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Chapter 1
Introduction

1.1 Preliminaries

Singular spectrum analysis (SSA) is a technique of time series analysis and
forecasting. It combines elements of classical time series analysis, multivariate sta-
tistics, multivariate geometry, dynamical systems and signal processing. SSA aims at
decomposing the original series into a sum of a small number of interpretable com-
ponents such as a slowly varying trend, oscillatory components and a ‘structureless’
noise. It is based on the singular value decomposition (SVD) of a specific matrix
constructed upon the time series. Neither a parametric model nor stationarity-type
conditions have to be assumed for the time series. This makes SSA a model-free
method and hence enables SSA to have a very wide range of applicability.

The present book is fully devoted to the methodology of SSA. It exhibits the huge
potential of SSA and shows how to use SSA both safely and with maximum effect.

Potential readers of the book. (a) Professional statisticians and econometricians;
(b) specialists in any discipline where problems of time series analysis and forecast-
ing occur; (c) specialists in signal processing and those needed to extract signals
from noisy data; (d) PhD students working on topics related to time series analy-
sis; (e) students taking appropriate MSc courses on applied time series analysis;
(f) anyone interested in the interdisciplinarity of statistics and mathematics.

Historical remarks. The first publication, which can be considered as one of
the origins of SSA (and more generally of the subspace-based methods of signal
processing), can be traced back to the eighteenth century [28].

The commencement of SSA is usually associated with publication in 1986 of the
papers [4, 5] by Broomhead and King. Since then SSA has received a fair amount
of attention in literature. Additionally to [4, 5] the list of most cited papers on SSA
published in the 1980s and 1990s includes [2, 10, 32, 33].

There are three books fully devoted to SSA, [8, 9, 14]. The book [9] is well
written but it only provides a very elementary introduction to SSA. The volume
[8] is a collection of papers written entirely by statisticians based at that time at
St.Petersburg university. All these papers are devoted to the so-called ‘Caterpillar’

N. Golyandina and A. Zhigljavsky, Singular Spectrum Analysis for Time Series, 1
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2 1 Introduction

methodology (the words ‘Caterpillar’ or ‘Gusenitsa’ is due to the association with
the moving window). This methodology is a version of SSA that was developed in
the former Soviet Union independently (the ‘iron curtain effect’) of the mainstream
SSA. The work on the ‘Caterpillar’ methodology has started long after publication
of [28] but well before 1986, the year of publication of [4] and [5].

The main difference between the main-stream SSA of [2, 4, 5, 10, 32, 33] and
the ‘Caterpillar’ SSA is not in the algorithmic details but rather in the assumptions
and in the emphasis in the study of SSA properties. To apply the mainstream SSA,
one often needs to assume some kind of stationarity of the time series and think in
terms of the ‘signal plus noise’ model (where the noise is often assumed to be ‘red’).
In the ‘Caterpillar’ SSA, the main methodological stress is on separability (of one
component of the series from another one) and neither the assumption of stationarity
nor the model in the form ‘signal plus noise’ are required.

The main methodological principles described in [8] have been further developed
in the monograph [14]. The publication of [14] has helped to attract much wider atten-
tion to SSA from the statistical circles as well as many other scientific communities.
During the last 10 years much new SSA-related research has been done and many
new successful applications of SSA have been reported. A recent special issue of
‘Statistics and Its Interface’ [35] gives an indication of how much progress in the-
oretical and methodological developments of SSA, as well as its applications, has
been achieved in recent years. The SSA community regularly organizes international
workshops on SSA. The latest SSA workshop was held in Beijing in May 2012, see
http://www.cefs.ac.cn/express/SSA.html.

The research on the theory and methodology of SSA performed in the last two
decades has resulted in a rather pleasing state of affairs: (i) the existence of an
active SSA community and (ii) the existence of a general methodology of SSA
rather than simply a collection of many different SSA algorithms. This methodology
unifies different versions of SSA into a very powerful tool of time series analysis
and forecasting. Description of SSA methodology is the sole purpose of the present
book.

Correspondence between the present book and [14]. Some entirely new topics
are included (for example, Sect. 3.7–3.9) but a few topics thoroughly described in [14]
are not considered at all (see, for example, [14, Chap. 3]). This volume is fully devoted
to the methodology of SSA unlike [14], where many theoretical issues were also
considered. The material is correspondingly revised in view of the new objectives.
The main aim of [14] is to establish SSA as a serious subject. There is no need to do
it now and the aspiration of this book is to show the power and beauty of SSA to as
wide audience as possible.

Several reasons why SSA is still not very popular among statisticians. First
reason is tradition: SSA is not a classical statistical method, and therefore many
people are simply not aware of it. Second, SSA demands more computing power than
the traditional methods.Third, many people prefer model-based statistical techniques
where calculations are automatic and do not require the computer-analyst interaction.
Finally, SSA is sometimes too flexible (especially when analyzing multivariate series)
and therefore has too many options which are difficult to formalize.

http://www.cefs.ac.cn/express/SSA.html
http://dx.doi.org/10.1007/978-3-642-34913-3_3
http://dx.doi.org/10.1007/978-3-642-34913-3_3
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Links between SSA and other methods of time series analysis. SSA has no
links with ARIMA, GARCH and other methods of this type and also with wavelets.
However, SSA has very close links with some methods of signal processing and
with methods of multivariate statistics like principal component analysis and projec-
tion pursuit; see Sect. 2.5.4 and 3.8.The so-called Empirical Mode Decomposition
(EMD), see [20], is intended to solve similar problems to SSA but there are significant
conceptual and methodological differences between SSA and EMD.

Structure of the next three sections. In the next section, we give a short intro-
duction into SSA methodology and simultaneously into the material of the present
book. Then we mention important issues related to SSA, which did not find their way
into this book. Finally, we provide a list of most common symbols and acronyms.

Acknowledgements. The authors are very much indebted to Vladimir Nekrutkin,
their coauthor of the monograph [14]. His contribution to the methodology and espe-
cially theory of SSA cannot be underestimated. The authors very much acknowl-
edge many useful comments made by Jon Gillard. The authors are also grateful
to former and current Ph.D. students and collaborators of Nina Golyandina: Kon-
stantin Usevich (a specialist in algebraic approach to linear recurrence relations),
Theodore Alexandrov (automatic SSA), Andrey Pepelyshev (SSA for density estima-
tion), Anton Korobeynikov (fast computer implementation of SSA), Eugene Osipov
and Marina Zhukova (missing data imputation), and Alex Shlemov (SSA filtering).
Help of Alex Shlemov in preparation of figures is very much appreciated.

1.2 SSA Methodology and the Structure of the Book

The present volume has two chapters. In Chap. 2, SSA is typically considered as
a model-free method of time series analysis. The applications of SSA dealt with
in Chap. 3 (including forecasting) are model based and use the assumption that the
components of the original time series extracted by SSA satisfy linear recurrence
relations.

The algorithm of Basic SSA (Sect. 2.1). A condensed version of Basic SSA
(which is the main version of SSA) can be described as follows.

Let XN = (x1, . . . , xN ) be a time series of length N. Given a window length
L (1 < L < N ), we construct the L-lagged vectors Xi = (xi , . . . , xi+L−1)

T, i =
1, 2, . . . , K , where K = N − L + 1, and compose these vectors into the trajectory
matrix X.

The columns X j of X can be considered as vectors in the L-dimensional space RL .
The eigendecomposition of the matrix XXT (equivalently, the SVD of the matrix X)
yields a collection of L eigenvalues and eigenvectors. A particular combination of
a certain number r of these eigenvectors determines an r -dimensional subspace Lr

in RL , r < L . The L-dimensional data {X1, . . . , X K } is then projected onto the
subspace Lr and the subsequent averaging over the diagonals yields some Hankel
matrix ˜X. The time series (x̃1, . . . , x̃N ), which is in the one-to-one correspondence

http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_3
http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_3
http://dx.doi.org/10.1007/978-3-642-34913-3_2
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with matrix ˜X, provides an approximation either the whole series XN or a particular
component of XN .

Basic SSA and models of time series (Sect. 2.3). As a non-parametric and model-
free method, Basic SSA can be applied to any series. However, for interpreting results
of analysis and making decisions about the choice of parameters some models may be
useful. The main assumption behind Basic SSA is the assumption that the time series
can be represented as a sum of different components such as trend (which we define
as any slowly varying series), modulated periodicities, and noise. All interpretable
components can be often approximated by time series of small rank, and hence can
be described via certain LRRs (linear recurrence relations). Separating the whole
series into these components and analysis of the LRRs for interpretable components
helps in getting reliable and useful SSA results.

Potential of Basic SSA (Sect. 2.2 and also Sect. 3.7, 3.8 and 3.9). The list of
major tasks, which Basic SSA can be used for, includes smoothing, noise reduction,
extraction of trends of different resolution, extraction of periodicities in the form
of modulated harmonics, estimation of volatility, etc. These tasks are considered
in Sect. 2.2. The following more advanced abilities (but model-based) of SSA are
considered in the final three sections of Chap. 3: the use of SSA for filling in missing
values is considered in Sect. 3.7; add-ons to Basic SSA permitting estimation of
signal parameters are considered in Sect. 3.8; finally, Basic SSA as a filtration tool is
studied in Sect. 3.9. Methodologically, these last three topics are closely linked with
the problem of SSA forecasting. Note also that all major capabilities of Basic SSA
are illustrated on real-life time series.

Choice of parameters in Basic SSA (Sect. 2.4). There are two parameters to
choose in Basic SSA: the window length L and the group of r indices which determine
the subspace Lr . A rational or even optimal choice of these parameters should depend
on the task we are using SSA for. The majority of procedures require interactive
(including visual) identification of components. An automatic choice of parameters
of Basic SSA could be made, see Sect. 2.4.5. However, the statistical procedures for
making this choice are modelbased. Success in using the corresponding versions of
SSA depends on the adequacy of the assumed models and especially on achieving
good separability of the time series components.

Toeplitz SSA (Sect. 2.5.3). Basic SSA can be modified and extended in many dif-
ferent ways, see Sect. 2.5. As a frequently used modification of Basic SSA, consider
a common application of SSA for the analysis of stationary series, see Sect. 2.5.3.
Under the assumption that the series XN is stationary, the matrix XXT of Basic
SSA can be replaced with the so-called lag-covariance matrix C whose elements
are ci j = 1

N−k

∑N−k
t=1 xt xt+k with i, j = 1, . . . , L and k = |i − j |. In the book,

this version of SSA is called ‘Toeplitz SSA’.1 Unsurprisingly, if the original series is
stationary then Toeplitz SSA slightly outperforms Basic SSA. However, if the series

1 In the literature on SSA, Basic SSA is sometimes called BK SSA and what we call ‘Toeplitz SSA’
is called VG SSA; here BK and VG stand for Broomhead & King [4, 5] and Vautard & Ghil [32],
respectively.
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http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_2


1.2 SSA Methodology and the Structure of the Book 5

is not stationary then the use of Toeplitz SSA may yield results which are simply
wrong.

SSA–ICA (Sect. 2.5.4). Another important modification of Basic SSA can be
viewed as a combination of SSA and Independent Component Analysis (ICA), see
Sect. 2.5.4. This algorithm, called SSA–ICA, helps to separate time series compo-
nents that cannot be separated with the help of the SVD alone, due to the lack of
strong separability. Despite we deal with deterministic time series components but
ICA is developed for dealing with random series and processes, the algorithm of ICA
can be formally applied for achieving a kind of independence of components. Note
that it is not a good idea to use the ICA as a full replacement of the SVD since the
ICA is a much less stable procedure than the SVD. Therefore, a two-stage procedure
is proposed, where the SVD is performed for the basic decomposition and then some
version of the ICA (or the projection pursuit) is applied to those components which
are produced by the SVD but remain mixed up.

Computational aspects of SSA (Sects. 2.5.6 and 2.5.7). If L is very large then
the conventional software performing SVD decomposition may be computationally
costly. In this case, the Partial SVD and other techniques can be used for performing
fast computations. This can be achieved either by using clever implementations
(Sect. 2.5.6) or by replacing the SVD with simpler procedures (Sect. 2.5.7).

SSA forecasting (Sects. 3.1 – 3.6). Time series forecasting is an area of huge
practical importance and Basic SSA can be very effective for forecasting. The main
idea of SSA forecasting is as follows.

Assume that XN = X
(1)
N + X

(2)
N and we are interested in forecasting of X

(1)
N . If

X
(1)
N is a time series of finite rank, then it generates some subspace Lr ⊂ RL . This

subspace reflects the structure of X
(1)
N and can be taken as a base for forecasting. Under

the conditions of separability between X
(1)
N and X

(2)
N (these conditions are discussed

throughout the volume; see, for example, Sects. 2.3.3, 2.4, 3.3.1 and 3.5), Basic SSA is
able to accurately approximate Lr and hence it yields an LRR which approximates
the true LRR and can be directly used as a forecasting formula. This method of
forecasting is called recurrent forecasting and considered in Sect. 3.3, as well as few
other sections. Alternatively, we may use the so-called ‘vector forecasting’ which
main idea is in the consecutive construction of the vectors Xi =(xi , . . . , xi+L−1)

T,

for i = K + 1, K + 2, . . . so that they lie as close as possible to the subspace Lr .
Short-term forecasting makes very little use of the model while responsible fore-

casting for long horizons is only possible when an LRR is built by SSA and the
adequacy of this LRR is testified. As demonstrated in Sect. 3.3, in addition to the
LRRs, SSA forecasting methods use the characteristic polynomials associated with
these LRRs. The precision of SSA forecasting formulas depends on the location of
the roots of these polynomials. In Sect. 3.2 we provide an overview of the relations
between LRRs, the characteristic polynomials and their roots and discuss properties
of the so-called min-norm LRRs which are used for estimating parameters of the
signal (see Sect. 3.8), in addition to forecasting.

In forecasting methodology, the construction of confidence intervals for the fore-
casts is often an essential part of the procedure. Construction of these intervals for

http://dx.doi.org/10.1007/978-3-642-34913-3_2
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SSA forecasts is discussed in Sect. 3.4. Despite SSA itself being a model-free tech-
nique, for building confidence intervals we need to make certain assumptions such
as that the residual series is a realization of a stochastic white noise process.

In Sect. 3.5 we give recommendations on the choice of forecasting parameters and
in Sect. 3.6 we discuss results of a case study. We argue that stability of forecasts is
the major aim we have to try to achieve in the process of building forecasts. Forecast
stability is highly related to the forecast precision and forecast reliability.

SSA for missing value imputation (Sect. 3.7). Forecasting can be considered
as a special case of missing value imputation if we assume that the missing values
are located at the end of the series. We show how to extend some SSA forecasting
procedures (as well as methods of their analysis) to this more general case.

Parameter estimation in SSA and signal processing (Sect. 3.8). Although there
are many similarities between SSA and the subspace-based methods of signal
processing, there is also a fundamental difference between these techniques. This
difference lies in the fact that the model of the form ‘signal plus noise’ is obligatory
in signal processing; consequently, the main aim of the signal processing methods is
the estimation of the parameters of the model (which is usually the sum of damped
sinusoids). The aims of SSA analysis are different (for instance, splitting the series
into components or simply forecasting) and the parameters of the approximating
time series are of secondary importance. This fundamental difference between the
two approaches leads, for example, to different recommendations for the choice of the
window length L: a typical recommendation in Basic SSA is to choose L reasonably
large while in the signal processing methods L is typically relatively small.

Causal SSA (Sect. 3.9.5). Causal SSA (alternatively, Last Point SSA) can be con-
sidered as an alternative to forecasting. In Causal SSA, we assume that the points
in the time series X∞ = (x1, x2, . . .) arrive sequentially, one at a time. Starting at
some M0 > 0, we apply Basic SSA with fixed window length and the grouping rule
to the series XM = (x1, . . . , xM ) for all M ≥ M0. We then monitor how SSA recon-
struction of previously obtained points of the series change as we increase M (this
is called redrawing). The series consisting of the last points of the reconstructions is
the result of Causal SSA. The delay of the Causal SSA series reflects the quality of
forecasts based on the last points of the reconstructions. Additionally to the redraw-
ings of the recent points of the reconstructions, this delay can serve as an important
indicator of the proper choice of the window length, proper grouping and in general,
predictability of the time series. This could be of paramount importance for the stock
market traders when they try to decide whether a particular stock is consistently
decreasing/increasing its value or they only observe market fluctuations.

1.3 SSA Topics Outside the Scope of This Book

Theory of SSA. For the basic theory of SSA we refer to the monograph [14]. Since
the publication of that book, several influential papers on theoretical aspects of
SSA have been published. The main theoretical paper on perturbations in SSA and

http://dx.doi.org/10.1007/978-3-642-34913-3_3
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subspace-based methods of signal processing is [26]. Another important theoretical
paper is [31], where the concept of SSA separability is further developed (relative
to [14]) and studied through the apparatus of the roots of characteristic polynomials
of the linear recurrence relations of SSA approximation of the signal (in the ‘signal
plus noise’ model). Elements of the theory of SSA are also discussed in [12].

SSA for change-point detection and subspace tracking. Assume that the obser-
vations x1, x2, . . . of the series arrive sequentially in time and we apply Basic SSA
to the observations at hand. Then we can monitor the distances from the sequence
of the trajectory matrices to the r -dimensional subspaces we construct and also
the distances between these r -dimensional subspaces. Significant changes in any of
these distances may indicate a change in the mechanism generating the time series.
Note that this change in the mechanism does not have to affect the whole struc-
ture of the series but rather only a few of its components. For some references we
refer to [14, Chap. 3] and [25] and the website http://www.cf.ac.uk/maths/subsites/
stats/changepoint/. Recently, the method developed in [25] has found applications
in robotics, see [24].

Monte-Carlo SSA. A typical SSA assumption about the noise in the signal plus
noise model is the association of noise with a structure-less series (that is, a series
which cannot be well approximated by a time series of finite rank). If we assume
that the noise is stochastic and red (that is, AR(1) model) then the so-called Monte
Carlo SSA is a common technique. In this version of SSA, special tests based on the
Monte Carlo simulations are devised for testing the hypothesis of the presence of a
weak signal on the background of a large noise, see [2].

SSA for density estimation. As shown in [15], SSA could be used for non-
parametric density estimation and can produce estimates that are more accurate than
the celebrated Kernel density estimates.

SSA for multivariate time series. Multivariate (or multichannel) SSA (shortly,
MSSA) [8, 9] is a direct extension of the standard SSA for simultaneous analysis
of several time series. Assume that we have two series, XN = (x1, . . . , xN ) and
YN = (y1, . . . , yN ). Let X be the trajectory matrix of the series XN and Y be the
trajectory matrix of YN (both matrices have size L × K ). Then the (joint) trajectory
matrix of the two-variate series (XN , YN ) can be defined as either Z = [X : Y]

(matrix of size L × 2K ) or Z =
(

X
Y

)

(matrix of size 2L × K ). Matrix Z is block-

Hankel rather than simply Hankel. Other stages of MSSA are identical to the ones of
the univariate SSA except that we build a block-Hankel (rather than ordinary Hankel)
approximation ˜Z to the trajectory matrix Z.

MSSA may be very useful for analyzing several series with common structure,
see http://www.gistatgroup.com/gus/mssa2.pdf. MSSA could also be used for estab-
lishing a causality between two series. Following the lines of Granger [16] we
say that the absence of causality of YN on XN means that the knowledge of YN

does not improve the quality of forecasts of XN . The MSSA causality is discussed
in [18, 19].

2D-SSA for image processing. 2D-SSA is a straightforward extension of Basic
SSA and MSSA for analyzing images. The only difference between these three

http://www.cf.ac.uk/maths/subsites/stats/changepoint/
http://www.cf.ac.uk/maths/subsites/stats/changepoint/
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versions of SSA is in the construction of the trajectory matrix, see [8, 13, 29]. Note
however that the moving window in 2D-SSA is a rectangle and the window length
becomes a product of two numbers. This implies that the size of the trajectory matrix
could be very large and a clever implementation of the SVD becomes essential.

Comparison of SSA with other techniques. SSA is compared with some
subspace-based techniques of signal processing in [12, 26] and [11]. Numerical
comparison of SSA with ARIMA and other classical methods of time series analysis
can be found in several papers of the volume [35] and in many papers devoted to
applications of SSA, see for example [3, 17, 21, 27, 30].

Application areas. SSA has proved to be very useful and has become a stan-
dard tool in the analysis of climatic, meteorological and geophysical time series;
see, for example, [10, 32] (climatology), [34] (meteorology), [7] (marine science),
[22] (geophysics); for more references, see [1, 2, 8–10, 14, 22, 32, 33] and the
papers in [35]. More recent areas of application of SSA include engineering, image
processing, medicine, actuarial science and many other fields; for references see,
for example, [3, 23, 24] and various papers in [35]. A special case is econometrics
where SSA was basically unknown only a few years ago but recently it has made a
tremendous advancement and is becoming more and more popular; see, for example,
[6, 17–19, 27].

1.4 Common Symbols and Acronyms

SVD singular value decomposition
LRR linear recurrence relation
SSA Singular Spectrum Analysis
X or XN time series
XN = (x1, . . . , xN ) time series of length N
X∞ = (x1, x2, . . .) infinite time series
N length of time series
L window length
K = N − L + 1 the number of L-lagged vectors obtained from XN

Xi = (xi , . . . , xi+L−1)
T i th L-lagged vector obtained from XN

X = [X1 : . . . : X K ] trajectory matrix with columns Xi

||X||F Frobenius matrix norm
rank X rank of the matrix X
X = X(L)(XN ) L-trajectory space of a time series XN

rankL(XN ) L-rank of a time series XN

H hankelization operator
λi i th eigenvalue of the matrix XXT

Ui i th eigenvector of the matrix XXT
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Vi = XTUi/
√

λi i th factor vector of the matrix X
(
√

λi , Ui , Vi ) i th eigentriple of the SVD of the matrix X
IM identity M × M matrix
RL Euclidean space of dimension L
Lr r -dimensional linear subspace of RL

span(P1, . . . , Pn) linear subspace spanned by vectors P1, . . . , Pn

ρ(w) weighted correlation between two series
�N

x periodogram of a time series XN
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Chapter 2
Basic SSA

2.1 The Main Algorithm

2.1.1 Description of the Algorithm

Consider a real-valued time series X = XN = (x1, . . . , xN ) of length N . Assume that
N > 2 and X is a nonzero series; that is, there exists at least one i such that xi �= 0.
Let L (1 < L < N ) be some integer called the window length and K = N − L + 1.

Basic SSA is an algorithm of time series analysis which is described below. This
algorithm consists of two complementary stages: decomposition and reconstruction.

2.1.1.1 First Stage: Decomposition

1st step: Embedding
To perform the embedding we map the original time series into a sequence of lagged
vectors of size L by forming K = N − L + 1 lagged vectors

Xi = (xi , . . . , xi+L−1)
T (1 ≤ i ≤ K )

of size L . If we need to emphasize the size (dimension) of the vectors Xi , then we
shall call them L-lagged vectors.

The L-trajectory matrix (or simply the trajectory matrix) of the series X is

X = [X1 : . . . : X K ] = (xi j )
L ,K
i, j=1 =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

x1 x2 x3 . . . xK

x2 x3 x4 . . . xK+1
x3 x4 x5 . . . xK+2
...

...
...

. . .
...

xL xL+1 xL+2 . . . xN

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (2.1)
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The lagged vectors Xi are the columns of the trajectory matrix X. Both, the rows
and columns of X are subseries of the original series.

The (i, j)th element of the matrix X is xi j = xi+ j−1 which yields that X has
equal elements on the ‘antidiagonals’ i + j = const. (Hence the trajectory matrix
is a Hankel matrix.) Formula (2.1) defines a one-to-one correspondence between the
trajectory matrix of size L×K and the time series.

2nd step: Singular value decomposition (SVD)

At this step, we perform the singular value decomposition (SVD) of the trajectory
matrix X. Set S = XXT and denote by λ1, . . . , λL the eigenvalues of S taken in the
decreasing order of magnitude (λ1 ≥ . . . ≥ λL ≥ 0) and by U1, . . . , UL the ortho-
normal system of the eigenvectors of the matrix S corresponding to these eigenvalues.

Set d = rank X = max{i, such that λi > 0} (note that in real-life series we
usually have d = L∗ with L∗ = min{L , K }) and Vi = XTUi/

√
λi (i = 1, . . . , d).

In this notation, the SVD of the trajectory matrix X can be written as

X = X1 + . . .+ Xd , (2.2)

where Xi = √λiUi V T
i . The matrices Xi have rank 1; such matrices are sometimes

called elementary matrices. The collection (
√

λi , Ui , Vi ) will be called i th eigentriple
(abbreviated as ET) of the SVD (2.2).

2.1.1.2 Second Stage: Reconstruction

3rd step: Eigentriple grouping

Once the expansion (2.2) is obtained, the grouping procedure partitions the set of
indices {1, . . . , d} into m disjoint subsets I1, . . . , Im .

Let I = {i1, . . . , i p}. Then the resultant matrix XI corresponding to the group
I is defined as XI = Xi1 + . . . + Xi p . The resultant matrices are computed for the
groups I = I1, . . . , Im and the expansion (2.2) leads to the decomposition

X = XI1 + . . .+ XIm . (2.3)

The procedure of choosing the sets I1, . . . , Im is called eigentriple grouping. If m = d
and I j = { j}, j = 1, . . . , d, then the corresponding grouping is called elementary.

4th step: Diagonal averaging

At this step, we transform each matrix XI j of the grouped decomposition (2.3) into
a new series of length N . Let Y be an L×K matrix with elements yi j , 1 ≤ i ≤ L ,
1 ≤ j ≤ K . Set L∗ = min(L , K ), K ∗ = max(L , K ) and N = L + K − 1. Let
y∗i j = yi j if L < K and y∗i j = y ji otherwise. By making the diagonal averaging we
transfer the matrix Y into the series y1, . . . , yN using the formula



2.1 The Main Algorithm 13

yk =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1

k

k
∑

m=1

y∗m,k−m+1 for 1 ≤ k < L∗,

1

L∗
L∗
∑

m=1

y∗m,k−m+1 for L∗ ≤ k ≤ K ∗,

1

N − k + 1

N−K ∗+1
∑

m=k−K ∗+1

y∗m,k−m+1 for K ∗ < k ≤ N .

(2.4)

This corresponds to averaging the matrix elements over the ‘antidiagonals’ i + j =
k+1: the choice k = 1 gives y1 = y1,1, for k = 2 we have y2 = (y1,2+ y2,1)/2, and
so on. Note that if the matrix Y is the trajectory matrix of some series (z1, . . . , zN ),
then yi = zi for all i .

Diagonal averaging (2.4) applied to a resultant matrix XIk produces a recon-

structed series ˜X
(k) = (̃x (k)

1 , . . . , x̃ (k)
N ). Therefore, the initial series x1, . . . , xN is

decomposed into a sum of m reconstructed series:

xn =
m

∑

k=1

x̃ (k)
n (n = 1, 2, . . . , N ) . (2.5)

The reconstructed series produced by the elementary grouping will be called ele-
mentary reconstructed series.

Remark 2.1 The Basic SSA algorithm has a natural extension to the complex-valued
time series: the only difference in the description of the algorithm is the replacement
of the transpose sign with the sign of complex conjugate.

2.1.2 Analysis of the Four Steps in Basic SSA

The formal description of the steps in Basic SSA requires some elucidation. In this
section we briefly discuss the meaning of the procedures involved.

2.1.2.1 Embedding

Embedding is a mapping that transfers a one-dimensional time series X = (x1, . . . ,

xN ) into the multidimensional series X1, . . . , X K with vectors Xi = (xi , . . . ,

xi+L−1)
T ∈ RL , where K = N − L + 1. The parameter defining the embedding is

the window length L , an integer such that 2 ≤ L ≤ N − 1. Note that the trajectory
matrix (2.1) possesses an obvious symmetry property: the transposed matrix XT is
the trajectory matrix of the same series (x1, . . . , xN ) with window length equal to
K rather than L .
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Embedding is a standard procedure in time series analysis, signal processing and
the analysis of non-linear dynamical systems. For specialists in dynamical systems, a
common technique is to obtain the empirical distribution of all the pairwise distances
between the lagged vectors Xi and X j and then calculate the so-called correlation
dimension of the series. This dimension is related to the fractal dimension of the
attractor of the dynamical system that generates the time series; see, for example, [32]
and [33]. Note that in this approach, L must be relatively small and K must be very
large (formally, K→∞). Similarly, in the so-called Structural Total Least Squares
(STLS) with Hankel matrix structure, the usual practice is to choose L = r + 1,
where r is the guessed rank of the approximation matrix, see [24, 26, 27].

In SSA, the window length L should be sufficiently large. In particular, the value
of L has to be large enough so that each L-lagged vector incorporates an essential
part of the behaviour of the initial series X = (x1, . . . , xN ). The use of large values
of L gives us a possibility of considering each L-lagged vector Xi as a separate series
and investigating the dynamics of certain characteristics for this collection of series.
We refer to Sect. 2.4.3 for a discussion on the choice of L .

2.1.2.2 Singular Value Decomposition (SVD)

The SVD can be described in different terms and be used for different purposes. Let
us start with general properties of the SVD which are important for SSA.

As was already mentioned, the SVD of an arbitrary nonzero L×K matrix X =
[X1 : . . . : X K ] is a decomposition of X in the form

X =
d

∑

i=1

√

λiUi V T
i , (2.6)

where λi (i = 1, . . . , L) are eigenvalues of the matrix S = XXT arranged in order of
decrease, d = max{i, such that λi > 0} = rank X, {U1, . . . , Ud} is the correspond-
ing orthonormal system of the eigenvectors of the matrix S, and Vi = XTUi/

√
λi .

Standard SVD terminology calls
√

λi the singular values; the Ui and Vi are the
left and right singular vectors of the matrix X, respectively. If we define Xi =√

λiUi V T
i , then the representation (2.6) can be rewritten in the form (2.2), i.e. as the

representation of X as a sum of the elementary matrices Xi .
If all eigenvalues have multiplicity one, then the expansion (2.2) is uniquely

defined. Otherwise, if there is at least one eigenvalue with multiplicity larger than 1,
then there is a freedom in the choice of the corresponding eigenvectors. We shall
assume that the eigenvectors are somehow chosen and the choice is fixed.

The equality (2.6) shows that the SVD possesses the following property of sym-
metry: V1, . . . , Vd form an orthonormal system of eigenvectors for the matrix XTX
corresponding to the same eigenvalues λi . Note that the rows and columns of the
trajectory matrix are subseries of the original time series. Therefore, the left and right
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singular vectors also have a temporal structure and hence can also be regarded as
time series.

The SVD (2.2) possesses a number of optimal features. One of these properties
is as follows: among all matrices X(r) of rank r < d, the matrix

∑r
i=1 Xi provides

the best approximation to the trajectory matrix X, so that ||X−X(r)||F is minimum.
Here and below the (Frobenius) norm of a matrix Y is ||Y||F = √〈Y, Y〉F, where

the inner product of two matrices Y = {yi j }q,s
i, j=1 and Z = {zi j }q,s

i, j=1 is defined as

〈Y, Z〉F =
q,s
∑

i, j=1

yi j zi j .

