3.7, we shall consider two special
forms of θ and hence two special types of models.

3.6 Log-Linear Models

3.6.1 Log-Linear Models for Two-Way Tables

In the log-linear models, natural logarithm of cell-probabilities is expressed in a
linear model analogous to the analysis of variance (ANOVA) models.

For a 2 × 2 contingency table with πi j denoting the probability of an element
belonging to the (i, j)th cell, we write the model as

ln πi j = u + u1(i) + u2( j) + u12(i j), i, j = 1, 2, (3.6.1)

where u is the general mean effect, u + u1(i) is the mean of the logarithms of prob-
abilities at level i of the first variable, u + u2( j) is the mean of the logarithm of
probabilities at level j of the second variable. Thus,

u = 1

4

∑

i

∑

j

ln πi j ,

u + u1(i) = 1

2
(ln πi1 + ln πi2), i = 1, 2, (3.6.2)

u + u2( j) = 1

2
(ln π1 j + ln π2 j ), j = 1, 2.
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Since u1(i) and u2( j) represent deviations from the grand mean u,

u1(1) + u1(2) = 0,

u2(1) + u2(2) = 0.

Similarly, u12(i j) represents deviation from u + u1(i) + u2( j), so that

u12(11) + u12(12) = 0, u12(21) + u12(22) = 0,

u12(11) + u12(21) = 0, u12(11) + u12(22) = 0.

The general log-linear model for a 2 × 2 × 2 table can be written as

ln πi jk = u + u1(i) + u2( j) + u3(k) + u12(i j) + u13(ik) + u23( jk) + u123(i jk),

i, j, k = 1, 2, (3.6.3)

where u1(i) means the effect of factor 1 at level i, u12(i j), the interaction between level
i of factor 1 and level j of factor 2, u123(i jk), the three-factor interaction among level
i of factor 1, level j of factor 2, level k of factor 3, all the effects being expressed in
terms of log-probabilities. We need

2∑

i=1

u1(i) = 0,
2∑

j=1

u2( j) = 0,
2∑

k=1

u3(k) = 0,

∑

j (�=i)=1,2

u12(i j) = 0,
∑

k(�=i)=1,2

u13(ik) = 0, etc..

Suppose now there is a multinomial sample of size n over the M = I × J cells of
an I × J contingency table; the first factor has I levels represented by rows and the
second factor has J levels represented by columns. The cell-probabilities πi j for that
multinomial distribution form the joint distribution of the two categorical variables.
If we define

μi j = logπi j ,

then we can write
μi j = u + u1(i) + u2( j) + u12(i j)

by an analog with the ANOVA model. In this formulation,

(i) The first term, u is the grand mean of the logs of the probabilities,

u = μ00

I J
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where the zero sign (0) denotes the total when summing across levels over the
corresponding factor.

(ii) u + u1(i) is the mean of the logs of the probabilities of the first factor when it
is at level i , ∑

j log(πi j )

J
= μi0

J

so that u1(i) the deviation from the grand mean u:

u1(i) = μi0

J
− μ00

I J
.

Thus, it satisfies ∑

i

μ1(i) = 0.

There are (I − 1) such terms. These terms are often of no intrinsic interest, and
represent only the main effects of that factor. Similarly, the main effects of the
other factor are represented by u2( j), and there are (J − 1) of these terms.

(iii) The remaining component,

u12(i j) = μi j − μi0

J
− μ0 j

I
+ μ00

I J
,

can be regarded asmeasures of departures from the independence of two factors.
Since ∑

i

u12(i j) =
∑

j

u12(i j) = 0,

there are (I − 1)(J − 1) of these interaction terms. The number is called the
degrees of freedom in testing for the null hypothesis of independence.

In the case of a general two-way table, numerical values of these u12(i j) terms indicate
at which level i of factor 1 and level j of factor 2 the interaction is strong; the
negative or positive sign of u12(i j) is not important, it reflects only the arbitrary
coding. The results may seem trivial because one can reach the same conclusion by
simply inspecting the cell-probabilities. However, when we generalize the models
for use with higher dimensional tables, this result may be extremely useful.

3.6.2 Log-Linear Models for Three-Way Tables

In a typical study, even if we are interested only in the relationship between a response
and an explanatory variable, we still have to control for at least one confounder
variable that can influence the relationship under investigation. For example, while
studying the relationship between incidence of cancer and smoking habit, we may
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also have to consider the nature of job of the subjects, as it may affect both the
variables. Therefore, we generally end up studying at least three factors simultane-
ously. Of course, the relationship among the three factors is far more complicated
than in the case of two factors. In the log-linear modeling approach, we model the
cell-probabilities or, equivalently, cell counts or frequencies in a contingency table
in terms of association among the variables. Suppose there is a multinomial sample
of size n over the M = I J K contingency table (I, J,and K are the number of cate-
gories for the factors X1, X2, X3, respectively.). Then the log-linear model (3.6.1) for
the two-way table can be generalized and expressed for three-way tables as follows.

μi jk = u + u1(i) + u2( j) + u3(k) + u12(i j) + u13(ik) + u23( jk) + u123(i jk), (3.6.4)

subject to similar constraints (i.e., summing across indices to zero), where μi jk =
ln πi jk . The full or saturated model decomposes the observed frequency ni jk , because
the expected cell frequency can be expressed as mi jk = nπi jk . The model (3.6.4)
consists of:

(i) A constant u.
(ii) Terms representing main effects u1(i), u2( j), u3(k). There are (I − 1), (J − 1),

and (K −1) of these main effects terms for the three factors, respectively; these
terms are only influenced by the marginal distributions of these three factors
and, are often of no intrinsic interests.

(iii) Terms representing two-factor interactions, u12(i j), u13(ik), and u23( jk); such
terms are (I − 1)(J − 1), (I − 1)(K − 1), and (J − 1)(K − 1) in number,
respectively.

(iv) Terms used as measures of three-factor interactions, u123(i jk). There are (I −
1)(J − 1)(K − 1) of these three-factor interaction terms.

If the terms in the last group are not zero, i.e., three-factor interaction is present, the
presence or absence of a factor would modify the relationship between the other two
factors.

The models of independence

We may want to see if:

(i) The three factors are mutually independent: That is, whether

P(X1 = i, X2 = j, X3 = k) = P(X1 = i)P(X2 = j)P(X3 = k)

or if
(ii) One factor, say X3, is jointly independent of the other two factors. That is,

whether

P(X1 = i, X2 = j, X3 = k) = P(X1 = i, X2 = j)P(X3 = k)

or if
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(iii) Two factors, say X1 and X2, are conditionally independent given the third factor.
That is, whether

P(X1 = i, X2 = j, X3 = k) = P(X1 = i |X3 = k)P(X2 = j |X3 = k).

The last item, the concept of conditional independence, is very important and is often
the major aim of an epidemiological study.

Starting with the saturated model (3.6.4), we can translate a null hypothesis of
independence into a log-linear model by setting certain of the above u-terms equal
to zero. The various concepts of independence for three-way tables can be grouped
as follows:

Types of Independence Symbol Log-linear model
Mutual Independence (X1, X2, X3) u + u1 + u2 + u3
Joint Independence (X1, X2X3) u + u1 + u2 + u3 + u23
from two factors (X2, X1X3) u + u1 + u2 + u3 + u13

(X3, X1X2) u + u1 + u2 + u3 + u12
Conditional (X1X3, X2X3) u + u1 + u2 + u3 + u13 + u23
Independence (X1X2, X2X3) u + u1 + u2 + u3 + u12 + u23

(X1X2, X1X3) u + u1 + u2 + u3 + u12 + u13
No Three-Factor (X1X2, X1X3, X2X3) u + u1 + u2 + u3 + u12 + u13 + u23

(subscripted factor-levels are dropped for simplicity, e.g., u1 is used for u1(i).) We
now consider relationship between terms of a log-linear model and hierarchy of
models.

Relationships between terms and hierarchy of models

A log-linear model term uA is a lower order term relative of term uB if A is a subset
of B. For example, u2 is a lower order term relative of u23 and u12 is a lower order
term relative of u123. If uA is a lower order relative of uB , then uB is a higher order
relative of uA. For example, u2 is a lower order relative of u23, and u123 is a higher
order relative of u23. A log-linear model is a hierarchical model under the following
conditions:

(i) If a u-term is zero, then all of its higher order relatives are zero; and
(ii) if a u-term is not zero, then all of its lower order relatives are not zero.

For example, all eight models of independence for three-way tables given in the
above table are hierarchical. However, the model

H : u + u1 + u2 + u3 + u123

is a non-hierarchical model.
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Testing a specific model

Given the data in a three-way table, we have two different types of statistical infer-
ences:

(i) To test a specific model, for example, wemaywant to knowwhether two specific
factors are conditionally independent given the third factor.

(ii) To search for a model that can best explain the relationship(s) found in the
observed data.

We shall consider the first issue here, as the log-linear model under investigation is
generally the result of an enquiry concerning a relationship between factors, which
leads to testing a null hypothesis.

Expected Frequencies
Expected frequencies are cell counts obtained under the null hypothesis. Given the
null hypothesis, these expected frequencies can be easily determined for the hierar-
chical model. For example, if we consider the model of conditional independence
between X1 and X2 given X3, i.e., independence between (X1X3, X2X3), or

P(X1 = i, X2 = j |X3 = k) = P(X1 = i |X3 = k)P(X2 = j |X3 = k),

then it can be shown that expected frequency

ˆmi jk = xi0k x0 jk
x00k

where the x’s are observed cell counts and the zero sign indicates a summation across
the index. However, in practice these tedious jobs are generally left to computer
packaged programs, such as SAS.

Test Statistic
When measuring goodness-of-fit in two-way tables, we often rely on the Pearson’s
chi-square statistic:

∑

i, j,k

(xi jk − ˆmi jk)
2

ˆmi jk
. (3.6.5)

However, for a technical reason, we compare the frequencies and the expected fre-
quencies in higher dimensional tables using the likelihood ratio chi-square statistic:

G2 = 2
∑

i, j,k

xi jk log
xi jk
ˆmi jk

. (3.6.6)

The degrees of freedom for the above likelihood ratio chi-square statistic is equal
to the number of u-term which are set equal to zero in the model being tested. For
example, if we want to test the model of conditional independence between X1 and
X2,
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H0 : u + u1 + u2 + u3 + u13 + u23,

for which we set u12 and u123 equal to zero, the degrees of freedom is

d f = (I − 1)(J − 1) + (I − 1)(J − 1)(K − 1).

Similarly, if we want to test for the model of no three-factor interaction,

H0 : u + u1 + u2 + u3 + u12 + u13 + u23,

the degrees of freedom is

d. f. = (I − 1)(J − 1)(K − 1).

Searching for the best model

We first define when a log-linear model is said to be nested.A log-linear model H2 is
nested in model H1 if every nonzero term u in H2 is also contained in H1(H2 < H1).
For example, if we denote

H1 = u + u1 + u2 + u3 + u12 + u13 + u23 + u123
H2 = u + u1 + u2 + u3 + u12 + u13 + u23
H3 = u + u1 + u2 + u3 + u12 + u23,

then

(i) H3 < H2, and
(ii) H2 < H1.

In this nested hierarchy of models, it can be shown that if

H3 < H2 < H1,

then the likelihood ratio chi-square statistics satisfy the reversed inequality

χ2(H1) < χ2(H2) < χ2(H3).

For Pearson goodness-of-fit statistic X2
P , this property does not necessarily hold for

every set of nested models. Furthermore, it can be shown that if a model H2 is nested
in a model H1, then

χ2 = χ2(H2) − χ2(H1)
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is distributed as chi-square with

d f = d f (H2) − d f (H1).

This property also does not hold good for Person’s chi-squares.

3.7 Logistic Regression Analysis

The purpose of most research projects is to assess relationships among a set of vari-
ables and regression techniqueswhich are often suitable instruments for the statistical
analysis of such relationships. Research designs may be classified as experimental
or observational. Regression analysis is applicable to both types. In most cases, one
variable is usually taken to be the response or dependent variable, that is, a variable
to be predicted from or explained by other variables. The other variables are called
predictors, or explanatory or independent variables. Choosing an appropriate model
and analytical technique depends on the type of the dependent variable under investi-
gation. In a variety of applications, the dependent variable of interest may have only
two possible outcomes, and therefore can be represented by an indicator variable
taking on values 0 and 1. Consider a study designed to investigate risk factors for
cancer. Attributes of people are recorded, including age, gender, smoking pattern,
and so on. The target variable is whether or not the person has lung cancer (a 0/1)
variable, with 0 for no lung cancer and 1 for the presence of lung cancer. The above
example and others show a wide range of applications in which the dependent vari-
able is dichotomous, and hence may be represented by a variable taking the value 1
with probability π and the value o with probability 1− π. Such a variable is a bino-
mial variable and the model often used to express the probability π as a function of
potential independent variables under investigation is the logistic regression model.

3.7.1 The Logistic Regression Model

The goal of usual regression analysis is to describe the ‘mean’ of a dependent variable
Y given the value (s) of the independent variable (s). This quantity is called the
conditional mean and will be denoted as E(Y |x), where Y denotes the outcome
variable and x a value of the independent variable. In linear regression, we assume
that thismeanmay be expressed as a linear equation in x , such as E(Y |x) = β0+β1x .

In logistic regression, we use the quantity π(x) to represent the conditional mean
of Y given x . We use the following specific form of π(x),

π(x) = eβ0+β1x

1 + eβ0+β1x
. (3.7.1)
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A transformation of π(x) that is central to our study is the logit transformation

ν(x) = logit {π(x)} = ln

{
π(x)

1 − π(x)

}

= β0 + β1x . (3.7.2)

The function ν(x) has many of the desirable properties of a linear regression model.
The logit ν(x) is linear in β’s and may range from−∞ to∞, depending on the range
of x .

As noted before, the other important difference between the linear and logistic
regression model concerns the conditional distribution of Y given x . In linear regres-
sion model, we assume that the conditional value of the outcome variable may be
expressed as y = E(Y |x)+εwhere the error ε ∼ N (0,σ2) generally. It then follows
that the conditional distribution of Y will be normal withmean E(Y |x) and a constant
variance. In case of a dichotomous outcome variable, the situation is completely dif-
ferent. In this situation, wemay express the conditional value of the outcome variable
as y = π(x)+ ε, where the error ε can take only two possible values. If y = 1, then ε
takes the value 1−π(x)with probability π(x); if y = 0, then ε takes the value−π(x)
with probability 1− π(x). Thus the conditional distribution of Y follows a binomial
distribution with mean π(x). Such a random variable is called a point-binomial or
Bernoulli variable and it has the simple discrete probability distribution

P(Y = y) = πy(1 − π)1−π; y = 0, 1.

3.7.2 Fitting the Logistic Regression Model

Suppose we have a sample of n independent observations of the pair (xi , yi ), i =
1, . . . , n, where yi denotes the value of a dichotomous outcome variable and xi is
the value of the independent variable for the i th subject. We also assume that the
outcome variable has been coded as 0 or 1, representing the absence or presence of
the characteristic, respectively. To fit the logistic regression model in Eq. (3.7.1) to a
set of data, we have to estimate the values of β0 and β1, the unknown parameters.

In linear regression,we generally use themethod of least squares for estimating the
unknown parameters, β0 and β1. Under the usual assumptions for linear regression,
the method of least squares yields estimators with a number of desirable statistical
properties. Unfortunately, when the method of least squares is applied to a model
with a dichotomous outcome, the estimators no longer have these properties.

The general method of estimation that leads to the least square function under
the linear regression model (when the error terms are normally distributed) is the
maximum likelihood method. We shall use the same method for estimation in the
logistic regression model. Under the above simple logistic regression model, the
likelihood function is given by



3.7 Logistic Regression Analysis 91

L(β) = �n
i=1P(Yi = yi )

= �n
i=1y

π
i (1 − yi )

1−π (3.7.3)

= �n
i=1π(xi )

yi [1 − π(xi )]1−yi ; yi = 0, 1,

from which we can obtain ‘maximum likelihood estimates’ of the parameters β0 and
β1. However, it is easer mathematically to workwith the log of Eq. (3.7.3). Therefore,
we have

L(β) = ln[L(β)] =
n∑

i=1

{yi ln[π(xi )] + (1 − yi )ln[1 − π(xi )]}. (3.7.4)

To find the MLE of β we differentiate L(β) wrt β0 and β1 and set the resulting
expressions to zero. The likelihood equations are:

∑
[yi − π(xi )] = 0, (3.7.5)

and ∑
xi [yi − π(xi )] = 0. (3.7.6)

The expressions in Eqs. (3.7.5) and (3.7.6) are nonlinear in β0 and β1, and thus
requires special methods for their solution. These methods are iterative in nature and
have been programmed into available logistic regression software. The interested
reader may see the text by McCullagh and Nelder (1989) for a general discussion
of the methods used by most programs. In particular, they show that the solution to
Eqs. (3.7.5) and (3.7.6) may be obtained using an iterative weighted least squares
procedure.

3.7.3 The Multiple Logistic Regression Model

Suppose we have a vector of p independent variables x = (x1, x2, . . . , xp)′. For the
time being, we shall assume that each of these variables is a continuous variable in
its own range. The response variable Y is a two-value categorical variable, value 1
for presence and value 0 for absence of certain characteristic. Of course, the value
of Y depends on the values of the quantitative and continuous variables x. Let the
conditional probability that the outcome is present be denoted by P(Y = 1|x) =
π(x). Therefore P(Y = 0|x) = 1 − π(x). In the multiple logistic regression model,
we assume that the logit (π(x)) is give by the equation

logit(π(x)) = ν(x) = log
(π(x))

1 − π(x)
= β0 + β1x1 + · · · + βpxp, (3.7.7)
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and the logistic regression model is

π(x) = eν(x)

1 + eν(x)
. (3.7.8)

If some of the independent variables are discrete, nominal scale variables such as
race, sex, age-groups, and so on, they should not be included in the model as if they
were interval-scale—variables. In this situation, the method is to use a collection of
design variables (or dummy variables). Suppose, for example, that one of the inde-
pendent variables is marital status, which has three categories: unmarried, married,
and widowed. In this case, two design variables are necessary. One possible coding
strategy is that when the respondent is “unmarried”, the two design variables D1 and
D2 would both be set equal to zero; when the respondent is “married,” D1 would
be set equal to 1 while D2 would still equal 0; when the status of the respondent is
“widowed”, we would use D1 = 0 and D2 = 1.

In general, if a nominal scaled variable has k possible values, then k − 1 design
variables will be needed. As an illustration of using the notation for these design
variables, suppose that the j th independent variable x j is a categorical variable
having k j categories. These k j − 1 design variables will be denoted as Djr and the
coefficients for these design variables will be denoted as β jr , r = 1, 2, . . . , k j − 1.
Thus, the logit for a model with p auxiliary variables of which the j th variable is
discrete would be

ν(x) = β0+β1x1+· · ·+β j−1x j−1+
k j−1∑

r=1

β jr D jr +β j+1x j+1+· · ·+βpxp. (3.7.9)

3.7.4 Fitting the Multiple Logistic Regression Model

Suppose that we have a sample of n independent observations (xi , yi ), i = 1, . . . , n.
As in the univariate case, for fitting themodelwe have to obtain estimates of the vector
β′ = (β0,β1, . . . ,βp), for which we will use the maximum likelihood method as in
the univariate case. The likelihood function will be almost identical to that given in
Eq. (3.7.4), with the only difference that π(x) is now defined as in Eq. (3.7.8). There
will be p + 1 likelihood equations. These are obtained by differentiating the log-
likelihood function with respect to the p + 1 coefficients β0, . . . ,βp. The resulting
likelihood equations may be expressed as follows:

n∑

i=1

[yi − π(xi )] = 0 (3.7.10)

and
n∑

i=1

xi j [yi − π(xi )] = 0 (3.7.11)



3.7 Logistic Regression Analysis 93

for j = 1, 2, . . . , p. Here again, the solution of the likelihood equations requires
special software which is available in most statistical packages. Let β̂ denote the
solution to these equations. Thus, the fitted values for the multiple logistic regression
model are π̂(xi ), the value of the expression in Eq. (3.7.8) computed using β̂ and xi .

The variance–covariance matrix of β̂ is estimated following the theory of max-
imum likelihood equation (see, for example, Rao 1947). According to this theory,
the estimators are obtained from the matrix of second-order partial derivatives of the
log-likelihood function. Now,

∂2L(β)

∂β2
j

= −
n∑

i=1

x2i jπi (1 − πi ) (3.7.12)

and
∂2L(β)

∂β j∂βl
= −

n∑

i=1

xi j xilπi (1 − πi ) (3.7.13)

for j, l = 0, 1, . . . , pwhereπi denotesπ(xi). The observed informationmatrix J (β)

is the (p+ 1) × (p+ 1) matrix whose terms are the negative of the terms in (3.7.12)
and (3.7.13). Then, dispersion matrix of β̂ is Var(β̂) = J−1(β). It is not possible to
write down an explicit expression for the elements in the matrix, except for special
cases.

A formulation of the information matrix which will be very useful in discussing
model-fitting is

Ĵ(β̂) = X′VX (3.7.14)

whereX is an n×(p+1)matrix containing the data for each subject (the first column
is 1n) and V is an n × n diagonal matrix with general diagonal element π̂i (1 − π̂i ).
Writing ˆVar(β̂ j ) as the estimated Var (β̂ j ) the univariate Wald test statistics for
testing the significance of β j is

Wj = β̂ j/

√
ˆVar(β̂ j ). (3.7.15)

The multivariate Wald test for the significance of β is

W = β̂
′[ ˆVar(β̂)]−1β̂

= β̂
′
(X′VX)β̂, (3.7.16)

which will be distributed as χ2
(p+1) under the null hypothesis H0(β = 0).
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3.7.5 Polytomous Logistic Regression

The logistic regression models stated above apply only to binary data where Y can
take only twovalues 0 and1, i.e., it has only two levels.Wenowconsider the situations
where Y has J (≥2) levels.

Consider the situation when there is no natural ordering to the levels of the target
variable Y . Multinomial (or polytomous) logistic regression models or more simply,
multinomial logit models are derived in the following way. Let π j , j = 1, . . . , J be
the probability that a unit falls in the j th level of a multinomial target variable Y . Our
goal is to construct a model for π j as a function of the set of values of the predictor
variables x = (x1, . . . , xp)′,

∑
j π j = 1. The model is again based on logits, but the

difficulty here is that there is no single ‘success’ (or ‘failure’) on which the model
has to be based. We can however construct all of the logits relative to one of the
levels, which we shall term baseline level. If one of the target levels is seen to be
of different type than the other levels, it is natural to choose this level as ‘baseline’
level. For instance, in a clinical trial the level corresponding to the control group may
be taken as baseline.

Suppose the J th category is the baseline category. The logistic regression model
is then

log

(
π j

πJ

)

= β0 j + β1 j x1 + · · · + βpj x p, j = 1, . . . , J − 1. (3.7.17)

Thus there are J −1 separate regression equations, each of which is based on distinct
set of parameters β j = (β0 j ,β1 j , . . . ,βpj )

′. The choice of the baseline is arbitrary.
Thus, if the category I is taken to be the baseline category, then from (3.7.17),

log

(
π j

πI

)

= log

(
π j/πJ

πI /πJ

)

= log

(
π j

πJ

)

− log

(
πI

πJ

)

(3.7.18)

= (β0 j − β0I ) + (β1 j − β1I )x1 + · · · + (βpj − βpI )xp

We note that there is nothing in this derivation which requires category I to be a
baseline category. Thus the choice of a baseline category is arbitrary.

Model (3.7.17) implies a single functional form for these probabilities. The form
is a logistic relationship

π j = exp(β0 j + β1 j x1 + · · · + βpj x pj )
∑J

k=1 exp(β0k + β1k x1 + · · · + βpk xp)
. (3.7.19)

The estimators (β1, . . . ,β J−1)
′ are obtained using maximum likelihood, where the

log-likelihood is
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L =
J∑

j=1

∑

yi= j

logπ j (i), (3.7.20)

where the second summation is over all observations i whose response level is j and
π j (i) is the probability (3.7.19) with values of the predictors corresponding to the i th
observation substituted.

3.8 Fitting the Logistic Regression Models to Data
from Complex Surveys

Of late, there have been some developments in logistic regression statistical software
by including routines to perform analysis with data obtained from complex sample
surveys. These routines may be found in STATA, SUDAAN (1997), and other less
well-known special purpose packages. In this section, we shall try to provide a brief
introduction to these methods. For more details, the reader may refer to Korn and
Graubard (1990), Skinner et al. (1989), Roberts et al. (1987), and Thomas and Rao
(1987). Recently, Lumley (2010) has given a comprehensive description of fitting a
logistic regression model using R.

The central idea in fitting Eq. (3.7.8) to data from complex surveys is to set up a
function that approximates the likelihood function in the finite sampled population
with a likelihood function formed with the observed sample and known sampling
weights. Suppose that the population is divided into H strata, the hth strata containing
Nh primary sampling units (psu) ha, a = 1, . . . , Nh and the hath psu containingMha

second stage units (ssu) hab, b = 1, . . . , Mha in the population. Suppose again that
from the hth stratum nh psu’s are sampled from the Nh psu’s in the population
and from the hath sampled psu, mha ssu’s are sampled. Denote the total number
of sampled ssu’s as m = ∑H

h=1

∑nh
a=1 mha. For the habth observation denote the

known samplingweight aswhab, the vector of covariates as xhab and the dichotomous
outcome as yhab. The approximate log-likelihood function is then

H∑

h=1

nh∑

a=1

mha∑

b=1

[whab × yhab] × ln[π(xhab)] + [whab × (1 − yhab)] × ln[1 − π(xhab)].
(3.8.1)

(Compare it with the log-likelihood function (3.7.4).) Differentiating this equation
with respect to the unknown regression coefficients β, we get the (p+ 1)× 1 vector
of score equations

X′W(y − π) = 0, (3.8.2)

where X is the m × (p + 1) matrix of covariates, W is an m × m diagonal matrix
containing the weights whab, y is the m × 1 vector of observed outcomes and π =
(π(x111), . . . ,π(xHnHmHa ))

′ is the m × 1 vector of logistic probabilities.
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In theory, any logistic regression package that allows weights could be used to
obtain the solutions to Eq. (3.8.2). However, the problem comes in obtaining the
correct estimator of Var(β̂). Naive use of a standard logistic regression package with
weight matrix W would yield instead estimates of the matrix (X′DX)−1 where D =
WV is anm×m diagonal matrix with general elementwhab×(π̂(xhab)][1−π̂(xhab)].
The correct estimator is

ˆVar(β̂) = (X′DX)−1S(X′DX)−1, (3.8.3)

where S is a pooledwithin-stratum estimator of the covariancematrix of the left-hand
side of Eq. (3.8.2).

We denote a general element in the vector in (3.8.2) as z′
hab = x′

habwhab(yhab −
π(xhab)), the sum over the mha sampled units in the ath primary sampling unit
in the hth stratum as zha = ∑nha

b=1 zhab and their stratum-specific mean as z̄h =∑nh
a=1 zha/nh . The within-stratum estimator for the hth stratum is

Sh = nh
nh − 1

nh∑

a=1

(zha − z̄h)(zha − z̄h)′.

The pooled estimator is S = ∑H
h=1(1 − fh)Sh . The quantity (1 − fh) is called the

finite population correction factor where fh = nh/Nh is the ratio of the number of
observed primary sampling units to the total number of primary sampling units in
stratum h. In settings where Nh is unknown, it is common practice to assume it is
large enough that fh is quite small and the correction factor is equal to one.

We note that the likelihood function (3.8.1) is only an approximation to the true
likelihood. Thus, one would expect that inferences about model parameters should
be based on univariable and multivariable Wald statistics as in (3.7.15) and (3.7.16),
computed from specific elements of (3.8.3). However, simulation studies in Korn
and Graubard (1990) as well as Thomas and Rao (1987) show that when data come
from a complex survey from a finite population, use of a modified Wald statistic
which follows an F-distribution under null hypothesis (details in Chap.4) provide
tests with better adherence to the stated type I error. Results from these modified
Wald tests are reported in STATA and SUDAAN. For further details, the reader may
refer to Hosmer and Lemeshow (2000).

The readers interested in classical theory of analysis of categorical data may also
refer to Bishop et al. (1975), Lloyd (1999), Le (1998), Von and Mun (2013), among
many others.

http://dx.doi.org/10.1007/978-981-10-0871-9_4


Chapter 4
Analysis of Categorical Data
Under a Full Model

Abstract Nowadays, large-scale sample surveys are often conducted to collect data
to test different hypotheses in natural and social sciences. Such surveys often use strat-
ified multistage cluster design. Data obtained through such complex survey designs
are not generally independently distributed and as a result multinomial models do
not hold in such cases. Thus, the classical Pearson statistic and the related usually
used test statistic would not be valid tools for testing different hypotheses in these cir-
cumstances. Here we propose to investigate the effect of stratification and clustering
on the asymptotic distribution of Pearson statistic, log-likelihood ratio statistic for
testing goodness-of-fit (simple hypothesis), independence in two-way contingency
tables, and homogeneity of several populations.

Keywords Pearson’s statistic (X2
P) · Log-likelihood ratio statistic · Design-based

Wald statistic ·Goodness-of-fit tests ·Tests of homogeneity ·Tests of independence ·
Rao–Scott corrections to X2

P · Fay’s jackknifed statistic

4.1 Introduction

The classical analysis of categorical data assumes that the data are obtained through
multinomial sampling. In testing for goodness-of-fit, homogeneity of several popu-
lations, independence in two-way contingency tables Pearson chi-square test statistic
is often used. The log-likelihood ratio and theWald statistic which are asymptotically
equivalent to Pearson statistic (see Appendix), are also used.

Nowadays, large-scale sample surveys are often conducted to collect data to test
different hypotheses in natural and social sciences. Such surveys often use strati-
fied multistage cluster design. Data obtained through such complex survey designs
are not generally independently distributed and as a result multinomial models do
not hold in such cases. Thus the classical Pearson statistic and the related usually
used test statistic would not be valid tools for testing different hypotheses in these
circumstances.

Here we propose to investigate the effect of stratification and clustering on the
asymptotic distribution of Pearson statistic, log-likelihood ratio statistic for testing
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goodness-of-fit (simple hypothesis), independence in two-way contingency tables
and homogeneity of several populations. The model is called a full model, as we
assume that the population proportions do not involve any other set of unknown
parameters.

Section4.2 considers test statistics for goodness-of-fit hypothesis and their asymp-
totic distribution. The concepts of generalized design effects (in Kish’s sense) have
been introduced and the classical test statistics have been modified for better control
of the type I error. Section4.3 considers the tests for homogeneity of several popula-
tions with respect to the vector of population proportions. The next section examines
the effects of survey designs on classical tests of general linear hypotheses, and sub-
sequently tests of independence in a two-way table. This chapter draws mainly from
Rao and Scott (1981), Scott and Rao (1981), and Holt et al. (1980).

4.2 Tests of Goodness-of-Fit

While testing a simple hypothesis that the population proportions of different cate-
gories, in which elements in a finite population are divided, are equal to some specific
values, we shall consider four statistics: (i) Pearson chi-square statistic; (ii) design-
basedWald statistic; (iii) Neyman’s (1949) statistic; and (iv) likelihood ratio statistic.
These are introduced below.

4.2.1 Pearsonian Chi-Square Statistic

Consider a finite population of size N whose members are divided into t classes
with unknown proportions π1, . . . ,πt (

∑t
k=1πk = 1), πk = Nk/N , Nk being the

unknown number of units in the population in class k. A sample of size n is drawn
from this population following a sampling design p(s); for example, a stratified
multistage design. Let n1, . . . , nt (

∑
knk = n) denote the observed cell frequencies

in the sample.
Under these circumstances, the conventional Pearson chi-squared statistic for

testing the simple hypothesis H0 : πk = πk0, k = 1, . . . , t is given by

X̃2 =
t∑

k=1

(nk − nπk0)
2

nπk0

= n
∑t

k=1( p̃k − πk0)
2

πko
(4.2.1)

where p̃k = nk/n(k = 1, . . . , t). Under srs X̃2 will be distributed asymptotically as
χ2

(t−1), a central chi-square with (t − 1) degrees of freedom (d.f.).
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Now for general non-srs design, p̃k is not a consistent estimator of πk unless
the design is self-weighting (i.e., has equal sample weights). For general sampling
designs, we therefore consider a more general statistic

X2
P = n

t∑

k=1

(π̂k − πk0)
2

πk0
(4.2.2)

where π̂k is an unbiased (or consistent) estimator of πk under p(s)(
∑

k π̂k = 1). If
nπ̂k = nk , the statistic X2

P in (4.2.2) reduces to X̃2 in (4.2.1). From now on we shall
consider X2

P rather than X̃2. We shall write n̂k as the adjusted (sample) cell frequen-
cies after adjusting for non-response, if any, and unequal inclusion probabilities, such
that

∑
k n̂k = n. In case, no adjustment is required n̂k = nk . The π̂k are usually ratio

estimators if n is not fixed in advance.
Here, we have assumed that π10, . . . ,πk0 are given quantities and there is nothing

unknown about them.

4.2.2 Design-Based Wald Statistic

The design-based Wald statistic for testing H0 : π = π0 where π = (π1, . . . ,πt−1)
′,

π0 = (π10, . . . ,πt−10)
′ is given by

X2
W = n(π̂ − π0)

′V̂−1(π̂ − π0) (4.2.3)

where π̂ = (π̂1, . . . , π̂t−1)
′ and V̂/n denotes a consistent estimator of the actual

design-covariance matrixV/n of π̂. An estimator V̂ can be obtained by the lineariza-
tion method, balance repeated replication, sample-reuse methods, such as jackknife
or any other non-parametric method of variance-estimation.

The statistic X2
W is unique for any choice of (t − 1) classes and is distributed

approximately as a χ2
(t−1) random variable under H0 if n is sufficiently large (vide

Sect. 4.2.5). The statistic X2
W provides an asymptotically exact size α test when

applied to χ2
(t−1)(α). This approach has been well illustrated by Koch et al. (1975),

though one of its major disadvantages is that we need to calculate V̂ and this may be
difficult if the design is complex.

Fay (1985) has shown that if the degrees of freedom (d.f.) for V̂ is not large
relative to the d.f. of χ2, X2

W is often unreliable due to instability in the estimated
covariance matrix. Monte Carlo results (Thomas and Rao 1984) also indicate that the
Wald statistics although asymptotically valid, does not control the type I error satis-
factorily under the above situation unlike the Satterthwaite adjusted X2

P (discussed
in Sect. 4.2.7) or the jackknife chi-square of Fay (1985) (Sect. 4.2.8).
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In practice, X2
W can be expected to work reasonably well, if the number of sample

clusters m in a stratified multistage sampling design with H strata, is large and t is
relatively small, because in that case one can expect V̂ to be stable.

If the number of sample clusters m is small, the number of degrees of freedom
available to calculate V̂, m − H = f (say) becomes small and consequently V̂
becomes unstable. To overcome this problem, a d.f.-correction to Wald statistic is
applied. Two alternative F-corrected Wald statistic are:

(i) F1(X2
W ) = f −t+2

f (t−1) X2
W ∼ F(t−1, f −t+2);

(ii) F2(X2
W ) = X2

W
t−1 ∼ F(t−1, f ).

Thomas and Rao (1987) made a comparative study of the performance of various
test statistics of a simple goodness-of-fit hypothesis under the situation of instability.
Their simulation study indicated that in cases when instability is not too severe,
the F-corrected Wald statistic F1(X2

W ) behaves relatively well in comparison to its
competitors.

Now, X2
P can be written as

X2
P = n(π̂ − π0)

′P−1
0 (π̂ − π0) (4.2.4)

where P0 is the value of P = Dπ −ππ′ for π = π0, Dπ = Diag. (π1, . . . ,πt−1)
′ and

P/n is the (t−1)×(t−1) covariancematrix of p̂ = n
n formultinomial samplingwhere

n = (n1, . . . , nt−1)
′. In case of multinomial sampling π̂k = nk/n, k = 1, . . . , t − 1,

the result (4.2.4) can be seen as follows. We have

P0 = Dπ0 − π0π
′
0.

Using the relation

(A + uv)−1 = A−1 − A−1uv′A−1

1 + v′A−1u

where A is p × p,u is p × 1, v′ is 1 × p, we get

P−1
0 = D−1

π0
+ (1/πt0)1t−11′

t−1.

Now

X2
P = n

t−1∑

k=1

(π̂k − πk0)
2/πk0 + n(π̂t − πt0)

2/πt0

= n(π̂ − π0)
′D−1

π̂0
(π̂ − π0)

+ n(π̂ − π0)
′1t−11′

t−1(1/πt )(π̂ − π0)

= n(π̂ − π0)
′(P0)

−1(π̂ − π0). (4.2.5)

Comparing with (4.2.3) it is seen that X2
P is a special case of X2

W .
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4.2.3 Neyman’s (Multinomial Wald) Statistic

An alternative to Pearson statistic X2
P is Neyman’s statistic

X2
N = n

t−1∑

k=1

(π̂k − πk0)
2

π̂k

= n(π̂ − π0)
′(P̂)−1(π̂ − π0) (4.2.6)

where P̂ = Diag. (π̂) − π̂π̂′ and P̂/n is the estimated (empirical) multinomial
covariance matrix. Under multinomial sampling, X2

N ∼ χ2
(t−1) asymptotically; but

for more complex designs, the statistic needs adjustment similar to those used for
Pearson statistic (vide Sect.A.4.1).

4.2.4 Log-Likelihood Ratio Statistic

The log-likelihood ratio statistic for testing H0 is given by

G2 = −2 log

{
�t

k=1(πk0)
n̂k

�t
k=1(π̂k)n̂k

}

= 2n
t∑

k=1

π̂k log

(
π̂k

πk0

)

, (4.2.7)

provided n̂k = nπ̂k, k = 1, . . . , t . Under multinomial sampling, it is well known
that both X2

P and G2 are distributed asymptotically as χ2
(t−1), when H0 holds.

4.2.5 Asymptotic Distribution of X2
W and X2

P

Consider any t −1 categories, labeled, without any loss of generality, as 1, . . . , t −1.
Assume that with each unit i in the population, there is a (t − 1)-dimensional vector
Zi = (Z1

i , Z2
i , . . . , Zt−1

i )′ such that Zk
i = 1(0) if the unit i belongs to category

k (otherwise). Now
∑N

i=1Zk
i = Nk,πk = Nk/N (k = 1, . . . , t − 1) and Nt =

N − ∑t−1
k=1Nk,πt = 1 − ∑t−1

k=1πk , an estimate of πk would be a weighted function
of Zk

i , i ∈ s. Hence, a design-based estimator of πk is

π̂k =
∑

i∈s

wi (s)Zk
i (4.2.8)
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for some weight wi (s) which may depend upon both the sample s and the unit-label
i in the population. Note that we are considering here any arbitrary sampling design
p(s). An estimator of a linear function a′π, where a = (a1, . . . , at−1)

′ is a vector of
constants, is

a′π̂ =
t−1∑

k=1

ak

∑

i∈s

wi (s)Zk
i

=
∑

i∈s

wi (s)
t−1∑

k=1

ak Zk
i

=
∑

i∈s

wi (s)yi (say). (4.2.9)

If the sampling design is such that it is amenable to a central limit theorem (CLT)
then the statistic a′π̂, for any a, is approximately normally distributed with mean a′π
and variance a′Va/n, where V = ((vi j )) and cov.(π̂i ,π j ) = vi j/n, for sufficiently
large n. Hence (π̂ − π) is asymptotically (t − 1) variate normal Nt−1(0,V/n) for
large n.

The sample survey literature is replete with examples where sampling design
accommodates some CLT; see for example, Madow (1948) and Ha’jek (1960) for
srswor; Scott andWu (1981) for results on expansion, ratio and regression estimators
for srs; Isaki and Fuller (1982), Francisco and Fuller (1991) for asymptotic normality
of the Horvitz–Thompson estimator (HTE) in unequal-probability sampling designs;
Krewski and Rao (1981), Rao andWu (1985) for asymptotic normality of the estima-
tors of means and totals when the number of strata approaches infinity in multistage
sampling design with two primary units in the sample per stratum.

If V̂ is a consistent estimatorV, the generalizedWald statistic X2
W given in (4.2.3)

will be asymptotically distributed as χ2
(t−1). This result follows from the general

result on the distribution of quadratic forms in the multivariate normal distribution
(also see Corollary4.2.2.2).

The asymptotic distribution of X2
P under any general sampling design has been

given inTheorem4.2.2.This theorem follows from the form (4.2.4) of X2
P , asymptotic

multivariate normality of π̂ (which holds under a class of sampling designs, as noted
above) and the standard results on quadratic forms of multivariate normal vector, as
noted in LemmaA.3.2. The same lemma is stated below in a slightly different form.

