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About the Software

The diskette that accompanies the book includes data files for the examples used in
the chapters and for the exercises. These files can be used as input for standard
statistical analysis programs. When writing program scripts, please note that descriptive
text lines are included above data sections in the files.

The data files are included in the REGRESS directory on the diskette, which can
be placed on your hard drive by your computer operating system’s usual copying
methods. You can also use the installation program on the diskette to copy the files
by doing the following.

1. Type acinstall at the Run selection of the File menu in a Windows 3.1 system or
access the floppy drive directory through a Windows file manager and double click
on the INSTALL.EXE file.

2. Afier skipping through the introductory screens, select a path for installing the
files. The default directory for the file installation is CAREGRESS. You may edit
this selection to choose a different drive or directory. Press Enter when done,

3. The files will be installed to the selected directory.
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CHAPTER O

Basic

Readers need some of the knowledge contained in a basic course in statistics to tackle
regression. We summarize some of the main requirements very briefly in this chapter.
Also useful is a pocket calculator capable of getting sums of squares and sums of
products easily. Excellent calculators of this type cost about $25-50 in the United
States. Buy the most versatile you can afford.

0.1. DISTRIBUTIONS: NORMAL, t, AND F

Normal Distribution

The normal distribution occurs frequently in the natural world, either for data *‘as
they come” or for transformed data. The heights of a large group of people selected
randomly will look normal in general, for example. The distribution is symmetric
about its mean u and has a standard deviation o, which is such that practically all of
the distribution (99.73%) lies inside the range u — 30 =< x = u + 30. The frequency
function is

f(x) = .,1A.-,xn{(x_yi)2 \, —0 = x < 0, (0.1.1)

T e@Eyr T 2207 ) R

We usually write that x ~ N(u, o?), read as “x is normally distributed with mean

w and variance ¢ Most manipulations are done in terms of the standard normal or

unit normal distribution, N(0, 1), for which 4 = 0 and o = 1. To move from a general
normal variable x to a standard normal variable z, we set

z2=(x—wo. (0.1.2)

A standard normal distribution is shown in Figure 0.1 along with some properties
useful in certain regression contexts. All the information shown is obtainable from
the normal table in the Tables section. Check that you understand how this is done.
Remember to use the fact that the total area under each curve is 1.

Gamma Function

The gamma function I'(q), which occurs in Egs. (0.1.3) and (0.1.4), is defined as an
integral in general:

I'(q) = j: e *x97 ' dx.
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0.9973 0.0228 0.9544 0.0228
. |
3 3 2 2
4‘_/ " \ / o \
- . .
257 2.57 ~1.96 1.96 -1.645 1.645

Figure 0.1. The standard (or unit) normal distribution N(0, 1) and some of its properties.

However, it is easier to think of it as a generalized factorial with the basic property
that, for any ¢,

I'g)=(q—-1DI'(g-1)
=(q — (g - 2)I'(g - 2),
and so on. Moreover,
@ =a" and T'(1) = 1.

So, for the applications of Eqgs. (0.1.3) and (0.1.4), where v, m, and n are integers, the
gamma functions are either simple factorials or simple products ending in 7'

Example 1
[5)=4xT(4)=4x3XT(3)=4X3X2XT(2)
=4X3X2X1XT(Q1)=24.
Example 2
I@) =3 xT@) =1xixT@) = 3074,

t-Distribution

There are many t-distributions, because the form of the curve, defined by
v+ 1

F( 2 ) ( r

fAD) = 1+ —)WM (—w <t=< ), (0.1.3)
(wr)mr(f ’
2
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4 | B

-10 8 -6 4 -2 0O 2 4 6 8 10
Figure 0.2. The tdistributions for v = 1, 9, o; ¢() = N(0, 1).

depends on v, the number of degrees of freedom. In general, the #(») distribution
looks somewhat like a standard (unit) normal but is ‘heavier in the tails,” and so
lower in the middle, because the total area under the curve is 1. As v increases, the
distribution becomes ‘“more normal.” In fact, #() is the N(0, 1) distribution, and,
when v exceeds about 30. there is so little difference between r(n\ and N(ﬂ 1\ that it

Y AaN A AawwTAeS QUL OV viaNa B ad SV aatiiy maiaNaNaivS U L3 ¥ e

has become conventional (but not mandatory) to use the N(O 1) mstead Figure
0.2 illustrates the situation. A two-tailed table of percentage points is given in the
Tables section.

F-Distribution

The F-distribution depends on two separate degrees of freedom m and n, say. Its

curve is defined by
() (m)™
/\n)
/

N

\ Fm/?-i
folF) = / \ (1 + mF/n)m+nn

m n
r(3)r(3)
The distribution rises from zero, sometimes quite steeply for certain m and n, and

reaches a peak, falling off very skewed to the right. See Figure 0.3. Percentage points
for the upper tail levels of 10%, 5%, and 1% are in the Tables section.

(F = 0). (0.1.4)

1 ¢ | | | r |
10,30
0.8+ \ ) —
o (10,10)
V.O [ -—
I\

0.4 E
0.2 - (2’4) —
0.0 | 1

0 1 2 3 4 5 6

Figure 0.3. Some selected f(m, n) distributions.
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The F-distribution is usually introduced in the context of testing to see whether
two variances are equal, that is, the null hypothesis that Hy: oi/0} = 1, versus the
alternative hypothesis that H;: o{/oi# 1. The test uses the statistic F = s?/s3, s? and
s} being statistically independent estimates of o} and o3, with v, and 1, degrees of
freedom (df), respectively, and depends on the fact that, if the two samples that give
rise to s{ and s} are independent and normal, then (s¥/s3)/(o?/03) follows the F(v;, 1)
courses, this is usually described as a two-tailed test, which it usually is. In regression
applications, it is typically a one-tailed, upper-tailed test. This is because regression
tests always involve putting the ‘s? that could be too big, but cannot be too small”
at the top and the “s? that we think estimates the true o2 well” at the bottom of the
F-statistic. In other words, we are in the situation where we test H,: o3 = o3 versus
H,: o} =0o3.

0.2. CONFIDENCE INTERVALS (OR BANDS) AND t-TESTS

Let 6 be a parameter (or “thing”) that we want to estimate. Let § be an estimate of
6 (“‘estimate of thing”’). Typically, 8 will follow a normal distribution, either exactly
because of the normality of the observations in 6, or approximately due to the effect
of the Central Limit Theorem. Let o; be the standard deviation of 8 and let se(8) be
the standard error, that is, the estimated standard deviation, of § (“‘standard error of
thing’"), based on » degrees of freedom. Typically we get se(8) by substituting an
estimate (based on v degrees of freedom) of an unknown standard deviation into the
formula for o;.

1. A 100(1 — a)% confidence interval (CI) for the parameter 6 is given by
8+ t(v, 1 — a/2)se(h) (0.2.1)

where (1 — a/2) is the percentage point of a t-variable with » degrees of freedom
(df) that leaves a probability «/2 in the upper tail, and so 1 — «/2 in the lower tail.
A two-tailed table where these percentage points are listed under the heading of
2(a/2) = ais given in the Tables section. Equation (0.2.1) in words is

A t percentage point
{Estimate} . Jleaving a/2 in the
of thing upper tail, based on
vdegrees of freedom

Standard error
of estimate : (0.2.2)
of thing

2. To test 6 = 6, where 6, is some specified value of 6 that is presumed to be valid
(often 6, = 0 in tests of regression coefficients) we evaluate the statistic

— b

D>

-
il
—~
D
[\
(0%
-

or, in words,

{Estimate} _ {Postulated or test}

of thing value of thing
t= . (0.2.4)
{Standard error of}

estimate of thing
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) )
. | 4
t 0

Figure 0.4. Two cases for a t-test. (@) The observed ¢ is positive (black dot) and the upper tail area is
8. A two-tailed test considers that this value could just as well have been negative (open “‘phantom” dot)
and quotes “‘a two-tailed ¢-probability of 26.” (b) The observed ¢ is negative; similar argument, with
tails reversed

This ‘“‘observed value of ¢’ (our “dot”) is then placed on a diagram of the #(v)
distribution. [Recall that » is the number of degrees of freedom on which se(6) is
based and that is the number of df in the estimate of o? that was used.] The tail
probability beyond the dot is evaluated and doubled for a two-tail test. See Figure
0.4 for the probability 24. It is conventional to ask if the 26 value is “‘significant” or
not by concluding that, if 26 < 0.05, ¢ is significant and the idea (or hypothesis) that
6 = 6, is unlikely and so “‘rejected,” whereas if 26 > 0.0S, ¢ is nonsignificant and we
“do not reject” the hypothesis 8 = 6,. The alternative hypothesis here is 8 # §,, a

two-sided alternative. Note that the value 0.05 is not handed down in holy writings,
although we sometimes talk as though it is. Using an “‘alpha level” of a = 0.05 simply
means we are prepared to risk a 1 in 20 chance of making the wrong decision. If we
wish to go to & = 0.10 (1 in 10) or & = 0.01 (1 in 100), that is up to us. Whatever we
decide, we should remain consistent about this level throughout our testing.
However, it is pointless to agonize too much about «. A journal editor who will
publish a paper describing an experiment if 28 = 0.049, but will not publish it if
26 = 0.051 is placing a purely arbitrary standard on the work. (Of course, it is the
editor’s right to do that.) Such an attitude should not necessarily be imposed by
experimenters on themselves, because it is too restrictive a posture in general. Promis-
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T ABLE 0.1. Example Applications for Formulas (0.2.1)-(0.2.4)

Situation 6 6 se(6)
Straight line fit
= \ + “+ o
Y =8, B X € B b, Fél_ S E(X,—X)
XX
2o oy rEX,” 12

1)

Predicted response

)A/“ = b“ + len E(Y) at X() ?(. ] 1 (X“ _ X/)I 12

at X = X, T s

ing experimental leads need to be followed up, even if the arbitrary o standard has
not been attained. For example, an « = 0.05 person might be perfectly justified in
following up a 26 = 0.06 experiment by performing more experimental runs to further
elucidate the results attained by the first set of runs. To give up an avenue of investiga-
tion merely because one experiment did not provide a significant resuilt may be a
mistake. The a value should be thought of as a guidepost, not a boundary.

In every application of formulas (0.2.1)-(0.2.4), we have to ask what 6, 8, 6,, se().
and the r percentage point are. The actual formulas we use are always the same. Table
0.1 contains some examples of 6, 6, and se(#) we shall subsequently meet. (The symbol
s replaces the o of the corresponding standard deviation formulas.)

0.3. ELEMENTS OF MATRIX ALGEBRA

Matrix, Vector, Scalar

A p X g matrix M is a rectangular array of numbers containing p rows and g col-
umns written

g —

my my; ... My,
m; My ... My
M=
| My My My, |
For exampie,
4 1 3 7
6 5 -2 1

is a 3 X 4 matrix. The plural of matrix is matrices. A *‘matrix” with only one row is
called a row vector: a “‘matrix”” with only one column is called a column vector. For
example, if
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a’'=[1,6,3,2,1] and b=| 0],

then a’ is a row vector of iength five and b is a column vector of iength three. A 1 X
1 “vector” is an ordinary number or scalar.

Equality

Two matrices are equal if and only if their dimensions are identical and they have
exactly the same entries in the same positions. Thus a matrix equality implies as many
individual equalities as there are terms in the matrices set equal.

Sum and Difference
The sum (or difference) of two matrices is the matrix each of whose elements is the

sum (or difference) of the corresponding elements of the matrices added (or sub-
tracted). For example,

76 97 [ 1 2 41 [ 6 4 5
4 2 1 -1 3 =2 5 -1 3
6 53|l | 62 1| | o 32
214 [ 70 2f |-5 12

The matrices must be of exactly the same dimensions for addition or subtraction to
be carried out. Otherwise the operations are not defined.

T oo on oo sm o
11andpude

The transpose of a matrix M is a matrix M’ whose rows are the columns of M and
whose columns are the rows of M in the same original order. Thus for M and A as
defined above,

my my ... omy ]
v my, my ... my |
| g My my
4 -1 6]
’ 1 0 5
A1 -2
_7 2 1_

Note that the transpose notation enables us to write, for example,

b’ =(-1,0,1) or alternatively b = (—-1,0,1)".
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Note: The parentheses around a matrix or vector can be square-ended or curved.
Often, capital letters are used to denote matrices and lowercase letters to denote
vectors. Boldface print is often used, but this is not universal.

Symmetry

A matrix M is said to be symmetric if M' = M.

Multiplication

Suppose we have two matrices, A, which 1s p X g, and B, which is r X s. They are
conformable for the product C = AB only if ¢ = r. The resulting product is then a
p X s matrix, the multiplication procedure being defined as follows: If

Cd,, dp ... GWT b“ blg bhj
a, an ... dy b:l hgj e bl\r
A= B = )
1 71 . 77 h N h - h
L ¢pl 2 e “ng | Ll/(’l g2 - l/q\‘-_
p X q qg xXs
then the product
[Ch1 Cin e Ol
Cy Cn ... Cyi
AB=C-=
chl Cpl L Cp\_
p Xs

1s such that
¢ = i aub/,l
1=1

that is, the entry in the ith row and jth column of C is the inner product (the element
by element cross-product) of the ith row of A with the jth column of B. For example.

12 3
1 2 1
[ } 40 —1
-1 3 0
-7 1 2
LL[ )
2 X3 . .
IxX3

i

[1(1)+2(4)+1(—2) 1(2) + 2(0) + 1(1) 1(3)+2(—1)+1(3)]
—1(1) +3(4) + 0(=2) —1(Q2Q) +3(0) + 0(1) —1(3) +3(=1) + 0(3)

[7 3 4]
L 2 —el”
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We say that, in the product AB, we have premultiplied B by A or we have postmultiplied
A by B. Note that, in general, AB and BA, even if both products are permissible
(conformable), do not lead to the same result. In a matrix multiplication, the order
in which the matrices are arranged is crucially important, whereas the order of the
numbers in a scalar product is irrelevant.
When several matrices and/or vectors are multiplied together, the product should
le. th

be carried out in the way that leads to the least work. For exam

W Z' y
pXppXnnXl1
could be carried out as (WZ')y, or as W(Z'y), where the parenthesized product is
evaluated first. In the first case we would have to carry out pn p-length cross-products

and p n-length cross-products; in the second case p p-length and p n-length, clearly a
saving in effort.

Speciai Matrices and Vectors

We define
1 0 0 . 07
01 0 . 0
=0 0 1 . 01,
600 . i
a square n X n matrix with 1’s on the diagonal and 0’s elsewhere, as the unit matrix

or zdentzty matrix. This fulfills the same role as the number 1 in ordinary arithmetic.
If the size of 1, is clear from the context, the subscript n is often omitted. We further
use 0 to denote a vector

0=(0,0,...0)
or a matrix
- 07
0
0= ;
_O 0o ... 0;

all of whose values are zeros; the actual size of 0 is usually clear from the context.
We also define

1=(,1,...,1)

a vector of all 1’s; the size of 1 is either specified or is clear in context. Note that
1'1 = the squared length of the vector 1, but that 11’ is a square matrix, each entry
of which is 1, with the number of rows and columns each equal to the length of 1.
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Orthogonality

A vector a = (a,, ay, . . ., @,)’ is said to be orthogonal to a vector b = (b, by, ..., b,)’
if the sum of products of their elements is zero, that is, if

ab.=a’'h=h'a=0,
Inverse Matrix

The inverse M™' of a square matrix M is the unique matrix such that

MM =1=MM".

The columns m;, m,, ..., m, of an n X n matrix are linearly dependent if there exist
constants ¢,, ¢, . . ., C,, Dot all zero, such that
cm +em+ - +cm, =0

and similarly for rows. A square matrix, some of whose rows (or some of whose

columns) are linearly dependent, is said to be singular and does not possess an inverse.

A square matrix that is not singuiar is said to be nonsinguiar and can be inverted.
If M is symmetric, so is M.

Obtaining an inverse

The process of matrix inversion is a relatively complicated one and is best appreciated
by considering an example. Suppose we wish to obtain the inverse M~' of the matrix

3435
M=|1 2 6

|7 1 9J.

a b c
M- =
g h k

Then we must find (a, b, c, ..., h, k) so that

Let

[abc][345] [100]
d e fll1 2 6l=l0o1 of
e n xll7 1 0] loo
L& JL J L d

that is, so that
3a+b+7c=1, 3d+e+7f=0, 3g+h+7k=0,
4da+2b+c=0, 4d+2e+f=1, 4dg+2h+ k=0,
S5a+6b+9=0, 5d+6e+9f=0, 5¢+6h+9%%=1.

Solving these three sets of three linear simultaneous equations yields
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% - 12 -31 14
Mi=| & -5 -% :T(l)_3 33 -8 -13
-5 & i -13 25 2

enaral for an n X »
S Wi u.’ A1 <a11 s N e

(the the removal of a common factor. explained below.) In
matrix there will be n sets of n simultaneous linear equations. Accelerated methods
for inverting matrices adapted specifically for use with electronic computers permit
inverses to be obtained with great speed, even for large matrices. Working out inverse

matrices ‘“‘by hand” is obsolete, nowadays, except in simple cases (see below).

Determinants

An important quantity associated with a square matrix is its determinant. Determinants
occur naturally in the solution of linear simultaneous equations and in the inversion
of matrices. For a 2 X 2 matrix

M ra b]
1)
the determinant is defined as
a
detM = =ad — bc.
c
For a 3 X 3 matrix
a b c
d e f]|,
L8 h k]
it is
e f d f d e
a - b +c = aek — afh — bdk + bfg + cdh — ceg.
h k g k g

Note that we expand by the first row, multiplying a by the determinant of the matrix left
when we cross out the row and column containing a, multiplying b by the determinant of
the matrix left when we cross out the row and column containing b, multiplying ¢ by
the determinant of the matrix left when we cross out the row and column containing
c. We also attach alternate signs +, —, + to these three terms, counting from the top
left-hand corner element: + to a, — to b, + to ¢, and so on, alternately, if there were
more elements in the first row.

In fact, the determinant can be written down as an expansion of any lumr
by the same technique. The signs to be attached are counted + — + —, and so on,
from the top left corner element alternating either along row or column (but not
diagonally). In other words the signs

ow or column
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are attached and any row or column is used to write down the determinant. For
example, using the second row we have

b ¢
h k

a ¢
+e

—f

ab’
g k g h

to obtain the same result as before.
The same principle is used to get the determinant of any matrix. Any row or column
is used for the expansion and we multiply each element of the row or column by:

1. Its appropriate sign, counted as above.

2. The determinant of the submatrix obtained by deletion of the row and column in
which the element of the original matrix stands.

Determinants arise in the inversion of matrices as follows. The inverse M™' may
be obtained by first replacing each element m;; of the original matrix M by an element
calculated as follows:

1. Find the determinant of the submatrix obtained by crossing out the row and column
of M in which m; stands.

2. Attach a sign from the + — + — count, as above.
3. Divide by the determinant of M.

When all elements of M have been replaced, transpose the resulting matrix. The
transpose will be M.
The reader might like to check these rules by showing that

‘ [a b]*l [ diD —b/D7
M' = —
¢ d —c/D al/D ]

where D = ad — bc is the determinant of M; and that
[a b c]' [A B C]

-

Q'=|d e f| =|D E F|,
g h k G H K]
where
A = (ek — fh)lIZ, B=—(bk —ch)IZ, C=(bf—ce)lZ,
D= —(dk — fg)lZ, E = (ak — cg)/Z, F= —(af - cd)/Z,
G=(dh—-eg)lZ, H=—(ah—0bg)lZ, K= (ae—bd)lZ,
and where

> o __ 1 1 1 1 1r £1 1 1y
Z = aek + bfg + cdn — afh — bdk — ceg

is the determinant of Q. Note that, if M is symmetric (so that b = ¢), M™! is also
symmetric. Also, if Q is symmetric (so that b = d, ¢ = g, f = h), then Q7' is also
symmetric because then B = D, C = G, and F = H.

The determinant is essentially a measure of the volume contained in a parallelepiped
defined by the vectors in the rows (or columns) of the square matrix. See, for example,
Schneider and Barker (1973, pp. 161-169).

If the square matrix is of the form X'X, dimension p X p, say, the equation
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u’X’Xu = constant

defines an ellipsoid in the space of the variables (u;, u,, ..., u,) = uw' and
det(X'X) = |X'X|is proportional to the volume contained by the ellipse. The exact area
depends on the choice of the constant. This result has application in the construction of

10int confidence reoiong for reoreccion
Jo (0] €nce re ss1on

narameterc in Section 54
............ gions Ior regre parameters in section J.4.

Common Factors

If every element of a matrix has a common factor, it can be taken outside the matrix.
Conversely, if a matrix is multiplied by a constant ¢, every element of the matrix is
multiplied by c. For example,

4 6 -2 2 3 -1
[8 6 2] =2[4 3 1]‘
Note that, if a matrix is square and of size p X p, and if ¢ is a common factor, then
the determinant of the matrix has a factor c¢”, not just ¢. For example,
(4 6|
s ol "

Additional information on matrices is given where needed in the text. Also see Appen-
dix 5A.

12 3|
22, ‘=22(6—12)=~24.
4 3



CHAPTER 1

Fitting a Straight Line by Least Squares

1.0. INTRODUCTION: THE NEED FOR STATISTICAL ANALYSIS

In today’s industrial processes, there is no shortage of ““information.”” No matter how

small or how straightforward a process may be, measuring instruments abound. They
tell us such things as input temperature. concentration of reactant, pprnpnt gatalvct

PRI WO SVl Lliiiaas QO llipilet SVAMIPVIGIWA Ty VUAIVLAL QUL L A 8Ras

steam temperature, consumption rate, pressure, and so on, dependmg on the character-
istics of the process being studied. Some of these readings are available at regular
intervals, every five minutes perhaps or every half hour; others are observed continu-
ously. Still other readings are available with a little extra time and effort. Samples of the
end product may be taken at intervals and, after analysis, may provide measurements of
such things as purity, percent yield, glossiness, breaking strength, color, or whatever
other properties of the end product are important to the manufacturer or user.

In research laboratories, experiments are being performed daily. These are usually
small, carefully planned studies and result in sets of data of modest size. The objective
is often a quick yet accurate analysis, enabling the experimenter to move on to ‘“‘better”
experimental conditions, which will produce a product with desirable characteristics.
Additional data can easily be obtained if needed, however, if the decision is ini-
tially unclear.

A Ph.D. researcher may travel into an African jungle for a one-year period of
intensive data-gathering on plants or animals. She will return with the raw material
for her thesis and will put much effort into analyzing the data she has, searching for
the messages that they contain. It will not be easy to obtain more data once her trip
is completed, so she must carefully analyze every aspect of what data she has.

Regression analysis is a technique that can be used in any of these situations. Our
purpose in this book is to explain in some detail something of the technique of
extracting, from data of the types just mentioned, the main features of the relationships
hidden or implied in the tabulated figures. (Nevertheless, the study of regression
analysis techniques will also provide certain insights into how to plan the collection
of data, when the opportunity arises. See, for example, Section 33)

In anvu cucf vhich varinhla anantitiae cha it Af intaract tn svamina th
in uu_y ]Dl\/lll in winiln variacit \luuuuuvo \.uuus\z, il 1S Of 1nterest (¢ eXamine in

effects that some variables exert (or appear to exert) on others. There may in fact be
a simple functional relationship between variables; in most physical processes this is
the exception rather than the rule. Often there exists a functional relationship that is
too complicated to grasp or to describe in simple terms. In this case we may wish to
approximate to this functional relationship by some simple mathematical function,
such as a polynomial, which contains the appropriate variables and which graduates

15

o
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or approximates to the true function over some limited ranges of the variables involved.
By examining such a graduating function we may be able to learn more about the
underlying true relationship and to appreciate the separate and joint effects produced
by changes in certain important variables.

Even where no sensible physical relationship exists between variables, we may wish
to relate them by some sort of mathematical equation. While the equation might be
physically meaningless, it may nevertheless be extremely valuable for predicting the
values of some variables from knowledge of other variables, perhaps under certain
stated restrictions.

In this book we shall use one particular method of obtaining a mathematical relation-
ship. This involves the initial assumption that a certain type of relationship, linear in
unknown parameters (except in Chapter 24, where nonlinear models are considered),
holds. The unknown parameters are estimated under certain other assumptions with
the help of available data, and a fitted equation is obtained. The value of the fitted
equation can be gauged, and checks can be made on the underlying assumptions to
see if any of these assumptions appears to be erroneous. The simplest example of this
process involves the construction of a fitted straight line when pairs of observations
(X, Y1), (X3, Ya), ..., (X,, Y,) are available. We shall deal with this in a simple
algebraic way in Chapters 1-3. To handle problems involving large numbers of vari-
ables, however, matrix methods are essential. These are introduced in the context of
fitting a straight line in Chapter 4. Matrix algebra allows us to discuss concepts in a
larger linear least squares regression context in Chapters 5-16 and 19-23. Some non-
least-squares topics are discussed in Chapters 17 (ridge regression), 18 (generalized
linear models), 24 (nonlinear estimation), 25 (robust regression), and 26 (resam-
pling procedures).

We assume that anyone who uses this book has had a first course in statistics and
understands certain basic ideas. These include the ideas of parameters, estimates,
distributions (especially normal), mean and variance of a random variable, covariance
between two variables, and simple hypothesis testing involving one- and two-sided -
tests and the F-test. We believe, however, that a reader whose knowledge of these
topics is rusty or incomplete will nevertheless be able to make good progress after a
review of Chapter 0.

We do not intend this as a comprehensive textbook on all aspects of regression
analysis. Our intention is to provide a sound basic course plus material necessary to
the solution of some practical regression problems. We also add some excursions into
related topics.

We now take an early opportunity to introduce the reader to the data in Appendix
1A. Here we see 25 observations taken at intervals from a steam plant at a large
industrial concern. Ten variables, some of them in coded form, were recorded as
follows:

1. Pounds of steam used monthly, in coded form.
2. Pounds of real fatty acid in storage per month.
3. Pounds of crude glycerin made.

4. Average wind velocity (in mph).

5. Calendar days per month.

6. Operating days per month.

7. Days below 32°F.

8. Average atmospheric temperature (°F).
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9. Average wind velocity squared.
10. Number of start-ups.

We can distinguish two main types of variable at this stage. We shall usually call
these predictor variables and response variables. (For alternative terms, see below.)
By predictor variables we shall usually mean variables that can either be set to a
desired value (e.g., input temperature or catalyst feed rate) or else take values that
can be observed but not controlled (e.g., the outdoor humidity). As a result of changes
that are deliberately made, or simply take place in the predictor variables, an effect
is transmitted to other variables, the response variables (e.g., the final color or the
purity of a chemical product). In general, we shall be interested in finding out how
changes in the predictor variables affect the values of the response variables. If we
can discover a simple relationship or dependence of a response variable on just one
or a few predictor variables we shall, of course, be pleased. The distinction between
predictor and response variables is not always completely clear-cut and depends some-
times on our objectives. What may be considered a response variable at the midstage
of a process may also be regarded as a predictor variable in relation to (say) the
final color of the product. In practice, however, the roles of variables are usually

eacily distinouished

N2y AStaAAiH WS LIVRe,.

Other names frequently seen are the following:
Predictor variables = input variables = inputs
= X-variables = regressors
= independent variables.

(We shall try to avoid using the last of these names, because it is often misleading.
In a particular body of data, two or more ‘““independent’ variables may vary together
in some definite way due, perhaps, to the method in which an experiment is conducted.
This is not usually desirable—for one thing it restricts the information on the separate
roles of the variables—but it may often be unavoidable.)

Response variables = output variables = outputs
= Y-variables
= dependent variables.

Returning to the data in Appendix 1A, which we shall refer to as the steam data,
we examine the 25 sets of observations on the variables, one set for each of 25 different
months. Our primary interest here is in the monthly amount of steam produced and
how it changes due to variations in the other variables. Thus we shall regard variable
X, as a dependent or response variable, Y, in what follows, and the others as predictor
Vafiables, Xz, X3, ey X]().

We shall see how the method of analysis called the method of least squares can
be used to examine data and to draw meaningful conclusions about dependency
relationships that may exist. This method of analysis is often called regression analysis.
(For historical remarks, see Section 1.8.)

Throughout this book we shall be most often concerned with relationships of
the form

Response variable = Model function + Random error.

The model function will usually be “known” and of specified form and will involve
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the predictor variables as well as parameters to be estimated from data. The distribution
of the random errors is often assumed to be a normal distribution with mean zero,
and errors are usually assumed to be independent. All assumptions are usually checked
after the model has been fitted and many of these checks will be described.

(Note: Many engineers and others call the parameters constants and the predictors
parameters. Watch out for this possible difficulty in cross-discipline conversations!)
fitting the “‘best’ straight line to given data in order to relate two variables X and Y,
and will discuss how it can be extended to cases where more variables are involved.

1.1. STRAIGHT LINE RELATIONSHIP BETWEEN TWO VARIABLES

In much experimental work we wish to investigate how the changes in one variable
affect another variable. Sometimes two variables are linked by an exact straight line
relationship. For example, if the resistance R of a simple circuit is kept constant, the
current / varies directly with the voltage V applied, for, by Ohm’s law, I = V/R. If
we were not aware of Ohm’s law, we might obtain this relationship empirically by
making changes in V and observing I, while keeping R fixed and then observing that
the plot of I against V more or less gave a straight line through the origin. We say
‘“more or less” because, although the relationship actually is exact, our measurements
may be subject to slight errors and thus the plotted points would probably not fall
exactly on the line but would vary randomly about it. For purposes of predicting
for a particular V (with R fixed), however, we should use the straight line through
the origin. Sometimes a straight line relationship is not exact (even apart from error)
yet can be meaningful nevertheless. For example, suppose we consider the height and
weight of adult males for some given population. If we plot the pair (Y;, Y;) =
(height, weight), a diagram something like Figure 1.1 will result. (Such a presentation

is conventionallv called a scatter /lino,rgm_)

SRIARVTRINAVRRAL Y SRS & 2LieeeTd eesy

Note that for any given height there is a range of observed weights, and vice versa.
This variation will be partially due to measurement errors but primarily due to variation
between individuals. Thus no unique relationship between actual height and weight

M0 777 T T T T T T 7T
200 |- x Y =8(Y2)
190 | —
| .
~ 180 x Y, = ftyy)
Z 170 " —~
£ X X X x
qg;. 160~ X / x —
= X b4
x
150 X —
140 _]
130 —
x
120 1 i | { | | | S T | |
65 66 67 68 69 70 71 72 73 74 15 16
Height (Y, )

Figure 1.1. Heights and weights of 30 American males.
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can be expected. But we can note that the average observed weight for a given observed
height increases as height increases. This locus of average observed weight for given
observed height (as height varies) is called the regression curve of weight on height.
Let us denote it by Y, = f(Y)). There also exists a regression curve of height on
weight, similarly defined, which we can denote by Y, = g(Y;). Let us assume that
these two ‘“‘curves’ are both straight lines (which in general they may not be). In
general, these two curves are not the same, as indicated by the two lines in the figure.

Suppose we now found we had recorded an individual’s height but not his weight
and we wished to estimate this weight. What could we do? From the regression line
of weight on height we could find an average observed weight of individuals of the
given height and use this as an estimate of the weight that we did not record.

A pair of random variables such as (height, weight) follows some sort of bivariate
probability distribution. When we are concerned with the dependence of a random
variable Y on a quantity X that is variable but nor randomly variable, an equation
that relates Y to X is usually called a regression equation. Although the name is,
strictly speaking, incorrect, it is well established and conventional. In nearly all of this
book we assume that the predictor variables are not subject to random variation, but
that the response variable is. From a practical point of view, this is seldom fully true
UUl l[ ll lb l'l()[ a mucn more compucatea mung proccaure lb HCCUCU \DCC DC(,UOHS
3.4 and 9.7.) To avoid this, we use the least squares procedure only in situations where
we can assume that any random variation in any of the predictor variables is so small
compared with the range of that predictor variable observed that we can effectively
ignore the random variation. This assumption is rarely stated, but it is implicit in all
least squares work in which the predictors are assumed “‘fixed.” (The word “‘fixed”
means ‘‘not random variables” in such a context; it does not mean that the predictors
cannot take a variety of values or levels.) For additional comments see Section 3.4.

We can see that whether a relationship is exactly a straight line or a line only
insofar as mean values are concerned, knowledge of the relationship will be useful.

{Thp rplah(\nch"\ might. of course, be more comvplicated than a straisht line but we
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shall consider thlS later.)

A straight line relationship may also be a valuable one even when we know that
such a relationship cannot be true. Consider the response relationship shown in Figure
1.2. It is obviously not a straight line over the range 0 = X < 100. However, if we
were interested primarily in the range 0 = X =< 45, a straight line relationship evaluated
from observations in this range might provide a perfectly adequate representation of
the function in this range. The relationship thus fitted would, of course, not apply to
values of X outside this restricted range and could not be used for predictive purposes
outside this range.

Y
1

o] X
0 10 20 30 40 50 60 70 80 90 100

Figure 1.2. A response relationship.
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Figure 1.3. A point P outside the data space, whose coordinates nevertheless lie within the ranges of
the predictor variables observed.

Similar remarks can be made when more than one pr dictor variable is involved.

Suppose we wish to examine the way in which a response Y depends on vanables X,
X;, ..., X;. We determine a regression equation from data that ‘‘cover’ certain
regions of the ““X-space.” Suppose the point X; = (Xi, Xu, - . . , Xo) lies outside the
regions covered by the original data. While we can mathematically obtain a predicted
value ¥ (X{) for the response at the point X;, we must realize that reliance on such
a prediction is extremely dangerous and becomes more dangerous the further X, lies
from the original regions, unless some additional knowledge is available that the
regression equation is valid in a wider region of the X-space. Note that it is sometimes
difficult to realize at first that a suggested point lies outside a region in a multidimen-
sional space. To take a simple example, consider the region indicated by the ellipse
in Figure 1.3, within which all the data points (X 1s Xz) lie; the corresponding Y values,

Y

pl()lle(] verucduy Up [rom lHC pdgﬁ are not bﬂOWﬂ WC s€e lﬂdl mcrc are pomts lﬂ
the region for which 1 = X, = 9 and for which 2.4 = X, < 6.3. Although the X, and
X, coordinates of P lie individually within these ranges, P itself lies outside the region.
A simple review of the printed data would often not detect this. When more dimensions
are involved, misunderstandings of this sort easily arise.

1.2. LINEAR REGRESSION: FITTING A STRAIGHT LINE BY LEAST SQUARES

We have mentioned that in many situations a straight line relationship can be valuable
in summarizing the observed dpnpndpnnp of one variable on another. We now show
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how the equation of such a stralght line can be obtained by the method of least squares
when data are available. Consider, in Appendix 1A, the 25 observations of variable
1 (pounds of steam used per month) and variable 8 (average atmospheric temperature
in degrees Fahrenheit). The corresponding pairs of observations are given in Table
1.1 and are plotted in Figure 1.4.

Let us tentatively assume that the regression line of variable 1, which we shall
denote by Y, on variable 8 (X) has the form 8, + 8,X. Then we can write the linear,
first-order model

Y = BO + B]X + €, (12.1)
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T A B L E 1.1. Twenty-five Observations of Variables 1 and 8

Variable Number

Observation
Number 1(Y) 8 (X)
1 10.98 353
2 11.13 29.7
3 12.51 30.8
4 8.40 58.8
5 9.27 614
6 8.73 71.3
7 6.36 74.4
8 8.50 76.7
9 7.82 70.7
10 9.14 57.5
11 8.24 46.4
12 12.19 289
13 11.88 28.1
14 9,57 39.1
15 10.94 46.8
16 9.58 48.5
17 10.09 59.3
18 8.11 70.0
19 6.83 70.0
20 8.88 74.5
21 7.68 72.1
22 8.47 58.1
23 8.86 44.6
24 10.36 334
25 11.08 28.6

that is, for a given X, a corresponding observation Y consists of the value By + 8 X
plus an amount e, the increment by which any individual Y may fall off the regression
line. Equation (1.2.1) is the model of what we believe. 8, + 8, X is the model function
here and B, and B, are called the parameters of the model. We begin by assuming that
the model holds; but we shall have to inquire at a later stage if indeed it does. In
many aspects of statistics it is necessary to assume a mathematical model to make
progress. It might be well to emphasize that what we are usually doing is to consider
or tentatively entertain our model. The model must always be critically examined
somewhere along the line. It is our “opinion” of the situation at one stage of the
investigation and our “‘opinion” must be changed if we find, at a later stage, that the
facts are against it.

eaning of Linear Modei
When we say that a model is linear or nonlinear, we are referring to linearity or

nonlinearity in the parameters. The value of the highest power of a predictor variable
in the model is called the order of the model. For example,

Y—:BO+BIX+BHX2+€

is a second-order (in X) linear (in the B’s) regression model. Unless a model is
specifically called nonlinear it can be taken that it is linear in the parameters, and the
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Figure 1.4. Plot of the steam data for variables 1 (Y) and 8 (X).

word linear is usually omitted and understood. The order of the model could be of
any size. Notation of the form 3, is often used in polynomial models; 8, is the parameter
that goes with X while ), is the parameter that goes with X? = XX. The natural
extension of this sort of notation appears, for example, in Chapter 12, where 3, is
the parameter associated with X; X, and so on.

Least Squares Estimation

Now B, Bi, and € are unknown in Eq. (1.2.1), and in fact € would be difficult to
discover since it changes for each observation Y. However, 8, and 3; remain fixed
and, although we cannot find them exactly without examining all possible occurrences
of Y and X, we can use the information provided by the 25 observations in Table 1.1
to give us estimates b, and b, of 3, and S;; thus we can write

A

where Y, read Y hat,” denotes the predicted value of Y for a given X, when b, and
b, are determined. Equation (1.2.2) could then be used as a predictive equation;
substitution for a value of X would provide a prediction of the true mean value of Y
for that X.

The use of small roman letters b, and b, to denote estimates of the parameters
given by Greek letters 8, and @, is standard. However, the notation B, and B, for the
estimates is also frequently seen. We use the latter type of notation ourselves in
Chapter 24, for example.

Our estimation procedure will be that of least squares.

Under certain assumptions to be discussed in Chapter S, the method of least squares
has certain properties. For the moment we state it as our chosen method of estimating
the parameters without a specific justification. Suppose we have available n sets of
observations (X, Y)), (X2, Y2), ..., (X,, Y.). (In our steam data example n = 25.)
Then by Eq. (1.2.1) we can write

Yi=8+ 64X + ¢, (1.2.3)
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fori =1,2,...,n,so that the sum of squares of deviation from the true line is
S=2e=2 (Y- B~ BiX) (1.2.4)
i=1 i=1

S is also called the sum of squares function. We shall choose our estimates b, and b,
to be the values that, when substituted for 8, and 3, in Eq. (1.2.4), produce the least
possibie value of §; see Figure 1.5. [Note that, in (1.2.4), X, Y, are the fixed numbers
that we have observed.] We can determine b, and b, by differentiating Eq. (1.2.4) first
with respect to 3y and then with respect to 8, and setting the results equal to zero. Now

08 L
3_302 _ZZ(Y.'_BO_BlXi),
= (12.5)
aS C
v _22 X:(Y: ~ By — BlXi),
9B i=1
so that the estimates b, and b, are solutions of the two equations
D (Y= by— b, X)=0
‘-‘=Jl \ i () 1 1 9
(1.2.6)

2 X(Yi—by— b X)=0,

i=1

where we substitute (b, b;) for (B, B:), when we equate Eq. (1.2.5) to zero. From
Eq. (1.2.6) we have

YA

The line fitted by least squares
it the one that makes the sum

of squares of all these vertical
discrepancies as small as possible
Za\
7/

Line

~
.

X

Figure 1.5. The vertical deviations whose sum of squares is minimized for the least squares procedure.
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iYi—nbo—bli X,=0
i=1 i=1

(1.2.7)
XY, —b Y Xi—b Y X}=0
i=1 i=1 i=1
or
boﬂ'*‘b]iX,:i )/,
- (1.2.8)

These equations are called the normal equations. (Normal here means perpendicular,
or orthogonal, a geometrical property explained in Chapter 20. The normal equations
can also be obtained via a geometrical argument.)

The solution of Eq. (1.2.8) for b,, the slope of the fitted straight line, is

XY - [EX)EY))n (X - X)Y,-Y)
T EX-CX)Yn T X -X)»

(1.2.9)
where all summations are from i = 1 to n and the two expressions for b, are just
slightly different forms of the same quantity. For, defining

X=(X+X,+ -+ X,)n=2 Xin,
Y=(Y,+Y,+ - +Y)n=2Yin,
we have that
SX - X)Y.-Y)=ZXY.-XZ2Y,-Y2X +nXY
=3 XY, —-nXY
=3 XY, - EX)EY)n.

This shows the equivalence of the numerators in (1.2.9), and a parallel calculation, in
which Y is replaced by X, shows the equivalence of the denominators. The quantity
T X?is called the uncorrected sum of squares of the X’s and (£ X;)*/n is the correction
for the mean of the X’s. The difference is called the corrected sum of squares of the
X'’s. Similarly, £ XY, is called the uncorrected sum of products, and (£ X))(Z Y))/n is
the correction for the means. The difference is called the corrected sum of products
of Xand Y.

Pocket-Calculator Form

The first form in Eq. (1.2.9) is normally used for pocket-calculator evaluation of b,
because it is easier to work with and does not involve the tedious adjustment of each
X;and Y, to (X, — X) and (Y; — Y), respectively. To avoid rounding error, however,
it is best to carry as many significant figures as possible in this computation. (Such
advice is good in general; rounding is best done at the “‘reporting stage’’ of a calculation,
not at intermediate stages.) Most digital computers obtain more accurate answers
using the second form in Eq. (1.2.9); this is because of their round-off characteristics
and the form in which most regression programs are written.
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A convenient notation, now and later, is to write

Syy=2(X;— X )Y, - Y)

= 3(X, - X)Y,

=3 X(Y. - )

=S YV _(SYYWS V\/n
LA \& A\ £jilt

=EX,'Y,'_HX:?

Note that all these forms are equivalent. Similarly, we can write

SXX= E(X_X)Z

=3(X: - X)X,
=2 X?-(Z X)n
=X X?-nX?
and
Syy = 2:(Yi - ?)2
=2(Y, - Y)Y,
=3Y?-(2Y)n
=3Y?-nY2

The easily remembered formula for b, is then

b] = Sxy/Sxx.

25

(1.2.9a)

The solution of Egs. (1.2.8) for by, the intercept at X = 0 of the fitted straight line, is

b0=7—b1;\’_.

(1.2.10)

The predicted or fitted equation is ¥ = b, + b, X as in (1.2.2), we recall. Substituting Eq.
(1.2.10) into Eq. (1.2.2) gives the estimated regression equation in the alternative form

Y=Y +b(X-X),

(1.2.11)

where b, is given by Eq. (1.2.9). From this we see immediately that if we set X =
X in (1.2.11), then Y = Y. This means that the point (X, Y) lies on the fitted line. In

other words, this least squares line contains the center of gravity of the data.

Calculations for the Steam Data

Let us now perform these calculations on the selected steam data given in Table 1.1.

We find the following:
n=2S§,
2Y,=1098 +11.13 + - - - + 11.08 = 235.60,
Y = 235.60/25 = 9.424,
2X,=353+29.7+---+28.6 =1315,

X = 1315/25 = 52.60,
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2 XY

ZX?

b,

The fitted equation

The foregoing form
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= (10.98)(35.3) + (11.13)(29.7) + - - - + (11.08)(28.6)
= 11821.4320,

= (35.3) + (29.7) + - - - + (28.6)" = 76323.42,

_ZXY - CX)EY)n _ Sy

- EXI-(CX)n Sw

_ 11821.4320 ~ (1315)(235.60)/25 _ —571.1280
76323.42 — (1315)%/25 7154.42

= —0.079829.

is thus

Y=Y+b(X-X)
= 9.4240 — 0.079829( X — 52.60)
= 13.623005 — 0.079829.X.

of Y shows that b, = 13.623005. The fitted regression line is plotted

in Figure 1.6. We can tabulate for each of the 25 values X;, at which a Y, observation
is available, the fitted value }A’i and the residual Y, — Y, as in Table 1.2. The residuals
are given to the same number of places as the original data. They are our ‘“‘estimates
of the errors ¢ and we writee, = Y, — Y,in a parallel notation.

Note that since ¥, = ¥ + b,(X, — X),

Y=Y, =(Y,-Y) - b(X, - X),

which we can sum to give

(n‘ /vﬁx‘/_\zin‘ (V _ VY _ L ‘n‘ (V _VY—=n
L= r)=2 (\i—¥)=0 2, (&~ 4&)=0
i=1 =1 i=1
B 77T T 7T T T T T

[ ]
12| ,° Y or Xy = f(Xs) .
llr o® —

¥ =13.6230-00798 X3
10 |- ® —
Y &
(d
9%_ ¢ \ o °* B
s [ ]
81— * L -
..
7+ -
[ ]
[ ]

6 § 1 | S S IS DN B S ! {

30 40 50 60 70 80

Xs

Figure 1.6. Plot of the steam data—variables 1 (Y) and 8 (X)—and the least squares line.
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T A B L E 1.2. Observations, Fitted Values, and Residuals

Observation
Number Y; Y, Y, - Y,
1 10.98 10.81 0.17
2 11.13 11.25 -0.12
3 12.51 11.17 1.34
4 8.40 8.93 -0.53
5 9.27 8.72 0.55
6 8.73 7.93 0.80
7 6.36 7.68 -1.32
8 8.50 7.50 1.00
9 7.82 7.98 -0.16
10 9.14 9.03 0.11
11 8.24 9.92 —1.68
12 12.19 11.32 0.87
13 11.88 11.38 0.50
14 9.57 10.50 -0.93
15 10.94 9.89 1.05
16 9.58 9.75 -0.17
17 10.09 8.89 1.20
18 8.11 8.03 0.08
19 6.83 8.03 -1.20
20 8.88 7.68 1.20
21 7.68 7.87 -0.19
22 8.47 8.98 -0.51
23 8.86 10.06 -1.20
24 10.36 10.96 -0.60
25 11.08 11.34 -0.26

This piece of algebra tells us that the residuals sum to zero, in theory. In practice, the
sum may not be exactly zero due to rounding. The sum of residuals in any regression
problem is always zero when there is a 8, term in the model as a consequence of the
first normal equation. The omission of B, from a model implies that the response is
zero when all the predictor variables are zero. This is a very strong assumption, which
is usually unjustified. In a straight line model Y = 8, + B, X + €, omission of 3, implies
that the line passes through X = 0, Y = 0; that is, the line has a zero intercept 3, =

Oat X = 0.

Centering the Data

We note here, before the more general discussion in Section 16.2, that physical removal

of B, from the model is always possible by “centering” the data, but this is quite

different from setting 8, = 0. For example, if we write Eq. (1.2.1) in the form
Y-Y=B+BX-Y)+B(X-X)+e

or

y:BO'+BIX+€s

say, where y = Y — Y, B = B+ B, X — Y, and x = X — X, then the least squares
estimates of B8; and B, are given as follows:
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2 —X)yi—y) - 2(X: - Y)(Y: - ?)
S(x, - %) X -X)¢

b1:

identical to Eq. (1.2.9), while

L P n

n == A._ S o=
U, blIlC y—U

=y - bi¥=
whatever the value of b,. Because this always happens, we can write and fit the

centered model as
Y—7=Bl(X—,Y)+e,

omitting the B (intercept) term entirely. We have lost one parameter but there is a
corresponding loss in the data since the quantities Y, — Y,i = 1,2, ..., n, represent
only (n — 1) separate pieces of information due to the fact that their sum is zero,
whereas Yy, Y,, ..., Y, represent n separate pieces of information. Effectively the
“lost” piece of information has been used to enable the proper adjustments to be
made to the model so that the intercept term can be removed. The model fit is exactly
the same as before but is written in a slightly different manner, pivoted around

/X7 XN

(X,Y).

1.3. THE ANALYSIS OF VARIANCE

We now tackle the question of how much of the variation in the data has been
explained by the regression line. Consider the following identity:

Y,-Y.=Y-Y—(YV,-Y) (1.3.1)

What this means geometrically for the fitted straight line is illustrated in Figure 1.7.
The residual e, = Y, — Y, is the difference between two quantities: (1) the deviation

of the observed Y, from the overall mean Y and (2) the deviation of the fitted ¥, from
the overall mean Y. Note that the average of the Y;, namely,

Y A

Fitted line ¥ = b, + b X

—» X

X;

Figure 1.7. Geometrical meaning of the identity (1.3.1).
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S Yiin=Z(by+ b, X})/n

= (nb, + inX)/n (132)

=by+ hX

-7
is the same as the average of the Y, This fact also reconfirms that £ ¢, = Z(Y, —
Y) = nY — nY = 0, as stated previously

We can also rewrite Eq. (1.3.1) as
Y,-Y)=(,-Y)+(v,- ¥
If we square both sides of this and sum from i = 1, 2, ..., n, we obtain
S(Y, - Yy =3, - V) +3(Y,- V). (1.3.3)

The cross-product term, CPT = 2 S(¥; — Y)(Y; — Y;), can be shown to vanish by
applying Eq. (1.2.11) with subscript i, so that

P~ ¥ = b(X - X)
Y- Y, =Y. - Y- b(X - X). (1.3.4)
It follows that the cross-product term is
CPT =22b(Xi— X {(Y: - ¥) - bi(X, - X )}
= 2b\{Sxy — biSxx} (1.3.9)
=0
by Eq. (1.2.9a). It is also clear that
(Y- Y)Y =ZbiSu
= b;Sxy (1.3.6)
= Skv/Sxx-

This provides a simple pocket calculator way of computing this quantity when calculat-
ing b,.

Sums of Squares

We now return to a discussion of Eq. (1.3.3). The quantity (Y; — Y) is the deviation
of the ith observation from the overall mean and so the left-hand side of Eq. (1.3.3)
is the sum of squares of deviations of the observations from the mean; this is shortened
to SS about the mean and is also the corrected sum nf squares nf the Y’s nnmplv, Svr.
Since ¥, — Y is the deviation of the predicted value of the zth observatlon from the
mean, and Y; — Y, is the deviation of the ith observation from its predicted or fitted
value (i.e., the ith residual), we can express Eq. (1.3.3) in words as follows:

Sum of squares | _ ( Sum of squares 4 Sum of squares (1.37)
about the mean due to regression about regression/ o

This shows that, of the variation in the Y’s about their mean, some of the variation
can be ascribed to the regression line and some, Z(Y, — Y})?, to the fact that the actual
observations do not all lie on the regression line: if they all did, the sum of squares
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T A B L E 1.3. Analysis of Variance (ANOVA) Table: The Basic Split of Sy

Source of Degrees of Freedom Sum of Squares Mean Square
Variation (df) (SS) (MS)
Due to regression 1 S(Y,-Y)» MSg,

i

About regression 5 L] 0w . SS
(residual) " ; (Y. - Y) =0 h a
Total, corrected n—1 2 (v - ?)2

for mean Y

I

° Some older regression programs have documentation that labels the quantity 2(Y, — Y)Y (n - 1) = Syl
{(n — 1) as s°. For us, this would be true only if the model fitted were Y = B8 + e. In this case, the regression
sum of squares due to b, would be (as it is in general—e.g., Table 1.4) ny? = (2 Y)¥n and Syy would be
the appropriate residual sum of squares for the corresponding fitted model Y = Y.

about the regression (soon to be called the residual sum of squares) would be zero!
From this procedure we can see that a sensible first way of assessing how useful the
regression line will be as a predictor is to see how much of the SS about the mean
has fallen into the SS due to regression and how much into the SS about the regression.
We shall be pleased if the SS due to regression is much greater than the SS about
regression, or what amounts to the same thing, if the ratio R? = (SS due to regression)/
(SS about mean) is not too far from unity.

Degrees of Freedom (df)

Any sum of squares has associated with it a number called its degrees of freedom.
This number indicates how many independent pieces of information involving the n

independent numbers Y, Y;, ..., Y, are needed to compile the sum of squares. For
example, the SS about the mean needs (n — 1) independent pieces [of the numbers
Yl —_— ‘V’ Yz —_— ‘V’ .. V -— V f\f\“! (M —_— 1\ aro ;ﬂl“ﬂl‘\ﬂﬂf‘ﬂﬂ' c;nnn C\‘I b 2] nnm'\nrc cIIm

., Y, — Y, only (n — 1) are independent since all n numbers sum
to zero by definition of the mean]. We can compute the SS due to regression from a
single function of Y, Y, ..., Y,, namely, b, [since (Y, - YY) =bI13(X, — X) as
in Eq. (1.3.6)], and so this sum of squares has one degree of freedom. By subtraction,
the SS about regression, which we shall in future call the residual sum of squares (it
is, in fact, the sum of squares of the residuals Y; — ¥;) has (n — 2) degrees of freedom
(df). This reflects the fact that the present residuals are from a fitted straight line
model, which required estimation of two parameters. In general, the residual sum of
squares is based on (number of observations — number of parameters estimated)
degrees of freedom. Thus corresponding to Eq. (1.3.3), we can show the split of degrees
of freedom as

n-1=1+(n-2). (1.3.8)

AN s AN 7

Analysis of Variance Table

From Egs. (1.3.3) and (1.3.8) we can construct an analysis of variance table in the
form of Table 1.3. The “Mean Square” column is obtained by dividing each sum of
squares entry by its corresponding degrees of freedom.

A more general form of the analysis of variance table, which we do not need here
but which is useful for comparison purposes later, is obtained by incorporating the
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T A B L E 1.4. Analysis of Variance (ANOVA) Table Incorporating SS(b,)

Source df SS MS = SS/df
Due tO bllbo 1 SS(b,IbO) - j ()"/’ _ ‘)7)2 MSReg
Residual n-2 2 (v, - 17,)2 §2
Total, corrected n-1 1 -

2 ( )

n 2
Correction factor 1 SS(by) = (E y(,) /n=nY?
(due to by) i1
Total n "
Y?

2

correction factor for the mean of the Y’s into the table, where, for reasons explained

below, it is called SS(b,). The table takes the form of Table 1.4. (Note the
abbreviated headings.) An alternative way of presenting Table 1.4 is to drop the
line labeled ‘““Total, corrected’”” and the rule above it. The “Total” line is then the
sum of the remaining three entries. If we rewrite the entries in the order of Table
1.5, we can see a logical development. The first SS entry ‘“Due to by is the
amount of variation nY? explained by a horizontal straight line ¥ = Y. In fact,
if we fit the model Y = B, + € via least squares, the fitted model is ¥ = Y. If
we subsequently fit the ‘“‘with slope also” model Y = B, + B, X + €, the “Due
to bi|by” SS entry S%y/Sxx is the extra variation picked up by the slope term over
and above that picked up by the intercept alone. This is a special case of the
‘“extra sum of squares” principle to be explained in Chapter 6. Note, however,
[ﬂdl most COIHPUICT programs pI'OGUCC an ana1y81s of varnance table in a form that
omits SS(b,), that is, a table like Table 1.4 down to the “Total, corrected” line.
Often the word ‘“‘corrected” is omitted in a printout, but if the “Total” df is only
n — 1, the source should be labeled as “Total, corrected.”

When the calculations for Tables 1.3-1.5 are actually carried out on a pocket
calculator, the residual SS is rarely calculated directly as shown, but is usually obtained
by subtracting ““SS(b,|b,)”’ from the “total, corrected, SS.” As already mentioned in
(1.3.6), the sum of squares due to regression SS(b,|b,) can be calculated a number of
ways as follows (all summations are overi = 1,2, ..., n).

T A B L E 1.5. Analysis of Variance Table in Extra SS Order

Source df SS MS = SS/df
b() 1 n?z —
bylb, 1 Sv/Sxx MSge,
Residual n—2 By subtraction s?

Total n i y?
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T A BLE 1.6. Analysis of Variance Table for the Example

Source df SS MS = SS/df Calculated F-Value
Regression 1 45.5924 45.5924 57.54 = £22
Residual 23 18.2234 st =0.7923 S
Total, corrected 24 63.8158
SS(b1|b0) = Z(f/i - 7)2 = b{Z(X - X:)(Yi - 7)} = b, Sxy (1.3.9)
_EX XY -T)F Sk (13.10)
S X(X-X) Sxx ~
_ {Z XY, — (2 X)(EZY)/n} _ & (1.3.11)
T ZXI-(TX)Un " Sxx o
EX, - X)vy
= S(X =XV (1.3.12)

We leave it to the reader to verify the algebraic equivalence of these formulas, which
follows from the algebra previously given. Of these forms, Eq. (1.3.9) is perhaps the
easiest to use on a pocket calculator because the two pieces have already been calcu-
lated to fit the straight line. However, rounding off b, can cause inaccuracies, so Eq.
(1.3.11) with division performed last is the formula we recommend for calculator evalu-
ation.

Note that the total corrected SS, =(Y; — Y) can be written and evaluated
either as

]

Y wrNY 2
<

Sw=2Y; - (2Y)'/n (1.3.13)

or as
Sywy=2Y!—nY2 (1.3.14)

The notation SS(b|b,) is read ‘‘the sum of squares for b, after allowance has been
made for b,” or, more simply, as ‘‘the sum of squares for b, given b,.”” This notation
is further expanded in Section 6.1.

The mean square about regression, s%, will provide an estimate based on (n — 2)
degrees of freedom of the variance about the regression, a quantity we shall call
oy.x. If the regression equation were estimated from an indefinitely large number of
observations, the variance about the regression would represent a measure of the
error with which any observed value of Y could be predicted from a given value of
X using the determined equation (see note 1 of Section 1.4).

Steam Data Calculations

We now carry out and display in Table 1.6 the calculations of this section for our
steam data example and then discuss a number of ways in which the regression equation
can be examined. The SS due to regression given by is, using (1.3.11),
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EXY - EX)EY)nf Sk
EXT- CXyint  Su

_ (=571.1280)°
7154.42

= 45.5924.

SS(b1|be) =

The Total (corrected) SS is
ZY - (ZY)In
= 2284.1102 — (235.60)*/25
= 63.8158.

Our estimate of a2y is s2 = 0.7923 based on 23 degrees of freedom. The F-value
will be explained shortly.

f tha “‘cnnrca’ and “Af’ ~alnimne
1 icc aiiaG 4l COLUIIins

only. In many situations, for example, as in Section 3.3 when comparing several
possible arrangements of experimental runs not yet performed, it is useful to
compare the corresponding skeleton analysis of variance tables to see which might
be most desirable.

R? Statistic
A useful statistic to check is the R? value of a regression fit. We define this as

(SS due to regression given b,)

R2 = —
- (Total SS, corrected for the mean Y')
R (1.3.15)
XY, -Y)
(Y- Y)Y
where both summations are over i = 1, 2, ..., n. (This is a general definition.) Then

R? measures the “proportion of total variation about the mean Y explained by the
regression.” It is often expressed as a percentage by multiplying by 100. In fact, R is
the correlation [see Eq. (1.6.5)] between Y and Y and is usually called the multiple
correlation coefficient. R? is then “‘the square of the multiple correlation coefficient.”
For a straight line fit

R2 = SS(bllbo)/Syy
= Sf\’Y/(SXXSYY)'

Example (Continued). From Table 1.6,

,_ 45.5924
63.8158

Thus the fitted regression equation ¥ = 13.623 — 0.0798 X explains 71.44% of the total
variation in the data about the average Y. This is quite a large proportion.
R? can take values as high as 1 (or 100%) when all the X values are different. When

=(.7144.
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Figure 1.8. Eachresponse observation is assumed to come from a normal distribution centered vertically
at the level implied by the assumed model. The variance of each normal distribution is assumed to be the
same, o,

repeat runs exist in the data, however, as described in Section 2.1, the value of R?
cannot attain 1 no matter how well the model fits. This is because no model, however
good, can explain the variation in the data due to pure error. An algebraic proof of
this fact is given in the solution to Exercise M in “Exercises for Chapters 1-3.”

A number of criticisms have been leveled at R? in the literature and we discuss
them in Section 11.2. In spite of these criticisms, we continue to like R? as a ‘“‘useful
first thing to look at’ in a regression printout.

1.4. CONFIDENCE INTERVALS AND TESTS FOR S, AND g,

Up to this point we have made no assumptions at all that involve probability distribu-
tions. A number of specified algebraic calculations have been made and that is all.
We now make the basic assumptions that, in the model ¥, = B, + B, X, + €, = 1,
2,...,0n

1. ¢ is a random variable with mean zero and variance o’ (unknown); that is,
E(e) = 0, V(e) = o
2. € and ¢ are uncorrelated, i # j, so that cov(e;, €) = 0. Thus
E(Y) = By + B X, V(Y) = o’ (14.1)
and Y, and Y, i # j, are uncorrelated.

A further assumption, which is not immediately necessary and will be recalled when
used, is that:

3

3. € is a normally distributed random variable, with mean zero and variance o’ by
assumption 1; that is,

e ~ N(0, o?).

Under this additional assumption, €;, €; are not only uncorrelated but necessarily in-
dependent.

The situation is illustrated in Figure 1.8.
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Notes

1. o2 may or may not be equal to ¢, the variance about the regression mentioned
earlier. If the postulated model is the true model, then o2 = ob.x. If the postulated
model is not the true model, then o? < oby. If follows that s?, the residual mean

cauare that estimates n—2 in anv case, iS an estimate of a? if the model is correct. but
squ 11 y 1T the model 18 correct, but

2B v S Y-X aix Qi

not otherwise. If o}.x > o2 we shall say that the postulated model is incorrect or
suffers from lack of fit. Ways of deciding this will be discussed later.

2. There is a tendency for errors that occur in many real situations to be normally
distributed due to the Central Limit Theorem. If an error term such as € is a sum of
errors from several sources, and no source dominates, then no matter what the proba-
bility distribution of the separate errors may be, their sum e will have a distribution
that will tend more and more to the normal distribution as the number of components
increases, by the Central Limit Theorem. An experimental error, in practice, may be
a composite of a meter error, an error due to a small leak in the system, an error in
measuring the amount of catalyst used, and so on. Thus the assumption of normality
is not unreasonable in most cases. In any case we shall later check the assumption by
examining residuals (see Chapters 2 and 8).

We now use these assumptions in examining the regression coefficients.

Standard Deviation of the Slope b,; Confidence Interval for g,
We know that
by =2(X,— X)(Y;- Y)/Z(X; - X )’
=3(X;— X)Y/S(X;,— X )?

[since the other term removed' from the numerator is 2(X; — X)Y =Y (X, —
Y) =N
X)=0j

by={(X, - X)Y,+ -+ (X, - X)Y}/2(X, - X )~ (1.4.2)
Now the variance of a function

a=aY +aY,+ - +a,Y,

1S

V(@a) = aiV(Y) +ajV(Y,) + - - - + a2 V(Y,), (14.3)
if the Y, are pairwise uncorrelated and the a; are constants; furthermore, if V(Y,) = o?
V(a) = (a} + a} + - - - + a?)o?
(144)
= (Za})o.

In the expression for b, a; = (X; — X )/2(X; — X )?, since the X; can be regarded as
constants. Hence after reduction

o? o’

S S

(1.4.5)

!This term could be left off altogether, but it is conventional to write the numerator of b, in a symmetrical
form. See the definition of Syy above Eq. (1.2.9a).
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The standard deviation of b, is the square root of the variance, that is,

o _

EX-X7" SE

sd(b,) = (1.4.6)

or, if o is unknown and we use the estimate s in its place, assuming the model is
correct, the estimated standard deviation of b, is given by

s A

est. sd(b;) = EX - X" = S

(1.4.7)

An alternative terminology for the estimated standard deviation is the standard error,
se. We shall use mostly this alternative terminology.

Confidence Interval for g,

If we assume that the variations of the observations about the line are normal—that
is, the errors ¢; are all from the same normal distribution, N(0, o*)—it can be shown
that we can assign 100(1 — a)% confidence limits for 8, by calculating

t(n - 2,1 - 3a)s
- {E(X X )

b * (1.4.8)
where t(n — 2, 1 — ja) is the 100(1 — 3a) percentage point of a t-distribution, with
(n — 2) degrees of freedom (the number of degrees of freedom on which the estimate
s* is based).

Test for Hy: B, = By Versus H,: B; # By
On the other hand, if a test is appropriate we can test the null hypothesis that B, 1S

AAAAA a cemmani s USRS M ey A paers acnimod ~ aléqan o

cquax to pm, WIICIC [Jw lb a DPCLIUCU leUC tlat LUUIU UC LC1O, dgdlllbl UIC dllCl lldllVC llldl

B is different from B, (usually stated ““H,: 8, = B, versus H,: B, # B,,”’) by calculating

t = (bl - Bm)
Se(bl)
_ (1.4.9)
(b1 — Bi)fZ(X, — X )"

s

and comparing |f| with t(n — 2, 1 — 3a) from a r-table with (n — 2) degrees of
freedom—the number on which s? is based. The test will be a two-sided test conducted
at the 100a% level in this form. Calculations for our example follow.

= 0%/7154.42
est. V(b)) = s2/7154.42
= 0.7923/7154.42
= 0.00011074
se(b;) = Vest. V(b,) = 0.0105.
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Suppose a = 0.05, so that #(23, 0.975) = 2.069. Then 95% confidence limits for B, are
b, * 1(23,0.975) - s/{=(X; — X )}, or
—0.0798 = (2.069)(0.0105),

_N1N1E — N — _NNEQ1
V.1Vl = P = U.uool.

In words, the true value B, lies in the interval (—0.1015 to —0.0581), and this statement
is made with 95% confidence.

Example (Continued). Test of Hy:3; = 0.

We shall also test the null hypothesis that the true value B, is zero, or that there
is no straight line sloping relationship between atmospheric temperature (X') and the
amount of steam used (Y). As noted above, we write (using 3;, = 0)

Hy:B =0, H:B#0

and evaluaie

t= (b, — 0)/se(b,)
= —0.0798/0.0105
= —7.60.

Since |f| = 7.60 exceeds the appropriate critical value of #(23, 0.975) = 2.069, H,:
B = 0 is rejected. [Actually, 7.60 also exceeds (23, 0.9995); we chose a two-sided
95% level test here, however, so that the confidence interval and the r-test would both
make use of the same probability level. In this case we can effectively make the test
by examining the confidence interval to see if it includes zero, as described below.]
The data we have seen cause us to reject the idea that a linear relationship between
Y and X might not exist.

Reject or Do Not Reject

If it had happened that the observed [7] value had been smaller than the critical value, we
would have said that we could not reject the hypothesis. Note carefully that we do not
use the word “accept,” since we normally cannot accept a hypothesis. The most we
can say is that on the basis of certain observed data we cannot reject it. It may well
happen, however, that in another set of data we can find evidence that is contrary to
our hypothesis and so reject it.

For example, if we see a man who is poorly dressed we may hypothesize, H,: *“This

an ic nnanr D If tha man walle tn cava hite fara Aar avaide hhinch ta gave Innech mansvy
ail 1o PUUI. 41 11V 111 VWAl LU Jave UV 1Aalv Ul avVUIUD 1uUulivil Ltu savue 1ulivil lllUll\/],

we have no reason to reject this hypothesis. Further observations of this kind may
make us feel H, is true, but we still cannot accept it unless we know all the true facts
about the man. However, a single observation against H,, such as finding that the
man owns a bank account containing $500,000, will be sufficient to reject the hypothesis.

5

Confidence Interval Represents a Set of Tests

Once we have the confidence interval for 8, we do not actually have to compute the
|| value for a particular two-sided t-test at the same a-level. It is simplest to examine
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the confidence interval for 8, and see if it contains the value B,,. If it does, then the
hypothesis 8, = 8;, cannot be rejected; if it does not, the hypothesis is rejected. This
can be seen from Eq. (1.4.9), for Hy: B, = By is rejected at the a-level if |f| > t(n —
2, 1 — ), which implies that

by = Biol > t(n — 2,1 ~ }a) - sSIH{E(X, — X 3%,

N’ N

that is, B, lies outside the limits of E

(148
\

o

Standard Deviation of the Intercept; Confidence Interval for g,

A confidence interval for 8, and a test of whether or not S, is equal to some specified
value can be constructed in a way similar to that just described for 3,. We can show that

X2 "
o) =5t xy)

timated sd(b,), that is, se(b,). Thus 100(1 —

(1.4.10)

w

Replacement of o by s provides the e
f,

( < v ARY)
T X? in
byxt(n—-2,1 —%a) {m} S. (1.4.11)

A t-test for the null hypothesis Hy: 8, = By against the alternative H,: 8, # B,
where By is a specified value, will be rejected at the a-level if By, falls outside the
confidence interval, or will not be rejected if By falls inside, or may be conducted
separately by finding the quantity

_ (b~ Bw)
X"

and comparing it with percentage points t(n — 2, 1 — 4a) since n — 2 is the number
of degrees of freedom on which s?, the estimate of ¢, is based. Testing the value of
the intercept is seldom of practical interest.

Note: 1t is also possible to get a joint confidence region for 3, and 3, simultaneously.
See Exercise M in ‘“Exercises for Chapters S and 6.”

1.5. F-TEST FOR SIGNIFICANCE OF REGRESSION

Since the Y, are random variables, any function of them is also a random variable;
two particular functions are MSg,,, the mean square due to regression, and s’ the
mean square due to residual variation, which arise in the analysis of variance tables,
ALY e 1A 1 £ Mo Lo s sl L. Tt cien I L T L SR |
14DICS 1.0—1.0. 111ICXC 1UNCUOIIS LUICII 114VC LIICIT OWI1 UDDLIIDULIOIL, I1ICdIl, vdriance, dnd
moments. It can be shown that the mean values are as follows:

E(MSReg) = 0'2 + B%E(‘Xl - X’)Z
E(s?) = o,

where, if Z is a random variable, E(Z) denotes its mean value or expected value.
Suppose that the errors ¢ are independent N(0, o) variables. Then it can be shown
that if 8, = 0, the variable MSg,, multiplied by its degrees of freedom (here, one) and

(1.5.1)
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divided by o? follows a x? distribution with the same (one) number of degrees of
freedom. In addition, (n — 2)s*/ o’ follows a y? distribution with (n — 2) degrees of
freedom. Also, since these two variables are independent, a statistical theorem tells
us that the ratio

F=—"R (1.5.2)

follows an F-distribution with (here) 1 and (n — 2) degrees of freedom provided
(recall) that B, = 0. This fact can thus be used as a test of Hy: 8, = 0 versus H,: 8, #
0. We compare the ratio F = MSg,/s* with the 100(1 — a)% point of the tabulated
F(1, n — 2) distribution in order to determine whether B3, can be considered nonzero
on the basis of the data we have seen.

Example (Continued). From Table 1.6, we see that the required ratio is F = 45.5924/
0.7923 = 57.54. If we look up percentage points of the F(1, 23) distribution, we see
that the 95% point F(1, 23, 0.95) = 4.28. Since the calculated F exceeds the critical
F-value in the table—that is, F = 57.54 > 4.28—we reject the hypothesis H,: 8, = 0,
running a risk of less than 5% of being wrong.

p-Values for F-Statistics

Many computer printouts give the tail area beyond the observed F-value, typically to
three or four decimal places. For our example, this is Prob{F (1, 23) > 57.54} = 0.0000.
(This simply means that the tail area, when rounded, is smaller than 0.0001 or 0.01%.)
This can then be judged in relation to the risk level adopted by the person making
the test. Thus a 5% person (one prepared to run the risk of rejecting Hj:
B = 0 versus H,: 3, # 0 wrongly once in every 20 tests, on average) and a 10% person
(...onceinevery 10...) can look at the same printout and make decisions appropriate
to their own percentage level. (In this example, both would come to the same con-

clusion.)

F=t

The reader will have noticed that we have had two tests for the test of Hy: 8, = 0
versus H,:B, # 0, a t-test and an F-test. In fact, the two tests are equivalent and
mathematically related here, due to the theoretical fact that F(1, v) = {t(v)}*; that is,
the square of a t-variable with v df is an F-variable with 1 and v df. (Note: This only
happens when the first df of Fis 1.) For the test statistic we have

_MSpy _ b{E(X - X)(Y. - Y)}

F s? st
bIZ(X, — X )? .
=g (by the definition of b,) (1.5.3)
[z - Xype]?
s
= t2

from Eq. (1.4.9) with B, = 0. Since the variable F(1, n — 2) is the square of the
t(n — 2) variable, and this carries over to the percentage points (upper « tail of the
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F and two-tailed ¢, total of a), we find exactly the same test results. When there are
more regression coefficients the overall F-test for regression, which is the extension
of the one given here, does not correspond to the r-test of a coefficient. This is why
we have to know about both ¢- and F-tests, in general. However, tests for individual
coefficients can be made either in ¢ or > = F form by a similar argument. The ¢ form
is often seen in computer programs.

In tha ovomnln we hor*‘ an nhcnrunr‘ F_valnhe f 87 84 and an nhcarv
A1l UL1iN VAullll.’ 1CQAN3 Qi1 i YALIUN VL U7 .J_' Cli\l QAll VUVuUuUowvil

—7.60. Note that (—7.6)* = 57.76. Were it not for round-off error this would be equal
to the observed value of F. In all such comparisons, the effects of round-off must be
taken into consideration.

[an]

p-Values for t-Statistics

As in the case of the F-statistic discussed above, many computer programs print out
a tail area for the observed ¢-statistic. This is typically the two-tailed probability value,

that is, the area outside the t-value observed and outside minus the t-value observed.
Each user can then decide on the message he or she reads from this, denendmo on

the user’s chosen a-level. In regression contexts where F(1, v) = ¥ v) the one-sided
F-level corresponds to the two-sided r-level.

1.6. THE CORRELATION BETWEEN X AND Y

When we fit a postulated straight line model Y = B, + 8, X + €, we are tentatively
entertaining the idea that Y can be expressed, apart from error, as a first-order function
of X. In such a relationship, X is usually assumed to be “fixed,” that is, does not have
a probability distribution, while Y is usually assumed to be a random variable that
follows a probability distribution with mean 3, + 8, X and variance V(e). (Even if this

is not true exactly for X, in many practical circumstances we can behave as though it
is, as discussed in Section 1.1.)

More generally for the moment, let us consider two random variables, U and W,
say, which follow some continuous joint bivariate probability distribution f(U, W).
Then we define the correlation coefficient between U and W as

cov(U, W)

P = WOV IO (161)
where
cov(U, W) = j " f " {U- E(UNW - EW)(U,W)dUdW,  (162)
and
V(U) = f " j " {U - E(U)Ff(U, W) dU aW, (1.6.3)
where
E(U) = f " f " Uf(U, W) dU aw. (1.6.4)

V(W) and E(W) are similarly defined in terms of W. (If the distributions are discrete,
summations replace integrals in the usual way.)
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It can be shown that —1 = pyy = 1. The quantity pyw is a measure of the
linear association between the random variables U and W. For example, if pyw =
1, U and W are perfectly positively correlated and the possible values of U and
W all lie on a straight line with positive slope in the (U, W) plane. If pyw = 0,
the variables are said to be uncorrelated, that is, linearly unassociated with each
other. This does not mean that U and W are statistically independent, as most
elementary textbooks emphasize. If pypw = —1, U and W are perfectly negatively
correlated and the possible values of U and W again all lie on a straight line, this
time with negative slope, in the (U, W) plane.

