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Preface

This book is divided into two parts. The first part is devoted to some advances
in testing for a stochastic ordering, and the second part is related to ANOVA
procedures for nonparametric inference in experimental designs. It is worth
noting that, before introducing specific arguments in the two main parts of the
book, we provide an introductory first chapter on basic theory of univariate
and multivariate permutation tests, with a special look at multiple-comparison
and multiple testing procedures.

The concept of stochastic ordering of distributions was introduced by
Lehmann (1955) and plays an important role in the theory of statistical in-
ference. It arises in many applications in which it is believed that, given a
response variable Y and an explanatory variable x, the statistical model as-
sumes that the distribution of Y |x belongs to a certain family of probability
distributions that is ordered in the sense, roughly speaking, that large values
of x lead to large values of the Y ’s.

Many types of orderings of varying degrees of strength have been defined in
the literature to compare the order of magnitude of two or more distributions
(see Shaked and Shanthikumar, 1994, for a review). These include likelihood
ratio ordering, hazard rate ordering, and simple stochastic ordering, which
are perhaps the main instances. On the one hand, these orderings make the
statistical inference procedures more complicated. On the other, they contain
statistical information as well, so that if properly incorporated they would be
more efficient than their counterparts, wherein such constraints are ignored.
These considerations emphasize the importance of statistical procedures to
detect the occurrence of such orderings on the basis of random samples. Infer-
ence based on stochastic orderings for univariate distributions has been stud-
ied extensively, whereas for multivariate distributions it has received much
less attention because the “curse of dimensionality” makes the statistical pro-
cedures considerably more complicated. For a review of constrained inference,
we refer to the recent monograph by Silvapulle and Sen (2005).

Likelihood inference is perhaps the default methodology for many statis-
tical problems; indeed, the overwhelming majority of work related to order-
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restricted problems is based on the likelihood principle. However, there are
instances when one might prefer a competitive procedure. Recently there have
been debates about the suitability of different test procedures: Perlman and
Chaudhuri (2004a) argue in favor of likelihood ratio tests, whereas Cohen and
Sackrowitz (2004) argue in favor of the so-called class of directed tests. In
multidimensional problems, it is rare that a “best” inference procedure exists.
However, even in such a complex setup, following Roy’s union-intersection
principle (Roy, 1953), it might be possible to look upon the null hypothesis as
the intersection of several component hypotheses and the alternative hypoth-
esis as the union of the same number of component alternatives, giving rise to
a multiple testing problem. A classical approach is to require that the proba-
bility of rejecting one or more true null hypotheses, the familywise error rate
(Hochberg and Tamhane, 1987), not exceed a given level. Generally, it is sur-
prising that some existing procedures seem to be satisfied to stop with a global
test just dealing with the acceptance or rejection of the intersection of all null
hypotheses. In the form presented, it will be difficult to interpret a statistically
significant finding: The statistical significance of the individual hypotheses in
multiple-endpoint or multiple-comparison problems remains very important
even if global tests indicate an overall effect. Indeed, most clinical trials are
conducted to compare a treatment group with a control group on multiple
endpoints, and the inferential goal after establishing an overall treatment ef-
fect is to identify the individual endpoints on which the treatment is better
than the control. For tests of equality of means in a one-way classification,
the ANOVA F test is available, but in the case of rejection of the global null
hypothesis of equality of all means, one will frequently want to know more
about the means than just that they are unequal.

In the majority of the situations we shall deal with, both the hypothesis
and the class of alternatives may be nonparametric, and as a result it may be
difficult even to construct tests that satisfactorily control the level (exactly or
asymptotically). For such situations, we will consider permutation methods
that achieve this goal under fairly general assumptions. Under exchangeability
of the data, the empirical distribution of the values of a given statistic recom-
puted over transformations of the data serves as a null distribution; this leads
to exact control of the level in such models. In addition, by making effective
use of resampling to implicitly estimate the dependence structure of multiple
test statistics, it is possible to construct valid and efficient multiple testing
procedures that strongly control the familywise error rate, as in Westfall and
Young (1993).

We bring out the permutation approach for models in which there is a
possibly multivariate response vector Y and an ordinal explanatory variable
x taking values {1, . . . , k}, which can be thought of as several levels of a treat-
ment. Let Y i denote the random vector whose distribution is the conditional
distribution of Y given x = i. We are interested in testing Y 1

d= . . .
d= Y k

against a stochastic ordering alternative Y 1

st
≤ . . .

st
≤ Y k with at least one

st
�.
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In the statistical literature, there is relatively little on multivariate models for
nonnormal response variables, such as ordinal response data. This is perhaps
due to the mathematical intractability of reasonable models and to related
computational problems. The aim is therefore to provide permutation meth-
ods that apply to multivariate discrete and continuous data. We deal with
univariate and multivariate ordinal data in Chapters 2 and 3, respectively,
and Chapter 4 contains results for multivariate continuous responses.

As previously said, the second part of the book is dedicated to nonpara-
metric ANOVA within the permutation framework. Experimental designs are
useful research tools that are applied in almost all scientific fields. In factorial
experiments, processes of various natures whose behavior depends on several
factors are studied. In this context, a factor is any characteristic of the exper-
imental condition that might influence the results of the experiment. Every
factor takes on different values, called levels, that can be either quantitative
(dose) or qualitative (category). When several factors are observed in an ex-
periment, every possible combination of their levels is called a treatment. The
analysis of factorial designs through linear models allows us to study (and as-
sess) the effect of the experimental factors on the response, where factors are
under the control of the experimenter. They also allow for evaluating the joint
effect of two or more factors (also named main factors), which are known as
interaction factors. The statistical analysis is usually carried on by assuming a
linear model to fit the data. Here, the model to fit the response is an additive
model, where the effect of main factors and interactions are represented by un-
known parameters. In addition, a stochastic error component is considered in
order to represent the inner variability of the response. Usually, errors are as-
sumed to be i.i.d. homoscedastic random variables with zero mean. This model
requires some further assumptions in order to be applied. Some of them, such
as independence among experimental units or the identical distribution, are
reasonable and supported by experience. Other assumptions, such as normal-
ity of the experimental errors, are not always adequate. Generally it is possible
to check the assumption of normality only after the analysis has been made,
through diagnostic tools such as the Q−Q plot (Daniel, 1959). Nevertheless,
these tools are mainly descriptive; therefore the conclusions they may lead to
are essentially subjective. If the normality of errors is not satisfied or cannot
be justified, then the usual test statistics (such as the Student t test or the F
test) are approximate. It is therefore worthwhile to reduce some assumptions,
either to avoid the use of approximate tests or to extend the applicability of
the methods applied.

Permutation tests represent the ideal instrument in the experimental de-
sign field since they do not require assumptions on the distribution of errors
and, if normality can be assumed, they give results almost as powerful as their
parametric counterpart. There are other reasons to use permutation tests; for
instance, in the I×J replicated designs, even if data are normally distributed,
the two-way ANOVA test statistics are positively correlated. This means that
the inference on one factor may be influenced by other factors. There are
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other situations where parametric tests cannot be applied at all: In unrepli-
cated full factorial designs, the number of observations equals the number of
parameters to estimate in the model; therefore there are no degrees of freedom
left to estimate the error variance. Permutation tests deal with the notion of
exchangeability of the responses: The exchangeability is satisfied if the prob-
ability of the observed data is invariant with respect to random permutations
of the indexes. The exchangeability of the responses is a sufficient condition
to obtain an exact inference. In factorial design, the responses are generally
not exchangeable since units assigned to different treatments have different
expectations. Thus, either a restricted kind of permutation is needed or ap-
proximate solutions must be taken into account in order to obtain separate
inferences on the main factor/interaction effects.

Chapter 5 is an introduction to ANOVA in a nonparametric view. There-
fore, the general layout is introduced with minimal assumptions, with some
particular care about the exchangeability of errors. Some of the solutions from
the literature are introduced and discussed. The kinds of errors that may arise
(individual and family wise errors) in such a context are introduced, and some
preliminary methods to control them are suggested. The final part of the chap-
ter leads with direct applications of the existing methods from the literature
to practical examples.

In Chapter 6 a nonparametric solution to test for effects in replicated de-
signs is introduced. This part is dedicated to extending the solution proposed
by Pesarin (2001) and Salmaso (2003) for a 2×2 balanced replicated factorial
design with n units per treatment. Since the responses are not exchangeable,
the solution is based on a particular kind of permutations, named synchro-
nized permutations. In particular, by exchanging units within the same level
of a factor and by assuming the standard side conditions on the constraints,
it is possible to obtain a test statistic for main factors and interactions that
only depends on the effects under testing and on a combination of exchange-
able errors. The proposed tests are uncorrelated with each other, and they are
shown to be almost as powerful as the two-way ANOVA test statistics when
errors are normally distributed. After introducing the test statistics, two al-
gorithms are proposed to obtain Monte Carlo synchronized permutations. If
we desire a post hoc comparison, simultaneous confidence intervals on all pair
wise comparisons can be obtained by similarly applying synchronized permu-
tations. The tests proposed are then compared with the classical parametric
analysis.

Chapter 7 is devoted to the problem of the unreplicated full factorial de-
sign analysis. Again, the problem of exchangeability of the responses arises
and, given the peculiarity of the problem, it does not seem possible to ob-
tain exact permutation tests for all factors unless testing for the global null
hypothesis that there are no treatment effects. The paired permutation test
introduced by Pesarin and Salmaso (2002) is exact, but it is only applicable to
the first M largest effects. A further approximate solution is then proposed.
Such a solution is based on the decomposition of the total response variance
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under the full model and under some restricted models that are obtained in
accordance with the null hypothesis under testing. The test statistic is a ratio
of uncorrelated random variables, that allows us to evaluate the increase of
explained variance in the full model due to the main effect under testing. The
proposed test statistic allows the individual error rate to be controlled under
the effect sparsity assumption. It does not control the experimental error rate,
and its power is a decreasing function of the number of active effects and their
sizes (the bigger the size of one effect, the bigger the noncentrality parameter
in the denominator of the test statistic). To allow of control the experiment-
wise error rate and in order to gain power, another version of the statistical
procedure is introduced, a step-up procedure based on the comparison among
noncentrality parameters of the estimates of factor effects. This test needs a
calibration, which requires the central limit theorem, in order to control the
experiment-wise error rate. The calibration can be obtained by either provid-
ing some critical p-values for each step of the procedure in accordance with
a Bonferroni (or Bonferroni-Holm) correction or by obtaining a single critical
p-value based on the distribution of the minP from simulated data under the
global null hypothesis. This test is shown to be very powerful, as it can detect
active factors even when there is no effect sparsity assumption (except on the
smallest estimated effect, which cannot be tested). Note that a similar cali-
bration can be provided in order to control the individual error rate at level
α by choosing the critical α-quantile from the simulated null distribution of
the sequential p-values. A power comparison with Loughin and Noble’s test
(1997) and an application from Montgomery (1991) are finally reported and
discussed.

Each chapter of the book contains R code to develop the proposed theory.
All R codes and related functions are available online at www.gest.unipd.it/
∼salmaso/web/springerbook. This Website will be maintained and updated
by the authors, also providing errata and corrigenda of the code and possible
mistakes in the book.

The authors wish to thank John Kimmel of Springer-Verlag and the refer-
ees for their valuable comments and publishing suggestions. In addition, they
would like to acknowledge the University of Padova and the Italian Ministry
for University and Scientific and Technological Research (MIUR - PRIN 2006)
for providing the financial support for the necessary research and developing
part of the R codes.
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2

Ordinal Data

2.1 Introduction

A categorical variable has a measurement scale consisting of a set of categories.
Categorical variables that have ordered categories are called ordinal (Agresti,
2002). They appear, for example, whenever the condition of a patient cannot
be measured by a metric variable and has to be classified or rated as “critical”,
“serious”, “fair”, or “good”. The measurements on ordered categorical scales
can be ordered by size, but the scales lack any algebraic structure; that is, the
distances between categories are unknown. Although a patient categorized as
“fair” is more healthy than a patient categorized as “serious”, no numerical
value describes how much more healthy that patient is.

Let X and Y denote two categorical variables, X with r categories and Y
with c categories. The classification of n measurements on both variables has
rc possible combinations, which can be represented in an r × c contingency
table (see Table 2.1), where {mi,j , i = 1, . . . , r, j = 1, . . . , c} represents cell fre-
quencies, with row and column margins ni =

∑c
j=1mi,j and tj =

∑r
i=1mi,j ,

respectively.

Table 2.1. r × c contingency table.

1 · · · j · · · c

1 m1,1 · · · m1,j · · · m1,c n1

...
...

...
...

...
...

...

i mi,1 · · · mi,j · · · mi,c ni
...

...
...

...
...

...
...

r mr,1 · · · mr,j · · · mr,c nr

t1 · · · tj · · · tc n

D. Basso et al., Permutation Tests for Stochastic Ordering and ANOVA, Lecture
Notes in Statistics, 194, DOI 10.1007/978-0-387-85956-9 2,
c© Springer Science+Business Media, LLC 2009



40 2 Ordinal Data

There is a large body of literature concerning the analysis of categori-
cal data for which the row and column variables are ordinal measurements.
In recent years, statisticians increasingly have recognized that many bene-
fits can result from using methods that take into account orderings among
categories in contingency tables. One way to utilize ordered categories is to
assume inequality constraints on parameters for those categories that describe
dependence structure.

In many applications, one would typically expect larger values of Y to be
associated with larger values ofX. One can describe the positive dependence of
the discrete bivariate distribution of (X,Y ) using various types of odds ratios,
referred to as generalized odds ratios. Three of them, which are the most
commonly used in application problems, are defined below. Let i = 1, . . . , r−1,
j = 1, . . . , c− 1. Then:

1. Local odds ratios:

θLi,j =
Pr(Y = j|X = i) Pr(Y = j + 1|X = i+ 1)
Pr(Y = j|X = i+ 1) Pr(Y = j + 1|X = i)

.

2. Cumulative odds ratios:

θCi,j =
Pr(Y ≤ j|X = i) Pr(Y > j|X = i+ 1)
Pr(Y ≤ j|X = i+ 1)Pr(Y > j|X = i)

.

3. Global odds ratios:

θGi,j =
Pr(Y ≤ j|X ≤ i) Pr(Y > j|X > i)
Pr(Y ≤ j|X > i) Pr(Y > j|X ≤ i)

.

These definitions show that generalized odds ratios are odds ratios for 2 ×
2 tables obtained from the r × c table by collapsing adjacent categories if
necessary, as displayed in Figure 2.1.

Fig. 2.1. Generalized odds ratios.

If θ denotes the column vector of any one of the generalized odds ratios,
then θ = 1(r−1)(c−1) if and only if X and Y are independent, where 1k is
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used to denote a k-dimensional column vector of ones. Relationships among
the positive dependencies considered are

θL1  1(r−1)(c−1) ⇒ θC1  1(r−1)(c−1) ⇒ θG1  1(r−1)(c−1),

where θ  1(r−1)(c−1) means that θi,j ≥ 1, i = 1, . . . , r − 1, j = 1, . . . , c − 1,
with at least one strict inequality.

To introduce the notation to be adopted throughout, suppose that the
r× c table arises from the comparison of r increasing levels of a treatment for
which the response variable Y is ordinal with c categories. The c levels can
be thought of as c ordinal categories of an explanatory variable X. A primary
aim of many studies is to compare conditional distributions of Y at various
levels of the explanatory variable X. For i = 1, . . . , r and j = 1, . . . , c, let

πi(j) = Pr(Y = j|X = i), Fi(j) =
j∑
l=1

πi(l),

be the probability mass function (p.m.f.) and cumulative distribution func-
tion (c.d.f.) of Yi, respectively, where Yi denotes a random variable whose
distribution is the conditional distribution of Y given X = i.

One of the earliest definitions of stochastic ordering was given by Lehmann
(1955).

Definition 2.1. The random variable Yi+1 is said to dominate Yi according to
the simple stochastic ordering, or Yi+1 is stochastically larger than Yi, written

Yi
st
≤ Yi+1, if

Fi(j) ≥ Fi+1(j), j = 1, . . . , c− 1.

In some cases, a pair of distributions may satisfy a stronger condition.

Definition 2.2. The random variable Yi+1 is said to dominate Yi according

to the likelihood ratio ordering, written Yi
lr
≤ Yi+1, if

πi(j)πi+1(j + 1) ≥ πi(j + 1)πi+1(j), j = 1, . . . , c− 1.

Clearly, if θL ≥ 1(r−1)(c−1) and θC ≥ 1(r−1)(c−1), then the rows satisfy the

likelihood ratio ordering Y1

lr
≤ . . .

lr
≤ Yr and the simple stochastic ordering

Y1

st
≤ . . .

st
≤ Yr, respectively (and vice versa). Each of these constraints defines

a form of monotone order of the rows involving only two rows at a time. By
contrast, the constraint θG ≥ 1(r−1)(c−1) define a monotone relationship that
involves more than two rows at a time; this constraint is equivalent to the
notion of positive quadrant dependence (PQD, Lehmann, 1955).

Definition 2.3. We shall say that the pair (X,Y ) is positive quadrant depen-
dent if

Pr(Y ≤ j|X ≤ i) ≥ Pr(Y ≤ j|X > i) ∀ i, j.
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The reason why PQD is a positive dependence concept is that X and Y
are more likely to be large together or to be small together compared with X ′

and Y ′, where X d= X ′, Y d= Y ′, and X ′ and Y ′ are independent.
In many applications in which it is believed that certain constraints on

the distributions exist, it is reasonable to assume a stochastic ordering. The
statistical information arising from these constraints, if properly incorporated,
makes the statistical inference more efficient than its counterparts, wherein
such constraints are ignored.

In this chapter, several data examples are presented to motivate and to
provide an overview of the topics.

2.2 Testing Whether Treatment is “Better”
than Control: 2 × c Contingency Tables

Patefield (1982) reported the results of a double-blind study concerning the
use of Oxprenolol in the treatment of examination stress. Thirty-two students
were entered in the study: fifteen were treated with Oxprenolol (treatment)
and seventeen were given Diazepam (control). The examination grades were
compared with their tutor’s prediction; the results are given in Table 2.2.

Table 2.2. Examination results compared with tutor’s predictions

Worse Same Better

1 2 3 Total

Control 1 6 11 0 17

Treatment 2 2 8 5 15

8 19 5 32

For this example, one wishes to test the null hypothesis that the treat-
ment and control effects are the same against the one-sided alternative that
treatment is in some sense“better” than the placebo. One obstacle to the de-
velopment of suitable tests is that it is often difficult to be specific as to the
notion of “better” (Cohen and Sackrowitz, 2000). In fact, a precise definition
of “better” and hence a precise definition of an alternative hypothesis is often
not even mentioned in instances where such a testing problem is encountered.
In contrast, Cohen et al. (2000) offered various formal definitions of “better”
in order to improve understanding of the alternative hypothesis.

Among the formally defined notions for a 2× c table, the less stringent is
the simple stochastic order. Let the testing problem be

H0 : Y1
d= Y2 ⇔ θC ∈ Θ0 = {θC : θC = 1c−1}, (2.1)



2.2 Testing Whether Treatment is “Better” than Control 43

where “ d=” means “equal in distribution”, against the one-sided alternative

H1 : Y1

st
� Y2 ⇔ θC ∈ Θ1 = {θC : θC  1c−1}. (2.2)

Suppose that a test rejects H0. Then it does follow that there is sufficient
statistical evidence to support the claim that there is a difference between
the treatment and the control, but it does not follow that there is statistical
evidence to accept that the treatment is better than the control (H1 is true).
However, if we make the prior assumption that

the treatment is at least as good as the control

(that is, either H0 or H1 is true), then the rejection of “no difference between
the treatment and the control” together with the prior assumption that “the

treatment is at least as good as the control” (that is, Y1

st
≤ Y2 ⇔ θC ∈ Θ0∪Θ1)

would lead to the conclusion that the treatment is better than the control
(Silvapulle and Sen, 2005). In other words, we consider a model specifying the
distribution of Y to be stochastically ordered with respect to the value of the

explanatory variable X; that is, {Yx, Yx′ : Yx
st
≤ Yx′ if x < x′}.

2.2.1 Conditional Distribution

Let M i = (Mi,1, . . . ,Mi,c), i = 1, 2, be independent random vectors having
multinomial distributions with cell probabilities πi = (πi(1), . . . , πi(c)). Under
the product multinomial model (that is, given the row totals n = (n1, n2)),
when the null hypothesis H0 is true, the column total t = (t1, . . . , tc) is a
completely sufficient statistic (row and column total in the full multinomial
model). Testing is carried out by conditioning on row and column totals.
This allows the two models, product multinomial and full multinomial, to be
treated simultaneously since the conditional distributions are the same (Cohen
and Sackrowitz, 2000).

Here, for convenience of notation, we drop the row index i from θi,j . The
conditional distribution of (M1,1, . . . ,M1,c−1) given the row and column totals
(n, t) is the multivariate noncentral hypergeometric distribution with p.m.f.

Pr
θL

(M1,1 = m1,1, . . . ,M1,c−1 = m1,c−1|n, t)

=

(
t1
m1,1

)
· · ·
( tj
n1−

∑c−1
j=1 m1,j

)∏c−1
j=1

(∏c−1
l=j θ

L
l

)m1,j

∑
(m1,1,...,m1,c−1)∈M

(
t1
m1,1

)
· · ·
( tj

n1−
∑c−1

j=1 m1,j

)∏c−1
j=1

(∏c−1
l=j θ

L
l

)m1,j
,

where m1,j ≥ 0, j = 1, . . . , c− 1, and
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M =

(m1,1, . . . ,m1,c−1) : n1 −
c−1∑
j=1

m1,j ≥ 0; tj −m1,j ≥ 0; (2.3)

n+
c−1∑
j=1

m1,j −
c−1∑
j=1

tj − n1

 .

Note that the conditional distribution has a simple exponential family form
that depends only on the natural parameters ν = (ν1, . . . , ν(c−1)), where

νj = log
(
π1(j)π2(c)
π2(j)π1(c)

)
= log

c−1∏
l=j

θLl

 .

As the conditional distribution depends on (π1,π2) only through ν, the
conditional hypotheses H |(n,t)

0 and H |(n,t)
1 must be formulated in terms of ν.

We have H0 : θC = 1c−1 ⇔ H
|(n,t)
0 : ν = 0c−1, but H1 : θC  1c−1 ⇒

H
|(n,t)
1 : ν1 > 0 (or the first nonzero element of ν when c > 3). In contrast,

for the likelihood order alternative, H1 : θL  1c−1 ⇔ H
|n,t
1 : ν  0c−1.

In Patefield’s example, there are 54 table configurations with the same
marginal totals as Table 2.2. The conditional probabilities are given by

Pr
θL
1 ,θ

L
2

(M1,1 = m1,1,M1,2 = m1,2|(17, 15), (8, 19, 5))

=

(
8

m1,1

)(
19
m1,2

)(
5

17−m1,1−m2,2

)
(θL1 θ

L
2 )m1,1(θL2 )m1,2∑8

m1,1=0

∑17
m1,2=12

(
8

m1,1

)(
19
m1,2

)(
5

17−m1,1−m2,2

)
(θL1 θ

L
2 )m1,1(θL2 )m1,2

,

where (m1,1,m1,2) ∈ M = {(m1,1,m1,2) : m1,1 = 0, . . . , 8;m1,1 + m1,2 =
12, . . . , 17}.

2.2.2 Linear Test Statistics: Choice of Scores

A popular class of linear test statistics is based on the explicit or implicit
assignment of scores to the c categories (Graubard and Korn, 1987).

Gail (1974) called a “value system” any real function on the sample space
of a multinomial random variable. Consider a nondecreasing real function of
Yi, w(·) : {1, . . . , c} → IR : −∞ < w(1) ≤ . . . ≤ w(c) < ∞. Denote by
w(j) := wj the score attached to the jth category and by w = (w1, . . . , wc)
the vector of scores, and observe that E [w(Yi)] =

∑c
j=1 wjπi(j). Thus, the

hypotheses are

Hw
0 : E [w(Y1)] = E [w(Y2)]⇔

c−1∑
j=1

(wj+1 − wj) (F1(j)− F2(j)) = 0

against
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Hw
1 : E [w(Y1)] < E [w(Y2)]⇔

c−1∑
j=1

(wj+1 − wj) (F1(j)− F2(j)) > 0,

by which simplicity is achieved by reducing the multiparameter inference prob-
lem to one that involves only a scalar parameter. While this simplifies the test-
ing problem, it could also be expected to have low power at points away from
the chosen (through w) direction in the alternative space. Note that because
of our prior assumption {F1(j) ≥ F2(j), j = 1, . . . , c− 1}, H0 in (3.1) implies
Hw

0 and Hw
1 implies H1 in (3.2), and when w1 < . . . < wc, also Hw

0 ⇒ H0

and H1 ⇒ Hw
1 .

The class of linear test statistics based on w is given by

Tw =

(
(n−2)n1n2

n

) 1
2
(∑c

j=1
m2,jwj

n2
−
∑c
j=1

m1,jwj

n1

)
(∑c

j=1(wj)2tj −
1
n1

(
∑c
j=1 wjm1,j)2 − 1

n2
(
∑c
j=1 wjm2,j)2

) 1
2
;

that is, the usual two-sample t statistic based on assigning a set of scores to the
c categories. It is straightforward to show that, for any linear transformation
of scores that preserves the monotonicity, Ta1+bw = Tw with a ∈ R, b ∈ R+.
Hence, we may consider standardized scores w obtained by transforming the
original scores via a = −w1/(wc − w1) and b = 1/(wc − w1) to the [0, 1]
interval. Permutationally equivalent formulations of Tw are

• Graubard and Korn (1987): Tw =
∑c
j=1m2,jwj ,

• goodness of fit statistics: Tw =
∑c−1
k=1(wj+1 − wj)

(
F̂1(j)− F̂2(j)

)
, and

• Mantel (1963): Tw = (n− 1)
1
2 ρ̂,

where F̂i(j) = (
∑j
l=1mi,j)/ni denotes the empirical c.d.f. of the ith group

and ρ̂ the Pearson correlation coefficient based on the scores w and values 0
and 1 assigned to the control and the treatment, respectively.

Widely used scoring systems in data analysis include equal-spacing scores
w = (1, . . . , c), midrank scores w = (r̄1, . . . , r̄c), where r̄1 = t1+1

2 and r̄j =∑j−1
l=1 tl + tj+1

2 , j = 2, . . . , c, and Anderson-Darling scores (wj+1 − wj) =
1/(F̂ (j)(1− F̂ (j)))1/2, j = 1, . . . , c, where F̂ (j) = [n1F̂1(j) + n2F̂2(j)]/n.

The use of midrank scores seems appealing since it yields to the Wilcoxon-
Mann-Whitney (WMW) test statistic. This test statistic can also be viewed as
Spearman’s correlation coefficient between X and Y . However, midrank scores
do not necessarily provide distances between categories that correspond to a
“reasonable” metric. In particular, for highly unbalanced response frequencies,
adjacent categories having relatively few observations necessarily have similar
midrank scores. For example, suppose few subjects fall in the first categories
on the scale “bad”, “fair”, “good”, “very good”, “excellent”; mid-ranks then
have similar scores for categories “bad” and “good”.

For Patefield’s data, the critical function of the randomized WMW test
based on the statistic T(0,27/51,1) is
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φT(0,27/51,1) =

 1 • if 27m1,1 + 24(m1,1 +m2,2) > 543
0.53 ⊗ if 27m1,1 + 24(m1,1 +m2,2) = 543
0 ◦ if 27m1,1 + 24(m1,1 +m2,2) < 543

,

and the rejection region at a significance level of α = 0.05 is given in Figure
2.2 (a). The power of the randomized WMW test φT given n = (17, 15), t =
(8, 19, 5), the conditional power , is given by

β(θL1 , θ
L
2 |(17, 15), (8, 19, 5)) = EθL

1 ,θ
L
2

[
φT(0,27/51,1) |(17, 15), (8, 19, 5)

]
= Pr
θL
1 ,θ

L
2

(27M1,1 + 24(M1,1 +M1,2) > 543|(17, 15), (8, 19, 5))

+0.53 Pr
θL
1 ,θ

L
2

(27M1,1 + 24(M1,1 +M1,2) = 543|(17, 15), (8, 19, 5))

for (θL1 , θ
L
2 ) : ν = (log(θL1 θ

L
2 ), log(θL2 ))t ∈ Θ|(n,t)0 ∪ Θ|(n,t)1 , where the condi-

tional null and alternative parameter spaces are Θ|(n,t)0 : {ν : log(θL1 θ
L
2 ) =

0, log(θL2 ) = 0} and Θ
|(n,t)
1 : {ν : log(θL1 θ

L
2 ) > 0}, respectively. The condi-

tional power is depicted in Figure 2.2 (b) as a function of (log(θL1 ), log(θL2 )).

(a) 0.047 level rejection region (nonran-
domized test)

(b) Contour plot of the conditional power
function for the WMW test

Fig. 2.2. WMW test.

Observe that:

• The WMW test is conditionally biased; that is, β(θL1 , θ
L
2 |(17, 15), (8, 19, 5)) <

α = 0.05 for some (θL1 , θ
L
2 ) : ν ∈ Θ

|(n,t)
1 (see also Berger and Ivanova,

2002b). Note that for the likelihood ratio conditional alternative H |n,t
1 :

ν = (log(θL1 θ
L
2 ), log(θL2 ))t  (0, 0)t, we have Θ

|(n,t)
0 ∪ Θ|(n,t)1 = {ν :
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log(θ1) ≥ 0, log(θ2) ≥ 0}. Cohen and Sackrowitz (1991) showed that the
WMW test (among others) is conditionally (and hence unconditionally)
unbiased.

• The WMW test is conditionally Bayes with respect to a prior putting all
its mass on the set {ν ∈ Θ

|(n,t)
1 : log(θL1 θ

L
2 ) = 51

24 log(θL2 )}; that is, the
WMW test is very powerful for alternatives near this direction (Cohen
and Sackrowitz, 1998, see).

Often it is unclear how to assign scores because the power of the test
depends on them. Indeed, the permutation tests listed in Chapter 7 of the
StatXact-8 User Manual can be with general scores or with MERT scores (see
Section 7.13). Podgor et al. (1996) consider a robust test from several test
statistics Tw based on different sets of scores. The maximin efficient robust
test (MERT) has the property of maximin efficiency in that its lowest asymp-
totic efficiency relative to each of the possible tests is higher than the lowest
such efficiency for any other statistic based on any set of scores. The MERT
considers a linear combination of the pair of test statistics with minimum cor-
relation. However, Podgor’s MERT is itself a linear rank test, which is ironic
since it was proposed to correct the weaknesses of the class of linear rank tests
(Berger and Ivanova, 2002a).

To handle the ambiguities arising from the choice of scoring, Kimeldorf
et al. (1992) obtained the minimum and the maximum of the Tw test statistic
over all possible assignments of nondegenerate nondecreasing scores w. If the
range of min and max values does not include the critical value of the test
statistic (they term this case “nonstraddling”), then it can be immediately
concluded that the results of the analysis remain the same no matter the
choice of increasing scores used. However, if the range includes the critical
value (termed the “straddling” case), the choice of scores used in the analysis
must be carefully justified.

The scores wmax that maximize Tw can be found by considering two cases:

• If F̂2 ≥ F̂1, wmax is one of the c− 1 monotone extreme points{
wmax
l = 0, 1 ≤ l ≤ j

wmax
l = 1, j + 1 ≤ l ≤ c j = 1, . . . , c− 1.

• Otherwise, wmax
j , j = 1, . . . , c − 1, are given by the isotonic regression of

m2,j/tj with weights tj , denoted by Pt

(
m2
t |I

)
, the solution that minimizes

the weighted sum of squares

min
w∈I

c∑
j=1

(
m2,j

tj
− wj

)2

tj ;

that is, the weighted least squares projection of m2/t onto the closed
convex cone I = {w ∈ IRc : w1 ≤ . . . ≤ wc} with weights t. The simple
and elegant pool adjacent violators algorithm (PAVA) can be used (see
Robertson et al., 1988).
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For Patefield’s data, the empirical distribution of the treatment can be
shown to be stochastically larger than the empirical distribution of the control;
that is, F̂2(j) ≤ F̂1(j), j = 1, 2, 3. The scores that minimize and maximize Tw

are wmin = (0, 1, 1) and wmax = (0, 0.228, 1), respectively, with corresponding
p-values of 0.1534 and 0.0052. We find that there are, in this straddling case,
some scores that produce significance and some others that do not. A graphical
representation in terms of Tw = ρ̂ is given in Figure 2.3.

Fig. 2.3. Correlation coefficients as a function of w.

However, we cannot consider Tw with fixed scores wmax = (0, 0.23, 1)
because data-snooping bias arises. Gross (1981) suggested that an “analysis
based on [. . .] data-dependent scores may yield procedures that compare fa-
vorably to fixed-scores procedures”. An adaptive test (Hogg, 1974; Berger and
Ivanova, 2002a) based on the test statistic

Tmax = Twmax = max(ρ̂ : w ∈ I, w1 < wc) (2.4)

can be constructed by computing the data-dependent scores wmax at each
permutation of the data. For instance, wmax = (0, 0.41, 1) from the contin-
gency table {(6, 10, 1); (2, 9, 4)} obtained by exchanging one control value from
“same” to “better” and one treatment value from “better” to “same” (that
is, an arbitrary bth permutation of the data), obtaining T ∗max(b) = 0.288.

For Patefield’s data, the permutation distributions of Tw = ρ̂ by using
different scoring systems are displayed in Figure 2.4, and results are given
in Table 2.3. We can see that the permutation distributions of T(0,.5,1) and
Tmax are rather discrete (there were only 12 different realized values out of
54), making the tests automatically more conservative. Possible solutions are
to make use of the mid-p-value (Lancaster, 1961) or a backup statistic (see
Cohen et al., 2003).

The critical function of the randomized adaptive test is
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Fig. 2.4. Permutation distributions of Tw = ρ̂.

Table 2.3. Results for Patefield’s data.

Value System w T obsw pobs

equal spacing (0,0.500,1) 0.438 0.0133

midranks (0,0.529,1) 0.428 0.0133

Anderson-Darling (0,0.456,1) 0.450 0.0059

adaptive wmax 0.480 0.0073

φTmax =

 1 if Tmax > .342
0.28 if Tmax = .342
0 if Tmax < .342

.

The rejection region and the conditional power function of the adaptive test
are given in Figures 2.5 (a) and (b), respectively. The adaptive test can be
viewed as conditionally Bayes with respect to a prior putting its mass on the
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(a) 0.043 level rejection region (nonran-
domized test)

(b) Contour plot of the conditional power
function for the adaptive test

Fig. 2.5. Adaptive test.

set {ν ∈ Θ
|(n,t)
1 : log(θL1 θ

L
2 ) = 1

(1−wmax
2 ) log(θL2 )}, where wmax

2 are given in
Table 2.4.

Table 2.4. Values of wmax
2 .

wmax
2 0 0.108 0.228 0.398 0.407 0.438 0.526 0.594 0.723 0.789 0.955 1

prob. 0.343 0.037 0.003 0.001 0.022 0.091 0.001 0.006 0.001 0.045 0.0106 0.435

We can see from the difference between conditional powers in Figure 2.6
that the adaptive test distributes the power more uniformly over the entire
alternative space.

The power of Tw given n = (17, 15) (i.e., the unconditional power for fixed
sample sizes) is given by

β(θC |n = (17, 15)) = EθC [φTw
|n = (17, 15)] , ∀θC = (θC1 , θ

C
2 )t ∈ Θ0 ∪Θ1.

We replicate the unconditional power study in Cohen and Sackrowitz
(2000) by using the algorithm of Patefield (1981) for generating all the possible
tables. We compare the empirical power of Cramér-von Mises (equal spaced
scores), WMW, Anderson-Darling, and adaptive tests with the most powerful
test (Berger, 1998), which is based on λ = (ν1 − ν2)/ν1 ∈ R, and it can be
expressed as

Tw :

w = (−λ/(1− λ), 0, 1) if λ < 0
w = (0, λ, 1) if λ ∈ [0, 1]
w = (0, 1, 1/λ) if λ > 1

.
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Fig. 2.6. Difference between conditional powers.

Simulations are based on 2000 Monte Carlo replicates with a nominal level
of α = 0.05, where the row probabilities and the stochastic order relationship
(i.e., likelihood ratio “lr”, hazard ratio “hr”, and simple stochastic order “st”)
are given in Table 2.5.

2.2.3 Applications with R functions

Here we provide assistance in doing the statistical tests illustrated in Sub-
section 2.2.2 using the R language. Create Patefield’s data with equal-spaced
scores (w1, w2, w3) = (1, 2, 3), where X represents class labels and Y the vector
of data,

> X <- c(rep(1,17),rep(2,15))
> Y <- c(rep(1,6),rep(2,11),rep(1,2),rep(2,8),rep(3,5))

and obtain w2 for the mid-rank and Anderson-Darling scores

> mr <- rank(Y)
> w2.mr <- (sort(unique(mr))[2]-min(mr))/(max(mr)-min(mr))
> w2.mr
[1] 0.5294118
> F <- ecdf(Y)
> varF <-sort(unique(F(Y)))*(1-sort(unique(F(Y))))
> w2.ad<-(1/sqrt(varF[1]))/(1/sqrt(varF[1])+1/sqrt(varF[2]))
> w2.ad
[1] 0.4560859

Perform the ptest2s function for comparing two independent samples based
on Student’s t statistic Tw with equal-spaced scores
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Table 2.5. Unconditional power comparisons.

(π1; π2)
◦
� C-vM WMW A-D Tmax MP λ

(0.3, 0.3, 0.4)
(0.3, 0.3, 0.4)

H0 0.033 0.042 0.040 0.040 - -

(0.2, 0.5, 0.3)
(0.1, 0.1, 0.8)

hr 0.692 0.814 0.674 0.823 0.915 −0.547

(0.2, 0.5, 0.3)
(0.1, 0.3, 0.6)

lr 0.391 0.465 0.409 0.456 0.485 0.131

(0.2, 0.7, 0.1)
(0.2, 0.3, 0.5)

hr 0.430 0.540 0.448 0.695 0.840 −0.526

(0.3, 0.1, 0.6)
(0.1, 0.1, 0.8)

lr 0.320 0.323 0.345 0.340 0.350 0.792

(0.3, 0.2, 0.5)
(0.1, 0.3, 0.6)

st 0.198 0.202 0.262 0.279 0.377 1.174

(0.4, 0.4, 0.2)
(0.1, 0.7, 0.2)

st 0.248 0.358 0.274 0.447 0.627 1.403

(0.4, 0.5, 0.1)
(0.3, 0.1, 0.6)

hr 0.584 0.634 0.664 0.853 0.960 −0.635

(0.6, 0.2, 0.2)
(0.4, 0.2, 0.4)

lr 0.265 0.292 0.294 0.295 0.297 0.369

(0.6, 0.3, 0.1)
(0.1, 0.4, 0.5)

lr 0.940 0.956 0.949 0.948 0.962 0.611

(0.6, 0.3, 0.1)
(0.2, 0.1, 0.7)

lr 0.947 0.953 0.961 0.974 0.975 0

(0.4, 0.5, 0.1)
(0.4, 0.4, 0.2)

hr 0.067 0.080 0.103 0.117 0.175 −0.322

> source("ptest2s.R")
> set.seed(0)
> B <- 5000
> T <- ptest2s(Y,X,B,"Student")
> p.obs <- sum(T[-1]>=T[1])/(B-1)
> p.obs
[1] 0.01140228

and with midrank or Anderson-Darling scores

> Y.mr <- Y
> Y.mr[Y.mr==1] <- 0
> Y.mr[Y.mr==2] <- w2.mr
> Y.mr[Y.mr==3] <- 1
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> set.seed(0)
> T <- ptest2s(Y.mr,X,B,"Student")
> p.obs <- sum(T[-1]>=T[1])/(B-1)
> p.obs
[1] 0.01140228
> Y.ad <- Y.mr
> Y.ad[Y.ad==w2.mr] <- w2.ad
> set.seed(0)
> T <- ptest2s(Y.ad,X,B,"Student")
> p.obs <- sum(T[-1]>=T[1])/(B-1)
> p.obs
[1] 0.00620124

The adaptive test Twmax can be performed by computing the data-dependent
scores wmax at each permutation of the data using the function Tmax:

> source("Tmax.R")
> set.seed(0)
> T <- ptest2s(Y,X,B,"Tmax")
> p.obs <- sum(T[-1]>=T[1])/(B-1)
> p.obs
[1] 0.00680136

2.2.4 Concordance Monotonicity

Likelihood inference is perhaps the default approach for many statistical mod-
els. Recently, there have been debates about the suitability of different test
procedures: Perlman and Chaudhuri (2004b) argue in favor of likelihood ratio
tests, whereas Cohen and Sackrowitz (2004) argue in favor of the so-called
class of directed tests. The likelihood ratio test (LRT) statistic is given by

TLR = 2
2∑
i=1

c∑
j=1

mi,j

{
log[π̂|H1

i (j)]− log[π̂|H0
i (j)]

}
,

where π̂|H1
i (j) and π̂

|H0
i (j) are the maximum likelihoood (ML) estimates of

πi(j) under H1 and H0, respectively. When mi,j > 0, i = 1, 2, j = 1, . . . , c,
Dykstra et al. (1996) showed that ML estimates can be expressed in terms of
a weighted least squares projection,

π̂
|H1
1 (j) =

m1

n1

{
n1

n
+
n2

n
Pm1

n1

(
m1

m2
|I
)}

,

π̂
|H1
2 (j) =

m2

n2

{
n2

n
+
n1

n
Pm2

n2

(
m2

m1
|D
)}

,

where I = {w ∈ Rc : w1 ≤ . . . ≤ wc} and D = {w ∈ Rc : w1 ≥ . . . ≥ wc}.
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Then, a least favorable null value for the asymptotic distribution of the
LRT assigns probability 1

2 for the first and the last ordinal categories (see
Silvapulle and Sen, 2005, Proposition 6.5.1), and

sup
H0

lim
n→∞

Pr(TLR ≥ t|H0) =
1
2
(Pr(χ2

c−2 ≥ t) + Pr(χ2
c−1 ≥ t)).

To bypass possibly poor asymptotic approximations, mostly for small or un-
balanced sample sizes, Agresti and Coull (2002) suggest performing the per-
mutation test based on the LRT statistic. The cell entries in Tables I and II
of Table 2.6 represent two permutations of Patefield’s data.

Table 2.6. Two permutations of Patefield’s data.

Table I W S B Total Table II W S B Total

C 5 11 1 17 C 0 16 1 17

T 3 8 4 15 T 8 3 4 15

8 19 5 32 8 19 5 32

Note that Table II is created from Table I by exchanging five control values
from “worse” to “same” and five treatment values from “same” to “worse”.
The LRT statistic for Tables I and II is 2.777 and 22.652, respectively. This
seems to contradict intuition because the control performance is improved
while simultaneously the treatment is made to perform worse. Then we would
expect the p-value to increase. The LRT does not have this property (i.e.,
is not concordant monotone, Cohen and Sackrowitz, 1998), meaning that the
p-value decreases if any entry in the first row, say m1,j , increases while m1,l

decreases for j < l, holding all row and column totals fixed.
As an alternative to LRT, Cohen et al. (2003) developed the directed chi-

square, which is concordant monotone and is defined as

T−→χ 2 = inf
u∈A

2∑
i=1

c∑
j=1

(
ui,j − nitj

n

)2

nitj
n

,

where A = {u1,1 + . . .+ u1,j ≥ m1,1 + . . .+m1,j ,
∑c
j=1 ui,j = ni, u1,j + u2,j =

tj , i = 1, 2, j = 1, . . . , c}. Therefore, the directed chi-squared test rejects H0 if
the minimum of the Pearson chi-square for tables in A is large. Cohen et al.
(2003) showed that a permutationally equivalent formulation is given by

T−→χ 2 =
c∑
j=1

(wj)2tj ,

where w = Pt

(
m1
t |D

)
and D = {w ∈ IRc : w1 ≥ . . . ≥ wc}.
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2.2.5 Applications with R functions

Here we provide assistance in doing the statistical tests illustrated in Sub-
section 2.2.4. Create Table I and Table II representing two permutations of
Patefield’s data by using equal-spaced scores (w1, w2, w3) = (1, 2, 3), where X
represents class labels and Y the vector of data

> X <- c(rep(1,17),rep(2,15))
> YI <- c(rep(1,5),rep(2,11),3,rep(1,3),rep(2,8),rep(3,4))
> YII <- c(rep(2,16),rep(3,1),rep(1,8),rep(2,3),rep(3,4))

and perform the likelihood ratio test TLR by LRT

> source("LRT.R")
> LRT(YI[X==1],YI[X==2])
[1] 2.783381
> LRT(YII[X==1],YII[X==2])
[1] 19.4776

and the directed chi-squared test T−→χ 2 by DChisq

> source("DChisq.R")
> DChisq(YI,X)
[1] 0.07446918
> DChisq(YII,X)
[1] 0.07037817

Tests based on linear test statistics are also concordant monotone. For exam-
ple,

> source("studT.R")
> studT(YI[X==1],YI[X==2])
[1] 1.348210
> studT(YI[X==1],YI[X==2])
[1] -1.460447
> source("Tmax.R")
> Tmax(YI[X==1],YI[X==2])
[1] 0.2882637
> Tmax(YII[X==1],YII[X==2])
[1] 0.2856531

2.2.6 Multiple Testing

In this multiparameter problem, following Roy’s (1953) union-intersection
principle , it might be possible to look upon the null hypothesis as the in-
tersection of several component hypotheses and the alternative hypothesis as
the union of the same number of component alternatives, in symbols
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H0 : θC1 = 1c−1 ⇔
c−1⋂
j=1

{H0,j} :
c−1⋂
j=1

{
θC1j = 1

}
,

stating that H0 is true if all H0,j are true, and

H1 : θC1  1c−1 ⇔
c−1⋃
j=1

{H1,j} :
c−1⋃
j=1

{
θC1j > 1

}
,

stating that H1 is true if at least one H1,j is true.
To provide an interpretation of this, let us consider the c−1 possible 2×2

subtables that can be formed by dichotomizing the column variable: the first
column vs. all the rest, the first two columns pooled vs. the others, and so
on. Thus H0,j and H1,j define the hypotheses of interest for the jth subtable,
j = 1, . . . , c− 1 (Table 2.7).

Table 2.7. jth subtable.

≤ j > j

1
∑j
l=1m1,l

∑c
l=j+1m1,l n1

2
∑j
l=1m2,l

∑c
l=j+1m2,l n2∑j

l=1 tl
∑c
l=j+1 tl n

For testing H0,j against H1,j , we may consider Fisher’s test statistic Tj =∑j
l=1m1,l or its standardized formulation

Tj =
(

n1n2

n2/(n− 1)

)
F̂1(j)− F̂2(j)

(F̂ (j)[1− F̂ (j)])
1
2
.

For any K ⊆ {1, . . . c− 1}, let H0,K :
⋂
j∈K {H0,j} denote the hypothesis

that all H0,j with j ∈ K are true. The closure method of Marcus et al.
(1976) allows strong control of FWE if we know how to test each intersection
hypothesis H0,K . Let TK be a test statistic for H0,K that can be a function of
test statistics Tj or p-values pj . For instance, by using the standardized Fisher
statistic, the “sum-T” combined test TK =

∑
j∈K Tj yields the Anderson-

Darling statistic, whereas by using Tj = F̂1(j)−F̂2(j), the “max-T” combined
test TK = maxj∈K Tj yields the Smirnov statistic.

For the analysis of Patefield’s data, by applying Fisher’s exact tests, we
obtain pobs1 = 0.1536 and pobs2 = 0.0149. Depending on the combined test used
to test H0, obtaining p-value pobs, from the closed testing principle we have
padj1 = max(0.1536, pobs) and padj2 = max(0.0149, pobs). When pobs ≤ α, as
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happens with the tests considered in Subsection 2.2.2, the “individual” hy-
pothesis H0,2 : θC2 = 1 can be rejected while controlling the FWE, supporting
the alternative H1,2 : θC2 > 1.

2.3 Independent Binomial Samples: r × 2
Contingency Tables

In a typical dose-response study, several increasing doses of a treatment are
randomly assigned to the subjects, with each subject receiving only one dose
throughout the study. We discuss the case of a binary response variable Y
with a single regressor X having r ordered levels. Let Y1, . . . , Yr be r inde-
pendent binomial variables with Yi ∼ Binomial(ni, πi), where the probability
of “success” is πi := πi(2) = Pr(Y = 2|X = i). We are often interested in
detecting inequalities between the parameters πi, i = 1, . . . , r.

Graubard and Korn (1987) consider a prospective study of maternal drink-
ing and congenital malformations. After the first three months of pregnancy,
the women in the sample completed a questionnaire about alcohol consump-
tion (average number of drinks per day). Following childbirth, observations
were recorded on the presence or absence of congenital sex organ malforma-
tions. The data are displayed in Table 2.8.

Table 2.8. Maternal drinking and congenital malformations data.

X Alcohol Malformation

Consumption Absent Present

1 0 17,066 48 17,114

2 < 1 14,464 38 14,502

3 1−2 788 5 793

4 3−5 126 1 127

5 ≥ 6 37 1 38

32,481 93 32,574

The goal is to test for a dose-response relationship. For example, when
investigating a dose-response relationship of the form logit(πi) = γ + βdi,
one would typically have in mind a biologically or clinically meaningful slope,
say β , above which one could claim the existence of a trend in the data.
Specifically, it is of interest to test against a simple order restriction,

H0 : π1 = . . . = πr against H1 : π1 ≤ . . . ≤ πr, (2.5)

with at least one strict inequality. An efficient test of the null hypothesis is the
Cochran-Armitage test of trend (Cochran, 1954; Armitage, 1955), in which
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the test statistic is

Td =
r−1∑
i=1

mi,2di,

where the di’s are prespecified scores that may correspond to doses in a dose-
response setting. It is known (Agresti, 2002, pp. 181−182) that the Cochran-
Armitage statistic is equivalent to the score statistic for testing H0 : β = 0 in
the linear logit model. Cochran (1954) noted that “any set of scores gives a
valid test, provided that they are constructed without consulting the results of
the experiment. If the set of scores is poor, in that it badly distorts a numerical
scale that really does underlie the ordered classification, the test will not be
sensitive. The scores should therefore embody the best insight available about
the way in which the classification was constructed and used.” Ideally, the
scale is chosen by a consensus of experts, and subsequent interpretations use
that same scale. When uncertain about this choice, the adaptive scores used
in Subsection 2.2.2 may be considered.

Alcohol consumption, measured as the average number of drinks per day,
is an ordinal explanatory variable. This groups a naturally continuous vari-
able, and we first use the scores d = (0, .5, 1.5, 4, 7), the last score being
somewhat arbitrary. For this choice, the p-value is 0.014. By contrast, for the
equally spaced row scores, d = (1, 2, 3, 4, 5), giving a much weaker conclu-
sion (p = 0.104). Midrank scores yield an even weaker conclusion (p = 0.319).
Why does this happen? Adjacent categories having relatively few observations
necessarily have similar midranks. This scoring scheme treats the alcohol con-
sumption level 1−2 drinks as much closer to consumption level ≥ 6 drinks
than to consumption level 0 drinks. This seems inappropriate since it is usu-
ally better to select scores that reflect distances between doses. However, by
using the adaptive scores d = wmax, the p-value is 0.022, supporting the
adaptive test when the choice of scores is uncertain.

Peddada et al. (2001) consider a study investigating the effects of sev-
eral treatments on the reproductive condition of the redbacked salamander
(Plethodon cinereus). Female salamanders were randomly assigned to either
the control or one of three treatment groups. The treatments consisted of
injections of either follicle-stimulating hormone (i = 2), luteinizing hormone
(i = 3), or, for animals in the control group (i = 1), saline solution. The
remaining treatment group (i = 4) was fed exactly twice the amount of food
as salamanders in all other groups. The reproductive condition of each animal
was later evaluated by measuring the size of the ova through the abdominal
wall of the animal. If the ova were larger than 2 mm, then the animal was
declared to be in a reproductive condition. Data are displayed in Table 2.9.

The hypothesis of interest is whether the salamanders in the treatment
groups had a greater probability of being in reproductive condition than those
in the control group. No ordering was hypothesized between treatment groups,
and hence we wish to test against a simple tree order restriction
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Table 2.9. Reproductive condition of the redbacked salamander.

Nonreproductive Reproductive Total

1 4 9 13

2 8 4 12

3 7 6 13

4 1 13 14

20 22 42

H0 : π1 = . . . = πr against H1 :
r−1⋃
i=1

{π1 < πi+1}. (2.6)

In the case of rejection of the global null hypothesis that none of the
treatments is an improvement over the control, answering the question “Is
there any evidence of the treatment effect?” one usually wants to know which
of the treatments show a significant difference, answering the more specific
question “For which treatments is the response larger than the response in
the control group?”; that is, to test simultaneously the hypotheses

H0,i : π1 = πi+1 against H1,i : π1 < πi+1, i = 1, . . . , r − 1. (2.7)

A multiple comparison procedure can be used for this purpose. No type I error
should be made in any of these comparisons because otherwise a treatment
that is actually inferior to the control may be recommended. Thus, in this
case, strong control of the FWE is required.