For vectors the Frobenius norm is the same as the conventional Euclidean norm.
Note that ||X||2F =

∑d
i=1 λi and λi = ||Xi ||2F for i = 1, . . . , d. Thus, we

shall consider the ratio λi/||X||2F as the characteristic of the contribution of the
matrix Xi in the expansion (2.2) to the whole trajectory matrix X. Consequently,
∑r

i=1 λi/||X||2F, the sum of the first r ratios, is the characteristic of the optimal
approximation of the trajectory matrix by the matrices of rank r or less. Moreover,
if λr �= λr+1 then

∑d
i=r+1 λi is the distance between the trajectory matrix X and the

set of L × K matrices of rank ≤ r .
Let us now consider the trajectory matrix X as a sequence of L-lagged vectors.

Denote by X(L) ⊂ RL the linear space spanned by the vectors X1, . . . , X K . We shall
call this space the L-trajectory space (or, simply, trajectory space) of the series X.
To emphasize the role of the series X, we use notation X(L)(X) rather than X(L).
The equality (2.6) shows that U = (U1, . . . , Ud) is an orthonormal basis in the
d-dimensional trajectory space X(L).

Setting Zi = √λi Vi , i = 1, . . . , d, we can rewrite the expansion (2.6) in the form

X =
d
∑

i=1
Ui ZT

i , and for the lagged vectors X j we have X j =
d
∑

i=1
z jiUi , where the

z ji are the components of the vector Zi . This means that the vector Zi is composed
of the i th components of lagged vectors X j represented in the basis U .

Let us now consider the transposed trajectory matrix XT. Introducing Yi = √λiUi

we obtain the expansion XT =
d
∑

i=1
Vi Y T

i , which corresponds to the representation

of the sequence of K -lagged vectors in the orthonormal basis V1, . . . , Vd . Thus, the
SVD gives rise to two dual geometrical descriptions of the trajectory matrix X.

The optimal feature of the SVD considered above may be reformulated in
the language of multivariate geometry for the L-lagged vectors as follows. Let
r < d. Then among all r -dimensional subspaces Lr of RL , the subspace spanned
by U1, . . . , Ur approximates these vectors in the best way; that is, the mini-
mum of

∑K
i=1 dist2(Xi ,Lr ) is attained at Lr = span(U1, . . . , Ur ). The ratio

∑r
i=1 λi/

∑d
i=1 λi is the characteristic of the best r -dimensional approximation of

the lagged vectors.
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Another optimal feature relates to the properties of directions determined by
the eigenvectors U1, . . . , Ud . Specifically, the first eigenvector U1 determines the
direction such that the variation of the projections of the lagged vectors onto this
direction is maximum. Every subsequent eigenvector determines a direction that
is orthogonal to all previous directions, and the variation of the projections of the
lagged vectors onto this direction is also maximum. It is, therefore, natural to call the
direction of i th eigenvector Ui the i th principal direction. Note that the elementary
matrices Xi = Ui ZT

i are built up from the projections of the lagged vectors onto i th
directions.

This view on the SVD of the trajectory matrix composed of L-lagged vectors and
an appeal to associations with principal component analysis lead us to the following
terminology. We shall call the vector Ui the i th (principal) eigenvector, the vectors Vi

and Zi = √λi Vi will be called the i th factor vector and the i th principal component,
respectively.

Remark 2.2 The SVD of the trajectory matrices used in Basic SSA is closely related
to Principal Component Analysis (PCA) in multivariate analysis and the Karhunen-
Loeve (KL) decomposition in the analysis of stationary time series. However, the
SVD approach in SSA uses the specificity of the Hankel structure of the trajectory
matrix: indeed, the columns and rows of this matrix have the same temporal sense
as all they are subseries of the original series. This is not so in PCA and KL.

Remark 2.3 In general, any orthonormal basis P1, . . . , Pd of the trajectory space
can be considered in place of the SVD-generated basis consisting of the eigenvectors
U1, . . . , Ud . In this case, the expansion (2.2) takes place with Xi = Pi QT

i , where
Qi = XT Pi . One of the examples of alternative bases is the basis of eigenvectors of
the autocovariance matrix in Toeplitz SSA, see Sect. 2.5.3. Other examples can be
found among the methods of multivariate statistics such as Independent Component
Analysis and Factor Analysis with rotation, see Sect. 2.5.4.

For further discussion concerning the use of other procedures in place of SVD,
see Sect. 2.5.7.

2.1.2.3 Grouping

Let us now comment on the grouping step, which is the procedure of arranging the
matrix terms Xi in (2.2). Assume that m = 2, I1 = I = {i1 . . . , ir } and I2 =
{1, . . . , d}\I , where 1 ≤ i1 < . . . < ir ≤ d.

The purpose of the grouping step is the separation of additive components of time
series. Let us discuss the very important concept of separability in detail. Suppose
that the time series X is a sum of two time series X

(1) and X
(2); that is, xi = x (1)

i +x (2)
i

for i = 1, . . . , N . Let us fix the window length L and denote by X, X(1) and X(2)

the L-trajectory matrices of the series X, X
(1) and X

(2), respectively.
Consider an SVD (2.2) of the trajectory matrix X. (Recall that if all eigenvalues

have multiplicity one, then this expansion is unique.) We shall say that the series
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X
(1) and X

(2) are (weakly) separable by the decomposition (2.2), if there exists a
collection of indices I ⊂ {1, . . . , d} such that X(1) = ∑

i∈I Xi and consequently
X(2) =∑

i /∈I Xi .
In the case of separability, the contribution of X(1), the first component in the

expansion X = X(1)+X(2), is naturally measured by the share of the corresponding
eigenvalues:

∑

i∈I λi/
∑d

i=1 λi .
The separation of the series by the decomposition (2.2) can be looked at from

different perspectives. Let us fix the set of indices I = I1 and consider the cor-
responding resultant matrix XI1 . If this matrix, and therefore XI2 = X − XI1 , are
Hankel matrices, then they are necessarily the trajectory matrices of certain time
series that are separable by the expansion (2.2).

Moreover, if the matrices XI1 and XI2 are close to some Hankel matrices, then
there exist series X

(1) and X
(2) such that X = X

(1)+X
(2) and the trajectory matrices

of these series are close to XI1 and XI2 , respectively (the problem of finding these
series is discussed below). In this case we shall say that the series are approximately
separable.

Therefore, the purpose of the grouping step (that is, the procedure of arranging the
indices 1, . . . , d into groups) is to find the groups I1, . . . , Im such that the matrices
XI1 , . . . , XIm satisfy (2.3) and are close to certain Hankel matrices.

Let us now look at the grouping step from the viewpoint of multivariate geometry.
Let X = [X1 : . . . : X K ] be the trajectory matrix of a time series X, X = X

(1) +
X

(2), and the series X
(1) and X

(2) are separable by the decomposition (2.2), which
corresponds to splitting the index set {1, . . . , d} into I and {1, . . . , d}\I .

The expansion (2.3) with m = 2 means that U1, . . . , Ud , the basis in the trajectory
space X(L), is being split into two groups of basis vectors. This corresponds to
the representation of X(L) as a product of two orthogonal subspaces (eigenspaces)
X(L ,1) = span(Ui , i ∈ I ) and X(L ,2) = span(Ui , i �∈ I ) spanned by Ui , i ∈ I , and
Ui , i �∈ I , respectively.

Separability of two series X
(1) and X

(2) means that the matrix XI , whose columns
are the projections of the lagged vectors X1, . . . , X K onto the eigenspace X(L ,1), is
exactly the trajectory matrix of the series X

(1).
Despite the fact that several formal criteria for separability can be introduced, the

whole procedure of splitting the terms into groups (i.e., the grouping step) is difficult
to formalize completely. This procedure is based on the analysis of the singular
vectors Ui , Vi and the eigenvalues λi in the SVD expansions (2.2) and (2.6). The
principles and methods of identifying the SVD components for their inclusion into
different groups are described in Sect. 2.4.

Since each matrix component of the SVD is completely determined by the cor-
responding eigentriple, we shall talk about grouping of the eigentriples rather than
grouping of the elementary matrices Xi .

Note also that the case of two series components (m = 2) considered above is
often more sensibly regarded as the problem of separating out a single component
rather than the problem of separation of two terms. In this case, we are interested in
only one group of indices, namely I .
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In the problems of signal processing, the series X
(1) is interpreted as a signal. In

these problems, we often choose I1 = {1, . . . , r} for some r and call X(1) the signal
subspace.

2.1.2.4 Diagonal Averaging

If the components of the series are separable and the indices are being split accord-
ingly, then all the matrices in the expansion (2.3) are the Hankel matrices. We thus
immediately obtain the decomposition (2.5) of the original series: for all k and n,
x̃ (k)

n is equal to all entries x (k)
i j along the antidiagonal {(i, j), such that i+ j = n+1}

of the matrix XIk .
In practice, however, this situation is not realistic. In the general case, no antidi-

agonal consists of equal elements. We thus need a formal procedure of transforming
an arbitrary matrix into a Hankel matrix and therefore into a series. As such, we shall
consider the procedure of diagonal averaging, which defines the values of the time
series ˜X

(k) as averages for the corresponding antidiagonals of the matrices XIk .
It is convenient to represent the diagonal averaging step with the help of the

hankelization operator H . This operator acts on an arbitrary L×K -matrix Y = (yi j )

in the following way: for As = {(l, k) : l + k = s, 1 ≤ l ≤ L , 1 ≤ k ≤ K } and
i + j = s the element ỹi j of the matrix H Y is

ỹi j =
∑

(l,k)∈As

ylk

/

|As |,

where |As | denotes the number of elements in the set As .
The hankelization is an optimal procedure in the sense that the matrix H Y is

closest to Y (with respect to the Frobenius matrix norm) among all Hankel matrices
of the corresponding size [14, Proposition 6.3]. In its turn, the Hankel matrix H Y
defines the series uniquely by relating the values in the antidiagonals to the values
in the series.

By applying the hankelization procedure to all matrix components of (2.3), we
obtain another expansion:

X = ˜XI1 + . . .+˜XIm , (2.7)

where ˜XIl =H XIl .
A sensible grouping leads to the decomposition (2.3) where the resultant matrices

XIk are almost Hankel ones. This corresponds to approximate separability and implies
that the pairwise inner products of different matrices ˜XIk in (2.7) are small.

Since all matrices on the right-hand side of the expansion (2.7) are Hankel matri-
ces, each matrix uniquely determines the time series ˜X

(k) and we thus obtain (2.5),
the decomposition of the original time series.

Note that by linearity H XI = ∑

i∈I H Xi and hence the order in which the
Grouping and the Diagonal Averaging steps appear in Basic SSA can be reversed.
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The procedure of computing the time series ˜X
(k) (that is, building up the group Ik

plus diagonal averaging of the matrix XIk ) will be called reconstruction of a series
component ˜X

(k) by the eigentriples with indices in Ik . In signal processing problems
with I1 = {1, . . . , r}, we can say that the signal is reconstructed by the r leading
eigentriples.

2.2 Potential of Basic SSA

In this section we start discussing examples that illustrate main capabilities of Basic
SSA . Note that terms such as ‘trend’, ‘smoothing’, ‘signal’, and ‘noise’ are used
here in their informal, common-sense meaning and will be commented on later.

2.2.1 Extraction of Trends and Smoothing

2.2.1.1 Trends of Different Resolution

The example ‘Production’ (crude oil, lease condensate, and natural gas plant liquids
production, monthly data from January 1973 to September 1997, N = 297) shows the
capabilities of SSA in extraction of trends that have different resolutions. Though the
series has a seasonal component (and the corresponding component can be extracted
together with the trend component), for the moment we do not pay attention to
periodicities.

Taking the window length L = 120 we see that the eigentriples 1–3 correspond
to the trend. By choosing these eigentriples in different combinations we can find
different trend components.

Figure 2.1 demonstrates two alternatives in the trend resolution. The leading eigen-
triple gives a general tendency of the series (Fig. 2.1a). The three leading eigentriples
describe the behaviour of the data more accurately (Fig. 2.1b) and show not only the
general decrease of production, but also its growth from the middle 70s to the middle
80s.
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Fig. 2.1 Production: trends of different resolution. a General tendency (rough trend). b Accurate
trend
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2.2.1.2 Smoothing

The series ‘Tree rings’ (tree ring width, annual, from 42 B.C. to 1970) were collected
by R. Tosh and has the ID code ITRDB CA051 in International Tree Ring Data Bank
(http://www.ncdc.noaa.gov/paleo/treering.html). The time series looks like an auto-
regressive process. If the ARMA-type model is accepted, then it is often meaningless
to look for any trend or periodicities. However, we can smooth the series with the
help of Basic SSA. Figure 2.2a shows the initial series and the result of its SSA
smoothing, which is obtained by choosing the leading 3 eigentriples with window
length L = 100. Figure 2.2b depicts the residuals.

Another example demonstrating SSA as a smoothing technique uses the ‘White
dwarf’ data, which contains 618 point measurements of the time variation of the
intensity of the white dwarf star PG1159-035 during March 1989. The data is dis-
cussed in [9]. The whole series can be described as a smooth quasi-periodic curve
with a noise component.

Using Basic SSA with window length L = 100 and choosing the leading 11
eigentriples for the reconstruction, we obtain the smooth curve of Fig. 2.3a (thick
line). The residuals (Fig. 2.3b) seem to have no evident structure (to simplify the
visualization of the results these figures present only a part of the series). Further
analysis shows that the residual series can be regarded as a Gaussian white noise,
though it does not contain very low frequencies. Thus, we can assume that in this case
the smoothing procedure leads to noise reduction and the smooth curve in Fig. 2.3a
describes the signal.
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Fig. 2.2 Tree rings. a Smoothed series. b Residuals
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Fig. 2.3 White dwarf. a Smoothed series. b Residuals

Jan 73 Jan 79 Jan 85 Jan 91 Jan 97

−
10

0
0

50
−

50

Fig. 2.4 Production: the seasonal component

2.2.2 Extraction of Periodic Components

2.2.2.1 Extraction of Seasonality Components

Let us consider the extraction of seasonality components from the ‘Production’ data
that was discussed in Sect. 2.2.1.1.

Again, choose L = 120. Simultaneously with trend we are able to extract sea-
sonal components, gathering the harmonics produced by the fundamental period
12 (12 (ET19–20), 6 (ET15–16), 4 (ET9–10), 3 (ET13–15), 2.4 (ET4–5), and 2-
months (ET7) harmonics). The resulting seasonal component is depicted in Fig. 2.4.
This example demonstrates that SSA can perform seasonal adjustment even for time
series with complex and changing seasonal behaviour.

2.2.2.2 Extraction of Cycles with Small and Large Periods

The series ‘Births’ (number of daily births, Quebec, Canada, from January 1, 1977
to December 31, 1990) is discussed in [17]. It shows, in addition to a smooth trend,
two cycles of different ranges: a one-year periodicity and a one-week periodicity.

Both periodicities (as well as the trend) can be simultaneously extracted by Basic
SSA with window length L = 365. Figure 2.5 shows the one-year cycle of the series
added to the trend (white line) on the background of the ‘Births’ series from 1981
to 1990. Note that the form of this cycle varies in time, though the main two peaks
(spring and autumn) remain stable. The trend corresponds to the leading eigentriple
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(ET1), while the one-year periodic component is reconstructed from ET 6–9. The
eigentriples 12–19 also correspond to the fundamental period 365. However, they
are unstable due to the small (with respect to the period value) window length.

Figure 2.6 demonstrates the one-week cycle on the background of the initial series
for the first four months of 1977. This cycle corresponds to ET 2–5 and ET 10–11.
The stability of the one-week periodicity does not seem to be related to the biological
aspects of the birth-rate.

2.2.3 Complex Trends and Periodicities with Varying Amplitudes

The ‘US unemployment’ series (unemployment of females (16–19 years) in thou-
sands, US, monthly, from 1948 to 1981, [5]) serves as an example of SSA capability
of extracting complex trends simultaneously with amplitude-modulated periodic-
ities. The result of extraction is presented in Fig. 2.7a (the initial series and the
reconstructed trend) and in Fig. 2.7b (seasonality).

The window length was taken as L = 60. Such a moderate window length was
chosen in order to simplify the capture of the complex form of the trend and complex
modulation of the seasonality. The trend is reconstructed from the ET 1, 8, 13, 14,
while the ET with numbers 2–7, 9–12 and 16 describe the seasonality.



2.2 Potential of Basic SSA 23

(a)

(b)

Jan 48 Jan 56 Jan 64 Jan 72 Jan 80

0
25

0
50

0
75

0
10

00
12

50

Jan 48 Jan 56 Jan 64 Jan 72 Jan 80

−
12

5
12

5 
 

0
25

0

Fig. 2.7 US unemployment: decomposition. a Trend. b Seasonality

2.2.4 Finding Structure in Short Time Series

The series ‘War’ (U.S. combat deaths in the Indochina war, monthly, from 1966 to
1971, [20, Table 10]) is chosen to demonstrate the capabilities of SSA in finding a
structure in short time series.

We have chosen L = 18. It is easy to see (Fig. 2.8a) that the two leading eigen-
triples describe perfectly the trend of the series (thick line on the background of the
initial data). This trend relates to the overall involvement of U.S. troops in the war.

Figure 2.8c shows the component of the initial series reconstructed from the ET
3–4. There is little doubt that this is an annual oscillation modulated by the war
intensity. This oscillation has its origin in the climatic conditions of South-East
Asia: the summer season is much more difficult for any activity than the winter one.

Two other series components, namely that of the quarterly cycle corresponding to
the ET 5–6 (Fig. 2.8c) and the omitted 4-months cycle, which can be reconstructed
from the ET 7–8, are both modulated by the war intensity and both are less clear
for interpretation. Nevertheless, if we add all these effects together (that is, recon-
struct the series component corresponding to the eight leading eigentriples), a perfect
agreement between the result and the initial series becomes apparent: see Fig. 2.8b
with the thick line corresponding to the reconstruction.



24 2 Basic SSA
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Fig. 2.8 War: structure of approximation. a Trend. b Approximation. c Annual cycle. d Quarterly
cycle

2.2.5 Envelopes of Oscillating Signals and Estimation of Volatility

The capabilities of SSA in separating signals with high and low frequencies can be
used in a specific problem of enveloping highly oscillating sequences with slowly
varying amplitudes.

Let xn = A(n) cos(2πωn), where the period T = 1/ω is not large in comparison
with slowly varying A(n). Define

yn
def= 2x2

n = A2(n)+ A2(n) cos(4πωn). (2.8)

Since A2(n) is slowly varying and the second term on the right-hand side of (2.8)
oscillates rapidly, we can gather slowly varying terms of SSA decomposition for yn

and therefore approximately extract the term A2(n) from the series (2.8). All we
need to do then is to take the square root of the extracted term.

Let us illustrate this technique. Consider the square of the annual periodicity of
the ‘Germany unemployment’ series (Fig. 2.33b in Sect. 2.5.5) multiplied by 2 and
denote it by Y. Taking window length L = 36 and reconstructing the low-frequency
part of the time series Y from the eigentriples 1, 4, 7 and 10, we obtain an estimate
of A2(n) (the reconstructed series are depicted in Fig. 2.9a by the thick line; the thin
line corresponds to the series Y). By taking the square root of the estimate we obtain
the result (see Fig. 2.9b).

Very similarly we can analyze the dynamics of the variance of a heteroscedastic
noise. Let xn = A(n)εn , where εn is the white normal noise with zero mean and unit
variance and A(n) is a slowly changing function. Since A2(n) = Dxn = Ex2

n , the
trend extracted from the series Y with yn = x2

n provides the estimate of the variance.
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2.3 Models of Time Series and SSA Objectives

In the previous section the terms ‘trend’, ‘smoothing’, ‘amplitude modulation’ and
‘noise’ were used without any explanation of their meaning. In this section we shall
provide related definitions and corresponding discussions. We shall also describe the
major tasks that can be attempted by Basic SSA . Examples of application of Basic
SSA for performing these tasks have been considered above in Sect. 2.2.

2.3.1 SSA and Models of Time Series

2.3.1.1 Models of Time Series and Periodograms

Formally, SSA can be applied to an arbitrary time series. However, a theoretical
study of its properties requires specific considerations for different classes of series.
Moreover, different classes assume different choices of parameters and expected
results. We thus start this section with description of several classes of time series,
which are natural for SSA treatment, and use these classes to discuss the impor-
tant concept of (approximate) separability defined earlier in Sect. 2.1.2.3. (For the
theoretical aspects of separability see [14].)
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Since the main purpose of SSA is to make a decomposition of the series into
additive components, we always implicitly assume that this series is a sum of several
simpler series. These ‘simple’ series are the objects of the discussion below. Note
also that here we only consider deterministic time series, including those that can be
regarded as ‘noise’.

(a) Periodogram

For a description of the time series XN = (x1, . . . , xN ) in terms of frequencies it is
convenient to use the language of the Fourier expansion of the initial series. This is
the expansion

xn = c0 +

N/2�
∑

k=1

(

ck cos(2πn k/N )+ sk sin(2πn k/N )
)

, (2.9)

where N is the length of the series, 1 ≤ n ≤ N , and sN/2 = 0 for even N . The
zero term c0 is equal to the average of the series, so that if the series is centred, then
c0 = 0. Let A2

k = c2
k + s2

k . Another form of (2.9) is

xn = c0 +

N/2�
∑

k=1

Ak cos(2πn k/N + ϕk).

We define the periodogram as

Π N
x (k/N ) =

⎧

⎨

⎩

c2
0 for k = 0,

(c2
k + s2

k )/2 for 0 < k < N/2,

c2
N/2 for k = N/2.

(2.10)

The last case is only possible if N is even. The normalization in the definition (2.10)
is chosen to obtain

||XN ||2F/N =

N/2�
∑

k=0

Π N
x (k/N ). (2.11)

Some other normalizations of the periodograms are known in literature and could be
useful as well. The equality (2.11) implies that the value (2.10) of the periodogram
at the point k/N describes the influence of the harmonic components with frequency
ω = k/N into the sum (2.9).

The collection of frequencies ωk = k/N with positive powers is called support
of the periodogram. If the support of a certain periodogram belongs to some interval
[a, b], then this interval is called the frequency range of the series.

Formally, the periodogram of the series is an analogue of the spectral measure for
stationary series. Asymptotically, if the series is stationary, then the periodograms
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approximate the spectral measures (see [14, Theorem 6.4]). The periodogram can
also be helpful for a general description of an arbitrary time series. For example,
trends can be described as finite subseries of a stationary low-frequency time series.

The drawback of the periodogram analysis is its low resolution. In particular,
the perodogram can not distinguish frequencies that differ on any amount that is
smaller than 1/N . For short series the grid { j/N , j = 0, . . . , 
N/2�} is a poor
approximation to the whole range of frequencies [0, 1/2], and the periodogram may
not reveal a periodic structure of the series components.

(b) Stationary series

An infinite series (not necessarily stochastic) X∞ = (x1, x2, . . . , xN , . . . ) is called
stationary if for all nonnegative integers k, m we have

1

N

N
∑

j=1

x j+k x j+m −→
N→∞ R(k − m), (2.12)

where the (even) function R(·) is called the covariance function of the series X

(the convergence in (2.12) is either deterministic or weak probabilistic depending on
whether the series is deterministic or stochastic). Below, when discussing stationarity,
we shall always assume that 1

N

∑N
j=1 x j+k → 0 (as N→∞) holds for any k, which

is the zero-mean assumption for the original series.
The covariance function can be represented through the spectral measure, which

determines properties of the corresponding stationary series in many respects. The
periodogram of a finite series XN provides the estimate of the spectral density of
X∞.

A stationary series X∞ with discrete spectral measure mx can normally be written
as

xn ∼
∑

k

ak cos(2πωkn)+
∑

k

bk sin(2πωkn), ωk ∈ (0, 1/2], (2.13)

where ak = a(ωk), bk = b(ωk), b(1/2) = 0 and the sum
∑

k(a
2
k + b2

k ) converges.
(Note that a(1/2) �= 0 if one of the ωk is exactly 1/2.) The form (2.13) for the series
X∞ means the measure mx is concentrated at the points ±ωk , ωk ∈ (0, 1/2), with
the weights (a2

k + b2
k )/4. The weight of the point 1/2 equals a2(1/2).

A series of the form (2.13) will be called almost periodic. Periodic series corre-
spond to a spectral measure mx concentrated at the points± j/T ( j = 1, . . . , 
T/2�)
for some integer T . In terms of the representation (2.13), this means that the number
of terms in this representation is finite and all frequencies ωk are rational.

Almost periodic series that are not periodic are called quasi-periodic. For these
series the spectral measure is discrete, but it is not concentrated on the nodes of any
grid of the form ± j/T . The harmonic xn = cos(2πωn) with irrational ω provides
an example of a quasi-periodic series.
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Aperiodic (in other terminology, chaotic) series are characterized by a spectral
measure that does not have atoms. In this case, one usually assumes the existence of
the spectral density : mx (dω) = px (ω)dω. Aperiodic series are often used as models
for noise. If the spectral density of an aperiodic stationary series is constant, then
this series is called white noise. Note that the white noise series does not have to be
stochastic. In many cases, real-life stationary series have both components, periodic
(or quasi-periodic) and noise (aperiodic) components.

It is difficult, if not impossible, while dealing with finite series, to make a distinc-
tion between a periodic series with large period and a quasi-periodic series. Moreover,
on finite time intervals aperiodic series are almost indistinguishable from a sum of
harmonics with wide spectrum and small amplitudes.

(c) Amplitude-modulated periodicities

The definition of stationarity is asymptotic. This asymptotic nature has both advan-
tages (for example, a rigorous mathematical definition allows an illustration of the
main concepts by model examples) and disadvantages (for example, it is impossible
to check the assumption of stationarity using only finite data).

There are numerous deviations from stationarity. We consider only two classes of
nonstationary time series which we describe at a qualitative level. Specifically, we
consider amplitude-modulated periodic series and series with trends. The choice of
these two classes is related to their practical significance and importance for SSA.

The trends are dealt with in the next subsection. Here we discuss the amplitude-
modulated periodic signals; that is, series of the form xn = A(n)yn , where yn is
a periodic sequence and A(n) ≥ 0. Usually it is assumed that on the given time
interval (1 ≤ n ≤ N ) the function A(n) varies much slower than the low-frequency
harmonic component of the series yn .

Series of this kind are typical in economics where the period of the harmonics yn

is related to seasonality, but the amplitude modulation is determined by the long-term
tendencies. Similar interpretation seems to be true for the example ‘War’, where the
seasonal component of the combat deaths (Fig. 2.8c, d) is likely to be modulated by
the intensity of the military activities.

Let us discuss the periodogram analysis of the amplitude-modulated periodic
signals, temporarily restricting ourselves to the amplitude-modulated harmonic

xn = A(n) cos(2πωn + θ), n = 1, . . . , N . (2.14)

Unless the series (2.14) is too short, its periodogram is supported on a short
frequency interval containing ω. Indeed, for large ω1 ≈ ω2 the sum

cos(2πω1n)+ cos(2πω2n) = 2 cos
(

π(ω1 − ω2)n
)

cos
(

π(ω1 + ω2)n
)
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Fig. 2.10 War: periodogram of the main seasonality component

is a product of a slowly varying sequence A(n) = 2 cos
(

π(ω1 − ω2)n
)

and a

harmonic with large frequency (ω1 + ω2)/2. The oscillatory nature of the sequence
A(n) cannot be seen for small N .

Figure 2.10 depicts the periodogram of the main seasonal (annual plus quarterly)
component of the series ‘War’ (Sect. 2.2.4). We can see that the periodogram is
supported at around two main seasonal frequencies. However, it is not totally con-
centrated at these two points; this is caused by the amplitude modulation.

The discussion above implies that the appearance of exactly the same modulation
can be caused by two different reasons: either it is the ‘true’ modulation or the
modulation is spurious and originates from the closeness of the frequencies of the
harmonic components of the original series.

Another reason for the frequencies spreading around the main frequency is the
discreteness of the periodogram grid {k/N }: if the frequency ω of a harmonic does
not belong to the grid, then it spreads around the grid giving large positive values to
two or more frequencies on the grid points next to ω.

Note that since the length of the ‘War’ series is proportional to 12, the frequencies
ω = 1/12 and ω = 1/3, which correspond to annual and quarterly periodicities, fall
exactly on the periodogram grid {k/36, k = 1, . . . , 18}.

It is evident that not only periodic series can be modulated by the amplitude; the
same can happen to the quasi-periodic and chaotic sequences. However, identification
of these cases by means of the periodogram analysis is much more difficult.

(d) Trends

There is no commonly accepted definition of the concept ‘trend’. Common
approaches for defining trend either need postulating a parametric model (this would
allow the consideration of linear, exponential and logistic trends, among others) or
consider the trend as a solution of an approximation problem, without any concerns
about the tendencies; the most popular kind of trend approximation is the polynomial
approximation.
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In SSA framework, such meanings of the notion ‘trend’ are not suitable just
because Basic SSA is a model-free, and hence nonparametric, method. In general,
an appropriate definition of trend for SSA defines the trend as an additive component
of the series which is (i) not stationary, and (ii) ‘slowly varies’ during the whole
period of time that the series is being observed (compare [8, Chap. 2.12]).

Note that we have already collected oscillatory components of the series into a
separate class of (centred) stationary series and therefore the term ‘cyclical trend’
does not make much sense for us.

Let us now discuss some consequences of this understanding of the notion ‘trend’.
The most important is the nonuniqueness of the solution to the problem ‘trend iden-
tification’ or ‘trend extraction’ in its nonparametric setup. This nonuniqueness has
already been illustrated by the example ‘Production’, where Fig. 2.1 depicts two
forms of the trend: a trend that explains a general tendency of the series (Fig. 2.1a)
and a detailed trend (Fig. 2.1b).

Furthermore, for finite time series, a harmonic component with very low frequency
is practically indistinguishable from a trend (it can even be monotone on a finite time
interval). In this case, supplementary subject-related information about the series can
be decisive for the problem of distinguishing trend from the periodicity. For instance,
even though the reconstructed trend in the example ‘War’ (see Fig. 2.8a) looks like
a periodicity observed over a time interval that is less than half of the period, there
is no question of periodicity in this case.

In the language of frequencies, any trend generates large powers in the region of
low-frequencies in the periodogram. Moreover, we have assumed that any stationary
series is centred. Therefore, the average of all terms xn of any series X is always
added to its trend. On the periodogram, a nonzero constant component of the series
corresponds to an atom at zero.

(e) Additive components of time series: case study

Summarizing, a general descriptive model of the series that we use in SSA method-
ology is an additive model where the components of the series are trends, oscillations
and noise components. In addition, the oscillatory components are subdivided into
periodic and quasi-periodic, while the noise components are aperiodic series. Ampli-
tude modulation of the oscillatory and noise components is permitted. The sum of
all additive components, except for the noise, will be referred to as signal.

Example 2.1 Let us consider the ‘Rosé wine’ series (monthly rosé wine sales, Aus-
tralia, from July 1980 to June 1994, thousands of litres). Figure 2.11 depicts the series
itself (the thin line) and Fig. 2.12 presents its periodogram.