If a sample of size n, (U,, W), (U,, W), ..., (U,, W,), is available from the joint
distribution, the quantity

27=1(Ui - U)(W, - _W)
{2?=1(Ui - _(7)2}"2{27=1(Wi - W)z}uz’

(1.6.5)

ryw =

where nU = SU, and nW = = W,, called the sample correlation coefficient between U
and W, is an estimate of pyy and provides an empirical measure of the linear association
between U and W. [If factors 1/(n — 1) are placed before all summations, then rw
hao £ th tha ~AAsrasmins~n A A neinmrne ramla~sd caminla al.

+h A '
Had lllC 1071111 Ul pU“/ Wllll lllC L«UVallalle allll vadliialiLod lCPldbCU Uy Dﬂl]lplc Valucaj
Like PuUw, -1 =< row = 1.

When the U; and W,,i = 1,2, ..., n, are all constants, rather than sample values
from some distribution, r;y can still be used as a measure of linear association. Because
the set of values (U, W), i = 1, 2, ..., n, can be thought of as a complete finite

distribution, ryy is, effectively, a population rather than a sample value; that is, ryy =
puw 1n this case. [If factors of 1/n are inserted before all summations in Eq. (1.6.5),
we obtain Eq. (1.6.1) for the discrete case.]

When we are concerned with the situation where X, X,, ..., X, represent the
values of a finite X-distribution and corresponding observations Y,, Y,, ..., Y, are
observed values of random variables whose mean values depend on the corre ponding
X’s (as in this chapter), the correlation coefficient pyy can still be deﬁned by Eq.
(1.6.1), provided that all integrations with respect to X in expressions like Eqs. (1.6.2)-
(1.6.4) are properly replaced by summations over the discrete values X, X,, ..., X,.
Equation (1.6.5), with X and Y replacing U and W, of course, can still be used to
estimate pyy by ryy if a sample of observations Yy, Y, ..., Y, at the n X-values X,
X, ..., X,, respectively, is available.

In this book we shall make use of expressions of the form of ryw in Eq. (1.6.5);
their actual names and roles will depend on whether the quantities that stand in place
of U and W are to be considered sample or population values. We shall call all such
quantities ryy the correlation (coefficient) between U and W and use them as appropriate
measures of linear association between various quantities of interest. The distinction
made above as to whether th uicy arc auuauy pupulauuu or DalllplC valuesis not necessary
for our purpose and will be ignored throughout.

When the correlation ryy is nonzero, this means that there exists a linear association
between the specific values of the X; and the Y, in the dataset,i = 1,2,...,n. In
our regression situation, we assume that the X are values not subject to random error
(to a satisfactory approximation at least; such assumptions are rarely strictly true, as
discussed in Section 1.1) and the Y; are random about mean values specified by the
model. Later, when we get involved with more than one predictor variable, we shall
use the correlation coefficient [e.g., Eq. (1.6.5) with X, and X, replacing U and W,
which we can then call r;;] to measure the linear association between the specific
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values (X);, X5) that occur in a data set. In neither of these cases are we sampling a
bivariate distribution.

One final and extremely important point is the following. The value of a correlation
rxy shows only the extent to which X and Y are linearly associated. It does not by
itself imply that any sort of causal relationship exists between X and Y. Such a false
assumption has led to erroneous conclusions on many occasions. (For some examples

(3 "
of such conclusions, including ‘“‘Lice make a man healthy,” see Chapter 8 of How to

Lie with Statistics by Darrell Huff, W.W. Norton, New York, 1954. Outside North
America this book is available as a Pelican paperback.)

Correlation and Regression

Suppose that data (X, Y)), (X3, Y,), ..., (X,, Y,) are available. We can obtain
rxy = ryx by applying Eq. (1.6.5) and, if we postulate a model Y = B, + B, X +
€, we can also obtain an estimated regression coefficient b; given by Eq. (1.2.9).
Our emphasis in the foregoing on the fact that ryy is a measure of linear association

between X and Y invites the question of how ryy and b, are connected. We first

) .
note that the formula in Eq. (1.6.5) is unaffected by changes in the origins or the

scales of U and W. Comparing Eq. (1.6.5), with X and Y replacing U and W, with
Eq. (1.2.9) we see that

oac in tha Ariging r tha

B E(Y,- — 7)2 12
b1 = {E(X, — 7)2} I'xy, (166)
where summations are over i = 1, 2, ..., n. In other words, b, is a scaled version of

rxy, scaled by the ratio of the ““spread” of the Y, divided by the spread of the X,. If
we write

(n—-1s}=2(Y;-Y),
(n—1)s;3=2(X - X)4,
then

b, = &rXY- (1.6.7)

Sx

Thus b, and ryy are closely related but provide different interpretations. The unit-free
and scale-free correlation ryy measures linear association between X and Y, while b,
measures the size of the change in Y which can be predicted when a unit change is
made in X. Scale changes in the data will affect b, but not ryy. In more general
regression problems, the regression coefficients are also related to simple correlations
of the type of Eq. (1.6.5) but in a more complicated manner. These relationships are
rarely of practical interest.

ryy and R Connections

Two additional relationships should be noted:

rxy = (sign of b)) R = (sign of b,)(R?)"? (1.6.8)
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for a straight line fit only, where R is the positive multiple correlation coefficient whose
square is

E(f’,- -Y)
p R Sl N .6.9
defined in Section 1.3. Also,
rvv = R; (1.6.10)

that s, R is equal to the correlation between the given observations Y, and the predicted
values ¥;. Equation (1.6.10) is true for any linear regression with any number of
predictors [whereas Eq. (1.6.8) holds only for the straight line case]. The reader
can confirm these relationships by some straightforward algebra (see the solution to
Exercise P in “Exercises for Chapters 1-3.”).

(In one unusual application, it was desired to compare the Y, values also with
prespecified W, values, as well as with the Y,. This was done by computing ryy in
addition to ryy.)

Testing a Singie Correiation

Suppose we have evaluated a single correlation coefficient ryy (which we shall call r
without subscripts in what follows), which is an estimate of a true (but unknown)
parameter p. We can obtain a confidence interval for p, or test the null hypothesis
H,:p = py, where p is the specified value (perhaps zero) versus any of the alternative
hypotheses H,: p # pyor p > py, or p < py, using the approximation known as Fisher’s’
z-transformation. This is

1+r 1
[ | — -1 - -1 -
2" =3ln (1 — r) = tanh~'(r) N(tanh P 3> (1.6.11)

approximately. Thus an approximate 100(1 — «)% confidence interval for p is given

by solving
1+r a 1 " 1+p
l — — :l ————
:ln (1_r)iz<1 2){n—3} 3ln (1 =) (1.6.12)

where z(1 — a/2) is the upper a/2 percentage point of the N(0, 1) distribution, for
the two values of p that satisfy the * alternatives on the left. A test statistic for testing

H() is
e 1+r . 1+ py
z=(n-3)" {%ln (1 — r) $in (1 — pﬂ)}, (1.6.13)

which is compared to preselected percentage points of the N(0, 1) distribution. The
three alternative hypotheses require a two-tailed test for H,:p ¥ p,, an upper-tailed
test for H,:p > py, and a lower-tailed test for p < p, respectively. Because a t-
distribution with infinite degrees of freedom is a unit normal distribution, a selection
of percentage points is given in the bottom row of the t-table. For other percentage
points, use the table of the normal distribution itself.

’For more about R. A. Fisher, see R. A. Fisher: The Life of a Scientist, by Joan Fisher Box. Wiley, New
York, 1978.
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Example. Suppose n = 103, r = 0.5. Choose a = 0.05. Then Eq. (1.6.12) reduces to
$In3 £ 0.196 = $In {(1 + p)/(1 — p)}

and the 95% confidence interval for p is 0.339-0.632. Any value p, of p outside
this interval would thus be rejected in a 5% level two-sided test of Hy:p = p, versus

H,:p # py, due to the parallel arithmetic involved.

Suppose we wish to test Hy: p = 0.6 versus H,: p < 0.6 at the 1% level. The percentage
point needed is —2.326 from the 0.02 column (since we need only a lower-tail test)
of the s-table with infinite degrees of freedom. From Eq. (1.6.13) we find the test statistic

z=10{4In3 — 4In (1.6/0.4)} = —1.438,

which falls above the percentage point —2.326; we do not reject H, at the one-sided
1% level.

A good reference for this material is Biometrika Tables for Statisticians, Vol. 1, by
E. S. Pearson and H. O. Hartley, Cambridge University Press, 1958. See pp. 28-32
and 139.

1.7. SUMMARY OF THE STRAIGHT LINE FIT COMPUTATIONS

Data: (Xl, Y]), (Xy_, Yz), ey (X,,, Y,,)
Model: Y = Bo + B]X + €.

Evaluate Sxx = ZX?— (2 X)n,
Sy =2 XY — (S X)ZY)n,
Syy=3Y?— (S Y)n,
by = Sxvy/Sxx,
by=Y - b X,
8S(b1lbo) = Skv/Sxx,
Residual SS = Syy — S%v/Sxx = (n — 2)s%

Get Table 1.5 or 1.3. Then:

= S?\’Y/(SXXSYY),
F = {S%y/Sxx}/s* with (1,n — 2)df,
t=F"

(Either F or t can be used to test Hy: 3, = 0 versus H,: 8, # 0.)
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1.8. HISTORICAL REMARKS

It appears that Sir Francis Galton (1822-1911), a well-known British anthropologist
and meteorologist, was responsible for the introduction of the word ‘“‘regression.”
Originally he used the term ‘“reversion” in an unpublished address ““‘Typical laws
of heredity in man” to the Royal Institution on February 9, 1877. The later term
“regression”” appears in his Presidential address made before Section H of the
British Association at Aberdeen, 1885, printed in Nature, September 1885, pp.
507-510, and also in a paper “Regression towards mediocrity in hereditary stature,”
Journal of the Anthropological Institute, 15, 1885, 246-263. In the latter, Galton
reports on his initial discovery (p. 246) that the offspring of seeds *‘did not tend
to resemble their parent seeds in size, but to be always more mediocre [i.e., more
average] than they—to be smaller than the parents, if the parents were large; to
be larger than the parents if the parents were very small. ... The experiments
showed further that the mean filial regression towards mediocrity was directly
proportional to the parental deviation from it.” Galton then describes how the
same features were observed in the records of ‘“heights of 930 adult children and
of their respective parentages, 205 in number.” Essentially, he shows that, if ¥ =
child’s height and X = ‘‘parents height” (actually a weighted average of the
mother’s and father’s heights; see the original paper for the details), a regression
equation something like Y = Y + ¥ X — X) is appropriate, although he does not
phrase it in this manner. (The notation is explained in Section 1.1.) Galton’s paper
makes fascinating reading, as does the account in The History of Statistics, by S.
M. Stigler, 1986, pp. 294-299, Belknap Press of Harvard University. Galton’s
analysis would be called a ‘“‘correlation analysis’ today, a term for which he is
also responsible. The term “‘regression’ soon came to be applied to relationships
in situations other than the one from which it originally arose, including situations
where the predictor variables were not random, and its use has persisted to this
day. In most model-fitting situations today, there is no element of “‘regession” in
the original sense. Nevertheless, the word is so established that we continue to
use it.

There has been a dispute about who first discovered the method of least squares.
It appears that it was discovered independently by Carl Friedrich Gauss (1777-1855)
and Adrien Marie Legendre (1752-1833), that Gauss started using it before 1803 (he
claimed in about 1795, but there is no corroboration of this earlier date), and that the
first account was published by Legendre in 1805. When Gauss wrote in 1809 that he
had used the method earlier than the date of Legendre’s publication, controversy
concerning the priority began. The facts are carefully sifted and discussed by R. L.
Plackett in ““Studies in the history of probability and statistics. XXIX. The discovery of
the method of least squares,” Biometrika, §9,1972,239-251, a paper we enthusiastically
recommend. Also recommended are accounts by C. Eisenhart, ““The meaning of ‘least’
in least squares,” Journal of the Washington Academy of Sciences, 54, 1964, 24-33
(reprinted in Precision Measurement and Calibration, edited by H. H. Ku, National
Bureau of Standards Special Publication 300, Vol. 1, 1969), and “Gauss, Carl
Friedrich,” in the International Encyclopedia of the Social Sciences, Vol. 6, 1968, pp.
74-81, Macmillan Co., Free Press Division, New York, and the Encyclopedia of Statisti-
cal Sciences, Vol. 3, 1983, pp. 305-309, Wiley, New York; and a related account by
S. M. Stigler, “Gergonne’s 1815 paper on the design and analysis of polynomial
regression experiments,” Historia Mathematica, 1, 1974, 431-447 (see p. 433). See also
Stigler’s book The History of Statistics, 1986, Belknap Press of Harvard University.
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APPENDIX 1A. STEAM PLANT DATA

The response is X1, the predictors X2-X10.

1 10.98 5.20 0.61 7.4 31 20 22 353 54.8 4
2 11.13 5.12 0.64 8.0 29 20 25 29.7 64.0 5
3 12.51 6.19 0.78 74 31 23 17 30.8 54.8 4
4 8.40 3.89 0.49 7.5 30 20 22 58.8 56.3 4
5 9.27 6.28 0.84 5.5 31 21 0 614 30.3 5
6 8.73 5.76 0.74 8.9 30 22 0 71.3 79.2 4
7 6.36 3.45 0.42 4.1 31 11 0 744 16.8 2
8 8.50 6.57 0.87 4.1 31 23 0 76.7 16.8 5
9 7.82 5.69 0.75 4.1 30 21 0 70.7 16.8 4
10 9.14 6.14 0.76 4.5 31 20 0 57.5 20.3 5
11 8.24 4.84 0.65 10.3 30 20 11 46.4 106.1 4
12 12.19 4.88 0.62 6.9 31 21 12 289 47.6 4
13 11.88 6.03 0.79 6.6 31 21 25 28.1 43.6 5
14 9.57 4.55 0.60 73 28 19 18 39.1 533 5
15 10.94 571 0.70 8.1 31 23 5 46.8 65.6 4
16 9.58 5.67 0.74 8.4 30 20 7 48.5 70.6 4
17 10.09 6.72 0.85 6.1 31 22 0 59.3 37.2 6
18 8.11 4.95 0.67 4.9 30 22 0 70.0 24.0 4
19 6.83 4.62 0.45 4.6 31 11 0 70.0 21.2 3
20 8.88 6.60 0.95 37 31 23 0 74.5 13.7 4
21 7.68 5.01 0.64 4.7 30 20 0 72.1 221 4
22 8.47 5.68 0.75 53 31 21 1 58.1 28.1 6
23 8.86 5.28 0.70 6.2 30 20 14 44.6 384 4
24 10.36 5.36 0.67 6.8 31 20 22 334 46.2 4
25 11.08 5.87 0.70 7.5 31 22 28 28.6 56.3 5
EXERCISES

Exercises for Chapter 1 are located in the section ‘“Exercises for Chapters 1-3”, at
the end of Chapter 3.



CHAPTER 2

We discuss basic methods of checking a fitted regression model. Although we talk
about these in terms of fitting a straight line, the basic methods apply generally
whenever a linear model is fitted, no matter how many predictors there are. Other
techniques too advanced for our current context are given in Chapter 8. Here we
examine the following:

1. The lack of fit F-test when the data contain repeat observations, that is, when pure
error is available (Sections 2.1 and 2.2).

2. Basic visual checks that can be made on the residualse, = Y, — Y, (Sections 2.3-2.6).

3. The Durbin—Watson test for checking serial correlation (Section 2.7).

2.1. LACK OF FIT AND PURE ERROR

General Discussion of Variance and Bias

We have already remarked that the fitted regression line is a calculated line based on

a certain model or assumption, an assumption we should not blindly accept but should

tentatively entertain. In certain circumstances we can check whether or not the model
is correct. First, we can examine the consequences of an incorrect model. Let us recall
that e, = Y, — Y, is the residual at X;. This is the amount by which the actual observed
value Y, differs from the fitted value Y;. As shown in Section 1.2, 2 e; = 0. The residuals
contain all available information on the way in which the model fitted fails to properly
explain the observed variation in the dependent variable Y. Let n, = E(Y,) denote
the value given by the true model, whatever it is, at X = X;. Then we can write

Y,-Yi=(Y,-Y)-EY, - V) + E(Y.-Y)
={(Y; = Y) — (n: — E(Y))} + (n. — E(T)
=gq;t B,
say, where
q={(Y.~Y)~ (- E(Y))}, Bi=n—EQ).

The quantity B; is the bias error at X = X,. If the model is correct, then E(Y,) = n,
and B; is zero. If the model is not correct, E(Y;) # n, and B, is not zero but has a
value that depends on the true model and the value of X;. The quantity g, is a ran-
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dom variable that has zero mean since E(q;) = E(Y; — ¥)) — (9 = E(Y)) = o -
E(Y) — (n: — E(Y))) = 0, and this is true whether the model is correct or not, that
is, whether E(Y;) = ; or not.

The g;, it can be shown, are correlated, and the quantity g + g3+ - - - + g2 has
expected or mean value (n — 2)o?, where V(Y;) = V(e) = o’ is the error variance.
From this it can be shown further that the residual mean square value

1 [ 5
— {2} (Y, - Y) } (2.1.1)

has expected or mean value o? if the postulated model is of the correct form, or
o’ + £ B}/(n — 2) if the model is not correct. If the model is correct, that is, if B, =
0, then the residuals are (correlated) random deviations g; and the residual mean
square can be used as an estimate of the error variance o2

However, if the model is not correct, that is, if B; # 0, then the residuals contain
both random (gq;) and systematic (B;) components. We can refer to these as the variance
error and bias error components of the residuals, respectively. Also, the residual mean

cennara will tand ta ha inflatad and will na lanacar nravida a catiefarntarv maaciira nf
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the random variation present in the observations. (Since, however, the mean square
is a random variable it may, by chance, not have a large value even when bias does
exist. For some similar work on the general regression case see Section 10.2.)

How Big is o*?

In the simple case of fitting a straight line, bias error can usually be detected merely
by examining a plot of the data. When the model is more complicated and/or involves
more variables this may not be possible. If a prior estimate of o is available (by “prior
estimate” we mean one obtained from previous experience of the variation in the
situation being studied) we can see (or test by an F-test) whether or not the residual

. . . . .

mean square is significantly greater than this prior estimate. If it is significantly greater
we say that there is lack of fit and we would reconsider the model, which would be
inadequate in its present form. If no prior estimate of o? is available, but repeat
measurements of Y (i.e., two or more measurements) have been made at the same
value of X, we can use these repeats to obtain an estimate of o. Such an estimate is
said to represent ‘“‘pure error’ because, if the setting of X is identical for two observa-
tions, only the random variation can influence the results and provide differences
between them. Such differences will usually then provide an estimate of o which is
much more reliable than we can obtain from any other source. For this reason, it is

sensible when designing experiments to arrange for repeat observations.

Genuine Repeats Are Needed

It is important to understand that repeated runs must be genuine repeats and not just
repetitions of the same reading. For example, suppose we were attempting to relate,
by regression methods, Y = intelligence quotient to X = height of person. A genuine
repeat point would be obtained if we measured the separate IQs of two people of
exactly the same height. If, however, we measure the IQ of one person of some
specified height twice, this would not be a genuine repeat point in our context but
merely a “reconfirmed’’ single point. The latter would, it is true, supply information
on the variation of the testing method, which is part of the variation ¢?, but it would
not provide information on the variation in IQ between people of the same height,
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which is the ¢o? of our problem. In chemical experiments, a succession of readings
made during steady-state running does not provide genuine repeat points. However,
if a certain set of conditions was reset anew, after intermediate runs at other X-levels
had been made, and provided drifts in the response level had not occurred, genuine
repeat runs would be obtained. With this in mind, repeat runs that show remarkable
agreement which is contrary to expectation should always be regarded cautiously and

ected to additional investigation.

ANJ1xas

Calculation of Pure Error and Lack of Fit Mean Squares

When there are repeat runs in the data, we need additional notation to take care of
the multiple observations on Y at the same value of X. Suppose we have m different
values of X and, at the jth of these m particular values, X;, where j = 1,2, ..., m,
there are n; observations; we say that:

Yy, Y, ..., Y, are n, repeat observations at X,;
Yu, Yn, ..., Y, are n, repeat observations at X;;

Y), is the uth observation (v = 1,2, ..., n;) at X;

Yuis Y, ..., Yo repeat observations at X,,.

Altogether, there are

observations. The contribution to the pure error sum of squares from the n
observations at X, is the internal sum of squares of the Y, about their average
Y,; that is,

r“ll iil
2 (Ylu - )_,1)2 = 2 Y%u - '11?%
u=1 u=1 (21.2)

Provided we are sure that the pure error variation is of the same order of magnitude
throughout the data (see Sections 2.2 and 2.3) we next pool the internal sums of
squares from all the sites with repeat runs to obtain the overall pure error SS as

i

23 (V=¥ (213)
with degrees of freedom
n,=§1(n,— 1) =I§::ln,-—m. (2.1.4)
Thus the pure error mean square is
2 = 2 T (N = V) (2.1.5)

E/':]nj—m



50 CHECKING THE STRAIGHT LINE FIT

Estimates 02 if

model is correct,
02 + bias term if
model inadequate
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Figure 2.1. Breakup of residual sum of squares into lack of fit and pure error sums of squares.

and is an estimate of o irrespective of whether the model being fitted is correct or
not. In words this quantity is the total of the “within repeats’ sums of squares divided
by the total of the corresponding degrees of freedom.

Special Formula when n; = 2

If there are only two observations Y;;, Y, at the point X;, then

S (Vi - T = MY, - Yy 2.16)

Split of the Residual SS

Now the pure error sum of squares is actually part of the residual sum of squares as
we now show. We can write the residual for the uth observation at Xj as

Y- Y =(Y.-Y)-(¥,-Y) (2.1.7)

using the fact that all the repeat points at any X; will have the same predicted value
Y,. If we square both sides and sum over both u and j, we obtain

M
\M;x

! R m "’/ -0, m . _
(Yu-Y)=> 21 (Y, — YY) + E} n(Y, - Y)), (2.1.8)
= <

I j=l u

1§

-~
1]
—

4

the cross-product vanishing in the summation over u for each j. The left-hand side of
Eq. (2.1.8) is the residual sum of squares; the first term on the right-hand side is the
pure error sum of squares. The remainder we call the lack of fit sum of squares. It
follows that the pure error sum of squares can be introduced into the analysis of
variance table as shown in Figure 2.1. The usual procedure is then to compare the
ratio F = MS,/s? with the 100(1 — a)% point of an F-distribution with (n, — n,) and
n, degrees of freedom. If the ratio is:
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T A BL E 2.1. Twenty-three Observations with Same Repeat Runs

Time Order Y X Time Order Y X Time Order Y X

12 23 13 19 1.7 3.7 3 3.5 5.3
23 1.8 1.3 20 2.8 4.0 6 2.8 53
7 2.8 20 5 2.8 40 10 2.1 5.3
8 1.5 2.0 2 2.2 4.0 4 34 5.7
17 2.2 2.7 21 3.2 4.7 9 3.2 6.0
22 38 33 15 1.9 4.7 13 30 6.0
1 1.8 33 18 1.8 5.0 14 3.0 6.3
11 3.7 3.7 16 59 6.7

1. Significant. This indicates that the model appears to be inadequate. Attempts
would be made to discover where and how the inadequacy occurs. (See comments on
the various residuals plots discussed in Sections 2.3-2.6. Note, however, that the
plotting of residuals is a standard technique for all regression analyses, not only those
in which lack of fit can be demonstrated by this particular test.)

2. Not Significant. This indicates that there appears to be no reason on the basis
of this test to doubt the adequacy of the model and both pure error and lack of fit
mean squares can be used as estimates of 0. A pooled estimate of o can be obtained
by recombining the pure error and lack of fit sums of squares into the residual sum
of squares and dividing by the residual degrees of freedom n, to give s = (Residual
SS)/n,. (Note that the residuals should still be examined because there are other
aspects of the residuals to be checked.)

We discussed earlier the fact that repeat runs must be genuine repeats. If they are
not genuine repeats, s? will tend to underestimate o2, and the lack of fit F-test will
tend to wrongly ‘“‘detect” nonexistent lack of fit.

Example. Since our previous example, which involved data taken from Appendix
1A, did not contain repeat observations, we shall employ a specially constructed
example (see Table 2.1) to illustrate the lack of fit and pure error calculaions. A
regression line Y = 1.426 + 0.316.X was estimated from the data in Table 2.1. The
analysis of variance table is shown in Table 2.2. Note that the F-value for regression
is not checked at this stage because we do not yet know if the model suffers from lack

of fit or not.
We now find the pure error, and hence the lack of fit.

1. Pure error SS from repeats at X = 1.3 is (2.3 — 1.8)? = 0.125, with 1 degree
of freedom.
2. Pure error SS from repeats at X = 4.0 is
TABLE 22 ANOVA Table for the Data of Table 2.1
Source df SS MS F-Ratio

Regression 1 5.499 5.499 7.56 significant at « = 0.05
level if no lack of fit

Residual 21 15.278 0.728 = s?

Total, corrected 22 20.777
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(2.8) + (2.8) + (2.2)" — 3{(2.8 + 2.8 + 2.2)/3F

=20.52 — (7.8)%/3
=20.52 - 20.28

=0.24, with 2 degrees of freedom
Similar calculations provide the following guantities
.................... provide the 1ollowing quantities
Level of X S (Y, — V) df
1.3 0.125 1
2.0 0.845 1
3.3 2.000 1
3.7 2.000 1
4.0 0.240 2
4.7 0.845 1
53 0.980 2
6.0 0.020 1
Totals 7.055 10

We can thus rewrite the analysis of variance as shown in Table 2.3. The F-ratio MS,/
st = 1.061 is not significant. Thus, on the basis of this test at least, we have no reason
to doubt the adequacy of our model and can use s* = 0.728 as an estimate of ¢, in
order to carry out an F-test for significance of the overall regression. This latter
F-test is valid only if no lack of fit is exhibited by the model and if no other violation
of the regression assumptions is apparent. To emphasize this point we summarize the
steps to be taken when our data contain repeat observations:

1. Fit the model, write down the usual analysis of variance table with regression
and residual entries. Do not perform an F-test for overall regression yet.

2. Work out the pure error sum of squares and break up the residual as in Fi g re
21 (7 ATa 10 33N TNITTO A eesesae Al A Gt oo ¢t~ lhn Alhanl oA .,. ot ala sl ea : 4,\,\,1
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see Sectxons 2.3-2.6 and Chapter 8.)

3. Perform the F-test for lack of fit. If significant lack of fit is exhibited, go to step
4a. If the lack of fit test is not significant, so that there is no reason to doubt the
adequacy of the model, go to step 4b.

4a. Significant lack of fit. Stop the analysis of the model fitted and seek ways to
improve the model by examining residuals. Do not carry out the F-test for overall
regression, and do not attempt to obtain confidence intervals. The assumptions on
which these calculations are based are not true if there is lack of fit in the model
fitted. (See Section 10.2.)

TABLE 23. ANOVA (Showing Lack of Fit Calculation)

Source df SS MS F-Ratio
Regression 1 5.499 5.499 7.56 significant at a = 0.05
Residual 21 15.278 0.728 = 5?

Lack of fit 11 8.233 0.748 = MS, 1.061 (not significant)
Pure error 10 7.055 0.706 = s?

Total, corrected 22 20.777
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4b. Lack of fit test not significant. Examine the residuals to see if any other violations
of assumptions come to light. If not, recombine the pure error and lack of fit sums of
squares into the residual sum of squares, use the residual mean square s* as an estimate
of V(Y) = o? carry out an F-test for overall regression, obtain confidence bands for
the true mean value of Y, evaluate R? and so on.

Note that the fact that the model passes the lack of fit test does not mean that it
is the correct model—merely that it is a plausible one that has not been found inade-
quate by the data so far. If lack of fit had been found, a different model would have
been necessary—perhaps (here) the quadratic one Y = 8, + 3, X + B1;X? + €. Even
though the model in our example does not exhibit lack of fit, and has a statistically
significant F for overall regression, it is nevertheless not very useful. The R? value is
only R? = 5.4992/20.7774 = 0.2647, so that only a small proportion of the variation
around Y is explained. However, even this pessimistic view of R? has to be modified
slightly as we now describe.

Effect of Repeat Runs on R?

As we have already remarked in Section 1.3, it is impossible for R? to attain 1 when
repeat runs exist, no matter how many terms are used in the model. (A trivial exception
is when s? = 0, which rarely happens in practice when there are repeat runs.) No
model can pick up the pure error variation (see the solution to Exercise M in ““Exercises
for Chapters 1-3.”)

To illustrate this in our most recent example, we note that the pure error sum of
squares is 7.055 with 10 degrees of freedom. No matter what model is fitted to these
data, this 7.055 will remain unchanged and unexplained. Thus the maximum R? attain-
able with these data is

Total SS, corrected — Pure error SS
Total SS, corrected

_ 20777 — 7055
20.777

= 0.6604.

The value of R? actually attained by the fitted model, however, is 0.2674. In other
words, we have explained 0.2674/0.6604 = 0.4049, or about 40% of the amount that
can be explained. This figure, while still not too encouraging, looks slightly better.
Such a calculation often gives a better sense of what the model actually is achieving
in terms of what can be achieved.

Max R? =

Looking at the Data and Fitted Model

The data and the fitted model ¥ = 1.426 + 0.316X are shown in Figure 2.2. We see
clearly that, overall, the variation of the points off the line is comparable to the
variation within sets of repeats, as already shown by our test for lack of fit with
F-ratio slightly over 1. We notice, however, a possible defect not picked up by the
lack of fit test. The last observation (X, Y) = (6.7, 5.9) looks a bit remote both from
the data and from the line. Clearly other checks are needed to be able to detect this,
particularly in larger regressions with several predictors (X’s), where a simple plot is
not feasible. We shall get to this, and other possible defects, in Chapters 7 and 8. We
first finish off our discussion of pure error.
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1 I i 1 i x
2.0 3.0 4.0 5.0 6.0

Figure 2.2. Plot of Table 2.1 data and fitted line.

Pure Error in the Many Predictors Case

The formulas given above in the single predictor context apply generally no matter
how many predictor variables, X, X,, ..., are in the data. The only point to watch
is that a set of repeat runs must all have the same X, value, the same X, value, and
so on. For example, the four responses at the four points

(X, X5, X5, Xy) = (4,2,17,1),(4,2,17, 1), (4,2,17, 1), (4,2, 17, 1)
provide repeat runs; however, the four responses at the four points
(X1, X2, X5, Xy) = (4,2,7,1),(4,2,16,1), (4, 2,18, 1), (4, 2,29, 1)

do not, for example, because their X; coordinates are all different.

Adding (or Dropping) X’s Can Affect Maximum R?

Note that, if additional predictor variables are added to the model, the maximum R*
value may increase. This is because observations that were repeats before may not
be repeats when the additional predictor(s) are introduced. For comments on the
treatment of pure error when predictors are dropped from the model, see Section
12.2. Dropping predictors can create (pseudo) pure error. An eye needs to be kept
on the effects, on the pure error calculation, of all changes of these types.

Approximate Repeats

Some sets of data have no, or very few, repeat runs but do have approximate repeats,
that is, sets of runs that are close together in the X-space compared with the general
spread of the points in the X-space. In such cases, we can often use these pseudo-
repeats as though they were repeat runs and evaluate an approximate pure error sum
of squares from them. This is then incorporated in the analysis in the usual way. For
an example of such a use, see Exercise L, in “Exercises for Chapters 1-3.” The major
problem here is in deciding what the words ‘““close together”” mean.
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Case |:
(M) TryY=8,+B,X +¢
(2) No lack of fit.
X (3) Significant linear regression.
Case 1 (4) Use model ¥ = by + b, X.

Case 2:

(1) Try Y=+ B, X +¢

(2) No lack of fit.

(3) Linear regression not significant.

se 2 @) Usemodel £ = V.

Case 3:
M) TryY=f,+BX +¢

Case 3 (3) Trymodel ¥ = B, + B,X + B, X? + &

Y - L. Y Case4:

¢ (M) TryY=8,+B.X +¢
(2) Significant lack of fit.
(3) Trymodel Y = B, + B, X + B, X* + ¢
(Note: B, may be significantly different from
X zero when residual error term is reduced by
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Figure 2.3. Typical straight line regression situations.

Generic Pure Error Situations lllustrated Via Straight Line Fits

The diagrams in Figure 2.3 illustrate some situations that may arise when a straight
line is fitted to data and the consequent action to be taken. All of these situations are
obvious in the context of a straight line fit, but they illustrate situations that occur in
more general regressions and our comments should be viewed in that light.
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Case 1. The model we try shows no lack of fit and we need to use all of the model.
Case 2. The model we try shows no lack of fit but we do not need all of it.

Case 3. The model we try shows lack of fit and a higher-order (or a different)
model must be formulated.

Case 4. The model we try shows lack of fit and, moreover, some of the terms in it
seem to be too small to be useful. (A test is not valid here because of the lack
of fit.) We must formuiate a higher order (or a different) model and must not
jump to premature conclusions about terms currently in the model. (For more
on such difficulties see Chapter 12.)

(The words “‘a different model’’ also include the possibility of transforming Y or X,
for example, by using In Y as a response.)

2.2. TESTING HOMOGENEITY OF PURE ERROR

In practice, we most often look at a plot of the spreads of the repeat runs and decide
by eye whether or not they look a lot different from one another. Formal tests exist,
if really needed, but all have drawbacks. Cochran’s test and Hartley’s test require the
same number of replicates at each site, plus special tables, so we do not discuss these.
Bartlett’s test is commonly used but is sensitive to non-normality; that is, if the data
are non-normal, the validity of the test is greatly affected. Nevertheless, we describe
it and a modified version below. We also describe and recommend Levene’s test using
group medians rather than means, if such a test is desired. (This essentially converts
a test of variances into a test of means, which is relatively unaffected by non-normality.
The price paid for this is lowered testing power.)

Barlett’s Test

Let si,s3,.... s2, be the estimates of o from the m groups of repeats with v, 1, . . .,

v, degrees of freedom, respectively. In terms of previous notation, », = n; — 1 and

n
/

si= 21 (Y, — Y)Y (n;—1). (2.2.1)
e
As before,
l=(ust+msi+ - +H s/t nt+ -+ ), (2.2.2)
and we write v = y, + 1 + -+ - + p,. The constant C is defined as
C=1+{vi'+vi'+- - +v,'—v}H{3(m-1)} (2.2.3)
where m is the number of groups with repeat runs. The test statistic is then
m
B = {Vln 51— > yln s}}/c. (2.2.4)
=1

When the variances of the groups are all the same, B is distributed as y_, approxi-
mately. A significant B value could indicate inhomogeneous variances. It could also
indicate non-normality, so it makes sense to actually look at the shapes of plots of
the m samples, too.
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Example. Consider the data used to illustrate lack of fit in Section 2.1. We have

s2 = 7.055/10 = 0.7055,
C=1+1{6(1/1) + 2(1/2) — 1/10}/{3(8 — 1)} = 1.328571,

= {—3.488485 + 7.836646}/1.328571 = 3.273(7 df).

The value of the statistic is very small, indicating no reason to doubt homogeneity of
variances. (For example, the 0.95 percentage point of x3 is 14.1.)

Bartlett’s Test Modified for Kurtosis
In this variation, the statistic B of Eq. (2.2.4) is multiplied by d = 2/(8 — 1), where

i i 2
}‘_ (Y, - Y)‘/{ z(Y,.,—Y)Zl (22.5)

L‘Ma
l_'Ma

estimates the (assumed common) kurtosis of the sets of repeats. For normally distrib-
uted data the true 8 would be 3 and d would typically be close to 1. The same y*-test
as before is used for this statistic; here N is the total number of observations in the
(usually reduced) data set used for the test, that is, the total number of observations
in all the sets of repeats, ignoring all the single observations in the data.

Example (Continued)
B = 18{[0.25* + (—0.25)*] + - - - + [0.1* + (=0.1)*]}/(7.055)*
= 18{5.231}/(7.055)* = 1.891761
d = 2/(0.891761) = 2.242753
Bd = 3.273 X 2.242753 = 7.3405 (7 df).

The modified test statistic remains nonsignificant compared with x3(0.95) = 14.1.

Levene’s Test Using Means

Consider, in the jth group of repeats, the absolute deviations
=1 — | e =1 9 o V5o Xo WA
Ljy = Ly £, Uu=1,4,...,n;, \£.2.0)

of the Y’s from the means of their repeats group. Consider this as a one-way classifica-
tion and compare the “‘between groups” mean square with the ‘‘within groups’ mean
square via an F-test. The appropriate F-statistic is then

n(zZ; —z7)(m—-1)

MM [£0s

J

)

j=l u

— , (2.2.7)
(zju — 51)2/2 (n;—1)

1
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T A B L E 24. Details for Levene’s Test Using Means for the Data of Table 2.1

X’LCVCI, 1\’1 Zju n, Zj
1.3 0.25, 0.25 2 0.25
2.0 0.65, 0.65 2 0.65
33 1.00, 1.00 2 1.00
3.7 1.00, 1.00 2 1.00
4.0 0.20, 0.20, 0.40 3 0.26
4.7 0.65, 0.65 2 0.65
53 0.00, 0.70, 0.70 3 0.46
6.0 0.10, 0.10 2 0.10

where

=2z, T=2>zn/on. (2.2.8)
u=1 =l u=1  j=1
The F-value is referred to F{m — 1, 27, (n; — 1)}, using only the upper tail.

Example (Continued). We have m = 8,2, n, = 18, 2, (n; — 1) = 10,7 = 9.5/18 =
0.527. The z;, and the row means Z; are shown in Table 2.4, where we use only the
repeat runs, ignoring the singles, which do not contribute here.

The numerator is then 1.687783/(8 — 1) = 0.24112 and the denominator is 0.353333/
10 = 0.035333, whereupon F = 6.824, which we can compare to F(7, 10, 0.95) = 3.14.
This would indicate that there are differences between the variances of the various
groups. We comment on this further below.

Levene’s Test Using Medians
Consider, in the jth group of repeats, the absolute deviations
Zjuznzju“i}j" u=1v27--°7nj9

of the Y’s from the medians Y, of their repeats group. Consider these in a one-way
classification and compare the ‘“‘between groups” mean square with the ‘“‘within
groups’’ mean square via an F-test. The appropriate F-statistic is again (2.2.7), and it
is tested in the same way as before. See Carroll and Schneider (1985).

Example (Continued). Note that when only two observations are in a group, the
mean and median are identical. So only groups with three or more observations can
give z;, and Z; values different from those in Table 2.4. For X = 4.0, the median is
2.8; the mean was 2.6. For X = 5.3 the median is 2.8, identical to the mean, as it
happens. So the F-statistic changes only slightly for this example through the changed
calcuiation for X = 4.0; the new z;, values there are 0, 0, and 0.6 with z; = 0.2 (replacing
0.2, 0.2, and 0.4 with mean 0.266). Now z = 9.3/18 = 0.516. This gives F = {1.803333/
(8 — 1)}/{0.566667/10} = 4.546, smaller than in the foregoing test, but still greater
than F(7, 10, 0.95) = 3.14. So again differences are declared between the variances
of the groups.

Some Cautionary Remarks

Our numerical example is (on the one hand) not a particularly good one to illustrate
the Levene tests because the denominator of the test statistic is estimated by only



2.3. EXAMINING RESIDUALS: THE BASIC PLOTS 59

two sets of three z;, values; the pairs do not contribute to the within sum of squares.
On the other hand, it does alert us to such possible problems! It is also worrying that,
although the pairs do not contribute to the within groups numerical value, they are
granted a degree of freedom! Alan Miller has suggested a sensible possible adjustment,
reducing these df to zero, but this does not seem to solve the problem either. Simula-
tions performed by T.-S. Lim and W.-Y. Loh, some of which are mentioned in Lim
and Loh (1996) and some of which were performed privately as a favor to the authors
of this book, seem to indicate that the best test is Levene’s test using medians. (Our
example would indicate that the data should not contain too many pairs of repeats,
however.) At the same time, it makes practical sense to plot the Y-values and visually
to compare the repeat groupings with one another. So that is our somewhat cautious
joint recommendation, with the plots always taking preference. (In using these example
data again later, we do not make any adjustments for possible unequal variances,
since the evidence for this seems weak.)

A Second Example

The groups of data below are values from our Exercise 23D, adapted via (Y — 1430)/5.

Group: 1 2 3 4 5
52 24 39 59 20
30 3 4 24 23
63 43 16 0 27
51 23 - 3 18

The Bartlett test value is, from (2.2.4), B = 6.83. Adjusting via (2.2.5) leads to Bd =
6.41. Both values are less than y3,s = 9.49. The F-statistics from Levene’s tests are
1.56 (using means) and 1.16 (using medians). Both are less than F; 4095 = 3.11. So in
this example we have consistent conclusions not rejecting homogeneity.

2.3. EXAMINING RESIDUALS: THE BASIC PLOTS

As we have already mentioned, the residualse; = Y; — Y, contain within them informa-
tion on why the model might not fit the data. So it is well worthwhile to check the
behavior of the residuals and allow them to tell us of any peculiarities of the regression
fit that might have occurred.

The study of residuals is not new, as the following quotation makes clear.

Almost all the greatest discoveries in astronomy have resulted from the consideration of

what we have elsewhere termed RESIDUAL PHENOMENA, of a quantitative or numerical

kind, that is to say, of such portions of the numerical or quantitative results of observation
as remain outstanding and unaccounted for after subducting and allowing for all that would

resuit from the strict appiication of known principies. (Sir John F. W. Herschei, Bart. K. H.,

1849, p. 548)

An enormous amount has been written about the study of residuals. There are, in
fact, several excellent books (see Section 2.8). In this section we discuss only the basic
plots that allow the most useful checks. These are the checks that should be done on
a routine basis for every regression. More sophisticated methods are discussed in later
chapters for those wishing to explore further.

The work of this section is useful and valid not only for linear regression models
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but also for nonlinear regression models and analysis of variance models. In fact, this
section applies to any situation where a model is fitted and measures of unexplained
variation (in the form of a set of residuals) are available for examination. Thus, like
the pure error calculations in Section 2.1, it is not restricted only to the straight line
regression case, even though we find it convenient to talk about it here.

How Should the Residuals Behave?

The residuals are defined as the n differences e, = Y, — )A’,, i=1,2,...,n,where Y,
is an observation and Y, is the corresponding fitted value obtained by use of the fitted
regression equation.

Note: Usually, the residuals would be evaluated to the same number of significant
figures as appeared in the original response observations. Sometimes one additional
significant figure is used, but to go beyond this is generally a waste of effort. Computer
printouts typically contain more figures than necessary, of course, but these would be
cut back if the data were transcribed for reporting purposes.

We can gee from their definition that the reciduale ¢ are the differencec hetween
YY W VAIE OWNW LA VURIL Vidlwia NANWAILALLVAVIEL R1IAGAY ViAW LA WULNAMGILYD v‘ LS Y g SAAW NSERLAAWIAWVIIVWO UWLYY Wil

what is actually observed, and what is predicted by the regression equation—that is,
the amount that the regression equation has not been able to explain. Thus we can
think of the e¢; as the observed errors if the model is correct. (There are, however,
restrictions on the e; induced by the normal equations.) Now in performing the regres-
sion analysis we have made certain assumptions about the errors; the usual assumptions
are that the errors are independent, have zero mean, have a constant variance o?,
and follow a normal distribution. The last assumption is required for making F-tests.
Thus if our fitted model is correct, the residuals should exhibit tendencies that tend
to confirm the assumptions we have made or, at least, should not exhibit a denial of
the assumptions. This latter idea is the one that should be kept in mind when examining
the residuals. We should ask: ‘Do the residuals make it appear that our assumptions
are wrong?” Afier we have examined the residuais we shali be abie to conciude either
that (1) the assumptions appear to be violated (in a way that can be specified) or (2)
the assumptions do not appear to be violated. Note that (2) does not mean that we
are concluding that the assumptions are correct; it means merely that on the basis of
the data we have seen, we have no reason to say that they are incorrect. The same
spirit occurs in making tests of hypotheses when we either reject or do not reject (rather
than accept). We now give ways of examining the residuals in order to check the
model. These ways are all graphical, are easy to do, and are usually very revealing
when the assumptions are violated. The principal ways of plotting the residuals e, are:

1. To check for non-normality.

2. To check for time effects if the time order of the data is known.

. To check for nonconstant variance and the possible need for a transformation on Y.
. .

|7
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In addition to these basic plots, the residuals should also be plotted:
5. In any way that is sensible for the particular problem under consideration.

(We remark before proceeding that the basic plots should always be done and will
often pick up any deficiencies present in many sets of residuals. It is also possible for
these simple plots to be ““fooled’ or “defeated,”” however, if a sophisticated defect,
or a combination of defects, occurs. That is why more complicated methods of analyzing
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residuals have been developed. The methods of this chapter are, however, the first
line of defense for detection of an unsuitable model.)

We talk here, and continue to do so in this chapter, of looking at the ordinary
residuals, defined as Y; — ¥;. Actually there are several types of residuals, any or all
of which could be obtained and could be plotted as well, or instead. We discuss the
various types in Chapter 8. For most regressions, it is not crucial which set of residuais
is plotted. Occasionally it makes a great deal of difference which choice of residuals
is made; this would show up when the plots of various residual sets are compared.

2.4. NON-NORMALITY CHECKS ON RESIDUALS

We usually assume that ¢, ~ N(0, o) and that all errors are independent of one
another. Their estimates, the residuals, cannot be independent. The estimation of the
parameters (p of them, say; p = 2 for the straight line) means that the n residuals
carry only (n — p) df. The p normal equations [for p = 2, see Egs. (1.2.8)] are
restrictions on the e;, essentially. Unless p is large compared with n, this typically has
little effect on our non-normality checks. We first note that:

For any model with a B, (intercept) term in it, the least squares residuals must, in
theory, add to zero.

This is seen from the first normal equation obtained by differentiating the error sum
of squares with respect to 8. If the model fitted is E(Y) = B, + 81X, + - - - + B Xk,
the equation can be written

—22(Y,— by — b Xy — - — b Xu) =0,
where the summation is taken overi = 1, 2, ..., n. This reduces to
(Y, - Y)=0.
Thus
2e =0.

Because the least squares fitting procedure guarantees this, there is no need to check
that the mean ¢ = Xe;/n is zero. We have made it so!

Often a simple histogram, or a stem and leaf plot, will be enough. Figure 2.4 shows
histograms for the residuals from (a) the steam data fit of Chapter 1 and (b) the
straight line fit for the lack of fit test data in Section 2.1. We conclude that these
(somewhat crude) plots look ‘“normal enough,” sometimes a difficult judgment, except
for the highest observation in Figure 2.4b, which looks like an outlier.

Normal Plot of Residuals

An alternative and (we believe) better check is to make a normal probability plot.
This is not difficult to do “by hand” but is better done in the computer. A full
explanation is given in Appendix 2A. Here we merely set out the steps required in
the MINITAB system of computing. Find out which column contains the residuals

you wish to ‘““normal plot”, say, c11. Write
nscore cll cl12
plot ci2 cl1

Draw (or imagine) a straight line through the main middle bulk of the plot. Ask:
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(a) Histogram of steam residuals n = 25
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(b) Histogram of residuals n = 23
Figure 2.4. Histograms of residuals from (a) steam data fit and (b) lack of fit test data.

“Do all the points lie on such a line, more or less?”’ If the answer is yes, one would
conclude that the residuals do not deny the assumption of ‘“normality of errors” made
in performing tests and getting confidence intervals. We see from the plots in Figures
2A.4,2A.5 and 2A.6 that the steam data residuals look alright, but that the pure error
example data show signs of an outlier, an observation that falls unusually out of the
pattern for a normal sample. For why it is an outlier, see Appendix 2A.

(Note carefully: 1f the plot is made “‘the other way around,” that is, as
nscore cll cl2
plot cl1l1 «c12

the criteria for an outlier to exist are different. It follows that every normal plot must
be looked at carefully to see which axis is which, before conclusions are reached. This
step is very important.)

There are other ways of assessing normality. For information on the Shapiro and
Wilk test, a useful starter reference is Royston (1995).

2.5. CHECKS FOR TIME EFFECTS, NONCONSTANT VARIANCE, NEED FOR
TRANSFORMATION, AND CURVATURE

We plot the residuals e; vertically against, in turn:

1. The time order of the data, if known.
2. The corresponding fitted values Y., using the fitted model.

3. The corresponding X; values if there is only one predictor variable; or, in general,
each set of X, where j = 1, 2, ..., k represent the X’s in the regression.
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band of points giving the impression of Figure 2. 5 There are many possible unsatisfac-
tory plots. Three typical ones appear in Figure 2.6. The first of these three (the funnel)
displays the band of residuals widening to the right showing nonconstant variance.
The second is an upward trend and the third is curvature. (All of these defective plots
can appear in other directions, of course, for example, a reversed funnel or a downward
curve.) It is difficult to be absolutely specific about what to do if these defects are
found but Table 2.5 gives some general indications.

Plots for the steam data and the lack of fit example data appear in Figures 2.7 and

2.8. We see that, for the steam data, none of the three plots seems to show any
worrying anomaly that would indicate the regression fit is defective. For the lack of
fit example data, we must remember that the observation with the largest residual
(value 2.36) is a likely outlier. If we ignore this residual in the residuals versus time
plot, there is still a hint of a funnel shape, but perhaps too little to act on—opinions
would differ on this. The plot of residuals versus Y values again shows up the outlier
but 1s otherwise unremarkable. (The apparent slight “downward slope look™ caused
by ignoring the outlier is essentially “‘caused by” the presence of the outlier.) The
plot of residuals versus X is similar to the foregoing plot, because Y and X rise together.
In our two examples, the residuals are equally spaced in time. If they were not, and
the correct spacings were known, the residuals would be plotted using those spacings,

of course.

Three Questions and Answers

Query 1. Why do we plot the residuals e, = Y; — Y, against the Y, and not against
the Y,, for the usual linear model?

©))

Figure 2.6. Examples of characteristics shown by unsatisfactory residuals behavior.
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T A B L E 2.5. Possible Remedies for Unsatisfactory Residuals Plots

Unsatisfactory Plot:

Plot of ¢, Versus

See Figure 2.6 Time Order

Fitted Y,

Xj Values

Use weighted* least
squares

Funnel indicating
nonconstant

variance

Ascending or de- Consider adding

Use weighted® least
squares or trans-
£omah L. L7
LOIIIL UIC I

Error in analysis or

Used weighted” least
squares or trans-
Comnnh sl .

LOIIIL e I

Error in the calcula-

first-order term
in time

tions; first-order ef-
fect of X, not re-
moved

Consider adding ex-
tra terms to the
model or trans-
form® the Y;

wrongful omission
of ﬁg

scending band

Curved band Consider adding extra
terms to the model

or transform® the Y;

Consider adding
first- and second-
order terms in
time

“See Section 9.2.
*See Chapter 13.

Answer. Because the e’s and the Y'’s are usually correlated but the e’s and the Y’s
are not. One way to see this is to think of plots of the e; as ordinate against (i) the Y;
and (ii) the ¥;, and find the slope of a least squares lines through the points. For (i)
it will be 1 — RZ for (ii) 0. This means that, unless R? = 1, there will always be a
slope of 1 — R? in the ¢, versus Y, plot, even if there is nothing wrong. However, a
slope in the e, versus Y plot indicates that something is wrong. See Exercise X in

‘“Exercises for Chapters 5 and 6.”

Query 2. Why does the plot of residuals e, = Y, — Y, versus Y, exhibit a series of
straight lines, with slopes of —1?

Answer. This feature is in fact always present but is usually not obvious. A line is
formed by any set of plotted points with the same Y value. Suppose, for example, we

have m points with the same value of Y, Y = a, say. Then we plot this subset of residuals
A
a“Y], a_Yz,..., a—Y,,,,
VErsus Y, Y, ... Yo, respectively.

These m points are all on a line with slope -1 through the points (Y, e) = (a, 0) and
(0, a). For, if Y is the average ¥ = (Y, + ¥, + - - - + Y,,), the slope of the line, via
least squares, is

Sey _2(a - (a ~ V)Y, — Y) _1
Sir >3(Y Y) '
after cancellation of the a’s. The interceptis (a — Y) — (-1)Y = a.
In data sets where Uluy a limited number of Y’s are recorded (e g color levels of

a dyestuffs product, percentages of pests present on a plant leaf) this feature may
become very obvious. Searle (1988, p. 211) who drew attention to this feature also
points out that:

1. The lines always exist. When no Y’s are repeated, there is only one point on
each line.

2. The lines occur no matter what model is fitted, and whether linear, nonlinear,
or generalized linear model estimation techniques have been used.
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Figure 2.7. Plots of steam data residuals versus (a) order, (b) ¥, and (¢) X.

(c)
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Figure 2.8. Plots of lack of fit data residuals versus (a) order, (b) Y, and (¢) X.
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Example. The data in Table 2.1 have four data points with Y = 2.8 with residuals
from a straight line fit Y = 1.426 + 0.316X of:

Number e Y

(7) 2.8 —2.05= 0.75 plotted against 2.05

(20) 2.8 —2.68 = 0.12 plotted against 2.68

(5) IR — VAR = N 12 nlotted aocaingt 2 AR
\J} et 0\ ot e NI AV & l.Jl\ILLvU “éul.lu‘v s ¢ \TNT

(6) 2.8 —3.10 = —0.30 plotted against 3.10

It is easily confirmed that the four points lie on a line with slope ~1 and through
points (0, 2.8), (2.8, 0), that is, on the linee + ¥ = 2.8.

Query 3. Is it possible to work out some test statistics instead of looking at the dia-
grams?

Answer. It is possible to evaluate test statistics, but it is often difficult to know if they
are sufficiently deviant to require action. In practical regression situations, a detailed
examination of the corresponding residuals plots is usually far more informative, and
the plots will aimost certainly reveal any violations of assumptions serious enough to
require corrective action.

Consider the plot of e; against Y; described above. Three particular types of discrep-
ancies were mentioned and related to the diagrams of Figure 2.6. We can measure
each of these defects with appropriate statistics as follows. Define

T,y =3 er Yo (2.5.1)
Then:

1. Ty = 3n, €Y, provides a measure for the type of defect shown in Figure 2.6(1).

2. Ty, = 24, e,-‘f/,». This should always be zero. This provides a measure for the
defect shown in Figure 2.6(2). Evaluation of this statistic could be done as a routine
check, if desired.

3. Ty, = 2, e, Y? provides a measure for the ty
It is related to Tukey’s “‘one degree of freedom for nonaddltmty statistic.
Exercise O in “Exercises for Chapters 5 and 6.”)

ch s N T o u
QIIUYVVIL 111 1 15

Other types of statistics are also available. Readers who would like to learn more
about them should consult the texts listed in Section 2.8.

Comment

The plots we have discussed are very basic ones and can be criticized in a number of
ways because they may not show up defects of specific types. A vast literature has
grown up, and many more sophisticated methods have been suggested. We deal with
some of these in Chapter 8, and these provide further references to which interested
readers can turn after that.

2.6. OTHER RESIDUALS PLOTS

Specialist knowledge of the problem under study often suggests that other types of
residuals plots should be examined. For example, suppose it were known that the 23
observations that led to the 23 residuals from the lack of fit test example came
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Figure 29. Residuals plot indicating block effects not incorporated in the fitted model.
from three separate machines A, B, and C, so that the residuals when grouped by
machines were

A: -0.08, —0.89, 0.11, —1.01, —0.30, —1.00, —0.42
B: -0.56, —0.67,0.11, —0.49, —1.20, —0.12, —0.32
C: 046, —0.04, 0.74, 1.33, 1.11, 0.29, 0.40, 0.17, 2.36

(The machine order for the observations in Table 2.1 is thus CCCBA CBCAA
BBCAB CAACB BAC)

Figure 2.9 shows a plot against machines. This would suggest that there is a basic
difference in level of response Y of machine C compared with A and B. Such a
difference could be incorporated into the model by the introduction of a dummy
variable; this is discussed in Chapter 14.

Another example of “‘other residual plots” occurs when a possible new variable
comes into consideration. Suppose it is suspected that the ambient temperature is
affecting the contents of a large vessel. Although vessel temperature has been recorded
at a selected, protected, measuring point, the temperature at the other side of the vessel
may possibly be affected by exposure to the outside air. If the ambient temperatures are
recorded for the period during which data were collected, the residuals could now be
plotted against the temperatures observed, to see if any dependency of response on
ambient temperature is revealed. If it is, new terms of appropriate kinds can be added to
the model to take account of the dependency.

These are two examples of what “other residuals plots” might be used. In general,
residuals should be plotted in any reasonable way that occurs to the experimenter or
statistician, based on specialist knowledge of the problem under study. The plots
already described are, however, the basic ones and should always be performed for
a full analysis.

Dependencies Between Residuals

As we have remarked, the residuals, unlike the errors they estimate, are not indepen-
dent. Does this affect the plots? Yes. Does it invalidate the plots? In most situations,
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no. Anscombe and Tukey (1963, p. 144) remark on this point. In discussing the two-
way analysis of variance (where there are several constraints on the residuals) they
remark that, although correlations and constraints affect distributions of functions of
the residuals, the ‘“‘corresponding effects on the graphical procedures ... can usually
be neglected. This is mainly because of the way in which graphical appearances arise
from residuals, though in part because of the absence of precisely defined significance
levels. (This is also true for most other balanced designs.)” In a later sentence An-
scombe and Tukey state that in a two-way table with four or more rows and four or more
columns, ““the effect of correlation upon graphic procedures is usually negligible. . . .’ It
would appear that in general regression situations the effect of correlations between
residuals need not be considered when plots are made, except when the ratio (n —
p)/n—that is, (number of degrees of freedom in residuals)/(number of residuals)—is
quite small.

In Chapter 8 we shall see how to evaluate the pairwise correlations between the
residuals. If these correlations are relatively small, there is usually little effect on the
residuals plots.

2.7. DURBIN-WATSON TEST

We later (Chapter 7) explain the Durbin-Watson test in some detail for multiple
predictors. Here we merely sketch its application to the residuals obtained from fitting
a straight line Y = b, + b, X. It is assumed here that the observations, and so the
residuals, have a natural order such as a time order or space order, here indicated by
the order Y, Y5, ... , Y,. In practice, the given data might have to be recast to obtain
the proper ordering. The residuals e, e, ... , e, are estimates for errors assumed
to be independent. If they are not independent, the residuals may reveal it. The
Durbin—-Watson test checks for a sequential dependence in which each error (and so
residual) is correlated with those before and after it in the sequence. The test focuses
specifically on the differences between successive residuals in the following way. Con-
sider the Durbin-Watson statistic

= 5:: (e, — e,,_l)zli el. (2.7.1)

It can be shown that:

1. 0 = d = 4 always.

2. If successive residuals are positively serially correlated, that is, positively corre-
lated in their sequence, d will be near 0.

3. If successive residuals are negatively correlated, d will be near 4, so that 4 — d
will be near 0.

A "Fl-
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nmetric about 2.

Because of (4), a d < 2 should be used as is; a d > 2 should be tested as 4 — d
and point (3) should be kept in mind. The test is conducted as follows. Compare d
(or 4 — d, whichever is closer to zero) with d, and d; in Table 2.6. If d < d, , conclude
that positive serial correlation is a possibility; if d > dy, conclude that no serial
correlation is indicated. (If 4 — d < d;, conclude that negative serial correlation is a
possibility; if 4 — d > d;, conclude that no serial correlation is indicated.) If the d
(or 4 — d) value lies between d; and dy, the test is inconclusive. An indication of
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T A B L E 2.6. Significance Points of d, and d;, for a Straight Line Fit

1% 2.5% 5%
ne d, dy d, dy d, dy
15 0.81 1.07 0.95 1.23 1.08 1.36
20 0.95 1.15 1.08 1.28 1.20 1.41
25 1.05 .21 1.18 1.34 1.29 1.45
30 1.13 1.26 1.25 1.38 1.35 1.49
40 1.25 1.34 135 145 1.44 1.54
50 1.32 1.40 1.42 1.50 1.50 1.59
70 1.43 1.49 1.51 1.57 1.58 1.64

100 1.52 1.56 1.59 1.63 1.65 1.69
150 1.61 1.64 — — 1.72 175
200 1.66 1.68 — — 1.76 1.78

“‘Interpolate linearly for intermediate n-values.
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2.8. REFERENCE BOOKS FOR ANALYSIS OF RESIDUALS

Full reference details of the following are in the bibliography: Atkinson (1985); Barnett
and Lewis (1994); Belsley (1991); Belsley, Kuh, and Welsch (1980); Chatterjee and Hadi
(1988); Cook and Weisberg (1982); Hawkins (1980); and Rousseeuw and Leroy (1987).

APPENDIX 2A. NORMAL PLOTS

The area under an N(0, 1) distribution from — to some point x is given by
1 1
_— 2
y= exp| —zt* | dt. (2A1
= N2m P\ 72 )

If we plot 100y as ordinate, against x as abscissa, we obtain the “S-shaped’ curve,
called the cumulative probability curve of the N (0, 1) distribution. Some points on
this curve are, for example, (x, y) = (—1.96, 2.5), (0, 50), and (1.96, 97.5), all of which
are easily obtained from tables of the cumulative N (0, 1) distribution. (See Figures
2A.1 and 2A.2))

4 7. 7.
-3 -2 -1 0 x1 2 3

Figure 2A.1. Cumulative area under the normal distribution to point x.
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0 | N | | | l > X
-3 -2 -1 0 1 2 3

Figure 2A.2. Cumulative normal curve.

Normal probability paper is a specially constructed type of graph paper that is
available at most technical bookstores. Although the unnumbered horizontal axis is
marked by equal divisions in the usual way, the vertical axis has a special scale. The
vertical scale goes from 0.01 to 99.99 but the spacing of the divisions becomes wider
as we move up from the 50 point to the 99.99 point and down from the 50 point to
the 0.01 point, with symmetry about the horizontal 50 line. The scaling is such that if
100 times the value of y in (2A.1) is plotted against x, the resulting “curve” will be
a straight line. Thus the vertical scaling, determined from the inverse functions of Eq.
(2A.1), x = F7'(y), “straightens out” the top and bottom of the S-shaped curve in
Figure 2A.2. Note that since the points (=, 0) and (o, 100) are on the straight line
plot, the values 0 and 100 cannot be shown on the scale since the horizontal scale is
of limited length and cannot go from —® to . A further point on the straight line
mentioned above is (1, 84.13). We shall find this point useful in a moment.

If points from the cumulative N (u, %) distribution are plotted on normal probability
paper [rather than points from the N (0, 1) distribution], then a straight line will pass
through such points as (x, y) = (u — 1.966, 2.5), (u, 50), (. + 6, 84.13), (u + 1.966,
97.5), and so on. This fact is very useful if we have a sample x,, x;, ..., x,, and wish

PPN SRV | Ppry e PSS B PP U Y
1

to decide if it could have come from a normal distribution, and if so, to obtain a quick
estimate of the standard deviation 6. First, the sample is arranged in ascending order,
due regard being given to sign. Let us assume this has been done already so that x,,

X2, ..., X, is the correct order. We now plot x; against the ordinate' with value
100(i — 3)/m. (2A.2)

The rationale behind this is that, if we divide the unit area under the normal curve
into m equal areas, we might “expect’ that one observation lies in each section so
marked out. Thus the ith observation in order, x;, is plotted against the cumulative
area to the middle of the ith section, which is (i — 3)/m. The factor 100 adapts this
to the vertical scale given on the normal probability paper. (See Figure 2A.3.)

If the sample is a normal sample it will be found that a well-fitting straight line can
be drawn (by eye) through the bulk of the points plotted, although none of the points
may necessarily fall right on the line. We can then use the best-fitting straight line to
estimate @ as follows. Find x5, and xg,,3, the values of x for which the line crosses

'For possible alternatives to 100(i — 3)/m, see Barnett (1975); note especially the last paragraph of p. 101
and the first paragraph of p. 104. The BMDP programs use 100(3; — 1)/(3m + 1) = 100(} — §)(m + $) and
also produce a “‘detrended normal probability plot” from which the slope has been removed. MINITAB
uses 100(i — §)/(m + }) and converts this to a normal score. The differences between these different systems

are typically unimportant in practical use.
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Figure 2A.3. Splitting the area under the normal curve into m equal pieces; we might “‘expect” one
observation in each piece at a location that divides the area of the piece into two equal portions.

horizontal lines drawn at 50 and 84.13 ordinate levels. Then the difference xg 3 — x50
is an estimate of [(u + 6) — u] = 6. (See Figure 2A.4 write-up below.)

An instructive way to gain experience to make decisions on these types of plots is
to look up samples of various sizes from a table of random normal deviates and to
plot them on normal probability paper. This will give an idea of the variation from

linaarity that ~am Aaccnir and that ic nat ahnarmal DPlate Af thic tuna ara givan hy Nanial
llllballl] LIIAL L7 UVLVUL Allu L114Aal 10 Ve auviivliias. 1 19w VUl a0 L]P\a alvw 51'\41] U] ArsQiiivi

and Wood (1980, Appendix 3A).

Normal Scores

Most normal plots are done on the computer, and there the vertical axis is often
converted to a normal score, that is, the normal deviate value that would correspond
to the plotted probability level. (For example, 2.28% would be converted to —2, 2.5%
to —1.96, 50% to zero, and 99.865% to 3. See the normal probability table.) In the
MINITAB system, this is particularly simple to achieve, If the residuals are in column
C6, we write

nscore c6 c7

plot c7 «cé6

and the plot is made. Note that the plot instruction must be written in that way to
get the diagram to look similar to our discussion and examples below. Use of

L A LR L L L L L
2 r- ° 98
- —95
10 —490
1sF Ho6
200 —80
0K —70
40 —60
Z2N A —den
o AW
60} —440
0+ —130
80— 420
85| -11%
95 - s
98— -2
J S W WU WU VNS SN I U U NN SR W G SN SR S
-2 -1 0 1 2

Figure 2A.4. Normal plot of the residuals of Table 1.2.
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[ ]
1.5 .:
[ X ]
[ ] [ ]
o o o
S 0.0+ Rl
2 2 ¢
e °
-1.51 02
®
| { | i L i
-1.80 -1.20 -0.60 0.00 0.60 1.20
Residual

Figure 2A.5. Normal plot of the residuals of Table 1.2.

nscore c6 c7
plot c6 <7

would reverse the axes and change all the connected explanations. The point is a
trivial one, but the consequences can be enormous. So watch it!

Example 1. Consider the m = 25 residuals given in Table 1.2. We first arrange these
in ascending order, giving due regard to sign:

-1.68, —1.32, —1.20, —1.20, —0.93, —0.60, —0.53, —0.51, —0.26, —0.19, —0.17, —0.16,
-0.12, 0.08, 0.11, 0.17, 0.50, 0.55, 0.80, 0.87, 1.00, 1.05, 1.20, 1.20, 1.34.

To obtain a full normal plot of these we set m = 25 in Eq. (2A.2) and successively
seti =1,2,...,mto give the ordinate values:

2,6,10, 14,18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98.

These ordinate values are associated with the ordered residuals. Thus the bottom
point in Figure 2A 4 is at abscissa —1.68, ordinate = 2, that is, (—1.68, 2). Readers

13l mAta that tA nlnt thig 10 nanragQaTyy tha hattams and sicht Lhawnd crala An

Wil IOWC uidl 1O lJlUl Llllb lt 1D 1L odaly lU usec LllC O0tiom ana lls’ll‘llullu asvailc vulil
the probability paper. The left-hand scale shows this point as (—1.68, 98), the left-
hand scale being (100 — right-hand scale); this is a peculiarity of probability paper
that seems destined to persist. The second point plotted is at (—1.32, 6) and so on.
The line shown is drawn by eye and represents an attempted rough fit to the majority
of the points with somewhat more weight given to the central points. Usually the

[ ]
[ )
1.2+ o o *
) [ ]
e [ N J
S 0.0~ 2
2 .
®
[ I )
12 .
[ J
. ® 1 | 1 L |
-1.40 -0.70 -0.00 0.70 1.40 2.10
Residual

Figure 2A.6. Normal plot of the residuals from Section 2.1.
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(b) Distribution "lighter-tailed" than the normal (e.g., uniform)

Figure 2A.7. Some characteristics of normal plots.

abscissa at which the Iine cuts the 50 ordinate would provide an estimate of the mean
of the sample plotted but, in fact, we have drawn the line through (0, 50) here because
the residuals sum to zero in theory. (In practice, rounding errors may occur, as we
have noted.) An estimate of the standard deviation is xg ;3 — x50 = 0.97 — 0 = 0.97
approximately. This compares well with s = (0.7923)? = 0.89 from Table 1.6. The
normal plot is not atypical of plots of normal samples of this size. The lowest two
values and the highest two values are both “pulled in,” to a minor extent, but this is
not uncommon with least squares residuals. Certainly there are no outliers, which
would show up as points well out to the left of the lower part of the line and well out
to the right of the upper part of the line.
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(d) Distribution "lighter-tailed" than the normal (e.g., uniform)
Figure 2A.7. (Continued)

Example 2. Figure 2A.5 shows a MINITAB computed plot of residuals versus nscores
for the steam data. The plot is essentially identical to that of Figure 2A.4 except that
the nscores were derived from MINITAB’s 100(i — 8)/(m + 1) rather than our suggested
100(i — %)/m.

Example 3. Figure 2A.6 shows a MINITAB constructed plot o
the pure error example of Section 2.1. The outlying observation previously remarked
upon appears off and to the right. It is too large to fall nicely on a line through the

central bulk of the points.

£ el g s Aol Lo e
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Outliers

An outlier among residuals is one that is far greater than the rest in absolute value
and perhaps lies three or four standard deviations or further from the mean of the
residuals. The outlier is a peculiarity and indicates a data point that is not at all typical
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of the rest of the data. It follows that an outlier should be submitted to particularly
careful examination to see if the reason for its peculiarity can be determined.

Rules have been proposed for rejecting outliers [i.e., for deciding to remove the
corresponding observation(s) from the data, after which the data are reanalyzed with-
out these observations]. Automatic rejection of outliers is not always a very wise
procedure. Sometimes the outlier is providing information that other data points
cannot due to the fact that it arises from an unusual combination of circumstances,
which may be of vital interest and requires further investigation rather than rejection.
As a general rule, outliers should be rejected out of hand only if they can be traced
to causes such as errors in recording the observations or in setting up the apparatus.
Otherwise careful investigation is in order.

Some General Characteristics of Normal Plots

The diagrams in Figure 2A.7 show characteristics that can occur when residuals are
displayed in a probability plot. In all diagrams, the probability or normal score is on
the vertical axis and the residuals values are on the horizontal axis.

Normal plots are also used to examine effects (contrasts) from factorial experiments.
In that context, the piot sometimes exhibits the look of two paraliel lines. This typically
indicates that (at least) one of the observations is suspect. See Box and Draper (1987,
p. 132).

Making Your Own Probability Paper

The books of our childhood often had *‘projects for a rainy afternoon.”” Here is such
a project. Probability paper on which the cumulative distribution curve becomes a
straight line can be constructed for any continuous distribution as follows. Draw the
cumulative distribution function. Draw horizontal lines at equal intervals of the vertical
probability scale 0 to 1. At the points where the horizontal lines hit the curve, drop
perpendiculars onto any horizontal line /, labeling the foot of the perpendicular 100
times the vertical probability scale reading from which it arose. The scale on the
horizontal line / then provides the new spacings that should be employed on the vertical
scale of the probability paper. Effectively, we have applied the inverse transformation
x = F'(y), where y = F(x) is the cumulative probability function, to equal intervals

of y. In labeling the new vertical axis, we multiply by 100 for convenience.

APPENDIX 2B. MINITAB INSTRUCTIONS

The MINITAB program below will obtain many of the details discussed in Chapters

1 4= A D

1 ana <.

oh=0

set c2

2.3 1.82.81.52.23.81.83.71.7 2.8%&
2.8 2.2 3.2 1.9 1.8 3.52.82.13.43.2¢%&
335.9

set cl

1.3 1.3 22 2.7 3.33.33.73.74%&

4 4 4.7 4.7 5 5.3 5.35.35.76 &

6 6.3 6.7

set c20

12 23 7 8 17 22 1 11 19 20 &
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52 21 15 18 3 6 10 4 9 13 14 16
end of data
corr cl c2 ml

regress c2 1 cl cll cl2;
resi cl4;
pure.

plot cl c2
print ml

print cll cl2
histogram cl4
plot cl14 cl12
plot cl4 cl1
plot cl14 c20
nscore cl4d c41l
plot c41 cl4
end

Comments :

The data are from Table 2.1.

c2 contains the Y’'s, cl the X's.

c20 contains the time order.

cll contains internally studentized residuals (Section 8.1).
cl2 contains fitted values.

cl4 contains residuals.

c4l contains nscores for the residual.

EXERCISES

Exercises for Chapter 2 are located in the section “Exercises for Chapters 1-3" at
the end of Chapter 3.



CHAPTER 3

3.0. SUMMARY AND PRELIMINARIES
This chapter, which can be omitted in a first reading, deals with some special topics
relating to straight line fits. These are:

(3.1) Predictions, and confidence statements, for the true mean value of Y at a
given X.

(3.2) Inverse regression. We want to predict an X, given a Y-value, after the fit
has been made.

(3.3) How we can pick a good design for fitting a straight line using results in
Chapters 1 and 2.

(3.4) A brief discussion of, and a suggested method for dealing with, the situation
where the errors in X cannot be ignored, as is usually done.

For Section 3.1 we need a preliminary result about the covariance of two linear
combinations of Y;, Y,, ..., Y,.

Covariance of Two Linear Functions

Let a; and c; be constants, let Y; be random, and suppose that
a=a,Y1+a)Y,+ - +a,Y,,
c=qY,+qY,+- - +cY,.

Suppose that all the Y; have the same variance o2 = V(Y)) and that the Y’s are
pairwise uncorrelated, that is, cov (Y, Y;) = 0, i # j. It then follows that

cov(a,c) = (ajc; + a6, + - - - + a,c,) 0 (3.0.1)

[Note: If cov(Y;, Y;) = p;o? for i # j, then all possible terms of form (a;c; + a;c;)p;
would be added inside the parentheses on the right of (3.0.1). However, we do not
need this for our purposes here.]

Example. Let a = Y, and ¢ = b,, the slope from a straight line fit. Then

a=1/n (3.0.2)
79
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and
X-X X-X
¢ = SX X7 = S (3.0.3)
from the algebra just above (1.4.2). It follows that
ac + e+ +a,6,=(nSxx) (X —X)=0
and so
cov(Y, b)) =0, (3.0.4)

that is, Y and b, are uncorrelated random variables.

3.1. STANDARD ERROR OF Y

The fitted equgtion of= a straight line, least squares fit can be written Y=b+bX
or,with b =Y — b X, as
Y=Y+b(X-X) (3.1.1)

where both Y and b, are subject to error, which will affect Y. Ata specified value of
X, say, Xj, we predict

Yo=Y +b(X-X) (3.1.2)

for the mean value of Y at X,. Because X, and X are fixed, and because cov
(Y, b)) = 0, see above, we obtain

V(Yo) = V(?) + (Xo — Y)Zv(bl)

a? (X _ /?\262 (313)
= — 4 ——0—}_—,
n (X, — X )
Hence
. R l (XO _ Y)Z }]fZ
= . = -+ = e
se(Y,) = est. sd(Y)) s{n _—_E(X,- XYy (3.1.4)

This is a minimum when X, = X and increases as we move X, away from X in either
direction. In other words, the greater distance an X, is (in either direction) from X,
the larger is the error we may expect to make when predicting, from the regression
line, the mean value of Y at Xj. This is intuitively very reasonable. To state the matter
loosely, we might expect to make our “‘best” predictions in the ‘“middle” of our
observed range of X and would expect our predictions to be less good away from
the “‘middie.” For values of X outside our experience—that is, outside the range
observed—we should expect our predictions to be less good, becoming worse as we
moved away from the range of observed X-values.
We now apply these results to the steam data of Chapter 1.