For any K ⊆ {1, . . . r−1}, let H0,K :
⋂
i∈K H0,i denote the hypothesis that

all H0,i with i ∈ K are true. Note that for testing the global null hypothesis
H0,K0 with K0 = {1, . . . , r − 1}, all permutations of the observations among
the r groups are equally likely. However, for testing the intersection hypothesis
H0,K , we consider only the permutations that, under that hypothesis, become
equally likely. In particular, for each hypothesis H0,i, one has to permute only
within the control and the (i + 1)th treatment. Thus we should consider a
closed testing procedure that uses the valid permutations depending on the
intersection hypothesis under testing. For testing H0,i, we consider as test
statistics

Ti =
π̂i+1 − π̂1[(

n1π̂1+ni+1π̂i+1
n1+ni+1

)(
1− n1π̂1+ni+1π̂i+1

n1+ni+1

)] 1
2
, i = 1, . . . , r − 1,

where π̂i = mi2/ni, and for testing HK the “max-T” combined test statistic
TK = max(Ti : i ∈ K). Results are given in the following diagram to better
illustrate the closed testing method. The result indicates that no individual
hypothesis can be rejected at a nominal level α = 5%.
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H123

H12 H13 H23

H1 H2 H3

p123 = 0.1636

p12 = 0.9643 p13 = 0.1268 p23 = 0.1020

p1 = 0.9851 p2 = 0.9439 p3 = .01448

Note that in all examples there is prior belief in the shape of the exposure-
outcome curve. The prior belief relates to a restricted alternative to the “no
effect” hypothesis. For instance, in the salamander example, a priori expec-
tations were that all three treatment groups would result in increased ova
development compared with a control.

2.3.1 Applications with R functions

This paragraph provides assistance in using the statistical methods illustrated
in Section 2.3. Create the malformations data with equal-spaced scores, where
X represents class labels and Y the vector of data,

> X <- c(rep(1,17114),rep(2,14502),rep(3,793),rep(4,127),
+ rep(5,38))
> Y<-c(rep(0,17066),rep(1,48),rep(0,14464),rep(1,38),
+ rep(0,788),rep(1,5),rep(0,126),rep(1,1),rep(0,37),rep(1,1))

and perform the ptest2s function based on Td by switching the input argu-
ments X and Y; with equally spaced, scores, we obtain

> source("ptest2s.R")
> set.seed(0)
> B <- 1000
> T <- ptest2s(X,Y,B,"Student")
> p.obs <- sum(T[-1]>=T[1])/(B-1)
> p.obs
[1] 0.1041041

whereas with d = (0, .5, 1.5, 4, 7) and midrank scores, we obtain

> set.seed(0)
> X.d <- c(rep(0,17114),rep(.5,14502),rep(1.5,793),
+ rep(4,127),rep(7,38))
> T <- ptest2s(X.d,Y,B,"Student")
> p.obs <- sum(T[-1]>=T[1])/(B-1)
> p.obs
[1] 0.01401401
> set.seed(0)
> X.mr <- rank(X)
> T <- ptest2s(X.mr,Y,B,"Student")
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> p.obs <- sum(T[-1]>=T[1])/(B-1)
> p.obs
[1] 0.3193193

Finally, by using adaptive scores d = wmax, we obtain

> source("Tmax.R")
> set.seed(0)
> T <- ptest2s(X,Y,B,"Tmax")
> p.obs <- sum(T[-1]>=T[1])/(B-1)
> p.obs
[1] 0.02202202

To set up the redbacked salamander data, type

> X <- c(rep(1,13),rep(2,12),rep(3,13),rep(4,14))
> Y <- c(rep(0,4),rep(1,9),rep(0,8),rep(1,4),
+ rep(0,7),rep(1,6),rep(0,1),rep(1,13))

To test the global null hypothesis H0,{1,2,3} :
⋂3
i=1{π1 = πi+1}, perform the

ptestRs function based on the combined statistic T{1,2,3} = max(T1, T2, T3)

> source("ptestRs.R")
> set.seed(0)
> B <- 5000
> T123 <- ptestRs(Y,X,B,combi="max")
> p.obs <- sum(T123[-1]>=T123[1])/(B-1)
> p.obs
[1] 0.1672334

and for the intersection hypotheses H0,{1,2}, H0,{1,3}, and H0,{2,3}

> T12 <- ptestRs(Y[X!=4],X[X!=4],B,combi="max")
> sum(T12[-1]>=T12[1])/(B-1)
[1] 0.9643929
> T13 <- ptestRs(Y[X!=3],X[X!=3],B,combi="max")
> sum(T13[-1]>=T13[1])/(B-1)
[1] 0.1254251
> T23 <- ptestRs(Y[X!=2],X[X!=2],B,combi="max")
> sum(T23[-1]>=T23[1])/(B-1)
[1] 0.1028206

Finally, to test H0,1, H0,2 and H0,3, perform the two-sample comparisons by
using the ptest2s function

> T1 <- ptest2s(Y[X!=3&X!=4],X[X!=3&X!=4],B,"Student")
> sum(T1[-1]>=T1[1])/(B-1)
[1] 0.9867974
> T2 <- ptest2s(Y[X!=2&X!=4],X[X!=2&X!=4],B,"Student")
> sum(T2[-1]>=T2[1])/(B-1)
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[1] 0.9461892
> T3 <- ptest2s(Y[X!=2&X!=3],X[X!=2&X!=3],B,"Student")
> sum(T3[-1]>=T3[1])/(B-1)
[1] 0.1386277

2.4 Comparison of Several Treatments when the
Response is Ordinal: r × c Contingency Tables

Table 2.10 displays data appearing in Chuang-Stein and Agresti (1997). Five
ordered categories ranging from “death” to “good recovery” describe the clin-
ical outcome of patients who experienced trauma. In the literature on critical
care, these five categories are often called the Glasgow Outcome Scale (GOS).
We have four treatment groups: three intravenous doses for the medication
(low, medium, and high) and a vehicle infusion serving as the control.

Table 2.10. Glasgow Outcome Scale.

Treatment X Death Vegetative Major Minor Good

group state disability disability recovery Total

Placebo 1 59 25 46 48 32 210

Low dose 2 48 21 44 47 30 190

Medium dose 3 44 14 54 64 31 207

High dose 4 43 4 49 58 41 195

194 64 193 217 134 802

Investigation of a dose-response relationship is of primary interest in many
drug-development studies. Here the outcome of interest is measured at several
(increasing) dose levels, among which there is a control group. One study
objective was to determine whether a more favorable GOS outcome tends to
occur as the dose increases; that is, testing

H0 : Y1
d= . . .

d= Yr against H1 : Y1

st
≤ . . .

st
≤ Yr

with at least one “
st
�”. Note that the dose-response curve is assumed to be

monotone; i.e., the GOS increases as the dose level increases.
Other questions usually asked in dose-response studies are: “For which

doses is the response higher from the response in the control group?”; that is,
testing the many-to-one comparisons

H0,i : Y1
d= Yi+1 against H1,i : Y1

st
� Yi+1, i = 2, . . . , r,
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or “What are the strict inequalities in the stochastic ordering relationship?”,
that is, testing all pairwise comparisons

H0,(i,i′) : Yi
d= Yi′ against H1,(i,i′) : Yi

st
� Yi′ , i < i′.

Gatekeeping procedures (see Dmitrienko and Tamhane, 2007, for an overview)
have become popular in recent years as they provide a convenient way to
handle logical relationships between multiple objectives that clinical trials are
often required to address. In a gatekeeping strategy, the k null hypotheses are
divided into h ordered families Fl, l = 1, . . . , h. Generally, familywise error
rate control at a designated level α is desired for the family of all k hypotheses.

Westfall and Krishen (2001) proposed procedures for the serial gatekeep-
ing problem in which the hypotheses in Fl+1 are tested if and only if all
hypotheses in Fl are rejected. Dmitrienko et al. (2003) proposed procedures
for the parallel gatekeeping problem in which the hypotheses in Fl+1 are tested
if at least one hypothesis in Fl is rejected.

For the many-to-one comparisons, the serial gatekeeping procedure may

exploit the hierarchy of the stochastic ordering relationship Y1

st
≤ . . .

st
≤ Yr

by starting from the comparison between the highest dose and the control to
the comparison between the lowest dose and the control. Here, the ordered
families are simply F1 = {H0,r}, . . . ,Fr−1 = {H0,2}. The procedure stops at
the dose level where the null hypothesis is not rejected at the nominal level
α = 5%.

For the pairwise comparisons, a parallel gatekeeping procedure may exploit
the distance (i, i′) = i′ − i in the stochastic ordering relationship by testing
first the hypothesis H(1,r) comparing the highest dose with the control and,
if rejected, both H(1,r−1) and H(2,r), and if at least one is rejected, the three
hypotheses H0,(1,r−2), H0,(2,r−1), and H0,(3,r−2), and so on. Here the ordered
families are F1 = {H0,(1,r)},F2 = {H0,(1,r−1),H0,(2,r)}, . . . ,Fl = {H0,(i,i′) :
i − i′ = r − l}, . . . ,Fr−1 = {H0,(i,i+1), i < i′}. In this procedure, the first
r − 2 families are tested using the Bonferroni single-step adjustment that
tests Fl at level αγl. The family Fr−1 is tested at level αγl using Holm’s
stepdown adjustment. Here γl is the so-called rejection gain factor for Fl,
given by γ1 = 1, γl =

∏l−1
j=1

(
rejected(Fj)

cardinality(Fj)

)
, where “rejected(Fj)” is the

number of rejected hypotheses in Fj ; thus γl is the product of the proportions
of rejected hypotheses in F1 through Fl−1. If no hypotheses are rejected in
some family Fl, then γj = 0 for all j > l, and all hypotheses in Fj for j > l are
automatically accepted. On the other hand, if all hypotheses are rejected in
F1 through Fl−1, then γl = 1 and thus a full α level is used to test Fl, no part
of α being used up by the rejected hypotheses (“use it or lose it” principle).

To illustrate the implementation of gatekeeping procedures, consider the
GOS example. Raw p-values for the six hypotheses computed from a two-
sample Tw test (with equally spaced or adaptive scores) are displayed in Table
2.11.
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Table 2.11. Raw p-values for GOS data.

H0,(1,4) H0,(1,3) H0,(2,4) H0,(1,2) H0,(2,3) H0,(3,4)

Equally spaced 0.0026 0.0282 0.0194 0.2819 0.1206 0.1666

Adaptive 0.0018 0.0220 0.0162 0.4563 0.1258 0.1466

For many-to-one comparisons, by the serial gatekeeping procedure we re-
ject at α = 5% both the hypotheses H0,(1,4) and H0,(1,3) but not the com-
parison between the lowest dose and control; that is, H0,(1,2). Note that by
performing Holm’s procedure, with adaptive scores we reject both H0,(1,4) and
H0,(1,3) (p(1,4) = 0.0018 < α/3 and p(1,3) = 0.0220 < α/2) but with equally
spaced scores we can reject H0,(1,4) only (p(1,3) = 0.0282 > α/2).

For the six pairwise comparisons, with Holm’s procedure we reject only
the hypothesis H0,(1,4). However, because there are logical implications among
the hypotheses and alternatives, Holm’s procedure can be improved to obtain
a further increase in power (Shaffer, 1986). By considering all possible con-
figurations of true and false hypotheses, all six hypotheses may be true at
the first step, but because the hypothesis H0(1,4) is rejected (p(1,4) ≤ α/6),
at least three must be false since if any two distributions differ, at least one
of them must differ from the remaining ones. By exploiting logical implica-
tions and using p-values from tests based on adaptive scores, we can also
reject H0,(2,4) (p(2,4) = 0.0162 < α/3). By performing the parallel gatekeep-
ing procedure, with adaptive scores we reject at α = 5% all the hypothe-
ses in the families F1 = {H0,(1,4)} and F2 = {H0,(1,3),H0,(2,4)} but none of
the hypotheses in the family F3 = {H0,(1,2),H0,(2,3),H0,(3,4)}, whereas with
equally spaced scores we reject only the hypotheses H0,(1,4) and H0,(2,4) be-
cause p0,(2,3) = 0.0282 > α/2.
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Multivariate Ordinal Data

3.1 Introduction

Assessing the risks and benefits of a treatment is more comprehensive and
sensitive when several variables are considered simultaneously rather than
ignoring some or analyzing them separately. For instance, the large number
and variety of possible manifestations of a dose effect in a subject’s clinical
response usually necessitates that several endpoints be observed jointly to
avoid missing any crucial effects or interactions.

Many assessment instruments used in the evaluation of toxicity, safety,
pain, or disease progression consider multiple ordinal endpoints to fully cap-
ture the presence and severity of treatment effects. Contingency tables under-
lying these correlated responses are often sparse and imbalanced, rendering
asymptotic results unreliable or model fitting prohibitively complex without
overly simplifying assumptions. The statistical analysis of these data struc-
tures is challenging, first because underlying contingency tables for the mul-
tivariate categorical responses are very sparse and imbalanced and second
because associations of various degrees among the endpoints may mask or
enhance effects if not properly taken into account.

We discuss the case comparing two treatments (doses) based on observ-
ing for each subject k ordinal variables with possibly different numbers of
categories. Let Y i = (Yi1, . . . , Yik)t be the multivariate response at dose
i = 1, 2, where Yih is ordinal with ch ≥ 2 categories, h = 1, . . . , k. Sup-
pose we have a total of n = n1 + n2 subjects randomly assigned to the
two doses, such that Y 11, . . . ,Y 1n1 are n1 i.i.d. observations from a distribu-
tion π1(j1, . . . , jk) and, independently, Y 21, . . . ,Y 2n2 are n2 i.i.d. observations
from a distribution π2(j1, . . . , jk), where πi(j1, . . . , jk) denotes the joint prob-
abilities Pr(Yi1 = j1, . . . , Yik = jk), jh ∈ {1, . . . , ch} at dose i. To investigate
a possible dose effect, we initially set up the null hypothesis

H0 : Y 1
d= Y 2, (3.1)

D. Basso et al., Permutation Tests for Stochastic Ordering and ANOVA, Lecture
Notes in Statistics, 194, DOI 10.1007/978-0-387-85956-9 3,
c© Springer Science+Business Media, LLC 2009
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where “ d=” means “equal in distribution” (i.e., π1(j1, . . . , jk) = π2(j1, . . . , jk)
for all (j1, . . . , jk) ∈ {1, . . . , c1}× . . .×{1, . . . , ck}) against the one-sided alter-
native that the Y 2 distribution is stochastically larger and not equal to the
Y 1 distribution,

H1 : Y 2

st
 Y 1. (3.2)

The following multivariate generalization of stochastic order was consid-
ered first by Lehmann (1955) and is also given in Marshall and Olkin (1979).

Definition 3.1. The k-dimensional random vector Y 2 is said to dominate Y 1

according to the multivariate stochastic order, or Y 2 is stochastically larger

than Y 1, written Y 2

st
≥ Y 1, if

E[g(Y 2)] ≥ E[g(Y 1)] (3.3)

for all functions g : IRk → IR that are increasing in each argument and have
finite expectations.

Note that Y 2

st
≥ Y 1 implies both order of the c.d.f.’s Pr(Y11 ≤ j1, . . . , Y1k ≤

jk) ≥ Pr(Y21 ≤ j1, . . . , Y2k ≤ jk) (i.e., smaller or equal values are more
likely to occur under the first dose) and order of the survival functions
Pr(Y11 > j1, . . . , Y1k > jk) ≤ Pr(Y21 > j1, . . . , Y2k > jk) (i.e., larger val-
ues are more likely to occur under the second dose). As is natural, we assume
two independent multinomial distributions (ni, {πi(j1, . . . , jk)}) for the counts
in each of the two tables of size c1 × · · · × ck that cross-classify the ni mul-

tivariate responses at dose i. It is clear that if Y 2

st
≥ Y 1, then Yh2

st
≥ Y1h for

each h = 1, . . . , k. But the converse is false because the marginal distribu-
tions do not determine the joint distribution uniquely unless, of course, the
components are independent.

The multivariate setting poses more difficulties than the univariate one
because multivariate estimators cannot generally be recast as solutions to
standard isotonic regression problems. In addition, once derived, numerical
evaluation of these estimators is extremely difficult. Sampson and Whitaker
(1989) derived the maximum likelihood estimates for this problem, and Lucas
and Wright (1991) proposed the likelihood ratio test. However, estimating
the large number of parameters via ML is impossible for sparse and/or high-
dimensional data because of the many empty cells.

Consider the case of k = 2, so that Y 1 and Y 2 are two discrete bivari-
ate random vectors with a common support on a c1 × c2 lattice Lc1×c2 and
probabilities πi(j1, j2) = Pr(Y1i = j1, Y2i = j2), i = 1, 2, j1 = 1, . . . , c1, j2 =
1, . . . , c2. Also let ni(j1, j2) be the number of subjects receiving treatment
i and resulting in outcome (j1, j2). The following definitions (Sampson and
Singh, 2002) are needed in what follows.

Definition 3.2. We have a matrix partial order �M on Y if (j1, j2) �M
(j′1, j

′
2) ⇔ j1 ≤ j′1 and j2 ≤ j′2.
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Definition 3.3. A subset U of Lc1×c2 is called an upper set if (j1, j2) ∈ U ,
(j′1, j

′
2) ∈ Lc1×c2 , and (j1, j2) �M (j′1, j

′
2) ⇒ (j′1, j

′
2) ∈ U .

Lc1×c2 is a trivial upper set, as is ∅. An upper set other than Lc1×c2 and ∅ is
called a nontrivial upper set. An alternative formulation of stochastic ordering
(see Marshall and Olkin, 1979, prop. 17.B2) equivalent to (3.3) is

Pr{Y 1 ∈ U} ≤ Pr{Y 2 ∈ U}, ∀U ∈ U,

where U is the class of all
(
c1+c2
c1

)
upper sets. The testing problem becomes

H0 :
⋂

∀U∈U

 ∑
(j1,j2)∈U

π1(j1, j2) =
∑

(j1,j2)∈U

π2(j1, j2)


against

H1 :
⋃

∀U∈U

 ∑
(j1,j2)∈U

π1(j1, j2) <
∑

(j1,j2)∈U

π2(j1, j2)

 .

For example, when c1 = c2 = 2, we have
(
4
2

)
= 6 upper sets, namely

U = {U∅ = ∅, U1 ={(2,2)}, U2 ={(2,2), (2,1)}, U3 ={(2,2), (1,2)}, U4 ={(2,2),
(2,1), (1,2)}, UL2×2 ={(2,2), (2,1), (1,2), (1,1)}}.

In principle, we are able to test simultaneouslyHU :
∑

(j1,j2)∈U π1(j1, j2) =∑
(j1,j2)∈U π2(j1, j2) against H ′

U :
∑

(j1,j2)∈U π1(j1, j2) <
∑

(j1,j2)∈U π2(j1, j2)
for all possible nontrivial U ∈ U by using Fisher’s exact tests based on 2× 2
tables and combine them to get an overall result about H0.

(j1, j2) ∈ U (j1, j2) /∈ U

1
∑

(j1,j2)∈U n1(j1, j2)
∑

(j1,j2)/∈U n1(j1, j2) n1

2
∑

(j1,j2)∈U n2(j1, j2)
∑

(j1,j2)/∈U n2(j1, j2) n2∑2
i=1

∑
(j1,j2)∈U ni(j1, j2)

∑2
i=1

∑
(j1,j2)/∈U ni(j1, j2) n

Consider the data in Table 3.1 taken from Sampson and Singh (2002). This
example arises from a double-blinded randomized clinical trial where both the
physician and the patient at the end of the trial are asked to evaluate on a
multipoint ordinal scale the patient’s response to treatment in comparison
with their condition at the start of the trial. Such ratings are usually termed
global ratings, where each evaluation is on the scale “worse”, “no difference”,
“better”, “much better”. The purpose of the trial was to demonstrate superi-
ority of the experimental treatment with respect to the control treatment.

In the analysis of such data, treatments are usually compared by evaluating
separately the physician’s and the patient’s judgments. Due to the complexity
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Table 3.1. Physician’s and patient’s global ratings.

Control Treatment

Y1/Y2 1 2 3 4

1 7 48 38 1

2 6 17 33 6

3 1 10 21 6

4 0 0 3 3

Y1/Y2 1 2 3 4

1 5 9 13 9

2 4 11 35 14

3 1 11 45 15

4 0 3 14 11

of such an analysis, it is less usual to see an analysis that compares treatments
based simultaneously on both the physician’s and the patient’s global ratings.
We consider

(
8
4

)
− 2 = 68 nontrivial upper sets, and by combining the cor-

responding Fisher exact tests, we obtain a highly significant p-value equal to
0.0001. However, for higher dimensional data, it becomes increasingly difficult
to compute all the possible comparisons. For instance, with k = 3 and c = 4,
we have 232,846 nontrivial upper sets, and thus a different solution is needed.
Moreover, in the case of rejection of the null hypothesis that the treatment
is an improvement over the control, one usually wants to know which of the
component variables (if any) show a statistically significant difference.

One collection of endpoints designed to evaluate neurophysiological effects
in animals after exposure to a toxin is a biological screening assay composed
of roughly 25 endpoints, termed the Functional Observational Battery (FOB)
(Moser, 1989; see also the United States Environmental Protection Agency’s
guideline 40CFR 798.6050). The FOB tries to group endpoints by a com-
mon domain, each domain describing a possibly distinct neurological func-
tion. Table 3.2 shows the structure of the FOB and displays data from a
study designed to measure the presence and severity of neurotoxic effects in
animals after exposure to perchlorethylene (PERC), a chemical used in the
dry cleaning industry (and suspected of leading to an unusual concentration
of leukemia cases in the city of Woburn, MA; see Lagakos et al., 1986). In the
study, a total of 40 animals were randomly assigned to either the placebo or
four exposure levels of PERC, with 8 animals per dose group, and the FOB
was administered at several time intervals. Each animal was evaluated on 25
endpoints, classified into six domains, and the data were converted to a scale
from 1 to 4, where a score of 1 indicates absence of the corresponding adverse
effect and a score of 4 denotes the most severe reaction (Moser et al., 1995).
Table 3.2 summarizes the result of the FOB at the time of peak effect, 4 hours
into exposure, for the placebo and the 1.5 g/kg exposure level.

Many similar comprehensive batteries of tests exist in other fields, such
as the presence and severity of several adverse events (which are also usually
grouped by body function according to some dictionary) in drug safety studies
or various assessment scales for medical diagnoses of pain or diseases such as
Alzheimer’s or Parkinson’s. The statistical analysis of these data structures
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Table 3.2. Marginal counts of severity scores for adverse effects at two exposure
levels observed from the FOB study. The last three columns give a simplistic analysis
treating the scores as normal, referring to the regular t statistic and corresponding
raw and Bonferroni-Holm adjusted p-values. The quoted domain test statistic T is
based on O’Brien’s (1984) method applied to all endpoints within a domain, and
p-values adjusted via Bonferroni-Holm methods.

Domain Endpoint Exposure p-value

0 g/kg 1.5 g/kg t raw adj.

1 2 3 4 1 2 3 4

Autonomic Lacrimation 8 0 0 0 5 0 3 0 2.05 0.030 0.626
T = 0.93 Salivation 8 0 0 0 8 0 0 0 0.00 0.500 1.000
padj = 0.404 Pupil 7 0 1 0 5 0 3 0 1.13 0.139 1.000

Defecation 7 0 0 1 7 1 0 0 −0.63 0.731 1.000
Urination 4 3 1 0 6 1 1 0 −0.67 0.744 1.000

Sensorimotor Approach 8 0 0 0 4 0 3 1 2.55 0.011 0.253
T = 2.08 Click 7 0 1 0 7 0 1 0 0.00 0.500 1.000
padj = 0.185 Tail pinch 6 0 2 0 5 0 3 0 0.51 0.309 1.000

Touch 8 0 0 0 6 0 0 2 1.53 0.074 1.000

CNS excitability Handling 6 2 0 0 4 4 0 0 1.00 0.167 1.000
T = 1.25 Clonic 4 4 0 0 5 3 0 0 −0.47 0.679 1.000
padj = 0.404 Arousal 4 3 1 0 3 0 3 2 1.64 0.061 1.000

Removal 0 8 0 0 0 7 1 0 1.00 0.167 1.000
Tonic 8 0 0 0 8 0 0 0 0.00 0.500 1.000

CNS activity Posture 8 0 0 0 7 0 1 0 1.00 0.167 1.000
T = 1.28 Rearing 5 2 1 0 4 2 2 0 0.61 0.277 1.000
padj = 0.404 Palpebral 8 0 0 0 8 0 0 0 0.00 0.500 1.000

Neuromuscular Gait 8 0 0 0 3 5 0 0 3.42 0.002 0.052
T = 3.36 Foot splay 6 1 1 0 6 1 1 0 0.00 0.500 1.000
padj = 0.034 Forelimb 5 2 1 0 2 1 0 5 2.65 0.010 0.221

Hindlimb 5 3 0 0 0 6 1 1 3.12 0.004 0.090
Righting 8 0 0 0 5 2 1 0 1.87 0.041 0.824

Physiological Piloerection 8 0 0 0 8 0 0 0 0.00 0.500 1.000
T = 1.38 Weight 6 1 1 0 4 2 0 2 1.17 0.130 1.000
padj = 0.404 Temperature 6 1 1 0 4 3 0 1 0.83 0.210 1.000

is challenging, first because underlying contingency tables for the multivari-
ate categorical responses are very sparse and imbalanced and second because
associations of various degrees among the endpoints may mask or enhance
effects if not properly taken into account. One simple approach treats the
observed scores (and the resulting mean score) as Gaussian, opening up the
toolbox for normal-based theory and methods. This might be appropriate if



70 3 Multivariate Ordinal Data

both the number of categories and the sample size are large, which is not the
case for the types of multivariate data considered here.

Han et al. (2004) used data from the FOB to illustrate methods for test-
ing a dose-response relationship with multiple correlated binary responses,
addressing some of the challenges via an exact, conditional analysis. They
transformed the ordinal responses into binary ones (absence or presence of
an adverse effect), thereby losing information on severity, and assumed equal
correlation among endpoints within a domain coupled with independence of
endpoints across different domains. The correlated binary endpoints within a
domain were modeled using the distribution of Molenberghs and Ryan (1999),
conditioning out two-way interactions and setting higher ones equal to 0. How-
ever, associations exist to various degrees both within and across domains,
partly because the grouping is often rather subjective and neurotoxic effects
defy a simple categorization (Baird et al., 1997). Finally, they assumed a com-
mon trend (across the five exposure levels) in the marginal probabilities for
all endpoints within a domain and used the significance of this trend to assess
potential domain effects.

Klingenberg et al. (2008) treated the data as multivariate ordinal with
general correlation structure that they don’t model explicitly, by focusing on
stochastic order and marginal inhomogeneity among the response vectors as
an expression or manifestation of a dose effect, rather than explicitly mod-
eling marginal probabilities under overly simplistic assumptions on both the
marginal and joint distributions. All inferences were based on a permutation
approach that naturally handles the associations in the multiple endpoints
and provides exact significance levels. Now we present a theorem showing
that the permutation approach (which assumes exchangeability of entire pro-
files) is valid for testing marginal homogeneity under a prior assumption of
stochastic order. This assumption is usually made implicitly in the multi-
variate normal case, where one considers a shift in the marginal means but
assumes identical covariance matrices, which leads to stochastic order (Müller,
2001). For instance, in the literature on multiple binary endpoints, Westfall
and Young (1989), Bilder et al. (2000), and Troendle (2005), all using resam-
pling procedures, assume identical joint distributions under the null, although
the hypothesis of interest focuses solely on the margins, as discussed in Agresti
and Liu (1999).

The counts displayed in Table 3.2 refer to the k = 25 one-way marginal
distributions {πih(jh) = Pr(Yih = jh), jh = 1, . . . , 4} at the two dose levels
i = 1, 2. These one-way margins are usually the parameters of interest when
it comes to establishing a dose effect. Hence, instead of testing the much
narrower H0, we consider the less restrictive null hypothesis of equality of the
vectors of marginal multinomial parameters under the two dose levels. That
is, for each adverse event h and outcome category jh, π1h(jh) = π2h(jh), and
we have the hypothesis
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Hmarg
0 :

k⋂
h=1

{H0h} =
k⋂
h=1

{
Y1h

d= Y2h

}
, (3.4)

noting that H0 ⇒ Hmarg
0 . We refer to (3.4) as simultaneous marginal homo-

geneity (SMH, Agresti and Klingenberg, 2005) of the two multivariate ordinal
distributions.

Theorem 3.4. Under the prior assumption Y 2

st
≥ Y 1,

H0 : Y 1
d= Y 2 ⇔ Hmarg

0 :
k⋂
h=1

{
Y1h

d= Y2h

}
,

H1 : Y 2

st
 Y 1 ⇔ Hmarg

1 :
k⋃
h=1

{
Y2h

st
 Y1h

}
.

Proof. The⇒ direction is trivially true. The reverse implication can be proven

via induction. Assume k = 2 and SMH. Y 2

st
≥ Y 1 implies both Pr(Y11 ≤

j1, Y12 ≤ j2) ≥ Pr(Y21 ≤ j1, Y22 ≤ j2) and Pr(Y11 > j1, Y12 > j2) ≤ Pr(Y21 >
j1, Y22 > j2). Moreover, we have Pr(Yi1 ≤ j1, Yi2 ≤ j2) = 1 − Pr(Yi1 >
j1) − Pr(Yi1 > j2) + Pr(Yi1 > j1, Yi2 > j2), i = 1, 2. It follows that Pr(Y11 ≤
j1, Y12 ≤ j2) − Pr(Y21 ≤ j1, Y22 ≤ j2) = Pr(Y11 > j1, Y12 > j2) − Pr(Y11 >
j1, Y12 > j2) for all possible response sequences (j1, j2). The left-hand side is
nonnegative, while the right-hand side is nonpositive; hence Y 1

d= Y 2 must
hold. Let the result be true for k − 1. Using Silvester’s formula (inclusion-
exclusion identity)

Pr(Yi1 ≤ j1, . . . , Yik ≤ jk) = 1−
∑
h

Pr(Yih > jh) +
∑
h6=l

Pr(Yih > jh, Yil > jl)

− . . .+ Pr(Yi1 > j1, . . . , Yik > jk)

if k is even or

Pr(Yi1 > j1, . . . , Yik > jk) = 1−
∑
h

Pr(Yih ≤ jh) +
∑
h6=l

Pr(Yih ≤ jh, Yil ≤ jl)

− . . .− Pr(Yi1 ≤ j1, . . . , Yik ≤ jk)

if k is odd, it follows that

Pr(Y11 ≤ j1, . . . , Y1k ≤ jk)− Pr(Y21 ≤ j1, . . . , Y2k ≤ jk) =
Pr(Y11 > j1, . . . , Y1k > jk)− Pr(Y21 > j1, . . . , Y2k > jk),

as all lower-order marginal and joint probabilities are equal by the induction

assumption and hence cancel. Since Y 2

st
≥ Y 1, the left-hand side is nonnega-

tive, while the right-hand side is nonpositive, which leaves as the only option

Y 1
d= Y 2. Finally, it is easy to see that under Y 2

st
≥ Y 1 and notH0,H1 ⇔ H ′

1.
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It follows that, under the prior assumption, testing SMH against the al-
ternative that there is cumulative marginal inhomogeneity Pr(Y2h ≥ jh) ≥
Pr(Y1h ≥ jh) (with strict inequality for at least one h and jh) is equivalent
to testing equality of the two multivariate distributions against the one-sided
alternative that the treatment 2 distribution is stochastically larger and not
equal to the treatment 1 distribution. Besides being of interest in its own right,
the theorem is important for the validity of a permutation test of SMH and the
multiplicity adjustments introduced later. The effect of the prior assumption
is to restrict the total parameter space

Ω =

πi(j1, . . . , jk), i = 1, 2 : πi(j1, . . . , jk) ≥ 0,
∑

(j1,...,jk)

πi(j1, . . . , jk) = 1


spanned by the two unconstrained multinomials to the subset

Ωr = {πi(j1, . . . , jk), i = 1, 2 : Y 2

st
≥ Y 1}.

Under Ωr, rejection of H0 (or, equivalently, Hmarg
0 ) directly leads to H1 (or,

equivalently, cumulative marginal inhomogeneity). This restriction is similar
to methods in constrained inference in the univariate case, where one tries to
construct more efficient tests under some order restrictions on the parameter
space (such as a monotone dose-response) that seem plausible for the given
context. A motivation for restricting the parameter space in toxicity studies is
based on the observation that it is not unrealistic to expect that an increase
in exposure to the toxin results in a shift toward higher outcome categories
for some endpoints, while others are unaffected. On the other hand, a shift
toward lower categories is unrealistic, as all endpoints describe adverse effects.

Hence, we can assume a priori that Y 2

st
≥ Y 1, which implies Y2h

st
≥ Y1h for

all h. Later we present the alternative approach of testing SMH when the
prior assumption is not plausible but show that a permutation approach is
still reasonable.

3.2 Standardized Test Statistics

Many different statistics can be formed from the vector of marginal sam-
ple proportions π̂i = (π̂i1(1), π̂i1(2), . . . , π̂i1(c1), π̂i2(1), . . . , π̂ik(ck))t, the most
basic one being the difference in marginal sample proportions, d = π̂2 − π̂1.
With standard results from the underlying multivariate distribution, E[d] =
π2−π1 and Cov(d) is constructed from the variances and covariances within
and between endpoints given by



3.2 Standardized Test Statistics 73

Var[dh(j)] = Var[π̂2h(j)− π̂1h(j)] =
2∑
i=1

πih(j)[1− πih(j)]/nih,

Cov[dh(j), dh′(j′)] =
2∑
i=1

[δhh′πihh′(j, j′)− πih(j)πih′(j′)] /nih,

where δhh′ = 0 if h = h′, δhh′ = 1 if h 6= h′, and πihh′(j, j′) = Pr(Yih =
j, Yih′ = j′) is the two-way marginal distribution for endpoints h and h′. How-
ever, this construction doesn’t take advantage of the ordinal nature, and the
data are usually too sparse or imbalanced to give a positive definite estimate
of Cov(d). Alternatively, let A = diag(νth, h = 1, . . . , k) be a block-diagonal
matrix with scores νth = (νh(1), νh(2), . . . , νh(ch)) as blocks, where νh(.) is
some monotone increasing scoring function for the ch categories of endpoint
h. Then, s = Aπ̂2 − Aπ̂1 = Ad compares mean scores among the two treat-
ments, with covariance matrix Σ = ACov(d)At. Again, due to sparseness
and/or imbalance, Σ and in particular its off-diagonal elements involving the
two-way marginals may be impossible to estimate without further simplifying
assumptions that lead to a positive definite matrix. One can assume homo-
geneity across all possible pairs of endpoints for the two-way margins, or, as in
Han et al. (2004), equal correlation among endpoints within a domain and no
higher-order associations, paired with independence across domains. If neither
of these assumptions are plausible, one can always form a test statistic ignor-
ing the covariances between outcomes for different adverse effects, assuming
working independence among endpoints.

In any case, it is more efficient to estimate elements of Σ assuming SMH,
where one can pool data from the two dose groups to obtain score-type statis-
tics such as W0 = 1tΣ̂−1/2

0 s/k, the average of weighted (by the elements of
Σ̂
−1/2
0 ) mean score differences. Here Σ̂0 is the estimated covariance matrix of

s under the SMH hypothesis, where for each πih(j) appearing in Cov(d) the
pooled estimator π̂+h(j) = [n1h(j) + n2h(j)]/(n1 + n2) is plugged in.

Even after pooling the data, estimating off-diagonal elements of Σ can be
problematic due to imbalance and sparseness. In general, there are as many as
k(k − 1)(chch′ − 1) two-way margins π+hh′(j, j′) to estimate from the pooled
data, with potentially many combinations (j, j′) sparsely or never observed
for a given endpoint pair (h, h′). By assuming equal correlations in estimating
these two-way margins (i.e., π+hh′(j, j′)) are identical for all k(k − 1) pairs
(h, h′)), constructing Σ̂0 and hence W0 may be possible for data that are not
too sparse. Alternatively, as mentioned at the end of the last paragraph, one
can considerW ′

0 = 1t∆−1/2
0 s/k, which, with∆0 = diag(Σ̂0), only incorporates

as weights the variances and covariances among the ch categories at a given
endpoint and ignores correlations among different endpoints. W ′

0 is then the
average of standardized mean score differences formed at each endpoint.

Without an intrinsic metric, it is common to explicitly or implicitly assign
scores to the ch categories of an ordinal variable to form a test statistic.
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Typically used scoring systems νh are based on equally spaced scores, used
above, or midranks. If the set of chosen scores is poor in that it badly distorts a
numerical scale that underlies the ordered classification, the resulting test will
not be sensitive. To address this problem, a statistic with data-driven scoring is
given by Tmax

h = maxνh
{zh(νh)}, where the scores νmax

h that maximize zh(νh)
are given in Chapter 2. Maximum scores νmax

h seem especially appropriate in
the toxicity and safety context in the sense that they maximize the contrast
(if we were to use normalized scores) of standardized mean score differences
between the two doses for the ch categories of endpoint h.

3.3 Multiple Testing on Endpoints and Domains

Statistics such as W ′
0 only give a global evaluation of the dose effect and

do not indicate which adverse effects (or domains) are responsible for the
shift in the marginal distribution. Let zh, h = 1, . . . , k denote the k com-
ponents of ∆−1/2

0 s, the standardized mean score differences, which we use
as endpoint-specific test statistics. Note that zh = [νthCov0(dh)νh]−1/2sh
and W ′

0 = 1
k

∑k
h=1 zh, where dh is the vector of differences in marginal

sample proportions between the two exposure levels for the ch categories of
endpoint h, Cov0(dh) = (1/n1 + 1/n2)

[
diag(π̂+h)− π̂+hπ̂

t
+h

]
with π̂+h =

(π̂+h(1), . . . , π̂+h(ch))
t the pooled sample proportions and sh = nuthdh. We

obtain multiplicity-adjusted endpoint p-values following the closed testing
principle of Marcus et al. (1976) that controls the familywise error rate (FWE)
in the strong sense. Let Hmarg

0K denote the intersection hypothesis
⋂
h∈K{H0h}

for a subset K ⊆ {1, . . . , k}. Under a full closed testing procedure, there are
2k − 1 such intersection hypotheses to test (e.g., more than two million for
the FOB data). Hence, we consider the shortcut provided by the step-down
approach of Westfall and Young (1993), which is based on the maximum test
statistic maxh zh and only needs to consider k intersection hypotheses. Under
our theorem, which ensures exchangeability, the permutation test for each of
these intersection hypothesis is a valid (because it is exact) α-level test, so
the FWEs of the stepwise adjustments are guaranteed by the closed testing
principle.

However, we will see that the support of the permutation distribution of
maxh zh is rather discrete (e.g., only 49 different realized values for the FOB
data), making it automatically more conservative. This effect is compounded
if one considers a test statistic such as maxh sh without standardizing by
the estimated variance under SMH (e.g., a support of only 18 different val-
ues for the FOB data). Note that standardizing is imperative if endpoints
are measured on different scales. Because of discreteness, we actually use the
mid-p-value approach throughout in finding endpoint (and domain) adjusted
p-values. The mid-p-value (Hiriji, 2006) is defined as half the probability (es-
timated as the percentage over all permutations) of observing a test statistic
exactly equal to the one observed plus the probability of observing any larger
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one. Although strictly controlling the FWE cannot be guaranteed with the
mid-p-value approach, simulations presented later show that the distribution
of the mid-p-value is very close to uniform under SMH.

The focus in the FOB analysis is not only on the individual adverse effects
but also on which of the domains show increased toxicity, testing

H0 :
⋂
dom

{Hdom
0 } vs. H1 :

⋃
dom

{Hdom
1 },

where the individual domain hypotheses Hdom
0 :

⋂
h∈dom{H0h} and Hdom

1 :⋃
h∈dom{H1h} are the intersection hypothesis of SMH and its complement

over all endpoints within a domain (i.e., the intersection hypothesis Hmarg
0K

corresponding to the subset K of endpoints {1, . . . , k} that make up the do-
main). By grouping endpoints into domains (or body functions for drug safety
data), the analysis of domains may increase efficiency for identifying the na-
ture of toxicity effects. This is because some of the endpoints may measure
similar effects and thus be redundant. Then, the use of step-down multiplicity
corrections at the endpoint level may be conservative and have low statistical
power, leading to false negatives, an undesirable feature in toxicology.

By the closed testing principle, the adjusted p-value padj
h for endpoint h is

the maximum over p-values formed by considering all possible intersection hy-
potheses that include endpoint h. One of these intersections must consist of all
the other endpoints in h’s domain, which leads to the following fact: The ad-
justed p-value for a domain is always less than or equal to the minimum of the
individual adjusted p-values within the domain; i.e. padj

Dom ≤ minh∈Dom p
adj
h .

This property results in more power to detect toxicity, albeit only at the do-
main level. The inequality shows that if a domain test is insignificant, no
endpoint within the domain will achieve significance. Conversely, a single sig-
nificant endpoint within a domain implies a significant domain effect. Finally,
if the inequality is strict, domain significance can occur without any single
endpoint being significant.

Let maxh∈Domm zh be the test statistic for the mth domain, m = 1, . . . ,M .
Then, the step-down adjusted endpoint p-values from the previous section pro-
vide an upper bound for the domain tests: A single significant endpoint within
a domain implies a significant domain effect. However, taking the maximum
focuses only on the strongest toxicity effect, which may not be desirable when
one wants to capture effects that accumulate over endpoints within a do-
main. Then, an appropriate dissonant test statistic is W ′

0 calculated for each
domain m (i.e.,

∑
h∈Domm

zh/|Domm|, where |.| denotes the number of end-
points in the domain). The decision on which type of domain test to use is not
straightforward. As a guideline, if one expects endpoints within a domain to
be correlated and with similar but possibly moderate effects, a dissonant test
statistic is more appropriate than taking the maximum over endpoints within
a domain, although multiplicity adjustments at the endpoint level are only
possible via the distribution based on the maximum. On the other hand, if
one wants to ensure that nonsignificant endpoints are not influencing domain
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results (perhaps because the domain includes a few nonsignificant endpoints),
taking the maximum as the domain test ensures this. Since grouping endpoints
into domains (or body functions) is often controversial or not well defined, this
robustness feature may be a desirable property.

3.4 Analysis of the FOB Data

We first present some simplistic results based on assigning equally spaced
scores νh(j) = j to the categories and treating them as Gaussian. The stan-
dard way to deal with multiple endpoints in this context was presented by
O’Brien (1984), who used as the statistic the standardized sum of the indi-
vidual t statistics over all endpoints. Logan and Tamhane (2004) approxi-
mate the distribution of this so-called OLS statistic by a t distribution with
(n1 + n2− 2)(1 + 1/k2)/2 degrees of freedom. Table 3.2 shows O’Brien’s OLS
statistic and simple Bonferroni-Holm adjusted p-values based on this approx-
imation for testing an exposure effect in each of the six domains. The table
also shows raw and Bonferroni-Holm adjusted p-values for individual end-
points based on forming, for each endpoint, a regular t statistic comparing
the mean scores between the two exposures. The domain test indicates a sig-
nificant shift in severity scores for endpoint(s) in the neuromuscular domain,
mostly due to the differences observed for the endpoint “gait”.

With regard to a more appropriate permutation analysis, there are
(
16
8

)
=

12, 870 distinct permutations of the 16 observed animal profiles into the two
treatment groups, but many of them lead to identical values of a test statistic
such as W0 or W ′

0. For the four endpoints “salivation”, “tonic”, “palpebral”
and “piloerection”, the exact same severity categories were observed for all
eight animals under both doses, and hence sh = 0 with Cov0(dh) = 0. We
define zh ≡ 0 for such cases. Alternatively, these four endpoints could have
been excluded from an analysis, as they hold no information about marginal
inhomogeneity (results under both approaches are almost identical).

We choose W ′
0 = 1t∆−1/2

0 s/k as the test statistic, as with only eight ani-
mals per dose group and k = 25, it is impossible to obtain a reliable (positive
definite) estimate of the full covariance matrix Σ. Note that ∆0 only needs
to be computed once since it is based on the pooled data and is therefore
invariant under permutations of profiles. The first panel in Figure 3.1 shows
the exact (i.e., using complete enumeration) permutation distribution of W ′

0.
The 95th percentile of this distribution equals 0.55, and hence the observed
W ′

0 of 1.06 is significant (permutation p-value 0.0002; only 2 of the 12,870
permutations yielded a larger W ′

0), indicating a shift in cumulative marginal
toxicity for at least one adverse event. For large sample sizes (which is not the
case here) and πih(jh) bounded away from 0 and 1, the standardized mean
score differences zh follow an asymptotic N(0, 1) distribution. Under indepen-
dence among endpoints, their average (which is W ′

0) is then asymptotically
N(0, 1/

√
k). This distribution is superimposed in Figure 3.1 and one clearly
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sees that its tails are too light, owing to small sample size and associations
among endpoints.
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Fig. 3.1. Permutation distributions of global test statistic W ′
0 (first panel) and

maxh zh (second panel) for comparing the 1.5 g/kg exposure to the control. Dashed
lines indicate 95th percentiles and full circles observed values of test statistics.
Crosses indicate observed values for individual endpoints. Grey curves show asymp-
totic distributions assuming independence among endpoints.

After establishing a global exposure effect, naturally we are interested in
which endpoints (or domains) contribute to the significant difference. The
raw (i.e., unadjusted) permutation mid-p-value for endpoint h is simply the
proportion of permutations that yield a zh larger than the one observed plus
half the proportion of permutations that yield a zh equal to the one observed.
Table 3.3 displays these under all possible permutations. The second panel in
Figure 3.1 shows the exact permutation distribution of maxh zh and marks
the observed zh’s as crosses on the x-axis. This is the starting point for finding
the multiplicity adjusted p-values for all endpoints in a step-down procedure,
where the permutation distribution of maxh zh is used to find the adjusted
p-value for the endpoint with the largest zh statistic (e.g., “gait”). Successive
steps delete the endpoint corresponding to maxh zh and find the permutation
distribution of the maximum over the remaining endpoints, yielding the ad-
justed p-value for the next largest zh, “hindlimb” in our example. Table 3.3
lists all resulting step-down adjusted p-values for the k = 25 adverse effect
in the FOB data. We observe two points. First, even when using maxh zh as
the global test statistic (instead of W ′

0, which incorporates all standardized
differences), we still obtain a significant result, indicating a shift in cumula-
tive marginal toxicity. Second, we can identify the couple of endpoints that
are largely responsible for this shift by inspecting the individual multiplicity-
adjusted p-values.

The neuromuscular domain is the only one that includes significant ad-
justed p-values, hence, with the consonant test statistic maxh zh, it is the
only domain that shows increased toxicity at the 1.5 g/kg exposure when
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compared with a control. However, the domain-adjusted p-values displayed in
Table 3.3 are based on the dissonant domain statistic

∑
h∈Domm

zh/|Domm|
using the full closed testing procedure for the multiplicity adjustments, which
now only comprise testing 26−1 = 63 intersection hypotheses, a more manage-
able number than the more than two million that would have been necessary
at the endpoint level. We view this dissonant statistic as more appropriate
when the focus is on accumulated toxicity over many endpoints. It provides
one more significant domain (sensorimotor) compared with the domain test
with maxh∈Domm zh. Apparently, the evidence against SMH provided jointly
by the endpoints “approach” and “touch” is sufficient for an overall domain
effect. The second part of Table 3.3 shows individual and domain raw and
adjusted p-values with scores νmax

h using the same multiplicity adjusting pro-
cedures. Results are comparable to equally spaced scores, although the order
of significance of endpoints in the neuromuscular domain is different and we
gain one more significant endpoint (“forelimb”) at a 5% FWE level. We also
tried statistics that avoid assigning scores altogether, such as the likelihood ra-
tio test computed under order restriction or the direct chi-squared test. With
these, results for the FOB data were somewhat less significant, and we do
not consider them further here. We also do not present results based on using
the minimum p-value instead of the maximum test statistic for the p-value
adjustments other than saying that they lead to comparable conclusions.

3.5 Violations of Stochastic Order

This assumption seems plausible in a toxicity study where all endpoints de-
scribe adverse effects. However, in clinical safety studies measuring side effects
of a drug, it is often the case that several marginal sample proportions are
larger under the control (placebo) than under some treatment. If these dif-
ferences are large enough to rule out sampling variability, this is in direct
violation of the prior assumption on stochastic ordering. Then, it may not be
appropriate to use the permutation approach to construct the null distribu-
tion (of any test statistic) under SMH since exchangeability (i.e., IJD) is a
stronger assumption.

We consider using the nonparametric bootstrap to test SMH (a paramet-
ric bootstrap is problematic because of the modeling issues mentioned above)
when the prior assumption does not seem plausible. There are two options
on how to resample to obtain a distribution reflecting SMH: We can draw
bootstrap samples from centered scores within each group and form a test
statistic (such as Welch’s t statistic), or we can center an appropriate statis-
tic (such as zh) obtained from a bootstrap sample of the original responses
within each group. Here we use the latter approach, which is preferred by
Pollard and van der Laan (2004) because it has asymptotic FWE control for
the endpoint analysis. Also, the first approach will not be sensible when using
data-dependent scoring. Let Y ∗

11, . . . ,Y
∗
1n1

and Y ∗
21, . . . ,Y

∗
2n2

denote boot-
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Table 3.3. Raw and multiplicity adjusted p-values for endpoints and domains,
comparing the 1.5 g/kg exposure to a control, with the test statistic zh(νh) based
on equally spaced and maximum scores.

Domain Scores νh = (1, 2, 3, 4) Maximum Scores νmax
h

Endpoint zh raw adj.a adj.b zh raw adj.a adj.b

Autonomicc 0.214 0.214 0.216 0.135 0.135 0.184
Lacrimation 1.92 0.050 0.331 0.236 1.92 0.050 0.434 0.219
Salivation 0.00 0.500 0.959 0.966 0.00 0.500 0.960 0.930
Pupil 1.15 0.162 0.844 0.726 1.15 0.162 0.875 0.664
Defecation −0.67 0.633 0.959 0.966 0.00 0.633 0.960 0.930
Urination −0.71 0.738 0.959 0.966 0.00 0.630 0.960 0.930

Sensorimotorc 0.033 0.033 0.002 0.035 0.035 0.095
Approach 2.25 0.019 0.119 0.067 2.31 0.019 0.138 0.064
Click 0.00 0.500 0.959 0.966 0.00 0.500 0.960 0.930
Tail pinch 0.54 0.321 0.927 0.897 0.54 0.321 0.933 0.885
Touch 1.51 0.117 0.566 0.543 1.51 0.117 0.731 0.494

CNS excitabilityc 0.130 0.130 0.076 0.135 0.135 0.190
Handling 1.03 0.182 0.883 0.788 1.03 0.182 0.921 0.819
Clonic −0.50 0.671 0.956 0.966 −0.50 0.671 0.960 0.930
Arousal 1.61 0.064 0.456 0.463 2.14 0.047 0.235 0.095
Removal 1.03 0.250 0.883 0.788 1.03 0.250 0.921 0.769
Tonic 0.00 0.500 0.959 0.966 0.00 0.500 0.960 0.930

CNS activityc 0.107 0.107 0.037 0.113 0.113 0.348
Posture 1.03 0.250 0.833 0.788 1.03 0.250 0.921 0.769
Rearing 0.64 0.280 0.927 0.897 0.67 0.294 0.933 0.836
Palpepral 0.00 0.500 0.959 0.966 0.00 0.500 0.960 0.930

Neuromuscularc 0.001 0.001 0.000 0.001 0.002 0.015
Gait 2.70 0.006 0.025 0.013 2.70 0.006 0.041 0.013
Foot splay 0.00 0.500 0.959 0.966 0.00 0.597 0.960 0.930
Forelimb 2.31 0.012 0.096 0.061 2.70 0.009 0.041 0.013
Hindlimb 2.56 0.003 0.044 0.036 2.83 0.003 0.028 0.010
Righting 1.79 0.050 0.352 0.280 1.92 0.050 0.434 0.219

Physiologicalc 0.089 0.089 0.045 0.119 0.119 0.191
Piloerection 0.00 0.500 0.959 0.966 0.00 0.500 0.960 0.930
Weight 1.20 0.133 0.834 0.705 1.55 0.152 0.543 0.383
Temperature 0.87 0.224 0.883 0.843 1.26 0.285 0.875 0.658

a Multiplicity adjustments based on the step-down procedure with the maximum
test statistic under permutation resampling.
b Multiplicity adjustments based on the step-down procedure with the maximum
test statistic under bootstrap resampling.
c Domain p-values are based on

∑
h∈Dom zh/|Dom|, with multiplicity adjustments

via full closed testing.



80 3 Multivariate Ordinal Data

strap samples within each group. Under SMH, E[dh] = 0 and we expect the
mean score difference s∗h or its standardized version z∗h computed from the
bootstrap sample to (asymptotically) equal 0. To reflect this, we center s∗h or
z∗h by subtracting the observed sobs

h or zobs
h , respectively, the estimates of their

means under the true data-generating mechanism (which does not necessarily
obey SMH).