Figure 2.11 shows that the series ‘Rosé wine’ has a decreasing trend and an annual
periodicity of a complex form. Figure 2.12 shows the periodogram of the series; it
seems reasonable to assume that the trend is related to the large values at the low-
frequency range, and the annual periodicity is related to the peaks at the frequencies
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Fig. 2.11 Rosé wine: initial time series and the trend
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Fig. 2.12 Rosé wine: periodogram for the series
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Fig. 2.13 Rosé wine: two components of the series

1/12, 1/6, 1/4, 1/3, 1/2.4, and 1/2. The non-regularity of powers of these frequen-
cies indicates a complex form of the annual periodicity.

We have applied Basic SSA with window length L = 84. Figure 2.13 depicts two
additive components of the ‘Rosé wine’ series: the seasonal component (top graph),
which is described by the ET 2–11, 13 and the residual series. The trend component
(thick line in Fig. 2.11) is reconstructed from the ET 1, 12, 14.
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Fig. 2.15 Rosé wine: periodogram of the residuals

Periodogram analysis demonstrates that the expansion of the series into three
parts is indeed related to the separation of the spectral range into three regions:
low frequencies correspond to the trend (the thick line in Fig. 2.14), the frequencies
describing the seasonalities correspond to the periodic component (Fig. 2.14, the
thin line), and the residual series (which can be regarded as noise) has all the other
frequencies (Fig. 2.15). Note that the periodograms of the whole series (see Fig. 2.12),
its trend and the seasonal component (see Fig. 2.14) are presented on the same scale.

2.3.1.2 Models of Time Series and Rank

In the framework of SSA, the structure of the time series is closely related to d(L) =
rank X, the number of non-zero eigenvalues in the SVD of the trajectory matrix X
(we shall call this number L-rank of the time series). If for some fixed d we have
d(L) = d for large enough L , then the time series is called a finite-rank time series
of rank d (see [14, Chap. 5] for details). For such a series, we have d(L) = min(d, L)

if L ≤ K .
For any time series of finite length, d ≤ min(L , K ). If d < min(L , K ), then the

time series has a structure. A small value of d corresponds to a series with simple
structure. In particular, if the time series component is of a small rank, then the
grouping for its reconstruction is easier.



2.3 Models of Time Series and SSA Objectives 33

Let us consider several examples of time series models in terms of their rank. Note
that the class of finite-rank time series includes sums of products of polynomials,
exponentials and sinusoids.

Pure periodicities. Any sine-wave time series (so-called sinusoid) with frequency
from the range (0, 0.5) has rank 2, the saw-tooth sinusoid with frequency 0.5 has rank
1. Therefore, any almost periodic time series in the form (2.13) with finite number of
addends has finite rank. Certainly, any periodic time series has finite rank. Aperiodic
time series cannot have a finite rank.

Note that the simplicity of the sinusoid in the framework of SSA analysis depends
on the number of the observed periods, while the fact that the rank of the sinusoid is
equal to 2 is valid for the sinusoid of any frequency from (0, 0.5).

Modulated periodicities. Modulation of periodicities can complicate or even
destroy SSA structure of the series. As a rule, for an arbitrary modulation, the mod-
ulated sinusoid is not of finite rank. The cosine modulation A(n) defined in (2.14) is
an example where the rank increases from 2 to 4 but stays finite.

The only possible example of modulation that does not change the rank of the
signal is the exponential modulation A(n) = exp(αn) = ρn with ρ = eα . For
example, the rank of an exponentially damped sinusoid is the same as that of the
undamped sinusoid. This is the essential advantage of SSA relative to the standard
methods like the Fourier analysis and allows processing of the time series without
log-transformation. Also, this allows SSA to deal with periodicities whose shape is
changing.

Let us consider the ‘Fortified wine’ series (monthly fortified wine sales, Australia,
from July 1980 to June 1994, thousands of litres). Figure 2.16 depicts the series itself
(the thin line) and the reconstructed seasonality (the thick line); here the window
length is L = 84 and the reconstruction is performed by ET 2–11. One can see
that the form of seasonality is changing. This means that the standard methods of
analysis like Fourier analysis can not be applied, even after the log-transformation.
Figure 2.17 shows different kinds of modulation of the extracted (by Basic SSA) sine
waves that altogether define the seasonal behaviour of the ‘Fortified wine’ series.
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Fig. 2.16 Fortified wine: the initial time series and the reconstructed dynamic of the seasonality



34 2 Basic SSA

Jan 81 Jan 87 Jan 93 Jan 81 Jan 87 Jan 93

Jan 81 Jan 87 Jan 93

−
10

00
0

10
00

−
25

0
0

25
0

Jan 81 Jan 87 Jan 93

−
25

0
0

25
0

−
25

0
0

25
0

Fig. 2.17 Fortified wine: different behaviour of seasonal components

Trends. Trends have very different and, as a rule, non-structured behaviour; also,
the trends make the main contribution towards the non-stationarity of the series. A
typical trend (which is a slowly varying component of the series) can be accurately
approximated by a series of finite rank. The list of slowly-varying series with simple
SSA structure and small rank includes an exponential series (rank 1), a sinusoid
with large period (rank 2), a linear series (rank 2) and polynomials of higher order
(rank > 2).

2.3.1.3 Additive and Multiplicative Models

By the definition, an additive model of a series is a sum of components, while the
multiplicative model is a product of positive components. Any multiplicative model
can be easily transformed to the additive model by applying the log-transformation
to the series.

SSA deals with time series that can be represented as sums of components. One
may think that SSA can not be used for series represented via a multiplicative model.
However, some series in a multiplicative model can be represented as sums with no
extra transformation required. For example, let xn = tn(1+ sn), where (t1, . . . , tN )

is a trend and (s1, . . . , sN ) is a sinusoid with amplitude smaller than 1 (this is needed
for positivity of 1+ sn). It is easily seen that xn = tn + tnsn ; that is, the initial time
series can be considered as a sum of a trend and a modulated sinusoid. Therefore, the
multiplicative model can be considered as an additive one with modulated oscillations
and noise.

Thus, SSA can be applied to both additive and multiplicative models. Log-
transformation can increase the accuracy only if the structure of the signal after
the log-transformation is simpler (has smaller rank) or the separability is improved.
Otherwise the log-transformation leads to a decrease of the accuracy of SSA analy-
sis. As an example, the log-transformation always worsens the structure of the series
with exponential trend.
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2.3.1.4 Non-parametric Versus Parametric Models

To use Basic SSA we do not need to assume any model about the time series. There-
fore, Basic SSA belongs to the class of nonparametric and model-free techniques.
However, under the assumption of separability, a parametric model can be constructed
based on SSA results. Let us demonstrate the idea.

Let the component X
(1) of the series X = X

(1) + X
(2) be L-separable and there-

fore have finite L-rank r < min(L , K ). Let X
(1) be reconstructed by the r leading

eigentriples, that is, I1 = {1, . . . , r}. Denote X(1) = span(U1, . . . , Ur ) its trajectory
space. If the Lth coordinate vector eL = (0, . . . , 0, 1)T /∈ X(1), then X

(1) is governed
by a linear recurrence relation (LRR)

x (1)
n =

r
∑

j=1

a j x (1)
n− j , n = r + 1, . . . , N ,

where the coefficients a j are uniquely defined by the r -dimensional subspace X(1),
see [14, Chap. 5].

The coefficients a j determine the complex numbers μ1, . . . , μr which are the
roots of the characteristic polynomial of the LRR, see Sect. 3.2 (we assume, for
simplicity, that all roots μ j are different; the case where some of μ j are equal is
more complicated and corresponds to the polynomial modulation of the time series
components). The time series x (1)

n can be written in terms of μ1, . . . , μr as

x (1)
n =

r
∑

j=1

C jμ
n
j (2.15)

with some coefficients C j (see Theorem 3.1 in Sect. 3.2). Note that since X is
a real-valued time series, if μ j ∈ {μ1, . . . , μr } and μ j is complex then there
is complex-conjugate μk = μ∗j of μ j among {μ1, . . . , μr }. As we can write
μ j = ρ j exp(i2πω j ), the set {μ j } provides full information about the frequencies
{ω j }. For known {μ j }, the coefficients C j are determined by, for example, values

x (1)
1 , . . . , x (1)

r .
Since in practice there is no exact separability between time series components,

many methods are developed to estimate coefficients of the parametric form of the
time series component, see Sect. 3.8 for more information.

2.3.2 Classification of the Main SSA Tasks

Basic SSA can be very useful for solving the following problems of time series
analysis: smoothing, extraction of trend and extraction of oscillatory components.
The most general problem which Basic SSA may attempt to solve is that of finding

http://dx.doi.org/10.1007/978-3-642-34913-3_3
http://dx.doi.org/10.1007/978-3-642-34913-3_3
http://dx.doi.org/10.1007/978-3-642-34913-3_3
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the whole structure of the series; that is splitting the series into several ‘simple’
and ‘interpretable’ components, and the noise component. Let us discuss all these
problems separately.

1. Trend extraction and smoothing
There is no clear distinction between the trend extraction and smoothing; for
instance, the example ‘US unemployment’ (Fig. 2.7a) can at the same time be
considered as an example of a refined trend extraction as well as smoothing.
Neither of these two problems has exact meaning unless a parametric model
is assumed. As a result, a large number of model-free methods can be applied
to solve both of them. It is however convenient to distinguish between trend
extraction and smoothing, at least on a qualitative level.
Results of the trend extraction by Basic SSA are illustrated on the examples
‘Production’ (Fig. 2.1a, b), ‘US unemployment’ (Fig. 2.7a) and ‘War’ (Fig. 2.8a).
The example ‘Tree rings’ (Fig. 2.2a) shows smoothing capabilities of Basic SSA
(see also [4, 15]).
Note that the problem of noise reduction is very similar to the problem of smooth-
ing. The difference between these two problems is related to the conditions which
the residual is expected to satisfy: for the noise reduction, the residual must not
include any part of the signal whereas in the problem of smoothing the residual
may include high-frequency periodic components.

2. Extraction of oscillatory components
The general problem here is the identification and separation of oscillatory com-
ponents of the series that do not constitute parts of the trend. In the parametric
form (under the assumptions of zero trend, finite number of harmonics, and addi-
tive stochastic white noise), this problem is extensively studied in the classical
spectral analysis theory.
Basic SSA is a model-free method. Therefore, the result of Basic SSA extraction
of a single harmonic component of a series is typically not a purely harmonic
sequence. This is related to the fact that in practice we deal with an approximate
separability rather than with the exact one (see Sect. 2.3.3).
Basic SSA does not require assumptions about the number of harmonics and their
frequencies. However, an auxiliary information about the initial series always
makes the situation clearer and helps in choosing parameters of the method, see
Sect. 2.4.2.1.
Finally, SSA allows the possibility of amplitude modulation for the oscillatory
components of the series. Examples ‘War’ (Sect. 2.2.4) and ‘US unemployment’
(Sect. 2.2.3) illustrate the capabilities of Basic SSA for the extraction of modu-
lated oscillatory components.

3. Splitting the series into ‘simple’ and ‘interpretable’ components and noise
This task can be thought of as a combination of two tasks considered above;
specifically, the tasks of extraction of trend and extraction of periodic components.
A specific feature of this task is that in the full decomposition the residual should
consist of the noise only. Since model-free techniques often tend to find false
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interpretable components in noise, it is highly recommended to have a clear
explanation (obtained using an information additional to the time series data
itself) for each signal component found.

2.3.3 Separability of Components of Time Series

As discussed above, the main purpose of SSA is the decomposition of the original
series into a sum of series, so that each component in this sum can be identified as
either a trend, periodic or quasi-periodic component (perhaps, amplitude-modulated),
or noise.

The notion of separability of series plays a fundamental role in the formalization
of this problem (see Sects. 2.1.2.3 and 2.1.2.4). Roughly speaking, an SSA decom-
position of the series X can be useful and informative only if the resulting additive
components of the series are (approximately) separable from each other.

Weak and strong separability

Let us fix the window length L , consider a certain SVD of the L-trajectory matrix
X of the initial series X of length N , and assume that the series X is a sum of two
series X

(1) and X
(2), that is, X = X

(1) + X
(2).

In this case, separability of the series X
(1) and X

(2) means (see Sect. 2.1.2.3) that
we can split the matrix terms of the SVD of the trajectory matrix X into two different
groups, so that the sums of terms within the groups give the trajectory matrices X(1)

and X(2) of the series X
(1) and X

(2), respectively.
Since the SVD is not uniquely defined if there are multiple singular values, two

types of separability can be considered. The separability is called weak if there exists
an SVD of the trajectory matrix X such that we can split the SVD matrix terms into
two different groups, so that the sums of terms within the groups give X(1) and X(2).
The separability is called strong, if this is true for any SVD of the trajectory matrix.

For strong separability, it is necessary that the sets of eigenvalues produced by
the SVDs of X(1) and X(2) have no intersection. Strong separability implies the
weak one and it is more desirable in practice. The absence of strong separability
can be a serious problem for SSA. In Sect. 2.5.4 we develop a new method called
SSA–ICA; this method can provide separability if there is no strong separability.
Weak separability is easier to study and validate in practice. Although conditions for
exact (weak) separability are rather restrictive, they can be extended to approximate
separability and therefore be used in the practical analysis.

The following conditions are equivalent to the definition of weak separability of
two series X

(1) and X
(2):

1. any subseries of length L (and K =N−L+1) of the series X
(1) is orthogonal to

any subseries of the same length of the series X
(2) (the subseries of the time series

are considered here as vectors); in term of trajectory matrices, X(1)(X(2))T = 0L L

and (X(1))TX(2) = 0K K ;
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2. the subspace X(L ,1) spanned by the columns of the trajectory matrix X(1), is
orthogonal to the subspace X(L ,2) spanned by the columns of the trajectory matrix
X(2), and similar orthogonality must hold for the subspaces X(K ,1) and X(K ,2)

spanned by the rows of the trajectory matrices.

Characteristics of weak separability

Let L∗ = min(L , K ) and K ∗ = max(L , K ). Introduce the weights

wi =
⎧

⎨

⎩

i for 0 ≤ i < L∗,
L∗ for L∗ ≤ i ≤ K ∗,
N − i + 1 for K ∗ < i ≤ N .

(2.16)

The weight wi in (2.16) is equal to the number of times the element xi appears in the
trajectory matrix X of the series X = (x1, . . . , xN ). Define the inner product of two
series X

(1) and X
(2) of length N as

(

X
(1), X

(2)
)

w
def=

N
∑

i=1

wi x (1)
i x (2)

i (2.17)

and call the series X
(1) and X

(2) w-orthogonal if
(

X
(1), X

(2)
)

w = 0.

It follows from the separability conditions that separability implies w-orthogona-
lity. To measure the degree of approximate separability between two series X

(1) and
X

(2) we introduce the so-called w-correlation

ρ(w)(X(1), X
(2))

def=
(

X
(1), X

(2)
)

w

‖X(1)‖w‖X(2)‖w . (2.18)

We shall loosely say that two series X
(1) and X

(2) are approximately separable if
ρ(w)(X(1), X

(2)) � 0 for reasonable values of L (see [14, Sects. 1.5 and 6.1] for
precise definitions). Note that the window length L enters the definitions of w-ortho-
gonality and w-correlation, see (2.16).

Another qualitative measure of separability is related to the frequency structure
of the time series components [14, Sect. 1.5.3]. It is sufficient (but not necessary)
for weak separability that the supports of the periodograms of X

(1) and X
(2) do not

intersect. If the intersection of the supports is, in a sense, small then the separability
becomes approximate. Note that the separability of frequencies is equivalent to weak
separability for the stationary time series.

Separable time series

Although there are many results available (see [14, Sects. 1.5 and 6.1]) on exact sep-
arability for the time series of finite rank, exact separability mostly presents purely
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theoretical interest. In practice, exact separability of components hardly ever occurs
but an approximate separability can be achieved very often. It is very important in
practice that the trend, oscillations and noise components are approximately separa-
ble for large enough time series and window lengths.

To illustrate the concept of separability consider an example of two sinusoids

x (1)
n = A1 cos(2πnω1 + ϕ1), x (2)

n = A2 cos(2πnω2 + ϕ2), (2.19)

where n = 1, . . . , N , 0 < ωi < 0.5 and ω1 �= ω2. Let L ≤ N/2 be the window
length and K = N − L + 1. These time series are weakly separable if Lωi and Kωi

are integers (in other words, if L and K are divisible by the periods Ti = 1/ωi ).
The additional condition A1 �= A2 implies strong separability, since the eigenvalues
produced by the sinusoids are proportional to their squared amplitudes.

For large N and L two sinusoids are approximately weakly separable if ω1 �=
ω2; the divisibility of L and K by the periods is not necessary, although it can
improve the separability. The quality of separability (that influences the accuracy of
the reconstruction) depends on the magnitude of |ω1 − ω2|. Close frequencies need
much larger time series lengths to obtain a sufficient level of separability.

Under the condition of approximate weak separability, closeness of amplitudes
A1 and A2 can cause the lack of strong separability. Note also that the frequency
interpretation of separability for sinusoids is adequate, since for large L the leakage
at the periodograms of sinusoids is small.

2.4 Choice of Parameters in Basic SSA

In this section we discuss the role of parameters in Basic SSA and the principles
for their selection. There are two parameters in Basic SSA: the first parameter is the
window length L , and the second parameter is, loosely speaking, the way of grouping.
In accordance with Sects. 2.3.1.1 and 2.3.2, we assume that the time series under
consideration is a sum of a slowly varying trend, different oscillatory components,
and a noise.

2.4.1 General Issues

2.4.1.1 Forms of Singular Vectors

We start with mentioning several theoretical results about the eigentriples of several
‘simple’ time series.
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Fig. 2.18 Scatterplots of sines/cosines

Oscillations: exponential-cosine sequences
Consider the series

xn = Aeαn cos(2πωn + ϕ), (2.20)

where ω ∈ (0, 1/2] and ϕ ∈ [0, 2π). Depending on the values of parameters, the
exponential-cosine sequence produces the following non-zero eigentriples:

1. Exponentially modulated harmonic time series with frequency ω ∈ (0, 1/2)

If ω ∈ (0, 1/2), then for any L and N the SVD of the trajectory matrix has two
non-zero terms. Both eigenvectors (and factor vectors) have the form (2.20) with
the same ω and α. In particular, for harmonic series (α = 0), the eigenvectors and
factor vectors are harmonic series with frequency ω.

2. Exponentially modulated saw-tooth curve (ω = 1/2)

If sin(ϕ) �= 0, then xn is proportional to (−eα)n . If α = 0, then xn = A(−1)n =
A cos(πn). In this case, for any L the corresponding SVD has just one term. Both
singular vectors have the same form as the initial series.

Let ω �= 1/2 and α = 0. Then we have the pure harmonic series defined by (2.20)
with α = 0. It generates an SVD of order two with singular vectors having the same
harmonic form.

Let us consider, for definiteness, the left singular vectors (that is, the eigenvectors)
and assume an ideal situation, where Lω is integer. In this situation, the eigenvectors
have the form of sine and cosine sequences with the same frequency ω and the same
phases.

Figure 2.18 depicts pairwise scatterplots of four pairs of sin/cosine sequences
with zero phases, the same amplitudes and frequencies 1/12, 10/53, 2/5, and 5/12.
Clearly all the points lie on the unit circle. If T = 1/ω is an integer, then these
points are the vertices of the regular T -vertex polygon. For the rational frequency
ω = q/p < 1/2 with relatively prime integers p and q, the points are the vertices
of the regular p-vertex polygon.

Trends: exponential and polynomial series

1. The exponential sequence xn = eαn . For any N and window length L , the tra-
jectory matrix of the exponential series has only one eigentriple. Both singular
vectors of this eigentriple are exponential with the same parameter α.
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2. A general polynomial series. Consider a polynomial series of degree m:

xn =
m

∑

k=0

aknk, am �= 0.

For this series, the order of the corresponding SVD is m + 1 and all singular
vectors are polynomials of degree not exceeding m.

3. Linear series. For a linear series xn = an+b, a �= 0, with arbitrary N and L , the
SVD of the L-trajectory matrix consists of two non-zero terms. The corresponding
singular vectors are also linear series.

Note that the exponential-cosine and linear series (in addition to the sum of two
exponential series with different rates) are the only series that have at most two non-
zero terms in the SVD of their trajectory matrices for any series of length N and
window length L ≥ 2. This fact helps in their SSA identification as components of
more complex series.

2.4.1.2 Predicting the Shape of Reconstructed Components

The shape of the eigentriples selected at the grouping stage can help us to predict the
shape of the component which is going to be reconstructed from these eigentriples.

1. If we reconstruct a component of a time series with the help of just one eigen-
triple and both singular vectors of this eigentriple have similar form, then the
reconstructed component will have approximately the same form. This means
that when dealing with a single eigentriple we can often predict the behaviour
of the corresponding component of the series. For example, if both singular vec-
tors of an eigentriple resemble linear series, then the corresponding component
is also almost linear. If the singular vectors have the form of an exponential
series, then the trend has similar shape. Harmonic-like singular vectors produce
harmonic-like components (compare this with the results for exponential-cosine
series presented at the beginning of this section). This general rule also applies to
some other properties of time series including monotonicity (monotone singular
vectors generate monotone components of the series).

2. If L � K then the factor vector in the chosen eigentriple has a greater similarity
with the component, reconstructed from this eigentriple, than the eigenvector.
Consequently we can approximately predict the result of reconstruction from a
single eigentriple by taking into account only the factor vector.

3. If we reconstruct a series with the help of several eigentriples and the peri-
odograms of their singular vectors are (approximately) supported on the same
frequency interval [a, b], then the frequency power of the reconstructed series
will be mainly supported on [a, b]. This feature is similar to that of item 1 but
concerns several eigentriples and is formulated in terms of the Fourier expansions.
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2.4.1.3 Eigenvalues

Let us enumerate several features of singular values of trajectory matrices.

1. The larger the singular value of the eigentriple is, the bigger the weight of the
corresponding component of the series. Roughly speaking, this weight may be
considered as being proportional to the singular value.

2. By analogy with Principal Component Analysis (PCA), the share of the leading
eigenvalues reflects the quality of approximation by the corresponding eigen-
triples. However, there is a significant difference between Basic SSA and PCA,
since PCA performs centering of variables. Since Basic SSA does not perform
centering, the share of eigenvalues as a measure of approximation may have little
sense. As an example, consider the series X = (x1, . . . , x100) with

xn = c + cos(2πn/10)+ 0.9 cos(2πn/5).

For L = 50 and c > 0.45 the three leading components provide exact recon-
struction of Y with yn = c + cos(2πn/10). It may be natural to suggest that the
quality of approximation of X by Y should not depend on the value of c. However,
if we denote p(c) = (λ1 + λ2 + λ3)/(λ1 + . . . + λ50), then p(0.5) � 0.649,
p(1) � 0.787 and p(10) � 0.996.

3. For series xn = A exp(αn) cos(2πωn), ω ∈ (0, 0.5), if Lω is integer, then both
singular values coincide. If α ≤ 0 then for large N , L and K = N − L+1,
both singular values are close (formally, these values coincide asymptotically, as
L , K→∞). Practically, they are close enough when L and K are several times
larger than T = 1/ω.

2.4.1.4 Elementary Reconstructed Components and
w-Correlation Matrix

The elementary reconstructed series (recall that they correspond to elementary group-
ing I j = { j}) reflect the final result of reconstruction. If we group two eigentriples,
the i th and j th, then the reconstructed time series is equal to the sum of i th and j th
elementary reconstructed components.

Let us use w-correlations as defined in Sect. 2.3.3 between elementary recon-
structed components as separability measures.

While two singular vectors produced by a harmonic are orthogonal and have
phase shift approximately equal to π/2, two associated elementary reconstructed
series have approximately zero phase shift and therefore strongly w-correlated. If
two time series components are strongly separable, then the elementary reconstructed
components produced by them are w-orthogonal. Therefore, the w-correlation matrix
{ρ(w)

i j } between elementary reconstructed components reflects the structure of the
series detected by SSA.
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Fig. 2.19 Series (2.21):
matrix of w-correlations

6

6

The w-correlation matrix for an artificial series X with

xn = en/400 + sin(2πn/17)+ 0.5 sin(2πn/10)+ εn, n = 1, . . . , 340, (2.21)

standard Gaussian white noise εn , and L = 85, is depicted in Fig. 2.19, where
w-correlations for the first 30 reconstructed components are shown in 20-colour
scale from white to black corresponding to the absolute values of correlations from
0 to 1.

The leading eigentriple describes the exponential trend, the two pairs of the sub-
sequent eigentriples correspond to the harmonics, and the large sparkling square
indicates the white noise components. Note that this is in full agreement with the
theory of (asymptotic) separability.

2.4.2 Grouping for Given Window Length

Assume that the window length L is fixed and we have already made the SVD of the
trajectory matrix of the original time series. The next step is to group the SVD terms
in order to solve one of the problems discussed in Sect. 2.3.2. We suppose that this
problem has a solution; that is, the corresponding terms can be found in the SVD,
and the result of the proper grouping would lead to the (approximate) separation of
the time series components (see Sect. 2.3.3).

Therefore, we have to decide what the proper grouping is and how to construct it.
In other words, we need to identify the eigentriples corresponding to the time series
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component we are interested in. Since each eigentriple consists of an eigenvector (left
singular vector), a factor vector (right singular vector) and a singular value, this needs
to be achieved using only the information contained in these vectors (considered as
time series) and in the singular values.

2.4.2.1 Preliminary Analysis

The preliminary analysis of the time series is not necessary but it can be helpful for
easier interpretation of the results of SSA processing.

The following steps can be performed.

1. Observe the time series as a whole.

• One can inspect the general shape of trend, its complexity and hence how
many trend components one can expect in the SVD expansion.
• Based upon the form of the time series and its nature, one can expect some

oscillations and their periods. For example, for seasonal monthly data, the
period 12 is natural. If some period T is expected, then its divisors by integers
(the result should be ≥ 2) are likely to be found in SSA decomposition. For
monthly seasonal data they are 12, 6 = 12/2, 4 = 12/3, 3 = 12/4, 2.4 = 12/5
and 2 = 12/6.

2. Explore the time series periodogram.

• Periodogram peaks reflect the expected periods that can be found in SSA
decomposition.
• Equal or close values at the peaks indicate a potential problem of the lack of

strong separability.

For an example of a preliminary analysis of this kind, see the case study in Example
2.1 (Sect. 2.3.1.1), where Basic SSA was used to analyze the ‘Rosé wine’ series.

2.4.2.2 How to Group

For illustration, we provide references to the figures below in the description of the
general recommendations. As an example, we consider the ‘Fortified wine’ series
(Fig. 2.16), which has already been analysed in Sect. 2.3.1.2.

General recommendations

1. Inspect the one-dimensional graphs of eigenvectors, factor vectors or elemen-
tary reconstructed components. Find slowly varying components. Note that any
slowly varying component can be corrupted by oscillations if the trend and oscil-
lating components are not separated. Elementary reconstructed components show
whether the oscillating component is suppressed by the diagonal averaging. Most
likely, the presence of the mix-up between the components is caused by the lack
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of strong separability. Changes in the window length and application of differ-
ent preprocessing procedures can improve strong separability. All slowly varying
components should be grouped into the trend group. Figure 2.20 shows both the
trend eigenvector and the trend reconstruction.

2. Consider two-dimensional plots of successive eigenvectors. Find regular p-vertex
polygons, may be, in the form of a spiral. Group the found pairs of eigentriples.
The harmonic with period 2 produces 1 eigentriple and therefore can be found
at the one-dimensional graphs of, say, eigenvectors as a saw-tooth graph. See
Fig. 2.21 with scatterplots and the reconstructed series in Fig. 2.17.

3. If there is a fundamental period T (e.g. seasonality with period 12), then special
efforts should be made at finding the harmonics with periods that are divisors
of T . Also, to reconstruct the whole periodic component with given period T ,
the pairs with periods T/k, k = 1, . . . , 
T/2� should be grouped, see Fig. 2.16,
where the reconstruction of the whole seasonality is depicted.

4. The w-correlation matrix of elementary components can help in finding the com-
ponents if they are not well separated and the techniques described above were
not successful. Blocks of two correlated components reflect a harmonic. A block
of 4 correlated consequent components probably corresponds to two mixed pairs
of harmonics. This can be checked by, for example, their periodogram analy-
sis. Since noise is, in a sense, a mixture of many not-separable components, the
w-correlation matrix can help to determine the number of components to identify.
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Fig. 2.20 Fortified wine: trend component. a Trend eigenvector. b Trend reconstruction and the
initial series
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Fig. 2.21 Fortified wine: Scatterplots of eigenvector pairs corresponding to periods 12, 4, 6, 2.4
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2.4.2.3 How to Check the Results of Reconstruction

1. Any statistical testing is only possible when some assumptions are made. It could
be a parametric model of the signal and noise. Nonparametric models usually
require availability of a sample taken from the same distribution. The SSA pro-
cedure positions itself as a model-free technique and therefore the justification of
the results is complicated. Hence, the interpretability of the resultant series com-
ponents is very important. For example, the extraction of the component with
period 7 for monthly data is often more doubtful than, for example, half-year
periodicity.

2. While signals could have very different forms and structures, noise frequently
looks like white or rarer red noise. If there are reasons to assume a model of noise,
then one can routinely test the corresponding hypothesis to confirm the results.
In any case, the periodogram of the residual or their autocorrelation function can
show if there is a part of the signal in the residual.

3. To test the specific hypothesis that the series is the red noise (AR(1) model with
positive correlations), Monte Carlo SSA [2] may be used. The declared advantage
of this test is its power with respect to the alternative of red noise corrupted by a
signal for short time series.

2.4.2.4 Methods of Period Estimation

Since period estimation can be very useful in the process of identification of periodic
components, let us enumerate several methods of estimation that can be applied
within the framework of SSA.

1. A conventional method for frequency estimation is periodogram analysis. We can
apply it for estimation of frequencies of eigenvectors, factor vectors as well as
reconstructed components. This can be effective for long series (and for large
window lengths if we want to consider eigenvectors). If the time series is short,
then the resolution of the periodogram analysis is low.

2. We can estimate the period using both eigenvectors (or factor vectors) produced
by a harmonic. If the eigenvectors have already been calculated, this method is
very fast. Consider two eigentriples, which approximately describe a harmonic
component with frequency 0 < ω0 < 0.5. Then the scatterplot of their eigenvec-
tors can be expressed as a two-dimensional curve with Euclidean components of
the form

x(n) = r(n) cos(2πω(n)n + ϕ(n)), y(n) = r(n) sin(2πω(n)n + ϕ(n)),

where the functions r, ω and ϕ are close to constants and ω(n) ≈ ω0. The polar
coordinates of the curve vertices are (r(n), δ(n)) with δ(n) = 2πω(n)n + ϕ(n).

Since �n
def= δ(n + 1) − δ(n) ≈ 2πω0, one can estimate ω0 by averaging polar
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angle increments �n (n = 1, . . . , L). The same procedure can be applied to a
pair of factor vectors.

3. We can also use the subspace-based methods of signal processing including
ESPRIT, MUSIC, and others, see Sect. 3.8. These methods have high resolu-
tion and can be applied to short time series if we were able to separate signal
from noise accurately enough. An important common feature of these methods
is that they do not require the sinusoids to be separated from each other.

2.4.3 Window Length

The window length L is the main parameter of Basic SSA: its inadequate choice
would imply that no grouping activity will lead to a good SSA decomposition.