Example
n=25  3(Xi - X)=7154.42;
s?=0.7923, X = 52.60;
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(Xo— XY
= + —_—
est. V(Y,) =s {n S(X, - X)
1 (Xo— 52.60)21
= 0792 {E 1542
For example, if X, = X, then Yo =Y and
est. V(Yo) = (0.7923 { 215} = (0.031692,

that is, se(Y,) = V0.031692 = 0.1780.
If X() = 28.6,

(28.60 — 52.60)
5T 15442

est. V(¥,) = 0.7923 { } = 0.095480,

that is, se(Y,) = V0.095480 095480 = 0.3090.

CGrreSpﬁﬁdunsl_y, DC\‘ ()) is also 0.3090 when Xo = 76.60.

The 95% confidence limits for the true mean value of Y for a given X, are then
given by Y, * (2.069) se(Y,). The t-value for v = 23 df is used because the s? = 0.7923
estimate is based on 23 df. The limits are thus:

AtX, =X =52.60, Y *2.069(0.1780) = 9.424 + 0.368
= (9.056, 9.792).
At X, =286, (13.623 — 0.079829(28.6)) + 2.069(0.390)
= 11.340 * 0.639 = (10.701, 11.979).
At X, =766, (13.623 — 0.079829(76.6)) = 0.639
= 7.508 + 0.639 = (6.869, 8.147).

Note that because the X, values 28.6 and 76.6 are the same distance from X = 52.6,
the widths of the respective intervals are the same but their positions differ vertically.

If we joined up all the lower end points and all the upper end points of such intervals
as X, changes, we would get Figure 3.1. The two curves are hyperbolas.

These limits can be interpreted as follows. Suppose repeated samples of Y, are
taken of the same size and at the same fixed values of X as were used to determine
the fitted line above. Then of all the 95% confidence intervals constructed for the
mean value of Y for a given value of X, say X, 95% of these intervals will contain
the true mean value of Y at X,.

If only one prediction 170 is made, say, for X = X,, then we act as though the
probability that the calculated interval at this point will contain the true mean is 0.95.

Intervals for Individual Observations and Means of q Observations

The variance and standard deviation formulas above apply to the predicted mean
value of Y for a given Xj. Since the actual observed value of Y varies about the true
mean value with variance o? [independent of the V(Y)], a predicted value of an
individual observation will still be given by ¥ but will have variance
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W7 7T 17 7T T T T T T 7

2 1 _(X____"_)—()z
o {1 + " + S(X, = )7)2} (3.1.5)

with corresponding estimated value obtained by inserting s? for . Confidence values
can be obtained in the same way as before; that is, we can calculate a 95% confidence
interval for a new observation, which will be centered on f’g and whose length will
depend on an estimate of this new variance from

+ l + (~X_0__A,;)_2_11/zs
n E(X, - X)ZJ ’

(316)
\~ 1Y)y

where v is the number of degrees of freedom on which s? is based (and equals n — 2
here). A confidence interval for the average of ¢ new observations about Y is obtained
similarly as follows:

Let Y, be the mean of g future observations at X, (where g could equal 1 to give
the case above). Then

Yo ~ M(Bo + B Xo, 03/9),
f’o -~ N(BO + BlXo, V()A,(J)),

Y, - Yo~ MO, 03lg + V(Tp)),

and [(Y, — Yo)/se(Yy, — Yy)] is distributed as a #(v) variable, where v is the number
of degrees of freedom on which s?, the estimate of ¢, is based. Thus

. . ) 1 1 (XO — Y)Z 172 B
Prob{|Y0 Yy = 1(v,0.975) [s (q TSRS RY =095
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from which we can obtain 95% confidence limits for Y, about Y, of

1 (XO_X/')Z ]1/2

+—+ (3.1.7)

Y, + t(V, 0.975) [5 n m

These limits are of course wider than those for the mean value of Y for given X,
since these limits are the ones within which 95% of future observations at X, (for
g = 1) or future means of g observations at X, (g > 1) are expected to lie.

Note: To obtain simultaneous confidence curves appropriate for the whole regres-
sion function over its entire range, it would be necessary to replace t(v, 1 — $a) by
{2F2, n — 2, 1 — a)}'™. See, for example, pp. 110-116 of Simultaneous Statistical
Inference, 2nd ed., by R. G. Miller, published by Springer-Verlag, New York, in 1981.

Confidence bands are rarely drawn in practice. However, the idea is important to
understand and a suitable confidence interval around any Y value can always be
evaluated numerically by applying a general algebraic formula, no matter how many
X’s there are. This latter aspect is a valuable one.

3.2. INVERSE REGRESSION (STRAIGHT LINE CASE)

Suppose we have fitted a straight line Y = by, + b, X to a set of data (X}, Y), i = 1,
2, ..., n, and now, for a specified value of Y, say Y,, we wish to obtain a predicted
value X, the corresponding value of X, as well as some sort of interval confidence
statement for X surrounding X,. A practical example of such a problem is the following:
X, 1s an age estimate obtained from counting tree rings, while Y, is a corresponding
age estimate obtained from a carbon-dating process. The fitted straight line provides
a “‘calibration curve” for the carbon-dating method, related to the more accurate tree
ring data. Application of the carbon-dating method to an object now gives a reading
Y,. What statements can we make about the object’s true age? This problem is called
the inverse regression problem. (In other examples, Y, might be a true mean value
or the average of g observations.)

There are several alternative ways of obtaining the (same) solution to this type of
problem. First, let us assume Y, is a true mean value, not a single observation or
average of q observations. Intuitively reasonable is the following. Draw the fitted
straight line and curves that give the end points of the 100(1 — )% confidence intervals
for the true mean value of Y given X. (See Figure 3.2.) Draw a horizontal line parallel
to the X axis at a height Y,. Where this straight line cuts the confidence interval
curves, drop perpendiculars onto the X-axis to give lower and upper 100(1 — a)%
“fiducial limits,” labeled X; and Xy in Figure 3.2. The perpendicular from the point
of intersection of the two straight lines onto the X-axis gives the inverse estimate of
X, defined by solving Y, = b, + b, X, for X,, namely,

X, = (Y, — by)/b,.

To obtain the values of X; and X we can proceed as follows. In the figure, X; is the
X-coordinate of the point of intersection of the line

Y=Y, (ie,Y=by+ b X, (3.2.1)
and the curve

X, — X))
Y=Yy —ts {% + (——L-—)} : (322)

Sxx
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\ Upper band obtained from endpoints of
100 (1 —a) % confidence intervals for the
true value of Y for given X

>

X

Figure 3.2. Inverse regression: estimating X by X, from a given Y, value, and obtaining a 100(1 — a)%
*fiducial interval” for X.

where Sxy = Z(X; — X )%, Yx, = by + b1 X, t = t(v, 1 — a/2) is the usual ¢ percentage
point, and v is the number of degrees of freedom of s°. Setting Egs. (3.2.1) and (3.2.2)
equal, canceling a b,, rearranging to leave the square root alone on one side of the
equation, and squaring both sides to get rid of the square root leads to a quadratic
equation

PX}+20X,+R=0, (32.3)
in X, where
P = b} — 125%/Syy,
Q = 1’2X Sxx — b1 Xy, (3.2.4)
R = b} X} — t%%n — 152X %/ Sxx.

We get exactly the same equation for Xy, so that X;, X, are the roots of (3.2.3).
These, after some manipulation, are found to be

Xy - X 4 bi(Yo = V) = ts{[(Ys = Y)Sxs] + (bl/n) — (s /nSxx)}'" (325
XL B b% - (12S2/SX)() - )
or, in an alternative form,
o K= X)g £ (es/b)){[Xy — X)2Sx] + (1 — g)/n} 12 S
=X, + , (3.2.6)

1-g
where g = t’s*/(b3/Sxx). When g is ‘““small,”” say 0.05 or smaller, it is convenient to set
g = 0 for an approximate answer. Note that we can write

g = tH{bi/(s* Sxx)"*Y

_ { t(v,1 — a/2) percentage point
t-statistic derived from b, divided by its standard error

}2 (3.2.7)

Thus the ‘“more significant” b, is, the larger will be the denominator of g and the
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Figure 3.3. Inverse regression peculiarities: (a) complex roots and () real roots but both on the same
side of the regression line. Inverse regression would not be of much practical value in these sorts of
circumstances. The respective intervals are (@) (—%, ») and (b) (X, ®).

smaller will be g. Clearly g will tend to be large if |b,| is small or badly determined,

1 q 2 il tand tA ha 1 C JO1 ¢ At~ h mall Ar hath T r
in which case s* will tend to be large or Syy will tend to be small or both. Inverse

estimation is, typically, not of much practical value unless the regression is well deter-
mined, that is, b, is significant, which implies that g should be smaller than (say) about
0.20. (A r-statistic value of 2.236 would achieve this, for example.)

When the regression line is not well determined, peculiarities can arise. For example,
the roots X, and X, may be complex; or they may both be real but both on one side
of the regression line. Drawing a figure will usually make it quite obvious why the
peculiarity has arisen. When the line is not well estimated, the hyperbolas defined by
the end points of the confidence intervals usually flare out badly, or turn back down
(or up as the case may be) sharply. Figure 3.3 shows two examples.

An alternative way of writing the quadratic equation (3.2.3), which enables the
generalization to the multiple predictor case to be made more easily, is

{=Y,+ by + b, X} =37 {l + (—)—(;X—)z} (3.2.8)
n SXX
where the X represents the X; in (3.2.2), or Xj.

Note: The calculations above are true mean value calculations. To obtain a more
general formula in which Yj is regarded not as a true mean value but as the mean of
q observations, replace each 1/n by 1/q + 1/n in Egs. (3.2.2), (3.2.4), (3.2.5), (3.2.6),
and (3.2.8), as described above. Then g = 1 provides an individual observation formula,
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applicable to a single new reading, as in the carbon-dating example that introduced
this section. When ¢ = o« we obtain the true mean value formulas shown above.

We have adopted the term ‘‘fiducial limits” for (X, Xy) from Williams (1959)
whose account of this topic in his Chapter 6 is excellent. Rather than becoming involved
in the theoretical arguments behind the use of this term, we ask the reader simply to
regard such intervals as inverse confidence limits for X given Y,.

3.3. SOME PRACTICAL DESIGN OF EXPERIMENT IMPLICATIONS
OF REGRESSION

We have dealt with the fitting of a straight line model Y = B, + B, X + € to a set of
data (X;, Y),i = 1,2, ..., n. We have also carefully considered a detailed analysis
of how well the line fits, and whether or not repeated observations indicated whether
or not there was any evidence in the data to indicate that an alternative model should
be used. When we have only one predictor variable X and when the postulated model
is a straight line, the alternatives we would consider would often be higher-order
polynomials in X; for example, the quadratic Y = By + B8, X + B, X? + €, or the cubic,
and so on. We now put all this information into a practical perspective by considering
the problem of choosing an experimental strategy for the one-predictor-variable case.

Experimental Strategy Decisions

Suppose an experimenter wants to collect data on a response variable Y at n selected
values of a controllable predictor variable in order to determine an empirical relation-
ship between Y and the predictor variable. We assume that the latter is (at least to a
satisfactory approximation) not subject to random error, but that Y is, and that the
n values of the predlctor are not necessarlly all distinct, that is, repeat runs are

mowuar o mitmmhbhae AF Ariagtiang
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1 Ic
This is often difficult to decide. The range must be wide enough to permit useful
inference, yet narrow enough to permit representation by as simple a model function
as possible. Once the decision is made, the interval can be coded to (—1, 1) without
loss of generality. For example, if a temperature range of 140°F = T = 200°F is
selected, the coding

X = (T - 170)/30
will convert it to the interval —1 = X = 1. In general, the transformation is given by

Original variable — Midpoint of original mterval
Half the original range

X =
P4 N

2. What kind of relationship does the experimenter anticipate will hold over the
selected range? Is it first order (i.e., straight line), second order (i.e., quadratic), or
what? To decide this, she will not only bring to bear her own knowledge but will
usually seek the expertise of others as well. To fix ideas, let us assume the experimenter
believes the relationship is probably first order but is not absolutely sure.

3. If the relationship tentatively decided upon in (2) is wrong, what alternative
does the experimenter expect? For example, if she believes the true model is a straight
line, she is most likely to expect that, if she is wrong, the model will be somewhat
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curved in a quadratic manner. A more remote possibility is that the true model may
be cubic. Typically, she will decide that she may be one order too low, if anything.
Otherwise, she would probably postulate a higher-order model to begin with.

4. What is the inherent variation in the response? That is, what is V(Y) = o?? The
experimenter may have a great deal of experience with similar data and may ‘‘know”
what ¢?is. More typically, she may wish to incorporate repeat runs into the experiments

Nt 7-Y-2 e

SO lllal U2 carnmn UC CbllllldlCU dl lllC Samic lllllC as LllC lC}dllUllblllP UClWCCll Y aud X,
and also so that the usual assumptions about the constancy of o? throughout the
chosen range of values of the predictor can be checked.

5. How many experimental runs are possible? The experimenter has only limited
dollars, staff, facilities, and time. How many runs are justified by the importance of
the problem and the costs involved?

6. How many sites (i.e., different X-values) should be chosen? How many repeat
runs should be performed at each of the chosen sites?

Let us now continue our discussion in terms of a specific example.

An Example

Suppose our experimenter decides that a straight line relationship is most likely over
the range —1 = X = 1 of her coded predictor, that she most fears a quadratic
alternative, that she does not know ¢?, and that 14 runs are possible. At what values
of X (i.e., what sites) should she perform experimental runs, how many where, and
with what justification?

Figure 3.4 shows some of the possibilities. (Each dot represents a run; a pile of
dots represents repeated runs.) Let us see how each matches the requirements we
have set out.

Each design has 14 degrees of freedom to begin with. Two of these are taken up
hv the parameter estimates b, and b, lPavmo 12 residual deorees of freedom to be

(3 3 Lo A2AQ2I00 2 Cotiliiasss [e v AN Ay PR LR L e Sa~+S Vs pSa AN LV

allocated between lack of fit and pure error. Lmes (1) and (2) of Table 3.1 show how
these residual degrees of freedom split up for the various designs. Line (3) gives the
value of

l/2 = {E(X X)Z} l/2

which, by Eq. (1.4.6), is proportional to the standard deviation of b, when a straight
line is fitted. Line (4) shows the number of parameters that it is possible to fit to the
design data. We can fit a polynomial of order p — 1 (with p parameters including S,)
to a design with p sites. A second reason that this is shown is that p is proportional
(when n and o? are fixed) to po?/n, and the latter is the average size of V(Y (X))
averaged over all the points of the design when the polynomial of order p — 1 is
fitted. In other words

z V{Y(X)}/n = paiin.
i=1

This result is true in general for any linear model. For the straight line case, when
p = 2, it can be deduced by replacing the subscript 0 by i/ in Eq. (3.1.3), summing
fromi=1,2,...,n,and dividing by n. For a general proof using matrices see Exercise
R in “Exercises for Chapters S and 6.”

Note that the lack of fit degrees of freedom is equal to the number of distinct X-
sites in the data minus the number of parameters in the postulated model. In fact,
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Figure 3.4. Some possible experimental arrangements for obtaining data for fitting a straight line: (a)
14 sites, (b) 7 sites, (c) S sites, (d) 4 sites, (e) 3 sites, (f) 3 sites, and (g) 2 sites. Which are good, which are
bad, in the circumstances described in the text? The sites are equally spaced in cases (a)-~(f).

T A B L E 3.1. Characteristics of Various Strategies Depicted in Figure 3.4
(a) (b) (c) (d) (e) ) (&)

(1) Lack of fit df: 12 5 3 2 1 1 0
(2) Pure error df: 0 7 9 10 11 11 12
(3) sd (b))/ o 043 0.40 033 0.31 0.32 0.29 0.27

(4) p sites: 14 7 5 4 3 3 2
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because our example has two parameters to be estimated, 8, and f3,, line (4) minus
line (1) equals 2 throughout Table 3.1.

Comments on Table 3.1

The requirement in our example that o? needs to be estimated via pure error makes
hnvra Tf win ara t~ ha ahll 1 - N
v 1
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eliminated, too.

Next consider (b). Is it really sensible to use seven different levels if our major
alternative is a quadratic model? Not really, because we do not need that many levels
to check our alternative. Moreover, of designs remaining, it has the highest sd(b,)/o.
So we drop (b) from consideration.

Our best choice clearly lies with one of (c), (d), (e), and (f); exactly which would
be selected depends on the experimenter’s preferences. Only three levels (sites) are
strictly necessary to achieve a lack of fit test versus a quadratic alternative but there

is only one degree of freedom for lack of fit in (e) and (f). The latter is a better choice
on the basis of the sd(b,)/ o values. Design (d) allows two df for lack of fit; design (c¢)
perhaps goes too far in number of sites. So the final choice lies between (f) and (d)
with (f) slightly preferred perhaps if the quadratic alternative is all that is anticipated.

Perhaps the most important aspect of this discussion is not so much a specific choice
of design, but the immediate elimination of designs that might in some other contexts
be regarded as reasonable. For example, design (a) would be a very poor choice—who
needs 14 levels to estimate a straight line? Again, design (g) provides the smallest
variance for the slope b, but is of no use at all if we want to be able to check possible
lack of fit against a quadratic (or indeed any) alternative. When a design must be
chosen from a list of alternatives, we recommend consideration of details like those

in Table 3.1; such a display can be both helpful and revealing.

3.4, STRAIGHT LINE REGRESSION WHEN BOTH VARIABLES ARE SUR.JECT
TO ERROR!
Whenever we fit the model

Yizﬁo+B1Xi+€i’ i=1’29°--9n, (3.4.1)

by least squares to a set of n data values (X, Y;), we usually take it for granted that
Y, is subject to the error € and X; is not subject to error. If this is true, and if the
errors €,, €,, . . . , €, are idependently and normally distributed, N(0, ¢?), maximum
likelihood estimation, and least squares estimation, namely,

MmlleCZ (Y — Bo — B X))

"0"1 i=1

provide the same estimates (b, b,) of (B, B:)
What if both X and Y are subject to error? We can write

Yi=n+e, (3.4.2)
X, =&+ 6, (3.4.3)

'This section is a condensed version of Draper (1992).
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We assume that a straight line relationship

7 =B+ Bé (344

holds between the true but unobserved values m; and the n unknown parameters &;.
Substituting (3.4.4) into (3.4.2) and then substituting for ¢; from (3.4.3) gives

Y =B+ BiX; + (& — Bi5). (34.5)

Let us assume that ¢, ~ N(0, o?), with the ¢; uncorrelated, and §, ~ N(0, o3), with the
J; uncorrelated, with ¢, and §; uncorrelated, and define

o} = Z (éi— &)/n, (3.4.6)
o = Covariance (¢, 8), (3.4.7)
p = oul(ar0), (348)
r = o5 o;. (3.49)

In (3.4.7), o¢; would typically be zero; however, see case (2) below. If, mistakenly, we
fit (3.4.1) by least squares, b, will be biased. In fact,

Bir(p + )

Eb)=h - Tom+

(3.4.10)
The bias is negative if o} + o4 > 0, that is, if p + r > 0. The bias arises from the fact
that X; is not independent of the error in (3.4.5), in general. In fact,

Covariance [X, (¢, — B18)] = —Bi(p + r)o¢0;. (3.4.11)

We thus see that there are cases where fitting (3.4.1) by least squares will provide
little or no bias. These are:

1. If o} is small compared with %, the errors in the X’s are small compared with
the spread in the £&’s (and so in the X’s) and r will be small. The bias in (3.4.10) is
then small. This is what is often assumed in practice, when least squares is used.

2. If the X’s are fixed and determined by the experimenter (see Berkson, 1950),
then o, = Covariance(X; — &, §) = — o3, which means that o5 + o} = 0, or
p + r = 0, implying zero bias in (3.4.10).

3. We wish to fit Y; = 5, + ¢, where 5, = By + B, X; (the observed X;, note), and
not as in (3.4.4).

These formats will not fit all practical cases. One case that occurred at the University
of Wisconsin, in connection with a study on wild birds, required the observation of
X, = “the distance the bird was from a path.” The student doing the study pointed
out that, as she approached a bird, it flew away before she got close enough to see
precisely where it had perched. Thus error in recording X was unavoidable.

If we attempt to obtain the maximum likelihood estimates of 3, and B8, under the
distributional assumptions made in connection with (3.4.5), we find that there is an
identifiability problem. The estimation cannot be carried through without some addi-
tional information being added, for example, knowledge of the ratio A = o?/o’} (Barnett,
1967; Wong, 1989). This is Case III of Sprent and Dolby (1980), discussed below.
Various authors have suggested alternative analyses. The literature is too vast to
discuss in full detail here, and we provide a selective, perhaps biased, discussion.
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Sprent and Dolby (1980) distinguish four cases:

I (X, Y) are bivariate normal variables and E(Y|X) = B, + 81 X
IL. Y~ N(B, + 81X, 0%). The observed X-values are fixed on realizations of a random
variable with any (reasonable) distribution.

Inboth I and II, estimates via maximum likelihood are the usual least squares estimates
b, = Syv/Sxx and by = Y — b, X, where Syy = (X, — X)Y,—Y) and Syy = =L,

Ul — OXYIVXX ang [ %4} z Ujdry vvia Y u, Qiika —ij=i

(X — X )

IIL The case of Egs. (3.4.1) through (3.4.5). If A were known, maximum likelihood
leads to estimates

B,‘ = [Syy - /\SXX + {(Syy - /\Sxx)z + 4/\5%)}}1/2]/(25‘)()')
BO = ? - BAlX-’
where Syy = 3%, (Y; — Y) Note that, if A = Syy/Sxx, B = (Syy/Sxx)"%, which is

the geometric mean functional relationship, after attachment of the sign of Syy.

This case is often called the functional relarmnqhm model. Note also that, when

= 1, the solution (3.4.12) defines the line that minimizes the sum of squares of

perpendicular deviations from the line. Many people find such a solution intuitively

satisfying, but it is appropriate only when o2 = o3, that is, when A = 1. This
solution was first given by Adcock (1878).

IV. Similar to III but with £ a normal random variable, independent of 6, so that

because of (3.4.4), (&, n;) follow a joint degenerate bivariate normal distribution.

This is the so-called structural relationship model and again the case III solution

applies if A is known.

(3.4.12)

Sprent and Dolby ‘““‘do not recommend ad hoc use of the geometric mean functional
relationship when there are errors in both variables,” arguing that other ad hoc
estimates could ennallv be used. Nevertheless, we shall recommend it below for reasons

to be stated.

Riggs, Guarnieri, and Addelman (1978) study, partially through simulations, a
variety of 34 different methods of fitting (X, Y') data. While they favor (3.4.12), they
warn that a reasonably accurate estimate of A is desirable. They also point out that the
geometric mean functional relationship occupies a “‘central position’’ in compromises
between the two least squares solutions, Y on X and X on Y, an appealing characteristic
(see their Figure 8, p. 1338).

Practical Advice

Although many of us try to avoid the issue of errors in both X and Y by advising
‘““take data where the X-range is large compared with the X-error,” this cannot always
be done, and one must often suggest something specific. If A is known (or can reasonably
be esitmated) use of the maximum likelihood solution (3.4.12) is probably best.

A simple alternative initially suggested by Wald (1940), using two groups, and
amended by Bartlett (1949) to three groups is the following: Divide the data into
three equal (or as equal as possible) groups with: (1) the smaller, or most negative,
X-values; let P, = (X, Y;) be the center of gravity of these. (2) The larger, or least
negative, X-values; let P; = (X;,Y;) be their center of gravity. (3) The remainder,
which are used only in estimating the overall center of gravity, (X, Y). Use the line
passing through (X, Y) with slope (Y5 — Y,)/(X; — X,), that is, parallel to P,P;. For
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reasoning, see Wald (1940) and Barlett (1949). Later studies by Gibson and Jowett
(1957) indicate that maximum efficiency is achieved by a division of observations
closer to the ratio 1:2:1, but the exact split is not crucial.

Geometric Mean Functional Relationship

Our own preference is to suggest the geometric mean functional relationship for which
the estimators are

Bi=(SwlSx)”  B=Y-BX. (3.4.13)

This does assume, it is true, that we are using (3.4.12) with A = S§y,/Sxx. However, it
is appealing otherwise, if this assumption is not unreasonable. The estimator S, is the
geometric mean of the quantities

by = Sxy/Sxx, ar' = (Sxv/Swy)7Y,

where b, and a, are, respectivqu, the slopes in least squares fits of Y versus X (f’ =
by + b X) and of X versus Y (X = a, + a,Y). Inverting the latter relationship leads to

Y= —ala; +ar'X

so the geometric mean B, = (b,a;')"? is a compromise value lying in between the two
“Y on X equation’ slopes. Note that, if the roles of X and Y are reversed, exactly
the same line emerges, that is, the fitted line

Y =8 +B8X (3.4.14)

with coefficients from (3.4.13) is uniquely defined. This natural symmetry is most
appealing. The attractiveness of the geometrical mean functional relationship has
greatly been enhanced by the independent discoveries of Teissier (1948) and Barker,
Soh, and Evans (1988) that this solution is an optimum solution to a specific problem.
(See also Harvey and Mace, 1982.) That is, the geometric mean functional relationship
minimizes the sum of the areas obtained by drawing horizontal (parallel to the X-
axis) and vertical (parallel to the Y-axis) lines from each data point (see Figure 3.5).
The symmetry of the solution is again obvious; interchange of the X and Y axes leaves
the areas unchanged. One disadvantage of the geometric mean functional relationship
is that no easy calculations are available for conducting tests on the parameters or
constructing confidence intervals for them. (For the complications involved, see, for
example, Creasy, 1956.) It is possible that applying nonlinear estimation and defining
the loss function as the sum of the areas might offer some help here. The geometric

v/

Figure 3.5. The geometrical mean functional relationship line minimizes the sum of the shaded areas.
(The dots are data points.)
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T A BLE 3.2. Star Data from Dressler (1984) and
Jefferys (1990)°

Coma Sample (z=1) Virgo Sample (z = 0)

Vz(, lOg o V26 lOg o
12.60 2.449 11.39 2242
13.12 2.394 12.53* 1.716*
14.23 2.285 9.98 2412
14.86 2.166 9.37 2.480
15.88* 1.863* 12.24 2.059
13.92 2.286 9.20 2.355
15.45* 1.761* 12.17 2.009
14.36 2.209 12.01 1.949
15.07 2.113 12.50 2.079
14.07 2.301 8.56 2.474
14.53 2.243 10.28 2.268
15.60 2.169 11.28 2.170
12.27 2.383 8.79 2.528
14.36 2.311 12.02* 1.778*
14.50 2.339 11.92 2.021
15.52 2.251 9.95 2.391
13.46 2.361 11.30 2.185
11.85 2.584 9.88 2.338
15.31 2.007 9.82 2.303
13.98 2.180 8.90 2514
15.28 2.099 10.97 2.262
14.26 2275 9.28 1.276
14.11 2.320 11.37 2.207
14.87 2.191
14.82 2.247
15.37 2.059
13.49 2.394
15.04 2.154
13.67 2.274
12.88 2.383

“In the example, the four observations marked with an asterisk will be ignored.

mean functional relationship has been condemned as being inconsistent, that is, the
estimates do not tend to their true values as n tends to infinity. However, other
estimators are biased, and what happens for large n is often not of concern to those
with practical problems and small data sets. While it is true that maximum likelihood
methods can make appeal to asymptotic results at this point, such results do not seem
to apply too well when n is small, judging by the comments of various authors.

Examples

Example 1. The data in Table 3.2 were used by Jefferys (1990) and taken from
Dressler (1984). “They consist of the integrated V magnitudes V5, and log of the
central velocity dispersion, log o, of a sample of 53 galaxies from two galaxy clusters,
the Coma and Virgo cluster” (Jefferys, 1990, p. 602). The model

log o = By + BV
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is deemed appropriate with a common B, and a different B3, for each cluster. Four
outliers are present (marked by asterisks in Table 3.2), which we ignore. (This bypasses
some of the points made by Jefferys, which are not our concern here.) We adopt a
dummy or indicator variable z; z = 1 for the Coma sample and z = 0 for the Virgo
sample. Two least squares fits using the models

log o= B+ BVy + Bz + €
and
Ve =ayt+ alogo+ o,z +¢€
provide, respectively, fitted equations
10g o = 3.4795 — 0.116334Vy, + 0.440977
and
Vi = 25.329 — 6.5641 log o + 3.7685z.
The slope of the geometric mean functional relationship is thus
—{—0.116334/(—6.5641)}'" = —0.133127.

Putting parallel straight lines with this slope through the individual centers of gravity
of the two sets of data provides fitted equations

l1og o = 4.159 — 0.133V, (Coma sample)
and
log o = 3.656 — 0.133V,, (Virgo sample).

These are very close to the reference solution of Jefferys (1990), which was “‘an errors-
in-variables least squares fit” to the same data. (The method is not further explained.)
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procedure (Jefferys’s: 4.14, 3.65, —0.132; Dressler’s: 4.156, 3.656, —0.1333).

Example 2. The data in Table 3.3, from Kelly (1984), were taken from Miller (1980).
Kelly uses the data to illustrate points she is making about (i) estimating the variance
of the classical estimators of (3.4.12) and (ii) detecting influential observations. We
analyze them using the geometric mean functional relationship estimator.

The two fits to all the data (X = heelstick, Y = catheter) are ¥ = 2.786 + 0.8805X,
and X = 4.210 + 0.7870Y, which we can invert to the form Y = —5.349 + 1.2706X. The
geometric mean functional relationship is thus ¥ = —0.91 + 1.058X. Both individual
regressions indicate that the second observation is influential, however, and a plot of
the data indicates we might consider dropping it. The two fits to the remaining 19

observations give
=

U

Y= -1628 + 1.1147X
and
X = 5.482 + 0.70462Y,

which we can invert to the form

Y = -7.780 + 1.4192X.
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T ABLE 33. Serum Kanamycin Levels in Blood Samples
Drawn Simultaneously from an Umbilical Catheter and a Heel
Venipuncture in 20 Babies

Baby Heelstick (X)) Catheter (Y)
1 230 25.2
2 332 26.0
3 16.6 16.3
4 26.3 27.2
5 20.0 232
6 20.0 18.1
7 20.6 222
8 18.9 17.2
9 17.8 18.8

10 20.0 16.4
11 26.4 24.8
12 21.8 26.8
13 14.9 15.4
14 17.4 14.9
15 20.0 18.1
16 13.2 16.3
17 28.4 313
18 25.9 31.2
19 18.9 18.0
20 13.8 15.6

Then B = (1.1147/0.70462)"2 = 1.258 and the geometric mean functional relationship is
Y = —4.52 + 1.258X.

(If the second observation is not deleted, the parnlle! result would be Y = —-091 +
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1.058X, where the 1.058 is the geometric mean of the slopes 0.8805 and 1.2706.) Kelly
(1984) obtains two 95% confidence intervals for the slope using all the data, getting
(0.76, 1.38) via a bootstrap method, and (0.76, 1.52) via a method based on normal
assumptions, given by Kendall and Stuart (1961, pp. 388-390). She concludes that
these support the hypothesis that 8, = 0, 8, = 1, which implies that the methods of
measurement that gave rise to Table 3.3 are equivalent. She then points out that
removal of the second observation takes the estimated point for (83, 3;) ‘‘to approxi-
mately the edge of a 60% confidence region around” her original estimates based on
a maximum likelihood analysis assuming A = 1. We interpret that to mean that the
hypothesis 8, = 0, 8; = 1 is no longer supported.

The geometric mean functional relationship does not provide confidence intervals,
but we can get a rough feel for the situation by looking at the estimates when all
equations are written in Y on X form. When observation 2 is included, the two slopes
are 0.8805 and 1.2706 and their geometric mean is 1.0577; the two intercept values
are 2.786 and —5.349 and the intercept of the geometric mean functional relationship
is —0.91. One feels that the hypothesis—intercept = 0, slope = 1—is not unreasonable.
Now remove the second observation. The slopes are now 1.1147 and 1.4192 with a
geometric mean of 1.258 (all > 1) and the two intercepts are —1.628 and —7.780
(both < 0) with an intercept of —4.52 from the geometric mean functional relationship.
The impression we get is that the hypothesis is not valid. Thus the situation turns on
the one influential data point. Can we regard the two lines that lead to the geometric
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mean functional relationship as confidence limits of some sort? No properties of them
are known, it seems, but using them appears to be common sense.
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EXERCISES FOR CHAPTERS 1-3

Readers who have not yet read all the material needed in Chapters 1-3 should temporarily
skip over parts of questions that refer to unread portions. The residuals from all fits should be
calculated and examined, whether or not it is specified in the question.

A. A study was made on the effect of temperature on the yield of a chemical process. The
following data (in coded form) were collected:

X Y
-5 1
-4 5
-3 4
-2 7
-1 10
0 8
1 9
2 13
3 14
4 13
5 18

1. Assuming a model, Y = B, + 8, X + €, what are the least squares estimates of 3, and
B,? What is the prediction equation?

2. Construct the analysis of variance table and test the hypothesis H,:8; = 0 with an

risk of 0.05.

What are the confidence limits (a = 0.05) for 8,?

What are the confidence limits (a = 0.05) for the true mean value of Y when X = 3?

. What are the confidence limits (a = 0.05) for the difference between the true mean

value of Y when X, = 3 and the true mean value of Y when X, = —2?

6. Are there any indications that a betier model shouid be tried?

7. Comment on the number of levels of temperature investigated with respect to the
estimate of 8, in the assumed model.

B

B. A test is to be run on a given process for the purpose of determining the effect of an
independent variable X (such as process temperature) on a certain characteristic property
of the finished product Y (such as density). Four observations are to be taken at each of
five settings of the independent variable X.

1. In what order would you take the 20 observations required in this test?
2. When the test was actually run, the following results were obtained:

X=50 (X -X)\=1600 S(X,—X)(Y,-Y)=800
Y=30 S(Y,-Y)P=832
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Assume a model of the type Y = B, + B, X + €.

a. Calculate the fitted regression equation.

b. Prepare the analysis of variance table.

¢. Determine 95% confidence limits for the true mean value of Y when

1) X =5.0;

2) X =90.
Suppose that the actual data plot is as shown in Figure B1 and that the sum of squares
due to replication {(pure error) is 42. Answer the following questions on the basis of

this additional information.

8 T T T T
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0 2 4 6 8 10
X
Figure B1

a. Does the regression equation you derived in 2a adequately represent the data? Give
reasons and include the result of a test for lack of fit.

b. Are the confidence limits you calculated in 2c applicable? If not, state your reasons.

c. If the model used in part 2 does not seem appropriate, suggest a possible alternate.

Suppose that the actual data plot is as shown in Figure B2 and that the sum of

squares due to replication is 42.0. Answer the questions 3a, 3b, and 3c on the basis of

this information.
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Figure B2

Suppose that the actual data plot is as shown in Figure B3, and the sum of squares due
toreplication is 23.2. Answer the questions 3a, 3b, and 3c on the basis of this information.

8 T 1 T T

6

d | J | |
2

6 10

X
Figure B3
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C. Thirteen specimens of 90/10 Cu-Ni alloys, each with a specific iron content, were tested
in a corrosion-wheel setup. The wheel was rotated in salt seawater at 30 ft/s for 60 days.
The corrosion was measured in weight loss in milligrams/square decimeter/day, MDD.
The following data were collected:

X (Fe) Y (loss in MDD)
0.01 127.6
0.48 124.0
0.71 110.8
0.95 103.9
1.19 101.5
0.01 130.1
0.48 122.0
1.44 923
0.71 113.1
1.96 83.7
0.01 128.0
1.44 91.4
1.96 86.2
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Cu-Nialloys in seawater can justifiably be represented by a straight li

o

D. (Source: “‘Leverage and regression through the origin,” by G. Casella, The American
Statistician, 37, 1983, 147-152.) There are very few occasions where it makes sense to fit
a model without an intercept S3,. If there were occasion to fit the model Y = X + € to
a set of data (X, Y)), (X1, Y2), ..., (X,, Y,), the least squares estimate of 8 would be

b=Z2XY/EX?.
Suppose you have a programmed calculator that will fit only the intercept model
Y=08+BX+e¢,

but you want to fit the no-intercept model. By adding one more fake data point
(mX,mY) to the data above, where

m = n/{(n + 1)'? — 1} = n/a,

say, and letting the calculator fit Y = 8, + B, X + €, you can estimate 3 by using the b,
estimate but ignoring b,, which is not zero in general. Try to show this algebraically.
Check this out with the very small data set (X, Y) = (1, 0.5), (3, 1.0), (5, 0.9) for which
(mX,mY) = (9,24).
(In MINITAB, the subcommand ‘“‘noconstant’’ will get you the fit through the origin.)
E. The data below consist of seven pairs of values of

X = price of alcohol relative to take-home pay,
Y, = consumption of absolute alcohol in liters per head of population per year,
Y, = cirrhosis deaths per 100,000 of populations,

for seven European countries. Plot Y, versus X and Y, versus X (Y as ordinate, X as

abscissa) and judge whether, in your opinion, a straight line would fit each set of data
reasonably well.

u Country X Y, Y;
1 France 0.016 24.66 51.7
Italy 0.027 18.00 30.5

3 West Germany 0.026 13.63 29.0
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u Country X Y, Y,

4 Belgium 0.022 8.42 14.2
5 United Kingdom 0.057 7.66 4.1
6 Ireland 0.092 7.64 5.0
7 Denmark 0.096 7.50 11.6

For the (X, Y,) only, evaluate the fitted least squares line and draw it on your data .
Evaluate the residuals to two decimal places. Check that Ze, = 0, within rounding error.
Obtain the analysis of variance table.
Find the standard errors of b, and b;.
Find the formula for the standard error of ¥, and construct 95% confidence bands for

the true mean value of Y. (Plot about half a dozen points over the X-range and join
them up smoothly.)

. Test the overall regression via an F-test, and find how much of the variation about

the mean Y is explained by the fitted line.

. The data have no actual repeats. One practical trick that is often useful, however, is to

consider points that are “sufficiently close together” as being, approximately, repeat

riine and tance thic ac a hacic far warkino ant an annravimate nura errarcnim nf canarac
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After this has been evaluated, the usual steps are followed. The major difficulty in doing

such a thing is in deciding exactly what the words “‘sufficiently close together’” mean.
For our data, it might be sensible to regard the following sets of runs as approxi-

mate repeats.

a. X = 0.027, 0.026, 0.022.

b. X = 0.092, 0.096.

Evaluate an approximate pure error sum of squares using these sets, and proceed with

the appropriate approximate analysis. State your conclusions.

Reviewing the whole problem, comment on the apparent value and usefulness of the

straight line you have fitted. It has been suggested by some that, if the price of alcohol

were raised, fewer cirrhosis deaths would result. On the basis of these data, what do you

think? What possible flaws might exist in your conclusion? (Discuss the situation, briefly.)

F. The moisture of the wet mix of a product is considered to have an effect on the finished
product density. The moisture of the mix was controlled and finished product densities

were measured as shown in the following data:

Mix Moisture (Coded) Density (Coded)
X Y

4.7
5.0
5.2
5.2
59 1
4.7
5.9
5.2
53
5.9
5.6
5.0
2X=636 ZY=62
3T X?=339.18 2Y?=390
2x2=210 2y?=69.67
X =353 Y =5.17
ZXY=3391
2xy =105
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Requirements
1. Fit the model Y = By + B, X + € to the data.
2. Place 95% confidence limits on 3.
3. Is there any evidence in the data that a more complex model should be tried? (Use
a = 0.05.)

G. The cost of the maintenance of shipping tractors seems to increase with the age of the

Age (yr) 6 Months Cost ($)
X Y
4.5 619
4.5 1049
4.5 1033
4.0 495
4.0 723
4.0 681
5.0 890
5.0 1522
S5 987
5.0 1194
0.5 163
0.5 182
6.0 764
6.0 1373
1.0 978
1.0 466
1.0 549

Requirements
1. Determine if a straight line relationship is sensible. (Use a = 0.10.)
2. Can a better model be selected?

H. It has been proposed in a manufacturing organization that a cup loss figure performed
on the line supersede a bottle loss analysis, which is a costly, time-consuming iaboratory
procedure. The cup loss analysis would yield better control of the process because of the
gain in time. If it can be shown that cup loss is a function of bottle loss, it would be a
reasonable decision to make. Given the following data, what is your conclusion? (Use

a = 0.05.)
Bottle Loss (%) Cup Loss (%)
X Y
3.0 3.1
3.1 3.9
3.0 34
3.6 4.0
3.8 3.6
2.7 3.6
3.1 3.1
2.7 3.6
2.7 29
33 3.6
3.2 4.1
2.1 2.6
3.0 3.1

2.6 2.8
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L It is thought that the number of cans damaged in a boxcar shipment of cans is a
function of the speed of the boxcar at impact. Thirteen boxcars selected at random
were used to examine whether this appeared to be true. The data collected were

as follows:

Speed of Car at Impact Number of Cans Damaged
X Y

27
54
86
136
65
109
28
75
53
33
168
47
52
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What are your conclusions? (Use a = 0.05.)

J. The effect of the temperature of the deodorizing process on the color of the finished
product was determined experimentally. The data collected were as follows:

Temperature Color

X Y
460 0.3
450 0.3
440 0.4
430 0.4
420 0.6
410 0.5
450 0.5
440 0.6
430 0.6
420 0.6
410 0.7
400 0.6
420 0.6
410 0.6
400 0.6

Fit the model ¥ = By + B, X + e.

. Is this model sensible? (Use a = 0.05.)

. Obtain a 95% confidence interval for the true mean value of Y at any given value of
X, say, Xj.

K. The data below (provided by Tom B. Whitaker) show 34 pairs of values of

W

X = average level of aflatoxin in a mini-lot sample
of 120 pounds of peanuts, ppb,

Y = percentage of noncontaminated peanuts in the batch — 99.
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Y X Y X Y X
0.971 3.0 0.942 18.8 0.863 46.8
0.979 4.7 0.932 18.9 0.811 46.8
0.982 83 0.908 217 0.877 58.1
0.971 9.3 0.976 21.9 G.798 62.3
0.957 9.9 0.985 228 0.855 70.6
0.961 11.0 0.933 242 0.788 71.1
0.956 123 0.858 25.8 0.821 71.3
0.972 12.5 0.987 30.6 0.830 83.2
0.889 12.6 0.958 36.2 0.718 83.6
0.961 159 0.909 39.8 0.642 99.5
0.982 16.7 0.859 443 0.658 111.2
0.975 18.8

. Plot the data (Y as ordinate, X as abscissa) and, ‘‘by eye’’ only, draw what appears to

you to be a “‘well-fitting straight line ‘through’ the points.” Keep this figure; you will
need it for comparison purposes later. Would you say your line is a “‘good fit”?
Also, evaluate 2X,, 2Y,, ZX?, 2Y}, X,Y,, all summations being from i = 1 through 34.
Fit the model Y = B, + B, X + € by least squares. Draw the fitted line on your plot
and check how good your “eye-fit”’ was.

Evaluate the residuals to three decimal places. Check that Ze; = 0, within rounding
error. Examine plots of the residuals. Give conclusions.

Obtain the analysis of variance table in the form given in Table 1.4.

Find the standard errors of b, and b,.

Find the formula for the standard error of ¥, and construct 95% confidence bands for
the true mean value of Y. (Plot about half a dozen points over the X-range and join
them up smoothly.)

Test the overall regression via an F-test, and find how much of the variation about

the mean Y is explained by the fitted line.

The data given in Exercise K have only two pairs of actual repeats, in fact, at X = 18.8
and at X = 46.8. One practical trick that is often useful, however, is to consider points
that are *‘sufficiently close together” as being, approximately, repeat runs, and to use this
as a basis for working out an approximate pure error sum of squares. After this has been
evaluated, the usual steps are followed. The major difficulty in doing such a thing is in
deciding exactly what the words ‘“‘sufficiently close together’” mean.

For our data here, it would be sensible to regard the following seven sets of runs as

approximate repeats:

X =93,99

X =123,125,126

X =188, 188, 189

X =217219

X = 46.8, 46.8 (these are exact repeats, of course!)
X =706,71.1,71.3

X = 832,836

Evaluate an approximate pure error sum of squares using these sets, and proceed with
the appropriate approximate analysis, following the details in Section 2.1. State your
conclusions.

Reviewing the whole problem in Exercises K and L, comment on the apparent value

and usefulness of the straight line you have fitted.

. For fitting a straight line we have defined

R = SS(b\|bo)/2(Y, = Y )2

What is the maximum possible value of R? if:
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1. There are no repeat runs at all in the data?

2. There are proper repeat runs in the data?
Are your conclusions extendable to general regression situations, do you think?

103

. The straight line model ¥ = 1.692 — 0.0546 X is fitted to the data below, and the analysis
of variance table is as shown. Continue the analysis.
X Y Y e X Y Y e
10 =2 1.1 -3.1 40 0 =05 0.5
10 -4 1.1 -5.1 40 1 -0.5 15
20 1 0.6 0.4 40 2 -0.5 25
20 3 0.6 24 50 -2 -1.0 -1.0
30 2 0.1 1.9 50 -3 -1.0 =20
30 5 0.1 49 50 -4 -1.0 -3.0
ANOVA

Source df SS MS F

by 1 0.083

biibo 1 7.240 7.240 (0.845

Residual 10 85.677 8.568

Total 12 93.000

O. In a certain Federal Power Commission hearing some years ago, witnesses presented the
following data (here rounded):

(=l

The variables are

X Y
133 35
16.9 5.1
19.9 4.8
232 6.7
26.3 6.0
30.1 9.5
42.6 8.1

Predictor X = Percentage of liquids in gas production output;

Response Y = Unit cost in cents of processing output.

Fit a straight line to these data and find the residual variation via an analysis of variance
table.

The witnesses extrapolated the straight line to the points X = 0 and X = 100 to provide
unit costs for situations in which production consisted of no liquids and all liquids. Find
the values of ¥(0) and Y(100) and determine 95% confidence limits for the true mean
value of Y at X = 0 and X = 100. What do you conclude?

. Show that, for a straight line fit, 7}, = R? = r}s. (The second equality is true in general.)
. Consider the hypothesis that the titles of papers in a journal tend to be longer for short

papers and shorter for long papers. Check this hypothesis in the following way. Look at
recent issues of any journal in your own field and make a list, for a number of papers
(the more the better, but let’s say at least 25), of the following data:

X = Number of pages in a paper or note;

Y = Number of words in the paper or note title (hyphenated
words count as one word).

Plot these data and fit a straight line Y = B, + 8, X + € to them via least squares.
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Check for lack of fit, if repeat points (or near repeats) exist. Then, provided that there
is no signficant lack of fit or, if there is no pure error, provided that the residuals do not
exhibit any obvious irregularity that would indicate lack of fit, test H,:8, = 0 versus
H,:, < 0 via a one-sided ¢ text. What is your conclusions?

(Source: Ice crystal growth data from B. F. Ryan, E. R. Wishart, and D. E. Shaw, Common-
growth rates and densities of ice crystals between —3°C and —-21°C,” Journal of the
Atmospheric Sciences, 33, 1976, 842-850.)

Ice crystals are introduced into a chamber, the interior of which is maintained at a
fixed temperature (—5°C) and a fixed level of saturation of air with water. The growth
of the crystals with time is observed. The 43 sets of measurements presented here are of
axial length of the crystals (A) in micrometers for times (7') of 50 seconds to 180 seconds
from the introduction of the crystals. Each measurement represents a single complete
experiment; the experiments were conducted over a number of days, and were randomized
as to observation time. (The actual order in which they were conducted is not available.)
It was desired to learn whether or not a straight line model A = 8, + B,T + e provided
an adequate representation of the growth with time of the axial length of the ice crystal.
Perform a full analysis and state your conclusions.

T A T A
50 19 125 28

60 20, 21 130 31, 32
70 17, 22 135 34,25
80 25,28 140 26, 33
90 21, 25, 31 145 31

95 25 150 36, 33
100 30, 29, 33 155 41, 33
105 35, 32 160 40, 30, 37
110 30, 28, 30 165 32
115 31, 36, 30 170 35
120 36, 25, 28 180 38

. Refer to the steam data in Table 1.1, and its subsequent analysis.

1. Suppose we specify a true mean value of Y, = 10. Use the methods of inverse estimation
to provide an estimate X of the corresponding X value and 95% fiducial limits (X, , X,).

2. State the value of g you found in (1). Obtain the approximate ‘g = 0" (X, X,) values
and compare them with those in (1).

3. If Y, were not a true mean value but the result of a single new observation, what
would X, and (X, X}) be?

4. State the value of g you found in (3). Obtain the approximate “'g = 0" (X, X) values
and compare them with those in (3).

Use accurate figures and carry enough places to minimize round-off errorrs.

. Recall that

2
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An experimenter tells you that he has drawn the loci (loci = plural of locus) of end points
of 95% confidence bands for the true mean value of Y given X and that ““for all practical
purposes over the range I am interested in, 150 = X =< 170, these loci are parallel straight
lines.” Would you anticipate that the X-range of his data is

1. Much smaller than 20 X-units?

2. Roughly equal to 20 X-units? or

3. Much greater than 20 X-units?

Why?
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U. 1. You are given some data (X;, Y)),i = 1,2, ..., n and asked to fit a straight line Y =
b, + b, X to it by least squares, and to perform a “‘full analysis.”” As you finish, the
experimenter comes in and says “I’ve just found out all my X’s are biased. Each X
value I gave you is only 90% of the true X. Would you please redo the analysis.” Using

1 — q instead of 90% (so you can handle the problem more generally) explain what

parts of the “full analysis” are changed by this new information, and in what manner.
(Hint: New Syx = S¥x = Sxx/(1 — q)* etc.,so bi* = S¥y/S%x = bi(1 — q), and so on.)

Z. What would happen if the proportion differed for each observation, for exampie,
was(l —g)fori=1,2,...,n?

3. If in (1) or (2) the g or g; were small, so that g* or g? could be ignored, how would
the usual full analysis be changed?

V. (Source: “Life expectancy” by M. E. Wilson and L. E. Mather, Letter to the Editor,
Journal of the American Medical Association, 229, No. 11, 1974, 1421-1422.) The 50 pairs
of observations below arose during a study carried out by Dr. L. E. Mather and Dr. M.
E. Wilson. The variables are

X = Age of person at death (to nearest year);
Y = Length of lifeline on left hand in centimeters (to nearest 0.15 cm).

Many people believe that the length of one’s life is linearly related to the length of one’s

lifeline. What light do these data throw on such a belief? You may assume that
ZX =3333, 2X?=231933, ZXY = 30,549.75,
2Y =459.9, 2Y?=4308.57.

X = Age (yr) Y = Length (cm) X = Age (yr) Y = Length (cm)

19 9.75 68 9.00
40 9.00 69 7.80
42 9.60 69 10.05
42 9.75 70 10.50
47 11.25 71 9.15
49 9.45 71 9.45
50 11.25 71 9.45
54 9.00 72 9.45
56 7.95 73 8.10
56 12.00 74 8.85
57 8.10 74 9.60
57 10.20 75 6.45
58 8.55 75 9.75
61 7.20 75 10.20
62 7.95 76 6.00
62 8.85 77 8.85
65 8.25 80 9.00
65 8.85 82 9.75
65 9.75 82 10.65
66 8.85 82 13.20
66 9.15 83 7.95
66 10.20 86 7.95
67 9.15 88 9.15
68 7.95 88 9.75
68 8.85 94 9.00

W. In The Chicago Maroon for Friday, November 10, 1972, The Party Mart advertised per
bottle prices for vintage port as given in the accompanying table.
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Plot the data and examine them. Would it be sensible to fit a regression of the response
“price” on the predictor ‘“‘year”? What disadvantages can you see?

. What transformation of the predictor *‘year” would be sensible? (Hint: Pretend it is

1972, and think, for example, how you describe your own ‘‘year,” typically.) Plot price
versus your new predictor, and examine the plot. What type of transformation on price

utnulr‘l oam concihlae harae ta make tho data ]r\r\ll “mnro ctraiaght_lina_ ch”r)
WOUIG s€em SENnsitie Nere 10 maxKke e gala io ULV Surargiit- iine-1sn

Plot the data Y = In(price) versus Z = age of bottle. Fit a straight line through the
data by least squares, evaluate the residuals, and produce the analysis of variance table.
What do you conclude about the price of vintage port as exhibited by this set of data
and your analysis? To the nearest cent, at what per-year rate would you expect the
price of a bottle of vintage port to rise if a similar price pattern continued into the future?
A subsequent advertisement three years later on Tuesday, November 25, 1975, offered
1937 vintage port at $20.00 per bottle. If it can be assumed that a straight line relationship
is preserved, and applies also to this new data point, how much per bottle per year
does it appear prices have risen in the intervening three years? Are your answers here
and in (4) consistent, or does it appear that per year price rises have accelerated?

Year Price($) Year Price (§)
1890 50.00 1941 10.00
1900 35.00 1944 5.99
1920 25.00 1948 8.98
1931 11.98 1950 6.98
1934 15.00 1952 4.99
1935 13.00 1955 5.98
1940 6.98 1960 4.98

Source: Data via Steve Stigler, 1976.

(Source: “*Graphs in statistical analysis,” by F. J. Anscombe, The American Statistician,
27, 1973, 17-21.) Fit a straight line model Y = B, + 8, X + € to each of the four sets of

data below and show that fnr each set n = 11, X =9 Y =175, V =3+ 05X, S,
110, Regression SS = SXY/SXX = 275 (1 df), Residual SS

Q3 VURAUW TLL

~ XX

Syy — SISy = 13.75 (9

df), se(b;) = 0.118, R* = 0.667.

Plot all four sets of data and explain how the sets of data differ and what their main

characteristics are.

(Note that data sets 1-3 all have the same X values but different Y's.)

Data Set No.: 1-3 1 2 3 4 4

Variable: X Y Y Y X Y

Obs. No.: 1 10 8.04 9.14 7.46 8 6.58
2 8 6.95 8.14 6.77 8 5.76
3 13 7.58 874 12.74 8 7.71
4 9 8.81 8.77 7.11 8 8.84
5 11 8.33 9.26 7.81 8 8.47
6 14 9.96 8.10 8.84 8 7.04
7 6 7.24 6.13 6.08 8 5.25
8 4 4.26 3.10 5.39 8 5.56
9 12 10.84 9.13 8.15 8 791
0 7 4.82 7.26 6.42 8 6.89
1 5 5.68 4.74 5.73 19 12.50

Y. Suppose you were asked to do a simulation as follows:
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Choose a “true” straight line n = 3, + 8, X.

Select n values of X, X, X,, ..., X,.

Generate n random errors €, i = 1, 2, ..., n, from an N(0, ¢?) and so obtain n
“observations,” Y, = B, + B, X, + €.

Fit a straight line ¥ = by + b, X to the “‘observations.”

Obtain a set of re

Repeat steps 3-5
values: n = 11, X,

siduals ¢, = Y, — Y.

a total of N times, using the following (for example) parameter
= -1+ (i — 1)0.2, 6> = 1, N = 1000.

Question: Why have no values been specified for 8, and 3,?

(Hint: Show that the residuals e; do not depend on B, and B,. Thus any values can be

used; the stmplest choice is 8, = 8, = 0.)

Th

e data in Table Z, published by the Chicago Tribune on December 7, 1993, show

consumption of candy (Y) and population (X) for 17 countries in 1991.
1. Plot Y versus X.
2. Fit Y = B, + B, X + € by least squares and plot the fitted line on your diagram.

o

Evaluate the residuals to two decimal places. Check that Ze, = 0, within rounding error.

Find out how much of the variation about the mean Y is explained by the fitted line.
There are no exact repeat runs. As an approximation, however, treat the Y values
at X = 3.5 and 4.3 as repeats; also those at X = 5.0 and 5.1; and finally those at
X = 569, 57.7, and 57.8. (One could argue about the first and second of these
groupings, of course, and you might wish to do a second, alternative calculation of
your choice, to see what difference it makes.) Use the pseudo repeat runs to test
(approximately) for lack of fit and state your conclusion. If you find lack of fit, omit
parts (7), (8), (9), and (12).

Is it appropriate to test for overall regression via the F-test? If so, do it.

Find standard errors for b, and b,.

Find the formula for the standard error of ¥ and, assuming that s2 is an appropriate
estimate of ¢, construct 95% confidence bands for the true mean value of Y. (Plot
about half a dozen points over the X-range and join them up smoothly.)

3.
4. Obtain an analysis of variance table.
S.
6

T A BLE Z Candy Consumption for Selected Countries in 1991

Consumption Population

Country (in millions of pounds) (in millions)
1 Australia 3274 17.3
2 Austria 179.5 7.7
3 Belgium/Luxembourg 279.4 10.4
4 Denmark 139.1 51
5 Finland 925 5.0
6 France 926.7 56.9
7 Germany 2186.3 79.7
8 Ireland 96.8 35
9 Italy 5239 57.8
10 Japan 935.9 124.0
11 Netherlands 4442 15.1
12 Norway 119.7 43
13 Spain 300.7 39.0
14 Sweden 201.9 8.7
15 Switzerland® 194.7 6.9
16 United Kingdom 1592.9 57.7
17 United States” 51422 252.7

“Both Switzerland and the United States include sugar-free candy in their statis-
tics. The U.S. consumption excludes chewing gum.

Source: International Statistics Committee; Chicago Tribune.
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10. There is a hint in the table footnote that the Swiss and U.S. data might not be
consistent with the rest. If they were not, how much effect would the inconsistencies
have on the fitted regression, do you think? A lot? Not much?

11. Plot the residuals versus ¥. Does this plot seem to confirm, or deny, the basic assump-
tion of constant error variance. If it does deny it, suggest what could be done.

12. Fit the model X = ay + @Y + € by least squares. Find the fitted line that passes
through (X, Y') and has slope

G = (bllal)m,

where b, is the least squares estimate of 8, inthe Y = B8, + 8, X + € fit (2) and a, is
the least squares estimate of «; in the model of this part. (This fitted line is the
“geometric mean functional relationship’’; see Section 3.4.) State exactly what this
third line is in the form Y = ¢, + ¢, X, and plot all three lines on a new diagram.

AA. The height of soap suds in the dishpan is of importance to soap manufacturers. An
experiment was performed by varying the amount of soap and measuring the height of
the suds in a standard dishpan after a given amount of agitation. The data are as follows:

Grams of Product, Suds Height,
X Y
4.0 33
4.5 42
50 45
5.5 51
6.0 53
6.5 61
7.0 62

Assume that a model of the form Y = 8, + 8,X + € is reasonable.

Requirements
1. Determine the best-fitting equation.
2. Test it for statistical significance.
3. Calculate the residuals and see if there is any evidence suggesting that a more compli-
cated modei wouid be more suitable.

BB. In an experiment similar to that given in Exercise AA, the experimenter stated that the
model Y = B, + B, X + € was “‘a ridiculous model unless 8, = 0, for anyone knows that
if you don’t put any soap in the dishpan there will be no suds.” Thus he insists on using
the model Y = B, X + e. His data are shown as follows:

Grams of Product, Suds Height,
X Y
35 24.4
4.0 321
4.5 37.1
5.0 40.4
5.5 433
6.0 51.4
6.5 61.9
7.0 66.1
7.5 77.2
8.0 79.2

Requirements
1. Accepting the experimenter’s model, determine the best estimate of 3,.
2. Using this equation, estimate Y for each X.
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3. Examine the residuals.
4. Draw conclusions and make recommendations to the experimenter.

CC. The following data indicate the relationship between the amount of B-erythroidine in an
aqueous solution and the colorimeter reading of the turbidity:

X Y
Concentration (mg/mL) Colorimeter Reading
40 69
50 175
60 272
70 335
80 490
90 415
40 72
60 265
80 492
50 180
Reguirements. Fit the equation Y = 8, + B, X + €, obtain the residuals, examine them, and

comment on the adequacy of the model.

DD. A synthetic fiber, which because of its hairlike appearance has been found suitable in
the manufacture of wigs, must necessarily be preshrunk prior to manufacture. This is
accomplished in two steps:

Step 1. The fiber is soaked in a dilute solution of chemical A, which is necessary to

preserve the luster of the fiber during step 2.

Step 2. The fiber is baked in large ovens at a very high temperature for 1 hour.

It is suggested that the temperature at which the fiber is baked may influence the effective-
ness of the preshrinking process. An experiment is performed in which the baking tempera-
ture T is varied for various batches of fiber. The finished fiber is then soaked in rainwater
for a suitable length of time and put out in the sun to dry. The amount of further shrinkage
Y (in percent) resulting from the rainwater test is recorded along with the value of T for

each batch:
Batch No. T Y
1 280 2.1
2 250 3.0
3 300 32
4 320 14
5 310 2.6
6 280 3.9
7 320 1.3
8 300 34
9 320 2.8

1. Fit a regression line Y = by, + b,T to the data by least squares.
(Note: Coding the variable T may simplify the calculations, but remember in the end
to express the fitted equation in terms of the original variable 7.)

2. Perform an analysis of variance and test:
a. The lack of fit.
b. The significance of the regression.
What is the percentage variation explained by the regression equation?

3. What is the standard error of b,? Give a 95% confidence interval for the true regression
coefficient B,.

4. Give the fitted value Y; and the residual Y; — Y, corresponding to each run (batch).
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5. For T, = 315, find an interval about the predicted value ¥, within which a single future
observation Y will fall with probability 0.95.
6. Could we use the fitted equation to predict a value of Y at T = 360? Give reasons for
your answer.
(See Exercise L in “Exercises for Chapters 5 and 6” for a continuation.)
EE. The tree data below, obtained by Tamra J. Burcar and used with her permission, consist

of 23 observations of X = tree diameter in inches measured at breast height (DBH) and
Y = height in feet.

X Y X Y X Y
5.5 58 83 68 10.6 80
5.7 60 8.6 65 10.8 82
6.5 64 9.5 70 11.3 70
6.6 60 10.0 63 113 74
6.7 65 10.1 75 11.6 68
6.9 56 10.2 72 11.6 68
7.0 57 10.4 78 13.0 82
7.3 70 10.6 65

Plot Y versus X.

Fit Y = B, + B, X + € by least squares and plot the fitted line on your diagram.
Evaluate the residuals to two decimal places. Check that Ze; = 0, within rounding error.
Obtain the analysis of variance table. .

Find out how much of the variation about the mean Y is explained by the fitted line.
Use the repeat runs to test for lack of fit and state your conclusions.

Is it appropriate to test for overall regression via the F-test? If so, do it.

Find standard errors for b, and b,, using s or s* as seems appropriate from part 6.
Find the formula for the standard error of ¥ and, assuming that s? is an appropriate
estimate of ¢ for this part, construct 95% confidence bands for the true mean value
of Y. (Plot about half a dozen points over the X-range and join them up smoothly.)
In fact two more data points were obtained by Ms. Burcar but were deleted above. They

.

S T

were:
X Y
5.8 42
18.0 88

The small tree was clearly stunted; the large tree may have been damaged by winds
because it protruded above the tree line.
10. Show the new trees on your plot and comment briefly on what you see.

FF. Reconsider the data of Exercise EE. Fit the model X = «y + a,Y + € by least squares.
Find the fitted line that passes through (X, Y) and has slope

G = (bllal)ma

where b, is the least squares estimate of 3, in the Y = By + 8, X + e fit of the previous
exercise and a, is the least squares estimate of a,. (This fitted line is the geometric mean
functional relationship, as described in Section 3.4.) State exactly what this third line is
in the form ¥ = ¢, + ¢, X, and plot all three lines on a new diagram.
(The following comment is not connected specifically to the data of Exercises EE and FF
in any way, but since it concerns data of the same type, we reproduce it here for the benefit
of those taking similar data.

Experience suggests certain cautions. First, there is a tendency to select vigorously growing trees of
good form for the dimensional analysis, unless this tendency is consciously counteracted. The preference
for “‘good™ sample trees implies overestimation of productivity when regressions from these trees are
applied to field quadrat data. Second, the largest errors result from applying regressions to the largest



EXERCISES FOR CHAPTERS 1-3 11

trees in the samples. . . . If, from the population of large trees in the stand, many of them senescent or
with partly broken crowns, a particularly “good’ individual has been chosen, the slope of the regression
as it extends to larger tree sizes is biased by this individual. The production estimates for the few large
trees in the sample quadrat will be overestimates for most of these trees. It is therefore important that
errors of estimation for large trees be controlled by some means. . ..”

This excellent advice, which can be summarized by saying ‘“Make sure your data are represen-
tative of your population,” was written by R. H. Whittaker and P. L. Marks in “Methods of
assessing terrestial productivity,” Chapter 4, p. 85 of Primary Produciiviiy of the Biosphere,
edited by H. Lieth and R. H. Whittaker, and published by Springer-Verlag, New York, in
1975.)

GG. The New York Times of Thursday, May 24, 1990, showed, on page BS, a chart containing
data obtained in the National Child Care Staffing Study released in Fall 1989 by the Child
Care Employee Project in Oakland, California. These data are displayed below. Plot
Y = turnover versus X = hourly wage. The article stated that one city had a high
unemployment rate. Which data point do you think represents that city? Omit the Detroit
data point and fit a straight line Y = 8, + B, X + € to the remaining four data points.
Estimate the true mean turnover if the wage were $6.00, and put 95% confidence bands
around the estimate.

Hourly Wage (in $) of Staff Average Annual Staff

Place Who Care for Chiidren Turnover (in %)
Atlanta 496 57
Boston 7.28 29
Detroit 4.88 27
Phoenix 445 64
Seattle 5.21 41

HH. (Source: R. Peter Hypher, Ottawa, Ontario, Canada.) Below are 29 observations on
X = Monthly Protestant receipts in Canadian dollars,
Y = Monthly attendance at Catholic mass,

for a certain Canadian town some years ago. (The figures, read off from a plot, vary
slightly from the originals, which are not available.)

Plot the data, and fit the model Y = 8, + 3, X + € by least squares. Assuming conditions
remain the same, can we validly predict attendance at Catholic mass from the Protestant
monthly receipts? Estimate the Catholic mass attendance when X = 0 and provide 95%
confidence limits on the true mean value of Y at X = 0.

X Y X Y X Y
100 2000 290 2875 390 2500
100 2475 290 2875 400 2875
100 2825 300 2900 400 3800
155 2000 300 3000 440 3825
160 1650 330 3100 440 3900
205 2475 350 2875 450 3100
230 2725 350 3225 460 3050
250 2125 350 3400 500 3475
250 3000 350 3450 550 3200
360 2950 600 3675

II. The data below consist of

X = Course number,

Y = Questionnaire score on ‘‘question 11,”
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for 32 teaching assistants in the Statistics Department, University of Wisconsin, in the
Spring Semester of 1978. Plot the data, fit a straight line model Y = 8, + 8, X + ¢, perform
all the usual analyses, and state the practical conclusions that arise from your analysis.

Row Y X Row Y X Row Y X
1 5.00 349 12 4.41 224 23 4.00 301
2 4.86 333 13 4.38 333 24 3.92 201
3 4.75 301 14 4.29 314 25 3.88 201
4 4.64 301 15 4.25 201 26 3.86 312
5 4.66 302 16 422 424 27 3.74 224
6 4.62 824 17 421 424 28 3.69 224
7 4.55 710 18 4.15 301 29 3.57 224
8 4.47 301 19 4.07 201 30 3.27 301
9 4.43 301 20 4.08 301 31 2.96 224

10 4.44 310 21 4.00 224 32 2.67 224
11 4.43 702 22 4.00 301

JJ. (Source: USA Today for Monday, December 6, 1993, page SB.) The data in the accompa-

nying Table JJ consist of average Sunday circulation (Y) and average daily circulation
(X) for 48 U.S. newspapers. All values are in thousands, rounded to the nearest thousand.
Two of the “‘top 50" were omitted; the second and 20th were removed because they had
no Sunday edition. The figures are for the 6 months ended September 30, 1993 and include
bulk sales, defined as lower price sales to, for example, hotels and airlines, who give them
free to customers.

1. Plot Y versus X.

2. Fit Y = B, + B, X + € by least squares and plot the fitted line on your diagram.

T A BLE JJ. Average Sunday (Y) and Daily (X) Circulations in Thousands for 48 of the
Top 50 Newspapers in the United States for the Period March-September 1993

Newspaper Sunday (Y) Daily (X) Newspaper Sunday (Y) Daily (X)
1 2313 1886 25 559 342
2 1766 1155 26 483 338
3 1497 1097 27 441 333
4 1140 816 28 428 324
5 928 764 29 214 322
6 826 748 30 378 302
7 1107 694 31 431 291
8 1187 558 32 440 285
9 708 549 33 321 284

10 524 536 34 342 282
11 814 527 35 338 270
12 814 508 36 401 264
13 944 487 37 320 264
14 704 474 38 375 263
15 709 442 39 346 255
16 607 413 40 347 252
17 696 411 41 456 250
18 543 396 42 340 246
19 509 387 43 326 236
20 455 384 44 301 233
21 1186 367 45 496 232
22 548 348 46 411 232
23 408 344 47 321 230
24 453 343 48 504 229

Source: USA Today, Monday, December 6, 1993, p. SB.
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11.

Evaluate the residuals to one decimal place. Check that Ze, = 0, within rounding error.
Obtain an analysis of variance table.

Find out how much of the variation about the mean Y is explained by the fitted line.
There are only two pairs of exact repeat runs in the rounded data quoted. As an
approximation, however, treat the Y values at X = 229, 230, 232, 232, 233, and 236
as repeats; also, those at X = 246, 250, 252, and 255; those at X = 263, 264, and 264
those at X = 282, 284, and 285; those at X = 333 and 338; those at X = 342, 343,
344, and 348; and finally those at X = 411 and 413. (One could argue about these
groupings, of course, and you might wish to do a second, alternative calculation using
only the two pairs, to see what difference it makes.) Use the pseudo repeat runs to
test (approximately) for lack of fit and state your conclusion. If lack of fit is shown,
omit parts (7), (8), and (9).

. Is it appropriate to test for overall regression via the F-test? If so, do it.
. Find standard errors for b, and b;,.

Find the formula for the standard error of Y and, assuming that s? is an appropriate
estimate of ¢ for this part, construct 95% confidence bands for the true mean value
of Y. (Plot about half a dozen points over the X-range and join them up smoothly.)
Plot the residuals versus Y. Does this plot seem to confirm, or deny, the basic assump-

tinn of canctant arrar variance If it dnheg danv 1 noocoact what ~anld ho dana
ll\_lll Vi vuUliowaiil vi11vl valiaiivwe. 11 IL AR AV LW ] u\dl‘y IL’ Dussbol "l‘al VOUUIU ULV UvuUlIL.

Below are the average daily bulk sales for the first nine newspapers in the data list.
Adjust the data for these numbers (subtract them) and repeat the analysis. State your
conclusions overall.

Newspaper Sunday (Y) Daily X
1 408 391
2 10 14
3 9 7
4 1 2
5 1 0
6 1 1
7 S 3
8 1 2
9 6 5

KK. (Source: Audit Bureau of Circulations, as given in the New York Times, October 31,
1995, page C7.) The average daily circulations of the largest 12 U.S. newspapers (apart
from the Detroit Free Press, whose union workers were on strike in 1995) for the 6 months
ending September 30 are listed in the table for 1994 (X') and 1995 (Y'). Circulation figures
for papers 2 and 10 do not include Fridays. Fit a straight line model Y = B, + B8, X + ¢,
evaluate the residuals, check the fit, and amend it as appropriate. State conclusions.

Paper 1994 1995
1. Wall Street Journal 1,780,422 1,763,140
2. USA Today 1,465,936 1,523,610
3. New York Times 1,114,168 1,081,541
4. Los Angeles Times 1,062,199 1,012,189
5. Washington Post 810,675 793,660
6. Daily News 753,024 738,091
7. Chicago Tribune 678,081 684,366
8. Newsday 693,556 634,627
9. Houston Chronicle 409,007 541,478
10. Dallas Morning News 491,480 500,358
11. Boston Globe 506,543 498,853
12. San Francisco Chronicle 509,548 489238
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LL. The manager of a small mail order house hires additional personnel every time there is
a peak demand that exceeds the work load of his normal three employees. To check the
effectiveness of this idea, he records the daily output of his total crew on various days
during various periods, both peak and otherwise. These data are given below. Fit a straight
line model Y = B, + B, X + € to the data via least squares, check for lack of fit, and (if
there is no lack of fit) test for overall regression. Examine the residuals, in any case, and

state the conclusions you draw from the study.

Number of Parcels Number of Number of
Dispatched Employees men

Y X Z°
50 1°

110 26
90 26

150 3

140 3

180 3

190 4

310 6

330 6

340 7

360 8

380 10

360 10

“Needed for Exercise H in “‘Exercises for Chapters 5 and 6.” Ignore for now.
’Regular employee(s) sick or on vacation.

Useful Facts. n = 13
ZX; = 65, 2Y, = 2990, ZXY, = 19,120,
X7 =437, 2Y? = 857,500, 2Y? - (ZY)%/n = 169,800.

MM. (Source: Steven LeMire.) An important factor in the performance of an air filter is its
resistance. Measuring this accurately on a large section of filter material is expensive. An
inexpensive alternative device was suggested and was used to obtain the data X below.
The Y values were obtained from the more expensive method. (All values have been
multiplied by 1000.) Fit straight line models Y = 8, + 81X + eand X = ay + a,Y + €
to these data, and plot each set of residuals versus its corresponding set of fitted values,
Y or X, respectively. Also fit the geometric mean functional relationship line which has
slope (b/a)'? and which passes through (X, Y) = (96.25, 89.187S), where b and a are the
estimates of 3, and «,. Plot the two sets of residuals, horizontal and vertical, from this

line versus their corresponding fitted values. Does each set of residuals sum to zero? Now
review all the results and comment.

X Y X Y
0 0 79 72
22 22 93 87
26 25 133 118
41 40 122 120
62 59 142 125
67 64 165 150
70 67 190 182

78 70 250 226
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Straight Line Case

We shall now present the steam data example given earlier in terms of matrix algebra.
The use of matrices has many advantages, not the least of these being that once the
problem is written and solved in matrix terms the solution can be applied to any
regression problem no matter how many terms there are in the regression equation.

Althouch there is a matrix aleebra section in Chanter 0. some pvnlanannnc are deliber-
ons are del

LA = VIV A0 QaiQUan QIEVVAR Syviavil dil vaapivi Uy Sl

ately duplicated in this section.

Matrices

A matrix (plural matrices) is a rectangular array of symbols or numbers and is usually
denoted by a single letter in boldface type, for example, Q or q. There are several
rules for manipulation of such arrays. Quite complicated expressions or equations can
often be represented very simply by just a few letters properly defined and grouped.

We shall not introduce matrices formally but will use them in the context of the
example. The reader with sound knowledge of matrices might wish to omit this chapter.