That is, for each resample we compute t1∗h = [νthCov0(d∗h)νh]
−1/2(s∗h −

sobs
h ) or t2∗h = z∗h − zobs

h with z∗h = [νthCov0(d∗h)νh]
−1/2s∗h). Note that under

SMH but not IJD, we can still use pooling to estimate the common marginal
probabilities appearing in Cov0(d∗h). We mention both possibilities of first cen-
tering s∗h and then standardizing it or centering z∗h directly because they show
rather different small sample behavior. This is due to the fact that with, for
example only eight observations per group and many of them making the same
response as in the FOB study, the bootstrap estimate of Var(sh) can be very
small, leading to many large values of t1∗h . Hence, for the FOB study, raw and
adjusted p-values are rather large when using t1∗h , with no endpoint reaching
significance even at a 20% FWER level and adjusted domain p-values given
by (0.262, 0.011, 0.113, 0.097, 0.000, 0.068). By contrast, step-down adjusted
p-values using the bootstrap distribution with t2∗h for endpoints and domains
(using

∑
h∈Domm

t2∗h for the mth domain) are displayed in Table 3.3. Results
are comparable to the permutation analysis; however, adjusted p-values are
somewhat smaller for the significant endpoints and some of the domains. This
is partly due to the fact that the bootstrap distribution of maxh t2∗h is far less
discrete (699 distinct points in 10,000 resamples for the FOB data), but also,
as simulations show below, that it doesn’t preserve the FWE for small samples
in our settings. The bootstrap test for endpoint h is only asymptotically level
α (and not exact as with the permutation approach), and with only eight ob-
servations per group, we cannot expect to estimate the empirical distribution
well. Interestingly, both centering methods give results that are comparable
(and almost identical to the permutation approach) when based on maximum
scores νmax

h . The adjusted p-values using t2∗h with maximum scores are also
displayed in Table 3.3. Note that with data-dependent scoring, it is necessary
to recalculate sobs

h or zobs
h for each bootstrap iteration, as the scoring changes

from one to the other.
To evaluate and compare the behavior of the proposed tests, we simu-

lated from a multivariate ordinal distribution with nine endpoints, each with
four categories. To simulate under the assumption of SMH without IJD,
we generated, for each group, a random vector of 49 multinomial proba-
bilities {π(j1, . . . , j9)} and then used iterative proportional fitting (Deming
and Stephan, 1940) to modify these vectors such that they agree in their
nine margins. These margins were forced to equal the pooled proportions
π̂+h(j), j = 1, . . . , 4 for the h = 1, . . . , 9 endpoints of the neuromuscular and
sensimotor domains of our FOB study. Two thousand data ets were generated
for each group using these multinomial vectors under various combinations of
sample sizes (n1, n2) under this scenario of SMH without IJD and under the
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IJD scenario. Table 3.4 was the true FWE with regard to erroneously (at a
nominal 5% level) declaring marginal inhomogeneity with both ways of cen-
tering under the bootstrap approach and under the permutation analysis for
both the global and individual endpoint analyses and under both assumptions
on the true distribution, SMH without IJD and with IJD.

Table 3.4. Part A: Actual FWE (in %) with bootstrap and permutation resampling
under SMH but not IJD and under IJD with nine endpoints. The column labeled
“global” refers to the proportion out of 2000 generated data sets for which the global
test for SMH yielded a p-value less than 5%, while the column labeled “indiv.” refers
to the proportion out of the same 2000 generated data sets for which at least one of
the individual step-down adjusted p-values was less than 5%. Part B: Power (in %)
for establishing marginal inhomogeneity when two (gait and approach) out of nine
endpoints show marginal inhomogeneity using the global p-value or the step-down
adjusted p-value for these two endpoints computed under bootstrap or permutation
resampling. Simulation margin of error: ±1%.

Part A: FWER control

SMH w/o IJD IJD
Bootstrap Permutation Bootstrap Permutation

(n1, n2) global indiv. global indiv. global indiv. global indiv.

(8,8) 8.0/9.0 3.9/6.4 5.1 4.3 8.5/9.3 3.4/6.0 5.3 4.7
(25,25) 5.9/6.3 3.9/5.3 5.5 4.6 6.0/6.0 4.3/6.3 5.1 5.2
(50,50) 6.3/5.9 4.8/5.5 5.5 4.3 6.7/6.9 5.5/6.8 5.9 5.7
(25,50) 6.3/6.1 4.4/5.4 5.2 4.9 6.7/6.7 3.9/4.7 5.2 4.4
(25,100) 5.7/5.7 3.8/4.2 4.2 4.7 7.7/7.5 4.1/4.4 5.5 4.6

Part B: Power

Bootstrap Permutation
(n1, n2) Global Gait Approach Global Gait Approach

(8,8) 50/53 48/61 32/42 42 54 37
(25,25) 81/82 87/86 94/96 81 88 96
(50,50) 98/98 99/99 100/100 97 100 100
(25,50) 87/87 96/96 99/99 86 97 99
(25,100) 93/93 98/97 100/100 99 100 100

For small sample sizes, the bootstrap test is liberal, while the permutation

test shows good performance, even when the prior assumption of Y 2

st
≥ Y 1

(and hence IJD) is not met. For larger sample sizes, all procedures have actual
levels close to the nominal ones. Figure 3.2 shows QQ plots comparing the
distribution of mid-p-values from the bootstrap and permutation approaches
to the uniform distribution for various sample size combinations. Overall, the
QQ plots show a nearly straight line, attesting to the near uniform distribution
of mid-p-values generated from the bootstrap or permutation analysis.
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Fig. 3.2. QQ plots of empirical p-value against uniform distribution under the two
scenarios SMH without IJD and with IJD. p-values for testing the SMH hypothesis
are derived from bootstrapping T 1∗ = 1

k

∑
h t

1∗
h and T 2∗ = 1

k

∑
h t

2∗
h (bootstrap

tests 1 and 2, respectively), and the permutation distribution of W ′
0 = 1

k

∑
h zh.

The p-value distribution is based on 2000 simulated data sets under each scenario.
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In Figure 3.2, we zoom in on the most interesting part up to the 15th per-
centile. Then, one clearly sees the slight liberal behavior of the bootstrap tests,
which vanishes as the sample size increases. The permutation test has excel-
lent performance throughout, even when the prior assumption on stochastic
order is not satisfied.

Applications with R functions

All results of the FOB data analysis can be reproduced using R functions
available at www.williams.edu/~bklingen. You can directly copy and paste
the following into R console:

# load data matrices, rows=endpts, cols=animals
> S1 <- read.csv(file="http://lanfiles.williams.edu/~bklingen
+ /SMH/S1.csv",header=FALSE)
#matrix of ordinal observations under control
> S2 <- read.csv(file="http://lanfiles.williams.edu/~bklingen
+ /SMH/S2.csv",header=FALSE)
#matrix of ordinal observations under treatment
> source("http://lanfiles.williams.edu/~bklingen/SMH/SMH.R")
#scource necessary functions

Input parameters for permzh and bootzh:

• c: number of categories (same for all endpoints);
• enum: should complete enumeration be used (permzh only);
• perms/boots: if no complete enumeration, how many random permuta-

tions/bootstrap samples should be used (defaults to 10,000);
• scores: scores assigned to categories appearing in S1,S2 (defaults to

equally spaced scores), set equal to ”max” for maximum scores;
• dom.index: arrange S1, S2 in such a way that endpoints belonging to a

common domain are grouped together. Then, dom.index gives the cut-
points of the index in S1, S2 where each domain ends;

• dom.combi: with which function should statistics from domains be com-
bined (defaults to ”mean”);

Permutation of FOB data with complete enumeration:

> fob.perm
+ <-perm.SMH(S1,S2,c=4,enum=TRUE,dom.index=c(5,9,14,17,22,25))
> fob.perm$sig.meanT
# global test using W_0’ as test stat
> fob.perm$adj.P
# adjusted P-values (via maxT step down method) for the 25
# endpoints
> fob.perm$adj.P.domain
# adjusted P-values (via full closed testing) for the domains
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> hist(fob.perm$max.T)
# histogram of max_h z_h

If complete enumeration is too computationally demanding, use

> fob.perm<-perm.SMH(S1,S2,c=4,perms=10000,
+ dom.index=c(5,9,14,17,22,25))

using maximum scores:

> fob.perm.maxscores<-perm.SMH(S1,S2,c=4,enum=TRUE,
+ scores="max",dom.index= c(5,9,14,17,22,25))

user defined scores:

fob.perm.userscores <-
perm.SMH(S1,S2,c=4,enum=TRUE,scores=c(1,3,4,5),
+ dom.index=c(5,9,14,17,22,25))
#bootstrap analysis with centering z_h:
fob.boot <- boot.SMH(S1,S2,c=4,boots=10000,
+ dom.index=c(5,9,14,17,22,25))
fob.boot$sig.meanT
#global test using W0‘ and centering z_h
fob.boot$adj.P
#adjusted P-values (via maxT step down method) for
+ the 25 endpoints
fob.boot$adj.P.domain
#adjusted P-values (via full closed testing) for the 6 domains
#bootstrap analysis with centering s_h and then standardizing:
fob.boot <- boot.SMH(S1,S2,c=4,boots=10000,
+ dom.index=c(5,9,14,17,22,25), centering=2)
fob.boot$sig.meanT
#global test using W0‘ and centering s_h
fob.boot$adj.P
#adjusted P-values (via maxT step down method) for the
+ 25 endpoints
fob.boot$adj.P.domain
#adjusted P-values (via full closed testing) for the 6 domains
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Multivariate Continuous Data

4.1 Introduction

Most clinical trials are conducted to compare a treatment group with a con-
trol group on multiple endpoints. A classic example is chronic obstructive
pulmonary disease (COPD), where there are a number of different types of
potential endpoints (Pocock et al., 1987). Lung function tests are usually con-
sidered as key endpoints in COPD trials. However there are a large number
of alternative lung function measurements that are believed to indicate ef-
ficacy in COPD (e.g. peak expiratory flow rate, forced expiratory volume,
forced vital capacity, etc.). It therefore seems logical to consider multivariate
approaches when assessing if the treatment improves the respiratory function
compared with the control.

In principle, the treatment is usually deemed better than the control if all
components of its responses are larger. In some practical situations, it may
be difficult to show that each component is better. Instead, the treatment
will be superior if at least one of its response components is greater than
that of the control. Hotelling’s T 2 test is an obvious choice when interest lies
in determining whether treatment is demonstrating an overall nondirectional
effect on a number of endpoints. However, this standard approach lacks power
because it does not take account of the fact that the direction of a response
is known in advance, failing to incorporate the restrictions on the null and
alternative parameter spaces.

We focus on the case where all endpoints are primary, and provide a com-
prehensive review of the vast literature and some new results focusing on
the statistical aspects. Beginning with O’Brien’s seminal paper (1984), the
problem of constructing one-sided tests for comparing multivariate treatment
effects has received much attention in the literature. Most of the methods
developed have been based on the multivariate normal distribution. In partic-
ular, likelihood ratio tests and approximations (Kudo, 1963; Perlman, 1969;
Tang et al., 1989; Wang and McDermott, 1998) for one-sided alternatives have
been considered. However, these tests have some unappealing properties. Sil-

D. Basso et al., Permutation Tests for Stochastic Ordering and ANOVA, Lecture
Notes in Statistics, 194, DOI 10.1007/978-0-387-85956-9 4,
c© Springer Science+Business Media, LLC 2009
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vapulle (1997) pointed out that, when all the observed treatment differences
are negative and the endpoints are positively correlated, the test can still re-
ject the null hypothesis in favor of the one-sided alternative (see also Logan,
2003).

Multivariate statistics offer a practical way to combine multiple endpoints
into a single test, therefore avoiding issues with multiple testing and the re-
quirement of alpha adjustments. In the form presented it will be difficult to
interpret a statistically significant finding in clinical terms. In clinical trials,
the statistical and clinical significance of the individual variables remains very
important even if global tests or composite tests indicate an overall effect.

Broadly speaking, there are two inferential goals when dealing with mul-
tiple endpoints:

i. to establish an overall treatment effect using a test of the global null hy-
pothesis of no differences on any of the endpoints against a one-sided
alternative; and

ii. to identify the individual endpoints on which the treatment is better than
the control.

If it is not assumed a priori, another condition that needs to be satisfied
by the results from a clinical trial is the requirement of a positive statement
on noninferiority for all variables; that is,

iii. to show that the treatment is not much worse on any of the endpoints.

Noninferiority means that the effect of the treatment is not worse than that
of the control by more than a specified margin. Thus, the treatment will be
preferred if it is superior for at least one of the endpoints and not inferior for
the remaining endpoints.

4.2 Testing Superiority

Suppose that there are two independent treatment groups with n1 and n2

subjects on each of whom k ≥ 2 endpoints are measured. Let Yihj denote
the hth response of the jth subject in the ith treatment group, and suppose
we have a total of n = n1 + n2 subjects randomly assigned to the two treat-
ments, such that Y 11, . . . ,Y 1n1 are n1 i.i.d. observations and, independently,
Y 21, . . . ,Y 2n2 are n2 i.i.d. observations.

It is desired to test wheter the samples have been generated from the
same probability law H0 : Y 1

d= Y 2 against the alternative that the Y 2

distribution is stochastically larger and not equal to the Y 1 distribution; i.e.,

H1 : Y 1

st
� Y 2. Then, the assumed nonparametric model is M = {Y 1,Y 2 ∈

IRk : Y 1

st
≤ Y 2}. Under this model, we have shown that testing H0 against

H1 is equivalent to the union-intersection testing formulation
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Hst
0 :

k⋂
h=1

{Y1h
d= Y2h} against Hst

1 :
k⋃
h=1

{Y1h

st
� Y2h}.

To fix ideas and to facilitate comparison with previous work, we assume
here the two treatments with multivariate normal distributions, and the re-
sponses are compared on the basis of their mean response vectors. For treat-
ment group i, assume that Y ij , j = 1, . . . , ni, are i.i.d. random vectors from
a k-variate normal distribution with mean vector µi = (µi1, . . . , µik) and co-
variance matrix Σi. In the homoscedastic case, we assume Σ1 = Σ2 = Σ.
The elements of Σ are σhh = Var(Yih) and σhl = Cov(Yih, Yil), 1 ≤ h <
l ≤ k. Denote by R the corresponding correlation matrix with elements
ρhl = Corr(Yih, Yil) = σhl/

√
σhhσll. In the heteroscedastic case, the ele-

ments of Σi and Ri will be denoted by σi,hl and ρi,hl, respectively. Let
θ = µ2 − µ1 = (θ1, . . . , θm) denote the vector of mean differences.

Under the multivariate normality assumption, Y 1

st
≤ Y 2 if and only if

θh ≥ 0 for all h = 1, . . . , k and Σ1 = Σ2 (Müller, 2001); that is, we have to
assume homoscedasticity and restrict the parameter space Ω = {θ : θ ∈ IRk}
to the positive orthant at the origin (i.e., Ω+ = {θ : θ ≥ 0}). For k = 2, the
regions of the parameter space corresponding to H0 : θ ≤ 0 against H1 : θ  0
and Hst

0 : θ = 0 and Hst
1 : θ  0 are shown in Figure 4.1.

!1

! 2

H0

H1

0

0

(a) Σ1 = Σ2

!1

! 2

H1

H0

0

0

(b) Σ1 = Σ2 and Ω+

Fig. 4.1. Regions of the parameter space.

For testing each component hypothesis H0h : θh = 0 against H1h : θh > 0,
consider Student’s t statistic

Th =
Ȳ2h − Ȳ1h

σ̂h

√
1
n1

+ 1
n2

,
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where σ̂2
h is the pooled sample variance. O’Brien (1984) derived the ordinary

least squares (OLS) statistic

TOLS =
1tT√
1tR̂1

and the generalized least squares (GLS) statistic TGLS = 1tR̂−1T√
1tR̂−11

, where

R̂ is the estimated correlation matrix, T is a vector of the t statistics, and
1 is a vector of all 1’s. Both the OLS and GLS statistics are standardized
weighted sums of the individual t statistics for the k endpoints. However, the
linear combination of the t statistics used in the GLS test can have some
negative weights, which can lead to violation of the monotonicity requirement
of rejection regions in the sense that, as the sample treatment differences
become more negative, the test statistic can get larger, thereby increasing
the chance of rejecting the null hypothesis, being “untenable from a practical
viewpoint” (Pocock et al., 1987). A more appealing test would be one that is
strictly nondecreasing in the direction of each individual endpoint statistic.

Logan and Tamhane (2004) proposed an extension of O’Brien’s OLS test
to the heteroscedastic case by standardizing the observations as

Xihj =
Yihj√

σ̂1,hh + σ̂2,hh

so that, by using the estimated covariance matrices Γ̂i with elements γ̂i,hl =
σ̂i,hl/

√
(σ̂1,hh + σ̂1,hh)(σ̂1,ll + σ̂1,ll), the OLS statistic is given by

T het
OLS =

1t(X̄2 − X̄1)√
1t(Γ̂1/n1 + Γ̂2/n2)1

.

However, Logan and Tamhane (2004) noted that the performance of the
T het

OLS test gives too high type I error rates for small sample sizes. By setting

k = 2, θ = (0, 0), R1 =
[

1 0
0 1

]
, R2 =

[
1 ρ
ρ 1

]
, α = 0.05 with (n1, n2) = (10, 40)

or (n1, n2) = (100, 400), we have estimated (5000 Monte Carlo generations)
the level of significance of both TOLS and T het

OLS by using their asymptotic ap-
proximations (t-distribution with 0.5(n1+n2−2)(1+1/k2) degrees of freedom
and standard normal distribution, respectively) or permutation distributions
(2000 permutations). The resulting empirical cumulative distributions of the
p-values obtained are shown in Figure 4.2. Our simulations confirm that the
use of the standard normal or resampling-based critical values in performing
the T het

OLS tests give too high type I error rates for small sample sizes.
Lehmacher et al. (1991) point out that Bonferroni and, by extension, global

tests based on the maximum test statistics are useful for detecting one highly
significant difference among a group of otherwise barely significant or non-
significant differences, whereas O’Brien’s tests, based on the sum, succeed in
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Fig. 4.2. Cumulative distribution functions of the p-values of TOLS and T het
OLS.

rejecting the global null against alternatives closer to the diagonal, meaning
a group of similar treatment effects, none of which may achieve significance.

We illustrate the different rejection regions by means of a numeric example,
given in Table 4.1.

Table 4.1. A fictitious example of data with bivariate observations from eight
subjects per group. The subjects (16 in total) are assumed to be independently and
identically distributed according to a multivariate normal distribution with unknown
covariance.

Y11 0.845 1.725 0.261 −0.079 0.962 2.408 −0.198 2.021
Y12 −0.035 −0.606 −0.717 1.668 1.529 1.206 −0.141 0.524

Y21 1.022 −0.205 1.334 0.255 −0.165 0.856 −0.480 0.476
Y22 −0.607 0.143 −0.467 −0.641 −1.296 −0.535 −0.477 1.083
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In general, given a function ψ of the T statistics, the permutation test
based on the global statistic Tψ = ψ(T1, . . . , Tk) has rejection region R∗ψ =
{(T1, . . . , Tk) : Tψ > c∗ψ(1−α)}, where c∗ψ(1−α) is the 1−α (random) quantile
of the distribution of Tψ obtained by permutations.

Well-known cases are the max-T test based on the maximum of T statistics

Tmax = max
h=1,...,k

Th,

with its permutation distribution and rejection region displayed in Figure 4.3,
and the OLS test based on the sum of T -statistics

Tsum =
k∑
h=1

Tk,

which is permutationally equivalent to Tsum =
∑k
h=1 Tk/(1

tR̂1)1/2, with its
permutation distribution and rejection region displayed in Figure 4.4.

Fig. 4.3. Permutation distribution and rejection region of the Tmax statistic.

Essentially, global tests simplify the problem by testing against an alter-
native that specifies a departure from θ = 0 in a prechosen direction of the
positive orthant Ω+. For example, for testing (θ1, θ2) = (0, 0) against the fixed
alternative (θ′1, θ

′
2) ∈ Ω+, the most powerful test rejects for large values of

Tmp = (θ′1 − ρθ′2)T1 + (θ′2 − ρθ′1)T2.

However, one of the coefficients of Th in the optimal test statistic can be
negative. Bittman et al. (2006) give an example with θ′1 = 2, θ′2 = 8, and
ρ = 1/2, in which the optimal test statistic is −2T1 + 7T2. It is perhaps
surprising that this test is not monotone in each Th. That is, decreasing T1

increases the value of the test statistic, and the test rejects with probability
tending to one as T1 → −∞.
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Fig. 4.4. Permutation distribution and rejection region of the Tsum statistic.

A test procedure with a more uniform power performance can be obtained
by considering a weighted sum of T statistics

Twsum =
k∑
h=1

whTh,

where w = (w1, . . . , wk) is a given direction in the positive orthant, and thus
each wh is nonnegative. By using wh = |θ̂h|/σ̂h, we obtain a sum of signed t
squared (or F ) statistics

TssT 2 =
k∑
h=1

sign(Th)T 2
h ,

with its permutation distribution and rejection region displayed in Figure 4.5.

Fig. 4.5. Permutation distribution and rejection region of the TssT2 statistic.
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The power functions of the three permutation tests were compared through

simulation. Consider a setting with n1 = n2 = 50, R =
[

1 ρ
ρ 1

]
, and θ =

r(cos rad, sin rad). Three different configurations were studied (Figure 4.6),
and results are reported in Figure 4.7.

Fig. 4.7. Simulation study results.

The simulation results demonstrate that the TssT 2 test is more robust to
the configuration of the mean differences than both the max-T test and the
OLS test. It is found to be especially advantageous when the correlations
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Fig. 4.6. Simulation study configuration.
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between the endpoints are low or negative. There is very little loss of power
in other situations.

A testing method is consonant when the rejection of an intersection hy-
pothesis implies the rejection of at least one of its component hypotheses
(Hochberg and Tamhane, 1987). With a dissonant test (such as the sum-T ),
if the null hypothesis H0 : θ = 0 is rejected but the statistician cannot reject
either of the individual hypotheses, then compelling evidence has not been es-
tablished to promote a particular drug indication. Lack of consonance makes
interpretation awkward.

Bittman et al. (2006) show how to modify a dissonant test into a consonant
one with a rejection region of the form R∗cψ = {(T1, . . . , Tk) : Tψ > c∗cψ(1−α)∩
[T1 > c∗1(1−α)∪T2 > c∗2(1−α)]}, where c∗h(1−α) is the 1−α quantile of the
permutation distribution of the hth T statistic and c∗cψ(1− α) is determined
so that, under H0 : θ = 0, the region has probability α. Figure 4.8 shows the
modified rejection region of the consonant sum-T and ssT 2 tests.

Fig. 4.8. Rejection region of the consonant tests.

The power functions of the max-T , consonant sum-T and ssT 2 were com-
pared through simulation with the same setting used previously. The powers
to reject the null hypothesis are reported in Figure 4.9.

4.3 Testing Superiority and Noninferiority

The foregoing testing methods do not suffice for establishing that the treat-
ment will be preferred with respect to the control if it is also required to
provide statistical evidence simultaneously to establish that the treatment is
not inferior to the control with respect to every variable.

The treatment is regarded as noninferior to the control on the hth endpoint
if θh > −εh and the hypotheses on noninferiority for all variables have the
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Fig. 4.9. Simulation study results.

intersection-union formulation Berger (1998)

Hε
0 :

k⋃
h=1

{θh ≤ −εh} against Hε
1 :

k⋂
h=1

{θh > −εh},

where the constants ε = (ε1, . . . , εk) are specified in advance.
Define the t statistics for testing the noninferiority of the treatment with

respect to the control on the hth endpoint by

T εh =
Ȳ2h − Ȳ1h + εh

σ̂h

√
1
n1

+ 1
n2

= Th +
εh

σ̂h

√
1
n1

+ 1
n2

= Th + δh

and by using the intersection-union approach results in the min-T test (Laska
and Meisner, 1989) that rejects Hε

0 at level α if

min
1≤h≤k

T εh > t1−α,ν ,

where, by assuming normality, t1−α,ν is the 1−α quantile of the t distribution
with ν = n1 + n2 − 2 degrees of freedom. The resulting rejection region has
the form Rε = {(T1, . . . , Tk) : (T1, . . . , Tk) > (t1−α,ν − δ1, . . . , t1−α,ν − δk)}.

The overall testing problem becomes an intersection-union combination of
intersection-union and union-intersection testing problems,

H◦
0 : H0 ∪Hε

0 against H◦
1 : H1 ∩Hε

1 .
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For k = 2, the regions of the parameter space corresponding to H◦
0 and H◦

1

are shown in Figure 4.10.

!1

! 2

H0

H1H1

- ε

0

0

Fig. 4.10. Regions of the parameter space of H◦
0 and H◦

1 .

We can proceed through a two-step procedure, where noninferiority must
be proven first and superiority has to be shown subsequently by rejecting H◦

0

if (T1, . . . , Tk) ∈ R∗ψ ∩ Rε. This rejection region is shown in Figure 4.11(a)
with ε = 1/2 and R∗ψ = R∗max. Thus Tmax = 1.871 ≤ 2.16 = c∗max(1 − α) and
we don’t reject H0 and hence also H◦

0 .
However, as noted by Tamhane and Logan (2004), this procedure is con-

servative because it requires that the type I error probability be controlled
separately for Hε

0 and H0. To apply the less conservative intersection-union
test of H◦

0 at level α, we should solve for d to find the (1 − α) critical value
of the superiority test such as Pr(min1≤h≤k T

ε
h > t1−α,ν ∩ Tψ > d) = α.

We give the following permutation-based algorithm, which determines R∗tl =
{(T1, . . . , Tk) : (T1, . . . , Tk) > (t1−α,ν − δ1, . . . , t1−α,ν − δk)∩Tψ > c∗tl(1−α)}:

(Testing noninferiority and superiority)

step 0 If min1≤h≤k T
ε
h ≤ t1−α,ν , then accept Hε

0 ⊂ H◦
0 and stop; otherwise

step 1 compute (T ∗1 (b), . . . , T ∗k (b)) from the bth permutation, b = 1, . . . , B,
obtaining c∗tl as the (1− α) quantile of {T ∗ψ(b) : minh T

ε∗
h (b) > t1−α,ν}.

step 2 If Tψ ≤ c∗tl(1− α), then accept H0 ⊂ H◦
0 , otherwise reject H◦

0 .

The rejection region R∗tl is shown in Figure 4.11(b) with ε = 1/2 and
Tψ = Tmax = 1.871, so that c∗tl(1−α) = 1.6 compared with c∗max(1−α) = 2.16.
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(a) R∗
max (b) R∗

tl

Fig. 4.11. Rejection regions of R∗
max and R∗

tl.

4.3.1 Applications with R functions

For performing the statistical tests illustrated in the previous sections, load
the data from Table 4.1, where X represents class labels and Y the vector of
data. Compute the Th’s statistics on observed and permuted data by

> source("ptest2s.R")
> set.seed(0)
> B <- 5000
> T <- ptest2s(Y,X,B,"Student")

Perform the combined tests Tmax, Tsum, and TssT2 by

> maxT <- apply(T,1,max)
> sum(maxT[-1]>=maxT[1])/(B-1)
[1] 0.08861772 #p-value sumT
> sumT <- apply(T,1,sum)
> sum(sumT[-1]>=sumT[1])/(B-1)
[1] 0.02680536 #p-value maxT
> ssT2 <- apply(T,1,function(row){sum(sign(row)*(row^2))})
> sum(ssT2[-1]>= ssT2[1])/(B-1)
[1] 0.04620924 #p-value ssT2

Check if at least one Th is greater than c∗h(1− α)

> alpha <- 0.05
> c1 <- sort(T[-1,1])[B*(1-alpha)]
> c2 <- sort(T[-1,2])[B*(1-alpha)]
> T[1,] > c(c1,c2)
[1] FALSE TRUE



4.4 Several Samples 97

and compute the p-values of the consonant Tcsum and TcssT2 tests

> ind <- (T[,1]>c1|T[,2]>c2)
> sum(sumT[ind]>=sumT[1])/(B-1)
[1] 0.02580516 #p-value csumT
> sum(ssT2[ind]>=ssT2[1])/(B-1)
[1] 0.04540908 #p-value cssT2

Check noninferiority with ε = 1/2

> eps <- 0.5
> ct <- qt(1-alpha,length(Y)-2)
> delta <- eps/(mean(apply(Y,2,sd)))
> T[1,] + delta > c(ct,ct)
[1] TRUE TRUE

but because we don’t reject superiority by Tmax, simultaneously test noninfe-
riority and superiority by

> ind2 <- (T[,1]+delta>ct & T[,2]+delta>ct)
> sum(maxT[ind2]>=maxT[1])/(B-1)
[1] 0.01880376 # p-value

4.4 Several Samples

In a dose-response experiment, r doses of a treatment are administered to
independent groups of ni subjects, i = 1, . . . , r. Let Y is = (Y1is, . . . , Ykis) ∈
IRk be a vector of response on k variables for the sth subject randomly assigned
to treatment dose i, i = 1, . . . , r, s = 1, . . . , ni. We wish to test the global null
hypothesis

H0 : Y 1
d= . . .

d= Y r

against the alternative

H1 : Y 1

st
≤ . . .

st
≤ Y r,

with at least one strict inequality. If we assume that Y i ∼ Nk(µi,Σi),

i = 1, . . . , r, then Y 1

st
≤ . . .

st
≤ Y r if and only if µh1 ≤ . . . ≤ µhr for all

h = 1, . . . , k and Σ1 = . . . = Σr (Müller, 2001). This result generalizes the

fact that if Yi ∼ N(µi, σ2
i ), i = 1, . . . , r, then Y1

st
≤ . . .

st
≤ Yr if and only if

µ1 ≤ . . . ≤ µr and σ2
1 = . . . = σ2

r . More generally, whenever the random vec-
tors have the same dependence structure (that is, by assuming a location-shift
model, Y i = Y + δi, i = 1, . . . , r, with δ1 ≤ . . . ≤ δr ∈ IRk), then multivari-
ate stochastic ordering conditions may be provided simply by examining the
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marginal distribution functions of each of the components of the random vec-

tors. However, by assuming that Y 1

st
≤ . . .

st
≤ Y r holds, it is straightforward

to extend the results given in Theorem 3.4 to the r-sample case. If SMH holds
(i.e., Yh1

d= . . .
d= Yhr, h = 1, . . . , k), it follows that testing H0 against H1 is

equivalent to testing

k⋂
h=1

{H0h} :
k⋂
h=1

{
Yh1

d= . . .
d= Yhr

}
against

k⋃
h=1

{H1k} :
k⋃
h=1

{
Yh1

st
≤ . . .

st
≤ Yhr and not H0h

}
.

Testing H0h against H1h has received considerable attention in the past. Silva-
pulle and Sen (2005) is the most recent reference using likelihood methodology.
Another popular test based on ranks is given in Jonckheere (1954) and Terp-
stra (1952), and recently ElBarmi and Mukerjee (2005) suggested a stepwise
test based on a method of Hogg (1962).

Alternatively, because Yh regression dependent on X (i.e., Fh1(y) =
Pr{Yh ≤ y|X = 1} ≥ . . . ≥ Pr{Yh ≤ y|X = r} = Fhr(y), ∀ y ∈ IR) im-
plies that the pair (Yh, X) is positive quadrant dependent (i.e., Fh(1:i)(y) =
Pr{Yh ≤ y|X ≤ i} ≥ Pr{Yh ≤ y|X > i} = Fh(i+1:r)(y), ∀ y ∈ IR,
i = 1, . . . , r − 1), one can consider testing

H?
0h :

r−1⋂
i=1

{
Fh(1:i)(y) = Fh(i+1:r)(y), ∀ y ∈ IR

}
by noting that H0h ⇔ H?

0h against

H?
1h :

r−1⋃
i=1

{
Fh(1:i)(y)  Fh(i+1:r)(y), ∀ y ∈ IR

}
,

which is less restrictive than H1h (i.e., H1h ⇒ H?
1h). However, under the

assumption Y 1

st
≤ . . .

st
≤ Y r ⇒ Yh1

st
≤ . . .

st
≤ Yhr, we have H1h ⇔ H?

1h,
h = 1, . . . , k, where for testing

H0hi : Fh(1:i) = Fh(i+1:r) against H1hi : Fh(1:i)  Fh(i+1:r)

we pool together the first i groups and the last (r− i) groups, i = 1, . . . , r−1.
For testing H0hi against H1hi, the permutation test based on the usual

two-sample t statistic or equivalently on

Thi =
r∑

i=i+1

ni∑
s=1

Yhis (4.1)
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is the most powerful permutation test against the normal alternatives that
common variance among all permutation tests that are unbiased and of level
α. Obviously, other two-sample test statistics can be considered, for instance
the Kolmogorov-Smirnov statistic

KShi = max
y∈IR
{F̂h(i+1:r)(y)− F̂h(1:i)(y)}, (4.2)

where F̂h(a:b)(y) =
∑b

i=a F̂hi(y)ni∑b
i=a ni

and F̂hi denotes the usual empirical c.d.f.
Then, we may combine first with respect to pseudogroups (i.e., for testing

H0h :
⋂r−1
i=1 {H0hi}), obtaining Th = ψ(Thi, i = 1, . . . , r − 1), and next with

respect to variables (i.e. for testing H0 :
⋂k
h=1{H0h}) obtaining the global test

statistic T = ψ(Th, h = 1, . . . , k).
For testing H0 against H1, Dietz (1998) proposed an asymptotically

distribution-free test that generalizes the Jonckheere-Terpstra test to the mul-
tivariate case, which is based on

J =
n−3/2

∑k
h=1 Jh

[1kΥ1Tk ]1/2
, (4.3)

where Jh is the Jonckheere-Terpstra (Jonckheere, 1954; Terpstra, 1952) statis-
tic computed on the hth variable and the covariance matrix Υ has diagonal
and off-diagonal elements n−3Var (Jh) and n−3Cov (Jh, Jg), respectively, for
h 6= g = 1, . . . , k. The asymptotic null distribution of J is standard normal.

Sim and Johnson (2004) used the maxmin criterion of Abelson and Tuckey
(1963) under the assumption that Y i ∼ Nk(µi,Σ) with known Σ. The test
rejects the null hypothesis for large values of

L =
k∑
h=1

k∑
g=1

σhg

(
r∑
i=1

bi

ni∑
s=1

Yhis

)
, (4.4)

where the {σhg}, h, g = 1, . . . , k, are the elements of Σ−1 and the bi’s, which
satisfy

∑r
i=1 nibi = 0, are the contrast coefficients given by

bi =
1

n1/2ni

{√
mi−1(n−mi−1)−

√
mi(n−mi)

}
, (4.5)

where m0 ≡ 0 and ml =
∑l
i=1 ni, l = 1, . . . , r. The null distribution of

L/[(Σ−11T )T1T
∑r
i=1 nib

2
i ]

1/2 is standard normal.
Under the assumption that Y i ∼ Nk(µi,Σ), one may rewrite the hypothe-

ses by the reparametrization ϑhl = µhl − µh(l−1) for l = 2, . . . , r. Thus the
problem is rearranged in a one-sample setting as H0 :

⋂k
h=1

⋂r
l=2 {ϑhl = 0}

against H1 :
⋃k
h=1

⋃r
l=2 {ϑhl > 0}. Note that the dimensionality of the

problem is now q = k(r − 1). The LRT based on a single observation(
(Ȳ 2 − Ȳ 1) . . . (Ȳ r − Ȳ r−1)

)
fromNq(ϑ,Λ), when Λ is assumed to be known,

has null distribution chi-bar-square,
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Pr{χ̄2 ≤ c|H0} =
q∑

h=0

wh(q,Λ, IR+q) Pr{χ2
h ≤ c},

where χ2
h are central chi-square variables with h degrees of freedom (h =

0, . . . , q and χ2
0 ≡ 0) and weights wh(q,Λ, IR+q) that can be explicitly deter-

mined up to q = 4.
In order to keep the dimension more manageable in the r-sample multi-

variate setting, Sim and Johnson (2004) propose a likelihood ratio test using
the contrast coefficients, that is based on

LRT =
1∑r

i=1 nib
2
i

{
ZΣ−1ZT − min

θ≥0k

[
(Z− θ)Σ−1(Z− θ)T

]}
, (4.6)

where the bi’s are given in (4.5), Z =
∑r
i=1 bi

∑ni

s=1 Y is, and θ = E(Z) =∑r
i=1 biniµi. When Σ is assumed to be known, LRT in (4.6) has null distri-

bution Pr{LRT ≤ c} =
∑k
h=0 wh(k,Σ, IR+k) Pr{χ2

h ≤ c}.

Table 4.2. Serum enzyme levels for forty rats. Serum enzyme levels are in interna-
tional units/liter. Dosage of vinylidene fluoride in parts/million.

Rat within Dosage

Dosage Enzyme 1 2 3 4 5 6 7 8 9 10

0 SDH 18 27 16 21 26 22 17 27 26 27
SGOT 101 103 90 98 101 92 123 105 92 88

1500 SDH 25 21 24 19 21 22 20 25 24 27
SGOT 113 99 102 144 109 135 100 95 89 98

5000 SDH 22 21 22 30 25 21 29 22 24 21
SGOT 88 95 104 92 103 96 100 122 102 107

15,000 SDH 31 26 28 24 33 23 27 24 28 29
SGOT 104 123 105 98 167 111 130 93 99 99

The data in Table 4.2 are taken from Dietz (1998). In a dose-response ex-
periment on vinylidene fluoride, a chemical suspected of causing liver damage,
four groups of ten “Fischer-344” rats received by inhalation exposure increas-
ing dosages. Among the response variables measured on the rats were two
serum enzymes: SDH and SGOT. Increasing levels of these enzymes are often
associated with liver damage. It is of interest to test whether each enzyme
level stochastically increases with increasing doses of vinylidene fluoride. The
data are shown in Table 4.2. By using B = 5000 permutations, we compute
Thi =

∑r
i=i+1

∑ni

s=1 Yhis first, and then we obtain the Fisher combined test
statistics Th = −2 log(

∏r−1
i=1 phi) and T = −2 log(

∏k
h=1 ph), giving a p-value

of 0.0004 for the global null hypothesis H0, whereas the J statistic equals
2.72, significant at Pr{N(0, 1) > 2.72} = 0.0033, the L statistic equals 2.886,
significant at Pr{N(0, 1) > 2.886} = 0.0020, and the LRT statistic equals
9.4225, significant at Pr{χ̄2 > 9.4225} = 0.0041.
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4.4.1 Applications with R functions

For performing the statistical tests illustrated in this section, load the data
from Table 4.2, where X represents class labels and Y the vector of data, and
obtain the B × k × (r − 1) matrix of test statistics T ∗hi(b), b = 1, . . . , B,
h = 1, . . . , k, i = 1, . . . , r − 1:

> load("rats.Rdata")
> source("pstocRs.R")
> set.seed(0)
> B <- 5000
> T_hi <- pstocRs(X,Y,B)

Obtain the corresponding matrix of p-values

> load("t2p.R")
> P_hi <- T_hi
> r = length(unique(X))
> for (i in 1:(r-1)){ P_hi[,,i] <- t2p(T_hi[,,i]) }

and compute the Fisher combined test statistic Th = −2 log(
∏r−1
i=1 phi), ob-

taining the raw p-values for variables SDH and SGOT, respectively,

> T_h <- P_hi[,,1]
> T_h <- apply(P_hi,c(1,2),function(x){-2*log(prod(x))})
> P_h<-t2p(T_h)
> P_h[1,]
[1] 0.002 0.075

and finally compute the global test T = −2 log(
∏k
h=1 ph) for testing H0:

> T <- P_hi[,1,1]
> T <- apply(P_h,1,function(x){-2*log(prod(x))})
> sum(T[-1]>=T[1])/(B-1)
[1] 0.00040008
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Permutation Tests

1.1 Introduction

This book deals with the permutation approach to a variety of univariate
and multivariate problems of hypothesis testing in a nonparametric frame-
work. The great majority of univariate problems may be usefully and effec-
tively solved within standard parametric or nonparametric methods as well,
although in relatively mild conditions their permutation counterparts are gen-
erally asymptotically as good as the best parametric ones. Moreover, it should
be noted that permutation methods are essentially of a nonparametrically
exact nature in a conditional context. In addition, there are a number of
parametric tests the distributional behavior of which is only known asymp-
totically. Thus, for most sample sizes of practical interest, the relative lack
of efficiency of permutation solutions may sometimes be compensated by the
lack of approximation of parametric asymptotic counterparts. Moreover, when
responses are normally distributed and there are too many nuisance param-
eters to estimate and remove, due to the fact that each estimate implies a
reduction of the degrees of freedom in the overall analysis, it is possible for
the permutation solution to become better than its parametric counterpart
(see, for example, Chapter 6). In addition, assumptions regarding the validity
of parametric methods (such as normality and random sampling) are rarely
satisfied in practice, so that consequent inferences, when not improper, are
necessarily approximated, and their approximations are often difficult to as-
sess.

For most problems of hypothesis testing, the observed data set y =
{y1, . . . , yn} is usually obtained by a symbolic experiment performed n times
on a population variable Y , which takes values in the sample space Y. We
often add the adjective symbolic to names such as experiments, treatments,
treatment effects, etc., in order to refer to experimental, pseudo-experimental,
and observational contexts. For the purposes of analysis, the data set y is gen-
erally partitioned into groups or samples, according to the so-called treatment
levels of the experiment. In the context of this chapter, we use capital letters

D. Basso et al., Permutation Tests for Stochastic Ordering and ANOVA, Lecture
Notes in Statistics, 194, DOI 10.1007/978-0-387-85956-9 1,
c© Springer Science+Business Media, LLC 2009



2 1 Permutation Tests

for random variables and lower case letters for the observed data set. In some
sections, we shall dispense with this distinction because the context is always
sufficiently clear. Of course, when a data set is observed at its y value, it is
presumed that a sampling experiment on a given underlying population has
already been performed, so that the resulting sampling distribution is related
to that of the parent population, which is usually denoted by P .

For any general testing problem, in the null hypothesis (H0), which usually
assumes that data come from only one (with respect to groups) unknown pop-
ulation distribution P , the whole set of observed data y is considered to be a
random sample, taking values on sample space Yn, where y is one observation
of the n-dimensional sampling variable Y(n) and where this random sample
does not necessarily have independent and identically distributed (i.i.d.) com-
ponents. We note that the observed data set y is always a set of sufficient
statistics in H0 for any underlying distribution. In order to see this in a sim-
ple way, let us assume that H0 is true and all members of a nonparametric
family P of nondegenerate and distinct distributions are dominated by one
dominating measure ξ; moreover, let us denote by fP the density of P with
respect to ξ, by f (n)

P (y) the density of the sampling variable Y(n), and by y
the data set. As the identity f (n)

P (y) = f
(n)
P (y) ·1 is true for all y ∈ Yn, except

for points such that f (n)
P (y) = 0, due to the well-known factorization theorem,

any data set y is therefore a sufficient set of statistics for whatever P ∈ P.
Note that a family of distributions P is said to behave nonparametrically

when we are not able to find a parameter θ, belonging to a known finite-
dimensional parameter space Θ, such that there is a one-to-one relationship
between Θ and P in the sense that each member of P cannot be identified by
only one member of Θ and vice versa.

By the sufficiency , likelihood , and conditionality principles of inference
for a review, see Cox and Hinkley, 1974, Chapter 2), given a sample point
y, if y∗ ∈ Yn is such that the likelihood ratio f (n)

P (y)/f (n)
P (y∗) = ρ(y,y∗) is

not dependent on fP for whatever P ∈ P, then y and y∗ are said to contain
essentially the same amount of information with respect to P , so that they
are equivalent for inferential purposes. The set of points that are equivalent
to y, with respect to the information contained, is called the coset of y
or the orbit associated with y, and is denoted by Yn/y, so that Yn/y = {y∗ :
ρ(y,y∗) is fP -independent}. It should be noted that, when data are obtained
by random sampling with i.i.d. observations, so that f (n)

P (y) =
∏

1≤i≤n fP (yi),
the orbit Yn/y associated with y contains all permutations of y and, in this
framework, the likelihood ratio satisfies the equation ρ(y,y∗) = 1. Also note
that, as in Chapter 6, orbits of fP -invariant points may be constructed without
permuting the whole data set.

The same conclusion is obtained if f (n)
P (y) is assumed to be invariant with

respect to permutations of the arguments of y; i.e., the elements (y1, . . . , yn).
This happens when the assumption of independence for observable data is
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replaced by that of exchangeability, f (n)
P (y1, . . . , yn) = f

(n)
P (yu∗1 , . . . , yu∗n),

where (u∗1, . . . , u
∗
n) is any permutation of (1, . . . , n). Note that, in the con-

text of permutation tests, this concept of exchangeability is often referred to
as the exchangeability of the observed data with respect to groups. Orbits Yn/y
are also called permutation sample spaces. It is important to note that orbits
Yn/y associated with data sets y ∈ Yn always contain a finite number of points,
as n is finite.

Roughly speaking, permutation tests are conditional statistical procedures,
where conditioning is with respect to the orbit Yn/y associated with the ob-
served data set y. We will sometimes use use the notation Pr{·|y} instead of
Pr{·|Y/y} to denote the conditioning with respect to the orbit associated with
data set y even though the two notations are not necessarily equivalent.
Thus, Yn/y plays the role of reference set for the conditional inference (see
Lehmann and Romano, 2005). In this way, in the null hypothesis and assum-
ing exchangeability, the conditional probability distribution of a generic point
y′ ∈ Yn/y, for any underlying population distribution P ∈ P, is

Pr{y∗ = y′|Yn/y} =

∑
y∗=y′ f

(n)
P (y∗) · dξn∑

y∗∈Yn
/y
f

(n)
P (y∗) · dξn

=
#[y∗ = y′, y∗ ∈ Yn/y]

#[y∗ ∈ Yn/y]
,

which is P -independent. Of course, if there is only one point in Yn/y whose
coordinates coincide with those of y′, (i.e., if there are no ties in the data set),
and if permutations correspond to permutations of the arguments, then this
conditional probability becomes 1/n!. Thus, Pr{y∗ = y′|Yn/y} is uniform on
Yn/y for all P ∈ P.

These statements allow permutation inferences to be invariant with respect
to P in H0. Some authors, emphasizing this invariance property of permuta-
tion distribution in H0, prefer to give them the name of invariant tests. How-
ever, due to this invariance property, permutation tests are distribution-free
and nonparametric.

As a consequence, in the alternative hypothesisH1, conditional probability
shows quite different behavior and in particular may depend on P . To achieve
this in a simple way, let us consider, for instance, a two-sample problem where
f

(n1)
P1

and f (n2)
P2

are the densities, relative to the same dominating measure ξ,
of two sampling distributions related to two populations, P1 and P2, that are
assumed to differ at least in a set of positive probability. Suppose also that y1

and y2 are the two separate and independent data sets with sample sizes n1

and n2, respectively. Therefore, as the likelihood associated with the pooled
data set is f (n)

P (y) = f
(n1)
P1

(y1) · f (n2)
P2

(y2), from the sufficiency principle it
follows that the data set partitioned into two groups, (y1;y2), is now the set
of sufficient statistics. Indeed, by joint invariance of the likelihood ratio with
respect to both fP1 and fP2 , the coset of y is (Yn1

/y1
,Yn2
/y2

), where Yn1
/y1

and
Yn2
/y2

are partial orbits associated with y1 and y2, respectively. This implies
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that, conditionally, no datum from y1 can be exchanged with any other from
y2 because in H1 permutations are permitted only within groups, separately.

Consequently, when we are able to find statistics that are sensitive to
the diversity of two distributions, we may have a procedure for constructing
permutation tests. Of course, when constructing permutation tests, one should
also take into consideration the physical meaning of treatment effects, so that
the resulting inferential conclusions have clear interpretations.

Although the concept of conditioning for permutation tests is properly
related to the formal conditioning with respect to orbit Yn/y, henceforth we
shall generally adopt a simplified expression for this concept by stating that
permutation tests are inferential procedures that are conditional with respect
to the observed data set y. Indeed, once y is known and the exchangeability
condition is assumed in H0, Yn/y remains completely determined by y.

1.2 Basic Construction

In this section, we provide examples on the construction of a permutation
test. We will do this by considering a two-sample design. Let y1 and y2 be
two independent samples of size n1 and n2 from two population distributions
P1 and P2, respectively. In addition, let P1(y) = P2(y − δ). That is, the
population distributions differ only in location. A common testing problem
is to assess whether P1

d= P2 or not, where the symbol d= means equality
in distribution. In a location problem, there are several ways to specify the
underlying model generating the observed data; for instance, let

Yi1 = µ1 + εi1, i = 1, . . . , n1,
Yj2 = µ1 + δ + εj2, j = 1, . . . , n2,

(1.1)

be the models describing a generic observation from the first and second sam-
ples, respectively. Here δ = µ2 − µ1, µ1 and µ2 are population constants, and
εi1 and εj2 are identically distributed random variables with zero mean and
variance σ2 < +∞ (the so-called experimental errors), not necessarily inde-
pendent within the observations. The null hypothesis P1

d= P2 can be written
in terms of δ = 0 against the alternative hypothesis δ 6= 0. If H0 is true, then
Yi1 and Yj2 are identically distributued random variables. In addition, if εi1
and εj2 are exchangeable random variables, in the sense that Pr(ε) = Pr(ε∗),
where ε = [ε11, ε21, . . . , εn11, ε12, ε22, . . . , εn22]

′ and ε∗ is a permutation of ε,
then also Yi1 and Yj2 are exchangeable in the sense that Pr(Y) = Pr(Y∗),
where Y = [Y1,Y2]′ and Y∗ is the corresponding permutation of Y. As a
simple example, consider the common case where the observations are inde-
pendent. The likelihood can be written as

L(δ;y) = f
(n1)
P1

(y11, y21, . . . , yn11)f
(n2)
P2

(y12, y22, . . . , yn22)

=
n1∏
i=1

fP1(yi1)
n2∏
j=1

fP2(yi2),
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where y = [y1,y2]′ and fPj
(y) is the density of Yj , j = 1, 2. If H0 is true,

fP1(y) = fP2(y), so LH0(δ;y) = LH0(δ;y
∗). Roughly speaking, this means

that (conditionally), under H0, y1 and y2 are two independent samples from
the same population distribution P , or equivalently that y is a random sample
of size n = n1 + n2 from P .
In order to obtain a statistical test, we need to define a proper test statistic
and obtain its null distribution. How do we find the “best” test statistic for a
given inferential problem? There is no specific answer to this question when
the population distributions are unknown. One reasonable criterion is, for
instance, to let the unconditional expectation of a chosen test statistic depend
only on the parameter of interest. For instance, since unconditionally E[ȳ1] =
µ1 and E[ȳ2] = µ2, a suitable test statistic could be defined as T (y) = ȳ1− ȳ2.
Another reasonable choice is to look at the parametric counter-part: In a
two-sample location problem, the well-known t statistic

t =
ȳ1 − ȳ2[(

1
n1

+ 1
n2

)
s2
] 1

2

can also be considered. We will see that the t statistic and T (y) = ȳ1− ȳ2 are
equivalent within a permutation framework. By equivalent test statistics we
mean test statistics that lead to the same rejection region in the permutation
sample space Yn/y, so they also lead to the same inference for any given set
y ∈ Y.

Within a permutation framework, a test statistic T : Y/y → T is a
real function of all the observed data that takes values on the support
T = T (Y/y) ⊆ IR1. It is worth noting that the support T depends on y
in the sense that whenever y 6= y′ we may have Ty 6= Ty′ . Moreover, if T is
such that T (y∗′) 6= T (y∗′′) for any two distinct points of Y/y, in the null hy-
pothesis the distribution of T over T is uniform; that, is all points are equally
likely.

The null distribution of T (y) is given by the elements of the space T. We
will use the notation T (y), T o, or simply T to emphasize the observed value
of the test statistic (the one obtained from the observed data), whereas T ∗

indicates a value of the permutation distribution of the test statistic. Note
that T ∗ = T o if the identity permutation is applied to y.

To perform a statistical test, we only need to define a distance function
on T in order to specify which elements of Y/y are “far” from H0. That is,
we need a rule to determine the critical region of the test. To this end, let us
explore the space T through the two-sample location problem example. Let
T (y) = ȳ1 − ȳ2 be the test statistic and T ∗ = ȳ∗1 − ȳ∗2 be the generic element
of T. Conditionally, the expectation and variance of observations in y1 and
y2 are, respectively



6 1 Permutation Tests

E(yi1|y) = ȳ1, E(y2
i1|y) =

1
n1

∑
i

y2
i1,

E(yj2|y) = ȳ2, E(y2
j2|y) =

1
n2

∑
j

y2
y2.

Now let y∗i1 be a generic observation in y∗1. Conditionally, Pr[y∗i1 ∈ y1|y] =
n1/n and Pr[y∗i1 ∈ y2|y] = n2/n. The conditional expected value of y∗i1 is
therefore

E[y∗i1|y] =
n1

n
ȳ1 +

n2

n
ȳ2 = ȳ.

Similarly, E[y∗j2|y] = ȳ. Consequently, E[T ∗|y] = 0, and therefore the null
distribution of T ∗ is centered, although it is not necessarily symmetric, in the
sense that FT∗(t∗) = 1 − FT∗(−t∗), t∗ ∈ T. It is symmetric, for instance, in
the balanced case where n1 = n2. As regards the variance

Var(y∗i1|y) = E[y∗i1
2|y]− E[y∗i1|y]2 =

1
n

2∑
l=1

nl∑
k=1

y2
kl − ȳ2 = σ̂2

0 ,

where σ̂2
0 is the maximum likelihood estimate of the variance under H0 when

data are normally distributed. Note that σ̂2
0 is constant, in a conditional frame-

work. Note also that the y∗i1’s are not independent. By the finite population
theory,

Var(ȳ∗1 |y) =
σ̂2

0

n1

(
n− n1

n− 1

)
=

σ̂2
0

n− 1
n2

n1
.