Theorem 4.2.1 (Jhonson and Kotz 1970) Let the random vectorZ = (Z1, . . . , Zm)′
have a multivariate normal distribution Nm(0,U). Then the distribution of the
quadratic form Q(Z) = Z′AZ = ∑m

i=1

∑m
j=1ai j Zi Z j is the same as that of

∑m
i=1λiτ

2
i , where the variables τi are independent N (0, 1) variables and the numbers

λ1 ≥ λ2 ≥ · · · ≥ λm are the eigenvalues of AU.
If we take m = t − 1,Z = √

n(π̂ − π0), then for certain sampling designs as
stated before, Z ∼ Nt−1(0,V0) under H0 where V0 is the value of V for π = π0.
Also from (4.2.5), X2

P = Z′P0Z. Hence, we have the following theorem.
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Theorem 4.2.2 Under H0 : π = π0, X2
P given in (4.2.2) is approximately distrib-

uted as

X2
P ∼

t−1∑

k=1

λ0kτ
2
k (4.2.10)

where τ1, . . . , τt−1 are independent N (0, 1) variables and λ0k’s are the eigenvalues
of D0 = P−1

0 V0 with λ01 ≥ λ02 ≥ · · · λ0t−1 ≥ 0 and V0/n denoting the covariance
matrix of π̂ for π = π0.

Corollary 4.2.2.1 It follows from (4.2.10) that X2
P/λ01 ≤ ∑t−1

k=1τ
2
k where

∑t−1
k=1τ

2
k

is distributed asymptotically as χ2
(t−1) under H0.

Therefore, if it is known that λ01 ≤ λ∗, we can obtain an asymptotic conservative
test for H0 by treating X2

P/λ∗ as a χ2
(t−1) variable.

Corollary 4.2.2.2 Asymptotic distribution of X2
W = Z′V̂−1

0 Z given in (4.2.3) is
∑t−1

k=1λ̃0kτ
2
k , where λ̃0k’s are the eigenvalues of V̂−1

0 V0 ≈ It−1. Clearly λ̃0k’s should
be all close to unity. Hence, asymptotic distribution of X2

W under H0 is χ2
(t−1).

Corollary 4.2.2.3 If for any sampling design V = λP for some constant λ for any
π0, then X2

P/λ ∼ χ2
(t−1) asymptotically. It can be shown that the above condition is

also necessary.

Examples4.2.1 (a) and 4.2.2 show some situations where this condition is fulfilled.

Note 4.2.1 If λ01 < 1, X2
P <

∑t−1
k=1τ

2
k = χ2

(t−1), then the Pearson chi-square test
will be asymptotically conservative. For someexamples of this situation seeExercises
4.3 and 4.4.

Note 4.2.2 Solomon and Stephens (1977) considered distribution of quadratic forms
Qk = ∑k

j=1c j (X j + a j )
2, where the X j ’s are independently and identically distrib-

uted standard normal variables and c j and a j are nonnegative constants. Exact sig-
nificance points for Qk for selected values of c j and all a j = 0 have been published
for k = 2(1)6(2)10. They also proposed two new approximations to Qk : (i) fitting a
Pearson curve with the same first four moments as Qk ; (ii) Fitting Qk = Awr , where
w has the χ2

(p) distribution and a, r , and p are determined by the first three moments
of Qk .

For any given values ofλ’s, we can use their approximations to evaluate the correct
percentage points of the distribution of X2

P .

Example 4.2.1 (a) srswor: If the sampling is by simple random sampling without
replacement, V = (1 − n/N )P where N is the finite population size. Hence, by
Corollary4.2.2.3, X2

P ∼ (1− n/N )χ2
(t−1) as both N and n → ∞ in such a way that

(N − n) → ∞. Here λk = λ0k = 1 − n/N for any π0 and

(1 − n/N )−1X2
P ∼ χ2

(t−1). (4.2.11)
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Thus the Pearson statistic will be conservative in this case. An asymptotically valid
test can be obtained for this sampling scheme by referring to X2

P/(1− n
N ) to χ2

(t−1).
(b) Stratified Random Sampling with Proportional Allocation: Suppose that a

population of size N is divided into H strata, the hth stratum being of size Nh and a
stratified sample s = (s1, . . . , sH ), where sh is a sample of size nh drawn from the
hth stratum by srswr, is selected (

∑
hnh = n). Let Wh = Nh/N , ρhk , the population

proportion in the kth category and nhk , the observed cell frequency in the kth category
in the hth stratum, h = 1, . . . , H . Then ρk = πk = ∑

h Whρhk, ρ̂hk = nhk/nh and
ρ̂k = π̂k = ∑

h Whnhk/nh . Under proportional allocation where nh = nWh, ρ̂k = π̂k

reduces to mk/n where mk = ∑
hnhk .

Under stratified random sampling design with large nh, π̂ is approximately dis-
tributed as a (t −1)-variate normal variable with mean π and covariance matrixV/n
where

V = P −
H∑

h=1

Wh(ρh − π)(ρh − π)′

= P − L (say), (4.2.12)

where ρh = (ρh1, . . . , ρht−1)
′. Now

0 ≤ c′Vc
c′PC

= 1 −
∑

h Wh[c′(ρh − π)]2
c′Pc

≤ 1. (4.2.13)

Therefore, the first eigenvalue of D0 = P−1
0 V0,λ01 ≤ 1 for any π0 and hence

X2
P ≤

t−1∑

k=1

τ 2
k ∼ χ2

(t−1). (4.2.14)

Hence in case of stratified random sampling with proportional allocation, Pearson
chi-square statistic X2

P is always asymptotically conservative.
However, for this sampling design, V̂ can be easily calculated if the primary data

on nhk(h = 1, . . . , H ; k = 1, . . . , t) sampled units are available. Therefore, in this
case, one should use Wald’s statistic in lieu of Pearson’s statistic.

If H ≥ t and all elements in the same stratum belong to the same category so that
the stratification is perfect, value of X2

P is zero.
Let us now consider the case H < t . Now the rank of L in (4.2.12) is at most

(H−1). Also, all the eigenvalues of It−1 equal one.Hence, at least (t−H) eigenvalues
of P−1Vmust be each equal to one. Therefore, X2

P ≥ ∑t−H
k=1 τ 2

k = χ2
(t−H). Therefore,

X2
P is asymptotically well-approximated by χ2

(t−1) if (t − H) ≈ (t − 1) or if t is
large and H relatively small.
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When H = 2,

D = P−1V

= I − W1W2P−1(π1 − π2)(π1 − π2)
′

= I − � (say), (4.2.15)

where W2 = 1− W1. Since � is of rank one, (t − 2) eigenvalues of � are each zero
and the only nonzero eigenvalue of � is tr (�) = W1W2

∑t−1
k=1(ρ1k − ρ2k)

2/πk =
δ∗ (say) , 0 ≤ δ∗ ≤ 1. Therefore, λ1 = · · · = λt−2 = 1 and λt−1 = 1 − δ∗.
Therefore,

X2
P =

t−2∑

k=1

τ 2
k + (1 − δ∗

0)τ
2
t−1

= χ2
t−2 + (1 − δ∗

0)χ
2
(1), (4.2.16)

where δ∗
0 is the value of δ∗ for π = π0. Thus, if t is not small, X2

P can be well-
approximated by χ2

(t−1) in this case.
(c) Two-Stage Sampling: Suppose we have N primary stage units (psu’s) with Ma

second stage units (ssu’s) in the ath psu in the population (a = 1, . . . , N ;∑N
a=1Ma =

M). A sample of n psu’s is selectedwith probability proportional to sizewith replace-
ment (ppswr), size being Ma , and subsamples each of size m ssu’s are selected by
srswr from each selected psu (mn = q).

Let mak be the observed cell frequency in the kth category in the sampled psu,
a. Then π̂ak = estimate of the population proportion πak = Mak/Ma in the ath psu,
where Mak is the number of ssu’s in the kth category in the ath psu, is mak/m, k =
1, . . . , t − 1. Let

ρ̂a = (π̂a1, . . . , π̂at−1)
′

π = (π1, . . . ,πt−1)
′,

where πk = ∑N
a=1Maπak/M, π̂k = ∑n

a=1mak/q, qk = ∑n
a=1mak . Therefore, π̂ =

q/q where q = (q1, . . . , qt−1)
′. Also E(qk) = qπk .

It follows that π̂ follows approximately (t − 1)-variate normal distribution with
mean vector π and covariance matrix V/n where

V = P + (m − 1)
N∑

a=1

Wa(ρa − π)(ρa − π)′

= P + (m − 1)�1 (say) (4.2.17)

where Wa = Ma/M and ρa = (πa1, . . . ,πat−1)
′. Let ξ1 ≥ ξ2 ≥ · · · ≥ ξt−1(≥ 0)

denote the eigenvalues of P−1�1. Then λk = 1 + (m − 1)ξk and
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X2
P =

t−1∑

k=1

{1 + (m − 1)ξ0k}τ 2
k (4.2.18)

where ξ0k is the value of ξk for π = π0. Also

c′ ∑N
a=1 Wa(ρa − π)(ρa − π)′c
c′(Diag.(π) − ππ′)c

= c′�1c
c′Pc

≤ 1 (4.2.19)

so that ξ0k ≤ 1 ∀ k and we get

t−1∑

k=1

τ 2
k ≤ {1 + (m − 1)ξ0,t−1}

t−1∑

k=1

τ 2
k

≤ X2
P

≤ {1 + (m − 1)ξ0,1}
t−1∑

k=1

τ 2
k

≤ m
t−1∑

k=1

τ 2
k , (4.2.20)

since ξk ≥ 0 ∀k. Thus X2
P/m ∼ χ2

(t−1) approximately asymptotically and this gives
an approximate conservative test for the hypothesis H0 : π = π0. The ξk’s may be
called the generalized measures of homogeneity.

As in the case of stratified random sapling, the computation of V̂ and X2
W can

be done in a straightforward manner if the primary data on mab sampled units are
available (a = 1, . . . , n; b = 1, . . . , m). Here

V̂ = m
n∑

a=1

(ρ̂a − π)(ρ̂a − π)′/(n − 1). (4.2.21)

Example 4.2.2 (Brier’s 1980 model) There are N clusters in the population from
each of which a sample of n units is selected by multinomial sampling. Let Y(i) =
(Y (i)

1 , . . . , Y (i)
t )′ be the vector of observed cell counts for the i th cluster, Y (i)

j being

the number of units in the i th cluster that falls in category j,
∑t

j=1Y (i)
j = n ∀ i =

1, . . . , N . Let p(i) = (p(i)
1 , . . . , p(i)

t )′ be the vector of cell-probabilities for the i th
cluster.

We assume that the vectors p(i)(i = 1, . . . , N ) are independently and identically
distributed with a Dirichlet distribution defined by the density

f (p|π, k) = �(k)

�t
j=1�(kπ j )

�t
j=1 p

kπ j −1
j (4.2.22)
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where p and π = (π1, . . . ,πt )
′ lie in the (t − 1)-dimensional space ξt = {p =

(p1, . . . , pt ) : p j > 0,
∑

j p j = 1} and k is a parameter of the distribution.

Hence, the unconditional distribution ofY = (Y1, . . . , Yt )
′ where Y j = ∑N

i=1Y (i)
j

is

f (y|π, k) =
∫

. . .

∫

ξt

(
n

y1, . . . , yt

)

�t
j=1 p

y j

j

�(k)

�t
j=1�(kπ j )

�t
j=1 p

kπ j −1
j

=
(

n

y1, . . . , yt

)
�(k)

�(n + k)�t
j=1�(kπ j )

�t
j=1�(y j + kπ j ) (4.2.23)

where y/n ∈ ξt . This distribution is referred to as Dirichlet multinomial distribution,
DMt (n,π, k). Mosimann (1962) showed that that the mean of the distribution of
p̂ = y/n is π and its covariance matrix is n−1C(Dπ −ππ′) where C = (n + k)/(1+
k). Here, k is the structural parameter representing the cluster effects; if ρ is the
intracluster correlation coefficient, then ρ = 1/(1 + k).

Since the covariance matrix of p̂ is C times that of a multinomial distribution, the
design effect (deff) (vide Sect. 4.2.6) will be a constant, C (or zero). For testing the
hypothesis of goodness-of-fit H0 : π = π0, the asymptotic distribution of X2

P will
therefore be Cχ2

(t−1). Since C > 1, Pearson’s statistic will be liberal in this case.
Since a constant deff may not be realistic in many practical situations, Thomas

and Rao (1987) extended Brier’s model to generate non-constant design effects, as
considered in Sect. 5.5.

4.2.6 Generalized Design Effect of π

We have already explained in Sect. 2.4, the concept of multivariate design effect of a
pair of parameter estimator and covariance matrix estimator (in Skinner’s sense) in
the context of quantitative variables. Here we extend the concept of design effect (of
an estimator) inKish’s sense to the case of categorical variables. FromTheorem4.2.2,
we may coin the following definition.

Definition 4.2.1 Generalized Design Effect of π: The matrix D = P−1V where
V/n is the covariance matrix under the sampling design p(s) of π̂, estimator of π
under p(s) and P/n, as defined in (4.2.4) is the covariance matrix of the estimator of
π under multinomial sampling design, may be called the multivariate design effect
matrix or generalized design effect matrix of π.

For t = 2,D = P−1V reduces to the ordinary design effect (deff) of π1,

de f f (π1) = nV (π̂1)

π1(1 − π1)
(4.2.24)

where V (π̂1) is the variance of π̂1 under the sampling design p(s).

http://dx.doi.org/10.1007/978-981-10-0871-9_5
http://dx.doi.org/10.1007/978-981-10-0871-9_2


108 4 Analysis of Categorical Data Under a Full Model

Now, λ1, the largest eigenvalue of D = P−1V is

λ1 = sup c

[
c′Vc
c′Pc

]

= sup c

[
V ar(

∑t−1
k=1ck π̂k)

V armns(
∑t−1

k=1cknk/n)

]

, (4.2.25)

where V armns denotes the variance operator under multinomial sampling. The τk’s in
(4.2.10) are special linear combinations of the estimated cell proportions and λk may
be called the deff of τk . Thus λ1 is the largest possible deff taken over all individual
π̂k’s and over all possible linear combinations of the π̂k’s; λ2 is the largest deff among
all linear combinations of π̂k’s, that are orthogonal to τ1. The other λk’s also represent
deff’s for special linear combinations of π̂k’s. Thus the λk’s may be termed as the
generalized design effects in Kish’s sense. (Thus, there are two types of generalized
design effects, one in Skinner’s sense (Sect. 2.4) and other in Kish’s sense. Their
actual meaning will be clear from the context.)

The Eq. (4.2.10) states that one should use the distribution of X2
P as

∑t−1
k=1λkτ

2
k

and not as χ2
(t−1). However, in practice, one assumes the results for multinomial

sampling always and uses χ2
(t−1). This distorts the significance level of the test. The

effect of the sampling design on the change in the significance level depends on the
size of the λ’s and the degrees of freedom (d.f.).

Table4.1 adopted from Fellegi (1980) shows the actual size of the X2
P test when

the significance level of the usually used χ2
(t−1) test of Pearson chi-square is 5% for

λk = λ, k = 1, . . . , t − 1. Clearly, X2
P ∼ λχ2

(t−1) in this case. A quick perusal of
the table indicates that the use of standard chi-square as a test of goodness-of-fit (or
test of independence, etc. in contingency tables) can be misleading. Even with a deff
of only 1.5, not a large value, the significance tests are practically useless. The null
hypothesis will be rejected with a probability of 0.19 if the d.f. are only five, the
probability of rejection rising to 0.6 or more with larger values of deff and/or larger
d.f.

Table 4.1 Actual size of X2
P

test with nominal 5%
significance level
(λk = λ, k = 1, . . . , t − 1)

Deff (λ) t = 3 t = 6 t = 10

1 5 5 5

1.2 8 10 12

1.5 14 19 27

3.0 37 59 81

http://dx.doi.org/10.1007/978-981-10-0871-9_2
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4.2.7 Modification to X2
P

Both theWald procedure and Fay procedure (discussed in Sect. 4.2.8) require detailed
survey information from which the covariance matrix V can be estimated. Such
detailed information is not generally available. In secondary analysis from published
results, the best one can hope for is the information on deffs for cells of the table
and in case of contingency tables (discussed in subsequent sections) perhaps some
information on deffs of marginal totals. Thus one important endeavor has been to find
methods that can effectively use this limited information and yet provide acceptable
tests.With this aim in view various authors, Rao and Scott (1979, 1981, 1987), Fellegi
(1980), among others, proposed corrections to Pearson statistic.

The basic idea is to impose a correction on X2
P such that the first moment of the

corrected X2
P is the same as that of χ2

(t−1), namely, t − 1. A simple approximation to

the asymptotic distribution of X2
P that uses very limited information about V̂ would

be preferred.
The following adjustments to X2

P have been proposed.
(a) Mean deff adjustment to X2

P due to Fellegi (1980) and Holt, et al. (1980): This
is based on the estimated design effect (deff) of π̂k . We have

d̂k = V̂ (π̂k)

V̂mns(π̂k)
= V̂ (π̂k)

π̂k(1 − π̂k)/n
(4.2.26)

where V̂ (π̂k) is the estimated true design variance of π̂k and V̂mns(π̂k) is the estimated
design variance of π̂k under multinomial sampling. Now, taking X2

P ∼ ∑t−1
k=1λkψk ≈

∑t−1
k=1dkψk , where dk is the deff, dk = E(d̂k), andψk’s are independentχ2

(1) variables,

E

(
t−1∑

k=1

λkψk

)

≈
t−1∑

k=1

dk, since E(ψk) = 1.

Therefore, defining d̄ = ∑t−1
k=1dk/(t − 1),

E(X2
P/d̄) ≈ E

(
t−1∑

k=1

λkψk/d̄

)

≈
t−1∑

k=1

dk/d̄ = t − 1. (4.2.27)

Taking an estimate of d̄ as

d̂0 =
t−1∑

k=1

d̂k/(t − 1), (4.2.28)
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the mean deff corrected Pearson statistic is

X2
P(d̂0) = X2

P

d̂0
(4.2.29)

which is asymptotically distributed as χ2
(t−1). A positive intraclass correlation among

the variate-values gives amean d̄ greater than one and so the value of X2
P (d̂0) becomes

smaller than X2
P and this tends to remove the liberality in X2

P .
Themean deff adjustment can also be executed by calculating the effective sample

size ne = n/d̄ and using ne in place of n in the formula for X2
P (vide also (2.3.7)).

(b) Rao–Scott (1979, 1981) first-order adjustment: The mean deff adjustment
to X2

P is only approximate, because λk’s are approximated by dk’s. Since, under
H0, E(

∑t−1
k=1λkψk) = ∑t−1

k=1λk , so that E(
∑t−1

k=1λkψk/λ̂0) = t − 1 where λ̂0 =
∑t−1

k=1λ̂k/(t − 1), Rao and Scott proposed the first-order adjustment to X2
P as

X2
P(c) = X2

P(λ̂0) = X2
P/λ̂0 (4.2.30)

which is distributed asymptotically as a χ2
(t−1) random variable under H0. Here λ̂k’s

are the eigenvalues of D̂ = P̂−1V̂ and P̂ = Diag. (p̂) − p̂p̂′, p̂ = n/n.
We note that λ̂0 depends only on the estimated cell variances v̂kk/n (or equiva-

lently, the estimated cell deff’s d̂1, . . . , d̂t−1), since

λ̂0 = tr(P̂−1V̂)

t − 1

=
t−1∑

k=1

v̂kk

π̂k(t − 1)

=
t−1∑

k=1

(1 − π̂k)d̂k

(t − 1)
(4.2.31)

where d̂k = v̂kk/[π̂k(1 − π̂k)] and v̂kk/n = V̂ (π̂k). Some knowledge about d̂k

for ultimate cells in a goodness-of-fit problem is often available. Thus X2
P(c) can

be calculated from the knowledge of cell variances alone and no information on
covariance terms are required at all.

Alternatively, λ̂0 can be obtained from the estimated generalized design effect
matrix, D̂ = P̂−1V̂ by the equation λ̂0 = tr(D̂)/(t − 1).

Provided that the variation among λ̂k is small, X2
P(c) is asymptotically distributed

as χ2
(t−1). The statistic X2

P(c) is more exact than X2
P(d̂0).

http://dx.doi.org/10.1007/978-981-10-0871-9_2
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Similar correction applies to the likelihood ratio test statistic,

G2
c = G2(λ̂0) = G2

λ̂0

. (4.2.32)

(c) Rao–Scott second-order correction: The first-order Rao–Scott adjustment
stated above aims at correcting X2

P so that the asymptotic expectation of the cor-
rected X2

P is equal to its d.f. t − 1. If the variation in λ̂k’s is large, a correction
to X2

P for this variance is also required. This is achieved by a second-order Rao–
Scott adjustment based on Satterthwaite (1946) method. The second-order adjusted
Pearson statistic is given by

X2
P(cc) = X2

P(λ̂0, â2) = X2
P(c)

(1 + â2)
(4.2.33)

where an estimator of the squared coefficient of variation a2 of the unknown eigen-
values λk’s is

â2 =
∑t−1

k=1(λ̂k − λ̂0)
2

(t − 1)λ̂2
0

. (4.2.34)

It is found that

X2
P(λ̂0, â2) ∼ χ2

(ν) (4.2.35)

asymptotically, where ν = (t − 1)/(1 + â2).
We note that

t−1∑

k=1

λ̂2
k = tr(D̂2) =

t∑

k=1

t∑

k ′=1

v̂2
kk ′

π̂k π̂k ′
(4.2.36)

so that a2 and ν can be readily calculated from V̂.
Similar correction holds for the likelihood ratio test,

G2
cc = G2(λ̂0, â2) = G2(λ̂0)

(1 + â2)
. (4.2.37)

Thomas and Rao (1987) showed that when â is small, that is, when λ̂k’s and hence
λk’s are of similar size, the first-order correction (4.2.30) provides good control of
the level of the test. In fact, for a = 0, when the λk’s are all equal, the first-order
corrections are asymptotically exact. However, when the variations among the λk’s
becomes appreciable, first-order corrections tend to become somewhat liberal. In
this case, the second-order corrected tests provide good control of test level as well
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as good power-performance. On the basis of a Monte Carlo study, Thomas and
Rao (1987) recommended using Satterthwaite procedure when the full matrix V̂ is
available.

Note 4.2.3 In unstable situations, that is, when the number of sampled clusters m
is small, an F-correction to the Rao–Scott (first-order) adjustment (4.2.30) may be
helpful. It is given by

F(X2
P(c)) = X2

P(c)

(t − 1)
(4.2.38)

which is now treated as a F-variable with d.f. (t − 1) and ν(t − 1), respectively,
where ν is the d.f. available to estimateV. This statistic is better than the uncorrected
first-order adjusted X2

P(c) in unstable conditions in terms of Type I error performance
(Thomas and Rao 1987). Similar corrections can be made to X2

P(cc) obtaining

F(X2
P(cc)) = X2

P(cc)

(t − 1)
. (4.2.39)

Similarly, one obtains

F(G2
cc) = G2

cc

(t − 1)
. (4.2.40)

Note 4.2.4 For Neyman (multinomial Wald) statistic X2
N in (4.2.6), we have a

mean deff adjusted statistic X2
N (d̂0) = X2

N /d̂0, a first-order Rao–Scott adjusted
statistic X2

N (c) = X2
N /λ̂0, a second-order Rao–Scott adjusted statistic X2

N (cc) =
X2

N (λ̂0, â2) = X2
N (c)/(1 + â2) and an F-corrected first-order Rao–Scott adjusted

statistic F(X2
N (c)) = X2

N (λ̂0)/(t − 1).

4.2.8 Fay’s Jackknifed Statistic

Fay (1979, 1984, 1985) discusses the adjustment of Pearson and likelihood ratio
chi-squared statistics for testing the fit of a model to a cross-classified table of counts
through a jackknifing approach. The jackknifed tests, denoted as X P J and G J are
related to the Rao–Scott corrected tests and can be regarded as an alternative method
of removing or at least reducing the distortion in the complex survey distribution
of X2

P and G2 as characterized by the eigenvalues λi (i = 1, . . . , t − 1). Fay’s
method, though computationally intensive than the other methods, is remarkable for
its simplicity. The technique may generally be applied whenever a standard repli-
cation method, such as the jackknife, bootstrap, or repeated half-samples, provide a
consistent estimate of the covariance matrix of the sample estimates. Softwares for
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implementing the jackknife approach is available and simulation studies by Thomas
and Rao (1987), Rao and Thomas (2003) have shown that the jackknifed tests are
competitive from the point of view of control of type I error and of power.

In the general case, suppose Y represents an observed cross-classification, possi-
bly in the form of estimated population totals for a finite population derived from a
complex sample survey. Fay considered a class of replication methods to be based
on (pseudo) replicates Y + W(i, j), i = 1, . . . , I ; j = 1, . . . , Ji typically based on
the same data as Y. The asymptotic theory for the jackknifed tests requires that

∑

j

W(i, j) = 0 (4.2.41)

for each i . An estimate, cov∗(Y), of the covariance of Y should be given by

cov∗(Y) =
∑

i

bi

∑

j

W(i, j)W(i, j)′ , (4.2.42)

where bi are a fixed set of constants appropriate for the problem.
The standard jackknife may be applied whenY can be represented as the sum of n

iid randomvariablesZ(i). The standard leave-one-out replicates areY(− j) = Y−Z( j).

This may be weighted by the factor n/(n − 1) to get the same expected total as Y
and written as

nY(− j)

n − 1
= Y + Y − nZ( j))

n − 1
. (4.2.43)

The second term on the right of (4.2.43) defines W(i, j) and satisfies (4.2.41). (Here
the subscript i is fixed at 1.) The value (n − 1)/n represents the usual choice for bi .

For calculating the jackknifed values of the test statistics, we have to refit the given
model to the replicates,Y+W(i, j) and recompute the test statistics, X2

P(Y+W(i, j))

or G2(Y + W(i, j)), for these new tables. Using the bi introduced in (4.2.42), the
jackknifed test statistic X P J is defined by

X P J = [(X2
P(Y))1/2 − (K +)1/2]
{V/(8X2

P(Y))}1/2 , (4.2.44)

where

Pi j = X2
P(Y + W(i, j)) − X2

P(Y), (4.2.45)

K =
∑

i

bi

∑

j

Pi j , (4.2.46)
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V =
∑

i

bi

∑

j

P2
i j , (4.2.47)

and K + takes the value K for positive K and zero otherwise.
The jackknifed version of G2, denoted as G2

J is defined in an analogous manner.
Both X P(J ) and G J are asymptotically distributed as

√
2[(χ2

(t−1))
1/2 − (t − 1)1/2] (4.2.48)

and the test is to reject H0 if the observed value of X P J (or G J ) exceeds the upper
100(α)% critical value derived from (4.2.48).

Consider now a two-stage cluster sampling in which a t-category sample of
m units is drawn independently from each of r sampled clusters. Let mi =
(mi1, mi2, . . . , mi,t−1)

′ be the vector of counts in the first t − 1 categories in the
i th sample cluster (i = 1, . . . , r) and m = ∑r

i=1mi = (m1, m2, . . . , mt−1)
′ be the

corresponding vector for the whole sample, i.e., mk = ∑r
i=1mi,k, k = 1, . . . , t − 1.

The total number of observations in the sample is n = ∑
i mi . Let π̂ be a design-

unbiased (or design-consistent estimator) of π with variance, V (π̂) = V/n,V being
a suitable (t − 1) × (t − 1) matrix. Here, π̂ = ∑r

i=1

∑r
i=1mi , sum of r iid random

vectors. Our aim is to test the null hypothesis H0 : π = π0. Then Rao and Thomas
(1987) has shown that Fay’s jackknifed statistics takes the following forms. Let

π̂k(−i) = r
r−1 (π̂k − mik

n ),

Q2(−i) =
t∑

k=1
{π̂k(−i) − πk0}2/πk0,

P(i) = n(Q2(−i) − Q2),

K J = r−1
r

r∑

i=1
P(i),

VJ = r−1
r

r∑

i=1
P2(i)

(4.2.49)

where Q2 = X2
P/n, π̂t = 1 − (π̂1 + · · · + π̂t−1). The Jackknife X2

P is

X2
P(J ) = (X2

P)1/2 − (K J )
1/2

(VJ /8X2
P)1/2

. (4.2.50)

Residual analysis Whenever H0 is rejected, residual analysis can provide an insight
into the nature of the deviations from H0. Standardized residual can be defined as

rk = π̂k−πk0√
vkk/n

=
√

n(π̂k−πk0)√
dkk π̂k (1−π̂k )

.
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It is assumed that rk’s are approximately independent N (0, 1) variables. Cells that
deviate from H0 will be indicated by large values of |rk |.

4.3 Testing for Homogeneity

In this section, we test if the given populations share the same vector of population
proportions. The results are presented following Holt et al. (1980).

Suppose we have independent samples of sizes n1 and n2 from two populations.
Let πi = (πi1,πi2, . . . ,πi t−1)

′ be the population proportions for the i th population,
i = 1, 2. The null hypotheses is

H0 : π1 = π2 = π. (4.3.1)

Suppose that the estimates π̂i = (π̂i1, . . . , π̂i t−1))
′(i = 1, 2) are calculated from the

sample data obtained under an arbitrary sampling design p(s) and

√
ni (π̂i − π) ∼ Nt−1(0,Vi ) (i = 1, 2), (4.3.2)

as sample size ni → ∞.
If we have consistent estimators V̂1 and V̂2 of V1 and V2, respectively, then we

can use a generalized Wald statistic

X2
W H = (π̂1 − π̂2)

′
[
V̂1

n1
+ V̂2

n2

]−1

(π̂1 − π̂2) (4.3.3)

which is asymptotically distributed as χ2
(t−1) under H0. This approach is due to Koch

et al. (1975).
In practice, an estimate of Vi is often not available. This is specially true in

secondary analysis of data that have been collected for other purposes. In such cases,
practitioners often resort to the ordinary Pearson statistic for testing homogeneity,
using the observed cell counts ni j (number of observations in the j th category from
population i) in the case of self-weighting design or, more generally, the estimated
cell counts n̂i j = ni π̂i j , that is, they use the statistic,

X2
P H =

2∑

i=1

t∑

j=1

ni (π̂i j − π̂ j )
2

π̂ j
, (4.3.4)

where π̂ j = (n1π̂1 j + n2π̂2 j )/(n1 + n2), an estimator of πi j under H0(i = 1, 2). The
statistic X2

P H follows χ2
(t−1) under multinomial sampling.
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Now, X2
P H can be written as

X2
P H = n1n2

n1 + n2
(π̂1 − π̂2)

′P̂−1(π̂1 − π̂2), (4.3.5)

where P̂ = Diag.(π̂) − π̂π̂′. Thus X2
P H is equivalent to the modified Wald statistic,

X2
W H in the multinomial case, since then V1 = V2 = P under H0.
It follows, therefore, from Theorem4.2.1, that under a general sampling design

p(s) (and under H0)

X2
P H ∼

t−1∑

k=1

λiτ
2
i (4.3.6)

where τ1, . . . , τt−1 are independent N (0, 1) random variables and the λi ’s are the
eigenvalues of

DH = P−1

(
n2V1 + n1V2

n1 + n2

)

= n2D1 + n1D2

n1 + n2
(4.3.7)

whereDi = P−1Vi is the design effect matrix for the i th population. As in Sect. 4.2.6,
λi may be regarded as the deff of τi under H0.

Since X2
P H is not asymptotically χ2

(t−1) under H0 for general sampling designs, it
is important to find out whether testing X2

P H as χ2
(t−1) can be seriously misleading,

and if so, whether it is possible to modify the statistic in a simple way to give better
results.

Scott and Rao (1981) in a numerical study have shown that that the naive use of
the Pearson chi-squared statistic with a multistage design can give very misleading
results.

For any given set of λi ’s, we can use the approximations given for linear com-
binations of χ2 random variables in Solomon and Stephens (1977) to evaluate the
correct percentage points of the distribution of X2

P H and hence study the effect of
using the percentage points of χ2

(t−1) in their place.
It follows that

λr+s−1 ≤ n2λ1r + n1λ2s

n1 + n2
(r + s ≤ t), (4.3.8)

where λi1 ≥ λi2 ≥ · · · are the ordered eigenvalues of Di (i = 1, 2) and λi ’s are as
given in (4.3.6). In particular, with the proportionally allocated stratified sampling
λi j ≤ 1 ∀ i, j so that λ j ≤ 1 and the Pearson X2

P H test becomes conservative.
Again, let
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λ0 = tr(DH )

t − 1
= n2tr(D1) + n1tr(D2)

(n1 + n2)(t − 1)

= n2λ̄1 + n1λ̄2

n1 + n2
(4.3.9)

where λ̄i = ∑t−1
j=1λi j/(t − 1), (i = 1, 2) and λ0 is the overall average eigenvalue.

As has been shown (Rao and Scott 1979), tr(Di ) = ∑t−1
k=1ni Vikk/πk(1 − πk)

where Vikk is the variance of π̂ik under arbitrary sampling design p(s); hence, if only
the cell variances var (π̂ik) of the two populations are known, λ̄1 and λ̄2 and hence
λ0 can be calculated.

Alternatively, as has been shown by Scott and Rao (1981)

(t − 1)λ0 = ñ
2∑

i=1

t−1∑

k=1

(1 − πk)dik/ni

where

dik = ni V ar(π̂ik)

πk(1 − πk)

is the design effect for the (i, k)th cell and ñ = (n1n2)/(n1 + n2). Thus, λ0 is a
weighted average of the individual cell design effects.

As before, a modified X2
P H statistic is X2

P H(c) = X2
P H/λ̂0 which is distributed

asymptotically as χ2
(t−1) under H0. Rao and Scott (1979), Holt et al. (1980) have

shown that treating X2
P H(c) as a χ2

(t−1) random variable under H0 gives a very good
approximation. Note that If one sample is much smaller in size than the other, then
λ̂0 will be essentially equivalent to the estimated average deff of the smaller sample.

Another possible approximation due to Scott and Rao (1981) is as follows. Let

n∗
i = ni/

ˆ̄λi , where λ̄i = tr(Di )/(t − 1). n∗
i can be regarded as the approximate

sample size that is needed to get the same average accuracy as the actual design
for all the t classes. Replacing in X2

P H , the cell counts n̂i j by n̂∗
i j = n∗

i π̂i j we
get another modified Pearson statistic X2∗

P H . It can be shown that X2∗
P H has the same

asymptotic distribution as X2
P H(c). Note that in this case, we are implicitly estimating

πk by (n∗
1π̂1k + n∗

2π̂2k)/(n∗
1 + n∗

2) which may be preferable to π̂k in small samples
(k = 1, . . . , t).

We can directly extend these results to the problem of testing of homogeneity
of r populations. Suppose there are r populations and an independent sample of
size ni is selected from the i th population by an arbitrary sampling design p(s).
Let π̂i = (π̂i1, . . . , π̂i t−1)

′ denote the vector of estimated proportions from the i th
sample and suppose that

√
ni (π̂i − π) →L Nt−1(0,Vi ), (4.3.10)

as ni → ∞, i = 1, . . . , r and π = (π1, . . . ,πt−1)
′.
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The usual chi-square test of homogeneity is

X2
P H =

r∑

i=1

t∑

j=1

ni (π̂i j − π̂ j )
2

π̂ j
(4.3.11)

where π̂ j = ∑
i ni π̂i j/

∑
i ni , an estimate of π j under H0. With independent multino-

mial sampling in each population, X2
P H in (4.3.11) has asymptotically a χ2

((r−1)(t−1))

distribution. We now study the behavior of X2
P H under a more general sampling

design.

Theorem 4.3.1 Under any sampling design p(s), the asymptotic distribution of
X2

P H is

X2
P H ∼

(r−1)(t−1)∑

i=1

λiτ
2
i (4.3.12)

where τ1, τ2, . . . are independent N (0, 1) random variables and λi ’s are the nonzero
eigenvalues of the matrix

� =

⎡

⎢
⎢
⎣

(1 − f1)D1 − f1D2 . . . − f1Dr

− f2D1 (1 − f2)D2 . . . − f2Dr

. . . . . .

− frD1 − frD2 . . . (1 − fr )Dr

⎤

⎥
⎥
⎦ (4.3.13)

where fi = lim ni
n , n = ∑

i ni and Di = P−1Vi is the design effect matrix for the i th
population (i = 1, . . . , r).

Proof Suppose that the sample sizes ni and n increase simultaneously in such a way
that lim ni

n = fi , 0 < fi < 1(i = 1, . . . , r).
Let π̂0 be the (t − 1)r × 1 vector, π̂0 = (π̂′

1, π̂
′
2, . . . , π̂

′
r )

′. Let us define π0 =
(π′,π′, . . . ,π′)′ where π = (π1, . . . ,πt−1)

′. It follows by the assumption (4.3.10)
that

√
n(π̂0 − π0) →L N (0,V0) as n → ∞ (4.3.14)

wheren = ∑
i ni andV0 = ⊕r

k=1(Vi/ fi ) and the symbol⊕denote the block-diagonal
matrix.

It can be shown that X2
P H in (4.3.11) has the same asymptotic distribution as

X̃2
P H =

r∑

i=1

t∑

j=1

ni (π̂i j − π̂ j )
2

π j
(4.3.15)
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under the assumption (4.3.10). We can write X̃2
P H as

X̃2
P H = n(π̂0 − π0)

′B(π̂0 − π0) (4.3.16)

where

B = F ⊗ P−1, P = Diag. (π) − ππ′,F = Diag.(f) − ff ′, (4.3.17)

and f = ( f1, f2, . . . , fr )
′ and the symbol ⊗ denotes the direct product. Note that

rank (B) = rank (F) × rank (P) = (r − 1)(t − 1).
It follows from Theorem4.2.1 that

X̃2
P H ∼

(t−1)(r−1)∑

k=1

λiτ
2
i (4.3.18)

where τ1, τ2, . . . are asymptotically independent N (0, 1) random variables and
λ1,λ2, . . . are eigenvalues of BV0 = �. Hence the proof. �

Note 4.3.1 As usual, the Pearson test X2
P H is conservative with proportionally allo-

cated stratified sampling.
The modified chi-square statistic X2

P H(c) = X2
P H/λ̄0 where

(r − 1)(t − 1)λ̄0 = tr(�) =
r∑

i=1

(1 − fi )tr(Di ), (4.3.19)

that is,

λ̄0 =
r∑

i=1

(1 − fi )λ̄i0

r − 1

=
r∑

i=1

t∑

k=1

(1 − fi )(1 − πk)di,k

(r − 1)(t − 1)
, (4.3.20)

where di.k is the deff of the (i, k)th cell and λ̄i0 is the average design effect for the
i th population. Therefore, λ̄0 can be calculated from the information about the cell
variances for each population. The corrected statistic X2

P H(c) is again treated as a
χ2 variable with (r − 1)(t − 1) d.f. under H0. It may be noted that as r becomes
large, λ̄0 will tend toward the unweighted average of the λ̄i0’s provided no single ni

dominates the others. λ̄0 is simply a weighted average of population design effects
and should stay relatively stable as r increases.

Like the goodness-of-fit case, a second-order correction X2
P H(cc) = X2

P H(c)/

(1 + â2) can be obtained when â2 is given by (4.2.34) and making the appropri-
ate changes. Corresponding modifications to G2 can be similarly defined.
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Residual analysis: Standardized residuals which have an approximately standard
normal distribution under H0 are given by

r̂i j = (π̂i j − π̂ j )/

√
ˆV ar(π̂i j − π̂ j ), i = 1, . . . , r; j = 1, . . . , t (4.3.21)

where

ˆV ar(π̂i j − π̂ j ) = 1

n2
(π̂ j (1 − π̂ j ))

{
n(n − 2ni )

ni
d̂i j +

r∑

l=1

nl d̂l j

}

(4.3.22)

4.3.1 A Simple Method for Binary Data
from Cluster Sampling

Suppose there are I populations of clusters each receiving a treatment. From the i th
population mi clusters are selected at random and suppose that among the ni j units
in j th cluster so selected xi j units are affected by the treatment and the remaining
(ni j − xi j ) units are not affected. Let πi be the unknown proportion of affected units
in the i th population and π be the unknown overall proportion of affected units in
this set-up.

For the i th population a natural estimator of πi is π̂i = x̄i/n̄i where x̄i =∑mi
j=1xi j/mi and n̄i = ∑mi

j=1ni j/mi . Since π̂i is the ratio of two means, an esti-
mator of variance of π̂i for large mi is

vi = mi

(mi − 1)n2
i

mi∑

j=1

r2i j (4.3.23)

where ri j = xi j − ni j π̂i (Cochran 1977). Under mild regularity conditions on the
population variances of ni j ’s and ri j ’s, it follows that (π̂i −πi )/

√
vi is asymptotically

N (0, 1) as mi → ∞. Also, vi is a consistent estimator of V (π̂) in the sense that
mi [vi − V (π̂i )] → 0 as mi → ∞. Dividing vi by the estimated binomial variance,
we get the design effect (deff) of π̂i ,

di = (nivi )/[π̂i (1 − π̂i )]. (4.3.24)

Again, ñi = ni/di is the effective sample size. Let x̃i = xi/di .