4.1. FITTING A STRAIGHT LINE IN MATRIX TERMS

We define Y to be the vector of observations Y;,, X to be the matrix of predictor
variables, B to be the vector of parameters to be estimated, € to be a vector of errors,
and 1 to be a vector of ones. In terms of the steam data in Table 1.1, and Eq. (1.2.3),
we thus define

710.98] 1 35.3] e, | 1]
11.13 1 297 € 1
12.51 1 308 € 1
[, ] ’
Y=| 840 X=|1 588 B= e=| ¢ 1=]1
. . X Bi
10.36 1 334 €2 1
| 11.08_ |1 286 s [ 1]
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Note that

Y is a 25 X 1 vector.
X is a 25 X 2 matrix.
Bis a2 X 1 vector.

€ is a 25 X 1 vector.
1is a 25 X 1 vector.

(Any matrix with one column is called a column vector; any matrix with one row is
called a row vector. A 1 X 1 “matrix” is just an ordinary number or scalar.)

The dots in the matrices and vectors represent data not reproduced to save space
in making the definition—a conventional procedure in matrix work. The column 1 of
ones is not strictly needed at this stage, but it is convenient to define it here; it is
extremely useful in matrix manipulations. Note that X is formed of two column vectors.
The first is simply 1, the second is an (unnamed) vector of X-values in the data usually
called the *‘X-column.” Many writers call the column of ones in X the *“Xj-column,”
pretending that there is a predictor variable X that is always set at the value one. A
variable chosen in some such arbitrary way is usually called a dummy variable and

............................ PR R mlermn e ALl ~an
useful extended applications of such devices will be given in Chapters 14 and 23.

Manipulating Matrices

The rules of multiplication for matrices and vectors insist that two matrices must be
conformable. For example, if A is an n X p matrix we can:

1. Postmultiply it by a p X g matrix to give asaresultann X p X p X g = n X g matrix.
2. Premultiply itby anm X n matrix to give asaresultanm X n X n X p = m X p matrix.

Thus, for example, the multiplication BX is not possible since Bis 2 X 1 and X is
25 X 2. But X is possible as follows:

[1 3537 [ By + 3538,
1 2971|[8 By + 29.78
XB = =17 T (4.12)
L :
|1 286 | B, + 28.68, |
25%x2 2%1 25 x 1

As a more general example consider the product

A B C
1 2 4] T [17 21]
—101J 2 6]
2 31 11 6
3X3 3x2 3% 2

To find the element in row i and column j of C, we take row i of A and column j of
B, find the cross-product of corresponding elements, and add. For example,
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Row2of A is -1 0 1
Column 1 of Bis 1 2 3

Thus the element in row 2, column 1 of C is
-1(1) + 0(2) + 1(3) = 2.

Orthogonality

Definition. If the sum of the cross-products of corresponding elements of row i and
column j is zero, then row i is said to be orthogonal to column j. (The same definition
applies to row and row or column and column.)

The Model in Matrix Form

The sum of two matrices or vectors is just the matrix whose elements are the sums
of corresponding elements in the separate matrices or vectors. For example,

r-Bo + 35361— FE] 7] FBO + 3536] + € ]

+29.7 € +29.78, + €
XB+e= Bo ’ Bi N '2 _ Bo 'Bl 2| (413)

_BO + 28631_ |_ €75} _B() + 28631 + 625_

The two matrices or vectors must have the same dimensions for this to be possible.
(The difference between two matrices is similarly defined with differences instead of
sums.) If two matrices or vectors are equal, corresponding elements are equal. Thus
writing the matrix equation

™
+
m

A~
$a
[am—y
£

N’

implies that
10.98 = B() + 353B1 + €

: (4.1.5)
11.08 = B, + 28.68; + €5
or
Y=B+B:Xi+¢ (i=1,...,29) (4.1.6)
for each of the 25 observations. Thus the matrix equation, Eq. (4.1.4), and Eq. (4.1.6)
express the same model. Equation (4.1.6) is identical to Eq. (1.2.3).

Setup for a Quadratic Model

In setting up the model in matrix form, only the choice of X usually presents any
difficulty to the beginner. The simplest way of obtaining X is first to write down all
of the parameters shown in the model as a vector 8, and then to see what corresponding
X-columns would be needed to reproduce the model in its given algebraic form from
the X product. For example, if the model is Y = B, + B, X + B, X* + ¢, the vector
B will be a column of three elements By, B8,, and B;; and the corresponding X-columns
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must necessarily be 1 (or X, if we use that notation), X, and X2 Thus the ith row of
X will consist of (1, X;, X?), where X; is the ith of the n observations. Note that a
reordering of the elements of Brequires a reordering of the columns of X to correspond.

Transpose

We now define the transpose of a matrix. It is the matrix obtained by writing all rows
as columns in the order in which they occur so that the columns all become rows. The

transpose of a matrix M is written M’, for example,

3 2
31 7
M=|1 4]|, M = .
2 4 0
7 0
3 X2 2X3
Thus, for example,
€ = (€,€,...,€,).
Note that we can then write
e+e+---+e=¢€s

Yi+Yi+---+Yi=YY,
n?=Y1+Y2+“'+Y,,=1’Y,
nY?*=(2Y)n=Y11'Y/n.

Furthermore
1 3537
ol e 207 s 31 ]
X'X = = .
[35.3 297 .- 28.6J [1315 76323.42J
| 1 28.6
In general, for a straight line model, we see that
1 X, ]
1 1 tet 1 1 X2 n 2 X,‘
X'X = = .
X1 Xz e X,, E : 2 X,' 2 X,Z
1 X
" n_J
In addition,
10.98]
1 1 SO | 11.13 235.60
X'Y = =
353 297 --- 28.6 11821.4320
| 11.08 |

so that, generally, for a straight line fit,

(4.1.7)
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Yy
1 1 --- 1 Y, 2Y,
X'Y = = . (4.1.8)
X] X2 °c Xn 2 /Y,Y,
Y.

This means that the normal equations (1.2.8) can be written
X'Xb = XY, (4.1.9)

where b’ = (by, b,), and these equations, when solved, provide the least squares
estimates (b,, b;) of (By, B:). How do we solve these equations in matrix form? To
do so we define the inverse of a matrix. This exists only when a matrix is square and
when the determinant of the matrix (a quantity that we shall not define here but of
which we shall provide some examples) is nonzero. This latter condition is usually
stated as when the matrix is nonsingular. This will be true in our applications unless
otherwise stated. In regression work we wish to invert the X'X matrix. If it is singular,
and so does not have an inverse, this will be reflected in the fact that some of the
normal equations will be linear combinations of others; see, for example, Eq. (4.2.3).
In this case there will be fewer equations than there are unknowns for which to solve.
In such a case unique estimates are not possible unless some additional conditions on

the parameters apply. (See Chapter 23 for additional comments on this point.)

Inverse of a Matrix

Suppose now that M is a nonsingular p X p matrix. The inverse of M is written M,
is p X p, and is such that

MM =MM" =1,

where 1, is the unit matrix of order p, which consists of unities (i.e., ones) in every
position of the main diagonal (i.e., the diagonal running from the upper left corner
to the lower right corner) and zeros elsewhere; for example,

1 0 0 0]
0100
010
000 1]

b

(When the size of the unit matrix is obvious, the subscript is often omitted.) The unit
matrix plays the same role in matrix multiplication that 1 does in ordinary multiplica-
tion—it leaves the multiplicand unchanged. The inverse of a matrix is unique.

Inverses of Small Matrices

The formulas for inverting matrices of sizes two and three are as follows:

a b diD —-b/D
M= = , (4.1.10)
c d —c/D alD

where D = ad — bc is the determinant of the 2 X 2 matrix M.
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a b c|' [A B C
Q'=|d e f| =|D E F|, (4.1.11)
g h k G H K
where
A = (ek — fh)/IZ B = —(bk — ch)IZ C=(bf—ce)Z
D = —(dk - fg)lZ E = (ak — cg)/Z F=—(af~cd)IZ
G =(dh—-eg)lZ H= —(ah—bg)/Z K = (ae— bd)IZ
and where

Z = a(ek — fh) — b(dk - fg) + c(dh — eg)
= aek + bfg + cdh — ahf — dbk — gec

is the determinant of Q.

Matrix Symmetry for Square Matrices

Matrices of the form X'X met in regression work are always symmetric, that is, the
element in the ith row and jth column is the same as the element in the jth row and
ith column. Thus the transpose of a symmetric matrix is the matrix itself. This is easy
to see if we apply the general rule (AB)' = B’A’ for transposes of a product. Because
(A")" = A itself, we can write (X'X)' = X'X. (Working with a few simple numerical
cases will clarify this point.) If the matrix M of size two above is symmetric, b = ¢
and the inverse also becomes symmetric. If the matrix Q above is symmetric, b = d,
¢ = g, f = h. Then, relabeling the matrix S, we obtain the symmetric inverse

i-a b ¢l i—A B C]

S'=|b e f| =|B E FJ, (4.1.12)
Lo Tl koK)

where
A= (ek—-f)IY B = —(bk — ¢f)IY C=(bf—ce)lY
E = (ak — c*)IY F=—(af — bo)lY
K = (ae — b)Y
and where

is the determinant of S. The inverse of any symmetric matrix is, itself, a symmetric
matrix.

Diagonal Matrices

Matrices of sizes greater than three are usually cumbersome to invert unless they have
a special form. One matrix that is easy to invert, no matter what its size, is a diagonal
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matrix, which consists of nonzero elements in the main upper-left to lower-right
diagonal, and zeros elsewhere. The inverse is obtained by inverting all nonzero ele-
ments where they stand. For example,
[ a, 1t [1/q
0 0

@ = 1/a, . (4.1.13)
0 T 0 .
L a, 1/0,,_

- e

(Note, in this special case, the use of 0 to denote a large triangular block of zeros.
This is often seen.)

Inverting Partitioned Matrices with Blocks of Zeros
Another type of simplification sometimes occurs when some columns of the X matrix
are orthogonal to all other columns. The X'X matrix then takes the partitioned form
o]
Lo R[]
where, for example, P might be p X p, R might be r X r, and the symbol 0 is used

to denote two differently shaped blocks of zeros, a p X r one in the top right-hand
corner and an r X p one in the lower left-hand corner. The inverse of this matrix is then

p ol [P o
= . (4.1.14)
0 R 0 R
For example, if
[1 3] [ 4 -3
P= b P_l— ,
2 8 -1 %
n [
1 0 1] [ -4
R=|2 3 2|, R'=|-% 1 ol
4 1 1 B B
then
1 300 0] [ 4 -3 0 0]
28000 -1 1 0 0
00101} =0 o0 -3 -}
002 3 2 0 0 —-% L o0
0 0 4 1 1_ L0 0 ¥ 3 -3

When there are more than two nonzero blocks, the obvious extension holds. It is
important to note that the blocks must be on the main diagonal, and the off-diagonal
blocks must consist entirely of zeros for the extension to apply.
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Less Obvious Partitioning

The inverse formula (4.1.14) also applies even when the rows and columns containing
nonzero elements are intermingled, provided that the matrix can be divided in such
a way that the portions, such as P and R above, are completely separated from each
other by zeros. For example, using the same numbers as above, the matrix

10 0 0 1]
01030
2 03 0 2
02080
4 01 0 1

can be partitioned and the separate portions inverted separately. Note that the second
and fourth rows and columns are completely isolated, or insulated, from the first,
third, and fifth rows and columns by zeros. Thus the nonzero elements in the second
and fourth rows and columns comprise a 2 X 2 matrix, which can be separately
...... AP R I nae emmmrz e A) o can o £ aamn o~ PRy comarmats D NS Y o bt

lllVCI LCU, WIICICAD UIC Ul.llCl nonsceIv ClClllClllb 1oIIl a LUlllPlClCly scpaliatc o A J HidlU1x,
which also can be separately inverted. Thus the inverse has the form

-5 0 -3 0 %]

0 4 0 -} O
~4 0 4+ 0 O
0 -1 0 0

¥ 0 & 0 -3

Situations like this often occur when carefully designed experiments are analyzed
using regression analysis.

The correctness of all these inverses can be confirmed by actually multiplying the
inverse by the original, both before and behind. The result is an I matrix of appropriate
size in every case. In practical situations, when the size of a matrix exceeds 3 X 3,
and no simplified form is possible, finding the inverse can be a lengthy procedure.

The work would usually be performed within an electronic computer.

Back to the Straight Line Case

We wish now to invert the X'X matrix of our example. This is of size 2 X 2 and of
the general form of Eq. (4.1.7). Using Eq. (4.1.10) with b = ¢, we obtain the inverse as

8 v?2 v |
‘4 i - A
nS(X,—X) (X, - X)
(X'X)"! = . 1 . (4.1.15)
ZX-X) E(X-X)

If every element of a matrix has a common factor it can be taken outside the matrix.
(Conversely, if a matrix is multiplied by a constant C, every element of the matrix
must be multiplied by C.) Thus an alternative form is
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1 SX? -3X,

—_—— 1.16

(X'X)"! =

Since X'X is symmetric, so is its inverse (X'X)™! as mentioned earlier. The quantity
taken outside the matrix is the determinant of X'X, written det (X'X) or [X'X|. Using
the form of Eq. (4.1.15) on the steam data example we find that

0.4267941 -0.0073535

(X'X)" = .
~0.0073535  0.0001398

Solving the Normal Equations
If we premultiply Eq. (4.1.9) by (X'X)"!, we obtain

(X'X) (X'X)bh = (X' X)'X'Y
\“ Vind \ 7 ’

\<= 4a)

b= (X'X)"'X'Y (4.1.17)

since (X'X)'X'X = L This is an important result to remember since the solution of
linear regression normal equations can always be written in this form, provided X'X
is nonsingular and the regression problem is properly expressed.

Using the data of our example we find that

—0.0073535  0.0001398 1.43

VUV 7 oI/ ViWUU LY JLJL,U‘-L T.ll.:

[ 0.4267941 —0.0073535” 235.60 ]
J

[ 13.623790
| —0.079848 '

A Small Sermon on Rounding Errors

Note that the results are not identical, to six places of decimals, to the values obtained
in Section 1.2. Such discrepancies frequently occur because of the rounding off of
numbers used in the calculation, and carelessness in such matters can cause serious
€ITO0rS, ucpcudlus on the numbers involved. Here the numerical uiSCTGpaﬁCiES arc
slight from a practical point of view, but they emphasize the fact that in general as
many figures as possible should be carried in regression calculations. Sometimes, due
to the magnitudes of the numbers in the calculation, the entire significance of the
results can be lost through careless rounding.

Certain ways of performing the calculations (especially when they are done ‘by
hand,” i.e., on a pocket calculator) are better than others since they are less affected
by round-off error. In particular, it is wise to postpone divisions to as late a stage as
possible. For example, if we had employed the form of Eq. (4.1.16) instead of Eq.

(4.1.15) to obtain (X'X)"! we would have obtained
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1 76,323.42 —1315

'X) ' = ———— .
(XX) 178,860.5| —1315 25

Then we could have obtained b from

1

b= 178,860.5| —-1315 25

1 [2436614672
©178860.5| -142782
L

13.622989
~0.079829 |
the division being performed last of all.
Doing the calculations the three separate ways gives the following answers:

Formulas Inverse Inverse Matrix

(Section 1.2) Matrix (Division Last)
b, 13.623005 13.623790 13.622989
b, -0.079829 —0.079848 —0.079829

As we have said, these differences are of slight consequence in this example. The
third method is actually the most accurate. To see what the consequences of rounding
can be, we suggest the reader make use of the inverse matrix in the second method,
and round the elements in several ways—for example, rounding to 6, 5, 4, or 3 places
of decimals or the same numbers of significant figures. Rounding errors provide a
major share of disagreements when several people work the same regression problem
using pocket calculators.

Modern computer programs vary somewhat in accuracy, but the variation is typically

well below the horizon needed by the average user.

Section Summary
If we express the straight line model to be fitted to the data of our example in the form

V=XR1g
) 4 in v

’.I <

as in Eq. (4.1.4), then the least squares estimates of (8, 3;), that is, of

5 By
B |

are given by the normal equations

X'Xb = XY,
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which have the solution

by
=b = (X'X)"'X'Y.

1

Y = Xb.

4.2. SINGULARITY: WHAT HAPPENS IN REGRESSION TO MAKE X'X
SINGULAR? AN EXAMPLE

In presenting the inverse matrix in Section 4.1, we said it need not exist. We think
about this a little more via a simple example. We recall that, because terms in an
inverse (X’X)‘ are always divided by the determinant of X'X, written |X'X]|, the
inverse ‘‘blows up” if the determinant is zero. We then say that X'X is singular and
that (X'X)"! does not exist. The next question is how, in a regression situation, the
determinant of X'X can be zero. We illustrate this for a straight line case. Figure 4.1
shows several data points, all at the same value X, of X. (There could be n points at
X, without affecting the argument below, so we use n in what follows.)

Suppose we are asked to fit a straight line to these data. Common sense tells us
that we need data at two or more X-sites to determine a straight line “‘properly,” that
is, uniquely. So our first reaction might be that the fit cannot be made; but, of course,
it can. Any straight line b, + b; X through the point (X,,Y) will minimize the sum
of squares of deviations

S=i(Y Bo — B X))?

Y {l
i .
I stope bi
/;
/ 1
b" I
0 I
|
|
|
1 —>
0 X, X

Figure 4.1.
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and the second term vanishes when Y — B, — 8, X = 0. Thus any straight line Y =
by + b, X, which passes through or contains (X, Y), is a least squares line. The solution
exists but is not unique. There is an infinity of solutions.

Let us follow this case through via matrix algebra. We see that

M1 X,
[1 1 - 1] 1 X,
X' = ,  X= 4.2.1)
X, X, - X, : .
1 X,

Note that the second column of X (i.e., the second row of X') is X, times the first
column, namely, a linear combination of it. Furthermore,

n nX,
X'X= (4.2.2)

nX, nX3%
with determinant n(n X%) — (n X,)* = 0. Thus we cannot evaluate (X’X) ' nor carry
out the formal computation b = (X’'X)! X'Y because X'X is singular. Note that the
dependence in the columns of X has also been transmitted to the columns (and rows)
of X'X; the second column of X' X is X, times the first column (and similarly with rows).
The implication of the singularity of X'X is that we cannot estimate 3, and f3;
uniquely. The normal equations can still be written down as X'Xb = XY, however.

They just cannot be solved uniquely. For our simple example, the normal equations are
nb() + nX*bl = n?,
_ (4.2.3)
nX,b, + nXib, = nX.,Y,

and we see 'mmediately that the second equation is X, times the first, so that there

is re-‘lly 0ﬁl'y one distinct normal e(]uauuu, not two. This Siﬁgu’i EQuauuu im pl s that
Y = by + b X, and leads to an infinity of solutions expressible as
(bo, by) = {bo, (Y — bo)/ X} (4.2.4)

for any b,. Essentially, we can pick any intercept value b, we please, and our nonunique
least squares line so selected is created by joining the point (0, by) to the point
(X, Y), giving a slope b, = (Y — by)/X,.. (Alternatively, we could select a slope b,
and determine by via by = Y — b X,..)

The basic computational difficulty inherent in our simple example occurs in more
complex forms for multiple- X regression problems but, nevertheless, the overall princi-
ple is the same.

Singularity in the General Linear Regression Context

If, for a given set of data and a given model, the X matrix is such that any of its
columns can be expressed as a linear combination of other columns, this dependency
will be transferred to X’'X and so X'X will have a zero determinant and be singular.
This means that (X'X) ™' cannot be computed, and the least squares procedure will
not give unique estimates but many alternative solutions. This arises because the data
are inadequate for fitting the model or, what is the same thing, the model is too
complex for the available data. One needs either more data, or a simpler model for
the available data.
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Computer programs are written so as to detect these problems. MINITAB, for
example, leaves out of the regression fit any variable whose X-column is a linear
combination of previous columns. Because all computations have rounding errors in
them, columns that are not fully dependent on others, but almost so, are sometimes
omitted. Recoding variables sometimes helps to avoid that possibility.

4.3. THE ANALYSIS OF VARIANCE IN MATRIX TERMS

We recall from Section 1.3 that, in a more general form of the analysis of variance
table, we wrote

@_X)LE_Z)] = b[SXY, - n XV

)2 —
EY)y =nY?2

e

SS(bi|b) = b, [E XY -

SS(by) = Correction for mean =

Each of these sums of squares has one degree of freedom. Now, adding these
together,
SS(by|bo) + SS(by) = b =X;Y; — bin XY + nY?
=b, XY, +nY(Y - bX)
=b ZXY; + b ZY; (4.3.1)

(bo, by) X
0, U1 EXlK
=b'le'

in matrix terms, with two degrees of freedom. Thus we can write the analysis of
variance table in matrix form as follows:

Source df SS MS
b’ = (bo, b)) 2 b'’X'Y
Residual n-—2 Y'Y - bX'Y s?
Total (uncorrected) n Y'Y

In this way we can split the total variation Y'Y into two portions, one due to
the straight line we have estimated, namely, b’X'Y, and a residual that shows the
remaining variation of the points about the regression line. In order to find what
portion of the total variation can be attributed to the addition of the term S, X,
to the simpler model Y, = B, + €, we would just subtract the correction factor
nY? from the sum of squares b’X’'Y in order to obtain SS(b,|b,) as before. The
quantity nY? would be SS(b,) if the model Y; = B, + € were fitted. The remainder
of b’X'Y thus measures the extra sum of squares removed by b, when the model
Y, = By + B1 X, + € is used. If an estimate of pure error from repeat points is
available, it is subtracted from the residual sum of squares to provide the same
breakup and the same tests as described in Section 2.1.



128 REGRESSION IN MATRIX TERMS: STRAIGHT LINE CASE

Example. For our steam data example we had

13.623790 235.60
b= , X'Y = .
—0.079848 11,821.4320

Hence
SS(b) = b'X'Y = 2265.8472,
SS(by) = (2Y,)*/n = 2220.2944,
SS(b|by) = SS(b,, after allowance for b)
=b'X'Y ~ (2Y,)*/n = 45.5528.
We see that this result differs from the value in Table 1.6 due to rounding error in
the second decimal place.
Note that SS(b,|b,) can be written in matrix form as
SS(bi|by) =b’X’Y ~ Y'11'Y/n
=Y'XX'X)"'X'Y-Y11'Y/n
=Y'(H-11'/n)Y
where H = X(X'X) ! X' is a useful symmetric, idempotent (H?> = H) matrix that
occurs repeatedly in regression work. In replacing b’ by Y'X(X’X)! above, we have
made use of the important rule that the transpose of a product of matrices is the
product of the transposes in the reverse order. In symbols, for example,
(ABC)' = C'B’A".
If we apply this rule to b = (X'X)'X"Y, identification of A = (X'X)"', B = X', and
C =Y, plus the realizations that (X'X) ! is symmetric so that it is its own transpose, and
X')Y =X

(i.e., if we transpose a transpose, we are back to our starting point) bring the quoted
result. (The transpose rule applies to a product of any size, by the way.)

Some other matrix regression results on which the reader might wish to test his or
her matrix manipulative skills are the following:

e=(I1-H)Y,
e'l=1e=0,
eY=Ye=0.

4.4. THE VARIANCES AND COVARIANCE OF b, AND b, FROM THE
MATRIX CALCULATION
We recall that V(b,) = c¥/2(X; — X )>. Also,

1 N X? 2.6
n XX, —-X?| nE(X - X)

V(b)) = V(Y — b, X) = o [ (4.4.1)

since, as we showed earlier, Y and b, have zero covariance, and the X’s are regarded
as constants. In addition,
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cov(bo, b;) = cov[(Y — b, X ), by}
= —70'2/2(/\’, - AY)Z.

Thus we can write the variance—covariance matrix of the vector b as follows:

(B [ vy covibnby]
W \b, /*_cov(bo,bl) V(b)) J

022 X‘2 702 7 (4.4.3)
nEX,-X)} S(X,-X)
_ Xo? o? .

SXi-X)Y EX-X)

Now if every element of a matrix has a common factor, we can remove it and set it

outside the matrix, so that we can remove o2. The matrix that remains is seen to be
(X'Y\—l fram FRA {A 1 1(\ T'\nc

l‘, 11Vl l_/\l. \T.LnlJ}o 41140

A A A

/LY __ wh-1 s \
D) A) T (4.4.4)

v
This is an important result and should be remembered. When o2 is unknown we use,
instead, s2, the estimate of o2 obtained from the analysis of variance table, if there is
no lack of fit, or sZ, the pure error mean square if lack of fit is shown. This provides
us with the estimated variance-covariance matrix of b. The standard errors of the
regression coefficients are the square roots of the diagonal entries.

Correlation Between b, and by

The correlation between b, and b, can be obtained directly from the (X'X) 'o? matrix,
or the (X’'X)'s? matrix or even just the (X'X)™! matrix because any common factor
cancels anyway. We obtain

Correlation (bg, by) = {‘5?;’0)(3’ (’bblﬁl = (4.4.5)
— Y 2
_ 02;;‘2 / ::X _ (4.4.6)
{ nSxx S_X,\'}
= -X(n/ZX}H)"? (4.4.7)
For the steam data X 2 ,n =25, Eu = 76,323.42, and the correlation is —0.952

umbers w (4.1.16) to give
Correlation (by, b;) = —0.0073535/{0.4267941)(0.0001398)}'? = —0.952. (4.4.8)

This is a relatively high value. This high negative correlation shows up in the relative
position of the joint confidence region for (B, 8,) compared with the rectangular
formed by the individual (marginal) confidence intervals. The negative sign implies
the upper-left to lower-right slant of the larger axis of the ellipse while the high
numerical value of 0.952 implies that it will run essentially from corner to corner of
the rectangle. An accurate diagram is shown in Figure 5.3.
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4.5. VARIANCE OF Y USING THE MATRIX DEVELOPMENT

Let X, be a selected value of X. The predicted mean value of Y for this value of
X is

<>

— h L h
vy v v

L

0 1420

b 4 a 5 | ~ o oal A wr —
LE€1 US aemnne mne vecCtor Ay as
[
X; = (1, Xo).

We can then write

. b
Vo= (LX) |, | =Xb=bX,.

1

Since Y, is a linear combination of the random variables b, and b,, it follows that
V(Y,) = V(bo) + 2 X, cov(be, b)) + X3V(b)).

As can be verified by working out the indicated matrix and vector products, the above
quantity can be expressed in the alternative form

Py o x V(by) cov(by, b;) 1
V(¥o) =01, %] cov(by,b)  V(b) || X,

= Xi(X'X) o™X,
= X}(X'X) X0

Although now given in a different form, this is identical in value to Eq. (3.1.3). This
important matrix result should be remembered. With suitable redefinition of X, and
X, it is applicable to the general linear regression situation. A estimated variance is
obtained when o2 is replaced by an estimate s2.

4.6. SUMMARY OF MATRIX APPROACH TO FITTING A STRAIGHT LINE
(NONSINGULAR CASE)

1. Set down the model in the form Y = X + €.

2. Find b = (X'X)'X'Y to obtain the least squares estimate b of B provided by
the data. (This solves the normal equations X'Xb = X'Y.)

3. Construct b'X'Y the sum of squares due to coefficients and
basic analysis of variance as follows:

| TP, NP IS T
HICIICC OLLdlIl UIC

Source df SS MS
Regression 2 b'X'Y
Residual n—2 Y'Y - b'X'Y s? (estimates o’ if the

model is correct)

Total n Y'Y
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Additional subdivision of the sum of squares is achieved by finding SS(b,|b,), the extra
sum of squares due to b, and introducing pure error. The more detailed analysis of
variance table will take the following form:

Source df SS MS
( SS(by) 1 nY?
SS(b){ QQIA(,)U\_\ 1 hY'V - nV?2
L UU\UIIUU’ F s [V ve 9 A LA 3
. Lackoffit n-2-n, YY-DbXY-SS(pe) MS, )
Residual { Pure error n, SS(pe) s? }s

Total n Y'Y

The second table is often rewritten with the corrected total sum of squares at the
bottom, omitting the sum of squares due to the mean nY 2 [Incidentally, as we noted
previously, we can write nY 2 in matrix form as Y’'11'Y/n if we wish, although this is
not usually done. This computation is, in fact, less subject to round-off error if per-
formed as (2Y;)*/n.] The abbreviated table takes the following form:

Source df SS MS
SS(b1|bo) 1 b'X'Y - nY?

. Lack offit n —2-n, Y'Y - b'’X'Y - SS(pe) MS, | ,
Residual { Pure error n, SS(pe) s? } s
Total, corrected n-1 Y'Y — nY?

The tests for lack of fit and (if there is no lack of fit) for H,: 8, = 0 versus
H,:B; # 0 are performed as described in Chapters 1 and 2. An additional measure
of the regression is provided by the ratio

R?= (b’X'Y — nY?)

/errwy

(Y'Y —nY?)

4. If no lack of fit is shown, so that s? can be used as an estimate of o2, (X'X)'s?
will provide estimates of V(b,), V(b,), and cov(b,, b;) and enable individual coefficients
to be tested or other calculations made as in Chapter 1.

S. The following quantities can be found:

The vector of fitted values: Y = Xb;
Apredictionof YatX;: ¥, =Xib=b'X,;
with variance: V(Y;) = X§(X'X) 'X,0%

4.7. THE GENERAL REGRESSION SITUATION

We have seen how the problem of fitting a straight line by least squares can be handled
through the use of matrices. This approach is important for the following reason. If
we wish to fit any model linear in parameters 83y, i, B:, - .. , by least squares, the
calculations necessary are of exactly the same form (in matrix terms) as those for the
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straight line involving only two parameters 3, and 3,. Only the sizes of the matrices
and the numbers of certain degrees of freedom change. The mechanics of calculation,
however, increase sharply with the number of parameters. Thus while the formulas
are easy to remember, the use of a computer is essential. Even when few parameters
are involved, or when the data arise from a designed experiment that provides an
X’X matrix of simple or patterned form, computer evaluation is preferable.

We deal with the general regression situation in Chapter 5.

EXERCISES FOR CHAPTER 4

A. In this question we define

4 1 3 -1 2
2 1

A=|3 -2|. B= . Cc=|-2 31
1 2

1 7 1 41

Are the statements below true or false?

- I ~™

5 0 2
.B+C=|-1 5 1
1 4 1

[ 7 9 12
2. AC = .
14 21 7

1 00
6. (A'A)'A’ABB'=|0 1 0},
0 0 1
B. We define
[+ o 3] -1 1] c 4
4 3
A=]0 4 o], B=| 2 3], c= _
3 2
3 0 2 3 2

Calculate the matrices below, or say that it is impossible to do so, if it is impossible.
1. B+C

2. BB'.

3. A + B'B.

4. BC.
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5. AA'BC.

6. CB'.

7. CAB.
.

8. BC !, whereC!' = )

3 —4

L J

9. Al

10. A’A(A’) A7

C. We define

Are the results below true or false? If false, say (briefly) why.

1. Ab = [0, 1, 2).
r3 27
2 ac—|s |

-
5. bC=
3
L
[0 0 0]
6.A-D=| 0 0 3|
(-1 1 0
7. C'CCC'C-'CCC-'C = C.
0 1 -2
1
. D'=={0 1 1
8. D=3
3 -2 1
9. b’'Cb = 2.

D. Using the matrix development throughout, fit to the data below, the model Y = 3, + B, X +
= nemAd o Al L o~ d L Dlos shan dntbn nead ¢y Lo d 1nn Ton 3 sy Lo onlionc nad sl
€, alll >U Uvidlll Ug alld V1. I'iul UIC dalta aild UIC 11uicyu 1nc, rind wic Hiicu vaiucy alid LUic
residuals correct to one decimal place. Evaluate the analysis of variance table, and test for
lack of fit. Find the variance—covariance matrix of the estimated parameters, and the matrix
expression for V(¥). Hence find V(¥) when X = 65, and construct a 95% confidence interval

for E(Y|X = 65).

X: 30 40 50 8 30 40 60 70 70 70 30 8 70 70
Y: 13 17 20 29 12 15 22 25 23 27 15 27 24 26

E. Using the matrix development, fit a straight line Y = 8, + B, X + € to the data below, and
provide a complete analysis (i.e., all relevant details of Chapter 4).
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X Y
1 4.2
1 38
2 3.0
3 23
4 1.8
4 2.0
4 22
5 20
6 2.5
6 2.7

F. Using the data below, go through the following steps:

Fit a straight line model Y = B, + B, X + €, € ~ N(0, Io?).
Plot the data and your fitted line.

Obtain the basic ANOVA table.

AL A6l nnl datnlla A tlaa AN A s~ L1
AU aUulltivlial aciailld Ull UIv AINU Vv A Llauvic.

Test for lack of fit.
Carry out the usual F-test for overall regression. Is this test valid?
Find, via the usual calculations, a 95% confidence interval for the true mean value of
Y at X, = V122 + 6. Is it valid?
8. Evaluate the fitted values and residuals. Plot each e; versus its corresponding ¥:;.
9. Write down the form of the variance—covariance matrix of the b’s in terms of o2,
10. Evaluate R
11. Evaluate r%,. What is its relationship to R? for this model?
12. What are your overall conclusions?

NS e W N

X Y XY
0 -2 0
2 0 0
2 2 4
5 1 5
S 3 15
9 1 9
9 0 0
9 0 0
9 1 9
10 -1 -10
Sum 60 5 32
Sum of Squares 482 21 528

Note: When using a calculator, it is best to work with integers and simple fractions as long
as you can. Convert to decimals only at the last possible moment.



CHAPTER 5

In presenting the general regression situation we state many results without proving
them. For proofs, the reader could consult, for example, Plackett (1960), Seber (1977),
or Rao (1973).

5.1. GENERAL LINEAR REGRESSION

Suppose we have a model under consideration, which can be written in the form
Y =X + €, (5.1.1)
where

Y is an (n X 1) vector of observations,
X is an (n X p) matrix of known form,
Bis a (p X 1) vector of parameters,

€ is an (n X 1) vector of errors,

and where E(e) = 0, V(e) = Io?, so the elements of € are uncorrelated.
Since E(e) = 0, an alternative way of writing the model is

E(Y) = XB. (5.1.1a)
The error sum of squares is then

e'e=(Y - XpB)' (Y- XB)
=Y'Y - BX'Y - YXB + BX'XB (5.1.2)
= Y'Y - 28'X'Y + B'X'XB.

[This follows due to the fact that B’X’Y is a 1 X 1 matrix, or a scalar, whose transpose
(B'X'Y)’ = Y'XB must have the same value.]

The least squares estimate of 8 is the value b, which, when substituted in Eq. (5.1.2),
minimizes €’e. It can be determined by differentiating Eq. (5.1.2) with respect to 8
and setting the resultant matrix equation equal to zero, at the same time replacing f8
by b. (Differentiating €’e with respect to a vector quantity Bis equivalent to differentiat-
ing €'e separately with respect to each element of B8in order, writing down the resulting
derivatives one below the other, and rearranging the whole into matrix form.) This
provides the normal equations

(X'X)b = X'Y. (5.1.3)
135
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Two main cases arise: either Eq. (5.1.3) consists of p independent equations in p
unknowns, or some equations depend on others so that there are fewer than p indepen-
dent equations in the p unknowns (the p unknowns are the elements of b). If some
of the normal equations depend on others, X'X is singular, so that (X'X)! does not
exist. Then either the model should be expressed in terms of fewer parameters or else
additional restrictions on the parameters must be given or assumed. Some examples

of this situation are given in Chﬂp'" 23. If the p normal equations are independent,

X’'X is nonsingular, and its inverse exists. In this case the solution of the normal
equations can be written

b= (X'X)"'X"Y. (5.1.4)
This solution b has the following properties:

1. It is an estimate of B that minimizes the error sum of squares €'e, irrespective
of any distribution properties of the errors.
Note: An assumption that the errors € are normally distributed is not required in order
to obtain the estimate b but it is required later in order to make tests that depend on

[DC assumpuon OI normamy, SULH as i- or [' [CS[S or IOI' OD[dlnll'lg COHHGCHCC lnlervals
based on the ¢- and F-distributions.

2. The elements of b are linear functions of the observations Y, Y,, ..., Y, and

provide unbiased estimates of the elements of B which have the minimum variance
(of any linear functions of the Y’s that provide unbiased estimates), irrespective of
distribution properties of the errors.
Note: Suppose we have an expression T' = Y, + LY, + --- + [,Y,, which is a linear
function of observations Y, Y,,. . ., Y,, and which we use as an estimate of a parameter
6. Then T is a random variable whose probability distribution will depend on the
distribution from which the Y’s arise. If we repeatedly take samples of Y’s and evaluate
the corresponding T'’s, we shall generate the distribution of T empirically. Whether
we do this or not, the distribution of 7 will have some definite mean value that we
can write as E(T) and a variance that we can write as V(7). If it happens that the
mean of the distribution of 7 is equal to the parameter & we are estimating by 7—that
is, if E(T) = 6—then we say that T is an unbiased estimator of 6. The word estimator
is normally used when referring to the theoretical expression for T in terms of a
sample of Y’s. A specific numerical value of 7 would be called an unbiased estimate
of 6. This distinction, though correct, is not always maintained in statistical writings.
If we have all possible linear functions 7, T3, ..., say, of n observations Y, Y,, ...,
Y,, and if the T’s satisfy

0= E(T) = E(T) -,

that is, they are all unbiased estimators of 6, then the one with the smallest value of
V(T),j=1,2,...,is the minimum variance unbiased estimator of 6. [The result (2)

is Gauss’s Theorem or the Gauss—Markov Theorem. See Jaske (1994).]

A Justification for Using Least Squares

3. If the errors are independent and €, ~ N(0, o'2), then b is the maximum likelihood
estimate of B. (In vector terms we can write € ~ N(0, Io?), meaning that € follows
an n-dimensional multivariate normal distribution with E(e) = 0 (where 0 denotes a
vector consisting entirely of zeros and of the same length as €) and V(e) = Io? that
is, € has a variance—covariance matrix whose diagonal elements, V(e),i =1, 2, ...,
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n, are all o and whose off-diagonal elements, covariance (e;, €), i # j = 1,..., n,
are all zero. The likelihood function for the sample Y, Y,, ..., Y, is defined in this
case as the product

3
—
]
™
3
!

= g’ (5.1.5)

| 4 MU B

T I'IUS IOI a lee(l leuc ()I g, dellelI]g [IIC llKCllﬂOO(l lUﬂLllOI] lb CquleCHl to mlnlmlL-
ing the quantity €’e. Note that this fact can be used to provide a justification for the
least squares procedure (i.e., for minimizing the sum of squares of errors), because in
many physical situations the assumption that errors are normally distributed is quite
sensible. We shall, in any case, find out if this assumption appears to be violated by
examining the residuals from the regression analysis.

If any definite a priori knowledge is available about the error distribution, perhaps
from theoretical considerations or from sound prior knowledge of the process under
study, the maximum likelihood argument could be used to obtain estimates based on

a criterion other than least squares. For example, suppose the errorse;, i = 1, 2, .
n, were independent and followed the double exponential distribution:
Fle = (D 2\-1,-lelo (oo < 2. < o0) (816K
J\Cl} \LU} \ —_ == l \J.L.U}
rather than the normal distribution:
— —¢2/202
fle) = (27r)”2 . (5.1.7)

as is usually assumed. The double exponential frequency function has a pointed peak
of height 1/2¢0 at €; = 0, and tails off to zero as ¢; goes to both plus and minus infinity.
Then application of the maximum likelihood principle for estimating B, assuming o
fixed, would involve minimization of

E led,
the sum of absolute errors, and not the minimization of

Se

i=1

bt 8

b

the sum of squares of errors.

5.2. LEAST SQUARES PROPERTIES

Assuming that E(e) = 0, V(e€) = Io?, we can proceed with the following steps whether

the errors are nr\rma"v distributed or not
WA Wi LA\ %o

1. The fitted values are obtained from Y = Xb.

2. The vector of residuals is given by e = Y — Y.

Itis true that 2%, ¢,;¥; = 0, whatever the linear model. This can be seen by multiplying
the jth normal equation by the jth b and adding the results. If there is a B, term in
the model, it is also true that £, ¢; = 0. (The ¢; and Y.,i=1,2, ..., n, are the ith
elements of the vectors e and Y, respectively. Thus 'Y = 0 = Y'e always, and e’'l =
0 = 1'e when the model contains S,.)
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3. V(b) = (X'X) 'o? provides the variances (diagonal terms) and covariances (off-
diagonal terms) of the estimates. (An estimate of o2 is obtained as described below.)

4. Suppose X is a specified 1 X p vector whose elements are of the same form as
a row of X so that ¥, = X}b = b’X, is the fitted value at a specified location defined
by X,. For example, if the model were Y = B, + B X + B, X% + ¢, then X; = (1,
Xy, X3) for a given value X,. Then Y, is the value predicted at X, by the regression

dh
CHUUIUE allu 11ad vailalive

V(¥0) = X§V(B)X, = X{(X'X) X0 (5.2.1)
5. A basic analysis of variance table can be constructed as follows:
Source df SS MS
Regression p b'X'Y MSRegression
Residual n-—-p Y'Y -bX'Y M Sresiqual
Total n Y'Y

A further subdivision of the parts of this table can be carried out as follows.
5a. If a B, term is in the model we can subdivide the regression sum of squares into

EY)_ (5.2.2)

E Yy
—.

SS(by) =

SS(Regression|b,) = SS(Reg|by) = b’X'Y — (5.2.3)

These sums of squares are based on 1 and p — 1 degrees of freedom, respectively.

5b. If repeat observations are available we can split the residual SS into SS(pure
error) with n, degrees of freedom, which estimates n,0? and SS(lack of fit) with (n —
p — n,) degrees of freedom.

“Repeats” now must be repeats in all coordinaies X, X,, ..., X, of the predictor
variables (though approximate use of ‘‘very close’’ points is sometimes seen in practice).
This provides an analysis of variance table as follows. (Note: lof = lack of fit, pe =

pure error).

Source df SS MS

by 1 SS(by) }MS |
Regression|b, p—1 SS(Reg|bo) MS(Reg]|bo) [ V> Regression
Lack of fit n—p-n, SS(lof) Ms(lof)}MS |

Pure error n, SS(pe) MS(pe) Residual
Total n Y'Y

The R? Statistic
The ratio

Rh_wm%M)_ﬂﬁ—YY
" Y'Y - SS(by) Z(Y,-Y)

(5.2.4)

is an extension of the quantity defined for the straight line regression and is the square
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of the multiple correlation coefficient. Another name for R? is the coefficient of multiple
determination.

R? is the square of the correlation between Y and Y and 0 < R? < 1. If pure error
exists, it is impossible for R? to actually attain 1; see the remarks in Section 2.1. A
perfect fit to the data for which ¥; = Y;, an unlikely event in practice, would give

RP=1
IfY,=7, thatis, if b, = b, —===bp_, =0 (or if a model Y = B, + € alone has been
fitted), then R? = 0. Thus R? is a measure f e usefulness of the terms, other than

By, in the model.

R? Can Be Deceptive

It is important to realize that, if there is no pure error, R? can be made unity simply
by employing n properly selected coefficients in the model, including 83, since a model
can then be chosen that fits the data exactly. (For example, if we have an observation
of Y at four different values of X, a cubic polynomial

Y=8+BX+BX +BX°

passes exactly through all four points.) Since R? is often used as a convenient measure
of the success of the regression equation in explaining the variation in the data, we
must be sure that an improvement in R? due to adding a new term to the model has
some real significance and is not due to the fact that the number of parameters in the
model is getting close to saturation point—that is, the number of distinct X-sites. This
is an especial danger when there are repeat observations.

For example, if we have 100 observations that occur in five groups each of 20
repeats, we have effectively five pieces of information, represented by five mean values,
and 95 degrees of freedom for pure error, 19 at each repeat point Thus a five-
parameter model will provide a perfect fit to the five means and may give a very large
value of R?, especially if the experimental error is small compared with the spread of
the five means. In this case the fact that 100 observations can be well predicted by a
model with only five parameters is not surprising since there are really only five distinct
data sites and not 100 as it first seemed. When there are no exact repeats, but the
points in the X-space (at which observations Y are available) are close together, this
type of situation can occur and yet be well concealed within the data. Plots of the
data, and the residuals, will usually reveal such “clusters’ of points.

Adiusted R? Statistic

Sunnose p is the total number of param
2Uppose p 1s woel O palalll

e fi n
RSS, -, is the corresponding residual sum of squares. We have deﬁned the R’ statistic, a
measure of the amount of variation about the mean explained by the fitted equation, as

a fitted model (nr‘lndmo Rn\ and

ters in G mogde!l (nciudim and

b'X'Y - n?z _ 1 RSS"—p

YY-nY? =~ CTSS (5.25)

R*=
where CTSS denotes the corrected total sum of squares Y'Y — nY? and where n is

the total number of observations.
A related statistic, which is preferred by some workers, is the adjusted R’ defined,

in our context, as
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,_,_ (RSS, )(mn-p) n—1.
R:=1 (CTSS)/(n—l)—l 1 R)(n_p). (5.2.6)

An “adjustment” has been made for the corresponding degrees of freedom of the
two quantities RSS,_, and CTSS, the idea being that the statistic R can be used to
compare equations fitted not only to a specific set of data but also to two or more
entirely different sets of data. (The value of this statistic for the latter purpose is, in
our opinion, not high; R? might be useful as an initial gross indicator, but this is all.)

As pointed out by Kennard (1971), adjusted R? is closely related to the C, statistic,
a statistic used in one type of regression selection procedure. We discuss the use of
C, in Chapter 15. Apart from this, we do not use adjusted R? in this book.

The equivalence of the numerators in Egs. (5.2.4) and (5.2.5) may be established
as follows:

S(Y,-Y)?=32¥?- (SY)n
and
> Y?2= Y'Y = (Xb)'(Xb)
=b’X'Xb
=b'X'Y

because X'Xb = X'Y from the normal equations.

5.3. LEAST SQUARES PROPERTIES WHEN ¢ ~ N(0, lo?)

The analysis of variance breakup is an algebraic equality (or a geometric one, de-

o A :

A e e RPN

pending on one’s viewpoini—see Chapter 20) only and does not depend on distributive
properties of the errors. However, if we assume additionally that ¢, ~ N(0, o?) and
that the ¢ are independent—that is, € ~ N(0, Io?)—we can do the following.

1. Test lack of fit by treating the ratio

[SS(lack of fit)/(n —p — n,)
SS(pure error)/n,

(5.3.1)

as an F[(n — p — n.), n.] variate and by comparing its value with F[(n — p — n,), n.,
1 — a]. If there is no lack of fit, SS(residual)/(n — p) = MSg, usually called s? is an
unbiased estimate of o2 If lack of fit cannot be tested, use of s as an estimate of o2
implies an assumption that the model is correct. (If it is not, s? will usually be too
large since it is a random variable with a mean greater than o2. Note carefully, however,
that due to sampiing fiuctuation—since it is a random variabie—it couid aiso be
too small.)

2. Test the overall regression equation (more specifically, test Hy: 8, = 3, = --- =
B,-1 = 0 against H;:not all B; = 0) by treating the mean square ratio

[SS(Reglf;oz)/(P —1)] (5.3.2)

as an F(p — 1, v) variate, where v = n — p.
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Just Significant Regressions May Not Predict Well

Suppose we decide on a specified risk level a. The fact that the observed mean square
ratio exceeds F(p — 1, v, 1 — &) means that a “statistically significant’’ regression has
been obtained; in other words, the proportion of the variation in the data which has
been accounted for by the fitted equation is deemed greater than would be expected
by chance in similar sets of data with the same values of » and X. This does not
necessarily mean that the equation is useful for predictive purposes. Unless the range
of values predicted by the fitted equation is considerably greater than the size of the
random error, prediction will often be of no value even though a “significant’ F-value
has been obtained, since the equation will be ““fitted to the errors’ only. For more
on this, see Section 11.1.

The Distribution of R?
We see that

SS(Regression|b,)

(Y- Y)
N SS(Regression|b)
SS(Regression|b,) + Residual SS
_ V]F
V1F+ Vz,

R?=

(5.3.3)

where the quantity

SS(RegresswntbO)/ A

F=

is our usual F-statistic for testing overall regression given by, that is, for testing the
null hypothesis H,:that all the B’s (excluding B;) are zero against the alternative
hypothesis H,:that at least one of the B’s (excluding ) is not zero. The value of 3,
is irrelevant to the test. To correspond to Eq. (5.3.2) we canset yy = p — 1, i, =
n — p. Under H,, F is distributed as an F(v;, 1) variable. A statistical theorem tells
us that R? follows a B(3y, 31») distribution, called the beta-distribution and (here)
degrees of freedom 41, and $1,. We shall not discuss the beta-distribution at all but,
clearly, if we had appropriate tables we could test H, against H, using R The result
would be exactly equivalent to that of our standard F-test, the significance point for
R? being obtained from Eq. (5.3.3) with F(p — 1, n — p, 1 — «) substituted for F.

For this reason, and because tables of the beta-distribution are not as ""“'e'oul! ;

available as those of F, a test on R? is rarely done.

Properties, Continued

3. If we use an estimate s2 for o2, 100(1 — a)% confidence limits for the true mean
value of Y at X, are obtained from

Yo £ t(y,1 - ba)s, VXH(X'X) 'X,. (5.3.4)
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4. State that
b~ N(B,(X'X) 'a?). (5.3.9)

5. Obtain individual 100(1 — a)% confidence intervals for the various parameters
separately from the formula

1 -+ Pye 4 Iia A" V'l BN Va4 4 r\
b x t{v,1 — a/2)se(b)) {5.3.9)
whare the “calh )’ ic tha canara rant af tha ith diagnanal Af tha v (W/W)-1 2
Wiiviv uiv OWAY;) 10 UiV oyualv 1UUL ULl ulv iudl uiagvilial lCllll O1 ulC lllallll\ \» ) .

These intervals can be used to define a rectangular block in the space of the B’s. This
block is not a proper joint confidence region for the 8’s, however; see (6) instead.
6. Obtain a joint 100(1 — a)% confidence region for all the parameters 8 from
the equation
(B-b)X'X(B —Db) =ps’F(p,v,1 — a), (5.3.7)
where F(p, v, 1 — a) is the 1 — a point (‘‘upper a-point”) of the F(p, v) distribution
and where s? has the same meaning as in (1) above and the model is assumed correct.
This equality is the equation of the boundary of an “‘elliptically shaped” (or “ellipsoi-
dally shaped” more generally) contour in a space that has as many dimensions, p, as
there are parameters in B. (Such regions can also be constructed for a subset of

A mararmatara

th
l.llC Pdl aliicivid. }

Comparisons between (5) and (6) are discussed in Sections 5.4 and 5.5.

Bonferroni Limits

A more conservative (wider) set of intervals of the form of (5.3.6) is obtained if we
replace t(v, 1 — a/2) by t(v, 1 — a/(2p)). It can be shown that these intervals jointly
have a confidence coefficient of at least 1 — a. These, and other sets of rectangular
limits, are described in Nickerson (1994).

5.4. CONFIDENCE INTERVALS VERSUS REGIONS

Floure 5.1 illustrates

a
consxder d. The joint 95%

Figure 5.1. Joint and individual confidence statements. The point (b, b,) defined by the least squares
estimates is at the center of both ellipse and rectangle.
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shown as a long thin ellipse and encloses values (8,, 3;), which the data regard as
jointly reasonable for the parameters. It takes into account the correlation between
the estimates b, and b,. The individual 95% confidence intervals for 3, and 3, separately
are appropriate for specifying ranges for the individual parameters irrespective of
the value of the other parameter. If an attempt is made to interpret these intervals
simultaneously—that is (wrongly) regard the rectangie that they define as a joint
confidence region—then, for example, it may be thought that the coordinates of the
point E provide reasonable values for (8;, 8;). The joint confidence region, however,
clearly indicates that such a point is not reasonable. When only two parameters are
involved, construction of the confidence ellipse is not difficult. In practice, even for
two parameters, it is rarely drawn.

If some knowledge of the ellipsoidal region were desired, it would be possible to
find the coordinates of the points at the ends of the major axes of the region. (In
Figure 5.1 these would be the points A, B, C, and D.) This would involve obtaining
the confidence contour and reducing it to canonical form. This also is not difficult,
but we do not discuss it, because it is rarely done. The major point to be made here
is that the “joint’ message of individual confidence intervals should be regarded with
caution, and attention should be paid both to the relative sizes of the V(b;) and to
the sizes of the covariances of b; and b;. When b; and b; have variances of different
sizes and the correlation between b; and b;, namely,

_ _cov(b,b)
i = VBV (B)]™

is not small, the situation illustrated in Figure 5.1 occurs. If p; is close to zero then
the rectangular region defined by individual confidence intervals will approximate to
the correct joint confidence region, though the joint region is correct. The elongation
of the region will depend on the relative sizes of V(b;) and V(b,). Some examples are
shown in Figure 5.2.

AT e TE bl scmern A Al 20 csraaltbnca maatmsee 11 memd Lee~d PURYS IO PO . S oSy
IVOIE. 11 11T 1110OUCH 1> WIILICI1 Ul lgllldlly, alill 111LCU, 1 11C altCiiauve 101111
Y _ VN =Y — YN1LR{IY — VYL ...l R{Y — VYN
Cr r)=pP/A; = A1) T PAa ™ Ay) ™ T Pi\Ay — Ag),s
where Y, X, X,,..., X, are the observed means of the actual data, then joint confi-

dence intervals can be obtained that do not involve 8;, which sometimes is of little in-
terest.
See Exercise M in “Exercises for Chapters 5 and 6.”

Moral

We shall nearly always look at individual confidence intervals that form a “‘rectangular
brick” in the number of dimensions defined by the number of parameters. This brick
is not a correct joint confidence region, which, in general, is a “‘difficult to see and
estimates could be helpful in relating the brick and the ellipse, if the effort were
thought to be worthwhile.

5.5. MORE ON CONFIDENCE INTERVALS VERSUS REGIONS

We now discuss a one-number calculation that can be useful in comparing a confidence
interval block with an ellipsoidal joint confidence region; see Figures 5.1 and 5.2. In
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A V(1) > V(by)
mzro

p12=0

—> $)

Figure 5.2. Examples of situations where individual confidence intervals combine well to approximate
a joint confidence region for two parameters.

this section, we number the model parameters as 8, 3,, . . . , B8, (rather than S,, B,
.. ., B,-1) to simplify the notation slightly. We first rewrite (5.3.6) and (5.3.7) in the forms
b; x t(v,1 — a/2)(VisH)'?, i=12,...,p, (5.5.1)
where
(V) = V=(X'X)"!, i,j=1,2,...,p,
and
(B—-b)X'X(B —b) =ps*F(p,v,1 - 6). (5.5.2)

In our discussion in Section 5.3, we took 8 = a, but this choice is not necessary.
In Exercise M in “Exercises for Chapters 5 and 6,” we argue that « = 0.05 and 6 =
1 —=(1 = a)® = 0.10, approximately, might be appropriate. Such a choice might be
sensible if there were no correlations between the estimates b;. This is unlikely unless
the regression follows up a carefully designed experiment. If all the b; were mutually
....................
ellipse would be parallel to the sides of the rectangular block. Suppose « is given; it
is often chosen as 0.05. Then we could choose@ in such a way that, when all the b; are
uncorrelated, the rectangular block and the ellipsoid are of the same size. In general,
the volume of the rectangular region is

R=20052(V, V- - V, )2, (5.5.3)
pP

where ¢ = t(», 1 — a/2). The volume of the ellipsoidal region is given by a constant
(depending on the dimension p) times the product of the semi-axial lengths. It can
be shown that this volume is
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E r(plz + 1) (_pS F) C (V11V22 pp) ’ (55 )

where 7 = 3.14159, and where the gamma functions required satisfy I'(u) = (u —
DI — 1), T'(1) = 1, T'(}) = 7' The quantity c, is defined as the determinant of a

normalized form of (Y'Y\ 1 nnmplv of !V /(V V \1/21 Thus 1 ig mmnlv the determinant

A 2214, aiGsizavay

of the correlation matnx of b, by, ..., bp.
The ratio of the volumes of the two regions is, in general,

E n.p/Z pl’/‘2 F‘I’/z(;‘l’/2

R T(pr+1) 2r (5:55)

We now link « and 6 in the following manner. We specify that when ¢, = 1, that is,
when the b, are uncorrelated, E = R, and so their ratio is 1. this implies that, in the
case where the major axes of the ellipsoid are parallel to the axes of the 8’s, we would
wish to link a and 6 so that the ellipsoid and its approximating rectangular block have
equal volume. This requires that

p ap
F(p,v,6) = { “E2LI20
[§ " r )
_MT(pl2 + 1)pP
- —
_H{T(p2 + 1)
_ -

{ttv,1 — al2)}? (5.5.6)

{F(1, v, a)}.

Note, as a check, that when p = 1, we get the obvious 6 = «, for the one-parameter
case. When n = 10, and a = 0.05, the 6 values vary little for given p. For p = 2, for
example, the case most often depicted, and for uncorrelated b; values, we obtain an
elliptical confidence region of size equal to the rectangular region based on separate
95% confidence intervals if we use a 91.3% confidence ellipse (approximately). Similar
annrnsnmatp results for some other cases are 88.4% for p = 3,86.0% fnrp = 4,83.9%

2280 2032208 1002 SVLAE VRALLD SaSTe &

forp = 5, and 82.1% for p = 6.

The above calculations lead us to an easy way to assess how well the rectangular
block can represent the correct ellipsoidal region in a regression for any value of p.
Using any selected linked values a and 6 that satisfy (5.5.6) we see that the right-hand
side of (5.5.5) reduces to c}?. This value gives the ratio of the volume of the ellipsoidal
confidence region compared to the volume of the rectangular block. Note that 0 <
¢;? = 1, the zero corresponding to linear dependence in the X-columns and the 1 to
an orthogonal set of X-columns. A relative volume calculation can be made from
(5.5.5) even if an ellipsoid other than the one satisfying (5.5.6) is selected, of course.
Note that our calculations can also be applied to the slightly different but closely
related suggestlons for conﬁdence reglons made by Welsberg (1985 pp 97 99, Eqgs.

anonical

analysns of (5. 5 2) usmg the value of 6 linked to a.

Example, p = 2. Consider the straight line steam-data fit in Chapter 1. Take a =
0.05. For this fit, p = 2, v = 23, the right-hand side of (5.5.6) is 2.7241,1 ~ 6 = 0.9132,
which we round to 0.913. The correlation between intercept and slope is r = V;y/
(VuVp)'* = (—0.0073535)/[(0.4267941)(0.0001398)]'? = —(0.90628)'? = —0.952. Thus

) = (1 — r)"? = 0.306 and so the 91.3% ellipse covers about 30.6% of the area of
the rectangle. Moreover, the high negative correlation indicates a diagonal upper-left-
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Figure 5.3. Individual 95% confidence bands and a 91.3% joint confidence region for the steam data
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to-lower-right-lying ellipse. Figure 5.3 shows that these simple calculations describe
the situation well. (If the ellipse in Figure 5.3 were replaced by the 95% ellipse, which
surrounds the 91.3% ellipse and juts out somewhat more at the upper-left and lower-
right extremes, the area covered would increase to about 38.4% of the area of the rect-
angle.)

Example, p = 4. Consider (see Appendix 1A) the steam data again, in particular,
the planar fit of the response variable onto predictors X5, X, and X; and an intercept.
We have p = 4, v = 21 and the sides of the rectangular t-block for a = 0.05 are
-13.02 = BO = -7.08,0.075 = BS = 0.729, 0.114 = B, < 0.284, and —0.089 = B =

n A T o D d ey aee wrmeec PRGNS DIprupps i P IO L.
—0.074. The predictors are very highly correlated, however, and c¢,? = 0.000977. Thus

the ellipsoid defined by 6 = 0.14 (1 — 6 = 0.86) has a volume of only about 0.1% of
the rectangular block. The latter thus gives a totally misleading impression; the ellipsoid
is an extremely long thin one. (Even if variable X; is dropped, the ellipsoid still
represents only about 4.3% of the three-dimensional rectangular ¢-block.)

Conclusion. The value of c;?, where ¢, is the determinant of the correlation matrix
of the b;, is a useful calculation to display in regression problems. It provides the ratio
of the volume of the (correct) ellipsoidal joint confidence region for the B’s to the
(wrong but easily obtained) rectangular ¢-block region, for linked « and 6 values that
achieve equal volumes in the uncorrelated case. Supplementary information can also
be obtained from a canonical reduction of the ellipse’s equation. (See, for example,

Rox and nro?nr’ 1987 pp 232372 \ The plgpnvpnfnrc “n" gnlp the exact Or{entahgns

of the major axes of the ellipsoid w1th respect to the 3-axes. These orientations depend
on the correlations between the various pairs of b’s. In particular, if ¢, = 1, the axes
of the ellipse are aligned exactly with the B-axes. Diagrams such as Figures 5.1-5.3
are not needed, once their nature is understood.

When F-Test and t-Tests Conflict

Occasionally one finds a practical regression problem where an overall F-test for
regression given b, is significant, but all the r-tests for individual hypotheses H,: 8, = 0
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are not significant. Largey and Spencer (1996) discuss how such occurrences are related
to diagrams of the form of Figure 5.3. (The reverse case, a nonsignificant F but
significant z-values, is possible but even rarer.)

™2
neIerences

T -

Box and Draper (1987); Draper and Guttman (1995); Largey and Spencer
Weisberg (1985); Willan and Watts (1978).

/10070\.
(1990),

APPENDIX 5A. SELECTED USEFUL MATRIX RESULTS

For a more comprehensive list of results see, for example, Graybill (1961) or Rao
(1973).

1. (AB)' = B'A’, (ABC)' = C'B’A’, etc. If M’ = M, both are symmetric.

2. (AB)'' =B A"l

3. A square matrix C is said to be orthogonal if C'C = 1. Then C' = C".
as M2 = M, also.

5. If M is symmetric and idempotent,

I -2M)d - 2M) = L.

Thus any matrix of the form I — 2M, where M is symmetric and idempotent, is or-
thogonal.

6. Trace (AB) = trace (BA), where trace denotes the sum of the diagonal elements
of a square matrix. (A = p X q, B = g X p, say.)

7. 1f
r A n1 rn — A -3 2 i
A B P=A-BD'C,
M= and if
C D Q=D - CA'B,
then

P—l _ A—IBQ—I
_l -
M [—D“CP“ . ]

assuming all matrices shown inverted are nonsingular. Alternatively,

[ -1 -1 -1 -1 — A1l -1
M_IZ[A +A"BQ'CA"' -A"'BQ ]
l _Q-]CA—] Q—l J
If M is symmetric, set C = B’.
8. IfEisn X p,and Fis p X n, then
(I, + EF)!' =1, — E(1, + FE)''F.

This is especially useful when p is much smaller than n.
Special Case 1. If X isn X p
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I, + X(X'X)"'X')" = L, — X(X'X)"'[I, + X'X(X'X)"']"'X’
= 1, - IX(X'X)"'X".

Thus (I, + H)™' = I, — $H, where H = X(X'X)'X' is the hat matrix.
Special Case 2. If A'is n X n, and u, v are n X 1 vectors, then

A+u)'=T+A)TAT=A"T- (A" - (A u)(VAH)/{1l + v'A 'u}.
This enables inversion of A + uv from knowledge of A™'. (Set E = A"'u, F = v')
9. If AispXp,Bisp X q,Cisq X p,and D is g X g, then

B
ol |A[D — CA™'B| = |A — BD"'C|D|

o
Proof. Premultiply the original matrix by

to oive a matrix eq . .
to give a matnx equation; then t

pecial Case 1. Set C = —B’, D =Tand w
|A|I + B'A"'B| = |A + BB/|.

Special Case 2. Set C = B’ if the partitioned matrix is symmetric.
A useful reference for some special inverse matrices is Roy and Sarhan (1956).
EXERCISES

Exercises for Chapter 5 are located in the Section ‘‘Exercises for Chapters 5 and 6”
at the end of Chapter 6.



CHAPTER 6

The ideas connected with the extra sum of squares principle are extremely important
and must be understood fully by regression practitioners.

6.1. THE “EXTRA SUM OF SQUARES” PRINCIPLE

In regression work, the question often arises as to whether or not it was worthwhile
to include certain terms in the model. This question can be investigated by considering
the extra portion of the regression sum of squares which arises due to the fact that
the terms under consideration were in the model. The mean square derived from this
extra sum of squares can then be compared with the estimate, s?, of o? to see if it
appears significantly large. If it does, the terms should have been included; if it does
not, the terms would be judged unnecessary and could be removed.

We have already seen an example of this in the case of fitting a straight line where
SS (b|by) represented the extra sum of squares due to including the term B, X in the

madal Wa naw ctata tha nracadnira mara ganaral Ciinnnca tha funstiange 7 7
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., Z,-, are known functions of the basic variables X;, X;, ..., and suppose that
values of the X’s and the corresponding response Y are available. Consider the two
models below.

1. Y= Bo + B]Zl + BzZz + -+ Bp_lzp_l + €.

Suppose we obtain the following least squares estimates: byo(1), b,(1), by(1), ..., b,-1(1)
and suppose that SS(by(1), bi(1), by(1), ..., b,-i(1)) = S, and there is no lack of fit.
Let the estimate of o2 be s2, obtained from the residual of Model 1.

2. Y=8B0+BZ + BhZ, + - + B,1Z,-1 + €(q < p).

The Z’s in this Model 2 are the same functions as in Model 1 when subscripts are the
same. There are, however, fewer terms in this second model.
Suppose we now obtain the following least squares estimates: by(2), b,(2), by(2),
.., by_1(2). Note: These may or may not be the same as by(1), bi(1), ..., b,-i(1)
above. If they are identical then b,(1) and b;(1) are orthogonal linear functions for 1
=i=gq —1,q =j=p — 1. This happens when, in Model 1, the first g columns of
the X matrix are all orthogonal to the last p — g columns. This can happen in planned
experiments. It rarely happens otherwise. See Appendix 6A.

149
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Suppose that SS(by(2), bi(2), bx(2), ..., b,-1(2)) = S;, for this second model. Then
Si — S, is the extra sum of squares, due to the inclusion of the terms 8,Z, + --- +
B,-1Z,-1 in Model 1. Since S, has p degrees of freedom and $; has g degrees of freedom,
S) — $; has (p — q) degrees of freedom. It can be shown that, if 8, = B,,, = -+ =
B,-1 = 0, then E{(S, — $;)/(p — q)} = o In addition, if the errors are normally
distributed, (S, — S,) will then be distributed as oy 2_, independently of s?. This means
we can compare (S; — S;)/(p — q) with s2 by an F(p — g, v) test, where v is the

number of degrees of freedom on which s? is based, to test the hypothesis Hy: 3, =
Bege1 = - =B = 0.

We can write S, — S, conveniently as SS(b,, ..., b,-i|bo, by, ..., b,_;) where we
must keep in mind that two models are actually involved since the notation does not
show it. This is read as the sum of squares of b, ..., b,_, given by, b, ..., b,_,. By
continued application of this principle we can obtain, successively, for any regression
mOdel, SS(bo), SS(b}'bo), SS(bz‘bo, bl), ooy SS(bp_1|b0, b], cee bp_z), if we wish. All
these sums of squares are distributed independently of s? and equal their mean squares
since each has one degree of freedom. The mean squares can be compared with s* by
a series of F-tests. This is useful when the terms of the model have a logical “order
of entry,” as would be the case, for example, if Z; = X’. A judgment can then be
made about how many terms should be in the model.

Polynomial Models

When the terms in the model occur in natural groupings, such as happens, for example,
in polynomial models with (1) B,, (2) first-order terms, and (3) second-order terms,
we can construct alternative extra sums of squares, for example, SS(b,), SS(first-order
b’s|b,), SS(second-order b’s|by, first-order b’s), and compare these with s?. The extra
sum of squares principle can be used in many ways therefore to achieve whatever
breakup of the regression sum of squares seems reasonable for the problem at hand.

Other Points

The number of degrees of freedom for each sum of squares will be the number of
parameters before the vertical division line (except when the estimates are linearly
dependent; this happens when X'X is singular and the normal equations are linearly
dependent and will not usually concern us. The number of degrees of freedom is then
the maximum number of linearly independent estimates in the set being considered).
These extra SS are distributed independently of s%. The corresponding mean squares,
which equal (sum of squares)/{degrees of freedom), can be divided by s’ to provide
an F-ratio for testing the hypothesis that the true values of the coefficients whose
estimates gave rise to the extra sum of squares are zero.

The expected value of an extra sum of squares is evaluated in Appendix 6B.

The extra sum of squares principle is actually a special case of testing a general
linear hypothesis. In the more general treatment the extra sum of squares is calculated
from the residual sums of squares and not the regression sum of squares. Since the
total sum of squares Y'Y is the same for both regression calculations, we would obtain
the same result numerically whether we used the difference of regression or residual
sums of squares. See Eq. (6.1.8).
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Two Alternative Forms of the Extra SS

We can decide to remove the correction factor nY2 or not remove it, before we take
the difference between two sums of squares to get an extra sum of squares. For
example, suppose our initial model (Model 1) is

Y=08+B1Xi+B:Xs+ B X+ B Xy + Bs X5 + ¢, (6.1.1)

and we want the extra SS for b;, b,, and bs given by, b, and b,. The reduced model
(Model 2) is

Y = BO + BlXX + BzXz + €. (612)
For Model 1, the regression SS is
SS(bO’ bl, b21 b3a bda bS) = Sl9 (613)

the correction factor is 7Y 2, and the total SS is Y'Y. Thus the residual SSis Y'Y — ;.
For model 2, the regression SS is

(6.1.4)

Y 4

where we no longer show that the Model 2 b’s could be different from the Model 1
b’s of same subscript, though in general they are. (One has to get used to this notation
and to realize that it conceals a possible confusion!) The correction factor is nY? and
the total sum of squares is Y'Y. Thus the residual SSis Y'Y — §,.

We now require

SS(bs, by, b5|b0» by, b)) =8, — S,. (6.1.5)

he vertical bar and/or a reordering after the vertical

ring of b’s before t
g of (6.1.5).] We can rewrite this as

ge the meanin

bAY (£ 1 £\

J (0.1.0)

when it becomes a difference between sums of squares corrected for by, that is,
SS(bl, bz, b3, b4, bslbo) - SS(b], bzibo) (617)

There is yet a third way to get this extra sum of squares. We can rewrite the S, —
Sz as

S, -8 =(YY-8)-(YY-S) (6.1.8)

when it becomes a difference of residual SS but in reversed order, because the regres-
sion with the larger regression SS (S;) must have the smaller residual SS; and vice
wnaron Fae C© NF tha ¢thean molaiilatines tha lhact 10 ¢hha Acn 2111 samafas! MMAae o cemanifin
viida 1UL J)2. UL UIC L1ICC Laitulatiuli, LC UL D LUIC vl yuu }JlClCll \FUI a bl.)CblllL
matrix formula for the extra sum of squares in general, see Section 10.4.)

Sequential Sums of Squares

When we call the regression option in a programming system, we tell the computer
a certain order for our X’s. Sometimes this order has a meaning for us, sometimes it
is just the order in which we wrote down the data. Let us suppose we fitted model
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(6.1.1) and loaded the X’s in the order shown there. Then we would (in some programs,
e.g., MINITAB) or could (in others) see a printout of extra SS of form

SS, = SS(bi|by),
SS; = SS(bylb,, by),
SS; = SS(bilb;, by, by), (6.1.9)

SS, = SS(bdlbs, by, b1, b),
SSs = SS(bs|bs, b3, by, by, by),

often called the sequential sum of squares printout. If, as in our example above,
we wanted the extra SS (6.1.5) or (6.1.6) or (6.1.8) we could get it by summing
SSs + SS; + SS; in (6.1.9). In any printout like this where subscripts 1 and 2 come
first and second (in either order 12 or 21) and subscripts 3, 4, and S come third,
fourth, and fifth (in order 345 or 354 or 435 or 453 or 534 or 543), a similar
calculation will give the correct answer. We cannot get SS(b,, bs, bs|by, b,, bs) from
(6.1.9), however. The breakdown given does not allow this, except in special cases
where there is enough pairwise orthogonality among the columns of the X matrix
to make the calculation correct. In general, it will not work and there is little point
discussing the exceptions in much more detail than is given in Appendix 6A. It is
usually easier to rerun the regression with another ordering of the predictor
variables.

We follow our example one more step. Suppose we wish to test Hy:B3; =
Bs = Bs = 0 in (6.1.1) versus H,:not so. (There are many ways H, would not be
true, so this is the easiest way to state the alternative hypothesis.) Our F-test
would be carried out on

F={(8 — 8)/(6 — 3)}/s,

where s’ is the residual mean square from the larger of the two models, namely, from
the fit of (6.1.1). The degrees of freedom would be 6 — 3 = 3 for the numerator and
(n — 6) for the denominator, where n is the number of observations.

Special Problems with Polynomial Modeis

In models where the X’s are individual predictor variables, it may not make any
difference which B’s are set equal to zero in H, and so tested via an extra SS test. In
the case of a polynomial model, however, certain tests do not make practical sense.
For exampie, suppose that in (6.1.1), we had

X:;:X%, X4:X%, X5:X1X2. (6110)

Testing H,:B8; = Bs = Bs = 0 is sensible because it answers the question: “Do we
need the quadratic curvature in the model?” The question of whether Hy: 3, = 3, =
0 is true is, in general, not a good one, as it is asking if the stationary point of the
surface lies at the origin, a very rare event that depends on the coding of the factors
as well as the shape of the surface. We discuss this issue in more detail in Chapter 12
and there suggest some rules that may be useful.
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Partial Sums of Squares

We have seen how to obtain extra sums of squares for one or more estimated coeffi-
cients given other coefficients by considering two models, one of which includes the
coefficients in question and one of which does not.

If we have several terms in a regression model we can think of them as “‘entering”
the equation in any desired sequence. If we find

SS(bibo, by, .. bty sty oo b, i=1,2,...,k (6.1.11)

we shall have a one degree of freedom sum of squares, which measures the contribution
to the regression sum of squares of each coefficient b; given that all the terms that
did not involve 3; were already in the model. In other words, we shall have a measure
of the value of adding a B; term to the model that originally did not include such a
term. Another way of saying that is that we have a measure of the value of B; as
though it were added to the model last. The corresponding mean square, equal to the
sum of squares since it has one degree of freedom, can be compared by an F-test to

SZ as described, Thig narticular tune of F-test is often called a partial F-test for 3. If
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the extra term under consideration is 3, X,, say, we can talk (loosely) about a partial
F-test on the variable X, even though we are aware that the test actually is on the
coefficient f3,.

When a suitable model is being “built’’ the partial F-test is a useful criterion for
adding or removing terms from the model. The effect of an X-variable (X,, say) in
determining a response may be large when the regression equation includes only X,.
However, when the same variable is entered into the equation after other variables,
it may affect the response very little, due to the fact that X is highly correlated with
variables already in the regression equation. The partial F-test can be made for all
regression coefficients as though each corresponding variable were the last to enter
the equation—to see the relative effects of each variable in excess of the others. This
information can be combined with other information if a choice of variables need be
made. Suppose, for example, either X or X; alone could be used to provide a regression
equation for a response Y. Suppose use of X, provided smaller predictive errors than
use of X;,. Then if predictive accuracy were desired, X; would probably be used in
future work. If, however, X, were a variable through which the response level could
be controlled (whereas X, was a measured but noncontrolling variable) and if control
were important rather than prediction, then it might be preferable to use X, rather
than X, as a predictor variable for future work.