There is no universal rule for the selection of the window length. The main dif-
ficulty here is caused by the fact that variations in L may influence both weak and
strong separability features of SSA, i.e., both the orthogonality of the appropriate
subseries of the original series and the closeness of the singular values. However,
there are several general principles for the selection of the window length L that have
certain theoretical and practical grounds. Let us discuss these principles.

2.4.3.1 General Principles

1. The SVDs of the trajectory matrices, corresponding to the window lengths L and
K = N − L + 1, are equivalent (up to the symmetry: left singular vectors ↔
right singular vectors). Therefore, we can always assume L ≤ N/2.

2. Assuming L ≤ N/2, the larger L is, the more detailed is the decomposition of the
time series. The most detailed decomposition is achieved when L � N/2 unless
the series has finite rank d, see Sect. 2.3.1.2. In this case, SSA decompositions
with any L such that d ≤ L ≤ N + 1− d are equivalent.

3. Small window lengths act like smoothing linear filters of width 2L−1. For small
L , the filter produced by the leading eigentriple is similar to the Bartlett filter with
triangular coefficients (see Sect. 3.9.3).

4. The following are the effects related to weak separability.

• As the results concerning weak separability of time series components are
mostly asymptotic (when L , K→∞), in the majority of examples to achieve
better (weak) separation one has to choose large window lengths. In other
words, the use of small L could lead to a mix-up between components which
otherwise would be interpretable. Unless two time series are deterministic and
exactly separable, there is no convergence of the reconstruction error to zero
if L is fixed and K→∞ (see for details [13]).
• If the window length L is relatively large, then the (weak) separation is stable

with respect to small perturbations in L .

http://dx.doi.org/10.1007/978-3-642-34913-3_3
http://dx.doi.org/10.1007/978-3-642-34913-3_3
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• On the other hand, for specific series and tasks, some concrete recommenda-
tions can be given for the window length selection; these recommendations
can be very useful for relatively small N (see Sect. 2.4.3.3 below).

5. It is hard to successfully overcome (only by varying L) the difficulty related to the
closeness of singular values; that is, to the absence of strong separability when
there is an approximate weak separability. Let us mention two general points
related to the closeness of the singular values.

• For the series with complex structure, too large values of L can lead to an
undesirable decomposition of the series components of interest, which in turn
may yield their mixing with other series components. This is an unpleasant
possibility, especially since a significant reduction of L can lead to a poor
quality of the (weak) separation.
• Alternatively, sometimes in these situations even a small variation in the value

of L can reduce mixing and lead to a better separation of the components and
hence provide a transition from weak to strong separability.

6. Whatever the circumstances, it is always a good idea to repeat SSA analysis
several times using different values of L .

2.4.3.2 Window Length for Extraction of Trends and Smoothing

1. Trends

In the problem of trend extraction, a possible contradiction between the requirements
for weak and strong separability emerges most frequently.

Since trend is a relatively smooth curve, its separability from noise and oscillations
requires large values of L . On the other hand, if the trend has a complex structure, then
for very large L it can only be described using a substantial number of eigentriples
with relatively small singular values. Some of these singular values could be close
to those generated by oscillations and/or noise time series components.

This happens in the example ‘Births’, see Sect. 2.2.2.2, where the window length
of order 1000 and more (the series length is 5113) leads to the situation where the
components of the trend are mixed up with the components of the annual and half-
year periodicities (other aspects relating to the choice of the window length in this
example are discussed below).

If the trend is simple and dominates the rest of the series, then the choice of
L does not present any difficulty (that is, L can be taken from a wide range). Let
X = X

(1) + X
(2), where X

(1) is a trend and X
(2) is the residual. The notion of

‘simplicity’ can be understood as follows:

• From the theoretical viewpoint, the series X
(1) is well approximated by a series

with finite and small rank d, see Sect. 2.3.1.2 for a description of the series of finite
rank.
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• We are interested in the extraction of the general tendency of the series rather than
of the refined trend.
• In terms of frequencies, the periodogram of the series X

(1) is concentrated in the
domain of small frequencies.
• In terms of SSA decomposition, the few first eigentriples of the decomposition of

the trajectory matrix of the series X
(1) are enough for a reasonably good approxi-

mation of it, even for large L .

Assume also that the series X
(1) is much ‘larger’ than the series X

(2) (for instance,
the inequality ‖X(1)‖F � ‖X(2)‖F is valid).

Suppose that these assumptions hold and the window length L provides a certain
(weak, approximate) separation between the time series X

(1) and X
(2). Then we can

expect that in the SVD of the trajectory matrix of the series X the leading eigentriples
will correspond to the trend X

(1); i.e., they will have larger singular values than the
eigentriples corresponding to X

(2). In other words, we expect strong separability to
occur. Moreover, the window length L , sufficient for the separation, should not be
very large in this case in view of the ‘simplicity’ of the trend.

This situation is illustrated by the example ‘Production’ (Fig. 2.1a, b), where
both trend versions are described by the leading eigentriples. However, more refined
versions of the trend can be difficult to extract.

Much more complicated situations arise if we want to extract a refined trend X
(1),

when the residual X
(2) has a complex structure (for example, it includes a large noise

component) with ‖X(2)‖F being large. Then large L can cause not only mixing of
the ordinal numbers of the eigentriples corresponding to X

(1) and X
(2) (this is the

case in the ‘US unemployment’ example), but also closeness of the corresponding
singular values, and therefore a lack of strong separability.

2. Smoothing

The recommendations concerning the selection of the window length for the problem
of smoothing are similar to those for trend extraction. This is related to the fact that
these two problems are closely related. Let us describe the effects of the window
length in the language of frequencies.

If we treat smoothing as a removal of the high-frequency part of the series, then
we have to choose L large enough to provide separation of this low-frequency part
from the high-frequency one. If the powers of all low frequencies of interest are
significantly larger than those of the high ones, then the smoothing problem is not
difficult, and our only job is to gather several leading eigentriples. This is the case
for the ‘Tree rings’ and ‘White dwarf’ examples of Sect. 2.2.1.2. Here, the larger L
we take, the narrower the interval of low frequencies we can extract.

For instance, in Sect. 2.2.1.2, the smoothing of the series ‘White dwarf’ has been
performed with L = 100, with the result of the smoothing being described by
the leading 11 eigentriples. In the periodogram of the residuals (see Fig. 2.22a) we
can see that for this window length the powers of the frequencies in the interval



50 2 Basic SSA

0 0.1 0.2 0.3

0
3e

−
05

L 100

0 0.1 0.2 0.3

0
3e

−
05

L 200

(a) (b)

Fig. 2.22 White dwarf: periodograms of residuals. a L = 100. b L = 200

[0, 0.05] are practically zero. If we take L = 200 and 16 leading eigentriples for
the smoothing, then this frequency interval is reduced to [0, 0.03] (see Fig. 2.22b).
At the same time, for L = 10 and two leading eigentriples, the result of smoothing
contains the frequencies from the interval [0, 0.09].

Visual inspection shows that all smoothing results look similar. Also, their eigen-
value shares are equal to 95.9 % ± 0.1 %. Certainly, this effect can be explained by
the following specific feature of the series: its frequency power is highly concentrated
in the narrow low-frequency region.

2.4.3.3 Window Length for Periodicities

The problem of choosing the window length L for extracting a periodic component
X

(1) out of the sum X = X
(1) + X

(2) has certain specificities related to the corre-
spondence between the window length and the period. These specificities are very
similar for the pure harmonics, for complex periodicities and even for modulated
periodicities. Thus, we do not consider these cases separately.

1. For the problem of extraction of a periodic component with period T , it is natural
to measure the length of the series in terms of the number of periods: if X

(1) is
asymptotically separable from X

(2), then to achieve the separation we must have,
as a rule, the length of the series N such that the ratio N/T is at least several
units.

2. For relatively short series, it is preferable to take into account the conditions for
pure (nonasymptotic) separability (see Sect. 2.3.3); if one knows that the time
series has a periodic component with integer period T (for example, T = 12),
then it is advisable to take the window length L proportional to T . Note that from
the theoretical viewpoint, N−1 must also be proportional to T .

3. In the case of long series, the requirement for L/T and (N−1)/T to be integers
is not that important. In this case, it is recommended to choose L as large as
possible (for instance, close to N/2, if the computer facilities allow us to do this).
Nevertheless, even in the case of long series it is recommended to choose L so
that L/T is an integer.
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4. If the series X
(2) contains a periodic component with period T1 ≈ T , then to

extract X
(1) we generally need a larger window length than for the case when

such a component is absent (see Sect. 2.3.3).

To demonstrate the effect of divisibility of L by T , let us consider the ‘Eggs’
example (eggs for a laying hen, monthly, U.S., from January 1938 to December
1940, [21, Chap. 45]). This series has a rather simple structure: it is the sum of an
explicit annual oscillation (though not a harmonic one) and a trend, which is almost
constant. However, this series is short and therefore the choice of L is very important.

The choice L = 12 allows us to extract simultaneously all seasonal components
(12, 6, 4, 3, 2.4, and 2-months harmonics) as well as the trend. The graph in Fig. 2.23
depicts the initial series and its trend (thick line), which is reconstructed from the
leading eigentriple.

Figures 2.24a, b depict the matrices of w-correlations for the full decomposition
of the series with L = 12 and L = 18. It is clearly seen that for L = 12 the matrix
is essentially diagonal, which means that the eigentriples related to the trend and
different seasonal harmonics are almost w-uncorrelated. This means that the choice
L = 12 allows us to extract all harmonic components of the series.

Jan 38 Jan 39 Jan 40 Dec 40

5
10

15

Fig. 2.23 Eggs: initial series and its trend
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Fig. 2.24 Eggs: w-correlations. a L = 12. b L = 18
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For L = 18 (that is, when the period 12 does not divide L), only the leading
seasonality harmonics can be extracted properly.

The choice L = 13 would give results that are slightly worse than for L = 12,
but much better than for L = 18. This confirms the robustness of the method with
respect to small variations in L .

2.4.3.4 Refined Structure

In doing simultaneous extraction of different components from the whole series, all
the aspects discussed above should be taken into account. For instance, in basically
all examples of Sect. 2.2, where the periodicities were the main interest, the window
length was a multiple of the periods. At the same time, if in addition trends were
to be extracted, L was reasonably large (but smaller than N/2) to avoid the mix-up
between the components.

To demonstrate the influence of the window length on the result of the decomposi-
tion, let us consider the example ‘Births’ (Sect. 2.2.2.2). In this series (daily data for
about 14 years, N = 5113) there is a one-week periodicity (T1 = 7) and an annual
periodicity (T2 = 365). Since T2 � T1, it is natural to take the window length as a
multiple of T2.

The choice L = T2, as was shown in Sect. 2.2.2.2, guarantees a simultaneous
extraction of both weekly and annual periodicities. Moreover, this window length
also allows us to extract the trend of the series (see Fig. 2.25) using just one leading
eigentriple. Note that these results are essentially the same as for L = 364 and
L = 366.

At the same time, if we would choose L = 3T2 = 1095 or L = 7T2 = 2555, then
the components of the trend will be mixed up with the components of the annual
and half-year periodicities; this is a consequence of the complex shape of the trend
and the closeness of the corresponding eigenvalues. Thus, choosing the values of L
which are too large leads to the loss of strong separability.

If the problem of separation of the trend from the annual periodicity is not impor-
tant, then values of L larger than 365 work well. If the window length is large, we
can separate the global tendency of the series (trend + annual periodicity) from the
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Fig. 2.25 Births: trend
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weekly periodicity + noise even better than for L = 365 (for L = 1095 this com-
ponent is described by several dozen eigentriples rather than by 5 eigentriples for
L = 365). In this case, the weekly periodicity itself is perfectly separable from the
noise as well.

In even more complex cases, better results are often achieved by the application
of the so-called Sequential SSA, see Sect. 2.5.5. In Sequential SSA, after extraction
of a component with certain L , Basic SSA with different value of L is applied again,
to the residual series obtained in the first run of SSA.

2.4.4 Signal Extraction

2.4.4.1 Specifics of Extraction of the Signal

Sometimes, the structure of the deterministic component of the time series which
can be called a signal is not important. In this case, the following three simple
observations may help achieve better separation of the signal from noise.

1. Since we are interested in the signal as a whole, separability of signal components
is not essential. As a consequence, for the signal containing a periodic component,
divisibility of the window length by the period is not important for separation of
the signal from noise. However, if the window length is divisible by the period,
it is easier to identify the signal components.

2. Since the signal components are often dominating, the only parameter of grouping
is the number r of the leading components related to the signal. This number can be
estimated using the matrix of w-correlations between elementary reconstructed
components. In the example ‘White dwarf’ (Sect. 2.2.1.2) with L = 100, the
matrix of the absolute values of w-correlations of the reconstructed components
produced from the leading 30 eigentriples is depicted in Fig. 2.26 in the manner of
Fig. 2.19. Splitting all eigentriples into two groups, from the first to the 11th and
the rest, gives a decomposition of the trajectory matrix into two almost orthogonal
blocks, with the first block corresponding to the smoothed version of the original
series and the second block corresponding to the residual, see Fig. 2.3a, b in
Sect. 2.2.1.2.

3. The problem of extraction of signal of finite rank from noisy time series is very
well elaborated. In particular, there are different methods of rank estimation (see
below). These methods can be used while identifying the components in SSA.

2.4.4.2 Methods of Estimation of the Rank of the Signal

Two types of methods of rank estimation are used in signal processing. The first type
is related to the so-called AIC-methods. They use some information criteria [36], are
based on the maximum likelihood function and therefore could only be applied to
the series with given parametric model of the residuals (usually, Gaussian noise).
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Fig. 2.26 White dwarf:
matrix of w-correlations
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The second type of methods can be applied for general series. Let the method
estimate some time series characteristic. Then the accuracy of this estimation for
different values of the assumed series rank r can point towards the proper value of r .

For example, the proper rank can be estimated on the base of the accuracy of fore-
casts of historical data. Or, more generally, one can consider several time series points
as artificial missing values and their imputation accuracy serves as a characteristic
for the choice of the best rank.

For signals of finite rank, specific methods can also be suggested. For example,
the ESTER method [6] is based on features of the ESPRIT method as a method of
parameter estimation (see for details Sects. 3.8.2 and 3.8.2.3).

2.4.5 Automatic Identification of SSA Components

While the choice of the window length is well supported by SSA theory, the procedure
for choosing the eigentriples for grouping is much less formal.

Let us describe several tests for the identification of SSA components constituting
parts of the trend or related to periodicities. We assume that the components to be
identified are (approximately) separated from the rest of the series.

The tests described below can be used differently. First, these tests can provide
some hints for making the grouping. This is a safe way of using the tests and we
shall consider the tests from this viewpoint only. Second, the tests can be used as the
base for the so-called batch processing. If there is a large set of similar time series,

http://dx.doi.org/10.1007/978-3-642-34913-3_3
http://dx.doi.org/10.1007/978-3-642-34913-3_3
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then a part of them can be used for the threshold adjustment. Similar to many other
automatic procedure, the results of SSA batch processing may be misleading as many
deviations from the model assumptions are possible. Note also that any choice of
the threshold should take into consideration the following two conflicting types of
decision error: (i) not to choose the proper SVD components (it is more important),
and (ii) to choose wrong SVD components. Certainly, to estimate probabilities of
these errors, a stochastic model of the time series should be specified.

2.4.5.1 Grouping Based on w-Correlations

The first approach is based on the properties of the w-correlation matrix {ρ(w)
i j }

for the separability identification, see Sect. 2.4.1.4. This idea was used in different
SSA-processing procedures. For example, Bilancia and Campobasso [7] consider
hierarchical clustering with the dissimilarity measure 1−|ρ(w)

i j | and complete linkage,
while Alonso and Salgado [3] use the k-means clustering procedure.

Let us consider two w-correlation matrices with full decompositions depicted in
Figs. 2.19 and 2.26. The dissimilarity matrix consisting of 1− |ρ(w)

i j | along with the
average linkage provides the proper split into two clusters for the White dwarf data.
The first cluster consists of ET1–11 and the second cluster corresponds to noise.
The same procedure for the example of Fig. 2.19 gives the first cluster consisting of
ET1 only, while the complete linkage provides the cluster of ET1–5. Note that the
division onto four groups (ET1; ET2,3; ET4,5; the rest) is the most appropriate for
the average linkage. It seems that the average linkage is a good choice if the number
of clusters is known. The choice of the number of clusters can be performed by the
conventional tools of Cluster Analysis. Also, large w-correlations between grouped
components from the clusters can help in distinguishing false clusters.

2.4.5.2 Identification of Trend

Since we define trend as any slowly-varying component of the time series, analysis
of frequencies is a suitable tool for trend identification. The authors of [35] suggest
to use the number of zero crossings or the Kendall’s test to find slowly-varying
eigenvectors. A rather general approach is to use the periodogram and consider the
contribution of low frequencies as a test; see e.g. [1], where the emphasis is made
on the procedure of an automatic choice of the identification thresholds.

Consider the periodogram (2.10) of a series Y of length M and define

T (Y;ω1, ω2) =
∑

k:ω1≤k/M≤ω2

I M
y (k/M), (2.22)
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where I M
y (k/M) = M Π M

y (k/M)/||Y||2, Π M
y is defined in (2.10). In view of (2.11),

0 ≤ T (Y;ω1, ω2) ≤ 1 for any 0 ≤ ω1 ≤ ω2 ≤ 0.5. Let us choose the bounding
frequency ω0, 0 ≤ ω0 ≤ 0.5, and set up a threshold T0, 0 ≤ T0 ≤ 1.

Below we formulate a generic test for deciding whether a given SSA component is
slowly varying. This test can be applied to eigenvectors, factor vectors and elementary
reconstructed components considered as time series. Let Y be the series we are going
to test.

Trend test T. A given component Y is related to the trend if T (Y; 0, ω0) ≥ T0.
The choice of the bounding frequency ω0 depends on how we want the trend to

look like. For example, for monthly data with possible seasonality it is recommended
to choose ω0 < 1/12.

If we consider the results of trend tests as hints for the eigentriple identification, it
is not necessary to set the threshold value T0, since we can simply consider the values
of the test statistics T (Y; 0, ω0) for the series Y (the eigenvectors or the elementary
reconstructed components) related to each eigentriple.

Let us consider the ‘Production’ example (Sect. 2.2.1.1, Fig. 2.1b), where a rea-
sonably accurate trend is described by the three leading eigentriples. If we choose
ω0 = 1/24 and T0 = 0.9, then the described procedure identifies ET1–3,6,8,11,12;
that is, the trend identified (see Fig. 2.27) is even more accurate than that depicted
in Fig. 2.1b. The result is stable with respect to the choice of the threshold and is
exactly the same when we apply it to eigenvectors, factor vectors or reconstructed
components. The values of the test T ( · ; 0, 1/24) applied to the 12 leading factor
vectors are respectively: 0.9999, 0.9314, 0.9929, 0.0016, 0.0008, 0.9383, 0.0053,
0.9908, 0.0243, 0.0148, 0.9373, 0.9970. If we are interested in general tendency,
then the test T with ω0 = 1/120 identifies one leading component only, the same
result as in Fig. 2.1a.

For the ‘Rosé wine’ example, where the trend was extracted by ET1, 12, and 14,
the test T (·; 0, 1/24) applied to 16 leading eigenvectors gives 0.9993 for ET1, 0.8684
for ET12, 0.9839 for ET14 and values smaller than 0.02 for all other eigentriples.
This outcome perfectly agrees with visual examination.
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Fig. 2.27 Production: automatically identified refined trend
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2.4.5.3 Identification of Harmonics

The method for the identification of the harmonic components is based on the study
of the corresponding singular vectors. Ideally, any harmonic component produces
two eigenvectors, which are sine and cosine sequences if L and K = N−L+1 are
divisible by the period of the harmonic. Also, if min(L , K )→∞ then the pair of
the corresponding either left or right singular vectors tends to the sine and cosine
sequences, correspondingly.

Define for H, G ∈ RL

ρ(G, H) = max
0≤k≤L/2

γ (G, H ; k), where γ (G, H ; k) = 0.5(I L
g (k/L)+ I L

h (k/L))

and the quantity I is the same as in (2.22). It is clear that ρ(G, H) ≤ 1 and that for
any integer Lω the equality ρ(G, H) = 1 is valid if and only if hn = cos(2πωn+ϕ)

and gn = sin(2πωn + ϕ). Also, for arbitrary ω, ρ(G, H)→1 as L→∞.
Therefore, the value of ρ(Ui , U j ) (as well as ρ(Vi , Vj )) can be used as an indicator

of whether the pair of eigenvectors Ui , U j (or factor vectors Vi , Vj ) is produced by
a harmonic component.

The case of amplitude-modulated harmonics is slightly more complicated. Let
us consider the identification of the exponentially damped sine waves; recall that
these waves are naturally generated by SSA. Both eigenvectors (and factor vectors)
have the same form (2.20) with the same frequency ω and the exponential rate α.
Therefore we generally can apply the ρ(G, H) for their identification. However, the
modulation leads to decreasing of ρ(G, H) and this should be accounted for choosing
the threshold value.

Let us introduce the test which is a modification of the test suggested in [35] to
take into consideration a leakage caused by possible modulation of the harmonics
and location of their frequencies between positions in the periodogram grid. Define

τ(G, H) = max
0≤k≤L/2−m0

m0−1
∑

j=0

γ (G, H ; k + j),

where m0 is some integer.
Note that below we use the result stating that an exponentially damped sinu-

soid produces asymptotically equal eigenvalues. We therefore consider only adjacent
eigenvectors.

Harmonic test τ . An eigenvector pair (U j , U j+1) is identified as corresponding to
some damped sinusoid if the periodograms of U j and U j+1 are peaked at frequencies
differing not more than m0/L and τ(U j , U j+1) ≥ τ0 for given threshold τ0 ∈ [0, 1].

Here m0 should be chosen equal to 0 if the period is known and we can choose L
such that L and K are divisible by the period. Otherwise we choose m0 = 1.
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Note that the procedure needs special treatment of the components with frequen-
cies 0 and 0.5: the frequency 0 should not be considered as a candidate for periodicity,
while the sine wave with frequency 0.5 is the saw-tooth function and produces just
one component with frequency 0.5. Also, the procedure can be supplemented with the
frequency estimation (see Sect. 2.4.2.4) and the results can be filtered in accordance
with the chosen frequency range.

Let us apply the τ -test to the ‘Production’ example considered in Sects. 2.2.1.1
and 2.2.2.1. This time series has a trend of complex form and we need to set a
period-based filter to distinguish between the cyclic components of the trend and the
seasonal components. Assume that all possible periods fall into the interval [2,13].
Then the τ -test with thresholds τ0 from the range 0.86–0.96 identifies the same
seasonal components as were chosen in Sect. 2.2.2.1 by visual inspection except for
the pair ET19–20 (period 12) with τ(U19, U20) = 0.85. This is explained by the
sharp decrease of the harmonic with period 12 and a poor separability of the annual
harmonic.

Warning. Above we considered examples with well separable components. How-
ever, if the separability is poor, then the automatic procedure typically fails. There-
fore, the automatic identification is useful for grouping but can not replace the
techniques that improve separability.

2.5 Some Variations of Basic SSA

In some circumstances, a clever modification of Basic SSA or its skillful computer
implementation may visibly improve either the accuracy or efficiency of SSA. In
this section, we describe several techniques for making modifications to Basic SSA
and discuss some computer implementations of SSA. We start this section with a
short discussion concerning preliminary preprocessing of time series that can be
considered as a part of the SSA processing.

2.5.1 Preprocessing

There are two standard ways of preprocessing, log-transformation and centering. The
log-transformation has already been discussed in Sect. 2.3.1.3. It is a very important
feature of SSA that even if the main model of the series is multiplicative, SSA can
work well without the use of the log-transformation. It is an essential advantage of
SSA over many other methods as full multiplicativity is a very strong assumption
and generally it is not met in practice. For example, the time series ‘War’, ‘US unem-
ployment’ and ‘Germany unemployment’ are similar to multiplicative time series.
However, the log-transformation does not provide constancy of seasonal amplitudes
while the main assumption of many conventional methods is similarity of the seasonal
components from year to year.

Centering of time series (that is, the subtraction of the general mean) is neces-
sary for the application of methods of analysis of stationary series. Usually, these
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Fig. 2.28 S&P500: trends extracted from the initial series and from the centered series

methods deal with estimation of spectral characteristics of time series. This means
that centering has little sense for time series with trends. From the viewpoint of SSA,
centering can both increase and decrease the rank of the time series. For example,
the trend of ‘Fortified wine’ (Sect. 2.3.1.2, Fig. 2.16) is very well described by one
leading eigentriple with share 94.6 % (L = 84), i.e., it is well approximated by an
exponential series of rank 1. After centering, the trend is described by two eigen-
triples ET3 (11.2 %) and ET4 (8.9 %). The accuracy of trend extraction is worse and
the extraction of trend is more complicated since the corresponding eigentriples are
no longer the leading eigentriples.

Sometimes the centering of the series may be very useful. As an example, consider
the series ‘S&P500’, the free-float capitalization-weighted index of the prices of 500
large-cap common stocks actively traded in the United States. Its trend has complex
form. However, in the timeframe of 1.5 year the trend of the centered series can be
approximated by a sinusoid. The resultant trends are depicted in Fig. 2.28 together
with the initial series. The first trend is extracted from the initial series by ET1–3
(the bold line), the second trend is extracted from the centered series by ET1–2 (the
line with black dots), L = 170. The former trend is more detailed, while the latter
one is more stable.

2.5.2 Centering in SSA

Consider the following extension of Basic SSA. Assume that we have selected the
window length L . For K = N − L + 1, consider a matrix A of dimension L×K
and rather than using the trajectory matrix X of the series X we shall use the matrix
X� = X − A. Let S� = X�(X�)T, and denote by λi and Ui (i = 1, . . . , d) the
nonzero eigenvalues and the corresponding orthonormal eigenvectors of the matrix
S�. Setting Vi = (X�)TUi/

√
λi we obtain the decomposition
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X = A+
d

∑

i=1

X�
i (2.23)

with X�
i =
√

λiUi V T
i , instead of the standard SVD (2.2). At the grouping stage, the

matrix A will enter one of the resultant matrices as an addend. In particular, it will
produce a separate time series component after diagonal averaging.

If the matrix A is orthogonal to all X�
i , then the matrix decomposition (2.23)

yields the decomposition ||X||2F = ||A||2F +
d
∑

i=1
||X�

i ||2F of the squared norms of the

corresponding matrices. Then ||A||2F/||X||2F corresponds to the share of A in the
decomposition.

Here we briefly consider two ways of choosing the matrix A, both of which are
thoroughly investigated in [14, Sects. 1.7.1 and 6.3].

Single centering is the row centering of the trajectory matrix. Here A =
[E(X) : . . . : E(X)], where i th component of the vector E(X) (i = 1, . . . , L) is
equal to the average of the i th components of the lagged vectors X1, . . . , X K . Basic
SSA with single centering can have advantage over the standard Basic SSA if the
series X has the form X = X

(1) + X
(2), where X

(1) is a constant series and X
(2)

oscillates around zero.
For double centering, the SVD is applied to the matrix computed from the tra-

jectory matrix, by subtracting from each of its elements the corresponding row and
column averages and by adding the total matrix average. Basic SSA with double
centering can outperform the standard Basic SSA if the series X can be expressed in
the form X = X

(1) + X
(2), where X

(1) is a linear series (that is, x (2)
n = an + b) and

X
(2) oscillates around zero. As shown in [14, Sects. 1.7.1 and 6.3], Basic SSA with

double centering can have serious advantage over linear regression.

2.5.3 Stationary Series and Toeplitz SSA

If the length N of the series X is not sufficiently large and the series is assumed
stationary, then the usual recommendation is to replace the matrix S = XXT by
some other matrix, which is constructed under the stationarity assumption.

Note first that we can consider the lag-covariance matrix C = S/K instead of
S for obtaining the SVD of the trajectory matrix X. Indeed, the eigenvectors of the
matrices S and C are the same.

Denote by ci j = ci j (N ) the elements of the lag-covariance matrix C. If the
time series is stationary, and K → ∞, then lim ci j = RX(|i − j |) as N → ∞,
where RX(k) stands for the lag k term of the time series covariance function. We
can therefore define a Toeplitz version of the lag-covariance matrix by putting equal
values c̃i j at each matrix antidiagonal |i − j | = k. The most natural way for defining
the values c̃i j and the corresponding matrix ˜C is to compute.
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c̃i j = 1

N − |i − j |
N−|i− j |

∑

m=1

xm xm+|i− j |, 1 ≤ i, j ≤ L . (2.24)

If the original series is stationary, the use of Toeplitz lag-covariance matrix ˜C can be
more appropriate than the use of the lag-covariance matrix C. However, Toeplitz SSA
is not appropriate for nonstationary series and if the original series has an influential
nonstationary component, then Basic SSA seems to work better than Toeplitz SSA.
For example, if we are dealing with a pure exponential series, then it is described by a
single eigentriple for any window length, while Toeplitz SSA produces L eigentriples
for the window length L with harmonic-like eigenvectors. The same effect takes place
for the linear series, exponential-cosine series, etc.

A number of papers devoted to SSA analysis of climatic time series (e.g. [11])
consider Toeplitz SSA as the main version of SSA and state that the difference
between the Basic and Toeplitz versions of SSA is marginal. This is, however, not true
if the series we analyze is non-stationary. It seems that using the Toeplitz version of
SSA algorithm is unsafe if the series contains a trend or oscillations with increasing or
decreasing amplitudes. Examples of effects observed when Toeplitz SSA is applied to
non-stationary time series are presented in [13]. For the study of theoretical properties
of Toeplitz SSA, see, for example, [16].

2.5.4 Rotations for Separability: SSA–ICA

The SVD is the key step in SSA; it provides the best matrix approximations to
the trajectory matrix X. The SVD often delivers the proper decomposition from the
viewpoint of weak separability. However, if several components of the original series
are mixed in such a way that their contributions are very similar, then the optimality
of the SVD does not help to separate these components and we find ourselves in
the situation where we have weak separability of components but lack their strong
separability. In this situation, we need to find special rotations which would allow us
to separate the components. We will choose these rotations so that they satisfy some
additional optimality criterion, which we are going to introduce.

Let us use the idea from the projection pursuit method of multivariate analysis
(see [18] for a review). For choosing directions, the projection pursuit uses a cri-
terion based on the form of the distribution of the projection on a given direction.
Assuming L ≤ K , we apply the projection pursuit to the trajectory matrix with its
rows considered as variables.

Let us start by considering projections on different directions for two vectors taken
from subspaces corresponding to different time series components. For simplicity
of depiction we rotate the data and consider projections on the x-axis. Figure 2.29c
shows projections for different rotations of two sine wave variables. The first picture
in a row (the case α = 0) corresponds to the proper rotation, the last one (with
α = π/4) shows the worst possible mixture. We can see that the estimated densities
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α = 0 α = π 8 α = π 4 α = 0 α = π 8 α = π 4

α = 0 α = π 8 α = π 4 α = 0 α = π 8 α = π 4

(a) (b)

(c) (d)

Fig. 2.29 Projection: two sine waves (left) and sine wave with linear series (right). a Scatterplots.
b Scatterplots. c Densities. d Densities

are totally different. To check that this result is generic, let us consider similar pictures
for a sine wave and a linear function (Fig. 2.29d). The result is very similar. We thus
conclude that the idea of projection pursuit may help in solving the problem of
separation.