We transform the data from (xi , ni ) to (x̃i , ñi ) and treat x̃i as a binomial variate
with parameters (ñi ,πi ). Now the estimated binomial variance of π̃i = x̃i/ñi = π̂i

is given by π̃i (1 − π̃i )/ñi = vi which is the same as the estimated variance of
π̂i and since (π̃i − πi )/[π̃i (1 − π̃i )/ñi ]1/2 = (π̂i − πi )/

√
vi , it is asymptotically

N (0, 1). Therefore, tests based on (x̃i , ñi ) leads to the asymptotically (as mi → ∞)
correct results. Now (

√
n1(π̃1 − π1), . . . ,

√
nI (π̃I − πI ))

′ tends to be distributed as
NI−1(0,�) where � is the diagonal matrix with πi (1 − πi ) in its i th diagonal. Rao
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and Scott (1992) therefore conclude that replacing (xi , ni ) by (x̃i , ñi ) or equivalently
replacing (ni , π̂i ) by (ñi , π̃i ) in any binomial-based procedure gives asymptotically
correct results.

Testing homogeneity: The hypothesis of homogeneity is given by H0 : π1 = · · · =
πI . The asymptotic distribution of the standard chi-square statistic

X2
P =

I∑

i=1

(xi − ni π̂)2/[ni π̂(1 − π̂)] (4.3.25)

with π̂ = ∑
i xi/

∑
i ni , will be a weighted sum of (I − 1) independent χ2

(1) random
variables with weights depending on the population deff Di = ni V (π̂i )/[πi (1−πi )].
This weights will be larger than 1 because of positive intraclass correlation among
the units within the same cluster so that the actual type I error rate would be larger
than the nominal level. Replacing (xi , ni ) by (x̃i , ñi ) in (4.3.25), we get the adjusted
chi-square statistic

X
′2
P =

I∑

i=1

(x̃i − ñi π̃)2/[ñi π̃(1 − π̃)]. (4.3.26)

Under H0, X
′2
P is asymptotically distributed as aχ2

(I−1) randomvariable. In the special
case when Di = D ∀ i , we may use x̃i = xi/d and ñi = ni/d where d is pooled
estimator given by

(I − 1)d =
I∑

i=1

(1 − fi )
π̂i (1 − π̂i )

p̂(1 − p̂)
di , (4.3.27)

fi = ni/n and n = ∑
i ni . In this case X P

′2 reduces to X2
P/d.

EarlierDonner (1989) suggested amodified chi-square under a common intraclass
correlation model.

We now consider tests of independence in a two-way contingency table. However,
since this hypothesis involves a number of hypotheses relating to linear functions of
πk’s, we shall first consider tests of general linear hypotheses and effects of survey
designs on these tests.

4.4 Effect of Survey Design on Classical Tests of General
Linear Hypotheses

Suppose that the hypothesis of interest is

H0 : hi (π) = 0, i = 1, . . . , b. (4.4.1)

We assume the following regularity conditions on hi (π).
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(i) ∂hi (π)

∂π j
is a continuous function in the neighborhood of true π ∀ i, j ;

(ii) The matrix H(π) = (( ∂hi (π)

∂π j
))b×(t−1) has rank b.

Now, by Taylor-series expansion,

h(π̂) ≈ h(π) + H(π)(π̂ − π), (4.4.2)

retaining only the terms up to first-order derivative. Hereh(π) = (h1(π), . . . , hb(π))′
and h(π̂) = (h1(π̂), . . . , hb(π))′.

As in Sect. 4.2.5, we assume that
√

n(π̂ − π) ∼ Nt−1(0,V) where V/n is the
covariance matrix of π̂ under a general sampling design p(s).

Hence, it follows that
√

n(h(π̂) − h(π)) is asymptotically b-variate normal
Nb(0,HVH′). Therefore, if a consistent estimator V̂ of V is available, we can use
the corresponding generalized Wald statistic

X2
W (h) = nh(π̂)′(ĤV̂Ĥ−1)−1h(π̂) (4.4.3)

where Ĥ = H(π̂), which is distributed asymptotically as χ2
(b) under H0.

However, no estimate of V or HVH′ is generally available and the researcher
assumes the multinomial sampling and uses the multinomial covariance matrix P =
Dπ − ππ′ in place of V. The test statistic is then

X2
P(h) = nh(π̂)′(Ĥ0P̂0Ĥ0)

−1h(π̂) (4.4.4)

where Ĥ0P̂0Ĥ′
0 is any consistent estimator of H0P0H′

0 under the general sampling
design when H0 is true. The asymptotic distribution of X2

P(h) follows directly from
Theorem4.2.1.

Theorem 4.4.1 Under the null hypothesis H0 : h(π) = 0, X2
P(h) = ∑b

k=1δ0kψk

where the δk’s are the eigenvalues of (HPH′)−1(HVH′); δ1 ≥ δ2 ≥ · · · ≥ δb >

0; ψ1, . . . ,ψb are independent χ2
(1) random variables and δ0k is the value of δk

under H0.
If HVH′ or HPH′ are not known, their estimates are to be used throughout. �

As before the δk’s can be interpreted as the design effects of linear combinations Lk

of the components of Hπ̂. Obviously, λ1 ≥ δk ≥ λt−1 for k = 1, . . . , b, where λ’s
are the eigenvalues of P−1V, since the Lk’s are particular linear combinations of the
πk’s.

As before, X2
P(h)/δ̃ with δ̃ ≥ δ01 provides an asymptotically conservative test,

when we can provide such an upper bound δ̃. For stratified random sampling with
proportional allocation δk ≤ 1 ∀ k and the conventional test X2

P(h) is asymptotically
conservative.

Following Sect. 4.3, we obtain a good approximation test by treating X2
P(h)/δ̂0

as a χ2
(b) random variable, where δ̂0 = ∑b

k=1δ̂k/b and δ̂k is a consistent estimate of

δk under H0. However, in general, δ̂0 requires the knowledge of full matrix V̂. Tests
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based on X2
P(h)/d̂0 have been suggested by Fellegi (1980) and others, where d̂0 is

the estimated average cell deff.

4.5 Tests of Independence in a Two-Way Table

Suppose a contingency table has r rows and c columns and let π = (π11,π12, . . . ,

πrc−1)
′ denote the vector of cell-probabilities πi j ,

∑r
i=1

∑c
j=1πi j = 1. Let πi0 =

∑c
j=1πi j ,π0 j = ∑r

i=1πi j . As usual, we assume that we have estimated probabilities
π̂ = (π̂11, π̂12, . . . , π̂rc−1)

′ and that

√
n(π̂ − π) →L Nrc−1(0,V). (4.5.1)

The hypothesis of interest is

H0 : hi j (π) = πi j − πi0π0 j = 0, i = 1, . . . , r − 1; j = 1, . . . , c − 1. (4.5.2)

The usual Pearson statistic for testing H0 is

X2
P I = n

r∑

i=1

c∑

j=1

(π̂i j − π̂i0π̂0 j )
2

(π̂i0π̂0 j )
. (4.5.3)

Here π̂i j is the estimate of πi j in the unrestricted case and π̃i j = π̂i0π̂0 j is the estimate
of πi j under the null hypothesis. Now, (4.5.3) can be written as

X2
P I = nh(π̂)′(P̂−1

r ⊗ P̂−1
c )h(π̂). (4.5.4)

Here the symbol ⊗ denotes the direct product operator, h(π̂) = (h11(π̂), . . . ,

h(r−1)(c−1)(π̂))′, P̂r = value of Pr = Diag. (πr ) − πrπ
′
r for πr = π̂r = (π̂10, . . . ,

π̂r−10)
′; P̂c = value of Pc = Diag. (πc) − πcπ

′
c for πc = π̂c = (π̂01, . . . , π̂0c)

′.
The generalized Wald statistic for testing H0 is given by

X2
W I = nh(π̂)′V̂−1

h h(π̂) (4.5.5)

where Vh/n is the estimate of the covariance matrix Vh/n = HVH/n of h(π̂). The
statistic X2

W I is approximately distributed as χ2
(b) under H0 for sufficiently large n,

where b = (r − 1)(c − 1). The estimator V̂h/n, if the sampling design does not
permit a direct estimate, can be obtained by the familiar linearization method, the
balanced repeated replication method, jackknife method, or any other sample-reuse
method.

The hypothesis (4.5.2) is a special case of (4.4.1) with t = rc and b = (r −1)(c−
1). It is straightforward to show that when H0 is true and the sampling distribution
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is multinomial, HPH′ reduces to Pr ⊗ Pc. Thus X2
P I is of the form X2

P(h) given by
(4.4.4) and hence by Theorem4.2.1, X2

P I ∼ ∑b
i=1δ0iψi under H0 where the δi ’s are

the eigenvalues of the generalized deff matrix

(P−1
r ⊗ P−1

c )(HVH′) = (P−1
c ⊗ P−1

r )Vh = DI (say) (4.5.6)

and δ0i is the value of δi under H0 and ψ’s are independent χ2
(1) variables. Again, the

δi ’s can be interpreted as the design effects of the components of Hπ̂. As usual, this
means that the ordinary Pearson chi-square test is conservative for proportionally
allocated stratified sampling.

A first-order correction to the Pearson statistic can be obtained by dividing X2
P I

by δ̂0, the mean of the estimated eigenvalues of the generalized deff matrix DI and
the first-order corrected statistic is

X2
P I (c) = X2

P I

δ̂0
(4.5.7)

where

δ̂0 =
r∑

i=1

c∑

j=1

v̂i j (h)/(bπ̂i0π̂0 j )

=
r∑

i=1

c∑

j=1

(1 − π̂i0)(1 − π̂0 j )δ̂i j/b, (4.5.8)

v̂i j (h)/n is the estimator of variance of hi j (π̂) and δ̂i j is the estimated deff of hi j (π̂);
that is,

δ̂i j = v̂i j (h)/[π̂i0π̂0 j (1 − π̂i0)(1 − π̂0 j )]. (4.5.9)

Hence, X2
P I (c) requires only the knowledge of the deff’s of hi j (π̂)’s, which may not

be generally available. Information on V̂h is never available with published data. We
can only hope to have information on the diagonal elements of V at best.

Scott and Rao (1981) have stated that if the design effects of π̂i j are not too
variable, the δ̂0 might be expected to be close to

λ̂0 =
r∑

i=1

c∑

j=1

vi j/[(rc − 1)π̂i j ]

=
r∑

i=1

c∑

j=1

(1 − π̂i j )d̂i j/(rc − 1) (4.5.10)
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where vi j = V̂ (π̂i j ) and d̂i j is the estimated deff of the individual cell-estimators π̂i j .
However, if b is large, even vi j ’s would be difficult to come by.

Estimates of δ̂0, the mean of the eigenvalues of D̂I , which depend only on the
partial information on V̂ has been given by Rao and Scott (1982, 1984), Bedrick
(1983) and Gross (1984). This is given by

δ̂0 = 1

(r − 1)(c − 1)

r∑

i=1

c∑

j=1

π̂i j (1 − π̂i j )

π̂i0π̂0 j
d̂i j −

r∑

i=1

(1 − π̂i0)d̂A(i) −
c∑

j=1

(1 − π̂0 j )d̂B( j)

(4.5.11)

where

d̂i j = V̂ (π̂i j )n/π̂i j (1 − π̂i j ) (4.5.12)

is the (i, j)th cell deff and

d̂A(i) = V̂ (π̂i0)n/π̂i0(1 − π̂i0)

d̂B( j) = V̂ (π̂0 j )n/(π̂0 j (1 − π̂0 j ))

(4.5.13)

are the deffs of the i th row and j th column totals, respectively. The first-order cor-
rected test now consists of referring X2

P I (c) = X2
P I /δ̂0 to χ2

(r−1)(c−1)(α).

A second-order corrected statistic is given by X2
P I (cc) = X2

P I (c)/(1 + â2) where

â2 is given by (4.2.34) with δ̂0 replaced by (4.5.11),
∑

δ̂2i replaced by

(r−1)(c−1)∑

k=1

δ̂2k =
r−1∑

i,i ′

c−1∑

j, j ′
v̂2

h,i j,i ′ j ′/(π̂i0π̂0 j )(π̂i ′0π̂0 j ′), (4.5.14)

and (t−1) replaced by (r−1)(c−1), when v̂h,i j,i ′ j ′ is the element of V̂h corresponding
to the covariance of π̂i j and π̂i ′ j ′ . The second-order procedure refers to X2

P I (cc) to χ2
ν

where ν = (r − 1)(c − 1)/(1 + â2).

Similarly an F-based version of the Wald test given in (4.5.5) is given by

F1(X2
W I ) =

(
f − (r − 1)(c − 1) + 1

f (r − 1)(c − 1)
X2

W I

)

(4.5.15)

to an F-distribution on (r − 1)(c − 1) and ( f − (r − 1)(c − 1) + 1) degrees of
freedom.

Residual Analysis Standardized residuals that have approximate standard normal
distributions under H0 are given by

r̂i j = ri j/

√

d̂h,i j (4.5.16)
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where the

ri j = ĥi j/{π̂i0π̂0 j (1 − π̂i0)(1 − π̂0 j )}1/2 (4.5.17)

are the standardized residuals defined under the assumption that the sampling design
is srswr and

d̂h,i j = v̂h,i j/{n−1π̂i0π̂0 j (1 − π̂i0)(1π̂0 j )}1/2 (4.5.18)

are the estimated deffs of the residuals ĥi j under H0.

Note 4.5.1 In the case ofmultinomial sampling, it iswell-known that the test statistic
for independence and homogeneity are identical; but this property does not carry over
to more complex sampling designs and the effect on the asymptotic distribution of
Pearson statistic can be very different in the two situations (Holt et al. 1980).

Note 4.5.2 Bedrick (1983) considered an asymptotic mean correction to X2
P I and

the corresponding G2
I under a log-linear model. The log-linear model has been con-

sidered in detail in Sect. 5.2.

Consider the problem of testing for independence in a two-way cross-classification
of variables R and C having r and c levels, respectively. The model of interest is
πi j = πi0π0 j (i = 1, . . . , r; j = 1, . . . , c). The corresponding log-linear model is

logπi j = u + u R(i) + uC( j) (i = 1, . . . , r; j = 1, . . . , c). (4.5.19)

Let π̂i j and π̃i j = π̂i0π̂0 j denote the estimate of the cell-proportion πi j in the unre-
stricted case and under null hypothesis, respectively. The Pearson statistic for testing
independence is given by X2

P I in (4.5.3). The log-likelihood ratio statistic G2 is

G2
I = 2n

r∑

i=1

c∑

j=1

π̂i j log(
π̂i j

π̃i j
)

= 2n

⎡

⎣
r∑

i=1

c∑

j=1

π̂i j log π̂i j −
r∑

i=1

π̂i0 log π̂i0

c∑

j=1

π̂0 j log π̂0 j

⎤

⎦ . (4.5.20)

The asymptotic mean of X2
P I and G2

I can be calculated by calculating the asymptotic
mean of the first nonzero term in a Taylor-series expansion of G2

I (π̂) about G2(π).
Assuming that the model of independence is correct and

∑
i, j π̃i j = 1, it can be

http://dx.doi.org/10.1007/978-981-10-0871-9_5
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shown that the constant and linear terms are zero. It follows that the quadratic terms
reduce to

n

⎡

⎣
∑

i

∑

j

(π̂i j − πi j )
2

πi j
−

∑

i

(π̂i0 − πi0)
2

πi0
−

∑

j

(π̂0 j − π0 j )
2

π0 j

⎤

⎦ . (4.5.21)

Therefore,

E[G2
I (π̂)] =

∑

i, j

V ar(
√

nπ̂i j )

πi j
−

∑

i

V ar(
√

nπ̂i0)

πi0
−

∑

j

V ar(
√

nπ̂0 j )

π0 j

= (r − 1)(c − 1)λ̄ (say). (4.5.22)

Let dRC(i, j), dR(i) and dC ( j) denote the (i, j)th cell design effect, the i th cell design
effect for the row variable R, and the j th cell design effect for the column variable
C , respectively. Then

E{G2
I (π̂)} =

∑

i, j

(1 − πi j )dRC(i, j) −
∑

i

(1 − πi0)dR(i) −
∑

j

(1 − π0 j )dC( j)

= (rc − 1)d̄RC − (r − 1)d̄R − (c − 1)d̄C (4.5.23)

where

d̄Rc = ∑

i, j
(1 − πi j )dRC (i, j)/(rc − 1),

d̄R = ∑

i
(1 − πi0)dR(i)/(r − 1),

d̄C = ∑

j
(1 − π0 j )dC( j)/(c − 1)

(4.5.24)

are weighted averages of cell and marginal cell design effects. If as in Rao and Scott
(1981) we need first moment adjustment to X2

P I (or G2
I ), consistent estimates of

these design effects are required. If r = c = 2, X2
P I /λ̄ (or G2

I /λ̄) ∼ χ2
(1).

Note: Nandram et al. (2013) considered a Bayesian approach to the study of inde-
pendence in a two-way contingency table which is obtained from a two-stage cluster
sampling design. If a procedure based on single-stage simple random sampling is
used to test for independence, the resulting p-value may be too small, thus inflating
the type I error of the test. In such situations Rao–Scott corrections to the standard
chi-square or likelihood ratio tests provide appropriate inference. For smaller sur-
veys, however, Rao–Scott corrections may not be accurate, mainly due to the fact
that the chi-square tests are inaccurate in such cases. The authors use a hierarchi-
cal Bayesian model to convert the observed cluster sample into a simple random
sample. This procedure provides surrogate samples which can be used to derive the
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distribution of the Bayes factor. The authors demonstrate their procedure using an
example and also provide a simulation study to establish that their methodology is
a viable alternative to the Rao–Scott approximation for relatively small two-stage
cluster sampling.

4.6 Some Evaluation of Tests Under Cluster Sampling

Thomas et al. (1996) made a comparative study of different tests of indepen-
dence on two-way tables under cluster sampling. Let π = (π11, . . . ,πrc−1)

′,πR =
(π10, . . . ,πr−10)

′,πC = (π01, . . . ,π0c−1)
′.

The independence hypothesis can be expressed in two equivalent forms:

(i) H0 : hi j = πi j − πi0π0 j = 0, i = 1, . . . , (r − 1); j = 1, . . . , (c − 1);

(ii) the log-linear form: H0 : ln(πi j ) = μ + μ1(i) + μ2( j), i = 1, . . . , (r − 1); j =
1, . . . , (c − 1).

The different formulations give rise to different statistics for testing of indepen-
dence hypothesis. We consider three different sets of generalized design effects.

(i) λR(k), k = 1, . . . , (r − 1), the eigenvalues of the design-effect matrix DR =
P−1

R VR arising from the test of goodness-of-fit on the row-marginals πR . Here
VR denotes the covariance matrix of a consistent estimate of πR,PR denotes
the corresponding multinomial covariance matrix. The mean of the λR(k)’s will
be denoted by λ̄R .

(ii) λC(k), k = 1, . . . , c−1 the eigenvalues of the design-effect matrix arising from
the test of goodness-of-fit on column marginals πC . The mean of the λC(k)’s
will be denoted as λ̄C .

(iii) δk, k = 1, . . . , (r −1)(c −1), the eigenvalues of the generalized design-effects
matrix DI corresponding to the test of independence. DI may be expressed in
the form

DI = n(C′D−1
π C)−1(C′D−1

π VD−1
π C) (4.6.1)

where n is the sample size, C is the completion of the design matrix X for
the logarithmic form of the independence hypothesis (expressed in the matrix
form),V is the covariance matrix of a consistent estimate of π,Dπ is a diagonal
matrix with elements πi i = πi0π0i on its diagonal. The mean of the δk’s will
be denoted by δ̄. A measure of variation among δk’s will be denoted as a(δ) =
[∑ν

i=1δ
2
i /νδ̄2 − 1]1/2 where ν = (r − 1)(c − 1). (For a proof of (4.6.1), see

(5.3.3).)

Several models of two-stage cluster sampling were considered, including Brier’s
(1980) Dirichlet multinomial model and its extensions (Thomas and Rao 1987; Scott
and Rao 1981). A new model, based on a ‘modified logistic normal’ distribution was
developed for use in the study.

http://dx.doi.org/10.1007/978-981-10-0871-9_5
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In their Monte Carlo study Thomas et al. (1996) considered, among others, the
following statistics for row-column independence.

(i) The Pearson X2
P and the log-likelihood G2 tests;

(ii) First-order Rao–Scott correction to X2
P and G2, denoted by X2

P(c) (vide
(4.2.30)) and G2

c (vide (4.2.32));
(iii) F-corrected Rao–Scott statistic X2

P(c) and G2
c , denoted as F(X2

P(c)) (vide
(4.2.38)) and F(G2

c).
(iv) The second-order Rao–Scott corrected statistics X2

P(cc) (vide (4.2.33)) and G2
cc

(vide (4.2.37)).
(v) F-corrected tests F(X2

P(cc)) and F(G2
cc);

(vi) Fellegi-corrected X2
P , denoted as X2

P(d̂0) (vide (4.2.29));
(vii) Fay jackknifed procedures applied to X2

P and G2, denoted as X2
J and G2

J ,
respectively (Fay 1985);

(viii) Two Wald procedures based, respectively, on the residual and log-linear form
of the independence hypothesis;

(ix) F-corrected versions of the above two Wald procedures (vide Sect. 4.2.2).

Thomas and Rao (1987) in their Monte Carlo study compared the performances of
X2

P , G2, X2
W , F1(X2

W ), X2
P(c), F(X2

P(c)), X2
P(d̂0), F(G2

c), X2
P(cc), G2

(cc), X2
P(J ) and

G2
J with respect to control of Type I error and the power of the test. The mod-

ified statistic F(X2
P(c)) performs better than X2

P(c) in respect of control of type I
error. Since both the statistics require the same amount of information, namely the
estimated cell deff’s, one may use F(X2

P(c)) in preference to X2
P(c).

Among the statistics X2
P(c), X2

J and F1(X2
W ) which require detailed information,

both X2
P(c) and X2

J perform better than F1(X2
W ). Their Monte Carlo study clearly

shows that the F-version of theWald statistic F1(X2
W ) is much better than the original

statistic X2
W . The performance of X2

J and X2
P(cc) are similar, although X2

P(cc) seems
to have a slight advantage in the case of varying deff.

As is well known by now, analysis of categorical data from complex surveys,
using classical statistical methods without taking into account the complex nature of
the data may lead to asymptotically invalid statistical inferences. The methods that
have been developed to account for the survey design require additional informa-
tion such as survey weights, design effects or cluster identification. Benhim and Rao
(2004) developed alternative approaches that undo the complex data structures using
repeated inverse sampling so that standard methods can be applied to the general-
ized inverse sampling data. The authors proposed a combined estimating equation
approach to analyze such data in the context of categorical survey data. For simplicity,
they focussed on the goodness-of-fit statistic under cluster sampling.
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4.7 Exercises and Complements

4.1 Let π = (π1, . . . ,πt )
′ and define P and V accordingly. Prove the following

results.

(i) 1′π = 1π̂ = 1;
(ii) Dπ1 = π,D−1

π π = 1;
(iii) V1 = 0 = VD−1

π π since V is a singular matrix. In particular, show that P1 =
PD−1

π π = 0;
(iv) Observe that

PD−1
π V = (Dπ − ππ′)D−1

π V = V − ππ′D−1
π V

= V − π1′V

= V − π(V1)′ = V.

Similarly, note that VD−1
π P = V; in particular, PD−1

π P = P so that D−1
π is a

generalized inverse of P.

4.2 Show that in the case of stratified random sampling,

E(X2
P) = t − 1 −

t∑

k=1

1

nπk

∑

h

nh(πhk − πk)
2 �= t − 1

where nh and πhk are, respectively, the sample size and the proportion of units in
category k within stratum h and πk is the population proportion in category k. Hence,
show that the asymptotic distribution of X2

P as χ2
(t−1) does not hold in this case.

(Fellegi 1980)

4.3 Prove the relation (4.2.12).

4.4 Prove the relation (4.2.15).

4.5 Prove the relation (4.2.17).

4.6 Prove the relation (4.2.31).

4.7 Prove the relation (4.3.19).

4.8 Suppose that the survey population consists of R psu’s (clusters) with Mi sec-
ondaries in the i th psu (i = 1, . . . , R;∑

i Mi = N ). Let Ziλk = 1(0) if the λth
population unit in the i th psu is in category k (otherwise), λ = 1, . . . , Mi ; i =
1, . . . , R; k = 1, . . . , t .

Following Altham (1976) assume that the random variable Ziλk’s in different
clusters are independent and
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E(Ziλk) = πk

E(Ziλk − πk)(Ziμk ′ − πk ′) = bkk ′, λ �= μ
(i)

where E denotes expectation with respect to model.
A two-stage sample s is denoted by (s1, . . . , sr ) where sl is a subsample of size

ml from the lth sampled psu and r is the number of sampled psu’s (
∑r

l=1ml = n).
Show that the sample cell frequencies can be written as

nk =
r∑

l=1

ml∑

h=1

Zlhk =
r∑

l=1

mlk . (i i)

Then show the following results:
ε(nk/n) = πk for every s, i.e., the estimator π̂k = nk/n is model-unbiased for πk .

Also, the model-covariance matrix of n = (n1, . . . , nt−1)
′ for a given s is

Vs = � + (m0s − 1)B (i i i)

where� = Diag. (π)−ππ′,B = (bkk ′),π = (π1, . . . ,πt−1)
′ andm0s = ∑

∈sm2
l /n.

A general hypothesis on model parameters π is given by

H0 : hi (π) = 0, i = 1, . . . , b (iv)

and the chi-square test is similar to (4.4.4). Since the mlk observations s in different
clusters are independent, it follows that

√
n(π̂−π) ∼ N (0,Vs) for large r and hence√

n(h(π̂)−h(π)) ∼ N (0,HVsH′)whereH = H(π). Hence, show byTheorem4.2.1
that X2

P(h) ∼ ∑b
i=1δ̂0iψi where δ̂i = 1 + (m0s − 1)ρ̂i (h) and ρ̂i (h)’s are the

eigenvalues of (H�H′)−1(HBH′). It follows that H�H′ − HBH′ is nonnegative
definite so that ρ̂i (h) ≤ 1 ∀ i = 1, . . . , b. Hence, obtain a conservative test by
treating χ2(h)/m0s as a χ2

(b) variable under H0.
(Rao and Scott 1981)

4.9 Consider the usual chi-squared statistic for testing independence in a r × c table,

X2
P I = n

∑

i

∑

j

(π̂i j − π̂i0π̂0 j )
2

π̂i0π̂0 j
(i)

where the notations have the usual meanings. Assume that

√
n(π̂ − π) →L N (0,V) (i i)

where π = (π11,π12, . . . ,πrc)
′ and π̂ = (π̂11, π̂12, . . . , π̂rc)

′ are the rc×1 vectors of
cell proportions and their estimates. HereV is a positive semi-definite matrix of rank
rc − 1 with each row and column summing to zero. Show that X2

P I can be written as
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X2
P I = nh(π̂)′(Diag. (π̂))−1h(π̂I ), (i i i)

where h(π) and πI are the rc × 1 vectors whose co-ordinates are given by

hi j (π) = πi j − πi0π0 j , (iv)

(πI )i j = πi0π0 j . (v)

If H = ∂h(π)/∂π is the rc × rc matrix of partial derivatives, show that

√
n(h(π̂) − h(π)) →L N (0,HVH′). (vi)

From (iii) and (vi) show that

X2
P I ∼

(r−1)(c−1)∑

i=1

δiτ
2
i (vi i)

where the τi ’s are asymptotically independent N (0, 1) variables and the δi ’s are the
nonzero eigenvalues of

DI = (Diag. (πI ))
−1HVH′. (vi i i)

Show that D has rank (r − 1)(c − 1). Holt et al. (1980) suggested a modified test

X2
P I (c) = X2

P I

δ̄
(i x)

where δ̄ = ∑
iδi/(r −1)(c−1). Holt et al. suggested that to calculate δ̄ an expression

in terms of variances of proportional estimates only will be desirable. Show that

δ̄ = d̄k = 1

(c − 1)
d̄r − 1

(r − 1)
d̄c (i x)

where

d̄k = 1

(r − 1)(c − 1)

∑

i

∑

j

vi j i j

πi0π0 j
(x)

and d̄r , d̄c are the average design effects for the rows and column proportions and
are given by
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d̄r = 1
c−1

r∑

i=1

v
(r)
i i

πi0
,

d̄c = 1
c−1

c∑

j=1

v
(c)
j j

π0 j
,

v
(r)
i i = ∑

k,l
vikil , v

(c)
j j = ∑

k,l
vk jl j .

(Gross 1984)



Chapter 5
Analysis of Categorical Data Under
Log-Linear Models

Abstract This chapter considers analysis of categorical data from complex surveys
using log-linear models for cell probabilities π in contingency tables. Noting that
appropriate ML equations for the model parameter θ and hence of π(θ) are difficult
to obtain for general survey designs, ‘pseudo-MLE’s have been used to estimate the
cell probabilities. The asymptotic distributions of goodness-of-fit (G-o-F) statistic
X2

P , and likelihood ratio (LR) statistic G
2 have been derived and these test statistics

have been modified using Rao-Scott (J Amer Stat Assoc 76: 221–230, 1981, Ann
Stat 12: 46–60, 1984) first- and second-order corrections, F-based corrections, and
Fellegi’s (J Amer Stat Assoc 75: 261–268, 1980) correction. Wald’s test statistic
has been looked into. All these modified statistics have been examined in G-o-F
tests, homogeneity tests, and independence tests. Fay’s Jackknifed versions to these
statistics have been considered. Brier’s model has also been looked into. Lastly,
nested models have been considered and all the above results have been examined
in its light.

Keywords Log-linearmodels ·Pseudo-MLE ·Goodness-of-fit tests ·Homogeneity
tests · Independence tests · Rao-Scott corrections · F-based corrections · Fay’s
Jackknifed version · Wald test · Brier’s model · Nested model

5.1 Introduction

In general, the cell probabilities π1, . . . ,πt will involve some unknown parameters
θ1, . . . , θs . In this chapter (and the next chapter) we will consider testing of different
hypotheses under this setup, for which we will have to generally take recourse to the
theory developed in Sects.A.4 and A.5 of the Appendix.

This chapter considers analysis of categorical data under log-linear models. Text-
books in the analysis of categorical data through log-linear models, such as Bishop
et al. (1975), Goodman (1978), and Fienberg (1980), discuss these models in terms
of classical sampling distributions, namely the Poisson, multinomial, and product-
multinomial (with occasional use of hypergeometric distribution). In this context,
the Pearson, the likelihood ratio, the Freeman–Tukey chi-squared tests, and Wald

© Springer Science+Business Media Singapore 2016
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136 5 Analysis of Categorical Data Under Log-Linear Models

statistic are often used. Fineberg (1979) reviewed the literature and properties of
these statistics under these models.

However, as is well known at present that these simple test statistics may give
extremely erroneous results when applied to data arising from a complex survey
design.

5.2 Log-Linear Models in Contingency Tables

We have already introduced log-linear models in Sect. 3.6. In the log-linear models,
natural logarithm of cell probabilities is expressed in a linear model analogous to the
analysis-of-variance models.

Thus for a 2×2 contingency table with πi j denoting the probability of an element
belonging to the (i, j)th cell, we write the model as

ln πi j = u + u1(i) + u2( j) + u12(i j), i, j = 1, 2, (5.2.1)

where u is the general mean effect, u + u1(i) is the mean of the logarithms of prob-
abilities at level i of the first variable, u + u2( j) is the mean of the logarithm of
probabilities at level j of the second variable. Here

u = 1
4

∑

i

∑

j
ln πi j ,

u + u1(i) = 1
2 (ln πi1 + ln πi2), i = 1, 2,

u + u2( j) = 1
2 (ln π1 j + ln π2 j ), j = 1, 2.

(5.2.2)

Since u1(i) and u2( j) represent deviations from the grand mean u,

u1(1) + u1(2) = 0,

u2(1) + u2(2) = 0.

Similarly, u12(i j) represents deviation from u + u1(i) + u2( j), so that

u12(11) + u12(12) = 0, u12(21) + u12(22) = 0,

u12(11) + u12(21) = 0, u12(11) + u12(22) = 0.

The general log-linear model for a 2 × 2 × 2 table can be written as

ln πi jk = u+u1(i)+u2( j)+u3(k)+u12(i j)+u13(ik)+u23( jk)+u123(i jk), i, j, k = 1, 2,
(5.2.3)

where u1(i) means the effect of factor 1 at level i, u12(i j), the interaction between level
i of factor 1 and level j of factor 2, u123(i jk), the three-factor interaction among level
i of factor 1, level j of factor 2, level k of factor 3, all the effects being expressed in
terms of log probabilities. We need

http://dx.doi.org/10.1007/978-981-10-0871-9_3
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2∑

i=1

u1(i) = 0,
2∑

j=1

u2( j) = 0,
2∑

k=1

u3(k) = 0,

∑

j (�=i)=1,2

u12(i j) = 0,
∑

k(�=i)=1,2

u13(ik) = 0, etc..

The parameters involved in ln π = μ = (μ111,μ112,μ121,μ122,μ211,μ212,μ221,

μ222)
′ where μi jk = ln πi jk , are therefore u’s. Therefore

θ = (u1(1), u2(1), u3(1), u12(11), u13(11), u23(11), u123(111))
′.

Bishop et al. (1975), (p. 33) have given expressions for μi jk terms in terms of these
parameters in their sign table of u terms of fully saturatedmode for three dichotomous
variables. Consider therefore X an 8× 7 matrix consisting of 1’s and −1’s such that
each column of X add to zero, that is, X′1 = 0.

If μ is as stated above, then the last column of X is (1,−1,−1, 1,−1, 1, 1,−1)′.
Under H0 : u123(111) = 0, the last column of X will be deleted and X becomes an
8 × 6 matrix.

In general, a log-linear model can be written as

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ln π1

ln π2

.

.

.

ln πT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x′
1θ

x′
2θ
.

.

.

x′
T θ

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

+ ln

{
1

exp(x′
1θ) + exp(x′

2θ) + . . . + exp(x′
T θ)

}

1T (5.2.4)

where

X =

⎡

⎢
⎢
⎢
⎢
⎣

x′
1

x′
2
.

.

x′
T

⎤

⎥
⎥
⎥
⎥
⎦

is a known T × r matrix of +1’s and −1’s and is of full rank r(≤ T − 1) and
θ = (θ1, θ2, . . . , θr )

′ is a r -vector of unknown parameters. Writing ln πk = μk,μ =
(μ1, . . . ,μT )′ and

ln

{
1

exp(x′
1θ) + . . . + exp(x′

T θ)

}

= ln

{
1

1′
T exp(Xθ)

}

= ũ(θ) (5.2.5)

the log-linear model (5.2.4) can be written as

μ = ũ(θ)1T + Xθ, (5.2.6)
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where ũ is the normalizing factor which ensures that
∑

πi (θ) = 1. If r = T − 1,
we get the general or saturated log-linear model. Under multinomial sampling the
likelihood equations for π are given by

X′π̂ = X′(n/n) (5.2.7)

where n = (n1, . . . , nT )′ is the T -vector of observed frequencies,
∑

k nk = n and
π̂ = π̂(θ̂) is the maximum likelihood estimate (MLE) of π under the model (5.2.4).
TheMLE π̂ is easily obtained under such hierarchicalmodels. Themethod of iterative
proportional fitting (IPF) gives the fitted proportions π(θ̂) from Eq. (5.2.7) without
estimating MLE θ̂ of θ (Bishop et al. 1975, p. 83). The Newton–Raphson method is
often used as an alternative since θ̂ is then obtained and the iteration has quadratic
convergence unlike the IPF method.

For general survey design, appropriate likelihood equations for πk’s are difficult
to obtain. Hence we use a ‘pseudo-MLE’ π̂ obtainable from the modified Eq. (5.2.7)
by replacing (n/n) by p̂ = ( p̂1, . . . , p̂T )′, a design-consistent estimate of π. Under
standard regularity conditions the consistency of p̂ follows from the consistency of π̂.

Itmaybenoted that for any surveydesign a consistent estimate ofπi is N̂i/N̂ where
N̂i represents a consistent estimate of population cell count Ni and N̂ = ∑

i N̂i . We
shall denote (N̂1, . . . , N̂T )′ as N̂.

5.3 Tests for Goodness of Fit

The general Pearson statistic for testing goodness of fit of the model (5.2.6) with
r < T − 1 is given by

X2
P = n

T∑

i=1

(
p̂i − πi (θ̂)

)2

πi (θ̂)
. (5.3.1)

Similarly, the log-likelihood ratio statistic may be written as

G2 = 2n
T∑

i=1

p̂i log

[
p̂i

π(θ̂)

]

. (5.3.2)

Rao and Scott (1984) have shown that X2
P (or G

2) is distributed asymptotically as a
weighted sum

∑T−r−1
i=1 δiψi of T − r − 1 independent χ2

(1) variables ψi (δ1 ≥ δ2 ≥
· · · ≥ δT−r−1 > 0). The weights δi ’s are the eigenvalues of a complex design effects
matrix given by

� = (C′D−1
π C)−1(C′D−1

π VD−1
π C) (5.3.3)
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where V = Var(π̂) under the actual sampling design p(s) (or true model) and C is
any T × (T − r − 1) matrix of full rank such that C′X = 0 and C′1T = 0. (For a
proof see Note5.6.1). In particular, under the standard parametrization of a log-linear
model, C may be chosen as the matrix complement of X to form a model matrix in
the saturated case.

The δi ’s may again be interpreted as generalized design effects (deff’s), δ1 being
the largest possible deff taken over all linear combinations of the elements of the
vector C′ ln p̂.

In the case ofmultinomial sampling, the deff δi = 1 ∀ i and hence the standard X2
P

or G2 is distributed asymptotically as χ2
(T−r−1) variable which follows as a special

case.
As in Chap.4 (vide Examples4.2.1 (a), (b); 4.2.2) the following results hold for

special designs.

(i) All δi = 1 − n
N for srswor;

(ii) All δi ≤ 1 for stratified random sampling with proportional allocation;
(iii) δi = δ(> 1) ∀ i under Brier’s model for two-stage sampling. For a proof see

Theorem5.5.1.

5.3.1 Other Standard Tests and Their
First- and Second-Order Corrections

First-order Rao-Scott procedure: The first-order Rao-Scott (1979, 1981, 1984) strat-
egy is based on the observations that X2

P/δ0,G2/δ0 (where δ0 is the mean of the
generalized design effects δi ) have the same first moment as χ2

(T−r−1), the asymp-
totic distribution of Pearson statistic under multinomial sampling. Thus a first-order
correction to X2

P or G2 is obtained by referring to

X2
P(δ̂0) = X2

P

δ̂0
or G2(δ̂0) = G2

δ̂0
(5.3.4)

as χ2
(T−r−1) random variable, where δ̂0 is a consistent estimate of δ0 given by

(T − r − 1)δ0 =
T−r−1∑

i=1

δi = tr(�). (5.3.5)

The tests based on X2
P(δ0) andG2(δ0) are asymptotically correct when the individual

design effects are nearly equal as has been confirmed by many simulation studies
including the one discussed in Rao and Thomas (2003). The second-order correction
indicated below is designed for cases when the variation among the design effects is
expected to be appreciable.

As indicated before, one of the main advantages of the first-order procedures is
that knowledge of the full estimate V̂ of the covariance matrix is not always required.
The trace function in Eq. (5.3.5) can often be expressed in closed form as a function

http://dx.doi.org/10.1007/978-981-10-0871-9_4
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of the estimated design effects of the specific cells and marginal probabilities which
may be available from published data. In fact, for most of the special cases described
below, it is not necessary to have the full matrix V̂, but only variance estimates (or
equivalently deffs) for individual cell estimates, that is, the diagonal estimates of the
V̂ and for certain marginals.
(a) Simple goodness of fit: Here H0 : π = π0 = (π10, . . . ,πT 0)

′ and

(T − 1)δ̂0 =
T∑

i=1

p̂i
πi0

(1 − p̂i )d̂i (5.3.6)

where

d̂i = nV̂ ( p̂i )

p̂i (1 − p̂i )

and V̂ ar( p̂i ) is the estimated variance of a design-consistent estimator p̂i of πi under
the true design p(s).
(b) Test of independence in a r × c table: Here

X2
P = n

r∑

i=1

c∑

j=1

(π̂i j − π̂i0π̂0 j )
2

π̂i0π̂0 j

and the formula (5.3.5) reduces to Rao and Scott (1984), Bedrick (1983), Gross
(1984)

(r−1)(c−1)δ̂0 =
∑

i

∑

j

π̂i j

π̂i0π̂0 j
(1−π̂i j )d̂i j−

∑

i

(1−π̂i0)π̂i0(1)−
∑

j

(1−π̂0 j )π̂0 j (2)

(5.3.7)
where

d̂i j = nV̂ ar(π̂i j )

π̂i j (1 − π̂i j )

is the estimated design effect of π̂i j = πi j (θ̂) and d̂i (1), d̂ j (2) are the estimated
deffs of row and column marginals π̂i0 and π̂oj , respectively. The corrected statistics
X2

P(δ̂0) or G2(δ̂0) is related to χ2 variable with (r − 1)(c − 1) d.f. under H0.
Some alternative corrections to X2

P due to Fellegi (1980) are

X2
P(d̂00) = X2

P

d̂00

X2
P(d̂m) = X2

P

d̂m

(5.3.8)
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where d̂00 = ∑
i

∑
j d̂i j/rc is the average deff and d̂m = min .(

∑
i d̂i (1)/r,

∑
j d̂ j (2)/c).