When t = F'2

The partial F-statistic with 1 and » degrees of freedom for testing H,: 8, = 0 versus
H,:B; # 0 is exactly equal to the square of the t-statistic with v degrees of freedom
obtained via t = b;/{se(b;)}, where se(b;), the standard error of b,, is the square root
of the appropriate diagonal term of (X'X)'s’ and s? is based on v df. (This is a
distributional fact that we do not prove.) The test can be made in either F or ¢ form
with the same results. Examination of the tables of percentage points will show that
F(1, v,1 — a) = {t(v, 1 — a/2)} for any values of v and a. (As always, round-off
errors will sometimes prevent the numerical relationship from being exact to the
number of figures quoted.)
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6.2. TWO PREDICTOR VARIABLES: EXAMPLE

We now look at a two-predictor example using part of the steam data. This enables
us to illustrate some of the details mentioned in Section 6.1, as well as the matrix
algebra of Chapter 5. Consider the first-order linear model of form

w7

J— o ' o v N s A ¥4 1 £ ™ 4N\
Y=08 +8X +3X,+e (6.2.1)

We shall continue with the example used in Chapter 1 (the data for which are given
in Appendix 1A) and will now add variable number 6 to the problem. So that we are
clear about which variables are being considered in the model, we shall use the original
variable subscripts. Thus our model will be written

Y = B()X() + Bng + B(,X(, + €, (62.2)

where Y = response or number of pounds of steam used per month, coded,
X, = dummy variable, whose value is always unity,
Xy = average atmospheric temperature in the month (in °F),
X, = number of operating days in the month.

The following matrices can be constructed. (The complete figures for the vector Y
and the second and third columns of matrix X appear in Appendix 1A and are also
given in Table 6.1.)

X, X X,
10.98] (1 353 20] e ]
11.13 1 297 20 &
12.51 1 308 23 Bo &
vy=| 84 [, X=|1 588 20|, B=|B| e=|e
: S Be :
1036 1 334 20 €2
| 11.08 |1 286 22 [ ex

where Yis a (25 X 1) vector,
X is a (25 X 3) matrix,
M :a s £ N/ 1T\ ernnbne
pi1saio X 1) vVecior,

€isa (25 X 1) vector.

Using the results of Chapter 5, the least squares estimates of B, B, and B4 are
given by

b = (X'X)"'X'Y,
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where b is the vector of estimates of the elements of B, provided that X'X is nonsingu-
lar. Thus

( (1 353 20)~
o] 1 1t 1 1 {1 297 20
b=|b8 ={ 353 297 308 286 (|1 308 23|
[mJ [20 20 23 22J S
L |1 286 22])
710.98 ]
1 1 1 - 1 }f1a3
x|353 297 308 --- 286 || 12,51
20 20 23 - 22|
| 11.08

Note the sizes of the matrices in the above statement:
[3 x 1] = {[3 x 25][25 x 3]}"'[3 x 25][25 X 1].
Multiplying the matrices within the large braces, we have

[3 X 1] [3 x 3]
[bo] 2500 1315.00 506.00]"

[
| b | - | 1315.00 76323.42 26353.30 |
|b] | 50600 2635330 10460.00 |

[25 x 1]
= =
[3 X 25] 10.98
1 1 - 1 11.13
X 1353 29.7 --- 286]| 12.51
20 20 .-+ 22 :
| 11.08 |
Then,
[3 x 1] [3 x 3] [3 x 1]
by 25.00 1315.00 506.00 | 235.6000

bs | =[1315.00 76323.42 26353.30 11821.4320 |.
be 506.00 26353.30 10460.00 4831.8600
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Next, the inverse of the [3 X 3] matrix is obtained to give

3 x 1] [3 %3]
b 2.778747 -0.011242 —0.106098
by | = 0.146207 x 1073 0.175467 X 1073
l_b(, J I_(Symmetric) 0.478599 X 102 J
[3 x 1]
235.6000
X | 11821.4320 |.
4831.8600

The inverse calculation can be checked by multiplying (X’X)™' by the original (X'X)
to give a 3 X 3 unit matrix. Note that, since the inverse (like the original matrix) is
symmetric, only an upper triangular portion of it is recorded. Performing the matrix
multiplication gives

[3x1] [3x1]

by 9.1266
by | =1 —-0.0724 |.
b 0.2029

Thus the fitted least squares equation is

-

Y = 9.1266 — 0.9724X; + 0.2029.X,.
Actually, when these matrix calculations are performed by a computer routine, they
are not carried through in precisely this way. One reason for this is that large rounding
errors may occur when this sequence is followed.
Substitution into the fitted equation of the data values of X3 and X leads to the
fitted values Y, and residuals Y; — Y; given in Table 6.1. A plot of the observations
Y, and the fitted values Y, is shown in Figure 6.1.

How Useful Is the Fitted Equation?

The analysis of variance table takes the following form:

ANOVA
Source of
Variation df SS MS F
Regression |b, "2 54.1871 27.0936 61.8999
Residual 22 9.6287 0.4377
Total (corrected) 24 63.8158
Mean (b,) 1 2220.2944
Total (uncorrected) 25 2284.1102

Provided that further examination of the model and residuals shows no flaw, the
least squares equation
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T A BL E 6.1. Steam Data, Fitted Values and Residuals

157

Observation
Number Xy X Y Y Residual
1 35.3 20 10.98 10.63 0.35
2 29.7 20 11.13 11.03 0.10
3 30.8 23 12.51 11.56 0.95
4 58.8 20 8.40 8.93 -0.53
5 61.4 21 927 8.94 0.33
6 71.3 22 8.73 8.43 0.30
7 74.4 11 6.36 5.97 0.39
8 76.7 23 8.50 8.24 0.26
9 70.7 21 7.82 8.27 -0.45
10 57.5 20 9.14 9.02 0.12
11 46.4 20 8.24 9.82 -1.58
12 28.9 21 12.19 11.29 0.90
13 28.1 21 11.88 11.35 0.53
14 39.1 19 9.57 10.15 -0.58
15 46.8 23 10.94 10.40 0.54
16 48.5 20 9.58 9.67 -0.09
17 59.3 22 10.09 9.30 0.79
18 70.0 22 8.11 8.52 -0.41
19 70.0 11 6.83 6.29 0.54
20 74.5 23 8.88 8.40 0.48
21 72.1 20 7.68 7.96 -0.28
22 58.1 21 8.47 9.18 -0.71
23 44.6 20 8.86 9.96 -1.10
24 33.4 20 10.36 10.77 -0.41
25 28.6 22 11.08 11.52 —0.44
23560 S(Y,-Y)=0
Y = 9.424 S(Y; - V) = 9.6432

Y = 9.1266 — 0.0724 X3 + 0.2029 X,

is a significant explanation of the data. The calculated F = 61.90 exceeds the tabulated
F(2, 22, 0.95) = 3.44 by a healthy margin. In fact, the tail area beyond 61.90 is only
p = 0.00007 for the F(2, 22) distribution.

What Has Been Accomplished by the Addition of a Second Predictor

Variable (Namely, X;)?

There are several useful criteria that can be applied to answer this question, and we

now discuss them.

=V
n°

The square of the multiple correlation coefficient R? is defined as

2

_ Sum of squares due to regression |b,

Total (corrected) sum of squares

It is often stated as a percentage, 100R% The larger it is, the better the fitted equation
explains the variation in the data. We can compare the value of R? at each stage of

the regression problem:
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Figure 6.1. Plot of Y, and f’i values by month, for steam data.

Stepl. 'Y = f(X5).

Regression equation 100 R?

Y = 13.6230 — 0.0798.X, 71.44% (see Section 1.3)
Step 2. 'Y = f(X;, Xs).

Regression equation 100 R?

Y =9.1266 — 0.0724 X + 0.2029X,  84.89%

Thus we see a substantial increase in R2

The addition of a new predictor variable to a regression will generally increase R2.
(More exactly, it cannot decrease it and will leave it the same only if the new predictor
is a linear combination of the predictors already in the equation.) Moreover, the
addition of more and more predictors will give the highest feasible value of R? when
the number of data sites equals the number of parameters. The pure error can never
be explained by any fitted model, however, as already mentioned.

The increase in R’ from one equation to the other could be tested but it is pointless
to do so, because the R’ statistic is related to the F-test for regression given by, while
the increase in R? is related to an extra SS F-test. Thus all desired R? tests are conducted
via F-tests.

The Standard Error s

The residual mean square s? is an estimate of o}.x, the variance about the regression.
Before and after adding a variable to the model, we can check

s = VResidual mean square.
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Examination of this statistic indicates that the smaller it is the better, that is, the more
precise will be the predictions. Of course, s can be reduced to the pure error value
(or to zero if there is no pure error) by including as many parameters as there are
data sites. Apart from an approach to such an extreme, reduction of s is desirable. In
our example at Step 1,

s = V0.7926 = 0.89.

At Step 2,
s =V0.4377 = 0.66.

Thus the addition of X has decreased s and improved the precision of estimation.
The value of s is not always decreased by adding a predictor variable. This is because
the reduction in the residual sum of squares may be less than the original residual
mean square. Since one degree of freedom is removed from the residual degrees of
freedom as well, the resulting mean square may get larger.
s'Y
A useful way of looking at the de er
In our example, at Step 1, s as a percentage of mean Y is
0.89/9.424 = 9.44%.
At Step 2, s as a percentage of mean Y is
0.66/9.424 = 7.00%

The addition of X, has reduced the standard error of estimate down to about 7% of
the mean response. Whether this level of precision is satisfactory or not is a matter
for the experimenter to decide, on the basis of prior knowledge and personal feelings.

Extra SS F-Test Criterion

This method consists of breaking down the sum of squares due to regression given b,
into two sequential pieces as follows:

ANOVA
Source of
Variation df SS MS F
Regression |b, 2 54.1871 27.0936 61.8999
Due to bs|b, 1 45.5924 45.5924 104.1636
Due to bglbg, by 1 8.5947 8.5947 19.6361
Residual 22 9.6287 0.4377
Total (corrected) 24 63.8158

The F-value of 19.64 exceeds F(1, 22, 0.95) = 4.30 by a factor of more than four,
indicating a statistically significant contribution by the addition of Xj to the equation.

We can, of course, also consider what would have been the effect of adding the
variables in the reverse order, X followed by Xj. It is still the same amount SS(bg,
belby) = 54.1871, which is split up, but the split is now different (and will be different
in general except when the conditions of Appendix 6A prevail). We obtain:
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ANOVA
Source of
Variation df SS MS F
Regression (b, 2 54.1871 27.0936 61.8999
Due to bglb, 1 18.3424 18.3424 41.9063
Due to bglbs, b, 1 35.8447 35.8447 81.8933
Residual 22 9.6287 0.4377
Total (corrected) 24 63.8158

To get the entry for SS(bglb,) we have to fit ¥ = 3.561 + 0.2897.X; and evaluate the
expression S%,/Se¢ = 18.3424. Comparing the sums of squares, we find:

Contribution of X in First X, in First
X3 45.59 35.84
X 8.59 18.34
Totals 54.18 = 54.18

In this example, each variable picks up more of the variation when it gets into the
equation first than it does when it gets in second. This is also reflected in the correspond-
ing F-values. However, X; is still the more important variable in both cases, since its
contribution in reducing the residual sum of squares is the larger, regardiess of the order
of introduction of the variables. Behavior like this is common, but is not guaranteed. See
Appendix 6B.

Standard Error of b,

Using the result given in Section 5.2, the variance—covariance matrix of b is (X'X) 'a%

Thus variance of b, = V(b) = c;0?, where c; is the diagonal element in (X'X)"!
corresponding to the ith variable.

The covariance of b;, b; = c,o? where c; is the off-diagonal element in (X'X)™!
corresponding to the intersection of the ith row and jth column, or jth row and ith
column, since (X'X)™! is symmetric.

Thus the standard deviation of b; is ¢ Vc; and we replace ¢ by s to obtain the
standard error of b;. For example, the standard error of bs is obtained as follows:

est. var(bg) = s%cg
= (0.4377)(0.146207 x 107?)
= 0639948 X 10",

Then se(bs) = Vest. var(bs) = V0.639948 X 10~ = 0.008000.

Note that the t-statistic, ¢ = bg/se(bg) = ~0.0724/0.008 = —9.05 so that 2 = 81.9025.
In theory, this is identical to the partial F-value Fgs, = 81.8933 in the foregoing
table. As usual, rounding errors have crept into the calculations. The paraliel cal-
culation for bg is t = 0.2029/{(0.4377)(0.478599 X 1072)}? = 0.2029/0.0458 = 4.433 =
(19.6515)'2, whereas Fgs9 = 19.6361.
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Correlations Between Parameter Estimates

We can convert the (X’X) 's? matrix or, more simply, the (X'X)! matrix, because s*
cancels out, into a correlation matrix by dividing each row and each column by the
square root of the appropriate diagonal entry. Using the (X'X) ™' matrix of the steam
data, for example, we divide the first row and the first column by the square root of
the first diagonal entry, that is by, (2.778747)"? and so on, moving down the diagonal.
We obtain, to three decimal places,

0 8 6
0 1.000 -0.558 —0.920
8 1.000  0.210 .
6 | (Symmetric) 1.000

The correlations between estimates are Corr(by, bg) = —0.558, Corr(by, bs) = —0.920,
and Corr(bg, bs) = 0.210.

-f w am o 2R N

£ o O Y s 2
T, GIVEIl a 9peliliv ottt VI

Xs
e predicted value Y = by + by X; + +-- + b, X, is an estimate of
EY)=B+BX, + -+ B, X,.
The variance of ¥, V[by + b, X; + -+ + b,-; X,1], is
V(by) + XiV(b) + -+ Xi,V(b,-)
+2X,cov(by,by) + -+ +2X,, X, cov(b,_2, b,_)).

This expression can be written very conveniently in matrix notation as follows, where
C=X'X)"

V(Y) = oA(XiCXo)

qar -
[ co Cop-1 1
Co Cn """ Crp-1 X,
— 42 ‘
=g [1 X1 cee Xp-l]
[ Cp-10 Cp-1.p-1 L Xp-1 ]

Thus the 1 — « confidence limits on the true mean value of Y at X, are given by
Y+ H(n—p),1-la} s VXiCX,.

For example, the variance of ¥ for the point in the X-space (X; = 32, X, = 22) is
obtained as follows:

est. var(Y) = s(X;CX,)
= (0.4377)(1, 32, 22)
2.778747 -0.011242 —0.106098 1
X | —0.011242  0.146207 X 107> 0.175467 X 1073 |{ 32
—0.106098  0.175467 X 107>  0.478599 X 107% || 22

= (0.4377)(0.104140) = 0.045582.
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The 95% confidence limits on the true mean value of Y at X3 = 32, X = 22 are given by

Y + 1(22,0.975) - s VXCX, = 11.2736 + (2.074)(0.213499)
11.2736 + 0.4418

These limits are interpreted as follows. Suppose repeated sampies of Y’s are taken
of the same size each time and at the same fixed values of (X3, X;) as were used to
determine the fitted equation obtained above. Then of all the 95% confidence intervals
constructed for the mean value of Y for X3 = 32, X = 22, 95% of these intervals will
contain the true mean value of Y at X3 = 32, X, = 22. From a practical point of view
we can say that there is a 0.95 probability that the statement, the true mean value of
Y at X; = 32, X, = 22 lies between 10.8318 and 11.7154, is correct.

Confidence Limits for the Mean of g Observations Given a Specific
Set of X’s

These limits are calculated from
Y*t(r,1-3a) sV1g + X;CX,.

For example, the 95% confidence limits for an individual observation for the point
(Xz = 32, X, = 22) are

Y +1(22,0.975) - s V1 + XiCXo = 11.2736 + (2.074)(0.661589)V1 + 0.10413981

= 11.2736 = (2.074)(0.661589)(1.050781)
= 11.2736 + 1.4418
= 9.8318,12.7154.

Note: To obtain simultaneous confidence surfaces appropriate for the whole regres-
sion function over its entire range, it would be necessary to replace t(v, 1 — 3a) by
{pF(p, n — p, 1 — a)}'?, where p is the total number of parameters in the model
including B,. (Currently, v = n — p. In the example, n = 25, p = 3.) See, for example,

Miller (1981).

Examining the Residuals

The residuals shown in Table 6.1 could be examined to see if they provide any
indication that the model is inadequate. We leave this as an exercise, except for the
following comments:

1. Residual versus Y plot (Figure 6.2). No unusual behavior is indicated.

2. The runs test and the Durbin-Watson test indicated no evidence of time-dependent
nonrandomness. (See also Exercise A, in ‘“Exercises for Chapter 7.”)

6.3. SUM OF SQUARES OF A SET OF LINEAR FUNCTIONS OF Y’s

In some applications, for example, two-level factorial designs, the items of interest
are contrasts, that is, linear combinations of Y’s whose coefficients add to zero, so
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Figure 6.2. Residual versus Y plot.

that part of the data is “‘contrasted”” with another part. It is often puzzling in such
circumstances to know what is the sum of squares attributable to such a contrast. In
regression work, the parameter estimates are also linear combinations of the observa-
tions, although not contrasts. We give here a rule that is foolproof for getting an
appropriate sum of squares of any set of linear functions C'Y, say, where C’ is an
m X n matrix. The correct answer emerges even if the set contains duplicated linear
functions or linear functions that are linear combinations of other linear functions!

Let C'Y be a set of linear functions of the observations Y. Then the sum of squares
due to C'Y is defined as follows:

SS(C'Y) =2'C'Y = Y'Cz, (6.3.1)
where z is any solution of the equations
CCz=CY. (6.3.2)

Sometimes z is unique, sometimes not. Nevertheless, the resulting sum of squares is
always unique. In the above, C'Yism X 1,C'ism X n,Yisn X 1l,andzis m X 1.

Special Case m = 1. Let C' = ¢/, a1 X n row vector. Then
SS(e’Y) = ('Y)¥c'c. (6.3.3)
General Nonadditivity of §S. Suppose that

Ci
C = (6.3.4)
G

where C| is m; X n and C; is m, X n, where m; + m, = m. Then

SS(C’Y) = SS(CY) + SS(C}Y) (6.3.5)
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if and only if C{C, = 0, that is, if and only if all the rows of C; are orthogonal to all
the rows of C;. (This can also be expressed as ““all the columns of C, are orthogonal
to all the columns of C,.”")

Example 1. Find the sum of squares due to the least squares estimatesb = (X'X) ' X'Y
in the nonsingular case.
Here C’' = (X'X)'X’, so that z is any solution to
X'X)"'X'X(X'X) 'z = (X’X)'X"Y,
which is clearly given (uniquely) by z = X'Y. Thus
SS(b) = (Y'C)z = b'X'Y,
the familiar formula.

Example 2. Find SS(Y). We see that Y = ZY,/n = ¢'Y, where

¢ = (L

Thus ¢’c = 1/n and SS(Y) = Y?/(1/n) = nY2

:IH
:lb—a
_—,|.._
\\_//

~
-
-
-
-
-

Example 3. For a straight line fit, find SS(b,). We write b, = ¢'Y, where the ith
element of ¢’ is (X; — X)/Sxyx. Thus ¢'c = 1/Syy and SS(b)) = Sxxb} = S%y/Sxx.

Example 4. For a straight line fit, find SS(b;). Now b, = Y — b, X so that the ith
element of ¢’ is

and
o1 _2X(X-X) XZ(X—Y)Z}
cc—;{nz nSxx Skx ’
1 X
= — 4+ —
n XX
and so
AT
) =8/ 3 5l

Note: This is not the usual SS(b,) in regression tables, because the usual SS(by) =
nY?is really SS(Y), that is, the SS of the by we would get from the model Y = 8, +
€. The SS(b) of this example is

SS(by|b,) for the model Y = B, + B, X + €.

Examples 2, 3, and 4 provide important clues as to what formula (6.3.1) produces.
It is always the extra sum of squares. For the general case, we write
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(Xl s Xz) (2) €,

I—X{] [X X, X{X2] [_Cn CIZ—I
| X1, Xy) = | x: =

-y

1X, xgsz B |LC21 Cy, J

say. We write the inverse as

Cll C]Z
C21 C22
so that
b, ClX; + C'?X; DY
= Y= , say
b, C¥X; + C2X;} DY
L1 L™ | L™=

£ 1\ £ M\

If formulas (6.3.1) and (6.3.2) are applied to b, the resuit will be the extra SS(b,jb;).

We omit the proof, which is intricate but not difficult. It requires use of the second
inverse in Result 7, Appendix SA, and involves showing that D;D, = Q°!, where
Q = Xo(I - X(X(X))” 1X1)X2 X;Z, say, where Z is the residual matrix when X is
regressed on X;. Thus Z is “the part of X, orthogonal to X;,” and it is easy to see
that X{Z = 0. It then follows that z = QD;Y and that z’D,Y = Y'Z(Z'Z)'Z’Y. This
is one form of the extra sum of squares.

APPENDIX 6A. ORTHOGONAL COLUMNS IN THE X MATRIX

Suppose we have a regression problem involving parameters 83,, 8;, and 8,. Using the
extra sum of squares principle we can calculate a number of quantities such as:

SS(b,) from the model Y=8X,+¢€
SS(ba|by) from the model Y=8,+B8X;+¢€
SS(ba|by, by) from the model Y=08,+BX+BX,+e

These will usually have completely different numerical values except when the “3,”
column of the X matrix is orthogonal to the “B,”” and the “B,” columns. When this
happens we can unambiguously talk about ““SS(b,).”” We now examine this situation

in more detail.
Suppose in the model Y = X + € we divide the matrix X up into ¢ sets of columns

denontad in matriv form hv
U\all\.l WAl 111 111301 1A AVU/1L11L U}

X
| Sk )

X, ..., X}

A= 2y o . Fe NI

A corresponding division can be made in 8 so that
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where the number of columns in X; is equal to the number of rows in 8;,i = 1, 2,
..., t. The model can then be written

E(Y) = XB = X8 + X;B + -+ + XB,.
Suppose that

rbl
b,

is the vector estimate of B for this model (and given data) obtained from the nor-
mal equations

SS(b) = SS(b,) + SS(by) + - - - + SS(b))
=bXY +bXY + - + /XY

and b; is the least square estimate of B;, and SS(b;) = b/X/Y whether any of the other
terms are in the model or not. Thus

SS(b)) = SS(bjany set of b;, j # i).

(Note that it is not necessary for the columns of X, to be orthogonal to each other—only
for the X; columns all to be orthogonal to all other columns of X.)

~

We consider the case ¢t = 2. Here
X = (X, Xy),
where XX, = X;X, = 0. (This means that all the columns in X, are orthogonal to all
the columns in X,.) We can write the model as
Y=XB+e€e=X8 +X,8 +c¢

where B’ = (B, B;) is split into the two sets of coefficients, which correspond to the
X and X, sets of columns. The normal equations are X'Xb = X'Y; that is,

[X:xl X{xz” bl_l [ X{Y]
| XX XiXo || B2 | XaY |

where a split in b corresponding to that in 8 has been made. Since the off-diagonal
terms XX, = 0, X;X;, = 0, the normal equations can be split into the two sets
of equations

with solutions

b = (XiX)'X1Y; b, = (X;X;)'X3Y,
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assuming that the matrices shown inverted are nonsingular. Thus b, is the least squares
estimate of B, whether B, is in the model or not, and vice versa. Now

SS(b,) = b)X|Y and SS(b,) = biX}Y.

SS(b,, b)) = b'X'Y
= (bll ’ bZ')(xl s XZ)’Y

X(Y
= (b1, bs)
X;Y

= b X]Y + )X;Y
= SS(b,) + SS(b,).
It follows that
SS(by|b,) = SS(b;, b,) — SS(b,) = SS(b,).
Similarly,
SS(byjb,) = SS(b,)

and this depends only on the orthogonality of X, and X,. The extension to cases where
t > 2 is immediate.

APPENDIX 6B. TWO PREDICTORS: SEQUENTIAL SUMS OF SQUARES

We saw in the example of Section 6.2 that the SS(bg, bg|b,) splits differently according
to the sequence of entry.

. . T
SS Contribution of First Predictor in Is

Predictor Below When: X X5
Xs 45.59 35.84
X 8.59 18.34
Totals 54.18 54.18
This type of split-up where one variable (here X;) has the larger SS whether it

enters first or second happens quite frequently but other cases can occur, some of
them quite strange. Schey (1993) has discussed and illustrated this point using seven

“contrived examples.”
Table 6B.1 shows the seven data sets and Table 6B.2 shows the disposition of the

regression sums of squares using the same formation as above. (Our recomputations
vary slightly from Schey’s numbers, but the point is not affected.) The model fitted is

Y = BO +B|X| + B2X2 + €,
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TABLE 6B.1.

Seven Example Sets of Data Devised by Schey (1993)

EXTRA SUMS OF SQUARES

Set X] Xz Y Set X] Xz Y
1 1.80 12.80 3N 5 4.66 0.56 6.23
8.90 12.21 12.29 8.05 -3.94 5.66
4.76 i5.46 -0.79 9.61 -2.86 4.16
1.86 8.93 0.90 8.59 -1.63 343
2.69 3.92 3.04 347 0.22 —2.46
1.36 1.64 -4.00 4.04 -1.13 -041
7.84 16.07 10.33 0.63 2.25 0.15
2.79 9.56 4.80 5.91 -0.90 1.18
3.94 15.55 6.03 8.18 ~1.87 8.44
431 3.14 0.86 438 ~1.10 1.55
2 1.83 —4.20 -0.53 6 0.23 2.12 1.01
7.17 3.55 7.20 0.15 5.41 -3.73
6.18 1.57 5.55 5.03 1.90 11.00
9.44 —-2.64 3.02 7.99 -3.36 11.17
0.86 12.27 —0.56 1.08 2.68 0.32
0.34 -5.94 -6.36 3.24 4.03 6.65
5.02 2.35 8.64 941 -1.84 7.52
9.98 547 12.24 6.34 -1.62 0.86
2.00 12.21 5.07 8.17 —4.15 1.55
7.92 8.14 9.86 5.00 1.48 6.24
3 9.09 -3.97 31.60 7 0.26 2.36 —1.81
4.09 37.43 21.21 3.74 0.45 1.72
0.97 -17.97 —4.36 8.46 -1.43 8.13
1.45 24.94 10.18 9.27 —4.54 1.62
0.73 7.61 -0.54 0.67 2.45 -1.06
331 -6.93 9.53 9.51 -5.07 7.89
7.97 1945 28.53 891 —5.49 1.97
9.81 —41.36 16.77 3.97 3.31 6.69
0.79 —8.44 -5.94 5.77 -2.69 1.02
2.15 3.56 2.03 3.50 3.95 8.43
4 3.82 13.36 11.77
8.06 20.41 10.79
0.01 -1.42 1.27
3.27 3.92 1.55
5.10 7.49 3.19
8.22 12.69 -1.79
5.49 15.16 7.86
2.98 15.02 9.52
8.97 19.46 3.75
9.48 12.14 -3.53

which can be fitted in the form

Y=Y =8(Xi— X))+ B(X, - X)) + ¢

with identical results. If the columns X; — X, and X, — X, were orthogonal, the entry

order would not matter, as in Appendix 6A.

We see the following:
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T A B L E 6B.2. Sequential Sums of Squares in Seven Examples Devised by Schey (1993)

Data SS Contribution of First Predictor in Is
Set Number Predictor Below When:
X| Xz
1 X, 134.10 71.89
X, 9.62 71.83
2 X 169.12 169.09
X, 56.34 56.37
3 Xi 1162.89 1446.14
X, 387.22 103.14
4 X, 14.70 164.41
X, 204.51 54.80
5 X 43.94 23.60
X; 3.16 23.50
6 X 73.87 74.21
X, 24.85 2451
7 Xi 28.83 115.16
X, 86.33 0.00

1. Case 1 shows X, very important when it enters first, and X, and X, are equally
important in the reverse order.

2. Case 2 has the vectors of (X; — X;) and (X, — X,) orthogonal, so the entry order
is irrelevant, as in Appendix 6A.

3. Each variable contributes more when it comes in second! When SS(b,|b,, b) >
SS(b,|b,), X, is said to be a suppressor variable. Here, both X, and X are suppres-
sor variables.

4. This case is similar to the third, but it differs in certain geometrical aspects discussed
in the reference, aspects which we have omitted.

S. Similar to 1, but different geometry.

6. A remarkable case because the vectors of (X; — X;) and (X, — X,) are not
orthogonal, but the sums of squares are essentially unchanged. So orthogonality is
sufficient, but not necessary, for this SS behavior.

7. An extreme case that is unlikely to arise from real data. Variable X, contributes
nothing when it goes in first, but accounts for SS(b,|b;, b,) = 86.33 when it goes
in second!

References

Freund (1988); Hamilton (1987a, b); Mitra (1988); Schey (1993).
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A. Consider the data in the following table:
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EXTRA SUMS OF SQUARES

XO XI Xz Y
1 1 8 6
1 4 2 8
1 9 -8 1
1 11 ~10 0
1 3 6 5
1 8 -6 3
1 S 0 2
1 10 ~12 -4
1 2 4 10
1 7 -2 -3
1 6 -4 5

Requirements

1. Using least squares procedures, estimate the 8’s in the model:
Y =BXo + B X + B Xy + e

3. Using a = 0.05, test to determine if the overall regression is statistically significant.

4. Calculate the square of the multiple correlation coefficient, namely, R*. What portion
of the total variation about Y is explained by the two variables?

5. The inverse of the X'X matrix for this problem is as follows:

43705 -0.8495 —0.4086
—0.8495 0.1690 0.0822
—0.4086 0.0822 0.0422

Using the results of the analysis of variance table with this matrix, calculate estimates of
the following:
a. Variance of b,.
b. Variance of b,.
c. The variance of the predicted value of Y for t
6. How useful is the regression using X, alone? Wha
is already in the regression?
7. How useful is the regression using X; alone? What does X, contribute, given that X;
is already in the regression?

8. What are your conclusions?

The table below gives 12 sets of observations on three variables X, Y, and Z. Find the
regression plane of X on Y and Z—that is, the linear combination of Y and Z that best
predicts the value of X when only Y and Z are given. By constructing an analysis of
variance table for X, or otherwise, test whether it is advantageous to include both Y and
Z in the prediction formula.

r the int X, =3 X,=25.
t

LN 1 S, 22 J

N
r-
does X, contribute, given that X

X Y V4
1.52 98 77
1.41 76 139
1.16 58 179
1.45 94 95
1.24 73 142
1.21 57 186
1.63 97 82
1.38 91 100

1.37 79 125
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C.

X Y VA
1.36 92 96
1.40 92 99
1.03 54 190

Source: Cambridge Diploma, 1949.

The data below are selected from a much larger body of data referring to candidates for
the General Certificate of Education who were being considered for a special award.
Here, Y denotes the candidate’s total mark, out of 1000, in the G.C.E. examination. Of
this mark the subjects selected by the candidate account for a maximum of 800; the
remainder, with a maximum of 200, is the mark in the compulsory papers—‘General”
and “Use of English”—this mark is shown as X,. X, denotes the candidate’s mark,
out of 100, in the compulsory School Certificate English Language paper taken on a
previous occasion.

Compute the multiple regression of Y on X, and X,, and make the necessary tests to

enable you to comment intelligently on the extent to which current performance in the
combnulsorv papers may be used to predict aggregate pf_-._rfnrmance in the G.C.E. examina-

..... pulsory be used to predict aggregate performance
tion, and on whether previous performance in School Certificate English Language has
any predictive value independently of what has aiready emerged from the current perfor-

mance in the compulsory papers.

Candidate Y X, X, Candidate Y X, X,
1 476 111 68 9 645 117 59
2 457 92 46 10 556 94 97
3 540 90 50 11 634 130 57
4 551 107 59 12 637 118 51
5 575 98 50 13 390 91 44
6 698 150 66 14 562 118 61
7 545 118 54 15 560 109 66
8 574 110 51

Source: Cambridge Diploma, 1953. (Exercises B and C are published with permission of Cambridge
University Press.)

Eight runs were made at various conditions of saturation (X,) and transisomers (X,). The
response, SCI, is listed below as Y for the corresponding levels of X, and X,.

Y X, X
66.0 38 47.5
43.0 41 21.3
36.0 34 36.5
23.0 35 18.0
220 31 29.5
14.0 34 142
12.0 29 21.0

7.6 32 10.0

1. Fit the model Y = B() + ﬁlxl + BzXz + €.
2. Is the overall regression significant? (Use o = 0.05.)
3. How much of the variation in Y about Y is explained by X; and X,?

The effect of sealer plate temperature and sealer plate clearance in a soap wrapping
machine affects the percentage of wrapped bars that pass inspection. Some data on these
variables were collected and are shown as follows:
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Sealer Plate Sealer Plate % Sealed
Clearance, X, Temperature, X, Properly, Y
130 190 35.0
174 176 81.7
134 205 425
191 210 98.3
165 230 52.7
194 192 82.0
143 220 345
186 235 95.4
139 240 56.7
188 230 84.4
175 200 94.3
156 218 443
190 220 833
178 210 914
132 208 43.5
148 225 51.7

PR o

Requiremenis
1. Assume alinear model Y = 8, + 8, X + 8,X; + € and determine least squares estimates
of By, B1, and B,.
2. Is the overall regression significant? (Use a = 0.05.)
3. Is one of the two variables more useful than the other in predicting the percentage
sealed properly?
4. What recommendations would you make concerning the operation of the wrapping ma-
chine?
F. Using the 17 observations given below:
1. Fit the model Y = B, + 81X, + B X, + €.
2. Test for lack of fit, using pure error.
3. Examine the residuals.

4. Assess the value of including each of the variables X, and X in the regression model.

X, X Y
17 4?2 90
19 45 71,76
20 29 63, 63, 80, 80
21 93 80, 64, 82, 66
25 34 75, 82
27 98 99
28 9 73
30 73 67, 74
G. Fitthe model Y = B; + B, X, + 3,X; + € to the data below. Check for lack of fit via both
pure error and the examination of residuals. Assess the value of including each of the

predictors X; and X, in the regression model.

X, X, Y
2.6 39 83
2.8 4.2 64
2.8 42 69
29 2.6 56
29 2.6 56

29 2.6 73
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X X, Y
2.9 2.6 73
3.0 9.0 57
3.0 9.0 59
30 9.0 73
3.0 9.0 75
34 31 68
34 3.1 75
3.6 9.5 92
37 0.6 66
39 7.0 60
39 7.0 67
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H. (Please refer to Exercise LL in “Exercises for Chapters 1-3” first.) After he had analyzed
the original data, the manager rechecked the records to try to find additional information
that would improve his model. He drew out the facts that the numbers of men working

at any one time were, for the listing of days shown originally, as follows:

Z=0000001001,3,6,6.

Fit a planar model Y = B, + B, X + B,Z + € to the entire data set via least squares,
check for lack of fit, and (if there is no lack of fit) test for overall regression. Also test
H,:B, = 0 versus H,: 8, # 0 using the extra sum of squares principle. What conclusions

s?

17

83

do you draw from your analysi
Useful Facts.
(13 65
X'X)'=]65 437 155
| 17 155
[ 2,990

| 6,050

X'Y = 19,120J , b

-1

12,246

1
24780 27
2,646
[ -147.360 |

-1
24,780

1,346,900
—678,860

'

-2,760
790
-910

2,646
=910
1,456

[ —5.947]

54.354 |.
—27.396

’

I. Fitthe model Y = B, + B, X, + B, X, + € to the data below, provide an analysis of variance

table, and perform the partial F-tests to test Hy:3; = 0 versus H,:B; # 0 for i

1, 2,

given that the other variable is already in the model. Comment on the relative contributions
of the variables X, and X, depending on whether they enter the model first or second.

X, X, Y
-5 5 1
-4 4 1
-1 1 8
2 -3 2
2 -2 5
3 -2 5
3 -3 4

J. Fit the model Y = B, + B, X| + B,X; + € to the data below. After testing for lack of fit,
find the appropriate extra SS F-statistic for testing H,: 8, = 0 versus H,: 3, # 0, and find
its degrees of freedom. Relate this F-statistic numerically to the r-statistic typically used

to test the same hypothesis.
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X, X, Y
-1 -1 8
-1 1 13
-1 1 12
-1 1 11
1 -1 9
1 -1 8
1 -1 7
1 1 13
0 0 11
0 0 13

K. The questions below relate to fitting the model ¥ = B, + B, X, + B, X, + € to the
following data:

X X; Y
-1 -1 7.2
-1 0 8.1
0 0 9.8
1 0 12.3
1 1 12.9
Sum 0 0 50.3
Sum of squares 4 2 531.19

. Write down the normal equation (X'X)b = X'Y in matrix format.
. Obtain the solution b = (X'X)'X'Y using matrix manipulations.
. Find SS(b,, b, b,) via matrix manipulations.

. Find the residual sum of squares, and obtain s

Evaluate se(b), i = 0, 1, 2.

Find Y, at the point (X, X5) = (0.5, 0
Obtain se(Y,).

Find SS(b,|b,, by).

. You are now told that the 9.8 value at (0, 0) in the data is the average of four observations
so that the variance of this Y is ¢?/4 and not o’. However, all observations are still
independent. Your informant says that you should have used weighted least squares
b = (X'VX)'X'V'Y, where V is a diagonal matrix here, to get your estimates.
Provide the new (weighted least squares) values of by, b,, and b,. (See Section 9.2.)

N’

YRR B WN

L. For the experimental situation described in Exercise DD of “Exercises for Chapters
1-3,” suppose that data for the concentratioin of chemicali A had been recorded for
each run. It is suggested that the variation found in this factor might be causing the

large variation in response discovered previously. The readings of the concentration
factor C (in percent) are:

Batch 1 2 3 4 5 6 7 8 9

c 6 6 8 7 9 8 5 9 1

where the batch numbers are the same as in Exercise DD.
1. Plot the residuals obtained in Exercise DD versus C. Notice anything?
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2.* Fit the model Y = B, + B X, + B:X, + € to the data, where X, = (T — 300)/10 and
X2 =(C-8.

3. Perform an analysis of variance and test:
a. The lack of fit.
b. The significance of the effect of including 8, and 3, in the model, rather than only 3,.
¢. The significance of including B3, in the model, rather than just 8, and 8,.

4. What percentage of the total variation (corrected) has been ““taken up” by including
the concentration effect in our model?

5. What is the standard error of b,? Of b,? (b, and b, are the regression coefficients in
the expression for ¥ in terms of the original variables T and C.)

6. Write the fitted value and the residual for each batch. Notice anything?

7. What is the estimated variance of the predicted value ¥ at the point T = 315, C = 8?

M. Using the data given in Table 1.1, find a joint 90% confidence region for (B3,, B).
[F(2, 23, 0.90) = 2.55.]

Figure M.1.

On an accurate figure (Figure M1 shows the appropriate format) draw the following:

1. The estimated point (b, b;).

2. The 90% confidence contour for (B, B:).

3. The 95% confidence intervals for B, and B,, separately, and the rectangle these
jointly indicate.

Comment briefly on your results.

Hints: (a) Equation (5.3.7), written out, is a quadratic equation in 3, and 3,. To get the ellipse,
set a value of B, and solve the resulting quadratic for two values of B, to get an upper and
lower point on the ellipse (see Figure M2). Imaginary roots mean that your selected 3, value
is outside the ellipse (see Figure M3). Repeat for several values of 8, and join up the points.
It is easiest to use the computer for the calculations.

By
A

X >4

Figure M.2.

*If you employ the coding system X; = (T — 300)/10, X, = C — 8, you may use the following hint:
9 -2 =37 1165 19 112
1
2 4 13 = T0111 19 252 -111].

-3 13 29 112 -111 410
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X > 4,

Figure M.3.

(b) Because the two intervals are 95% ones, the rectangle is a sort of (0.95)(0.95) = 0.9025
or 90{% joint region—an incorrect one, we know, but that is the probability level. Thus we
compare it with a 90% true region, the nearest we can easily look up from the F-tables.

N.

0.

=

Show that the square of the multiple correlation coefficient R? is equal to the square of
the correlation between Y and ¥

Consider the formal regression of the residuals e; onto a quadratic function «, + aY, +

a,Y? of the fitted valpes Y, by least squares. Show that all three estimated coefficients
depend on T, = Ze¢,Y?. What does this imply?

. We fit a ctrmoht line model to a set of data nmno the formulas b = (X'X)'X'Y, Y = Xb

uuC U a s Udla Usl ¢ 1d wuias 1 L4

with the usual definitions. We define H = X(X' X) 'X". Show that
SS(due to regression) = Y'HY
=Yy
= Y'HY.

Show that X'e = 0.
Show that, for any linear model

> V(Y)/n = trace{X(X'X) 'X'}o¥/n = pa?/n.
i=1

. See Exercise Y in “Exercises for Chapters 1-3.”” Would that result extend if there were

more X's? (Yes.)

Suppose Y = XB + € is a regression model containing a 3, term in the first position, and
1=(1,1,...,1) isann X 1 vector of ones. Show that (X'X)'X'1 = (1,0, ...,0)" and
hence that 1'X(X'X)'X'1 = n. (Hint: X'1 is the first column of X'X.) These results can
be useful in regression matrix manipulations. For connected reading, see letters in The
American Statistician, April 1972, 47-48.

. By noting that X, = (1, X1, X,,...) can be written as X'1/n, _and applying the result in

Exercise T above, show that V(Y) at the point (X, X3, ..., X,) is o%/n.

. Look again at the (X, Y;) data of Exercise E in “Exercises for Chapters 1-3." Fit the

quadratic model
Y=Bo+31X+BnX2+€

to these data and provide the usual subsidiary analyses. Draw the fitted curve on a plot

it it ~Ff tha ~Anruan

Aftha Ao A tha ala Al tha
O1 lllC uala ana CDlllllalC lllc dUDleDa vaiuc al lllC minimuim puln o1 lllC Lulive.,

[Hint: 1t is at —b,/(2by;).] What does your conclusion mean?

[Note: You may have to code the data if your intended regression is frustrated by the
computer. If that happens, why does it happen? A suggested coding is U = (X — 0.048)/
0.048. You do not have to use this if you do not wish to!]

. Look at Appendix 6B. Perform at least one of the regressions yourself and check the

results against those given.

. Show that, in the general linear regression situation with a 8, term in the model:

1. The correlation between the vectors e and Y is (1 — R?)'. The implication of this
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result is that it is a mistake to attempt to find defective regressions by a plot of residuals
e; versus observations Y; as this will always show a slope.

2. Show that this slope is 1 — R%.

3. Show, further, that the correlation between e and Y is zero.

Y. Four levels, coded as —3, —1, 1, and 3, were chosen for each of two variables X, and X,,

oot

to provide a total of 16 experimental conditions when all possible combinations (X, X))
were taken. It was decided to use the resulting 16 observations to fit a regression equation
including a constant term, all possible first-order, second-order, third-order, and fourth-
order terms in X, and X,. The data were fed into a computer routine, which usually

obtains a vector estimate
b = (X'X)'X'Y.

The computer refused to obtain the estimates. Why?

The experimeter, who had meanwhile examined the data, decided at this stage to ignore
the levels of variable X; and fit a fourth-order model in X, only to the same observations.
The computer again refused to obtain the estimates. Why?

The cloud point of a liquid is a measure of the degree of crystallization in a stock that
can be measured by the refractive index. It has been suggested that the percentage of I-
8 in the base stock is an excellent predictor of cloud point using the second-order model:

Y=B(]+BIX+BIIX2+E'

The following data were collected on stocks with known percentage of I-8.

% 1-8, X Cloud Point, Y % 1-8, X Cloud Point, Y
0 22.1 2 26.1
1 24.5 4 28.5
2 26.0 6 30.3
3 26.8 8 31.5
4 28.2 10 33.1
5 28.9 0 22.8
6 30.0 3 27.3
7 304 6 29.8
8 314 9 31.8
0 21.9
Requirements

AA.

1. Determine the best-fitting second-order model.

2. Using a = 0.05, check the overall regression.

3. Test for lack of fit.

4. Would the first-order model, Y = 8, + 8, X + €, have been sufficient? Use the residuals
from this simpler model to support your conclusions.

5. Comment on the use of the fitted second-order model as a predictive equation.

A certain experiment gives observations (Y, Y, Y3, Y,) = (4, 2, 1, 5). What is the sum
of squares of the set of linear functions L, = Y, + 2Y, + 2Y; + Y,and L, = Y, - Y, —

Y. + Y.?2 What ic the sum of sauares of the cet of linear functions 7.. 7 and 7. where
Yy + Y,7 what 1s the€ sum oOf squares of the set of ncuoens L a L3, winere

< inear u iy 4u3, A0
L3 = ‘3Y1 + 3Y4.
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a a a

the ISurbm—Watso

C

erial Correlation 1n

In what follows it is assumed that the time order (or some other type of order) of the
observations is known, and that observations are equally spaced in that ordering.

7.1. SERIAL CORRELATION IN RESIDUALS

In regression work, we typically assume that the observational errors are pairwise
uncorrelated. If this assumption were substantially untrue, we would expect that the
plot of residuals in time order, or some other sensible order defined by the practical
circumstances, would help us to detect it. There are, of course, many ways in which
the errors may be correlated. A common way is that they may be serially correlated,
that is, the correlations between errors s steps apart are always the same. We shall
use the notation p, for this correlation, s = 1,2, ....

More specifically, if residuals exhibit local positive serial correlation, successive

residuals in a time seguence tend to be more alike than otherwise. and a time nlgt of

ATOIMLGIS 111 G LIUT SVHWLAILE Vil WU UL 11iVI T QAT LG Uil Svy Gixve & vaiiaw

them will have the general characteristics of Figure 7.1a, rising and falling but with
close points more alike than otherwise. The correlation between residuals one (or
two, or three, ...) step(s) apart is called the lag-1 (or 2, or 3, ...) serial correlation.
The empirical lag-1 serial correlation can be examined by plotting each residual except
the first against the one preceding it. The positive lag-1 serial correlation present in
the data of Figure 7.1a reveals itself in the “lower-left to upper-right” tendency of
such a plot, shown in Figure 7.15. To view correlations for higher lags we can make
similar plots for residuals two steps apart, three steps apart, and so on.

Negative serial correlation between successive residuals can also arise. One cause
is a phenomenon known as carryover, which occurs in batch processes. This can happen
as follows. Suppose that, for a particular batch of product in a process, incomplete
recovery occurs because some of the product is ieft in the pipelines and pumps of the
reactor system. The recorded yield for this batch will be unusually low. In the next
batch, however, there would be a tendency for the material left behind to be recovered,
thus giving an unusually high batch yield. A pattern of residuals may result like those
plotted in Figure 7.24, in which a positive value tends to be followed by a negative
one, and vice versa. The existence of negative lag-1 serial correlation for these data
is shown by the “lower-right to upper-left” pattern of Figure 7.2b.

179
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Figure 7.1. (a) A series of residuals exhibiting local positive serial correlation. (b) Lag-1 serial plot
for this series.

Figure 7.3a shows a random series of residuals and Figure 7.3b shows the correspond-
ing lag-1 serial plot that exhibits no tendency of trend at all.
We can characterize the behavior shown in the three figures as attraction (successive

"chf‘“')](‘ ')"Q “l‘l’ﬂ” I\I‘\D ann "\Df l‘\‘lt fl’\p r\lr\f \IIQ“I‘QI’Q anl‘ﬂf‘\ rann’(‘lnn {Cllf‘l‘DCcl‘lA
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residuals repel or are ‘“‘unlike” one another), and unrelated (successive residuals are
‘““almost independent”’; they are of course related by the normal equations.)

The study of serial correlation patterns is one of the techniques used in time-series
analysis. Such special analysis of correlated data can often be rewarding. The interested
reader should look at texts such as Box, Jenkins and Reinsel (1994). Here we are
concerned only with the detection of serial correlation in regression residuals.

A well-known way of checking for serial correlation patterns in an equally spaced
sequence of residuals is via the Durbin—Watson test, which we now describe. A simpler,
less sophisticated runs test is described in Section 7.3.
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Figure 7.2. (a) A series of residuals exhibiting local negative serial correlation perhaps due to carryover.
(b) Lag-1 serial plot for this series.

7.2. THE DURBIN-WATSON TEST FOR A CERTAIN TYPE OF
SERIAL CORRELATION

A popular test for detecting a certain type of serial correlation is the Durbin—Watson
test. (This is named after the two authors who discussed its use for testing regression
residuals and provided suitable testing tables in 1951. It was originally put foward by
Von Neumann for nonregression problems in 1941. Selected sources are listed at the
end of the chapter.)
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Figure 7.3. (a) An uncorrelated series of residuals. (b) Lag-1 serial plot for this series.
Suppose we wish to fit a postulated linear model
k
Y.=Bo+ D BiXu+ €, (7.2.1)
i=1

by least squares to observations (Y,, X1, Xo, ... Xw), u = 1,2, ..., n. We would
usually assume that the errors €, are independent N(0, %) variables, so that all serial
correlations p, = 0. We want to see if this assumption is justified by checking the
residuals. We shall test this null hypothesis Hy:all p, = 0 via the Durbin—-Watson test
against the alternative

H,:p, = p* (7.2.2)

(p # 0 and | p| < 1), an alternative that arises from the assumption that the errors e,
are such that

€ = p€,; t+ 24, (7.2.3)

where z, ~ N(0, ¢?) and is independent of €,_,, €,-,, ..., and of 7,1, 2,3, ... . Itis
also assumed that both the mean and variance of €, are constant, independent of u,
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whereupon it follows, necessarily, that €, ~ N{0, o%/(1 — p?)}. Note that, under the
null hypothesis Hy: p = 0, this reduces to ¢, ~ N(0, o'?), our usual assumptions for all
u=12,...,n.

Although the test is fully appropriate only against the specific alternative (7.2.2),
it is typically applied in a general way without much thought of alternatives. This
means that it will often lose power compared to when it is properly employed.

To test H, against H, we fit the model from Eq. (7.2.1) and find the residuals e,,

e, ...,e,. We then form the Durbin—-Watson statistic
d=> (e,— e, 1), €} (7.2.4)
u=2 u=1

and determine whether or not to reject the null hypothesis H, on the basis of the
value of d. The distribution of d depends on the X-data and is not independent of
them (as, for example, is the ¢-distribution, apart from degrees of freedom, in other
regression contexts). The distribution of d lies between 0 and 4 and is symmetric about
2. Percentage points also depend on the X-data and would have to be calculated for
each application to perform the test properly. Because of the difficulty of doing this
routinely, the test is usually performed using tabled bounds (d, , d;), where L = lower
and U = upper, on the percentage points. Thus instead of looking up a singie critical
value, we have to look up two critical values. Moreover, d is used only for a lower-
tailed test against alternatives p > 0. To test against the alternative p < 0, we theoreti-
cally need an upper-tailed test; fortunately, this can simply be handled as a lower-
tailed test using the statistic (4 — d).

Note that the extremes 0 and 4 are attainable only for very large samples. The
minimum attainable values depend on the sample size n in the following way:

n 15 30 50 100 200 300 500
Minimumd  0.0437 00110 0.0039  0.0010 0.0002 0.0001  0.0000

The corresponding maximum d values ar

1e corresponding r u

(4 — minimum ). This disnlav and several
G mmmum g ). 1 s gisplay ang several

portions of tables below are quoted and adapted from Savin and White (1977), fully
referenced as (2) below.

Primary Test, Tables of d, and d,

Tables 7.1, 7.2, and 7.3 show pairs of 1%, 2.5%, and 5% lower-tail significance points,
that is, critical values for probability levels & = 0.01, 0.025, and 0.05, respectively,
called (d,, dy). These are given for various numbers of observations n, and for k =
1,2, ..., 20 predictor variables X; [see k in Eq. (7.2.1)]. The sources of these tables
are two papers:

1. J. Durbin and G. S. Watson (1951). Testing for serial correlation in least squares
regression, II. Biometrika, 38, 159-178 (DWS51).

2. N. E. Savin and K. J. White (1977). The Durbin—-Watson test for serial correlation
with extreme sample sizes or many regressors. Econometrica, 45, 1989-1996
(SWT7).

In our amended versions of tables reproduced from SW77, figures are rounded to
two decimal places and some combinations of (n, k) values that result in relatively
few residual degrees of freedom have been omitted. Also, we have omitted all dy,
values that exceed 1.99. If the observed d statistic equaled or exceeded the distribution
mean 2, there would be little point doing a lower-tailed test.
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T ABLE 7.1. Significance Points of d; and d;:1%

IN THE RESIDUALS

k=1 k=2 k=3 k=4 k=5
n dL dU dL dU dl_ dU dL du dL dU
15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96
16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90
17 0.87 1.10 0.77 i.25 0.67 i.43 0.57 1.63 0.48 1.85
18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80
19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77
20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74
21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71
22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69
23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67
24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66
25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65
26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64
27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63
28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62
29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61
30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61
31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60
32 1.16 1.28 1.10 1.35 1.04 143 0.98 1.51 0.92 1.60
33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59
34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59
35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59
36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59
37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59
38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58
39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58
40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58
45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58
50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59
S5 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59
60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60
65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61
70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61
75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62
80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62
85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63
90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64
95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64
100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65
150 1.61 1.64 1.60 1.65 1.58 1.67 1.57 1.68 1.56 1.69
200 1.66 1.68 1.65 1.69 1.64 1.70 1.63 1.72 1.62 1.72

Source: DWS1 for n < 100 and SW77 for n = 150,200 (see text).

The testing procedures are as follows:

1. One-sided test against alternatives p > 0.

If d < d,, conclude d is significant, reject Hy, at level a.
If d > dy, conclude d is not significant, do not reject H,.

Ifd; = d = dy, the test is said to be inconclusive.
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T A BL E 7.1. Significance Points of d; and d;:1% (Continued)

k=6 k=1 k=8 k=9 k=10

n dl_ du d[_ dU dL dU d[_ dU d[_ dU
20 0.52 1.92 0.44 0.36 0.29 023

21 0.55 1.88 0.47 0.40 033 0.27

22 0.59 1.85 0.51 0.44 0.37 .30

23 0.62 1.82 0.55 1.98 047 040 0.34

24 0.65 1.80 0.58 1.94 0.51 0.44 0.38

25 0.68 1.78 0.61 1.92 0.54 0.47 0.41

26 0.71 1.76 0.64 1.89 0.57 0.51 0.44

27 0.74 1.74 0.67 1.88 0.60 0.54 047

28 0.76 1.73 0.70 1.85 0.63 1.97 0.57 0.50

29 0.79 1.72 0.72 1.83 0.66 1.95 0.60 0.53

30 0.81 1.71 0.75 1.81 0.68 1.93 0.62 0.56

31 0.83 1.70 0.77 1.80 0.71 1.91 0.65 0.59

32 0.86 1.69 0.79 1.79 0.73 1.89 0.67 0.61

33 0.88 1.68 0.82 1.78 0.76 1.87 0.70 1.98 0.64

34 0.90 1.68 0.84 1.77 0.78 1.86 0.72 1.96 0.67

35 0.91 1.67 0.86 1.76 0.80 1.85 0.74 1.94 0.69

36 0.93 1.67 0.88 1.75 0.82 1.84 0.77 1.93 0.71

37 0.95 1.66 0.90 1.74 0.84 1.83 0.79 1.91 0.73

38 0.97 1.66 0.91 1.74 0.86 1.82 0.81 1.90 0.75 1.99
39 0.98 1.66 0.93 1.73 0.88 1.81 0.83 1.89 0.77 1.97
40 1.00 1.65 0.95 1.72 0.90 1.80 0.84 1.88 0.79 1.96
45 1.07 1.64 1.02 1.70 0.97 1.77 0.97 1.83 0.88 1.90
50 1.12 1.64 1.08 1.69 1.04 1.75 1.00 1.81 0.96 1.86
55 1.17 1.64 1.13 1.69 1.10 1.73 1.06 1.79 1.02 1.84
60 1.21 1.64 1.18 1.68 1.14 1.73 1.1 1.77 1.07 1.82
65 1.25 1.64 1.22 1.68 1.19 1.72 1.15 1.76 1.12 1.80
70 1.28 1.65 1.25 1.68 1.22 1.72 1.19 1.75 1.16 1.79
75 1.31 1.65 1.28 1.68 1.26 1.72 1.23 1.75 1.20 1.79
80 1.34 1.65 1.31 1.68 1.29 1.71 1.26 1.75 1.23 1.78
85 1.36 1.66 1.34 1.69 1.31 1.71 1.29 1.74 1.26 1.77
90 1.38 1.66 1.36 1.69 1.34 1.71 1.31 1.74 1.29 1.77
95 1.40 1.67 1.38 1.69 1.36 1.72 1.34 1.74 1.31 1.77
100 1.42 1.67 1.40 1.69 1.38 1.72 1.36 1.74 1.34 1.77
150 1.54 1.71 1.53 1.72 1.52 1.74 1.50 1.75 1.49 1.77
200 1.61 1.74 1.60 1.75 1.59 1.76 1.58 1.77 1.57 1.80

Source: SW77 (see text). Copyright The Econometric Society.

2. One-sided test against alternative p < 0. Repeat (1) using (4 — d) in place of d.
3. Two-sided equal-tailed test against alternatives p # 0.

Ifd <d, or4 —d<d,, conclude d is significant, reject H, at level 2a.
If d > dyand 4 — d > dy, conclude d is not significant, do not reject H, at level
2a.. Otherwise, the test is said to be inconclusive.

A Simplified Test

The inconclusive feature of the tests above is not attractive, but the problem is a
difficult one. In later work, procedures for deciding inconclusive cases were formulated,
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T A BLE 7.1. Significance Points of d, and dy:1% (Continued)

k=11 k=12 k=13 k=14 k=15
n dL dU dL dU dL dU dL dU d[_ dU
25 0.35 0.29 0.24 0.19 0.15
26 0.38 0.32 0.27 0.22 0.18
27 0.41 0.36 (.30 G.25 0.21
28 0.44 0.39 033 0.28 0.24
29 0.47 0.42 0.36 0.31 0.27
30 0.50 0.45 0.39 0.34 0.29
31 0.53 0.48 0.42 0.37 0.32
32 0.56 0.50 0.45 0.40 0.35
33 0.59 0.53 0.48 0.43 0.38
34 0.61 0.56 0.50 0.45 0.40
35 0.63 0.58 0.53 0.48 0.43
36 0.66 0.61 0.55 0.50 0.46
37 0.68 0.63 0.58 0.53 0.48
38 0.70 0.65 0.60 0.55 0.50
39 0.72 0.67 0.62 0.58 0.53
40 0.74 0.69 0.65 0.60 0.55
45 0.84 1.97 0.79 0.74 0.70 0.66
50 0.91 1.93 0.87 1.99 0.83 0.79 0.75
55 0.98 1.89 0.94 1.95 0.90 0.86 0.83
60 1.04 1.87 1.00 1.91 0.97 1.96 0.93 0.89

65 1.09 1.85 1.05 1.89 1.02 1.93 0.99 1.98 0.95

70 1.13 1.83 1.10 1.87 1.07 1.91 1.04 1.95 1.01

75 1.17 1.82 1.14 1.86 1.11 1.89 1.08 1.93 1.05 1.97
80 1.21 1.81 1.18 1.84 1.15 1.88 1.12 1.91 1.09 1.95
85 1.24 1.80 1.21 1.83 1.18 1.87 1.16 1.90 1.13 1.93
90 1.26 1.80 1.24 1.83 1.22 1.86 1.19 1.89 1.17 1.92
95 1.29 1.79 1.27 1.82 1.24 1.85 1.22 .88 1.20 i.91
100 1.31 1.79 1.29 1.82 1.27 1.84 1.25 1.87 1.23 1.90
150 1.47 1.78 1.46 1.80 1.44 1.81 1.43 1.83 1.41 1.85

200 1.56 1.79 1.55 1.80 1.54 1.81 1.53 1.82 1.52 1.84

Source: SWT7 (see text). Copyright The Econometric Society

but they are more complicated, and we shall not discuss them here. It has been
discovered, however, that, in many situations, treating the test as though d, did not
exist and d, were the appropriate single critical value is a very good approximation'
to the truth. Thus a simplified, approximate test procedure is the following

1S. Simplified one-sided test against alternatives p > 0. If d < dy, reject H, at level
«, otherwise do not reject.
C, cidod toct

2S. Simplified one-sided test agains
level a, otherwise do not reject.
3S. Simplified two-sided test against alternatives p # 0. If d < dy or 4 — d < dy,

reject H, at level 2a.

There is no simple way to immediately determine if this simplified test is valid. For
practical purposes at this level of complication, we suggest first applying the (d,, dy)

'For a discussion of the accuracy of the d; approximation, and alternatives, see Durbin and Watson (1971).
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T A BLE 7.1. Significance Points of d; and dy:1% (Continued)

k =16 k=17 k=18 k=19 k =20
n dL dU dL du dL dU dL dU dL dU
30 0.25 0.21 0.17 0.14 0.11
31 0.28 0.23 0.20 0.16 0.13
32 0.30 0.26 0.22 0.18 0.15
33 0.33 0.29 0.25 0.21 0.17
34 0.36 0.31 0.27 0.23 0.20
35 0.38 0.34 0.30 0.26 0.22
36 0.41 0.36 0.32 0.28 0.24
37 043 0.39 0.35 031 0.27
38 0.46 0.41 0.37 033 0.29
39 0.48 0.44 0.40 0.36 0.32
40 0.51 0.46 042 0.38 0.34
45 0.61 0.57 0.53 0.49 0.45
50 071 0.67 0.63 0.59 0.55
55 0.79 0.75 on 0.67 0.64
60 0.86 0.82 0.79 0.75 0.72
65 0.92 0.87 0.85 0.82 0.79
70 0.97 0.94 0.91 0.88 0.85
75 1.02 0.99 0.96 0.93 0.91
80 1.07 1.98 1.04 1.01 0.98 0.96
85 1.11 1.97 1.08 1.05 1.03 1.00
90 1.14 1.95 1.12 1.98 1.09 1.07 1.04
95 1.17 1.93 1.50 1.96 1.13 1.99 1.10 1.08
100 1.20 1.92 1.18 1.95 1.16 1.98 1.14 1.11

150 1.40 1.86 1.39 1.88 1.37 1.90 1.36 1.91 1.34 1.93
200 1.51 1.85 1.50 1.86 1.48 1.87 1.47 1.88 1.46 1.90

Source: SW77 (see text). Copyright The Econometric Society.

test to see if a clear decision is reached in that manner. Inconclusive results from this
test will, of course, be judged significant by the simplified test, but this second-level
decision can be regarded as having either a tentative “‘warning flag’ attached to it or
perhaps a slightly higher a-risk than the one indicated by the simplified test. Example
2 below illustrates this sort of judgment.

Example 1. The residuals from a straight line fit to n = 50 pairs of values of (X, Y)
gave rise to a d-statistic of value d = 0.625. For a two-sided test of H,:p = 0 against
the two-sided alternative p # 0 we first compare d and 4 — d = 3.375 against suitable
d; and dy values from Tables 7.1-7.3. From the a« = 0.01 table, with k = 1 and n =
50, we find

d =0625<d, =132

It follows, from applying procedure (3), that we reject H, at the 2a = 0.02 level
and conclude that there does appear to be serial correlation, of the type tested against,
present in the data. Doubt is thus cast on the fitted model and the data should be
reconsidered in the light of this new information.

Example 2. For a set of 70 residuals from a linear model involving £ = 4 predictor
variables, we find a d-statistic of value d = 1.51. Test H,: p, = 0 against the one-sided
alternative H,:p, = p’, where p > 0.
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T ABL E 7.2. Significance Points of d; and d;:2.5%

IN THE RESIDUALS

k=1 k=2 k=3 k=4 k=5
n d, dy d, dy d, dy d, dy d, dy
15 095 123 08 140 071 161 059 184 048 209
16 098 124 08 140 075 159 064 180 053  2.03
17 101 125 090 140 079 158 068 177 057 198
18 103 126 093 140 08 156 072 174 062 193
19 106 128 09 141 08 155 076 172 066 1.9
20 108 128 099 141 08 155 079 170 070 187
21 110 130 101 141 092 154 083 169 073 184
2 112 131 104 142 095 154 08 168 077 18
23 114 132 106 142 097 154 089 167 080  1.80
24 116 133 108 143 100 154 091 166 08 179
25 118 134 110 143 102 154 094 165 08 177
26 119 135 112 144 104 154 09 165 088 176
27 121 136 113 144 106 154 099 164 091 175
8 122 137 115 145 108 154 101 164 093 174
29 124 138 117 145 110 154 103 163 096 173
30 125 138 118 146 112 154 105 163 098 173
31 126 139 120 147 113 155 107 163 100 172
32 127 140 121 147 115 155 108 163 102 171
33 128 141 122 148 116 155 110 163 104 171
34129 141 124 148 117 155 112 163 106 170
35 130 142 125 148 119 155 113 163 107 170
3 131 143 126 149 120 156 115 163 109 170
37 132 143 127 149 121 156 116 162 110 170
38 133 144 128 150 123 156 117 162 112 170
39 134 144 129 150 124 156 119 163 113 169
4 135 145 130 151 125 157 120 163 115 169
45 139 148 134 153 130 158 125 163 121 169
50 142 150 138 154 134 159 130 164 126 169
55 145 152 141 156 137 160 133 164 130 169
60 147 154 144 157 140 161 137 165 133 169
65 149 155 146 159 143 162 140 166 136  1.69
70 151 157 148 160 145 163 142 166 139 170
75 153 158 150 161 147 164 145 167 142 170
80 154 159 152 162 149 165 147 167 144 170
8 156 160 153 163 151 165 149 168 146 171
% 157 161 155 164 153 166 150 169 148 171
95 158 162 156 165 154 167 152 169 150 171
100 159 163 157 165 155 167 153 170 151 172

Source: Durbin and

L § ¥ FPON

v aison

1081\
1951).

We obtain the following significance points from Tables 7.1-7.3:

d, dy
a = 0.05 1.49 1.74
a = 0.025 1.42 1.66
a = 0.01 1.34 1.58

We see that, using procedure (1), the primary test is inconclusive at all levels. Applying
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T A B L E 7.3. Significance Points of d, and dy,:5%

189

k=1 k=2 k=3 k=4 k=S5
n d, dy d, dy d, dy d, dy d, dy
15 108 136 095 154 08 175 069 197 056 221
16 110 137 098 154 08 173 074 193 062 215
17 113 138 102 15 090 171 078 190 067 210
18 116 139 105 153 093 169 08 18 071 206
19 118 140 108 153 097 168 08 18 075  2.02
20 120 141 110 154 100 168 090 183 079 199
2100 122 142 113 154 103 167 093 181 083  1.96
2 124 143 115 154 105 166 096 180 086  1.94
23 126 144 117 154 108 166 099 179 090  1.92
24 127 145 119 155 110 166 101 178 093 190
25 129 145 121 155 112 166 104 177 095 189
26 130 146 122 155 114 165 106 176 098  1.88
27 132 147 124 156 116 165 108 176 101  1.86
22 133 148 126 156 118 165 110 175 103 185
29 134 148 127 156 120 165 112 174 105 184
3 135 149 128 157 121 165 114 174 107  1.83
31 136 150 130 157 123 165 116 174 109  1.83
32 137 150 131 157 124 165 118 173 111 1.8
33 138 151 132 158 126 165 119 173 113 181
34 139 151 133 158 127 165 121 173 115 181
35 140 152 134 158 128 165 122 173 116 180
36 141 152 135 159 129 165 124 173 118 180
37 142 153 136 159 131 166 125 172 119 180
33 143 154 137 159 132 166 126 172 121 179
39 143 154 138 160 133 166 127 172 122 179
40 144 154 139 160 134 166 129 172 123 179
45 148 157 143 162 138 167 134 172 129 178
50 150 159 146 163 142 167 138 172 134 177
5 153 160 149 164 145 168 141 172 138 177
60 155 162 151 165 148 169 144 173 141 177
65 157 163 154 166 150 170 147 173 144 177
70 158 164 155 167 152 170 149 174 146  1.77
75 160 165 157 168 154 171 151 174 149 177
80 161 166 159 169 156 172 153 174 151 177
8 162 167 160 170 157 172 155 175 152 177
9 163 168 161 170 159 173 157 175 154  1.78
95 164 169 162 171 160 173 158 175 156 178
100 165 169 163 172 161 174 15 176 157  1.78
150 172 175 171 176 169 177 168 179 167  1.80
200 176 178 175 179 174 180 173 181 172 1.8

Source: DW 51 for n < 100 and SW77 for n = 150,200 (see text).

procedure (1S) we then come to the secondary conclusion that H, should be rejected
because it falls below dy at the a = 0.01 level. Our true rejection level is perhaps not
as low as @ = 0.01 because we are using the simplified test. However, we also note
that we would almost reject at the a = 0.05 level using an ordinary test because 1.51
is close to d; = 1.49. Thus we can think, with reasonable safety, of the rejection of
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T ABL E 73. Significance Points of d, and d;;: 5% (Continued)

k=6 k=7 k=8 k=9 k =10
n 4 dy d dy d dy d dy d  dy
20 069 0.60 0.50 0.42 0.34
21 073 0.64 0.55 0.46 0.38
2 077 0.68 0.59 0.50 0.42
23 080 0.72 0.63 0.55 0.47
24 084 0.75 0.67 0.58 0.51
25 087 0.78 0.70 0.62 0.54
26 090 199 082 0.74 0.66 0.58
27 093 197 085 0.77 0.69 0.62
28 095 196 087 0.80 0.72 0.65
29 098 194 090 0.83 0.75 0.68
30 100 193 093 0.85 0.78 0.71
31102 192 095 0.88 0.81 0.74
32 104 191 097 0.90 0.84 0.77
33106 190 099 199 093 0.86 0.80
34 108 189 102 198 095 0.89 0.82
35 110 188 103 197 097 0.91 0.85
36 111 188 105 196 099 0.93 0.87
37 113 187 107 195 101 0.95 0.89
38 115 18 109 194 103 0.97 0.91
39 116 18 110 193 105 0.99 0.93
0 118 185 112 192 106 1.01 0.95
45 124 184 119 190 114 196  1.09 1.04

50 1.29 1.82 1.25 1.88 1.20 1.93 1.16 1.99 1.11
55 1.33 1.81 1.29 1.86 1.25 1.91 121 1.96 1.17
60 1.37 1.81 1.34 1.85 1.30 1.89 1.26 1.94 1.22 1.98
65 1.40 1.81 1.37 1.84 1.34 1.88 1.30 1.92 1.27 1.96

1™ A 1 ONn 1 A 1 QA 1 9" 1 O™ 1 1 1 N1 1 21 1

70 1.43 i.8 1.40 1.84 1.37 1.87 1.34 1.91 1.31 1.95
75 1.46 1.80 1.43 1.83 1.40 1.87 1.37 1.90 1.34 1.94
80 1.48 1.80 1.45 1.83 1.43 1.86 1.40 1.89 1.37 1.93
85 1.50 1.80 1.47 1.83 1.45 1.86 1.42 1.89 1.40 1.92
90 1.52 1.80 1.49 1.83 1.47 1.85 1.44 1.88 1.42 1.91
95 1.54 1.80 1.51 1.83 1.49 1.85 1.47 1.88 1.44 1.90
100 1.55 1.80 1.53 1.83 1.51 1.85 1.48 1.87 1.46 1.90
150 1.65 1.82 1.64 1.83 1.62 1.85 1.61 1.86 1.59 1.88
200 1.71 1.83 1.70 1.84 1.69 1.85 1.68 1.86 1.67 1.87

Source: SW77 (see text). Copyright The Econometric Society.
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correlation, is appropriate.

H, being at a level of somewhat between a = 0.05 and a = 0.01.2 Doubt is cast on
f 2 :

Width of the Primary Test Inconclusive Region

Figure 7.4 shows a plot of the 5% values of d; and d; versus the number of observations
n,for 15=n=100and 1 = k = §, joined up by smooth lines to clarify the plot. (See
Durbin and Watson, 1951.) This plot could be extended using Table 7.3, of course.

’An alternative interpretation is that the primary test would be significant at about the 0.06 level.
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T ABLE 7.3. Significance Points of d, and d;;:5% (Continued)

k=11 k=12 k=13 k=14 k=15
n dL dU d[_ dU dL dU dL dU dL dU
25 0.47 0.40 0.34 0.28 0.22
26 0.51 0.44 0.37 0.31 0.26
27 0.54 0.48 0.41 0.35 0.29
28 0.58 0.51 045 0.38 0.33
29 0.61 0.54 0.48 0.42 0.36
30 0.64 0.58 0.51 0.45 0.39
31 0.67 0.61 0.55 0.48 043
32 0.70 0.64 0.58 0.52 0.46
33 0.73 0.67 0.61 0.55 0.49
34 0.76 0.70 0.63 0.58 0.52
35 0.78 0.72 0.66 0.60 0.55
36 0.81 0.75 0.69 0.63 0.58
37 0.83 0.77 0.71 0.66 0.60
38 0.85 0.80 0.74 0.68 0.63
39 0.88 0.82 0.76 0.71 0.65
40 0.90 0.84 0.79 0.73 0.68
45 0.99 0.94 0.89 0.84 0.79
50 1.06 1.02 0.97 0.93 0.88
55 1.13 1.09 1.05 1.00 0.96
60 1.18 1.15 1.11 1.07 1.03
65 1.23 1.20 1.16 1.12 1.09
70 1.27 1.99 1.24 1.21 1.17 1.14
75 1.31 1.97 1.28 1.25 1.22 1.18
80 1.34 1.96 1.31 1.99 1.28 1.25 1.22
85 1.37 1.95 1.34 1.98 1.32 1.29 1.26
90 1.40 1.94 1.37 1.97 1.34 1.32 1.29
95 1.42 1.93 1.39 1.96 1.37 1.98 1.35 1.32
100 1.44 1.92 1.42 1.95 1.39 1.97 1.37 1.35

150 1.58 1.89 1.56 1.91 1.55 1.92 1.54 1.94 1.52 1.96
200 1.65 1.89 1.64 1.90 1.63 1.91 1.62 1.92 1.61 1.93

Source: SW77 (see text). Copyright The Econometric Society.

Note that the vertical distance between pairs of correspondingly numbered curves
is the region of indecision involved in the standard test, and that the width of this
region becomes smaller as n increases. The moral is obvious: the more observations
we have, the more likely it is that we shall be able to make a definite decision via the
Durbin—Watson test. Workers in time series have a rule of thumb that n = 50 observa-
tions are needed in order for their analyses to produce worthwhile conclusions. As
Figure 7.4 shows, such a rule of thumb would not be out of place for application of
the Durbin—-Watson test.