Let us consider the projection pursuit method for cluster analysis where the proper
rotation (α = 0) corresponds to the maximal distance from the normal distribution.
Figure 2.30c shows that the distributions of proper projections and improper projec-
tions are similar to the ones depicted in Fig. 2.29c, d.

It is known that there is a method of multivariate analysis, which can be reduced
to the projection pursuit method (Fig. 2.30d confirms it). This method is called Inde-
pendent Component Analysis (ICA); see, for example [19]. The aim of the ICA is
finding statistically independent components {ηi ; i = 1, . . . , p} from observations
of their linear combinations {ξi ; i = 1, . . . , p}. Let us describe the main idea of the
ICA. Without loss of generality, we can assume that {ξi } are pre-whitened.

The mutual information of the random vector (η1 . . . , ηp) can be measured as
I (η1, . . . , ηp)=∑p

k=1 H(ηk)−H(η1, . . . , ηp),whereH(η)= ∫

f (x) log2( f (x))dx
is thedifferentialentropyand f (x) is thedensityfunctionofη.Therefore, searchingfor
independent components is equivalent to searching for random variables {ηi }, which
are linear combinations of {ξi } and have the minimal value of the mutual information.

It appears that the minimization of the mutual information is equivalent to the
maximization of the total negentropy of {ηi }, which is the sum of marginal negen-
tropies J (ηi ) = H (ν)−H (ηi ), ν ∼ N(0, 1). This means that the ICA works similar
to the search for the direction with the distribution of projections that are maximally
distant from the normal distribution; that is, to the projection pursuit.

Rather than maximizing negentropies, which requires the estimation of the mar-
ginal densities for calculating entropies of ηi ’s, we can consider maximization of
simple functionals like

J (ηi ) ∼
[−EG (ηi )+ Cν

]2
, (2.25)
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(a) (b)

(c) (d)

Fig. 2.30 Projection pursuit: two clusters (left) and two independent uniformly distributed variables
(right). a Scatterplots. b Scatterplots. c Histograms. d Histograms

where Cν = EG (ν), G (u) = e−u2/2; other choices of G can be considered as well,
see [19]. An implementation of the ICA by means of optimizing the functional 2.25
can be found in the R-package fastICA, see [25].

Since we observe realizations of p random variables Y = [Y1 : . . . : Yp], Yi ∈
RK , rather than maximizing (2.25) we should calculate and maximize the following
functional of their linear combinations with coefficients W ∈ Rp:

J(Z) =
(

− 1

K

K
∑

i=1

ez2
i /2 − Cν

)2 −→ max
Z=YW, ||Z ||=1.

(2.26)

In applications to blind signal separation, the cooperation between SSA and ICA
has been already considered, see [30]. In this application, Basic SSA is used for
removal of noise and then the ICA is applied for the extraction of independent
components from the mixture.

The theory of ICA is developed for random variables and is not applicable in the
deterministic case. Therefore, the application of the ICA to deterministic sources
can be formally considered as the projection pursuit which searches for the linear
combination of the observed variables (factor vectors in SSA) that maximizes some
functional like (2.26). Since the concept of statistical independence is not defined
for deterministic vectors we will use the names ‘ICA’ and ‘independent vectors’
purely formally and may use quotes while referring to them. It has been established
by computer simulations and confirmed by theoretical results that in the examples
considered in Fig. 2.30 and some similar ones, the ‘ICA’ does indeed succeed in
separating the time series components, even if the SVD does not provide strong
separability.

The ‘ICA’ has the following important drawback: it does not make ordering of
the found components (vectors) like the SVD does. In particular, two vectors cor-
responding to a sine wave can have arbitrary numbers in the decomposition by the
ICA and therefore searching for them is a more difficult task than while applying the
SVD. Also, the accuracy of weak separability which the ICA provides is worse than
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Fig. 2.31 ‘Fortified wines’: SVD (left) and ICA for separability ET8-11 (right). a w-correlations.
b w-correlations. c Scatterplots ET8–11. d Scatterplots ET8–11

that for the SVD. Moreover, the stability of numerical the ICA procedures is worse
than for the SVD. Therefore, in SSA, the ICA is worthwhile to consider only as a
supplement to the SVD for finding proper rotations in the presence of weak separa-
bility but lack of strong separability. By no means the ICA can be recommended as
a full replacement of the SVD.

Below we suggest a scheme for building a refined grouping by the SSA–ICA
procedure. This scheme could be used as a substitution of the grouping step in Basic

SSA. Let us have the expansion X =
d
∑

j=1

√

λ jU j V T
j at the SVD step.

Refined grouping by SSA–ICA

1. Make a grouping X = XI1 + . . . + XIm as in Basic SSA; this corresponds to
weakly separated time series components.

2. Choose a group I consisting of p indices, which is possibly composed of several
interpretable components that are mixed.

3. Extract p ‘independent’ vectors Qi applying the ‘ICA’ to XI . Then XI =
∑p

i=1 Pi QT
i , where Pi = XI Qi .

4. Make k subgroups from the group I by splitting XI = XI,1 + . . .+ XI,k .

Example 2.2 Let us provide an example of application of the algorithm of SSA–
ICA. Consider the example ‘Fortified wines’ depicted in Fig. 2.16. For the analy-
sis, we take the first 120 points. The window length L does not provide strong
separability for ET8–11 (sine waves with periods 2.4 and 3), see Fig. 2.31a depicting



2.5 Some Variations of Basic SSA 65

the w-correlation matrix, where the block of four correlated components is clearly
seen. 2D-scatterplots of factor vectors are depicted in Fig. 2.31c and demonstrate
the absence of structure. Let us apply ‘ICA’ to the trajectory matrix reconstructed
by the eigentriples 8–11. Figures 2.31b, d show that the ‘ICA’ makes a successful
separation of the two sine waves. Let us remark that the resultant components of
the ‘ICA’ needed an additional ordering so that the two sine waves with the same
frequency obtain consecutive indices.

2.5.5 Sequential SSA

The hurdle of mixed time series components (formally, the problem of close singular
values for weakly separable series components) may sometimes be overcome by the
use of what was called in [14] Sequential SSA (alternative names for this procedure
would be ‘Multi-stage SSA’ or ‘Reiterated SSA’).

The Sequential SSA with two stages can be described as follows. First, we extract
several time series components by Basic SSA (or any other version of SSA) with
certain window length L1. Then we apply Basic SSA with window length L2 to the
residuals. Having extracted two sets of time series components, we can group them
in different ways. For instance, if a rough trend has been extracted at the first stage
and other trend components at the second stage, then we have to add them together
to obtain the accurate trend. Let us illustrate this on the following example.

Example 2.3 ‘Germany Unemployment’ series: extraction of harmonics
The ‘Germany unemployment’ series (West Germany, monthly, from April 1950
to December 1980, [31]) serves as an example of complex trends and amplitude-
modulated periodicities. The series is depicted in Fig. 2.32.

Selecting large L would mix up the trend and periodic components of the series.
For small L the periodic components are not separable from each other. Hence Basic
SSA fails to extract (amplitude-modulated) harmonic components of the series.
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Fig. 2.32 Germany unemployment: the initial series and its trend
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Fig. 2.33 ‘Germany unemployment’: oscillations. a Trend residuals. b Annual periodicity

The Sequential SSA with two stages is a better method in this case. If we apply
Basic SSA with L = 12 to the initial series, then the first eigentriple will describe
the trend (see Fig. 2.32) which is extracted rather well: the trend component does not
include high frequencies, while the residual component practically does not contain
low ones (see Fig. 2.33a for the residual series).

The second stage of Sequential SSA is applied to the residual series with L =
180. Since the series is amplitude modulated, the main periodogram frequencies
(annual ω = 1/12, half-annual ω = 1/6 and 4-months ω = 1/4) are somewhat
spread out, and therefore each (amplitude-modulated) harmonic can be described by
several (more than 2) eigentriples. The periodogram analysis of the obtained singular
vectors shows that the leading 14 eigentriples with share 91.4 % can be related to
3 periodicities: the eigentriples 1, 2, 5–8, 13, 14 describe the annual amplitude-
modulated harmonic (Fig. 2.33b), the eigentriples 3, 4, 11–12 are related to half-year
periodicity, and the eigentriples 9, 10 describe the 4-months harmonic.

The same technique can be applied to the ‘Births’ series if we want to obtain
better results than those described in Sect. 2.2.2.2. (See Sect. 2.4.3 for a discussion
concerning the large window length problem in this example.)
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2.5.6 Computer Implementation of SSA

There are many implementations of SSA. They can be classified as follows. First,
the implementations differ by the potential areas of application: for example, general
purpose SSA, see e.g. [14], and SSA oriented mainly for climatic applications, see
e.g. [11]. Second, the software can be free-access and not free-access. One of the
main drawbacks of free-access packages is that they generally have no support and
that their implementation consists of direct and usually non-efficient use of the main
formulas. Third, the software can be interactive (for different systems, Window, Unix
or Mac) and non-interactive. Interactive implementations of SSA provide executable
programs in some programming language such as special mathematical languages
like R and Matlab or high-level programming languages like C++, VBA and others.

We draw special attention to the following four supported software packages:

1. http://gistatgroup.com:
‘Caterpillar’-SSA software (Windows) following the methodology from [14];

2. http://www.atmos.ucla.edu/tcd/ssa/:
SSA-MTM Toolkit for spectral analysis [11] (Unix) and its commercial extension
kSpectra Toolkit (Mac);

3. http://cran.r-project.org/web/packages/Rssa/:
R-package ‘Rssa’ [14, 22], a very fast implementation of the main SSA procedures
for any platform.

4. The commercial statistical software, SAS, includes Singular Spectrum Analysis
to its econometric extension SAS/ETS� Software.

The fastest implementation of SSA can be found in the R-package ‘Rssa’. Let us
describe the idea of its implementation. Note that the most time-consuming step of
SSA is the Singular Value Decomposition (SVD). The SVD in SSA has two spe-
cific features. First, SSA as a rule uses only a few leading components. Therefore,
we need to use the so-called Partial SVD to compute only a given number of lead-
ing eigentriples. Second, the matrix used for decomposition is Hankel. This can be
effectively used to speed up the matrix-vector multiplications. The fastest accelera-
tion is reached for the case L ∼ N/2, which is frequently one of the commonly used
window lengths, and long time series. However, even for moderate N the advantage
is often very visible.

The acceleration in the ‘Rssa’ package is achieved by the following means.

• The embedding step is combined with the SVD step; this decreases the storage
requirement as we do not need to store the trajectory matrix.
• The ‘Rssa’ includes the Lanczos-based Partial SVD that generally provides the

computational complexity O(r N 2) for calculation of r eigentriples rather than
O(N 3) needed for the full SVD.
• The Fast Fourier Transform (FFT) is used for the multiplication of a Hankel matrix

by a vector and therefore we have the computational complexity O(r N log N ) of
the SVD step.

http://gistatgroup.com
http://www.atmos.ucla.edu/tcd/ssa/
http://cran.r-project.org/web/packages/Rssa/
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• Similarly, FFT is used at the Reconstruction stage; this reduces its complexity
from O(r N 2) to O(r N log N ).

Let us demonstrate how the Reconstruction stage of Basic SSA can be acceler-
ated. Fix the eigentriple (

√
λ, U, V ), where U ∈ RL , V ∈ RK , L ≤ K , λ ∈ R,

and consider the procedure of calculating the related time series component by the
diagonal averaging procedure applied to the elementary matrix

√
λU V T. The output

of the algorithm is the elementary time series ˜Y = (

ỹ j
)N

j=1 corresponding to the

matrix
√

λU V T after hankelization.

Algorithm: Rank 1 Hankelization via Linear Convolution

1. U ′ ←− (u1, . . . , uL , 0, . . . , 0)T ∈ RN

2. Û ←− FFTN (U ′)
3. V ′ ←− (v1, . . . , vK , 0, . . . , 0)T ∈ RN

4. V̂ ←− FFTN (V ′)
5. Y ′ ←− IFFTN (V̂ � Û )

6. W ←− (1, 2, . . . , L , L , . . . , L , L , L − 1, . . . , 1) ∈ RN

7. Y←− √λ
(

W � Y ′
)

.

Here (A� B) denotes element-wise vector multiplication and IFFT is the inverse
FFT. The versions of FFT and IFFT which are effective for arbitrary N should be
used, see e.g. [10].

2.5.7 Replacing the SVD with Other Procedures

Some variations to the standard SVD procedure have been already mentioned in
Sects. 2.5.4 and 2.5.6. These variations include rotations within the eigenspaces,
Independent Component Analysis (ICA) and Partial SVD where only few leading
eigenvectors of the matrix S = XXT are computed.

There are three main reasons why it may be worthwhile to replace the SVD opera-
tion in Basic SSA with some other operation. These three reasons are: (a) simplicity,
(b) improved performance, and (c) different optimality principles for the decompo-
sition.

(a) Simplicity. This is important in the problems where the dimension of the
trajectory matrix is very large. In these cases, the SVD may be too costly to perform.
The most obvious substitution of the SVD is by Partial SVD, see above. Let us briefly
describe (following [28]) another useful substitution of the SVD, which is oriented
on solving the problems of the form ‘signal plus noise’. Assume that in order to
approximate the signal we want to choose the eigentriples with eigenvalues λ ≥ a,
for given a. Computation of the signal subspace X(1) (in the notation introduced
at the end of Sect. 2.1.2.3) is equivalent to the computation of the matrix function
fa(S), where fa(λ) is the indicator function fa(λ) = 1[λ≥a]. The function fa(λ) can
be approximated by a simple polynomial P(λ), for all λ belonging to the spectrum
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of S which is [λL , λ1]. This implies that fa(S) can be approximated by a matrix
polynomial P(S) which yields a simple approximation for the signal subspace X(1).

Many numerical approximations for the solution of the full or partial SVD prob-
lem are also available, see [12]. In cases where the dimension of the matrix S is
exceptionally large, one can use the approximations for the leading eigenvectors
used in internet search engines, see e.g. [23].

(b) Improved performance. In some cases (usually when a parametric form
of the signal is given), one can slightly correct the SVD (both, eigenvalues and
eigenvectors) using the recommendations of SSA perturbation theory, see [29]. As a
simple example, in the problems of separating signal from noise, some parts of noise
are often found in the SVD components mostly related to the signal, see Fig. 2.22a,
b. As a result, it may be worthwhile to make small adjustments to the eigenvalues
and eigenvectors to diminish this effect. The simplest version of Basic SSA with
constant adjustment in all eigenvalues was suggested in [34]. and is sometimes called
the minimum-variance SSA.

(c) Different optimality principles. Here the basis for the decomposition of the
series is chosen using some principle which different from the SVD optimality. For
example, in ICA discussed in Sect. 2.5.4, the independence of components (rather
than the precision of approximation) is considered as the main optimality criteria.
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Chapter 3
SSA for Forecasting, Interpolation,
Filtration and Estimation

3.1 SSA Forecasting Algorithms

3.1.1 Main Ideas and Notation

3.1.1.1 Main Ideas

A reasonable forecast of a time series can be performed only if the series has a
structure and there are tools to identify and use this structure. Also, we should assume
that the structure of the time series is preserved for the future time period over which
we are going to forecast (continue) the series. The last assumption cannot be validated
using the data to be forecasted. Moreover, the structure of the series can rarely be
identified uniquely. Therefore, the situation of different (and even contradictory)
forecasts is not impossible. Thus, it is important not only to understand and express
the structure but also to assess its stability.

A forecast can be made only if a model is built. The model should be either
derived from the data or at least checked against the data. In SSA forecasting, these
models can be described through the linear recurrence relations (LRRs). The class
of series governed by LRRs is rather wide and important for practical applications.
This class contains the series that are linear combinations of products of exponential,
polynomial and harmonic series.

Assume that XN = X
(1)
N +X

(2)
N , where the series X

(1)
N satisfies an LRR of relatively

small order and we are interested in the forecasting of X
(1)
N . For example, X

(1)
N can

be signal, trend or seasonality. The idea of recurrent forecasting is to estimate the
underlying LRR and then to perform forecasting by applying the estimated LRR to the
last points of the SSA approximation of the series X

(1)
N . The main assumption allowing

SSA forecasting is that for a certain window length L the series components X
(1)
N and

X
(2)
N are approximately strongly separable. In this case, we can reconstruct the series

N. Golyandina and A. Zhigljavsky, Singular Spectrum Analysis for Time Series, 71
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-34913-3_3,
© The Author(s) 2013
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X
(1)
N with the help of a selected set of the eigentriples and obtain approximations to

both the series X
(1)
N , its trajectory space and the true LRR.

3.1.1.2 Statement of the Problem, Notation and an Auxiliary Result

Let XN = X
(1)
N + X

(2)
N and we intend to forecast X

(1)
N . If X

(1)
N is a time series of

finite rank r < L , then it generates some L-trajectory subspace of dimension r .
This subspace reflects the structure of X

(1)
N and hence can be taken as a base for

forecasting.
Let us formally describe the forecasting algorithms in a chosen subspace. As we

assume that the subspaces are estimated by SSA, we shall refer to the algorithms as
the algorithms of SSA forecasting.

Forecasting within the subspace means a continuation of the L-lagged vectors
of the forecasted series in such a way that they lie in or very close to the chosen
subspace of RL . We consider three algorithms of forecasting: the recurrent, vector
and simultaneous forecasting.

Inputs in the forecasting algorithms:

(a) Time series XN = (x1, . . . , xN ), N > 2.
(b) Window length L , 1 < L < N .
(c) Linear space Lr ⊂ RL of dimension r < L . We assume that eL /∈ Lr , where

eL = (0, 0, . . . , 0, 1)T ∈ RL ; in other terms, Lr is not a ‘vertical’ space.
(d) Number M of points to forecast for.

Notation:

(a) X = [X1 : . . . : X K ] (with K =N−L+1) is the trajectory matrix of XN .
(b) P1, . . . , Pr is an orthonormal basis in Lr .

(c) ̂X def= [̂X1 : . . . : ̂X K ] =
r
∑

i=1
Pi PT

i X. The vector ̂Xi is the orthogonal projection

of Xi onto the space Lr .
(d) ˜X = H ̂X = [˜X1 : . . . : ˜X K ] is the result of the hankelization of the matrix ̂X.

The matrix ˜X is the trajectory matrix of some time series ˜XN = (̃x1, . . . , x̃N ).
(e) For any vector Y ∈ RL , we denote by Y ∈ RL−1 the vector consisting of the

last L − 1 components of the vector Y , and by Y ∈ RL−1 the vector consisting
of the first L − 1 components of Y .

(f) We set ν2 = π2
1 + . . . + π2

r , where πi is the last component of the vector Pi

(i = 1, . . . , r ). Since ν2 is the squared cosine of the angle between the vector eL

and the linear space Lr , it can be called the verticality coefficient of Lr . Since
eL /∈ Lr , ν2 < 1.

The following statement is fundamental.

Proposition 3.1 In the notation above, the last component yL of any vector Y =
(y1, . . . , yL)T ∈ Lr is a linear combination of the first components y1, . . . , yL−1:
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yL = a1 yL−1 + a2 yL−2 + . . .+ aL−1 y1,

where the vector R = (aL−1, . . . , a1)
T can be expressed as

R = 1

1− ν2

r
∑

i=1

πi Pi (3.1)

and does not depend on the choice of the basis P1, . . . , Pr in the linear space Lr .

Proof follows from the fact that the formula (3.1) is a particular case of (3.10)
below with n = L , m = r and Q = {L}.

3.1.2 Formal Description of the Algorithms

3.1.2.1 Recurrent Forecasting

In the above notation, the recurrent forecasting algorithm (briefly, R-forecasting)
can be formulated as follows.

Algorithm (R-forecasting):

1. The time series YN+M = (y1, . . . , yN+M ) is defined by

yi =
⎧

⎨

⎩

x̃i for i = 1, . . . , N ,
L−1
∑

j=1
a j yi− j for i = N + 1, . . . , N + M.

(3.2)

2. The numbers yN+1, . . . , yN+M form the M terms of the recurrent forecast.

Thus, the R-forecasting is performed by the direct use of the LRR with coefficients
{a j , j = 1, . . . , L − 1} derived in Proposition 3.1.

Remark 3.1 Let us define the linear operator PRec : RL �→ RL by the formula

PRecY =
(

Y

RTY

)

. (3.3)

Set

Zi =
{

˜Xi for i = 1, . . . , K ,

PRec Zi−1 for i = K + 1, . . . , K + M.
(3.4)

It is easily seen that the matrix Z = [Z1 : . . . : ZK+M ] is the trajectory matrix of
the series YN+M . Therefore, (3.4) can be regarded as the vector form of (3.2).
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3.1.2.2 Vector Forecasting

Let us now describe the vector forecasting algorithm (briefly, V-forecasting). The
idea of vector forecasting is as follows. Let us assume that we can continue the
sequence of vectors ̂X1, . . . , ̂X K (which belong to the subspace Lr ) for M steps so
that:

(a) the continuation vectors Zm (K < m ≤ K + M) belong to the same subspace
Lr ;

(b) the matrix XM = [̂X1 : . . . : ̂X K : ZK+1 : . . . : ZK+M ] is approximately
Hankel.

Then, having obtained the matrix XM we can obtain the forecasted series YN+M by
the diagonal averaging of this matrix.

In addition to the notation introduced above let us bring in some more notation.
Consider the matrix

Π = VVT + (1− ν2)R RT, (3.5)

where V = [P1 : . . . : Pr ]. The matrix Π is the matrix of the linear operator that
performs the orthogonal projection RL−1 �→ Lr , where Lr = span(P1, . . . , Pr );
note that this matrix Π is a particular case of the matrix defined in (3.11) with
m = r , n = L and Q = {L}. Finally, we define the linear operator PVec : RL �→ Lr

by the formula

PVecY =
(

ΠY

RTY

)

. (3.6)

Algorithm (V-forecasting):

1. In the notation above, define the vectors Zi as follows:

Zi =
{

̂Xi for i = 1, . . . , K ,

PVec Zi−1 for i = K + 1, . . . , K + M + L − 1.
(3.7)

2. By constructing the matrix Z = [Z1 : . . . : ZK+M+L−1] and making its diagonal
averaging we obtain the series y1, . . . , yN+M+L−1.

3. The numbers yN+1, . . . , yN+M form the M terms of the vector forecast.

Remark 3.2 Note that in order to get M forecast terms, the vector forecasting pro-
cedure performs M+L−1 steps. The aim is the permanence of the forecast under
variations in M : the M-step forecast ought to coincide with the first M values of the
forecast for M+1 or more steps. In view of the definition of the diagonal averaging,
we have to make L−1 extra steps.
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3.1.2.3 Simultaneous Forecasting

The recurrent forecasting is based on the fact that the last coordinate of any vector
in the subspace Lr is determined by the first L − 1 coordinates. The idea of the
simultaneous forecasting algorithm is based on the following relation: under some
additional conditions, the last M coordinates of any vector in Lr can be expressed
through its first L − M coordinates. Certainly, L − M should be larger than r and
therefore M < L − r .

Let span(ei , i = L − M + 1, . . . , L) ∩ Lr = {0}. For a vector Y ∈ Lr , denote
Y1 = (y1, . . . , yL−M )T and Y2 = (yL−M+1, . . . , yL)T. Then Y2 = RY1, where the
matrix R is defined in (3.10) with n = L , m = r and Q = {L − M + 1, . . . , L}.
Algorithm (simultaneous forecasting):

1. In the notation above, define the time series YN+M = (y1, . . . , yN+M ) by

yi = x̃i for i = 1, . . . , N ,

(yN+1, . . . , yN+M )T = R(yN−(L−M)+1, . . . , yN )T.
(3.8)

2. The numbers yN+1, . . . , yN+M form the M terms of the simultaneous forecast.

Remark 3.3 The algorithm formulated above is an analogue of the R-forecasting,
since R in (3.8) is applied to the reconstructed series. An analogue of the V-forecasting
can also be considered.

3.1.3 SSA Forecasting Algorithms: Similarities
and Dissimilarities

If Lr is spanned by certain eigenvectors obtained from the SVD of the trajectory
matrix of the series XN , then the corresponding forecasting algorithm will be called
the Basic SSA forecasting algorithm.

Let us return to Basic SSA and assume that our aim is to extract an additive compo-
nent X

(1)
N from a series XN . For an appropriate window length L , we obtain the SVD

of the trajectory matrix of the series XN and select the eigentriples (
√

λi , Ui , Vi ),

i ∈ I , corresponding to X
(1)
N . Then we obtain the resultant matrix

XI =
∑

i∈I

√

λiUi V T
i

and, after the diagonal averaging, we obtain the reconstructed series ˜X
(1)
N that esti-

mates X
(1)
N .

Note that the columns ̂X1, . . . , ̂X K of the resultant matrix XI belong to the linear

space Lr = span(Ui , i ∈ I ). If X
(1)
N is strongly separable from X

(2)
N

def= XN − X
(1)
N ,
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then Lr coincides with X(L ,1) (the trajectory space of the series X
(1)
N ) and XI is a

Hankel matrix (in this case, XI is the trajectory matrix of the series X
(1)
N ). Then the

recurrent, vector and simultaneous forecasts coincide and the resulting procedure
could be called the exact continuation of X

(1)
N . More precisely, in this situation the

matrix Π is the identity matrix, and (3.6) coincides with (3.3). Furthermore, the
matrix Z has Hankel structure and the diagonal averaging does not change the matrix
elements.

If X
(1)
N and X

(2)
N are approximately strongly separable, then Lr is close to X(L ,1)

and XI is approximately a Hankel matrix.
If there is no exact separability, then different modifications of the forecasting

algorithms usually give different results. Let us describe the difference between
them. Since the recurrent and vector forecasting algorithms are more conventional
and have less limitations, we shall concentrate on the recurrent and vector forecasting
algorithms only (besides, the simulations show that the simultaneous forecasting is
often less accurate).

• In a typical situation, there is no time series such that the linear space Lr (for
r < L − 1) is its trajectory space [12, Proposition 5.6], and therefore this space
cannot be the trajectory space of the series to be forecasted. The R-forecasting
method uses Lr to obtain the LRR of the forecasting series. The V-forecasting
procedure tries to perform the L-continuation of the series in Lr : any vector Zi+1 =
PVec Zi belongs to Lr , and Zi+1 is as close as possible to Zi . The last component
of Zi+1 is obtained from Zi+1 by the same LRR as used in the R-forecasting.
• Both forecasting methods have two general stages: the diagonal averaging and

continuation. For the R-forecasting, the diagonal averaging is used to obtain the
reconstructed series, and continuation is performed by applying the LRR. In the
V-forecasting, these two stages are used in the reverse order; first, vector continu-
ation in Lr is performed and then the diagonal averaging gives the forecast.
• If there is no exact separability it is hard to compare the recurrent and vector

forecasting methods theoretically. Closeness of the two forecasting results can be
used as an argument in favour of the forecasting stability.
• R-forecasting is simpler to interpret in view of the link between LRRs and their

characteristic polynomials, see Sect. 3.2. On the other hand, numerical study
demonstrates that the V-forecasting is typically more ‘conservative’ (or less ‘rad-
ical’) when the R-forecasting exhibits either rapid increase or decrease.
• V-forecasting has a larger computational cost than R-forecasting.

Remark 3.4 Forecasting algorithms described in Sect. 3.1 are based on the estimation
of the trajectory subspace of the forecasted component. In addition to Basic SSA,
there are other methods of estimation of the trajectory subspace. For example, if
the subspace is estimated by Toeplitz SSA, we obtain Toeplitz SSA forecasting
algorithms. We may wish to use SSA with centering for estimating the subspace; in
this case, we arrive at corresponding modifications of SSA forecasting with centering,
see [12, Sect. 2.3.3].
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3.1.4 Appendix: Vectors in a Subspace

In this section, we formulate two technical results that provide the theoretical ground
for both forecasting and filling in methods. For proofs and details, we refer to [11].

Consider the Euclidean space Rn . Define Jn = {1, . . . , n} and denote by Q =
{i1, . . . , is} ⊂ Jn an ordered set, |Q| = s. Let Is denote the unit s × s matrix.
We define a restriction of a vector X = (x1, . . . , xn)T ∈ Rn onto a set of indices
Q = {i1, . . . , is} as the vector X

∣

∣

Q = (xi1 , . . . , xis )
T ∈ Rs . The restriction of a

matrix onto a set of indices is the matrix consisting of restrictions of its column
vectors onto this set.

The restriction of a q-dimensional subspace Lq onto a set of indices Q is the space
spanned by restrictions of all vectors of Lq onto this set; the restricted space will be
denoted by Lq

∣

∣

Q. It is easy to prove that for any basis {Hi }qi=1 of the subspace Lq ,
the equality Lq

∣

∣

Q = span
(

H1
∣

∣

Q, . . . , Hq
∣

∣

Q

)

holds.

3.1.4.1 Filling in Vector Coordinates in the Subspace

Consider an m-dimensional subspace Lm ⊂ Rn with m < n. Denote by {Pk}mk=1 an
orthonormal basis in Lm and define the matrix P = [P1 : . . . : Pm]. Fix an ordered
set of indices Q = {i1, . . . , is} with s = |Q| ≤ n − m.

First, note that the following conditions are equivalent (it follows from [11, Lemma
2.1]): (1) for any Y ∈ Lm

∣

∣

Jn\Q there exists an unique vector X ∈ Lm such that

X
∣

∣

Jn\Q = Y , (2) the matrix Is−P
∣

∣

Q

(

P
∣

∣

Q

)T be non-singular, and (3) span(ei , i ∈ Q)∩
Lm = {0n}. Either of these conditions can be considered as a condition of unique
filling in of the missing vector components with indices from Q.

Proposition 3.2 Let the matrix Is−P
∣

∣

Q

(

P
∣

∣

Q

)T
be non-singular. Then for any vector

X ∈ Lm we have
X

∣

∣

Q = R X
∣

∣

Jn\Q, (3.9)

where
R = (

Is − P
∣

∣

Q

(

P
∣

∣

Q

)T)−1 P
∣

∣

Q

(

P
∣

∣

Jn\Q
)T

. (3.10)

3.1.4.2 Projection Operator

Let Y ∈ Rn and Z = Y
∣

∣

Jn\Q ∈ Rn−s . Generally, Z /∈ Lm
∣

∣

Jn\Q. However, for

applying formula (3.9) to obtain the vector from Lm , it is necessary that Z ∈ Lm
∣

∣

Jn\Q.

The orthogonal projector Rn−s → Lm
∣

∣

Jn\Q transfers Z to Lm
∣

∣

Jn\Q.
Let us derive the form of the matrix of the projection operator ΠJn\Q. Set V =

P
∣

∣

Jn\Q and W = P
∣

∣

Q for the convenience of notation.
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Proposition 3.3 Assume that the matrix Is −WWT is nonsingular. Then the matrix
of the orthogonal projection operator ΠJn\Q has the form

ΠJn\Q = VVT + VWT(Is −WWT)−1WVT. (3.11)

3.2 LRR and Associated Characteristic Polynomials

3.2.1 Basic Facts

The theory of the linear recurrence relations and associated characteristic polynomi-
als is well known (for example, see [9, Chap. V, Sect. 4]). Here we provide a short
survey of the results which are most essential for understanding SSA forecasting.

