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Preface

I was fortunate to have a diverse career in industry and academia. This included

working at International Harvester as supervisor of operations research in the

corporate headquarters; at IIT Research Institute (IITRI) as a senior scientist with

applications that spanned worldwide in industry and government; as a professor in

the Industrial Engineering Department at the Illinois Institute of Technology (IIT),

in the Stuart School of Business at IIT; at FIC Inc. as a consultant for a software

house that specializes in supply chain applications; and the many years of consult-

ing assignments with industry and government throughout the world. At IIT, I was

fortunate to be assigned a broad array of courses, gaining a wide breadth with the

variety of topics, and with the added knowledge I acquired from the students, and

with every repeat of the course. I also was privileged to serve as the advisor to many

bright Ph.D. students as they carried on their dissertation research. Bits of knowl-

edge from the various courses and research helped me in the classroom, and also in

my consulting assignments. I used my industry knowledge in classroom lectures so

the students could see how some of the textbook methodologies actually are applied

in industry. At the same time, the knowledge from the classroom helped to

formulate and develop Monte Carlo solutions to industry applications as they

unfolded. This variety of experience allowed the author to view how simulation

can be used in industry. This book is based on this total experience.

Simulation has been a valuable tool in my professional life, and some of the

applications are listed below. The simulations models were from real applications

and were coded in various languages of FORTRAN, C++, Basic, and Visual Basic.

Some models were coded in an hour, others in several hours, and some in many

days, depending on the complexity of the system under study. The knowledge

gained from the output of the simulation models proved to be invaluable to the

research team and to the project that was in study. The simulation results allowed

the team to confidently make the decisions needed for the applications at hand. For

convenience, the models below are listed by type of application.
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Time Series Forecasting

• Compare the accuracy of the horizontal forecast model when using 12, 24 or 36

months of history.

• Compare the accuracy of the trend forecast model when using 12, 24 or 36

months of history.

• Compare the accuracy of the seasonal forecast model when using 12, 24, or 36

months of history.

• Compare the accuracy of forecasts between weekly and monthly forecast

intervals.

• Compare the accuracy benefit of forecasts when using month-to-date demands to

revise monthly forecasts.

• Compare the accuracy of the horizontal forecast model with the choice of the

alternative forecast parameters.

• Compare the accuracy of the trend forecast model with the choice of the

alternative forecast parameters.

• Compare the accuracy of the seasonal forecast model with the choice of the

alternative forecast parameters.

• In seasonal forecast models, measure how the size of the forecast error varies as

the season changes from low-demand months to high-demand months.

Order Quantity

• Compare the inventory costs for parts (with horizontal, trend, and seasonal

demand patterns) when stock is replenished by use of the following strategies:

EOQ, Month-in-Buy or Least Unit Cost.

• Compare various strategies to determine the mix of shoe styles to have in a store

that yields the desired service level and satisfies the store quota.

• Compare various strategies to determine the mix of shoe sizes for each style type

to have in a store that yields the desired service level and satisfies the store quota

for the style.

• Compare various strategies to find the initial-order-quantity that yields the least

cost for a new part in a service parts distribution center.

• Compare various strategies to find the all-time-requirement that yields the least

cost for a part in a service parts distribution center.

• Compare various ways to determine how to measure lost sales demand for an

individual part in a dealer.

• Compare strategies, for a multi-distribution system, on how often to run a

transfer routine that determines for each part when and how much stock to

transfer from one location to another to avoid mal-distribution.
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Safety Stock

• Compare the costs between the four basic methods of generating safety stock:

month’s supply, availability, service level and Lagrange.

• Compare how the service level for a part reacts as the size of the safety stock and

the order quantity vary.

• Compare how a late delivery of stock by the supplier affects the service level of a

part.

• Compare strategies on how to find the minimum amount of early stock to have

available to offset the potential of late delivery by the supplier.

• Measure the relationship between the service level of a part and the amount of

lost sales on the part.

Production

• In mixed-model (make-to-stock) assembly, compare various strategies on how

to sequence the models down the line.