Mean Square Successive Difference

Readers viewing Figure 7.4 may be curious about the dashed line lying between the
various upper and lower pairs of curves. This is a join of the 5% points for testing for
serial correlation in a model Y = B, + e. In other words, it is the Durbin-Watson
test for k = 0 X’s in the model. Table 7.4 shows selected lower-tail percentage points
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T A B L E 7.3. Significance Points of d, and d;;:5% (Continued)

k=16 k=17 k=18 k=19 k =20
n dL dy dL dU dL du dL dU d[_ du
30 0.34 0.29 0.24 0.20 0.16

31 0.37 0.32 0.27 0.22 0.18

32 0.40 0.35 0.30 0.25 0.21

33 043 0.38 0.33 0.28 0.24

34 0.46 0.41 0.36 0.31 0.27

35 0.49 0.44 0.39 0.34 0.30

36 0.52 0.47 0.42 0.37 0.32

37 0.55 0.50 0.45 0.40 0.35

38 0.58 0.52 047 0.42 0.38

39 0.60 0.55 0.50 0.45 0.40

40 0.63 0.58 0.53 0.48 0.43

45 0.74 0.69 0.64 0.60 0.55

50 0.84 0.79 0.75 0.70 0.66

55 0.92 0.88 0.84 0.80 0.75

60 0.99 0.95 0.91 0.87 0.84

65 1.05 1.02 0.98 0.94 09

70 1.1 1.07 1.04 1.01 0.97

75 1.15 1.12 1.09 1.06 1.03

80 1.20 1.17 1.14 1.11 1.08

85 1.23 1.21 1.18 1.15 1.12

90 1.27 1.24 1.21 1.19 1.16

95 1.30 1.27 1.25 1.22 1.20

100 1.32 1.30 1.28 1.25 1.23

150 1.50 1.97 1.49 1.99 1.47 1.46 1.44
200 1.60 1.94 1.59 1.96 1.58 1.97 1.57 1.98 1.55 1.99

Source: SW77 (see text). Copyright The Econometric Society.

given by Nelson (1980), here rounded to two decimal places. Nelson’s figures allow
the dashed line to be extended for higher n. We have omitted Nelson’s one-tailed
10% values, which do not match with any of the other tables shown here. The blank
2.5% column in Table 7.4 indicates the absence of these values, not given by Nelson.

It has been argued that, when the model contains a lagged response variable as
well as predictors, the Durbin-Watson test is inappropriate. An example of such a
model is

Yiin =B + BY: + Bi Xy + B Xy + €.

Rayner (1994) concluded that, in spite of the fact that the Durbin—-Watson test has a
bias toward nonrejection for such modelis, it may well be better than competitors.
Details and related references are given in the quoted paper.

7.3. EXAMINING RUNS IN THE TIME SEQUENCE PLOT OF RESIDUALS:

RUNS TEST

This test provides a quick but approximate alternative to the Durbin—Watson test.
Since it ignores the actual sizes of the residuals and uses only their signs in time

sequence, it throws away a lot of information, but it is easy to apply.
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Figure 7.4. Graphs of 5% values of dy and d, against n for k = 1,2, 3,4, 5.

When the time sequence of a set of residuals is known, it is sometimes noticeable
that groups of positive or negative residuals occur in what might be an unusual pattern.
To take an extreme case, if 30 residuals in time sequence consisted of 16 negative
followed by 14 positive residuals, we might first suspect that an unconsidered variable
had changed levels between the 16th and 17th runs. Such behavior can also arise from
a positive serial correlation between successive residuals, however. Similarly, a very
large number of sign switches in a sequence might arise from negative serial correlation.
When there is a sequence of such runs it is useful to have a method that will enable
a decision to be made on whether the run pattern is ‘““‘unusual” or not. We now explore
how this might be done.

Runs
Suppose we have a sequence of signs such as
++ -+ —-— = —++ -+ + + +.

These may be the signs of residuals in time sequence (which will be our application)
but equally well the “‘plus and minus” signs might denote ‘““male and female,” ‘“‘head
and tail,” “better and worse,” ““treatment A and treatment B,” or the two levels of
any other dichotomous classification. Suppose there are n signs in all, n, plus signs
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T A BLE 74. Selected Lower Significance Points
for the Mean Square Successive Difference Test
(Durbin-Watson Test with k = 0 Predictor
Variables): The Corresponding Upper Points Are

4 ~ (Those Shown)

n 1% 2.5% 5%
10 0.75 1.06
20 1.04 1.30
30 1.20 1.42
40 1.29 1.49
50 1.36 1.54
60 1.42 1.58
70 1.46 1.61
80 1.49 1.64
90 1.52 1.66

100 1.54 1.67

150 1.62 1.73

200 1.67 1.77

300 1.73 1.81

400 1.77 1.84

500 1.79 1.85

600 1.81 1.87

800 1.84 1.88

1000 1.85 1.90

and n, minus signs, and there are r runs. In the above example, n,= 9, n, = 6, and
there are r = 7 runs indicated by the parentheses below

(+ DD = = D HDEE ++ ),

We can ask if the particular arrangement of signs we observe is an “‘extreme’’ arrange-
ment or not.

We first examine a case where there are only 15 possible sign sequences. Suppose
there are six signs, two of which are plus. The following sign arrangements are possible:

Number of
Arrangement Runs, u
++ - - - - 2
+ -+ - - - 4
+ - =—+ - - 4
+ - - -+ - 4
+-—-—-—-+ 3
-+ + - - - 3
-+ -+ - - 5
-+ - -+ - 5
-+ - - -+ 4
- -+ + - - 3
- —+ -+ - 5
- —4+ - -+ 4
- - =+ + - 3
- — -+ — + 4
- ———+ + 2
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The distribution of runs is as follows:

r=2 3 4 5
Frequency = 2 4 6 3 (Total = 15)
Cumulative Probability = 0.133  0.400 0.800 1.000

Thus five runs would occur in % or 20% of the possible cases, that is, with a probability
of 0.2. Alternatively, two runs wouild occur in % or 13.3% of the possibie cases, that
is, with a probability of 0.133. A low number of runs in the residuals sequence might
indicate positive serial correlation, while a high number might arise from negative
serial correlation. We discuss the situation in the ‘““too few runs” context first. If we
observed only r = 2 runs in a set of six residuals of which two were positive, we would
have observed an event that occurs with a probability of 0.133. Obviously, nothing
significant will occur in such a small example. For any given sequence of signs we can
find the probability that the observed value of r (or a lesser value) will occur. (Example:
When n; = 2, n, = 4, and the observed number of runs is 3, Prob(r < 3) = (2 + 4)/
15 = 0.4, a not unusual event occurring in 40% of cases.) On the basis of such a

dacid hath + hals that andam a nt ~
probability level we can decide whether or not we believe that a random arrangement of

signs has occurred. [We might, for example, compare the probability with a preassigned
value, say, a = 0.05, and reject the idea of a random arrangement if Prob(u < observed
u) = 0.05.] For a “too many runs” test we would cumulate the frequencies downward
from the high-r end.

Tables for Modest n, and n,

Tables 7.5 and 7.6 show, respectively, lower-tail and upper-tail cumulative probabilities
for selected n,, n,, with 3 = n; = n, = 10. Only probability values less than or equal
to 0.10 are shown. Typically, n, and n, would roughly be equal in a set of residuals.
(When n, > n,, interchange n, and n,.) These distributions were given originally by
Swed and Eisenhart (1943) In that paper more decimal places are given and the

Aoz cncannat ~F oo o L nanamn b alaan 2 o = ~ ~ Axr o Qo anss

arrangement of cases is different. Related tables also appe€ar in LlllUIC)’ and Scott

(1984, see pp. 60-62).

Example. Twenty residuals—half positive, half negative—show five runs of signs in
their time sequence. Is this an unusually small number? We see that p(r = 5) = 0.004
from the (10, 10) line, so the answer is yes. (At the a = 0.10 level, seven or fewer
runs would be a small number.) We can now reexamine the residuals and data and
evaluate the lag-1 serial correlation. In the upper tail for this case, 15 or more runs
would be a large number at the a = 0.10 level.

Note that (3n, 4n) cases have a symmetric distribution, that is, p(r = m) = p(r =
n + 2 — m). Also, the distribution mean is at (3n + 1); see below.

Larger n, and n, Values

Outside the range of small n,, n, values in the tables, it is convenient to use a normal
approximation to the actual distribution. Let

2mn,
=="12 4 -
i 1, (7.3.1)
, _ 2mny(2niny — ny — ny) (7.3.2)

(n1 + nz)z(nl + n, — 1)
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TABLE 7.5. Cumulative Lower-Tail Areas in the Distribution of the Total Number of
Runs r in Samples of Size (n,, n,) for 3 = n, = n, = 10, n; + n, = 10, and Tail Areas < 0.10
only (for n, = n,, Simply Interchange n, and n,)

(n,,n)r= 2 3 4 5 6 7
3.7 0.017 0.083

(3, 8) 0.012 0.067

3,9 0.009 0.055

(3.10) 0.007 0.045

4, 6) 0.010 0.048

4,7 0.006 0.033

4, 8) 0.004 0.024

4.9) 0.003 0.018 0.085

(4, 10) 0.002 0.014 0.068

5.5) 0.008 0.040

(5, 6) 0.004 0.024

(5,7) 0.003 0.015 0.076

(5, 8) 0.002 0.010 0.054

5,9 0.001 0.007 0.039

(5, 10) 0.001 0.005 0.029 0.095

(6, 6) 0.002 0.013 0.067

(6,7) 0.001 0.008 0.043

(6, 8) 0.001 0.005 0.028 0.086

(6,9) 0.000 0.003 0.019 0.063

(6, 10) 0.000 0.002 0.013 0.047

7.7) 0.001 0.004 0.025 0.078

(7. 8) 0.000 0.002 0.015 0.051

(7.9) 0.000 0.001 0.010 0.035

(7, 10) 0.000 0.001 0.006 0.024 0.080
(8. 8) 0.000 0.001 0.009 0.032 0.100
8,9 0.000 0.001 0.005 0.020 0.069
(8, 10) 0.000 0.000 0.003 0.013 0.048
9,9) 0.000 0.000 0.003 0.012 0.044
(9, 10) 0.000 0.000 0.002 0.008 0.029 0.077
(10, 10) 0.000 0.000 0.001 0.004 0.019 0.051

Source: Adapted from Swed and Eisenhart (1943).

It can be shown that these are the actual mean and variance of the discrete distribution
of r. Then approximately, for a lower-tail test,

_(r—pti)

o

(7.3.3)

is a unit normal deviate where the 3 is the usual continuity correction, which helps
compensate for the fact that a continuous distribution is being used to approximate
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T ABLE 7.6. Cumulative Upper-Tail Areas in the Distribution of the Total Number of
Runs r in Samples of Size (n,, n;) for 3 =< n, =< n, = 10, n, + n, = 10, and Tail Areas < 0.10
only (for n, = n,, simply interchange n, and n,)

(m,n)r= 9 10 11 12 13 14 15 16 17 18 19 20

(4, 6) 0.024
@7 0.046
(4, 8) 0.071
4, 9) 0.098
@, 10)

. 5) 0.040  0.008
(5, 6) 0.089 0024 0.002
(5.7 0.045  0.008
(5. 8) 0071 0016
(5. 9) 0.098  0.028
(5. 10) 0.042

(6, 6) 0.067 0013  0.002
(6,7) 0034 0.008 0.001
(6, 8) 0.063 0016  0.002

{1 £ AY n Nnno n N"o n nNc
{6,9) 0.098 0.028 0.006

(6, 10) 0042 0010

7.7 0.078 0025 0.004 0.001

7, 8) 0.051 0012 0.002 0.000
1,9 0.084 0.025 0.006 0.001
(7, 10) 0.043 0.010 0.002

8.8 0.100 0032 0.009 0001 0.000
8.9 0.061 0.020 0.004 0001 0.000
(8, 10) 0.097 0036 0.010 0.002 0.000

9.9 0.044 0012 0.003 0.000 0.000
(9, 10) 0.077 0026 0.008 0.001 0000 0.000
(10, 10) 0051 0019 0004 0001 0000 0.000

Source: Adapted from Swed and Eisenhart (1943).

to a discrete distribution in the lower tail. For a ““too many runs’ upper-tail test, the
continuity correction is —3 so that we use instead

_r—p—#
r=—= (7.3.4)

and look up the upper tail of the N(0, 1) distribution. How do we know which tail
we want? We first evailuate u. If r > u we use the upper-taii test, and if r < u the
lower-tail test.

What if there are zeros in the residuals? Do they receive a minus sign or a plus
sign? Exact zeros are unlikely in a regression fit but, if one occurs, the easiest way
out is to assume first a plus and then a minus and see if the results are the same. This
situation is unlikely to arise except in constructed class examples.

Example. Examination of a set of 27 residuals, 15 of which were of one sign and 12
of which were of the opposite sign, arranged in time sequence, revealed r = 7 runs.
Does the arrangement of signs appear to have “too few runs”?
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Here n, = 15, n, = 12, r = 7. From Egs. (7.3.1) and (7.3.2), u = %, 0? = }{%. Thus
the observed value of z from Eq. (7.3.3) is

_(7-%+9 _
(3"

The probability of obtaining a unit normal deviate of value —2.713 or smaller is
0.0033 (OI' UJJ"/O) so that an UﬂUbUdlly low number of runs appears to have
occurred. We should reject the idea that the arrangement of signs is random. The
model would be suspect and we would now search for an assignable cause for the

pattern of residuals.

—2.713. (7.3.5)

Comments

Strictly speaking, the test for runs is applicable only when the occurrences that produce
the pattern of runs are independent. In a time sequence of residuals this is not true
due to the correlations that exist among the residuals, and the probability level obtained

fenrm tha nracadiira will ha affantad in a0 wavy that danande Aan tha nartisnilar gtriints

11 Ulll lllC PIULCUUIC Wil 0C alilluivu il a wa.y llldl UUPCIIUB Uﬁ [9 98w ycu I,l\.;ulal ouubuuc
of the data. In most practical regression situations, unless the ratio (n — p)/n, that is,
(number of degrees of freedom in residuals)/(number of residuals), is quite small, the
effect can be ignored.

Time plots of residuals can also be subjected to calculations suggested by Cleveland
and Kleiner (1975). Three curves of moving statistics are drawn, involving (1) the
midmean (the average of all observations between the quartiles of the data to that
point in time), (2) the lower semi-midmean (the midmean of all observations below
the median of the data to that point in time), and (3) the upper midmean(. . .above. . .).
“These three statistics summarize the location, spread, and skewness of the data.”
(See p. 449 of the reference cited.)
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Box, Jenkins, and Reinsel (1994); Diggle (1990); Durbin (1969, 1970); Durbin and
Watson (1950, 1951, 1971); Savin and White (1977); Wei (1990).

EXERCISES FOR CHAPTER 7

A. Fit, to the appropriate portion of the steam data in Appendix 1A, the model Y = B, +
Bs Xs + By Xs + By Xz + €. This will give you the following fitted model and analysis of
variance table, and also the fitted values and residuals in Table A:

= —2.968 + 0.4020X; + 0.19892 X, — 0.073924 X;

Source df SS MS F
Regression |b, 3 56.472 18.824 53.83
Residual 21 7.344 0.350

Total, corrected 24 63.816
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T A B L E A. Observations, Fitted Values,
and Residuals

A

Row Y Y Residual
1 10.98 10.86 0.12
2 11.13 10.47 0.66
3 12.51 11.79 0.72
4 8.40 8.72 -0.32
5 9.27 9.13 0.14
6 8.73 8.20 0.53
7 6.36 6.18 0.18
8 8.50 8.40 0.10
9 7.82 8.04 -0.22

10 9.14 9.22 -0.08
11 8.24 9.64 —-1.40
12 12.19 11.54 0.65
13 11.88 11.60 0.28
14 9.57 9.18 0.39
15 10.94 10.61 0.33
16 9.58 9.49 0.09
17 10.09 9.49 0.60
18 8.11 8.29 -0.18
19 6.83 6.51 0.32
20 8.88 8.56 0.32
21 7.68 7.74 —-0.06
22 8.47 9.38 -091
23 8.86 9.77 -0.91
24 10.36 11.00 -0.64
25 11.08 11.76 -0.68

1. Plot the residuals in a histogram, in a normal probability (nscore) plot, versus order 1-25,
and versus Y.

2. Comment on what you see in the four plots in part 1.

3. Evaluate the Durbin—-Watson statistic and use it to test Hy:p = 0 versus the two-sided
alternative H,:p # 0, assuming that p, = p* in the usual notation.

4. Carry out a test for ““too few runs’’ using the runs tests, on the residuals in the sequence

order displayed in Table A.

(Source: ““Using an hyperbola as a transition model to fit two-regime straight-line data,” by
D. G. Watts and D. W. Bacon, Technometrics, 16,1974, 369-373.) A set of sediment settling
data was subjected to three different regression calculations, using three different models.
The residuals from these three separate calculations, multiplied by 1000, are shown in Table
B, in the time order in which the data occurred; the actual times of observation appear in
the first column. Plot the residuals against time and analyze their behavior by applying a
two-sided runs test to each set. What are your conclusions?

(Source: *‘Car accidents—environmental aspects,” by D. F. Andrews, International Statisti-
cal Review, 41, 1973, 235-239.) The data in Table C consist of 50 observations of the
response variable Y = “‘driving deaths” and six possible predictor variables X, X:, ...,
X, for 49 states and the District of Columbia. Figure C1 shows the plot of Y versus
X, = 1964 drivers X 107%, while Figure C2 shows y = log Y versus Z, = log X,. To
the latter data the model

y = —0.101 + 0.938Z7,
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T A B L E B. Three Sets of Residuals (Multiplied

by 1000) Versus Time ¢

Time, ¢ Set 1 Set 2 Set 3
0.5 -19 “ ¢
1 -19 0 2
1.5 —18 0 2
2 -28 -10 -8
2.5 =27 0 2
3 -27 0 2
4.5 —45 =20 -15
6 -23 19 25
9 -19 2 10

12 -5 12 20
14 18 23 27
16 -9 =25 -23
18 4 13 16
20 -3 -5 —4
22 -9 -6 -5
24 -6 4 4
26 8 14 13
28 3 —4 -7
30 7 6 2
32 22 17 11
34 27 8 0
36 33 9 -1
40 26 1 -24
42 14 -9 -24
44 3 -9 -25
46 3 1 -16
48 4 2 -16
50 -4 -6 -26
52 -9 -5 -25
54 -1 -3 -23
56 -11 0 =21
58 -17 -6 =27
60 -17 -2 -23
62 -11 5 -17
64 -6 3 -20
66 -12 -6 =31
68 -7 5 -22
70 -9 -2 -32
72 -8 1 -31
74 4 14 =20
76 7 6 -29
78 8 5 =27
80 17 12 -17
9] 31 19 -6
90 45 34 -16

106 -11 -1i7 ii

120 -23 -4 47

150 -36 -9 33

“The particular analysis used did not provide a first residual.
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T A B L E C. Fifty Observations of Motor Vehicle Death Data Together with Some
Possible Explanatory Predictor Variables

X;, 1963 X, 1960 Xs, normal X, 1964
X, 1964 X,,1960 Road (Rural) More January Highway Fuel
Y, 1964 Drivers  Persons Mileage Males than Maximum Consumption
Region Deaths X 107 /sq. mi. X 1073 Females Temperature  gallons X 10’
AL 968 158 64 66 No 62 119
AK 43 11 04 59 Yes 30 6.2
AZ 588 91 12 33 Y 64 65
AR 640 92 34 73 N 51 74
CA 4743 952 100 118 N 65 105
CO 566 109 17 73 N 42 78
CT 325 167 518 5.1 N 37 95
DE 118 30 226 34 N 41 20
DC 115 35 12524 — N 44 23
FL 1545 298 91 57 N 67 216
GA 1302 203 68 83 N 54 162
ID 262 41 8.1 40 Y 29
HS 2207 544 180 162 N 33 350
IN 1410 254 129 89 N 37 196
IA 833 150 49 100 N 30 109
KS 669 136 27 124 N 42 94
KY 911 147 76 65 N 44 104
LA 1037 146 72 40 N 65 109
ME 196 46 31 19 N 30 37
MD 616 157 314 29 N 44 113
MA 766 255 655 17 N 37 166
MI 2120 403 137 95 N 33 306
MN 841 189 43 110 N 22 132
MS 648 85 46 59 N 57 77
MO 1289 234 63 100 N 40 180
MT 259 38 4.6 72 Y 29 31
NE 450 89 184 97 N 32 61
NV 215 23 2.6 44 Y 40 24
NH 158 37 67 13 N 32 23
NJ 1071 329 807 21 N 43 231
NM 387 54 7.8 62 Y 46 48
NY 2745 744 350 84 N 31 439
NC 1580 226 93 71 N 51 177
ND 185 38 9.1 102 Y 20 24
OH 2096 530 237 84 N 41 358
OK 785 137 34 94 N 46 107
OR 575 108 18 73 N 45 81
PA 1889 570 252 89 N 39 353
RI 100 46 812 13 N 38 27
SC 870 122 79 52 N 61 86
SD 270 40 9 87 Y 23 28
TN 1059 177 85 67 N 49 135
X 3006 515 37 196 N 50 448
UT 295 57 10.8 32 N 37 38
vT 131 20 42 13 N 25 15
VA 1050 208 100 50 N 50 150
WA 730 160 43 59 Y 46 109
A% 467 88 77 32 N 43 54
Wl 1059 207 72 87 N 26 141
wY 148 22 34 67 Y 37 20
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SERIAL CORRELATION IN THE RESIDUALS

is fitted, giving rise to the residuals in Figure C3. By examining the data corresponding
to the residuals marked with the names of states, suggest what variables appear to have

influence on the data. Which would be the most logical candidate for entry into
regression next?

A set of 56 residuals equally spaced in time order contains 26 positive residuals and 30
negative residuals. There are 38 runs. Is this an ‘“‘unusually large”” number of runs, do
you think?

A set of 25 residuals equally spaced in time order has 12 positive values and 13 negative
values and exhibits five runs. Is that an unusually small number in your opinion?

A regression fit Y= b, + b X, + b, X; + b;.X; on 85 observations equally spaced in time
produces a Durbin—-Watson statistic of 4 = 2.33. Might this indicate serial correlation? Test
at a two-tailed a = 0.05 level.
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Figure C1. Motor vehicle deaths and drivers by state.
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Figure C2. Log (motor vehicle deaths) and log (drivers by state).
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Figure C3. Residuals with some identifiers added.

G. An experimenter tells you: “I have looked at my 51 residuals in time order. Each residual
differs from the previous one by an amount that is always within the range (-1 =< 4, = 1).
Also, the sum of squares of the residuals is 50. My regression equation involves five predictors.
What would you advise me to do?”’

H. The following 24 residuals from a straight line fit are equally spaced in time and are given
in time sequential order. Is there any evidence of lag-1 serial correlation, do you think?
(Use a two-sided test at level a = 0.05.)

8 -57,1,-3,-6,1,-2,10,1, -1, 8, -6, 1, -6, —8,10, —6,9, -3, 3, -5, 1, =9



CHAPTER 8
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We have already discussed the basic residuals plots in Chapter 2, and the Durbin-
Watson test for serial correlation in Chapter 7. In many regression problems, these
checks are perfectly adequate. In this chapter we discuss further techniques that can
be of value. Readers should form their own opinions about which methods are likely
to be useful in their own regression applications.

a4 T
O.l1. 1

m
XL
»

H
Up to this point we have featured only the ‘“‘ordinary residuals,” that is, the e, =
Y, — Y, values. These are perfectly adequate for residuals checks on most regressions.
It is also possible to look at other types of residual quantities. Some workers would look
at these other types routinely; some only when they wanted to submit the regression fit
to more study. These other types of residuals have been created to overcome problems
that are occasionally concealed by the ordinary e; = Y, — ¥, residuals. We first remind
the reader of the notation: the model is Y = X + €, the normal equations are

X'Xb = X'Y with solution b = (X'X)'X"Y, if X'X is nonsingular. The fitted values
are V Xb = Y(Y'X\ X'Y = HY say, where

= om oy 3

= X(X'X)'X". (8.1.1)

__ Py Fe Y P

This matrix H occurs repeatedly in regression work. It is usually called the ‘“‘hat
matrix,”’ as mentioned below, above (8.1.11).
The elements of H will be denoted by A;, namely,

Chy hy o0 hy ]
h21 h22 e h2n
H=| . _ (8.1.2)
Lhnl hnZ e h2n-
H is symmetric, that 1s, H" = H, so that h; = h;. H is also idempotent, that is,
H'= = {X(X’X) " X'HX(X'X) X'}
= X(X'X)"'X'X(X'X) X'
(8.1.3)
=X(X'X) X’
= H.

In fact, H* = H, where p is any power.
y
205
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The residuals can be expressed as
e=Y-¥Y=Y-HY=(-H)Y. (8.1.4)

(The matrix I — H is also symmetric and idempotent, by the way. We show this below.)

Variance—Covariance Matrix of e
Since E(Y) = XB, and because (I — H)X = 0, it follows that

e—E(e)=(I-H)Y-XB)=(I-H)e (8.1.5)
and the variance—covariance matrix of e is defined as
V(e) = E{[e — E(e)][e — E(e)]'} = (I — H)E(e€')(I — H)". (8.1.6)

Now E(e€’') = V(e) = lo? if E(e) = 0, as we usually assume, and when unweighted

least squares are used. Furthermore, (I — H)' = (I — H’) =1I- [X(X 'X)'X'] =

I - X(X'X)'X' =1 — H. Thus the matrix I — H is symmetric, and
V(e) = I - H)Io¥(I - H)'
= (1 - H)(I - H)o? (8.1.7)
=(I-H-H+ HH)o?
= (I - H)o?

since HH = H? = H. Thus V(e) is given by the ith diagonal element 1 — h;, and
cov(e;, €)) is given by the (i, j)th element —A; of the matrix (I — H)o?. The correlation
between e; and e, is given by

s —h
coviene) ' (8.1.8)

Pi=Vie) V(et? {(1— k(1 - hp®

The values of these correlations thus depend entirely on the elements of the matrix
X, since o? cancels. [In situations where we “design our experiment,” that is, choose
our X matrix, we thus have the opportunity to affect these correlations. We cannot
get all zero correlations, of course, because the n residuals carry only (n — p) degrees
of freedom and are linked by the normal equations.]

1. SS (all parameters) = SS(b) = b'X'Y
=YY
=Y'H'Y
=Y'HY
= Y'HY
=¥V

(8.1.9)
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2. The average V(Y)) over all the data points is
> V(Y)/n = trace (Ho?)/n = po?/n, (8.1.10)
i=1

where p is the number of parameters. (See Exercise R in “Exercises for Chapters 5
and 6.”)

3. H1 = 1 when the model contains a B3, term. This means that every row of H
adds up to 1. So does every column, since H is symmetric. Note that 1’ = 1H' = 1'H
and 1'H1 = n.

4. Because Y = HY, H is often called the “hat matrix,” that is, the matrix that
converts Y’s into ¥’s. The diagonal elements are often called the leverages, since
examination of

Y=Y, + > hY, (8.1.11)

J#1

indicates via h; how heavily Y; contributes to Y;. The messages from the leverages
are not clear-cut. Cook and Weisberg (1982, p. 15) say that “for any A; > 0, Y, will
be dominated by h;Y; if Y, is sufficiently different from the other elements of Y (that
is, an outlier).” Hadi (1992, p. 5) says that “because high-leverage points are outliers
in the X-space, some authors define leverage in terms of outlyingness in the X-space.
However, leverage and outlyingness in the X-space are two different concepts .. ..
High-leverage points are outliers in the X-space but the converse is not necessarily

true.” We shall deemphasize use of the leverages.

Internally Studentized Residuals’

It is clear from (8.1.7) that V(e)) = (1 — h;)o?, and these may well vary considerably.
Usually o would be estimated by s?, the residual mean square, that is, by

s* =e'e/(n — p) = Ze¥/(n — p). (8.1.12)
We can thus studentize the residuals by defining
S(l - h,‘,‘)l/z’

namely, by dividing each residual by its standard error {V(e)}'? = {(1 — h;)s 3}'>. These
studentized residuals are said to be internally studentized because the s has, within it,
e; itself. So e; is both on top and (concealed) underneath.

5 (8.1.13)

Ewtvn Cuiren Af Cannrnvan Addvilibalola 8.0 -
AL U Ul aqucl » MLUTIULQuIC v 7]
Wa vnnall thhaot clmnma o — T _ TI\W
YV 1Clail uat, dIILC © =— (1 n)n,
&= ~hY\—hY,—---+ ({1 - h)Y; - — h,Y,
(8.1.14)
=c'Y,
say, where ¢’ = (—hy, —hy, ..., (1 — hy), ... — h;,). Now

'Some versions of MINITARB call these standardized residuals. They are obtained by allocating a column
for them in the regression command.
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c'c= n hi + (1 — 2h;
Ef L ) (8.1.15)

=(1 - hy).

This follows because the summation is the ith row of H multiplied by the ith column
of H, which gives h; by the idempotency of H. So, by (6.3.3) applied to (8.1.14), the

1 Af avtra QC fAr 0. 1Q
1 UL Laua JJ 11Ul T 1o

SS(e,‘ = e,z/(l - h,’,‘). (8116)
Thus
~ (n—p)st—e’(1—-hy)
2(j) =
s(i) — (8.1.17)
provides an estimate of o? after deletion of the contribution of e;.
Externally Studentized Residuals?
Analogously to (8.1.13), we can define
= & (8.1.18)
Fs()(1 — ) o

as the externally studentized residuals. An advantage of this is that, if e, is large, it is
thrown into emphasis even more by the fact that s(i) has excluded it. The ¢, follow a
t(n — p — 1) distribution under the usual normality of errors assumption.

Example. Consider again the data of Table 2.1 used to illustrate pure error. We show
the calculation details for the influential observation Y,;. The ordinary residual is 2.36;
h2323 = 0158, 1- h23_23 = 0842, §2 = 07275,

s3(23) = {21(0.7275) — (2.36)*/0.842}/20 = 0.4336,
much smaller than s°. The internally studentized residual is
s = 2.36/{0.7275(0.842)}'* = 3.01.
The externally studentized residual is
y = 2.36/{0.4336(0.842)}'7 = 3.90.

We see how external studentization has placed the t-residual nearly four standard
errors away from zero rather than about three, and has thus given it extra prominence.
(Of course, it was already large enough to notice at three standard errors, in this ex-
ample!)

Calculations like those above are carried out automatically by many p
the reader does not actually have to go through the details.

The amended residuals can be used in place of the ordinary residuals in any of the

plots mentioned in Chapter 2. Comparison of e, s;, and ¢, plots is sometimes useful.

Some versions of MINITAB call these the r-residuals. Their derivation is also described differently in
MINITAB source material, where they are described as {Y, — Y(i))}/{MSE, + V(P(i))}'2, where Y(i) is
predicted from a regression on data omitting Y; and MSE, = s%(i). They are, nevertheless, identical to the
t, we describe. A subcommand “‘tresids C19” gives them in column 19, say.
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Other Comments

Gray and Woodall (1994) mention several issues.

1. The internally studentized residuals s; are such that the marginal distribution of
s¥#(n — p)is B(3, (n — p — 1)/2), which implies that |s;| cannot exceed (n — p)'?. This
bound is reached only when deletmg the ith set of data results in a perfect fit to the
data that remain. When the residual degrees of freedom (n — p) are small, no s,
residual can be very large as a consequence.

2. Max |s;| can be tested, if desired; references are given.

3. The externally studentized residuals ¢, are not bounded and f, has a marginal ¢-

distribution with (n — p — 1) df.

LaMotte (1994) covers some of the same ground from the viewpoint of when ratio

statistics are actually z-variables and when not.
Berk and Booth (1995) indicate that several types of diagnostic plots can be useful
to detect curvature omitted in a first-order model, but all of the diagnostics can be

sclanAdia Anrtaies Airnnisotannsng
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8.2. ADDED VARIABLE PLOT AND PARTIAL RESIDUALS

Added Variable Plot

We suggested in Section 2.6 that residuals could also be plotted against variables that
are new candidates for entry. For example, if z = (z,, 2, ..., 2,)' is a column of
values of a variable observed with the rest of the data, we could plot the e; versus the
z;- We can also first regress z on the other X’s in the model and get its residual vector

e, =z—-2=(-XXX)'X)z

This will remove from z any effect due to the columns of X. We can then plot e versus
e,. Such a plot is called an added variable plot. Note that the plot is centered around
the origin since both variables are residuals from a model with 8, in it. Assessing the
slope of a straight line through the origin in this plot is essentially an assessment of
the value of adding z to the group of regression predictors. So this could also be done
directly using an extra sum of squares F-test.

Partial Residuals

Partial residuals are residuals that have not been adjusted for a particular X variable.
Suppose we focus on X; and rewrite X = (X, x;) and

Y = X\b, + xb;, (8.2.2)

where correspondingly

b=(bi,b) =
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Then the set of partial residuals for X; would be
=e+ x,'b,'

where e is the usual vector of residuals Y — ¥. A plot of ef versus X; has slope b;
and the vector e would provide the residuals if a straight line fit were made.

(This has also been called a “component plus residual plot.”” A variation adds back
a quadratic term in X; to the residuals as well as a first-order term.)

8.3. DETECTION OF INFLUENTIAL OBSERVATIONS: COOK’S STATISTICS

First we consider the (rather extreme) example where we fit a straight line to a set
of data consisting of five observations, four at X = g, and one at X = b. If V(Y)) =
o? we can show that, at X = a, V(e) = 0.75¢% i = 1, 2, 3, 4, while, at X = b,
V(es) = 0. At first sight, a zero variance seems very desirable but it in fact arises

because the fitted straight line is determined as the join of the average level of Y at
7 a cinola nhcarvad laval Af V of V — h Tha racidnal at YV — h ic 7arn

Y — nd th
A = a anda ine SHIEIC UUSVIvVLU vl Ul I U. 110 I0SIGUdL dt A — U B 010

whatever the value of the corresponding Y and, in fact, the parameter estimates depend
heavily on this particular observation. A large error in this observation is not detectable
in the model-fitting process, and examination of the residuals would not reveal it
either, if it existed. The observation at X = b is an extremely influential one, whether
it is correct or not.

The fact that an observation provides a large outlier is not, of course, good, but it
does not necessarily mean that the observation is influential in fitting the chosen
model. For example, in Figure 8.1, where the data of Table 8.1 are plotted, we see
that the observation marked 19 will certainly be an outlier for most simple models
fitted through the data. Its possible influence is moderated by the fact that there are
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Figure 8.1. A regression with an observation (19) that may not be influential and one (18) that may
well be. X represents the age of a child at first word (in months) and Y represents the child’s score on an
aptitude test. Reproduced by permission from Andrews and Pregibon (1978). The original data were
recorded by Dr. L. M. Linde of UCLA and were given by Mickey, Dunn, and Clark (1967). See Table 8.1
for the data.



8.3. DETECTION OF INFLUENTIAL OBSERVATIONS 211

TABLE 8.1. Age at First Word (X) and Gesell
Adaptive Score (Y)

Case X Y
1 15 95
2 26 71
3 10 83
4 9 91
5 15 102
6 20 87
7 18 93
8 11 100
9 8 104

10 20 94
11 7 113
12 9 96
13 10 83
14 11 84
15 11 102
16 10 100
17 12 105
18 42 57
19 17 121
20 11 86
21 10 100

Source: Data from Mickey, Dunn, and Clark (1967) but re-
corded by L. M. Linde of UCLA.

other observations at neighboring X-values. Observation 18, on the other hand, could
well be an influential one. Being alone in its territory, it may have a major influence
on the position of the fitted model there. It may or may not have a large residual,
depending on the model fitted and the rest of the data.

In any data set where the estimation of one or more parameters depends heavily
on a very small number of the observations, problems of interpretation can arise. One
way to anticipate such problems is to check whether the deletion of observations
greatly affects the fit of the model and the subsequent conclusions. If it does, the
conclusions are shaky and more data are probably needed.

Cook (1977) proposed that the influence of the ith data point be measured by the
squared scaled distance

D= (Y - Y)Y - Y(©))/(ps?). (8.3.1)

Here, Y = Xb is the usual vector of predicted values, while Y(i) = Xb(i) is the vector

¢ from a leact eanarac it when the /th d
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b(i) is the corresponding least squares estimator.

When v is a vector, v'v is the squared length of that vector, so D, is the squared
distance between (the ends of) the vectors ¥ and Y (i), divided by ps®. If omission of
the ith observation makes little difference to the fitted values, D; will be small. Large
D; indicate observations whose deletion greatly affects the fitted values. Because
Y - Y(i) = X{b — b(i)}, we can also write

D, = {b — b)Y X'X{b — b(i)}/(ps?). (8.3.2)
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A third representation of D; is the form

_ € Y hy 1
b= {s(l - hii)m} {.l - hu};’ (833)

where ¢; is the ith residual when the full data set is used, s? is the estimate of the
variance V(Y;) = o? provided by the residual mean square when the full data set is

H — ' '
uacd, and r"iu is the ith dlasuual uuu] of the matrix H = X(X \’) 1X'. We see that the

first factor in Eq. (8.3.3) is the ith internally studentized residual, that is, the residual
divided by its standard error (see Section 8.1), while the second term is the ratio
(variance of the ith predicted value)/(variance of the ith residual). Note that 0 <
h; < 1. D, can be large if either the first or second factor is large, and these factors
measure two separate characteristics of each data point.

For our example above, with four observations at X = a, one at X = b,

| € 1\(1 .
D,-—{(msz} (3)(2) i=1,2,3,4, (8.3.4)

Ds = indeterminate,
where, fori = 1,2,3,4,eache, =Y, — Y,, where Y, = (Y; + Y, + Y, + Y,)/4 and
es = 0. The fifth observation, at X = b, is thus ‘“flagged’ as being a peculiar one and
examination of the circumstances reveals its overwhelming influence.

For the Mickey, Dunn, and Clark data of Table 8.1, the values of the Cook’s statistics
for omission of observations 1, 2, . . ., 21 are 0.01 times, respectively,

0,8,732000025075,0,0, 2,68, 22, 3, 0.

Observation 18 is very influential, and 19 is somewhat influential. There is no
formal test for this. We simply compare the sizes of the “big ones” with the base
level indicated by the bulk of the numbers. This base level is in the single digits
here and the statistics 68 \101 observation 10) and 22 \fOi‘ observation 17) arc
clearly higher. (Some writings suggest that the Cook’s statistics follow an F-
distribution, but this is incorrect.) (What happens to the fit when 18 is omitted is
shown in Figure 8.2.)

Evaluation of the residuals for these data show that observation 19 appears to be
an outlier. Because X is the age (in months) of a child at first word, it is clearly not
sensible to plan to collect data to fill in the gap between the lower X-values where
most of the data occur, and the X-values of observations 2 and 18, which may not be
reliable anyway. If we omit 2 and 18 as atypical X-values and omit 19 as an outlier,
the message sent by the data is much reduced. That could well be the appropriate
course of action here.

Evaluation of D, as a routine technique is recommended. It is widely available as
a standard option on many regression systems. In MINITAB, the subcommand ‘‘cookd
C20;” will place the Cook’s statistics in column 20, for example.

Higher-Order Cook’s Statistics

Cook’s statistics can also be evaluated for omitted pairs, omitted triplets, and so on,
in an obvious extension of (8.3.1) and (8.3.2). Much more calculation is required in
these cases and this is not routine. Here are a few example calculations of Cook’s
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YA
120+ o19
[ ]
110k
\
\\\ ) 4
100}~
L Line Fitted to 20
90 g observations excluding
° No. 18.
o y=109.87 - 1.127x
80
Line Fitted
to 21 original
70 i observations.  2°
y=109.87 - 1.127x
N\
60 |- \\ \
18° \

L | | 1 1 J\\ ﬁl———>

0 10 20 30 40 50 "\ 60 x

Figure 8.2. Plot of the Mickey, Dunn, and Clark (1967) data together with fitted lines that include and
exclude data point 18.

statistics for some omitted pairs of observations from the data of Table 8.1. (These
numbers are in their original scaling and have not been multiplied by 100 to clear dec-
imals.)

Omitted Cook’s Statistic
18,2 6.37
18, 3 0.48
18, 11 1.52
18, 19 0.15
19,2 0.10
19, 3 0.12
19, 11 0.41

Ciearly (18, 2) is the most influential pair. The statistic’s low value for the pair (18,
19) comes as somewhat of a surprise at first sight. Each exerts a clockwise pull on the
line but when both are omitted together, the line does not move very much.

Omitting more than one observation at a time can be useful in cases where two or
more points conceal each or one another in a single deletion check. For example, if
there were a point (let us call it 22) close to point 18 in the Table 8.1 data, omission
of 18 might not give a large Cook’s statistic value because 22 would “hold the line
close” to its original position. Similarly, omission of 22 alone might have the same
result. Omission of both 18 and 22 would, however, reveal them as an influential pair,
if that were the case.
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Another Worked Example

For the data used to illustrate the lack of fit test in Section 2.1, the Cook’s statistics
are 0.01 times these numbers:

4,0,7,4,0,8,2,4,3,0,0,1,0,4,6,1,0,5,0,0, 1, 2, 85.

The last observation shows up as very influential. We have already mentioned its
strangeness in Section 2.1, where it showed up clearly in the plot of Figure 2.1.
Evaluation of Cook’s statistics usually enables us to pinpoint such observations even
when we have not been able to look at a plot, for example, in a case with multiple pre-
dictors.

Plots

Some suggestions for plotting the values of Cook’s statistics are given by Hines and
Hines (1995).

24 OTMUE
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The DFFITS Statistics

These statistics are cousins of Cook’s influence measures. They are defined by Belsley,
Kuh, and Welsch (1980) as

DFFITS, = [{b — b(i)}’X'X{b — b(i)}/s*(i)]"? (8.4.1)
= [Dips*Is*(i)]'?, (8.4.2)

where D, is Cook’s statistic (8.3.1). [For s%(i), see Section 8.1. It is an estimate of o2
obtained after deletion of the contribution of the ith residual.]

Atkinson’s Modified Cook’s Statistics

By replacing s? by s2(i), scaling by a factor (n — p)/p instead of 1/p, and taking the
square root, we obtain another set of relatives of Cook’s statistics:

A; = [{b - b()}X'X{b — b(i))(n — p){ps*(i)}]"* (84.3)
= [Ddn — p)s¥s¥i)]"? (8.4.4)
= DFFITS{(n — p)/n}™. (8.4.5)

See Atkinson (198S).

Cook’s, DFFITS, and Atkinson’s statistics teil paraiiei stories for most sets of data.
We suggest you go with your preference. While we favor Atkinson’s for technical
reasons, we usually go with Cook’s, which is more widely available.

8.5. REFERENCE BOOKS FOR ANALYSIS OF RESIDUALS

How much effort should one put into examining residuals? It depends on the circum-
stances. If your regression is one of a series, and tomorrow you move on to other
experiments and to other data, perhaps not too much effort beyond the standard plots
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we have described is needed. On the other hand, if you spent a year in an African
jungle and emerged with 61 precious observations, you may wish to spend another
year examining all their aspects. In this case, you may need to consult some of the
excellent books listed below for sophisticated analyses we have not told you about.
The same references appear in Section 2.8.

P WaTe Yl

(1980); Rousseeuw and Leroy (1987).

EXERCISES FOR CHAPTER 8

A. Find the hat matrix H = X(X'X)'X' and the three types of residuals (ordinary, s-residuals,
and t-residuals) for any of the regression examples or exercises in this book. Check the
characteristics and properties of H given in Section 8.1. Compare standard plots of the three
types of residuals, for example, versus order, overall, or versus Y. For most (but not all)
regressions, it makes little difference which type of residual is used in these plots. When
the plots differ materially, the reasons why should be explored. Check for outliers and
influential points.

B. If you were asked to fit a straight line to the data

(X, Y) =(1,3),(2,25), (2, 1.2), (3, 1), and (6, 4.5),

what would you say about it?

C. Find the Cook’s statistics for any of the regression examples or exercises in this book. Are
any of the observations influential? What can be done if they are?

D. (Source: “The hat matrix in regression and anova,” by D. C. Hoaglin and R. E. Welsch.
The American Statistician, 32, 1978, 17-22. See also p. 146.) We recall that Y=Xb-= HY,
where H = X(X'X)'X' (sometimes called the hat matrix) is symmetric and idempotent.
Show that each of the diagonal terms h,, (sometimes called the leverage of Y, on Y,) for
u=172,...,n lies between 0 and 1, that the n h,, add to p, the number of parameters
(note that X is n X p), and that, if Y, is replaced by Y = Y, + 1 in the regression calculation,
t

A

hen Y* = ¥, + h,,.



CHAPTER 9

The topics in this chapter are all useful on certain occasions, but most or all of them
can probably be passed by on a first reading. Thus it is convenient to group them
together at a point in the book where the necessary prerequisites have been established.

Experimenters sometimes postulate models that are more general than they hope they
need. For example, suppose an experimenter is involved with a response Y and two
predictors X; and X, and has a set of data (Y;, Xj;, X),i = 1,2, ..., n. She suspects
that, although X, and X, both affect Y, the single predictor of importance is really
the difference X; — X,. If both X’s are needed, she will want to fit the model

Y = BO + B]X] + BzXz + €, (91.1)
but, if her suspicion is correct, the model

would be good enough. How can she check? Essentially, she has asked the question:
“Could it be, in Eq. (9.1.1), that 8, = —f, (= B, say)?” Or, alternatively, “Is B, +
B, = 0?7 She thus will want to test the null hypothesis H,: 8, + 8, = 0 versus the
alternative H,: 3, + 3, # 0. Because H,involves a statement about a linear combination
of the B’s, we call it a linear hypothesis.

Linear hypotheses typically arise from the knowledge of the experimenter and his/
her conjectures about possible models. They can also arise from a consulting statistician,
if he/she is deeply enough involved in the project to understand it at such a level.
Ideally, the statistician should be that deeply involved, but in practice this does not
always happen.

A linear hypothesis can also consist of more than one statement about the 8’s. We

now provide some additional examples of linear hypotheses, explain generally how

one is tested, and illustrate the procedure with a simple numerical example, H, is
always the statement that H, is not true in some way, and so is not specifically mentioned
in the examples.

(We note that the “‘extra sum of squares” principle of Section 6.1 is a special case
of the work in this section.)

Example 1. Model: E(Y) = B, + B, X, + B, X,.
217



218 MULTIPLE REGRESSION: SPECIAL TOPICS

Hy:B, =0,
B.=0 (two linear functions, independent).

(By “independent” we mean linearly independent, so that one statement cannot be
obtained as a linear combination of other statements in the group.)

Example 2. Model: E(Y) = By + B X, + B,X; + -+ + B Xk
Hy:B,=0,
BZ = Os

B:=0 (k linear functions, all independent).

Example 3. Model: E(Y) = By + BiX) + B, X; + -+ + B X;.
Hy:B,— B, =0,
BZ - BS = Oa

Bi-i — B =0 (k — 1 linear functions, independent).
Note that this expresses the hypothesis
Hy:By=6,="-+ =B =B, say.

Example 4 (General Case). Model: E(Y) = B, + B, X, + B, X, + - -+ + B Xk.
Hy:coBop+ cnBi + ey + - + e =0,

co R+ R0 R 4 R =0
Lor20 ™ L2101 T Lz T L2k )

CmoBo + CniPB1 + Cr2fB2 + -+ + B = 0.

In this hypothesis there are m linear functions of B3, 8i, B, ..., B, all of which
may not be independent. H, can be expressed in matrix form as
Hy:CB =0,
where
] Bo
[Co ¢ C2 *°° Cik
n
M1
Co €y Cnp *** Cx
£ — o — Fa)
v = ’ P~ ] M
[ Cm0 Cm1 Cm2 """ Cpk )
[ B

We shall suppose in what follows that the m functions are dependent and that the last
(m — gq) of them depend on the first g; that is, if we had these first g independent
functions, we could take linear combinations of them to form the other (m — q)
linear functions.
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We have seen earlier how it is possible to test hypotheses of the forms in Examples
1 and 2. We now explain how more general hypotheses can be tested.

Testing a General Linear Hypothesis Cg = 0
Suppose that the model under consideration, assumed correct, is

InTA ¥4

E(Y

4

) = Ap,
where Y is (n X 1), X is (n X p), and Bis (p X 1). If X'X is nonsingular we can
estimate 3 as
b= (X'X)"'X"'Y.
The residual sum of squares for this analysis is given, as we have seen, by
SSE = Y'Y — b'’X"Y.

This sum of squares has (n — p) degrees of freedom. The linear hypothesis to be
tested, Hy: CB = 0, provides g independent conditions on the parameters S, 8, . . .,
By, on the assumptions (mentioned above) that CB = 0 represents m equations, of

which anlu 7 ara indanandent Wa can nca the 2 indanendent aanatinng to enlve for
YVYilliwil Ulll] ‘l [¢9 9 ) llluvv\dllu\(‘lt- YY W WAll MOV ViV ‘1 llluvt}\lllu\lllb V\iuutl\llla LW OWULI YN AV

q of the B’s in terms of the other p — g of them. Substituting these solutions back
into the original model provides us with a reduced model of, say,

E(Y) = Za,

where a is a vector of parameters to be estimated. There will be p — g of these
parameters. The right-hand side Za, where Z isn X (p — q) and ais (p — q) X 1,
represents the result of substituting into X for the dependent f’s.

We can now estimate the parameter vector a in the new model by

a=(Z'2)'7'Y,
if Z'Z is nonsingular, and can obtain a new residual sum of squares for this regression of
SSW =Y'Y — a’Z'Y.

This sum of squares has (n ~ p + gq) degrees of freedom.

Since fewer parameters are involved in this second analysis, SSW will always be
larger than SSE. The difference SSW — SSE is called the sum of squares due to the
hypothesis CB = 0 and has (n — p + q) — (n — p) = q degrees of freedom. A test
of the hypothesis H,: C8 = 0 is now made by considering the ratio

(sv-s0) (22)

and referring it to the F(q, n — p) distribution in the usual manner. If the errors are
normally distributed and independent, this is an exact test.

The appropriate test for Examples 1 and 2 [already given as Eq. (5.3.2) where
g = k = p — 1] is a special case of this. The reduced model in both cases consists of

E(Y) =15
where 1' = (1, 1, ..., 1) is a vector of all ones. Another way of writing this model is
E(Y) = By, i=12,...,n
Since by = Y, SSW = Y'Y — nY? with (n — 1) degrees of freedom, whereas SSE =




220 MULTIPLE REGRESSION: SPECIAL TOPICS

Y'Y — b’X"Y with (n — k — 1) degrees of freedom. So the ratio for the test 8, =
B. = --- = B; = 0 (for Example 2; when k = 2, we have Example 1) is simply

b'’X'Y —nY? Y'Y-b'X'Y
k n—k-1
and this is referred to the F(k, n — k — 1) distribution. This is exactly the procedure
of Eq. (532) withk =p — 1, v=n — k — 1, and s = MS; = SSE/w.
We shall now illustrate the use of the procedure in a simple but not so typical case.

Worked Example. Given the model E(Y) = X, test the hypothesis Hy: C8 = 0, where

Y =(1,4,8,9,3,8,9),

p’ = (ﬁﬂv BI7B23 Bll)y
1 X X, X?

1 -1 -1 1]
1 1 -1 1
1 -1 11
X=[{1 1 1 1},
1 0 00
1 0 10
1 0 2 o]
and
0 0 0 17
C=01—10
01 -1 1
0 2 -2 3]

Solution. We first find the residual sum of squares SSE when the original model,
of form E(Y) = Bo + B1X1 + BzXz + B“X{, is fitted. We find

7 0 3 47 [ 3 0 -} -7
0 4 00 0t 0 O
(x’x)—l= ~ ~ ~ ~ = 1 ~ 1 1 ’
3 U0 Y u -8 U 3 [
4 0 0 4. -+ 0 & i
(42- ﬁ*‘
4 1
X'Y = sl b=(X'X)"'X'Y = 3 | b’X'Y = 312.33
Y'Y = 316
_22—1 —131—4

SSE = 316 — 312.33 = 3.67.
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The equations for the null hypothesis Hy: C8 = 0 are

B =0,
BI_BZ':O’
Bi— B+ Bu=0,

2B, —2B,+ 3B =0.

The hypothesis can be more simply expressed as H,: 3, = 0, 8, = B8, = B, say, since
the third and fourth equations are linear combinations of the first and second equations.
Substituting these conditions in the model gives a reduced model

EY)=8+BX1+ X)) =ay+ aZ,

where
ay = B, a = f, Z =X + X,.
Thus
1 (-1-1)7 [1 -27
1 (1-1) 1 0
1 (-1+1) 1 0
Z=|1 a+1nl|=|1 2
1 (0+0) 1 0
1 (0+1) 1 1
1 ©0+2] L1 2l
2y - [?] r7 310 {[13 -3
’ =|L42J’ (Z’Z)_]=|L3 13J "8l 9]
a=(2'2) 7Y =21 [IO], a'Z'Y = 301.17,
411 4

SSW =316 — 301.17 = 14.83.
Nowp=4,n=7,q=2,n—p =3, and
SSW — SSE = 14.83 — 3.67 = 11.16 = SS due to the hypothesis.
The appropriate test statistic for H, is thus (11.16/2) + 3.67/3 = 4.56. Since F(2, 3,

0.95) = 9.55, we do not reject H,. Since the original model was E(Y) = B, + B, X, +
B.X, + B X1 and the hypothesis not rejected implies 8, = 0, 8, = B, = B, a more
plausible model would be E(Y) = By + B(X; + X)).

9.2. GENERALIZED LEAST SQUARES AND WEIGHTED LEAST SQUARES

It sometimes happens that some of the observations used in a regression analysis are
“less reliable” than others. What this usually means is that the variances of the
observations are not all equal; in other words the nonsingular matrix V(e) is not of
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the form Io? but is diagonal with unequal diagonal elements. It may also happen, in
some problems, that the off-diagonal elements of V(e€) are not zero, that is, the
observations are correlated.

When either or both of these events occur, the ordinary least squares estimation
formula b = (X'X)'X'Y does not apply and it is necessary to amend the procedures
for obtaining estimates. The basic idea is to transform the observations Y to other
variables Z, which do appear to satisfy the usual tentative assumptions [that Z =
Qp + 1, E(f) =0, V(f) = Io?, and, for F-tests and confidence intervals to be valid,
that f ~ N(0, I6?)] and to then apply the usual analysis to the variables so obtained.
The estimates can then be reexpressed in terms of the original variables Y. We shall
describe how the usual regression procedures are changed. Suppose the model under
consideration is

Y =XB+e¢, (9.2.1)
where
E(e) =0, V(e)=Vo? and e~ N(0,Vo?). (9.2.2)
It can be shown that it is possible to find a nonsingular symmetric matrix P such that
PP=PP=P"=V. (9.2.3)
Let us write
f="Ple so that E(f) = 0. (9.2.4)

Now it is a fact that, if f is a vector random variable such that E(f) = 0, then
E(ff') = V(f), where the expectation is taken separately for every term in the square
n X n matrix ff'. Thus

V(f) = E(ff') = E(P'ee’'P™'),  since (P')' =P

= P E(e€’)P! (9.2.5)
= P 'PPP !¢g?
= lo?

It is also true that f ~ N(0, Io?); that is, f is normally distributed, since the elements of
f consist of linear combinations of the elements of €, which is itself normally distributed.
Thus if we premultiply Eq. (9.2.1) by P~! we obtain a new model

P'Y =P'XB + Ple (9.2.6)
or

2Z=Qp+f (9.2.7)
with an obvious notation. It is now clear that we can apply the basic least squares
theory to Eq. (9.2.7) since E(f) = 0 and V(f) = Io”. The residual sum of squares is
ff=€eV'ie= (Y - XB)’V“(Y - XB). (9.2.8)

The normal equations Q'Qb = Q'Z become
X'V'Xb = X'V''Y (9.2.9)

with solution

b = (X'V-X)'X'V-'Y (9.2.10)
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when the matrix just inverted is nonsingular. The regression sum of squares is

b'Q'Z = YV XX'VX)'X'V'Y (9.2.11)

and the total sum of squares is
7’27 =Y'VY (9.2.12)
The difference between (9 2) and (9.2.11) provides the residual sum of squares.
The sum of squares due to th an is (2 Z)*/n, where Z; are the n elements of the

vector Z. Note that, if we subtract this from Eq. (9.2.11), the remainder is not an extra
sum of squares in the usual sense, because the transformed model no longer contains
a 3. Thus an appropriate base sum of squares to subtract here is one due to the first
component of Eq. (9.2.7). The variance—covariance matrix of b is

V(b) = (Q'Q)'0? = (X'V-'X) lg2. (9.2.13)

A joint confidence region for all the parameters can be obtained from

[SEy
N’
—~

\O
N’

after substituting from Egs. (9.2.11) and (9.2.12) and setting Q = P~'X, if so desired.

Generalized Least Squares Residuals

The residuals that must be checked are the estimates of f = P 'e. These residuals are
given by

PI(Y - ¥),
where ¥ = Xb and b is taken from Eq. (9.2.11). Thus these residuals are
PH{I - X(X'VX) X'V I}Y. (9.2.15)

General Comments

We speak of generalized least squares when V is not a diagonal matrix, and of weighted
least squares when it is. In the latter case, the observations are independent but have

different variances so that
rO’ 12 0

0'22

2
n

—

where some of the o7 may be equal.

In practical problems it is often difficult to obtain specific information on the form
of V at first. For this reason it is sometimes necessary to make the (known to be
erroneous) assumption V = I and then attempt to discover something about the form
of V by examining the residuals from the regression analysis.

If a generalized least squares analysis were called for but an ordinary least squares
analysis were performed, the estimates obtained would still be unbiased but would
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not have minimum variance, since the minimum variance estimates are obtained from
the correct generalized least squares analysis.

If standard least squares is used, then the estimates are obtained from b, =
(X’X)'X'Y and

E(b,) = (X'X)"'X'XB =B

=3
=4

V(b,) = (X'X) ' X' [V(Y) I X(X'X) ™
= (X'X)"'X'VX(X'X) ' o?
We recall from Eq. (9.2.13) that if the correct analysis is performed,
V()= (X'V'X)'g?

and, in general, elements of this matrix would provide smaller variances both for
individual coefficients and for linear functions of the coefficients.

Application to Seriallv Carrelated Data

s FrrviRiwrr 2w wwritairy W ws ~

The major difficulty in applying generalized least squares methods is in finding V in
Eq. (9.2.2). Suppose we wish to allow for serial correlation, for example. If the observa-
tions are listed in time order, the element V,; of V would be p,, where [ = |i , with
po = 1. To estimate p, we could lag the observations by / steps and evaluate a correlation
coefficient using Eq. (1.6.5), ignoring the unmatched overlap observations. These
estimates are substituted into V to produce a \7, which is used in formulas such as
Egs. (9.2.10) and (9.2.11). To analyze the residuals from this weighted fit we need the
estimates of f = P 'e; see Egs. (9.2.3) and (9.2.4). These estimates are thus

f=P Y (Y-Y) (9.2.16)

where
pP=V (9.2.17)
and where Y is fitted by generalized least squares, so that
Y=XX'V'X)'X'Vy. (9.2.18)
In other words, the elements of
f=P'{I-XX'V'X)'X'V 1Y (9.2.19)

are examined.
(Note: This is essentially the same formula as e = {I - X(X'X) 'X"}Y for ordinary
least squares, but with P~'X and P~'Y replacing X and Y respectively.)

9.3. AN EXAMPLE OF WEIGHTED LEAST SQUARES

This is an extremely simple example but an interesting one. Suppose we wish to fit
the model

E(Y) = BX.
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Let us suppose that
r—l /Wl

1 0
Vol = V(Y) = " o,

0 1/w, |

where the w’s are weights to be specified. This means that

p— -~

] 0 W, |

Applying the general results above we find, after reduction,

[ Snladl Sl |

b_zwxv
C SwX?’

where all summations are fromi =1, 2, ..., n.

Case 1. Suppose o> = V(Y,) = kX;; that is, the variance of Y, is proportional to the
size of the corresponding X;. Then w; = o?/kX,. Hence

_2Yi_ Y
X X

Thus if the variance of Y, is proportional to X, the best estimate of the regression
coefficient is the mean of the Y, divided by the mean of the X,. In addition,

2

o _ k
Sw.X? SXS

<=1 <=1

V(b) =

Case 2. Suppose o> = V(Y;) = kX? that is, the variance of Y, is proportional to the
square of the corresponding X;. Then w; = o*/kX?. Hence

. .
r\nnfﬁrﬂnr\f 1c tlnn Qavorn
VULV LLIIVIVIIL 10 LIV aAvYva “5

Y/ X Also,

Note: Fitting a straight line through the origin (X, Y) = (0, 0) represents a very strong
assumption, which, in general, is not justified. Even when the model is “known” to
pass through the origin (as would be the case, for example, if X = speed of car, Y =
stopping distance) it does not mean that a straight line fit though the origin is necessarily
appropriate. It may be that the available data can be fitted by a straight line not
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through the origin but that, if more data were available, a higher-order model that
did pass through the origin would provide a proper fit. Usually it is best to put an
intercept term B3, in the model and to check on the size of the estimate b,.

9.4 A NUMERICAL EXAMPLE OF WEIGHTED LEAST SQUARES

The data in Table 9.1, which have been rearranged in an order convenient for purposes
of analysis, consist of 35 observations (X, Y;) with a number of sets that are either
exact repeats at the same X-value or approximate repeats. These are indicated by the
groupings. A fit of the data by (ordinary) least squares produces the fitted model

T A BLE 9.1. Data for Weighted Least Squares Example

X Y W,
1.15 0.99 1.24028
1.90 0.98 2.18224
3.00 2.60 7.84930
3.00 2.67 7.84930
3.00 2.66 7.84930
3.00 2.78 7.84930
3.00 2.80 7.84930
5.34 5.92 7.43652
5.38 5.35 6.99309
5.40 4.33 6.78574
5.40 4.89 6.78574
5.45 5.21 6.30514
7.70 7.68 0.89204
7.80 9.81 0.84420
7.81 6.52 0.83963
7.85 9.71 0.82171
7.87 9.82 0.81296
7.91 9.81 0.79588
7.94 8.50 0.78342
9.03 9.47 0.47385
9.07 11.45 0.46621
9.11 12.14 0.45878
9.14 11.50 0.45327
9.16 10.65 0.44968
9.37 10.64 0.41435
10.17 9.78 0.31182
10.18 12.39 0.31079
10.22 11.03 0.30672
10.22 8.00 0.30672
10.22 11.90 0.30672
10.18 8.68 0.31079
10.50 725 0.28033
10.23 13.46 0.30571
10.03 10.19 0.32680
10.23 9.93 0.30571

Source: Wanda M. Hinshaw.
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Figure 9.1. Residuals plots, unweighted least squares. (Two indistinguishable points are shown as a 2,
and so on.)

Y = —0.5790 + 1.1354X and the residuals plots in Figure 9.1. A clear indication that
the observations have unequal variances is seen. The overall plot of residuals (not
shown) is somewhat skewed toward negative values, also. None of the usual (ordinary)
least squares analyses are appropriate and it seems sensible to apply generalized
least squares.

We assume (until contrary indications appear) that the Y; are independent so that
V has the diagonal pattern with different variances given earlier. We now need to
obtain information on the variance pattern. For each of the sets of repeats or near
repeats we evaluate the average X-value, X, say, and the pure error mean square

s2;. These are:
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We can now substitute each individual X; into this equation, estimate s, i = 1, 2,
..., 35, and invert these values to give the estimated weights w, shown in the table.
The matrix P of our text is diagonal with entries w; 2. Using these weights leads to
the weighted least squares prediction equation ¥ = —0.8891 + 1.1648X and an analysis

of variance table as follows:
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Source df SS MS
b,|b, 1 49696 496.96
Residual 33 42.66 1.29

Total, corrected 34 539.62

The appropriate “observations” and “fitted values” are now W'?Y, and w/” ¥, and the
“residuals” to be examined are w}2(Y; — ¥;), notice. An overall plot of residuals still
shows some skewness but the pattern is slightly better behaved. The residuals plots
in Figure 9.2 reveal that the vertical spread of residuals is now roughly the same at
the two main levels of the transformed response. (At lower levels there are only two
observations so that there is not much of an estimate of the spread there.) The
employment of weighted least squares here appears to be justified and useful.

A weighted least squares program exists in most computing systems, but some do

not have a generalized least squares program.

9.5 RESTRICTED LEAST SQUARES

For least squares involving restrictions on the parameters see, for example, Waterman
(1974) and Judge and Takayama (1966). If the restrictions are of the equality form
Cp = d, we can use the method of Lagrange’s undetermined multipliers (see Appendix
9A) and minimize the Lagrangean function

F=(Y-XB)'(Y-XB)+A'(d-CB) (9.5.1)

with respect to B and A. The solution for B is

A

=~

=b + (X'X)'C'[C(X'X)"'C']"'(d — Cb) (9.5.2)
\ J L~ ; I AN /s i\ J

~

where b = (X'X)'X'Y is the usual unrestricted estimator. See also Chapters 20 and
21 for geometrical aspects.

Note that, if d = 0, so that the restriction is C8 = 0, we are back in the context
of Section 9.1. Even if d # 0, we can always substitute back into the model Y =
XpB + € for some parameters using the restrictions CB8 = d, to obtain a solution in
terms of fewer parameters. The solution (9.5.2) is more elegant in that it retains all
the original parameters and also ensures that C = d; the latter is obvious from
premultiplying Eq. (9.5.2) by C. However, it provides the same predicted values that
we would obtain by using the substitution method.

9.6. INVERSE REGRESSION (MULTIPLE PREDICTOR CASE)

Given a fitted regression equation Y=05by+bX, +b,X,+ -+ b, X, and a true
mean value of Y, say, Y, we require a “fiducial region™ for the point (X, Xa, ...,
X). Extending Eq. (3.2.8) we obtain the following equation satisfied by the boundaries
of the required region:
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{—YO + b() + b]Xl + b2X2 + M + kak}Z

( F 1Y
1

X,

=1252¢ (1, X, Xor. ... X)X'X) | X5 |}, (9.6.1)

\ | X ])
This is a hyperbolic surface. Figure 9.3 shows the k = 2 case. When Y, is the mean
of q observations, insert “1/g + inside the curly braces on the right-hand side of
Eq. (9.6.1). If Y is a polynomial, not a plane, the obvious adjustments must be made
on both sides of Eq. (9.6.1).

Note: The method indicated above can be applied to other types of problems. For
example, the maxima and minima of Y = b, = b)X + b,X? + b;X? + b, X* are at
the roots of f = b, + 2b,X + 3b:X? + 4b,X* = 0. Fiducial limits for the roots can
be evaluated from the equation

fF=0sy{v(f)a’}, (9.6.2)

where V(f) denotes the variance of the function f, which has a factor g? in it. For a
fuller account, including possible problems with imaginary roots, see Williams (1959,
pp- 108-109 and 114-116). See also Box and Hunter (1954).

Y
A

Plane

Y = by + b X, +b,X,
7N
E\ N \\

Y=Y, 7 AN
/ N L2

- intersection
of planes

The two hyperbolas are
projections of the intersection
of the plane Y = ¥, and the
hyperbolic confidence surfaces
for E(Y 1X). They bound the
fiducial region. If a value of
{say) X, is specified, we obtain
a fiducial interval for X, (given

N X,

Any point on it is an

(X’,o, fm). It is the projection
of the line of intersection of
the two planes on to the

(X;, X,) base.

Line by Xy + b, X, +by— Yy = 0 /

Figure 9.3. Inverse regression for two predictors.
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9.7. PLANAR REGRESSION WHEN ALL THE VARIABLES ARE
SUBJECT TO ERROR

We briefly describe an extension of the work of Section 3.4 for more than one X.
Suppose we have observations (Y, Xy;, Xy, ..., Xu), i = 1,2, ..., n, with all variables
subject to random errors. Consider the quantity

D%i=(Bo + Z BiXji — Y)?, (9.7.1)
j=1
the squared deviation of the ith point measured in the Y direction. Similar squared
deviations in other directions are defined by, for ¢ = 1, 2, ..., k,
k
D} = (Bo+ X, BiX; — Y)Y Bi. (9.7.2)
j=1
The geometric mean of the D? values,
Gi = (D%’,D%,D%_, st D‘Z‘i)ll(ki-l)’ (973)
can also be regarded as
G; = Vi, (9.7.4)

where V; is the volume created by drawing, from the ith data point (Y,, Xy, Xa, . ..
Xy), lines parallel to the Y, X, X,, ..., X, axes to the plane Y = , + EF,B,-X,.

For k = 1, V, is the area of the ith right-angled triangle in Figure 3.5, so that the
general G, is an extension of this concept. The criterion

L= G, (9.7.5)
i=1
can now be minimized to obtain estimates for the general dimension case. For addi-
tional details, see Draper and Yang (1997).

APPENDIX 9A. LAGRANGE’S UNDETERMINED MULTIPLIERS

Notation

Because the method of Lagrange’s undetermined multipliers has wide applicability,
we have chosen to adopt a fairly ‘“‘neutral” notation 6,, 0,, ..., 6, for the variables
involved in the functions f and g; below. When the method is applied as in Section
9.5, the s would be all the parameters in the B vector. For the ridge regression
application in Chapter 17, the 6’s would be all the regression B’s except 3,. In other
applications, the 6’s might be predictor variables, that is, X’s.

Basic Method

Suppose we wish to obtain the stationary or turning values of a function f(6,, 6., .. .,
6,,) of m variables 6,, 6,, ..., 6,, subject to restrictions on the 6, such as

81(01,02,---,0m):0 (j=1,2,...,q).
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Form the function

9
F=f-2 A (9A.1)
p=
where Ay, A;, . .., A, are unknowns. Differentiate Eq. (9A. )pa tially with respect to
each 6, and set the results equal to zero. This w1ll prov1de he m quatlons
89 a,- 2 'ao (i=1,2,...,m). (9A.2)

j=1
These m equations, with the additional g equations
g=0 (=12,...,9), (9A.3)

provide (¢ + m) equations that can be solved for the (g + m) unknowns 6,, 6,, .. .,
Om, A1, Ay, ..., Ay Often the quantities A; are eliminated and not actually found; for
this reason the words ‘‘undetermined multipliers’ are used to describe them. In some
cases, however, the solutions for 6, 6,, ..., 6, are easier to obtain if the A; are
evaluated first; in other cases, it may be easier to specify values of A; in Egs. (9A.2)

and regard other quantities in Egs. (5A.3) as unknowns, in their place

Is the Solution a Maximum or Minimum?

Suppose now that (6, 6, ..., 6,) = (a1, ay, ..., a,) is a solution of Eqs. (9A.2) and
(9A.3) after elimination of A;. Let

- 9'F *F 9*F 7
96,? 060,06, 26,00,
P*F  §F  9F
M(6) = M(6,, 65,...,6,) =] 96:08, 66, 06,06 (9A4)
d’F ?*F  9F
-36,,00, 96,00, 30, -
be the matrix of second-order partial derivatives. Let M(a,, a,, ..., a,) = M(a) be

the resulting matrix after the solution a’ = (ay, a, . . ., a,,) has been substituted into
Eq. (9A.4). Then if M(a) is

1. positive definite, that is, u'Mu > 0, for all u,
2. negative definite, that is, w'Mu < 0, for all u,

l. o m! — {.; . 22 Y g any 1 W 22 voal vantar tha Fliinatinn £ 0 o
acIc u = (U, Uy, ..., u,,,} is aily 1+ X m 1€di vECior, ulif 1uncCuoil jyv,, oy, )
) chieves

1. a local minimum at @ = a,
2. a local maximum at @ = a,

respectively. For, if we expand F about a as a Taylor series of partial derivatives,
remembering that all first partial derivatives of F are zero at § = a, we see that

F(a + h) — F(a) = }h’'M(a)h + O(h?),

where h represents a vector of small increments A; all of the same order and O(h?)
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represents a remainder of third order in such increments. Thus, to order A% if M(a)
is positive definite, for example, then

F(a + h) > F(a), for all small h.

that is, f(a) is, locally, a minimum, subject to the restrictions holding. As we can see
from this discussion, it might happen that

F(a+h)* F(a), forallsmallh
but
f(a+h)>f(a),

for all h that satisfy the restrictions. Thus ‘“M(a) is positive definite” is sufficient, but
not necessary, for a local restricted minimum of f at # = a. Similar remarks apply to
the negative definite case. If M(a) is indefinite, further investigation of the function near
the point a is required to determine what sort of stationary point has been obtained.

EXERCISES FOR CHAPTER 9

A. Consider the model Y = B, + B8, X, + B, X, + B:X; + B.X, + €. If it is suggested to you
that the two variables Z, = X; + X; and Z, = X, + X, might be adequate to represent
the data, what hypothesis, in the form C8 = 0, would you need to test? (Give the form of C.)

tlalad CAald C oI ulid youd

B. For the data (X, Xp, V) = (-1, -1, 7.2), (-1, 0, 8.1), (0, 0, 9.8), (1, 0, 12.3), (1. 1, 12.9), the
least squares fit isY = 10.6 + 2.10X, + 0.75.X;, and the residual mean sum of squares is 0.107
(2 df). Test the null hypothesis H,: 8, = 2f3; versus H,:not so.

C. Look at the Hald data in Appendix 15A. Fit Y = B, + B, X, + B, X; + B:X: + B X, + €
(which is done in Appendix 15A) and test H,: 3, = B3, 8, = B, versus the alternative not

so. Is this a reasonable hypothesis to test?

D. Consider the data of Table 2.1. Suppose you are told that the 23rd observation has variance
40 rather than o2 Refit the equation using weighted least squares with V! = (1,1, ...,
1, 0.25).

E. Repeat Exercise D but with 1602 for the variance of the last observation. What changes do

you observe?

(Source: 1. A. John) An experimenter tells you he wishes to fit the model Y = B, +

B X, + B,X, + € by least squares, subject to the restriction that 8, = 1. He asks specifically

if he can just fit Y — X, = B, + B,X, + € by least squares to get what he wants. Can he?

(Yes.)

G. (Source: T. J. Mitchell.) An experimenter wishes to fit the quadratic model Y = 8, +
B:1X + B1;X? + €. He “knows” (he says) that the response at X, = 1 is 10 so that, ignoring
the error term in the model, 10 = B, + B, + B,;. He then substitutes for B, = 10 —
B: — By in the first model to give Y — 10 = B,Z, + B,,Z;, + ¢, where Z, = X — 1 and
Z, = X? - 1. He next fits this second model by least squares to provide b, and b,,, determines
by = 10 — b, — by, and announces he has obtained the least squares solution for the first
model, subject to the restriction that the response at X = 1 is 10. Is he correct? (Yes.)

o)
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H. (Source: S. C. Piper.) Suppose we wish to fit the model
Y=8+8X +B,X + B:Xs+ B Xy + Bs Xs + B Xsg + B X; + €
by least squares, but it is true that
B\ + B, + B3 + B, = C, (known constant)
and
Bs + B¢ + B, = C, (known constant).

Suppose we substitute for (say) B¢ and B; in the original model using the restrictions and
then fit the resulting model

Y- CX,— GX; =6y + Bi(X, — Xy) + By(X, — Xy) + Bs(X; — X))
+ Bs(Xs — X7) + Be(Xs — X7) + €

by least squares. Will this solution be correct? (Yes)

I. (Generalized restricted least squares.) Use the method of Lagrange’s undetermined multipli-
ers to show that, for a generalized least squares problem in which Eq. (9.5.1) is replaced by

F=(Y-XB)'V(Y - XB)+ A(d - CB),
the solution for B replacing (9.5.2) is
B = b + (X'V'X)'C'[C(X'V'X)"'C']"(d ~ Chy)

where b = (X'V'X)'X'V'Y is the unrestricted generalized least squares estimator.
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This cnapier exXpiores wnat cam be said in situations where we fit one mod \c g.,a
straight line) but we fear that this model may be somewhat inadequate (e.g.. there in
fact may be a little quadratic curvature). We can talk in terms of the fitted model and
the true model but it is better to think in terms of the fitted model and the feared
model alternative. After all, if we knew we were fitting the wrong model, why would
we do it? We are often interested in what might be wrong with the model fitted if
some specified alternative were true, however. We first discuss possible biases in the
estimates of the parameters of a possibly inadequate model and then see how the
consequences of this go through to the analysis of variance table, via the expected
values of the various mean squares. Details of how to compute the expected values
of mean squares and sums of squares are then given.