The corrected statistic X2
P(d̂m) is particularly useful, when only marginal deffs are

published.
(c)Test of homogeneity: Denoting byπi j the population proportion of the j th category
in the i th population (i = 1, . . . , r; j = 1, . . . , c), we want to test H0(π̃i = π ∀ i)
where π̃i = (πi1, . . . ,πic)

′ and π = (π1, . . . ,πc)
′

The general Pearson statistic can be written as

X2
P =

r∑

i=1

ni

c∑

j=1

(π̂i j − π̂ j )
2

π̂ j
(5.3.9)

with π̂ j = ∑r
i=1 ni μ̂i j/n, ni being the sample size for the i th population,

∑
i ni = n.

The formula (5.3.5) reduces to Rao and Scott (1981)

(r − 1)(c − 1)δ̂0 =
r∑

i=1

c∑

j=1

π̂i j

π̂ j

(
1 − π̂i j

) (
1 − ni

n

)
d̂i j (5.3.10)

where

d̂i j = ni V̂ ar(π̂i j )

π̂i j (1 − π̂i j )
.

The corrected statistic X2
P(δ̂0) can therefore be implemented from published tables

which report only the estimates πi j and their associated deffs, d̂i j . The corrected
statistic is again treated as a χ2

(r−1)(c−1) random variable.
Rao and Scott (1984) derived similar results for three-way tables.

Second-order Rao-Scott procedures: When an estimate V̂ of the full covariance
matrix V is available, a more accurate correction to X2

P or G2 can be obtained
by ensuring that the first two moments of the weighted sum

∑T−r−1
i=1 δiψi are the

same as those of χ2
(T−r−1).Unlike the first-order correction, the second-order correc-

tion which is based on Satterthwate (1946) method takes into account the variations
among the generalized design effects δi . For goodness-of-fit test, it is implemented
by referring

X2
Pcc = X2

P(δ̂0, â
2) = X2

P(δ̂0)

1 + â2

or

G2
cc = G2(δ̂0, â

2) = G2(δ̂0)

1 + â2
(5.3.11)

to the upper 100 (α)%point of aχ2
(ν) randomvariablewhere ν = (T−r−1)/(1+â2)

and â is a measure of the variation among design effects, given by
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â2 =
T−r−1∑

i=1

(δ̂i − δ̂0)
2/{(T − r − 1)δ̂2}. (5.3.12)

The simulation results of Thomas and Rao (1987) for simple goodness of fit con-
firm that the second-order corrected tests are more effective for controlling Type I
error then the first-order corrected tests when the variation among design effects is
appreciable.

Similar corrections can be applied to tests for independence and tests for homo-
geneity.

F-based corrections to Rao-Scott procedures For a simple goodness-of-fit test
Thomas and Rao (1987) gave a heuristic large-sample argument to justify refer-
ring F-based version of the first- and second-order Rao-Scott tests to F distribution.
Extension of their argument for log-linear model gives the following results.

For goodness-of-fit test an F-corrected X2
P(δ̂0) is

F(X2
P(δ̂0)) = X2

P(δ̂0)

T − r − 1
(5.3.13)

which follows an F distribution with (T − r − 1) and (T − r − 1)νe degrees of
freedom under H0 where νe is the d.f. for estimating V. For test of independence

F(X2
P(δ̂0)) = X2

P(δ̂0))

(r − 1)(c − 1)
(5.3.14)

which follows a F distribution with (r − 1)(c − 1) and νe(r − 1)(c − 1) d.f. The
statistic F(G2(δ̂0)) is defined similarly.

Similar corrections can be made to X2
P(cc) to obtain the second-order F-corrected

estimator F(X2
P(cc)).

Wald Statistic

Whenever an estimate of the full covariance matrix of π̂ under the true design p(s)
is available, a Wald test of goodness of fit of the log-linear model can also be con-
structed. Consider the saturated model corresponding to (5.2.6), written in the form

ln(π) = ũ(θ)1 + Xθ + CθC (5.3.15)

where θC is a (T − r − 1) × 1 vector of parameters. The test of goodness of fit of
model (5.2.6) is thus equivalent to

H (1)
0 : θC = 0.

Again, since C satisfies C′1 = 0 and C′X = 0, H (1)
0 is equivalent to

H (2)
0 : C′ ln(π) = φ = 0
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where φ is a (T − r − 1)× 1 vector. AWald statistic for testing H02 is then obtained
by referring

X2
W I = φ̂

′
(D̂(φ̂))−1φ̂

= (C′ ln π̂)′[C′D−1
π̂ V̂D−1

π̂ C]−1(C′ ln π̂)

(5.3.16)

asχ2
(T−r−1) (seeTheorem5.6.2),where φ̂, the estimate ofφunder the saturatedmodel

is given by C′ ln(π̂) and D̂(φ̂) is the estimated covariance matrix of φ̂. Here, Dπ̂

is the diagonal matrix having elements π̂i , (i = 1, . . . , T ) on the diagonal. Clearly,
the Wald statistics (5.3.16) requires that all estimated cell probabilities π̂i must be
nonzero. The Wald statistic X2

W is invariant to the choice of C.
The test may lead to inflated type I error rates in finite samples, as the d.f. νe for

estimating V decreases and the number of cells increases, as shown by Thomas and
Rao (1987) on the basis of a goodness-of-fit Monte Carlo study. The statistic is not
defined if νe < T − r − 1.

If the d.f. for estimatingV are not large enough relative to T −r −1, an improved
test statistic can be obtained by treating

FW = (νe − T + r + 2)

νe(T − r − 1)
X2
W (5.3.17)

as an F random variable with T −r−1 and νe−T +r+2 d.f. TheMonte Carlo study
of Thomas and Rao (1987) has shown that FW gives a better control of Type I error
rate than X2

W , although it also tends to perform poorly as νe approaches T − r − 1.

5.3.2 Fay’s Jackknifed Tests

Fay (1979, 1984, 1985) proposed and developed jackknifed versions of X2
P and G2,

which we shall denote as XPJ and GJ , respectively. We have seen that consistent
estimators of T finite population proportions in a general cross-tabulation can be
obtained as (N̂ )−1N̂ where N̂ = ∑

i N̂i , N̂ = (N̂1, . . . , N̂T )′ and Ni is the i th cell
population count (i = 1, . . . , T ). Fay (1985) considered the class of replication
methods based on (pseudo-) replicates N̂ + W(i, j), i = 1, . . . , T ; j = 1, . . . , Ji ,
typically based on the same data as N̂. The asymptotic theory for the jackknifed tests
requires that

∑

j

W(i, j) = 0 (5.3.18)
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for each i . An estimate, cov∗(N̂), of the covariance of N̂ should be given by

cov∗(N̂) =
∑

i

bi
∑

j

W(i, j) ⊗ W(i, j), (5.3.19)

whereW(i, j) ⊗W(i, j) represents the outer product ofW(i, j) with itself (the standard
cross-product matrix) and the bi are a fixed set of constants appropriate for the
problem.

A number of replication schemes can be represented in this way. In case of strat-
ified cluster sampling suppose the population is divided into I = T strata and ni
samples are selected independently from each stratum. In this setup N̂ may be rep-
resented as

N̂ =
∑

i

∑

j

Z(i, j), (5.3.20)

where the Z(i, j), for fixed i , are the ni iid random variables within stratum i . (These
variables are not, however, assumed to be identically distributed across strata.) For
each stratum i ,

N̂ + W(i, j) = N̂ +
⎛

⎝

⎛

⎝
∑

j ′
Z(i, j ′)

⎞

⎠ − niZ(i, j)

⎞

⎠ /(ni − 1), (5.3.21)

has the same expected value as N̂ and defines W(i, j), satisfying (5.3.17). The corre-
sponding choice for bi is (ni − 1)/ni .

For calculating the jackknifed values of the test statistics we have to refit the
given log-linear model to the replicates, N̂+W(i, j) and recompute the test statistics,
X2

P(N̂+W(i, j)) or G2(N̂+W(i, j)), for these new tables. Using the bi introduced in
(5.3.19), the jackknifed test statistic XPJ is defined by

XPJ = [(X2
P(N̂))1/2 − (K+)1/2]
{V/(8X2

P(N̂))}1/2 , (5.3.22)

where

Pi j = X2
P(N̂ + W(i, j)) − X2

P(N̂), (5.3.23)

K =
∑

i

bi
∑

j

Pi j , (5.3.24)

V =
∑

i

bi
∑

j

P2
i j , (5.3.25)
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and K+ takes the value K for positive K and zero otherwise. The jackknifed version
of G2, denoted as GJ , is obtained by replacing X2

P by G2 in Eqs. (5.3.22)–(5.3.25).
It has been shown by Fay (1985) that both XPJ and GJ are asymptotically dis-

tributed as a function of weighted sums of T − r − 1 independent χ2
(1) variables,

the weights being functions of the eigenvalues δi ’s of the design matrix � in (5.3.3).
When the δi ’s are all equal, the asymptotic distribution of both XPJ and GJ is

21/2[(χ2
(T−r−1)

1/2 − (T − r − 1)1/2]. (5.3.26)

Numerical investigations have shown that (5.3.26) is a good approximation to the
jackknifed statistics even when δi ’s are not all equal. In practice, therefore, the test
procedure consists in rejecting the null hypothesis when XPJ (or GJ ) exceeds the
upper 100(α)% critical point obtained from (5.3.26).

5.4 Asymptotic Covariance Matrix of the Pseudo-MLE π̂

To derive the asymptotic covariance matrix of π̂ we need some of the results of Birch
(1964) stated in the Appendix for multinomial sampling.

Lemma 5.4.1 Under the regularity conditions of Sect.A.4.2,

θ̂ − θ ∼ (X′PX)−1X′(p̂ − π)

π̂ − π ∼ PX(θ̂ − θ)
(5.4.1)

where P = Dπ −ππ′. Note that π̂ is the pseudo-MLE of π as explained above, while
p̂ is a consistent estimate of π under the sampling design p(s). (Here, asymptotic
covariance matrix of p̂ is V/n.)

Proof From Eqs. (A.4.10) and (A.4.13),

θ̂ − θ ∼ (A′A)−1A′D−1
π (p̂ − π) (5.4.2)

and

π̂ − π ∼ D1/2
π A(θ̂ − θ) (5.4.3)

where A is the T × r matrix whose (i, j)th element is π
−1/2
i (∂πi/∂θ j ). Under the

log-linear model (5.2.4), A = D−1/2
π PX. Also,

A′A = X′P′D−1
π PX

X′(I − π1′)PX = X′PX,
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because 1′P = 0. Similarly,

A′D−1
π (p̂ − π) = X′(I − π1′)(p̂ − π)

= X′(p̂ − π),

because 1′(p̂ − π) = 0.

Hence the proof. �
Since by assumption, the asymptotic covariance matrix of p̂ is V/n, we have from
(5.4.1), the asymptotic covariance matrix of θ̂ as

D(θ̂) = n−1(X′PX)−1(X′VX)(X′PX)−1. (5.4.4)

Hence the asymptotic covariance matrix of π̂ is

D(π̂) = PXD(θ̂)X′P. (5.4.5)

In the case of multinomial sampling, we have V = P and (5.4.4) reduces to the
well-known result D(θ̂) = (X′PX)−1/n.

The asymptotic covariance matrix of the residual p̂− π̂ is obtained by noting that

p̂ − π̂ ≈ [I − PX(X′PX)−1X′P′D−1
π ](p̂ − π)

[I − PX(X′PX)−1X′](p̂ − π)]
(5.4.6)

since X′P′D−1
π (p̂ − π) = X′(p̂ − π) so that

D(p̂ − π̂) = n−1[I − PX(X′PX)−1X′]V[I − X(X′PX)−1X′P]. (5.4.7)

If V = P, (5.4.7) reduces to

n−1[P − PX(X′PX)−1X′P].

5.4.1 Residual Analysis

If a test rejects the hypothesis of goodness of fit of a log-linear model of the form
(5.2.6), residual analysis provides an understanding of the nature of deviations from
the hypothesis. The standardized residual is

ri = p̂i − πi (θ̂)

s.e.{ p̂i − π(θ̂)} (5.4.8)
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to detect deviations from the hypothesis, using the fact that ri ’s are approximately
N (0, 1) variables under the hypothesis.

In the case of test of homogeneity of proportions across r regions, the standardized
residuals ri j (i = 1, . . . , r; j = 1, . . . , c)may be expressed in terms of the estimated
population proportions π̂i j and the associated deffs. d̂i j is as follows:

ri j = p̂i j − π̂ j

{V̂ ar( p̂i j − π̂ j )}1/2
(5.4.9)

where

V̂ ar( p̂i j − π̂ j ) = n−2π̂ j (1 − π̂ j ){n(n − ni )

ni
π̂i j +

r∑

i=1

ni d̂i j },

d̂i j being given in (5.3.10).

5.5 Brier’s Model

We now consider a case where δi ’s, the eigenvalues of � in Eq. (5.3.3) are either
zeros or a constant.

Consider Brier’s model in Sect. 4.2.5. Suppose we are interested in testing the
hypothesis

H0 : π = f(θ) (θ ∈ � ⊆ Rr ) (5.5.1)

versus the alternative HA : π ∈ ξT (ξT defined in Eq. (A.4.1)). Under both H0 and
HA,Y(i)(i = 1, . . . , N ) are independently distributed as DMT (n,π, k). We assume
that the relation π = f(θ) satisfies the regularity conditions in Sect.A.4.3 given by
Birch (1964). These conditions are not very restrictive, and in particular, all hierar-
chical log-linear models considered by Bishop et al. (1975) satisfy these conditions.

Let U = ∑N
i=1 Yi be the vector of cell counts. Two statistics that are frequently

used are

X2
P =

T∑

j=1

(Uj − M π̂ j (θ̂))
2

M π̂ j (θ̂)
(5.5.2)

and

G2 = 2
T∑

j=1

Uj log

(
Uj

M π̂ j

)

(5.5.3)

http://dx.doi.org/10.1007/978-981-10-0871-9_4
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where M = nN and π̂ j = y j/n is the MLE of π j assuming that U is multinomially
distributed. It has been noted in Sect.A.4.1 that under H0, both X2

P and G2 have
distributions that are asymptotically χ2

(T−r−1) if U has multinomial distribution.
We now consider the null distribution of X2

P and G2 when the sample is a cluster
sample and therefore, y follows DMT (n,π, k) distribution.

Theorem 5.5.1 Let Y(1), . . . ,Y(N ) be independently and identically distributed as
DMT (n,π, k). Under H0 : π = f(θ), if the regularity conditions of Sect.3.4.2 are
satisfied, then X2

P and G2 are distributed asymptotically as Cχ2
(T−r−1) as N → ∞,

where X2
P and G2 are defined in (5.5.2) and (5.5.3), respectively, and C = n+k

1+k .

Proof Let p̂ = U/M be the vector of observed cell proportions and let π0 and θ0
be the true values of π and θ, respectively. Applying the central limit theorem to
(Y(1), . . . ,Y(N ))′, we have

√
N (p̂ − π0) →L N (0,V)

where V = (Cn )(Dπ0 − π0π
′
0). Note that this implies

p̂ − π0 = 0p(N
−1/2). (5.5.4)

Define

A = ((ai j )) = {πi (θ)0}−1/2

[
∂ıi (θ)

∂θ j

]

θ=θ0

.

From Birch’s result (A.4.11)

θ̂ = θ0 + (A′A)−1A′D−1/2
π0

(p̂ − π0) + op(N
−1/2) (5.5.5)

where θ̂ is the MLE of θ assuming U is multinomially distributed. This result still
holds in our case since the result is based upon the regularity conditions of f(θ) and
(5.5.4). Using (5.5.4) we have

π̂ = π0 + D−1/2
π0

A(A′A)−1A′D−1/2
π0

(p̂ − π0) + op(N
−1/2) (5.5.6)

by the delta method. It follows therefore that

√
N {(p̂, π̂) − (π0,π0)} →L N (0, �) (5.5.7)

where

� = (I,L)′V(I,L) and L = D−1
π0
A(A′A)−1A′D1/2

π0
.

http://dx.doi.org/10.1007/978-981-10-0871-9_3
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It follows from TheoremA.5.3 that the asymptotic distribution of X2
P is

∑
i δiψi ,

where ψi ’s are independent χ2
(1) variables and δi ’s are the eigenvalues of C{I −√

π
√

π′ − A(A′A)−1A′}, where √
π = (

√
π1, . . . ,

√
πT )′. It can be verified that

T − r − 1 of the δi ’s are C and the remaining δi ’s are zero. This completes the proof
for X2

P . This together with Theorem A.5.1 establishes the result for G2. �

5.6 Nested Models

We denote the model (5.2.6) as M1. Let X = (X1(T × s),X2(T × u)) and θ′ =
(θ′

1(1 × s), θ′
2(1 × u)) where s + u = r . As before we need X′

11T = 0,X′
21T = 0.

Given the unconstrained model M1, we are interested in testing the null hypothesis
H2|1 : θ2 = 0 so that under H2|1 we get the reduced model M2 as

μ = ũ

[
θ1
0

]

1T + X1θ1. (5.6.1)

Clearly, M2 is nested within M1 (vide Sect.A.6).

Example 5.6.1 As in (5.2.1), consider the saturated log-linear model applicable for
two-way cross-classified data according to two categorical variables A and B having
r and c categories, respectively. Let πi j be the probability that a unit belongs to the
category i of A and category j of B. We want to test the hypothesis of independence

H0 : πi j = πi0π0 j ∀ i, j

where πi0 = ∑
j πi j ,π0 j = ∑

i πi j .

The model is

ln πi j = μi j = u + u1(i) + u2( j) + u12(i j)

where the parameters u1(i) and u2( j) are constrained by
∑

i u1(i) = 0,∑
j u2( j) = 0,

∑
i u12(i j) = 0 ∀ j and

∑
j u12(i j) = 0 ∀ i and u is a normaliz-

ing factor to ensure that
∑

i

∑
j πi j = 1. In matrix notation this may be written

as
μ = u1 + X1θ1 + X2θ2

with X′
2X1 = 0,X′

11 = 0 and X′
21 = 0 where μ = (μ11, . . . ,μ1r , . . . ,μr1, . . . ,μrc)

′, θ1
is the (r + c − 2) vector of parameters u1(1), . . . , u1(c−1), u2(1), . . . , u2(c−1) with
associated model matrixX1 consisting of+1’s,0’s, and−1’s; θ2 is the (r −1)(c−1)
vector of parameters u12(11), . . . , u12(1,c−1), . . . , u12(r−1,1), . . . , u12((r−1),(c−1)) with
associated model matrix X2. The hypothesis of independence may be expressed as
H0 : θ2 = 0. �
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Let ˆ̂
θ1 and ˆ̂π = π(

ˆ̂
θ1) denote the ‘pseudo-MLE’ of θ1 and π, respectively, under M2

as obtained from the likelihood equations

X′
1π(

ˆ̂
θ1) = X′

1p̂ (5.6.2)

where p̂ is a design-consistent estimator of π. The consistency of p̂ ensures the
consistency of ˆ̂π under M2.

5.6.1 Pearsonian Chi-Square and the Likelihood Ratio
Statistic

The Pearson chi-square statistic for testing H2|1 : θ2 = 0 given the model M1, i.e.,
for testing H2|1 : θ2 = 0 under the nested model M2 is given by

X2
P(2|1) = n

T∑

i=1

(π̂i−ˆ̂πi )
2

ˆ̂πi

= n(π̂ − ˆ̂π)′D−1
ˆ̂π (π̂ − ˆ̂π).

(5.6.3)

where we denote the estimate of π under the models M1 as π̂ = π(θ̂).
Again, writing the likelihood ratio statistic under model Mi as G2

i , the likelihood
ratio statistic for testing H2|1 is

G2(2|1) = G2
2 − G2

1

= 2n
∑

π̂i ln(
π̂i
ˆ̂πi
) − 2n

∑
p̂i ln(

p̂i
π̂i

).
(5.6.4)

The likelihood ratio statistic G2(2|1) is usually preferred to X2
P(2|1) due to its addi-

tive properties:

G2(2|1) + G2(1) = G2(2)

where

G2(1) = 2n
∑

i
p̂i ln[ p̂i

πi (θ̂)
]

G2(2) = 2n
∑

i
p̂i ln[ p̂i

πi (
ˆ̂
θ)

],
(5.6.5)

since p̂ ≈ π̂. However, as in the case of multinomial sampling, when the null hypoth-
esis H2|1 is true, both the statistic X2

P(2|1) andG2(2|1) are approximately equivalent
(vide TheoremA.5.1).
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For multinomial sampling, X2
P(2|1) or G2(2|1) follow approximately χ2

(u) (vide
TheoremA.6.1). The same asymptotic null distribution holds under a product-
multinomial sampling scheme which arises with stratified simple random sampling
when the strata correspond to levels of one dimension of the contingency table and
the samples are drawn independently from different strata covering all the categories
of the other variable. This result, however, does not hold with more complex survey
designs involving clustering or stratification based on variables different from those
corresponding to the contingency tables.

We shall now derive the asymptotic null distribution of X2
P(2|1) or G2(2|1) for

any survey design p(s).

Theorem 5.6.1 (Rao and Scott 1984) Let θ̂′ = (θ̂′
1, θ̂

′
2). Under H2|1, asymptotic

distribution of Pearson chi-square X2
P(2|1) in (5.6.2) is given by

X2
P(2|1) ∼ nθ̂′

2(X̃
′
2PX̃2)

ˆ̂
θ2 (5.6.6)

where

X̃2 = (I − X1(X′
1PX1)

−1X′
1P)X2. (5.6.7)

Moreover, under H2|1,

X2
P(2|1) =

u∑

i=1

δ(2|1)iψi (5.6.8)

where ψi ’s are independent χ2
(1) variables and δ(2|1)i ’s (all >0) are the eigenvalues

of the matrix �(2|1) = (X̃2PX̃2)
−1(X̃2VX̃2).

Proof We have from (5.4.1), π̂ − π ∼ PX(θ̂ − θ). Analogously,

ˆ̂π − π ∼ PX1(
ˆ̂
θ1 − θ1). (5.6.9)

Hence,

π̂ − ˆ̂π = (π̂ − π) − ( ˆ̂π − π)

∼ PX(θ̂ − θ) − PX1(
ˆ̂
θ1 − θ1)

= P[X1θ̂1 + X2θ̂2 − X1θ1 − X2θ2 − X1
ˆ̂
θ1 + X1θ1]

= P[X1(θ̂1 − θ1) + X2θ̂2 − X1(
ˆ̂
θ1 − θ1)], (5.6.10)

since under H2|1, θ2 = 0. Also, from (5.4.1), θ̂ − θ ∼ (X′PX)−1X′(p̂ − π). Analo-
gously,
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ˆ̂
θ1 − θ1 ∼ (X′

1PX1)
−1X′

1(p̂ − π). (5.6.11)

Now, X′PX can be expressed as the partitioned matrix

X′PX =
[
X′

1PX1 X′
1PX2

X′
2PX1 X′

2PX2

]

.

Using the standard formula for the inverse of a partitioned matrix (see, e.g.,

Mukhopadhyay 2008, p. 464) and thereby calculating ˆ̂
θ1 − θ1, it can be shown

from (5.4.1) and (5.6.11) that

ˆ̂
θ1 − θ1 ∼ (θ̂1 − θ1) + (X′

1PX1)
−1(X′

1PX2)θ̂2. (5.6.12)

Hence, from (5.6.9),

π̂ − ˆ̂π ∼ P[X1(θ̂1 − θ1) + X2θ̂2 − X1(θ̂1 − θ1) − X′
1(X1PX1)

−1(X′
1PX2)θ̂2]

= P[X2 − X1(X′
1PX1)

−1(X′
1PX2)]θ̂2

= PX̃2θ̂2. (5.6.13)

Therefore,

X2
P(2|1) = n(π̂ − ˆ̂π)′D−1

π (π̂ − ˆ̂π) ∼ nθ̂′
2(X̃

′
2PX̃2)θ̂2, (5.6.14)

since PD−1
π P = P and PD−1

π̂ P ≈ PD−1
π P.

Also, it follows from (5.4.4) and the formula for the inverse of a partitionedmatrix
that the covariance matrix of θ̂2 is

D(θ̂2) = n−1(X̃′
2PX̃2)

−1(X̃′
2VX̃2)(X̃′

2PX̃2)
−1. (5.6.15)

Therefore, under H2|1, θ̂2 ∼ Nu(0,D(θ̂2)). Normality and zero mean of θ̂2 follow
from Eq. (5.4.2) and TheoremA.4.2 in the appendix. Using Theorem4.2.1, we see
that X2

P(2|1) ∼ ∑u
i=1 δ(2|1)iψi where the δ(2|1)i ’s are the eigenvalues of

nD(θ̂2)(X̃′
2PX̃2) = (X̃′

2PX̃2)
−1(X̃′

2VX̃2).

�
The δ(2|1)i ’s may be interpreted as the generalized deff’s, with δ(2|1)1 as the largest
possible deff taken over all linear combinations of the elements of X̃′

2p̂.

Corollary 5.6.1.1 For multinomial sampling, V = P and hence δ(2|1)i = 1 ∀ i =
1, . . . , u and we get the standard result X2

P(2|1) ∼ χ2
(u) under H2|1. �

Note that the asymptotic distribution of X2
P(2|1) orG2(2|1) depends onV through

the eigenvalues δi ’s.

http://dx.doi.org/10.1007/978-981-10-0871-9_4
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5.6.2 A Wald Statistic

If a consistent estimator V̂/n ofV/n, the covariance matrix of p̂ is available, we can
construct Wald statistic, X2

W for testing H2|1 : θ2 = 0.
Let C be a T × u matrix of rank u, such that C′X1 = 0,C′1T = 0 and C′X2 is

nonsingular. If X′
1X2 = 0, a convenient choice for C is X2.

Now from model (5.2.4),

μ = Xθ + constant = X1θ1 + X2θ2 + constant.

Hence, under H2|1,

C′μ = φ (say) = C′X1θ1 + C′X2θ2 = 0.

Therefore, the hypothesis H2|1 is equivalent to the hypothesis H0 : φ = 0. Hence, a
Wald statistic for testing H0 is

X2
W (2|1) = φ̂[D̂(φ̂)]−1φ̂ (5.6.16)

where φ̂ = C′μ̂ and D̂(φ̂) is the estimated covariance matrix of φ̂.
Now,

μ̂i − μi = ln π̂i − ln πi ≈ (π̂i − πi )
∂ ln(πi )

∂πi

]

πi= (π̂i − πi )
1
πi

,
(5.6.17)

by delta method. Hence,

μ̂ − μ ≈ D−1
π (π̂ − π) (5.6.18)

where Dπ = Diag.(π1, . . . ,πT ). Therefore,

D(φ̂) = C′D(μ̂)C = C′D−1
π D(π̂)D−1

π C = �φ (say), (5.6.19)

using (5.6.17), whereD(π̂) is the asymptotic covariance matrix of π̂. The expression
for D(φ̂) is obtained from (5.4.4) and (5.4.5). The estimator D̂(π̂) is obtained by
replacing π by π̂ andV by V̂. TheWald statistic (5.6.16) is independent of the choice
of C.

If a consistent estimator V̂ of V is not available, the effect of survey design
is sometimes ignored. In this case V/n is replaced by the multinomial covariance
matrix P/n in D(φ̂) when D(φ̂) reduces to

�0 = n−1C′X(X′PX)−1X′C (5.6.20)
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since PD−1
π C = (Dπ − ππ′)D−1

π C = C, since C′1 = 0. This gives a test statistic
alternative to X2

P(2|1) or G2(2|1):

X̃2
W (2|1) = nφ̂′[C′X(X′P̂X)−1X′C]−1φ̂. (5.6.21)

As in the case of X2
P(2|1) or G2(2|1), the true asymptotic null distribution of

X2
W (2|1) is a weighted sum of independent χ2

(1) variables,
∑u

i=1 γ(2|1)iψi , where

γ(2|1)1, . . . , γ(2|1)u are eigenvalues of �−1
0 �φ.

Note 5.6.1 In case of saturated model s + u = T − 1. Here π̂ = p̂ = n/n and
hence D(p̂) = P/n. Therefore, �0 = n−1C′D−1

π PD−1
π C = n−1C′D−1

π C. Therefore,
δ(2|1)i ’s are eigenvalues of �−1

0 �φ = (C′D−1
π C)−1(C′D−1

π VD−1
π C).

Theorem5.6.2 below shows that X2
W (2|1) is, in fact, asymptotically equivalent to

X2
P(2|1) under H2|1, which implies that X2

W (2|1) ∼ ∑u
i=1 δiψi asymptotically and

[δ(2|1)1, . . . , δ(2|1)u] is asymptotically identical to [γ(2|1)1, . . . , γ(2|1)u].
Theorem 5.6.2 Under H2|1 : θ2 = 0, X2

W (2|1) ∼ X2
P(2|1).

Proof Under H2|1, we have φ̂ = φ̂−φ = C′(μ̂−μ) ∼ C′D−1
π (π̂−π) (by (5.6.18))∼

C′D−1
π PX(θ̂−θ) (by (5.4.1)). Now,C′D−1

π PX = C′X = (C′X1,C′X2) = (0,C′X2).

Hence,

φ̂ = (0(u × s,C′X2(u × u))(θ̂ − θ)

= C′X2θ̂2 (5.6.22)

under H2|1. Also,

C′X(X′PX)−1X′C = C′X2(X̃′
2PX̃2)

−1X′
2C (5.6.23)

using the formula for the inverse of the partitioned matrix X′PX. Hence, from
(5.6.21),

X2
W (2|1) = nθ̂′

2X
′
2C[C′X2(X̃′

2PX̃2)
−1X′

2C]−1C′X2θ2

= nθ2(X̃′
2PX̃2)

−1θ̂2

= X2
P(2|1), (5.6.24)

since C′X2(u × u) is nonsingular.

5.6.3 Modifications to Test Statistics

Aprimarymodification to X2
P(2|1) (orG2(2|1)) is to treat X2

P(2|1)/δ̂0 orG2(2|1)/δ̂0
under H0, where δ0 may be written as
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uδ(2|1)0 = tr[(X̃′
2PX̃2)

−1(X̃′
2VX̃2)]

= tr[(X′PX)−1(X′VX)] − tr.[(X′
1PX1)

−1(X′
1VX1)]

= (s + u)λ0 − sλ10 (say). (5.6.25)

We note that (X′PX)−1(X"VX) is the design effect matrix for the contrast vectorX′p̂
so that λ0 is the average generalized deff of X′p̂. Similarly, (X′

1PX1)
−1(X′

1VX1) is
the deff matrix for the contrast vector X′

1p̂ and λ10 is the average generalized deff of
X′

1p̂.
In the special case of saturated model, s + u = T − 1 and uδ(2|1)0 reduces to

(T − s − 1)δ(2|1)0 = (T − 1)λ0 − sλ10 (5.6.26)

where

(T − 1)λ0 =
u∑

i=1

(1 − π)di (vide (4.2.29)) (5.6.27)

and

di = vi i

πi (1 − πi )
(5.6.28)

is the (cell) deff of p̂i and V = ((vi j )).
If T is much larger than s, then δ(2|1)0 ≈ λ0 and we might expect X2

P(2|1)/λ̂0

to perform well in large tables if s is fairly small. Note that unlike δ(2|1)0, λ0 is
independent of H2|1.

Another approximation X2
P(2|1)/d̂0 (Fellegi 1980), where d̂0 = ∑T

i=1 d̂i/T is
the average estimated cell deff., is also independent of H2|1.

Empirical result reported in Holt et al. (1980) and Hidiroglou and Rao (1987)
for testing independence in a two-way table indicates that both X2

P(2|1)/λ̂0 and
X2

P(2|1)/d̂0 tend to be conservative, that is, their asymptotic significance level is less
than α and sometimes very conservative, whereas if the coefficient of variations of
δ̂(2|1)i ’s is small, X2

P(2|1)/δ̂(2|1)0 works fairly well. The Pearson statistic X2
P(2|1)

often leads to unacceptably high values of significance level of χ2.
Fay’s (1979, 1984, 1985) jackknifed methods can also be applied to the X2

P(2|1)
andG2(2|1) statistics. The jackknifed version XPJ (2|1) for testing the nested hypoth-
esis H2|1 is obtained by replacing X2

P in Eqs. 5.3.21 through 5.3.24 by X2
P(2|1). The

jackknifed version GJ (2|1) can be obtained in an analogous manner.

5.6.4 Effects of Survey Design on X2
P(2|1)

The asymptotic null distribution of X2
P(2|1) may be approximated to a χ2 variable,

following Satterthwaite (1946):
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X2
S(2|1) = X2

P(2|1)
(1 + a(2|1)2)δ(2|1)0 (5.6.29)

is treated as a χ2
(ν) variable, where ν = u/(1 + a(2|1)2), uδ(2|1)0 = ∑u

i=1 δ(2|1)i
and a(2|1)2 = ∑u

i=1(δ(2|1)i − δ(2|1)0)2/[uδ(2|1)20] is the coefficient of variations
of δ(2|1)i ’s and δ(2|1)i ’s are the eigenvalues of Theorem 5.6.1

The effect of survey design may be studied by computing the asymptotic signifi-
cance level (SL) of X2

P(2|1) for a desired nominal level α, that is,

SL[X2
P(2|1)] = P

[

X2
P(2|1) ≥ χ2

(u)(α)] ≈ P[χ2
(ν ≥ χ2

(u)(α)

(1 + a(2|1)2)δ0

]

(5.6.30)

is compared with α. In practice, SL[X2
P(2|1)] is estimated using V̂ for V and

π̂ (or π̃) for π.
Further references in this area are due to Holt et al. (1980) andHidiroglou and Rao

(1987). Rao and Thomas (1988) illustrated all the results in this chapter and previous
chapter using survey data fromCanadianClass Structure (1983) andCanadianHealth
Survey (1978–79).

Ballin et al. (2010) considered applications of a set of graphical models known as
Probabilistic Expert Systems (PES) to define two classes of estimators of a multiway
contingency table where a sample is drawn according to a stratified sampling design.
Two classes are characterized by the different roles of the sampling design. In the
first, the sampling design is treated as an additional variable and in the second it is
used only for estimation purposes by means of sampling weights.



Chapter 6
Analysis of Categorical Data Under Logistic
Regression Model

Abstract This chapter considers analysis of categorical data under logistic regres-
sionmodelswhen the data are generated fromcomplex surveys. Section6.2 addresses
binary logistic regression model due to Roberts et al. (Biometrika 74:1–12, 1987),
and finds the pseudoMLestimators of the population parameter alongwith its asymp-
totic covariance matrix. The goodness-of-fit statistics X2

P andG
2, and aWald statistic

have been considered and their asymptotic distributions derived. The modifications
of these statistics usingRao-Scott corrections andF ratio have been examined.All the
above problems have been considered in the light of nested models. We also consid-
ered problem of choosing appropriate cell-sample-sizes for running logistic regres-
sion program in a standard computer package. Following Morel (Surv Methodol
15:203–223, 1989) polytomous logistic regression has been considered in Sect. 6.5.
Finally, using empirical logits themodel has been converted into general linearmodel
which uses generalized least square procedures for estimation. The model has been
extended to accommodate cluster effects and procedures for testing of hypotheses
under the extended model investigated.

Keywords Pseudo-likelihood · Empirical logit · Binary logistic regression · Poly-
tomous logistic regression · Generalized least square estimator · Nested models ·
Cluster effects

6.1 Introduction

In Sect. 3.7, we introduced briefly Logistic regression models, for both binary and
polytomous data and hinted on their method of analysis under IID assumptions.
Some modifications in the classical methods of analyzing data under binary logistic
regression model when such data are generated from complex sample surveys were
also discussed. Here, we consider the analysis under these models when the data are
obtained from complex surveys and hence do not generally respect IID assumptions.

In Sect. 6.2, we consider binary logistic regression model due to Roberts et al.
(1987), and find the pseudo ML estimators of the population parameter along with
its asymptotic covariance matrix. Standard Pearson X2

P, likelihood ratio G2 test
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statistics and a Wald statistic have been considered and their asymptotic distribu-
tions derived. These statistics have been adjusted on the basis of certain generalized
design effects. All the above problems have also been considered in the light of nested
models. In Sect. 6.4, we considered problem of choosing appropriate cell-sample-
sizes for running logistic regression program in a standard computer package. In the
next section following Morel (1989) analysis of complex survey data under poly-
tomous logistic regression has been addressed. Finally, using empirical logits the
model has been converted into general linear models which use generalized least
square procedures for estimation. The model has been extended to accommodate
cluster effects and procedures for testing of hypotheses under the extended model
investigated.

6.2 Binary Logistic Regression

Roberts et al. (1987) considered the following binary logistic regression model. The
population is divided into I cells or domains or strata. A binary (0, 1)-response
variable Y is defined on each of the Ni population units in the ith cell such that its
value Yi = 1 if the unit possesses a specific characteristic, 0 otherwise (i = 1, . . . , I).
Let N̂i denote the survey estimate of Ni and N̂i1 the survey estimate of Ni1, the ith

domain total of the binary response variable. Then,pi = N̂i1

N̂i
is a design-based estimate

of the population proportion πi = Ni1
Ni

of units in the ith domain.
Binomial samples are drawn independently from each stratum, sample size from

the ith domain being ni and the variable total ni1. The ni’s may be fixed or random
depending on the sampling design adopted.

Suppose we have access to the values of p auxiliary variables x = (x1, . . . , xp)′
for each domain, xi = (xi1, . . . , xip)′ being the value of x on the ith domain. Note
that the value of x remains the same, namely, xi, for all the units in the ith domain
(i = 1, . . . , I).

The logistic regressionmodel forπi, the population proportion in the ith domain, is

πi = exp(x′
iβ)

1 + exp(x′
iβ)

(6.2.1)

where β = (β1, . . . ,βp)
′ is a vector of unknown regression coefficients. Hence,

πi(xi)
1 − πi(xi)

= exp(x′
iβ)

or

log

{
πi(xi)

1 − πi(xi)

}

= logit (πi(xi)) = x′
iβ. (6.2.2)
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Letting πi(xi) = πi = fi(β),π = (π1, . . . ,πI)
′, f(β) = (f1(β), . . . , fI(β))′, (6.2.2)

can be written as

νi = logit (πi) = log

{
fi(β)

1 − fi(β)

}

= x′
iβ, i = 1, . . . I,

or

ν = Xβ (6.2.3)

where X = (x1, x2, . . . , xI)′ is the I × pmatrix of observations xij, i = 1, . . . , I; j =
1, . . . , p and is of full rank p and ν = (ν1, . . . , νI)

′.
Note that the I parameters π1, . . . ,πI , here, depend on the p parameters in β and

therefore, the theory in Sect.A.4 has to be applied for estimation.

6.2.1 Pseudo-MLE of π

Now, the joint distribution of n1 = (n11, . . . , nI1)′, g(n1) is proportional to the prod-
uct of I binomial functions

g(n1|π1, . . . ,πI ,X) ∝ �I
i=1πi(xi)ni1 [1 − πi(xi)]ni−ni1

=
[

I
�
i=1

{
πi(xi)

1−πi(xi)

}ni1
] [

I
�
i=1

{1 − πi(xi)}ni
]

=
[

exp

{
I∑

i=1
ni1 log

πi(xi)
1−πi(xi)

}][
I
�
i=1

{1 − πi(xi)}ni
]

.

(6.2.4)

Again,

log
πi

1 − πi
= x′

iβ =
p∑

j=1

βjxij,

and

1 − πi =
⎡

⎣1 + exp

⎛

⎝
p∑

j=1

βjxij

⎞

⎠

⎤

⎦

−1

.
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Hence, from (6.2.4), the log-likelihood of β is

L(β|n1,X) = log g(n1|π1, . . . ,πI ,X) = Constant +
p∑

j=1

βj

(
∑

i

ni1xij

)

−
I∑

i=1

ni log

⎡

⎣1 + exp

⎛

⎝
p∑

j=1

βjxij

⎞

⎠

⎤

⎦ (6.2.5)

which depends on the binomial counts ni1(i = 1, . . . , I) only through
∑

i ni1xij,
j = 1, . . . , p. Now,

∂L(β)

∂βj
=

I∑

i=1

ni1xij −
I∑

i=1

ni
xij exp

(∑
k βkxik

)

1 + exp
(∑

k βkxik
) , j = 1, . . . , p.

Hence, the likelihood equations for finding the MLE β̂ of β are

I∑

i=1

ni1xij −
∑

i

nixij f̂i = 0, j = 1, . . . , p. (6.2.6)

Let D(n) = Diag. (n1, . . . , nI),q = (q1, . . . , qI)′ where qi = ni1
ni

. Then, Eq. (6.2.6)
can be written as

X′D(n)f̂ = X′D(n)q. (6.2.7)

For general sampling designs, appropriate likelihood functions are difficult to obtain
and maximum likelihood estimates are hard to get by. Hence, it is a common practice
to obtain pseudo maximum likelihood equations by replacing in (6.2.7), ni/n by wi,
an estimate of the domain relative size Wi = Ni/N and qi = ni1/ni by pi, a design-
based estimate of πi = Ni1/Ni, (i = 1, . . . , I). The pseudo-MLE’s β̃ of β is then
obtained by solving the equations

X′D(w)f̃ = X′D(w)p (6.2.8)

where D(w) = Diag. (w1, . . . , wI) and p = (p1, . . . , pI)′ and f̃ is the pseudo-MLE
of f .