Now consider the relationship n1ȳ
∗
1 + n2ȳ

∗
2 = Y , where Y is the total of

observations, which is permutationally invariant. Then

Var(T ∗|y) = Var
(
ȳ∗1 −

Y

n2
+
n1ȳ

∗
1

n2
|y
)

= Var
(
n

n2
ȳ∗1 |y

)
=
n2

n2
2

Var(ȳ∗1 |y)

=
nσ̂2

0

n− 1
n

n1n2
=

nσ̂2
0

n− 1

(
n1 + n2

n1n2

)
= s20

(
1
n1

+
1
n2

)
,

which is like the denominator of the t test, despite the estimate of the popu-
lation variance. Note that s20 is the unbiased estimate of Var(Y ) when H0 is
true. Therefore, we can define a test statistic as

T ∗ =
n1n2

n

(ȳ∗1 − ȳ∗2)2

s20
, (1.2)

where the emphasis is on the fact that T ∗ is a random variable defined on Y/y.
Large values of (1.2) are significant against the null hypothesis. Since n1, n2

and s20 are constant, (1.2) is permutationally equivalent to T ∗′ = (ȳ∗1 − ȳ∗2)2

and to T ∗′′ = |ȳ∗1 − ȳ∗2 |.
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A similar proof applies to the classic t statistic: Let t∗2 be the (squared)
value of the t statistic obtained from a random permutation of y∗,

t∗2 =
n1n2

n

(ȳ∗1 − ȳ∗2)2

s∗2
.

It can be easily proved (see Section 5.2) that this is a special case of one-way
ANOVA framework (when C = 2). Therefore, t∗2 is a monotone nondecreasing
function of T ∗′, and since permutation tests are based on the ordered values
of T (see Section 1.3), t∗2 is permutationally equivalent to T ∗ as well.

The exact p-value of the test is

p =
1
C

∑
T∗∈T

I(T ∗ ≥ T o) =
#[T ∗ ≥ T o]

C
,

where T o = T (y), I(·) is the indicator function, and C is the cardinality of
T. If Y is a continuous random variable (i.e., the probability of having ties is
zero), then

C =
(
n

n1

)
.

Clearly C increases very rapidly with n, so in practice the c.d.f. of T ∗ is
approximated by a Monte Carlo sampling from T. Let B be the number of
Monte Carlo permutations. Then the c.d.f. of T ∗ is estimated by

F̂T∗(t) =
#[T ∗ ≤ t]

B
t ∈ IR.

1.3 Properties

In this section, we investigate some properties of the permutation tests, such as
exactness and unbiasedness; for consistency we refer to Hoeffding (1952). Let
Y be a random variable such that E[Y ] = µ and Var[Y ] exists. Let H0 : µ ≤ µ0

be the null hypothesis to be assessed and T = T (Y) a suitable test statistic
for H0 (in the sense that large values of T are significant against H0). Then,
a (nonrandomized) test φ of size α is a function of the test statistic T = T (Y )
such as

φ(T ) =
{

1 if T ≥ T 1−α

0 if T < T 1−α,

where T 1−α is the 1 − α quantile of the null distribution of T , i.e. Pr[T ≥
T 1−α|Y/y] = α. The α-values that satisfy Pr[T ≥ T 1−α|Y/y] = α are called
attainable α-values. The set of attainable α-values is a proper subset of (0, 1].
Thus, if H0 : µ = µ0, permutation tests are exact for all attainable α-values,
whereas if H0 : µ ≤ µ0, they are conservative.

If the distribution of T is symmetric, one can define a test for two-sided
alternatives by replacing T with |T | in the definition of φ, or Tα with T 1−α if
the alternative hypothesis is H1 : µ < µ0. Clearly, the expected value of φ is
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E[φ] = 1 · Pr[T ≥ Tα] + 0 · Pr[T < Tα] = α.

That is why φ is usually called a test of size α.
Permutation tests are conditional procedures; therefore the definitions of

the usual properties of exactness and unbiasedness, and consistency require
an ad hoc notation: From now on, we denote by y(δ) the set of data when
the alternative hypothesis is true and by y(0) the set of data when the null
hypothesis is true.

The test φ of size α is said to be exact if ∀ 0 < α < 1:

Pr[φ = 1|y(0)] = α.

The test φ is said to be unbiased if

Pr[φ = 1|y(0)] ≤ α ≤ Pr[φ = 1|y(δ)].

The test φ is said to be consistent if

lim
n→+∞

Pr[φ = 1|y(δ)] = 1.

To prove the properties of permutation tests, we will still refer to a univari-
ate two-sample problem. In the previous section, we have given an informal
definition of a permutation test.

Formally, let Yn/y be the orbit associated with the observed vector of data
y. The points of Yn/y can also be defined as y∗ : y∗ = πy where π is a random
permutation of indexes 1, 2, . . . , n. Define a suitable test statistic T on Yn/y
for which large values are significant for a right-handed one-sided alternative:
The image of Yn/y through T is the set T that consists of C elements (if there
are no ties in the given data). Let

T ∗(1) ≤ T
∗
(2) ≤ · · · ≤ T

∗
(C)

be the ordered values of T. Let T o be the observed value of the test statistic,
T o = T (y). For a chosen attainable significance level α ∈ {1/C, 2/C, . . . , (C−
1)/C}, let k = C(1−α). Define a permutation test for a one-sided alternative
the function φ∗ = φ(T ∗)

φ∗(T ) =

{
1 if T o ≥ T ∗(k)
0 if T o < T ∗(k)

.

Since the critical values of the distribution of T ∗ depend on the observed data,
one can provide a more general definition of a permutation test based on the
p-values, whose distribution depends on sample size n:

φ∗(T ) =
{

1 if Pr[T ∗ ≥ T o|y] ≤ α
0 if Pr[T ∗ ≥ T o|y] > α

.

The equivalence of the two definitions is ensured by the relationship
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Pr{Pr[T ∗ ≥ T o|y] ≤ α} = Pr{Pr[T ∗ ≤ T o|y] ≥ 1− α}
= Pr{FT∗(T o) ≥ 1− α}
= Pr{F−1

T∗ (FT∗(T o)) ≥ F−1
T∗ (1− α)}

= Pr{T o ≥ T ∗(k)}.

To prove exactness, suppose H0 is true. Then the elements of T are equally
likely under the null hypothesis. This means that

Pr{T ∗ = T o|y(0)} =
1
C

⇒ Pr{T o ∈ A|y(0)} =
#[T ∗ ∈ A]

C
,

where A is one element of the Borel set defined on T. Hence, for any attainable
significance level α

Pr{φ∗(T ) = 1|y(0)} = Pr{T o ≥ T ∗(k)|y(0)}

=
#[T ∗ ≥ T ∗(k)]

C
=
Cα

C
= α.

Note that, since permutation tests are conditionally exact, they are uncondi-
tionally exact as well.

As regards unbiasedness, we will refer to the two-sample problem of the
previous section. Let’s suppose that data of the two samples are generated
under the model (1.1), and let H0 : µ2 − µ1 ≤ 0 be the null hypothesis
to assess. Define the test statistic as T = ȳ2 − ȳ1. Let T o(0) and T o(δ) be
respectively the observed value of T when data are y(0) and y(δ), respectively,

T o(0) = T ∗(y(0)) : ȳ2 − ȳ1 = ε̄2 − ε̄1,
T o(δ) = T ∗(y(δ)) : ȳ2 − ȳ1 = δ + ε̄2 − ε̄1,

where ε̄2 and ε̄1 are sampling averages of n2 and n1 exchangeable errors,
respectively. Since the event Pr[T ∗ ≥ T o|Y/y] ≤ α implies the event {T o ≥
T ∗(k)|Y/y}, we may write

Pr[T o(0) ≥ T ∗(k)|y(0)] = Pr[ε̄2 − ε̄1 ≥ T ∗(k)]

and
Pr[T o(δ) ≥ T ∗(k)|y(δ)] = Pr[ε̄2 − ε̄1 ≥ T ∗(k) − δ].

Now, without loss of generality, let δ ≥ 0 and T ∗(k) ≥ 0. Then, from the
exactness of φ∗, we have:

Pr[φ∗ = 1|y(δ)] = Pr[T o ≥ T ∗(k)|y(δ)] ≥ Pr[T o ≥ T ∗(k)|y(0)] = Pr[φ∗ = 1|y(0)],

which proves unbiasedness.
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1.4 Multivariate Permutation Tests

There are some problems where the complexity requires a further approach.
Consider, for instance, a multivariate problem where q (possibly dependent)
variables are considered, or a multiaspect problem (such as the Beherens-
Fisher problem), or a stratified analysis. The difficulties arise because of the
underlying dependence structure among variables (or aspects), which is gener-
ally unknown. Moreover, a global answer involving several dependent variables
(aspects) is often required, so the question is how to combine the information
related to the q variables (aspects) into one global test.

Let us consider a one-sample multivariate problem with q dependent vari-
ables: Here the data set Y is an n × q matrix, where n is the sample size.
What we are generally interested in is to test the null hypothsis H0 : µ = µ0

against the alternative hypothesis H1 : µ 6= µ0, where µ is a q × 1 vector of
population means and µ0 = [µ01, µ02, . . . , µ0q] is a target vector. Assuming Yi

i = 1, . . . , n is a multivariate normal random variable, a parametric solution
is Hotelling’s T 2 test. In a bivariate problem, we may specify it as

T 2 = n[ȳ − µ0]′Σ−1[ȳ − µ0]

=
n[ȳ1 − µ1]2

s21(1− ρ̂2
12)

+
n[ȳ2 − µ2]2

s22(1− ρ̂2
12)
− 2

nρ̂12[ȳ1 − µ1][ȳ2 − µ2]
s21s

2
2(1− ρ̂2

12)
= T (x1, µ1|ρ̂12) + T (x2, µ2|ρ̂12)− 2T ′(x1,x2, µ1, µ2),

where T (·) and T ′(·) are test statistics, ρ̂12 is the estimate of the correlation
between Y1 and Y2, and s21 and s22 are unbiased estimates of population vari-
ances. Note that Hotelling’s T 2 is a combination of marginal tests on µ1 and
µ2 accounting for the dependence between Y1 and Y2. Hotelling’s T 2 depends
on the estimated variance-covariance matrix Σ, which has rank n− q, and it
is appropriate only for two-sided alternatives. This means that either when
n ≤ q or alternatives are one-sided, the Hotelling T 2 test cannot be applied.
If Y1 and Y2 are independent, Hotelling’s T 2 reduces to

T 2 =
n[ȳ1 − µ1]2

s21
+
n[ȳ2 − µ2]2

s22
= T (y1, µ1|ρ12 = 0) + T (y2, µ2|ρ12 = 0).

Within a conditional approach, there are no assumptions on the dependence
structure among the q variables. Let us consider the matrix of observations
partitioned into n q-dimensional arrays; that is,

Yn×q =


y11 y12 . . . y1q
y21 y22 . . . y2q
...

...
. . .

...
yn1 yn2 . . . ynq

 .
Each row of Y is a determination of the multivariate variable [Y1, Y2, . . . , Yq],
which has distribution P with unknown dependence structure. But, being
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determinations of the same random variable, the rows of Y (i.e., the data
related to the statistical units) have an intrinsic dependence structure, which
does not need to be modelled in order to do a permutation test if the permu-
tations involve the rows of Y. Note that this is true even if the vectors of the
observations are repeated measures, or functions of the same data (e.g., the
first r powers of a random variable Y ).

A suitable nonparametric test to assess the hypothesis on marginal distri-
butions H0j : µj = µ0j , j = 1, . . . , q, is McNemar’s test,

Sj =
n∑
i=1

I(yij − µ0j > 0),

where I(·) is the indicator function. If data in Yj are symmetric and H0j

is true, then µ0j represents the mean and the median of the distribution.
Therefore, if µ0j is true, Sj should be close to n/2. The null distribution of
Sj is binomial with parameters n and 1/2. Clearly, Sj is significant for small
and large values, and the p-value of the test is obtained as

pj = Pr[X ≤ (n− Sj)] + Pr[X ≥ Sj ] where X ∼ Bi(n, 1/2).

An equivalent version of McNemar’s test is the test statistic

T ∗(yj, µ0j) =
n∑
i=1

(yij − µ0j)sgn∗(yij − µ0j), (1.3)

where

Pr[sgn∗(yi − µ0) = z] =
{

1/2 if z = +1
1/2 if z = −1 .

Note that in one-sample location problems, the usual permutations do not
apply since what is really informative here on the location parameter is the
vector of observed signs Sj = [I(y1j − µ0j > 0), I(y2j − µ0j > 0), . . . , I(ynj −
µ0j > 0)]. According to McNemar’s test, two points y∗j and y′j have the
same likelihood if

∑n
i=1 I(y

∗
ij − µ0j > 0) =

∑n
i=1 I(y

′
i − µ0j > 0). Here, the

permutation sample space Y(n)/yj
is given by

Y(n)/yj
= {y∗j : y∗j = π±(yj − µ0j)},

where π± is a combination of n ± signs, µ0j = µ0j1n and 1n is an n×1 vector
of 1’s. The permutation sample space therefore has 2n points. Note that in
(1.3) we have

E[T ∗(yj, µ0j)|yj] = 0,

Var[T ∗(yj, µ0j)|yj] =
n∑
i=1

(yij − µ0j)2,
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so the null distribution is always centered on µ0j .
Since we have the relationship

H0 : µ = µ0 =⇒
q⋂
j=1

H0j ,

the global null hypothesis H0 can be viewed as an intersection of partial null
hypotheses H0j . Let λj , j = 1, . . . , q, be a partial test statistic for the univari-
ate hypothesis H0j . By partial test we mean a test statistic to assess H0j :
µj = µ0j j = 1, . . . , q. For instance, one may consider λj = |T ∗j (yj, µ0j)| or
λj = T ∗j (yj, µ0j)

2, which is significant for large values against H0j : µj = µ0j .
The partial test statistics may also be significant for one-sided alternatives.
For instance if H1j : µj < µ0j , then a test statistic is λj = −T ∗j (yj, µ0j). Now
let

ψ∗ = ψ(Y∗,µ0) =
q∑
j=1

λj (1.4)

be a global test statistic. In order to account for the (possible) dependence
among the q variables, the domain of ψ∗ is

Y(n)/Y∗ =
{
Y∗ : Y∗ = [π±(y1 − µ01), π±(y2 − µ02), . . . , π±(yq − µ0q)]

}
,

where π± is the same combination of n ± signs applied to all q vectors. If the
q variables are independent, one may consider

Y(n)/Y⊥ =
{
Y∗
⊥ : Y∗

⊥ = [π±1 (y1 − µ01), π±2 (y2 − µ02), . . . , π±q (yq − µ0q)]
}
.

where the π±i ’s are q independent combinations of n ± signs.
Note that Y(n)/Y⊥ and Y(n)/Y∗ are different spaces. In particular, Y(n)/Y∗ ⊆

Y(n)/Y⊥ , where Y(n)/Y⊥ is the orbit associated to Y if the q variables are as-
sumed to be independent, whereas in Y(n)/Y∗ the inner dependence among
variables is maintained. The cardinality of Y(n)/Y⊥ is 2nq, whereas the car-
dinality of Y(n)/Y∗ is 2n since the same combinations of signs apply to all q
vectors.

If (1.5) is computed on Y(n)/Y∗ , then T ∗(yj, µ0j) = T ∗(yj, µ0j |Σ), where
Σ is the matrix of (true) variances and covariances among q variables. That
is, since the test statistic is defined on a permutation sample space accounting
for dependence, the partial test statistic T ∗j ’s also account for dependence. If
q = 2, then let

HG
0 =

{
H01 : µ1 ≤ 0
H02 : µ2 ≤ 0

be the global null hypothesis, which is true if the partial null hypotheses H01

and H02 are jointly true and which should be rejected whenever one of the
partial null hypotheses is rejected. Define a global test to assess HG

0 as

ψ∗ = ψ(Y∗,0) = T ∗1 (y1, 0) + T ∗2 (y2, 0), (1.5)
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where 0 = [0, 0]′. The test statistic (1.5) is a direct combination of two par-
tial tests for one-sided alternatives. Clearly, large values of ψ∗ are significant
against the global null hypothesis.

We may define

Y(n)/Y∗ = {Y∗ : Y∗ = [y1,y2]∗}

and
Y(n)/Y⊥ = {Y⊥ : Y⊥ = [y1

∗,y2
∗]},

where the emphasis is on the fact that in Y(n)/Y∗ the permutations of signs
involve the two columns of Y simultaneously, whereas in Y(n)/Y⊥ the permu-
tations of signs are done independently in each column of Y.

Figure 1.1 represents the space T = {[T ∗1 , T ∗2 ] : T ∗j = T ∗(yj
∗, 0), j = 1, 2}

when y∗j ∈ Y(n)/Y⊥ (black dots) and when y∗j ∈ Y(n)/Y∗ (white dots) in a
bivariate problem with n = 4 observations. Data have been generated from a
bivariate normal distribution with

µ = [0, 1] and Σ =
[

1 0.5
0.5 1

]
.

−3 −2 −1 0 1 2 3

−6
−4

−2
0

2
4

6

T*[,1]

T*
[,2
]

T*[1,]

Fig. 1.1. Representation of T (black dots) and T⊥ (white dots) in a bivariate prob-
lem with n = 4.

It is evident how the dependence between Y1 and Y2 is reflected on the
space T when y∗j ∈ Y(n)/Y∗ (look at the white dots), which has 16 elements.
On the other hand, if the domain of ψ∗ is the space Y(n)/Y⊥ (which consists
of 256 points), then the random variable T ∗1 is clearly independent of T ∗2 .
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−3 −2 −1 0 1 2 3

−6
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−2
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T*[,1]

T*
[,2
]

T*[1,]

Fig. 1.2. Representation of T (black dots) and T⊥ (white dots) in a bivariate prob-
lem with n = 4. The critical region observed is given by the points in the grey
zone.

The observed value [T1, T2] = [T (y1, 0), T (y2, 0)] is highlighted with the
symbol T ∗[1, ] (see Section 1.5 for details).

The observed critical region of ψ∗ is shown in Figure 1.2 (highlighted in
grey). If y∗ ∈ Y(n)/Y∗ , then the p-value of the global test would be equal to
1/16 = 0.0625, whereas if y∗ ∈ Y(n)/Y⊥ the global p-value would be equal to
7/256 = 0.0273. (Since ψ∗ is significant for large values, the related p-value is
the ratio between the number of points in the grey zone and the total points
considered).

Since permutation tests deal with the ordering of the elements of T (see
Section 1.3), the global test ψ∗ can also be defined on partial p-values instead
of the partial test statistics.

A desirable property of a multivariate test is that the global null hypothe-
ses should be rejected whenever one of the partial null hypothesis is rejected.
To this end, let us consider the rule large is significant, which means that the
global test statistic should assume large values whenever one of its arguments
leads to the rejection of at least one partial null hypothesis H0j . Accordingly,
the global test ψ∗ should be based on a suitable combining function ψ that
satisfies the following requirements:

1. ψ must be continuous in all its q arguments.
2. ψ must be nondecreasing in its arguments. By this we mean that

ψ(λ1, . . . , λj , . . . , λq) ≥ ψ(λ1, . . . , λ
′
j , . . . , λq)

if λj is more significant against H0j than λ′j .
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3. ψ must reach its supremum (possibly not finite) when one of its arguments
tends to reject the related partial null hypothesis with probability one;
that is,

ψ(λ1, . . . , λj , . . . , λq)→ +∞
if λj is “extremely” significant against H0j . The meaning of the word
“extremely” will be clearer in what follows.

The λ’s in the definition of the combining function could be either test
statistics or p-values. For instance, if the λ’s are test statistics that are signif-
icant for large values (as in the bivariate example), some suitable combining
functions are the following:

• the direct combining function: ψ =
∑q
j=1 Tj ;

• the maxT combining function: ψ = maxj Tj .

Instead, if the combining function is based on the partial p-values (i.e., λj =
pj = Pr[T ∗j ≥ Tj |Y], which are significant against H0j for small values), the
following combining functions are of interest:

• Fisher’s: ψ = −2
∑q
j=1 log(pj), 0 < ψ < +∞;

• Tippett’s: ψ = 1−minj pj , 0 ≤ ψ ≤ 1;
• Liptak’s: ψ =

∑q
j=1 φ

−1(1−pj), where φ is the standard normal cumulative
distribution function, −∞ < ψ < +∞.

Property (3) of ψ means that if λj = Tj , then ψ → +∞ whenever Tj → +∞.
On the other hand, if λj = pj , then ψ → +∞ whenever pj

p→ 0.
The combining functions above are particular cases of the nonparametric

combination (NPC) of dependent tests introduced by Pesarin (2001). Now
let’s consider a global test when the global test statistic is defined on partial
p-values; i.e., when the arguments of the combining function are λj = Pr[T ∗j ≥
Tj |yj], j = 1, 2. Figure 1.3 represents the permutation space of the partial p-
values that have been obtained from the spaces T (white dots) and T⊥ (black
dots). The point labeled with the symbol p[1,] is the point whose coordinates
are the p-values related to the observed statistics T1 and T2. In the bivariate
example, T1 = 0.28907 and T2 = 5.86235. The related p-values are respectively
p1 = Pr[T ∗1 ≥ T1|y1] = 7/16 and p2 = Pr[T ∗2 ≥ T2|y2] = 1/16. The remaining
points of Figure 1.3 have coordinates equal to

[p∗1, p
∗
2] = [Pr{T ∗1 ≥ t∗1|y1},Pr{T ∗2 ≥ t∗2|y2}] [t∗1, t

∗
2] ∈ T⊥;

i.e., the generic point [p∗1, p
∗
2] represents the p-values for each one-sided testing

problem as if the observed values of the test statistics were the pair [t∗1, t
∗
2]

instead of [T1, T2]. If Fisher’s combining function is applied to p-values, then
ψ∗ = −2[log(p∗1) + log(p∗2)] gives the permutation null distribution of ψ. The
global test statistic ψ is significant for large values, which are observed when-
ever one of its arguments tends to its infimum (here min(pj) = 1/16).

The critical region of the combining function ψ is indicated by the grey
zone of Figure 1.3. The points that lay in this region are at least as significant
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Fig. 1.3. Representation of [Pr(T ∗1 ≥ T o1 ),Pr(T ∗2 ≥ T o2 )] when [T ∗1 , T
∗
2 ] ∈ T (black

dots) and when [T ∗1 , T
∗
2 ] ∈ T⊥ (white dots) in a bivariate problem with n = 4. The

curves represent the border of the observed critical regions when different combining
functions are applied.

as [T1, T2] against the global null hypothesisHG
0 = ∩2

j=1H0j (whereH0j : µj ≤
0 is the partial null hypothesis) since they lead to values of ψ∗ not smaller
than ψ. The observed value of the global test is ψ = ψ(p1, p2) = 7.1985, and
if we account for the dependence between Y1 and Y2 (i.e., if we consider the
white dots), there are no other points leading to a larger value of ψ∗. If black
dots are considered (assuming independence between Y1 and Y2), there are
16 points leading to a value of ψ∗ at least equal to ψ. The global p-value is
defined as

pG =
1
C

C∑
b=1

I(ψ∗ ≥ ψ),

where C is the cardinality of the domain of ψ∗. In both cases (white and black
dots), Fisher’s combining function leads to pG = 1/16. The other curves in
Figure 1.3 represent the border of the critical regions when Liptak’s (black
continuous line) and Tippett’s (black dotted line) combining functions are
applied. The related global p-values are the ratios between the number of
points below each critical curve and the total number of points considered.
They are listed in Table 1.1.
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Table 1.1. Observed values of ψ and related p-values when ψ∗ is defined on T and
on T⊥.

ψ∗: Fisher Liptak Tippett

ψ 7.19853 1.691431 0.9375
pG|T 1/16 1/16 1/8
pG|T⊥ 1/16 19/256 31/256

1.4.1 Properties of the Nonparametric Combination Tests

The multivariate permutation tests maintain the properties of univariate
permutation tests. The exactness of the global test is guaranteed from the
fact that each point in the permutation sample space Y/y (which here is
q-dimensional) is equally likely under the global null hypothesis. This fact
implies that

α = Pr[ψ∗ ≥ ψ|Y(0)],

where Y(0) denotes data under the global null hypothesis.
As regards unbiasedness, let Tj be a partial test to assess H0j against H1j ,

and let pj be the related p-value, j = 1, . . . , q. Recall from Section 1.3 that, if
Tj is unbiased, then

Fpj |1(u) = Pr[pj ≤ u|yj(δj)] ≥ Pr[pj ≤ u|yj(0)] = Fpj|0(u);

that is, the p-value distribution under the alternative H1j is stochastically
smaller than under the null hypothesis H0j . Therefore, if H1j is true, then

pj|1
d
≤ pj|0 and, ceteris paribus,

ψ1 = ψ(. . . , pj|1, . . . )
d
≥ ψ(. . . , pj|0, . . . ) = ψ0

from property (2) of the combining function ψ. This implies that

Pr(ψ∗ ≥ ψ|Y(δ)) ≥ Pr(ψ∗ ≥ ψ|Y(0)) = α.

As regards consistency, if partial tests Tj are consistent, then

lim
nj→+∞

Pr{pj − 0 < ε|yj(δj)} = 1 ∀ ε > 0.

By property (3) of the combining function ψ, if pj
p→ 0,

lim
nj→+∞

Pr{|ψ(. . . , pj , . . . )− ψ̄(. . . , pj , . . . )| < ε|yj(δj)} = 1 ∀ ε > 0,

where ψ̄(. . . , pj , . . . ) is the supremum of the combining function ψ. We are
implicitly assuming that the number of Monte Carlo iterations goes to infinity
(this allows us to state that pj

p→ 0).
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1.5 Examples

In this section, we will see in detail some testing procedures described in this
chapter with the R language.

1.5.1 Univariate Permutation Tests

Let’s consider a two-sample univariate test. Suppose that a continuous random
variable Y has been observed on two samples of sizes n1 = 3 and n2 = 4 from
two probability distributions P1 and P2 that have different location parame-

ters. We wish to test the hypothesis P1
d= P2 under the alternative P1

d

6= P2.
For instance, we could considere a two-sample test when P1 ∼ N(0, 1) and
P2 ∼ N(1, 1), so H0 is false:

> set.seed(1)
> n1<-3
> n2<-4
> n<-n1+n2
> y1<-rnorm(n1)
> y2<-rnorm(n2,mean=1)
> y<-c(y1,y2)
> label<-rep(c(1,2),c(n1,n2))
> y1
[1] -0.6264538 0.1836433 -0.8356286
> y2
[1] 2.5952808 1.3295078 0.1795316 1.4874291
> label
[1] 1 1 1 2 2 2 2

The vector y is the vector of the observed data y = [y1,y2], whereas label is
the vector of the sample labels. y denotes the orbit Yn/y, whose elements have
the same probability under H0. In particular, the probability of a given point
y∗ is 1/n! = 0.000198. Now let T ∗ = ȳ∗1 − ȳ∗2 be the test statistic. Clearly T ∗

induces a partition on Yn/y since two points y∗ = [y∗1,y
∗
2] and y′ = [y′1,y

′
2]

in Yn/y give the same value of T ∗ if the event {y∗1 = y∗2} ∩ {y′1 = y′2} is
observed. This happens when y′1 and y′2 are random permutations of y∗1 and
y∗2, respectively. Therefore, the cardinality of T is

> C<-choose(n,n1)

We are now going to explore in detail the permutation reference set T. We
can do that either by specifying all the elements in Yn/y or by enumerating
the elements of the partition of Yn/y induced by T ∗. To do this, we require
the library combinat.
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> library(combinat)
> index<-seq(1,n)
> index
[1] 1 2 3 4 5 6 7
> pi1<-matrix(unlist(combn(n,n1)),nrow=C,byrow=TRUE)
> pi2<-t(apply(pi1,1,function(x){index[-x]}))
> pi<-cbind(pi1,pi2)
> pi

[,1] [,2] [,3] [,4] [,5] [,6] [,7]
[1,] 1 2 3 4 5 6 7
[2,] 1 2 4 3 5 6 7
[3,] 1 2 5 3 4 6 7
.......................................
[33,] 4 5 7 1 2 3 6
[34,] 4 6 7 1 2 3 5
[35,] 5 6 7 1 2 3 4

Here pi1 is a matrix whose rows are all possible ways to combine the elements
of index into groups of size n1 = 3, pi2 is the matrix whose rows are the
remaining elements of index, and pi is the matrix whose rows are all distinct
arrangements of the elements of index into groups of size n1 and n2. The set
T is given by the image T ∗(π(y)) through the statistic T ∗, where π(·) is the
index permutation in pi:

> y.perm<-matrix(y[pi],nrow=C,byrow=F)
> round(y.perm,digits=5)

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] -0.62645 0.18364 -0.83563 2.59528 1.32951 0.17953 1.48743

[2,] -0.62645 0.18364 2.59528 -0.83563 1.32951 0.17953 1.48743

[3,] -0.62645 0.18364 1.32951 -0.83563 2.59528 0.17953 1.48743

..................................................................

[33,] 2.59528 1.32951 1.48743 -0.62645 0.18364 -0.83563 0.17953

[34,] 2.59528 0.17953 1.48743 -0.62645 0.18364 -0.83563 1.32951

[35,] 1.32951 0.17953 1.48743 -0.62645 0.18364 -0.83563 2.59528

Now define the statistic T ∗ = ȳ∗1 − ȳ∗2 :

> T<-apply(y.perm,1,function(x){mean(x[c(1:n1)])
+ -mean(x[-c(1:n1)])})
> T<-array(T,dim=c(C,1))
> T
[1,] -1.824083677
[2,] 0.177280148
[3,] -0.561087453
...........
[33,] 2.078799413
[34,] 1.407979989
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[35,] 0.669612388

Note that the first element of T (which is T[1,1] in the R environment) is the
observed value of the test statistic T (y) = ȳ1 − ȳ2. Now let

> sigma0<-sqrt(sum(y^2)/n-mean(y)^2)

be the conditional standard deviation of yi1, i = 1, . . . , n1. The theoretical
conditional mean and vairance of T are 0 and s20(n

−1
1 + n−1

2 ), respectively,
where s20 = nσ2

0/(n− 1). In fact (leaving out the approximations well known
by the R users)

> sigma0^2*n*(1/n1+1/n2)/(n-1)
[1] 0.8958433
> mean(T)
[1] 3.220080e-18
> sum(T^2)/C-mean(T)^2
[1] 0.8958433

A nonparametric estimate of the probability distribution of T is shown in
Figure 1.4. This figure can be obtained by typing plot(density(T,bw=1)),
where the argument bw of the density function is the bandwidth of the kernel
estimator.
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Fig. 1.4. Kernel estimation of the density of T.

In order to obtain a p-value for H0 : δ = 0 vs. H1 : δ 6= 0, we may consider
the test statistic T ? = T ∗2, which is significant for large values (whereas T ∗

is significant for large positive values), and obtain the p-value accordingly:
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> T.star<-T^2
> p<-(sum(T.star >= T.star[1,]))/C
> p
[1] 0.08571429

Of course, if the alternative hypothesis is one-sided, the p-value should
be obtained accordingly (i.e., if H1 : δ > 0, so that small values of T are
significant), then

> p<-sum(T<=T[1,])/C
> p
[1] 0.05714286

A Monte Carlo algorithm to repeat the same test by considering B = 1000
MC permutations is given in what follows:

> set.seed(11)
> B<-1000
> T<-array(0,dim=c((B+1),1))
> T[1,]<-mean(y[1:n1])-mean(y[(n1+1):n])
> for(bb in 2:(B+1)){
+ y.perm<-sample(y)
+ T[bb,]<-mean(y.perm[1:n1])-mean(y.perm[(n1+1):n])
+ }
> T.star<-T^2
> p<-sum(T.star[-1,]>=T.star[1,])/B
> p
[1] 0.085

It is worth noting that the p-value obtained by the Monte Carlo algorithm
is an estimate of the true p-value, which was obtained previously. Moreover,
since the support of T ∗ is finite, so is the cardinality of T. Therefore, the
attainable (exact) p-values are multiples of 1/C, where C = #(T) (in our
example, p = 3/35). Note that the null hypothesis would be rejected at an
α-level of 5% only when the value of the observed statistic is the largest one of
T.star. Therefore, one has to make conclusions carefully when dealing with
a permutation test, especially when n is small.

In the MC algorithm, the vector T has B + 1 elements, where the first
one corresponds to the observed value of the test statistic, and the remaining
ones are obtained from random permutations of y. Note that the observed
value T (y) is always included in T, whereas this is not always the case when
the MC algorithm is applied (especially when n is large). That is why the
observed value is generally excluded from the null distribution (through the
command T.star[-1,]). Another choice is to include the observed value and
to compute the p-vaues as p<-sum(T.star>=T.star[1,])/(B+1). Obviously,
the greater n, the smaller the difference among the p-values obtained with
different methods.
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1.5.2 The Nonparametric Combination Methodology

This section will show in detail the bivariate example of Section 1.4. Let q = 2,
and suppose that we wish to assess the global null hypothesis:

HG
0 =

{
H01 : µ1 ≤ 0
H02 : µ2 ≤ 0 .

We will generate data from a bivariate normal distribution with µ = [0, 1]′,
although this is not strictly necessary. We also set the correlation ρ12 between
Y1 and Y2 equal to 0.5.

> library(combinat)
> library(mvtnorm)
> n<-4
> q<-2
> rho <- 0.5
> I<-diag(q)
> J<-array(1,dim=c(q,q))
> S<-rho*J+(1-rho)*I
> S

[,1] [,2]
[1,] 1.0 0.5
[2,] 0.5 1.0
> mu = c(0,1)
> set.seed(101)
> y<-rmvnorm(n,mean=mu,sigma=S)
> y

[,1] [,2]
[1,] -0.2344941 1.2157956
[2,] 0.8374820 2.2769520
[3,] -0.4917911 1.4230168
[4,] 0.1778775 0.9465873

Now let’s obtain, for each variable, the permutation distrbution of the test
statistic (1.3). To do this, we must obtain all possible combinations of 4 ±
signs. This can be done through the library combinat:

> C<-2^n
> z<-rep(2,n)
> sgn<- hcube(z)%/%2
> sgn<-apply(sgn,2,function(x){ifelse(x==0,1,-1)})
> sgn

[,1] [,2] [,3] [,4]
[1,] 1 1 1 1
[2,] -1 1 1 1
[3,] 1 -1 1 1
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[4,] -1 -1 1 1
[5,] 1 1 -1 1
[6,] -1 1 -1 1
[7,] 1 -1 -1 1
[8,] -1 -1 -1 1
[9,] 1 1 1 -1
[10,] -1 1 1 -1
[11,] 1 -1 1 -1
[12,] -1 -1 1 -1
[13,] 1 1 -1 -1
[14,] -1 1 -1 -1
[15,] 1 -1 -1 -1
[16,] -1 -1 -1 -1

The null distribution of the test statistic (1.3) can be obtained by multiplying
the centered data yij−µ0j for the signs in the rows of sgn, and then by adding
up together these data. This means that the joint permutation distribution of
T ∗1 and T ∗2 can be directly obtained from the matrix product:

> T.star<-array(0,dim=c(C,2))
> T.star[,1]<-sgn%*%y[,1]
> T.star[,2]<-sgn%*%y[,2]
> T.star

[,1] [,2]
[1,] 0.28907439 5.862352
[2,] 0.75806254 3.430761
[3,] -1.38588962 1.308448
[4,] -0.91690147 -1.123143
[5,] 1.27265657 3.016318
[6,] 1.74164472 0.584727
[7,] -0.40230744 -1.537586
[8,] 0.06668071 -3.969177
[9,] -0.06668071 3.969177
[10,] 0.40230744 1.537586
[11,] -1.74164472 -0.584727
[12,] -1.27265657 -3.016318
[13,] 0.91690147 1.123143
[14,] 1.38588962 -1.308448
[15,] -0.75806254 -3.430761
[16,] -0.28907439 -5.862352

As regards the mean and variance of T ∗1 and T ∗2 :

> apply(T.star,2,mean)
[1] 0 0
> apply(T.star,2,var)*(C-1)/C
[1] 1.029862 9.583674
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> apply(y,2,function(x){sum(x^2)})
[1] 1.029862 9.583674

Note that the variance of T ∗j depends also on the testing target value µ0j .
The points of the space T⊥ are given by the Cartesian product of T.star[,1]
and T.star[,2], which can be obtained by the R function combinat. Instead,
the coordinates of the points in the space T are given by the rows of T.star
itself (since the same sign permutations apply). Figure 1.1 has been obtained
as follows:

> psi<-apply(T.star,1,sum)
> T.ind<-expand.grid(T.star[,1],T.star[,2])
> plot(T.ind,pch=16,xlim=c(-3,3),xlab="T*[,1]",ylab="T*[,2]")
> points(T.star,col="white",pch=16)
> points(T.star,col="black")
> text(T.star[1,1],5.3,"T*[1,]")

Now, the observed value of the global test statistic ψ = T1(y1, 0) + T1(y2, 0)
is

> psi[1]
[1] 6.151426

and any point whose coordinates (tx, ty) satisfy the equation tx + ty = ψ has
the same significance of ψ againstHG

0 . We may thus obtain the line ty = ψ−tx
for a given grid of 100 points and add it to the plot:

> tx<-seq(-3,3,length.out=100)
> lines(tx,psi[1]-tx,type="l",col="grey")
> for(i in 1:100){
+ lines(c(tx[i],tx[i]),c(psi[1]-tx[i],10),type="l",col="grey")
+ }

The p-values related to the partial null hypotheses are obtained as follows:

> partial.p<-(C+1-apply(T.star,2,rank))/C
> partial.p

[,1] [,2]
[1,] 0.4375 0.0625
[2,] 0.3125 0.1875
[3,] 0.9375 0.3750
[4,] 0.8125 0.6250
[5,] 0.1875 0.2500
[6,] 0.0625 0.5000
[7,] 0.6875 0.7500
[8,] 0.5000 0.9375
[9,] 0.5625 0.1250
[10,] 0.3750 0.3125
[11,] 1.0000 0.5625
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[12,] 0.8750 0.8125
[13,] 0.2500 0.4375
[14,] 0.1250 0.6875
[15,] 0.7500 0.8750
[16,] 0.6250 1.0000

The element of the ith row and jth column of partial.p is obtained as
follows:

p∗ij =
1
C

C∑
l=1

I(T ∗lj ≥ T ∗ij) j = 1, 2; i = 1, . . . , C.

The first row of partial.p is the vector of observed partial p-values. Thus,
there is no evidence against H01, whereas there is evidence against H02 (be
reminded that the minimum achievable p-value in the permutation framework
is 1/C). The coordinates of the white points in Figure 1.3 are exactly the rows
of partial.p. The dependence between Y1 and Y2 is still maintained because
partial.p has been obtained by applying the same sign permutations to y1

and y2. The coordinates of the black points are given by the Cartesian product
of the columns of partial.p. To draw Figure 1.3, the following instructions
are to be typed:

> P.ind<-expand.grid(partial.p[,1],partial.p[,2])
> plot(P.ind,pch=16,xlab="p*[,1]",ylab="p*[,2]",xlim=c(0,1),
+ ylim=c(0,1))
> points(partial.p,col="white",pch=16)
> points(partial.p,col="black")
> text(partial.p[1,1], 0.1,"p[1,]")

1.6 Multiple Testing

Multiple testing refers to the testing of more than one hypothesis at a time.
The whole subject of multiple hypothesis testing is frequently, and somewhat
inaccurately, called either “multiple comparisons” or “multiple tests”. Here,
by “multiple comparisons” we will be referring to comparisons among different
groups, whereas by “multiple tests” we mean the whole subject of multiple
testing, but often in the context of multivariate data.

Consider the general problem of simultaneously testing a finite number of
hypotheses Hj , j = 1, . . . , k. A classical approach requires that the probabil-
ity of rejecting one or more true null hypotheses not exceed a given level α
(Hochberg and Tamhane, 1987). This probability is called the familywise er-
ror rate (FWE). Here the term “family” refers to the collection of hypotheses
{H1, . . . ,Hk} that is being considered for joint testing. Let K ⊆ {1, . . . , k},
and suppose hypotheses Hj with j ∈ K ⊆ {1, . . . , k} are true and the remain-
der false. We shall require that
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FWE = Pr (reject any Hj : j ∈ K) ≤ α. (1.6)

This constraint must hold for all possible configurations of true and null hy-
potheses; that is, we demand strong control of the FWE to distinguish it from
the weaker condition of weak control, which requires (1.6) to hold only when
all the hypotheses of the family are true.

The Bonferroni adjustment is the most basic procedure that controls the
FWE. Effectively, the Bonferroni procedure consists of multiplying each in-
dividual p-value by k. The Bonferroni method is an example of a single-
step procedure, meaning that any hypothesis is rejected if its correspond-
ing p-value is less than a common cutoff value (which in the Bonferroni case
is α/k). Holm (1979) improved this single-step procedure by the following
step-down procedure, which we now briefly describe: Order the p-values as
p(1) ≤ . . . ≤ p(k), and let H(1), . . . ,H(k) denote the corresponding hypothe-
ses. Then H(1), . . . ,H(r) are rejected if p(j) ≤ α/(k − j + 1) for j = 1, . . . , r,
and the remainder are accepted if p(r+1) > α/(k − r). However, one can use
Holm’s procedure to control the FWER conservatively because it holds under
any joint distribution of the p-values, including the worst possible. To improve
on Holm’s method, Westfall and Young (1993) made effective use of resam-
pling procedures to estimate the joint distributions of multiple test statistics,
but under the assumption of subset pivotality. Whatever the underlying as-
sumption, by using a bootstrap-based procedure, we achieve control of the
FWE only in an asymptotic sense. We focus instead on a permutation-based
procedure (Romano and Wolf, 2005), that provides exact FWE control.

The closure method of Marcus et al. (1976) provides a general strategy for
constructing a valid multiple test procedure that controls the FWE. Suppose
that test statistics Tj for Hj are available, and for any K ⊆ {1, . . . k}, let
HK :=

⋂
j∈K Hj denote the hypothesis that all Hj with j ∈ K are true and

TK denote a test statistic for HK , which can be a function of test statistics
or p-values, for which large values of TK indicate evidence against HK . The
idea behind closed testing is simple: You may reject any hypothesis Hj , while
controlling the FWE, when the test of Hj itself is significant and the test
of every intersection hypothesis that includes Hj is significant. The closure
method using permutation tests works as follows:

H123

H12 H13 H23

H1 H2 H3

Suppose you want to test the family {H1, H2, H3}, where Hj : Y1j
d= Y2j ,

for instance, representing a comparison of a treatment with a control using
three distinct measurements. The diagram above shows the closure of the
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family arranged in a hierarchical fashion, to better illustrate the closed testing
method.

(Closed testing)

• Create the closure of the set, which is the set of all possible intersection
hypotheses.

• Test all the hypotheses simultaneously by using permutation tests:
1. Compute the statistics TK for each nonempty K ⊆ {1, . . . , k}.
2. For b from 1 to B,

a) perform the bth permutation of treatment and control labels and
b) compute the statistics T ∗K(b) for each nonempty K ⊆ {1, . . . , k}

on the bth permutation of the data.
3. Compute the “raw” p-values as

pK =
#{T ∗K(b) ≥ TK}

B
.

• Reject any hypothesis Hj , with control of the FWE, when the test of Hj
itself is significant and the test of every intersection hypothesis that
includes Hj is significant.

Consider the following data set, taken from Westfall et al. (1999):

Table 1.2. Westfall et al. data.

x Y1 Y2 Y3

1 14.4 7.00 4.30
1 14.6 7.09 3.88
1 13.8 7.06 5.34
1 10.1 4.26 4.26
1 11.1 5.49 4.52
1 12.4 6.13 5.69
1 12.7 6.69 4.45
2 11.8 5.44 3.94
2 18.3 1.28 0.67
2 18.0 1.50 0.67
2 20.8 1.51 0.72
2 18.3 1.14 0.67
2 14.8 2.74 0.67
2 13.8 7.08 3.43
2 11.5 6.37 5.64
2 10.9 6.26 3.47
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Let TK =
∑
j∈K T

2
j be the statistic testing HK :

⋂
j∈K

{
Y1j

d= Y2j

}
against

the two-sided alternative H ′
K :

⋃
j∈K

{
Y1j

d

6= Y2j

}
, where

Tj =
Ȳ1j − Ȳ2j

σ̂j

√
1
n1

+ 1
n2

is Student’s t statistic comparing the control with the treatment for the jth
component variable. An informative way of reporting the results of a closed
testing procedure is given by the adjusted p-value.

Definition 1.1 (Adjusted p-value). The adjusted p-value for a given hy-
pothesis Hj is the maximum of all raw p-values of tests that include Hj as a
special case (including the raw p-value of the Hj test itself).

The following diagram also shows the raw p-values for the hypotheses.
The squared areas show how to compute the adjusted p-value for H3. You
must obtain a statistically significant result for the H3 test itself, as well as
a significant result for all hypotheses that include H3: In this case, H13, H23,
and H123. The adjusted p-value for testing H3 is therefore formally computed
as max(0.0094, 0.0194, 0.0144, 0.0198) = 0.0198. Similar reasoning shows that
the adjusted p-value for H2 is 0.0458 and that of H1 is 0.0966, so that H2 and
H3 may be rejected at the α = 0.05 level while controlling the FWE.

H123

H12 H13 H23

H1 H2 H3

p123 = 0.0198

p12 = 0.0458 p13 = 0.0194 p23 = 0.0144

p1 = 0.0966 p2 = 0.0294 p3 = 0.0094

By the closure method of Marcus et al. (1976), the problem shifts to ap-
propriately testing each intersection hypothesis HK ; that is, constructing a
single test that controls the usual probability of type I error. Then there is
not only the computational issue of constructing a large number of tests, but
also the question of an appropriate resampling mechanism that obeys the null
hypothesis.

It is often useful to find shortcut procedures that can reduce the number
of operations to the order of k. Lehmann and Romano (2005) considered a
generic step-down procedure:
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(Generic Step-down Procedure)

0. Let K0 = {1, . . . , k}.
If Tj ≤ cK0(α) for all j ∈ K0, then accept all hypotheses and stop;
otherwise reject each Hj for which Ti > cK0(α) and continue.

s. Let Ks be the indices of hypotheses not rejected in step s− 1.
If Tj ≤ cKs(α) for all j ∈ Ks, then accept all remaining hypotheses
and stop; otherwise reject each Hj for which Tj > cKs(α) and conti-
nue at step s+ 1.

To control the FWE strongly, the procedure requires two conditions
(Lehmann and Romano, 2005, Theorem 9.1.3), given in Theorem 1.2.

Theorem 1.2. Consider the step-down procedure described in Algorithm 2.
The following two conditions are sufficient for controlling the FWE at α:

(i) monotonicity of the critical values:

for every K ⊂ K ′, cK(α) ≤ cK′(α);

(ii)weak control of the familywise error at each step:

when HK is true, Pr(max(Tj : j ∈ K) > cK(α)) ≤ α.

For a nominal level α, the critical value cK is defined as the smallest qth
value among the permutation distributions of TK = max(Tj : j ∈ K),

cK(α) = {max(T ∗j (b) : j ∈ K), b = 1, . . . , B}(q),

with q = B − bBαc, where b·c is the largest integer that is at most equal to
Bα. Consequently, the critical values defined in (1.7) satisfy the monotonicity
requirement (i) of Theorem 1.2.

In order to satisfy also requirement (ii) of Theorem 1.2, the model consid-
ered must guarantee the randomization hypothesis (Lehmann and Romano,
2005, Definition 15.2.1). The randomization hypothesis says that under the
null hypothesis HK , the distribution of the subset of data that is used for the
calculation of (Tj : j ∈ K) is not affected by the transformations considered
(here, permutations). Thus, we require exchangeability of the observed data.
The behavior of permutation tests when the randomization hypothesis does
not hold was studied in the univariate and multivariate cases by Romano
(1990) and Huang et al. (2006), respectively. We present an example showing
the failure of the randomization hypothesis.

Example 1.3 (A two-sample problem with k variables).
Suppose that Y 11, . . . ,Y 1n1 is a control sample of n1 independent obser-

vations and that Y 21, . . . ,Y 2n2 is a treatment sample of n2 observations, with
N = n1 + n2. The problem is to test simultaneously the k hypotheses
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Hj : Y1j
d= Y2j , j = 1, . . . , k.

Note that Hj pertains only to the marginal distributions Y1j and Y2j ; nothing
else can be said about the joint distributions (Y1j : j ∈ K) and (Y2j : j ∈ K)

for any K ⊆ {1, . . . k}. Indeed, we know that (Y1,j : j ∈ K) d= (Y2,j : j ∈
K)⇒ HK :

⋂
j∈K

{
Y1j

d= Y2j

}
, but the reverse implication is not necessarily

true. This interpretation matches the setup of the classical multiple testing
problem. However, the basis for permutation testing is to assume the narrower
null hypothesis that the samples are generated from the same probability law
(i.e., (Y1,j : j ∈ K) d= (Y2,j : j ∈ K)), and thus the observations can be
permuted to either of the two groups and the distribution of the permuted
samples is the same as the distribution of the original samples, so that the
randomization hypothesis holds.

A location shift model (that is, assuming Y 1
d= Y 2 − δ with δ =

(δ1, . . . , δk) ∈ IRk) allows for a permutation-based multiple testing construc-
tion because HK :

⋂
j∈K

{
Y1j

d= Y2j

}
⇔ (Y1j : j ∈ K) d= (Y2j : j ∈ K). Now

Hj can be viewed as testing δj = 0, and the model does not assume knowledge
of the form of the underlying distribution.

However, the multivariate normal model Y i ∼ Nk(µi,Σi) allows for
asymptotically valid multiple testing inference on the difference in means
Hj : µ1j = µ2j if n1 = n2, even though under heteroscedasticity Σ1 6= Σ2.
Huang et al. (2006) showed that under the null hypothesis of equality of
means µ1j = µ2j , j = 1, . . . , k, the vector of test statistic (T1, . . . , Tk) with

Tj = Ȳ1j − Ȳ2j is distributed as Nk
(
0, Σ1

n1
+ Σ2

n2

)
, whereas the permutation

distribution is asymptotically
n1∑
r=0

(
n1
r

)(
n2
r

)(
N
n1

) Nk

(
0,

(n1 − r)Σ1 + rΣ2

n2
1

+
rΣ1 + (n2 − r)Σ2

n2
2

)
.

Suppose that Y 1 and Y 2 are arbitrary multivariate distributions; even
for finite but balanced samples, the exact distribution of (T1, . . . , Tk) un-
der

⋂k
j=1{Y1j

d= Y2j} has the same correlation matrix as the distribution

of (T1, . . . , Tk) under Y 1
d= Y 2 (Pollard and van der Laan, 2004). Hence,

under asymptotic normality for our vector of mean score differences, we ob-
tain asymptotically valid tests with the permutation approach, even if the
randomization hypothesis does not hold. For small and balanced samples,
strictly speaking neither procedure is valid, although the permutation distri-
bution differs from the true distribution in odd cumulants of order three and
higher (see Huang et al., 2006, Corollary 2.3), which may have a negligible
effect.

Summing up, unless n1 = n2 or Y 1
d= Y 2 holds, we recommend using

a bootstrap approach (Pollard and van der Laan, 2004) since it preserves
the correlation structure of the original data and it is asymptotically valid.
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On the other hand, when a study is balanced, one may quite safely use the
permutation approach.

Applications with R functions

Here we provide assistance in doing the multiple testing procedures illustrated
in the previous section using the R language. Load Westfall et al.’s data

> load("westdata.Rdata")
> ls()
[1] "Y" "x"

where Y is a 16×3 matrix representing a comparison of control units (first seven
rows) with treatment units (last nine rows) using three distinct measurements
(columns) and x is a vector of integers corresponding to observation (rows)
class labels, 1 for the control and 2 for the treatment. Perform the ptest2s
function for comparing two independent samples on multivariate data based
on Student’s t statistics Tj , j = 1, 2, 3,

> source("ptest2s.R")
> set.seed(0)
> B <- 5000
> T <- ptest2s(Y,x,5000, "Student")
> dim(T)
[1] 5000 3
> T <- T^2

obtaining a B × 3 matrix corresponding to the values of (T1, T2, T3) obtained
from the observed data (first row) and permuted data (remaining rows). Be-
cause the alternative hypotheses are two-sided, we considered as test statistics
T 2
j , which are significant for large values. The raw p-values are given by

> source("t2p.R")
> P <- t2p(T)
> P[1,]
[1] 0.0966 0.0294 0.0094

The adjusted p-values can be obtained by performing a closed testing proce-
dure based on TK =

∑
j∈K T

2
j ,

> source("clostest.R")
> adjP <- clostest(T,combi="sum")
> adjP
[1,] 0.0966 0.0458 0.0198

on TK = max(T 2
j : j ∈ K),

> adjP <- clostest(T,combi="max")
> adjP
[1,] 0.0966 0.0502 0.019
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or on Fisher’s combination based on p-values, TK =
∑
j∈K −2 log(pj)

> m2lP <- -2*log(P)
> adjP <- clostest(m2lP,combi="sum")
> adjP
[1,] 0.0966 0.0438 0.0238

It is often useful to use the step-down procedures based on the maximum test
statistic TK = max(T 2

j : j ∈ K)

> source("stepdown.R")
> adjP <- stepdown(T)
> adjP
[1,] 0.0966 0.0502 0.019

or minimum p-value TK = min(pj : j ∈ K)

> mP <- -P
> adjP <- stepdown(mP)
> adjP
[1] 0.0966 0.0532 0.0210

because they allow for a shortcut in the number of computations; note, how-
ever, that the result based on TK = max(T 2

j : j ∈ K) does not change by
using the closed testing or the step-down procedure, but the latter is faster.