4N 4 (=1
V. 1. Wi

We said earlier (Section 5.1) that the least squares estimate b = (X'X)'X'Y of B in
the model E(Y) = X is an unbiased estimate. This means that

E(b) = B

That is, if we consider the distribution of b (obtained by taking repeated samples from
the same Y-population keeping X fixed and estimating B for each sample), then the
mean value of this distribution is 8.

We now emphasize that this is true only if the postulated model is the correct model
to consider. If it is not the correct model, then the estimates are biased; that is,
E(b) # B. The extent of the bias depends, as we shall show, not only on the postulated
and the true models but also on the values of the X-variables that enter the regression
calculations. When a designed experiment is used, the bias depends on the experimental
design, as well as the models.

We shall deal with the general nonsingular regression model from the beginning,
since once we have the necessary formulas in matrix terms, they can be applied
universally. Special cases can be reworked in their algebraic detail as exercises if

desired. Suppose we postulate the model
235
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E(Y) =X,B: (10.1.1)
This leads to the least squares estimates:
I b, = (X X)) 'X}Y. (10.1.2)

Ifthe postulated model is correct, then, since X, is a matrix of constants unaffected

hv pvnpntahnn and h and Y are the random \mrlahlpq

vAapwviGl

- E(by) = (XiX)TX(E(Y) = (XiX) XX, By = Bi. (10.1.3)

Thus b, is an unbiased estimate of S,;.

Now suppose we once again postulate the model given in Eq. (10.1.1) so that b,,
as defined in'Eq. (10.1.2), is still the vector of estimated regression coefficients. Suppose
now, however, that the true response relationship is in fact not Eq. (10.1.1) but

E(Y) = X8 + Xy .. (10.1.4)

That is, there are terms X, 8, that we did not allow for in our estimation procedure.
Ta Lo~a
It L

E(b) = (XiX)'X{E(Y) = (XiX) "' X{(Xi B + X; 8,)

= (X{Xl)_lX{X|B| + (x;x,)—IX{Xgﬂz (101.5)
= B] + ABZ,
where
A = (XIX,)'X!X, (10.1.6)

is called the alias or bias matrix. Note that the bias terms A B, depend not only on
the postulated and the true models but also on the experimental design through the
matrices X, and X,. Thus a good choice of design may cause estimates to be les

noad thaw ¢hao i 13 ~tlh neasrion :f wmrenms mm~Aal ~c

UldbCU llldll uu:y wouulua ulLiicl WIBC UC, €ven 11 lllC Wiy miGaci lldb UCCU })Ubl }a i
and fitted.

Note also that the observations Y, do not appear in (10.1.5) so that the result can
be used to examine potential experimental designs before they are actually performed.

The result (10.1.5) can also be viewed in another way. Look first at (10.1.6). If
X{X, =0, there is no bias because A = 0. Suppose that X, and X, are not orthogenal,
however. Then if we regress X, on X, (i.e., treat each of the columns of X; as a ‘Y
column™) to give X, = X,(X|X,)"'X|X, for “fitted values,” we get the “residuals”

(N
A
Ju

- X, - X, = (I - X,(X{X)"'X)X, = Z, (10.1.7)

-y rw x an 4

say. Note that X{Z = 0. We can thus rewrite the modei (10.1.4) as

EY)=X;8 +XAB +X,8, - X,AB,
=Xi|(B + AB) + (X; - XA)B, (10.1.8)
=X, B* + Zp,,

say, where 8* = B, + AB,. We have orthogonalized the model because X{Z = 0.
Note that when we estimate- 3, the coefficient of X;, we obtain an unbiased estimate
because X|Z = 0, but it is an estimate of B, +A,. So our two viewpoints are consistent!
This orthogonalization procedure is used in Section 10.4, where Z is called X, a
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common and meaningful notation indicating that we have obtained ‘“‘the portion of
X, that is orthogonal to X,.”
We now illustrate the application of Eq. (10.1.5) to some simple numerical cases.

Example 1. Suppose we postulate the model
E(Y) = B + B X,
but the model
E(Y) =By + BX + B X?

is actually the true response function, unknown to us. If we use observations of Y at
X = —1,0, and 1 to estimate 3, and B3, in the postulated model, what bias will be
introduced? That is, what will the estimates b, and b, actually estimate? The true
model, in terms of the observations, is

1 X Xx?
Y1] 1 -1 1”30]
FIVN.=FIlVY.Il=11 0O 0 R.
ZRE) gy 12 B v A Mi
.l {1 1 1]{g]
1 X ). &
[1 -1 1
=11 0 I:go:l+ 0 B”
1 1t 1
=X8 +X;8

to achieve the form of Eq. (10.1.4) with Eq. (10.1.1) as the postulated model. It
follows that

[3 o] _[4 o]
(Y'Y V-1 — — {3
\/r|ay) LO 2_| __0 %J,
r 711
o[ 44 1ol -2
: 1

Thus

rbo] i-Bo_i [%] Irﬁn + %Bn-i
El " |=|a|t]nlBu= A
L2l LAl LY] L B

or
E(b)) = Bo + %Bn,  E(by) = B.
Thus b, is biased by §f,,, and b, is unbiased.
Example 2. Suppose the postulated model is
E(Y) = B + B X,
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but the true model is actually
E(Y) =B+ BiX + BuX? + B X2
What biases are induced by taking observations at
X=-3-2,-1,01,2, 3?

We find
1 -3 [9 —27]
1 -2 4 -8
1 -1 1 -1
X, =11 01, X,=10 0
1 1 1 1
1 2 4 8
1 3] | 9 27 ]
7 o' |4 0
(XiXy)™ :[n ’)R] Z[n 4:]'
LY “°J LY )
X 8 0
el
\ 4
A = (X{X\)"'X{X; = | o
Thus

E(bo) = By + 4By,
E(by) = B + 7Bu.

------- aanaral fA la DA 1N18Y wao ran fnd tha hin U rAsTacoi s
Dy umus lllC 5c11c1a1 & uuuta L. {1V.1.0), WC Lall nna UJC oias lll auy LTEITOdIVNI

estimates once the postulated model, the feared model, and the design are established.
This enables us to find, in specific situations, what effects will be transmitted to our
estimates if a particular departure from the assumed model occurs. A sensible proce-
dure in many situations where a polynomial model is postulated is to work on the
basis that the postulated model may be wrong because it does not contain terms of
one degree higher than those present.

10.2. THE EFFECT OF BIAS ON THE LEAST SQUARES
ANALYSIS OF VARIANCE

Note: In this section we shail write X for the matrix previousiy caiied X, and g for
the vector previously called 8,. The notation X, 8, will still denote the extra terms of
the true models, however. We now summarize the effect bias has on the usual least
squares analysis.

Suppose that:

1. The postulated model E(Y) = X B contains p parameters; V(Y) = lo%

2. The true model is E(Y) = XB + X,B,, where , may be 0, in which case the
postulated model is correct.

3. The total number of observations taken is n and there are f degrees of freedom
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available for lack of fit and e degrees of freedom for pure error, so thatn = p +
f + e. (This means there are p + f distinct points in the design.)

4. The estimates b = (X’X)'X"Y and the fitted values ¥ = Xb are obtained as usual.
5 A = (X'X)'X'X,.

Then a number of results are true as given below

1. The matrix (X'X) '¢? is always the correct variance—covariance matrix, V(b),
of estimated coefficients b.

2. Eb) =8+ AB,.

3. E(Y) = XB + XAB..

4. The analysis of variance table takes the form below:
Source df SS Expected Value of MS
bo 1 Y'11'Y/n o'+ (XB + Xo )1 (XB + XoB)/n
Other p—-1 PXY-Y1IWYn o+ (XB+X.B){XXX)'X —

estimates | b, 11'/n}(XB + Xy B)/(p — 1)
Lack of fit f By difference ot + B(X;, - XA)Y(X; — XA)B/f
Pure error e es? o’

Total n Y'Y

5. When B, = 0, that is, when the postulated model is correct, the results above
reduce to the following:

E(b) = B, E(?) = XB,

E(mean square due to other estimates | b)) = o? + g'’X'(I — 11'/n)X B/(p — 1). This
is why the mean square due to estimates is compared with an estimate of o to test
H, : all parameters in 8, except 3y, are zero, when the fitted model is not rejected out
of hand as a result of a nonsignificant lack of fit test. If the lack of fit test did indicate
the presence of lack of fit, so that B, # 0, then it is useless to carry out a test using
the regression mean square, even if we use the pure error mean square s? to estimate
o? rather than the residual mean square. In this case, under H,, E(mean square due
to other estimates | b)) = o2 + BX3[X(X'X) X' — 11'/n]X,8,/(p — 1), and the F-
ratio we would use has a noncentral F-distribution, rather than the ordinary central
F-distribution that we assume when we make the (erroneous) test in the usual way.

10.3. FINDING THE EXPECTED VALUES OF MEAN SQUARES

To find the expectation of mean squares, certain special matrix results are useful.

Y. Then if E denotes expectation
E(Y'QY) = E(Y)'QE(Y) + trace(QX),

where “trace” means ‘“‘take the sum of the diagonal elements of the square matrix
indicated,” and % = V(Y) is the n X n variance—covariance matrix of the vector Y.
Furthermore, if M, and M, are any two square matrices of the same size,

trace(M, + M,) = trace M, + trace M,.
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In addition, if T is a ¢+ X s matrix and S is an s X ¢ matrix so that both products TS
and ST are feasible, then

trace(TS) = trace(ST).

This last result is a remarkably useful result and often leads to quite fantastic simplifica-
tion. For example, if X is n X p and we take T = X(X'X), § = X', we can

quickly evaluate
trace{X(X'X) 'X'} = trace{X'X(X’X) "} = trace{l,} = p.
We use this particular result in the next example.
Example. Find E(b'’X'Y/p), when E(Y) = XB + X,, and V(Y) = o
EM®'X'Y) = E(YX(X'X)'X'Y)

=(XB+ X, 8)'X(X'X)"'X"(XB + Xz 8,)
+ trace(X(X'X)'X'Ic?)

= {(X'X)'X'X 8 + (X'X)"'X'X, B} (X'X)(X'X)"'X'X

~
£ 22572 42 = 4 £ £

X {(X'X)"'X'XB + (X'X)'X'X, 8} + pa?
=(B+AB)X'X(B+APB) + pct

Dividing each side by p provides the df-weighted average of the first two entries in
the foregoing table. Note, in the manipulations shown, the insertion of the unit matrices
I =(X'X)'X’X and I = X'X(X'X)! to lead to the desired form.

For another example in a different context, see Section 10.4.

10.4. EXPECTED VALUE OF EXTRA SUM OF SQUARES

Write
Y=X,B8 +X,B,+¢€ formodell,
Y=X8 + €, formodel2,
where X, is n X g, and X; is n X (p — q). Note that the n X (p — q) matrix

X, =X, — Xi(Xi X)) XX,
={I - Xi(XiX)'Xi}X;,

which is the matrix of “‘residuals of X, regressed on X,,” is orthogonal to X,. [Proof.
Xl'X“ = {Xl’ - X{Xl(X{XI)"XI’}Xz = {0}XZ = 0.] If we define A = (X{X[)_lx;xZ as
the alias or bias matrix, we can also rewrite X,., as

X, = X, — XA,
whereupon model 1 can be rewritten in the form
Y = XI(BI + ABz) + Xg.]B; + €,

where we have simply added and subtracted X;A B, and regrouped. We can set a; =
B: + A B; and thus rewrite model 1 as

Y = Xla‘l + XZ-lBZ + €,
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where the two parts of the model are orthogonal to each other because X X,.; = 0.
Let a;, b, be the least squares estimates of a;, B, in model 1. Then the regression sum
of squares S, for model 1 is the appropriate “b’X'Y,” that is,

S, = (81 s bz)'[xl, x2~1]'Y

VX, X, | XX XiXe 1 XE
Y | X, Ay (XX, X5.X.) [X5,]

-

Because of the orthogonality of X, and X, the off-diagonal terms of the inverse
matrix vanish, and we can invert the diagonal terms individually to get

Sl = Y'Xl(Xfxl)_IX{Y + Y'XZ.I(X§.,X2.1)'IXE.1Y
=5+ Y'QY,

say, where S, is clearly the appropriate regression sum of squares for model 2, and Q
is defined as implied above. We can thus write the “‘extra sum of squares for b, given
by’ as

5 — 8, = Y'QY.
To get the expectation of this, we apply the general formula

E(Y'QY) = {E(Y)YQ{E(Y)} + trace{QZ},
where 2 = V(Y). For our situation, 2 = Io? and E(Y) = X, 8, + X;8,, so that

E(S: — $) = (BX] + XX 1(X5.:X00) "X (X B + Xu B)
+ traCC{XZ.1(X2'.1X2‘1)AIX2’.110'2}.

Now XiX,., = 0, from above. Write U = X;X,.1(X;.,X;.1)'X;.,X,. The trace term can
be reduced using the fact that trace(ST) = trace(TS) for two matrices S and T that

sy wmy

term becomes o? trace(l,-,) = (p — q)o> Thus overall we obtain

E(S: — $) = BUB: + (p — q)o’.
It follows then that, under the null hypothesis Hy: B, = 0, E{(S, — S,)/(p — q)} = o~

EXERCISES FOR CHAPTER 10

X, and X,. Two experimenters A and B suggest t

A: Take one observation at each of (X;, X3)
observations at each of (-1, 1) and (1 — 1).
B: Take two observations at each of the four sites.

1. f amodel Y = B, + B, X; + B;X; + € is to be fitted by least squares but it is feared
there may be some additional quadratic curvature expressed by the extra terms 8;; X +
B» X} + B X, X,, evaluate the anticipated biases in the estimated coefficients b, b,, and
b, for each design.

2. Suppose n, center points were added to each design. Would that affect your results? If
yes, how?

N

]
following designs.
(=1, —=1) and (1, 1) and take three
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Which design is better from the point of view of the variances of the estimated coeffi-
cients, V(b,)?

B. Consider again the data of Exercise A. Suppose both experimenters agree that quadratic
bias is unlikely and so can be ignored. However, one experimenter wants to omit X, from
the model and fit only Y = 8, + 3,X; + €. What biases would the omission of B3, cause in
the estimates by, b, for designs A and B7

C. Values of a response Y are observed at six locations of a predictor variable X coded as -5,
-3, —-1,1,3 and S.Amodel Y = B, + B, X + €is to be ﬁtted but there is fear that bias in
the data, arising from a second-order (quadratic) effect 8, X2, might occur. How would the
presence of B, bias the estimates b, and b,?

D. Using the data in Exercise C, evaluate all the mean squares shown in the table of Section 10.2.

E. Asin Exercises C and D, suppose values of X = —5, —3, —1, 1, 3, and S were to be employed
to fit a straight line ¥ = o, + X + €. Consider the quadratic alternative Y = o, +
a X + a,{0.375(X? — 35/3)} + €. Are the estimates o, and «, from the straight line fit biased
by a,? (No.) What is the difference between adding the quadratic term above and the
quadratic term 3, X’ in Exercise C?

F. In Section 10.2, show that:

1. £ (lack of fit mean square) is as given.
2. E (residual mean square) = o if the model is correct, that is, if B, = 0.
(Use the result in Section 10.3.)

G. Suppose we fit, by least squares, the model E(Y) = B, + B, X, but the model E(Y) =
Bo + B1 X + B/X is actually the true response function, for X = 1. If we use five observations
of Y at X-values X = §, 8, 10, 20, 40 to estimate B, and B, in the model actually fitted, what
biases will be introduced into the estimates?



CHAPTER 11

A message of this chapter is that a regression that is statistically significant is not
necessarily a useful one, and that something more is needed. This “something more”’

canfs ic Affrend DanAaes wwrlan Asen 23 Asnemury

is difficult to quanmy A “‘useful rule of thumb” is offered. Readers who are uuuappy
with this rule may still profit by reading the chapter and forming their own opinions

of how they should feel about their fitted equations.

11.1. IS MY REGRESSION A USEFUL ONE?

Suppose, as in our steam data example, we had 25 observations with no pure error
and fitted a straight line. The skeleton analysis of variance table would be as follows:

Source df MS F

b, 1

ik 1 MQ Nhearva AEF = MQ /g2
U]lUO i IVIUch NJUDdLVI VYL 1 1VIuchlo
Residual 23 s?

Total 25

Assuming no defects were seen in the residuals, our observed F would be an F(1, 23)
variable under the null hypothesis of no slope. Suppose this were just significant at
the a = 0.05 test level, with the observed F = 4.30 > 4.28 = F(1, 23, 0.95). Would
we be happy? Momentarily, perhaps, but then we would look at the R? statistic. Since
F and R? are directly connected by the relationship

R2 = V]F/(V1F+ Vz), (11.11)

where (#, 1,) are the degrees of freedom of MSg,, and s?, respectively, we can evaluate
R* = 4.30/(4.30 + 23) = 0.1575 or 15.75%. Not very high. So although our regression
is “statistically significant,” it is certainly not explaining much of the variation, and it
is unlikely that it will predict future observations with much accuracy, or even provide
a good summary of the behavior of the data.

One possible viewpoint of a useful or worthwhile model fit is that the range of
values predicted by the fitted equation over the X-space should be considerably greater

243
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than the size of the errors with which these predictions are made. This viewpoint was
investigated by Box and Wetz in 1964. See Box and Wetz (1973). They concluded
(details in Appendix 11A) that in order that an equation should be regarded as a
satisfactory predictor (in the sense that the range of response values predicted by the
equation is substantial compared with the standard error of the response), the observed
F-ratio of (regression mean square)/(residual mean square) should exceed not merely
the selected percentage point of the F-distribution, but several times the selected
percentage point. How many times depends essentially on how great a ratio (prediction
range)/(error of predictions) is specified. We offer the following conservative Rule of
Thumb. Unless the observed F for overall regression exceeds the chosen test percentage
point by at least a factor of four, and preferably more, the regression is unlikely to
be of practical value for prediction purposes.

(We call this conservative because otherwise we would be tempted to replace “four”
by “ten.” See Appendix 11A for the reasoning.)

Let us see how this would affect the calculation above. If for v, = 1, 1 = 23 we
insisted on achieving four times the percentage point, the observed F would need to
exceed 4(4.28) = 17.12. The corresponding R? would then be, from (11.1.1), R? =
17.12/(17.12 + 23) = 0.4267 or 42.67%. Adoption of a “‘ten times” rule would lead
to an F of at least 42.8, and a corresponding R? = 42.8/(42.8 + 23) = 0.6505 or 65.05%.
Note that the steam data fit of Chapter 1 had F = 57.54, which is over 13 times as
big as the 5% point 4.28.

A little thought about all this will lead the reader to ask: ‘““Does this mean that if
I am a 5% person—one willing to be wrong once in 20 times—I should instead act
like a person with a much smaller percentage in general, to ensure that I get a useful
model?”’ Essentially, yes, but it is easier to specify a factor than it is to specify how
to change a 5% (or 2.5%, or 1%) test value down to a lower test value. (Also, this
argument should be carried out only once, or one argues one’s way iteratively down
into the tail of the F-distribution!)

An Aiternative and Simpier Check

A simple but effectively equivalent way of implementing the Box—Wetz type of check
is to find the ratio

(Max Y; — Min Y;)/{ps*/n}'". (11.1.2)

Provided this is efficiently large (a rough rule of thumb of about four is suggested as
minimal) and provided no other defect is seen in the fit, a worthwhile regression
interpretation is likely to be possible. [Use of the ratio (11.1.2) in such a manner was
suggested by G. E. P. Box. The “four' at least” rule of thumb is our suggestion.]

In (11.1.2), the numerator of the ratio is the range of Y values that arise at data
points. The value ps?/n estimates po?/n, where p = number of parameters fitted,
n = number of observations used, and o? = V(Y;). This quantity po?/n is the average
variance of the n fitted values, namely,

V(Y)=> V(Y)/n=paiin. (11.1.3)
i=1
(The last-mentioned result is proved below.)

' Some would say ten.
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ExamAple 1. For the steam data fit of Y on Y; in Chapter 1: Max Y, = 11.38,
Min Y, = 7.50; n = 25, p = 2, s* = 0.7923. So the ratio is

(11.38 — 7.50)/{2(0.7923)/25}* = 3.88/0.252 = 15.4.

Thus the range of predicted values is over 15 times the average standard error of

prediction, clearly satisfactory. This is obviously consistent with the fact that the

F-ratio of 57.54 is 13.4 times as great as the 95% point F(1, 23, 0.95) = 4.28.

Example 2. For the steam data fit of Y on X3 and X; in Section 6.2, the ratio (11.1.2) is
(11.56 — 6.29)/{3(0.4377)/25}"* = 5.27/0.2292 = 23.0.

Alternatively, the F ratio of 61.90 is 17.99 times as great as the 95% point
F(2, 22, 0.95) = 3.44. Both numbers indicate a useful predictive ability for this fit.

Proof of (11.1.3)

V(¥) = V(X(X'X)'X'Y) [using rule that
= X(X'X) "' X' (Ie)X(X'X) X’ V(AY) = A{V(Y)}A'] (11.1.4)
= X(X'X) 'X'g?

The summation in (11.1.3) is now the sum of the diagonal terms of the above matrix,
that is, its trace. In what follows we use result 6 of Appendix SA, that trace (AB) =
trace (BA). We have

nV(Y) = SV(Y)) = trace {X(X'X)'X'c?}
= g trace {(X'X) ' X'X}
= g’ tracel,

2

nor
rv .

Comment

What we are really getting at, in this section, is that a test using the overall F-statistic
in the usual manner is not a very good way to judge the future usefulness of the
regression equation. Asking for a larger F-value (four times, or more times, the
percentage point) is a crude way to attempt to recalibrate the F-test. Another way is
the use of (11.1.2). Or one can decide on a suitable level of R% “How big should these
statistics be?”’” you ask. In the end, like many things in life, one has to figure out how
to judge regressions by acquiring experience. The statistics provide some guide but
are not absolute (as we would wish them to be).

11.2. A CONVERSATION ABOUT R?

The R?statistic is used almost universally in judging regression equations. It is probably
the first thing most of us look at, but it is not the only thing. It is an extremely useful
indicator even if there are no absolute rules about how big it should be. It does have
its drawbacks, however. Suppose we have n observations at m sites and there are n, df
for pure error. Suppose we fit a model with p parameters. Then a skeleton analysis
of variance table takes the form:
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Source df SS MS
Regression|b, p—1 A a
Lack of fit n—p-—n, B b
Pure error 7, C C
Total correcied n—1 D d
Then
R*=A/D=1- (B+ C)ID (11.2.1)

and we can appreciate that:

1. If there is no pure error,n, = 0, C = 0, and R* = 1 — B/D. B now has (n — p) df.
So as we enlarge the model, n — p and B will be reduced, and R’ may look
deceptively good, simply because we are fitting to nearly all, or all, the degrees
of freedom.

2. Suppose there is pure error, so that C > 0, ¢ > 0. Consider the extreme case
D — N s . o ~ N that thara i1g no lanlr ~AF Gt huit thara ara mara qgitag nf
D — U, rn [J Il‘. -~ U, lllal lD, LllClC iS NO 1ac UL 1L vu L lllClC arc morirc Sices O1
data than there are parameters. Then R? = 1 — C/D. Even though the model fits

well, R? is limited by the fact that no model can explain the pure error so its
maximum value is 1 — C/D.

3. Outliers produce Y-values that are inflated or deflated. These either inflate C if
they occur in a set of repeat runs, or B if not. In any case they reduce R? so R’ is
not resistant to outliers.

4. If the model has no intercept, D = Syy = 3(Y, — ?)2 does not occur naturally in
the analysis and we recommend that calculation of R? should not be made. (Of
course, we do not advocate omitting the intercept without careful consideration.)

5. Note that, if generalized least squares is used, the model becomes a no-intercept
model, because the 1 vector of the first column is replaced by another vector.

CLLUL U 111D pravc

Other problems with R? discussed in the literature are that:

6. R’is not comparable between models that contain different predictor variables. (If
one model contains a subset of the parameters in another model, the comparison
is valid, however.)

7. R’ is not comparable between models that involve different transformations of the
response vector.

8. Non-least-squares models need specially defined statistics.

use R? (or adiusted R? i
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APPENDIX 11A. HOW SIGNIFICANT SHOULD MY REGRESSION BE?

The application to regression situations of work by Box and Wetz is briefly explained.
For a “useful” as distinct from a ‘‘significant” regression, the observed F-value for
regression should exceed the usual percentage point by a multiple. The size of this
mulitiple is arbitrary in the same way that significance levels are arbitrary, but guidelines
are given for its choice.

The v, Criterion

In regression problems, provided no lack of fit is indicated, a test for regression is
usually conducted by looking at the F-ratio of the “regression sum of squares given
by to “the residual mean square s2.”’ This value is then compared with an appropriate
upper a-percentage point F(v,, v, 1 — «), where v, and v, are, respectively, the
degrees of freedom of the numerator and denominator of the F-statistic. When this
F-ratio is statistically significant, that is, when F > F(v,, v, 1 — a), it implies that a
significantly large amount of the variation in the data about the mean has been taken
up by the regression equation. This does not necessarily mean, however, that the fitted
equation is a worthwhile predictor in the sense that the range of predicted values is
“substantial” compared with the standard error of the response. The question then
arises as to how we can distinguish statistically significant and worthwhile prediction
equations from statistically significant prediction equations of limited practical value.

Some work that answers this question to a great extent appeared in a 1964 University
of Wisconsin Ph.D. thesis ‘““Criteria for judging adequacy of estimation by an approxi-
mating response function,” by J. Wetz. (See Box and Wetz, 1973). The key finding
may be summarized in the following way.

Suppose we fit, by least squares, the model

Y=n+e=XB+Zy+e¢g, (11A.1)

where X is the part to be tested in a *“test for regression” and Zaifs represents effects
such as the mean, block variables, time trends, and so on, that we wish to eliminate
from the variation in the data but in which we otherwise have no interest. We assume
E(e) = 0, V(e) = Io% The changes in response values 7, over the n experimental
points can conveniently be measured by the quantity

2} (m — )*n, (11A.2)

where 7, is the true response of the ith observation, and 7j; is the ith element of the
vector ) = Zy. When only the intercept term f3, is eliminated, #; = 7, the mean of
the »;.

We can compare the quantity in Eq. (11A.2) with the size of the errors we commit
in estimating the differences 7, — #;,. The least squares estimator of n, — #, is

Y, — Y, the ith element of the vector
Y- ¥Y=XB8=XX'X)"'X'Y = HY, (11A.3)
say, and the variance—covariance matrix of this is given by
E{HY — E(HY)}{HY — E(HY)} = Ho’H’' = Ho?, (11A4)

where V(Y) = Io? due to the fact that H is symmetric and idempotent. Thus
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V(Y, — Y)) is the ith diagonal element of Ho?, and the average of these variances,
which is an overall measure of how well we estimate the quantities », — %, is given by

o%_g = trace(Ho?)/n
- (11A.5)
= y,0%ln

due to the fact that trace H = trace X{(X'X)'X'} = trace{(X'X)'X'}X =
trace(lym), where v, is the number of parameters in B. It follows that a sensible
comparison of the sizes of changes in the n, — #; with their errors of estimate is given
by the square root of the ratio of Eq. (11A.2) to Eq. (11A.5), namely,

Ym = {2 (m— ﬁt)z/(Vmo'z)} . (11A.6)

Figure 11A.1 shows the situation for a single predictor variable X; v, is comparing
the spread of the heavy lines (the 1, — ;) with the average spread of their estimates,
whose distributions are shown at the various X;. How big should v,, be for a fitted

equation to be practically useful as distinct from just statistically significant? This is,

to a great extent, arbitrary, in the same sense that a selected statistical significance
level is arbitrary. (However, to help fix ideas, we shall soon think in terms of values
Y= = 2, 3, and 4 so that we can examine the consequences and choose accordingly.)
Suppose that v, is the minimally acceptable level of v,,. Then Box and Wetz show
that we shall need to determine a certain value F;, dependent on vy, and, if the usual
regression F-ratio exceeds this value F;, then we shall accept that v, is sufficiently
large for the regression fit to be a practically useful one. Box and Wetz show further
that, approximately, this critical value F; is

Fo=(1+vy))F(v, v,,1 — ), (11A.7)
where v, is the number of residual degrees of freedom and where
= vu(1 + y5)(1 + 2v7). (11A.8)

In other words, in order for the fit to be practically worthwhile, F > F;. It is, of course,
easy to work out F; in any specific case, but it is also informative to look at the ratios

F/F(v,, v,,1 — a) (11A.9)

>

True response n

~
D

X, X, X, X, Xs Xe

Figure 11A.1. Deviations of true 7 values about their mean compared with the spreads of the estimates
Y, — ¥, for a single X-variable.
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TABLE 11A.1. Ratios Fy/F(v,, v,, 0.95) for y, = 2

X Regression Degrees of Freedom, v,
Residual Degrees of

Freedom, », 1 2 3 4 5 6 10 15 21
3 5 5 5 5 5 5 5 5 5

4 4 4 5 5 5 5 5 5 5

S 4 4 4 5 5 5 5 S 5

10 4 4 4 4 4 4 5 5 5

15 4 4 4 4 4 4 4 5 5

20 4 4 4 4 4 4 4 5 5

30 4 4 4 4 4 4 4 4 5

40 to o 3 4 4 4 4 4 4 4 4

for given values of vy,, and various values of »,, v,, and a. Tables 11A.1, 11A.2, and
11A.3 show these ratios rounded to the nearest unit for y, = 2, 3, and 4, respectively,
and for a = 0.05. We see that, at this probability level, if we are prepared to accept
a value of y, = 2 as being sufficiently informative for our purposes, we need to have
an observed F of at least four or five times as large as the usual percentage point to
deciare the regression practicaily useful to us. Or, if we are prepared to accept a vaiue
of yo = 3, the F must be at least six to ten times as large as the usual percentage
point. Moving to Table 11A.3, we see that, as our selected vy, increases, the ratios
both increase and vary more, depending on the degrees of freedom involved. (For

= 0.01, the general picture is much the same, with ratio values being either the
same Or one or two units lower in most cases.)

In summary, it is clear that an observed F-ratio must be at least four or five times
the usual percentage point for the minimum level of proper representation, as Table
11A.1 indicates. In practice, the multiples in Table 11A.2 are probably the ones that
should be attained or exceeded in most practical cases, guaranteeing, as they do, a y,,

h £ fad 1 al ~h oA A
ratio of 3 or more. However, like the choice of a confidence level, much depends on

individual preferences, and the tables are offered as guidelines for personal choice.

The stated results have been given in terms of the F-statistic for overall regression.
However, similar results apply for subsets of coefficients in the fitted model, and so
the rule may be applied to the F-values arising from such subsets, also, if desired.
(See Ellerton, 1978.)

TABLE 11A.2. Ratios FJ/F(v,, v, 0.95) for y, = 3

. Regression Degrees of Freedom, v,
Residual Degrees of

Freedom, v, 1 2 3 4 5 6 10 15 21
3 9 9 9 9 10 10 10 10 10

4 8 9 9 9 9 9 10 10 10

5 8 8 9 9 9 9 9 10 10
10 7 7 8 8 8 8 9 9 9
15 6 7 7 8 8 8 9 9 9
20 6 6 7 7 8 8 8 9 9
30 6 6 7 7 7 8 8 9 9
40 6 6 7 7 7 7 8 8 9
60 6 6 7 7 7 7 8 8 8
120 6 6 7 7 7 7 8 8 8
®© 6 6 6 7 7 7 7 8 8
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TABLE 11A.3. Ratios F/F(v,, v, 0.95) for y, = 4

. Regression Degrees of Freedom, v,
Residual Degrees of

Freedom, v, 1 2 3 4 5 6 10 15 21
3 15 15 16 16 16 16 17 17 17
4 13 14 15 15 16 16 16 16 17
5 i2 i3 i4 i5 i5 i5 i6 i6 i6
10 10 12 13 13 14 14 15 15 16

15 10 11 12 12 13 13 14 15 15
20 9 11 11 12 12 13 14 15 15
30 9 10 11 11 12 12 14 14 15
40 9 10 11 11 12 12 13 14 14
60 9 10 10 11 11 12 13 14 14
120 9 9 10 11 11 11 13 13 14
0 8 9 10 10 11 11 12 12 12

XERCISES FOR CHAPTER 11

Note: You will need the formula
1= V]F/(V]F+ Vz) (llE)

where v, = number of parameters fitted — 1 (for 8),
v, = residual degrees of freedom.

A. Substitute specific values of v;, v, and F(»,, v,, 1 — a) for chosen a (e.g., « = 0.05) into
the right-hand side of Eq. (11E). The R? values you get are those that correspond to “‘just
significant at 100a%"" F-values. You will be surprised at how low these R’ values can be,
and this will provide additional motivation for reading Appendix 11A. Application of
Tables 11A.1, 11A.2, and 11A.3 (in which v, = v,, v, = v,) will ensure higher R? values;
you may wish to do a few sample calculations to see what the effects can be.

=

. Your friend says he has fitted a plane to n = 33 observations on (X, X,, Y) and that his
overall regression (given by) is just significant at the a = 0.05 level. You ask him for his R?
value but he doesn’t know. You work it out for him on the basis of what he has told you.

C. You perform a regression for a colleague. She gives you 46 data points, which include 5
sets of points each with 6 repeat runs, and the model contains 6 parameters including 8,.
She tells you: I hope the R? value will exceed 90%.” For this to happen, how many times
bigger than the 5% tabled F-value would F (for all parameters except by) have to be?
(Assume that there is no lack of fit.)

D. You are given a regression printout that shows a planar fit to X, X, ..., X, plus intercept
of course, obtained from a set of 50 observations.
1. The overall F for regression F(b,, b, ..., bs|b,) is ten times as big as the 5% upper-tail

. P
F percentage point. How big is R*?

2. Looking at the data, you observe that they consist of six groups of repeats with 8, 8, 8,
8, 8, and 10 observations in them. What would you do now, and why?
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The general regression methods formulated for linear models in Chapters 5-11 are
valid whatever (linear in the parameters) form the model function takes. Thus the
model function can in theory be set up in any way one wishes. We discuss this first
in a general way. Subsequently, we examine a set of data to which a second-order

1ld Susey CAdl

model is fitted. This example provides motivation for some suggested rules for testing
and omitting terms from polynomial models.

12.1. MORE COMPLICATED MODEL FUNCTIONS

Many models fitted in practice involve just the observed predictor variables X,

X,, ..., X, say, in their original form; that is, we fit
Y=B+tBiXi+ Xy + -+ B X+ e (12.1.1)
Many more general forms are possible. We can write the most general type of linear
model in variables X, X;, ..., X, in the form
Y=B0Zy+BiZ i+ B2+ - +B,.1Z,., + € (12.1.2)

(Z, = 1 is a dummy variable that is always unity and will in general not be shown.
However, it is sometimes mathematically convenient to have a Z, in the model. For

example, if
(Zl,‘,Zz,',...,Zp_[) i=l,2,...,n

are n settings of the variables Z;,j = 1,2, ..., p — 1, corresponding to observations
Y,i=1,2,...,n then whenj # 0, and Z, = 1,

M=
M=

7. =
Liji
1 i

7.7
Lapi

i 1

and thus can be represented by the general cross-product expression
n
2 ZiZi
i=1

if the normal equations are written out. Note that 27, Z 3= n.)
251
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In (12.1.2),each Z;,j = 1,2, ..., p — 1, is a general function of X, X, ..., Xi,
Z’» = Z,'(X1,X2, e ,Xk),

and can take any form. In some examples, each Z; may involve only one X-variable.

Any model that can be written, perhaps after rearrangement or transformation,
in the form of Eq. (12.1.2) can be analyzed by the general methods given in
Chapters 5-11. We now provide some specific exampies of models that can be treated
by these methods and relate them to the general form of Eq. (12.1.2).

Polynomial Models of Various Orders in the X,
First-Order Models

1. If p =2and Z, = X in Eq. (12.1.2), we obtain the simple first-order model with
one predictor variable:

Y=B+BX+e (12.1.3)
2. Ifp=k + 1and Z, = X, we obtain a first-order model with k predictor variables:
Y=B+tBiXi+ B X+ -+ B X te (12.1.4)

Second-Order Models

1. Ifp=3,Z = X, Z, = X°, and B, = B,,, we obtain a second-order (quadratic)
model with one predictor variable:

Y=B+BX+B,X*+e (12.1.5)

2 Ufp=62=X,2,= X0, Z; = X1, Zs = X35, Zs = X, X2, By = Bu, Bs = Bas
and B; = B,;, we obtain a second-order model with two predictor variables:

Y=8+BX +B: X+ BuXi+ BuXi+BuXX; +e (12.1.6)

A full second-order model in k& variables can be obtained in similar fashion when
p=1+k+ k+ +3k(k — 1) = 3(k + 1)(k + 2). Second-order models are used
particularly in response surface studies where it is desired to graduate, or approximate
to, the characteristics of some unknown response surface by a polynomial of low order.
Note that all possible second-order terms are in the model. This is sensible because
omission of terms implies possession of definite knowledge that certain types of surface
(those that cannot be represented without the omitted terms) cannot possibly occur.
Knowledge of this sort is not often available. When it is, it would usually enable a
more theoretically based study to be made.

iven in Section 12.2.

1. pr = 4, 21 = X, Zz = XZ’ Z3 = X3, Bz = B“, and B3 = Bn], we obtain a third-
order model with one predictor variable:

Y=8+BX+B, X+ BunX +e (12.1.7)

2. If p = 10 and proper identification of the B8; and Z; is made (we omit the details
now since the examples above should have made the idea clear), the model (12.1.2)
can represent a third-order model with two predictor variables given by
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Y =80+ BiXi + B Xo+ BuXi+ BuXiXe + BuX)
+ B X: + B XiXy + B X1 X3+ B X3 + e

The general third-order model for k factors Xj, X;, . .., X; can be obtained similarly.
Third-order models are also used in response surface work though much less frequently
than second-order models. Note the method of labeling the 8’s. This may seem confus-

H‘lg at first but it is done to enable the coefficients to be rpnrhl\r nccnmatpd with their

corresponding powers of the X’s. For example, X, X3=X, X2X2 has a coefficient 3,
and so on. A similar notation is used above for second-order models and is standard
in response surface work. (Note that we write 3, with lower-valued subscripts first
rather than ,; or 8,;.)

Models of any desired order can be represented by Eq. (12.1.2) by continuing the
process illustrated above.

(12.1.8)

Transformations

If a second-order model is not adequate, a third-order model may be. However, one
should not routinely add higher-order terms. It is often more fruitful to investigate
the effects produced by other transformations of the predictor variabies, or by transfor-
mations of the response variable, or by both. The same remark also applies in the
first-order versus second-order decision. For example, a straight-line fit of the response
log Y versus X, if appropriate, would usually be preferred to a quadratic fit of Y versus
X, assuming the behavior of the residuals showed that either fit was a workable choice.

Models Involving Transformations Other than Integer Powers

The polynomial models above involved powers, and cross-products of powers, of the
predictor varlables X, Xy, ..., X,. Here we provide a few examples of other types
n 1gnfi
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The Logarithmic Transformation. By taking p = 2, Z, = In X,, and Z, = In X,,
Eq. (12.1.2) can represent

Y=Bo+B] lnX1 +lenX2+€. (12110)
The Square Root Transformation. For example,
Y=8+B X"+ BX)+ (12.1.11)

Clearly, there are many possible transformations, and models can be postulated that
contain few or many such terms. Several different transformations could occur in the
same model, of course. [The examples (12.1.9)~(12.1.11) use the same transformation
throughout.] The choice of what, if any, transformation to make is often difficult to
decide. The choice would often be made on the basis of previous knowledge of the
variables under study. The purpose of making transformations of this type is to be
able to use a regression model of simple form in the transformed variables, rather
than a more complicated one in the original variables.
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Transformations could also involve several X; variables simultaneously, for example,
Z, = X" In X,. Transformations of this type are sometimes suggested by the form of
the fitted equation in untransformed variables. When the best power of an X to use
is not known, a parameter can be substituted. In such cases, nonlinear estimation
methods are usually needed.

Piots Can Be Usefui

Suitable transformations of the predictor variables are also sometimes suggested by
plotting the data in various ways. See, for example, Hoerl (1954). Other references
are Dolby (1963) and Tukey (1957).

Our discussion above relates entirely to choosing the model function. (The response
Y is untouched.) When, as we assume here, the predictor variables are not subject to
error, there are no problems in transforming them.

Transformations on the response are discussed in Chapter 13. For those, one must
be especially careful to check that the least squares assumptions [errors independent,
N(0, o?)] are not violated by making the transformation. This is usually done by
checking the residuals in the transformed metric, after the transformation has been
model ftted.

a
11V 113UV L LIV

Using Ratios as Responses and/or Predictors

When ratios with a common component are used in regression analyses, there is a
danger that a strong regression relationship will be introduced spuriously by the
component. Warnings have appeared in the literature for about a century, but the
problems still recur. A useful discussion of possible problems is given by Kronmal
(1993). Kronmal'’s conclusions and recommendations section (his pp. 390-391) begins:
“The message of this paper is that ratio variables should only be used in the context
of a full linear model in which the variables that make up the ratio are included and
the intercept term is also present. The common practice of using ratios for either the
li‘ﬁS‘pOﬁSé ] Or the lpi’i‘:uiCtOi'J 'v'&fi&unf‘:S in TegTESSiGi‘l anaxyses can lead to misxeaumg
inferences and rarely in any gain.” Kronmal then provides some suggestions for

responding to researchers who do not wish to “‘give up their most prized ratio or index.”

12.2. WORKED EXAMPLES OF SECOND-ORDER SURFACE FITTING FOR
k = 3 AND k = 2 PREDICTOR VARIABLES

Aia, Goldsmith, and Mooney (1961) reported a pilot plant investigation under the
title “‘Predicting Stoichiometric CaHPO,2H,0.” This section is adapted from that
paper with the permission of the American Chemical Society. We omit the chemical
details here and also make several minor changes to their original analysis.

=3

lll lllC plUUlClll blUUlCU, l.llClC WEIC sEven bdllUlUdlCD IUI plCUlLtUI leldbles
four of these were kept fixed throughout the experiment. The three selected for
response surface study and their chosen ranges were as follows:

L.
ou
the

Variable Designation Range Chosen
Mole ratio NH,/CaCl, in the calcium chloride solution r 0.70-1.00
Addition time in minutes of ammoniacal CaCl, to

NH,H,PO, t 10-90

Starting pH of NH,H,PO, solution pH 2-5



12.2. WORKED EXAMPLES OF SECOND-ORDER FITS 255

TABLE 12.1. A Worked Example: The X Matrix and Two Responses

Design Matrix

u 1 X X, X X3 X XX XX XX XX Y Y,
1 1 -1 -1 -1 1 1 1 1 1 1 528  6.95
2 1 1 -1 -1 1 1 1 -1 -1 1 679 590
3 01 -1 1 -1 1 1 1 -1 1 -1 554  7.10
4 1 1 I | 1 1 1 1 -1 -1 642 708
5 1 -1 -1 1 1 1 1 1 -1 -1 751  5.64
6 1 1 -1 1 1 1 1 -1 1 -1 816 5.18
7 1 -1 1 1 1 1 1 -1 -1 1 738  6.84
8 1 1 1 1 1 1 1 1 1 1 795 567
9 1 - 0 0 % 0 0 0 0 0 68.1  6.00

10 1 § 0 0 2 0 0 0 0 0 912 567

1 1 0o -3 0 0 3 0 0 0 0 806 552

12 1 0 § 0 0 % 0 0 0 0 775 647

13 1 0 0 -3 0 0 3 0 0 0 368 717

14 1 0 0 8 0 0 % 0 0 0 780 536

15 1 0 0 0 0 0 0 0 0 0 746  6.48

16 1 0 0 0 0 0 0 0 0 0 759 591

17 1 0 0 0 0 0 0 0 0 0 769  6.39

18 1 0 0 0 0 0 0 0 0 0 723 5.99

19 1 0 0 0 0 0 0 0 0 0 759 586

20 1 0 0 0 0 0 0 0 0 0 798  5.96

There were seven responses of interest. For each response, the idea was tentatively
entertained that it could be graduated by a second-order function of r, ¢, and pH. We
make use here only of the first response (which we call Y) and record the fourth
(which we call Y,) for use in an exercise.

The experimental design chosen was a ‘“‘cube plus star plus six center points”
composite design with a = § = 1.667. (For ‘“‘rotatability,” a should have the value
234 = 1.6818 so that the selected design is nearly, but not quite, rotatable. The authors
ignored this difference and in fact used o = 1.6818 in their calculations. For this reason
our calculations are slightly different from theirs.)

The design requires five levels of each variable. The experimental variables were

coded by the transformations

X; = (r — 0.85)/0.09, X, = (t — 50)/24, X;=(pH - 3.5)/0.9. (12.2.1)
Thus the equivalence of the design and actual levels can be expressed by the follow-
ing table.

P . Actual Levels
Coded Levels,

X] or XZ or X3 r t PH
§ 1.00 90 5.0

1 0.94 74 4.4

0 0.85 50 3.5

-1 0.76 26 2.6

-3 0.70 10 2.0

The actual design in coded units is shown as the indicated part of the X matrix in
Table 12.1. In coded units the postulated second-order model can be written



256 MODELS CONTAINING FUNCTIONS OF THE PREDICTORS

E(Y)=Bo+ B X, + B Xo + B:X3 + By X} + B X

, (12.2.2)
+ BuX5 + B XiXh + B X X5 + B XX,

£ oali_ oo Y7 1 c1__ V.. £ _ 17
101 U1C ICSpONSC r, alld siimnuariy 101 Ir4.

The runs were performed in random order and the observed values of the seven
responses were recorded. Two of these,

Y = yield as percentage of theoretical yield,

Y, = bulk density in grams per cubic inch,

are given in Table 12.1. The appropriate X’'X matrix is the same no matter which
response is being fitted and has the form

N 0 0 0 B B B 0 0 0
0 B 0 O
0 0 B O 0 0
0 0 0 B
X'X= b ©cbob , (12.2.3)
B 0 D C D 0
B D D C
0 D 0 0
0 0 0 0 D O
|0 0 0 D_|
where, for our specific example,
N =20,
B=8+2a’=1§, N
(12.2.4)

C=8+2a"=1488
D = 8.

This type of partitioned matrix occurs frequently in planned second-order response
surface studies, and its inverse is easily obtained. In the general case, when there are
k factors (rather than three) and the same symbols are used in a larger X'X matrix
in the obvious way, the inverse can be written
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(12.2.5)

The values of P, Q, R, and S are shown in Table 12.2, in the second column marked
C # 3D. [The values in the third column are the simplified forms when C = 3D,
which happens when the design is “rotatable,” that is, when the contours of V{Y(X)}
are spherical ones. In such circumstances, the design can be rotated in the predictor
(i.e., the X-) space without affecting the precision of the information obtained.]

In our case, k = 3 and 3D = 8§ so that C — 3D is small but not zero as it would
be for a rotatable design. Consequently, we obtain

P =1597/9614, Q = —549/9614,

(12.2.6)
R = 685.3248/9614, S = 62.3376/9614.

Also, 1/B = 1%, 1/D = . (The figures are exact; to avoid round-off error later, the
final division by 9614 has been postponed until after the subsequent matrix multiplica-
tion.) We now need X'Y. These are given below for the responses Y and Y.

T A BLE 12.2. Formulas for Obtaining Elements of (X'X)™!

Value when C = 3D

Symbol Value when C # 3D (Rotatable Design)
P (C-D)C+(k—-1)D)/A 2(k +2)D* A
Q —(C - D)B/A —-2DB/A
R {N(C+ (k-2)D)~-(k—1)BY)/A {N(k+1)D ~(k—-1)B*)/A
\) (B? - ND)/A (B* - ND)/A
A (C — D){N(C + (k — 1)D) — kB?} 2D{N(k + 2)D — kB?}

Note that A occurs in the formulas for P, Q, R, and §.
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X'Y=4%

—

[12,041.1
671.4
~87.0

12453

8,935.2

8,905.2

7,822.7
~63.9

~105.3

| —20.7

b

X'Y4 = é

1,108.26

—

~29.25
41.43
—60.45
744.99
752.99
766.49
2.88
~5.04
3.24_

MODELS CONTAINING FUNCTIONS OF THE PREDICTORS

(12.2.7)

Applying the usual formula b = (X'X)'X'Y for the estimates of the regression

parameters for the first response

, we obtain the fitted equation

Y =76.022 + 5.503X, — 0.713X, + 10.207 X,

+0.712X7} + 0.496 X3 — 7.298 X3

— 0.888X,X; — 1.463.X, X; — 0.288 X, X;.

(12.2.8)

When the second-order design gives rise to an X'X matrix of the type shown

T A BL E 123. Standard Analysis of Variance Table for Certain Types of

Second-Order Designs

Source df SS
N 2
b, (mean) 1 (2 yu) IN
u=1
k
b, (first order) k Y bi(iY)
i=1
- k N 2
b,,IQ(. (pu're\ second-order, K b(0Y) + S by(iiY) - (S\ Yu\ IN
given oy) i=1 \u=1 /
k K
b, (mixed second-order) Yk(k - 1) >3 b,(iY)
=1

1
Lack of fit N-—n, ~ ¥k + 1)k +2) By subtraction
Pure error n, By usual calculation
N
Total N RS
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inverted in (12.2.5) the analysis of variance table is as shown in Table 12.3. Here,

N
(Oy) = 2} Y.,
N
L_J It us
v (12.2.9)
N
(iiy) = >, XL.Y.,
u=1
N
(ijy) = D Xu X, Y.,

=
il

all of these expressions being cross-products of columns of the X matrix with the
column Y of observations and so all are elements of the X"Y vector. Usually we would
combine the SS(b;|b,) and SS(b;) to give a

SS(second order terms|b,) with $k(k + 1) degrees of freedom

but we have displayed them separately in the table to emphasize that the only extra
sum of squares that arises is SS(b;|b,) due to the orthogonality of many pairs of
columns in X, a feature that is true only for specific design choices. We can now
proceed, in the usual way, to test lack of fit and the usefulness of the second-order
and first-order terms.

It should be noted that many of the special features of this least squares estimation
and analysis apply only to designs whose X'X matrices take the special form given,
so that (X'X) ™! can be found from the formulas above. Designs without this feature
must be subjected to the usual least squares analysis without recourse to special
formulas. Nevertheless, the “‘source’ column of the analysis of variance table given
above provides a framework to aim at. The pure error sum of squares is obtained as
usual, and the successive entries for sums of squares for parameter estimates would
all be obtained as extra sums of squares as described in Chapter 6.

For our example, the appropriate analysis of variance table is given as Table 12.4.
Since F(5, 5, 0.95) = 5.05 > 3.04, no lack of fit is indicated. We can recombine the
lack of fit and pure error sums of squares and estimate V(Y,) = o’ by

s2 = (93.91 + 30.86)/(5 + 5) = 12.477.

Dividing this into the first-order mean square gives a ratio 609.93/12.477 = 48.88,
which exceeds F(3, 10, 0.999) = 12.55, while from the second-order mean square we
obtain the ratio 135.59/12.477 = 10.88, which exceeds F(6, 10, 0.999) = 9.93. Thus
both first- and second-order terms appear to be needed in the fitted model.

T A BL E 12.4. Analysis of Variance Table for the Fitted Model

Source df SS MS F
Mean (by) 1 103,377.82

First-order 3 1,829.80 609.93

Second-order |b, 6 -813.54 135.59

Lack of fit 5 93.91 18.78 3.04
Pure error 5 30.86 6.17

Total 20 106,145.93
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T ABL E 12.5. Analysis of Variance for the Reduced Second-Order Model in X, and X;

Source df SS MS F
First-order 2 1822.91 911.46 89.80
Second-order |b, 3 803.12 267.71 26.38
Lack of fit N 111.22) 12.36)

$14 142.08 &10.15 2.00
Pure error 5) 30.86 6.17)
Total (corrected) 19 2768.11

Do We Need X,?

In the original paper, the authors noted the small size of all estimated coefficients
with a subscript 2 compared with their standard errors and concluded that their model
should not contain X, at all. When the situation is this clear-cut—all the coefficients
being small compared with their standard errors—such a conclusion is unlikely to be

....... rr 2 ostnns AL Tt A mas casetie adaal o o A e P S

wrong. However, the extra sum of squares principie should be applied in such situations
in general and we apply it here to illustrate.

Suppose we wish to test the null hypothesis Hy: 8; = B» = B, = By = 0 against
the alternative hypothesis H, that at least one of these 3’s is not zero. The regression
sum of squares for the full second-order model in X, X;, and X; given b, is, from the

analysis of variance table,
S, = SS(first-order terms) + SS(second-order terms|b,)
= 1829.80 + 813.54
= 2643.34 (with 3 + 6 = 9 df).

Application of the hypothesis H, to the original model implies use of the re-
duced model

E(Y) =B+ B X, + B:.X;: + By X} + BuX3 + BuXi X.

The appropriate X matrix can be obtained from Table 12.1 by deleting the X;, X3,
X, X;, and X, X; columns. The X'X matrix can be obtained from the previous one by
deleting rows and columns corresponding to X;, X 2. X\ X,, and X, X;. The X'Y vector
is obtained from the previous one by a similar row deletion. The fitted equation is thus

Y =76.420 + 5.503X, + 10.207X; + 0.667X7} — 7.343X3 — 1.463 X, X;.

The regression sum of squares given b, for this reduced model is now required. We
find it to be S, = 2626.025 (with S df). The extra sum of squares due to b,, by, by,
and by, is therefore

S, — S, = 2643.34 — 2626.03
=1731  (with9 — 5 = 4df).

This leads to a mean square of 17.31/4 = 4.33, which can be compared with the
residual mean square estimate of ¢? from the original three-factor regression. The
null hypothesis that 8; = 8, = 812 = B = 0 cannot be rejected. Thus it seems sensible
to adopt the reduced model, which does not involve terms in X,. The analysis of
variance table appropriate to this reduced fitted model is shown in Table 12.5. No
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Figure 12.1. Contours of the fitted second-order equation relating response Y to variables X, and X;.

lack of fit is shown and the regression is highly significant for both first- and second-
order terms.

In order to examine a fitted second-order response surface, we would usually
perform a ‘““canonical analysis” in which the surface is described in terms of coordinates
placed along its major axes. Such an analysis is extremely useful and enables the
overall situation to be grasped even when many factors are involved. With only two
factors, however, as here, we can plot the contours of Y directly by writing the fitted
equation in the form

—7.343X3 + (10.207 — 1.463X,)X; + (0.667X3 + 5.503X, + 76.420 — Y) =

A

If a value of Y is selected, the corresponding contour can be drawn by substltut-

no valheg Af Y. nd cnlninn fr Y. Cantanre nhta ad thic wav ars chn
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Figure 12.1. The experimental points are indicated on the diagram by dots. Repeat
points are not distinguished, however, and must be obtained by looking at Table 12.6.
The contours are those of a rising ridge. Examination of this contour system led the
authors to hypothesize on the chemical reactions that could cause such contours.
(Quite frequently, response surface investigations provide the initial step in a more
fundamental, theoretical, investigation of the system under study.)

These contours may also be viewed in conjunction with the residuals, given in
Table 12.6. A “pattern” plot of the residuals in which each residual is placed near its
corresponding design point is shown in Figure 12.2. Of the twenty residuals, the six
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T ABL E 12.6. The Fitted Values and Residuals Obtained from Fitting a Second-Order
Surface ¥ = f(X,, X3)

PN

u X, X; Y Y e=Y=Y
1 -1 -1 52.8 52.57 0.23
2 1 -1 67.9 66.50 1.40
3 -1 -1 55.4 52.57 2.83
4 1 -1 64.2 66.50 -2.30
5 -1 1 75.1 75.91 -0.81
6 1 1 81.6 83.99 -2.39
7 -1 1 73.8 75.91 -2.11
8 1 1 79.5 83.99 —-4.49
9 - 0 68.1 69.10 -1.00

10 § 0 91.2 87.44 3.76

11 0 0 80.6 76.42 4.18

12 0 0 71.5 76.42 1.08

13 0 -% 36.8 39.01 -221

14 0 § 78.0 73.04 4.97

15 0 0 74.6 76.42 -1.82

16 0 0 75.9 76.42 -0.52

17 0 0 76.9 76.42 0.48

18 0 0 723 76.42 —412

19 0 0 75.9 76.42 -0.52

20 0 0 79.8 76.42 3.38

with the largest absolute values occur at points (X;, X;) = (0, 0) (three); (8, 0),
(0, 3), and (1, 1) (one each). Thus the model appears to fit least well in the first
quadrant of the (X,, X;) plane and any conclusions that rely on the validity of the
fitted surface in that region could be suspect. (What effect this might have on the
authors’ original conclusions is a matter for a chemical engineer, rather than a statisti-
cian to examine, and we avoid discussion of the point here.) Doubts of this kind can

A
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Figure 12.2. Pattern of residuals from the fitted second-order equation relating response Y to variables
X, and X;.
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Figure 12.3. Standard plots of the residuals from the fitted second-order equation relating Y to X, and
X;: (a) overall, (b) against Y, (c) against X;, and (d) against X;.
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shape of the fitted surface is suspect and refitting a suitable response function in that

more limited region.

We can now examine the residuals in other ways to see if any abnormality is
indicated. Figure 12.3 shows the following standard plots of residuals (a) overall, (b)
against the fitted values Y,, (c) against X,,, and (d) against Xj,.

The overall plot does not appear to deny the assumption of normality implicit in
the testing of variance ratios in the analysis of variance. The plot against the Y, exhibits
“widening” tendencies at first sight but this is deceptive due to the fact that most of
the residuals are large and the size of the residuals band is not well established at the
lower end of the Y scale. Similar behavior occurs in the plots against X, and X;,,
where the size of the residuals band is not well defined at the extremes. Thus one
cannot conclude in any of the plots that abnormality is indicated. It does not appear
that the basic regression assumptions are unjustified therefore. (Note that, since we
do not know the order in which the observations were taken, we are unable to check
whether a time trend has affected the response.)

If this investigation were to be continued, additional efforts might involve attempts
to account for the large first quadrant residuals by reexamining the original data and
their relationships to other predictor variables whose variations have possibly not
been considered. In this way, an improvement in the model might be possible. Also,
or alternatively, the region in which the fit of the model is questionable could be

examined in more detail, as previously suggested.
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TABLE 126. The Fitted Values and Residuals Obtained from Fitting a Second-Order
Surface Y = f(X,, X;)

u X, X, Y Y e=Y=Y
1 -1 -1 52.8 52.57 0.23
2 1 -1 67.9 66.50 1.40
3 -1 -1 55.4 52.57 2.83
4 1 -1 64.2 66.50 ~2.30
5 -1 1 75.1 75.91 ~0.81
6 1 1 81.6 83.99 -2.39
7 -1 1 738 75.91 -2.11
8 1 1 79.5 83.99 ~4.49
9 -4 0 68.1 69.10 ~1.00
10 § 0 91.2 87.44 3.76
1 0 0 80.6 76.42 418
12 0 0 71.5 76.42 1.08
13 0 -4 36.8 39.01 -221
14 0 s 78.0 73.04 497
15 0 0 74.6 76.42 -1.82
16 0 0 75.9 76.42 -0.52
17 0 0 76.9 76.42 0.48
18 0 0 723 76.42 -4.12
19 0 0 75.9 76.42 -0.52
20 0 0 79.8 76.42 3.38

Treatment of Pure Error When Factors Are Dropped

The foregoing analysis raises a question we have avoided until now. When a factor
like X, is dropped from a model, should we reassess our treatment of pure error? In
Table 12.1, runs 15-20 are the only repeats but, when X, is dropped so that the data
becomes as in Table 12.6, the pairs of runs numbered (1, 3), (2, 4), (5, 7), and (6, 8)
now apparently form four pairs of repeat runs in variables X; and X;. Also, runs 11
and 12 are now apparently center points. Thus it could be argued that the design
factor star (four points, 9, 10, 13, 14) plus eight center points (11, 12, 15, ..., 20). If
this were done, Table 12.5 would have to be revised to show entries for

Lack of fit SS = 78.26 (3 df), MS = 26.08;
Pure error SS = 63.82 (11 df), MS = 5.80.

The consequent F-ratio is 4.50 > F(3, 11, 0.95) = 3.59, leading to the rather surprising
conclusion that there is lack of fit. Thus, in this revised analysis, while the variable X,
appears to be unnecessary in the model, lack of fit is shown if we remove it! However,
it is clear that X, does little to help explain the variation in the observations. In fact,
the size of the pure error mean square is inflated if X, is used in the model, and, at
the same time, the reduction in the degrees of freedom for pure error provides a less
sensitive F-test for lack of fit.

Which analysis is correct? One could argue both sides of the issue. On the whole,
however, we favor using the pure error as initially calculated before dropping of
factors. Presumably, repeats in the original data are genuine repeats if so reported,
but the same cannot be said of the runs, which look like repeats when a factor is
dropped. Also, in many sets of data, the opposite problem may occur, that is, genuine
lack of fit will be missed because the ‘““new’ repeats will show more variability than
the genuine repeats.
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A safe way to proceed would be to do the analysis both ways and see if they
agree. For many sets of data, they will. If they do not, the data can be subjected to
further scrutiny.

How should we proceed in the present example? The model must definitely be
placed under suspicion. However, the first- and second-order terms account for a
proportion R? = (1822.91 + 803.12)/2768.11 = 0.949 of the total (corrected for the
mean) variation in the data, for the loss of only five degrees of freedom. (When the
terms in X, are added, the figure rises only to 0.955.) In other words, the model is
explaining 95% of the variation about the mean even though, technically, lack of fit
is possible. By examining the fitted contours and the residuals together, as we have
already done, we can discover where the lack of fit may exist. If the graduation of
the true surface appears good over a large region of the X-space, conclusions obtained
from the fitted model in that region may still be valid. Further examination of the
residuals may also reveal if any of the basic regression assumptions (normality, constant
variance, independence of observations) appear to be violated, or may suggest ways
to revise the model.

Sometimes, in practical work, the pure error is ‘“‘too small”’ simply because the pure
error runs have not been randomized (or, at minimum, distributed) over the whole
of an expeﬁmem if several pure €rror runs are done COﬁSt‘:C‘uuvc‘:ly or close together
in time, there is a tendency for the responses to be more alike than they otherwise
would be. In other words, the pure error in such a case would not be representative
of the range of errors typically found throughout the experiment. This sometimes
leads to false signals that lack of fit exists and needs to be investigated carefully.
Repeated analyses of the same experimental run also rarely constitute true “repeat
runs.”

Comment. The example we have just discussed is somewhat unusual in one respect.
When, for sound reasons, terms are dropped from a model, lack of fit does not usually
appear in the reduced model unless peculiarities exist in the data. We have seen that
these peculiarities do not appear to arise from violation of least squares assumptions.

Their source remains a matter for speculation.

In a wider sense, this example is not unusual. While the experiment answered some
questions, it left others unresolved. These questions become the subject of further
conjectures for future work. In this respect, it is typical of much practical experimen-
tation.

Treatment of Pure Error When a Design Is Blocked

The design of Table 12.1 was unblocked. Often, however, response surface designs
are performed in blocks in such a way that the blocks are orthogonal to the model.
Runs that would be repeat runs in an unblocked design are often divided among the
blocks. In such a case, these runs are no longer repeat runs unless they occur in the
same block, and the pure error must be calculated on that basis. Also, the analysis of
variance must contain a sum of squares for blocks. For blocks orthogonal to the model,
the appropriate sum of squares for blocks is usually
&B, G .
SS(blocks) = TN with (m — 1) degrees of freedom,

in the analysis of variance table, where B, is the total of the n, observations in the
wth block (there are m blocks in all) and G is the grand total of all the observations
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in all of the m blocks. When blocks are not orthogonal to the model, the extra sum
of squares principle applies. (It can, of course, be applied in all cases, orthogonally
blocked or not, and produces the answer given above in the former case.)

In some situations, even runs that occur in different blocks can be used to measure
‘“‘almost pure’’ error, provided an appropriate estimate of the block difference(s) is
(are) available. See, for example, Box and Draper (1987, p. 375).

On Dropping Terms

In our second-order polynomial example, we decided to remove all terms in X,. This
raises the more general question of which terms can be considered for removal without
damaging the relationships between terms. (Might it have been reasonable to remove,
for example, just the term in X;? We answer this particular question with a resounding
no.) For some further conversation and two suggested criteria, please see Section 12.3.

12.3. RE
We argue in this section that individual terms should not, in general, be dropped from
a polynomial model of order two or more, unless the situation is carefully assessed.
We also offer two criteria and two consequent rules, which make sense to us and
which we recommend. An implication of all this is that to use an equation derived by
allowing some mechanical selection procedure to pick a subset of terms from a polyno-
mial model is risky.

Example 1. Quadratic Equation in X
Consider the fitted quadratic in a single variable X,

Y=>5b,+ b X+ b, X% (12.3.1)
The maximum or minimum of this quadratic occurs where the first derivative of ¥
with respect to X is zero. This is where b; + 2b;; X = 0, that is, at the location X =
—b,/(2by). If by, is positive, we obtain a minimum; if negative, a maximum.

Let us consider the consequences of dropping just one term. (The equation must
be refitted then, of course, to give new coefficients.)

(a) Drop by. The intercept at X = 0 was Y = b,. It will now be forced to be zero, in
the refit.

(b) Drop b,. The maximum or minimum was at X = —b,/(2by,). It will now be forced
to be at zero in the refit.

tals loa 4 L L 3 ¥ 7 T U T,
1 MLCreept oy. vwe now nave a straignt

£y TN__.___ L L7 ot _ctal_11_. L 1 X _al __.*
{¢) Urop Dy;. Vve 1niilaily nad a quadaratic wi
line in the refit.

Even if b, or b, is not statistically significant, actions (a) and (b) will usually produce
distortion in the refit. If b, is not significant, however, so that whatever curvature
exists is small, the new straight line will tend to do a reasonable job in most cases.

We would thus recommend against dropping either b, or b, if by, is retained, because
this will force the fitting of a quadratic with a built-in restriction and bias. We would
argue that dropping b, is reasonable, if the quadratic slope is very slight, because the
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resulting line will tend to fit well. (Otherwise b;, would have been large.) In higher
dimensions (more X's), exactly the same sorts of considerations arise.

One way of thinking about the effects of the three different “drops” is to consider
what happens to the reduced equations under a shift of origin. Suppose we let Z =
X — a, corresponding to an origin shift from X = 0 to X = a. Then we get, by
substituting X = Z + a,

(a) b]X + b11 = a(b] + ab“) + a(bl + 2b]])£ + b]]l .

(b) bo + b11X2 (bo + azb“) + Zaan + b1122

(©) by + bi X = (bg + abl) + b1\ Z

We see that only the third equation has retained its original form. The other two have
reacquired the terms that were deleted! This gives a basis for the first criterion and
rule. We also suggest a second criterion and rule, below. In proceeding, we now use
the notation for the model function with B’s rather than that for a fitted equation with

b’s, but that does not affect any of our points. So the general question is: Which
reduced models are reasonable to adopt, and which are not?

We shall consider a reduced model to be a sensible one (some say ‘‘well formulated”)
if a shift in the origin of the X-space produces a model of unchanged form in the new
variables Z], Zz, ey Zk.

Example 2. Second-Order Polynomial in Two X’s

Consider the two-X second-order (quadratic) model
Y=8+ 81X+ B X, + BuXi+ BpXi+ BuXi X+ e (12.3.2)

If we substitute X, = Z, + a, = Z, + a, into the full second-order model (12.3.2),
corresponding to an origin sh to the point (X;, X;) = (a,, a,), we get
Y=06,+Bi(Z +a)+ B:AZ, + a)
+Bi(Zi+ a)) + Bu(Zy + @) + Bu(Z, + a))(Z, + a,) + € (12.3.3)

, X,
ft

= +taZ,+taZ,*anZt+anZi+ a,Z,Z, + e, (12.3.4)
where
o = Bo + Biai + Boa; + Buat + Bpat + Buma,, aquadraticin (a,, ay),
a; = B + 2Bna; + Pray,
a = ez T Pud T L0040, (123.5)
oy = pu,
an = Bn,
ap = Bn.

What terms can be omitted in (12.3.2) to produce a model of the same (reduced) form
in (12.3.4)? Or, equivalently, what 8’s can be set to zero in (12.3.2) to give a model
(12.3.4) of the same form? Obviously, only quadratic coefficients can be dropped.
Setting B;; = 0, for example, forces a;; = 0, but all other coefficients remain in both
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models. (We ignore the relatively unlikely case where the a’s and 8’s are such that
one of the a’s vanished identically. This would not occur for all origin moves, nor in
most practical cases.)

The general truth, which can be seen via the specific example in (12.3.5), is that
only the highest-order coefficients are unaffected by a shift in origin, while all lower-
order coefficients become, after the shift, a combination of both lower- and higher-
order ones. The consequent rule is the following.

Rule 1

If a model is to be consistent under a shift in origin, only the highest-order terms can
be deleted at first and any chosen deletions must keep the model well formulated.
Moreover, if any of the highest-order terms are retained, all terms of lower order
affected by them in a shift of origin must also be retained, whether or not their
estimates are significant in the regression fit.

Note: A model that lacks 8, cannot be a well-formulated one under origin shift, in
any circumstances.

Exampie 2. Continued

For example, suppose By # 0, B, = 0, B2 = 0. Then [see (12.3.5)] B, X, must be
retained, because «; depends on 3,;; however, 8, X; is a candidate for possible deletion
because «, = 3, when B, = B, = 0.

Example 3. Third-Order Polynomial in Three Factors

To aid thinking about this in slightly wider contexts, we now give the equivalent of
(12.3.5) for second-order (quadratic) and third-order (cubic) models in three factors
(X, X1, X;), with an origin shift to (a,, a,, as). For the cubic,

Y=08+B8X +X+3X;
+ Bn X+ BnXi+ BuXi+ BuX  Xa+ BuX i Xs + B X, X;
+ B X1 + B X3 + B X3 (12.3.6)
+ B X, X3+ BinXi X3+ B XX, + B X0 X3+ Bin X1 Xs
+ B0 X3X, + Bin X) Xo Xz + €,
we find that:

oy, = full cubicin (a,, a,, a3),

o, = By + Biay + 2B2a; + Byas + Bipat + 38203 + Br3a}
+ 2Bipaia; + 2Bmaa; + Binaias,

oy = Bs + Bisay + Buay + 2Bxas + Bial + Pald + 3Banai
+ 2Binmias + 2Bomana; + Binaray,

ay = Bn + 3Bma, + Bia; + Busas,

(12.3.7)
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an = Bn + Binar + 3Bma; + Binas,
ayn = By + Binar + Baa; + 3Pama;s,
ap = B + 2Bina; + 2Bina; + Binas,
ai = Bz + 2B + Bina; + 2Bixa;,
an = B+ Bimay + 2Bma; + 2Bma;,

am = Bui,

an = Bm, (12.3.7)
a3 = By, continued
ain = Pin,

ai = P,

a; = Bz,

o = IJ__,

X733 M233y

~ — N

a3 = P,

apy = B,

a3 = P,

The origin-shift parameter situation for the quadratic model in three variables is
found by setting all B8’s with three subscripts equal to zero in (12.3.6) and (12.3.7). In
both cases, detailed conclusions developed by extending the ideas of Example 2 are
left to the reader.

Example 4

=3

5
3

)

[=%
o

Peixoto (1990) gives the more general polynomial exam
Y=0+BiXi+ B X; + BuXiXy + BuX
+ B X3+ B X1 X3 + €

+ B X1 X}

[S 18]

(12.3.8)

as a well-formulated one that satisfies Criterion 1.
[Exercise: Substitute X, = Z, + a,, X; = Z, + a, into (12.3.8) and show that no
new types of polynomial terms occur in the expansion.]

er a reduced model to be a sensible one if a rotation of the X-axes
| of unchanged form in the X’s.

Example 5. Second-Order Polynomial in Two X's

We consider again the second-order model (12.3.2). An axial rotation from the X’s
to (say) the W’s is such that

W1 = C]Xl + C2X2,
W2 = le] + dez,

(12.3.9)
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or W = MX, say, where M is an orthonormal matrix, such that M'M = MM’ =
MM = 1. These conditions, which preserve both length and orthogonality of the
axes after rotation, imply that M must take the form

cos 6 sin @ c s
IL~sin 6 cos 0] - [—s c]’ (123.10)

say, or a similar form with changes of signs in rows and/or columns.
To substitute for the X’s in (12.3.2), we invert via X = M™'W = M'W to give

X, =cW, - sW,,
X, =sW, + cW,. (12310)
The surface after rotation is then
Y =7y, + »W, + v, W, + yyWi + ypu Wi+ vy, W W, + ¢,
where
Yo = Bo,
Y1 =By + 5By,
Y2 = =SBt By,
yu = CBut 5a+ s, (12.3.12)

Y = $By + Bn — csP,
Yi2 = —2¢sB1 + 2¢sBy + (2 — $Y)By,.

[The case 6 = 45°, ¢ = s = 2717 was used by Box and Draper (1987), pp. 447-448.]
We see that order is completely preserved, namely, zero-order, first-order, and second-
order vy coefficients are linear combinations of only zero-order, first-order, and second-
order coefficients, respectively. This example, which extends to more X’s, illustrates
the more general statement of Rule 2.

Rule 2

If a model is to be consistent under rotation of axes, all terms of a particular order
must be considered as a unit. Subsets of terms of a given order cannot be removed.

(For example, it is senseless to consider dropping B;, alone, because this does not
remove ‘y,,, which is still a combination of 8;, and f3,,.)

Application of Rules 1 and 2 Together

If a model is to be consistent both under a shift in origin and under rotation, terms
can be dropped only in units of order (e.g., all second-order terms, all first-order
terms). Moreover, lower-order terms cannot be deleted if higher-order terms are
retained in the model.

In situations where the original axial directions are considered mandatory and
untouchable, so that rotation to new axes is out of the question (e.g., from practical
considerations in the interpretation of the effects shown by the fitted model), only
Rule 1 would apply.
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“Do We Need This X?”

Assume now that we do not wish to consider rotations of the surface, so that Rule 2
will not come into consideration. We can then ask questions about specific X-variables.
Look again at (12.3.5) and consider the question: “Does X; contribute to second-
order curvature?” This is equivalent to testing Hy: 8, = B;;, = 0 versus H,:not so.
We see that this is equivalent to oy = ay; = 0, so that Rule 1 is satisfied. We can then
test this null hypothesis via an extra sum of squares test in the usual way. It is also
possible to test whether X is necessary at all, via Hy: 3, = B, = Bi; = 0, because then
a, = ay = ap = 0. This implies the following:

If rotation of the axes is not an option because of the nature of the predictor
variables, subsets of higher-order terms (or all terms) that depend on one (or more)
specific predictors can be deleted, but only in combinations that keep the model well
formulated, that is, satisfy Rule 1.

For example, in (12.3.7), some possibilities are:

7 — >

(@) B = Bz = Bz = Binn = Bus = Py = 0. (Does X contribute to third-order cur-
vature?)