6.2.2 Asymptotic Covariance Matrix of the Estimators

Instead of considering D(w)f we shall consider D(W)f as a function of β, where
D(W) = Diag. (W1, . . . ,WI), since wi − Wi = op(1), i = 1, . . . , I . We will now
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use Birch’s result (A.4.10). Let us write

b = b(β) = D(W)f = (W1f1, . . . ,WIfI)
′,

B = D(b)−1/2

(
∂b(β)

∂β

)

where D(b) = Diag. (b1, . . . , bI). Now,

∂bi(β)

∂βj
= Wi

∂fi(β)

∂βj
= Wifi(1 − fi)xij.

Therefore,
∂b(β)

∂β
= �X

where

� = Diag. (Wifi(1 − fi), i = 1, . . . , I). (6.2.9)

Hence,

B = D(b)−1/2�X. (6.2.10)

Therefore, from (A.4.10),

β̃ − β ∼ (B′B)−1B′D(b)−1/2(a − b(β)) (6.2.11)

where a = (a1, . . . , aI)′, ai = Wipi. Hence, (6.2.11) reduces to

√
n(β̃ − β) ∼ √

n(B′B)−1X′�D(b)−1D(W)(p − f)

= √
n(X′�D(b)−1�X)−1X′�D(b)−1D(W)(p − f)

= √
n(X′�X)−1X′D(W)(p − f). (6.2.12)

Assuming √
n(p − f) →L (0,V), (6.2.12′)

the asymptotic covariance matrix of β̃ is

Vβ̃ = n−1(X′�X)−1{X′D(W)VD(W)X}(X′�X)−1. (6.2.13)
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Replacing the parameters in (6.2.13) by their estimates, we get the estimated
asymptotic covariance matrix

V̂β̃ = n−1(X′�̂X)−1{X′D(w)V̂D(w)X}(X′�X)−1 (6.2.14)

where �̂ = Diag. {wi f̂i(1 − f̂i)}.
Again, by (A.4.14),

√
n{b(β̃) − b(β)} ∼ √

n( ∂b(β)

∂β
)(β̃ − β)

= √
n�X(β̃ − β).

(6.2.15)

Therefore, by (6.2.12) and (6.2.14), the asymptotic covariance matrix of the fitted
cell-frequencies f̃ is

Vf̃ = D(W)−1�XVβ̃X
′�D(W)−1. (6.2.16)

Hence, the estimated covariance matrix is

V̂f̃ = D(w)−1�̂XV̂β̃X
′�̂D(w)−1. (6.2.17)

The residual error vector

r = p − f̃ = (p − f) − (f̃ − f) (6.2.18)

Again,

f̃ − f = D(W)−1�X(X′�X)−1X′D(W)(p − f) (6.2.19)

by (6.2.15) and (6.2.12). Therefore, from (6.2.18),

√
nr = √

n(p − f̃) ∼ [I − D(W)−1�X(X′�X)−1X′D(W)]√n(p − f). (6.2.20)

Its estimated asymptotic covariance matrix is

V̂r = n−1AV̂A′ (6.2.21)

where

A = I − D(w)−1�̂X(X′�̂X)−1X′D(w). (6.2.22)
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6.2.3 Goodness-of-Fit Tests

The usual goodness-of-fit tests are:

X2
P = n

I∑

i=1

wi
(pi − f̂i)2

f̂i(1 − f̂i)
; (6.2.23)

and

G2 = 2n
I∑

i=1
wi

[
pi log

(
pi
f̂i

)
+ (1 − pi) log

(
1−pi
1−f̂i

)]

=
I∑

i=1
G2

i (say) ,

(6.2.24)

where f̂i is any estimator of fi including the pseudo-MLE.
If pi = 0,G2

i = −2nwi log(1 − f̂i); if pi = 1,G2
i = −2nwi log f̂i.

Under independent binomial sampling, both X2
P and G2 are asymptotically dis-

tributed as a χ2
(I−p) variable, when the model (6.2.3) holds. However, this result is

not valid for general sampling design.
For a general sampling design, X2

P and G2 are asymptotically distributed as a
weighted sum

∑I−p
i=1 δiψi of independent χ2

(1) variables ψi. Here, the weights δi’s are
the eigenvalues of the matrix

�−1
0φ �φ (6.2.25)

where

�φ = n−1C′�−1D(W)VD(W)�−1C (6.2.26)

and

�0φ = n−1C′�−1C (6.2.27)

and C is any I × (I − p) matrix of rank (I − p) such that C′X = 0. For proof, see
Corollary6.3.1.2.

The eigenvalues are independent of the choice of C. The matrix �0φ and δi’s
are, as before, termed a ‘generalized design effect matrix’ and ‘generalized design
effects’, respectively.

A Wald statistic:
Testing fit of the model (6.2.3) is equivalent to testingC′ν = φ (say) = C′Xβ = 0
and hence, as shown by Roberts et al. (1987), a Wald statistic is

X2
W = φ̂

′
V̂−1

φ̂
φ̂ = ν̂ ′CV̂−1

φ̂
C′ν̂ (6.2.28)
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where ν̂ is the vector of estimated logits ν̂i = {pi/(1 − pi)} and V̂φ̂ is the estimated

true-design-covariance matrix of φ̂. The statistic X2
W is invariant to the choice of C

and is asymptotically distributed asχ2
(I−p) when the model (6.2.3) holds. The statistic

X2
W , however, is not defined if pi = 0 or 1 for some i and may be very unstable if any

pi is close to 1 or when the number of degrees of freedom for estimating V̂φ̂ is not
large in comparison to I − p (Fay 1985).

6.2.4 Modifications of Tests

As in (4.2.30), Rao-Scott adjustment to X2
P or G2 is obtained by treating X2

P(c) =
X2
P/δ̂0 or G

2
c = G2/δ̂0 as a χ2

(I−p) random variable, where

(I − p)δ̂0 =
∑

i

δ̂i = n
I∑

i=1

V̂ii,rwi

f̂i(1 − f̂i)
(6.2.29)

where V̂ii,r is the ith diagonal element of the estimated covariance matrix of the
residual r = p− f̂ given in (6.2.20). This adjustment is satisfactory if the c.v. among
δi’s is small.

A better approximation, based on Satterthwaite approximation, is given by
X2
P(cc) = X2

P(c)/(1 + â2) or G2
cc = G2

c/(1 + â2) where

â2 =
I−p∑

i=1

(δ̂2i − δ̂0)
2/{(I − p)δ̂20} (6.2.30)

and
∑

i δ̂
2
i is given by

I−p∑

i=1

δ̂2i =
I∑

i=1

I∑

j=1

V̂ij,r(nwi)(nwj)

{f̂i f̂j(1 − f̂i)(1 − f̂j)}
(6.2.31)

where V̂ij,r is the (i, j)th element of V̂r .

6.3 Nested Model

As in Sect. 5.6,we call the fullmodel (6.2.3) asmodelM1. LetX = (X1(I×r),X2(I×
u)) where r + u = p. The model (6.2.3) can then be written as

ν = Xβ = X1β
(1) + X2β

(2) (6.3.1)

http://dx.doi.org/10.1007/978-981-10-0871-9_4
http://dx.doi.org/10.1007/978-981-10-0871-9_5
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where β = (β(1)′(1×r),β(2)′(1×u))′.We are interested in testing the null hypothesis
H2|1 : β(2) = 0, given that the unconstrained model isM1, so that under H2|1, we get
the reduced model M2 as

ν = X1β
(1). (6.3.2)

The pseudo-MLE ˜̃β(1) of β(1) under M2 can be obtained from the equations

X′
1D(w)

˜̃f = X′
1D(w)p (6.3.3)

by iterative calculations, where ˜̃f = f( ˜̃β
(1)

). The standard Pearson and likelihood
ratio tests for H2|1 are then given by

X2
P(2|1) = n

I∑

i=1

wi
(f̃i − ˜̃

if )2

˜̃
if (1 − ˜̃

if )

(6.3.4)

and

G2(2|1) = 2n
I∑

i=1

[

f̃i log
f̃i
˜̃
if
+ (1 − f̃i) log

1 − f̃i

1 − ˜̃
if

]

. (6.3.5)

We shall now derive the asymptotic null distribution of X2
P(2|1) or G2(2|1) for any

survey design p(s).

Theorem 6.3.1 Under H2|1, asymptotic distribution of X2
P(2|1) given in (6.3.4) is

given by

X2
P(2|1) ∼ nβ̃(2)′(X̃′

2�X̃2)β̃
(2) (6.3.6)

where

X̃2 = X2 − X1(X′
1�X1)

−1(X′
1�X2) (6.3.7)

and � is given in (6.2.9). Moreover, under H2|1,

X2
P(2|1) =

u∑

i=1

δ̂i(2|1)ψi (6.3.8)

where ψi’s are independent χ2
(1) variables and δ̂i(2|1)’s (all >0) are the eigenvalues

of the matrix

�̂(2|1) = (X̃′
2�̂X̃2)

−1{X̃′
2D(w)V̂D(w)X̃2}. (6.3.9)
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Proof From (6.3.4),

X2
P(2|1) ∼ n(f̃ − ˜̃f)′D(W)�̃

−1
D(W)(f̃ − ˜̃f) (6.3.10)

where

�̃ = Diag. (Wif̃i(1 − f̃i), i = 1, . . . , I). (6.3.11)

Following (6.2.12) and (6.2.19)

√
n(˜̃f − f) = D(W)−1�X1{√n( ˜̃β

(1)
− β(1))}, (6.3.12)

where

√
n( ˜̃β

(1)
− β(1)) ∼ (X′

1�X1)
−1X1D(W){√n(p − f)}, (6.3.13)

as in (6.2.12). Hence, from (6.2.15) and (6.3.11),

√
n(f̃ − ˜̃f) ∼ D(W)−1�

√
n{X1(β̃

(1) − β(1)) + X2β̃
(2) − X1(

˜̃β
(1)

− β(1))}
(6.3.14)

under H0.

Again X′�X can be expressed as the partitioned matrix

X′�X =
[
X′

1�X1 X′
1�X2

X′
2�X1 X′

2�X2

]

.

As in (5.6.12), using the standard formula for the inverse of a partitioned matrix and

thereby calculating (
˜̃β

(1)
− β(1)), it can be shown from (6.2.12) and (6.3.12) that

√
n( ˜̃β

(1)
− β(1)) ∼ √

n(β̃(1) − β(1)) + (X′
1�X1)

−1(X′
1�X1)

√
nβ̃(2). (6.3.15)

Substitution of (6.3.14) into (6.3.13) gives

√
n(f̃ − ˜̃f) ∼ √

nD(W)−1�X̃2β̃
(2)

. (6.3.16)

Hence, from (6.3.6) and (6.3.13),

X2
P(2|1) ∼ nβ̃(2)′(X̃′

2�X̃2)β̃
(2), (6.3.17)

assuming �̃ ≈ �.

http://dx.doi.org/10.1007/978-981-10-0871-9_5
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It follows from the formula forVβ̃ given in (6.2.13) and the formula for the inverse

of a partitioned matrix that the estimated asymptotic covariance matrix of β̃(2) is

V̂β̃(2) = n−1(X̃2�̂X̃2)
−1{X̃′

2D(w)V̂D(w)X̃2}(X̃′
2�̂X̃2)

−1 (6.3.18)

so that β̃(2) is approximately Nu(0,Vβ̃(2) ) under H2|1.
Hence, by Theorem4.2.1, X2

P(2|1) is asymptotically distributed as
∑u

i=1 δ̂i(2|1)ψi

where ψi’s are independent χ2
(1) variables and δ̂i(2|1)’s are the eigenvalues of the

matrix �̂(2|1) given in (6.3.8). As stated before (see Eq. (6.2.12′), V̂ is the asymptotic
estimated design covariance matrix of

√
np.

The δ̂i(2|1)’s may be interpreted as the generalized deff’s, with δ̂1(2|1) as the
largest possible deff taken over all linear combinations of the elements of X̃′

2p.

Corollary 6.3.1.1 For independent binomial sampling in each domain, V̂ reduces
to D(w)−1�̂D(w)−1 and hence δ̂i(2|1) = 1 ∀ i = 1, . . . , u and we get the result
X2
P(2|1) ∼ χ2

(u) under H2||1. It is well-known that G2(2|1) and X2
P(2|1) have the

same asymptotic distribution.
Note that the asymptotic distribution of X2

P(2|1) or G2(2|1) depend on V only
through the eigenvalues δi(2|1)’s.
Corollary 6.3.1.2 The asymptotic distribution of X2

P and G2 under the full model
M1, i.e., under model (6.2.3) can be obtained as a special case of the above result. For
this, letX1 = X andX2 be any I×(I−p)matrix of rank I−p so that (X1,X2)(I×I) is
of rank I. LetC = �X̃2 so that rank ofC= rank X̃2 = I−p andC′X = X̃′

2�X = 0.
Hence,

(X̃′
2�̂X̃2)

−1{X̃′
2D(w)V̂D(w)X̃2} = (C′�̂

−1
C)−1(C′�̂

−1
D(w)V̂D(w)�̂C}.

Therefore, in the saturated case, X2
P or G2 is asymptotically distributed as

∑
i δiψi

where the weights δi’s are the eigenvalues of

(C′�−1C)−1(C′�−1D(W)VD(W)�−1C). (6.3.19)

It can be easily seen that δi’s are invariant to the choice of C.

6.3.1 A Wald Statistic

LetC be a I×umatrix of rank u, such thatC′X1 = 0,C′1I = 0,C′X2 is non-singular,
where X1,X2 have been defined in (6.3.1). From model (6.2.3),

C′ν = φ (say) = C′X1β
(1) + C′X2β

(2) = 0

http://dx.doi.org/10.1007/978-981-10-0871-9_4
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under H2|1 : β(2) = 0. Hence, H2|1 is equivalent to the hypothesis H0 : φ = 0.
Therefore, an alternative test statistic is Wald statistic,

X2
W (2|1) = φ̂

′
V̂−1

φ̂
φ̂

= ν̂ ′C(C′V̂ν̂C)−1C′ν̂
(6.3.20)

where V̂ν̂ is the estimated covariance matrix of ν̂ under the true sampling design
p(s).

If a consistent estimator V̂ν̂ is not available, the effect of survey design is some-
times ignored. In this case, V̂ν̂ is replaced by the covariancematrix under independent
binomial sampling, which is asymptotically,

n−1�̂
−1 = V̂ν̂0 (say) . (6.3.21)

As in the case of X2
P(2|1) orG2(2|1), the true asymptotic null distribution of X2

W (2|1)
is a weighted sum of independent χ2

(1) variables
∑u

i=1 γi(2|1)ψi, where γi(2|1)’s are
the eigenvalues of V̂−1

φ̂0
V̂φ̂, V̂φ̂0 being defined similarly. It can shown that X2

W (2|1) is
invariant to the choice of C subject to the above conditions. Under H2|1, the statistic
X2
W (2|1) is asymptotically distributed as a χ2

(u) random variable. Also, X2
W (2|1) is

well-defined even if pi is 0 or 1 for some i, unlike X2
W in (6.2.26).

6.3.2 Modifications to Tests

An adjustment to X2
P(2|1) or G2(2|1) is obtained by treating X2

P(2|1)/δ̂0(2|1) or
G2(2|1)/δ̂0(2|1) as a χ2

(u) random variable under H2|1, where

uδ̂0(2|1) =
u∑

i=1

δ̂i(2|1) = n
I∑

i=1

˜̃V ii,rwi

{˜̃f i(1 − ˜̃f i)}
(6.3.22)

where ˜̃V ii,r is the ith diagonal element of estimated covariance matrix of the residual
˜̃r = f̃ − ˜̃f obtainable from (6.3.15) and (6.3.17) and is given by

˜̃V˜̃r = n−1D(w)−1�̂X̃2
˜̃AX̃′

2�̂D(w)−1, (6.3.23)

where

˜̃A = (X̃′
2�̂X̃2)

−1{X̃′
2D(w)V̂D(w)X̃2}(X̃′

2�̂X̃2)
−1. (6.3.24)
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As in (6.2.30), a better adjustment based on Sarrerthwaite approximation can be

obtained, using the elements of ˜̃V ˜̃r.
Another adjustment is to treat

F = G2(2|1)/u
G2/(I − p)

(6.3.25)

as a Fu,(I−p) variable under H2|1. Rao and Scott (1987) have studied the behavior of
this test. This test does not require the knowledge of any design effect.

6.4 Choosing Appropriate Cell-Sample Sizes for Running
Logistic Regression Program in a Standard Computer
Package

If we have an estimate V̂ of V, covariance matrix of p, a design-based estimate of
the population cell-proportions π, we can obtain a generalized least square estimate
of β based on the empirical logits, ν̂i = log[f̂i/(1 − f̂i)] and the model (6.2.3).
It follows from the assumption (6.2.12′) and the standard asymptotic theory that√
n(ν̂ − ν) →L NI(0,Vν̂) where

Vν̂ = F−1VF−1 (6.4.1)

with F = Diag. (fi(1 − fi)). The generalized least square estimate of β is

β̂G = (X′V̂−1
ν̂ X)−1X′V̂−1

ν̂ ν̂ (6.4.2)

with estimated covariance matrix (X′V̂−1
ν̂ X)−1. Asymptotic tests for linear hypothe-

ses about β can then be produced immediately (Koch et al. 1975).
All these results hold if a good estimate of V, the covariance matrix of p is

available. Such estimates are, however, rarely available. Even if an estimate V̂ is
available, it will usually be available using a random group method or a sampling
designwith a small number of primary stage units per stratum. In any case, the degrees
of freedom of the estimate will be relatively low andV−1

ν̂ will be rather unstable. For
these reasons, investigators often simply run their data through the logistic regression
program in a standard computer package. Typically these packages produce theMLE
of β along with its estimated covariance matrix and the likelihood ratio test statistic
for the hypothesis H2|1 : β(2) = 0 in the model (6.3.1) under the assumption of an
independent binomial sample of ni observations in the ith cell (i = 1, . . . , I).

Scott (1989) examined the consequences of using pseudo-cell-sample sizes in
a standard logistic regression computer program. Let β̃ be the pseudo mle of β
obtained by running the observed vector of proportions, together with a vector of
pseudo-sample sizes ñ = (ñ1, . . . , ñI)′ through a standard package. As depicted
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above asymptotic properties of β̃ with ñi = ni = nwi wherewi = ni/n, an estimator
of the cell relative size Wi = Ni/N have been developed by Roberts et al. (1987)
using the methods in Rao and Scott (1984) for general log-linear models. As stated
by Scott (1989), the same method holds for more general choices of ñi so long as
ñi/n → w̃i with 0 < w̃i < 1 as n → ∞. Writing

D(w̃) = Diag. (w̃1, . . . , w̃I),

�̃ = Diag. (w̃ifi(1 − fi))
(6.4.3)

the asymptotic covariance matrix of β̃ is now,

D(β̃) = (X′�̃X)−1{X′D(w̃)VD(w̃)X}(X′�̃X)−1/n. (6.4.4)

The last factor in (6.4.4) is the asymptotic covariance matrix of β̃ under the standard
assumptions with ñi = nw̃i. Hence the product of the first two factors is the adjust-
ment needed to be applied to the output from a standard package to make room for
the complexity of the sampling design.

The choice of ñi may considerably affect the properties of the resulting estimator.
Common choices are actual sample sizes ni or if these are not known, nπ̂i where
π̂i is some consistent estimator of πi. If the covariance structure of p is known it
is possible to improve the performance. For example if the estimated cell variances
vii are known one can take ñi = fi(1 − fi)/vii in which case diagonal elements of
D(w̃)VD(w̃) will be identical to those of �̃. Scott (1989) reported that this choice of
ñi have worked well in many situations making modifications in standard computer
output almost unnecessary.

Similar results also hold for testing the hypothesis H2|1 : β(2) = 0 under the
model M2 nested within model M1 as depicted in Eqs. (6.3.1) and (6.3.2).

6.5 Model in the Polytomous Case

Morel (1989) considered the case where the dependent variable has more than two
categories.

Consider first-stage cluster sampling where n clusters or first stage units are
selected with known probabilities with replacement from a finite population or with-
out replacement from a very large population.

Letmi be the number of units sampled from the ith cluster and y∗
ik(k = 1, . . . ,mi),

the (d+1)-dimensional classification vector. The vector y∗
ik consists entirely of zeros

except for position r which will contain a 1 if the kth unit from the ith cluster falls in
the rth category, i.e., yikt = 1 if t = r; = 0 otherwise (r = 1, 2, . . . , d + 1). Let also
xik = (xik1, . . . , xikp)′ be a p-dimensional vector of values of explanatory variables
x = (x1, . . . , xp)′ associated with the kth unit in the ith cluster. Note that unlike the
model (6.2.3), here different units in the ith cluster may have different values of x.



6.5 Model in the Polytomous Case 171

Consider the following logistic regression model.

πikt = πikt(xik) = P{yikt = 1|xik}

=

⎧
⎪⎨

⎪⎩

exp(x′
ikβ

0
t )

1+∑d
s=1 exp(x

′
ikβ

0
s )

, t = 1, . . . , d

1 −∑d
s=1πiks, t = d + 1.

(6.5.1)

Note that for each category t, there is associated a regression vectorβ0
t (t = 1, . . . , d).

Let

β0 = (β0′
1 , . . . ,β0′

d )′pd×1 (6.5.2)

Since, yikd+1 = 1 −∑d
s=1 yiks, the contribution to the log-likelihood, log L̃n(β0) by

subject in the (i, k) is

log[�d+1
t=1 πikt(xik)yikt ]

d∑

t=1

yikt logπikt(xik) +
(

1 −
d∑

t=1

yikt

)

log

(

1 −
d∑

t=1

πikt(xik)

)

=
d∑

t=1

yikt log
πikt(xik)

1 −∑d
s=1 πiks(xik)

+ log

[

1 −
d∑

t=1

πikt(xik)

]

. (6.5.3)

Now,

1 −
d∑

t=1

πikt(xik) =
[

1 +
d∑

t=1

exp(x′
ikβ

0
t )

]−1

. (6.5.4)

Hence,

log
πikt(xik)

1 −∑d
s=1 πiks(xik)

= x′
ikβ

0
t , t = 1, . . . , d. (6.5.5)

Substituting from (6.5.4) and (6.5.5), (6.5.3) reduces to

d∑

t=1

yikt(x′
ikβ

0
t ) − log

{

1 +
d∑

t=1

exp(x′
ikβ

0
t )

}

. (6.5.6)
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Writing β0
t = (βt1, . . . ,βtp)

′, x′
ikβ

0
t =∑p

j=1 xikjβtj. Log-likelihood is therefore,

log L̃n(β0) =
n∑

i=1

mi∑

k=1

[
d∑

t=1
yikt

p∑

j=1
xikjβtj

− log

{

1 +
d∑

t=1
exp

(
p∑

j=1
xikjβtj

)}]

=
d∑

t=1

[
p∑

j=1
βtj

(
n∑

i=1

mi∑

k=1
xikjyikt

)

−
n∑

i=1

mi∑

k=1
log

{

1 +
d∑

t=1
exp

(
p∑

j=1
xikjβtj

)}]

.

(6.5.7)

The author considered the pseudo-likelihood as

∝ �n
i=1�

mi
k=1{�d+1

t=1 πikt(xik)yiktwi} (6.5.8)

where wi is the sample weight attached to the ith cluster. Therefore pseudo-log-
pseudo likelihood

logLn(β
0) ∝

n∑

i=1

mi∑

k=1

{
d+1∑

t=1

wiyikt log(πikt)

}

. (6.5.9)

Writing log(π∗
ik) = (logπik1, . . . , logπikd+1)

′, (6.5.9) reduces to

n∑

i=1

mi∑

k=1

wi(logπ∗
ik)

′y∗
ik . (6.5.10)

The function can be viewed as the weighted likelihood function, where the y∗
ik are

distributed as multinomial random variables. If the sampling weights wj are all one,
then (6.5.10) becomes the likelihood function under the assumption that y∗

ik are
independently multinomially distributed. For further details, the reader may refer to
Morel (1989).

6.6 Analysis Under Generalized Least Square Approach

Consider first the model (6.2.3). Suppose, therefore, there are I domains, the ith
domain being characterized by the value xi = (xi1, . . . , xip)′ of a auxiliary random
vector x = (x1, . . . , xp)′.

Suppose first that the dependent variable Y is dichotomous, taking values 0 or 1.
Hence, there are 2I cells. We assume
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P{Y = 1|x = xi} = πi

P{Y = 0|x = xi} = 1 − πi.

(6.6.1)

We have already defined the logistic regression model,

νi = log
πi

1 − πi
= x′

iβ, i = 1, . . . , I.

Hence, the model is

ν = Xβ (6.6.2)

whereX is a I×pmatrix of values of x and β = (β1, . . . ,βp)
′ is the vector of logistic

regression parameters.
Now, ν cannot be observed and we replace it by a vector of empirical logits L =

(l1, . . . , lI)′ where li = log{π̂i/(1 − π̂i)}. If there are ni observations in the domain
i, of which mi observations belong to category 1 of Y , then li = log{mi/(ni − mi)}.
Hence, corresponding to (6.6.2), we have the empirical logistic regression model

L = Xβ + u (6.6.3)

where u is a random vector with mean 0. To find its variance, we first find Var(li).
Setting mi/ni = ri, we have E(ri) = πi. Again, li = h(ri) where h(.) denotes a

function of (.). Provided that the variations in ri is relatively small, we can write

h(ri) ≈ h(πi) + (ri − πi)h
′(ri) (6.6.4)

from which it can be shown that h(ri) is approximately normally distributed with
mean h(πi) and variance {h′(ri)}2

]
ri=πi

V ar(ri). For the present case, Var(li) =
(niπi(1 − πi))

−1. Also, sampling being independent from domain to domain, Cov
(li, lj) = 0, i �= j. Therefore

Var(u) = Diag.

[
1

ni

(
1

πi
+ 1

1 − πi

)

, i = 1, . . . , I

]

= �I×I (say) . (6.6.5)

Suppose now the dependent variable Y is polytomous with d + 1 categories
{0, 1, . . . , d} and let lik be empirical logit corresponding to the baseline logit

νik = log
πik

πi0
(6.6.6)

where

πik = P{Y belongs to category k |x = xi}, i = 1, . . . , I; k = 1, . . . , d (6.6.7)
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and πi0 = 1 −∑d
s=1 πis being defined similarly. The model is therefore,

lik = x′
iβ

(k) + uik, i = 1, . . . , I; k = 1, . . . , d. (6.6.8)

Writing

L = (l11, . . . , l1d, l21, . . . , l2d, . . . , lI1, . . . , lId)′Id×1

B = (β(1)′ ,β(2)′ , . . . ,β(d)′)′pd×1

U = (u11, . . . , u1d, u21, . . . , u2d, . . . , uI1, . . . , uId)′

X =

⎡

⎢
⎢
⎣

1d ⊗ x′
1

1d ⊗ x′
2

.

1d ⊗ x′
I

⎤

⎥
⎥
⎦

(dI)×(dp)

,

(6.6.9)

where A ⊗ B denotes direct product between matrices A and B, we have the model

L = XB + U (6.6.10)

with

Cov (U) = ⊕I
i=1�i = � (say), (6.6.11)

�i being the Cov (li), li = (li1, . . . , lid)′. Here, ⊕a
i=1Ai denotes the block-diagonal

matrix whose diagonal-elements are Ai. The model (6.6.10) is in the general linear
form and � is a function of the unknown cell-probabilities πik, i = 1, . . . , I; k =
1, . . . , d only. For estimation purposes, an iterative form of the generalized least
squares is, therefore, needed. The usual procedure is to choose an initial set of values
of the elements of the covariance matrix, estimate the logistic regression parameters,
subsequently refine the variance matrix and iteratively estimate the β’s.

We now assume that the above-mentioned sampling is done for m different clus-
ters, so that the empirical logits may now accommodate a cluster effect. Suppose,
therefore, that the observations from the cth cluster contains a random cluster effect
term ηc with E(ηc) = 0, Var(ηc) = w2 and Cov(ηc, ηc′) = 0, c �= c′ = 1, . . . ,m.

If the empirical logits are calculated for each cluster separately, then for the
dichotomous case, the model is

LIm×1 = XIm×pβp×1 + uIm×1 + ηIm×1. (6.6.12)
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Here X is made up of m identical (I × p) subvectors described in Eq. (6.6.2), L and
u defined suitably and

η′ = (η11′
I , η21

′
I , . . . , ηm1

′
I). (6.6.13)

Note that the cluster effect ηc does not depend on the domain within cluster c.
For the polytomous case, let ηkc denote the cluster effect of category k of Y in

cluster c. Again, in this set-up, the cluster effect does not depend on the domain
i(= 1, . . . , I). Now, η(mId × 1) = (η′

1, . . . , η
′
c, . . . , η

′
m)′ where ηc(ID × 1) =

(η̃′
c, η̃

′
c, . . . , η̃

′
c)

′, that is in ηc, η̃c is repeated I times, η̃c(d × 1) = (η1c, . . . , ηdc)
′.

Thus

η′ = (1′
I ⊗ (η11, . . . , ηd1), . . . , 1

′
I ⊗ (η1c, . . . , ηdc), . . . , 1

′
I ⊗ (η1m, . . . , ηdm))1×(mId).

(6.6.14)

The models (6.6.13) and (6.6.14) are constant cluster effect model. It has been
assumed here that Var(ηkc) or Var(ηc) is a constant for all c. Also, it has been assumed
that the logits in the same cluster are affected in the same way for all domains by
a common cluster effect ηkc (or ηc). These assumptions may not always hold in
practice.

A more flexible approach will be to allow ηic in place of ηc for binary case
and ηikc for ηkc for polytomous case. Thus, for the dichotomous case, we assume
η′ = (η′

1, . . . ,η
′
c, . . . ,η

′
m) where η′

c = (η1c, . . . , ηIc) with Cov (ηic, ηi′c) =
wii′ , Cov (ηic, ηi′c′) = 0 for all i, i′, c( �=)c′. Here

Var (u) = � = ⊗I
i=1 ⊗m

c=1 σic/nic

Var (η) = W = ⊗m
c=1Wc(I × I)

(6.6.15)

where nic is the number of observations in the ith domain of cluster c. The case
of polytomous response variable can be treated similarly. In general, the model is,
therefore,

L = XB + η + U,

Var(η) = W, Var(U) = �, Var(L) = W + � = � (6.6.16)

where L,B,η andU are column vectors of suitable lengths andX is suitably defined
as in (6.6.10). To test hypothesis H0 : CB = r, the test statistic is

X2 = (CB̂ − r)′[C(X′�̂
−1
X)−1C′]′(CB̂ − r) (6.6.17)

which follows central chi-square with appropriate d.f. under null hypothesis.
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A practical problem is that in many situations, there will be some domains in
some clusters for which nic = 0 or a very small quantity. In such circumstances, one
calculates empirical logits by collapsing across clusters,

lik = log

[ ∑
c nicπ̂ikc

∑
c nic(1 − π̂i0c)

]

. (6.6.18)

For further details in this area, the reader may refer to Holt and Ewings (1989).

Note 6.6.1 Inmany sample surveys, there are items that require individuals in differ-
ent strata to make at least one of a number of choices. Within each strata, we assume
that each individual has made all his/her choices, and the number of individuals with
none of these choices is not reported. The analysis of such survey data are complex,
and the categorical table with mutually exclusive categories can be sparse. Nandram
(2009) used a simple Bayesian product multinomial-Dirichlet model to fit the count
data both within and across the strata. Using the Bayes factor, the author shows how
to test that the proportion of individuals with each choice are the same over the strata.

6.7 Exercises and Complements

6.1: Prove the relation (6.2.27).

6.2: Prove the relation (6.2.29).

6.3 Suppose we write the empirical logits in the multiresponse case of Sect. 6.6 in
the following form. Let

LI×d = ((lik)) = [l(1), . . . , ld)]

Bp×d = [β(1), . . . ,β(d)],

UI×d = [u(1), . . . ,u(d)]

(i)

where uik’s are the random error terms. Then the model is

L = XB + U. (ii)

We assume that the rows u′
i(i = 1, . . . , I)’s ofU are uncorrelated and E(ui) = 0 and

Cov (ui) = �i. Find the least square estimate of B.
Again, writing

LV = (l′(1), . . . , l
′
(I))

′
Id×1

BV = (β(1)′ , . . . ,β(d)′)′pd×1

UV = (u′
(1), . . . ,u

′
(I))

′
Id×1

(iii)
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show that the model in (ii) reduces to

LV = X∗B + UV (iv)

where
X∗ = Id×d ⊗ XI×p,

⊗ denoting the direct product operator. Then

E(UV ) = 0, Cov (UV ) = ⊕I
i=1�i = � (say) (v)

where ⊕ denotes the block diagonal matrix.
Show that the generalized least square estimator of BV is

B̂V = (X∗′
�−1X∗)−1(X∗′

�−1LV )

= [Id ⊗ (X′X)−1X′]LV .

(vi)

(Holt and Ewings 1989)

6.4: Find out the expression for �i and of � in (6.6.11).



Chapter 7
Analysis in the Presence
of Classification Errors

Abstract So far we have assumed that there was no error in classifying the units
according to their true categories. In practice, classification errors may be present
and in these situations usual tests of goodness-of-fit, independence, and homogeneity
become untenable. This chapter considers modifications of the usual test procedures
under this context. Again, units in a cluster are likely to be related. Thus in a cluster
sampling designwhere all the sampled clusters are completely enumerated, Pearson’s
usual statistic of goodness-of-fit seems unsuitable. This chapter considers modifica-
tion of X2

P statistic under these circumstances.

Keywords Classification error ·Misclassification probabilities ·Double sampling ·
Weighted cluster sampling design · Models of association

7.1 Introduction

In the previous chapters we have tried to deal extensively with methods for analyzing
categorical data generated from field surveys under complex survey designs, but did
not assume the presence of any error in classifying the units in different categories.
However, in practice data items themselves may be subject to classification errors
and these may bias the estimated cell-probabilities and distort the properties of rele-
vant test statistics. Rao and Thomas (1991), Heo (2002), and others considered this
problem and suggested modification to usual tests of goodness-of-fit, independence,
and homogeneity carried out when there is no misclassification.

Also, in cluster sampling, where each selected cluster is enumerated completely,
units belonging to the same (sampled) cluster are likely to be related to each other.
If the units are again grouped in different categories, their category membership is
also likely to be related. Thus in cluster sampling conventional Pearson statistic of
goodness-of-fit may not be suitable. For these situations Cohen (1976) and others
suggested some modified procedures. In this chapter we make a brief review of these
results.
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180 7 Analysis in the Presence of Classification Errors

7.2 Tests for Goodness-of-Fit Under Misclassification

Consider a finite population of size N whose members are divided into T classes
with unknown proportions π1, . . . ,πT (

∑T
i=1 πk = 1), πi = Ni/N , Ni being the

unknown number of units in the population in class i . A sample of size n is drawn
from this population following a sampling design p(s), for example, a stratified
multistage design. Let n1, . . . , nT (

∑
k nk = n) denote the observed cell frequencies

in the sample.
We want to test the hypothesis H0 : πi = πi0, i = 1, . . . , T where the πi0 are the

hypothesized proportions. This is the usual goodness-of-fit hypothesis which has
been extensively dealt within Chap.4.

Suppose now that there are errors in classification so that a unit which actually
belongs to the category j is erroneously assigned to category k.

Letπ = (π1, . . . ,πT )′ be theunknown true cell-probabilities andp = (p1, . . . , pT )′
be the observed proportions (probabilities) in different cells. Let alsoA = ((a jk)) be
the T × T matrix of classification probabilities whose ( j, k)th element a j,k denotes
the probability that an observation which belongs truly to the category j is erro-
neously assigned to the category k. It is readily seen that

p = A′π (7.2.1)

We are to test the null hypothesis H0 : π = π0 which by virtue of (7.2.1) is equivalent
to the hypothesis

H ′
0 : p = p0

where p0 = A′π0.

7.2.1 Methods for Considering Misclassification Under SRS

We now consider tests for goodness-of-fit when the units are selected by srswr.
Case (i):A known: In this situationMote and Anderson (1965) ignored the effects

of misclassification and considered the usual Pearson statistics

X2
P =

T∑

i=1

(ni − nπi0)
2/(nπi0) (7.2.2)

and showed that X2
P in general leads to the inflated type I error. They proposed an

alternative test statistic

X
′2
P =

T∑

i=1

(ni − npi0)
2/(npi0) (7.2.3)

http://dx.doi.org/10.1007/978-981-10-0871-9_4
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as a χ2
(T−1) variable. They showed that this test is asymptotically correct, but its

asymptotic power under misclassification is less than the asymptotic power of X2
P

with no misclassification.

Case (ii):A unknown: In this caseMote and Anderson (1965) proposed two different
models depicting relation between π and p : (a) the misclassification rate is same
for all the classes; (b) misclassification occurs only in adjacent categories and at a
constant rate. For model (a) they considered the relation

pi0 = πi0 + θ(1 − Tπi0) (7.2.4)

where θ is an unknown parameter (0 < θ < 1/T ) and T ≥ 3. They also assumed
that at least two of the πi0 are not equal to 1/T . For model (b) they considered similar
relations between pi0 and πi0’s, all involving an unknown parameter θ. These are

p10 = π10(1 − θ) + π20θ
pi0 = πi−10θ + πi0(1 − 2θ) + πi+10θ, i = 2, . . . , T − 1
pT 0 = πT−10θ + πT0(1 − θ),

where θ is an unknown parameter.
They showed that for model (a), the ml equations for θ is

′∑ [
ni

θ − qi0

]

= 0 (7.2.5)

where qi0 = πi0/(Tπi0 − 1),πi0 �= T−1 and the summation in (7.2.5) is over those
i’s for which πi0 �= T−1.

For model (b), the ml equation is also given by

T∑

i=1

[
ni

θ − qi0

]

= 0 (7.2.6)

where

q10 = π10/(π10 − π20)

qi0 = πi0/(2πi0 − πi−1,0 − πi+1,0), i = 2, . . . T − 1
qT 0 = πT0/(πT 0 − πT−1,0).

(7.2.7)

For both the models they obtained θ̂, mle’s for θ and thus obtained the estimates
p̂i0 = pi0(θ̂). An asymptotically correct test of H0 is obtained by treating

X̂
′2
P =

T∑

i=1

(ni − n p̂i0)
2/(n p̂i0) (7.2.8)

as a χ2
(T−2) variable.
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7.2.2 Methods for General Sampling Designs

Rao and Thomas (1991) considered the effects of survey designs on goodness-of-fit
tests when misclassification is present and the sampling design is arbitrary.

Case (i): A known: They considered

X̃
′2
P = n

T∑

i=1

(π̂i − pi0)
2/pi0 (7.2.9)

which is obtained from (7.2.3) by substituting the survey estimates π̂i for ni/n. In
this case the survey estimate π̂ is a consistent estimate of the category probabilities
p under misclassification. Under some regularity conditions π̂(1) = (π̂1, . . . , π̂T−1)

′
is asymptotically distributed as NT−1(p

(1)
0 ,V) under H0 where V is the (T − 1) ×

(T − 1) covariance matrix of π̂(1) and p(1) is defined similarly. Therefore, it readily
follows from Rao and Scott (1981) that their first-order corrected test statistic

X̃
′2
P(c) = X̃

′2
P/δ̂′

0 (7.2.10)

is a χ2
(T−1) variable with δ̂′

0, mean of the estimated eigenvalues δ̂′
i ’s is given by

δ̂′
0 = 1

T − 1

T∑

i=1

π̂i

pi0
(1 − π̂i )d̂i (7.2.11)

where d̂i is the deff of π̂i (compare with (4.2.31)). X̃
′2
P(c) has a remarkable advantage

for secondary data analysis in which it depends only on the estimated cell proportions
π̂i0 and the cell deffs d̂i , which are often available from published tables.

Similarly, the second-order corrected test statistic is

X̃
′2
P(cc) = X̃

′2
P

δ̂′
0(1 + â ′2)

= X̃
′2
P(c)

1 + â ′2 (7.2.12)

as χ2
(ν) where â

′2 is given as in (4.2.34) and ν = (T − 1)/(1 + â
′2).

Case (ii):A unknown: For general sampling designs it is difficult to findml equations
for θ for bothmodels (a) and (b). Rao and Thomas (1991), therefore, found a ‘pseudo’
mle of θ obtained from (7.2.6) and (7.2.7) by replacing ni/nwith the survey estimates
π̂i . The asymptotic consistency of π̂ ensures that of θ̂ and hence that of p̂i0(θ̂).