• In mixed-model (make-to-order) assembly, compare various strategies on how

to sequence the individual jobs down the line.

• In job-shop operations, determine how many units to initially produce to satisfy

the order needs and minimize the material, machine, and labor costs.

• In machine-loading operations, compare strategies on how to schedule the jobs

through the shop to meet due dates and minimize machine idle times.

• Compare strategies on how to set the number of bays (for maintenance and

repair) in a truck dealership that meets the customer needs and minimizes the

dealer labor costs.

Other

• In the bivariate normal distribution, estimate the cumulative distribution func-

tion for any combination of observations when the means and variances are

given, and the correlation varies between �1.0 and 1.0.

• In the bivariate lognormal distribution, estimate the cumulative distribution

function for any combination of observations when the means and variances of

the transformed variables are known, and the correlation varies from�1.0 to 1.0.

• In the multivariate normal distribution with k variables, an estimate of the

cumulative distribution function is obtained, for any combination of

observations when both the mean vector and the variance-covariance matrix

are known.
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• In an airport noise abatement study, noise measures were estimated, as in a

contour map, for the airport and for all blocks surrounding the airport. The noise

was measured with various combinations of: daily number of flights in and out,

the type of aircraft and engines, and the direction of the runways in use.

• In a study for the navy, some very complex queuing systems were in consider-

ation. Analytical solutions were developed, and when a level of doubt was

present in the solution, simulation models were developed to verify the accuracy

of the analytical solutions.

• A simulated database for part numbers were needed in the process of developing

various routines in forecasting and inventory replenishment for software

systems. These were for systems with one or more stocking locations. The

database was essential to test the effectiveness of the routines in carrying out

its functions in forecasting and inventory replenishments. The reader may note

that many of the fields in the database were jointly related and thereby simulated

in a correlated way.
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Chapter 1

Introduction

Monte Carlo Method

To apply the Monte Carol method, the analyst constructs a mathematical model that

simulates a real system. A large number of random sampling of the model is applied

yielding a large number of random samples of output results from the model. The

origin began in the 1940s by three scientists, John von Neumann, Stanislaw Ulam

and Nicholas Metropolis who were employed on a secret assignment in the Los

Alamos National Laboratory, while working on a nuclear weapon project called the

Manhattan Project. They conceived of a new mathematical method that would

become known as the Monte Carlo method. Stanislaw Ulam coined the name

after the Monte Carlo Casinos, located in Monaco. Monaco is a tiny country located

just south of France facing the Mediterranean Sea, and is famous for its beauty,

casinos, beaches, and auto racing. The Manhattan team formulated a model of a

system they were studying that included input variables, and a series of algorithms

that were too complicated to analytically solve.

The method is based on running the model many times as in random sampling.

For each sample, random variates are generated on each input variable; compu-

tations are run through the model yielding random outcomes on each output

variable. Since each input is random, the outcomes are random. In the same way,

they generated thousands of such samples and achieved thousands of outcomes for

each output variable. In order to carryout this method, a large stream of random

numbers were needed. Von Neumann developed a way to calculate pseudo random

numbers by using a middle-square method. Von Neumann realized the method had

faults, but he reasoned the method was the fastest that was then available, and he

would be aware when the method would fall out of alignment.

The Monte Carlo method proved to be successful and was an important instru-

ment in the Manhattan Project. After the War, during the 1940s, the method was

continually in use and became a prominent tool in the development of the hydrogen

bomb. The Rand Corporation and the U.S. Air Force were two of the top
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organizations that were funding and circulating information on the use of the Monte

Carlo method. Soon, applications started popping up in all sorts of situations in

business, engineering, science and finance.