(b) By = B, = Bz = 0, in addition to (a). (Does X, contribute to second- and third-
order curvature?)

(¢) B, = 0, in addition to (b). (Do we need X at all?)

Summary Advice

In deciding what terms can sensibly be deleted from a polynomial model, we suggest:

Alwvwravye anmnly Diala 1
lwayos ayyly INUIC 1.

1
Ae
2. Consider whether the original predictor variables are either:

a. not absolute descriptors of the response surface, so that rotation of the axes to
give the surface in terms of new variables that are rotational linear combinations
of the original variables can be considered; apply Rule 2 in addition to Rule 1; or,

b. always to be retained (so that descriptions of the response surface are always
in these variables); apply only Rule 1, perhaps considering hypotheses involving
specific X’s, as in the examples above.

Using a Selection Procedure for a Polynomial Fit

Selection procedures (see Chapter 15) do not incorporate rules of the type we have
given. Thus their use to get polynomial models is suspect. It might be reasonable to
let a selection procedure offer its choice, but the equation should then be reviewed
and refined with the criteria given above in mind.

References
Box and Draper (1987); Driscoll and Anderson (1980); Peixoto (1987, 1990).
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EXERCISES FOR CHAPTER 12
A. Eighteen observations were obtained on four predictor variables and one response variable
in a process. It is suggested that the model
Y =8Xo+ B X, + B Xy + B Xy + B Xy + BuXi+ BnXi X, + Br X3
+BuXi X+ B XX+ e
is a reasonable one. The data are shown in Table A.

Requirements
1. Examine the data and the model. Is it possible to fit the proposed model to the data?
Why or why not?
2. Estimate V(Y)) = o

TABLE A Data

X, X, X; X, Y
20 50 75 15 27
27 55 60 20 23
22 62 68 16 18
27 55 60 20 26
24 75 72 8 23
30 62 73 18 27
32 79 71 11 30
24 75 72 8 23
22 62 68 16 22
27 55 60 20 24
40 90 78 32 16
32 79 71 11 28
50 84 72 12 31
40 90 78 32 22
20 50 75 15 24
50 84 72 12 31
30 62 73 18 29
27 55 60 20 - 22

B. (Source: **Variable shear rate viscosity of SBR-filler-plasticizer systems,” by G. C. Derringer,
Rubber Chemistry and Technology, 47, September 1974, 825-836.) Fit the model

Y=(+taZ+aZ)+ B+ BZ+BuZH)X,
+(Yo+ Y Z +yuZHX, + €,

where Z = In(X; + 1), to the data below, and give a complete analysis. Note that there are
six repeat runs.

X, X, X; Y X, X, X; Y
47.1 339 7.5 11.97 47.1 339 750 8.46
729 339 750 8.63 60 21 75 10.65
47.1 8.1 750 8.80 60 21 3000 7.60
60 21 75 10.73 60 21 3 13.06
60 21 75 10.69 39 21 75 10.51
729 8.1 1.5 13.12 60 0 75 11.22
47.1 8.1 7.5 12.58 60 21 75 10.67
72.9 339 7.5 12.24 60 42 75 10.24
60 21 75 10.64 81 21 75 10.74

72.9 8.1 750 9.09 60 21 75 10.69
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C. (Source: ““ A short life test for comparing a sample with previous accelerated test results,”
by Wayne Nelson, Technometrics, 14, 1972, 175-185.) The data in the table below are
accelerated life test results on 24 units of a type of sheathed tabular heater. T is the
temperature in °F and Y is the life in hours at that temperature for a single unit. Six units
are tested at each temperature. Plot the data and look at them. Fit the model

log,, Y = By + B,{1000/(T + 460)} + €

and perform all the usual analyses. [Note: T + 460 is the absolute temperature in °F.]

T Y

1520 1953, 2135, 2471, 4727, 6143, 6314
1620 1190, 1286, 1550, 2125, 2557, 2845
1660 651, 837, 848, 1038, 1361, 1543
1708 511, 651, 651, 652, 688, 729

D. The experiment summarized in the table below was run on a pilot plant to examine the
effects of varying the percentage of a certain mix component (X)), the temperature of the
mix(X;), and the flow-through rate (X;), on three responses, Y,, Y,, and Y;. The input
variables have been coded, but the responses are in their original units. The experimental
design shown is a central composite design consisting of eight cube points (X, X;, X;) =
(%1, %1, *1), six axial points (*a, 0, 0), (0, *a, 0), (0, 0, +a), where a = 1.2154, and one
center point (0, 0, 0). The run order shown is the randomized order in which the design
was performed.

X, X; X; Y, Y, Y;
-1 -1 1 85.3 72.7 97.1
1 1 -1 723 576 96.9
0 1.2154 0 71.4 56.5 96.4
0 -1.2154 0 72.0 64.6 96.8
-1 -1 -1 87.0 79.2 97.0
1 1 1 55.6 326 96.2
0 0 —-1.2154 85.0 75.9 97.2
1.2154 0 0 70.9 53.4 97.9
0 0 0 759 59.3 97.4
1 -1 1 76.1 63.2 97.4
-1 1 -1 85.0 75.3 97.2
0 0 1.2154 68.0 57.2 95.5
-1.2154 0 0 89.6 83.6 97.2
-1 1 1 75.0 61.5 96.5
1 -1 -1 74.2 61.0 98.2

Requirements. Is the design rotatable? (See Section 12.2.) Using multiple regression techniques,
formulate and fit suitable models of first or second order to Y, Y;, and Y; separately. Perform
a complete analysis and provide practical conclusions. If larger values of the Y’s were more
desirabie, where in the X-space would it be better to operate?

E. A new product was being considered by the bakery goods research division of a large
corporation. Of paramount concern was the maximum peak height obtained from a standard
container of mixed dough just prior to baking. Four major ingredients were thought to be
important in affecting peak height: percentage of fat, percentage of water, amount of flour
in the brew, and the speed of the mixer in rpm. The experiments given in the table were
performed, and the values of the maximum peak heights (shown in the body of the table)
were recorded for each run. Note that there are four repeat runs at the conditions (12, 50,
20, 130) with responses 492, 523, 530, and 590.
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Experimental Data Extensigraph Maximum Peak Height

Percent Water

46 50 54
F lpur rpm pm pm
Percent n
Fat Brew 90 130 170 90 130 170 90 130 170
10 833 540 673 493
8 20 537
30 577 547 660 512
10 547
492
523
12 20 653 650 530 553 487
590
30 595
10 802 477 710 520
16 20 575
30 568 401 572 483
Requirements

1. By suitable choice of central levels and scale divisors, code all four predictor variables so
that their levels are (—1, 0, 1). Write out the design in the coded variables, and confirm that
it is a *‘cube plus star plus four center points’ type design. Is it rotatable?

2. Using multiple regression techniques, construct a suitable model of first or second order for
predicting maximum peak heights. In your conclusions, indicate the relative importance of
the predictor variables, and make any other comments you find relevant.

F. Fita full second-order model and perform a complete analysis, using the Y, data of Table 12.1.
G. If we believe in the ‘‘origin-shift’ criterion,” is the model

Y=B+ 81X+ B:X:+BuXi Xy + BpXi+ BnXi Xite

a “‘well-formulated” one?
H. A proposed model, based on theoretical considerations, is

Y = aX? X1 X{e.

Requirements. After transformation, fit the proposed model by least squares. State which
predictor variable appears most important and check all coefficients for statistical significance
(take a = 0.05). Is the model a satisfactory one?

The data shown below, which relate to a study of the quantity of vitamin B, in turnip green,
are taken from the ‘“Annual progress report on the soils—weather project, 1948, by J. T.
Wakeley, University of North Carolina (Raleigh) Institute of Statistics Mimeo Series 19 (1949).

Thn vannhlpc ara’
UVivo Glw.e

X. = radiation in relative oram calories ner minute durine the nreceding half dqv of cnnhoht
i gram calories per minute gurn g the precedmn g halt day of sunhight

(coded by dividing by 100),
X, = average soil moisture tension (coded by dividing by 100),

X; = air temperature in degrees Fahrenheit (coded by dividing by 10),
Y

milligrams of vitamin B, per gram of turnip green.

These data were used by R. L. Anderson and T. A. Bancroft in Statistical Theory in Research,
McGraw-Hill, New York, 1959, on p. 192, to fit the model

Y=8+BX +BX +BX:+B:XX;, +e
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Requirements. Develop a suitable fitted equation using these data and compare its form with
the form of the one fitted by Anderson and Bancroft.

X, X, X, Y X X, X Y
1.76 0.070 7.8 1104 1.80 0.020 7.3 75.3
1.55 0.070 8.9 102.8 1.80 0.020 6.5 92.0
273 0.070 89 101.0 1.77 0.020 7.6 82.4
2.73 0.070 7.2 108.4 2.30 0.020 8.2 771
2.56 0.070 8.4 100.7 2.03 0.474 7.6 74.0
2.80 0.070 8.7 100.3 1.91 0.474 83 65.7
2.80 0.070 7.4 102.0 1.91 0.474 8.2 56.8
1.84 0.070 8.7 93.7 1.91 0474 6.9 62.1
2.16 0.070 88 98.9 0.76 0.474 7.4 61.0
1.98 0.020 7.6 96.6 2.13 0474 7.6 532
0.59 0.020 6.5 99.4 213 0.474 6.9 59.4
0.80 0.020 6.7 96.2 1.51 0.474 1.5 58.7
0.80 0.020 6.2 99.0 2.05 0.474 7.6 58.0

1.05 0.020 7.0 88.4
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13.1. INTRODUCTION AND PRELIMINARY REMARKS

Suppose we had n data values (f,, p;, Yi),i = 1, 2, ..., n, that could be well explained
by a quadratic equation, say,
Y=8+Bif+Bp+Buf+Bup’+Bufpt+e (13.1.1)

We might be perfectly happy with such a fit. Later, however, we might be told that
it was customary with this particular type of data to use In Y, the natural' logarithm
of Y (logarithm to the base e, or In) instead of Y. Armed with this knowledge, we
might find that a simpler planar equation fit of

InY=8,+8,f+Bp+e (13.1.2)

gave a better, as good, or aimost as good an explanation of the variation in the data.
Essentially we would have used the response transformation In Y to ‘‘flatten out’ our
original six-parameter quadratic surface to be a simpler three-parameter plane. We
would also have changed the assumption about the error structure. If the errors in
Eq. (13.1.1) were independent N(0, o?) errors, the errors in Eq. (13.1.2) would not
be; and vice versa. So we must give some thought to what is being assumed about the
error structure when we transform a response.

Thinking About the Error Structure

It is sometimes reasonable to believe that a model function might be multiplicative
rather than additive. Suppose we think that

n=aX*X1X} (13.1.3)

is a sensible model function for a certain set of data. Let us take natural logarithms
in (13.1.3). Then

' The difference between taking natural logarithms or logarithms to another base (10, say) is a constant
multiple. Suppose a given number A = ¢’ = 10, say. Then In A = b and log;,y A = ¢ and their ratio
blc = In 10 = (logy €)' = 2.302585.

277
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Inn=Ina+BhX +ylnX;,+ dn X (13.1.4)
One would then be led to fitting by least squares the model
InY=Inn+e, (13.1.5)

where In 7 is given by (13.1.4). In doing this, we would assume that the errors are
€ ~ N(0, Io?). Now let us work backward from (13.1.5). By noting that € = In (&),

where e here is the natural logarithm base 2.718282, and exponentiating (13.1.5), we get
Y = aX{ X1 Xie = ne-. (13.1.6)

This model does not have additive errors (i.e., we do not have Y = 7 + error) but
multiplicative ones; the model function is multiplied by the error. Thus a fit of (13.1.5)
is appropriate only if we “‘believe” that (13.1.6) is a suitable model. Transforming the
Y into In Y has altered the error structure. If we really believed that the errors were
additive and that

X?¢+ error (13.1.7)
we COUl(l not [aKC logarlmms dﬂ(l use lCaSt squares We WOUI(I nave to use tne me(noas
of nonlinear estimation instead. [However, (13.1.5) could then be fitted to give some
initial estimates; see Chapter 24.] We say that (13.1.7) is intrinsically nonlinear, whereas
(13.1.6) is intrinsically linear.

To take another example, if we decided to fit the model

% = Bo + BIX1 + BzXz + €, (131.8)

then we would ‘“‘believe’ that an appropriate model was

~ 4 N

AN
1.9)

Y =1/(B + B Xi + B, X; + €). (13

Now, in fact, most people do not think about models in this sequence. In practice,
it is simpler to decide on a transformation, fit it, and then examine the residuals in
the metric of the transformed variable to see if they are reasonably well behaved. If
they are, the error specifications in the transformed response space are assumed to
be /gll right. Note that, for (13.1.5), the resiglials to examine are of the formIn Y, —
(In Y),, while for (13.1.8) they are Y;! — (Y!).. All tests and confidence statements
must be made in the transformed space also.

Predictions in Y-Space

Some scientists are unhappy about working in a transformed Y-space, but a return to
the original Y-space can be made after the model has been fitted. Suppose we have
fitted a model to In Y, and we /r{lake a prediction In Y at a certain set of X’s. We can,
if we wish, evaluate ¥ = exp{In Y} and predict in the original space. Also, a confidence
statement on E(In Y) with interval (a, b) can be translated into a confidence statement
with interval (e, €°) in the Y-space. It will not be symmetric about the predicted value
Y, of course. We can also evaluate residuals Y; — ¥; at the data points, if we wish.
These residuals are not, however, checked; these are not the residuals that should
satisfy the residuals checks for normality, and so on.
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T A BL E 13.1. Values of Certain Power Functions for Five Benchmark Powers

A Y* W = (Y* - 1)/A V= (Y*~ 1)/(AY*)
1 Y Y - 1 Y -1
% Y1/2 2(Yl/2 _ 1) 2Y”:(Y”2 — 1)
0 1(?) InY Yiny
-1 y-1»2 2(1 - Y—uz) 2yw(1 _ Y‘“:)
-1 Y- 1- Y™ Y1 - YY)

Preliminary Remarks on the Power Family of Transformations

One extremely useful way of picking a transformation is to assume that a member of
the power family will be appropriate, and then to estimate the best power by maximum
likelihood. This is often called the ‘“Box-Cox method” in honor of the authors of the
seminal paper on this topic written in 1964. We describe this in the next section.
There is a paftlbUIdI uuucuuy in ulemg about powers Y, because as A approaCues
zero, Y* approaches 1. This would clearly be a senseless transformation! We shall see
soon that a zero power is associated with a In Y (or log Y) transformation. To make
the calculations for choosing the best A value run smoothly as A approaches zero, we
must perform the Box-Cox calculations using not Y*, which is discontinuous at )} =
0, but with either W = (Y* — 1)/A, now out of fashion, or (better) V = W/ Y =
(Y* = 1)/(A Y ) (Y is the geometric mean of the Y in the data set.) Note that for
a power transformation to be applicable, all the Y’s must be positive. Table 13.1 will
help prepare the reader for the fuller discussiop of Section 13.2. It shows what the
functions Y, W = (Y* — 1)/A,and V = W/Y  look like for five benchmark values
of A, namely, A = 1,4, 0, —3, —1. The query next to the one in the second column of
Table 13.1 denotes bewilderment at the possibility of a transformation Y* when A =

0, because all the data would revert to 1’s. However, when A approaches zero, W
achesInY onr] 1/ thus

annrn A
appiruaviivo iil ang v us apy

Points to Keep in Mind

In general, when we make a transformation, it is impossible to relate the parameters
of the model used for the transformed data to the parameters in a model initially
intended for the untransformed data. Usually, there is no mathematical equivalence
except in an approximate sense via a Taylor series expansion. For example, if instead
of fitting Y = By + B1 X + B X? + e we fit Y* = ay + oy X + ¢, the relationship of
Bo, Bi, B to A, ay, a is not clear. An attempt to find such a relationship is usuaily
not fruitful.

When several sets of data arise from similar experimental situations, it may not be
necessary to carry out complete analyses on all the sets to determine appropriate
transformations. Quite often, the same transformation will work for all.

The fact that a general analysis exists for finding transformations does not mean
that it should always be used. Often, informal plots of the data will clearly reveal
the need for a transformation of an obvious kind (such as In Y or 1/Y). In such
a case, the more formal analysis may be viewed as a useful check procedure to
hold in reserve.
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13.2 POWER FAMILY OF TRANSFORMATIONS ON THE RESPONSE:
BOX-COX METHOD

Suppose we have data (Y, Y5, ..., Y,) on a response variable Y that is always positive.
(Other cases will be discussed later.) If the ratio of the largest observed Y to the
smallest is ‘“‘considerable,” say, 10 or higher, we might consider the possibility of
transforming Y. There are many possible types of transformations. A useful idea in
many applications is to consider powers, Y*, say, and to try to find the best value of
A to use. A snag soon becomes apparent; when A = 0, Y’ = 1—making all the data
equal! However, if we were to try working with

(Y*—=1)/A, forA#0,
W= (13.2.1)
InY, forA =0,

the problem at A = 0 would be overcome, because In Y is the appropriate limit, as A

tends to zero, of (Y* — 1)/A, and so the family is now continuous in A. A disadvantage
of (1'% 2 1) is that, as A varies, the sizes of the W’s can change enm‘mnngly’ leading to
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minor problems in the analysis and requiring a special program to get the best A value.
For that reason, it is preferable to use the alternative form

(Y*=1)/(AY"), fora=0,
v=1" (132.2)
YInY, for A =0,

where the additional divisor (Y*"!) in (13.2.2), compared with (13.2.1), is the nth power
of the appropriate Jacobian of the transformation, which converts the set of Y, into
the set of W,. This ensures that unit volume is preserved in moving from the set of
Y; to the set of V; in (13.2.2). (To appreciate this remark fully, some knowledge of
calculus is needed, but we can proceed without that.)

The quantity Y is the geometric mean of the Y,,

Y=(Y,Y, - Y,)"m (13.2.3)

Y is a constant and it would be evaluated at the beginning of the calculation procedure,
usually by antilogging (exponentiating) the formula

mnY=n"'>hY, (13.2.4)
i=1

When formula (13.2.2) is applied to each Y; we create a vector V = (V,, V,, ..., V,)’
and use it to fit a linear model

V=XB+e (13.2.5)

by least squares for any specified value of A. More generally, we have to estimate A
as well as B. We do this by invoking the principle of maximum likelihood under the
assumption that € ~ N(0, I o?) for the proper choice of A. This method (and also a
Bayesian equivalent of it), applicable to any family of transformations, including the
one above, is discussed by Box and Cox (1964). The basic idea is that, if an appropriate
A could be found, an additive model with normally distributed, independent, and
homogeneous error structure could be fitted by the maximum likelihood method. We
do not have to understand maximum likelihood, Bayesian statistics, or the Jacobian
to perform the procedure. The necessary steps are as follows.
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Maximum Likelihood Method of Estimating A

1. Choose a value of A from a selected range. Usually we look at A’s in the range
(=1, 1), or perhaps even (-2, 2), at first, and extend the range later if necessary. We
would usually cover the selected range with about 11-21 values of A. We can always
divide up a portion of the interval more finely later if we need the additional detail,

but this is often unnecessary—see (3) below.

2. For each chosen A value, evaluate V via (13.2.2). Remember touse V = Y In
Y when A = 0. Or else avoid using A = 0 exactly, in covering the selected range of A.
Now fit (13.2.5) and record S(A, V), the residual sum of squares for the regression.
Any ordinary least squares regression program can be used for this calculation.

3. Plot S(A, V) versus A. [Some workers prefer to plot In S(A, V) versus A;
make your own choice depending on how big the numbers are.] Draw a smooth
curve through the plotted points, and find at what value of A the lowest point of
the curve lies. That value, A, is the maximum likelihood estimate of A. Typically,
we would not use this precise value of A in subsequent calculations, but would
use instead the nearest convenient value in the sequence, ..., —2, =1}, —1, —4,
0,3, 1,13 2, ... after first checking that such a value lay within a selected confidence

intarual fcana halAwr) ) SYEN avamnl o ) rama ant ta ha ahAant N 11 wa wananld
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probably use A = 0, If A were about 0.94, we would use A = 1, and so on. (There
is, however, considerable leeway for a personal decision in the choice of A, after
the calculations have been examined. In some situations, the values i, § might be
appropriate. Some workers prefer to round to the nearest quarter, rather than the
nearest half; others feel unhappy with any rounding and proceed using A instead.)
We then analyze the transformed data—transformed via whatever value of A was
finally selected—and report the results.

Some Conversations on How to Proceed

The last sentence of (3) needs some further explanation Once we have chosen a A,
how do we auuauy‘ transform the data? Do we use the form \1.) 2. L) cxauuy‘ as it is
given but with the selected A? We can do this if we wish. Alternatively, if a nonzero
A is selected to transform the data, we can carry out our analysis on Y* if we wish,
rather than on the first line of (13.2.2). Similarly, if A = 0 is the value of A actually
chosen to transform the data, we can use either In Y (natural logarithms) or log Y
(logarithms to any other base, such as 10, for example). These logarithms differ only
by a constant factor, and so only the scale of the numbers involved is affected, not
the basic nature of the subsequent analysis. Most people would choose the simplest
representation possible (Y* or In Y). We do that in our example. Equation (13.2.2)
is then used only for the analysis that determines A. This form (13.2.2) has several
advantages for this purpose. It is conceptually simple (see Box and Cox, 1964, p. 216),
it provides better computational accuracy, especially for large A, and the calculations
can be performed using any standard regression program. Also, it allows direct compar-
ison of the residual sums of squares, because the scale factor divisor Y  essentially
reconverts the W, back to comparable units.

Use of the (13.2.2) form for the final analysis is also acceptable. Only a scale
difference and an origin shift are involved and the basic nature of the subsequent
analysis is unaffected by these, for a linear model.

Two points relevant to the regression analysis after choice of A should be noted:

1. The fact that the “best A’ has been selected does not necessarily guarantee an
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equation useful in practice. The final equation must be evaluated in the usual ways
on its own merits.

2. To allow for the fact that A has been estimated, some workers remove one df
for A in the analysis of variance table in the subsequent regression analysis. This
reduces the total degrees of freedom from n to (n — 1) and the residual df are adjusted
accordingly. This reduction is optional. (Note that no sum of squares is removed.

AlthAanoh wa An Nt alra thic Avictin c halAa + A
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to it. For large n, it makes little difference, of course.)

Approximate Confidence Interval for A

The maximum likelihood equations, after simplification, result in an estimation of A
by choosing the A that minimizes the residual sum of squares function S(A, V). One
step back from this point is the equivalent criterion: maximize L(A), where

L(A) = =$nIn{S(A, V)/n}. (13.2.6)
Obviously we do not need to plot this form because 7 is fixed; that is why the simpler
plot of S(A, V) versus A is used. However, an approximate 100(1 — a)% confidence

interval for A consists of those values of A that satisfy the inequality
L(}) - L) =ixi(1 - ), (13.2.7)

where xi(1 — «) is the percentage point of the chi-squared distribution with one
degree of freedom, which leaves an area of a in the upper tail of the distribution.
Some of these values are as follows:

a 010 0.05 0.025 0.01 0.001

(13.2.8)
Xi1—a) 271 384 502 663 10.83

m L | s T /13 " AY R ,,,,II 1/ AN et ees ) ~ Y a1}
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line at the level
L(A) —4xi(1 - a) (13.2.9)

of the vertical scale. This would cut the curve at two values of A, and these would be
the end points of the approximate confidence interval. Translating this via (13.2.6),
we see that we must cut across at heights of

S(A, V) = S(A, V)exit-am  for §(A, V) (13.2.10)
or
InS(A, V)=InS(A, V) + x}(1 —a)n  forln S(A, V) (13.2.11)

according to which plot is used. In both cases we cut across the plot somewhat above
the minimum level. S(A, V) is the minimum sum of squares value that occurs at A = A.

The Confidence Statement Has Several Forms

Readers who consult various sources on this matter will perhaps be confused when
they read, elsewhere, that instead of the factor exp{x}{(1 — «)/n} recommended on
the right of (13.2.10), they are told touse 1 + t2/v,0or 1 + z%/v,or 1 + x¥(1 — a)/v,
or 1 + x¥(1 — a)/n, or 1 + z%/n, where ¢, and z are the two-tailed percentage points
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T A BLE 13.2. Mooney Viscosity MS, at 100°C as Function of Filler and Oil Levels
in SBR-1500¢

Filler, phr, f

Naphthenic
Oil, phr, p 0 12 24 36 48 60
0 26 38 50 76 108 157
10 17 26 37 53 83 124
20 13 20 27 37 57 87
30 — 15 22 27 41 63

¢ Phillips Petroleum Co.
b Cirolite Process Oil, Sun Oil Co.

of a t-variable with v df [the df of the residual SS, S(A, V)] and a unit normal variable,
respectively. [For (13.2.11), take natural logarithms, In, of the quantities listed.] All
of these alternatives are based on the points that (i) exp(x) = 1 + x + x*/(2!) +
x*/(3!) + ---, which, cut to 1 + x as a first approximation, accounts for the “1+"
portion; (ii) x{ = z? = t2 unless v is small; and (iii) one can argue about whether n df

or v df should be used. For most problems. all these intervals will be more or less the
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same; thus agonizing about Wthh to use is usually a waste of time. If in doubt, use
the most conservative one, the one that gives the largest confidence interval. We
recommend (13.2.10) or (13.2.11) in general, however.

Example 1. The data in Table 13.2 are part of a more extensive set given by Derringer
(1974). This paper has been adapted with permission of John Wiley & Sons, Inc. We
wish to find a transformation of the form (Y* — 1)/(AY )for A # 0,o0r YIn Y for

= 0, which will provide a good first-order fit to the data and leave satisfactory
residuals. Our model form Eq. (13.2.5) is

V= Bn + B1 f ,Bp_‘ p+ e, (13212)

where f is the filler level and p is the plasticizer level (the latter is indicated in the
first column of Table 13.2).

Note that the response data range from 157 to 13, a ratio of 157/13 = 12.1. When
the ratio of the largest response value to the smallest is, or exceeds, about an order
of magnitude (i.e., about 10), a transformation on Y is likely to be effective. The
geometric mean is Y = 41.5461.

Table 13.3 shows selected values of S(A, V) for various A. [An initial set of calcula-

T A BLE 13.3. Values of S(A, V) for Selected Values of A for the Viscosity Data

A S(A, V) A S(A, V)
~1.0 2456 ~0.04 83.5
~0.8 1453 ~0.02 85.5
-0.6 779.1 0.00 89.3
~0.4 354.7 0.05 106.7
~0.2 131.7 0.10 135.9
~0.15 104.5 0.2 231.1
~0.10 88.3 0.4 588.0
~0.08 84.9 0.6 1222
~0.06 83.3 0.8 2243
~0.05 832 1.0 3821
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S(A, V)

| |
-1 -0.8 -06 -0.4 -0.2

02 04 06 0.8 1

tions for A = 2(0.1)2 was followed by a finer division A = —0.2(0.01)0.1 near the
bottom of the curve.] A smooth curve through these points is plotted in Figure 13.1.
We see that the minimum (S(A, V) occurs at about A = —0.05. This is close to zero,
suggesting that the transformation

V=YY, (13.2.13)

or more simply In Y, might be a suitable one for this set of data. The approximate
95% confidence interval obtained via Eq. (13.2.10) at a level of S(A, V) = 98.3 is given

'\\ ' l /r T T T
110+ —
100 —

S S(A, V) = 83.2¢384/23
< =98.3
75

90 _

A
—— S(A, V) = 83.2
80+ —
| Y f LY | 1 L

0.2 —0.1/ 0 0.1 0.2 0.3
A

Approximate
95% confidence
interval

Figure 13.2. Obtaining an approximate 95% confidence interval for A using the viscosity data.
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by —0.13 = A = 0.03. An enlargement of the bottom of the S(A, V) curve is drawn
in Figure 13.2 to show this calculation more clearly. We see that the validity of using
A = 0 is confirmed by this calculation, and that the transformation is well estimated.
Values of A such as A = 1 (no transformation at all), A = 3 (the square root transforma-
tion), A = —1 (the inverse transformation), and many others are completely excluded
as possibilities by the data. If the alternative factors for determining approximate 95%
confidence intervals are used, the ““cuts’ across Figure 13.2 would take place at heights
of 101.3, or 99.2, or 99.2, or 97.1, or 97.1, respectively. Clearly, whichever is used,
there is no practical difference in the conclusion reached.

Note: A wide confidence interval that included two or more of the benchmark levels
of A = =1, =4, 0, 3, 1 would indicate that A is not crisply estimated and would imply
that it made little difference which of a wide range of possibilities for A was used.
While, in one sense, this seems advantageous, it also may mean that the resulting
fitted equation will not predict effectively. If a wide confidence interval includes A =
1, the implication is that is may not be worthwhile to transform Y at all.

Application of the natural logarithm transformation to the original data gives us
the transformed data of Table 13.4. The best plane, fitted to these transformed data
by least squares, is now

In Y = 3212 + 0.03088f — 0.03152p. (13.2.14)

The corresponding analysis of variance table is shown as Table 13.5. Of the variation
about the mean, 100R? = 99.51% is explained by the three-parameter model and the
F-statistic for overall regression. F = 2045 is very significant indeed. Clearly, an
excellent fit has been attained.

If we had fitted a first-order model to the untransformed data we would have ob-
tained

Y = 28.184 + 1.55f — 1.717p, (13.2.15)
with a 100R? value of 87.93% and an overall F = 729 {Qv Table 13 ﬁ\ This, in itself,

is an excellent fit, but the improvement when In Y is used in quite dramatlc (In other
examples, the initial fit can be quite poor, and the proper transformation enables a
significant fit to be achieved; sometimes, the transformation enables a lower degree
of polynomial to be fitted than would otherwise be possible. This is true here, too,

as we explain below.)

Coding the Predictors. To avoid complicating our example with additional steps, we
have used the two predictor variables fand p in the units in which they were given.
In a case like the above, where the levels of f and p are equally spaced, the codings

x, = (f — 30)/6, x; = (p — 15)/5 (13.2.16)
would provide coded levels of x; = =5, =3, —1,1,3,5and x, = —3, —1, 1, 3, a slight

TARBLE 134, Transformed Values W

LI = U =2 —vv'-

In Y of the Data in Table 13,2

Filler, phr,
Naphthenic iller, phr. /
Oil, phr, p 0 12 24 36 48 60
0 3.258 3.638 3.912 " 4.331 4.682 5.056
10 2.833 3.258 3.611 3.970 4.419 4.820
20 2.565 2.996 3.296 3.611 4.043 4.466

30 — 2.708 3.091 3.296 3.714 4.143
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T A BL E 13.5. Analysis of Variance of First-Order Model in f and p Fitted to
Logged Viscosity Data

Source df SS MS F
by 1 319.44855 —

by, byl by 2 10.55167 5.27583 2045
Residual 20 0.05171 0.00258

Total 23 330.05193

numerical simplification. Note that this sort of simple coding of the predictors has no
effect whatsoever on the estimation of A. However, in some problems, proper coding
will simplify the regression calculations. For example, if the f = 0, p = 30 observation
were not missing in Table 13.2, the coding as shown in Eq. (13.2.16) would make the
x, and x, columns orthogonal to each other, and to the column of 1’s in the X matrix.
(Note, however, that transformation of the predictors, say, to x; = fu, x, = p® will
alter the problem completely and will affect the estimation of A.)

Transformations on the response variable affect the distribution of errors. Our assump-
tion is that, after the transformation, the errors in the transformed response will be
N(0, Io?). Thus it is important to examine the residuals from the model finally fitted,
to see if those assumptions appear to be violated. The residuals from the first-order
fit Eq. (13.2.14) are given in Table 13.7. We leave their examination as an exercise
for the reader.

13.3. A SECOND METHOD FOR ESTIMATING A

desire to be small and/or maximize some quantity that we desire to be large. For
example, suppose that the original response Y could reasonably be fitted by a second-
order model in X, and X,,

Bo+ Bi Xy + B Xy + BuXi+ BuXi+ BuXi X; t €, (13.3.1)

In the second method of estimation, we choose A to minimize some quantity that we

and that the idea behind transforming from Y to V via Eq. (13.2.2) is to attempt to
represent the transformed response by a first-order model B, + B, X, + 3, X; + €. We
could fit Eq. (13.3.1) to V by least squares for a selected set of values of A and choose,
as best for our purposes, the value of A that minimized an appropriate statistic. Possible
choices are the F-value connected with the extra sum of squares SS(b,;, bz, by | by,
b, b,) or the ratio of mean squares arising from second- and first-order fitted parame-

T ABL E 13.6. Analysis of Variance of First-Order Model in f and p Fitted to
Untransformed Viscosity Data

Source df SS MS F
b b, | by 2 27,842.62 13,921.31 72.9
Residual 20 3,820.60 191.03

Total, corrected 22 31,663.22
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T A B L E 13.7. Residuals Multiplied by 1000, from First-Order Model Fitted to
Logged Viscosity Data

. Filler, phr, f
Naphthenic
Oil, phr, p 0 12 24 36 48 60
0 46 55 —41 7 -13 -9
10 —64 -10 -27 -39 39 70
20 -17 43 -27 —83 -21 31
30 — 71 83 —83 -36 23

ters. For our idea to be successful, second-order terms would have to be nonsignificant
for the value of A finally selected.

Example 2. We again use the viscosity data of Table 13.2. We wish to find a transfor-
mation of the form V = (Y* = 1)/(AY )forA# 0,or V=Y In Y for A = 0, that
will allow a good first-order fit without need for second-order terms. We first fit
the model

where, as before, fis the filler level and p is the plasticizer level, for a series of chosen
values of A. [Fitting in coded variables such as those given in Eq. (13.2.16) could also
be done without affecting the basic results.] For each A we evaluate

MS, = mean square arising from SS(b,, b, | by)/2,
MS, = mean square arising from SS(b,;, by, b1 | by, by, by)/3, (13.3.3)
Y= MSz/MS] s

and we plot y against A to give Figure 13.3. The numbers needed to create this plot
are given in Table 13.8.

v T T T T T 1
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Figure 13.3. Fitting a second-order model to transformed viscosity data: plot of y = MS,/MS, versus A.
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TABLE 13.8. Values of MS,, MS,, and y = MS,/MS, for Selected Values of A for
the Viscosity Data

A MS, MS, y=MS,/MS, A MS, MS, y=MS,/MS,
-1.0 11162 724 0.0649 0.025 9133 7 0.0008
-0.8 10218 424 0.0415 0.05 9162 ii 0.0012
-0.6 9572 218 0.0228 0.1 9233 21 0.0023
-04 9183 85 0.0093 0.2 9421 54 0.0057
-0.2 9030 16 0.0018 04 10001 173 0.0173
-0.1 9040 3 0.0003 0.6 10891 382 0.0351
—0.05 9066 2 0.0002 0.8 12162 711 0.0584
-0.025 9084 3 0.0003 1.0 13921 1207 0.0867

0.0 9107 4 0.0005
We see that the minimum v is attained at about A = —0.05, indicating that use of

A = 0, the logarithmic transformation, is sensible, exactly as we found via the previous
method. (A disadvantage’ of the present procedure, however, is that we cannot easily
obtain a confidence interval for A.) This transformed response leads to the fitted

..... A_arder a0

seconda-order equation

In ¥ = 3231 + 0.02861f — 0.03346p (133.4)
+0.00004416 7 + 0.00011207p% — 0.00003718 fp.

The corresponding analysis of variance table is shown in Table 13.9. It is clear that
the transformation is a successful one, that the full second-order model is not needed,
and that the first-order model Eq. (13.2.14) is perfectly adequate. By comparison, the
fitted second-order equation for the untransformed data is

Y = 24.067 + 0.57387f — 0.82628p

-~ o o (13.3.5)
+0.02639f2 + 0.02752p? — 0.04930/p,

with analysis of variance table as in Table 13.10. Thus when no transformation is
carried out, significant second-order curvature is present in the data.

Advantages of the Likelihood Method
Of the two methods given for estimating transformation parameters, we would favor

the likelihood method in practice for most problems. Through it, we can always obtain

T ABLE 13.9. Analysis of Variance of Second-Order Model in f and p Fitted to
Logged Viscosity Data

Source df SS MS F
by, by| by 2 10.55167 5.27583 2037.0
bi, by, bl by, by, b, 3 0.00776 0.00259 1.0
Residual 17 0.04395 0.00259

Total, corrected 22 10.60338

2 This disadvantage exists in this example. However, if the method is used on an F-statistic, an approximate
confidence interval can be calculated using F(,, 1, 1 — a) as described in ‘“Transformations: some examples
revisited,” by N. R. Draper and W. G. Hunter, Technometrics, 11, 1969, 23-40.
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T ABLE 13.10. Analysis of Variance of Second-Order Model in f and p Fitted to
Original Viscosity Data

Source df SS MS F
by, by| b, 2 27.842.616 13,921.308 1179.7
bn, by, bya|by, by, b, 3 3,619.987 1,206.662 102.3
Residual 17 200.615 11.801

Total, corrected 22 31,663.217¢

¢ Rounding discrepancy of 0.001.

an approximate confidence interval or region, and we have only to fit the model we
are interested in, not a more complicated one, as is usually required in the second
method. (In some problems, in fact, the data may be inadequate to fit the desired
higher-order alternative.) The second method can be useful, however, when it is
desired to examine a variety of criteria. The various plots of the criteria versus A
can be viewed simultaneously, and a compromise value of A can be selected from
these plots.

13.4. RESPONSE TRANSFORMATIONS: OTHER INTERESTING AND
SOMETIMES USEFUL PLOTS

The procedures described in Sections 13.2 and 13.3 for estimating a transformation
are the basic ones. A number of other plots (not illustrated) provide useful ancillary
information when needed.

1. If there are genuine repeat runs in the data set, a pure error sum of squares can
be calculated for each A used and a plot of the lack of fit F-value versus A can be
constructed. A horizontal line can be drawn at the height of some chosen significance
level taken from the F-tables, and acceptable values of A are those for which the curve
falls below the significance line. Typically (but not always) the acceptable range of
A’s includes A and most or all of the confidence interval for A. When this does not
happen, deeper investigation is called for. For examples where this technique can be
used, see Exercises 13D and 13E in “Exercises for Chapter 13.”

2. The regression coefficients can be plotted versus A.

3. The t-values for each of the fitted coefficients can be plotted versus A. Alterna-
tively, r-values regarded as significant can be incorporated into the regression coeffi-
cient plot (2) by using, for example, solid lines for those values of the coefficients
regarded as significantly different from zero (or from whatever other test value is
decided upon), and dashed lines otherwise. (Of course, for those A-values for which
the errors are non-normal, a comparison with the ¢-distribution is not, strictly speaking,
valid. Also, for A-values at which the variance is nonhomogeneous, the t-values can
be misleading.)

4. R? may be plotted versus A to see, for which A-values, acceptable expanatory
levels are to be found. Note that this plot will not be simply a reflection of the
S(A, V) plot. It is true that

S(A, V) =(V'V—-nV?)(1 - RY), (13.4.1)
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so that
R*=1~-8(AV)/(V'V - nV?), (13.4.2)

but the divisor on the right-hand side is not constant as A varies. Two such plots could
be drawn for the first- and second-order models of Example 2. It is where these two
R’ curves differ the least that interesting values of A lie. (In fact, it would be possible

to construct an interval of A-values for which the difference hetween the R? valuec
BV WANJAAIJ VA AW 422 ALAWWA V s A LAY VT ASAWS WD AN/A YY LAAWwWAS VAlW WSllAiWwWiwWiiww WL ¥Y Wil VAR XN ALY S 2 e )

does not exceed some desired amount.)

13.5. OTHER TYPES OF RESPONSE TRANSFORMATIONS

A Two-Parameter Family of Response Transformations

By adding an additional parameter, we can extend the range of possible transformations
beyond those discussed above. Consider the two-parameter family

(V4 ) — 1
V- ) \)«I.(Y :Ziqul—t’ for A, #0, (13.5.1)
l(Y DIn(Y +A), foriA =0,
where
Y+ ={Y+ L)Y, + A) - (Y, + A} (13.5.2)

is the geometric mean of the (Y, + A;) terms, and where, necessarily, Y > —A,. The
methods used for the one-parameter family (in which A, = 0) can be extended for
this case. We now have Y + A,, where Y was previously, and must search over a two-
dimensional (A, A;) grid to find the maximum likelihood values (A,, A;). Also, in the

calculation to gbtain a confidence region for (X A \ we now use v2 with rwo deorees
WLWMBMILLIVLIL VWV VU kil AllANAWwiiwNw lvb 2 AN\JL , ‘‘‘‘‘ A AL sPVY U uvs WA

of freedom, rather than one, because there are now two transformation parameters.
Exactly the same ideas are involved, but the calculations are more complicated. An
example is discussed briefly on pp. 225-226 of the 1964 Box and Cox paper. The y3
(1 — «) percentage points needed for 2 df are these:

a 0.10 0.05 0.025 0.01 0.001
x31—a) 461 599 738 921 1382

Note that, because Y > —A,, we must avoid searching A, values such that A, <
—Ymia- Although a singularity occurs at this A, boundary, it is not relevant; the local
maximum satisfying the constraint is what is needed.

A Modulug annl\: of Response Traneformations

When a residuals plot indicates a fairly symmetric but non-normal error distribution,
the one-parameter modulus power family

signof Y)[{|Y] + 1} = 1}/A, A#0
W (sig )l I‘ I ] (1353)
(signof Y) In{|Y| + 1}, A=0

may be useful. For an illustration, see John and Draper (1980).
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Transforming Both Sides of the Model

An extremely versatile method of transformation is to transform the model function
as well as the response variable, while leaving the error additive. For example, a model

(13.5.4)
Y=1(X,B) +e

could be transformed and fitted as

Y = {f(X, B + ¢, (13.5.5)

where the best A-value needs to be selected. Alternatively, Y* and {f(X, B)}* could
be replaced by their respective W or V forms discussed in Section 13.2 This method
requires a great deal of computation but promises to be more rewarding in its effects
in situations where the model (13.5.4) is reasonable one to fit, but the residuals show
signs that they may be non-normal or heteroscedastic. For more on this see, for
example, Chapter 4 of Carroll and Ruppert (1988).

A Power Family for Proportions

Exactly the same ideas as in Section 13.2 can be used to estimate the parameter A in
the family

(13.5.6)
P={p*— (1 - pHY/A,

where p is the observed proportion of times a stated event takes place. The observed
values of p would, in general, depend on the values of a number of predictor variables
X, X3, ..., and a model of general form

(13.5.7)
P=f(X1,X2,...,/\,B) + €

would be postulated where B is a vector of parameters. The value of A would be
chosen to give the best fit to these data under the assumption that e ~ N(0, Io?).
The power transformation (13.5.6) was suggested by Tukey. For work on the statisti-
cal distribution of P when p has a uniform distribution, good initial reading is Joiner
and Rosenblatt (1971); see, also, the references mentioned in the paper.
Two specific transformations for proportions are given in the next section. One is
a special case of the above family, and the second is an approximation to a special case.

13.6. RESPONSE TRANSFORMATIONS CHOSEN TO STABILIZE VARIANCE

oo ha o ar

a a arc OC a"a]ly"’cu oy least squares, it is
important that the variance of the response to be fitted be independent of its mean
value. Where it is known or where 1t has been found empirically that the standard
deviation of the untransformed resonse Y, say, oy, is a particular function f(%) of the
mean value, n = E(Y), we can obtain an appropriate transformation immediately by
using the transformed variable h(y), where

oY) 1
Y f(Y)

In other words, we obtain A(Y) by integrating 1/f(Y) with respect to Y. Some well-

-
1¢

"U

(13.6.1)
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T A BLE 13.11. Appropriate Variance Stabilizing Transformation when o, = ()

Nature of Dependence Variance Stabilizing
o, = f(n) Transformation*
oy « n* and in particular (Y=0) Y-k
oy < n'* (Poisson) (Y=0) Yy
oy < 7 (Y =0) InY
gy % (Y =0) Y-
gy < 9'*(1 — 7)'* (binomial) O0O=Y=1 sin”!(Y'"?)
< (1 — n)/q O=Y=1 1-Y)?-(1-Y)y43
< (1 — n)7? (-1=Y=1 In{(1 + Y)/(1 = Y)}

¢ Modifications for the Poisson and binomial cases have been suggested by Freeman and Tukey (1950).
These modifications are discussed in the text.

known transformations that arise in this way are shown in Table 13.11. Note that some
of these are members of the power family.

Estimation of k in Table 13.11

If the data contain m sets of replicate runs, it is possible to get an estimate of k fairly
quickly by finding the slope of the ‘‘best line” through the points (abscissa,
ordinate) = (In Y,, In s;), j = 1, ..., m, where Y, and s? are the sample mean and
variance of the jth set of repeat runs. This method is based on the idea that, if oy is
proportional to the kth power of 7, so that oy < 7*, it follows that

Inay = ko + kln 7. (13.6.2)

The pairs (In s;, In Y}) provide us with some data on (In oy, In 1) from which we can
estimate k. This slope estimation is often done simply by eye. A least squares fit
calculation would also provide us with “‘se(k),” which would enable us to judge, at

nDnao —I\IIf‘ ‘f\ ' ¥4 v\rar\‘ncx 1 agt mn r\r\ F II AN ro
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When there are no replicate runs, the residuals versus Y plot should be examined.
At a particular Y value the width of the band of residuals could be taken as roughly
ds;. A few values of (In 5;, In ¥)) can then be plotted and the slope k estimated as in
the foregoing paragraph. After transformation, a new residuals versus Y plot can be
done to see if the transformation was effective or needs readjustment.

Transformations for Responses That Are Proportions

Many types of response data occur as proportions, 0 = Y; = 1, obtained as the number
of times a ‘“‘success”” (however that may be defined) happens in a larger number of
“trials.”” For example, six rats of ten complete a given task for a Y, = 0.60. Proportion-
type data typicaily do not have a uniform variance pattern because V(Y;) = m(1 —
m;)/m,, where E(Y,) = m; and m; is the number of trials. Two popular transformations
for such data are the following.

1. The log odds transformation. (This does not stabilize variance.) We set
W, = In{Y/(1 — Y)}. (13.6.3)

Thus W, is the natural logarithm of the ‘“‘odds ratio”” Y,/(1 — Y)), the ratio of the
proportion of successes to the proportion of failures. To fit the model

Wi=B+BXu+ + 61Xt e (13.6.4)
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to data (W,, Xy, ..., X,-1,), i = 1,2, ..., n, we use weighted least squares because

V(W) = 1{m(1 — m)my}, (13.6.5)
approximately and is not constant. To show this, we use the fact that In (1 + x) =
x — x¥2 + x*/3 — -+ - = x for small x. Then, dropping the subscript i for the moment,
we see that (all results are approximate)

InY=In7+ (Y- n)w (13.6.6)
so that

E(lnY)=In7m and V(nY)= (1 - @)/(mm). (13.6.7)

Similarly,

E{ln1 = Y)} =In(1 = 7)) and V{In(1 — Y)} = a/{(1 — m)m} (13.6.8)
and
coviln Y, In(1 — Y)} = —1/m. (13.6.9)

It follows that V(W) = {(1 — m)/m + w/(1 — ) — 2(=1)}/m = 1/{m(1 — w)m}. These
n variances V(W)) = 1/{m(1 — =;)m} are, of course, unknown but are estimated by
the corresponding values s? = 1/{Y(1 — Y)m} fori = 1,2, ..., n, and the estimation
proceeds as in Section 9.2. In this case, the matrix V is diagonal with estimated entries
s?,s3,...,s2. An alternative analysis for the log odds ratio is to use generalized linear
models; see Chapter 18.

2. The arc-sine transformation. (Use radians or degrees.) As indicated in Table
13.11, the transformation U = sin™'Y'? will stablize the variance over a range of Y-

values, if the samples that determine the observations Y, are all of the same size m,
say. In fact, W = 2 sin Y12 ig chohflv nreferred because it has the uniform theogretical

2z ANy Y Saix prvaviaia UL aNJaa

variance 1/m (for radians; multlply by {360/(2m)}* for degrees). Note that, if m is not
constant throughout the data, Z; = 2m!?sin"'Y!? is needed, where Y, is determined
through m; trials. Data in the middle range of proportions (say, 0.30-0.70) will not be
much affected by these transformations, because of the approximate linearity of the
transformation in that range. The range of Y-values over which the arc-sine transforma-
tion produces a flat variance function depends on the sample size m. For smaller
samples, the flat range does not cover true values of the binomial parameter E(Y)
that are close to zero or one. Freeman and Tukey (1950) have suggested the improved
transformation

U* = §[sin"{m,Y/(m; + 1)}? + sin"{(m;Y; + 1)/(m; + 1)}'?]

(instead of U), which extends the range of flatness of the variance function. See
Bisgaard and Fuller (1994-95, Figure 2) for examples for m; = 20, 50.

In general, we must keep in mind that there is no guarantee that use of these
transformations will necessarily be better than analyzing the proportions directly;
much depends on the data. The effectiveness of a transformation is best assessed by
trying it on the data and then checking the fit of the model and the pattern of residuals
that results.

Basic information on the reasons for some transformations that can be made on
the response variable can be found in Bartlett (1947).
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Transformations for Responses that Are Poisson Counts

Table 13.11 suggests the square root transformation for Poisson data. Again, a flatter
variance profile is achieved by the Freeman and Tukey (1950) suggestion:

HY'™ + (Y + 1),

which improves the situation for small values of the Poisson parameter A = E(Y) =
V(Y). See Bisgaard and Fuller (1994-95, Figure 3).

References
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EXERCISES FOR CHAP

A. Consider the following representative data:

Year, X Speed mph, Y Means of Attaining Speed
1830 30 Railroad
1905 130 Railroad
1930 400 Airplane
1947 760 Airplane
1952 1,500 Airplane
1969 25,000 Spaceship

-

Plot these (X, Y) data points. Do you feel this plot is an informative one or not? Why?

2. Transform the data by Z = log Y, and plot the (X, Z) points. Is this plot preferable to
the previous plot or not? Why?

3. Can you find a reasonably simple transformation U = f(Y) that will produce a (more
or less) straight line plot for the points (X, U)?

4. Whatever you conclude in (3), plot the points (X, V), where V = log(log Y). Fit a straight
line V = B, + B,X + € to these points using least squares. Draw the fitted line on your
(X, V) plot. Find the residuals and comment on them.

5. Set down the appropriate analysis of variance table for (4), test for overall regression,
and find R’ Comment appropriately.

6. Use the fitted straight line from (4) to predict when humans will attain the speed of light
(186,000 miles per second: note, per second).

7. Discuss the reasonability or otherwise of your prediction. On what assumptions does it

depend? Whether you feel your prediction is realistic or unrealistic, set out your reasons

carefully but succinctly.

=

(Source: **An empirical model for viscosity of filled and plasticized elastomer compounds,”
by G. C. Derringer, Journal of Applied Polymer Science, 18, 1974, 1083-1101.) Two sets of
response data (see footnotes ¢ and d) are shown iI}AIable B. For each of thq sets, find the
best transformation of the form V = (Y* — 1)/(AY )forA# 0,and V =Y In Y for A =
0, that will allow a useful model of the form V = B, + B8,f + B,p + € to be developed via
least squares, where f is the filler level and p is the naphthenic oil level. Perform all the
usual regression analyses for your best A, including examination of residuals. (Note that the
coding discussed in Section 13.2 will be especially useful for the second set of data.)
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T A B L E B. Mooney Viscosity MS, at 100°C as Function of Filter and Oil Levels in SBR-1500°
Filler, phr, f

Naphthenic
Oil! phr, p 0 12 24 36 48 60
0 26¢ 28 30 32 34 37
254 30 35 40 S0 60
10 18 19 20 21 24 24
18 21 24 28 33 41
20 12 14 14 16 17 17
13 15 17 20 24 29
30 — 12 12 13 14 14
11 14 15 17 18 25

*SBR 1500, Phillips Petroleum Co.

b Circolite Process Oil, Sun Qil Co.

< N990, Cabot Corp.

4 Silica B, Hi-Sil EP, PPG Industries.

(Source: **An empirical model for viscosity of filled and plasticized elastomer compounds,
by G. C. Derringer, Journal of Applied Polymer Science, 18, 1974, 1083—1101.)

T A B L E C. Mooney Viscosities ¥,(ML,) and Y,(MS,) at 100°C for Various Combinations of
Coded Variables® x,, x;,, x,, and x,

X X7 X3 X, Y, Y,
-3 -3 -3 -3 51 29
-1 -1 -1 -1 61 34
-1 -1 -1 -1 64 35
-3 -1 -1 1 36 20
-3 1 1 -1 39 21
-1 -3 -1 -1 55 30

1 -3 1 1 50 27
-1 1 -3 1 88 49

1 -1 -3 -1 124 68
-1 -1 1 -3 54 30

1 1 -1 -3 133 74

‘xi = (X, — 220)/7%, i = 1,2, x; = (X, — 15)/5,j = 3, 4, where X, = level of Silica A, Hi-Sil 233, PPG Industries,
= level of N330, Cabot Corp., X; = Naphthenic oil, Circolite Process Oil, Sun Oil Co., and X, = Cumarone indene
resin, Camar MH 23, Allied Chemical Corp.

For each response individually choose the best value of A in the transformation V =
(Y* — 1)/(/\YA DforA#0,V= YIn Y for A = 0, to enable the model V = Bo+ 2 Buxi +
€ to be well fitted to the data by least squares. After choosing the best transformation
parameter estimate A in each case, carry out all the usual regression analyses including

Aty nf racidnale
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(Source: “Third order rotatable designs in three factors: analysis,” by N. R. Draper, Techno-
metrics, 4, 1962, 219-234.) The data in the accompanying table are constructed data,
generated from a third-order polynomlal model to illustrate use of a third-order sequential
design. Find the best value of A in the transformation V = (Y* — 1)/(AY*!) for A % 0, and
V=¥YInYforA= 0, to enable a full second-order ten-parameter model in x;, x,, x; to be
fitted. After choosing the best transformation parameter estimate A, carry out all the usual
regression analyses and state your conclusions.
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E.

x| X2 X y

-1 -1 -1 34.727
1 -1 -1 38.917

-1 1 -1 44.907
1 1 -1 24.641

-1 -1 1 24.658
1 —-1 1 45.636

-1 1 1 33.702
1 1 1 5.374
22 0 0 33.414, 34.453
212 0 0 38.540, 39.201
0 212 0 40.393, 38.335
0 ~2? 0 40.687, 40.092
0 0 2 23.869, 25.823
0 0 A 33.727, 33.068
0 0 0 43.832, 44.562
0 0 0 42.165, 41.187

(Source: Ice crystal growth data from B. F. Ryan, E. R. Wishart, and D. E. Shaw, Common-
wealth Scientific and Industrial Research Organisation (C.S.I.LR.O.), Australia. Related jour-
nal reference: ‘“The growth rates and densities of ice crystals between —3°C and —21°C,”
Journal of the Atmospheric Sciences, 33, 1976, 842-850.) Ice crystals are introduced into a
chamber, the interior of which is maintained at a fixed temperature (—5°C) and a fixed level
of saturation of air with water. The growth of the crystals with time is observed. The 43
sets of measurement presented here are of the mass of the crystals (M) in nanograms for
times (T) of 50-180 seconds from the introduction of the crystals. Each measurement
represents a single complete experiment; the experiments were conducted over a number
of days and were randomized as to observation time. (The actual order in which they were
conducted is not available.) It was desired to connect the response M to the predictor T by
a simple fitted relationship. [The possibility that E(M) = aT*? was suggested.] Perform the
following calculations.

L. Fit the model V = y + B In T, where V = (M* — 1)/(AM*") for A # 0, and V =
x'vf In Mfor A = U, for a suitable set of values of A, and so pid\ the best transformation

for M, using the methods described in Section 13.2.

2. Use the selected values of A to carry out all the details of the usual least squares analysis
of the data and state your conclusions. In particular, do the residuals bear any suggestion
that the variance structure of the errors might not be stable, as assumed?

T M T M
50 11.5 125 47.7

60 82,115 130 92.0, 87.2
70 14.1, 17.2 135 58.0, 47.7
80 335, 28.8 140 73.2, 58.0
90 156,244,335 145 47.7

95 38.8 150 118.9, 58.0
100 47.7,58.0,36.1 155 143.9, 87.2
105 47.7, 65.5 160 143.9, 73.2, 73.7
110 58.0,47.7,335 165 97.0

115 69.5, 69.5,47.7 170 1123
120 87.2,51.0,335 180 113.2

It is believed that a response relationship 7 = aX{X7 is responsible for producing the data
below; how experimental errors enter into the situation is not known. Fit the model
log Y = log a + Blog X, + ylog X, + € to the data by least squares, examine the resulting
fit by whatever methods are available to you, and provide conclusions that will cast some
light on the situation. (Use logarithms to the base 10.)
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3

X, X, Y
10 10 2,040
100 10 7,350
1,000 10 12,210
10,000 10 23,580
10 100 18,200
100 100 10
1,000 100 2,960
10,000 100 108,040
10 1,000 10,370
100 1,000 1,150
1,000 1,000 23,580
10,000 1,000 296,120
10 10,000 9,040
100 10,000 1,960
1,000 10,000 96,980
10,000 10,000 1,004,020

G. The following data were collected on spray congealing:

Values for the Experimental Operating Variables and Average Particle Sizes

297

Unit Whetted

Peripheral Wheel

Mean
Surface-Volume

Wheel Periphery Velocity Feed Viscosity Particle Size of
(gm/sec/cm) (cm/sec) (poise) Product (u)

Run (Xy) (X3) (X3) (Y)
1 0.0174 5300 0.108 25.4
2 0.0630 5400 0.107 31.6
3 0.0622 8300 0.107 25.7
4 0.0118 10800 0.106 17.4
5 0.1040 4600 0.102 38.2
6 0.0118 11300 0.105 18.2
7 0.0122 5800 0.105 26.5
8 0.0122 8000 0.100 19.3
9 0.0408 10000 0.106 223
10 0.0408 6600 0.105 26.4
11 0.0630 8700 0.104 25.8
12 0.0408 4400 0.104 322
13 0.0415 7600 0.106 25.1
14 0.1010 4800 0.106 39.7
15 0.0170 3100 0.106 35.6
16 0.0412 9300 0.105 23.5
17 0.0170 7700 0.098 22.1
18 0.0170 5300 0.099 26.5
19 0.1010 5700 0.098 39.7
20 0.0622 6200 0.102 315
21 0.0622 7700 0.102 26.9
22 0.0170 10200 0.100 18.1
23 0.0118 4800 0.102 284
24 0.0408 6600 0.102 27.3
25 0.0622 8300 0.102 25.8
26 0.0170 7700 0.102 23.1
27 0.0408 9000 0.613 234
28 0.0170 10100 0.619 18.1
29 0.0408 5300 0.671 30.9
30 0.0622 8000 0.624 25.7
31 0.1010 7300 0.613 29.0
32 0.0118 6400 0.328 22.0

(continued)
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Feed Rate per Mean
Unit Whetted Peripheral Wheel Surface-Volume
Wheel Periphery Velocity Feed Viscosity Particle Size of
(gm/sec/cm) (cm/sec) (poise) Product (u)
Run (X1) (X2) (X3) (Y)
33 0.0170 8000 0.341 18.8
34 0.0118 9700 1.845 17.9
35 0.0408 6300 1.940 284

Source: **Spray congealing: particle size relationships using a centrifugal wheel atomizer,” by M. W. Scott, M. J. Robinson,
J. F. Pauls, and R. J. Lantz, Journal of Pharmaceutical Sciences, 53(6), June 1964, 670-675. Reproduced with permission
of the copyright owner.

A proposed model, based on theoretical considerations, is
Y = aX{ X1 X3

Requirements. After transformation, fit the proposed model by least squares. State which
predictor variable appears most important and check all coefficients for statistical significance
{Take oo = 0.05) Ic the model a catisfactorv one?

\ranv &k V.U Je 15 LUV IUVULL & Sausiaviuly v )

X, X, X; X, Fraction Defective

-1 -1 -1 -1 0.16
-1 1 1 1 0.17
-1 -1 1 1 0.12
-1 1 -1 -1 0.06

1 1 -1 1 0.06

1 -1 1 -1 0.68
1 1 1 -1 0.42
1 -1 -1 1 0.26




CHAPTER 14

What Are “Dummy” Variables?

The variables considered in regression equations usually can take values over some

continuous range. Occasionally we must introduce a factor that has two or more
distinct levels. For example, data may arise from three machines, or two factories, or
six operators. In such a case we cannot set up a continuous scale for the variable
“machine” or “factory” or “operator”” We must assign to these variables some levels
in order to take account of the fact that the various machines or factories or operators
may have separate deterministic effects on the response. Variables of this sort are
usually called dummy variables. They are usually (but not always) unrelated to any
physical levels that might exist in the factors themselves.

One example of a dummy variable is found in the attachment of a variable X
(whose value is always unity) to the term B, in a regression model. The X is unnecessary
but provides a notational convenience at times. Other dummy variables are somewhat

more than a mere convenience, as we shall see.

An Infinite Number of Choices

The suggestions we make for setting up dummy variable systems are not unique.
Typically, there are an infinite number of alternative ways to set up a system to cover
any particular type of situation. Given a particular selection of dummy variable vectors
that “works,” that is, represents the factors as desired, we can derive other sets by
taking linear combinations of the vectors in the first set. As long as the second set is
chosen so that their vectors are not linearly dependent on one another, all will be
well. In general, the most useful dummy variable setups are simple in form, employing
levels of 0 and 1, for example, or —1 and 1. Usefulness, however, lies in the eye of the
user (as “beauty lies in the eye of the beholder”).

14.1. DUMMY VARIABLES TO SEPARATE BLOCKS OF DATA WITH
DIFFERENT INTERCEPTS, SAME MODEL

Suppose we wish to introduce into a model the idea that there are two types of
machines (types A and B, say) that produce different levels of response, in addition
to the variation that occurs due to other predictor variables. One way of doing this
is to add to the model a dummy variable Z and regression coefficient a (say) so that

299
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an additional term aZ appears in the model. The coefficient & must be estimated at
the same time the B’s are estimated. Values can be assigned to Z as follows:

Z = 0 if the observation is from machine A,
Z =1 if the observation is from machine B.

If a is the least squares estimate of «, and if f represents the rest of the fitted model,
we have

Y=f+azZ (14.1.1)

Thus machine A data are estimated by putting Z = 0 to get ¥ = f, while machine
B data are predicted by setting Z = 1 to give ¥ = f + a. The value “a” simply
estimates the difference in levels between the responses of group B compared to group
A and all other factors fitted are represented in f.

Other Possibilities

Any two distinct values of Z would actually be suit

best. However, other assignments are sometimes convenient; for example, suppose
that of a total of n observations, n; come from type A machines and n, = n — n, from
type B machines. If we choose levels

7= e for machine A,
nny(n, + ny) (14.1.2)
7= ! for machine B,

Vny(n, + n,)

it will be found that the corresponding column of the X matrix is orthogonal to the
“By column” and is ‘“‘normalized,” that is, has sum of squares unity, which may be
convenient. (We can aiso omit the denominators if the normalization of the coiumn
is of no consequence.) When the column is normalized, the Y(group B) — Y(group
A) difference is a(n, + ny)"*/(nn)"%. Or, if we choose Z = —1 for machine A,
Z = 1 for machine B, the difference Y(group B) — Y(group A) is 2a. Obviously all
of the choices above achieve the same purpose, to provide a difference in levels
between the two groups. Thus it is sensible to use a representation that is convenient
to the user.

To see how one representation is derived by linear combination from another we
must count in the dummy X, column of the X matrix. The first representation is
covered by the vectors

1 0]
1 O
m
1 0
X, Z)=|—7—| . (14.1.3)
1 1
1 1
n,
L1 1]
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The second representation (14.1.2) has columns (X,, U), where
U = {—ny/[mny(n; + n)]"}(Xo — Z) + {ni/[minn, + ny)]'"}Z

(14.1.4)
= (mny)'"Z — {ny/ [n1ny(ny + 1)1 X
and the third has columns (X,, W), where
W=(Z-X,) +Z=2Z - X,. (14.1.5)

How Many Dummies?

In the above example of two categories (machines A and B) we see we need to
construct one dummy column in addition to X,. So two groups require two dummies
including X,. This essentially enables us to have the same linear model with two
different intercepts. For the first illustration above, the estimated intercepts are, conve-
niently, b, and (b, + a). For the third they are (b, — a) and (b, + a) with a different
value of a. (We leave the second to the reader.)

Three Categories, Three Dummies

If we wish to take account of three different categories, two extra dummies (besides
X,) would be needed. The simplest way is to use

(Z,,2Z;) = (1,0) for machine A,
= (0,1) for machine B, (14.1.6)
= (0,0) for machine C,

and the model would include extra terms o, Z, + a,Z,, with coefficients o, o, to be
estimated. Thus the X matrix for such data would take the form below, assuming that
all the A-data were listed first, then all the B-data, then all the C-data.

X, OtherX’s Z, Z,

1 ... 1 0]
1 1 0 » Group A
1 1 0 1)
1 ... 0 1]

X=|1 0 1]} Group B. (14.1.7)

1 0 1
1 0 0
1 0 0 > Group C

|1 0 0]

Again, many different allocations of levels are possible. If desired, columns that
are orthogonal to the X, column and that have sum of squares unity can be achieved

by setting
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(Z,,2Z,) = ( i , 0) for machine A,
V n,n;(nl + n3)
. —nNnj .
= (O, \m) for machine B, (14.1.8)
\ V itii\fiy 7 i3)/
/ n n \
1 2 .
= , for machine C,
(\/nl . n:;(nl + n3) V n2n3(n2 + n3))

where n,, n,, and n; are, respectively, the numbers of observations from machines A,
B, and C. These Z,, Z, columns are not orthogonal to each other but two orthogonal
columns could be constructed. Again, all denominators could be dropped in (14.1.8).

r Categories, r Dummies

In general, by an extension of this procedure, we can deal with r levels by the introduc-

tion of (r — 1) dummy variables in addition to X,. The basic allocation pattern is
obtained by writing down an (r — 1) X (r — 1) I matrix and adding a row of (r — 1)
zeros. The case r = 6 is illustrated by the X, X,, ..., X;s columns in the third display
of Example 2 below.

We now give an example of the use of dummy variables in this manner.

Example 1. The data in Table 14.1 show turkey weights (Y) in pounds, and ages (X)
in weeks, of 13 Thanksgiving turkeys. Four of these turkeys were reared in Georgia
(G), four in Virginia (V), and five in Wisconsin (W). We would like to relate Y to X
via a simple straight line model, but the different origins of the turkeys may cause a
problem. If they do, how do we handle it?

Suppose we first regress Y against X to give the fitted equation ¥ = 1.98 + 0.4167.X.
The residuals from this fit are, in order, —0.4, —1.4, —0.2, —0.8, —1.0, —0.8, —0.5,
—1.0, 0.8, 1.0, 1.3, 1.5, 1.4. When plotted in sets according to origin, they give rise to

TABLE 14.1. Turkey Data (X, Y, Origin) and
Dummy Variables (Z,, Z,)

X Y Origin Z, Z,
28 13.3 G 1 0
20 8.9 G 1 0
32 15.1 G 1 0
22 104 G 1 0
29 13.1 vV 0 i
27 12.4 |4 0 1
28 13.2 v 0 1
26 11.8 |4 0 1
21 11.5 w 0 0
27 14.2 %% 0 0
29 154 w 0 0
23 13.1 w 0 0
25 13.8 w 0 0
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Figure 14.1. Turkey data; residuals from the fitted equation ¥ = 1.98 + 0.4167 X plotted against origin
of turkey.

Figure 14.1, which clearly signals the need to take account of the different levels of
response. To do this, we select the dummy variables Z;, Z, shown in Table 14.1 and
fit the model

Y=08+BX+aZ + xZ, + € (14.1.9)
by least squares. The fitted equation is
Y =143 + 0.4868X — 1.92Z, — 2.19Z,. (14.1.10)

The estimates a; = —1.92 and a, = —2.19 estimate the differences in response levels
between (1) sources G and W, and (2) sources V and W, respectively. By substituting
for the three sets of values for (Z,, Z,) we obtain, for the three different origins,

A

Y = -049 + 0.4868X, forG;
Y= —0.76 + 0.4868X, (14.1.11)

A

Y =143 +04868X, forW.

The original data and the three fitted straight lines are shown in Figure 14.2. The
three lines are all parallel but have different intercepts. The analysis of variance for
this fitted model can be written as shown in Table 14.2. Both F-values are highly
significant, implying that use of the dummies is clearly worthwhile and that the lines
appear to have a definite nonzero slope. Of the variation of the data about the mean,
97.94% has been explained by this equation. (Without the dummies, only 66.47%
is explained.)

If desired, r-tests can be constructed to test for differences between the intercepts.
For example, the true W — G difference is estimated by —a; = 1.92 and this, divided
by its standard error, namely, the square root of the appropriate diagonal term of the
(X'X)"!s? matrix, gives a t-value whose modulus (positive value) is compared to the
percentage point #(9, 1 — $a) for a two-sided test of the nuii hypothesis Hy:a; = 0
versus H,:a, # 0. We find, for our data, + = 1.92/0.201 = 9.55, which is significant at
0.1%. An alternative and equivalent test is given by using

F = {SS(alibg, bl, az)/l}/sz = 8.145/0.090 = 90.50.

This is compared with F(1,9, 1 — a) for a test at the same level. The result is identical,
because the F-value is, theoretically, the square of the t-value above; here 12 = 91.20
would be the same as F = 90.50 were it not for rounding differences. A test for
H,: o, = 0, o, being the true V — W difference, can be carried out in a similar manner.
The t-value is —2.19/0.21 = —10.43, which is also significant at 0.1%. The estimated
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Figure 14.2. Plot of the turkey data and the three fitted straight lines.

G — V difference is given by a, — a, = 0.27, which has an estimated variance of Est.
V(a)) + Est. V(a,) — 2 Est. cov (a;, a,), all three terms of which can be obtained
from the (X'X)'s? matrix. We find Est. V(a, — a;) = 0.040369 + 0.044310 —
2(0.018690) = 0.047299 = (0.217)% The t-value is thus 0.27/0.217 = 1.24, not significant.
Thus overall, real differences appear to exist between the G and W levels and between

the V and W levels but not between the G and V levels.

An Alternative Analysis of Variance Sequence

The order indicated in the source column of Table 14.2 removes the differences
between intercepts first and leaves the remaining variation to (b,|by, a;, a,) and residual.
It would also be possible to use the order by; (b)|by); (a,, a|by, b;); and residual, and
so test the hypothesis Hy:a; = a, = 0 (which asks “Do the three sets of data here
have different intercepts?”’) using an extra sum of squares F-test based on F(2, 9).
One would then still have to check where those differences were, if a significant result
were obtained.

T A B L E 14.2. Analysis of Variance for Turkey Example

Source df SS MS F
b, 1 2124.803

a,, a;|b, 2 6.382 3.191 35.46
bi|by, a,, a, 1 32.224 32.224 358.04
Residual 9 0.811 s? = 0.090

Total 13 2164.220
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Will My Selected Dummy Setup Work?

The vectors of (14.1.3) can be described by writing down the components in a two by
two matrix as

I'l 0
, (14.1.12)
L1 1]
where the first row denotes the values of (X,, Z) for a group A piece of data while
the second row applies to a group B piece of data. If this matrix has a nonzero
determinant (it is, of course, easy to see that it does) the setup will work. For the
turkey data, the corresponding matrix is

110
101 (14.1.13)
100

and the determinant is 1, also. Let us examine the six-group case.

Example 2. Is the dummy variable scheme below a workable one for dealing with
possibie level differences among six groups?

Group Zy Z, Z, YA Z, Zs
1 1 1 1 1 1 1
2 1 0 1 1 1 1
3 1 0 0 1 1 1
4 1 0 0 0 1 1
5 1 0 0 0 0 1
6 1 0 0 0 0 0

The determinant value is —1, so the system will work. Evaluating determinants is not
difficuit, and rules for quick reduction may be found in matrix aigebra books. For our
purposes, it is usually simplest to use the computer to find the determinant via the
so-called eigenvalues, the values A, A,, . . ., A,, say, which are the roots of the equation
det (M — AI) = 0, where M is a (square) matrix of interest and det (-) means the

determinant of (-). The reason this works is that
detM = A]Az"' Aq

so that, if all the eigenvalues are nonzero, so is the determinant. Problems with ‘‘almost-
dependent” columns can arise here too, but use of 1’s and 0’s as dummy levels will
usually avoid such problems.

In the MINITAB system, for example, we can write:

read 6 6 ml
111111
101111
100111
100011
100001
100000

transpose ml m2
multiply m2 ml m3
eigen m3 c3

print c3

end

stop
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The output from this routine is the column of numbers (which we write as a row here)
17.2069 1.9882 0.7747 0.4462 0.3189 0.2652;

the product of these is 1 not —1. The reason for this is that the MINITAB eigen
program requires a symmetric matrix, and we have created one by evaluating
M = mym, before calling for eigenvalues. Because m; is square, det(m;m,) =
(det m{ )(det m;) = (det m,)2. Even though we do not get the sign from our result, we
know det m, is nonzero. Evaluation of the eigenvalues of m;m; would give identical
results because m, is square. Note that we do not actually need to take the product
of the eigenvalues but can just look at the smallest one to see that it is nonzero (and

not almost zero).

Other Verification Methods

A second way of checking a setup like that of Example 2 is to relate it to the basic
scheme. Recall that our basic scheme of vectors for this situation, written down with
the X, column, was as follows:

X{) X1 X2 X3 X4 X5
1 1 0 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 0

We see immediately that
Z, = X, Z;=X+ X + X,

7. =X 4+ Y. + XY 4+ X

4] ;1¥1, L4 Ly] VLAY T L] T ARG,

7 — VYV LV 7 — Y LV LY A VY oL
L) L2] T 4R, .5 L2 VA TV A3V /Ay TV AS.

This establishes the Z’s as linear combinations of the X’s. Moreover, each Z;, j = 2,
3, 4, 5, in turn introduces an additional X; so that none of these Z; can be linearly
dependent on prior Z’s, and vice versa. It follows that the system will work for
separating the intercept levels of six groups of data.

A third, somewhat more tedious, verification is to write down the condition that
the columns are dependent and then solve the resulting equations for the constants
that form the linear combination. For Example 2, we write that

atb+ctd+te+f=0,
a +c+d+e+ f=0,
a +td+e+f=0,
a +e+f=0,
a +f=0,
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Working from the bottom equation up, it is obvious that all the coefficients a, . . ., f
are zero. That means no linear combination gives zero, so that the Z’s are linearly
independent and the system works. If a nonzero numerical solution emerges, however,
dependence of the Z’s is established, making the setup useless.

Example 3. Another workable system in the same context as Example 2 would consist
of columns Z, = X,, Z, = X, + X;,i = 1,2, ...,5. This would lead to the follow-
ing scheme:

Group Z Z, Z, Z, Z, Zs
1 1 2 1 1 1 1
2 1 1 2 1 1 1
3 1 1 1 2 1 1
4 1 1 1 1 2 1
5 1 1 1 1 1 2
6 1 1 1 1 1 1
Note: The dummy variable columns not only must form a linearly independent set

themselves but must also form a linearly independent set when they are united with
other predictors variable columns in the full regression. In most regressions, the
occurrence of such a dependence is u