Definition 3.1 A time series SN = {si }Ni=1 is governed by a linear recurrence rela-
tion (LRR), if there exist a1, . . . , at such that

si+t =
t

∑

k=1

aksi+t−k, 1 ≤ i ≤ N − t, at 	= 0, t < N . (3.12)

The number t is called the order of the LRR, a1, . . . , at are the coefficients of the
LRR. If t = r is the minimal order of an LRR that governs the time series SN , then
the corresponding LRR is called minimal and we say that the time series SN has
finite-difference dimension r .

Note that if the minimal LRR governing the signal SN has order r with r < N/2,
then SN has rank r (see Sect. 2.3.1.2 for the definition of the series of finite rank).

Definition 3.2 A polynomial Pt (μ) = μt −∑t
k=1 akμ

t−k is called a characteristic
polynomial of the LRR (3.12).

Let the time series S∞ = (s1, . . . , sn, . . .) satisfy the LRR (3.12) with at 	= 0 and
i ≥ 1. Consider the characteristic polynomial of the LRR (3.12) and denote its
different (complex) roots by μ1, . . . , μp with 1 ≤ p ≤ t . All these roots are non-
zero as at 	= 0. Let the multiplicity of the root μm be km , where 1 ≤ m ≤ p and
k1 + . . . + kp = t . The following well-known result (see e.g. [12, Theorem 5.3] or
[13]) provides an explicit form for the series which satisfies the LRR.

Theorem 3.1 The time series S∞ = (s1, . . . , sn, . . .) satisfies the LRR (3.12) for all
i ≥ 0 if and only if

sn =
p

∑

m=1

⎛

⎝

km−1
∑

j=0

cmj n
j

⎞

⎠ μn
m, (3.13)

http://dx.doi.org/10.1007/978-3-642-34913-3_2
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where the complex coefficients cmj depend on the first t points s1, . . . , st .

For real-valued time series, Theorem 3.1 implies that the class of time series
governed by the LRRs consists of sums of products of polynomials, exponentials
and sinusoids.

3.2.2 Roots of the Characteristic Polynomials

Let the series SN = (s1, . . . , sN ) be governed by an LRR (3.12) of order t . Let
μ1, . . . , μp be the different (complex) roots of the characteristic polynomial Pt (μ).
As at 	= 0, these roots are not equal to zero. We also have k1 + . . .+ kp = t , where
km are the multiplicities of the roots μm (m = 1, . . . , p).

Denote sn(m, j) = n jμn
m for 1 ≤ m ≤ p and 0 ≤ j ≤ km−1. Theorem 3.1 tells

us that the general solution of the Eq. (3.12) is

sn =
p

∑

m=1

km−1
∑

j=0

cmj sn(m, j) (3.14)

with certain complex cmj . The coefficients cmj are defined by s1, . . . , st , the first t
elements of the series SN .

Thus, each root μm produces a component

s(m)
n =

km−1
∑

j=0

cmj sn(m, j) (3.15)

of the series SN . Let us fix m and consider the mth component in the case km = 1,
which is the main case in practice. Set μm = ρei2πω, ω ∈ (−1/2, 1/2], where ρ > 0
is the modulus (absolute value) of the root and 2πω is its polar angle.

If ω is either 0 or 1/2, then μm is a real root of the polynomial Pt (μ) and the
series component s(m)

n is real and is equal to cm0μ
n
m . This means that s(m)

n = Aρn

for positive μm and s(m)
n = A (−1)nρn = Aρn cos(πn) for negative μm . This last

case corresponds to the exponentially modulated saw-tooth sequence.
All other values of ω lead to complex μm . In this case, Pt has a complex conjugate

root μl = ρe−i2πω of the same multiplicity kl = 1. We thus can assume that
0 < ω < 1/2 and describe a pair of conjugate roots by the pair of real numbers
(ρ, ω) with ρ > 0 and ω ∈ (0, 1/2).

Adding up the components s(m)
n and s(l)

n corresponding to these conjugate roots
we obtain the real series Aρn cos(2πωn + ϕ), with A and ϕ expressed in terms of
cm0 and cl0. The frequency ω can be expressed in the form of the period T = 1/ω

and vice versa.
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The asymptotic behaviour of s(m)
n mainly depends on ρ = |μm |. Let us consider

the simplest case km = 1 as above. If ρ < 1, then s(m)
n rapidly tends to zero and

asymptotically has no influence on the whole series (3.14). Alternatively, the root
with ρ > 1 and |cm0| 	= 0 leads to a rapid increase of |sn| (at least, of a certain
subsequence of {|sn|}).

Let the series SN have finite-difference dimension r . Then the characteristic poly-
nomial of its minimal LRR of order r has r roots. The same series satisfies many
other LRRs of dimensions t > r . Consider such an LRR (3.12). The characteristic
polynomial Pt (μ) of the LRR (3.12) has t roots with r roots (we call them the main
roots) coinciding with the roots of the minimal LRR. The other t−r roots are extra-
neous: in view of the uniqueness of the representation (3.15), the coefficients cmj

corresponding to these roots are equal to zero. However, the LRR (3.12) governs a
wider class of series than the minimal LRR.

Since the roots of the characteristic polynomial specify its coefficients uniquely,
they also determine the corresponding LRR. Consequently, by removing the extrane-
ous roots of the characteristic polynomial Pt (μ), corresponding to the LRR (3.12),
we can obtain the polynomial describing the minimal LRR of the series.

Example 3.1 Annual periodicity

Let the series SN have zero mean and period 12. Then it can be expressed as a sum
of six harmonics:

sn =
5

∑

k=1

ck cos(2πnk/12+ ϕk)+ c6 cos(πn). (3.16)

Under the condition ck 	= 0 for k = 1, . . . , 6, the series has finite-difference
dimension 11. In other words, the characteristic polynomial of the minimal LRR
governing the series (3.16) has 11 roots. All these roots have modulus 1. The real
root −1 corresponds to the last term in (3.16). The harmonic term with frequency
ωk = k/12, k = 1, . . . , 5, generates two complex conjugate roots exp(±i2πk/12),
which have polar angles ±2πk/12.

3.2.3 Min-Norm LRR

Consider a time series SN of rank r governed by an LRR. Let L be the window
length (r < min(L , K ), K = N − L + 1), S be the trajectory matrix of SN , S be its
trajectory space, P1, . . . , Pr form an orthonormal basis of S and S⊥ be the orthogonal
complement to S. Denote A = (aL−1, . . . , a1,−1)T ∈ S⊥, aL−1 	= 0. Then the time
series S satisfies the LRR
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si+(L−1) =
L−1
∑

k=1

aksi+(L−1)−k, 1 ≤ i ≤ K . (3.17)

Conversely, if a time series is governed by an LRR (3.17), then the LRR coefficients

B = (aL−1, . . . , a1)
T complemented with −1 yield the vector

(

B

−1

)

∈ S⊥. Note

that any LRR that governs the time series can be treated as a forward linear prediction.
In addition, if we consider a vector in S⊥ with −1 as the first coordinate, then we
obtain the so-called backward linear prediction [26].

For any matrix A, we denote by A the matrix A with the last row removed and by
A the matrix A without the first row.

From the viewpoint of prediction, the LRR governing a time series of rank r
has coefficients derived from the condition ST B = (sL , . . . , sN )T. This system of
linear equations may have several solutions, since the vector (sL , . . . , sN )T belongs
to the column space of the matrix ST. It is well-known that the least-squares solution
expressed by the pseudo-inverse to ST yields the vector B with minimum norm (the
solution for the method of total least squares coincides with it). It can be shown that
this minimum-norm solution BLS can be expressed as

BLS = (aL−1, . . . , a1)
T = 1

1− ν2

r
∑

i=1

πi Pi , (3.18)

where πi are the last coordinates of Pi and ν2 =∑r
i=1 π2

i .

Thus, one of the vectors from S⊥, which equals ALS =
(

BLS

−1

)

, has a special

significance and the corresponding LRR is called the min-norm LRR, which provides
the min-norm (forward) prediction. Similarly, we can derive a relation for the min-
norm backward prediction.

It is shown in [12, Proposition 5.5] and [16] that the forward min-norm prediction
vector ALS is the normalized (so that its last coordinate is equal to−1) projection of
the Lth coordinate vector eL on the orthogonal complement to the signal subspace.
Therefore, the min-norm prediction vector depends on the signal subspace only.

The following property demonstrates the importance of the minimum norm of the
LRR coefficients for noise reduction.

Proposition 3.4 Let XN = SN + PN , where PN is stationary white noise with zero
mean and variance σ 2, X, S be L-lagged vectors of XN and SN correspondingly
and C ∈ RL−1. Then for x = CT S and x̃ = CT X, we have Ex̃ = x and Dx̃ =
‖C‖2σ 2.

If X = X K is the last lagged vector of SN , then x̃ = CT X K can be considered as
a forecasting formula applied to a noisy signal and ‖C‖2 regulates the variance of
this forecast.
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Fig. 3.1 Annual periodicity: main and extraneous roots

The following property of the min-norm LRR, which was derived in [17], is
extremely important for forecasting: all extraneous roots of the min-norm LRR lie
inside the unit circle of the complex plane. Example 3.2, where the min-norm LRR
is used, illustrates it. This property gives us hope that in the case of real-life time
series (when both the min-norm LRR and the related initial data are perturbed) the
terms related to the extraneous roots in (3.13) only slightly influence the forecast.
Moreover, bearing in mind the results concerning the distribution of the extraneous
roots (see [21, 27]), we can expect that the extraneous summands compensate (cancel
out) each other.

Example 3.2 Annual periodicity and extraneous roots

Let us consider the series (3.16) from Example 3.1 and the min-norm LRR, which
is not minimal.

Let N be large enough. If we select certain L ≥ 12 and take r = 11, Lr = S(SN ),
then the vector R = (aL−1, . . . , a1)

T defined in (3.18) produces the LRR (3.17),
which is not minimal but governs the series (3.16).

Let us take ci = i − 1, ϕ1 = . . . = ϕ5 = 0 and L = 24, 36. The roots of
the characteristic polynomials of the LRR (3.17) are depicted in Fig. 3.1. We can
see that the main 11 roots of the polynomial compose 11 of 12 vertices of a regular
dodecagon and lie on the unit circle in the complex plane. Twelve (L = 24) and
twenty four (L = 36) extraneous roots have smaller moduli.

Remark 3.5 Note that the min-norm LRR forms the basis for SSA forecasting meth-
ods introduced in Sect. 3.1 (see [12, Sect. 2.1]). In particular, the R-forecasting uses
the estimated min-norm LRR for forecasting: compare the formulas for coefficients
(3.1) with (3.18).
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3.3 Recurrent Forecasting as Approximate Continuation

Exact continuation does not have practical meaning. Indeed, it seems unwise to
assume that a real-life time series is governed by some LRR of relatively small
dimension. Therefore we need to consider approximate continuation, which is of
much greater importance in practice than exact continuation. In this section we
consider approximate continuation with the help of recurrent forecasting. However,
most discussions are also relevant for other SSA forecasting algorithms.

3.3.1 Approximate Separability and Forecasting Errors

Let XN = X
(1)
N +X

(2)
N and suppose that the series X

(1)
N admits a recurrent continua-

tion. Denote by d the dimension of the minimal recurrence relation governing X
(1)
N .

If d < min(L , N − L + 1), then d = rankL(X
(1)
N ).

If X
(1)
N and X

(2)
N are strongly separable for some window length L , then the tra-

jectory space of X
(1)
N can be found and we can perform recurrent continuation of the

series X
(1)
N by the method described in Sect. 3.1.2.1. We now assume that X

(1)
N and

X
(2)
N are approximately strongly separable and discuss the problem of approximate

continuation (forecasting) of the series X
(1)
N in the subspace Lr . The choice of Lr is

described in Sect. 3.1.3. If the choice is proper, r = d.
The series of forecasts yn (n > N ) defined by (3.2) generally does not coincide

with the recurrent continuation of the series X
(1)
N . The deviation between these two

series makes the forecasting error. This error has two origins. The main one is the
difference between the linear space Lr and X(L ,1), the trajectory space of the series
X

(1)
N (some inequalities connecting the perturbation of the LRR (3.2) with that of

X(L ,1) are derived in [19]). Since the LRR (3.2) is produced by the vector R and
the latter is strongly related to the space Lr , the discrepancy between Lr and X(L ,1)

produces an error in the LRR governing the series of forecasts. In particular, the
finite-difference dimension of the series of forecasts yn (n > N ) is generally larger
than r .

The other origin of the forecasting error lies in the initial data used to build the
forecast. In the recurrent continuation, the initial data is x (1)

N−L+2, . . . , x (1)
N , where

x (1)
n is the nth term of the series X

(1)
N . In Basic SSA R-forecasting algorithm, the initial

data consists of the last L−1 terms yN−L+2, . . . , yN of the reconstructed series. Since
generally x (1)

n 	= yn , the initial data used in LRR is a source of forecasting errors.
The splitting of the whole error into two parts is investigated in [10] by simulations.
For L close to N/2 these parts are comparable, while for small L the contribution of
the error caused by the wrong reconstruction is larger.
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On the other hand, if the quality of approximate separability of X
(1)
N and X

(2)
N is

rather good and we select the proper eigentriples associated with X
(1), then we can

expect that the linear spaces Lr and X(L ,1) are close. Therefore, the coefficients in
the LRR (3.2) are expected to be close to those of the LRR governing the recurrent
continuation of the series X

(1)
N . Similarly, approximate separability implies that the

reconstructed series yn is close to x (1)
n and therefore the error due to the imprecision

of the initial data used for forecasting is also small. As a result, in this case we
can expect that Basic SSA R-forecasting procedure provides a reasonably accurate
approximation to the recurrent continuation of X

(1)
N , at least in the first few steps.

Remark 3.6 Since the forecasting procedure contains two generally unrelated parts,
namely, estimation of the LRR and estimation of the reconstruction, we can modify
these two parts of the algorithm separately. For example, for forecasting a signal, the
LRR can be applied to the initial time series if the last points of the reconstruction
are expected to be biased. Another modification of the forecasting procedure is
considered in [10] and consists in the use of different window lengths to estimate the
LRR and to reconstruct the time series.

3.3.2 Approximate Continuation and the Characteristic
Polynomials

In this section we continue the discussion about the errors of separability and fore-
casting. The discrepancy between Lr and X(L ,1) can be described in terms of the
characteristic polynomials.

We have three LRRs: (i) the minimal LRR of dimension r governing the series
X

(1)
N , (ii) the continuation LRR of dimension L−1, which also governs X

(1)
N , but

produces L − r − 1 extraneous roots in its characteristic polynomial PL−1, and
(iii) the forecasting min-norm LRR governing the series of forecasts yn (n > N ).

The characteristic polynomial P(x)
L−1 of the forecasting LRR and continuation

polynomial PL−1 have L−1 roots. If Lr and X(L ,1) are close, then the coefficients of
the continuation and forecasting recurrence relations must be close too. Therefore,
all simple roots of the forecasting characteristic polynomial P(x)

L−1 must be close to
that of the continuation polynomial PL−1. The roots μm with multiplicities km > 1
could be perturbed in a more complex manner.

Example 3.3 Perturbation of the multiple roots

Let us consider the series XN with

xn = (A + 0.1 n)+ sin(2πn/10), n = 0, . . . , 199.
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Evidently, XN = X
(1)
N +X

(2)
N with the linear series X

(1)
N defined by x (1)

n+1 = A+0.1 n

and the harmonic series X
(2)
N corresponding to x (2)

n+1 = sin(2πn/10).
The series XN has rank 4 and is governed by the minimal LRR of order 4. There-

fore, any LRR governing XN produces a characteristic polynomial with four main
roots. These main roots do not depend on A; the linear part of the series generates
one real root μ = 1 of multiplicity 2, while the harmonic series corresponds to two
complex conjugate roots ρe±i2πω with modulus ρ = 1 and frequency ω = 0.1.

Our aim is to forecast the series X
(1)
N for A = 0 and A = 50 with the help of Basic

SSA R-forecasting algorithm. In both cases, we take the window length L = 100 and
choose the eigentriples that correspond to the linear part of the initial time series XN .
(For A = 0 we take the two leading eigentriples, while for A = 50 the appropriate
eigentriples have the ordinal numbers 1 and 4.) Since the series X

(1)
N and X

(2)
N are

not exactly separable for any A and any choice of L , we deal with approximate
separability.

The forecasting polynomials P(x)
L−1 with A = 0 and A = 50 demonstrate different

splitting of the double root μ = 1 into two simple ones. For A = 0 there appear two
complex conjugate roots with ρ = 1.002 and ω = 0.0008, while in the case A = 50
we obtain two real roots equal to 1.001 and 0.997. All extraneous roots are smaller
than 0.986.

This means that for A = 0 the linear series X
(1)
N is approximated by a low-

frequency harmonic with slightly increasing exponential amplitude. In the case A =
50 the approximating series is the sum of two exponentials, one of them is slightly
increasing and another one is slightly decreasing.

These discrepancies lead to quite different long-term forecasting results: oscillat-
ing for A = 0 and exponentially increasing for A = 50. For short-term forecasting
this difference is not important.

Let us consider the part of the forecasting error caused by errors in the initial data,
that is, in the reconstruction of the forecasted series component. If the LRR is not
minimal (L > r + 1), then the corresponding characteristic polynomial PL−1 has
L − 1 − r extraneous roots. If there is no reconstruction error, then the extraneous
roots do not affect the forecast behavior, since the coefficients cmj in (3.13) for the
corresponding summands are equal to zero. However, if one applies the LRR to the
perturbed initial terms, then the extraneous roots start to affect the forecasting results.
The extraneous roots of the min-norm LRR lie within the unit circle and their effect
on the forecasting decreases for long-term forecasting. Unfortunately, the minimal
LRR is not appropriate for forecasting as it is very sensitive to errors in the initial
data. Hence the presence of extraneous roots should be taken into account.

In the case of approximate separability, the min-norm LRR is found approxi-
mately. As a consequence, the extraneous roots can have absolute values larger than
1. The extraneous roots with moduli greater than 1 are the most hazardous, since the
extraneous summand μn in (3.13), caused by an extraneous root μ with |μ| > 1,
grows to infinity. Therefore, it is important to look at the extraneous roots of the LRR
used for forecasting.
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If the forecasted series component X
(1)
N is the signal, then the main roots can be

called signal roots. Note that the scan of extraneous roots should be used both to
find a parametric form (3.13) of the signal (then we should identify the signal roots
and remove extraneous roots) and also to forecast the signal (then we do not need to
know the values of the roots but we would like to have no extraneous roots outside
the unit circle).

Since the forecasting LRR is fully determined by the roots of its characteristic
polynomial certain manipulations with the polynomial roots can be performed to
modify the R-forecasting procedure.

• Let the main roots of the min-norm LRR of order L − 1 be identified or estimated
(e.g. by ESPRIT, see Sect. 3.8.2). For example, for a time series with the signal
components which are not decreasing, the estimated main roots typically have
maximal moduli, since the extraneous roots lie inside the unit circle. Thereby, we
obtain the estimated minimal LRR (which is also the min-norm LRR of order r ).
However, it follows from the definition of the minimum norm that the norm of
coefficients of the minimal LRR is larger than that of the min-norm LRR of order
L−1 for L > r+1. Therefore, the forecast by the minimal LRR is more sensitive to
errors in the initial data. Simulations demonstrate that the use of the minimal LRR
usually does not gives the most accurate forecast and, moreover, these forecasts
are often rather unstable.
• A safe way of correcting the LRR is by adjusting the identified main roots when

an additional information about the time series is available. For example, if we
know that the forecasted oscillations have stationary periodicities with constant
amplitudes, then we know that the root moduli are equal to one and therefore the
corresponding roots can be substituted with μ′ = μ/‖μ‖. If there is a periodicity
with known period in the time series, then we can correct the arguments of the
corresponding roots (for example, to 1/12, 1/6 and so on for a time series with
seasonality).
• If the main roots have been estimated, then the explicit formula for the time series

values in the form (3.13) can be obtained (with estimation of cmj by the least
squares method) and the forecast can be produced by this explicit formula. How-
ever, the explicit forecast needs root estimation, while the R-forecasting does not
need root estimation and therefore is more robust.

3.4 Confidence Bounds for the Forecast

There are several conventional ways of estimating the accuracy of a forecast. Most
of them can be applied for forecasting of the signal in the signal plus noise model.

1. Theoretical confidence intervals can be constructed if the model of time series is
known and there are theoretical results about the distribution of the forecast.

2. Bootstrap confidence intervals can be constructed if the model is estimated in the
course of analysis of the time series.
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3. The accuracy of forecasting can be tested by removing the last points and then
forecasting their values (the so-called retrospective forecast). This can be repeated
with the cut made at different points.

4. If we are not interested in the retrospective forecast (we really need to forecast the
future) and cannot reliably build an SSA model (as well as any other model) then
we can use the following approach: we build a large number of SSA forecasts
(e.g. using a variety of L and different but reasonable grouping schemes) and
compare the forecast values at the horizon we are interested in. If the forecasts
are going all over the place then we cannot trust any of them. If however the
variability of the constructed forecasts is small then we (at least partly) may trust
them. This approach has been applied in [22] for forecasting Earth’s temperatures,
where it is shown that the forecasts of Earth’s temperatures for the next 5–10 years
became very stable if forecasts use the records up to 2008 or later. On contrast,
if we use temperature records only until 2005 or 2006 then SSA forecasting with
different parameters gives totally different forecasts; see [22] for more details and
explanations.

If there is a set of possible models, then the model can be chosen by minimizing
the forecasting errors. An adjustment taking into account the number of parameters
in the models should be made similar to Akaike-like methods or by using degree-of-
freedom adjustments.

We do not consider the theoretical approach for estimating accuracy as there are
not enough theoretical results which would estimate the precision of SSA forecasts
theoretically. Below in this section we consider bootstrap confidence intervals in some
detail. Since the construction of bootstrap confidence intervals is very similar to that
of the Monte Carlo confidence intervals, we also consider Monte Carlo techniques
for the investigation of the precision of reconstruction and forecasting. Note that
by constructing bootstrap confidence intervals for forecasting values we also obtain
confidence limits for the reconstructed values.

3.4.1 Monte Carlo and Bootstrap Confidence Intervals

According to the main SSA forecasting assumptions, the component X
(1)
N of the

series XN ought to be governed by an LRR of relatively small dimension, and the
residual series X

(2)
N = XN −X

(1)
N ought to be approximately strongly separable from

X
(1)
N for some window length L . In particular, X

(1)
N is assumed to be a finite subseries

of an infinite series, which is a recurrent continuation of X
(1)
N . These assumptions

hold for a wide class of practical series.
To establish confidence bounds for the forecast, we have to apply even stronger

assumptions, related not only to X
(1)
N , but to X

(2)
N as well. We assume that X

(2)
N is a

finite subseries of an infinite random noise series X
(2) that perturbs the signal X

(1).
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We only consider Basic SSA R-forecasting method. All other SSA forecasting
procedures can be treated analogously.

Let us consider a method of constructing confidence bounds for the signal X
(1)

at the moment of time N + M . In the unrealistic situation, when we know both the
signal X

(1) and the true model of the noise X
(2)
N , a direct Monte Carlo simulation

can be used to check statistical properties of the forecast value x̃ (1)
N+M relative to the

actual value x (1)
N+M . Indeed, assuming that the rules for the eigentriple selection are

fixed, we can simulate Q independent copies X
(2)
N ,i of the process X

(2)
N and apply

the forecasting procedure to Q independent time series XN ,i
def= X

(1)
N + X

(2)
N ,i . Then

the forecasting results will form a sample x̃ (1)
N+M,i (1 ≤ i ≤ Q), which should be

compared against x (1)
N+M . In this way, Monte Carlo confidence bounds for the forecast

can be build.
Since in practice we do not know the signal X

(1)
N , we cannot apply this procedure.

Let us describe the bootstrap procedure for constructing the confidence bounds for
the forecast (for a general methodology of bootstrap, see, for example, [8, Sect. 5]).

For a suitable window length L and the grouping of eigentriples, we have the
representation XN = ˜X

(1)
N +˜X

(2)
N , where ˜X

(1)
N (the reconstructed series) approximates

X
(1)
N , and ˜X

(2)
N is the residual series. Suppose now that we have a (stochastic) model

of the residuals ˜X
(2)
N . For instance, we can postulate some model for X

(2)
N and, since

˜X
(1)
N ≈ X

(1)
N , apply the same model for ˜X

(2)
N with the estimated parameters. Then,

simulating Q independent copies ˜X
(2)
N ,i of the series X

(2)
N , we obtain Q series XN ,i

def=
˜X

(1)
N +˜X

(2)
N ,i and produce Q forecasting results x̃ (1)

N+M,i in the same manner as in the
straightforward Monte Carlo simulation.

More precisely, any time series XN ,i produces its own reconstructed series ˜X
(1)
N ,i

and its own forecasting linear recurrence relation LRRi for the same window length
L and the same set of the eigentriples. Starting at the last L − 1 terms of the series
˜X

(1)
N ,i , we perform M steps of forecasting with the help of its LRRi to obtain x̃ (1)

N+M,i .

As soon as the sample x̃ (1)
N+M,i (1 ≤ i ≤ Q) of the forecasting results is obtained,

we can calculate its (empirical) lower and upper quantiles of some fixed level γ and
obtain the corresponding confidence interval for the forecast. This interval will be
called the bootstrap confidence interval. Simultaneously with the bootstrap confi-
dence intervals for the signal forecasting values, we obtain the bootstrap confidence
intervals for the reconstructed values.

The average of the bootstrap forecast sample (bootstrap average forecast) esti-
mates the mean value of the forecast, while the mean square deviation of the sample
shows the accuracy of the estimate.

The simplest model for˜X(2)
N is the model of Gaussian white noise. The correspond-

ing hypothesis can be checked with the help of the standard tests for randomness and
normality.
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3.4.2 Confidence Intervals: Comparison of Forecasting
Methods

The aim of this section is to compare different SSA forecasting procedures using
several artificial series and the Monte Carlo confidence intervals.

Let XN = X
(1)
N + X

(2)
N , where X

(2)
N is Gaussian white noise with standard

deviation σ . Assume that the signal X
(1)
N admits a recurrent continuation. We shall

perform a forecast of the series X
(1)
N for M steps using different versions of SSA

forecasting and appropriate eigentriples associated with X
(1)
N . Several effects will be

illustrated in the proposed simulation study. First, we shall compare some forecasting
methods from the viewpoint of their accuracy. Second, we shall demonstrate the role
of the proper choice of the window length.

We will consider two examples. In both of them, N = 100, M = 50 and the
standard deviation of the Gaussian white noise X

(2)
N isσ = 1. The confidence intervals

are obtained in terms of the 2.5 % upper and lower quantiles of the corresponding
empirical c.d.f. using the sample size Q = 10000.

3.4.2.1 Periodic Signal: Recurrent and Vector Forecasting

Let us consider a periodic signal X
(1)
N of the form

x (1)
n = sin(2πn/17)+ 0.5 sin(2πn/10).

The series X
(1)
N has difference dimension 4, and we use four leading eigentriples for

its forecasting under the choice L = 50. The initial series XN = X
(1)
N +X

(2)
N and the

signal X
(1)
N (the thick line) are depicted in Fig. 3.2a.

Let us apply the Monte Carlo simulation for Basic SSA recurrent and vector
forecasting algorithms. Figure 3.2b shows the confidence Monte Carlo intervals for
both methods and the true continuation of the signal X

(1)
N (thick line). Confidence
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Fig. 3.2 Comparison of recurrent and vector forecasts. a Periodic signal and the initial series.
b Confidence intervals
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Fig. 3.3 Separability and forecasting. a The signal and the initial series. b Two confidence intervals

intervals for R-forecasting are marked by dots, while thin solid lines correspond
to V-forecasting. We can see that these intervals practically coincide for relatively
small numbers of forecasting steps, while V-forecasting has some advantage in the
long-term forecasting.

3.4.2.2 Separability and Forecasting

Consider the series X
(1)
N with

x (1)
n = 3an + sin(2πn/10), a = 1.01.

This series is governed by an LRR of dimension 3. Consider Basic SSA R-forecasting
for up to 50 points of the signal values x (1)

N+ j using the series XN = X
(1)
N + X

(2)
N .

We compare two window lengths, L = 15 and L = 50. The first three eigentriples
are chosen for the reconstruction in both choices of L . The series XN and the signal
X

(1)
N (thick line) are depicted in Fig. 3.3a.
Figure 3.3b shows that the Monte Carlo forecasting confidence intervals for

L = 15 (thin line marked with dots) are apparently wider than that for L = 50.
This is not surprising since the choice L = 50 corresponds to better separability.
This is confirmed by comparing the values of the separability characteristics. In
particular, the w-correlation (2.18) between the extracted signal and the residual is
equal to 0.0083 for L = 15 and it equals 0.0016 for L = 50. Recall that the exact
separability gives zero value for the w-correlation.

3.5 Summary and Recommendations on Forecasting
Parameters

Let us summarize the material of the previous sections, taking as an example Basic
SSA R-forecasting method. Other versions of SSA forecasting can be described and
commented on similarly.

http://dx.doi.org/10.1007/978-3-642-34913-3_2
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1. Statement of the problem
We have a series XN = X

(1)
N + X

(2)
N and need to forecast its component X

(1)
N .

2. The main assumptions

• The series X
(1)
N admits a recurrent continuation with the help of an LRR of

relatively small dimension r .
• There exists L such that the series X

(1)
N and X

(2)
N are approximately strongly

separable for the window length L .

3. Proper choice of parameters
Since we have to select the window length L providing a sufficient quality of
separability and to find the eigentriples corresponding to X

(1)
N , all the major rules

and recommendations for the use of Basic SSA are applicable here. Note that in
this case we must separate X

(1)
N from X

(2)
N , but we do not need to obtain a detailed

decomposition of the series XN .

4. Specifics and potential pitfalls
The SSA forecasting problem has some specifics in comparison with Basic SSA
reconstruction problem:

• Since SSA forecasting procedure needs an estimation of the LRR, some rec-
ommendations concerning the window length can differ. In particular, SSA
modifications that use different window lengths for the reconstruction and for
building the forecasting formula can be used.
• In Basic SSA, if we enlarge the set of proper eigentriples by some extra

eigentriples with small singular values, then the result of reconstruction will
essentially be the same. When dealing with forecasting, such an operation can
produce large perturbations since the trajectory space X(L ,1) will be perturbed
a lot; its dimension will be enlarged, and therefore the LRR governing the fore-
cast will be modified. In this case, the magnitude of the extra singular values
is not important but the location of the extraneous roots of the characteristic
polynomials is important.

5. Characteristics of forecasting
Let us mention several characteristics that might be helpful in judging the fore-
casting quality.