Random Number Generators

A random number generator is a computerized or physical method that produces

numbers that have no sequential pattern and are arranged purely by chance. Since

the early times, many ways have been applied to generate random deviates, like:

rolling dice, flipping coins, roulette wheels, and shuffling cards. These physical

methods are not practical when a large number of random numbers are needed in

applications. In 1947, the Rand Corporation generated random numbers by use of

an electronic roulette type device that was connected to a computer. A book, with a

list of all the numbers, was published by the Rand Corporation (1946). The numbers

were also available on punched cards and tape. The numbers had found many

applications in statistics, experimental design, cryptography and other scientific

disciplines. However, with the advent of high-speed computers in the 1950s,

mathematical algorithms became practical and new developments led to improved

ways of generating a large stream of random numbers.

Computer Languages

Since the 1940s, many computer languages have been developed and in use in one

way or another allowing programmers to write code for countless applications.

Early languages like: COBOL, FORTRAN, Basic, Visual Basic , JAVA and C++,

were popular in developing computer simulation models.

As simulation became more popular in solving complex problems in business,

engineering, science, and finance, a new set of computer languages (e.g., GAUSS,

SAS, SPSS, R) have evolved. Some are for either of the two major types of

simulation: continuous and discrete, and some can handle both. These languages

allow the user to construct the process he/she is emulating and also has the ability to

gather statistics, perform data analysis and provide tables and graphs on outcome

summaries.

Discrete simulation models are when the events change one at a time, like in

queuing models where new customers arrive or depart the system individually or in

batches. Continuous simulation models are when the events are continuously

changing over time, according to a set of differential equations. Could be the

trajectory of a rocket.
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Computer Simulation Software

The number of simulation software packages has also exploded over the years and

most apply for specific processes in industry, gaming and finance. The software

may include a series of mathematical equations and algorithms that are associated

with a given process. When the software fits the process under study, the user can

apply the software and quickly observe the outcomes from a new or modified

arrangement of the process without actually developing the real system. This ability

is a large savings in time and cost of development.

In the 1990s, Frontline presented the Solver application that was for spreadsheet

use to solve linear and nonlinear problems. This soon led to Microsoft’s Excel

Solver. Improvements were made and in the 2000s, Monte Carlo Simulation was

introduced as another Excel application where many trials of a process are auto-

matically performed from probability distributions specified by the user. In 2006,

yet another added feature is the RISK Solver Engine for EXCEL that performs

instant Monte Carlo Simulations whenever a user changes a number on a spreadsheet.

Basic Fundamentals

The early pioneers of the Manhattan Project were fully aware that the validity of

their model highly depended on the authenticity of the algorithms they formed as

well as the choice of the input probability distributions and parameter values they

selected. An error in the formulation could give misleading results. With their

creativity, intellect and careful construction, the output from their simulation

model was highly successful.

Monte Carlo methods are now extensively used in all industries and government

to study the behavior of complex systems of all sorts. Many of the applications are

performed with software programs, like the Excel Solver models, described earlier.

The casual user will run the powerful easy-to-use software model and collect the

results, and with them, make decisions in the work place, and that might be all that

is needed. This user may not be completely aware of how the model works inside

and may not have a need to know.

Another user may want to know more on how the model does what it does. Many

others who code their own simulation models need to know the fundamentals. This

book is meant for these users, giving the mathematical basis on developing simu-

lation models. A description is given on how pseudo random numbers are

generated, and further, how they are used to generate random variates of input

variables that come from specified probability distributions, discrete or continuous.

The book further describes how to cope with simulation models that are

associated with two or more variables that are correlated and jointly related.

These are called multivariate variables, and various distributions of this type are

described. Some are discrete, like the multinomial, multivariate hyper geometric,

and some are continuous like the multivariate normal and multivariate lognormal.
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In addition, the text helps those users who are confronted with a probability

distribution that does not comply with those that are available in the software in use.

Further, the system could be a non-terminating system that includes transient and

equilibrium (steady state) stages. The text also gives insight on how to determine

the end of the transient stage and the beginning of the equilibrium stage. Most

analysts only want to collect and analyze the data from the equilibrium stage.

Further, one chapter shows how to generate output data that are independent so

they can properly be analyzed with statistical methods. Methods are described to steer

the results so that the output data is independent. Another chapter presents a review

on the common statistical methods that are used to analyze the output results. This

includes the measuring of the average, variance, confidence intervals, tests between

two means or between two proportions, and the one-way analysis of variance.