The uncorrected test is given by

ˆ̃X
′2

P = n
T∑

i=1

(π̂i − p̂i0)
2/ p̂i0. (7.2.13)

http://dx.doi.org/10.1007/978-981-10-0871-9_4
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A first-order corrected statistic is given by

ˆ̃X
′2

P(c) = ˆ̃X
′2

P/
ˆ̃δ
′
0 (7.2.14)

where the correction factor ˆ̃δ
′
0 is the mean of the nonzero eigenvalues of the gener-

alized design matrix and is given by

ˆ̃δ
′
0 = 1

T − 2

[
T∑

i=1

π̂i

p̂i0
(1 − π̂i )d̂i − deff

(∑ πi0

pi0
π̂i

)]

(7.2.15)

where deff (
∑ πi0

pi0
π̂i ) depends on the estimated full covariance matrix V̂ of

(π̂1, . . . , π̂T−1)
′. The test that treats ˆ̃X

′2

P(c) asχ2
(T−2) therefore requires the knowledge

of V̂. Omitting the deff terms in (7.2.15) and calling it as δ̂0(α)we get a conservative
test that depends only on the cell deffs d̂i ’s. This is

ˆ̃X
′2

P(c)(α) = ˆ̃X
′2

P/δ̂0(α).

Similarly, a second-order corrected test can be obtained.

7.2.3 A Model-Free Approach

Double sampling method can be used to test the hypothesis of goodness-of-fit with-
out invoking any model of misclassification. In double- or two-phase sampling the
error-prone measurements are done on a large first-phase sample of size m selected
according to some sampling design and more expensive error-free measurements are
then made on a smaller subsample of size n, also selected according to a specific
design.

(a) SRS design at both phase: Let mk be the number of units in category k in the
first-phase sample and suppose of these units n jk are found to actually belong to
true category j in the second-phase sampling. Then the mle’s of the π j and the
misclassification probabilities a jk are

π̂ j =
T∑

k=1

p̂k

(
n jk

n0k

)

(7.2.16)

and

â jk =
(
p̂k
π̂ j

)(
n jk

n0k

)

(7.2.17)
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where n0k = ∑
j n jk and p̂k = mk/m. Tenenbein (1972) derived the estimated

covariance matrix V∗ = ((v∗
jk)) of the mle’s π̂(1) = (π̂1, . . . , π̂T−1)

′. These are

v∗
j j = V̂ (π̂ j ) = 1

n

[

π̂ j − π̂2
j

T∑

k=1

â2jk
p̂ j

]

+ π̂2
jk

m

[
T∑

k=1

â2jk
π̂k

− 1

]

(7.2.18)

and

v∗
jl = Ĉov(π̂ j , π̂l) = −1

n
π̂ j π̂l

T∑

k=1

â jk âlk
p̂k

+ π̂ j π̂l

m

[
T∑

k=1

â jk âlk
p̂k

− 1

]

, j �= l.

(7.2.19)

Consider now the simple chi-square statistic

X∗2
P = n

T∑

i=1

(π̂i − πi0)
2/πi0 = (π̂(1) − π(1)

0 )′�(1)−1
0 (π̂(1) − π(1)

0 ) (7.2.20)

where �
(1)
0 = Diag. (π10, . . . πT−10) − π(1)π(1)′ (see (4.2.4)), for testing H0 : πi =

πi0, i = 1, . . . , T . Its asymptotic distribution under H0 is not χ2
(T−1), since the

covariance matrix of π̂(1) is not �
(1)
0 . Assuming that π̂(1) is approximately nor-

mal NT−1(π
(1),V∗) for sufficiently large subsamples we have Rao-Scott (1981)

first-order corrected test statistics

X∗2
P(c) = X∗2

P /δ̂∗
0 , (7.2.21)

as a χ2
(T−1) variable where δ̂∗

0 is the mean of the eigenvalues of the generalized design

effect matrix �
(1)−1
0 V̂∗. We note that

(T − 1)δ̂∗
0 = n

T∑

j=1

v∗
j j

π j0
. (7.2.22)

A second-order corrected test is

X∗2
P(cc) = X∗2

P(c)/(1 + a∗2) (7.2.23)

which follows χ2
ν∗ under H0 where

a∗2 =
∑

i

(δ∗
i − δ∗

0)
2/[(T − 1)δ∗2

0 ] (7.2.24)

and ν∗ = (T − 1)/(1 + a∗2).

http://dx.doi.org/10.1007/978-981-10-0871-9_4
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(b) Sampling design is not SRS at at least one of the phases: Suppose that the sampling
design is other than srs in at least one of the phases. Let π̂(1) represent a consistent
estimator of π(1) in the present survey design. Let V̂1 be a consistent estimator
of covariance matrix of π̂(1). Then a first-order corrected test is given by X2

P(c) =
X∗2

P /δ̂0 which follows asymptotically a χ2
(T−1) variable, where δ̂0 is the mean of the

eigenvalues of �
(1)−1
0 V̂1. It can be seen that

(T − 1)δ̂0 = n
T∑

j=1

v̂1 j j/π j0 =
T∑

j=1

π̂ j

π j0
(1 − π̂ j )d̂ j (7.2.25)

where v1 j j = V̂ (π̂ j ) and d̂ j = v̂1 j j n/[π̂ j (1 − π̂ j )] is the deff of the j th cell. Hence,
the first-order corrected test depends only on the estimated proportions and their
standard errors under the specified two-phase design. Similarly, a second-order cor-
rection can be made.

7.3 Tests of Independence Under Misclassification

Suppose we have two-way cross-classified data according to two variables A and B,
having r and c categories, respectively. Let π jk be the probability that a unit truly
belongs to the ( j, k)th cell ( j = 1, . . . , r; k = 1, . . . , c). Also π j0 = ∑

k π jk,π0k =∑
j π jk are the row and column marginal probabilities, respectively. The hypothesis

of independence of the variable A and B can be stated as

H0 : π jk = π j0π0k j = 1, . . . , r; k = 1, . . . , c. (7.3.1)

We assume, however, that there are errors in classification. Thus, when a unit actually
belonging to the row u is erroneously assigned row j , similarly, a unit which actually
belongs to column v is by mistake allotted to column k. Again the observations may
be obtained by sampling from the population according to some specific designs
including srs.

Let au jvk be the probability that an observation which truly belongs to the (u, v)

cell is erroneously assigned to the ( j, k)th cell. Let p jk be the probability that an
observation is found in the ( j, k)th cell when misclassification is present and let πuv

be the probability that a unit truly belongs to the (u, v)th cell. Therefore,

p jk =
r∑

u=1

c∑

v=1

πuvau jvk . (7.3.2)

In matrix notation (7.3.2) can be written as

p = A′π (7.3.3)
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wherep = (p11, . . . , p1c, . . . , pr1, . . . , prc)′,π defined in a similarmanner andA =
((au jvk)) is the (rc) × (rc) matrix of probabilities. The rows of A are indexed by
the subscripts (u, v) listed in lexicographic order and the columns of A are similarly
indexed by the subscripts ( j, k), also listed in lexicographic order.

7.3.1 Methods for Considering Misclassification Under SRS

Case (i): A known and classification errors are independent: The usual Pearson
statistics, without considering misclassification, is

X2
P =

r∑

j=1

c∑

k=1

(n jk − n j0n0k)
2/[n j0n0k/n] (7.3.4)

wheren jk is the number of observedunits in the ( j, k)th cell andn j0 = ∑
k n jk, n0k =∑

j n jk are, respectively, the row and column totals. If the way in which error of
classification occurs in rows is independent of the way errors in classification occurs
in columns, i.e., if au jvk = bu j evk , then it has been shown that H0 is equivalent to
H ′

0 : p jk = p j0 p0k∀ j, k. As a result the usual chi-square test (7.3.4) which treats
X2

P as χ2
(r−1)(c−1) will be asymptotically correct, but its asymptotic power under

misclassification will be less than its power with no misclassification (Mote and
Anderson 1965).

Case (ii):A known, but classification errors are not independent: In this case, Pearson
statistics X2

P in (7.3.4) though asymptotically correct leads to inflated type I error.
From Example 5.6.1 we note that the hypothesis H0 in (7.3.1) may be expressed

as H2|1 : θ2 = 0 in the log-linear model (5.2.6) (read with (5.6.1)), and therefore
find a ‘pseudo’ mle of ũ, θ1 and hence of π following an iterative scheme involving
weighted least squares method of Scott et al. (1990). Denoting the mle of p by p̂ an
asymptotically correct test of H0 is

X̂
′2
P =

r∑

j=1

c∑

k=1

(n jk − n p̂ jk)
2/(n p̂ jk) (7.3.5)

which follows χ2
(r−1)(c−1) distribution under H0.

Case (iii):A unknown: A double sampling method must be used to obtain the appro-
priate test of independence.

7.3.2 Methods for Arbitrary Survey Designs

Case (i):A knownand classification errors are independent: Consider the test statistic

http://dx.doi.org/10.1007/978-981-10-0871-9_5
http://dx.doi.org/10.1007/978-981-10-0871-9_5
http://dx.doi.org/10.1007/978-981-10-0871-9_5


7.3 Tests of Independence Under Misclassification 187

X2
P = n

r∑

j=1

c∑

k=1

(π̂ jk − π̂ j0π̂0k)
2/(π̂i0π̂0 j ). (7.3.6)

which is used for testing hypothesis of independence when classification errors are
absent. It readily follows that the first-order corrected test X2

P(c) and the second-order
corrected test X2

P(cc) can be used without any modification.

Case (ii):A known but classification errors are not independent: we consider the test
statistic

ˆ̃X
′2

P = n
r∑

j=1

c∑

k=1

(π̂ jk − p jk)
2/ p̂ jk (7.3.7)

which is obtained from (7.3.5) by substituting the survey estimates π̂ jk for n jk/n and
using the ‘pseudo’ mle for p̂. The true probabilities π are estimated by A′−1p̂.

Rao and Thomas (1991) have shown that ˆ̃X
′2

P is asymptotically distributed as
∑(r−1)(c−1)

i=1 δ′
iWi where each δ′

i is independent χ
2
(1) variable and δ′s are the eigenval-

ues of the deff matrix

� = n(X̃′
2PAD

−1
� A′PX̃2)

−1(X̃′
2PAD

−1
� VD−1

� A′PX̃2) (7.3.8)

with

X̃2 = [I − X1(X′
1PAD

−1
� A′PX1)

−1X′
1PAD

−1
� A′P]X2, (7.3.9)

D� = Diag. (π11, . . . ,πrc) and π jk = π j0π0k .
A first-order corrected test is

ˆ̃X
′2

P(c) = ˆ̃X
′2

P/δ̂′
0 (7.3.10)

which followsχ2
(r−1)(c−1) under H0 where δ̂′

0 is themean of the estimated eigenvalues.
Similarly, a second-order correction can be implemented.

In this case, however, δ̂′
0 cannot be expressed simply in terms of estimated cell

deffs andmarginal row and column deffs, unlike in case of no-misclassification error.
A unknown: Here again, a double sampling design has to be used. As before the

first-phase sample size is m and the second-phase sample size is n. Let π̂ repre-
sent a consistent estimator of π under the specific two-phase design and V̂ be a
consistent estimator of covariance matrix of π. A Pearsonian chi-square for testing
independence is given by (7.3.4). Standard corrections can also be applied.
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7.4 Test of Homogeneity

Following Rao and Thomas (1991), Heo (2002) considered test of homogeneity
when errors of misclassification are present. Suppose there are two independent
populationsU1 andU2 and independent samples of sizes n1 and n2, respectively, are
selected from these two populations. Suppose also that there is a categorical variable
with T mutually exclusive and exhaustive classes with πi+ = (πi1, . . . ,πiT )′ and
pi+ = (pi1, . . . , piT )′ as the vectors of true and observed proportions, respectively,
for the i th population (i = 1, 2). The hypothesis of homogeneity is given by

H0 : π1 = π2 = π0

where πi = (πi1 . . . ,πiT−1)
′(i = 1, 2) and π0 is defined accordingly.

Let X be a predictor which predicts the category Z of a unit in population Ui

when the unit actually belongs to category Y . We shall denote the probability of such
a misclassification by

Pi (Z = k|Y = j, X = x). (7.4.1)

When misclassification errors exist, it may be important to determine the extent to
which the misclassification probabilities are homogeneous within specific groups.
We shall say that misclassification probabilities are homogeneous within population
Ui if the expression (7.4.1) does not depend on x . In such a situation we shall also
say that the misclassification errors of Ui are homogeneous.

When the misclassification probabilities are homogeneous, customary design-
based estimators of the proportions of reported classification will converge to

pi+ = A′
iπi+ (7.4.2)

where Ai = ((ai, jk)) is a T × T matrix with ( j, k)th element ai; jk . The ( j, k)th
element of matrix Ai is the probability, Pi (Z = k|Y = j) of a unit being classified
into the kth class when its true class is j .

Suppose now that there are categorical explanatory variables and the intersection
of all the explanatory variables partition the population Ui into C groups, Uic(c =
1, . . . ,C) and the vectors analogous to πi is πic = (πic1, . . . ,πicT−1)

′ and pic is
defined similarly. Here πicj denotes the true proportion in category j of elements in
group c of population Ui ( j = 1, . . . , T − 1; c = 1, . . . ,C; i = 1, 2). In this case,
as in Eq. (7.4.2) we have

pic+ = A′
icπic+ (7.4.3)

where Aic = ((aic; jk)) is the associated misclassification matrix with the ( j, k)th
element aic; jk = Pic(Z = k|Y = j) for members of the subpopulation Uic.
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The vector pic+ is defined as

pic+ = M−1
ic

⎛

⎝
∑

t∈Uic

It1, . . . ,
∑

t∈Uic

ItT

⎞

⎠

′

where Mic is the size of Uic and It j = 1(0) if the person gives answer j , and 0
(otherwise). Similarly, the vector πic+ is

πic+ = M−1
ic

⎛

⎝
∑

t∈Uic

δt1, . . . ,
∑

t∈Uic

δtT

⎞

⎠

′

where δt j = 1(0) if a person’s true category is j (otherwise). The vector of the overall
observed proportions for population Ui is, therefore,

pi+ =
C∑

c=1

Ricpic+ =
C∑

c=1

RicA′
icπic+ (7.4.4)

where Ric = M−1
i Mic and Mi = ∑C

c=1 Mic, the number of units inUi . When Aic =
Ai ∀ c, (7.4.4) reduces to

pi+ = A′
i

∑

c
Ricπic+

= A′
i

∑

c
M−1

i

(
∑

t∈Uic

δt1, . . . ,
∑

t∈Uic

δcT

)′

= A′
i M

−1
i

(
∑

t∈Ui

δt1, . . . ,
∑

t∈Ui

δtT

)′

= A′
iπi+.

Assume now that all Aic are non-singular matrices and are not all equal. Let Bic =
((bic; jk)) = (A′

ic)
−1. Then from expressions (7.4.3) and (7.4.4),

πi+ =
∑

c

Ricπic+

=
C∑

c=1

RicBicpic+. (7.4.5)

When all Aic are equal, expression (7.4.5) simplifies to
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πi+ = A−1
i

∑

c
Ricpic+

= A−1
i M−1

i

(
∑

t∈Ui

It1, . . . .
∑

t∈Ui

ItT

)′

= (A′
i )

−1pi+.

Point Estimation: Consider now the following sampling design D1. Suppose that
population Ui has been stratified into H strata with Nh clusters in the hth stra-
tum. From the hth stratum nh ≥ 2 clusters are selected independently with unequal
probability pha (for the ath cluster) and with replacement across the strata (a =
1, . . . , nh; h = 1, . . . H ). Within the ath first stage unit in the hth stratum nha ≥ 1
ultimate units or elements are selected according to some sampling method with
selection probability phab (for the bth element) from Nha units, b = 1, . . . , nha; a =
1, . . . , nh; h = 1, . . . , H . The total number of ultimate units in the population is
N = ∑H

h=1

∑Nh
a=1 Nha and in the sample is n = ∑H

h=1

∑nh
i=1 nha .

Replacing the triple subscript (hab) by the single subscript t for convenience, we
have the estimates

R̂ic = M̂−1
i M̂ic (7.4.6)

where M̂ic = ∑
t∈sic wt , M̂i = ∑

t∈si wt , wt is the unit-level sample survey weight,
sic is the set of sample in Uic, and si is the set of sample units in Ui . Also,

p̂ic+ = M̂−1
ic

(
∑

t∈sic
wt It1, . . . ,

∑

t∈sic
wt ItT

)′
. (7.4.7)

Then from expressions (7.4.6) and (7.4.7),

R̂icp̂ic+ = M̂−1
i

⎛

⎝
∑

i∈sic
wt It1, . . . ,

∑

t∈sic
wt ItT

⎞

⎠

′

= êic, (say) . (7.4.8)

Note that êic is a vector of sample ratios. Moreover, from expression (7.4.5)

π̂i+ =
C∑

c=1

Bicêic (7.4.9)

where we have assumed Bic’s are known. The j th element of π̂i+ is π̂i j = ∑C
c=1

Bicj0êic where Bicj0 = (bic, j1, . . . , bic, jT ) is the j th row of the T × T matrix Bic0.
The authors used a logistic regression model to estimate the misclassification prob-
abilities aic; jk .
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Estimation of Variance of π̂i+: Assume that the matrices Aic and Bic are known.
Define the CT × 1 vector êi0 = (ê′

i1, . . . , ê
′
iC )′. We note that the vector êi0 is a

vector of sample ratios. Again, the expression (7.4.9) can be written as

π̂i+ =
C∑

c=1
Bicêic

= [
Bi1 Bi2 . . . BiC

]

⎡

⎢
⎢
⎢
⎢
⎣

êi1
êi2
.

.

.êiC

⎤

⎥
⎥
⎥
⎥
⎦

= Bi000êi0

(7.4.10)

where Bi000 is a T × (CT ) matrix with j th row equal to a 1 × CT vector Bi0 j0 =
(Bi1 j0, . . . ,BiC j0). Thus an estimate of the variance of the approximate distribution
of π̂i+ is

V̂(π̂i+) = Bi000V̂(êi0)B′
i000 (7.4.11)

with j th diagonal element V̂ (π̂i j ) = Bi0 j0V̂(êi0)B′
i0 j0.

Asymptotic properties of π̂i : We have from (7.4.10) π̂i+ = Bi000êi0. Thus π̂i+ is a
linear function of êi0 and êi0 is a vector of sample ratios (vide (7.4.8)). Therefore, if
under certain conditions êi0 is a consistent estimator of the corresponding population
quantities with its asymptotic distribution normal then under the same conditions
π̂i+ is a consistent estimator of πi+ and

√
ni (π̂i − πi ) converges in distribution to

a (T − 1) variate normal distribution NT−1(0,Vπi ).
For the design D1 Shao (1996) gave conditions for consistency and asymptotic

normality of design-based estimators of nonlinear functions, like ratios of population
total. Along with these conditions Heo and Eltinge (2003) assumed the condition
(C1): V̂(π̂) is a consistent estimator of Vπi where V̂(π̂) is the upper (T − 1) ×
(T − 1) sub-matrix of V̂(π̂i+) in (7.4.11).

Thus under design D1, and some regularity conditions including the condition
C1, the Wald test statistic for homogeneity is

XWH (c)2 = (π̂1 − π̂2)
′V̂−1(π̂1 − π̂2) (7.4.12)

where V̂ = V̂1 + V̂2 is asymptotically distributed as χ2
(T−1) under H0. The authors

evaluated the power of the test (7.4.12) and applied their proposed methods to the
data from the Dual Frame National Health Interview Survey (NHIS)/Random-Digit-
Dialing (RDD) Methodology and Field Test Project.
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7.5 Analysis Under Weighted Cluster Sample Design

A weighted cluster sample survey design is frequently used in large demographic
surveys. As is well known, in such surveys each selected cluster, generally a house-
hold, is completely enumerated. Sociodemographic and health characteristic of each
member of the selected household is recorded and is multiplied by a weight which is
roughly proportional to the inverse of the probability of the individual being included
in the sample on the basis of post-stratified geographic and demographic status of
the individual. This type of weighting is necessary to estimate certain characteristics
of the target population at reasonable cost in large sample survey situations.

Say a sample of n clusters is drawn by simple random sampling with replacement
from a population of N clusters, the sth cluster containing Ms elementary units
or units. The population size is therefore M0 = ∑N

s=1 Ms and sample size is m =∑n
s=1 Ms . As we know, in cluster sampling all the Ms units in the selected sth cluster

are completely enumerated.
Suppose that eachmember of a cluster is classified according to two characteristics

in a two-way contingency table: once by a characteristic represented by r rows and
once by a different characteristic represented by c columns, r × c = q. Let ai denote
the sample count of members that fall in category i and Ai the population count of
members in the same category, i = 1, . . . , q so that

∑
i ai = m,

∑
i Ai = M0. Also

let πi be the probability that a unit (member of a cluster) belongs to the category
i,

∑q
i=1 πi = 1.

We denote by Pi j ...t the probability that the first member of a cluster falls in
category i , the second member in category j, . . ., and the last member in category
t, (i, j, . . . , t = 1, . . . , q).

When Ms = 2 for each s, Cohen (1976) suggested the following model of asso-
ciation between members of the same cluster:

Pi j =
{

απi + (1 − α)π2
i (i = j)

(1 − α)πiπ j (i �= j)
(7.5.1)

with Pi j > 0,
∑

Pi j = 1, 0 ≤ α ≤ 1. If α = 0, Pi j = πiπ j , the two members are
totally independent; if α = 1, Pi j = πi (i = j) and 0(i �= j), the two members are
completely dependent. The other degree of association between members of the
same cluster is thus reflected in the value of α between these two extremes. Cohen
considered clusters each containing only two siblings.

Altham (1976) extended Cohen’s model to the case, Ms = 3∀s:

Pi jk =
{

απi + (1 − α)π3
i (i = j = k)

(1 − α)πiπ jπk (otherwise)
(7.5.2)

where Pi jk > 0,
∑

Pi jk = 1 and 0 ≤ α ≤ 1. Some othermodels have been presented
by Altham (1976), Plackett and Paul (1978), and Fienberg (1979).
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Chi-square test of a simple hypothesis: Usual Pearson statistic for testing goodness-
of-fit hypothesis H0 : πi = πi0, i = 1, . . . , q is

X2
P =

q∑

i=1

(ai − mπi0)
2

mπi0
. (7.5.3)

However, in a complex survey situation in which the elementary units are dependent
variables (because of the relations like (7.5.1) and (7.5.2)) and weighted (as intro-
duced in the beginning of this section and elaborated subsequently), the statistic X2

P
is not appropriate.

When the data consist of a random sample of n clusters, each containing two
members, Cohen (1976) showed that a valid test statistic for goodness-of-fit is

X2
P(C) = X2

P

1 + α
, 0 ≤ α ≤ 1, (7.5.4)

where X2
P(C) has a limiting χ2

(q−1) distribution as n → ∞. Altham (1976) extended
Cohen’s result to the case Ms = M ∀ s. In this case the test statistic is

X2
P(A) = X2

P

1 + α(M − 1)
, 0 ≤ α ≤ 1. (7.5.5)

which also converges in distribution to χ2
(q−1) as n → ∞.

When themembers in the clusters are totally independent, i.e.,α = 0, X2
P(A) = 0

and the conventional test X2
P in (7.5.3) can be used as if there is no clustering.

When they are totally dependent, i.e., α = 1, then X2
P(A) = X2

P/M. Here though
the observed sample size is nM , the effective sample size is n.

Choi (1980) considered the following weighting scheme for the weighted cluster
sample survey. Let wst be the statistical weight for the t th member of the sth cluster
(t = 1, . . . , Ms; s = 1, . . . , n), and these are assumed to be known from some pre-
vious data collection procedures. We have 1 ≤ wst ≤ M0 and unweighted data are
obtained as a special case by setting wst = 1. We can obtain the overall weighted
counts M̂0 = ∑n

s=1

∑Ms
t=1 wst . Defining the indicator function

δist =
{
1 if the (s, t) member falls in i th category
0 otherwise

the sample count of members falling in the i th category is ai = ∑n
s=1

∑Ms
t=1 δist .

Denoting by Âi the weighted count of the population members that fall in the i th
category, we have Âi = ∑n

s=1

∑Ms
t=1 wstδist and M̂0 = ∑q

i=1 Âi .
In both weighted and unweighted cases, the cell count is the sum over independent

clusters, each including Ms-dependent variables that may or may not fall in the i th
region.
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The problem of interest is to investigate the goodness-of-fit of πi0 to the weighted
cell counts arising from the weighted cluster sampling. The conventional test statistic
is

X2
P(W ) =

q∑

i=1

( Âi − M̂0πi0)
2

M̂0πi0

. (7.5.6)

Because of the possible dependence between the members of the same cluster as is
reflected through the weighting of the individual members, the joint distribution of
Âi , i = 1, . . . , q’s is not a multinomial distribution and hence X2

P(W ) in (7.5.6) will
not provide an appropriate test statistic. Under model (7.5.1), Ŷ = ( Â1, . . . , Âq−1)

has the finite mean vector M̂0π0 and covariance matrix G(Dπ0 − π0π0
′) where

π0 = (π10, . . . ,πq−10)
′,Dπ0 is the diagonal matrix based on π0 and G is a positive

number defined below. If H0 is true, the correct test statistic under model (7.5.1) is

X2
P(T ) = (M̂0/G)X2

P(W ) (7.5.7)

with

G =
n∑

s=1

Ms∑

t=1

w2
st + α

n∑

s=1

∑ Ms∑

t �=t ′=1

wstwst ′ , 0 ≤ α ≤ 1.

Note that G measures the combination of effects of clustering and weighting in the
weighted cluster sampling scheme. Also, M̂0 is the weighted sample count. Thus
0 ≤ M̂0/G ≤ 1. We note that G → ∞ if the weight become large and α ≥ 0. Thus
the conventional test statistic X2

P(W ) can be corrected by multiplying it by the scale
factor (M̂0/G) and the statistic so corrected can be used for testing of null hypothesis.
The statistic X2

P(T ) is asymptotically distributed as χ2
(q−1) under H0 as n → ∞.



Chapter 8
Approximate MLE from Survey Data

Abstract Since under many situations from complex sample surveys, exact
likelihoods are difficult to obtain and pseudo-likelihoods are used instead, we shall,
in this chapter, consider some procedures and applicationswhich are useful in obtain-
ing approximate maximum likelihood estimates from survey data. After addressing
the notion of ignorable sampling designs Sect. 8.2 considers exact MLE from survey
data. The concept of weighted distributions due to Rao (Classical and contagious
discrete distributions, pp 320–332, 1965b), Patil and Rao (Biometrics 34:179–189,
1978) and its application inmaximum likelihood estimation of parameters from com-
plex surveys have been dealt with in the next section. Subsequently, the notion of
design-adjusted estimation due to Chambers (J R Stat Soc A 149:161–173, 1986)
has been reviewed. We review in Sect. 8.5 the pseudo-likelihood approach to estima-
tion of finite population parameters as developed by Binder (Stat Rev 51:279–292,
1983), Krieger and Pfeffermann (Proceedings of the symposium in honor of Prof.
V.P. Godambe, 1991), among others. The following section addresses the mixed
model framework which is a generalization of design-model framework considered
by Sarndal et al. (Model assisted survey sampling, 1992) and others. Lastly, we con-
sider the effect of sample selection on the standard principal component analysis and
the use of alternative maximum likelihood and probability weighted estimators in
this case.

Keywords Ignorable sampling design · Exact MLE · Weighted distributions ·
Design-adjusted estimators · Pseudo-likelihood ·Mixed model framework · Princi-
pal component

8.1 Introduction

We have already seen that the estimation of model parameters of the distribution of
categorical variables from data obtained through complex surveys are based on max-
imizing the pseudo-likelihood of the data, as exact likelihoods are rarely amenable
to maximization. We shall, therefore, consider in this chapter some procedures and
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applications which are useful in obtaining approximate maximum likelihood esti-
mates from survey data.

Scott et al. (1990) proposedweighted least squares andquasi-likelihood estimators
for categorical data. Maximum likelihood estimation (MLE) from complex surveys
requires additional modeling due to information in the sample selection. This chapter
reviews some of the approaches considered in the literature in this direction. After
addressing the notion of ignorable sampling designs Sect. 8.2 considers exact MLE
from survey data. The next section deals with the concept of weighted distributions
due to Rao (1965), Patil and Rao (1978) and its application in MLE of parameters
from complex surveys. The notion of design-adjusted estimation due to Chambers
(1986) has been reviewed in the next section. We review in Sect. 8.5 the pseudo-
likelihood approach to estimation of finite population parameters as developed by
Binder (1983),Krieger andPfeffermann (1991), amongothers. They utilized the sam-
ple selection probabilities to estimate the census likelihood equations. The estimated
likelihood is then maximized with respect to the parameters of interest. Starting from
a family of exponential distributions and the corresponding generalized linear mod-
els Binder (1983) obtained likelihood equations for a set of regression parameters.
Taking cue from these equations, he obtained a set of estimating equations for the
corresponding finite population parameters. By using Taylor series expansion, the
author inverts these equations to obtain estimate of these finite population parame-
ters and subsequently derives expressions for its variance and variance-estimators.
We review these works in this section. The following section addresses the mixed
model framework which is a generalization of design-model framework considered
by Sarndal et al. (1992) and others. Lastly, we consider the effect of sample selection
on the standard principal component analysis and the use of alternative maximum
likelihood and probability weighted estimators in this case.

Intrested readers may refer to Chambers et al. (2012) for further discussion on
MLE from survey data.

8.2 Exact MLE from Survey Data

We review in this section the MLE from survey data. To understand the complexity
of the problem we first discuss the notion of ignorable sampling designs.

8.2.1 Ignorable Sampling Designs

Let Z = (Z1, . . . ,Zk)′ be a set of design variables and Y = (Y1, . . . ,Yp)′ a set of
study variables taking value zi = (zi1, . . . , zik)′ and yi = (yi1, . . . , yip)′ respectively
on unit i = (1, . . . ,N) in the finite population from which a sample s is selected
by the sampling design p(s). Let z = [z1 . . . , zN ]′ = ((zij)) be the N × k matrix and
y = [y1, . . . , yN ]′ = ((yij)) be theN × pmatrix of the respective values.Without any
loss of generality we write y = [ys, yr]′ where ys = [yi; i ∈ s] and yr = [yi; i ∈ s̄].
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Let I = (I1, . . . , IN )′, be a vector of sample inclusion indicator variables, Ii = 1(0) if
i ∈ (/∈)s. Thus p(s) = P(I|Y, Z; ρ)where ρ is a parameter involved in the distribution
of I. In general, the probability of observing a unit may also depend on Y as in
retrospective sampling.

The basic problem of MLE from survey data is that unlike in simple random
sampling the likelihood function cannot be derived directly from the distribution of
Y in the population. This problem can often be resolved by modeling the joint dis-
tribution of Y and Z. Our notation is that big case letters Yi, Zi will denote variables
corresponding to the ith unit and small-case letters yi, zi their realized values.

Suppose that the values of Z are known for each unit in the population and Y is
observed only for sample units. If we regard the design variable Z as random, the
joint pdf of all the available data is

f (ys, I, Z; θ,φ, ρ) =
∫

f (ys, Yr |Z; θ1)P(I|ys, Yr, Z; ρ1)g(Z;φ)dYr . (8.2.1)

Ignoring the sample selection in the inference process implies that inference is based
on the joint distribution of Yr and Z, that is, the probability P(I|ys, Yr, Z; ρ1) on the
right side of (8.2.1) is ignored. Hence, the inference is based on

f (ys, Z; θ,φ) =
∫

f (ys, Yr |Z; θ1)g(Z;φ)dYr . (8.2.2)

The sample selection is said to be ignorable when inference based on (8.2.1) is equiv-
alent to inference based on (8.2.2). This is clearly the case for sampling designs that
depend only on the design variables Z, since in this case P(I|Y, Z; ρ1) = P(I|Z; ρ1).

The complications in MLE from complex survey data based on (8.2.1) or (8.2.2)
are now clear. All the design variables must be identified and known at the population
level. Sample selection should be ignorable in the above sense or alternatively, the
probabilitiesP(I|Y, Z; ρ1) bemodeled and included in the likelihood. Finally, the use
ofMLE requires the specification of the joint pdf f (Y, Z; θ,φ) = f (Y|Z; θ1)g(Z;φ).

The above definition is due to Rubin (1976). Little (1982) extended Rubin’s work
to the casewhere data associatedwith the sample units ismissing due to nonresponse.

Note 8.2.1 Forster and Smith (1998) considered nonresponse models for a single
categorical response variable with categorical covariates whose values are always
observed. They presented Bayesian methods for ignorable models and a particular
nonignorable model and argued that the standard methods of model comparison are
inappropriate for comparing ignorable and nonignorable models.

8.2.2 Exact MLE

Suppose that the sample selection is ignorable so that inference can be based on the
joint distribution
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f (ys, Z; θ,φ) = f (ys|Z; θ1)g(Z;φ).

The likelihood of (θ,φ) can then be factorized as

L(θ,φ; ys, Z) = L(θ1; ys|Z)L(φ; Z). (8.2.3)

Assuming that the parameters θ1 and φ are distinct in the sense of Rubin (1976),
MLE of θ1 and φ can be calculated independently from the two components.

Example 8.2.1 If (Yi, Zi) are independent multivariate normal, the MLE for μY =
E(Y) and �Y = V (Y) are

μ̂Y = ȳs + β̂(Z̄ − z̄s);
�̂YY = sYY + β̂(SZZ − sZZ)β̂′ (8.2.4)

where (ȳs, z̄s) = ∑
i∈s(yi, zi)/n, Z̄ = ∑N

i=1zi/N, SZZ = ∑N
i=1(zi − Z̄)(zi − Z̄)′/N,

sZZ = ∑
i∈s(zi − z̄s)(zi − z̄s)′/n and β̂ = ∑

i∈s(yi − ȳs)(zi − z̄s)′s−1
ZZ /n and n is the

sample size (Anderson 1957).

8.3 MLE’s Derived from Weighted Distributions

Let X be a random variable with pdf f (x). The weighted pdf of a random variable
Xw is defined as

f w(x) = w(x)f (x)/w (8.3.1)

where w = ∫
w(x)f (x)dx = E[w(X)] is the normalizing factor to make the total

probability unity. Weighted distributions occur when realizations x of a random
variable X with probability density f (x) are observed and recorded with differential
probability w(x). Then f w(x) is the pdf of the resulting random variable Xw and w is
the probability of recording an observation. The concept of weighting distributions
was introduced by Rao (1965) and has been studied by Cox (1969), Patil and Rao
(1978), among others.

Krieger andPfeffermann (1991) considered the application of concept ofweighted
distributions in inference from complex surveys. Consider, a finite population of
size N with a random measurement X(i) = x′

i = (y′
i, z′

i) generated independently
from a common pdf h(xi; δ) = f (yi|zi; θ1)g(zi;φ) on the unit i (using the notation
of Sect. 8.2). Suppose the unit i has been included in the sample with probability
w(xi;α). We denote by Xw

i the measurement recorded for unit i ∈ s. The pdf of Xw
i

is then
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hw(xi;α, δ) = f (xi|i ∈ s) = P[i ∈ s|X(i) = xi]h(xi; δ)

P(i ∈ s)

= w(xi;α)h(xi; δ)
∫

w(xi;α)h(xi; δ)dxi
. (8.3.2)

This is the sampling distribution of the variable Xw
i after sampling. The concept has

earlier been used by several authors including Quesenberg and Jewell (1986).
In analytic surveys interest often focuses on the vector parameter δ or functions

thereof. Suppose a sample S = {1, . . . , n} is selected with replacement such that at
any draw k(= 1, . . . , n),P(j ∈ s) = w(xj;α), j = 1, . . . ,N . Then, the joint proba-
bility of the random variables {Xw

i , i = 1, . . . , n; i ∈ S} is �n
i=1h

w(xi;α, δ) so that
the likelihood function of δ is

L(δ : Xs, S) = Const.
�n

i=1h(xi; δ)

[∫ w(x;α)h(x; δ)dx]n (8.3.3)

where Xs = {x1, . . . , xn}.
Example 8.3.1 Assume X′

i = (Y′
i, Z′) are iid multivariate normal variables with

mean μ′
x = (μ′

Y ,μ′
Z) and covariance matrix

�XX =
[
�YY �YZ

�ZY �ZZ

]

.

PPSWR selection: Let Ti = α′
1Yi + α′

2Zi define a design-variable and suppose that
a sample of n draws is selected by probability proportional to size (T) with replace-
ment such that at each draw k = 1, . . . , n,P(j ∈ s) = tj/NT̄ where T̄ = ∑N

j=1tj/N .

We assume that N is large enough so that E(T) = μT ≈ T̄ . Suppose that the only
information available is sample values x′

i = (y′
i, z′

i), i ∈ s and the selection probabil-
ities w(xi;α) = ti/NT̄ where α = (α1,α2). Replacing T̄ by μT , and using (8.3.3),
the likelihood function of {μX ,�XX} is

L(μX ,�XX; XS, S) = �n
i=1(α

′xi)φ(xi;μX ,�XX)

(α′
1μY+α′

2μZ)n
(8.3.4)

where φ(x : μX ,�XX) is the normal pdf with mean μX , and dispersion matrix �XX .
The likelihood in (8.3.4) also involves the unknown vector coefficients α. However,
the values of α can generally be found up to a constant by regressing the sample
selection probabilities w(xi;α) against α.

Stratified random sampling with T as stratification variable: Suppose the population
is divided into L strata, the stratumUh being of sizeNh fromwhich a srswor sh of size
nh is drawn and the strata being defined by 0 < t(1) ≤ t(2) ≤ · · · ≤ t(L−1) < ∞. Let
Ph = nh/Nh. By (8.3.2), the weighted pdf of Xw

i , the measurement for unit i ∈ S is,
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hw(xi;α, δ) = f (xi|i ∈ s) =

⎧
⎪⎪⎨

⎪⎪⎩

P1h(xi; δ)/w if ti ≤ t(1)

P2h(xi; δ)/w if t(1) ≤ ti ≤ t(2)

. . . . . .

PLh(xi; δ)/w if t(L−1) ≤ ti

. (8.3.5)

For Nh sufficiently large the probability w can be approximated by

w = P(i ∈ s) = P1

∫ t(1)

−∞
φ(t)dt +

L−1∑

h=2

Ph

∫ t(h)

t(h−1)
φ(t)dt + PL

∫ ∞

t(L−1)
φ(t)dt (8.3.6)

where φ(t) denotes the normal pdf of T with mean α′μX and variance α′�XXα. Let
�(t) denote the distribution function of T .

Suppose that the strata are large so that the sampling may be considered as being
done with replacement within stratum. For given strata boundaries {t(h)} and the
vector coefficients α, the likelihood function of δ can then be written from (8.3.3) as

L(δ; Xs, s) = �i∈sh(xi; δ)�L
h=1P

nh
h

{P1�(t(1)) + ∑L−1
h=2 Ph[�(t(h)) − �(t(h−1))] + PL[1 − �(t(L−1))]}n .

(8.3.7)

Often strata-boundaries are unknown and have to be estimated from sample data.
If the values ti, i ∈ s are known, the vector α can be estimated from the regression
of ti on xi. Furthermore, if t(1) ≤ · · · ≤ t(n) are the ordered values of ti’s, the strata-
boundaries can be estimated as t(1) = (tn1 + tn1+1)/2, . . . , t(L−1) = (tn∗ + tn∗+1)/2,
where n∗ = ∑L−1

h=1nh. Substituting these estimators in (8.3.7) we get an approximate
likelihood which can then be maximized with respect to delta. For further details the
reader may refer to Krieger and Pfeffermann (1991).

8.4 Design-Adjusted Maximum Likelihood Estimation

Chambers (1986) considered parameter-estimation which is adjusted for sampling
design. Let as usual Yi = (Yi1, . . . ,Yip)′ be a p × 1 vector representing the values of
the response variables y1, . . . , yp on the unit i in the population (i = 1, . . . ,N), Y =
((Yij)). We are interested in estimating the parameter θ in the joint distribution
FN (.; θ) of Y, θ ∈ �. For this we proceed as follows.

Consider, a loss function LN (θ) = LN (θ, Y) for estimating θ. For given Y, a gen-
eral approach to optimal estimation is to find an estimator θN such that

LN (θN ) = min[LN (θ), Y; θ ∈ �]. (8.4.1)

The loss function may be chosen suitably. For example, if the joint distribution
FN (.; θ) is completely specified except θ, thenLN (θ, Y)maycorrespond to the inverse
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of the likelihood function for θ given Y. Estimator obtained in this way will corre-
spond to the maximum likelihood estimator of θ. If FN (.; θ) is specified only up to
its second moment, then minimization of LN (θ, Y) may be made to correspond to
least square method of estimation.

In practice, only ys = {Yi(i ∈ s)} are observed, s being a sample of size n selected
suitably. Let for given ys,Ln(θ, ys) = Ln(; ys) be the loss function defined on y × �.
An optimal estimator based on ys is then θn such that

Ln(θn) = min[Ln(θ); θ ∈ �]. (8.4.2)

Now, a sample design can be characterized by anN × qmatrix Z = ((Zij)) of known
population values of variables z1, . . . , zq. For example, in stratified sampling zj’s
may correspond to strata-indicator variables. Thus, Zi = (Zi1, . . . ,Ziq)′ denotes the
vector of q-strata indicators for the ith unit in the population. However, the actual
process of sample selection or sample selection mechanism generally depends on
factors other than in Z.