1.7 Multiple Comparisons

In a one-way classification involving different treatments, specific comparisons
are often of interest to the researcher. Classical examples include pairwise com-
parisons (i.e., all treatments with each other) and many-to-one comparisons
(i.e., competing treatments with a control). Commonly used multiple com-
parison procedures are discussed in Hochberg and Tamhane’s (1987) book,
but nonparametric procedures have not been developed to the same extent as
their normal theory counterparts. Because the normality assumption is not
always valid, there is a need for distribution-free procedures. In particular,
the subject of permutation-based multiple comparison procedures controlling
the familywise error rate in the strong sense is still far from fully developed.

In the case of pairwise comparisons, Miller (1981) proposed a procedure
based on the permutation distribution of the range of the sample means, but
Petrondas and Gabriel (1983) showed that this procedure doesn’t control the
familywise error rate.

In the case of many-to-one comparisons, Westfall et al. (1999) gave an
example with Bernoulli responses where the permutation-based procedure of
Westfall and Young (1993) performs badly.

Suppose we have the data displayed in Table 1.3, and we are interested in
the comparisons of treatments 1 and 2 with the control (treatment 0), with
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one-sided alternatives specifying higher and lower probabilities of success,
respectively.

Table 1.3. Teresa Neeman’s example, from Westfall et al. (1999).

Treatment # success / # trials Percent

0 3 / 4 75%
1 1 / 4 25%
2 0 / 2000 0%

Here Yj ∼ Bernoulli(θj) and the multiple testing problem is defined by
H1 : θ0 = θ1 against H ′

1 : θ0 < θ1 and H2 : θ0 = θ2 against H ′
2 : θ0 > θ2.

The statistic testing Hj is defined as Ti = −pi, where pi is the p-value from
Fisher’s one-sided exact test. By performing PROC MULTTEST implemented in
SAS, the output is as follows:

Contrast Raw_p StepPerm_p

1 - 0 0.9857 0.0076
0 - 2 0.0001 0.0001

For the second comparison, the procedure gives a multiplicity-adjusted p-
value of 0.0076, supporting the alternative hypothesis that treatment 1 has a
greater success probability than the control. Westfall et al. (1999) commented
on this counterintuitive result as a consequence of failure of the subset piv-
otality condition.

Under the “complete” null HK0 :
⋂k
j=1 Y0

d= Yj , we can randomly assign

all
∑k
j=0 nj observations to any of the groups; that is, the group of transfor-

mations consisting of all permutations of the data. However, if only a subset
of the hypotheses are true, then this group of transformations is not valid.
Under HK :

⋂
i∈K Y0

d= Yj , a valid group of transformations such that the
randomization hypothesis holds consists of those permutations that permute
observations within the sample 0 and the samples j ∈ K (Romano and Wolf,
2005, Example 6). As a consequence, for K ⊂ K ′, the permutation joint dis-
tribution of (Tj : j ∈ K) under HK is not the same as the permutation joint
distribution of (Tj : j ∈ K) under HK′ . This means that the joint distribution
of the test statistics used for testing the hypotheses Hj , j ∈ K, is affected by
the truth or falsehood of the remaining hypotheses. As a consequence, the
subset pivotality condition of Westfall and Young (1993) fails. Indeed, subset
pivotality requires that the joint distribution of (Tj : j ∈ K) under HK be the
same as the joint distribution of (Tj : j ∈ K) under the complete null HK0 .

To illustrate what is going wrong by using the permutation-based Westfall
and Young procedure in the case of multiple comparisons, consider Teresa
Neeman’s example. The observed test statistics are T1 = −0.9857 and T2 =



34 1 Permutation Tests

−0.0001. For a nominal α level, say 5%, the procedure starts by rejecting the
“complete” null H{1,2} : H1 ∩H2 based on the critical value c{1,2}(α) = −1.
This is because there are so many observations in the second group, all zeros,
and thus most permutations will have the four occurrences in the second
treatment and the p-values for the 1− 0 and 0− 2 comparisons will be 1 since
we compare 0/4 with 0/4 and 0/4 with 4/2000 by Fisher’s one-sided exact
tests.

In its single-step form, the procedure rejects both H1 and H2 since T1 and
T2 are greater than c{1,2}(α), but because subset pivotality fails, it guarantees
only weak control and not strong control (see also Romano and Wolf, 2005,
Example 1).

In its stepwise form, once H2 is rejected, the procedure removes it and
test H1 based on a critical value equal to −1’s obtained by still considering
all possible permutations that satisfy condition (i) but not condition (ii) of
Theorem 1.2. Indeed, because only H1 is assumed to be true, for the permuta-
tions other than those shuffling the first treatment and control observations,
the randomization hypothesis doesn’t hold.

To fix the problem, by also computing c1(α) = −0.75 by using permuta-
tions between samples 0 and 1 and c2(α) = −1 by using permutations between
samples 0 and 2, we see that condition (i) is not satisfied. Thus a closed testing
procedure is required: We reject only H2 because T1 is greater than c{1,2}(α)
but less than c1(α). The following diagram gives the raw p-values for the hy-
potheses, so that the adjusted p-values are 0.9857 and 0.0001 for H1 and H2,
respectively.

H12

H1 H2

p12 = 0.0001

p1 = 0.9857 p2 = 0.0001

By testing all the 2k − 1 intersection hypotheses HK by using valid
permutations, the closure method provides strong control of the FWE, al-
though this can be computationally prohibitive for large k. As an alternative,
one may construct separately for each hypothesis Hj the corresponding per-
mutation distribution Tj , obtaining an α-level test for Hj . The collection
{(Hj , Tj), i = 1, . . . , k} obtained forms a testing family because, for every
i, the permutation distribution of Tj is completely specified under Hj . But
it is not a joint testing family (Hochberg and Tamhane, 1987) because, for
every K, the joint distribution of (Tj : j ∈ K) is not specified under HK .
Indeed, with only the permutation marginal distributions available, nothing
is known about the joint distribution of the Tj ’s. However, one can use Holm’s
procedure to control the FWE conservatively.

The previous discussion dealt with many-to-one comparisons, so that any
subset of the hypotheses H1, . . . ,Hk can be true, with the remaining ones
being false. This condition is not satisfied for all pairwise comparisons Hjj′ :
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Yj
d= Yj′ because for instance the set {H12,H23} cannot be the set of all

true hypotheses since the truth of H12 and H23 implies the truth of H13. In
Holm’s terminology, we can say that many-to-one comparisons satisfy the free
combination condition, whereas all pairwise comparisons represent restricted
combinations. When the hypotheses are restricted, then certain combinations
of true hypotheses necessarily imply truth or falsehood of other hypotheses. In
these cases, the adjustments may be made smaller than the free combination
adjusted p-values while maintaining strong control of the FWE. For example,
Shaffer (1986) modified Holm’s procedure to give more powerful tests.

As a final remark, there is a need for better permutation-based proce-
dures, and it is reasonable to explore the stepwise approach incorporating the
dependence among test statistics in an attempt to improve the power while
maintaining FWE control.



5

Nonparametric One-Way ANOVA

The one-way ANOVA is a well-known testing problem for the equality in
distribution of C ≥ 2 groups of sampling data, where C represents the number
of treatment levels in an experiment. In this framework, units belonging to
the jth group, j = 1, ..., C, are presumed to receive treatment at the jth
level. When side assumptions specific to the problem ensure that responses
are homoscedastic, the equality of C distributions may be reduced to that of
C mean values. Here we consider fixed effects in additive response models,

Yij = µ+ δj + σεij i = 1, . . . , nj ; j = 1, . . . , C, (5.1)

where µ is a population constant, δj are the fixed treatment effects that satisfy
the contrast condition

∑
j δj = 0, εji are exchangeable random errors with

zero mean value and unit scale parameter, σ is a scale coefficient that is
assumed to be invariant with respect to groups, and C is the number of groups
into which the data are partitioned. Note that, in this model, responses are
assumed to be homoscedastic.

Observe that these conditions are equivalent to equality of C distributions:
H0 : {Y1

d= Y2
d= . . .

d= YC}. Also note that this equality implies that data Y
are exchangeable; in particular, they may be viewed as if they were randomly
attributed to the groups.

In the case of normality, this problem is solved by Snedecor’s well-known
F test statistic:

F =
(N − C)

∑C
j=1 nj [Ȳj − Ȳ ]2

(C − 1)
∑C
j=1

∑nj

i=1[Yij − Ȳj ]2
. (5.2)

Let us assume that we can maintain homoscedasticity and the null hypoth-
esis in the form H0 : {Y1

d= Y2
d= . . .

d= YC} but that we cannot maintain
normality. Assuming the existence, in H0, of a common nondegenerate, con-
tinuous, unknown distribution P , the problem may be solved by a rank test
such as Kruskal-Wallis or by conditioning with respect to a set of sufficient
statistics (i.e., by a permutation procedure). Note that, because of condi-
tioning, the latter procedure allows for relaxation of continuity for P . The

D. Basso et al., Permutation Tests for Stochastic Ordering and ANOVA, Lecture
Notes in Statistics, 194, DOI 10.1007/978-0-387-85956-9 5,
c© Springer Science+Business Media, LLC 2009
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permutation solution also allows for relaxation of some forms of homoscedas-
ticity for responses in H1. Indeed, the generalized one-way ANOVA model
allowing for unbiased permutation solutions assumes that the hypotheses are

H0 : {Y1
d= Y2

d= . . .
d= YC} against H1 : {Y1

d

6= Y2

d

6= . . .
d

6= YC}, with the
restriction that, for every pair h 6= j, h, j = 1, . . . , C, the corresponding re-
sponse variables are stochastically ordered (pairwise dominance relationship)

according to either Yh
d
> Yj or Yh

d
< Yj . Thus, ∀ y ∈ IR, and the associated

c.d.f.s are related according to either Fh(y) ≤ Fj(y) or Fh(y) ≥ Fj(y).
This pairwise dominance assumption may correspond to a model in which

treatment may affect both location and scale coefficients, as for instance in
{Yji = µ + δj + σ(δj) · εij , i = 1, . . . , nj , j = 1, . . . , C}, where σ(δj) are
monotonic functions of treatment effects δj or their absolute values |δj |, pro-
vided that σ(0) = σ and pairwise stochastic ordering on c.d.f.s is preserved.
The latter model is consistent with the notion of randomization. Therefore,
(i) in the randomization context, units are assumed to be randomly assigned
to treatment levels, so that H0 implies exchangeability of responses; (ii) in
the alternative, treatment may jointly affect location and scale coefficients,
so that the resulting permutation distributions become either stochastically
larger or smaller than the null ones. Also note that the pairwise dominance
assumption is consistent with a generalized model with stochastic effects of
the form {Yji = µ+ σ · εij +∆ji, i = 1, . . . , nj , j = 1, . . . , C}, where ∆ji are
the stochastic treatment effects that satisfy the (pairwise) ordering condition

that for every pair h 6= j, i, j = 1, . . . , C, we have either ∆h

d
> ∆j or ∆h

d
< ∆j .

5.1 Overview of Nonparametric One-Way ANOVA

Formalizing the testing problem for a C-sample one-way ANOVA, we assume
that Y = {Y1, . . . ,YC} represents the data set partitioned into C groups,
where Yj = {Yji, i = 1, . . . , nj}, j = 1, . . . , C, are i.i.d. observations from
nondegenerate distributions Pj . We also assume that the sampling means are
proper indicators of treatment effects. Under the response (homoscedastic)
model (5.1), the hypotheses are

H0 : {Y1
d= . . .

d= YC} = {δ1 = . . . = δC = 0}

against H1 : {at least one equality is not true}. If it is suitable for analysis, we
may consider a data transformation ϕ, so that related sampling means become
proper indicators for treatment effects. According to the CMC procedure,
iterations are now done from the pooled data set Y = [Y1, . . . ,YC ], which is
a set of sufficient statistics for the problem in H0. If associative test statistics
are used, the related permutation sample space Y/Y contains N !/(n1!·. . .·nC !)
distinct points, where N =

∑
j nj is the total sample size.
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According to the assumptions above, a suitable test is the Kruskal-Wallis
rank test, which is based on the statistic

KW =

12 ·
C∑
j=1

nj ·
[
Rj − (n+ 1)/2

]2 · 1
N(N + 1)

,

where Rji is the rank of Yji, j = 1, . . . , C, i = 1, . . . , nj , within the pooled
data set Y, and Rj =

∑
iRji/nj , j = 1, . . . , C, is the jth mean rank. For

large sample sizes nj , the null distribution of KW is approximated by that of
a central χ2 with C − 1 degrees of freedom.

The problem of testing the null hypothesis H0 : {P1 = . . . = PC} (the C
groups have the same distribution) against the alternative H1 : {H0 is not
true} (at least one distribution is different from the others) may be solved, for
example, by an Anderson-Darling type test, which is based on the statistic

T ∗2AD =
C∑
j=1

nj∑
i=1

[
F ∗j (Y ∗(i)j)− F̂·(Y

∗
(i)j)

]2
·
(
F̂·(Y ∗(i)j)[1− F̂·(Y

∗
(i)j)]

)−1

,

where Y ∗(i)j are the permutation order statistics in the jth group, F̂·(y) =∑
j nj · F̂j(y)/n is the pooled empirical distribution function, and all the other

symbols have obvious meanings.

5.2 Permutation Solution

In order to solve the one-way ANOVA problem, let us presume that side
assumptions are such that the response data behave according to the additive
model (5.1) and that treatment effects satisfy the constraint

∑
j δj = 0. In

particular, when σ(δj) = σ, we have the so-called homoscedastic situation.
Of course, without loss of generality, the hypotheses for this problem become
H0 : {δ1 = . . . = δC = 0} against H1 : {H0 is not true}, and a suitable test
statistic is given by (5.2). Therefore, in order to obtain a permutation test,
the following algorithm applies:

• Compute the test statistic (5.2) from the observed data y = [y1,y2, . . . ,yC],

F =
(N − C)

∑C
j=1 nj [ȳj − ȳ]2

(C − 1)
∑C
j=1

∑nj

i=1[yij − ȳj ]2
.

• Select a large number of permutations B. Then, for b = 1, . . . , B, repeat:
1. Obtain a permutation of the whole data vector y∗ = πby, where πb is

the bth random permutation.
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2. Compute the test statistic (5.2) from the observed data,

F ∗b =
(N − C)

∑C
j=1 nj [ȳ

∗
j − ȳ]2

(C − 1)
∑C
j=1

∑nj

i=1[y
∗
ij − ȳ∗j ]2

.

• Compute the p-value of the test as

p =
#[F ∗b ≥ F ]

B
.

Note that, being a permutation test, the constant (N − C)/(C − 1) can be
omitted. Moreover, we have, for any permutation,

F ∗b ∼
∑C
j=1 nj [ȳ

∗
j − ȳ]2∑C

j=1

∑nj

i=1[y
∗
ij − y]−

∑C
j=1 nj [ȳ

∗
j − ȳ]2

=
T (y∗)

K − T (y∗)
,

where K =
∑
j

∑
i(y

∗
ij − ȳ)2 is constant and the symbol “∼” means propor-

tional to. Therefore, the test statistic (5.2) is permutationally equivalent to
(i.e., it is a nondecreasing monotonic function of) the test statistic

T (y) =
C∑
j=1

nj [ȳj − ȳ]2. (5.3)

This means that, for every sample y ∈ Y, we can apply the algorithm of this
section with (5.2) replaced by (5.3) and obtain to the same inferential conclu-
sions. If the null hypothesis is rejected, it is often of interest to investigate in
detail which experimental group(s) led to its rejection. This is usually done by
the parametric post-hoc comparison, like Tukey’s honest significant difference
(HSD).

In post-hoc comparisons, a pairwise testing procedure is applied to all
possible pairs of groups (i.e., there are C(C − 1)/2 hypotheses of interest:
Hjk

0 : δj = δk, 1 ≤ j < k ≤ C). Thus, a collection of two-sample tests for any
specific hypothesis is performed, and a multiplicity problem arises because
all tests are done simultaneously. The nonparametric combination introduced
in Chapter 1 allows us to view the test for one-way ANOVA problem as a
combination of partial tests for pairwise comparisons. To see this, note that
(5.3) is permutationally equivalent to

T ′(y) =
C∑
j=1

C∑
k 6=j

njnk[ȳj − ȳk]2, (5.4)

To see this, recall the deviance decomposition
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C∑
j=1

C∑
k 6=j

njnk[ȳj − ȳk]2 = 2
C∑
j=1

C∑
k 6=j

njnkȳ
2
j − 2

C∑
j=1

nj ȳj

C∑
k 6=j

nkȳk

= 2
C∑
j=1

(N − nj)nj ȳ2
j − 2

C∑
j=1

nj ȳj [Nȳ − nj ȳj ]

= 2
C∑
j=1

(N − nj)nj ȳ2
j − 2N2ȳ2 + 2

C∑
j=1

n2
j ȳ

2
j

= 2N
C∑
j=1

nj [ȳ2
j − ȳ]2,

where N =
∑C
k=1 nk. The test statistic (5.4) is a direct combination of C(C−

1)/2 partial test statistics T 2
jk, where

Tjk =
√
njnk[ȳj − ȳk]. (5.5)

Note that T 2
jk is suitable for assessing Hjk

0 against the alternative Hjk
1 : δj 6=

δk. Now the global null hypothesis can be viewed as an intersection of partial
null hypotheses,

H0 = {δ1 = . . . = δC = 0} =
⋂
j 6=k

Hjk
0 .

Under H0, the response elements are exchangeable, and this allows us to
simultaneously perform the partial tests to assess Hjk

0 : δj = δk, 1 ≤ j < k ≤
C, by computing the statistics (5.5) at each permutation of the response. Large
values of each partial test are significant against Hjk

0 , and large values of their
direct combination are significant againstH0. We can therefore simultaneously
obtain partial tests for post-hoc comparisons and a global test for the one-
way ANOVA problem. The null distribution of partial tests is obtained by
computing, at each permutation, the value of the test statistics (5.5)

T ∗2jk = njnk[ȳ∗j − ȳ∗k]2 1 ≤ j < k ≤ C, (5.6)

and the partial p-values by computing

pjk =
#[T ∗2jk ≥ T 2

jk]
B

1 ≤ j < k ≤ C.

The null distribution of the global test is obtained by computing, at each
permutation, the statistic

T ′∗ =
C∑
j=1

C∑
k 6=j

T ∗2jk =
C∑
j=1

C∑
k 6=j

njnk[ȳ∗j − ȳ∗k]2,
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and the global p-value is obtained accordingly. If the global p-value is signif-
icant, then one can look at the partial p-values in order to do the post-hoc
comparisons. Since the partial p-values are done simultaneously, a correction
for multiplicity is required.

5.2.1 Synchronizing Permutations

Post-hoc comparisons represent the further step of any accurate statistical
analysis if the H0 is rejected. But, if one wants to perform post-hoc com-
parisons through permutation tests, some care is needed. Actually, there are
several ways to permute data. In this section we investigate some propos-
als and compare them in order to suggest the “best” way of permuting the
response, at least in balanced designs.

The fisrt proposal is suggested by the global null hypothesis: Since under
H0 the observations of all groups are exchangeable, we can apply pooled per-
mutations involving the whole data vector. However, if we are interested in
multiple comparisons, then a further aspect is to be considered: Each com-
parison should only involve the observations belonging to the pair of groups
considered; for example, while comparing the jth and kth groups, the infer-
ence should be made on the paired vector yjk = [yj

′,yk
′]′ independently. This

is because if we permute the whole vector of data, observations from possibly
active groups (i.e., with δl 6= 0, l 6= j, k) could influence the partial p-value
pjk.

Another aspect to take into account is that the partial tests Tjk’s are
dependent. Indeed, let C = 3, and consider the balanced case with nj = n ∀
j: For any permutation, we have the equivalence

T ∗12 = T ∗13 − T ∗23.

If the design is balanced, a further possibility is to apply synchronized permu-
tations (see Chapter 6). They can be obtained by permuting the rows of the
pseudodata matrix

Y =
[
y1 y1 y2

y2 y3 y3

]
=



y11
y21
...
yn1

y12
y22
...
yn2





y11
y21
...
yn1

y13
y23
...
yn3





y12
y22
...
yn2

y13
y23
...
yn3


.

We have already shown in Chapter 1 that the NPC methodology accounts
for dependencies among partial statistics. This is done by obtaining the joint
(permutation) null distribution of partial statistics. As a consequence, paired
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permutations should be done not independently but jointly. Applying synchro-
nized permutations allows both maintaining the dependencies among partial
tests and involving the observations of each comparison at the same time. Let
Y∗ be a row permutation of Y. Then the joint distribution of partial statistics
is given by

[T ∗12, T
∗
13, T

∗
23] = [1n

′,−1n
′]Y∗,

where 1n is an n× 1 vector of 1s.
Figures 5.1, 5.2 and 5.3 show the differences in the joint distribution of

partial statistics when applying pooled, paired, and synchronized permuta-
tionspermutation!synchronized, respectively. Note how the inner dependencies
among partial tests are maintained in Figures 5.1 and 5.3, but not in Figure
5.2.
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Fig. 5.1. Joint distribution of [T ∗12, T
∗
13, T

∗
23] when permuting the whole data vector.
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Fig. 5.2. Joint distribution of [T ∗12, T
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13, T

∗
23] when permuting yjk independently.
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Fig. 5.3. Joint distribution of [T ∗12, T
∗
13, T

∗
23] with synchronized permutations.
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Table 5.1 reports the rejection rates of partial and global tests that are
related to Figures 5.1, 5.2, and 5.3. The simulation is carried on under H0,
with C = 3, nj = 5, and normally distributed errors. Note that partial tests for
multiple comparisons achieve the nominal level α whatever permutations are
applied, but the global test T ′ is anticonservative when paired permutations
are applied. This is because the dependence among partial tests is not taken
into account here, and therefore there are some permutation points that do not
belong to the domain of the global test statistic T ′. These simulations also
show that the global test allows controlling of the familywise error (FWE)
in the weak sense. Pooled permutations are suitable in the unbalanced case,
although the related global test is conservative. Synchronized permutations, on
the contrary, allow exact testing for both partial and global null hypotheses.
The limitation about applying synchronized permutations is the cardinality
of the support of the global test statistic when nj ≡ n is small. See Section
6.3 for further details.

Table 5.1. Rejection rates of Hjk
0 and H0 under H0; C = 3, nj = 5, εij ∼ N(0, 1).

Comparison ∆1−2 ∆1−3 ∆2−3 T ′

T.E. 0 0 0 -

α Pooled Y∗

0.05 0.043 0.049 0.047 0.040
0.10 0.092 0.096 0.089 0.088
0.20 0.180 0.187 0.190 0.185

α Paired Y∗

0.05 0.052 0.049 0.051 0.105
0.10 0.097 0.099 0.104 0.152
0.20 0.208 0.208 0.203 0.239

α Synchronized Y∗

0.05 0.048 0.048 0.051 0.046
0.10 0.103 0.102 0.100 0.109
0.20 0.194 0.193 0.202 0.207

If we are dealing with a balanced design (i.e., if nj = n ∀ j), then synchro-
nized permutations are to be preferred. We show that by a power simulation
study comparing pooled and synchronized permutations, the results of which
are shown in Table 5.2. There we have set δ1 = 2σ, δ2 = δ3 = 0, and the
remaining settings are as in the simulation above.

Note that the rejection rates of the one comparison under the null hypoth-
esis are close to the nominal levels if synchronized permutations are applied,
whereas the pooled permutations produce conservative partial tests. Note also
that the rejection rates of the global null hypothesis are far bigger than the
nominal levels.
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Table 5.2. Rejection rates of partial and global null hypotheses under H0.

pooled Y∗ Synchronized Y∗

True ∆ ∆1−2 ∆1−3 ∆2−3 T ′ ∆1−2 ∆1−3 ∆2−3 T ′

α 2σ 2σ 0 - 2σ 2σ 0 -

0.05 0.714 0.776 0.012 0.838 0.736 0.752 0.054 0.810
0.10 0.856 0.872 0.028 0.920 0.872 0.864 0.096 0.908
0.20 0.946 0.950 0.080 0.966 0.942 0.934 0.202 0.960

For these reasons, we suggest applying synchronized permutations at least
when the design is balanced and n is not too small (say n ≥ 4). Otherwise
there is no guarantee that the nominal significance levels will be achieved.

5.2.2 A Comparative Simulation Study for One-Way ANOVA

The permutation test for one-way ANOVA and post-hoc comparisons has been
evaluated and compared with other tests through a simulation study. The
global permutation test (5.4) is compared with the nonparametric Kruskal-
Wallis test and the parametric F test. The partial permutation tests have
been compared with Tukey’s HSD. The simulations refer to an experimental
design with C = 5 groups and three observations per group. Data are normally
distributed with location-shift vector δ = [δ1, . . . , δ5] and variance σ2 = 1. All
simulations were run with 1000 MC data generations. In the simulations of
this section, we have applied the pooled permutations since here the cardinality
of the support of the global test statistic is high enough to guarantee that the
usual nominal significance levels are achievable (#[T] = [nC]!).

The first scenario refers to the null hypothesis (with δ = [0, 0, 0, 0, 0]′),
whereas the second refers to a location vector δ = [0, 1, 0, 1, 0]. Table 5.3 re-
ports the results of the one-way ANOVA test for the permutation test and
the competitors considered. Under H0 (top of the table), the global test per-
forms very similarly to the F test, whereas the Kruskal-Wallis test seems to
be more conservative. This fact may be due to the small sample size (the
null distribution of the Kruskall-Wallis test is asymptotic). As regards the
power comparisons, the permutation test is again very close to the F test
performance.

Table 5.4 shows in detail the post-hoc comparison tests. The left side of the
table refers to the simulation under H0, and the right side concerns the power
simulation with δ = [0, 1, 0, 1, 0]′. Since the R function we provide computes
nonadjusted p-values (see Subsection 5.7.1), the nominal significance levels of
pairwise comparisons are corrected by applying the Bonferroni adjustment.
As regards Tukey’s HSD, instead we applied the R function Tukey.HSD, which
provides adjusted p-values, which can be directly compared with the nominal
α levels.
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Table 5.3. Rejection rates: global permutation, Kruskal-Wallis, and F tests. C = 5,
nj ≡ 3, and standard normal errors.

δ = [0, 0, 0, 0, 0]′

α T′ KW F

0.05 0.056 0.024 0.057
0.10 0.108 0.090 0.110
0.20 0.205 0.212 0.211

δ = [0, 1, 0, 1, 0]′

α T′ KW F

0.05 0.184 0.091 0.184
0.10 0.300 0.226 0.294
0.20 0.433 0.447 0.434

Table 5.4. Rejection rates: partial permutation tests and Tukey’s HSD. C = 5,
nj ≡ 3. Standard normal errors.

δ = [0, 0, 0, 0, 0]′ δ = [0, 1, 0, 1, 0]′

Partial tests Tukey’s HSD Partial tests Tukey’sHSD
α .005 .01 .02 .05 .1 .2 .005 .01 .02 .05 .1 .2

1-2 .007 .014 .022 .011 .025 .039 .025 .044 .073 .047 .087 .142
1-3 .005 .009 .022 .011 .018 .045 .005 .011 .017 .013 .024 .046
1-4 .003 .010 .019 .010 .019 .035 .030 .048 .077 .054 .097 .152
1-5 .007 .015 .023 .009 .018 .046 .002 .009 .019 .010 .026 .038
2-3 .004 .008 .017 .008 .016 .032 .026 .040 .072 .055 .090 .136
2-4 .005 .007 .018 .011 .018 .045 .000 .001 .008 .010 .022 .043
2-5 .008 .016 .022 .012 .024 .056 .031 .037 .070 .050 .084 .140
3-4 .002 .012 .023 .010 .023 .045 .031 .052 .083 .058 .088 .152
3-5 .005 .008 .018 .009 .017 .043 .003 .005 .013 .012 .020 .043
4-5 .006 .012 .021 .012 .020 .044 .025 .036 .069 .051 .085 .150

The group pairs are reported in the first column of Table 5.4. Note how
under H0 the rejection rates of the permutation partial tests are close to
the nominal levels, whereas Tukey’s HSD is conservative. In the power sim-
ulation columns, the comparisons under the alternative hypothesis Hjk

1 are
highlighted in bold-face. Note how the permutation partial tests can detect
the δ-shifts in the alternative Hjk

1 , whereas Tukey’s HSD recognizes none.

5.3 Testing for Umbrella Alternatives

In many experimental situations, such as evaluating marginal gain in per-
formance efficiency as a function of degree of training, drug effectiveness as
a function of time, or crop yield as a function of the quantity of fertilizer



5.3 Testing for Umbrella Alternatives 115

16−19 20−34 35−54 55−69 >70

5
6

7
8

9
10

11

Group

Sc
or
e

Fig. 5.4. Boxplot representation of the example from Mack and Wolfe (1981).

applied (to name but a few), the main interest is on evaluating the null hy-
pothesis for one-way ANOVA against a specific alternative, which is usually
known as the umbrella alternative. With the same symbols as in previous
sections, let Y = [Y1,Y2, . . . ,YC ]′ be C independent random samples, with
Yj = [Y1j , Y2j , . . . , Ynjj ], j = 1, . . . , C having continuous distribution func-
tion Fj(y). For such C sample data, we are often interested in testing the null
hypothesis that all C samples came from a single common distribution,

H0 : F1(y) = F2(y) = · · · = FC(y), ∀y ∈ IR, (5.7)

against the umbrella alternative hypothesis,

H1 : F1(y) ≥ · · · ≥ Fk−1(y) ≥ Fk(y) ≤ Fk+1(y) ≤ · · · ≤ FC(y), (5.8)

with at least one strict inequality for at least one y value. We refer to these
as umbrella alternatives because of the configuration of the corresponding
population means and call k the point peak of the umbrella (see Figure 5.4).
Note that, if the peak group is known to be equal to k̂, then H1 may be
decomposed as:

H1 : {F1(y) ≥ · · · ≥ Fk̂−1(y) ≥ Fk̂(y)}
⋂
{Fk̂(y) ≤ Fk̂+1(y) ≤ · · · ≤ FC(y)};

that is, the alternative hypothesis may be viewed as the intersection of two
simple stochastic ordering alternatives.

Let us introduce the umbrella alternative problem by an example that
appeared in Mack and Wolfe (1981, p. 178). The data of Table 5.5 are values in
the range typically obtained on the Welchsler Adult Intelligence Scale (WAIS)
by males of various ages. It is generally believed that the ability to comprehend
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Table 5.5. WAIS scores in five male groups. Data from Mack and Wolfe (1981).

Age Group

15-19 20-34 35-54 55-69 >70

8.62 9.85 9.98 9.12 4.80
9.94 10.43 10.69 9.89 9.18

10.06 11.31 11.4 10.57 9.27

9.54 10.53 10.69 9.86 7.75

Sample Means

ideas and learn is an increasing function of age up to a certain point, and then
it declines with increasing age.

The scope of the analysis is to determine the presence of a significant peak
(if any). This example will be recalled throughout the following sections.

5.4 Simple Stochastic Ordering Alternatives

Under the assumption of model (5.1), let us consider the simple stochastic
ordering problem for the first k̂ samples to assess the null hypothesis F1(y) =
F2(y) = · · · = Fk̂(y) ∀ y ∈ IR against the alternative F1(y) ≥ · · · ≥ Fk̂−1(y) ≥
Fk̂(y). Note that, under the null hypothesis, the elements of the response are
exchangeable (this fact enables us to provide the null distribution of a proper
test statistic).

If k̂ = 2, the stochastic ordering problem reduces to a two-sample problem
with a restricted alternative. If k̂ > 2, then let us consider the whole data
set to be split into two pooled pseudo-groups, where the first is obtained by
pooling together data of the first j (ordered) groups and the second by pooling
the rest. In order to better understand the reason why we pool together the
ordered groups, suppose k̂ = 3 and let us consider the following theorem.

Theorem 5.1. Let X1, X2, X3 be mutually independent random variables
that admit cumulative distribution function Fj(t), t ∈ IR, j = 1, 2, 3. Then, if

X1

d
≤ X2

d
≤ X3, we have

(i) X1

d
≤ X2 ⊕X3 and (ii) X1 ⊕X2

d
≤ X3,

where W ⊕ V indicates a mixture of random variables W and V .

Proof. By definition, X1

d
≤ X2

d
≤ X3 is equivalent to F1(t) ≥ F2(t) ≥ F3(t),

t ∈ IR. The random variable X1 ⊕X2 has a cumulative distribution function
equal to

FX1⊕X2(t) = ω1F1(t) + ω2F2(t) with ω1 + ω2 = 1,
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and ωj > 0, j = 1, 2. Therefore, by hypothesis,

FX1⊕X2(t) = ω1F1(t) + ω2F2(t)
≥ ω1F2(t) + ω2F2(t) = F2(t),

so X1 ⊕X2

d
≤ X2 and we have proved (ii). In the same way, let FX2⊕X3(t) =

ω2F2(t) + ω3F3(t) with ω2 + ω3 = 1 and ωj > 0, j = 2, 3. Then

FX2⊕X3(t) = ω2F2(t) + ω3F3(t)
≤ ω2F2(t) + ω3F2(t) = F2(t),

therefore X2 ⊕X3

d
≥ X2, and this proves (i).

Now, conditional on the observed data, consider the pooled vector of ob-
servations y1 ] y2 = [y1,y2]′, where yj is a vector of nj observations from
Yj , j = 1, 2. Then Y1 ⊕ Y2 has (empirical) cumulative distribution function
equal to

F̂Y1⊕Y2(y) =
1

n1 + n2
#[Yij ≤ y]

=
n1

n1 + n2

#[Yi1 ≤ y]
n1

+
n2

n1 + n2

#[Y`2 ≤ y]
n2

= ω1F̂Y1(y) + ω2F̂Y2(y),

so the random variable describing the pooled vector of observations Y1 ]Y2

has a mixture distribution. By extending this result to the k̂ groups and by

applying Theorem 5.1, we have that if Y1

d
≤ Y2

d
≤ · · ·

d
≤ Yk̂(y) holds, then

Y1⊕2⊕···⊕j
d
≤ Yj+1⊕j+2⊕···⊕k̂ ∀ j ∈ {1, . . . , k̂ − 1}.

In general, let Z(1)j = [Y1,Y2, . . . ,Yj ]′ be the first (ordered) pseudo-group
and let Z(2)j = [Yj+1, . . . ,Yk̂]

′ be the second (ordered) pseudo-group, j =
1, . . . , k̂ − 1. In the null hypothesis, data of every pair of pseudo-groups are
exchangeable because related pooled variables satisfy the relationships Z1(j)

d=

Z2(j), j = 1, . . . , k̂ − 1. In the alternative, by Theorem 5.1, we have Z1(j)

d
≤

Z2(j), which corresponds to the monotonic stochastic ordering (dominance)
between any pair of pseudo-groups (i.e., for j = 1, . . . , k̂ − 1). This suggests
that we express the hypotheses in the equivalent form

H0 :
{⋂k̂−1

j=1
(Z1(j)

d= Z2(j))
}

against
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H↗
1k̂

:
{⋃k̂−1

j=1
(Z1(j)

d
≤ Z2(j))

}
,

where a breakdown into a set of sub hypotheses is emphasized.
Let us pay attention to the jth sub hypothesis H0j : {Z1(j)

d= Z2(j)}

against H1j : {Z1(j)

d
≤ Z2(j)}. Note that the related sub-problem corresponds

to a two-sample comparison for restricted alternatives, a problem that has
an exact and unbiased permutation solution (for further details see Pesarin,
2001). This solution is based on the test statistics (among others)

Tj↗ = Z̄2(j) − Z̄1(j) j = 1, . . . , k̂ − 1,

where Z̄2(j) and Z̄1(j) are sample means of the second pseudo-group and the
first pseudo-group, respectively. The test statistics Tj↗ are significant for large
values. We can obtain a permutation test for each sub problem H0(j) vs. H↗

1(j)

by the following algorithm:

• Let y = [y1,y2, . . . ,yk̂]
′ be the whole observed data vector of k̂ groups.

• For j = 1, . . . , k̂ − 1, repeat:
1. Let z1(j) = [y1, . . . ,yj ]′ and z2(j) = [yj+1, . . . ,yk̂]

′.
2. Compute the observed values of the partial test statistics for the sub-

problem H0(j) vs. H↗
1(j) by computing

Tj↗ = z̄2(j) − z̄1(j). (5.9)

• Consider a large number B of random permutations of the response y, and
let y∗b be a random permutation of y. At each step b = 1, . . . , B, repeat:
1. Let z∗1(j) be the pseudo-vector with the first n1(j) =

∑j
`=1 n` observa-

tions and z∗2(j) be the vector of the last n2(j) =
∑k̂
`=j+1 n` observations

of y∗b.
2. Obtain the permutation null distribution of the test statistic by com-

puting
T ∗j↗ = z̄∗2(j) − z̄

∗
1(j).

• Obtain the p-value of each sub - problem (partial p-value) by computing

pj↗ =
#[T ∗j↗ ≥ Tj↗]

B

The previous algorithm provides k̂− 1 p-values related to the sub hypotheses
H0(j) against H↗

1(j). In order to combine the partial information into a global
test we require the NPC methodology, which was introduced in Section 1.4.
Obvioulsy, if the alternative hypothesis is

H↘
1k̂

: Fk̂(y) ≤ Fk̂+1(y) · · · ≤ FK(y),

the previous algorithm still applies by replacing the test statistic (5.9) with

Tj↘ = Z1(j) − Z2(j).
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5.5 Permutation Test for Umbrella Alternatives

If the peak group is known, then the umbrella alternative can be detected
by combining together two partial tests for simple stochastic ordering alter-
natives. Since finding the peak is the aim of the study, it will generally be
unknown. However, we can detect the peak group by repeating the procedure
for a known peak as if every group were the known peak group; that is, for
each k ∈ 1, . . . , C, let

ψk↗ =
k∑
j=1

Tj↗ and ψk↘ =
C−1∑
j=k

Tj↘

be two partial tests to assess H0k : F1(y) = F2(y) = · · · = FC(y), y ∈
IR, against H↗

1k and H↘
1k , respectively, by applying the direct nonparametric

combination of the partial tests Tj↗’s and Tj↘’s. Then:

• Obtain the null distribution of the p-values to assess H0k against H↗
1k and

H↘
1k , respectively, say the pair (bpG∗k↗,

bpG∗k↘), b = 1, . . . , B. Let (pGk↗, p
G
k↘)

be the pair of p-values from the observed data (i.e., with y∗ = y).
• Obtain the observed value of the test statistic with Fisher’s NPC function:

Ψk = −2 log(pGk↗ · pGk↘).

• Obtain the null distribution of the Ψk by computing
bΨ∗k = −2 log(bpG∗k↗ · bp∗Gk↘) b = 1, . . . , B.

• Obtain the p-value for the umbrella alternative on group k as

πk =
#[bΨ∗k ≥ Ψk]

B
.

Note that πk is significant in favor of the umbrella alternative with peak
group k. That is, the smaller πk, the higher the evidence of having an
umbrella alternative on group k. In order to evaluate if there is a significant
presence of any umbrella alternative, we finally combine the p-values for
the umbrella alternative of each group. To do so:

• Obtain the null distribution of the p-value for the umbrella alternative on
group k as

bπ∗k =
#[Ψ∗

k ≥ bΨ∗k ]
B

, b = 1, . . . , B,

where Ψ∗
k is the vector with the permutation null distribution of πk.

• Apply Tippett’s combining function to the πk’s, providing the observed
value of the global test statistic for the umbrella alternative in any group,

Π = min(π1, π2, . . . , πC).

Note that small values of Π are significant against the null hypothesis for
at least one group.
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• Obtain the null distribution of Π by computing

bΠ∗ = min(bπ∗1 ,
bπ∗2 , . . . ,

bπ∗C) b = 1, . . . , B.

• Obtain the global p-value as

ΠG =
#[bΠ∗ ≤ Π]

B
.

Note that the combining functions are applied simultaneously to each random
permutation, providing the null distributions of partial and global tests as well.
The NPC methodology applies three times in this testing procedure:

1. when obtaining simple stochastic ordering tests to assess H↗
1k and H↘

1k for
the kth group (“direct” combining function);

2. when combining together the partial tests for simple stochastic ordering
alternatives, providing a test for the umbrella for each group as if it were
the known peak group (“Fisher’s” combining function); and

3. when combining together the partial tests for the umbrella on each group
(“Tippett’s” combining function).

A significant global p-value ΠG indicates that there is evidence in favor of an
umbrella alternative. The peak group is then identified by looking at the par-
tial p-values for the umbrella alternatives {π1, π2, . . . , πk, . . . , πC}. The peak
group (if any) is then the one with minimum p-value.

The proposed algorithm may still apply with different combining functions
at each step. The power behavior of some of them is discussed in Section
5.6. We have run the test for the umbrella alternative on data of Table 5.5.
The results are shown in Table 5.6. Here there is a significant presence of an
umbrella since the global p-value is equal to 0.014. The group 35−54 is the
peak group since its partial p-value is the smallest one (p3 = 0.00299).

Table 5.6. Permutation test results, WAIS score data. ΠG = 0.014.

Age 15−19 20−34 35−54 55−69 >70

pk 0.05794 0.00599 0.00299 0.12687 0.94306

5.5.1 The Mack and Wolfe Test

Mack and Wolfe (1981) propose a distribution-free test for umbrella alter-
natives that is based on a linear combination of (dependent) Mann-Whitney
statistics. They first introduce the test statistic in the case of a known um-
brella point, and then extend the solution to the case of an unknown peak.

When the peak group is known a priori to be the kth one, then (5.7) is
rejected in favor of (5.8) for large values of the test statistic
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Ak =
∑∑
1≤i<j≤k

Uij +
∑∑
k≤i<j≤C

Uji, (5.10)

where, according to previous notation,

Uij = #{Yi < Yj}.

That is, Uij is the Mann-Whitney statistic between the ith and jth samples.
Let

µ0(Ak) =
1
4

N2
1 +N2

2 −
C∑
j=1

n2
j − n2

k

 ,
σ2

0(Ak) =
1
72

2(N3
1 +N3

2 ) + 3(N2
1 +N2

2 )−
C∑
j=1

n2
j (2nj + 3)− n2

k(2nk + 3)


+

1
72

[12nkN1N2 − 12n2
kN ],

be the null mean and variance of Ak, where N1 =
∑k
j=1 nj , N2 =∑C

j=k nj , and N =
∑C
j=1 nj . Then, under (5.7), the asymptotic distribu-

tion of [Ak − µ0(Ak)]/σ0(Ak) is standard normal. The authors provided the
small sample null distribution of (5.10) by expressing Ak as a sum of several
independent (under (5.7)) random variables, each of which has an appropriate
Mann-Whitney null distribution. Then, by using the properties of the convo-
lution of independent random variables, they were able to provide the null
distribution of Ak for a variety of nj configurations.

The case of an unknown umbrella point is treated similarly, although the
authors first need to estimate the unknown umbrella peak k here. Mack and
Wolfe proposed to reject (5.7) in favor of the k-unknown alternative (5.8) for
large values of the test statistic

Ak̂ =
C∑
k=1

χk
Ak − µ0(Ak)
σ0(Ak)

. (5.11)

That is, the proposed test statistic is a (weighted) linear combination of peak-
known standardized statistics Aj given by (5.10), and µ0(Aj) and σ0(Aj) are
the corresponding null mean and variance. The random variables {χ1, . . . , χC}
are indicator variables of which group(s) has been estimated by the observed
data to be the peak group(s).

In order to determine the peak group, Mack and Wolfe suggest the follow-
ing algorithm:

• For k = 1, . . . , C, repeat:
1. Let
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Zk =
C∑
j 6=k

Ujk.

Zk is a two-sample Mann-Whitney statistic computed between the kth
sample and the remaining C − 1 samples. Large values of Zk indicate
a possible candidate for the peak group.

2. Let

µ0(Zk) =
nk(N − nk)

2
,

σ2
0(Zk) =

nk(N − nk)(N + 1)
12

,

be the null mean and variance of Zk.
• Let Z(1) = maxk Zk and r = #{Zk = Z(1)}. Then set

χk =
{

1/r if Zk = Z(1)

0 otherwise.

With these settings, one can compute the test statistic (5.11), which is an
average of known-peak statistics corresponding to the groups with largest Zk.
Note that, within this testing procedure, the probability of having ties in the
Zk’s is positive. If the sample sizes are equal, one does not need to compute
µ0(Zk) and σ2

0(Zk) in order to obtain the maximum Z(1). The authors provide
critical values corresponding to α sizes of .1, .05, and .01 obtained from exact
(for small smaples) and simulated null distribution of Ak̂. We refer to Mack
and Wolfe (1981) for details.

We have implemented an R function performing the Mack and Wolfe test
(see Subsection 5.7.2), which provided us the Ak̂ critical values for the com-
parative simulation study (see Section 5.6). These values were obtained by
running the function on independent 10,000 MC data generations under the
null hypothesis of equality in distribution in the C samples. We have only con-
sidered balanced designs, although the R function can be applied even with
unbalanced samples. The results are reported in Table 5.7.

As regards the example of Section 5.3, the Mack and Wolfe test gives a p-
value equal to 0.0328 (through a simulated null distrubtion), which indicates
the presence of an umbrella alternative. According to their test, the peak group
is the third one (age 35−54) and the value of the test statistic is A3 = 2.353
(see Subsection 5.7.2 and Table 5.8 for details).

5.6 A Comparative Simulation Study

In this section we compare the permutation test introduced in Section 5.5
with Mack and Wolfe’s test. The comparison is made through a simulation
study under the null hypothesis and under the alternative hypothesis.
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Table 5.7. Critical values of the Mack and Wolfe test for some n and C.

α
C n .10 .05 .01

3 3 1.889 2.324 2.556
3 5 1.837 2.060 2.589
3 7 1.791 2.094 2.609

5 3 1.924 2.228 2.633
5 5 1.914 2.200 2.725
5 7 1.951 2.240 2.776

7 3 1.986 2.233 2.782
7 5 1.980 2.285 2.831
7 7 1.997 2.276 2.834

Table 5.8. Mack and Wolf results, WAIS score data.

Age 15 − 19 20 − 34 35 − 54 55 − 69 > 70

Ak̂ 1.114013 2.118296 2.353394 0.6657503 −1.114013
Zk −0.5773503 1.010363 1.876388 −0.2886751 −2.020726

1− FA
k̂
(2.353394) = 0.0328

The chosen settings are K = 5 groups with nj ≡ 3 observations each (j =
1, . . . , 5). The simulated data have a standard normal distribution, possibly
with some nonrandom location shifts in some groups (under the alternative
hypothesis). Each simulation is based on 1000 independent Monte Carlo data
generations.

Let us discuss the results in Table 5.9 first. Here the rejection rates of
the null hypothesis at different α sizes are reported. The location shifts (δk’s)
are reported at the top of the table. The first part of Table 5.9 refers to the
permutation test. Note how the rejection rates in the global test column (in-
dicated by “ΠG”) are very close to the nominal ones. Then, for each group,
the rejection rates of the partial tests for peak-known umbrellas (the πk’s) are
also shown. In order to account for multiplicity, the partial p-values are com-
pared with the adjusted α level through a Bonferroni correction (therefore the
nominal level for the partial tests is α/5). Finally, the probability of observing
a peak in group k conditional on the rejection of the global null hypothesis is
reported for the same α sizes. The second part of Table 5.9 refers to Mack and
Wolfe’s test. Here the p-value is reported in the“p” column, and the rejection
rates of the null hypothesis are still very close to the nominal ones. Then, the
probability of observing a maximum in group k = 1, . . . , 5 conditional on the
rejection of the null hypothesis is reported for each group. These probabilities
should be close to 1/5 under H0.

Table 5.10 shows the behavior of the two tests under an umbrella alterna-
tive with peak on the third group. The table structure is the same as before.
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Table 5.9. Rejection rates of permutation and Mack and Wolfe tests under H0.

δ1 δ2 δ3 δ4 δ5
0 0 0 0 0

Permutation test

α p1 p2 p3 p4 p5 ΠG

0.05 0.015 0.012 0.015 0.009 0.024 0.050
0.1 0.023 0.016 0.039 0.008 0.021 0.096
0.2 0.048 0.041 0.053 0.018 0.045 0.175

α P{πk = minj πj |ΠG ≤ α} Total

0.05 0.111 0.333 0.111 0.333 0.111 1
0.1 0.238 0.143 0.095 0.238 0.286 1
0.2 0.278 0.194 0.111 0.222 0.194 1

Mack & Wolfe’s test

α P{k = maxj πj |p ≤ α} p

0.05 0.143 0.161 0.304 0.250 0.143 0.056
0.1 0.173 0.163 0.288 0.202 0.173 0.104
0.2 0.137 0.235 0.225 0.209 0.194 0.211

Note that the rejection rates of the global test are far bigger than the nominal
levels, but the permutation test is more powerful than the competitor. As far
as the permutation test is concerned, the rejection rates of the partial tests
(accounting for multiplicity) are directly proportional to the size of the δk’s,
and group 3 has been detected as the peak group about 50% of the times that
the global null hypothesis has been rejected at all α levels (however, δk sizes
are modest compared with the variance of data distribution σ2 = 1). The
Mack and Wolfe test shows a good performance, too, and here the probability
of detecting the third group as the peak group seems more stable.

In Table 5.11, we have set the location shifts in order to simulate an anti
umbrella alternative. That is, data are not under the null hypothesis, but the
true alternative hypothesis is not of the umbrella kind since the trend is first
decreasing and then increasing. Neither of the tests should recognize this kind
of alternative. Indeed, both the permutation test global p-value ΠG and Mack
and Wolfe p-value are smaller than the related nominal levels. Nevertheless,
the third group (where the trend has its minimum) is never recognized as the
peak group by the permutation test, whereas Mack and Wolfe’s test has a
positive probability of observing the third group as a maximum.

In the proposed algorithm, several combining functions are applied. Which
combining function is to be applied depends on the problem we are dealing
with: Some combining functions are more sensitive than others to specific
alternatives. For instance, if the alternative hypothesis is “half-umbrella” (that
is, no trend up to the k̂th group, then a descreasing trend),
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Table 5.10. Rejection rates of permutation and Mack and Wolfe tests under the
umbrella alternative.

δ1 δ2 δ3 δ4 δ5
0 0.5 1 0.5 0

Permutation test

α p1 p2 p3 p4 p5 ΠG

0.05 0.021 0.073 0.127 0.031 0.007 0.243
0.1 0.022 0.101 0.220 0.052 0.008 0.359
0.2 0.037 0.152 0.331 0.123 0.033 0.547

α P{πk = minj πj |ΠG ≤ α} Total

0.05 0.000 0.115 0.692 0.192 0.000 1
0.1 0.022 0.156 0.556 0.244 0.022 1
0.2 0.045 0.212 0.485 0.212 0.045 1

Mack & Wolfe’s test

α P{k = maxj πj |p ≤ α} p

0.05 0.011 0.167 0.649 0.167 0.007 0.228
0.1 0.019 0.176 0.620 0.169 0.017 0.347
0.2 0.018 0.184 0.598 0.180 0.020 0.505

Table 5.11. Rejection rates of permutation and Mack and Wolfe tests under the
anti umbrella alternative.

δ1 δ2 δ3 δ4 δ5
1 0.5 0 0.5 1

Permutation test

α p1 p2 p3 p4 p5 ΠG

0.05 0.014 0.004 0.010 0.010 0.015 0.014
0.1 0.020 0.009 0.004 0.007 0.032 0.055
0.2 0.027 0.013 0.006 0.017 0.042 0.091

α P{πk = minj πj |ΠG ≤ α} Total

0.05 0.000 0.000 0.000 0.000 1.000 1
0.1 0.300 0.100 0.000 0.100 0.500 1
0.2 0.294 0.059 0.000 0.118 0.529 1

Mack & Wolfe’s test

α P{k = maxj πj |p ≤ α} p

0.05 0.417 0.083 0.000 0.000 0.500 0.012
0.1 0.371 0.057 0.029 0.029 0.514 0.041
0.2 0.347 0.056 0.042 0.083 0.472 0.087

H1 :


k̂⋂
j=1

H0(j)

⋃


K⋃
j=k̂

H↘
1(j)

 ,
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then Tippett’s function combining the partial tests for simple stochastic or-
dering alternatives (H↗

1(k) and H↘
1(k)) would be more sensitive for this spe-

cific alternative, as it requires at least one significant argument in order to
produce large values of the observed global test statistic. For the umbrella
alternatives, we suggest applying Fisher’s combining function, which is gen-
erally more powerful when some partial tests are under the alternative. In
particular, we might change the combining functions at steps (2) and (3) of
the procedure, as indicated at the end of the previous section.

We have considered two scenarios: one real umbrella and one “half um-
brella” alternative when K = 5 and nj = 3. The first battery of simulations
has been obtained by applying Fisher’s combining function at step 2 and then
by applying Fisher’s, Liptak’s, and Tippett’s combining function at step 3.
The second battery of simulations has been obtained by applying Tippett’s
combining function at step 2 and Fisher’s, Liptak’s, and Tippett’s at step 3.
The power results of the global test for umbrella alternatives are reported in
Table 5.12. For each scenario (real umbrella↗↘ or half-umbrella −→↘ alter-
native) and each sequence of combining functions, the rejection rates of the
global null hypothesis are reported. Clearly, when there is a real umbrella al-
ternative, the proposed test is usually more powerful than when the alternative
is the half-umbrella setting. In our opinion, the best choice is to apply Fisher’s
combining function at step 2 and then apply Tippett’s combining function at
step 3. The half-umbrella alternative settings were δ1 = δ2 = δ3 = 1, δ4 = 0.5,
and δ5 = 0 with standard normal errors.

Table 5.12. Rejection rates of the permutation test with α = 0.05 under different
scenarios.