The better the analyst can structure a simulation model to emulate the real system,

the more reliable the output results in problem solving decisions. Besides formulating

the equations and algorithms of the system properly, the analyst is confronted with

selecting the probability distributions that apply for each input variable in the model.

This is done with use of the data, empirical or sample, that is available. With this

data, the probability distributions are selected and the accompanying parameter

values are estimated. The better the fit, the better the model. One of the chapters

describes how to do this.

Another issue that sometimes confronts the analyst is to choose the probability

distribution and the corresponding parameter value(s) when no data is available for

an input variable. In this situation, the analyst relies of the best judgment of one or

more experts. Statistical ways are offered in the text to assist in choosing the

probability distribution and estimating the parameters.

Chapter Summaries

The following is a list of the remaining chapters and a quick summary on the content

of each.

Chapter 2. Random Number Generators Since early days, the many applications of

randomness have led to a wide variety of methods for generating random data of

various type, like rolling dice, flipping coins and shuffling cards. But these methods

are physical and are not practical when a large number of random data is needed in

an application. Since the advent of computers, a variety of computational methods

have been suggested to generate the random data, usually with random numbers.

Scientists, engineers and researchers are ever more developing simulation models

in their applications; and their models require a large – if not vast – number of

random numbers in processing. Developing these simulation models is not possible

without a reliable way to generate random numbers.

Chapter 3.Generating Random Variates Random variables are classified as discrete

or continuous. Discrete is when the variable can take on a specified list of values,
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and continuous is when the variable can assume any value in a specified interval.

The mathematical function that relates the values of the random variable with a

probability is the probability distribution. When a value of the variable is randomly

chosen according to the probability distribution, it is called a random variate. This

chapter describes the common methods to generate random variates for random

variables from various probability distributions. Two methods are in general use for

this purpose, one is called the Inverse Transform method (IT), and the other is the

Accept-Reject method (AR). The IT method is generally preferred assuming the

distribution function transforms readilly. If the distribution is mathematically

complicated and not easily transformed, the IT method becomes complicated and

is not easily used. The AR method generally requires more steps than the IT method

to achieve the random variate. The chapter presents various adaptations of these

two methods.

Chapter 4. Generating Continuous Random Variates A continuous random variable

has a mathematical function that defines the relative likelihood that any value in a

defined interval will occur by chance. The mathematical function is called the

probability density. For example, the interval could be all values from 10 to 50,

or might be all values zero or larger, and so forth. This chapter considers the more

common continuous probability distributions and shows how to generate random

variates for each. The probability distributions described here are the following: the

continuous uniform, exponential, Erlang, gamma, beta, Weibull, normal, lognormal,

chi-square, student’s t, and Fishers F. Because the standard normal distribution is so

useful in statistics and in simulation, and no closed-form formula is available, the

chapter also lists the Hastings approximation formula that measures the relationship

between the variable value and its associated cumulative probability.

Chapter 5. Generating Discrete Random Variates A discrete random variable

includes a specified list of exact values where each is assigned a probability of

occurring by chance. The variable can take on a particular set of discrete events,

like tossing a coin (head or tail), or rolling a die (1,2,3,4,5,6). This chapter considers

the more common discrete probability distributions and shows how to generate

random variates for each. The probability distributions described here are the

following: discrete arbitrary, discrete uniform, Bernoulli, binomial, hyper geometric,

geometric, Pascal and Poisson.

Chapter 6. Generating Multivariate Random Variates When two or more random

variables are jointly related in a probability way, they are labeled as multivariate

random variables. The probability of the variables occurring together is defined by a

joint probability distribution. In most situations, all of the variables included in the

distribution are continuous or all are discrete; and on less situations, they are a

mixture between continuous and discrete. This chapter considers some of the more

popular multivariate distributions and shows how to generate random variates for

each. The probability distributions described here are the following: multivariate

discrete arbitrary, multinomial, multivariate hyper geometric, bivariate normal,

bivariate lognormal, multivariate normal and multivariate lognormal. The Cholesky
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decomposition method is also described since it is needed to generate random

variates from the multivariate normal and the multivariate lognormal distributions.