Let GN (.; |Z;λ) denote the conditional distribution of Y given Z. Here, λ is a
parameter vector in this design model GN . (Note that a design model is the super-
population distribution of Y given the design-variable values Z. Thus, a model of
regression of Y on Z is a design model.) It is not the same as parameter vector θ
involved in the joint distribution FN of Y. Let Gn denote the corresponding marginal
conditional distribution of ys given Z. Gn is obtained from GN by integrating out the
nonobserved values Yr = {Yi, i /∈ s}.

If the parameter λ is the same in both GN and Gn, then the form of the design
model Gn for the sample data does not depend on the sample selection mechanism.
In this case, the sample selection mechanism is said to be ignorable (Rubin 1976).
A sufficient condition for an ignorable sample selection mechanism is that sample
selection process depends only on Z. In this case, an optimal estimator of λ can be
obtained by using the sample data, Z and Gn only. Note that in Gn(.|Z) we examine
the distribution of ys given Z.

In general, however, the sample selectionmechanismmay not be ignorable. In that
case to draw inference about λ using the survey data we have to specify the design
model for the whole population using the joint conditional distribution of y and yr
given Z. This distribution is not the same asGN and may be written asHN (; |Z;λ,φ)

which may involve a nuisance parameter φ.
In practice, it may be very difficult to specifyHN and henceHn, while same is not

the case withGN andGn. One therefore attempts to ensure that an ignorable selection
mechanism is used whenever possible.

We shall henceforth assume in this section that the selection mechanism is ignor-
able. The problem is how to use the sample data, Z and Gn to produce a design-
adjusted estimator of θ.

LetGN (.|y, Z;λ) = GN (.|y) denote the conditional distribution of Y given Z and
the sample data y andEN [.|y] the expectation with respect toGN (|y). Here, following
the argument underlying the EM (expectation minimization)-algorithm of Dempster
et al. (1977), instead of minimizing LN (θ), we minimize EN [LN (θ)]. An appropriate
design-adjusted estimator of θ is the value θND such that



202 8 Approximate MLE from Survey Data

EN [LN (θND)|y] = min[EN {LN (θ)|y}; θ ∈ �]. (8.4.3)

We shall try to provide some examples.

Example 8.4.1 Let the vector variable on the ith unit, Yi be iid p-variate normal
Np(μ,�), i = 1, . . . ,N . Given the sample data ys, we are required to find design-
adjusted estimators of (μ,�). Let Ȳ = (Ȳ1, . . . , Ȳp)′ denote the vector of population
means of the variables, Ȳj = ∑N

i=1Yij/N; S = ((Sjk)) the finite population covariance
matrix of Y1, . . . ,Yp; Sjk = ∑N

i=1(Yij − Ȳj)(Yik − Ȳk)/(N − 1). Let �−1 = ((�jk)).

Taking the loss function as proportional to the logarithm of the inverse of the
likelihood functions of (μ,�),

LN (μ,�) =
N∑

i=1

(Yi − μ)′�−1(Yi − μ) − N log |�−1|

=
p∑

j=1

p∑

k=1

�jk[Sjk + N(Ȳj − μj)(Ȳk − μk)] − N log |�−1|. (8.4.4)

The corresponding design-adjusted loss function is obtained by taking expectation of
(8.4.4) with respect to the conditional distribution of Y given Z and ys with unknown
parameters in the model being replaced by estimates from the survey data.

It is shown that the value of μ and � minimizing EN [Ln(μ,�)|ys] are given by

μND = EN (Ȳ|ys)
�ND = N−1[∑

i∈s
yiy′

i +
∑

i/∈s
EN (YiY′

i|ys)] − μNDμ′
ND. (8.4.5)

Example 8.4.2 Stratified Random Sampling: Here the design variables z1, . . . , zq are
stratum-indicator variables and Z is the matrix of their values; Nh, nh, sh will have
their usual meanings. It is assumed that the study variables Yh1, . . . , YhNh within
stratum h are iid Np(μh,�h). Also such variables are assumed to be independent
from stratum to stratum.

It is known that given the sample data yhs, theMLE’s ofμh and�h are respectively,
ȳh, the vector of sample means and sh, the matrix of sample covariance matrix for the
hth stratum. It then follows by (8.4.5) that the design-adjusted MLE of μ and � are

μND = N−1∑
hNhȳh

�ND = N−1∑
h

(
Nh
nh

)∑
sh
(Yi − μND)(Yi − μND)′. (8.4.6)

It is seen that both μND and �ND are design-based estimates of μ and � when
the sample is selected randomly within the stratum. Under proportional alloca-
tion of sample size, both the estimators reduce to the conventional (unadjusted)
estimators.
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Example 8.4.3 Sampling with auxiliary information: Let q = 1 and assume that the
design variable z which is a measure of size of a unit is linearly related to each of the
p study variables y1, . . . , yp. Assume that conditional onZ, Yi are independently dis-
tributed as Np(μi,�) where μi = α + βZi;α = (α1, . . . ,αp)

′;β = (β1, . . . ,βp)
′.

Let ȳ denote the vector of sample means of p study variables, z̄ and szz the sample
mean and sample variance of z. The MLE of α,β and � are

αn = ȳ − βnz̄,
βn = n−1 ∑

i∈s
(Yi − ȳ)(Zi − z̄)/szz,

�n = n−1 ∑

i∈s
(Yi − αn − βnZi)(Yi − αn − βnZi)

′.
(8.4.7)

From (8.4.5), the design-adjusted MLE of μ = N−1∑N
i=1μi is then

μND = ȳ + (Z̄ − z̄)βn (8.4.8)

where Z̄ is the population mean. It is seen that (8.4.8) is the regression estimator of
the population mean vector Ȳ.

Let Szz, szz be respectively the population variance and sample variance of z and
syy the covariance matrix of y1, . . . , yp based on the sample data. Then from (8.4.5)
it follows that

�ND = syy + βnβ
′
n(Szz − szz). (8.4.9)

Clearly, if the sampling design is balanced on z up to the second order, that is, if z̄ = Z̄
and szz = Szz, then both the design-adjusted estimators (8.4.8) and (8.4.9) reduce to
the respective conventional estimators.

Example 8.4.4 Design-adjusted estimation of regression coefficient: Let Y denote a
N-vector of population values of the study variable y and X the N × p matrix of the
population values of the independent variables x1, . . . , xp. Consider, the regression
model

E(Y|X) = Xβ, Var(Y|X) = σ2A (8.4.10)

where β is the p × 1 vector of regression coefficients, σ > 0 is a unknown scale
parameter and A is a diagonal matrix with strictly positive diagonal terms.

Let y, x, a denote the sample components of Y, X, A, respectively. The corre-
sponding nonsampled components are Yr, Xr and Ar . If the model (8.4.10) applies
even if the population values are replaced by their sample components, then β can
be estimated in a straightforward manner using the sample data only. In practice, the
model does not often remain valid for the sample data, due to the effect of sampling
design (vide, for example, Holt et al. 1980).
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Let Z be the N × q matrix of values of the variables used in the sampling design.
LetXj denote theN × 1 column vector of values xij taken by the independent variable
xj on the population units (j = 1, . . . , p; i = 1, . . . ,N). We consider the following
design model, linking the superpopulation model (8.4.10) with the design-variable
values Z. We assume that

E(Y|Z) = Zλ0, E(Xj|Z) = Zλj

V ar(Y|Z) = χ00IN , Var(Xj|Z) = χjjIN ,

Cov(Y, Xj|Z) = χ0jIN ,Cov(Xj, Xk|Z) = XjkIN
(j, k = 0, 1, . . . , p).

(8.4.11)

Here λj(j = 0, 1, . . . , p) are unknown q × 1 vectors and χjk(j, k = 0, 1, . . . , p) are
unknown scalar parameters.

Given (8.4.10), the standard loss function for the estimation of β is the quadratic
loss function,

LN (β) = (Y − Xβ)′A−1(Y − Xβ). (8.4.12)

The corresponding design-adjusted loss function is obtained by taking expectation of
(8.4.12) with respect to the conditional distribution ofY givenZ and y with unknown
parameters in the model being replaced by estimates from the survey data. Thus,

EN [LN (β)|y, x] = y′a−1y + EN (Y′
rA

−1
r Yr |y, x) − 2β′x′a−1y

− 2β′EN (X′
rA

−1
r Xr |y, x) + β′x′a−1xβ

+ β′EN (X′
rA

−1
r Xr |y, x)β (8.4.13)

where a is the diagonal submatrix ofA corresponding to s. Therefore, design-adjusted
estimator of β is

βND = [x′a−1x + EN (X′
rA

−1
r Xr |y, x]−1[x′a−1y + EN (X′

rA
−1
r Yr |y, x)] (8.4.14)

provided the inverse above exists.

Special cases:
(a) Stratified sampling design: Suppose p = 2 and X1 = 1N . We will denote by X2,
the second column of the design matrix (X1, X2)N×2. It is assumed that A = IN .

Let ȳ = (ȳ1, . . . , ȳq)′ and x̄ = (x̄1, . . . , x̄q)′ denote the vectors of stratum sample
means of y, x respectively. These are the best linear unbiased estimators of λ0,λ2

in (8.4.11). Let sjk, j, k = 0, 2 denote the usual unbiased estimates of the scale-
parameters χj,k in (8.4.11). Thus,

s02 = 1

n − q

q∑

h=1

∑

i∈sh
(Yih − ȳh)(Xih − x̄h)
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whereYih,Xih are the values ofY ,X respectively for the ith sample element in stratum
h. Let βND = (βND1,βND2)

′. Substituting in (8.4.14),

βND1 = N−1
q∑

h=1
Nh(ȳh − βND2x̄h) = μNDY − βND2μNDX

βND2 = (N − q)s02 + ∑q
h=1 Nh(ȳh − μNDY )(x̄h − μNDX)

(N − q)s22 + ∑q
h=1 Nh(x̄h − μNDX)2

(8.4.15)

where μNDY = N−1∑q
h=1Nhȳh and μNDX = N−1∑q

h=1Nhx̄h.

8.4.1 Design-Adjusted Regression Estimation
with Selectivity Bias

Chambers (1988) developed a method of design-adjusted regression when there is
nonresponse in the observed sample data.

Let Yi represent the value of the study variable ′y′ and Xi = (Xi0,Xi1, . . . ,Xip)
′, a

vector of values of the (p + 1) auxiliary variables x = (x0, x1, . . . , xp)′, xi0 = 1 for
unit i(= 1, . . . ,N) in the population. The problem of interest is the estimation of
(p + 1)-regressor-vector β defined by the model

Y = Xβ + U (8.4.16)

whereY = (Y1, . . . ,YN )′, X = ((Xij)), U = (U1, . . . ,UN )′. It is assumed thatE(U) =
0, Cov (U) = σ2IN .

It is also assumed that with each unit i, there is a censoring variable Vi with a
threshold value Ci such that if i is selected in the sample s of size n, response Yi is
available if only Vi ≤ Ci. If Vi > Ci, the value Yi is censored (that is, some imputed
value is substituted as its value) if i ∈ s. Neither Vi nor Ci is observable.

We denote by y1, x1, v1, c1 the vector of Yi values, n1 × (p + 1) matrix of x-
values, the vector of Vi’s andCi’s for the uncensored sample units; the corresponding
quantities for the n2 censored sample units are y2, x2, v2, c2; n1 + n2 = n. After s is
selected, y1, x1, x2 are observed. Let Yr, Xr denote the nonsample components of
Y and X, respectively. For estimating β consider a unweighted square error loss
function

LN (β : Y, X) = (Y − Xβ)′(Y − Xβ). (8.4.17)

Let Es(.) denote expectation conditional on the observed sample and with respect
to a model for the joint distribution of y and x which also accommodates the effect
of censoring mechanism described above. The design-based estimator of β is then
obtained by minimizing Es[LN (β : Y, X)] with unknown parameters replaced by
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their estimators. From (8.4.16) and (8.4.17), the design-adjusted estimator of β is

β̂ = A−1B (8.4.18)

where

A = x′
1x1 + x′

2x2 + Ês(X′
rXr),

B = x′
1y1 + x′

2Ês(y2) + Ês(X′
rYr).

(8.4.19)

Censoring model without design adjustment
Suppose the population corresponds to the sample so that Yr, Xr are nonexistent.
Hence, from (8.4.18),

β̂ = (xx′)−1[x′
1y1 + x′

2Ês(y2)]. (8.4.20)

We assume that the censoring model is such that (Ui, Vi) are iid bivariate normal
N2(0, 0;σ2, 1, cov = ω), i = 1, . . . ,N . It then follows that

Ui = ωVi + ei (8.4.21)

where the random variable ei is distributed independently of Vi with E(ei) = 0,
V (ei) = σ2 − ω2. This implies

Yi = X′
iβ + Ui = X′

iβ + ωVi + ei (8.4.22)

and therefore,

E(Yi|Xi, Vi > Ci) = X′
iβ + ωE(Vi > Ci). (8.4.23)

Define

k2 = E(v2|v2 > c2). (8.4.24)

Then E(y2|x2, v2) = x2β + ωk2. Hence, from (8.4.20),

β̂ = (x′x)−1[x′
1y1 + x′

2(x2β̂ + ω̂k̂2)]. (8.4.25)

Given c2, k2 can be calculated if Vi’s are normally distributed. In this case, the
components of k2 are Ki where

Ki = f (Ci)[1 − F(Ci)]−1

and f ,F are respectively density function and distribution function of a N(0, 1)
variable. In practice, c2 is not known.
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If it can be assumed that Ci = W′
iλ where Wi is a known vector, then probability

Vi ≤ Ci isF(W′
iλ) and standard probit analysis can be used to estimateλ. An estimate

of c2, and hence of k2 then follows.
To estimate ω, we note that if the censoring variables Vi were observed, ω would be
estimated by n−1∑

i∈s(Yi − X′
iβ)Vi. An estimate of ω would then be

ω̂ = Ês{n−1
∑

i∈s
(Yi − X′

iβ)Vi|y1, x}. (8.4.26)

Now, for a censored sample unit,

E(Yi − X′
iβ)Yi = ωE(V 2

i ) = ω[1 + Cif (Ci){1 − F(Ci)}−1]. (8.4.27)

This leads to the equation

ω̂ = n−1[ω̂{n2 +
∑

2

CiKi} −
∑

1

(Yi − X′
iβ̂)Hi] (8.4.28)

where
∑

1,
∑

2 denote summation over the noncensored and censored sample units
respectively, Ki = f (Ci)[1 − f (Ci)]−1 and Hi = f (Ci)/F(Ci). Given estimated val-
ues of Ci from an initial probit analysis, equations (8.4.25) and (8.4.28) can be used
to define an iterative scheme to estimate β and ω.

Censoring model with design adjustment
Consider a sample drawn by stratified sampling design with sample data subject
to censoring as above. Let X = (1, Z)′ with the ith row X′

i = (1 Z′
i) where Zi =

(x1i, . . . , xpi)′. Assume that within each stratum h, (Yi, Zi) are iid and (Ui, Vi)
′ are

also iid N2(0, 0;σ2, 1,ω) where, of course, σ2,ω are allowed to vary across strata.
Now,

β̂ = [x′x + Ês(X′
rXr)]−1[x′

1y1 + x′
2Ês(y2) + Ês(X′

rYr)]

where Ês denotes conditional expectation under stratified model and the censoring
process. Let ω̂h denote estimate of ω in stratum h, obtained as in equation (8.4.26).
For a censored sample unit in stratum h, Ês(Yi) = X′

iβ̂ + ω̂hKi. Also

Ês(X′
rXr) =

∑

h

(Nh − nh)

[
1 z̄′

h
z̄h shZZ + z̄hz̄′

h

]

(8.4.29)

where z̄h, shzz,Nh, nh denote respectively the vector of sample means, sample covari-
ance matrix of z-values, population size, and sample size of stratum h.

In calculation of Ês(X′
rYr), the sample-based estimator of the stratified superpop-

ulation model parameters need to be adjusted for the bias induced by censoring. Let
ȳh1 denote the mean of the Yi values for the noncensored sample units and k̄h2 the
mean of the nh2 values of Ki for the censored sample units in stratum h. It is then
shown that
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Ês(X′
rYr) =

∑

h

(Nh − nh)[Ês(ȳh){Ês(shYZ) + z̄hÊs(ȳh)}′]′ (8.4.30)

where

Ês(ȳh) = n−1
h [nh1ȳh1 + nh2{x̄′

h2β̂ + ω̂hk̄h2}]

Ês(shYZ) = n−1
h

[∑
h1Yi(Zi − z̄h) + ∑

h2(X
′
iβ̂ + ω̂hKi)(Zi − z̄h)

]
.

(8.4.31)

Again, in estimating Ci using the model Ci = W′
iλ, the marginal distribution of Wi

will vary across strata, as also the censoring probability. Consequently, estimation
of censoring model parameter λ must also be made design-adjusted.

8.5 The Pseudo-Likelihood Approach to MLE
from Complex Surveys

Binder (1983),Chambless andBoyle (1985),Krieger andPfeffermann (1991), among
others, utilized the sample-selection probabilities to estimate the census likelihood
equations. The estimated likelihoods are then maximized with respect to the vector
parameter of interest.

Suppose that the population values Yi are independent draws from a common
distribution f (Y; θ) and let lN (θ; Y) = ∑N

i=1 log f (Yi; θ) define the census log-
likelihood function. Under some regularity conditions, the MLE θ̂ solves the likeli-
hood equations

U(θ̂) = ∂lN (θ; Y)

∂θ
=

N∑

i=1

u(θ; yi) = 0 (8.5.1)

where u(θ; yi) = (∂ log f (Yi; θ))/(∂θ). The pseud-MLE of θ is defined as the solu-
tion of the equations Û(θ) = 0, where Û(θ) is a design-consistent estimate ofU(θ) in
the sense that p limn→∞,N→∞[Û(θ) − U(θ)] = 0 ∀ θ ∈ �. The commonly used esti-
mator of U(θ) is the Horvitz–Thompson (1952) estimator so that the pseudo-MLE
of θ is the solution of

Û(θ) =
∑

i∈s
wiui(θ; yi) = 0 (8.5.2)

where w−1
i = πi is the inclusion probability of unit i in the sample s.

For the multivariate normal model with parameters μY and �Y , pseudo-MLE’s
obtained by using (8.5.2) are
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μ̃Y = ∑
i∈swiyi/

∑
i∈swi

�̃Y = ∑

i∈s
wi(yi − μ̃Y )(yi − μ̃Y )′/

∑

i∈s
wi.

(8.5.3)

Properties of the pseudo-MLE
Suppose the score function u is such that EM[u(θ; yi)] = 0 where EM denotes
expectation with respect to model M. Then under some regularity conditions, the
pseudo-likelihood equations (8.5.2) are closest to the census likelihood equations
(8.5.1) in the mean-square-error (MSE) sense, among all design-unbiased estimat-
ing equations. The MSE is taken, here, both with respect to randomization distri-
bution of sample-selection and the model. This result follows by the property of
Horvitz–Thompson estimator.

Another property of the use of probability-weighted statistics (8.5.2) instead of
the simple unweighted statistics is that the resulting estimators are in general design-
consistent for the estimators obtained by solving the census likelihood equations,
irrespective of whether the model is correct and/or the sampling design depends on
the y-values or not (Pfeffermann 1992).

Variousmodels under the pseudo-likelihood approachhavebeen studiedbyBinder
(1983), Chambles and Boyle (1985), Roberts et al. (1987), Skinner et al. (1989),
among others. We shall consider here the results due to Binder (1983).

8.5.1 Analysis Based on Generalized Linear Model

Defining Finite Population Parameters

The generalized linearmodels described byNelder andWedderburn (1972) is defined
as follows. Suppose the observation yk is a random sample froman exponential family
of distributions with parameters θk and φ:

p(yk; θk,φ) = exp[α(φ){ykθk − g(θk) + h(yk)} + γ(φ, yk)], k = 1, 2, . . . , (8.5.4)

where α(φ) > 0. For this distribution E(yk) = g′(θk) = μ(θk) and V (yk) = μ′(θk)/
α(φ). θk is called the natural parameter of the distribution.

We assume that for each k we have access to the value xk = (xk1, . . . , xkp)′ of
a vector of auxiliary variables x = (x1, . . . , xp)′. Let θk = f (x′

kβ) where f (.) is a
known differentiable function and β = (β1, . . . ,βp)

′ a set of unknown parameters.
For observations (yk, x′

k), k = 1, . . . ,N the log-likelihood function of β is

L(β|y, X) = log p(y; θ,φ)

= α(φ)
N∑

k=1
{ykθk − g(θk) + h(yk)} + ∑N

k=1γ(φ, yk),
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where y = (y1, . . . , yN )′, θ = (θ1, . . . , θN )′ and XN×p = ((xki)). Now ∂θk/∂βi =
f ′(x′

kβ)xki. Hence, the likelihood equations are

∂L

∂βi
=

N∑

k=1

(
∂L

∂θk

)

.

(
∂θk

∂βi

)

= α(φ)

N∑

k=1

{yk − g′(θk)} f ′(x′
kβ)xki

= α(φ)

N∑

k=1

[yk − μ{f (x′
kβ)}] f ′(x′

kβ)xki = 0, i = 1, . . . , p. (8.5.5)

If μ(.) and f ′(.) are strictly monotonic functions, then the solution to Eq. (8.5.5) is
unique, provided the matrix X is of full rank.

In the finite population context we assume that for the kth unit, we observe the data
(Yk,Xk1, . . . ,Xkp) = (Yk, X′

k). We define the population vector B = (B1, . . . ,Bp)
′ as

the solution of the equations

N∑

k=1

[Yk − μ{f (X′
kB)}]f ′(X′

kB)Xki = 0 (i = 1, . . . , p). (8.5.6)

Expression (8.5.6) can be more generally written as

N∑

k=1

u(Yk,Xk; B) = 0 (8.5.7)

where u is a p-dimensional vector-valued function of the data (Yk, Xk) and the para-
meter B.

We now introduce a slight change of notation. Let us write Zk = (Zk1, . . . ,Zkq)′
as the data vector for the kth unit, Z = ((Zki)) as the N × q matrix of data values
for all the units in the population. Instead of B we shall write the finite population
parameters asψ = (ψ1, . . . ,ψp)

′. Following (8.5.7) the finite population parameters
are now defined by the expression of the form

WN (ψ) =
N∑

k=1

u(Zk;ψ) − v(ψ) = 0 (8.5.8)

where v(ψ) is completely known for a given ψ, but u(Zk;ψ) is known only for those
units which occur in the sample.

We now estimate ψ, derive asymptotic variance of ψ̂ by Taylor series expansion
and find an estimator of this asymptotic variance.
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Estimation of ψ

The term
∑N

k=1u(Zk;ψ) = U(ψ) (say) is the population total of functions u(Zk;ψ).
We represent the sample-based estimator of this total as Û(ψ). Assume that Û(ψ) is
asymptotically normally distributed with mean U(ψ) and variance �U(ψ). Let

Ẇ(ψ) = Û(ψ) − v(ψ). (8.5.9)

(Chambless and Boyle (1985) derived asymptotic normality of Û(ψ) using an
approach due to Fuller (1975).) Following (8.5.8), the estimator ψ̂ is defined by
the solution of the estimating equation

Ẇ(ψ̂) = Û(ψ̂) − v(ψ̂) = 0. (8.5.10)

Example 8.5.1 In the linear regression case, we have the estimator of parameter
regression coefficient β given by the solution of the equations

Sxxβ̂ = Sxy (8.5.11)

where Sxx and Sxy are respectively estimates of X′X and X′Y. Considering that Sxy −
Sxxβ̂ = ∑N

k=1(yk − x′
kβ̂)xk we set u(yk, xk;β) = (yk − x′

kβ)xk and vk = 0. �
Variance of ψ̂
To obtain the variance of ψ̂, we take a Taylor-series expansion of Ẇ(ψ̂) around
ψ̂ = ψ0, the true value of ψ. We obtain

0 = Ẇ(ψ̂) ≈ Ẇ(ψ0) +
[

∂Ẇ(ψ)

∂ψ

]

ψo

(ψ̂ − ψ0)

so that

Ẇ(ψ0) ≈ −
[

∂Ẇ(ψ)

∂ψ

]

ψ0

(ψ̂ − ψ0).

Calculating the variance of both sides, we obtain in the limit,

�U(ψ0) =
[
∂WN (ψ0)

∂ψ0

]

V (ψ̂)

[
∂WN (ψ0)

∂ψ0

]′
(8.5.12)

since,
∂Ẇ(ψ0)

∂ψ0
= ∂{Û(ψ0) − v(ψ0)}

∂ψ0
≈ ∂WN (ψ0)

∂ψ0
.

From (8.5.12), it follows that

V (ψ̂) =
[
∂WN (ψ0)

∂ψ0

]−1

�U(ψ0)

{[
∂WN (ψ0)

∂ψ0

]′}−1

(8.5.13)
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provided the matrix ∂WN (ψ0)

∂ψ0
is of full rank. An estimate of V (ψ̂) is

V̂ (ψ̂) =
[

∂Ẇ(ψ̂)

∂ψ̂

]−1

�̂U(ψ̂)

{[
∂Ẇ(ψ̂)

∂ψ̂

]′}−1

. (8.5.14)

8.5.2 Estimation for Linear Models

We shall now apply the above-mentioned results to different models.

Generalized Linear Model

We shall now consider, the estimation of parameters of the general linear models
described in (8.5.4) and their variances. We concentrate on the following important
case. Suppose f (t) = t. Then θk = x′

kβ = ∑p
j=1xkjβj. The parameter of interest is

B = (B1, . . . ,Bp)
′ where Bj is the finite population parameter corresponding to the

superpopulation parameter βj and is thus defined by (vide equations (8.5.6))

N∑

k=1

⎡

⎣Yk − μ

⎛

⎝
p∑

j=1

BjXkj

⎞

⎠

⎤

⎦Xki = 0(i = 1, . . . , p). (8.5.15)

Therefore, from (8.5.8),

WN (B) =
N∑

k=1

[
Yk − μ(X′

kB)
]

Xk = 0. (8.5.16)

If Ĝ is an estimate of
∑n

k=1YkXk and R̂(B) is an estimate of
∑N

k=1μ(X′
kB)Xk , then

the estimate of B is given by the solution of the equation

R̂(B̂) = Ĝ. (8.5.17)

Here,
∂WN (B)

∂B
= −

N∑

k=1

μ′(X′
kB)X′

kXk = −X′�(B)X

where �(B) = Diag.(μ′(X′
1B), . . . ,μ′(X′

NB)). Therefore, we obtain from (8.5.13),

V (B̂) = [X′�(B)X]−1�(B)[X′�(B)X]−1 (8.5.18)

where�(B) is the variance of the estimator of the total
∑N

k=1[Yk − μ(X′
kB)]Xk based

on the values {ei, xi}, i ∈ sample and ei = Yi − μ(X′
iB).
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Let �̂(B̂) be a consistent estimator of �(B), based on observations {êi, xi}, êi =
Yi − μ(X′

iB̂), i ∈ sample. Also, let Ĵ(B̂) be a consistent estimator of X′�(B)X. From
(8.5.14), we have

V̂ (B̂) = [Ĵ−1(B̂)]�̂(B̂)[Ĵ−1(B̂)]. (8.5.19)

Again, from (8.5.17), R̂(B̂) − Ĝ = 0. If B0 is the true value of B, expanding R̂(B̂)

around R̂(B0), we have

0 = R̂ − Ĝ = R̂(B0) +
[

∂R̂(B)

∂B

]

B0

(B̂ − B0) − Ĝ.

Hence,

B̂ = B0 −
(

∂R̂(B0)

∂B0

)−1

[R̂(B0) − Ĝ].

Thus, if B̂ is solved from (8.5.17), by Newton–Raphson method,

B̂(j+1) = B̂(j) −
(

∂R̂(B̂(j))

∂B̂(j)

)−1

[R̂(B̂(j)) − Ĝ]

where B̂(t) is the value ofB at the tth iteration. Again, (∂R̂(B̂))/(∂B̂) = Ĵ(B̂). Hence,

B̂(j+1) = B̂(j) − Ĵ−1(B̂(j))[R̂(B̂(j)) − Ĝ].

Classical Linear Model

Here f (t) = t and μ(θ) = θ. Thus, θk = x′
kβ,E(Yk) = θk . Therefore, WN (B) =

∑N
k=1[Yk − X′

kB]Xk = X′Y − X′XB. Again, (∂WN (B))/(∂B) = −X′X. Hence,
V̂(B̂) = (Sxx)

−1�̂(B̂)(Sxx)
−1, where Sxx is an estimate of X′X (assuming that the

observations on x in the population are centered against the population mean vec-
tor), �̂(B̂) is an estimate of the variance of an estimator of total

∑N
k=1(Yk − X′

kB)

based on observations (êk, Xk), êk = Yk − X′
kB̂, k ∈ sample.

Coefficient of multiple determination
Consider the multiple regression model

Y(N × 1) = Xβ + U(N × 1) (i)

where X = (1N , X1) is N × (r + 1) and β = (β0,β1, . . . ,βr)
′ = (β0, B′)′. The

model (i) can be written as
Ỹ = X̃B + Ũ (ii)
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where Ỹ = Y − 1N Ȳ , Ȳ = 1′
NY/N, X̃ = X1 − 1N x̄′, x̄′ = 1′

NX1/N, Ũ = U − 1N ū,
ū = 1′

NU/N . Let

S = (N − 1)−1

[
Ỹ′

X̃′

]
[
Ỹ X̃

] =
[
Syy Syx

Sxy Syx

]

.

The ordinary least square estimator of B is

B̂ = (X̃′X̃)−1X̃′Ỹ = S−1
xx Sxy.

The simple correlation between Ỹ and ˆ̃Y = X̃B̂ is called the coefficient of multiple
determination of y on x and is given by

R2
y.x = R2 = SyxS−1

xx Sxy

Syy

=
ˆ̃Y

′ ˆ̃Y
Ỹ′Ỹ

.

(iii)

The estimating equations for the finite population parameters, Ȳ , B, and R2 is

WN =
⎡

⎣
Y′1 − NȲ

X′Y − X′XB
(Y′Y − NȲ 2)(R2 − 1) + Y′Y − Y′XB

⎤

⎦ =
⎡

⎣
0
0
0

⎤

⎦ . (8.5.20)

Here
[

∂W

∂(Ȳ , B,R2)

]−1

=
⎡

⎣
N−1 0 0
0 −(X′X)−1 0

2Ȳ(1−R2)

SSY − B′
SSY (SSY)−1

⎤

⎦

where SSY = Ỹ′Ỹ. Hence, expression of V̂ (ψ̂) can be written by (8.5.14). Here �̂U

is the estimate of covariance matrix of WN (ψ) in (8.5.20). To write WN (ψ) in the
form

∑N
k=1u(Zk; Ȳ , B,R2) = ∑N

k=1ck (say), where ck = (ck1, . . . , ckr+2)
′ we note

that ck1 = Yk, (ck2, . . . , ckr+1)
′ = (Yk − x′

kB̂k)xk and ckr+2 = (R̂2Yk − x′
kB̂)Yk .

Logistic Regression for Binary Response Variable

Here the dependent variable y is dichotomous, taking values 0 and 1. The functions
g(θ) = log(1 + eθ) and f (t) = t. Thus,

μ(X′
kB) = exp(X′

kB)

1+exp(X′
kB)

μ′(X′
kB) = μ(X′

kB)(1 − μ(X′
kB)).
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Logistic Regression for Polytomous Response Variable

Suppose that each member of the population belongs to exactly one of the q distinct
categories with proportion πi(β) for the ith category, We assume that associated
with category i, there is a vector xi = (xi1, . . . , xir)′ of values of auxiliary variables
x′ = (x1, . . . , xr)′ so that approximately

πi(β) = exp(x′
iβ)

q∑

s=1
exp(x′

sβ)

proportion of individuals falls in the ith category. Let π(β) = (π1(β), . . . ,πq(β))′
and N = (N1, . . . ,Nq)

′ where Ni denotes the number of units in category i in the
population. If N is obtained by a multinomial model, the log-likelihood is

logL = Constant +
q∑

i=1

Ni log{πi(β)}.

Now
∂πi

∂βj
= πi(β)

[

xij −
q∑

s=1

xsjπs(β)

]

.

Hence

∂ log L
∂βj

=
q∑

i=1

∂ log L
∂πi

. ∂πi
∂βj

=
q∑

i=1
Nixij −

N∑

i=1
Ni

q∑

s=1
xsjπs(β), j = 1, . . . , r.

(8.5.21)

Therefore, the maximum likelihood equations for the finite population parameters
B = (B1, . . . ,Br)

′ is

WN (B) = X′N − X′π(B)[1′N] = 0 (8.5.22)

where X is the q × r matrix of xij values. An estimator B̂ of B therefore satisfies

Ẇ(B̂) = X′N̂ − X′π(B̂)[1′N̂] = 0 (8.5.23)

where N̂ is a consistent asymptotically normal estimator of N with covariance matrix
V (N̂). Let Dπ(B) = Diag. (π1(B), . . . ,πq(B)), Hπ(B) = Dπ(B) − π(B)π(B)′.
Then

∂W(B)

∂B
= −(1′N)X′H(B)X.
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Again,

�U(B) = V {Ŵ(B)} = V {X′[Iq − π1′]N̂}

= X′[I − π1′]V (N̂)[I − π1′]X.

(8.5.24)

Therefore, by (8.5.13),

V (B̂) = (1′N)−2(X′HX)−1X′[I − π1′]V (N̂)[I − 1π′]X(X′HX)−1. (8.5.25)

The author illustrates the application of the techniques with respect to the data from
Canada Health Survey, 1978–1979.

8.6 A Mixed (Design-Model) Framework

In the traditional pξ (design-model) framework inference is based on P(s)ξ(Y) dis-
tribution where P(s) is the probability of selecting a sample s and ξ(Y) is the super-
population model distribution of the response variable vector Y = (Y1, . . . ,YN )′,Yi
being the response from unit i (Sarndal et al. 1992; Mukhopadhyay 1996, 2007).
In the mixed framework proposed by Rizzo (1992) inference is based on the joint
distribution P(I, Y) where I is an indicator random vector with its value Ii = 1(0)
according as unit i ∈ s (otherwise). The distribution of I may be based on the covari-
ates that are related to Y so the joint distribution P(I, Y) does not necessarily factor
into the product of marginal distributions. This framework which uses predictive
regression estimators as functions of the probability of selection as covariates pro-
vide an alternative to classical p-weighted estimators for finite population parameters
in complex surveys.

Let X be a set of covariates correlated with the response variable Y and let Z
be a set of variables contained in X. The survey design is based on Z. Let �∞ =
{{πi} ∪ {πij} ∪ {πijk} ∪ . . .} where πi,πij, etc. are the first order, second order, etc.
inclusion probabilities. Clearly, �∞ is random since Z is so. We focuss on inference
about population mean Ȳ = N−1∑N

i=1Yi or some other aspect of the distribution of
Y. The relationship between X and Y, for example, is not of our direct interest.

After the unit i is selected, observation on variable Yi is made. Thus, the sample
of Yi is drawn from the distribution P(Yi|Ii = 1). From this, we have to go back to
the original superpopulation model distribution of Yi which is P(Yi).

Earlier authors considered P(Y|X, I)(= P(Y|X)) or P(Y|Z, I). Instead of the
whole distribution, Chambers (1986), Pfeffermann (1988), among others, considered
E(Y|Z).

Rizzo considers the specification of P(Yi|�∞, I) or P(Yi|�∞), since given�∞, I
is ignorable (because distribution of I depends on�∞ alone). This approach is stated
to be more precise and simple than P(Yi|X)-approach.
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If�∞ is sufficiently complex, then even this specificationmay be difficult. Denot-
ing by yi the value of Yi on the unit i ∈ s, we make the following simplifying assump-
tions.

(i) E(Yi|�∞) = E(Yi|πi);, i.e., the expectation of yi is related only to the πi asso-
ciated with it, rather than the other πi’s and with joint probabilities;

(ii) Var(Yi|�∞) = Var(Yi|πi);
(iii) Cov(Yi,Yj|�∞) = Cov(Yi,Yj|πi,πj,�ij) where �ij = πij − πiπj.

If the assumption (i) is reasonable, then it may be assumed in most cases that

E(Yi|πi) = �iγ (8.6.1)

where �i = (f1(πi), . . . , fk(πi)), a row vector of known functions of πi and γ is a
k × 1 vector of regression coefficients, i.e., conditional expectation of Yi is a linear
combination of πi.

Similarly, we assume

Var(Yi|πi) = Piγm (8.6.2)

where Pi = (p1(πi), . . . , pm(πi)), a row vector and γm am × 1 vector of parameters.
Assuming that �ij is noninformative (i.e., it does not depend on y’s), assumption

(iii)may bemodified as (iii)′ : Cov(Yi,Yj|�∞) = Cov(Yi,Yj|πi,πj). Further, assum-
ing that in the original superpopulation model Yi’s are independently distributed, it
may be reasonable to assume that this covariance, given �∞, is zero.

Consider the following estimators:

(a) The Horvitz–Thompson estimator (HTE), ˆ̄YHT = 1
N

∑
i∈s

yi
πi
;

(b) An adjusted version of HTE, ˆ̄YHa = 1
Ndπ

∑
i∈s

yi
πi
where dπ = 1

N

∑
i∈s

1
πi

;
(c) The simple predictive regression estimator:

ˆ̄YP = 1
N

[∑
i/∈sÊ(Yi|π) + ∑

i∈syi
]

= 1
N

[∑
i/∈s�iγ̂ + ∑

i∈syi
] (8.6.3)

where γ̂ is the least square estimator (LSE) of γ. Thus from (8.6.1),

γ̂ = (�′
s�s)−1�′

sys

where �s = (�i; i ∈ s)n×k .ˆ̄YP is Royall’s (1970) predictor using the conditional expectation E(Yi|πi). Royall
used E(Yi|xi) where X′ = (x1, . . . , xN ).
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(d) An estimator with lower variance than ˆ̄YP is

ˆ̄YG = 1

N
[
∑

i/∈s
�iγ̃ +

∑

i∈s
yi] (8.6.4)

where
γ̃ = (�′

sṼ
−1
s �s)

−1(�′
sṼ

−1
s ys)

where
Ṽs = Diag. (Piγ̃m : i ∈ s),

γ̃m = (P′
sPs)

−1(P′
se

(2)
s ),

Ps = (Pi; i ∈ s) and e(2)
s = (ê2i ; i ∈ s), ê2i = (yi − �iγ̂)2.We have assumed here that

Piγ̃m > 0.
We now consider the moment properties of these estimators. Suppose, the overall

superpopulation model for Y is: Y1, . . . ,YN are independently distributed with

Yi = f (xi,β) + εi (8.6.5)

where ε’s are independently distributed and εi is independent of xi and f is some
function of xi, possibly nonlinear and/or nonadditive. A general model of this form
can be accommodated, because we have to only specify P(Y|�∞) in this approach.
For finding the estimator we have to only specify E(Yi|�∞) and under assumption
(i), E(Yi|πi).

From (8.6.1) we can write

Yi = �iγ + ei (8.6.6)

where E(ei|πi) = 0. From assumptions (i), (ii), (iii)’, (8.6.1), (8.6.2) and the fact that
E(Y|�∞, I) = E(Y|�∞) the following results follow.

E(ei|πi, Ii = 1) = E(ei|πi, Ii = 0) = 0
Var(ei|πi, Ii = 1) = Var(ei|πi) = Piγm

Cov(ei, ej|πi,πj, Ii = 1, Ij = 1) = Cov(ei, ej|πi,πj) = 0.
(8.6.7)

The prediction error of ˆ̄YP can be written as

ˆ̄YP − Ȳ = 1

N
[
∑

i/∈s
�i(

1

n
�′

s�s)
−1(

1

n
�′

ses) −
∑

i/∈s
ei] (8.6.8)
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where es = {ei : i ∈ s}. It immediately follows that

E( ˆ̄YP − Ȳ |�∞, I) = 0.

Thus ˆ̄YP is conditionally and hence unconditionally unbiased predictor of Ȳ .

Under some regularity conditions ˆ̄YG is asymptotically unbiased. When the vari-

ance ratios Var(Yi|πi)/Var(Yj|πj) = Piγm/Pjγm are known, ˆ̄YG will be exactly
unbiased both conditionally and hence unconditionally.

It can be easily checked that

N( ˆ̄YHa − Ȳ) =
∑

i∈s
�iγ[ 1

dππi
− 1] −

∑

i∈s̄
�iγ +

∑

i∈s
ei[ 1

dππi
− 1] −

∑

i/∈s
ei.

(8.6.9)

Its conditional expectation given �∞, I gives zero for the last two terms, but the first
two terms have nonzero expectation. The bias tends to be small and is unconditionally
zero when expectation is taken over all samples with dπ constant.

Let wi be the ith element of the 1 × n row vector
∑

i∈s�i[( 1n )�′
s�s]−1[( 1n )�s].