Alternative
↗↘ −→↘ ↗↘ −→↘

Step 3 ψ Step 2: Fisher’s ψ Step 2: Tippett’s ψ

Fisher’s 0.332 0.216 0.177 0.294
Liptak’s 0.338 0.179 0.284 0.256
Tippett’s 0.246 0.262 0.213 0.196

5.7 Applications with R

In this section, we will see in detail the topics of this chapter within the R
environment.
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5.7.1 One-Way ANOVA with R

The aov perm.r function performs the one-way ANOVA test as described in
Section 5.2. It has been thought to perform pooled permutations when the de-
sign is unbalanced and synchronized permutations when the design is balanced
(default is balanced = TRUE). Here the minimum achievable significance lev-
els of the global test are multiples of (see Section 6.3)

1
2

(
2n
n

)
.

Partial tests on pairwise comparisons and a global test assessing significance
against the null hypothesis F1(y)

d= F2(y) · · ·
d= FC(y) are done simultane-

ously. We can refer to the example of table 5.5 to run the one-way ANOVA
with multiple comparisons. Type

> source("aov_perm.r")
> C<-5
> n<-3
> x<-c(8.62,9.94,10.06,9.85,10.43,11.31,9.98,10.69,11.40,
+ 9.12, 9.89,10.57,4.80,9.18,9.27)
> y<-rep(seq(1,C),each=n)
> set.seed(11)
> aov.perm(x,y,B=10000)
$Global.p.value
[1] 0.1007

$Partial.p.value
Diff p sig.

1-2 -0.99 0.2973
1-3 -1.15 0.1990
1-4 -0.32 0.6975
1-5 1.79 0.2995
2-3 -0.16 0.6944
2-4 0.67 0.5000
2-5 2.78 0.1007
3-4 0.83 0.1973
3-5 2.94 0.1007
4-5 2.11 0.2995

Note that the aov.perm function obtains the Monte Carlo distribution of the
global test statistic, and therefore the global p-value is approximated (in this
case, the exact global p-value is equal to 1/10 and all partial p-values are
multiples of 1/10). If pooled permutations are to be applied, type

> set.seed(11)
> aov.perm(x,y,B=10000,balanced=FALSE)
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$Global.p.value
[1] 0.055

$Partial.p.value
Diff p sig.

1-2 -0.99 0.4276
1-3 -1.15 0.3828
1-4 -0.32 0.7807
1-5 1.79 0.1937
2-3 -0.16 0.8941
2-4 0.67 0.5809
2-5 2.78 0.0184 *
3-4 0.83 0.5036
3-5 2.94 0.0065 **
4-5 2.11 0.1189

The global test is moderately significant against the null hypothesis (Global.-
p.value). The difference in the results is due to the higher cardinality of the
support of the test statistics when polled permutations are applied. There
seems to be higher evidence against the null hypothesis with pooled permuta-
tions, but note that the synchronized permutation permutations global p-value
was at the minimum attainable significance level. The output of this function
also includes the pariwise-comparison table (Partial.p.value). The labels
of the rows indicate which comparisons are considered, the Diff. column re-
ports the observed mean differences between the groups considered, and the
last column reports the p-values of the partial tests (not adjusted for multi-
plicity). As a final help, the partial p-values are highlighted with the usual R
convention:

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

The parametric F test and Kruskal-Wallis test give the following results:

> t<-aov(x~factor(y))
> summary(t)

Df Sum Sq Mean Sq F value Pr(>F)
factor(y) 4 16.5580 4.1395 2.3686 0.1225
Residuals 10 17.4762 1.7476

> TukeyHSD(t)
$‘factor(y)‘

diff lwr upr p adj
2-1 0.99 -2.562357 4.542357 0.8839618
3-1 1.15 -2.402357 4.702357 0.8196890
4-1 0.32 -3.232357 3.872357 0.9980160
5-1 -1.79 -5.342357 1.762357 0.4971801
3-2 0.16 -3.392357 3.712357 0.9998706
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4-2 -0.67 -4.222357 2.882357 0.9683148
5-2 -2.78 -6.332357 0.772357 0.1489661
4-3 -0.83 -4.382357 2.722357 0.9339450
5-3 -2.94 -6.492357 0.612357 0.1194350
5-4 -2.11 -5.662357 1.442357 0.3511889

> kruskal.test(x,y)

Kruskal-Wallis rank sum test

data: x and y
Kruskal-Wallis chi-squared = 7.2333, df = 4, $p$-value = 0.1241

5.7.2 Umbrella Alternatives with R

Let us introduce the Mack and Wolfe test first. In order to obtain a p-value,
one needs to simulate the null distribution of the test statistic. Alternatively,
the acceptance/rejection rule can be derived from the value of the test statistic
and the critical values reported in Mack and Wolfe (1981). We are going to
show in detail how the results of Table 5.8 have been obtained. First, load the
Mack and Wolfe function in the R environment, input the data of Table 5.5
(in the vector x) and the labels of the groups (in the vector y), and then run
the function as follows:

> source("MW.r")
> C<-5
> n<-3
> x<-c(8.62,9.94,10.06,9.85,10.43,11.31,9.98,10.69,11.40,
+ 9.12, 9.89,10.57,4.80,9.18,9.27)
> y<-rep(seq(1,C),each=n)
> y
[1] 1 1 1 2 2 2 3 3 3 4 4 4 5 5 5
> MW(x,y)
$T
[1] 2.353394

$A
[,1]

[1,] 1.1140133
[2,] 2.1182964
[3,] 2.3533936
[4,] 0.6657503
[5,] -1.1140133
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$Z
[,1]

[1,] -0.5773503
[2,] 1.0103630
[3,] 1.8763884
[4,] -0.2886751
[5,] -2.0207259

$peak
[1] 3

The output of the MW function is a list containing the following objects:

• Z: the standardized Zk statistics to estimate the peak group;
• A: the standardized Ak statistics for the known peak;
• T: the observed value of the Mack and Wolfe test statistic Ak̂;
• peak: the estimated peak group.

In the example, C = 5, nk ≡ 3, and the Ak̂ statistic is equal to 2.353394.
According to both the critical values of Table 5.7 and Mack and Wolfe (1981),
the test is significant at a 5% level (the critical values are respectively equal to
2.228 and 2.239 for α = .05). If a p-value is desired, instead one can simulate
the null distribution by running the MW.r function a large number of times
with data under H0 and by storing each time the value of the test statistic
T. We can do this, for instance, by simulating standard normal data (data
from any continuous distribution with finite first and second moments will be
suitable as well). For instance, if we consider a simulation with 10,000 Monte
Carlo normal data generations,

> set.seed(1)
> MC<-10000
> T<-array(0,dim=c(MC,1))
> for(cc in 1:MC){
+ z<-rnorm(n*C)
+ T[cc]<-MW(z,y)$T
+ }
> p<-sum(T>=2.353394)/MC
> p
[1] 0.036

After a while, the simulated null distribution of Ak̂ is stored in the vector T,
and the approximated p-value of the test is equal to 0.036.

The permutation test is performed by the umbrella.r function, which
requires the same input of the MW.r function. The number of permutations
considered is set equal to 1000 by default, but it can be specified as input:

> source("combine.r")
> source("t2p.r")
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> source("umbrella.r")
> set.seed(6)
> umbrella(x,y,B=10000)
$Global.p.value
[1] 0.0264

$Partial.p.values
[1] 0.07099290 0.00669933 0.00549945 0.11468853 0.92910709

$Max
[1] 3

We have just run the testing procedure with B = 10, 000 permutations. There
are two warning messages produced by the combining function combine.r.
This function allows us to actuate the nonparametric combination of partial
p-values/test statistics, depending on the input and the specified combining
function. As pointed out in Section 5.5, Fisher’s combining function is applied
at step 2 and Tippett’s combining function is applied at step 3 of the algo-
rithm. The global p-value is equal to 0.0264, which is even more significant
than Mack and Wolfe’s p-value. Since the global test is significant, we can esti-
mate the peak group by looking at the partial p-values. The minimum partial
p-value is the one related to group 3, which is highlighted in the Max output.
It is worth noting that the umbrella.r function (like the MW.r function) al-
ways gives an estimated maximum, but the global p-value (respectively, the
Ak̂ statistic) has to be taken into account to determine if there is a significant
umbrella trend or not. For instance, we can repeat the tests with simulated
data from a uniform distribution:

> set.seed(10)
> x<-runif(n*C)
> umbrella(x,y)
$Global.p.value
[1] 0.528

$Partial.p.values
[1] 0.5754246 0.7402597 0.5774226 0.1538462 0.4255744

$Max
[1] 4

>
> MW(x,y)
$T
[1] 1.028887

$A
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[,1]
[1,] -0.3038218
[2,] -0.5447048
[3,] -0.1307441
[4,] 1.0288868
[5,] 0.3038218

$Z
[,1]

[1,] 0.0000000
[2,] -0.7216878
[3,] -0.2886751
[4,] 1.4433757
[5,] -0.4330127

$peak
[1] 4

> sum(T>=1.028887)/MC
[1] 0.4723

Since the global p-value of the permutation test and the approximated p-value
of Mack and Wolfe’s test are both not significant, both tests agree that there
is not a significant umbrella trend within these data (therefore there is no
significant peak or maximum). Finally, Figure 5.4 was obtained as follows:

> x<-c(8.62,9.94,10.06,9.85,10.43,11.31,9.98,10.69,11.40,
+ 9.12, 9.89,10.57,4.80,9.18,9.27)
> boxplot(x~y)
> m<-array(0,dim=c(C,1))
> for(cc in 1:C){
+ m[cc]<-mean(x[y==cc])
+ points(cc,m[cc],pch=16)
+ }
> lines(m,lty="dotted")
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Synchronized Permutation Tests in
Two-way ANOVA

6.1 Introduction

In experimental planning, factorial experiments are of particular interest, as
they allow us to separately examine the effects of two or more factors in
all their possible combinations. In the usual linear model for the analysis of
variance, if the error components are not normally distributed, parametric
analysis may not be appropriate, even if Rasch and Guiard (2004), recalling
previous results by Ito (1969), show that parametric tests are generally robust
also in the presence of some nonnormal distributions. When we wish to apply
nonparametric tests to the two-way ANOVA layout, problems arise with the
exchangeability of the response, which is not satisfied since observations with
different treatments might have different expected values. To cope with this
problem, either a restricted kind of randomization or the use of residuals is
required in order to obtain separate tests for main factors and interaction.
In this chapter, based on the concept of synchronized permutations, we in-
troduce an exact permutation solution (Pesarin, 2001; Salmaso, 2003; Basso
et al., 2007) for testing for fixed effects in replicated two-way factorial designs
with continuous responses. This permutation solution, since it is conditional
on a set of sufficient statistics, is a distribution-free nonparametric test. It
is worth noting that asymptotically distribution-free (but not exact) tests
could also be developed using the approach by Draper (1988) or the recent
development of a generalization of the Kruskal-Wallis approach to two- and
three-way layouts given in Brunner and Puri (2001). Among the exact tests,
we can differentiate synchronized permutation tests from those inspired by
the two-way ANOVA F test, such as the tests proposed by Edgington (1995),
Maritz (1995), and Sprent (1998). For the class of approximated two-way
ANOVA permutation tests, we mention those proposed by Manly (1997) and
Anderson (2001), which are based on some kind of F statistic. The remain-
ing approximated permutation tests proposed in the literature are inspired
by multiple regression analysis, such as that proposed by Cade and Richards
(1996) and one of those discussed by Kennedy and Cade (1996). Finally, there

D. Basso et al., Permutation Tests for Stochastic Ordering and ANOVA, Lecture
Notes in Statistics, 194, DOI 10.1007/978-0-387-85956-9 6,
c© Springer Science+Business Media, LLC 2009
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are other unrestricted permutation procedures, also belonging to the field of
multiple regression analysis, that permute not the observations but the resid-
uals and are calculated by means of an estimate of regression models (see also
Anderson and ter Braak, 2003).

The power of the proposed permutation solution is comparable with that
of the parametric solution when the latter is applicable. Let us remember
that permutation tests are conditional procedures in which conditioning is
with respect to a set of joint sufficient statistics under the null hypothesis.
Hence, the permutation approach for a two-way layout should be based on
such a set of joint sufficient statistics. We will present the theory in the case
of a balanced two-factor design where factor A has I levels and factor B has
J levels. The linear model is

Yijk = µ+ αi + βj + αβij + εijk

 i = 1, . . . , I,
j = 1, . . . , J,
k = 1, . . . , n,

where Yijk are the experimental responses, µ is the general mean, αi and βj
are the main factor effects, αβij are interaction effects, εijk are exchangeable
experimental errors, with zero mean, from an unknown continuous distribution
P and n is the number of replicates in each cell. The usual side conditions are∑

i

αi = 0,
∑
j

βj = 0,
∑
i

αβij = 0∀ j,
∑
j

αβij = 0 ∀ i (6.1)

Usually, the experimenter’s major interest is testing separately for two main
effects and interactions. Hence, there are three sub null hypotheses of inter-
est − H0A : αi = 0∀ i, H0B : βj = 0∀ j, H0AB : αβij = 0∀ i, j − and
the emphasis is on finding three separate and possibly uncorrelated tests.
What experimenters are generally looking for is, for instance, to test H0A

againstH1A : ∃ i : αi 6= 0, irrespective of whether H0B or H0AB is true or
not, etc. In order to attain this goal within a permutation framework, we
must find the proper set of jointly sufficient statistics for all three testing sub
problems: H0A irrespective of H0B ∪H0AB is true or not, H0B irrespective of
H0A ∪ H0AB is true or not, and H0AB irrespective of H0A ∪ H0B is true or
not. In this framework, this set is y = [y11,y12, . . . ,yIJ ]′, the vector of the
observed response partitioned into I × J blocks. This is due to the definition
of sufficient statistic: in fact, two points of the sample space, y and y′, lay in
the same orbit of a sufficient statistic if the likelihood ratio

L(α,β,αβ;y)
L(α,β,αβ;y′)

=

∏
ijk L(αi, βj , αβij ; yijk)∏
ijk L(αi, βj , αβij ; y′ijk)

= h(y,y′)

does not depend on the parameters αi, βj , αβij . This only occurs if y′ is a
permutation of the units within the blocks of y. From a naive point of view,
we are only allowed to permute data within each block, but this is useless
since any permutation within blocks gives the same value of any suitable test
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statistic, and hence no real distribution for the test statistic can be found.
Thus, we must look either for approximate solutions or for a special kind of
restricted permutation strategy.

6.2 The Test Statistics

Let us consider the permutation structure of an intermediate statistic to sep-
arately compare the factor A effects αi and αs at level j of factor B

aTis|j =
∑
k

yijk −
∑
k

ysjk. (6.2)

For each level of factor B, there are I(I − 1)/2 such intermediate statistics,
each comparing two different effects of factor A. Now suppose that ν units
are randomly exchanged between blocks AiBj and AsBj , ν being invariant
with respect to the levels of factor B. With obvious notation, the permutation
structure of these intermediate statistics is

aT ∗is|j = (n− 2ν)[αi − αs + αβij − αβsj ] + ε̄∗is|j , (6.3)

where the symbol “∗” denotes that we have performed a random synchronized
permutation (since ν is invariant w.r.t. the levels of factor B) among units in
blocks AiBj and AsBj , ε̄∗is|j = (n−ν)[ε̄∗ij−ε̄∗sj ]+ν[ε̃∗ij−ε̃∗sj ] is the permutation
error term, and ε̄∗ij , ε̄

∗
sj , ε̃

∗
ij , ε̃

∗
sj are random sampling means of n − ν and ν

errors, respectively, from different pairs of blocks. Note that aT ∗is|j depends
either on the effects of factor A or on interaction effects, and hence we need
a further step in order to separately test for main factors and interaction.
According to the side conditions

∑
i αβij = 0∀ j,

∑
j αβij = 0∀ i, the sum∑

j

aT ∗is|j , (6.4)

whose permutation structure is J(n − 2ν)[αi − αs] +
∑
j ε̄
∗
is|j , only depends

on effects αi and αs of factor A and on a linear combination of errors. Hence
it allows for an exact permutation test for A, irrespective of whether other
factor effects are present or not. This test is then

aT ∗A =
∑
i<s

∑
j

aT ∗is|j

2

, (6.5)

where the inner sum is squared to avoid the vanishing of some effects of factor
A and the outer sum is made over all possible pairs of levels 1 ≤ i < s ≤ I.
Moreover, to test for interaction effects, let us first consider the permutation
structure of the difference of two intermediate statistics at two distinct levels
of factor A and factor B:
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aT ∗is|j −
a T ∗is|h = (n− 2ν)[αβij − αβih − αβsj + αβsh],+ε̄∗is|j − ε̄

∗
is|h.

The elements of this difference depend only on the effects of interaction AB
and on a random permutation of errors. Thus a separate test for interaction
is

aT ∗AB =
∑
i<s

∑
j<h

[aT ∗is|j −
aT ∗is|h]

2
, (6.6)

where the superscript “a” in the test statistic specifies that the test for inter-
action has been obtained from intermediate statistics for factor A. In order to
test separately forH0B andH0AB , we proceed in accordance with the previous
strategies. Hence, by interchanging indices, we have respectively

bT ∗B =
∑
j<h

[∑
i

bT ∗jh|i

]2

, (6.7)

and

bT ∗AB =
∑
j<h

∑
i<s

[bT ∗jh|i −
bT

∗
jh|s]

2
, (6.8)

where bT ∗jh|i =
∑
k y

∗
ijk−

∑
k y

∗
ihk; i.e., the intermediate statistic to separately

compare the factor B effects βj and βh is obtained by exchanging the same
number ν of units between blocks AiBj and AiBh, i = 1, . . . , I. For each level
of factor A, there are J(J−1)/2 such intermediate statistics. Note that aT ∗AB is
obtained from synchronized permutations involving the row factor A, whereas
bT ∗AB is obtained from permutations involving the column factor B. Each
statistic for interaction only depends on interaction effects and exchangeable
errors, and so they are jointly and equally informative. Thus, their linear
combination T ∗∗AB = aT ∗AB + bT ∗AB is a separate exact test for interaction.
Once we have defined the test statistics for main effects and interaction, we
need to define the synchronized permutation strategy in order to apply these
tests.

6.3 Constrained and Unconstrained
Synchronized Permutations

The basic concept of synchronized permutations is exchanging the same num-
ber ν of units within each pair of blocks considered. There are two ways to
obtain a synchronized permutation: exchanging units in the same original po-
sitions within each block (constrained synchronized permutations, CSPs) or
exchanging units without considering their original position (unconstrained
synchronized permutations, USPs). The core point is that in both cases the
same number of units must be exchanged within all couples of cells in the pairs
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of rows or columns considered. We implemented two distinct algorithms, one
for CSPs and another for USPs, since they differ both in the probability of
observing a single synchronized permutation and in the cardinality of distinct
permutation test statistic values. Let us refer to constrained synchronized
permutations first: Since these are defined by the number of units being ex-
changed (ν) at their original positions within each block, it is easy to see that
the total number of CSPs depends only on which exchange has been made in
the first pair of blocks. Since there are

CCSP =
(

2n
n

)
possible ways to exchange units in the first pair of blocks, CCSP is the car-
dinality of the CSPs. Another point to take into account is the cardinality
of distinct permutation test statistics (e.g., the number of distinct aT ∗A’s if
we are testing for factor A): the squaring operators in formulas (6.5), (6.7),
(6.6), and (6.8) produce a symmetry (i.e., there are two distinct permutations
generating the same value of aT ∗A, and hence the total number of distinct
aT ∗A’s is CCSP /2). Here and in what follows we will only refer to the test for
factor A, as the same strategy for factor B can be easily obtained in the same
way and the tests for interaction are derived from those of the main factors.
A way to obtain Monte Carlo CSPs is to consider, for each pair of distinct
levels of factor A, the matrix made of 2n rows and J columns corresponding
to the levels of factor B. Each vector of this matrix is the pooled vector of the
observations from blocks AiBj and AsBj . We consider a random permutation
of the 2n units of the first vector and apply the same permutation to the
remaining J − 1 vectors. Then each vector is partitioned in two blocks of n
observations each. This way of proceeding guarantees that the same number
of exchanges between each pair of blocks has been made. It also guarantees
that each distinct value of aT ∗A is equally likely. This is important since, in a
permutation approach, each value of aT ∗A has the same probability in the null
distribution. If n is relatively small, it is also possible to consider all possible
distinct CSPs, thus obtaining the exact distribution of aT ∗A.

The main difference between CSPs and USPs is that USPs do not require
the exchanged units to be in the same original position within the blocks.
Thus, from a naive point of view, we could apply the same algorithm with
an initial random shuffling within each single block in order to obtain the
USPs. Unfortunately, this way of proceeding does not guarantee that the test
statistic follows a (discrete) uniform distribution, as we will describe with a
simple example. Consider the 2×2 full factorial design with n = 2. The number
of distinct CSPs is 6 and the number of distinct values of aT ∗A’s is 3, so each
one has a probability of 1/3. In particular, one value is obtained when ν = 0,
and the same value is also obtained when ν = 2. The remaining two distinct
values are obtained when ν = 1. Now there are (2!)4 = 16 ways of shuffling
units independently within each block. Note that if ν = 0 or ν = 2, the initial
shuffling does not change the value of aT ∗A; hence the probability of observing
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aT ∗A = aTA is still 1/3. This does not happen when ν = 1 because the initial
shuffling makes aT ∗A take distinct values at each distinct combination of labels.
There are 16 such distinct combinations, but the symmetry in the test statistic
still holds, and therefore the cardinality of distinct values when ν = 1 is 8.
These values have the same probability given ν = 1, so here the probability
of obtaining a single value of the test statistic is P [aT ∗A = at∗A, ν = 1] =
(2/3)/8 = 1/12. This simple example shows that we have to apply another
algorithm in order to build the USPs since in this example the observed value
of the test statistic has a probability 4 times bigger than the other values, and
this would inflate the p-value.

Instead, we would need the nine distinct values to have the same proba-
bility of 1/9. We can investigate the cardinality of USPs as follows. Adapting
USPs, units being exchanged within each pair of blocks may differ from the
original positions of units exchanged in the first pair of blocks. The only re-
quirement is that the number of exchanges is the same. Hence, for any couple
of levels of factor A and a given number of exchanges ν, there are(

n

ν

)2J

possible ways to choose the same number of units to be exchanged in the 2J
cells. Since the number of possible couples of levels of factor A is I(I − 1)/2,
the total number of USPs when testing for factor A is

n∑
ν=0

(
n

ν

)J×I(I−1)

Things get harder if we wish to calculate the total number of distinct values
of aT ∗A. The symmetry in the test statistic plays a different role when n is odd
or even. Let us consider the case when n is odd first. It is easy to see that we
can obtain the same values of aT ∗A when ν = x or ν = n−x, 0 ≤ x ≤ (n−1)/2.
Hence, the cardinality of distinct values of aT ∗A when n is odd is

CoUSP =
(n−1)/2∑
ν=0

(
n

ν

)J×I(I−1)

. (6.9)

and we only need to consider ν = x exchanges in order to obtain all possible
values of aT ∗A by applying an initial shuffling of units within each block. The
initial shuffling within each cell guarantees the values of aT ∗A obtained from a
given number of exchanges to be equally likely, i.e., given ν, we have

P [aT ∗A = at∗A|ν] =
1(

n
ν

)J×I(I−1)
. (6.10)

Furthermore, the probability of making ν exchanges is
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P [N = ν] =

(
n
ν

)J×I(I−1)∑(n−1)/2
π=0

(
n
π

)J×I(I−1)
. (6.11)

Thus, a two-step algorithm can guarantee the values of the test statistic to
be equally likely by first choosing the number of exchanges to be made in
accordance with (6.11), then shuffling the units within each cell, and finally
exchanging the first ν units between each pair of cells. The same strategy
holds when n is even, with some care. Here we obtain the same values of aT ∗A
when ν = x or ν = n − x, 0 ≤ x < n/2, because of the symmetry. Instead,
when ν = n/2, each distinct value of aT ∗A is repeated twice within a couple of
distinct levels of factor A since for a given shuffling we get the same value of
aT ∗A by exchanging the first n/2 units or the last n/2 units within a pair of
cells. Hence the total number of distinct values of aT ∗A when n is even becomes

CeUSP =
n/2−1∑
ν=0

(
n

ν

)J×I(I−1)

+

[
1
2

(
n

n/2

)2J
]I(I−1)/2

, (6.12)

and we can apply the same strategy as before by choosing the number of
exchanges to be made in accordance with (6.12). The cardinality of distinct
values of aT ∗A rapidly increases with n, I, and J , so we recommend using USPs
when few replicates are available (say n ≤ 3). If the number of replicates is
greater than 3, one can easily apply the CSPs. Of course, a different choice
between CSPs and USPs affects the minimum achievable significance level.
Being a permutation test, the attainable significance levels are multiples of
1/C, where C is the cardinality of distinct values of the test statistic. Hence, if
n is too small, CSPs give a minimum achieved significance level that is higher
than the type I error rates commonly used. Figure 6.1 clearly represents this
situation: It concerns a simulation under H0A for a 2× 3 replicated factorial
design with n = 3, 5, 10, respectively. The lines are the cumulative distribution
functions of the p-values obtained by applying CSP and/or USP tests to the
effects of factor A. It is clear (see the picture on the left of Figure 6.1) that
applying the CSPs when n = 3 gives a discrete uniform distribution function
(solid line) for the p-values of factor A. In particular, the minimum achievable
significance level is 2/

(
6
3

)
= 1/10. However, when USPs are applied and n = 3

(dotted line), there is a sufficiently high number of distinct aT ∗A’s (CoUSP =
730) to guarantee a nearly continuous uniform distribution for the p-value of A
when H0A is true, and hence the usual nominal significance levels can be used.
The difference between CSPs and USPs rapidly decreases with growing n (see
the second and third pictures of Figure 6.1). For instance, if n = 2, 3, 4, 5, then
CCSP is 3, 10, 35, 126, respectively. The graphs in Figure 6.1 are obtained by
1000 independent data generations. In the cases of three and five replicates, the
CSP distribution of the test statistic is exact (i.e., we performed all possible
distinct constrained synchronized permutations, as this leads to a cardinality
of the support equal to 10 and 126, respectively). For USPs or when n = 10,
1000 Monte Carlo synchronized permutations have been applied.
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Fig. 6.1. Cumulative distribution function under H0 of the p-values obtained from
CSPs and USPs for a factor with two levels in a 2 × 3 design with n = 3, 5, 10
replicates.

6.4 Properties of the Synchronized Permutation
Test Statistics

In this section, we give some formal proofs about the properties of the syn-
chronized permutation tests, such as uncorrelatedness among the test statis-
tics and consistency. The unbiasedness of the test statistic will only be proved
for I = J = 2 since in that case the squaring operator in the test statistics
can be removed so aT ∗A,

bT ∗B ,
aT ∗AB , and bT ∗AB have symmetric distributions.

It does not seem possible to prove unbiasedness of test statistics with asym-
metric distributions as in the general case when I > 2, J > 2. We will give a
counterexample on that issue.

6.4.1 Uncorrelatedness Among Synchronized Permutation Tests

The uncorrelation among the test statistics is always a good property to have
since it avoids the possibility that the activeness of one factor might influence
the conclusions on the other ones. To prove the uncorrelation among all the
synchronized permutation test statistics, we need to consider the implications:

(i) if ρ(aT ∗A,
bT ∗B) = 0⇒ ρ(aT ∗A,

bT ∗AB) = 0, ρ(bT ∗B ,
aT ∗AB) = 0;

(ii) if ρ(aT ∗A,
aT ∗AB) = 0⇒ ρ(bT ∗B ,

bT ∗AB) = 0,

where ρ(X,Y ) stands for the correlation betweenX and Y . Let us consider the
proof of (i) first. The tests on main factors are defined on different permutation
spaces. In particular,aT ∗A is obtained by exchanging units between pairs of
rows and within columns, and bT ∗B is obtained by exchanging units between
pairs of columns and within rows. Hence, without loss of generality, consider
the case where we are testing for H0A : αi = 0 ∀i. This hypothesis allows us
to exchange units between rows and within columns. The test statistic aT ∗A is
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a random variable, and its probability function is derived by exchanging units
within columns, so the total of each column is constant. Let Y·j , j = 1, . . . , J
be the total of column j. Then

∑
i

T ∗jh|i =
∑
i

[∑
k

y∗ijk −
∑
k

y∗ihk

]
=
∑
i

∑
k

y∗ijk −
∑
i

∑
k

y∗ihk = Y·j − Y·h,

and hence

bT ∗B =
∑
j<h

[∑
i

T ∗jh|i

]2

≡
∑
j<h

(Y·j − Y·h)2 = bTB ,

where bTB is the observed value of the test statistic for factor B. Since bT ∗B is
constant, ρ(aT ∗A,

bT ∗B) = 0.
Now we will prove point (ii). Both the aT ∗A and aT ∗AB probability dis-

tributions are derived from the same permutations (within columns) since
aT ∗AB is also obtained from a random synchronized permutation based on
factor A. Both test statistics are based on the random variables T ∗is|j , which
are differences between the sums of n independent random variables y∗ijk.
Since Cov(y∗ijk, y

∗
ihk) = 0 (i.e., two observations from two distinct columns

are uncorrelated), the T ∗is|j ’s are i.i.d. random variables with E[T ∗is|j ] =
(n−2ν)(αi−αs+αβij−αβsj) and Var[T ∗is|j ] = 2nσ2. To begin with, consider
the case where I = J = 2. Here we do not need the squaring operators in
formulas (6.5) and (6.6) since the test statistics already depend on all the
main and interaction effects. Therefore, in this case we may write

aT ∗A = aT ∗12|1 + aT ∗12|2,
aT ∗AB = aT ∗12|1 −

aT ∗12|2.

We wish to evaluate

Cov(aT ∗A,
aT ∗AB) = E[aT ∗A,

aT ∗AB ]− E[aT ∗A]E[aT ∗AB ].

Let aT ∗12|1 = X and aT ∗12|2 = Y . Then

Cov(aT ∗A,
aT ∗AB) = E[(X + Y )(X − Y )]− E(X + Y )E(X − Y )

= E[X2]− E[Y 2]− E(X)2 + E(Y )2

= Var(X)−Var(Y ) = 0

since Var(X) = Var(Y ) = 2nσ2.
It is not easy to prove unbiasedness in the general I×J case without requir-

ing some further assumptions on experimental errors. However, we conjecture
that the uncorrelatedness among test statistics is still maintained because of
the permutation structure. As a further proof, we have run some simulations
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of a 22 full factorial design with n = 3 runs and some different settings,
including H0A ∩H0B , H1A ∩H0B , and H1A ∩H1B .

Figure 6.2 reports two scatterplots of aT ∗A vs. bT ∗B and their related p-
values, respectively. We have applied the CSPs (see Section 6.3) to obtain
these results. Note how the points are spread at random on the left in Figure
6.2. On the right in Figure 6.2 it is possible to see the discrete nature of the
test statistic distribution when n is small and CSPs are applied. Note that the
cardinality of distinct values of aT ∗A when n = 3 is 10. That is why the points
on the right of Figure 6.2 are spread around the theoretical attainable points
whose coordinates are (m/10, n/10), with m,n = 1, . . . , 10. These points are
spread around the theoretical attainable points since we have applied Monte
Carlo generation for the CSPs.
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Fig. 6.2. 2 × 2 design with three replicates. Left: Scatterplot of aT ∗A vs. bT ∗B .
Right: Scatterplot of p(aT ∗A) vs. p(bT ∗B). CSPs applied, both factors under the null
hypothesis.

In Figure 6.3 the same graphics are reported, but here factor A is active
with α1 = −α2 = 10σ, where σ = 1. The interesting part of this figure is
the scatterplot of p-values. See how the clouds of points randomly lay around
the theoretical lines for which p(bT ∗B) = n/10 (n = 1, . . . , 10), but they are
centered on the minimum attainable p-value for factor A, which is p(aT ∗A) =
1/10.

Finally, Figure 6.4 reports the same graphics when both factors are active:
factor A with the same settings as before and factor B with effects set equal
to 5σ in absolute value. This figure shows how the synchronized permutation
test statistics for the main factors are uncorrelated even under the alternative
hypothesis. On the right in Figure 6.4 it is possible to see how the points are
randomly spread around (1/10, 1/10), which represents the theoretical point
of minimum attainable p-value for both main factors.
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Fig. 6.3. 2×2 design with three replicates. Left: Scatterplot of aT ∗A vs. bT ∗B . Right:
Scatterplot of p(aT ∗A) vs. p(bT ∗B). CSPs applied, α1 = −α2 = 10, β1 = β2 = 0.
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Fig. 6.4. 2×2 design with three replicates. Left: Scatterplot of aT ∗A vs. bT ∗B . Right:
Scatterplot of p(aT ∗A) vs. p(bT ∗B). CSPs applied, α1 = −α2 = 10, β1 = −β2 = 5.

6.4.2 Unbiasedness and Consistency of Synchronized
Permutation Tests

A test T of size α, α ∈ [0, 1], with acceptance region Aα(Y ) and rejection
region Rα(Y ), is unbiased if PrH1 [T ∈ Rα(Y )] ≥ α = PrH0 [T ∈ Rα(Y )]. We
will only give the proof of unbiasedness in the simple case when I = J = 2.
To this end, consider the test statistics
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aT ∗A =
2∑
j=1

aT ∗12|j ,

bT ∗B =
2∑
i=1

bT ∗12|i,

aT ∗AB = aT ∗12|1 −
a T ∗12|2,

which have symmetric distributions. The symmetry of the test statistic dis-
tribution is a core point since it is easy to prove that test statistics whose
distributions are asymmetric are biased. To see this, consider the following
example.

Example. Let T (y) be a test statistic to test for H0 : µ = 1 against
H1 : µ 6= 1, where µ is the mean of the exact distribution of T (y). Moreover,
suppose T (y) ∼ exp(1) under H0. Since the exact null distribution of T (y) is
known, it is possible to build the exact acceptance region for the test as

Aα(T ) =
{
T (y) ∈ ST (y) : Pr

H0
[c1 ≤ T (y) ≤ c2] = 1− α

}
,

where α is the desired type I error, ST (y) ≡ [0,+∞[, and c1 and c2 are positive
real constants that satisfy

c1 = − log(1− α/2),
c2 = − log(α/2).

Let exp(1 + δ) with δ ∈] − 1,+∞[ be the distribution of T (y) under the
alternative and let α = 0.1 be the significance level of the test. Therefore,
we have c1 = 0.051293, c2 = 2.9957, and the rejection probabilities when the
alternative is true for some values of δ are as follows:

δ PrH1 [T (y) 6∈ A0.1(T )]
0 0.1

0.1 0.0919
0.2 0.0871
0.4 0.0844
0.6 0.0870
1. 0.1

Hence T is biased since the condition PrH1 [T (y) ∈ Rα(T )] ≥ PrH0 [T (y) ∈
Rα(T )] is not always satisfied with α = 0.1. This counterexample shows that it
does not seem possible to prove the unbiasedness of a test whose test statistic
has an asymmetric null distribution.

We will only prove the unbiasedness of aT ∗A when I = J = 2, as the proof
for the other test statistic is similar. Suppose, without loss of generality, that
H0A : α1 − α2 = 0 vs. H1A : α1 − α2 > 0. Hence the null hypothesis is
rejected for large values of aTA. Recall the permutation structure of aT ∗A and
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aTA introduced in Section 6.2. Let us denote by y(0) and y(α) the data when
they are under the null hypothesis and under the alternative, respectively. If
H1A is true, then

aT ∗A = 2(n− 2ν)[α1 − α2] +
2∑
j=1

ε̄∗12|j ,

aTA = 2n[α1 − α2] +
2∑
j=1

ε̄12|j .

Therefore Pr [aT ∗A ≥ aTA|y(α)] is equal to

Pr

2(n− 2ν)[α1 − α2] +
2∑
j=1

ε̄∗12|j ≥ 2n[α1 − α2] +
2∑
j=1

ε̄12|j


= Pr

 2∑
j=1

ε̄∗12|j ≥
2∑
j=1

ε̄12|j + 4ν(α1 − α2)

 .
If H0A is true, then

Pr [aT ∗A ≥ aTA|y(0)] = Pr

 2∑
j=1

ε̄∗12|j ≥
2∑
j=1

ε̄12|j

 .
Therefore

Pr [aT ∗A ≥ aTA|y(α)] ≤ Pr [aT ∗A ≥ aTA|y(0)] ,

and hence the p-values when H1A is true are not greater than the p-values
when H0A is true since Pr[ν = 0] < 1. This proves the unbiasedness of aT ∗A.
Of course, a similar result can be obtained for unrestricted alternatives.

The same arguments can be used to prove the consistency of aT ∗A. By def-
inition, a test is consistent if limn→+∞ PrH1 [T (y) ∈ Rα(T )] = 1. This means
that, as the available information increases (n → ∞), the test can distin-
guish with probability one even small departures from the null hypothesis. To
prove consistency, first note that the intermediate statistic for testing factor
A,
∑
j T

∗
is|j , is consistent for restricted alternatives when I = 2 and J > 2.

The proof is similar to that of unbiasedness since

Pr

∑
j

T ∗is|j ≥
∑
j

Tis|j |y(α)

 = Pr

∑
j

ε̄∗is|j ≥
∑
j

ε̄is|j + 2Jν(αi − αs)


= Pr

∑
j

ε̄∗is|j

2nJ
≥
∑
j

ε̄is|j

2nJ
+
ν

n
(αi − αs)

 .
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Now let n→ +∞. Recall the model assumptions E[εijk] = 0, V [εijk] = σ2 <
+∞. The random variable (2nJ)−1

∑
j ε̄
∗
is|j satisfies

E

 1
2nJ

∑
j

ε̄∗is|j

 = 0,

lim
n→+∞

Var

 1
2nJ

∑
j

ε̄∗is|j

 = 0,

whereas, if H1A is true, we have

lim
n→+∞

Pr
[ν
n

(αi − αs) > 0
]

= 1

because α1 − α2 > 0, 0 ≤ ν ≤ n, and limn→+∞ Prν [ν = 0] = 0 by applying
either CSPs or USPs (see Section 6.3). Therefore,

lim
n→+∞

Pr

∑
j

T ∗is|j ≥
∑
j

Tis|j |y(α)

 = 0.

Hence, as n increases, the p-value tends to zero in probability, so the prob-
ability of rejecting the null hypothesis tends to one. To complete the proof,

note that
[∑

j T
∗
is|j

]2
is consistent for unrestricted alternatives, and the sum

of consistent tests is also consistent. Therefore

aT ∗A =
∑
i<s

∑
j

T ∗is|j

2

is consistent.

6.5 Power Simulation Study

In this section, we report a simulation study performed with the goal of vali-
dating the synchronized permutation testing on I × J replicated factorial de-
signs. All the examples regard a 3× 2 design, and the emphasis is on several
aspects of the proposed procedure: (i) the behavior of CSP/USP procedures
under H0 and in power for the two-level factor and the three-level factor; (ii)
the behavior of CSP/USP testing procedures for the main factors and inter-
action in a power simulation with different kinds of error distributions; (iii)
the fact that the statistics for main factors and interaction are uncorrelated.
For each aspect, a comparison with the parametric ANOVA counterpart is
also reported. Figure 6.5 reports the behavior of synchronized permutation
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testing and ANOVA on a 3 × 2 design with n = 3, 5, 10, with some different
settings, H0A, H0B , H1A, and H1B , when the errors are normally distributed.
The interaction has not been considered in order to focus the attention on
the main factor tests. However, we note that the proposed test statistics are
uncorrelated, and hence the presence of interaction is irrelevant to our aim.
In the power simulation, the effects of each main factor were set equal to σ/2
(where σ2 = 1 is the error variance), in accordance with formula (6.1). The
graphs have been obtained as follows. For each setting, we generated 1000
independent samples, applied the testing procedure, and stored the p-values
of the main factors. Then, for each main factor and each setting, we repre-
sented the cumulative distribution functions of the related p-values. We see
that there is a discrepancy in the c.d.f.s of the p-values between the two-level
factor and the three-level factor when the null hypotheses H0A and H0B are
true (solid lines). In particular, when n = 3, the p-value c.d.f. of the two-
level factor is very close to the hypothetical continuous uniform distribution,
while this is not true for the three-level factor. Obviously, this gap affects the
related performances in power (dotted lines). This point needs some further
investigation. This behavior might be due to the fact that USPs do not ac-
count for dependencies among partial test statistics (cfr. Subsection 5.2.1).
That is why we did not consider the USP testing procedure in the power
comparison (see Table 6.1). However, the gap between the two c.d.f.s tends to
vanish as n increases. For n = 5, the exact CSP procedure has been applied,
and in all the remaining cases we considered 1000 Monte Carlo synchronized
permutations. The bottom of Figure 6.5 represents the comparison with the
ANOVA statistic. Note that here we have the same behavior in power with
respect to permutation tests for factor A and factor B, respectively (dotted
lines), though the error rates under the relative null hypotheses (solid lines) do
not show any significant departure from the hypothetical continuous uniform
c.d.f.

Table 6.1 reports a comprehensive power simulation comparison between
the CPS testing procedure and the two-way ANOVA test. Four types of error
distributions have been considered: the normal distribution for continuity with
the literature, the Gamma (with one and two degrees of freedom) represent-
ing asymmetric error distribution, and the Student t3 distribution representing
heavy-tailed errors. The first column reports the number of replicates consid-
ered in each setting. The nominal significance levels in this study have been
chosen to be as close as possible to the usual ones (1%, 5%, and 10%) from
the achievable significance levels available when applying the CSPs: When
n = 4, the nominal levels are 0.029, 0.058, and 0.114; when n = 7, 10, the
nominal levels are 0.016, 0.048, and 0.104. Recall that the achievable signif-
icance levels are multiples of 2/CCSP . Then, for each error distribution, the
observed rejection rates are reported for the main factors and interaction at
the corresponding nominal level. The effects of main factors and interaction
were set in accordance with a 3 × 2 full factorial design. The true sizes of
the effects (whose label is “T.S.”) are displayed in the third column and were
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Fig. 6.5. Simulation study for the main effects of synchronized permutation tests
and ANOVA in a 3× 2 design under H0 and under H1. Continuous lines represent
the type I error rate and dashed lines the statistical power of the test.

set equal to σ/2, 3σ/2, σ for factor A, factor B, and interaction, respectively.
The error variance σ2 is held fixed to one. As regards interaction, we have
considered the test statistic T ∗∗AB illustrated at the end of Section 6.2. Note
how the power of synchronized permutation tests is very close to that of the
parametric ANOVA test for any distribution considered.

Finally, in Figure 6.6, we empirically show that the behavior of the test
statistic for one main factor is not affected by the activeness of the other
factor. In the figure, we plotted the observed power of the test on factor A
as the size of its effects increases from 0 to 1.5σ in steps of .25σ in a 3 × 2
full factorial design. Each line in the graph represents the observed power for
factor A at a significance level of 5% at different sizes of the factor B effects.
The data in the simulation include an interaction effect of size σ, and each
point is obtained by 1000 independent data generations. As in Figure 6.5,
the simulation was run with n = 3, 5, 10, and a comparison with the ANOVA
is shown in the bottom of the same figure. Note that, regardless of the size
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Table 6.1. Power simulation in a 3× 2 design. Synchronized permutation and two-
way ANOVA tests.

Pε Norm Exp t3 Ga2

n Factor T.S. Constrained Synchronized Permutation Tests

A .5 .226 .353 .507 .309 .442 .579 .360 .516 .664 .278 .405 .548
4 B 1.5 .996 .999 1.00 .996 .998 1.00 .983 .992 .996 .992 .998 1.00

AB 1 .814 .906 .958 .857 .906 .960 .867 .907 .953 .850 .922 .964

A .5 .387 .606 .763 .439 .615 .734 .514 .685 .797 .426 .620 .741
7 B 1.5 1.00 1.00 1.00 .615 1.00 1.00 .997 .999 1.00 1.00 1.00 1.00

AB 1 .997 .998 1.00 .981 .992 .998 .974 .981 .994 .988 .997 1.00

A .5 .521 .691 .796 .523 .678 .794 .592 .746 .841 .482 .652 .792
10 B 1.5 1.00 1.00 1.00 1.00 1.00 1.00 .999 1.00 1.00 1.00 1.00 1.00

AB 1 1.00 1.00 1.00 .997 .998 1.00 .992 .993 .994 .999 1.00 1.00

n Factor T.S. Two-Way ANOVA Tests

A .5 .244 .373 .516 .344 .455 .582 .401 .524 .650 .299 .409 .544
4 B 1.5 1.00 1.00 1.00 1.00 1.00 1.00 .994 .997 .997 1.00 1.00 1.00

AB 1 .871 .928 .961 .845 .914 .949 .882 .920 .951 .856 .919 .959

A .5 .431 .636 .763 .427 .613 .736 .517 .686 .783 .433 .614 .755
7 B 1.5 1.00 1.00 1.00 1.00 1.00 1.00 .958 .999 1.00 1.00 1.00 1.00

AB 1 .955 .997 1.00 .965 .992 .995 .974 .987 .993 .981 .994 1.00

A .5 .658 .803 .892 .663 .795 .877 .749 .847 .907 .637 .796 .880
10 B 1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

AB 1 1.00 1.00 1.00 .995 .997 1.00 .987 .992 .993 .999 1.00 1.00

of the factor B effect, the corresponding lines are very close to each other,
showing that no influence on the performance of the factor A test statistic is
due to factor B effect sizes. This is also true for interaction (although we do
not report a similar graph here) since the corresponding test statistics (aT ∗AB
or bT ∗AB) only depend on interaction effects.

6.6 Multiple Comparisons

Once the presence of main effects has been determined, a researcher may
be interested in the post-hoc analysis; that is, in examining the statistical
incidence of each single effect. In what follows, we will always refer to the
effects of the row factor (factor A). In an all-pairwise comparison, each level
of a factor is compared with every other level and a family of C = I(I − 1)/2
null hypotheses are tested. The null hypotheses, for example, concern the
differences of pairs of true effects αi and αs with i 6= s; that is,His

0A : {αi = αs}
for all 1 ≤ i < s ≤ I. This entails testing a family of C = I(I − 1)/2 minimal
dependent hypotheses.

Multiple comparisons can be carried out by computing simultaneous con-
fidence intervals that make it possibile to represent the results graphically
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Fig. 6.6. Statistical power at a significance level of 5% for different intensities of
the effects αi and βi.

and thus infer the practical and statistical significance of differences by visual
inspection (Hsu, 1996). Confidence intervals are determined for the differences
between the observed row means ȳi·· =

∑
jk yijk/nJ and ȳs·· =

∑
jk ysjk/nJ

of any pair of levels i and s with mean response αi and αs. Then, the differ-
ences are declared significant if |ȳi··−ȳs··| > MSD, where MSD is the minimum
significant difference derived from the corresponding confidence interval. Well-
known parametric methods for computing MSDs are, for example, Scheffé’s
method or the more powerful Tukey’s honest significant difference method
(Hsu, 1996; Dean and Voss, 1999). An algorithm for the permutation approach
for computing MSDs between two treatments i and s is given in Algorithm 1.
To the best of our knowledge, no attempt has been made to derive simulta-
neous confidence intervals for multiple comparisons from permutation tests.
In the following, we propose two procedures based on the algorithm given by
Pesarin (2001) for computing the confidence interval of the difference between
two treatments. Algorithm 1 computes the half confidence interval for the dif-
ference between two effects of one factor (hence corresponding to the MSD)
by increasing an initial MSD value provided by one of the parametric methods
such as, for example, from the t test MSD = tα/C,I(n−1) ·

√
2 ·MSE/nJ (where
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MSE is the mean square error), and in that case, made slightly smaller. The
same procedure could then be repeated for the other half interval, although
here we confine ourselves to considering symmetric intervals.

Procedure Compute MSD(i, s);

1. Choose a negative MSDis and the desired precision ε.
2. Subtract ȳi·· − ȳs·· + MSDis from each value of the data group rela-

ted to one of the two factor levels considered, say the ith, obtaining
the new set of observations

ỹijk = yijk − ȳi·· + ȳs·· −MSDis; j = 1, ..., J ; k = 1, ..., n.
These observations will then be pooled with the original observations
ỹsjk = ysjk to apply the synchronized permutations.

3. Compute the observed test statistic for the new responses:
T obs = ˜̄yi·· − ˜̄ys·· = −MSDis.

4. By rearranging the observations B times with synchronized permuta-
tions (CSPs or USPs) within the J columns, obtain the permutation
distribution of the statistic

T ∗(MSDis) = ˜̄y∗i·· − ˜̄y∗s··
5. If the condition

|#{T ∗(MSDis) ≤ T obs}/B − α/2| < ε/2
is satisfied, |MSDis| is the desired halfwidth of the (1− α)% confiden-
ce interval for αi − αs. Otherwise, increase |MSDis| and repeat steps
2→ 4 until condition 5 is satisfied.

Algorithm 1: The algorithm to compute the halfwidth of the confidence in-
terval of the difference between two effects.

There are two possible ways to use Algorithm 1 in the computation of
simultaneous confidence intervals for C comparisons. The first procedure seeks
the width of the interval that satisfies all comparisons simultaneously at a
confidence level of 1 − α. We will call the confidence intervals thus obtained
“simultaneous”. They can be obtained as follows. Let MSDis be the value
found by Algorithm 1 for treatments i and s, and consider MSDir, the next
comparison between treatments i and r. Initially, we set MSDir = MSDis.
Then, a procedure similar to Algorithm 1 is used to determine whether MSDir

guarantees the confidence level 1− α or not. In the former case, we may stop
and proceed to the next comparison (note that MSDir may also guarantee
more than the confidence 1 − α), while in the latter case we increase MSDir

until the confidence level is guaranteed. In this way, the final half confidence
interval for all comparisons becomes

MSD = sup
i<s

MSDis;

that is, MSD is half of the simultaneous confidence interval for the difference
of two effects derived by the synchronized permutation test that guarantees
a coverage of 1 − α. A graphical representation of simultaneous confidence
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intervals derived with this procedure is given on the left in Figure 6.7. The
graph is obtained by attaching error bars to a scatterplot of the estimated
effects versus treatment labels. The lengths of the error bars are adjusted
so that the population means of a pair of treatments can be inferred to be
different if their bars do not overlap. From the definition of MSD, the bars
correspond to ȳi·· ±MSD/2. In fact, given ȳi·· < ȳj··, then ȳj·· −MSD/2 <
ȳi··+MSD/2 iff |ȳj··−ȳi··| < MSD. That is, the bars of the confidence intervals
relative to two effects, αi and αj , overlap iff the difference between the two
corresponding means is smaller than the MSD.

The second procedure consists of computing different confidence intervals
for each comparison by using Algorithm 1 with confidence level adjusted in
order to control the error for the multiple testing. The confidence intervals ob-
tained in this way will be called “individual”, as the computation of the confi-
dence interval for a single comparison does not take into account the role of the
other comparisons. A basic method treats all comparisons as independent and
consequently adjusts the error rate per comparison as αPC = 1− (1− α)1/C .
More simply, given that (1 − α)1/C < 1 − α/C and the difference is small,
αPC = α/C may also be used. This latter is commonly known as the Bonfer-
roni adjustment . In this case, a different graphical representation is required,
as the previous one works only for tests where the simultaneous confidence
intervals have the same widths for all individual comparisons. An alternative
representation is suggested by Hsu (1996) and is shown on the right in Figure
6.7. It consists of a two-dimensional space in which a 45◦ line represents the
points satisfying ȳi·· = ȳs··. At each point (ȳi··, ȳs··), for which coordinates
are given by the sample means of two levels, a segment of slope −1 is drawn,
centered in (ȳi··, ȳs··) and of length MSD/

√
2. Statistical inference is derived

by checking whether the line segment crosses the 45◦ line. The practical as-
sessment of mean differences is preserved instead on the x-axis or y-axis. All
the C confidence intervals can be represented by drawing only the segments
with ȳi·· > ȳs·· (i.e., only intervals below the 45◦ line).

We performed a simulation study for validating these two new procedures
for simultaneous confidence intervals against the parametric Tukey’s honest
significant method. The goal of the study is also the empirical comparison of
the two procedures (individual and simultaneous). Since the aim of confidence
interval representation is to have direct information about which comparisons
are significant, we generated data under H0. Similarly to the study of the
previous section, we considered four different distributions of errors. To check
whether the intervals thus constructed contain the true value of the mean
differences or not, we generate 1000 new samples under H0 per distribution.
For each distribution, we compute the halfwidth MSDis of the confidence
interval with the two procedures described at each generation of data. Hence,
for the simultaneous confidence intervals, the MSDis are all equal, while for
the individual confidence intervals, they vary for each pair of treatments.
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ȳ1··

Simultaneous CIs
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Fig. 6.7. Simultaneous (left) and individual (right) confidence interval graphical
representations.

For each generation l = 1, . . . , 1000, and each comparison, we define the
confidence intervals (CIs) as:

CIis : ȳi·· − ȳs·· ±MSDis, 1,≤ i < s ≤ I,

and set Pl = 1 if all the CIs contain the zero and Pl = 0 otherwise.

Table 6.2. Confidence levels achieved in multiple comparisons.