Chapter 7. Special Applications This chapter shows how to generate random

variates for applications that are not directly bound by a probability distribution

as was described in some of the earlier chapters. The applications are instructively

useful and often are needed as such in simulation models. They are the following:

Poisson process, constant Poisson process, batch arrivals, active redundancy,

standby redundancy, random integers without replacement and poker.

Chapter 8. Output From Simulation Runs Computer simulation models are gener-

ally developed to study the performance of a system that is too complicated for

analytical solutions. The usual goal of the analyst is to develop a computer simula-

tion model that emulates the activities of the actual system as best as possible. Many

of these models are from terminating and nonterminating systems.

A terminating system is when a defined starting event B and an ending event C

are specified, and so, each run of the simulation model begins at B and ends at C.

This could be a model of a car wash that opens each day at 6 a.m. and closes at

8 p.m. Each simulation run would randomly emulate the activities from B to C.

A nonterminating system is where there is no beginning or ending events to the

system. The system often begins in a transient stage and eventually falls into either

an equilibrium stage or a cyclical stage. This could be a study of a maintenance

and repair shop that is always open. At the outset of the simulation model run, the

system is empty and may take some time to enter either an equilibrium stage or a

cyclical stage. This initial time period is called the transient stage.

A nonterminating system with transient and equilibrium stages might be a

system where the inter-arrival flow of new customers to the shop is steadily coming

from the same probability distribution. In the run of the simulation model, the

system begins in the transient stage and thereafter the flow of activities continues in

the equilibrium stage.

A nonterminating model with transient and cyclical stages could be a model of a

system where the probability distribution of the inter-arrival flow of new customers

varies by the hour of the day. The simulation run begins in a transient stage and

passes to the cyclical stage thereafter.

In either system, while the analyst is developing the computer model, he/she

includes code in the model to collect data of interest for later analysis. This output

data is used subsequently to statistically analyze the performance of the system.

Chapter 9. Analysis of Output Data This chapter is a quick review on some of the

common statistical tests that are useful in analyzing the output data from runs of a

computer simulation model. This pertains when each run of the model yields a

group of k unique output measures that are of interest to the analyst. When the

model is run n times, each with a different string of continuous uniform u ~ U(0,1)

random variates, the output data is generated independently from run to run, and

therefore the data can be analyzed using ordinary statistical methods. Some of

the output data may be of the variable type and some may be of the proportion type.

6 1 Introduction
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The appropriate statistical method for each type of data is applied as needed. This

includes, measuring the average value and computing the confidence interval of the

true mean. Oftentimes, the simulation model is run with one or more control

variables in a ‘what if’ manner. The output data between the two or more settings

of the control variables can be compared using appropriate statistical tools. This

includes testing for significant difference between two means, between two

proportions, and between k or more means.

Chapter 10. Choosing the Probability Distribution From Sample Data In building a
simulation model, the analyst often includes several input variables of the control

and random type. The control variables are those that are of the “what if” type.

Often, the purpose of the simulation model is to determine how to set the control

variables in the real system seeking optimal results. For example, in an inventory

simulation model, the control variables may be the service level and the holding

rate, both of which are controlled by the inventory manager. On each run of the

model, the analyst sets the values of the control variables and observes the output

measures to see how the system reacts.

Another type of variable is the random input variables, and these are of the

continuous and discrete type. This type of variable is needed to match, as best as

possible, the real life system for which the simulation model is seeking to emulate.

For each such variable, the analyst is confronted with choosing the probability

distribution to apply and the parameter value(s) to use. Often empirical or sample

data is available to assist in choosing the distribution to apply and in estimating

the associated parameter values. Sometimes two or more distributions may seem

appropriate and the one to select is needed. The authenticity of the simulation

model largely depends on how well the analyst emulates the real system. Choosing

the random variables and their parameter values is vital in this process.