Then

Var( ˆ̄YP − Ȳ) = 1

N2

∑

i∈s
w2

i [Piγm] + 1

N

∑

i/∈s
Piγm. (8.6.10)

A consistent variance estimator can be obtained by replacing γm by γ̃m. It is shown
that under some conditions,

Var( ˆ̄YG − Ȳ) =
(
1

N

∑

i/∈s
�i

)(
1

n
�′

sV
−1
s �s

)−1
(
1

N

∑

i/∈s
�s

)′
+ 1

N2

∑

i/∈s
Piγm + 0(n−1).

(8.6.11)

Superpopulation variables for the sample are ei’s. In the case of cluster sampling we
have therefore to look into covariances among ei’s. Now,

Cov(ei, ej|�∞) = √
Var(ei|�∞)

√
Var(ej|�∞)corr(ei, ej|�∞)

= √
Piγm

√
Pjγmcorr(ei, ej|�∞).

We now make the simplifying assumption

corr(ei, ej|�∞) = corr(ei, ej|πi,πj,�ij). (8.6.12)
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Letαij be an indicator functionwhose value is 1(0) according as (i, j) ∈ s (otherwise).
Therefore, αij is a function of Z rather that of �∞. Assume that

corr(ei, ej|πi,πj,�ij,αij) = corr(ei, ej|αij) = ραij (8.6.13)

where ρ > 0. With these assumptions V = Var(e|�∞) can be given as (a) Vij = 0
if i, j are in different clusters; (b) Vij = √

Piγm

√
Pjγmρ if i, j are in same cluster; (c)

Vij = Piγm if i = j. With this specification one can recalculate the estimators and
their variances.

8.7 Effect of Survey Design on Multivariate Analysis
of Principal Components

Sknner et al. (1986) examined the effects of sample selection on standard principal
component analysis and the use of alternative maximum likelihood and probability-
weighted estimators.

Associated with each unit i in the population there is a p × 1 vector yi of unknown
values, some ofwhich are to bemeasured in the survey. Also, there is a q × 1 vector zi
of values of auxiliary variables, assumed to be known for each unit in the population.

Let

y = (y1, . . . , yN )p×N , z = (z1, . . . , zN )q×N , (8.7.1)

s = (i1, . . . , in), a sample of n distinct units. The data consist of (ys, s, z) where
ys = (yi1 , . . . , yin).

We assume that (y′
i, z′

i)
′ is a realization of a random matrix (Y′

i, Z′
i)

′ where Yi =
(Yi1, . . . ,Yip)′ and Zi = (Zi1, . . . ,Ziq)′. Also assume that the vector (Y′

i, Z′
i)

′ is a
random sample from a multivariate normal distribution

[
Yi

Zi

]

∼ Np+q

[[
μy

μz

]

,

[
�yy �yz

�zy �zz

]]

, i = 1, . . . ,N (8.7.2)

where �zz is assumed to be positive definite. First, we shall try to estimate the
covariance matrix �yy.

Let θ be the vector of parameters involved in the distribution in (8.7.2). Then, the
likelihood function may be written as

L(θ|ys, s, zs) ∝ f (s|z)f (ys|z; θ)f (z; θ). (8.7.3)

The sample selection mechanism f (s|z) does not depend on θ, and hence, it can be
ignored in likelihood inference about θ.
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Let πi(z) be the inclusion probability of the unit i in the sample, given z and

βyz = �yz�
−1
zz , wi = (Nπi(z))−1,

w(s) = ∑
i∈swi, μ̂y:πw = ∑

i∈swiyi,
xi = (y′

i, z′
i)

′, x̄s = n−1∑
i∈sxi = (ȳ′

s, z̄′
s)

′

x̄ = N−1∑N
i=1xi = (ȳ′, z̄′)′[

syys syzs
szys szzs

]

= sxxs = (n − 1)−1∑
i∈s(xi − x̄s)(xi − x̄s)′

[
s̃yys s̃yzs
s̃zys s̃zzs

]

= n−1(n − 1)sxxs

byzs = syzss−1
zzs

[
Syy Syz

Szy Szz

]

= Sxx = N−1
N∑

i=1
(xi − x̄)(xi − x̄)′.

(8.7.4)

We shall consider, the following three point estimators of �yy:

(i)�̂yy:srs = syys;
(ii)�̂yy:ML = s̃yys + byzs(Szz − s̃zzs)b′

yzs;
(iii)�̂yy:πw =

∑

i∈swiyiy′
i − w(s)−1μ̂y;πwμ̂′

y:πw. (8.7.5)

The first estimator is the conventional estimator applicable to simple random sam-
pling. The second estimator is obtained by maximizing the likelihood in (8.7.3)
(Anderson 1957). The third estimator is the π-weighted estimator of �yy and is
approximately design unbiased.

Hence, the first estimator ignores the sampling design and prior information. The
second estimator takes account of the multivariate normal model in (8.7.2). The third
estimator takes account of the sampling design through wi’s.

To examine the properties of the estimators we consider the conditional model
expectation of the estimators given the sample s and prior information z. Now,

E(�̂yy:srs|s, z) = �yy + βyz(szzs − �zz)β
′
yz

E(�̂yy:ML|s, z) = α�yy + βyz(Szz − α�zz)β
′
yz

E(�̂yy:πw|s, z) = αw�yy + βyz(�̂zz:πw − αw�zz)β
′
yz

(8.7.6)

where

α = [n − q − 1 + trace (Szzs−1
zzs )]/n,

αw = w(s) − ∑
i∈sw

2
i /w(s),

�̂zz:πw = ∑
i∈swiziz′

i − w(s)
∑

i∈swizi
∑

i∈swiz′
i.

(8.7.7)
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Since the samples are generally selected using the variable z, the estimators are not in
general unbiased, even asymptotically. Hence, �̂yy,srs may in general have a bias of
0(1) and be unconditionally inconsistent for�yy. In contrast �̂yy,ML has a conditional
bias of 0(1), assuming that α = 1 + 0p(n−1), and is generally so unconditionally for
�yy. The π-weighted estimator �̂yy,πw has a conditional bias of 0p(n−1/2), but is
unconditionally consistent for �yy.

8.7.1 Estimation of Principal Components

Assuming that the eigenvalues λ1 > λ2 > · · · > λp of �yy are distinct, the corre-
sponding normalized eigenvectors γ1, . . . ,γp are uniquely defined by

�yyγ i = λiγ i, i = 1, . . . , p

γ ′
iγk = 1(i = k);= 0 (otherwise) .

(8.7.8)

The principal components ofY then consist of the linear combinationsχj = γ ′
jY(j =

1, . . . , p). Here, we are interested in estimating the λi’s and γ j’s. For these we use the

eigenvalues and the eigenvectors of the three estimators �̂yy given above. To evaluate
the properties of these estimators,we use the linear Taylor series expansion about�yy.
If λ̂1 > · · · > λ̂p are the eigenvalues of �̂yy and γ̂1, . . . , γ̂p are the corresponding
eigenvectors, then it follows from Girshick (1939) that

λ̂i ≈ λi + γ ′
i(�̂yy − �yy)γ i

γ̂ i ≈ γ i +
∑p

k(�=i)=1wikγk,

(8.7.9)

where wik = γ ′
i(�̂yy − �yy)γk/(λ̂i − λ̂k).

The authors consider the conditional model expectation of λ̂j:srs and γ̂ j;srs given
s, z. They also justify the validity of approximations in (8.7.9) through simulation
studies.



Appendix A
Asymptotic Properties of Multinomial
Distribution

Abstract Since multinomial distribution is one of the main pillars on which the
models for analysis of categorical data collected from complex surveys thrive,
the Appendix makes a review of the asymptotic properties of the multinomial
distribution and asymptotic distribution of Parson chi-square statistic X2

P for
goodness-of-fit based on this distribution. General theory of multinomial
estimation and testing in case the population proportions π1, . . . , πt−1 depend on
several parameters θ1, . . . , θs(s < t − 1), also unknown, is then introduced.Different
minimum-distance methods of estimation, like, X2

P , likelihood ratio statistic G2,
Freeman–Tukey (Ann Math Stat 21:607–611, 1950) statistic (FT )2 and Neyman’s
(Contribution to the theory of χ2 tests, pp 239–273, 1949) statistic X2

N have been
defined and their asymptotic distribution studied under the full model as well as
nested models in the light of, among others, Birch’s (Ann Math Stat 35:817–824,
1964) illuminating results. Finally, Neyman’s (Contribution to the theory of χ2 tests,
pp 239–273, 1949) and Wald’s (Trans AmMath Soc 54:429–482, 1943) procedures
for testing general hypotheses relating to population proportions have been revisited.

Keywords Multinomial distribution · Pearson’s statistic X2
P · Likelihood ratio ·

Freeman-Tukey statistic · Neyman’s statistic · Wald statistic · Nested models

A.1 Introduction

This chapter reviews asymptotic properties of the multinomial distribution and asso-
ciated tests of goodness-of-fit. SectionsA.2 andA.3 deal respectivelywith asymptotic
normality of the multinomial distribution and the asymptotic distribution of Pear-
sonian goodness-of-fit statistic X2

P based on observations in a multinomial sampling.
The following section addresses the general theory of multinomial estimation and
testing and considers all the four goodness-of-fit statistics, X2

P ,Wilk’s likelihood ratio
statistic G2, Freeman-Tukey statistic F2, and Neyman’s statistic X2

N . This section
also considers Birch’s (1964) result on expansion of maximum likelihood estimators
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(MLE’s) of the parameters around their true values. Asymptotic distribution of all
these four statistics is considered in the next section. The subsequent sections con-
sider nested models and procedures for testing general hypotheses.

A.2 Multinomial Distribution

LetXn = (Xn1, . . . , Xnt )
′ have themultinomial distributionM(n, π)with parameter

(n, π) where π = (π1, . . . , πt )
′,

∑t
i=1 πi = 1, i.e.,

P[Xn1 = xn1, . . . , Xnt = xnt ] = n!�t
i=1

π
xni
i

xni ! .

Then it is known,

E(Xn) = nπ

Cov (Xn) = n(Dπ − ππ ′) (A.2.1)

where Dπ = Diag. (π1, . . . , πt ).

Let p̂ = n−1Xn be the vector of sample proportions and Un = √
n(p̂ − π).

Then

E(Un) = 0
Cov (Un) = Dπ − ππ ′. (A.2.2)

It is known that p̂ is the maximum likelihood estimator (MLE) of π and p̂ converges
in probability to π .

A.2.1 Asymptotic Normality

We have the following theorem.

Theorem A.2.1 For large n,Un converges in law to U(i.e. L(Un) → L(U)) where
U has the multivariate normal distribution with mean 0 and covariance matrixDπ −
ππ ′.

Proof Proof follows by the moment generating function and the continuity theorem.

Note A.2.1 The covariance matrix in (A.2.1) (and in (A.2.2)) is singular, because p̂
satisfies the linear constraint

∑t
i=1 p̂i = 1.
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A.2.2 Asymptotic Normality When π = π0 + μn−1/2

The model is useful in the testing of goodness-of-fit hypothesis H0 : π = π0, when
the model being tested is wrong, but not very wrong. Here, π0 andμ are t × 1 vector
of constants.

In this case,

E(Xn) = nπ0 + √
nμ

Cov (Xn) = n(Dπ0 − π0π0′
) + √

n(Dμ − 2π0μ′) + μμ′. (A.2.3)

Since
∑t

i=1 π0
i = ∑t

i=1 πi = 1, we must have
∑t

i=1 μi = 0. Setting Un = √
n(p̂ −

π0) we have

E(Un) = μ

Cov (Un) = n−1 Cov (Xn)

= Dπ0 − π0π0′ + n−1/2(Dμ − 2π0μ′) + n−1μμ′
(A.2.4)

Theorem A.2.2 The variable Un converges in distribution to U where U has the
multivariate normal (μ,Dπ0 − π0π0′

) distribution.

Proof Proof follows by the moment generating function and the continuity theorem.

A.3 Distribution of Pearson Chi-Square Under a Simple
Hypothesis

For testing the hypothesis of goodness-of-fit H0 : π = π0 (a known vector), the
Pearson chi-square statistic is

X2
P =

t∑

i=1

(Xni − nπ0
i )2

nπ0
i

(A.3.1)

where (Xn1, . . . , Xnt )
′ have a multinomial distribution (n, π0) under H0. Now X2

P
can be written as

X2
P = U′

n(Dπ0)−1Un (A.3.2)

where
Un = √

n(p̂ − π0), p̂ = n−1Xn.

We now recall the following lemma.
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Lemma A.3.1 Let L(Xn) → L(X) and let g(.) be a continuous function. Then
L{g(Xn)} → L{g(X)}.

For a proof, see Rao (1965), p. 104.
Since L(Un) → L(U), where U has a multivariate normal distribution with para-

meters (0,Dπ0 − π0π0′
) and since x′(Dπ0)−1x is a continuous function of x, by

using Lemma A.3.1, L(X2
P) = L(U′

n(Dπ0)−1Un) → L(U′(Dπ0)−1U). The problem
then reduces to the problem of finding the distribution of the quadratic form of a
multivariate normal random vector. To this effect, we have the following result.

Lemma A.3.2 If X = (X1, . . . , XT )′ has the multivariate normal distribution
N (0,�) and Y = X′AX, where A is a symmetric matrix, then Y is distributed in
large sample as

∑T
i=1 λi Z2

i where Z1, . . . , ZT are independent N (0, 1) variables
and λ1, . . . , λT are the eigenvalues of (A1/2)′�(A)1/2.

For a proof, see Rao (1965), p. 149.
By Lemma A.3.2 it follows that U′D−1

π0 U is distributed as
∑t

i=1 λi Z2
i where the

λi ’s are eigenvalues of

B = D−1/2
π0 (Dπ0 − π0π0′

)D−1/2
π0 = I − √

π0
√

π0′ (A.3.3)

where
√

π0 = (

√
π0
1 , . . . ,

√
π0
t )′. It is easy to verify thatB is a symmetric idempotent

matrix. Hence, its eigenvalues are either 0 or 1. Also, the number of eigenvalues of
B is equal to the trace of B. Now

tr. (B) = tr. (I) − tr. (
√

π0
√

π0′
)

= t − 1.

Hence, t − 1 of the eigenvalues each equal 1 and one eigenvalue is 0. Therefore,
L[U′D−1

π0 U] = L[∑t−1
i=1 Z

2
i ] = χ2

(t−1). Therefore, under the null hypothesis, asymp-
totic distribution of X2

P is χ2
(t−1).

Distribution of X2
P under an alternative hypothesis

We want to find the distribution of Pearson chi-square X2
P in (A.3.1) when π =

π0 + n−1/2μ.

It can be shown that

L(X2
P) → L[U′D−1

π0 U] (A.3.4)

whereU has the multivariate normal distribution with parameters (μ,Dπ0 − π0π0′
).

It can be shown that Y = U′D−1
π0 U has a noncentral chi-square distribution with t − 1

degrees of freedom (d.f.) and non-centrality parameter (ncp)
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ψ2 = μ′D−1
π0 μ.

If we write μ as
μ = √

n(π − π0)

then the result is sometimes stated with the ncp given as

ψ2 = n(π − π0)′D−1
π0 (π − π0).

A.4 General Theory for Multinomial Estimation
and Testing

In general, the cell probabilities π1(θ), . . . , πt (θ) will involve unknown parameters
θ = (θ1, . . . , θs)

′, s < t − 1. We shall consider the problem of estimation of πi ’s in
this situation. (In Sect.A.2 we assumed that πi ’s are known quantities, namely π0

i ’s.)

Let St be the set of all t-dimensional probability vectors

St =
{

p : pi ≥ 0 and
t∑

i=1

pi = 1

}

. (A.4.1)

We shall denote by p a generic point in St and by π the special point in St denoting
the true cell probabilities.

In St , the multinomial random vector is the vector of sample cell proportions p̂,
rather than the vector of cell-counts Xn = (Xn1, . . . , Xnt )

′. Clearly, the point p̂ also
lies in St .

Let π = f(θ), that is, π1 = f1(θ), . . . , πt = ft (θ), where θ = (θ1, . . . , θs)
′, s <

t − 1 is a set of unknown parameters. We are required to estimate θ ’s and hence πi ’s.
The relation π = f(θ) is the assumed model under this multinomial sampling.

The vector θ is a vector of parameters and we assume that θ ∈ �, a subset of the
s-dimensional Euclidean space Rs . As θ ranges over �, f(θ) ranges over a subset
M of St . Any model of categorical data structure can therefore be defined by the
assumption π ∈ M or by the pair (f(θ),�). If the model is correct, there exists a
parameter-value φ ∈ � such that π = f(φ) and π ∈ M. If the model is not correct
there does not exist any such φ and π /∈ M.
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A.4.1 Estimation

We shall write π̂ , θ̂ as generic symbols for estimators of π, θ respectively. Usually,
we require π̂ to be close to p̃, a design-based consistent estimator of π . Under
multinomial sampling p̃ = p̂ = Xn/n. Alternatively, we choose a suitable estimator
θ̂ (∈ �) of θ and find π̂ = f(θ̂).

Minimum distance method of estimation
The observed point p̂ is a natural estimator of π , when we do not restrict that π ∈ M.
Usually, we shall require π̂ to be close to p̂ and that π̂ ∈ M, to reflect that the model
is true.

We consider a suitable distance function K (x, y) where x and y are two points in
St . The function should have the following properties:

(i) K (x, y) ≥ 0;
(ii) K (x, y) = 0 iff x = y;
(iii) If ||x − y|| is increased sufficiently, then K (x, y) is also increased.

We find that value of θ, θ̂ (say) in � for which the distance K (p̂, f(θ̂)) is minimum
and take π̂ = π(θ̂) as the minimum K -distance estimate of π . Thus, the minimum
K -distance estimate of φ is θ̂ where

K (p̂, f(θ̂ )) = min θ∈�K (p̂, f(θ)), (A.4.2)

π̂ is obtained by putting θ = θ̂ in the function π(θ). Some regularity conditions are
required on f and� to ensure that such a vector of functions f exists (vide Sect.A.4.3).

Some distance measures between two points x, y in St are

(i)

X2
D(x, y) =

t∑

i=1

(xi − yi )2

yi
; (A.4.3a)

(ii)

G2
D(x, y) = 2

t∑

i=1

xi log

(
xi
yi

)

; (A.4.3b)

(iii)

F2
D = 4

t∑

i=1

(
√
xi − √

yi )
2; (A.4.3c)

(iv)

X2
ND =

t∑

i=1

(xi − yi )2

xi
. (A.4.3d)
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These distance functions give, respectively, the following four test statistics, based on
the distance between p̂, vector of sample proportions (or any design-based consistent
estimator of π ) and π̂ = π(θ̂):

(a)

X̃2
P = nX2

D(p̂, π(θ̂)) = n
t∑

i=1

( p̂i − πi (θ̂))2

πi (θ̂)
; (A.4.4)

(b)

G2 = nG2
D(p̂, π(θ̂)) = 2n

t∑

i=1

p̂i log

(
p̂i

πi (θ̂)

)

; (A.4.5)

(c)

(FT )2 = nF2
D(p̂, π(θ̂)) = 4n

t∑

i=1

(√
pi −

√

πi (θ̂)

)2

; (A.4.6)

(d)

X2
N = nX2

ND(p̂, π(θ̂)) = n
t∑

i=1

( p̂i − πi (θ̂))2

p̂i
. (A.4.7)

In all these functions, θ̂ is that value of θ in � for which the corresponding distance
function has the minimum value. However, other methods of estimation of θ , and
hence of π , such as maximum likelihood method and method of moments may be
used.

When π̂ = π(θ̂) is the fitted value found by maximum likelihood method or by
minimum chi-square method, X̃2

P is the Pearson chi-square statistic X2
P .

When π̂ is the fitted value by maximum likelihood method, G2 is the Wilk’s
likelihood ratio statistic. In this case, minimum G2 statistic is the same as the MLE
of π (proof given in Eq. (A.4.8)).

The statistic (FT )2 is called the Freeman-Tukey (1950) goodness-of-fit statistic,
when π̂ is the fitted value found by themaximum likelihoodmethod. Fienberg (1979)
reviewed the literature and properties of these statistics.

The statistic X2
N is themodified chi-square statistic andwas suggested byNeyman

(1949). In this section, we shall not deal with X2
N any more.
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A.4.2 Asymptotic Distribution of MLE of θ

If the model π = f(θ) is correct, the likelihood function is

L(θ |x) =
(

n

x1, . . . , xt

)

�t
i=1{ fi (θ)}xi .

Therefore,

−2 log L(θ |x) = −2 log
( n
x1,...,xt

) − 2
t∑

i=1
xi logπi

= nG2(p̂, π) − 2 log
( n
x1,...,xt

) − 2n
t∑

i=1
p̂i log( p̂i ).

(A.4.8)

Hence, maximizing the likelihood function L(θ |x) is equivalent to minimizing the
distance function G2(p̂, f(θ)). We shall denote by θ̃ and π̃ = π(θ̃) the MLE of θ

and π respectively.

Expansion of the MLE θ̃ around the true value φ

Letφ be the true value of θ when themodel is correct.Wenowconsider the asymptotic
expansion of the MLE, θ̃ , around the true value φ when the model is correct. This
important result is due to Birth (1964). Assume that s < t − 1. All these results hold
under some regularity conditions listed in Sect.A.4.3.

Theorem A.4.1 Assume that π = f(φ) and that f(φ) lies inM. Let A be the t × s
matrix whose (i, j)th element is

ai j = 1√
πi

(
∂ fi (φ)

∂θ j

)

. (A.4.9)

Then, under regularity conditions of Sect.A.4.3, as p̂ → π ,

θ̃ = φ + (A′A)−1A′D−1/2
π (p̂ − π) + 0p(n

−1/2). (A.4.10)

An important consequence of Theorem A.4.1 is the asymptotic distribution of θ̃ under
the hypothesis that the model is correct.

Theorem A.4.2 Under the conditions of Theorem A.4.1, the asymptotic distribution
of

√
n(θ̃ − φ) is

N (0, (A′A)−1). (A.4.11)

An estimate of the covariance matrix of θ̃ is
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D̂(θ̃) = n−1(A′(θ̃)A(θ̃))−1. (A.4.12)

Using Theorem A.4.2, we can obtain the asymptotic distribution of the fitted values
f(θ̃) = π̃ under the assumption that the model is correct. Now, by Taylor expansion
up to the first order term,

f(θ̃) = f(φ) +
(

∂f
∂θ

)

(θ̃ − φ) + 0p(n
−1/2) (A.4.13)

where (
∂f
∂θ

)

=
((

∂ fi (φ)

∂θ j

))

.

Hence, we have

√
n(f(θ̃) − f(φ)) = √

n

(
∂f
∂θ

)

(θ̃ − φ) + 0p(1). (A.4.14)

It therefore, follows by (A.4.10) and (A.4.11) that

L[√n(f(θ̃) − f(φ))] = L[√n(π̃ − π)] → N

(

0,
(

∂f
∂θ

)

(A′A)−1

(
∂f
∂θ

)′)
.

(A.4.15)

A.4.3 Regularity Conditions

Clearly, θ is a function of p, θ = θ(p) ∈ �. The problem is that there may be more
than one value of θ(p) for some value of p. This ambiguity vanishes if p is sufficiently
close toM and the following regularity conditions hold.

These conditions are due to Birch (1964) and are generally satisfied. Assume that
the model is correct so that π = f(φ). Also, assume s < t − 1.

(1) The point φ is an interior point of � so that φ is not on the boundary of � and
there is a s-dimensional neighborhood of φ that is entirely contained in �.

(2) πi = fi (φ) > 0 ∀ i = 1, . . . , t . Thus, πi is an interior point of St and does not
lie on the boundary of St .

(3) The mapping f : � → St is totally differentiable at φ, so that the partial deriva-
tive of fi with respect to θ j exists at φ and f(θ) has a linear approximation at φ
given by

fi (θ) = fi (φ) +
s∑

j=1

(θ j − φ j )
∂ fi (φ)

∂θ j
+ o(||θ − φ||)

as θ → φ.
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(4) The Jacobian matrix ( ∂f
∂θ

) is of full rank, i.e., of rank s. Thus, f(θ) maps a small
neighborhood of φ (in �) into a small t-dimensional neighborhood of f(φ) in
M.

(5) The inverse mapping f−1 : M → � is continuous at f(φ) = π . In particular,
for every ε > 0, there exists a δ > 0, such that if ||θ − φ|| ≥ ε, then ||f(θ) −
f(φ)|| ≥ δ.

(6) The mapping f : � → St is continuous at every point θ in �.

A.5 Asymptotic Distribution of the Goodness-of-Fit
Statistics

When x and y are close together, the values of the three distance functions (A.4.3a)–
(A.4.3c) are nearly identical. As a result, if the model is correct and π is estimated
in a reasonable way (not necessarily by the maximum likelihood method), the three
goodness-of-fit statistics (A.4.4)–(A.4.6) will have the same limiting distribution.
When the model is not correct, the three goodness-of-fit statistics do not have the
same limiting distribution and may yield very different results.

We state below two relevant theorems without proof, for which the interested
readers may refer to Bishop et al. (1975).

Theorem A.5.1 Let π̂ be any estimate of π (not necessarily MLE), πi > 0 ∀ i such
that p̂ and π̂ have asymptotically a joint normal distribution

L
[√

n

[
p̂ − π

π̂ − π

]]

→ N (0,�)

for some dispersion matrix

� =
[
�11 �12

21 �22

]

.

Then nX2
D(p̂, π̂), nG2

D(p̂, π̂), nF2
D(p̂, π̂) all have the same limiting distribution.

Theorem A.5.2 Under theassumptionof TheoremA.5.1,L[nX2
D(p̂, π̂)] → ∑t−1

i=1 λi Z2
i

where the Z2
i ’s are independent chi-square variables with one d.f. and the λi ’s are

the eigenvalues of

D−1/2
π [�11 − 12 − �21 + �22]D−1/2

π . (A.5.1)

This result follows from Theorem A.5.1 and Lemma A.3.2.
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A.5.1 Limiting Distribution of X2
P When π is Estimated

by the Maximum Likelihood Method

We shall now find the asymptotic distribution of the Pearson chi-square statistic X2
P

under the assumption that the model is correct, i.e., π ∈ M and π is estimated by
the maximum likelihood method.

Theorem A.5.3 Assume that the regularity conditions (1)–(6) of Sect.A.4.3 hold
and that π ∈ M. If π̃ = f(θ̃) where θ̃ is the MLE of θ and if X2

P = nX2
D(p̂, π̃), then

L[X2
P ] → χ2

(t−s−1). (A.5.2)

Proof We first find the joint distribution of π̃ and p̂. From Theorem A.4.1,

θ̃ − φ = (A′A)−1A′D−1
π (p̂ − π) + 0p(n

−1/2).

From regularity condition (3), f has the following expansion as θ → φ,

f(θ) − f(φ) =
(

∂f
∂θ

)

(θ − φ) + 0(||θ − φ||).

It then follows that

π̃ − π = (
∂f
∂θ

)
(A′A)−1A′D−1/2

π (p̂ − π) + 0p(n−1/2)

= L(p̂ − π) + 0p(n−1/2)

(A.5.3)

where
L = D−1/2

π A(A′A)−1A′D−1/2
π

since (
∂f
∂θ

)

= D1/2
π A.

Therefore, [
p̂ − π

π̃ − π

]

=
[
I
L

]

(p̂ − π) + 0p(n
−1/2).

Hence

√
n

[
p̂ − π

π̃ − π

]

→ N (0,�) (A.5.4)

where
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� =
[

Dπ − ππ ′ (Dπ − ππ ′)L′
L(Dπ − ππ ′) L(Dπ − ππ ′)L′

]

. (A.5.5)

The relevant matrix whose eigenvalues we are required to find by Theorem A.5.2 is

B = D−1/2
π [�11 − �12 − �21 + �22]D−1/2

π

which simplifies to

B = I − √
π

√
π ′ − A(A′A)−1A′ (A.5.6)

where
√

π = (
√

π1, . . . ,
√

πt )
′. It is easy to find that tr B = t − s − 1, when the

result follows.

Note A.5.1 The only property of θ̃ used in the theorem is the expansion (A.4.10).
This property is satisfied by a host of estimators including minimum chi-square
estimator. Estimators satisfying this property are called best asymptotically normal
(BAN) estimators.

A.6 Nested Models

When we consider several models, such as, log-linear model, logit model for π ,
we may need to consider G2 or some other goodness-of-fit statistics for several
subclasses of these models. We may enquire if any relationship exists among these
statistics for several models. In general, there is no simple relationship between the
values of G2 for two different models in St except in the case of nested models.

Two models M1,M2 are said to be nested or more precisely, M2 is said to be
nested within M1, if M2 is completely contained in M1, when they are viewed
as subsets of St . Usually, the situation arises when the parameter vector of M1 is
partitioned into two sets of components, say, (θ, ψ) andM2 is obtained by putting the
value of ψ equal to a fixed value, say, 0. Thus, the parameter vector ofM2 is (θ, 0).
Let MLE of (θ, ψ) be denoted as (θ̃ , ψ̃) and the corresponding value π̃ = π(θ̃, ψ̃).

ForM2, we denote the MLE of θ as ˜̃
θ and the corresponding value of f( ˜̃

θ, 0) by ˜̃π .
Thus we get

G2(M1) = nG2
D(p̂, π̃), G2(M2) = nG2

D(p̂, ˜̃π) (A.6.1)

whereG2(Mi ) is theG2-goodness-of-fit statistics for the modelMi , i = 1, 2. Since
M2 is contained inM1,

G2(M2) ≥ G2(M1),

because G2(M1) is minimized over a bigger parameter set. We have the following
theorem.
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Theorem A.6.1 If the regularity conditions (1)–(6) hold and if the true value of π

is π = f(φ, 0), then

L[G2(M2) − G2(M1)] → χ2
(s1−s2),

where s1 is the dimension of (θ, ψ) and s2 is the dimension of (θ).

A.7 Testing General Hypotheses

In this section, we shall consider the problem of testing general hypotheses relating
to the cell probabilities. There are two approaches to the problem, one given by
Neyman (1949) and the other is due to Wald (1943).

(a) Neyman’s Approach: Suppose that each of the S populations is divided into R
categories. A simple random sample of size n0 j is drawn from the j th population, j =
1, . . . , S. Let ni j be the observed frequency in the i th category of the j th population
with πi j as the cell probability,

∑
i πi j = 1 ∀ j . Let

qi j = ni j
n0 j

, r j = n0 j
N

, N =
∑

j

n0 j ,

π = (π11, . . . , π(R−1),1, . . . , π1S, . . . , π(R−1),S))
′.

Suppose we want to test the hypotheses

H0 : Fk(π) = 0, k = 1, . . . , T (T ≤ (R − 1)S) (A.7.1)

where the Fk’s are T independent functions of πi j ’s.

It is assumed that Fk’s possess continuous partial derivatives up to the second
order with respect to π ’s and that the T × {(R − 1)S} matrix (( ∂Fk

∂πi j
)) is of full rank

T . Let π̂i j be any best asymptotically normal (BAN) estimator of πi j satisfying the
conditions (A.7.1). The minimum chi-square estimator, the modified minimum chi-
square estimator (that is, the one minimizing X2

N given below) and the MLE’s are
all BAN estimators (Neyman 1949). It is then well-known that H0 may be tested by
using X2

P , X2
N or the likelihood ratio statistic
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X2
P =

S∑

j=1

R∑

i=1

(ni j−n0 j π̂i j )
2

n0 j π̂i j
,

X2
N =

S∑

j=1

R∑

i=1

(ni j−n0 j π̂i j )
2

ni j
,

G2 = 2
S∑

j=1

R∑

i=1
ni j [ln ni j − ln n0 j π̂i j ].

(A.7.2)

Neyman has shown that if there is at least one solution of (A.7.1) such that πi j >

0 ∀ i, j , then each of the statistics (A.7.2), using any system of BAN estimators, has
asymptotically a χ2

(T ) distribution under H0 as N → ∞ with r j ’s fixed. Also, these
tests are asymptotically equivalent.

In general, equations giving these estimates are difficult to solve and iterative
methods have to be used. However, if the constraints (A.7.1) are linear in π ’s, the
minimum X2

N estimate can be calculated fairly easily by solving only the linear
equations. If the functions Fk’s are not linear, the minimum X2

N can still be obtained
by solving linear equations using linearized constraints

F∗
k (π) = Fk(q) +

S∑

j=1

R−1∑

i=1

(
∂Fk

∂πi j

)

(πi j − qi j ) = 0, k = 1, . . . , T . (A.7.3)

These estimates are also the BAN estimates.

(b) Wald’s Approach: Wald (1943) considered the following general problem. Let
ψ(x1, . . . , xN ; θ1, . . . , θu) be the joint probability distribution of N independently
and identically distributed (iid) random variables Xm,m = 1, . . . , N , involving
unknown parameters θ1, . . . , θu , where θ = (θ1, . . . , θu)

′ ∈ � ⊆ Ru . It is assumed
that ψ possesses continuous partial derivatives up to the second order with respect
to θ ’s and the square matrix

B(θ) =
((

− 1

N
Eθ

∂2 logψ

∂θα∂θβ

))

, α, β = 1, . . . , u (A.7.4)

is positive definite ∀ θ in�. The hypothesis to be tested is Hω : θ belongs to a subset
ω of � where ω is defined by T independent constraints

Fk(θ) = 0, k = 1, . . . , T (≤ u). (A.7.5)

It is assumed that Fk’s possess continuous partial derivatives up to second order with
respect to θ ’s. Let
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h(θ) = (F1(θ), . . . , FT (θ))′

H(θ) =
((

∂Fk (θ)

∂θα

))
(k = 1, . . . , T ;α = 1, . . . , u).

(A.7.6)

For testing Hω, assuming some regularity conditions, Wald proposed the statistic

W = Nh(θ̂)′[H(θ̂)B−1(θ̂)H′(θ̂)]−1h(θ̂) (A.7.7)

where θ̂ is the MLE of θ . The statistic W has a limiting χ2
(T ) distribution under Hω.

The test has been shown to be asymptotically power-equivalent to the likelihood ratio
test in the sense that if WN and LN are the respective critical regions,

lim
N→∞{P(WN |θ) − P(LN |θ)} = 0

uniformly in θ ∈ �.

Bhapkar (1966) has pointed out that X2
N statistic in the linear and nonlinear case

(using linearized constraints) is equivalent to Wald’s statistic W , as adopted to the
categorical data arising from a single multinomial population, as well as for the
general case of independent random samples from several populations.

We shall now applyWald’s statisticW to the categorical data problem stated at the
beginning of this section. Consider independent samples drawn from S populations.
Let

X (i)
mj =

{
1 if the mth observation in the j th sample belongs to category i
0 otherwise, i = 1, . . . , R;m = 1, . . . , n0 j ; j = 1, . . . , S.

Let
xmj =

(
x (1)
mj , . . . , x

(R)
mj

)′
.

The probability distribution of X ’s is given by

ψ(x11, . . . , xn0S ;π) = �S
j=1�

R
i=1π

ni j
i j (A.7.8)

since
∑

m x (i)
mj = ni j . Taking θ = π with u = (R − 1)S, it is easy to verify that

B(π) = 1

N

⎡

⎢
⎢
⎣

n01(D−1
1 + π−1

R1L) 0 . . . 0
0 n02(D−1

2 + π−1
R2L) . . . 0

. . . . . .

0 0 . . . n0S(D−1
S + π−1

RSL)

⎤

⎥
⎥
⎦

(A.7.9)

whereD j = Diag (π1 j , . . . , π(R−1) j ) andL = I(R−1)×(R−1). ThenB−1(π) = NG(π)

where
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G(π) =

⎡

⎢
⎢
⎣

n−1
01 (D1 − π1π

′
1) 0 . . . 0

0 n−1
02 (D2 − π2π

′
2) . . . 0

. . . . . .

0 0 . . . n−1
0S (DS − πSπ

′
S)

⎤

⎥
⎥
⎦ (A.7.10)

where π j = (π1 j , . . . , π(R−1) j )
′.

Wald’s statistic (A.7.7) for testing the hypotheses (A.7.5) takes the form

[h(q)]′[H(q)G(q)H′(q)]−1h(q) (A.7.11)

since the MLE of π is q = (q11, . . . , q(R−1)1, . . . , q1S, . . . , q(R−1)S)
′. Let

(
∂Fk (π)

∂πi j

)

π=q
= aki j , i = 1, . . . , R − 1; j = 1, . . . , S

ak j = (ak1 j , ak2 j , . . . , ak(R−1) j )
′

ak = (a′
k1, a

′
k2, . . . , a

′
kS)

′.

(A.7.12)

Then

H′(q) = (a1, a2, . . . , aT ). (A.7.13)

By (A.7.10), the (k, k ′)th term of H(q)G(q)H′(q) is

a′
kG(q)ak ′ =

⎡

⎣
∑

j

n−1
0 j a

′
k j (Q j − q jq′

j )ak ′ j

⎤

⎦

where
Q j = Diag. (q1 j , . . . , q(R−1) j ),q j = (q1 j , . . . , q(R−1) j )

′.

Example A.7.1 A population is divided into L strata and within each stratum is clas-
sified by double classification rule into R × C cells. Let πi jk(i = 1, . . . , R; j =
1, . . . ,C; k = 1, . . . , L) be the cell-probabilities with marginal probabilities as
πi00 = ∑

j,k πi jk, πi j0 = ∑
k πi jk, etc.Assume thatπk = π00k = ∑

i, j πi jk are known.

The hypothesis of general independence is

H0 : πi j0 = πi00π0 j0 (i = 1, . . . R; j = 1, . . . ,C). (A.7.14)

The hypothesis of independence within strata is
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H ′
0 : πi jk = πi0kπ0 jk (i = 1, . . . , R; j = 1, . . . ,C; k = 1, . . . , L). (A.7.15)

The two hypotheses are not generally equivalent. In many cases, the stratification
variable is not of primary interest, but only a technical device used in the designing
of the survey. The hypothesis of interest is then overall independence of the two
characteristics without regard to stratification. It can be shown that the necessary and
sufficient condition for the equivalence of these two hypotheses is

πi jk = πi j0π0 jkπi0k

πi00π0 j0π00k
∀ i, j, k. (A.7.16)

Let a sample of size nk be selected from the kth population by srswor,
∑

k nk = n.
Let ni jk be the cell frequencies. Assuming that the sampling fraction in each stratum
is small, the distribution of {ni jk} will be the product of L multinomial distributions

f [{ni jk}|{πi jk}] = �k

[
nk !

�i, j ni jk !�i, j (
πi jk

πk
)ni jk

]

. (A.7.17)

For testing H0, Bhapkar (1961, 1966) has proposedminimization of Neyman statistic

X2
N =

∑

k

nk
πk

∑

j

∑

k

(π̂i jk − πi jk)
2

π̂i jk
(A.7.18)

with respect to πi jk , where π̂i jk = (
ni jk
nk

)πk , subject to linearization of (A.7.14). Let

π ′ = (π111, . . . , πRCL)
′

π̂ ′ = (π̂111, . . . , π̂RCL)
′

h(π) = (h11(π), . . . , h(R−1)(C−1)(π))′

hi j (π) = πi j0 − πi00π0 j0

B(π) = 1
n

((
Eπ

(
∂2 f

∂πi jk∂πi ′ j ′k′

)))

{(RC−1)L}×{(RC−1)L}

H(π) =
((

∂hi j (π)

∂πxyz

))

{(R−1)(C−1)}×{(RC−1)L}
.

(A.7.19)

Bhapkar has shown that the minimization of (A.7.18) subject to a linearization of
(A.7.15) is given by

W = n[h(π̂)]′[H(π̂)B−1(π̂)H′(π̂)]−1[h(π̂)]. (A.7.20)



240 Appendix A: Asymptotic Properties of Multinomial Distribution

Nathan (1969) obtained approximate MLE π̃i jk by iteration procedure under H0 and
suggested the log-likelihood ratio statistic

G =
∑

i, j,k

ln

[
π̂i jk

π̃i jk

]

(A.7.21)

and similar Pearson chi-square and Neyman chi-square statistic. All these statistics
and (A.7.20) are asymptotically distributed as a χ2

(R−1)(C−1) random variable under
H0. Nathan (1972) has shown that under alternative hypothesis they have noncentral
distribution with (R − 1)(C − 1) d.f. and non-centrality parameter

λ = n[h(π)]′H(π)[B−1(π)H′(π)]−1[h(π)]. (A.7.22)

If proportional allocation is used so that nk = nπk, π̂i j0 = ni j0
n is an unbiased esti-

mator of πi j0. In this case, Wilk’s likelihood ratio test, based on overall frequency
reduces to

G2 = 2

⎡

⎣
∑

i, j

ni j0 ln(ni j0) −
∑

i

ni00 ln(ni00) −
∑

j

n0 j0 ln(n0 j0) + n ln(n)

⎤

⎦ .

(A.7.23)

Pearson’s chi-square test reduces to

X2
P =

∑

i, j

(ni j0 − ni00n0 j0/n)2

(ni00n0 j0/n)
. (A.7.24)

In the case of proportional allocation, Nathan (1975) has shown that the asymptotic
power of the overall tests defined in (A.7.23) and (A.7.24) is never greater than that
of the detailed tests based on all the frequencies defined in (A.7.18) and (A.7.21).
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