• Separability characteristics. All separability characteristics considered in
Sect. 2.3.3 are of importance for forecasting.
• Polynomial roots. The roots of the characteristic polynomial of the forecasting

LRR can give an insight into the behaviour of the forecast. These polynomial
roots can be useful in answering the following two questions:
(a) We expect that the forecast has some particular form (for example, we

expect it to be increasing). Do the polynomial roots describe such a possi-
bility? For instance, an exponential growth has to be indicated by a single
real root (slightly) greater than 1 but if we try to forecast the annual peri-
odicity, then pairs of complex roots with frequencies≈ k/12 have to exist.

http://dx.doi.org/10.1007/978-3-642-34913-3_2
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(b) Although extraneous roots of the true min-norm LRR have moduli smaller
than 1, the extraneous roots of the estimated LRR can be larger than 1. Since
the polynomial roots with moduli greater than 1 correspond to the series
components with increasing envelopes (see Sect. 3.2), large extraneous
roots may cause problems even in the short-term forecasting. This is a
serious pitfall that always has to be closely monitored.

• Verticality coefficient. The verticality coefficient ν2 is the squared cosine of
the angle between the space Lr and the vector eL . The condition ν2 < 1 is
necessary for forecasting. The norm of the min-norm LRR (3.18) coefficients
is equal to ν2/(1 − ν2). This characteristic reflects the ability of the LRR to
decrease the noise level, see Proposition 3.4. If ν2 is close to 1, then the norm
is very large. This typically means that extra eigentriples are taken to describe
X

(1)
N (alternatively, the whole approach is inadequate).

6. The role of the initial data
Apart from the number M of forecast steps, the formal parameters of Basic SSA
R-forecasting algorithm are the window length L and the set I of eigentriples
describing X

(1)
N . These parameters determine both the forecasting LRR (3.1) and

the initial data used in the forecasting formula. Evidently, the forecasting result
essentially depends on this data, especially when the forecasting LRR has extra-
neous roots.
The SSA R-forecasting method uses the last L − 1 terms x̃ (1)

N−L+2, . . . , x̃ (1)
N of

the reconstructed series ˜X
(1)
N as the initial data for forecasting. In view of the

properties of the diagonal averaging, the last (and the first) terms of the series
X

(1)
N are usually reconstructed with poorer precision than the middle ones. This

effect may cause essential forecasting errors.
For example, any linear (and nonconstant) series xn = an + b is governed by
the minimal LRR xn = 2xn−1 − xn−2, which does not depend on a and b. The
parameters a and b used in the forecast are completely determined by the initial
data x1 and x2. Evidently, errors in this data may essentially modify the forecast.
Thus, it is important to check the last points of the reconstructed series (for
example, to compare them with the expected future behaviour of the series X

(1)
N ).

Even the use of the last points of the initial series as the initial data for the
forecasting formula may improve the forecast.

7. Reconstructed series and LRRs
In the situation of strong separability between X

(1)
N and X

(2)
N and proper eigen-

triple selection, the reconstructed series is governed by the LRR which exactly
corresponds to the series X

(1)
N . Discrepancies in this correspondence indicate on

possible errors: insufficient separability (which can be caused by the bad choice
of the forecasting parameters) or general inadequacy of the model. We can sug-
gest the following ways of testing for the presence of these errors and reducing
them.
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• Global discrepancies. Rather than using an LRR for forecasting, we can use
it for approximation of either the whole reconstructed series or its subseries.
For instance, if we take the first terms of the reconstructed series as the initial
data (instead of the last ones) and make N − L + 1 steps of the procedure,
we can check whether the reconstructed series can be globally approximated
with the help of the LRR.
• Local discrepancies. The procedure above corresponds to the long-term fore-

casting. To check the short-term correspondence of the reconstructed series
and the forecasting LRR, one can apply a slightly different method.
This method is called the multistart recurrent continuation. According to it,
for a relatively small M we perform M steps of the multi-start recurrent
continuation procedure, modifying the initial data from (̃x (1)

1 , . . . , x̃ (1)
L−1) to

(̃x (1)
K−M+1, . . . , x̃ (1)

N−M ), K =N−L+1. The M-step continuation is computed
with the help of the forecasting LRR. The results should be compared with
x̃ (1)

L+M−1, . . . , x̃ (1)
N . Since both the LRR and the initial data have errors, the

local discrepancies for small M are usually more informative than the global
ones. Moreover, by using different M we can estimate the maximal number
of steps for a reasonable forecast.

Note that small discrepancies is only the necessary condition of accurate fore-
casting as the forecasting LRR is tested on the same points that were used for the
calculation of the forecasting LRR.

8. Forecasting stability and reliability
While the correctness of the forecast cannot be checked using the data only, the
reliability of the forecast can be examined. Let us mention several methods for
carrying out such an examination.

• Different algorithms. We can try different forecasting algorithms (for example,
recurrent and vector) with the same parameters. If their results approximately
coincide, we have an argument in favour of the stability of forecasting.
• Different window lengths. If the separability characteristics are stable under

small variation in the window length L , we can compare the forecasts for
different L .
• Forecasting of truncated series. We can truncate the initial series XN by remov-

ing the last few terms from it. If the separability conditions are stable under
this operation, then we can forecast the truncated terms and compare the result
with the initial series XN and the reconstructed series ˜X

(1)
N obtained without

truncation. If the forecast is regarded as adequate, then its continuation by the
same LRR can be regarded as reliable.

9. Confidence intervals
Confidence intervals discussed in Sect. 3.4 give important additional information
about the accuracy and stability of the forecasts.
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3.6 Case Study: ‘Fortified Wine’

To illustrate SSA forecasting technique, we consider the time series ‘Fortified wine’
(monthly volumes of fortified wine sales in Australia from January 1984 till June
1994, Fig. 2.16). Naturally, time series forecasting should be based on the preliminary
time series investigation. We examine both the initial time series of length 174 and
its subseries consisting of the first 120 points. We name the former FORT174 and
the latter FORT120.

SSA forecasting should only be applied to a time series governed (may be approx-
imately) by some LRR. Therefore, we start with the study of the series from this point
of view.

3.6.1 Linear Recurrence Relation Governing the Time
Series

Preliminary analysis shows that the ‘FORT174’ time series (see Sects. 2.3.1.2 and
2.4.2.2) can be decomposed into a sum of a signal and a noise. For window length
L = 84, the signal can be reconstructed by means of ET1–11 and the w-correlation
between the signal component and the noise component is 0.004 which is small
enough. Thus, the estimated signal subspace of RL has dimension 11, the min-norm
LRR has dimension L − 1 and the reconstructed time series (the signal) can be
approximated by a time series governed by this LRR. For the series FORT120 and
L = 60 the signal also corresponds to ET1–11, the w-correlation with the residual
is slightly larger (equals 0.005).

Table 3.1 presents the information for 19 leading roots of the characteristic poly-
nomial corresponding to two estimated min-norm LRR. The roots (recall that they
are complex numbers) are ordered in the order of decrease of their moduli. The label
‘compl.’ for the ‘Type’ column of Table 3.1 notes that this line relates to two conju-
gate complex roots ρ j e±i2πω j , 0 < ω j < 0.5. In this case, the period 1/ω j is listed
in the table. The first six rows can be interpreted easily: the rows 1–3 and 5–6 corre-
spond to conjugate complex roots, which produce harmonics with periods 6, 4, 2.4,
12, and 3. Moduli larger than one correspond to harmonics with increasing ampli-
tudes, a modulus smaller than one yield a decreasing amplitude. The forth row of
the table corresponds to the real-valued root with modulus 0.997. There are no more
signal roots and all other roots are extraneous. All moduli of the extraneous roots are
less than one. The column marked ‘ET’ indicates the correspondence between the
eigentriples and the polynomial roots.

The series is decreasing and therefore the roots with modulus larger than 1 are
most probably inadequate. Especially, the leading root (ET6–7) has modulus 1.013
for FORT120 which is a possible reason for an unstable forecast. Also, for FORT120
two harmonics are mixed; therefore, two pairs of conjugated roots put into corre-
spondence with four eigentriples ET8–11.

http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_1
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Table 3.1 Time series FORT174 and FORT120: the leading roots of the characteristic polynomial
for the min-norm LRR

FORT174, L = 84 FORT120, L = 60
N ET Modulus Period Type N ET Modulus Period Type

1 6–7 1.003 5.969 Compl. 1 6–7 1.013 5.990 Compl.
2 8–9 1.000 3.994 Compl. 2 8–11 1.007 2.376 Compl.
3 4–5 0.998 2.389 Compl. 3 4–5 1.000 4.001 Compl.
4 1 0.997 No Real 4 1 0.997 No Real
5 2–3 0.994 12.002 Compl. 5 2–3 0.994 12.033 Compl.
6 10–11 0.989 3.028 Compl. 6 8–11 0.982 3.002 Compl.

7 0.976 3.768 Compl. 7 0.968 5.311 Compl.
8 0.975 3.168 Compl. 8 0.966 9.635 Compl.
9 0.975 10.212 Compl. 9 0.966 3.688 Compl.
10 0.975 5.480 Compl. 10 0.965 2.268 Compl.

Let us check whether the time series FORT174 is well fitted by the estimated min-
norm LRR. The maximum value of the global discrepancy between the reconstructed
signal and its approximation by a time series governed by the used LRR (that is, the
error of global approximation) is equal to 132 and it is smaller than 10 % of the time
series values. Note that we use the first 83 points as the initial data for the LRR and
so the approximation error is calculated starting from the 84th point.

Let us consider the minimal LRR of dimension 11 generated by the estimated
signal roots presented in Table 3.1 above the horizontal line. (Recall that there is a
one-to-one correspondence between LRRs and the roots of the associated character-
istic polynomials.) If we take the points 73–83 as the initial data for this LRR, the
series governed by the minimal LRR better approximates the time series (maximum
discrepancy is equal to 94). Thus we conclude that the time series is well approxi-
mated by the time series governed by the minimal 11-dimensional LRR. Note that
since the long-term forecast by the minimal LRR is very sensitive to the initial data,
the choice of points 73–83 as the initial data was rather fortunate. The results for
local approximation (discrepancy) are similar (magnitudes of errors are smaller while
using the minimal LRR).

Since we know the exact period of the time series periodical component (due
to its seasonal behavior), we can adjust the LRR by changing the roots so that they
correspond to the periods 6, 4, 2.4, 12 and 3. This 11-dimensional formula is called an
adjusted minimal LRR. The local approximation errors, corresponding to the adjusted
minimal LRR, are slightly smaller than for the minimal LRR.

The analytic form of the time series governed by the adjusted minimal LRR is

yn = C10.997n + C20.994n sin(2πn/12+ ϕ2)

+ C3 sin(2πn/4+ ϕ3)+ C41.003n sin(2πn/6+ ϕ4)

+ C50.998n sin(2πn/2.4+ ϕ5)+ C60.989n sin(2πn/3+ ϕ6).



96 3 SSA for Forecasting, Interpolation, Filtration and Estimation

The coefficients Ci and ϕi are determined by the initial data. The terms are ordered
by their eigenvalue shares (in the order of decrease). Recall that ordering by roots
moduli is generally different from ordering by eigenvalues, since roots moduli are
related to the rates of increase/decrease of the time series components and thereby
influence a future behavior of the time series governed by the corresponding LRR.

Thus, a preliminary investigation implies that the time series FORT174 and
FORT120 well fit to the respective models of the form required, so we can start
their forecasting.

3.6.2 Choice of Forecasting Methods and Parameters

Let us demonstrate the approach to forecasting on the ‘Fortified wine’ example, inves-
tigating the accuracy of forecasting the values at the points 121–174 (the test period)
on the base of the reconstruction of the points 1–120 (the base period ‘FORT120’).
The 12-point ahead and 54-point ahead forecasts are considered. Table 3.2 summa-
rizes the errors of forecasts for different forecasting methods. The relative MSD
errors of estimation of Y by ˜Y are calculated as

‖˜Y− Y‖F/‖Y‖F · 100 %. (3.19)

In Table 3.2, the column ‘ET’ shows the chosen numbers of the leading eigen-
triples, the column ‘rec’ gives the reconstruction errors, the columns ‘vec12’, ‘rec12’,
‘vec54’, ‘rec54’ correspond to vector and recurrent forecasting for the horizons 12
and 54 terms respectively. The suffix ‘_init’ means that the forecasting formula was
applied to the initial series rather than to the reconstructed one.

Below we enumerate the main points of the forecasting logic.

1. Note first that only a set of components separated from the residual may be chosen.
For the ‘FORT120’ series the admissible numbers of components are 1, 3, 5, 7,
or 11.

2. There is a conflict between the accuracy of reconstruction and stability of fore-
casting. In Table 3.2 the errors of reconstruction decrease (the column ‘rec’) while
the errors of forecasts decrease in the beginning and increase later. Note that all

Table 3.2 Time series FORT120: relative MSD errors of the reconstruction and forecasts

ET rec (%) vec12 (%) rec12 (%) rec_init12 (%) vec54 (%) rec54 (%) rec_init54 (%)

1 23.11 23.34 23.46 23.49 23.84 23.73 24.02
3 14.79 15.82 16.19 16.41 17.60 17.78 18.17
5 11.63 15.49 15.58 15.44 15.23 15.23 15.57
7 9.70 14.13 15.65 14.41 15.12 24.98 23.26
11 7.45 16.76 17.48 15.59 21.34 23.30 20.57
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considered components are related to the signal and therefore the increase of
errors is related to instability.

3. The observed behaviour of the forecasting errors means that the optimal number
of the components for forecasting is 7 for 12-term ahead and 5 for 54-term ahead
forecasts. This is a natural result since the stability of forecasting is much more
important for the long-term forecasting.

4. The vector forecasting method provides more stable forecast of ‘FORT120’. This
is clearly seen on the long-term forecast.

5. Comparison of the forecasting methods can be performed by means of the confi-
dence intervals: smaller size of the confidence intervals indicates better stability
of forecasting. This approach does not help to choose the optimal number of com-
ponents, since the rough forecast can be the most stable. However, this is a good
tool to compare the forecast modifications for a fixed number of components. In
particular, the size of the bootstrap confidence interval for ET1–7 is one and half
times smaller for the vector forecast than that for the recurrent forecast.

6. Table 3.2 shows that generally the forecasting formula can be applied to the initial
time series (the columns with the suffix ‘_init’) instead of the reconstructed one.
However, there is no noticeable improvement.

7. The linear recurrence relation can be adjusted by two ways. The first modifica-
tion is to remove extraneous roots and to adjust the signal roots using the known
information. For the ‘FORT120’ series we know the periods of the seasonal com-
ponent. The modified LRR is closer to the true LRR. However, the forecast is
very unstable and gives the forecasting error several times larger than the min-
norm LRR. The reason is that the initial data with error can cardinally change the
amplitudes of the true harmonics. Certainly, the minimal LRR should be applied
to the reconstructed series.

8. A specific feature of this dataset is that the behaviour of the series is close to
multiplicative. However, this time series is not pure multiplicative since the form
of the seasonal period differ from year to year (Fig. 2.17). The last conclusions is
confirmed by different moduli of the roots. For the initial time series the leading
harmonic with period 12 is decreasing and the estimated modulus of the corre-
sponding root is equal to 0.994. Therefore, the decreasing exponential has stable
behaviour, regardless of the estimation errors. After the log-transformation of a
multiplicative series the root modulus becomes close to 1 and the estimation error
can give the modulus of the estimated root larger than 1; that is, the forecast
(especially, long-term) could be unstable. The ‘FORT120’ series demonstrates
this effect, since the forecasting error for the log-transformed data is larger than
that for the original data.

Figure 3.4 shows the last 4 years of the series ‘FORT120’ (thin line) and two
vector forecasts for 54 points ahead: the stable and accurate forecast based on ET1–5
(boldface line) and the forecast with unstable and less accurate behaviour based on
ET1–11 (line with circles). Note that the accuracy of forecasting for 12-points ahead
is approximately the same for both forecasts.

http://dx.doi.org/10.1007/978-3-642-34913-3_1
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Fig. 3.4 FORT120: two forecasts

Summarizing we make the following conclusions concerning our experience with
forecasting the ‘Fortified wine’ series: (1) it is better to use the original time series
rather than its log-transformed version; (2) the best eigentriple group used for fore-
casting is either ET1–5 for long-term forecast or ET1–7 for short-term forecast;
(3) V-forecasting is more accurate than R-forecasting.

The conclusion about the accuracy of the forecasts is made on the base of com-
parison of the forecasts with series values in the forecasted points. Stability of the
forecasts can be checked by means of the confidence intervals and does not need the
knowledge of the series values. For two considered forecasts, the size of confidence
intervals for ET1–11 is more than twice larger than that for ET1–5, if we take the last
forecasted year. Thus, this example demonstrates that the more accurate long-term
forecast corresponds to the more stable one.

3.7 Missing Value Imputation

This section is devoted to the extension of SSA forecasting algorithms for the analysis
of time series with missing data.

The following three approaches for solving this problem are known. The first
approach was suggested in [24]. This approach is suitable for stationary time series
only and uses the following simple idea: in the process of the calculation of inner
products of vectors with missing components we use only pairs of valid vector
components and omit the others.

The second ‘Iterative’ approach uses an iterative interpolation. Initially, the places
of missing values are filled with arbitrary numbers. Then these numbers are iteratively
refined by the successive application of SSA. After each iteration, the values at the
places of missing values are taken from the previous iteration but the other values are
taken from the initial time series. This approach can be formally applied for almost
any location of missing values. Therefore, several artificial gaps can be added and
then be used to justify the choice of SSA parameters, namely, the window length and
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the number of chosen components. This idea was suggested in [4] for the imputation
of missing values in matrices and then was extended to time series in [15]. The
iterative approach has the semi-empirical reasoning of convergence. However, even
for noiseless signals the gaps cannot be filled in one iteration. Therefore, this method
has large computational cost. Also, it does not provide exact imputation and it needs
an additional information about the subspace dimension.

The third approach of filling in missing data is an extension of SSA forecasting
algorithms. This approach is considered below in this section and is called ‘the
subspace approach’. According to this approach we continue the structure of the
extracted component to the gaps caused by the missing data [11]. The theory of
SSA assumes that the forecasted component is (or is approximated by) a time series
of finite rank. The theoretical results concerning the exact reconstruction of missing
values are also based on this assumption. Nevertheless, the constructed algorithms are
applicable to real-life time series with missing values where they give approximate
results.

Note that in a particular case, when the missing values are located at the end of
the series, the problem of their filling in coincides with the problem of forecasting.

3.7.1 SSA for Time Series with Missing Data: Algorithm

3.7.1.1 The Layout of the Algorithm

As above, we assume that any application of SSA gives us a decomposition of the
observed time series into additive components such as trend, periodic components,
and noise. The SSA algorithm for time series with no missing data consists of two
stages: decomposition and reconstruction. Each stage, in turn, consists of two steps:
Embedding and Singular Value Decomposition are the steps of the first stage, Group-
ing and Diagonal Averaging are the steps of the second stage. The general structure
of the algorithm for the analysis of time series with missing data is the same, but the
steps are somewhat different.

Assume that we have the initial time series XN = (x1, . . . , xN ) consisting of
N elements, some part of which is unknown. Let us describe the scheme of the
algorithm in the case of reconstruction of the first component X

(1)
N of the observed

series XN = X
(1)
N + X

(2)
N . The notation of Sect. 3.1.4 is used.

First Stage: Decomposition

Step 1. Embedding. Let us fix the window length L , 1 < L < N . The embed-
ding procedure transforms the initial time series into the sequence of L-dimensional
lagged vectors {Xi }Ki=1, where K = N − L + 1. Some of the lagged vectors may be
incomplete, i.e., contain missing components. Let C be the set of indices such that
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the lagged vectors Xi with i ∈ C are complete. Let us collect all complete lagged
vectors Xi , i ∈ C , into the matrix ˜X. Assume that this matrix is non-empty. If there
are no missing values, then the matrix ˜X coincides with the trajectory matrix of the
series XN .

Step 2. Finding the basis. Let ˜S = ˜X˜XT. Denote by λ1 ≥ . . . ≥ λL ≥ 0 the
ordered eigenvalues of the matrix ˜S and by U1, . . . , UL the orthonormal system
of the eigenvectors of the matrix ˜S corresponding to these eigenvalues, d = max
{i : λi > 0}.

Second Stage: Reconstruction

Step 3a. Choosing the subspace and projection of the complete lagged vectors.
Let a set of indices Ir = {i1, . . . , ir } ⊂ {1, . . . , d} be chosen and the subspace
Mr = span(Ui1 , . . . , Uir ) be formed. The choice of the eigenvectors (i.e., their
indices) corresponding to X

(1)
N is the same as in Basic SSA. The complete lagged

vectors can be projected onto the subspace Mr in the usual way:

̂Xi =
∑

k∈Ir

(Xi , Uk)Uk, i ∈ C.

Step 3b. Projection of the incomplete lagged vectors. For each Q-incomplete lagged
vector with missing components in the positions from the set Q, the given step consists
of two parts:

(α) calculation of ̂Xi
∣

∣

JL\Q, i /∈ C ,

(β) calculation of ̂Xi
∣

∣

Q, i /∈ C .

Since adjacent lagged vectors have common information (the trajectory matrix
(2.1) consisting of the lagged vectors is Hankel) there are many possible ways of
solving the formulated problems. Some of these ways will be discussed in the follow-
ing sections. The common information also enables processing of ‘empty’ vectors
with Q = JL = {1, . . . , L}. Note that Step 3b may change the vectors ̂Xi , i ∈ C .
The result of Steps 3a and 3b is the matrix ̂X = [̂X1 : . . . : ̂X K ], which serves as an
approximation to the trajectory matrix of the series X

(1)
N , under the proper choice of

the set Ir .

Step 4. Diagonal averaging. At the last step of the algorithm, the matrix ̂X is trans-
formed into the new series ˜X

(1)
N (the reconstructed time series) by means of the

diagonal averaging.

http://dx.doi.org/10.1007/978-3-642-34913-3_2
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3.7.1.2 Clusters of Missing Data

Implementation of Step 3b for projecting the incomplete vectors needs a definition
of clusters of missing data and their classification assuming that L is fixed.

A sequence of missing data of a time series is called a cluster of missing data if
every two adjacent missing values from this sequence are separated by less than L
non-missing values and there is no missing data among L neighbours (if they exist)
of the left/right element of the cluster. Thus, a group of not less than L successive
non-missing values of the series separates clusters of missing data.

A cluster is called left/right if its left/right element is located at a distance of less
than L from the left/right end of the series. If the left or the right element of the
cluster coincides with the end of the series, the cluster is called extreme. Neither
left nor right cluster is called inner. A cluster is called continuous if it consists of
successive missing data.

Step 3b can be performed independently for each cluster of missing data (for each
lagged-vector set).

3.7.1.3 Methods for Step 3b

Different realizations of Step 3b are thoroughly considered in [11]. Here we briefly
describe several typical versions and their relation to SSA forecasting methods for-
mulated in Sect. 3.1.

Let the window length L and the indices of the eigentriples corresponding to the
chosen time series component be fixed. Propositions 3.1 and 3.3 (where we take
n = L , m = r , Ir = {i1, . . . , ir }, P = [Ui1 : . . . : Uir ]) provide the base for the
methods of filling in.

If the considered cluster is continuous and is not left, then (3.9) with Q = {L}
provides the coefficients of recurrence relation that can be applied to the reconstructed
points that lie on the left from the missing data cluster (sequential filling in from the
left). Similarly, setting Q = {1} and applying the backward recurrence relation (3.9)
to the reconstructed data taken from the right side, sequential filling in from the
right can be introduced. Different combinations of the sequential fillings in from the
left and from the right (the so-called two-sided methods) can be constructed. For
example, their average can be used.

Remark 3.7 Consider a continuous cluster of missing data of length M , which is a
right extreme cluster (and assume that there are no other clusters of missing data in
the series). If the sequential method described above is applied to this cluster, then
the result will coincide with the recurrent forecast for M terms ahead (Sect. 3.1.2.1),
where the forecast is constructed on the first N −M points of the time series and the
same parameters L and Ir .

In the same manner as we have used for the vector forecasting (Sect. 3.1.2.2), the
vector coordinates at the positions of non-missing components can be filled with the
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help of the adjacent complete vectors and then projected to M|JL\Q by the projector
given by formula (3.11) (‘Π Projector’).

Also, in the same manner as the simultaneous forecasting was introduced (see
Sect. 3.1.2.3), the vector coordinates at the positions of missing components can be
filled in simultaneously, not one by one as in the sequential filling in, since Proposition
3.2 allows filling in several vector coordinates at once (‘simultaneous filling in’). This
may simplify the imputation of not-continuous clusters of missing data.

3.7.2 Discussion

• As well as for forecasting, the approach above allows filling in missing values
in any component of the time series, not necessary in the signal. For example,
missing values in the trend can be filled in. Certainly, an approximate separability
of the imputed component from the residual is required.
• If the time series component is exactly separated from the residual, it can be filled

in exactly.
• The location of missing data is very important for the possibility of imputation

by the subspace method, since the number of non-missing values should be large
enough for achieving separability. At least, the number of the complete lagged
vectors should be larger than the rank of the forecasted time series component.
• If there are many randomly located missing data, then it can be impossible to

extract sufficient number of lagged vectors. However, it is possible to estimate the
subspace by involving the lagged vectors with a few missing entries, see [11] for
details.

3.7.3 Example

To demonstrate the work of the methods of filling in missing data, let us consider the
time series FORT120, which was investigated for forecasting in Sect. 3.6.

Let us remove 12 known values, starting with 60th point (i.e., we assume that the
values for a year since December 1984 are unknown). For this artificially missing
data we estimate the accuracy of their recovery for different versions of the algorithm.
Also, to simulate forecast, we add 12 missing data after the last, 120th point of the
series. The time series obtained is illustrated in Fig. 3.5a.

The first question is how to choose the window length L . In the case of no missing
data, the general recommendation is to choose the window length close to N/2 and
divisible by the period of expected periodicity (12 months here). The window length
L = 60 meets these conditions. However, for L = 60 all lagged vectors will contain
missing data. Hence we have to choose smaller L . The choice of L = 36 provides
us with 38 complete lagged vectors with no missing data.
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Fig. 3.5 FORT120: Filling in missing data. a Initial time series with missing data. b Reconstructed
time series with filled in data

The analysis of the time series FORT120 in Sect. 3.6 shows that the eigenvectors
with indices 1–7 provide the best forecast for 12 points ahead for the choice L = 60,
while the whole signal is described by the 11 leading eigentriples. The structure of
the eigentriples for L = 36 is similar and we can use the interpretation of the leading
eigentriples found in Sect. 3.6.

The comparison of the filling in results with the values that were artificially
removed from the initial time series shows an advantage of the version using ‘Π
Projector’ with simultaneous filling in of the missing data and the choice r = 11,
Ir = {1, 2, . . . , 11}. This differs from the forecasting results obtained in Sect. 3.6.
Note that the used method of filling in missing data at the end of the time series was
not considered during forecasting. Therefore, the ideas of missing data imputation
can extend the number of forecasting methods. On the other hand, the accuracy of
imputation of missing data at the middle of the time series can be less sensitive to
the precision of reconstruction than to the accuracy of forecasting.

The result of missing data imputation is illustrated in Fig. 3.5b. The reconstructed
series is marked by the dotted line in the area of missing data. The relative MSD
error (3.19) of reconstruction is approximately equal to 9 % for the missing data and
to 6 % for the non-missing terms in the series.

Comparison with the Iterative Method

Let us apply the iterative method to the same FORT120 data with the same missing
entries, at the middle of the series and at the end. If we replace the missing data
by the average value of all valid series points, then 20 iterations are sufficient for
convergence. The results are presented in Table 3.3. The errors are calculated as

Table 3.3 FORT120: MSD errors for iterative and subspace methods of filling in

Method Middle End Total

Subspace L = 36 255.9 292.8 275.0
Iterative L = 36 221.2 333.0 282.7
Iterative L = 60 216.2 419.3 333.6
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square root of the average squared deviations. For the missing values in the middle, the
iterative method provides slightly smaller errors of reconstruction than the subspace
method, while for the end points (that is, for forecasting) the iterative method is
not stable with respect to the window length. Note that the choice L = 60 is not
appropriate for the subspace method.

Simulations performed for noisy model series of finite rank in the form of a sum of
several products of exponential and harmonic series confirm that the error of filling in
missing data at the middle are similar for both methods, while the subspace method
is more stable for forecasting.

3.8 Subspace-Based Methods and Estimation of Signal
Parameters

While the problems of reconstruction and forecasting are traditionally included into
the scope of problems solved by SSA, the estimation of signal parameters is usually
not. At the same time, the estimation of signal parameters is the primary objective for
many subspace-based methods of signal processing. In this section we follow [10] to
describe the most common subspace-based methods and demonstrate their cohesion
with SSA. For simplicity of notation we always assume L ≤ K = N − L + 1.

Let us shortly describe the problem. Consider the signal SN = (s1, . . . , sN ) in the
form sn =∑r

j=1 c jμ
n
j , n = 1, . . . , N , where all μ j are assumed to be different (the

more complicated form (3.13) can be considered in a similar manner). The problem
is to estimate μ j observing the noisy signal. The μ j = ρ j ei2πω j are expressed in
terms of parameters ρ j and ω j which can often be interpreted. In particular, ω j

are the frequencies presented in the signal. Hence an estimator of μ j provides the
information about the structure of the signal which is distinct from the information
we get from the coefficients c j . Note that if the time series is real-valued, then sn can
be written as the sum of modulated sinusoids A jρ

n
j cos(2πω j n + ϕ j ).

The idea of subspace-based methods is as follows. Let r < N/2. The signal SN

with sn = ∑r
j=1 c jμ

n
j has rank r and is governed by linear recurrence relations

like sn = ∑t
m=1 amsn−m , t ≥ r . Then μ j can be found as the signal roots of

the characteristic polynomial of a governing LRR (see Sect. 3.2). Simultaneously,
the L-trajectory space (L > r ) of the signal (the so-called signal subspace) has
dimension r and is spanned by the vectors (1, μ j , . . . , μ

L−1
j )T. The coefficients of

the governing LRRs of order L − 1 can also be found using the information about
the signal subspace. Methods of estimating μ j based on the estimation of the signal
subspace are called subspace-based methods.

Since finding signal roots of the characteristic polynomial of the LRR governing
the signal is very important for the estimation of the signal parameters, we start with
several facts that allow estimation of signal roots as eigenvalues of some matrix.
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3.8.1 Basic Facts

The following statement is obvious.

Proposition 3.5 Roots of a polynomial p(μ) = μM+c1μ
M−1+ . . .+cM−1μ+cM

coincide with eigenvalues of its companion matrix C defined by

C =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 . . . −cM

1 0 0 . . . −cM−1
0 1 . . . 0 −cM−2
...

...
. . .

...
...

0 0 . . . 1 −c1

⎞

⎟

⎟

⎟

⎟

⎟

⎠

.

Note that the multiplicities of the roots of the polynomial p(μ) are equal to
the algebraic multiplicities of the eigenvalues of its companion matrix (i.e., to the
multiplicities of the roots of the characteristic polynomial of this matrix). However,
these multiplicities do not always coincide with the geometric multiplicities which
are equal to the dimensions of the eigenspaces corresponding to the eigenvalues.