This chapter gives guidance on the steps to find the probability distribution to use

in the simulation model and how to estimate the parameter values that pertain. For

each of the random variables in the simulation model with data available, the

following steps are described: verify the data is independent, compute various

statistical measures, choose the candidate probability distributions, estimate the

parameter(s) for each probability distribution, and determine the adequacy of the fit.

Chapter 11. Choosing the Probability Distribution When No Data Sometimes the

analyst has no data to measure the parameters on one or more of the input variables

in a simulation model. When this occurs, the analyst is limited to a few distributions

where the parameters may be estimated without empirical or sample data. Instead of

data, experts are consulted who give their judgment on various parameters of the

distributions. This chapter explores some of the more common distributions where

such expert opinions are useful. The distributions described here are continuous and

are the following: continuous uniform, triangular, beta, lognormal andWeibull. The

type of data provided by the experts is the following type: minimum value,

maximum value, most likely value, average value, and a p-quantile value.

Chapter Summaries 7
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Chapter 2

Random Number Generators

Introduction

For many past years, numerous applications of randomness have led to a wide

variety of methods for generating random data of various type, like rolling dice,

flipping coins and shuffling cards. But these methods are physical and are not

practical when a large number of random data is needed in an application. Since

the advent of computers, a variety of computational methods have been suggested

to generate the random data, usually with random numbers. Scientists, engineers

and researchers are ever more developing simulation models in their applications;

and their models require a large – if not vast – number of random numbers in

processing. Developing these simulation models is not possible without a reliable

way to generate random numbers. This chapter describes some of the fundamental

considerations in this process.

Modular Arithmetic

Generating random numbers with use of a computer is not easy. Many mathe-

maticians have grappled with the task and only a few acceptable algorithms have

been found. One of the tools used to generate random numbers is by way of the

mathematical function called modular arithmetic. For a variable w, the modulo of

w with modulus m is denoted as: w modulo(m). The function returns the remainder

of w when divided by m. In the context here, w and m are integers, and the function

returns the remainder that also is an integer. For example, if m ¼ 5, and w ¼ 1,

w modulo ðmÞ ¼ 1 moduloð5Þ ¼ 1:

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0_2,
# Springer Science+Business Media New York 2013
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In the same way, should w ¼ 5, 6 or 17, then,

5 moduloð5Þ ¼ 0

6 moduloð5Þ ¼ 1

17 moduloð5Þ ¼ 2

and so forth. Hence, for example, the numbers 1, 6, 11, 16 are all congruent

modulo 1 when m ¼ 5. Note, the difference of any of the numbers, that have the

same remainder, is perfectly divisible by m, and thus they are congruent. Also

notice, when the parameter is m, the values returned are all integers, 0 to m-1.

An example of modular arithmetic is somewhat like the clock where the

numbers for the hours are always from 1 to 12. The same applies with the days of

the week (1–7), and the months of the year (1–12).

Linear Congruent Generators

In 1951, Lehmer introduced a way to generated random numbers, called the linear

congruent generator, LCG. This method adapts well to computer applications and

today is the most common technique in use. The method requires the use of the

modulo function as shown below.

LCG calls for three parameters (a, b, m) and uses modular arithmetic. To obtain

the i-th value of w, the function uses the prior value of w as in the method

shown below:

wi ¼ a wi�1 þ bð Þ modulo mð Þ

In the above, w is a sequence of integers that are generated from this function,

and i is the index of the sequence.

Example 2.1 Suppose, m ¼ 32, a ¼ 5 and b ¼ 3. Also, assume the seed (at i ¼ 0)

for the LCG is w0 ¼ 11. Applying,

wi ¼ 5wi�1 þ 3ð Þ modulo 32ð Þ

yields the sequence:

26,5,28,15,14,9,16,19,2,13,4,23,22,17,24,27,10,21,12,31,30,25,0,3,18,29,20,7,

6,1,8,11

Notice there are 32 values of w for i ranging from 1 to 32, and all are different.