3 Replicates Norm Exp t3 Ga2

A B A B A B A B

Tukey’s CIs 0.983 0.980 0.555 0.678 0.969 0.961 0.975 0.975
Simultaneous CIs 0.984 0.999 0.673 0.754 0.975 0.987 0.974 0.975

Individual CIs 0.989 0.998 0.431 0.754 0.978 0.987 0.761 0.975

5 Replicates Norm Exp t3 Ga2

A B A B A B A B

Tukey’s CIs 0.953 0.951 0.940 0.943 0.893 0.907 0.961 0.965
Simultaneous CIs 0.962 0.974 1.000 0.926 0.873 0.976 0.974 0.976

Individual CIs 0.916 0.974 0.938 0.926 0.688 0.976 0.792 0.976

10 Replicates Norm Exp t3 Ga2

A B A B A B A B

Tukey’s CIs 0.961 0.960 0.884 0.911 0.975 0.977 0.767 0.789
Simultaneous CIs 0.946 0.992 0.844 0.837 0.954 0.984 0.779 0.746

Individual CIs 0.968 0.991 0.806 0.812 0.971 0.983 0.749 0.751

Finally, the confidence achieved is given by:
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Conf =
1000∑
l=1

Pl/B. (6.13)

Table 6.2 reports a comparison under the null hypothesis between Tukey’s
CIs and simultaneous CIs of synchronized permutations in a 3 × 2 factorial
design. Four error distributions have been considered as before. For each error
distribution, we considered three, five and ten replicates. The CIs for both
main factors have been obtained at a 95% confidence level. The table shows,
for each scenario, the observed confidence level in accordance with formula
(6.13).

6.7 Examples and Use of R Functions

This section is devoted to applying the synchronized permutation tests to
some examples from Montgomery (2001) and to showing how to apply the R
functions that have been implemented to perform the synchronized permu-
tation tests. The R examples and the results from Montgomery (2001) have
been obtained by computing the test statistics introduced in Section 6.2 and
applying a Monte Carlo algorithm to randomly sample from the CSP/USP
distribution in accordance with Section 6.3. For each example, we also report
the corresponding two-way ANOVA results. In some cases, the exact CSP
distribution has also been considered.

To begin with, let us introduce a simple generic example in order to better
understand how synchronized permutations really work. Suppose that we are
dealing with a 22 complete factorial design with n = 2. This can be displayed
in table format:

Factor B
Factor A y111 y112 y121 y122

y211 y212 y221 y222

Suppose we are testing for factor A and wish to apply CSPs in order to
obtain the synchronized permutation distribution of the statistic. Recall that
when CSPs are applied, units are swapped in the same original position of
the first couple of blocks. Therefore, we will focus on the swaps from blocks
A1B1 and A2B1. Here there are

(
4
2

)
= 6 distinct permutations:

(1) no swaps (i.e. no permutation);
(2) swap y111 with y211;
(3) swap y111 with y212;
(4) swap y112 with y211;
(5) swap y112 with y212;
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(6) swap both y111 and y112 with y211 and y212.

Clearly, permutations (1) and (6) give the same value of the statistic (i.e.,
aTA[1] = aTA). Permutations (2) and (5) lead to the same value of the statistic
(say aTA[2]), as well as permutations (3) and (4) (say aTA[3]). Therefore,
according to this example, the minimum attainable significance level is 1/3.
Instead, if USPs are adopted, there are

∑2
ν=0

(
2
ν

)4
= 18 distinct synchronized

permutations, which are listed in Table 6.3 (in the π index column).

Table 6.3. List of all possible USPs in a 22 design with n = 2.

π index ν 1st colum 2nd colum aT ∗A

1 0 ∅ ∅ aT ∗A[1]

2 y111 ←→ y211 y121 ←→ y221
aT ∗A[2]

3 y111 ←→ y211 y121 ←→ y222
aT ∗A[3]

4 y111 ←→ y211 y122 ←→ y221
aT ∗A[4]

5 y111 ←→ y211 y122 ←→ y222
aT ∗A[5]

6 y111 ←→ y212 y121 ←→ y221
aT ∗A[6]

7 y111 ←→ y212 y121 ←→ y222
aT ∗A[7]

8 y111 ←→ y212 y122 ←→ y221
aT ∗A[8]

9 y111 ←→ y212 y122 ←→ y222
aT ∗A[9]

1
10 y112 ←→ y211 y121 ←→ y221

aT ∗A[9]
11 y112 ←→ y211 y121 ←→ y222

aT ∗A[8]
12 y112 ←→ y211 y122 ←→ y221

aT ∗A[7]
13 y112 ←→ y211 y122 ←→ y222

aT ∗A[6]
14 y112 ←→ y212 y121 ←→ y221

aT ∗A[5]
15 y112 ←→ y212 y121 ←→ y222

aT ∗A[4]
16 y112 ←→ y212 y122 ←→ y221

aT ∗A[3]
17 y112 ←→ y212 y122 ←→ y222

aT ∗A[2]

18 2 y′11 ⇐⇒ y′21 y′12 ⇐⇒ y′22
aT ∗A[1]

Here it is easier to see the symmetry induced by the squaring operator
in the test statistic (6.5). Clearly, permutation 1 (exchanging ν = 0 units
between two blocks, symbol “∅”) is equivalent to permutation 18 (exchang-
ing all the units, ν = 2, symbol “⇐⇒”) since these permutations produce
the observed value of the test statistic aT ∗A(1) = aTA. The remaining uncon-
strained synchronized permutations (2 → 17), where ν = 1 (symbol “←→”),
give eight distinct values of the distribution of aT ∗A. This is the starting point
to calculate the cardinality of the support of aT ∗A for generic I, J , and n. The
cardinality of the support of the test statistics depends on how the synchro-
nization is done: Note that to have a synchronized permutation it is necessary
that the same number of units be exchanged in each pair of rows or columns
considered. It is also possible to synchronize permutations with respect to all
possible pairs of rows. That is how formulas (6.9) and (6.12) have been ob-



156 6 Synchronized Permutation Tests in Two-way ANOVA

tained. It is worth noting that the USP test maintains its properties even if
ν is allowed to change independently in each single pair of rows or columns.
In this case the cardinality of the support of the test statistic would change
accordingly. For instance, when I > 2, J = 2, and the synchronization is
applied independently to each pair of rows, the cardinality of the support of
aT ∗A becomes respectively

CoUSP =

n/2−1∑
ν=0

(
n

ν

)2J

+
1
2

(
n

n/2

)2J
I(I−1)/2

,

CeUSP =

(n−1)/2∑
ν=0

(
n

ν

)2J
I(I−1)/2

,

since with this design there are I(I−1)/2 ways to have a 2×2 ANOVA table.
The cardinality of the support of the USP test statistic depends on:

• the design settings (I, J , and n),
• which factor is considered (row or column synchronized permutations),
• at which level the synchronization is done (exchange ν units between all

blocks in all possible pairs of rows or columns, or exchange ν units inde-
pendently in each pair of rows or columns),

and it can be obtained by decomposing the I×J ANOVA design into multiple
I × 2 or 2× J ANOVA designs.

6.7.1 Applications with R Functions

This paragraph is dedicated to applying some R functions to perform the
synchronized permutation testing. There are two functions performing the
CSP and USP tests, which are respectively called CSP.r and USP.r. Another
function, synchro summary.r, gives the summary of the previous tests. Fi-
nally, the functions IC USP.r and IC CSP.r give the 100(1−α)% synchronized
permutation confidence interval for a pair of row or column levels, and the
function hsu.r gives the representation of the (individual) CIs above.

In order to use these functions, first put them all in the same folder (for
instance, C:/Synchro), and set the working directory by typing

> setwd("C:/Synchro")

Then, to load a function (e.g., the IC USP.r function), type

> source("IC_USP.r")

Note that the names of the function files (to be loaded in the R environment)
are the same as the names of the functions to be run except, in some cases,
an underscore “ ” is replaced by a point (i.e., the name of the function file is
IC USP.r, but the function name is IC.USP).
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Let’s begin with CSP.r and USP.r. These functions require as entries a
vector of length nIJ with the observed data y and an (nIJ) × 2 matrix of
labels x. The latter matrix is the design matrix, which specifies the levels of
factor A (first column of x) and factor B (second column). For instance, if we
have to test a 3×2 design with n = 2 replicates and we wish to apply USPs to
some simulated data (e.g., normally distributed), we may proceed as follows:

> set.seed(1000)
> I <-3
> J<-2
> n<-2
> y<-rnorm((n*I*J))
> x1<-factor(rep(seq(1,I),each=(n*J)))
> x2<-factor(rep(rep(c(1,2),each=n),I))
> x<-data.frame(A=x1,B=x2)
> x

A B
1 1 1
2 1 1
3 1 2
4 1 2
5 2 1
6 2 1
7 2 2
8 2 2
9 3 1
10 3 1
11 3 2
12 3 2
> round(y,digits=5)
[1] -0.44578 -1.20586 0.04113 0.63939 -0.78655 -0.38549
[7] -0.47587 0.71975 -0.01851 -1.37312 -0.98243 -0.55449

Note that the data in y are under the global null hypothesis (i.e., αi = 0 ∀i,
βj = 0 ∀j, αβj = 0 ∀i, j). There is no special requirement on the labels, we
could have used −1, 0, 1 instead of 1, 2, 3. To run the USP function, type

> t<-USP(y,x)

The object t now contains the values of the USP.r function. To see the list of
returned values, type

> str(t)
List of 13
$ pa : num 0.512
$ pb : num 0.11
$ pab : num 0.465
$ pab.a : num 0.443
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$ pab.b : num 0.528
$ TA : num 7.83
$ TB : num 13.0
$ TAB.a : num 9.41
$ TAB.b : num 9.41
$ type : chr "Unconstrained"
$ C : num 1000
$ min.sig: num [1:2] 0.00195 0.03030
$ exact : logi FALSE

In detail, TA, TB, TAB.a, and TAB.b are the observed values of the test statistics
(6.5), (6.7), (6.6), and (6.8); pa, pb, pab.a, and pab.b are their related p-
values. pab is the global p-value of the direct combining function TAB =
aTAB + bTAB . The USP.r function also returns the type of synchronization
that has been applied ("Unconstrained" for USP.r and "Constrained" for
CSP.r) and the number of Monte Carlo simulations, which are set equal to
1000 by default. Finally, min.sig is the minimum (theoretical) achievable
significance level for the row factor (A) and the column factor (B). The value
exact specifies if the permutation distribution is exact (CSP.r only) or not.

To see the results, run the function synchro summary.r, which requires
as entry an object produced either by USP.r (as the object t) or CSP.r. To
summarize the results, type

> synchro.summary(t)

Monte Carlo Unconstrained Synchronized Permutation Testing
for Two-way ANOVA

Source T Pr(>|T|)

Factor A 7.834854 0.512
Factor B 12.98004 0.11
Interaction (a) 9.414594 0.443
Interaction (b) 9.414594 0.528
Interaction AB 18.82919 0.465

Signif. codes:0 ’***’ 0.001 ’**’ 0.01’*’ 0.05 ’.’ 0.1 ’ ’ 1

Number of random permutations considered: 1000
Minimum achievable significance levels:
(a): 0.001949318 (b): 0.03030303

This output is similar to the summary() function for linear models in R. Note
that the first line of output says that we have applied Monte Carlo USPs (since
no algorithm to obtain exact USPs has been provided, whereas the CSP.r func-
tion can provide the exact null distribution of the test statistic). The num-
ber of random permutations (set equal to 1000 by default) can be specified
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as an entry of the USP.r function by typing “USP(y,x,C=n.perms)”, where
n.perms is the desired number of permutations. Finally, the line with Minimum
achievable significance levels reports the theoretical minimum achiev-
able significance levels, which are equal to 1/Ce/oUSP . In order to make a com-
parison with the parametric F test for two-way ANOVA (here the assumptions
of this test are all satisfied), type

> attach(x)
> fit<-aov(y~A*B)
> summary(fit)

Df Sum Sq Mean Sq F value Pr(>F)
A 2 0.65290 0.32645 0.8621 0.4687
B 1 1.08167 1.08167 2.8565 0.1420
A:B 2 0.78455 0.39227 1.0359 0.4107
Residuals 6 2.27205 0.37867

It does not make sense to apply a CSP test to the previous example because
the cardinality of the support of the test statistics is too small (there are only
three distinct values when n = 2). Let’s consider another example with simu-
lated data. We are going to simulate data from a 3× 2 design with n = 4 and
with factor A and interaction effects under the alternative. Suppose the true
effects of factor A and interaction are as in Table 6.4.

Table 6.4. :True effects for the simulation in power.

αβ β1 = 0 β2 = 0

α1 = −1 -0.2 +0.2
α2 = 0 0 0
α3 = +1 +0.2 -0.2

We will use some of the previous objects (I and J) to define the new
simulation. A number of replicates equal to 4 is enough to apply the exact
CSP testing procedure:

> set.seed(10)
> source("CSP.r")
> n<-4
> x1<-factor(rep(seq(1,I),each=(n*J)))
> x2<-factor(rep(rep(c(1,2),each=n),I))
> x<-data.frame(A=x1,B=x2)
> y<-rnorm(n*I*J)
> alpha=rep(c(-1,0,1),each=2*n)
> alpha.beta<-c(rep(c(-1,1),each=n),rep(0,each=(2*n)),
+ rep(c(1,-1),each=n))/5



160 6 Synchronized Permutation Tests in Two-way ANOVA

> y<-y+alpha+alpha.beta
> round(y,digits=5)

[1] -1.18125 -1.38425 -2.57133 -1.79917 -0.50545 -0.41021
[7] -2.00808 -1.16368 -1.62667 -0.25648 1.10178 0.75578
[13] -0.23823 0.98744 0.74139 0.08935 0.24506 1.00485
[19] 2.12552 1.68298 0.20369 -1.38529 0.12513 -1.31906
> t<-CSP(y,x,exact=TRUE)

loading the required package: combinat

> synchro.summary(t)

Exact Constrained Synchronized Permutation Testing
for Two-Way ANOVA

Source T Pr(>|T|)

Factor A 347.3366 0.028571 *
Factor B 8.879206 0.457143

Interaction (a) 188.9874 0.057143 .
Interaction (b) 188.9874 0.057143 .
Interaction AB 377.9749 0.028571 *

Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1’ ’ 1

Cardinality of S(T): 35
Minimum achievable significance levels:
(a): 0.02857143 (b): 0.02857143

Here the minimum achievable significance level is equal to 1/35 for both row
and column synchronized permutations.

The output produced by synchro summary.r is as before, with some ex-
ceptions regarding the type of test that has been applied. Note that there is
the voice “Cardinality of S(T)” (which stands for “cardinality of the support
of the test statistic”) instead of “Number of random permutations consid-
ered”, and that the p-value of factor A is the minimum achievable p-value.
Note also that the combined test for interaction is more significant than the
partial tests Interaction(a) and Interaction (b) since it produces a smaller p-
value. Moreover, the significant factors or interaction are highlighted by the
usual symbols used in the summary R function. If one does not specify that
the exact distribution is desired, the CSP.r function obtains a Monte Carlo
distribution of the test statistic with C = 1000 random permutations. The
output would be as follows, if we set C = 5000:
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> t<-CSP(y,x,C=5000)
> synchro.summary(t)

Monte Carlo Constrained Synchronized Permutation Testing
for Two-Way ANOVA

Source T Pr(>|T|)

Factor A 347.3366 0.0324 *
Factor B 8.879206 0.4496

Interaction (a) 188.9874 0.059 .
Interaction (b) 188.9874 0.0596 .
Interaction AB 377.9749 0.0324 *

Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1’ ’ 1

Number of random permutations considered: 5000
Minimum achievable significance levels:
(a): 0.02857143 (b): 0.02857143

with some approximations in the p-value results. The F -test analysis gives
pA = 0.0011, pB = 0.4758, and pAB = 0.0125. The USP test with 5000 per-
mutations gives pA = 2× 10−4, pB = 0.4615, and pAB = 2× 10−4 (combined
test). According to the F -test, factor A is very significant; note how both
the CSP and the USP tests give a p-value for factor A that is equal to the
minimum achievable significance level. In order to understand which are the
levels that lead to the rejection of the null hypothesis, we can obtain syn-
chronized permutation confidence intervals through the IC USP.r function.
This function computes the individual confidence interval for the difference of
pairs of row means (default) or pairs of column means: In order to visualize
the individual confidence intervals, it is first necessary to create a data frame
(out, which will be the entry of the plot hsu.r function) as follows:

> set.seed(101)
> source("IC_USP.r")
> n.comp<-choose(I,2)
> IC.A<-array(0,dim=c(n.comp,2))
> F<-array(0,dim=c(n.comp,2))
> m<-array(0,dim=c(n.comp,2))
> k<-1
> for(i in 1:(I-1)){
+ for(s in (i+1):I){
+ F[k,1]<-paste("m",i,sep="")
+ F[k,2]<-paste("m",s,sep="")
+ IC.A[k,]<-IC.USP(y,x,i,s)
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+ m[k,1]<-mean(y[x[,1]==i])
+ m[k,2]<-mean(y[x[,1]==s])
+ k=k+1
+ }
+ }
> out.A<-data.frame(F1=F[,1],F2=F[,2],m1=m[,1],m2=m[,2],
+MSD=m[,1]-m[,2]-IC.A[,1])
> out.A
F1 F2 m1 m2 MSD

1 m1 m2 -1.3779272 0.1942948 0.83
2 m1 m3 -1.3779272 0.3353601 0.78
3 m2 m3 0.1942948 0.3353601 0.91

In order to view the individual confidence intervals for the differences αi−αs,
1 ≤ i < s ≤ 3, type

colnames(IC)<-c("lower","upper")
rownames(IC)<-c("1-2","1-3","2-3")
> IC.A

lower upper
1-2 -2.402222 -0.7422220
1-3 -2.493287 -0.9332873
2-3 -1.051065 0.7689347

From these results we can conclude with a significance level of approximately
5%, that the null hypothesis α2 = α3 is not rejected.

The data frame out contains the informations required to create a plot
like Figure 6.8: which pair of row or column means is considered, their val-
ues, and the half difference of the individual confidence intervals. The func-
tion IC USP.r increases the value of MSDis as in Algorithm 1 from 0.01
to max.delta/100 until the convergence criterion is satisfied. The entries
conf.level and max.delta are set by default to 0.95, and 300, respec-
tively. If the convergence criterion is not satisfied (the convergence criterion
is pis < α/2, where pis is the p-value obtained in Algorithm 1 as a function
of MSDis), the function will return a confidence interval in any case, even if
the desired level of confidence has not been achieved. In this case, increase
max.delta until the convergence is achieved. For instance, if we want to ob-
tain the confidence interval for the difference of the effects of factor B (entry
row.perm set equal to TRUE) at a 99% level with an MSDis ∈ [0.01, 0.5], we
may type

> IC.USP(y,x,1,2,conf.level=0.99,row.perm=TRUE,max.delta=50)
1 1
2 0.503
3 0.478
4 0.453
5 0.451
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.........
45 0.124
46 0.097
47 0.126
48 0.106
49 0.099

lower upper
[1] -0.2416834 0.7383166

However, note that the confidence interval [−0.2416834, 0.7383166] is actu-
ally an 80.2% confidence interval (2 × [0.5 − pis]). The numbers printed by
the function are probabilities of rejecting the null hypothesis β1 = β2 as
MSDis increases (i.e., pis = #{T ∗(MSDis) ≤ T obs}/B in Algorithm 1). By
letting max.delta set to default, we obtain a 99% confidence interval equal to
[−0.7216834, 1.2183166]. The convergence criterion is satisfied after 97 runs;
however, note that the number of runs is itself a random variable. This is
because the IC USP.r applies Monte Carlo permutations, and therefore there
is a monotone decreasing trend of the probabilities pis from approximately
0.5 to the first value that satisfies the condition pis < α/2. For this reason, it
is worth noting that the output of the function is a confidence interval with
a level of confidence equal to or greater than 1−α. With these settings, type

> set.seed(1)
> m1<-mean(y[x[,2]==1])
> m2<-mean(y[x[,2]==2])
> IC.B<-IC.USP(y,x,1,2,row.perm=TRUE)
> MSD=m1-m2-IC.B[1]
> out.B<-data.frame(F1="m1",F2="m2",m1=m1,m2=m2,MSD=MSD)
> out.B
F1 F2 m1 m2 MSD

1 m1 m2 -0.1585991 -0.4069157 0.75

We are now ready to plot the ICs for factor A and factor B as follows:

> source("plot_hsu.r")
> plot.hsu(out.A,file="ICA",main="A",title="USP ICs",
+ dev="eps",measure=expression(sigma))
> plot.hsu(out.B,file="ICB",main="B",title="USP ICs",
+ dev="eps",measure=expression(sigma))

The plot hsu.r function produces as output a file as in Figure 6.8. The entries
of the functions are:

• a data frame containing the required information as the object out.A;
• the name of the output file, without extension; files can be viewed with

the Ghostscript free software;
• the main title as usual in the R plots;
• a secondary title, in our example “USP ICs”;
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• the file extension (default is .eps, .pdf is another possible choice);
• a unit of measure, such as liters, meters, etc.

A
−2.0 −1.0 0.0 0.5 1.0

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

m2

m1

m3

USP ICs

!

!

B
−1.0 −0.5 0.0 0.5

−1.0

−0.5

0.0

0.5

m1

m2

USP ICs

!

!

Fig. 6.8. Output of the function plot hsu.r for both main factors.

It is possible to change the names of the levels by changing the levels of factor
F. For instance, Figure 6.10 has been obtained by setting

> J<-3
> F<-array(0,dim=c((J*(J-1)/2),2))
> F[,1]<-c("Air","Air","Water")
> F[,2]<-c("Salt","Salt","Water")

The entries for the plot hsu.r function are main = "Individual CIs -
USP", title="", measure = "Environment".

Figure 6.8 shows that there are no significant differences between the true
effects of factor B (since the plotted confidence interval crosses the 45◦ line).
When this happens, the segment reproducing the confidence interval is in bold
black. The estimated means are ȳ·1 = −0.1585991 and ȳ·2 = −0.4069157. As
regards factor A levels, there is no significant difference between α2 and α3

(ȳ2· = 0.1942948 and ȳ3· = 0.3353601), whereas α1 is the effect that led to the
rejection of the null hypothesis (ȳ1· = −1.3779272). The CIs comparing α1 to
the other effects are highlighted in light grey because the related comparisons
are significant. To conclude the example, let’s compare the USP confidence
intervals with those obtained with the well-known Tukey honest significant
method

> fit<-aov(y ~ A*B)
> TukeyHSD(fit,"A")
Tukey multiple comparisons of means

95% family-wise confidence level
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Fit: aov(formula = y ~ A * B)

$A
diff lwr upr p adj

2-1 1.5722220 0.5063812 2.638063 0.0038551
3-1 1.7132873 0.6474465 2.779128 0.0018395
3-2 0.1410653 -0.9247755 1.206906 0.9392540

> TukeyHSD(fit,"B")
Tukey multiple comparisons of means

95% family-wise confidence level

Fit: aov(formula = y ~ A * B)

$B
diff lwr upr p adj

2-1 -0.2483166 -0.9647045 0.4680712 0.4758417

As regards USP ICs:

> comp.A<-paste(F[,1],F[,2],sep="-")
> comp.B<-paste("m1","m2",sep="-")
> data.frame(comparison=comp.A,IC.A)

comparison lower upper
1-2 m1-m2 -2.402222 -0.7422220
1-3 m1-m3 -2.493287 -0.9332873
2-3 m2-m3 -1.051065 0.7689347

> IC.B
lower upper

[1] 0.2283166 0.2683166

The individual confidence intervals obtained with the USPs are very similar to
those obtained with Tukey’s method, but note that no correction for multiplic-
ity has been applied in the search of the intervals for αi−αs, 1 ≤ i < s ≤ 3. To
account for multiplicity (applying a Bonferroni correction), the conf.level
entry of the IC USP.r function must be set to 1 − α/3. The individual con-
fidence intervals with a 95% confidence level accounting for multiplicity are
shown in Table 6.5. Obviously, there is no need to correct the nominal confi-
dence levels for β1 − β2. The number of permutations is set equal to 1000 by
default. To increase the USP approximation, a larger number of permutations
must be considered.

Both Tukey and USP CIs lead to the same conclusion: The effect that led
to the rejection of H0A is α1 since the confidence intervals involving α1 do
not contain the zero.
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Table 6.5. Individual USP CIs accounting for multiplicity (Bonferroni correction).

Comparison Lower Upper

α1 − α2 -2.50222 -0.642222

α1 − α3 -2.64328 -0.783287

α2 − α3 -1.20106 0.918934

6.7.2 Examples

The first example is Problem 5.11 from Montgomery (2001). This is a 2 × 3
design with n = 3. Factor A is the position of the furnace (position 1 or 2)
and factor B is the firing temperature (800 ◦C, 825 ◦C, and 850 ◦C). The
aim of the experiment was to determine how the main factors affected the
density of a baked carbon anode. Table 6.6 shows the results obtained with
the parametric two-way ANOVA and the synchronized permutation tests.
Here n is too small to apply the CSPs since the number of distinct values of
the test statistic is only ten. Recall that the minimum achievable significance
level equals the inverse of the cardinality of distinct values of the CSP test
statistic, which is CCSP /2. For the USPs, instead the number of distinct
values of the test statistic is 730 when the intermediate statistics are based on
factor A, and 531442 when the intermediate statistics are based on factor B.
Hence the test statistics are sensitive enough to be compared with a continuous
distribution such as the F -statistic. In fact, the p-values obtained with the two-
way ANOVA are very close to those obtained with the USPs. Instead, exact
CSPs reach the minimum attainable p-value (which is 1/10) for both main
factors, which are strongly significant. As far as the interaction is concerned,
we report two possible test statistics in the synchronized permutation strategy,
depending on which main factor the intermediate statistic is based on. In
Figure 6.9, the nonparametric confidence intervals at a 95% level are drawn
for both main factor effects. From Figure 6.9 we can conclude that the effects of
the two levels of factor A (ȳ1·· = 729.9, ȳ2·· = 690) are significantly different.
Instead, the effect of levels 1 and 3 (ȳ·1· = 552.3, ȳ·3· = 543.5) of factor B
cannot be considered to be significantly different, whereas the effect of level 2
(ȳ·2· = 1034) is different from both of them.

The second example considered is Problem 5.22 from Montgomery (2001).
Here there is an investigation on the effects of cycling loading and environ-
mental conditions on fatigue crack growth at a constant 22 MPa stress for a
particular material. This is a 32 factorial experiment with n = 4 replicates.
Factor A is “frequency” (10, 1, and 0.1) and factor B is “environment” (air,
water, and salt). The results for parametric two-way ANOVA and for the syn-
chronized permutation tests are reported in Table 6.7. The p-values in the USP
test column are all equal to zero because reasonably the Monte Carlo USP
algorithm did not produce the observed value (P [ν = 0] = 7.87712E − 14).
We obtained these results with 10,000 random USPs.
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Table 6.6. ANOVA and CSP/USP results for Problem 5.11 from Montgomery
(2001).

Two-Way ANOVA

Source D. F. Sum of Squares F -value Pr > F

A 1 795.56 17.331 0.002

B 2 157557.01 1144.126 0.000

AB 2 272.7 0.99 0.427

Error 12 5370.66 - -

Synchronized Permutation Tests

Source Intermediate T T -value Pr > TUSP Pr > TCSP
A aTis|j 128881 0.0011 0.1000

B bTjh|i 17016158 0.0001 0.1000

AB aTis|j 14726 0.4569 0.6000

AB bTjh|i 14726 0.4732 0.6000
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Fig. 6.9. Problem 5.11 from Montgomery (2001). 2×3 design with three replicates.
Confidence intervals for factors “Position” and “Temperature”.

Note that all the p-values in the CSP column are equal to the minimum
attainable significance level, which is 1/35 = 0.02857. Figure 6.10 shows the
confidence intervals for both main factors in the proposed example. All the
effects of factor A (ȳ1·· = 2.114, ȳ2·· = 3.109, ȳ3·· = 7.660) can be deduced
to be significantly different. The effects of levels 2 and 3 of factor B (ȳ·2· =
5.392, ȳ·3· = 5.077) are significantly different from the effect of level 1 (ȳ·1· =
2.414). Data are expressed in crack growth rates. The CIs were obtained at a
confidence level of 95%.
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Table 6.7. ANOVA and CSP/USP results for Problem 5.22 from Montgomery
(2001).

Two-Way ANOVA

Source D. F. Sum of Squares F -Value Pr > F

A 2 17.49 104.94 0.000

B 2 5.35 32.12 0.000

AB 4 25.8 25.8 0.000

Error 27 5.42 - -

Synchronized Permutation Tests

Source Intermediate T T -value Pr > TUSP Pr > TCSP
A aTis|j 7556.14 0.000 0.02857

B bTjh|i 2313.07 0.000 0.02857

AB aTis|j 3670.76 0.000 0.02857

AB bTjh|i 3670.76 0.000 0.02857
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Fig. 6.10. Problem 5.22 from Montgomery (2001). 3×3 design with four replicates.
Confidence intervals for factors “Frequency” and “Environment”.

6.8 Further Developments

Synchronized permutation tests can also be applied to unbalanced design and
two-way MANOVA. In the first case, some weights in the test statistics are
required in order to obtain separate tests; in the latter, the nonparametric
combination methodology applies. This last section is dedicated to these kinds
of analyses.

6.8.1 Unbalanced Two-Way ANOVA Designs

In what follows we will refer to a 2× 2 ANOVA unbalanced design. Let n11,
n12, n21, and n22 be respectively the sample sizes of blocks A1B1, A1B2, A2B1,
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and A2B2. It is still possible to apply synchronized permutations between each
pair of blocks, but clearly here:

0 ≤ ν ≤ min{n11, n12, n21, n22}.

The idea is to weight the partial statistics in order to eliminate the confound-
ing effects. For instance, the partial statistics to test for factor A become

aT ∗12|1 = ω11

n11∑
k=1

y∗11k − ω21

n21∑
k=1

y∗21k (6.14)

aT ∗12|2 = ω12

n12∑
k=1

y∗12k − ω22

n22∑
k=1

y∗22k (6.15)

and the weight associated with each block ωij , i, j = 1, 2 must be determined
in order to obtain separate tests. To identify the weights, let’s consider the
synchronized permutation structure of aT ∗12|1 when exchanging ν units be-
tween blocks A1B1 and A1B2, and between A2B1 and A2B2. With the same
notation as in Section 6.2,

aT ∗12|1 = w11 [(n11 − ν)(µ+ α1 + β1 + αβ11) + ν(µ+ α2 + β1 + αβ21)]
− w21 [(n21 − ν)(µ+ α2 + β1 + αβ21) + ν(µ+ α1 + β1 + αβ11)] + ε̂∗12|1
= [w11(n11 − ν)− νw21] (µ+ α1 + β1 + αβ11)
− [w21(n21 − ν)− νw11] (µ+ α2 + β1 + αβ21) + ε̂∗12|1.

In order to eliminate the confounding effects µ and β1, ω11 and ω21 must
satisfy the condition

w11(n11 − ν)− νw21 = w21(n21 − ν)− νw11,

which leads to the condition w11n11 = w21n21. Letting w11 = w21n21n
−1
11 ,

aT ∗12|1 becomes

aT ∗12|1 = w21

[
n21 − ν

n11 + n21

n11

]
(α1 − α2 + αβ11 − αβ21) + ε̂∗12|1.

On the other hand, we have ω12n12 = ω22n22 and

aT ∗12|2 = w22

[
n22 − ν

n12 + n22

n12

]
(α1 − α2 + αβ12 − αβ22) + ε̂∗12|2.

In order to eliminate the interaction effect, by applying the side condition
(6.1), ω21 and ω22 must satisfy

w21

[
n21 − ν

n11 + n21

n11

]
= w22

[
n22 − ν

n12 + n22

n12

]
,
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which leads to the relation

ω21 = ω22
n12n22 − ν(n12 + n22)
n11n21 − ν(n11 + n21)

n11

n12
.

Since the system of the equations above is singular, without loss of generality,
we let ω22 = [n11n21 − ν(n11 + n21)]n12 and n21 = min(n11, n12, n21, n22). In
this way, we are able to specify the weights in equations (6.14) and (6.15):

ω11 = [n12n22 − ν(n12 + n22)]n21

ω21 = [n12n22 − ν(n12 + n22)]n11

ω12 = [n11n21 − ν(n11 + n21)]n22

ω22 = [n11n21 − ν(n11 + n21)]n12

Note that ν must satisfy the condition

ν 6= n11n21

n11 + n21
.

Finally, just apply the weights to the partial statistics of the CSP or USP
test, depending on the available number sizes and the restriction on ν. The
weights should be specified from the smallest nij .

6.8.2 Two-Way MANOVA

Let us now consider a two-way MANOVA layout where a Q-dimensional ran-
dom variable is observed on a sample of nIJ units from a replicated two-factor
experimental design. In the previous sections, we have provided a solution for
the univariate case. The multivariate case requires the nonparametric combi-
nation methodology introduced in Chapter 1. Let

Yijk = [1Yijk, 2Yijk, . . . ,QYijk]

be the (row) vector of the multivariate response associated to the kth experi-
mental units from block AiBj with k, I, and J as in Section 6.1. Also assume
that each component of the multivariate response follows an addictive model:

qYijk = qµ+ qαi + qβj + qαβij + qεijk q = 1, . . . , Q.

The components of the multivariate response Yijk could be either dependent
or independent; there is no need to specify (or to estimate) the covariance
matrix. It sometimes could be useful to assess whether a two-factor experiment
has at least some significant effects on a set of Q variables. Let us refer, for
instance, to factor A. Let

qH0A : qα1 = qα2 = . . . , qαI q = 1, . . . , Q
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be the (partial) null hypothesis for the effects of factor A on the qth variable.
If factor A has no real effect on any of the Q variables, then this can be written
as a global null hypothesis,

HG
0A = ∩Qq=1qH0A,

where HG
0A is true if and only if all the considered partial null hypotheses are

true. On the other hand, the alternative is true if at least one partial null
hypothesis is false. We may write that as follows:

HG
1A = ∪Qq=1qH1A.

Now, in order to obtain a global test to assess HG
0A, we first perform Q partial

tests on the effects of factor A on the qth component of the response and then
combine the partial tests through the nonparametric combination. To do this,
proceed as follows:

1. For q = 1, . . . , Q, repeat:
a) Obtain the synchronized permutation distribution (CSP or USP) of

the test statistic for the effects of factor A on the qth variable,

a
qT

∗
A = [aqTA,

a
qT

∗(1)
A , aqT

∗(2)
A , . . . , aqT

∗(b)
A , . . . , aqT

∗(B)
A ]′,

where a
qTA is the observed value of the test statistic and a

qT
∗(b)
A , b =

1, . . . , B, is the generic element of its distribution.
b) Obtain the vector of p-values

qp∗A = [qpA, qp
∗(1)
A , qp

∗(2)
A , . . . , qp

∗(b)
A , . . . , qp

∗(B)
A ]′,

where qpA is the observed p-value of the effects of factor A and

qp
∗(b)
A , b = 1, . . . , B is the p-value that would be obtained if a

qT
∗(b)
A

were the observed value of the test statistic,

qp
∗(b)
A =

1
B

B∑
j=1

I
(
a
qT

∗(j)
A ≥ a

qT
∗(b)
A

)
.

2. Consider the matrix P∗
A whose columns are made by each vector qp∗A:

P∗
A = [1p∗A, 2p

∗
A, . . . ,Qp∗A] .

Note that the first row of P∗
A is made of the partial p-values for the effects

of factor A on each variable.
3. Apply a suitable combining function ψ(·) to the rows of P∗

A and obtain
the vector

Ψ =
[
ψ,ψ∗(1), ψ∗(2), . . . , ψ∗(b), . . . , ψ∗(B)

]′
,

where ψ = ψ(1pA, 2pA, . . . ,QpA), and ψ∗(b) = ψ(1p
∗(b)
A , 2p

∗(b)
A , . . . ,Qp

∗(b)
A ).
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4. If large values of ψ are significant, obtain the global p-value as:

pGA =
1
B

B∑
b=1

I
(
ψ∗(b) ≥ ψ

)
.

5. If pGA > α, where α is the desired type I error rate, accept HG
0A; otherwise

reject HG
0A.

If HG
0A is rejected, one can evaluate on which variable(s) the effects of factor

A are significant by looking at the first row of P∗
A and by applying suitable

corrections for multiplicity. If the components of the response are known to
be independent, one can perfom points 1(a) and 1(b) of the algorithm above
independently. Otherwise, a further synchronization among the Q components
of the response is required. To better understand this case, consider the unit-
by-unit representation of a balanced 2×2 MANOVA design as in Table 6.8. If
CSPs are applied, ν = 1, and the units to be swapped whitin pairs of blocks
are the first ones of each block, then we should swap the rows indicated by
the symbol “←” with each other and the rows indicated by the symbol “⇐”
with each other. That is, the swapping has to be made while maintaining the
inner dependence among the components of the response in each unit.

Table 6.8. Unit-by-unit MANOVA design representation.

Indexes Variables
i j k 1Y 2Y . . . QY

1 1 1 1y111 2y111 . . . Qy111 ←
...

...
...

...
...

...
...

1 1 n 1y11n 2y11n . . . Qy11n
1 2 1 1y121 2y121 . . . Qy121 ⇐
...

...
...

...
...

...
...

1 2 n 1y12n 2y12n . . . Qy12n
2 1 1 1y211 2y211 . . . Qy211 ←
...

...
...

...
...

...
...

2 1 n 1y21n 2y21n . . . Qy21n
2 2 1 1y221 2y221 . . . Qy221 ⇐
...

...
...

...
...

...
...

2 2 n 1y22n 2y22n . . . Qy22n
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Permutation Tests for Unreplicated
Factorial Designs

In experimental design, wide use is made of screening comparative experi-
ments to compare the effects of treatments on a given number of experimen-
tal units. In this type of experimentation, designing the experiment in such
a way as to obtain all pertinent information in the related field of research is
of fundamental importance, especially for costly or complicated experiments.
Screening designs very often represent the first approach to experimental sit-
uations in which many explanatory factors are available and we are interested
in establishing which ones are significant. In this field, the two-level factorial
designs represent an instrument that is easy to use and interpret. When con-
sidering complete unreplicated designs, it is not possible to obtain an estimate
of the variance of the errors, and therefore the usual inferential techniques,
aimed at identifying the significantly active factors, are unsuitable. Various
solutions to this problem have been proposed in the literature. Some, such as
the normal plot (Daniel, 1959), prove not to be very objective; others pre-
suppose assumptions, such as normality of errors, even when little or nothing
is known about the phenomenon being analyzed. Hamada and Balakrishnan
(1998) propose a review of existing parametric and nonparametric tests con-
ceived for unreplicated two-level factorial designs.

It is worth noting that the first proposal of a permutation approach for test-
ing active effects in factorial designs appeared in Loughin and Noble (1997);
Pesarin and Salmaso (2002) proposed an exact permutation test for the K
largest effects; finally Basso and Salmaso (2006) introduced two versions of a
permutation test to control the individual error rate (IER) and the experimen-
tal error rate (EER). These kinds of errors will be detailed in what follows.
The test controlling IER, called TP , does not need to be calibrated and allows
testing for all 2K − 1 effects in the design. It is described in Section 7.4. A
sequential version of the same test, called step-up TP , allows us to control
EER but requires a proper calibration. The updated version of the step-up
TP test is described in Section 7.5, and a simple way to calibrate it in order
to control the EER is introduced in Subsection 7.5.1. This test allows us to
test for the 2K − 2 largest effects.

D. Basso et al., Permutation Tests for Stochastic Ordering and ANOVA, Lecture
Notes in Statistics, 194, DOI 10.1007/978-0-387-85956-9 7,
c© Springer Science+Business Media, LLC 2009
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It does not seem possible to obtain exact permutation tests for all the
effects in a 2K unreplicated factorial design, as the requirement of exchange-
ability of the responses is not generally satisfied here.

One of the desirable properties for a testing procedure is the robustness
of the test in the conclusions; that is, the ability of the test to identify active
effects even without any assumption on the distribution of the experimental
errors (Pesarin, 2001).

7.1 Brief Introduction to Unreplicated 2K Full
Factorial Designs

Unreplicated 2K full factorial designs are experimental designs where the ef-
fects of K main factors on the response are investigated. The main factors
are usually identified by capital letters A, B, etc., and assume only two levels:
the low level (coded by −1) and the high level (coded by +1). Moreover, the
interaction effects related to a pair of main factors (two-order interactions)
or to C > 2 main factors (higher-order interactions) are considered. Usually
the interactions are denoted by the capital letters of the main factors they
involve. From now on, we will not distinguish main factors from interactions
and simply call them all (experimental) “factors”. In a full factorial design, all
the possible treatments (i.e., combinations of the main factor levels) are inves-
tigated. In unreplicated designs, a single run is considered for each treatment;
therefore in unreplicated 2K full factorial designs, the number of responses is
equal to n = 2K . The design matrix of an unreplicated 23 full factorial design
is as follows:

X =



µ A B C AB AC BC ABC
1 1 1 1 1 1 1 1
1 1 1 −1 1 −1 −1 −1
1 1 −1 1 −1 1 −1 −1
1 1 −1 −1 −1 −1 1 1
1 −1 1 1 −1 −1 1 −1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 1 −1 −1 1
1 −1 −1 −1 1 1 1 −1


.

Each row of X corresponds to a different combination of the ±1 main fac-
tor levels (i.e., a treatment). The first column of X refers to the intercept of
the linear model, and the remaining columns are related to the experimen-
tal factors. The design matrix X is also known as a Hadamard matrix. A
Hadamard matrix is a square matrix whose columns are orthogonal and that
satisfies the conditions X′X = XX′ = nIn, where In is the identity matrix of
order n.

The aim of the researcher is to assess the null hypothesis on the effects of
all factors. The effect of a factor is defined as the difference in the response
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means corresponding to its +1 and −1 levels. A linear model is usually applied
to fit the response

Y = Xβ + ε, (7.1)

where Y is an n × 1 vector of responses, X is the n × p design matrix, β is
a p × 1 vector of parameters (i.e., β = [β0, β1, . . . , βp−1]′), and ε is an n × 1
vector of exchangeable experimental errors from an unspecified distribution
with zero mean and finite variance σ2.

Although in unreplicated 2K full factorial designs n = p, we will refer to
n as the number of observations in the response and to p as the number of
parameters in the linear model. We will denote the intercept as β0, the effect
corresponding to factor A as β1, and so on. The interaction involving all main
factors will be denoted as βp−1.

The estimates of the effects are obtained by applying the ordinary least
squares estimation to the set of observed data y

β̂ = [X′X]−1X′y = [β̂0, β̂1, . . . , β̂p−1]′,

where β̂0 = ȳ is the sample mean of observed responses and β̂j , j = 1, . . . , p−1,
are the estimates of the effects. Since n = p, the linear model exactly fits the
response, so the residual deviance of the model is null (and the total deviance
equals the explained deviance). The explained deviance of the model is

SSEp =
n∑
i=1

[ŷi − ȳ]2 =
n∑
i=1

p−1∑
j=0

β̂jxij − β̂0

2

=
n∑
i=1

p−1∑
j=1

β̂2
jx

2
ij +

n∑
i=1

p−1∑
j=1

∑
l 6=j

β̂j β̂lxijxil

= n

p−1∑
j=1

β̂2
j ,

where the last result is due to the fact that the columns of X are orthogonal
and that they are all made of ±1 elements. Note that the total deviance can
thus be decomposed into the sum of p − 1 uncorrelated random variables
β̂2

1 , β̂
2
2 , . . . , β̂

2
p−1. In fact, from the theory on linear models, we have V (β̂) =

σ2[X′X]−1 = n−1σ2In.
The decomposition of the total deviance will be the starting point to define

the test statistic in Section 7.3, and it also plays an important role in the
definition of Loughin and Noble’s (1997) test.

Let us briefly discuss the hypotheses under testing. Usually, the exper-
imenter’s major interest is in testing separately for main effects and for
interactions. Hence, there are p − 1 null hypotheses that are of interest:
H0β1 : {β1 = 0}, H0β2 : {β2 = 0} , . . ., H0βp−1 : {βp−1 = 0}.

Since p − 1 tests are to be done simultaneously, two kinds of errors may
arise: (i) the individual error rate (IER), which is defined as the probability
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of incorrectly declaring one effect active (i.e., significant) irrespective of what
happens with the other effects; and (ii) the experiment-wise error rate (EER),
which is the probability of incorrectly declaring at least one effect active when
they are all inactive. The IER can be computed as the average of each single
factor rejection rate or can be summarized as

∑p−1
i=1 iπi, where i is the number

of factors declared active and πi is the probability of declaring i active effects.
The EER is given by 1−π0 in accordance with the last notation. Which error
should be controlled depends on the objectives of the experimenter. It does
not seem possible to control both kinds of errors. As reported in Hamada and
Balakrishnan (1998), the existing procedures for unreplicated 2K factorials
controlling EER are in general sequential procedures.

Since there are no degrees of freedom left to estimate the error variance
(and since the residual variance is null), the parametric tests, which gener-
ally assume the normality of the error distribution and require an unbiased
estimate of the error variance, cannot be applied here. Lenth (1989) proposed
a parametric test for the unreplicated 2K full factorial design by providing a
robust pseudo-estimate of the error variance based on the number of negligible
effects. This solution requires the assumption of effect sparsity; i.e., the esti-
mate of the error variance requires some effect to be inactive. Although this
assumption may be reasonable, Lenth’s test cannot be considered completely
reliable since the procedure initially involves all the estimates of the effects
(although the median is taken as the estimator). The more active effects are
present, the more the estimated error variance is inflated.

7.2 Loughin and Noble’s Test

Loughin and Noble (1997) introduced a permutation test on effects for un-
replicated factorials that represents the first permutation approach to this
problem. The requirement of a permutation test is the exchangeability of the
elements of the response, which does not generally hold since each observation
is associated to a different treatment, and therefore the observations are not
identically distributed (at least their expected values depend on the treatment
received).

Thus, the authors introduced a sequence of null hypotheses in order to test
for as many effects as possible according to the requirement of exchangeability
of the response elements. To do so, they introduced the residualization of the
response with respect to the previously tested effects in order to eliminate
their influence on the response.

Loughin and Noble’s test is a sequential procedure we are now going to
illustrate. Let |β̂(1)| ≥ |β̂(2)| ≥ · · · ≥ |β̂(p−1)| be the ordered absolute esti-
mates of the effects. Since, unconditionally, E[β̂j = βj ], the observed order
reasonably reflects the true ordering of the absolute effects. Suppose we want
to test for the null hypothesis H0(1) : β(1) = 0. Clearly, if H0(1) is true, then
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all the remaining effects are inactive too, and therefore the relationship be-
tween elements of y and X is determined purely by the randomization of the
factor levels to the runs of the experiment. In other words, the elements of the
response are exchangeable under H0(1) since H0(1) is a global null hypothesis
involving all the effects. This allows us to obtain a reference distribution for
the test statistic

W(1) = |β̂(1)|, (7.2)

by computing the test statistic (7.2) for every possible permutation of the
response elements y∗. Let

G(w∗(1)|y) = P [W ∗
(1) ≤ w

∗
(1)|y]

be the permutation cumulative distribution function of the random variable
W ∗

(1) = β̂∗(1)|. The H0(1) will be rejected at a significance level α if

1−G(W(1)|y) < α.

The permutation test on the largest effect is exact since G(w∗(1)|y) is the
conditional distribution of W ∗

(1) under H0(1). Note that if H0(1) is not rejected,
the testing procedure should stop and conclude that all the effects are inactive.
If H0(1) is rejected, the elements of the response are not exchangeable since
their unconditional expected value (may) depend on β(1) 6= 0. Therefore, in
order to test for the remaining p − 2 effects, the authors suggest applying
the residualization of the response with respect to the largest estimated effect
β̂(1). That is, they suggest considering

ỹ2 = y − β̂(1)x(1)

as the new vector of observations, where x(1) is the column of the design
matrix that generated β̂(1). Therefore, the OLS estimates of the effects from
ỹ2 become:

β̃ = [X′X]−1X′ỹ2 = [X′X]−1X′y − β̂(1)[X′X]−1X′x(1)

= β̂ − β̂(1)u(1),

where u(1) = [I(β̂1 = β̂(1)), I(β̂2 = β̂(1)), . . . , I(β̂p−1 = β̂(1))]′ and I(·) is the
indicator function. This result is due to the orthogonality of the columns of
X, so x′jx(1) = 0 if xj 6= x(1) and x′jx(1) = 1 if xj = x(1), j = 1, . . . , p. The
new vector of ordered absolute estimates of the effects is then

β̃ = [β̃(1) = β̂(2), β̃(2) = β̂(3), . . . , β̃(p−2) = β̂(p−1), β̃(p−1) = 0]′.

Therefore β̂(2) is now the largest observed estimate of the effects, and it is
possible to assess the null hypothesis H0(2) : β(2) = 0 by choosing as a test
statistic
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W(2) = |β̃(1)|.
The elements of the new response ỹ2 are still not exchangeable, though they
can be considered approximately exchangeable (we should apply the residual-
ization of the response with respect to the true effect β(1) in order to preserve
the exchangeability under H0(2)). Note that the residualization made on y
with respect to β̂(1) (which is a linear combination of the elements of y)
introduces correlations among the elements of ỹ2, so they are no longer in-
dependent. Despite that, a permutation reference distribution for W(2) can
be obtained by computing W ∗

(2) = |β̃∗(1)|, the largest absolute estimate of the
effects obtained from every possible permutation of the vector ỹ2. On the one
hand, the explained deviance of the linear model when the estimates of the
effects are obtined from ỹ2 is

SSE(ỹ2) =
∑
i

[ỹi − ȳ]2 =
∑
i

[yi − β̂(1)xi(1) − β̂0]2

=
∑
i

p−1∑
j=1

β̂(j)xi(j) − β̂(1)xi(1)

2

= n

p−1∑
j=2

β̂2
(j).

On the other hand, if we consider a random permutation of the residualized
response y∗2, we have

SSE(ỹ∗2) =
∑
i

[ỹ∗i − ȳ]2 = n

p−1∑
j=1

β̃∗2j ,

where β̃∗2j is the estimate of the jth effect obtained from ỹ∗2. Since ỹ∗2 is a
random permutation of ỹ2, we have SSE(ỹ2) = SSE(ỹ2)∗. Therefore, the
total variability is decomposed into p − 2 nonnull estimates from ỹ2, but
at each permutation it is decomposed into p − 1 nonnull estimates from ỹ∗2.
Note that this does not always happen: Given that permuting the response
is equivalent (gives the same estimates) to permuting the rows of the design
matrix and keeping the response fixed, we have that β̃∗j = 0 whenever the jth
column of X∗ is equal to x(1). Unconditionally

E[SSE(ỹ2)] = n

p−1∑
j=2

E
[
β̂2

(j)

]

= n

p−1∑
j=2

[
σ2

n
+ β2

(j)

]

= σ2(p− 2) +
p−1∑
j=2

β2
(j).
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Under H0(2), E[SSE(ỹ2)|H0(2)] = σ2(p − 2). In a similar way we can prove
that E[SSE(ỹ∗2)|H0(2)] = σ2(p − 1), and this means that, on average, the
permutation estimates are (p − 2)/(p − 1) times smaller than the observed
estimates. Loughin and Noble suggest applying an empirical correction to the
permutation estimates, which should be computed as

γ̃∗j =
(
p− 1
p− 2

)1/2

β̃∗j j = 1, . . . , p− 1. (7.3)

Finally, a reference distribution for Ŵ2 = |β̂|(2), the largest of the OLS
estimates from ỹ2, is obtained from the permutation distribution of W ∗

2 =
|γ̃∗|(1) = maxi |γ̃∗i |. The authors suggest a correction of the p-value for the
second tested effect, claiming that Ŵ2 is the maximum over p − 2 random
variables, whereas W ∗

2 is the maximum over p − 1 random variables, so that
the p-value related to Ŵ2 should be computed as

P2 = 1− [G(Ŵ2|ỹ2)](p−2)/(p−1), (7.4)

where G(W ∗
2 |ỹ2) is the permutation c.d.f. of W ∗

2 . This correction is also em-
pirical since whenever a column of X∗ (a row permutation of X) is equal to
x(1), W ∗

2 is the maximum over p− 2 random variables as well. The remaining
effects are tested similarly by replacing p − 2 with p − s in (7.3) and (7.4).
The algorithm of the Loughin and Noble test can be written as follows:

1. Compute β̂ = [β̂1, β̂2, . . . , β̂p−1]′ from y, and order the effects |β̂(1)| ≥
|β̂(2)| ≥ · · · ≥ |β̂(p−1)|.

2. At step s = 1, . . . , p− 2, let

Ŵs = |β̂(s)|

and obtain

ỹs = ỹ − β̂(1)x(1) − β̂(2)x(2) − · · · − β̂(s−1)x(s−1)

(when s = 1, let ỹ1 = y).
3. Repeat B times:

(a) Obtain ỹ∗s , a random permutation of ỹs.
(b) Compute β̃∗ = [β̃∗1 , β̃

∗
2 , . . . , β̃

∗
p−1]

′ from ỹ∗s .
(c) Let

W ∗
s =

(
p− 1
p− s

)1/2

|β̃∗(1)|.

4. Compute the p-value of the test as

p(s) = 1−

[
#W ∗

s ≤ Ŵs

B

](p−s)/(p−1)

.
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This algorithm allows us to test for p − 2 effects. The smallest effect cannot
be tested because SSE(ỹp−1) = nβ̂2

(p−1) and nβ̃∗2j ≥ SSE(ỹp−1)/(p − 1).

Therefore W ∗
p−1 =

√
p− 1β̃∗j ≥ β̂(p−1) = Ŵp−1 and p(p−1) ≡ 1.

The empirical corrections (7.3) and (7.4) may work well with the largest
effects, but they are not reliable for the smaller effects. Each time the response
is residualized, the chance of observing null permutation values increases and
the permutation distribution degenerates; see Basso and Salmaso (2007) for
details.