To derive an analytic form of the signal (sn = ∑r
j=1 c jμ

n
j or see (3.13) for the

general case), we need to find roots of the characteristic polynomial of the LRR
which governs the signal. By Proposition 3.5, we have to find either the roots of the
characteristic polynomial or the eigenvalues of its companion matrix. The latter does
not require the full knowledge of the LRR. Let us demonstrate that for finding the
signal roots it is sufficient to know the basis of the signal trajectory space.

Let C be a full-rank d × d matrix, Z ∈ Rd , and Z be a full-rank L × d matrix
(L > d), which can be expressed as

Z =

⎛

⎜

⎜

⎜

⎝

ZT

ZTC
...

ZTCL−1

⎞

⎟

⎟

⎟

⎠

. (3.20)

Let us again denote the matrix Z without the last row by Z and the matrix Z
without its first row by Z. It is clear that Z = ZC. We call this property of Z the shift
property given by the matrix C.

Proposition 3.6 Let Z satisfy the shift property given by the matrix C, P be a full-
rank d × d matrix, and Y = ZP. Then the matrix Y satisfies the shift property given
by the matrix D = P−1CP, i.e., Y = YD.

The proof of this proposition is straightforward.
Note that the multiplication by a nonsingular matrix P can be considered as a

transformation of the vector coordinates in the column space of the matrix Z.
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It is easily seen that the matrices C and D = P−1CP have the same eigenvalues;
these matrices are called similar.

Remark 3.8 Let the matrix Y satisfy the shift property given by the matrix D. Then
D = Y†Y, where A† denotes the Moore-Penrose pseudoinverse of A.

Proposition 3.7 Let a time series SN = (s1, . . . , sN ) satisfy the minimal LRR (3.12)
of order d, L > d be the window length, C be the companion matrix of the charac-
teristic polynomial of this LRR. Then any L × d matrix Y with columns forming a
basis of the trajectory space of SN satisfies the shift property given by some matrix
D. Moreover, the eigenvalues of this shift matrix D coincide with the eigenvalues of
the companion matrix C and hence with the roots of the characteristic polynomial
of the LRR.

Proof Note that for any 1 ≤ i ≤ N − d we have

(si , si+1, . . . , si+(d−1))C = (si+1, si+2, . . . , si+d).

Therefore, (3.20) holds for Z = (x1, x2, . . . , sd)T. It can be easily proved that for a
time series governed by the minimal LRR of order d, any d adjacent columns of the
trajectory matrix are linearly independent. Consequently, the matrix Z = [S1 : . . . :
Sd ] is of full rank and we can apply Proposition 3.6.

Remark 3.9 The SVD of the L-trajectory matrix of a time series provides a basis
of its trajectory space. Specifically, the left singular vectors which correspond to the
nonzero singular values form such a basis. If we observe a time series of the form
‘signal+ residual’, then the SVD of its L-trajectory matrix provides the basis of the
signal subspace under the condition of exact strong separability of the signal and the
residual.

3.8.2 ESPRIT

Consider a time series XN = {xi }Ni=1 with xi = si + pi , where SN = {si }Ni=1 is
a time series governed by an LRR of order r (that is, signal) and PN = {pi }Ni=1
is a residual (noise, perturbation). Let X be the trajectory matrix of XN . In the
case of exact or approximate separability of the signal and the residual, there is
a set I of eigenvector numbers in (2.12), which correspond to the signal. If the
signal dominates, then I = {1, . . . , r} and the subspace Lr = span{U1, . . . , Ur } can
be considered as an estimate of the true signal subspace S. Therefore, we can use
˜Y = Ur = [U1 : . . . : Ur ] as an estimate of Y from Proposition 3.7. Then the shift
property is fulfilled approximately and Ur D ≈ Ur .

The method ESPRIT consists in estimation of the signal roots as the eigenvalues
of a matrix ̂D, for which

Ur
̂D ≈ Ur . (3.21)

http://dx.doi.org/10.1007/978-3-642-34913-3_2
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By estimating the signal roots ESPRIT provides estimates of the signal parameters.
Let us study the methods of finding the matrix ̂D. The main idea of LS-ESPRIT

was introduced in the paper [18] devoted to the problem of estimating frequencies in
a sum of sinusoids, in the presence of noise. The method was given the name ESPRIT
in [23]; this name was later used in many other papers devoted to the DOA (Direction
of Arrival) problem. For time series processing, LS-ESPRIT is also called Hankel
SVD (HSVD, [3]). Later the so-called TLS-ESPRIT modification was suggested (see
e.g. [28], where the method was called Hankel Total Least Squares (HTLS)). There
are a number of papers devoted to the perturbation study of ESPRIT, see e.g. [2],
where specific features of ESPRIT in the case of multiple roots are also described.

Remark 3.10 ESPRIT is able to estimate parameters of a separable time series com-
ponent, not necessary the signal, if the matrix Ur consists of the corresponding
eigenvectors.

3.8.2.1 Least Squares (LS-ESPRIT)

The LS-ESPRIT estimate of the matrix D is

̂D = U†
r Ur = (UT

r Ur )
−1UT

r Ur . (3.22)

The eigenvalues of ̂D do not depend on the choice of the basis of the subspace
Lr = span{U1, . . . , Ur }.

3.8.2.2 Total Least Squares (TLS-ESPRIT)

As Ur is known only approximately there are errors in both Ur and Ur . Therefore,
the solution of the approximate equality Ur D ≈ Ur based on the method of Total
Least Squares (TLS) can be more accurate.

Recall that to solve the equation AX ≈ B, TLS minimizes the sum

||˜A− A||2F + ||˜B− B||2F −→ min, (3.23)

with respect to ˜A and ˜B such that ∃Z : ˜AZ = ˜B.

Set A = Ur , B = Ur in (3.23). Then the matrix Z that minimizes (3.23) is called
the TLS-estimate of D (see [7] for explicit formulas).

Let us consider the dependence of the TLS-ESPRIT solution on the choice of
the basis of Lr . Numerical experiments show that this dependence takes place if the
bases are not orthogonal. However, the TLS-ESPRIT estimate is the same for any
orthonormal basis as shown in [10].
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Fig. 3.6 Rank and separability detection by ESTER. a ‘Eggs’. b ‘White dwarf’

3.8.2.3 ESPRIT and Rank Estimation

ESPRIT deals with the matrix equation (3.21) that has a solution if the r leading com-
ponents are exactly separated from the residual (the remaining L − r components).
Therefore, some measure of difference between the left-hand and the right-hand sides
of the matrix equation can indicate the cut-off points of separability; that is, it can sug-
gest the number of the leading SVD components that are separated from the residual.
Therefore, the last cut-off point of separability corresponds to the rank estimation.
In [1], the L2-norm of the difference (we denote it ρ2(r)) is used for estimating
the rank of the signal (the ESTER method) provided that there are no separability
points within the signal components. An attractive feature of the ESTER-type meth-
ods is that they assume only separability of the signal from noise and do not assume
parametric forms for the signal and noise.

However, the ESTER-type estimates of rank appear to be unstable for real-world
time series. Figure 3.6a shows how the ESTER reflects the points of separability:
small values of ρ2(r) correspond to the cut-off points of separability (compare with
Fig. 2.24a). In Fig. 3.6b, where the rank of the signal is estimated to be 11 (see
Fig. 2.26), the behavior of ρ2(r) demonstrates that there are no small values of ρ2(r)

for r ≤ 11.

3.8.3 Overview of Other Subspace-Based Methods

In this subsection, we demonstrate ideas of other subspace-based methods which
are different from SSA and ESPRIT-like methods. These methods are applied to
time series governed by LRRs and in fact estimate the main (signal) roots of the
corresponding characteristic polynomials. The most fundamental subspace-based
methods were developed for the cases of a noisy sum of imaginary exponentials
(cisoids) and of real sinusoids, for the purpose of the estimating their frequencies,
see e.g. [25]. We are mostly interested in the methods that can be applied to any time
series of finite rank given in the form (3.13).

http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_2
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We start with a description of general methods in the complex-valued case. Most
of these general methods use the correspondence between LRR and vectors from the
subspace orthogonal to the signal subspace which was introduced in Sect. 3.2.3.

The first idea is to use the properties of signal and extraneous roots to distinguish
from one another. Let us introduce three possible realizations of this idea. As before,
S is the signal subspace, Lr is its estimate.

Version 1. Consider an LRR that governs the signal (the best choice is the min-norm
LRR, see Sect. 3.2.3; however, this is not essential). Then find all the roots μm of the
characteristic polynomial of this LRR and then find coefficients cmj in (3.13). The
coefficients cmj corresponding to the extraneous roots are equal to 0. In the case of a
noisy signal, μ̂m are the roots of a polynomial with coefficients taken from a vector
that belongs to L⊥r , and the extraneous roots have small absolute values of the LS
estimates ĉm j .

Version 2. Let us consider the forward and backward min-norm predictions. It is
known that the corresponding characteristic polynomials have the conjugate extra-
neous roots and their signal roots are connected by the relation z′ = z∗/‖z‖2. Note
that the forward prediction given by a vector A ∈ S⊥ corresponds to the roots of
〈Z(z), A〉 = 0, where Z(z) = (1, z, . . . , zL−1)T and 〈· , ·〉 is the inner product in
the complex Euclidean space. At the same time, the backward prediction given by a
vector B ∈ S⊥ corresponds to the roots of 〈Z(1/z), B〉 = 0. If we consider the roots
of the forward and backward min-norm polynomials together, then all the extraneous
roots lie inside the unit circle, while one of z′ and z is located on or outside the unit
circle. This allows us to detect the signal roots. For a noisy signal, A and B are
specific vectors taken from L⊥r : these vectors are the projections onto L⊥r of unit
vectors eL and e1, correspondingly.

Version 3. Let us take a set of vectors from S⊥. Each vector from S⊥with nonzero last
coordinate generates an LRR. The signal roots of the characteristic polynomials of
these LRRs are equal, whereas the extraneous roots are arbitrary. For a noisy signal,
the set of vectors is taken from L⊥r . Then the signal roots correspond to clusters of
roots if we consider pooled roots.

A few more methods are developed for estimating frequencies in a noisy sum
of undamped sinusoids or complex exponentials. Let for simplicity sn =
∑r

k=1 ckei2πωk n . In this case, the signal roots ei2πωk all have the absolute value 1
and can be parameterized by one parameter (frequency) only. Let W = W (ω) =
Z(ei2πω). As W (ωk) ∈ S, 〈W (ωk), A〉 = 0 for all A ∈ S⊥. Therefore, if A ∈ S⊥,
then we can consider the square of the cosine of the angle between W (ω) and A as
a measure of their orthogonality. This idea forms the basis for the Min-Norm and
MUSIC methods. The modifications of the methods in which the roots are ordered
by the absolute value of the deviation of their moduli from the unit circle have names
with the prefix ‘root-’.

Version 4. Min-Norm. Let f (ω) = cos2(Ŵ (ω), A), where A, the projection of eL

onto L⊥r , is the vector corresponding to the min-norm forward prediction. The Min-
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Norm method consists in searching for the maximums of 1/ f (ω); this function can
be interpreted as a pseudospectrum.

Version 5. MUSIC. Let f (ω) = cos2( ̂W (ω),L⊥r ). If we take eigenvectors U j ,
j = r + 1, . . . , L , as a basis of L⊥r , Ur+1,L = [Ur+1 : . . . : UL ], then
Ur+1,L U∗r+1,L provides the matrix of projection on L⊥r and therefore f (ω) =
W ∗(Ur+1,L U∗r+1,L)W/‖W‖2 =

L
∑

j=r+1
f j (ω), where f j (ω) = cos2( ̂W (ω), U j ).

Thus, the MUSIC method can be considered from the viewpoint of the subspace prop-
erties and does not require the computation of roots of the characteristic polynomials.
Similar to the Min-Norm method, the MUSIC method consists in searching for the
maximums of the pseudospectrum 1/ f (ω).

3.8.4 Cadzow Iterations

Cadzow iterations [6] were suggested as a method of signal processing, without
any relation to SSA method. However, these two methods are very much related.
The Basic SSA with fixed L and fixed grouping I = {1, 2, . . . , r} is simply the
first iteration of similar Cadzow iterations. This means that Cadzow iterations can
be defined as a repeated application of Basic SSA with parameters as above to the
series ˜XI , see (2.17), obtained by Basic SSA in the previous step; the initial Cadzow
iteration is Basic SSA applied to the original series XN .

The aim of Cadzow iterations is to extract the finite-rank signal SN of rank r from
an observed noisy signal XN = SN+PN . Formally, Cadzow iterations is a method of
solving the general HTLS (Hankel matrix low-rank approximation) problem. There
is only a partial theoretical proof of convergence of Cadzow iterations but examples
demonstrate the convergence. Cadzow iterations, however, do not have to converge
to the optimal solution of the HTLS problem (and usually they do not).

Cadzow iterations present an example of the procedure called alternating projec-
tions. A short form of M iterations is ˜SN = T−1

(

H Pr
)M T(XN ). Here T is the

one-to-one correspondence between time series and trajectory matrices for the fixed
window length L , Pr is the projection of a matrix to the space of L×K matrices of
rank not larger than r , the hankelisation operator H is also the projection into the
space of Hankel matrices in the Frobenious norm. The difficulty in understanding
the properties of convergence is caused by the fact that the space of matrices of rank
≤ r is not convex.

The result of Cadzow iterations is a signal of finite rank ≤ r . However, this does
not guarantee that the limiting result is closer to the true signal than SSA result (that
is, just one iteration). Among other factors, this depends on how well the true signal
can be approximated by the series of rank r and the recommended choice of L:
indeed, a usual recommendation in signal processing literature is to choose L which
is just slightly larger than r which is unwise from the viewpoint of SSA.

http://dx.doi.org/10.1007/978-3-642-34913-3_2
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3.9 SSA and Filters

As demonstrated in Sect. 2.3, one of SSA’s capabilities is its ability to be a frequency
filter. The relation between SSA and filtering was considered in a number of papers,
see for example [5, 14]. These results are mostly related to the case where (a) the win-
dow length L is small, that is, much less than N/2, and (b) Toeplitz SSA is considered
and the filter properties are based on the properties of the eigenvectors of Toeplitz
matrices (therefore, the time series is assumed to be stationary, see Sect. 2.5.3).

In this section we describe the relation between Basic SSA and filtration in a
general form and also consider specific filters generated by Basic SSA.

3.9.1 Linear Filters and Their Characteristics

Let x = (. . . , x−1,
o

x0, x1, x2, . . .) be an infinite sequence and the symbol ‘o’ over
an element denotes its middle location. Finite series XN = (x1, . . . , xN ) can be

formally presented as a infinite sequence (. . . , 0, . . . ,
o
0, x1, x2, . . . , xN , 0, . . .). Each

linear filter Φ can be expressed as
(

Φ(x)
)

j =
+∞
∑

i=−∞
hi x j−i . The sequence hΦ =

(. . . , h−1,
o

h0, h1, . . .) is called the impulse response. A filter Φ is called FIR-filter

(i.e. with Finite Impulse Response) if
(

Φ(x)
)

j =
r2
∑

i=−r1

hi x j−i . The filter Φ is called

causal if
(

Φ(x)
)

j =
r−1
∑

i=0
hi x j−i .

The following characteristics are standard for filters: HΦ(z) = ∑

i hi z−i is a
transfer function, AΦ(ω) = |HΦ(ei2πω)| is a frequency (amplitude) response and
ϕΦ(ω) = ArgHΦ(ei2πω) is a phase response. The meaning of the amplitude and
phase responses is as follows: for the sequence x with (x) j = cos(2πω j) we have
(

Φ(x)
)

j = AΦ(ω) cos(2πω j + ϕΦ(ω)).
An important filter characteristic reflecting its noise reduction capability is the

filter power E Φ = ‖h‖2 = ∑

i h2
i . The following proposition is analogous to

Proposition 3.4.

Proposition 3.8 Let x = s + ε, where (ε) j are i.i.d, E(ε) j = 0, D(ε) j = σ 2. Let
Φ : Φ(s) = s and denote x̃ = Φ(x). Then E(̃x) j = (s) j and D(̃x) j = σ 2 · E Φ.

Also, there is a relation between the filter power and the frequency response.
Define ΔaΦ = meas{ω ∈ (−0.5, 0.5] : AΦ(ω) ≥ a}. Parseval’s identity has the
following form for filters:

E Φ =
∑

j

h2
j =

∫ 0.5

−0.5
AΦ(ω)2 dω.

http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_2
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Therefore,
ΔaΦ ≤ E Φ/a2. (3.24)

The inequality (3.24) shows how the support of the frequency response (with
threshold a) is related to the filter power.

3.9.2 SSA Reconstruction as a Linear Filter

Let us return to Basic SSA . Let L be the window length and (
√

λ, U, V ) be one of
the eigentriples generated by the SVD of the trajectory matrix of XN (see Sect. 2.1.1
for notation and definitions). Since the reconstruction operation in Basic SSA is the
linear operation, it can be written in matrix form.

Let K = N − L + 1, L∗ = min(L , K ). Define the diagonal N × N matrix

D = diag(1, 2, 3, . . . , L∗ − 1, L∗, L∗, . . . , L∗, L∗ − 1, . . . , 2, 1)

and the K × N matrix

W =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

u1 u2 u3 · · · uL 0 · · · 0 0 0

0 u1 u2 u3 · · · uL 0 · · · 0 0
... 0

. . .
. . .

. . . · · · . . . 0 · · · 0

0 · · · 0 u1 u2 u3 · · · uL 0
...

0 0 · · · 0 u1 u2 u3 · · · uL 0

0 0 0 · · · 0 u1 u2 u3 · · · uL

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Proposition 3.9 The time series component ˜XN reconstructed by the eigentriple
(
√

λ, U, V ) has the form
˜X

T
N = D−1WTWX

T
N .

Proof First, note that WX
T
N = XTU = √λV ∈ RK . This yields that the vector

WTWX
T
N (of size N ) consists of sums along N antidiagonals of

√
λU V T, the ele-

mentary summand of the SVD. Multiplication by D−1 provides the normalization of
the sums by the number of summands and therefore by the definition we obtain the
elementary reconstructed component. �

Remark 3.11 Let us add the index i to ˜X to indicate that it corresponds to the i th
eigenvector U = Ui . Then, evidently, the reconstructed series ˜X

(I ) by the set of
eigentriples {(√λi , Ui , Vi ), i ∈ I } is equal to the sum of the reconstructed elemen-
tary series ˜X

(i). Therefore, the matrix form for ˜X
(I ) immediately follows from (3.9).

http://dx.doi.org/10.1007/978-3-642-34913-3_2
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Proposition 3.9 and Remark 3.11 allow us to describe the reconstruction produced
by Basic SSA as an application of a set of linear filters.

Let L ≤ K . Define the linear filters ΘL , ΘL−1, . . ., Θ1 and Ψ by their impulse
characteristics hΘL , . . . , hΘ1 and hΨ :

hΘL = (. . . , 0,
o

uL , 0, . . .),

hΘL−1 = (. . . , 0, uL−1,
o

uL , 0, . . .),

. . .

hΘ1 = (. . . , 0, u1, . . . , uL−2, uL−1,
o

uL , 0, . . .);
hΨ = rev hΘ1 = (. . . , 0,

o
uL , uL−1, . . . , u1, 0, . . .).

Now we can introduce the reconstructing filters Φk , k = 1, . . . , L , generated by the
vector U :

Φk = Θk ◦�/(L − k + 1), (3.25)

where ‘◦’ stands for the filter composition, which is equivalent to the convolution
‘∗’ of the filter impulse characteristics.

Proposition 3.10 Let XN = (x1, x2, . . . , xN ). Then the terms of the elementary
reconstructed series ˜XN corresponding to the eigentriple (

√
λ, U, V ) have the fol-

lowing representation:

• x̃s = (Φs−K+1(XN ))s for K + 1 ≤ s ≤ N;
• x̃s = (Φ1(XN ))s for L ≤ s ≤ K .

This result is the direct consequence of Proposition 3.9. The set of filters providing
the reconstruction of x̃s for 1 ≤ s < L can be built in a similar way.

Let us examine two special filters: Φ1, which is used for the reconstruction of the
middle points of the time series with numbers L , . . . , K , and ΦL , which is used for
the reconstruction of the last point only. The former is called the MPF (Middle Point
Filter) and the latter is referred as the LPF (Last Point Filter). In next two sections
we consider them separately.

3.9.3 Middle Point Filter

As above, we assume L ≤ K . According to Proposition 3.10, the MPF Φ1 acts only
at the Lth to (N − L+1)th points. This leads to a limited use of the MPF in the
case L ∼ N/2. The explicit formula for the MPF filter Φ

(i)
1 corresponding to the

eigenvector Ui = (u1, . . . , uL)T has the following form:

x̃s =
L−1
∑

j=−(L−1)

⎛

⎝

L−| j |
∑

k=1

ukuk+| j |/L

⎞

⎠ xs− j , L ≤ s ≤ K . (3.26)
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It is clearly seen that the order of the MPF is equal to 2L−1. Alternative representation
of (3.26) is

x̃s =
L

∑

j=1

L
∑

l=1

u j ul xs+ j−l/L , L ≤ s ≤ K . (3.27)

Let us enumerate several properties of the MPF Φ
(I )
1 .

1. The filter Φ
(I )
1 is symmetric. Hence the MPF is a zero-phase filter. In particular,

the MPF does not change phases of sinusoids.
2. In a particular case of I = {i}, applying Jensen’s inequality, we obtain that the

sum of coefficients of the Φ
(i)
1 given in (3.27) is not larger than 1:

L
∑

j=1

L
∑

l=1

u j ul/L =
⎛

⎝

L
∑

j=1

u j

⎞

⎠

2
/

L ≤
L

∑

j=1

u2
j = 1.

3. If the matrix XXT is positive, then the leading eigenvector U1 is positive too
(Perron’s theorem) and, therefore, the coefficients of the filter Φ

(1)
1 are positive.

This is true, for example, in the case of positive time series. If the time series
is close to a constant (at the timescale of L), then the coordinates of U1 will
be close one to another and the MPT filter Φ

(1)
1 will be close to the so-called

triangle (Bartlett) filter. This implies, for instance, that the extraction of trend by
Sequential SSA with small L (see Sect. 2.5.5) is similar to the application of a
weighted moving average procedure with positive nearly triangular weights.

4. Power of the MPF satisfies the following inequalities.
Proposition 3.11 Let the filter Φ

(i)
1 be the MPF generated by eigenvector

Ui = (u1, . . . , uL)T. Then E Φ
(i)
1 ≤ 1/L .

Proof The proof of the proposition results from the following inequality:

||h� ∗ rev h� || ≤
L

∑

j=1

|u j | · ‖h�‖ =
L

∑

j=1

|u j | · ‖U‖ =
L

∑

j=1

|u j | ≤
√

L‖U‖ = √L.

�
Proposition 3.12 Let �

(I )
1 be the MPF generated by eigenvectors {Ui , i ∈ I }

where |I | = r . Then E Φ
(I )
1 ≤ r2/L .

Proof By linearity of the grouping operation, Φ
(I )
1 =

∑

i∈I Φ
(i)
1 , and therefore,

by Proposition 3.11 we have:

E Φ
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1 =

∥

∥

∥

∥

∥
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h
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1
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2
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(
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i∈I
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∥h
Φ

(i)
1
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)2

=
(
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i∈I

√

E Φ
(i)
1

)2

≤ r2/L .

�
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5. A direct consequence of Proposition 3.12 and inequality (3.24) is the inequality
ΔaΦ

(I )
1 ≤ r2/(a2 L). This means that for any threshold a, the support of filter

frequency response tends to 0 as L →∞. This effect is clearly seen in Fig. 2.22
(Sect. 2.4.3) showing the smoothing effect of Basic SSA.

6. Let us define for ω ∈ (−0.5, 0.5]

gU (ω) = 1

L

∣

∣

∣

∣

∣

∣

L
∑

j=1

u j e
−i2πω j

∣

∣

∣

∣

∣

∣

2

. (3.28)

The function gU is closely related to the periodogram Π L
u introduced in (2.10)

of Sect. 2.3.1.1: gU (k/L) = L Π L
u (k/L)/2 for 0 < k < N/2 and gU (k/L) =

L Π L
u (k/L) otherwise. It appears that the frequency response of the MPF is almost

the same as the periodogram of the vector U .

Proposition 3.13 Let AΦ1 be the frequency response of the MPF filter Φ1. Then
gU (ω) = AΦ1(ω).

Proof Recall thatΦ1=Θ1◦Ψ/L where hΨ = (. . . , 0,
o

uL , uL−1, . . . , u1, 0, . . .)
and hΘ1 = rev hΨ . Also, from the theory of linear filters [20] we have AΦ1◦Ψ (ω) ≡
AΦ1(ω)AΨ (ω). Then

AΦ1(ω) = 1

L
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∣

∣

L−1
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∣

∣

∣

∣

∣

·
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2

. �

7. It follows from Proposition 3.13 that for SSA identification and interpretation
of the SVD components, the periodogram analysis of eigenvectors can be very
helpful. Also, an automatic identification of components introduced in Sect. 2.4.5
is based on properties of periodograms of eigenvectors and therefore can also be
expressed in terms of the frequency response of the MPF.

3.9.4 Last Point Filter and Forecasting

The last-point filter (LPF) is not really a filter as it is used only for the reconstruction
of the last point: x̃N = ∑L−1

i=0 uLui+1xN−i . The reconstruction by the eigentriples
with numbers from the set I has the following form:

x̃ (I )
N =

L−1
∑

k=0

(

∑

i∈I

u(i)
L u(i)

k+1

)

xN−k . (3.29)

http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_2
http://dx.doi.org/10.1007/978-3-642-34913-3_2


116 3 SSA for Forecasting, Interpolation, Filtration and Estimation

However, it is the only reconstruction filter that is causal. This has two consequences.
First, the LPF of a finite-rank series is closely related to the LRR governing and
forecasting this time series. Second, the so-called Causal SSA (or last-point SSA) can
be constructed by means of the use of the last reconstructed points of the accumulated
data. Since in the Causal SSA the LPF is applied many times, the study of properties
of LPF is important.

Let the signal SN has rank r and is governed by an LRR. Unbiased causal filters of
order L and linear recurrence relations of order L−1 are closely related. In particular,
if the causal filter is given by s j = ∑L−1

k=0 aL−ks j−k and aL 	= 1, then this filter
generates the LRR of order L − 1: s j =∑L−1

k=1 cL−ks j−k , where ck = ak/(1− aL).
Similar to the minimum-norm LRR, the minimum-power filters can be considered.

It appears that the LPF has minimal power among all unbiased filters. This follows
from the relation between LRRs and causal filters. Denote by Pr the orthogonal
projector on the signal subspace. The LPF has the form sN = (Pr SK )L = AT SK ,
where A = Pr eL , while the min-norm LRR is produced by the last-point filter, i.e.
R = A/(1− aL).

In the general case, the filter (3.29) can be rewritten as x̃N = (Pr X K )L , where
X K is the last L-lagged vector, Pr is the projector on SSA estimate of the signal
subspace span(Ui , i ∈ I ). Formally applying this filter to the whole time series, we
obtain the series of length K consisting of the last points of the reconstructed lagged
vectors ˜Xk .

Note that if we use other estimates of the signal subspace, then we obtain other
versions of the last-point filter.

3.9.5 Causal SSA (Last-Point SSA)

Let X∞ = (x1, x2, . . .) be an infinite series, XM = (x1, . . . , xM ) be its subseries of
length M , L be fixed, L(M) be a subspace of RL , P(M) be a projector to L(M),
A(M) = Pr (M)eL , K = K (M) = M − L + 1.

Introduce the series X̆∞ as follow. Define (X̆∞)M = (P(M)X K (M))L = A(M)T

X K (M), where X K (M) is the last L-lagged vector of XM . Thus, (X̆∞)M is a linear
combination of the last L terms of XM with coefficients depending on M ; that is,
X̆∞ can be considered as a result of application of a sequence of different causal
filters to X∞.

If Lr (M) = L(M) = span(U1(M), . . . , Ur (M)), where U1(M), . . . , Ur (M) are
the signal eigenvectors produced by SSA with window length L applied to XM , then
this sequence of causal filters is called Causal SSA. In this case, (X̆)M is equal to the
last point of SSA reconstruction ˜XM , which in turn is equal to the last coordinate of
the projection of the last lagged vector of XM to Lr (M).

Given that Lr (M) is used as an estimate of the signal subspace, M should be large
enough to provide a good estimate. Therefore, we need to introduce a starting point
M0 (with M0 > L) in the Causal SSA and consider M ≥ M0 only.
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Since the result of application of the Causal SSA is a sequence X̆∞ built from
SSA reconstructions of the last points of the subseries, the Causal SSA can be called
Last-point SSA.

Remark 3.12 Let us fix N , L and consider XN , the corresponding U1, . . . , Ur and
L(M) = span(U1, . . . , Ur ) for any M . Then the series X̆N is the result of application
of the last-point filter to XN . Assuming that the estimates of the signal subspace on
the base of XM are stable for large enough M , we can conclude that the result of the
Causal SSA will be close to the result of the last-point filter (LPF).

Note also that in the considered particular case, X̆N (more precisely, its last K
points; the first L − 1 points are not defined or can be set to zero) coincides with the
last row of the reconstructed matrix ̂X of the series XN . That is, X̆N is similar to the
result of reconstruction before the diagonal averaging is made.

Causality yields the following relation: under the transition from XM to XM+1,
the first M points of the X̆M+1 coincide with X̆M . This is generally not true if we
consider the reconstructions ˜XM for XM obtained by the conventional SSA. The
effect (˜XM ) j 	= (˜XM+1) j , j ≤ M , is called ‘redrawing’. For real-life time series
we usually have redrawing for all j and the amount of redrawing depends on j .
Redrawing of only a few last points is usually of interest. Moreover, redrawing of
local extremes of the series is more practically important than redrawing of regular
series points. Small values of redrawing indicate stability of SSA decompositions
and hence stability of time series structure. The amount of redrawing can be assessed
by visual examination or measured using the variance of the redrawings at each time
moment of interest. These variances can be averaged if needed.

Generally, the reconstruction has no delay (at least, the middle-point filter has zero
phase shift). On the other hand, delays in the Causal SSA are very likely. In a sense,
a redrawing in SSA is transferred to a delay in the Causal SSA. If Lr corresponds
to the exactly separated component of the time series X, then SSA has no redrawing
and the Causal SSA has no delay. In conditions of good approximate separability the
redrawing is almost absent and the delay is small.

Example

Let us demonstrate the described effects on the ‘S&P500’ example introduced in
Sect. 2.5.1. Figure 3.7 shows the result of the Causal SSA with window length L = 30,
Lr (M) = span(U1(M), U2(M)) and M0 = 200. The delay is clearly seen. If we
consider non-causal (Basic) SSA reconstructions of cumulative subseries, then the
redrawing takes place (Fig. 3.8). This redrawing increases in the points of local
maximums and minimums.

Finally, let us note that if the direction of change of the time series is of primary
concern (rather than the values themselves), then, instead of taking differences of the
Causal SSA series, it may be worthwhile considering the time series which consists
of differences of the last two points of reconstructions. The result should be expected

http://dx.doi.org/10.1007/978-3-642-34913-3_2
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Fig. 3.7 S&P500: causal SSA
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Fig. 3.8 S&P500: non-causal SSA with redrawing

to be more stable since the reconstruction of the next to last point has better accuracy
than that of the last point.
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