This is called a full cycle of all the possible remainders 0–31 when m ¼ 32. The last

number in the sequence is the same as the seed, w0 ¼ 11. The sequence of numbers

that are generated for the second cycle would be the same as the sequence from the

first cycle of 32 numbers because the seed has been repeated.
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The reader should be aware that it is not easy to find the combination of a and b

that gives a full cycle for a modulus m. The trio of m ¼ 32, a ¼ 5 and b ¼ 3 is one

such combination that works.

Example 2.2 Now suppose the parameters are, m ¼ 32, a ¼ 7 and b ¼ 13. Also

assume the seed for the LCG is w0 ¼ 20. Applying,

wi ¼ 7wi�1 þ 13ð Þ modulo 32ð Þ

yields the sequence of 32 numbers:

25; 28; 17; 4; 9; 12; 1; 20;

25; 28; 17; 4; 9; 12; 1; 20;

25; 28; 17; 4; 9; 12; 1; 20;

25; 28; 17; 4; 9; 12; 1; 20;

Note there is a cycle of eight numbers, 25–20. In general, when one of the

numbers in the sequence is the same as the seed, w0 ¼ 20, the sequence repeats

with the same numbers, 25–20. In this situation, after eight numbers, the seed value

is generated, and thereby the cycle of eight numbers will continually repeat, in a

loop, as shown in the example above.

Generating Uniform Variates

The standard continuous uniform random variable, denoted as u, is a variable that is

equally likely to fall anywhere in the range from 0 to 1. The LCG is used to convert

the values of w to u by dividing w over m, i.e., u ¼ w/m. The generated values of

u will range from 0/m to (m � 1)/m, or from zero to just less than 1. To illustrate,

the 32 values of w generated in Example 2.1 are used for this purpose. In Example

2.3, u ¼ w/m for the values listed earlier.

Example 2.3 The 32 values of u listed below (in 3 decimals) are derived from the

corresponding 32 values of w listed in Example 2.1. Note, ui ¼ wi/32 for i ¼ 1–32.

0.812, 0.156, 0.875, 0.468, 0.437, 0.281, 0.500, 0.593, 0.062, 0.406, 0.125,

0.718, 0.687, 0.531, 0.750, 0.843, 0.312, 0.656, 0.375, 0.968, 0.937, 0.781, 0.000,

0.093, 0.562, 0.906, 0.625, 0.218, 0.187, 0.031, 0.250, 0.343

32-Bit Word Length

The majority of computers today have word lengths of 32 bits. For these machines,

the largest number that is recognized is (231 – 1), and the smallest number is –(231–1).

The first of the 32 bits is used to identify whether the number is a plus or a minus,

leaving the remaining 31 bits to determine the number.
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So, for these machines, the ideal value of the modulus is m ¼ (231–1) since a full

cycle with m gives a sequence with the largest number of unique random uniform

variables The goal is to find a combination of parameters that are compatible with

the modulus. Fishman and Moore (1982), have done extensive analysis on random

number generators determining their acceptability for simulation use. In 1969,

Lewis, Goodman and Miller suggested the parameter values of a ¼ 16,807 and

b ¼ 0; and also in 1969, Payne, Rabung and Bogyo offered a ¼ 630,360,016 with

b ¼ 0. These combinations have been installed in computer compilers and are

accepted as parameter combinations that are acceptable for scientific use. The Fishman

and Moore reference also identifies other multipliers that achieve good results.

Random Number Generator Tests

Mathematicians have developed a series of tests to evaluate how good a sequence of

uniform variates are with respect to truly random uniform variates. Some of the

tests are described below.

Length of the Cycle

The first consideration is how many variates are generated before the cycle repeats.

The most important rule is to have a full cycle with the length of the modulus m.

Assume that n uniform variates are generated and are labeled as (u1, . . ., un) where
n ¼ m or is close to m. The ideal would be to generate random numbers where the

numbers span a full cycle or very near a full cycle.