The presence of (many) potentially active effects may produce a “masking-
effect”, as pointed out in an artificial example from Loughin and Noble where
data have been generated by considering four active effects of the same size
and no errors in a 24 experiment. The p-values p(1)-p(4) they obtained were
equal to 0.9198, 0.5923, 0.1482, and 0.0019. Only the fourth ordered effect
is really significant against the related null hypothesis, and this happens be-
cause, when β(4) is being tested, the previous active effects have already been
removed. Thus, the (explained) variability due to the previously tested ef-
fect is no longer partitioned in the permutation values. Since no errors have
been considered, β̂j = βj j = 1, . . . , p − 1. Therefore four active effects of
the same size are compared to four permutation distributions that satisfy

W̃ ∗
4

d
< W̃ ∗

3

d
< W̃ ∗

2

d
< W̃ ∗

1 . To avoid the masking effect, the authors suggested
a step-up interpretation of the results (that is, from p(p−2) to . . . , p(1)). The
step-up interpretation modifies the underlying null hypothesis in the sense
that if the null hypothesis is rejected for one effect, then it must be rejected
for all larger effects. This can be done by considering significant all the ef-
fects that are larger than the smallest effect for which p(s) ≤ p0, where p0 is
a suitable critical value to give the procedure the desired type I error rate.
The authors provided the critical p-values p0 corresponding to various sizes
of experimental designs and desired error rates (IER or EER). The critical
p-values were estimated from an intensive simulation study, and we refer to
Loughin and Noble (1997) for details.

7.3 The TF Test

When fitting a linear model for an unreplicated 2K full factorial design, the
main problem is that the residual variance cannot be estimated because of the
lack of degrees of freedom. The residual deviance of the linear model (7.1) is
null and the explained deviance is partitioned into p− 1 uncorrelated random
variables (the squared estimated effects). In the previous section, we described
Loughin and Noble’s testing procedure, which applies the residualization of
the response with respect to the effects previously tested. If we consider the
second step of their algorithm and focus on Σ(ỹ2) (i.e., the unconditional
covariance matrix of ỹ2), we have
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Σ(ỹ2) = E[y − β̂(1)x1 − E(y − β̂(1)x1)][y − β̂(1)x1 − E(y − β̂(1)x1)]′

= E[y − E(y)][y − E(y)]′ − E[β̂2
(1) − E(β̂(1))]2x(1)x′(1)

= σ2

[
In −

1
n
x(1)x(1)

′
]
.

By induction on ỹs = ỹs−1 − β̂(s−1)x(s−1), the covariance matrix of the re-
sponse elements ỹs at step s is:

Σ(ỹs) = σ2

[
In −

1
n
x(1)x(1)

′ − 1
n
x(2)x(2)

′ − . . .− 1
n
x(s−1)x(s−1)

′
]
.

A permutation test is based on the notion of exchangeability of random vari-
ables, which does not necessarily mean independence. However, it is hard
to assume the exchangeability of the elements in ỹs since, for instance, the
pairwise correlations are different (the matrices x(s)x′(s) have ±1 elements).
When the assumption of exchangeability does not hold, the permutation test
becomes approximated, and as the correlation among the response elements
“increases” with s, the tests on the smallest effects are not reliable. Note that
the tests on the smallest effects play an important role in the step-up inter-
pretation of the results, which is suggested by Loughin and Noble themselves.
This consideration suggests that the residualization of the response is proba-
bly not the best way to follow in order to apply a permutation test. On the
other hand, a step-up procedure can avoid the masking effect, which should
reasonably affect all the stepwise procedures.

In their step-down procedure, Loughin and Noble consider p − 2 linear
models, where at each step one estimate is constrained to zero (the related
effect is in the model, but its estimate is zero). Doing so, they keep the
residual deviance of the nested models equal to zero and let the total deviance
SST (ỹs) = SSE(ỹs) decrease at each step s of their algorithm.

Another possible choice is to keep the total deviance fixed and allow the
residual deviance to increase through the steps of the algorithm. This can be
done by always conditioning to the observed response and by considering a
collection of nested linear models (where at each step the previously tested
effects are removed from the model). Since the estimates of the effects are
uncorrelated, the activeness of one effect can be evaluated through the amount
of residual deviance due to removing that effect from the model. These are
the basic ideas behind the tests we are going to introduce in this chapter.
This section is dedicated to the definition of a suitable test statistic for 2K

unreplicated full factorial designs, whose distribution is provided in case errors
are normally distributed and under a specific null hypothesis. Section 7.4 is
dedicated to its permutation version, allowing control of the IER. A step-up
procedure controlling IER or EER will be discussed in Section 7.5.

Let us briefly go back to the theory of linear models. Let the model (7.1)

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βkxik + · · ·+ βp−1xi,p−1 + εi
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be the complete model (possibly the saturated model as in unreplicated 2K

designs). Suppose we want to assess the null hypothesis H0βk
: βk = 0 against

the alternative hypothesis H1βk
: βk 6= 0, k = 1, . . . , p− 1. Then H0βk

implies
that data were generated by the reduced model

Yi = β0 + β1xi1 + · · ·+ βk−1xi,k−1 + βk+1xi,k+1 + · · ·+ βp−1xi,p−1 + εi,

where the effect under testing βk was removed (i.e., it was set equal to zero
directly in the model). If there are degrees of freedom left to estimate the
error variance (i.e., if n > p) and if we can assume normality of the error
components, a way to test for H0βk

is to apply the F -test statistic, which is
a ratio between two independent χ2 random variables, namely

F = (n− p)SSRp−1 − SSRp
SSRp

, (7.5)

where SSRp is the residual deviance of the complete model (with p parame-
ters) and SSRp−1 is the residual deviance of the reduced model considering
p− 1 parameters. It is known that the difference between SSRp and SSRp−1

is orthogonal to SSRp and, under the assumption that the error components
are normal, these random variables follow a χ2 distribution. Under H0βk

, the
test statistic follows an F distribution with 1, n − p degrees of freedom. It is
well known that (7.5) is equivalent to

F = (n− p)SSEp − SSEp−1

SSRp
, (7.6)

where SSEp and SSEp−1 stand for the explained deviance of the complete
and reduced models. We stress that this can only be applied when we can
assume normality of errors and when n > p.

In unreplicated full factorial designs, however, n = p and SSRp = 0. We
must therefore choose a test statistic that does not depend on SSRp. To this
end, we recall the decomposition of the total deviance of Section 7.1. Since
the estimates of the effects ar uncorrelated, we may write

SSEp = n

∑
j 6=k

β̂2
j + β̂2

k

 ,
SSEp−1 = n

∑
j 6=k

β̂2
j .

and SSEp−SSEp−1 = nβ̂2
k. Moreover, SSEp−1 is a sum of p−2 uncorrelated

random variables, and it is orthogonal to SSEp − SSEp−1. This is useful
because it allows us to build a test statistic similar to (7.6) using the explained
deviances instead of the residual ones. This test statistic has the form

TF = (p− 2)
SSEp − SSEp−1

SSEp−1
. (7.7)
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The meaning of this particular test statistic is easy to understand: If the
increase in the explained deviance of the model, when the kth parameter is
present, is large enough w.r.t. the explained deviance of the model without
the kth parameter, then βk plays a significant role in fitting the response. On
the other hand, if the increase in the explained variance of the model with the
kth parameter is modest compared with the explained variance of the model
without βk, then H0k should not be rejected.

In 2K unreplicated full factorial designs, the test statistic (7.7) becomes

T kF = (p− 2)
β̂2
k∑p−1

j=1

j 6=k

β̂2
j

. (7.8)

When testing for active effects in unreplicated 2K factorials, our interest is in
applying separate tests for each effect (i.e., to test H0β1 : {β1 = 0} against
H1β1 : {β1 6= 0}, irrespective of whether H0β2 ∪H0β3 ∪ . . . ∪H0βp−1 are true
or not, H0β2 irrespective of whether H0β1 ∪ H0β3 ∪ . . . ∪ H0βp−1 are true or
not, and so on). For each test, the null and the alternative hypotheses usually
determine a partition of parametric space Θk into two regions Θk0 , Θk1 in such
a way that Θk0 ∩Θk1 = ∅, Θk0 ∪Θk1 = Θk, where Θk0 identifies those values of the
parameter that are under the null hypothesis and Θk1 those that are under the
alternative hypothesis for βk. Let us first consider the parametric distribution
of TF . If the error components follow a normal distribution, then

β̂k ∼ N(βk, σ2/n), k = 1, . . . , p− 1,

Since the β̂ks are uncorrelated (hence here they are also independent because
they are normally distributed), the test statistic (7.8) follows an F1,p−2 only if
its denominator is a central χ2 random variable. This implies that true effects
βj of the factors must be zero for all the effects in the denominator (i.e., we
have to assume that βj = 0, j 6= k). In other words, the test statistic (7.8) is
suitable to assess the set of hypotheses HG

0 = ∩jH0βj
against the alternative

H1βk
: {βk 6= 0} ∩ {βj = 0, j 6= k}.

In a parametric framework, we can only test the region of the parameter
space Θk′ = Θk ∩ {

⋂
j 6=k Θ

j
0} and in general Θk′ ⊂ Θk and

⋃
j Θ

j ′ ⊂ Θ. This
implies that we are unable to test for the entire space Θk. The same restriction
holds in a nonparametric framework, even though the distribution of the error
components is not specified. Actually, the assumption βj = 0 ∀j is required
in order for the elements of the response to be exchangeable. This means that
we can perform tests only in Θk

′ ⊂ Θk,∀k. Note that whatever hypothesis
is true for βk, if normality of errors can be assumed and βj = 0, j 6= k, the
distribution of test statistic (7.8) is exact, but whenever there are some active
effects among those in the denominator, the parametric distribution of (7.8)
is no longer an F distribution because the denominator is a noncentral χ2

random variable.



184 7 Permutation Tests for Unreplicated Factorial Designs

Since unreplicated two-level factorial designs are usually applied in screen-
ing experiments where little or nothing is known a priori about the effects, it
does not seem possible to obtain exact testing for all active effects with (7.8).
On the other hand, β̂j is an unbiased estimate of βj , j = 1, . . . , p − 1, and if
β̂k ≥ β̂i, then T kF ≥ T iF , so the power of TF monotonically follows the sizes

of the effects. This happens because SSE(p) = n
[
β̂2
k +

∑
j 6=k β̂

2
j

]
. Hence the

bigger β̂2
k is, the smaller SSE(p− 1) = n

∑
j 6=k β̂

2
j is.

7.4 The (Basso and Salmaso) TP Test

The construction of a permutation test is based on the important notion of
exchangeability of data. If this condition cannot be assumed, the test statistic
is not exact (though it may still be unbiased and consistent).

In a permutation framework, the exchangeability of the elements of the re-
sponse is usually determined by the null hypothesis. For instance, the response
elements are independent (by assumption), and they are also identically dis-
tributed under the global null hypothesis HG

0 ; therefore, under HG
0 , they are

also exchangeable. That is, Pr(y) = Pr(y∗), where y∗ is any permutation
of y. Now let β̂∗ = [β̂∗1 , β̂

∗
2 , . . . , β̂

∗
p−1]

′ be the vector of OLS estimates from
y∗ and X. Then, under HG

0 , the β̂∗j ’s are exchangeable, too, since they are
independent linear combinations of exchangeable random variables. Indeed,

Pr[β̂] = Pr[(X′X)−1X′y] = Pr[(X′X)−1X′y∗] = Pr[β̂∗],

since X is a matrix of constants.
The same considerations can be done with respect to the vector of test

statistics in (7.8), TF = [T 1
F , T

2
F , . . . , T

p−1
F ]′, which is function of β̂. Let T∗

F

be the vector of test statistic (7.8) computed from y∗. Then, under HG
0 ,

Pr[TF] = Pr[T∗
F].

Therefore, a permutation test for all p− 1 effects can be provided by com-
puting the reference distribution of the test statistic (7.8) for every possible
permutation of the response y∗ and every effect in the design. This implies that
the test statistic for each effect T kF allows us to exactly test the global null hy-
pothesis HG

0 against the single alternative H1βk
: {βk 6= 0} ∩ {βj = 0, j 6= k}.

Since the global null hypothesis is required by all permutation tests on each
effect, the null distribution of T kF can be obtained either by the permutation
distribution of T k∗F or the permutation distribution of the whole vector T∗

F.
Either choice leads to the same null distribution, so we choose to obtain a
reference distribution for T kF by computing T k∗F for any random permutation
y∗. As a final consideration, the scale factor (p − 2) in (7.8) can be omitted
because the related distribution is permutationally invariant.

The previous consideration led us to define the permutation version of the
TF test, the TP test, whose algorithm is as follows:
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1. Obtain the estimates of observed effects β̂j , j = 1, . . . , p − 1 from y =
[y1, . . . , yn]′ and from design matrix X. Let

T kP =
β̂2
k∑p−1

j 6=k β̂
2
j

, k = 1, . . . , p− 1,

be the observed values of the test statistic for the effects β1, β2, . . . , βp−1.
2. Consider a large number B of permutations of y (in general, B < n!), and

for each one compute

T k∗P =
β̂∗2k∑p−1
j 6=k β̂

∗2
j

, k = 1, . . . , p− 1.

3. Compute pk, the p-value related to the kth effect, as

pk =
#[TP k∗ ≥ T kP ]

B
.

The TP test is exact for each effect under HG
0 , and hence it allows us to

control the IER (see Table 7.1). However, the power of the test decreases as the
number of active effects increases. This is a reasonable behavior that has also
been observed in Loughin and Noble’s test. In order to make a fair comparison
with their test, we propose a simulation study along the lines of Loughin and
Noble’s (1997) paper. In their paper, they considered a growing number of
active effects of the same size, and they reported the average rejection rates
of active effects for each set of active effects. Three error distributions have
been considered: normal, exponential, and t3. All error variances were fixed
at σ2 = 1. Being a permutation test, its performance changed little across
the three error distributions. This is also due to the fact that the estimates
of effects are differences between two means of eight observations each, and
evidently eight is a large enough number to make the central limit theorem
take effect. Hence we decided to consider the same error distributions as in
Loughin and Noble’s paper, and we also considered the Cauchy distribution,
which is a heavy-tailed distribution that is not suitable for the central limit
theorem hypotheses (it does not have finite first and second moments). We
compared the performances of TP with those of Loughin and Noble’s test
across these four error distributions in a 24 design. Since TP allows us to
control the IER, we applied the calibration introduced in Loughin and Noble
(1997) to control the same kind of error at an α level of 5%. The number of
active effects goes from 1 to 13 in steps of 1, and we set their sizes equal to 0.5σ,
σ, and 2σ. The results of the comparison are reported in Figure 7.1. Loughin
and Noble’s test (dotted line) is generally more powerful than TP (solid line),
as it can detect up to 11 active effects regardless of their size. TP instead can
only detect 7, 6 and 5 active effects when effects are equal to 0.5σ, σ, and
2σ, respectively. The results have been obtained for both tests by generating
1000 Monte Carlo data sets for each distribution considered and each scenario,
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both tests using B = 1000 permutations. There is a simple explanation for
the behavior of TP : The more active effects are present (and the greater they
are), the bigger the noncentrality parameter in the denominator of the test
statistic, reducing the potential for detecting significance. However, when few
active effects are present, the power of TP equals or exceeds that of Loughin
and Noble’s test.

The TP procedure allows us to control the IER but there is no control of
the EER. When each test is done at a level α, theoretically EER ≤ α(p− 1).
The need for a conditional testing procedure to control the EER, together
with considerations about TP ’s rapid loss of power, suggest using a stepwise
version of TP , which is introduced in the next section.

Table 7.1. Observed IER of TP on 2K−1 = 15 effects under HG
0 with four different

error distributions.

Error Distributions

α Norm Exp t3 Cau

0.01 0.011 0.009 0.010 0.012

0.05 0.049 0.050 0.052 0.051

0.10 0.101 0.101 0.101 0.099

0.15 0.150 0.149 0.149 0.150

0.20 0.202 0.202 0.193 0.199

7.5 The (Basso and Salmaso) Step-up TP

The need for a stepwise procedure for TP is motivated by the desire to control
the EER and increase the TP test power. The loss of power is due to the
potential presence of active effects among those in the denominator of the
test statistic. Thus, a step-down approach would not preserve the test from
the masking effect. Furthermore, a step-down procedure should stop as soon as
one effect is declared active because the null hypothesis on one effect implies
that all the smaller effects are also inactive.

We therefore decided to test for the activeness of the effects according
to their increasing order (given by the absolute-value ordering of the es-
timates of the observed effects), applying test statistic (7.8) in accordance
with a sequence of nested null hypotheses that will be specified below. To
do so, we assume the smallest effect β(p−1) is inactive. This assumption is
necessary since the step-up procedure is basically a comparison among non-
centralities of explained deviances of nested linear models, but we have noth-
ing against which to compare the smallest effect. Along these lines, we assume
that H0β(p−1) : β(p−1) = 0 is true. This is reasonable since its corresponding
estimate β̂(p−1) is the smallest observed effect. We also recall that in Loughin
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Fig. 7.1. Average rejection rates in a 24 unreplicated full factorial design with a
growing number of active effects. Tp = solid line; Loughin and Noble’s test = dotted
line. Both tests control IER at 5%.

and Noble’s permutation test we are allowed to test for all the effects except
the smallest one.

Let |β̂(1)| ≥ |β̂(2)| ≥ · · · ≥ |β̂(p−2)| ≥ |β̂(p−1)| be the ordered absolute
estimates of the effects. There are two main aspects to take into account:
(1) the exchangeability of the response in accordance with a suitable null
hypothesis; and (2) the noncentrality parameter in the denominator of (7.8),
which should be zero in order to reduce the loss of power of TP . The first aspect
can be dealt with by considering a sequence of nested linear models to fit the
observed response, each one corresponding to some “nested null hypotheses”
that ensure the exchangeability of the response elements at each step of the
procedure. The second aspect suggests that the testing procedure must stop
whenever one effect is declared active by the testing procedure itself, whereas
as long as no effects are declared active, the noncentrality parameter in the
denominator of the test statistic can be assumed equal to zero.

The test statistic is still based on a ratio between explained variances as
in (7.8), but the step-up procedure considers an increasing number of effects
involved in the linear model. Given that β(p−1) is inactive, the step-up testing
procedure starts with the test on β(p−2). The hypotheses to be assessed are{

H0β(p−2) : β(p−2) = 0 ∩ {β(p−1) = 0}
H1β(p−2) : β(p−2) 6= 0 ∩ {β(p−1) = 0} .

We have already pointed out that the response elements are not exchangeable.
However, let us assume that the best-fitting linear model for the response is
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given by
Yi = β0 + β(p−1)xi,(p−1) + εi. (7.9)

Of course, we know that (7.9) is not the best-fitting linear model, but the
activeness of the effects will be evaluated with respect to their contribution to
the explained variance of the nested models considered. Under H0β(p−2) , the
residual deviance of the reduced model (7.9) should not be significantly larger
than that of the linear model,

Yi = β0 + β(p−1)xi,(p−1) + β(p−2)xi,(p−2) + εi. (7.10)

The estimates of the effects of models (7.9) and (7.10) (the overall mean β̂0

is not considered here) are obtained from the matrices X(p−1) = x(p−1) and
X(p−2) = [X(p−1),x(p−2)], which are orthogonal matrices. With a little change
in notation, let SSE(p−1) and SSE(p−2) be the explained deviances of models
(7.9) and (7.10). We have

SSE(p−2) = n[β̂2
(p−1) + β̂2

(p−2)],

SSE(p−1) = n[β̂2
(p−1)].

The observed value of the test statistic to assess H0β(p−2) is then

T
(p−2)
P = 1 ·

β̂2
(p−2)

β̂2
(p−1)

=
y′[x(p−2)x′(p−2)]y

y′[X(p−2)X′
(p−2) − x(p−2)x′(p−2)]y

, (7.11)

which is the analogue of (7.8) in this context. In order to obtain the permuta-
tion distribution, we compute (7.11) for any random permutation of y. That
is, we compute

T
(p−2)∗
P = 1 ·

β̂∗2(p−2)

β̂∗2(p−1)

=
y∗′[x(p−2)x′(p−2)]y

∗

y∗′[X(p−2)X′
(p−2) − x(p−2)x′(p−2)]y

∗ .

Note that, doing so, the explained deviance of model (7.10) is partitioned in
the same number of random variables either for the observed estimates or for
the permutation estimates, and no corrections on the test statistic are needed.
The p-value to test for H0β(p−2) can therefore be calculated by computing

p(p−2) =
#[T (p−2)∗

P ≥ T (p−2)
P ]

B
.

If H0β(p−2) is rejected, then β(p−2) and all the greater effects β(j), j = p −
3, . . . , 1 are declared active since |β̂(j)| ≥ |β̂(p−2)| for j < p− 2. On the other
hand, if H0β(p−2) is accepted, there is no evidence on observed data to consider
β(p−2) active, and we can go on testing for the third smallest effect, β(p−3).
Given that our testing procedure has recognized β(p−2) as inactive, the system
of hypotheses on β(p−3) is
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H0β(p−3) : β(p−3) = 0 ∩ {β(p−2) = 0, β(p−1) = 0}
H1β(p−3) : β(p−3) 6= 0 ∩ {β(p−2) = 0, β(p−1) = 0} .

At this stage, we wish to evaluate whether the explained deviance of the model
significantly increases by considering the complete model

Yi = β0 +
p−1∑
j=p−3

β(j)xi(j) + εi, i = 1, . . . , n, (7.12)

instead of the reduced model

Yi = β0 +
p−1∑
j=p−2

β(j)xi(j) + εi, i = 1, . . . , n. (7.13)

Now the OLS estimates of model (7.12) are obtained from y and the de-
sign matrix X(p−3) = [X(p−2),x(p−3)]. The decomposition of the explained
deviance is

SSE(p−3) = n

 p−1∑
j=p−3

β̂2
(j)

 ,
SSE(p−2) = n

 p−1∑
j=p−2

β̂2
(j)

 .
The test statistic for Hβ(p−3) becomes

T
(p−3)
P = 2 ·

β̂2
(p−3)∑p−1

j=p−2 β̂
2
(j)

(7.14)

= 2 ·
y′[x(p−3)x′(p−3)]y

y′[X(p−3)X′
(p−3) − x(p−3)x′(p−3)]y

.

Again, the estimates of the effects obtained from the columns of X(p−3) and
y∗ are exchangeable underH0β(p−3) , so the p-value for β(p−3) can be calculated
by comparing the observed test statistic (7.14) with

T
(p−3)∗
P = 2 ·

β̂∗2(p−3)∑p−1
j=p−2 β̂

∗2
(j)

= 2 ·
y∗′[x(p−3)x′(p−3)]y

∗

y∗′[X(p−3)X′
(p−3) − x(p−3)x′(p−3)]y

∗ ,

for each random permutation y∗. The p-value for β(p−3) is then obtained as
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p(p−3) =
#[T (p−3)∗

P ≥ T (p−3)
P ]

B
.

If H0β(p−3) is rejected, then β(j) 6= 0, j ≥ p − 3, and we stop. Otherwise, we
can go on to test for the fourth smallest effect β(p−4) and so on in a similar
manner.

Note that this way of proceeding allows us to control aspects (1) and (2)
mentioned at the beginning of this paragraph since the exchangeability of data
is guaranteed by each null hypothesis, and condition (2) holds as long as there
are no active effects among those in the denominator of the test statistic. We
can generalize the step-up Tp procedure as follows:

1. Obtain the observed estimates of the effects from X and y.
2. Order the observed estimates so that

|β̂(p−1)| ≤ |β̂(p−2)| ≤ · · · ≤ |β̂(2)| ≤ |β̂(1)|.

3. At step s = 2, 3, . . . , 2K − 1, repeat:
(a) Let X(p−s) = [x(p−1),x(p−2), . . . ,x(p−s)].
(b) Obtain the observed value of the test statistic:

T
(p−s)
P = (s− 1) ·

y′[x(p−s)x′(p−s)]y

y′[X(p−s)X′
(p−s) − x(p−s)x′(p−s)]y

. (7.15)

(c) Obtain the permutation distribution of (7.15) by computing B times
the statistic

T
(p−s)∗
P = (s− 1) ·

y∗′[x(p−s)x′(p−s)]y
∗

y∗′[X(p−s)X′
(p−s) − x(p−s)x′(p−s)]y

∗ ,

where y∗ is one of the B random permutations of y.
(d) Obtain the p-value of the test on β(p−s) by computing

p(p−s) =
#[T (p−s)∗

P ≥ T (p−s)
P ]

B

(e) Finally, if p(p−s) ≥ p
(p−s)
α , accept H0β(p−s) and go back to point (a)

with s = s+ 1; otherwise, declare the greater effects {β(j), j ≤ p− s}
active and stop.

As long as there are no active effects in the reduced model (i.e., as long as
H0βp−s−1 has not been rejected), the denominator of (7.15) acts as an estimate
of the error variance. At step s of the algorithm, we have (unconditionally)

E[SSE(p−s+1)|H0β(p−s+1) ] =
n

s− 1

p−1∑
j=p−s+1

E[β̂2
(j)|H0β(p−s+1) ] = σ2,

E[nβ̂2
(p−s)|H0β(p−s+1) ] = σ2 + nβ2

(p−s).
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The unconditional expected value of T (p−s)
p is

E[T (p−s)
p |H0β(p−s+1) ] =

σ2 + nβ2
(p−s)

σ2
= 1 + n

β2
(p−s)

σ2
,

and the Tp statistic tends to assume high values whenever H0β(p−s) is false.
At point (3e) of the algorithm, there is a stopping rule depending on

a critical p-value p(p−s)
α . The calibration is needed since the step-up TP is

not an exact test. Moreover, being a sequential procedure, the probability of
rejecting the null hypothesis at step s depends on what decision was made
in the earlier steps. The critical p-values p(p−s)

α also allow us to control the
desired kind of error, IER or EER.

A possible way to control the IER is to perform the test at each step of the
algorithm at the same significance level α. Note that the stopping rule should
not be applied if IER is to be controlled. Under HG

0 , the estimate of the kth
effect has probability 1/(p − 1) of being the minimum (and hence not to be
tested by the procedure) and probability (p− 2)/(p− 1) of being tested. If no
stopping rule is applied to the algorithm, and if the conditional probability of
rejecting H0βp−s is constantly equal to α, then the kth effect can be tested in
any position, and the IER is

IER = Pr[β̂k > β̂(p−1)] Pr[βk ∈ Θk1 |β̂k > β̂(p−1)]

=
p− 2
p− 1

p−1∑
s=2

Pr[p(p−s) ≤ p(p−s)
α |β̂k = β̂(p−s)] · Pr[β̂k = β̂(p−s)]

=
p− 2
p− 1

p−1∑
s=2

α · 1
p− 2

=
p− 2
p− 1

α.

Hence, by letting α = (p − 1)/(p − 2)IER we were able to control the IER.
However, even though it is theoretically correct, this calibration is hard to
justify since the stopping rule would not apply here (as in Loughin and Noble’s
step-down procedure). This is the reason why we recommend applying the TP
test of Section 7.4 in order to control the IER. However, a comparison between
TP and the step-up TP calibrated to control the IER should be investigated.

We now investigate a possible calibration for EER, which is the probability
of making a type I error on at least one effect whenHG

0 is true. This probability
depends on the number of tests that are to be made and the testing order. As
mentioned before, the step-up procedure allows us to test up to p− 2 effects.
Note that the step-up TP stops as soon as one effect is declared active. Thus,
if HG

0 is true, a type I error may occur in any position. If α is the probability
of making a type I error at each step of the step-up TP algorithm, then

EER = 1− (1− α)p−2,
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since EER = 1 − π0, where π0 is the probability of accepting H0 for all the
effects being tested. As a result, if we wish to control EER, we have to perform
each single test with a significance level equal to

α = 1− (1− EER)
1

p−2 .

The proof of this statement is as follows. If the probability of incorrectly
declaring one effect active is held constant at each step of the algorithm,
then, due to the step-up structure, the probability of incorrectly declaring the
(p− s)th effect active when HG

0 is true becomes

Pr[T (p−s)
P /∈ Θ(p−s)

0 |HG
0 ] = α(1− α)s−2 s = 2, 3, . . . , 2K − 1

since we have not rejected the null hypothesis s− 1 times before rejecting the
null hypothesis on the (p− s)th effect. Hence:

1− EER = Pr

[
p−1⋂
s=2

{
β(p−s) ∈ Θ

(p−s)
0

}
|HG

0

]

= 1− Pr

[
p−1⋃
s=2

{
β(p−s) /∈ Θ

(p−s)
0

}
|HG

0

]

= 1− α
p−1∑
s=2

(1− α)s−2

= 1− α
p−3∑
j=0

(1− α)j

= 1− (1− α)p−2

since the sum in the fourth line is a geometric series with a common ratio
r = (1 − α). Note that if p − 2 independent tests are made at a singificant
level α, then the EER is the probability that the minimum p-value (among
p− 2) is significant (that is, Pr[mins p(p−s) ≤ α] = 1− (1− α)p−2), provided
that each p-value is uniformly distributed under the null hypothesis. However,
the sequential tests of the step-up TP are not independent (and not even
uniformly distributed), and therefore a Bonferroni correction applied directly
to the significance level of each test would lead to a loss of power.

Either IER or EER calibration requires that the tests performed at each
step of the algorithm reject the related null hypothesis with constant proba-
bility α. To do so, we must find some suitable critical p-values directly from
the distribution of p(p−s). Some proposals for calibrating the step-up TP test
are considered in the next section.

7.5.1 Calibrating the Step-up Tp

The TP test is a sequential algorithm comparing the explained variances of
a reduced model and a complete model. It allows us to test for p − 2 effects
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over p−1. The assumption of the TP test is that the smallest estimated effect
corresponds to a negligible effect.

There are basically three possible approaches to obtain a proper calibra-
tion, and all require the central limit theorem (CLT) to take effect. In fact,
the OLS estimate of the jth effect can be written as

β̂j =
1
n
X′
jy =

1
n

 ∑
xij=1

yi +
∑

xij=−1

yi

 =
x̄+

2
+
x̄−

2
,

where x̄+ and x̄− are sampling means of n/2 observations corresponding re-
spectively to the +1 and −1 elements in the jth column of the design matrix.
Since the response elements are independent random variables with variance
σ2 < +∞ and if HG

0 holds, we have

E[β̂j ] = 0,

V [β̂j ] =
σ2

n
,

provided that E[Yi] and V [Yi] exist. Then, under HG
0 , as n increases

√
n
β̂j
σ

d→ N(0, 1)

or, equivalently, β̂j
d→ N(0, σ2/n).

By recalling the CLT, we could provide a calibration for the desired EER
(and IER as well; see the previous section) by considering a large number of
independent data generations, by storing the distribution of p(p−s), and by
choosing as the critical p-value for the sth step of the procedure a suitable α-
quantile from that distribution. The choice of the quantile depends on which
kind of error rate is required. We proved at the end of Section 7.5, that a
calibration for EER can be obtained by either controlling the type I error at
each step of the algorithm (which requires a critical p-value for each step) or
by looking at the distribution of the minimum p-value.

How can we obtain the distribution of the p-values of the step-up TP ?
We have considered three possible methods, which we will call “empirical”,
“Bonferroni” and “simulation”.

The first choice is the “empirical” one: We may run the step-up TP pro-
cedure a very large number of times with simulated standard normal data
and no active effects, and each time store the p-values p̂(p−2), p̂(p−1), . . . , p̂(1)

produced by the step-up TP . However, this way of proceeding is either approx-
imate or time-expensive since it requires a lot of independent data generations
to provide a good approximation of the distribution of p(p−s). The empirical
critical p-values of the distribution of the mins p(p−2) for K = 3, 4 are reported
in Table 7.2 in the “Emp” column. These calibrations are based on 1000 in-
dependent data generations with 1000 permutations each, and they are only
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reported here to give an idea of the sizes of the critical p-values. They would
actually require a lot more permutations per each data generation since the
minimum achievable significance level is related to the number of permuta-
tions considered (the empirical critical p-values should always be smaller than
those obtained by a Bonferroni correction). This way of obtaining a calibration
is not recommended unless one has an extremely powerful machine.

Another possible choice is the “Bonferroni” one: We may treat the sequen-
tial tests for each factor as independent and apply the Bonferroni correction
to p− 2 tests, which guarantees an upper bound for EER. This is equivalent
to considering the limiting distribution of the test statistic at each step, as
they were all independent. We know by the CLT that the test statistic at step
s, as n→ +∞, satisfies

T
(p−s)
P = (s− 1)

nβ̂2
(p−s)/σ

2

n
∑p−1
j=p−s+1 β̂

2
(j)/σ

2

d→ F1,s−1 s = 2, 3, . . . , 2K − 1.

We could then directly simulate the distribution of the sequential test statis-
tics. Equivalently, we could set the critical p-values equal to p(p−2)

α∗ = 1− (1−
EER)1/(p−2) if EER is to be controlled. The critical p-values of this proce-
dure are reported in the “Bonferroni” column of Table 7.2. This choice will
save time but will also be a bad approximation of the real critical values (or
p-values) since the sequential tests are treated as independent, and they are
not.

The “simulation” choice is another possible way, and it seems to be the
best one because it is quick and accurate. Since it does not seem easy to obtain
the dependence structure of the sequential test statistics, the better way to
obtain a calibration is probably just to simulate the entire process:

• Consider a large number of independent data generations, say G. For g ∈
1, . . . , G repeat:
1. Obtain p− 1 random observations from N(0, n−1). These observations

will simulate the estimates of the effects gβ̂1,
gβ̂2, . . . ,

gβ̂p−1.
2. Order the simulated estimates of the effects |gβ̂(p−2)| ≤ |gβ̂(p−1)| ≤
· · · ≤ |gβ̂(1)|.

3. Obtain the simulated sequential test statistics

gT
(p−s)
P = (s− 1)

gβ̂2
(p−s)∑p−1

j=p−s+1
gβ̂2

(j)

, s = 2, 3, . . . , 2K − 1.

4. Obtain the estimate of the sequential p-values as

gp(p−2) = 1− FΦ(gT (p−s)
P ), where Φ ∼ F1,s−1,

s = 2, 3, . . . , 2K − 1.
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At this point, let P be a G × (p − 2) matrix, where the p-values related to
each data generation have been stored according to the preferred calibrating
choice (the “empirical”, or “simulation” one). Note that the first column of
P contains the simulated p-values for the test on β(p−2), the second column
contains the simulated p-values for the test on β(p−3), and so on.

In order to obtain a calibration for IER, the critical p-values for each step
of the procedure are the IER-quantiles of the columns of P. Note that if
one wants to control the IER with the step-up TP , he should not apply the
stopping rule.

Critical values to control the EER can be found by either choosing the α̃-
quantiles of the columns of P, where α̃ = 1−(1−EER)1/(p−2), or by choosing
p
(p−s)
α = pα as the EER-quantile of the g minp distribution, where g minp is

the minimum p-value of the gth row of P, g = 1, . . . , G.
The column “Sim” of Table 7.2 reports the critical p-values obtained by

applying the “simulation” choice for K = 3, 4. Note that the critical values are
always smaller than the Bonferroni ones (this is because the sequential tests
are dependent), and they are very close to the empirical ones. Since obtaining
the critical p-values at each step is equivalent, in order to control EER, to
obtain a single critical value given by the g minp distribution, we have chosen
this second way in the R function in Section 7.7.

Table 7.2. Empirical, Bonferroni and simulated critical p-values of the Tp test.

Critical p-values, K = 3

EER Emp Bonf Sim

0.01 0.00100 0.00851 0.00062
0.05 0.00494 0.01741 0.00328
0.1 0.00799 0.02672 0.00669
0.2 0.01598 0.03651 0.01320

Critical p-values, K = 4

EER Emp Bonf Sim

0.01 0.00047 0.00366 0.00042
0.05 0.00188 0.00750 0.00193
0.1 0.00357 0.01154 0.00364
0.2 0.00698 0.01581 0.00728

7.6 A Comparative Simulation Study

In this section we propose a comparative simulation study between the step-
up TP and Loughin and Noble’s test controlling for EER. The chosen level
of EER is 0.1, and the simulation study is similar to the one presented in
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Section 7.4. Four error distributions are considered: normal, exponential, t3,
and Cauchy. A growing number of active effects, from 1 to 13, determines each
scenario. The sizes of active effects are 0.5σ, σ, and 2σ, where σ2 is set equal
to 1. Results are reported in Figure 7.2. For each error distribution, the aver-
age rejection rates of the active effects are reported for both the step-up TP
(solid line) and Loughin and Noble’s test (dotted line). The horizontal solid
line (called “H0 Stp-Tp”) indicates the step-up TP -achieved EER when the
global null hypothesis is true. The horizontal dotted line (called “H0 LNT”) is
the equivalent for Loughin and Noble’s test. Any point beyond the horizontal
lines means that the corresponding number of active effects has been recog-
nized by the related test, at least regarding the average power. The results
were obtained for both tests by generating 1000 Monte Carlo data sets for
each distribution considered and each scenario, both tests applying B = 1000
permutations.

The behavior of both tests varies little among different error distributions
as an effect of the central limit theorem. The power of Loughin and Noble’s
test decreases as the number of active effects increases, while the power of
the step-up TP seems to remain stable, although it does not show a monotone
trend. This is due to two contrasting aspects. On the one hand, the more active
effects present, the more difficult it is for the step-up TP to recognize them
from the noise. On the other hand, the step-up TP is a conditional procedure,
where the effect β(p−s) is tested only if β(p−s+1) has been tested. The greater
s, the smaller the probability of being tested.

In order to show the good behavior of the step-up TP , we consider the
same example reported in Loughin and Noble (1997). This example is Problem
9.11 from Montgomery (1991) concerning a process used to make an alloy for
jet engine components. It is a four-factor unreplicated two-level full factorial
design, where two replicates are available. This also allows us a comparison
with parametric ANOVA. The permutation tests will be run on the average
response for each treatment. This example will also be investigated in Section
7.7. We refer both to Montgomery (1991) and to Loughin and Noble (1997)
for further details.

Loughin and Noble showed that their test is able to detect nine active
effects in the example considered using EER = 0.2. Table 7.3 shows the results
of the comparison between Loughin and Noble’s permutation test and the
step-up TP in this specific example. In the first column, the labels of the
estimates and the OLS estimates of the effects are reported. The second and
third columns refer to Loughin and Noble’s test (LNT), and here the p-values
they have obtained with this example and the corresponding decision rule
when EER = 0.1 are reported (0 means inactive and 1 means active). In their
work, the suggested calibrations for a 24 design are 0.042 for EER = 0.05,
0.075 for EER = 0.10, and 0.135 for EER = 0.20. Considering EER = 0.2,
there are nine significant effects since the eighth p-value is smaller than the
0.2 critical value 0.135, which is reported in the the last row of the second
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Fig. 7.2. Average rejection rates in a 24 unreplicated full factorial design with a
growing number of active effects. Tp = solid line, Loughin and Noble’s test = dotted
line. Both tests control EER at 10%.

column. Instead, if we choose EER = 0.1, no effects are declared significant,
since there are no p-values smaller than the 0.1 critical value, which is 0.075.

The last three columns refer to the step-up Tp. The first one reports the
critical p-values p(p−2)

α̃ related to each step of the algorithm that were obtained
through the “simulation” method described above. The critical p-values are
the α̃-quantiles of the distribution of gp(p−s), where α̃ = 1 − 0.91/14. They
can be interpreted either as the critical values for IER = 0.0075 or for EER
= 0.1. In the first case, only the effect BC is declared active. In the latter case,
there are nine significant effects since the procedure stops as soon as one effect
is declared active, and it is still the case of factor BC. The last row of the
sixth column reports the critical p-value obtained through the “simulation”
method and the distribution of the minimum p-value. This approach leads to
the same results since the only p-value smaller than 0.00362 is that of factor
BC. Note that the effect of factor ACD has not been tested (the R program we
implemented always returns p(p−1) = 1). Nine effects are declared significant
by our step-up TP procedure with EER = 0.1. The step-up TP was run with
B = 5000.

We have also run the TP test on the same example with IER = 0.05. The
test was able to detect a single effect (that of factor C, the largest one). With
the same IER, the step-up TP with no stopping rule (controlling the IER)
revealed as active the effects of factors CD and BC.
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Table 7.3. Problem 9.11 from Montgomery (1991); 1∗ = effect not being tested;
critical∗ = critical p-value from the min-P distribution for EER = 0.1.

Effect LNT Step-up Tp

Factor β̂(p−s) p-value DEER=0.1 p
(p−2)
α̃ p(p−s) DEER=0.1

m 1.560938 - - - -
ACD −0.00219 1 0 0.00000 1∗ 0
AC −0.00469 1 0 0.00510 0.27615 0

BCD −0.00594 1 0 0.00411 0.24395 0
ABD −0.00656 1 0 0.00636 0.23755 0
ABC −0.00719 1 0 0.00726 0.23195 0
CD −0.01719 0.3113 0 0.00626 0.02919 0
BC 0.040313 0.1260 0 0.00781 0.00300 1
AB 0.045938 0.3728 0 0.00967 0.02779 1
BD −0.05406 0.5004 0 0.00936 0.05159 1
AD −0.05656 0.7529 0 0.00892 0.07699 1
B −0.06031 0.8298 0 0.00836 0.08578 1

ABCD 0.072813 0.7461 0 0.00741 0.07099 1
A −0.10656 0.3094 0 0.00501 0.02240 1
D 0.112188 0.5087 0 0.00281 0.03439 1
C −0.14594 0.3168 0 0.00048 0.02260 1

critical∗ 0.075 0.00362

7.7 Examples with R

Let’s begin with the design matrix. The function create.design creates a
Hadamard matrix of order n = 2K , where K is the entry of the function
(factor labels are available up to k = 6, although the function can create
designs of greater orders). For instance, let K = 3, and then type

> source("Path/create_design.r")
> k=3
> X<-create.design(k)
> X

m A B C AB AC BC ABC
[1,] 1 1 1 1 1 1 1 1
[2,] 1 1 1 -1 1 -1 -1 -1
[3,] 1 1 -1 1 -1 1 -1 -1
[4,] 1 1 -1 -1 -1 -1 1 1
[5,] 1 -1 1 1 -1 -1 1 -1
[6,] 1 -1 1 -1 -1 1 -1 1
[7,] 1 -1 -1 1 1 -1 -1 1
[8,] 1 -1 -1 -1 1 1 1 -1

Note that the design matrix is not in standard Yates order. If Yates order is
required, type:
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> X<-create.design(k,Yates=TRUE)
> X

m A B C AB AC BC ABC
[1,] 1 -1 -1 -1 1 1 1 -1
[2,] 1 1 -1 -1 -1 -1 1 1
[3,] 1 -1 1 -1 -1 1 -1 1
[4,] 1 1 1 -1 1 -1 -1 -1
[5,] 1 -1 -1 1 1 -1 -1 1
[6,] 1 1 -1 1 -1 1 -1 -1
[7,] 1 -1 1 1 -1 -1 1 -1
[8,] 1 1 1 1 1 1 1 1

Now let’s generate the vector of data under the global null hypothesis β1 =
β2 = · · · = β7 = 0:

> set.seed(101)
> n<-2^k
> b<-rep(0,n)
> e<-rnorm(n)
> y<-X%*%b+e
> y

[,1]
[1,] -0.3260365
[2,] 0.5524619
[3,] -0.6749438
[4,] 0.2143595
[5,] 0.3107692
[6,] 1.1739663
[7,] 0.6187899
[8,] -0.1127343

Here b is the vector of the true effects β1, β2, . . . , β7. The function unreplica-
ted allows us to perform the analysis of a 2K unreplicated factorial design
either by applying the TP (controlling IER) or the step-up TP test (controlling
EER), at the specified type error rates. Note that the TP test does not need
calibration, whereas the step-up TP does. The function requires as entries the
design matrix X and the array of responses y. By default, the unreplicated.r
function carries out the TP test test controlling IER=0.05 and considering B
= 1000 permutations. To analyze data, load the functions unreplicated.r
and T to P.r (which computes the p-values) and run the analysis by typing:

> source("Path/unreplicated.r")
> source("Path/t2p.r")
> t<-unreplicated(y,X)
> t$beta
$beta

[,1]
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m 0.21957900
A 0.23743432
B -0.20821121
C 0.27811876
AB -0.19798954
AC -0.20451609
BC -0.03645878
ABC -0.20069077

> table<-cbind(t(t$p.value),t(t$dec))
> colnames(table)<-c("p.value","Decision")
> table

p.value Decision
A 0.3026973 0
B 0.3486513 0
C 0.1918082 0
AB 0.4255744 0
AC 0.3596404 0
BC 0.8931069 0
ABC 0.4055944 0

Note that the vector of estimates contains the intercept, whereas statistical
tests are only made on factor effects.

The output of the unreplicated function is a list that displays the esti-
mates of the effects (beta, where “m” stands for the overall mean, correspond-
ing to the first column of X), the related p-values, and decisions. By decision
equal to 1, we mean that the related effect is significant at an IER = 0.05. In
order to manipulate the objects in the output, assign the function to an object
U and then recall the objects in the list. For instance, in order to display a
summary table of the analysis with an IER = 0.2, type:

> set.seed(101)
> U<-unreplicated(y,X,IER=0.2)
> table<-cbind(U$beta[-1],t(U$p.value),t(U$dec))
> colnames(table)=c("beta","p.value","Decision")
> table

beta p.value Decision
A 0.23743432 0.3026973 0
B -0.20821121 0.3486513 0
C 0.27811876 0.1918082 1
AB -0.19798954 0.4255744 0
AC -0.20451609 0.3596404 0
BC -0.03645878 0.8931069 0
ABC -0.20069077 0.4055944 0
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Note how the decision related to the main factor C is now equal to 1 since we
have set the IER equal to 0.2. With the TP test, all 2K − 1 main effects and
interactions are tested.

Let’s investigate what happens when there are two active effects and the
IER is set equal to 0.05:

> b[2:3]<-1
> y<-X%*%b+rnorm(8)
> set.seed(101)
> U<-unreplicated(y,X)
> table<-cbind(U$beta[-1],t(U$p.value),t(U$dec))
> colnames(table)=c("beta","p.value","Decision")
> table

beta p.value Decision
A 0.1536359 0.80519481 0
B 1.0458663 0.02597403 1
C 0.3569429 0.55244755 0
AB -0.1263682 0.85414585 0
AC -0.3234737 0.62937063 0
BC -0.3092982 0.69330669 0
ABC 0.5419082 0.35164835 0

In this case, only the largest estimated effect has been declared significant.
This happens because when the noncentrality parameter of factor B (βB)
is in the numerator of TP , the resulting test statistic assumes large values
(TBP = 1.6550), whereas in the remaining cases βB is in the denominator of
the TP statistic, so its contribution produces small values of the test statistic.
To obtain the observed values of the test statistic for each effect, type:

> beta<-U$beta[-1]
> SSE<-sum(beta^2)
> T.oss<-beta^2/(SSE-beta^2)
> names(T.oss)<-colnames(X)[-1]
> round(T.oss,digits=4)

A B C AB AC BC ABC
0.0136 1.6550 0.0783 0.0092 0.0634 0.0577 0.2010

That is the reason for the decreasing power of the TP test as the number of
active effects increases. To see what happens with a random permutation of
the response, type:

> set.seed(10)
> y.star<-sample(y)
> beta.star<-unreplicated(y.star,X,3)$beta[-1]
> SSE.star<-sum(beta.star^2)
> T.star<-beta.star^2/(SSE.star-beta.star^2)
> names(T.star)<-colnames(X)[-1]
> round(T.star,digits=4)
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A B C AB AC BC ABC
0.3757 0.0005 0.4955 0.2612 0.1348 0.0007 0.0736

Note how this permutation value of TB∗P is smaller than the observed value
TBP , whereas this does not happen for factor A (the estimated probability of
the event {TA∗P < TAP } = 1 − pA is equal to 0.194, and that of the event
{TB∗P < TBP } = 1− pB is 0.974).

Let’s now consider Problem 9.11 from Montgomery (1991). This is a 24

design matrix in Yates order, where two replicates per treatment are available.
This allows us to run the parametric ANOVA test:

> d<-read.csv("Mont_9.11.csv",header=TRUE)
> y<-c(d[,1],d[,2])
> X<-create.design(4,Yates=TRUE)
> A<-factor(rep(X[,2],2))
> B<-factor(rep(X[,3],2))
> C<-factor(rep(X[,4],2))
> D<-factor(rep(X[,5],2))
> summary(aov(y~A*B*C*D))

Df Sum Sq Mean Sq F value Pr(>F)
A 1 0.36338 0.36338 54.7205 1.509e-06 ***
B 1 0.11640 0.11640 17.5289 0.0006975 ***
C 1 0.68153 0.68153 102.6301 2.292e-08 ***
D 1 0.40275 0.40275 60.6499 7.846e-07 ***
A:B 1 0.06753 0.06753 10.1689 0.0057096 **
A:C 1 0.00070 0.00070 0.1059 0.7490981
B:C 1 0.05200 0.05200 7.8311 0.0128837 *
A:D 1 0.10238 0.10238 15.4169 0.0012048 **
B:D 1 0.09353 0.09353 14.0842 0.0017371 **
C:D 1 0.00945 0.00945 1.4235 0.2502161
A:B:C 1 0.00165 0.00165 0.2489 0.6246116
A:B:D 1 0.00138 0.00138 0.2075 0.6548322
A:C:D 1 0.00015 0.00015 0.0231 0.8812025
B:C:D 1 0.00113 0.00113 0.1699 0.6856858
A:B:C:D 1 0.16965 0.16965 25.5478 0.0001173 ***
Residuals 16 0.10625 0.00664
---
Signif. codes:0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1’ ’1

The ANOVA detects nine effects as significant. Let’s now run the step-up TP
controlling EER = 0.1. We will use as the response the average response for
each treatment. To obtain the data, type:

> y = apply(d,1,mean)
> y
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1 2 3 4 5 6 7 8 9 10
1.810 1.450 1.440 1.610 1.305 1.255 1.440 1.280 2.115 1.855

11 12 13 14 15 16
1.870 1.505 1.865 1.315 1.495 1.365

The step-up TP requires an EER calibration. We could run the procedure
with the critical p-values indicated in Table 7.2. At the end of this section,
the code to obtain the “simulation” method of calibration is reported for a 24

design. Type:

> set.seed(10)
> X<-create.design(4,Yates=TRUE)
> U<-unreplicated(y,X,step.up=TRUE,EER=0.00364,B=5000)
> table<-cbind(U$beta[-1],t(U$p.value),t(U$dec))
> colnames(table)=c("beta","p.value","Decision")
> table

beta p.value Decision
A -0.1065625 0.02479504 1
B -0.0603125 0.08818236 1
C -0.1459375 0.02119576 1
D 0.1121875 0.03619276 1
AB 0.0459375 0.02939412 1
AC -0.0046875 0.27374525 0
AD -0.0565625 0.07918416 1
BC 0.0403125 0.00339932 1
BD -0.0540625 0.04319136 1
CD -0.0171875 0.03439312 0
ABC -0.0071875 0.22955409 0
ABD -0.0065625 0.23655269 0
ACD -0.0021875 1.00000000 0
BCD -0.0059375 0.24855029 0
ABCD 0.0728125 0.06798640 1

The step-up TP controlling EER = 0.1 gives the same results as the ANOVA
test. Now let’s represent the Q-Q normal plot of the estimates of the effects
by highlighting the active effects detected by the step-up TP . Type:

> t<-qqnorm(table[,1],ylim=c(-0.2,0.2))
> qx<-t$x
> qy<-t$y
> dec<-table[,3]
> points(qx[dec==1],qy[dec==1],pch=20)

This will produce the output in Figure 7.3.
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Fig. 7.3. Normal Q-Q plot of Problem 9.11 of Montgomery (1991).

7.7.1 Calibrating the Step-up TP with R

The “simulation” method to obtain a calibration for EER in the step-up TP
was described in Subsection 7.5.1. The code to calibrate the step-up TP at
EER equal to .01, .05, .1, and .2 by simulating the step-up TP procedure with
G = 10,000 data generations is as follows:

> set.seed(101)
> k=4
> n=2^k
> G=10000
> F<-array(0,dim=c(G,n-1))
> P<-array(0,dim=c(G,n-1))
> for(cc in 1:G){
> b<-sort(abs(rnorm(n-1,sqrt(1/n))))
> for(j in 2:(n-1)){
> F[cc,j]<-(j-1)*b[j]^2/(sum(b[1:j]^2)-b[j]^2)
> }
> }
> for(j in 2:(n-1)){
> P[,j]<- 1-pf(F[,j],1,(j-1))
> }
> min<-apply(P[,-1],1,min)
> EER<-c(0.01,0.05,0.1,0.2)
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> quantile(min,EER)
1% 5% 10% 20%

0.0003631566 0.0018964540 0.0037944725 0.0073475314

The calibration only requires some seconds to be run. For better approxima-
tions, increase the number of data generations G. The results are the critical
p-values obtained from the g minp distribution. The critical p-values for each
step of the step-up TP that guarantee an EER = 0.1 can be obtained by
typing:

> p<-dim(X)[2]
> EER<-0.1
> tilde.alpha<-1-(1-EER)^(1/(p-2))
> critical<-apply(P,2,function(x){quantile(x,tilde.alpha)})
> critical<-data.frame(step=seq(1,15),critical=critical)
> critical

step critical
1 1 0.0000000000
2 2 0.0053802258
3 3 0.0050186952
4 4 0.0051173826
5 5 0.0064026723
6 6 0.0074743545
7 7 0.0093800891
8 8 0.0097069040
9 9 0.0096165022
10 10 0.0088048292
11 11 0.0089946047
12 12 0.0071454521
13 13 0.0046289031
14 14 0.0028677822
15 15 0.0004491715
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