Mean and Variance

For the set of n variates (u1, . . ., un), the sample average and variance are computed

and labeled as �u and su
2, respectively. The goal of the random number generator

is to emulate the standard continuous uniform random variable u, denoted here

as u ~ U(0,1), with expected value E(u) ¼ 0.5 and the variance V(u) ¼ s2 ¼ 1/12 ¼
0.0833. So, the appropriate hypothesis mean and variance tests are used to compare

�u to 0.5 and su
2 to 0.0833.

Chi Square

The sequence (u1, . . ., un) are set in k intervals, say k ¼ 10, where i ¼ 1–10

identifies the interval for which each u falls. When k ¼ 10, the intervals are:

(0.0–0.1), (0.1–0.2), . . .., (0.9–1.0). Now let fi designate the number of u’s

12 2 Random Number Generators



that fall in interval i. Since n is the number of u’s in the total sample, the expected

number of u’s in an interval is ei ¼ 0.1n. With the ten sets of fi and ei, a Chi Square

(goodness-of-fit) test is used to determine if the sequence of u’s are spread equally

in the range from zero to one.

The above chi square test can be expanded to two dimensions where the pair of

u’s (ui, ui+1) are applied as follows. Assume the same ten intervals are used as above

for both ui and for ui+1. That means there are10 � 10 ¼ 100 possible cells where

the pair can fall. Let fij designate the number of pairs that fall in the cell ij. Since n

values of u are tested, there are n/2 pairs. So the expected number of units to fall in a

cell is eij ¼ 0.01n/2. This allows use of the Chi Square test to determine if fij is

significantly different than eij. For a truly uniform distribution, the number of

entries in a cell should be equally distributed. When more precision is called, the

length of the intervals can be reduced from 0.10 to 0.05 or to 0.01, for example.

In the same way, the triplet of u’s can be tested to determine if the u’s generated

follow the expected values from a truly uniform distribution. With k ¼ 10 and

with three dimensions, the entries fall into 10 � 10 � 10 ¼ 1,000 cubes, and for a

truly uniform distribution, the number of entries in the cubes should be equally

distributed.

Autocorrelation

Another test computes the autocorrelation between the u’s with various lags of

length 1, 2, 3,. . .. The ideal is for all the lag autocorrelations to be significantly close
to zero, plus or minus. When the lag is k, the estimate of the autocorrelation is the

following,

rk ¼
X

i

ðui � 0:5Þðui�k � 0:5Þ=
X

i
ðui � 0:5Þ2

Pseudo Random Numbers

In the earlier example when m ¼ 32, a full cycle of w’s were generated with the

parameters (a ¼ 5, b ¼ 3). Further when the seed was set at w0 ¼ 11, the sequence

of w’s generated were the following:

26,5,28,15,14,9,16,19,2,13,4,23,22,17,24,27,10,21,12,31,30,25,0,3,18,29,20,7,

6,1,8,11

With this combination of parameters, whenever the seed is w0 ¼ 11, the same

sequence of random numbers will emerge. So in essence, these are not truly random

numbers, since they are predictable and will fall exactly as listed above. These

numbers are thereby called pseudo random numbers, where pseudo is another term

for pretend.

Pseudo Random Numbers 13



Note, in the above, if the seed were changed to w0 ¼ 30, say, the sequence of

random numbers would be the following:

25,0,3,18,29,20,7,6,1,8,11,26,5,28,15,14,9,16,19,2,13,4,23,22,17,24,27,10,21,

12,31,30

As the seed changes, another full cycle of 32 numbers is again attained.

The examples here are illustrated with m ¼ 32, a small set of random values.

But when m is large like (231 – 1), a very large sequence of random numbers is

generated. In several simulation situations, it is useful to use the same sequence of

random numbers, and therefore the same seed is appropriately applied. In other

situations, the seed is changed on each run so that a different sequence of random

numbers is used in the analysis.

Summary

The integrity of computer simulation models is only as good as the reliability of the

random number generator that produces the stream of random numbers one after

the other. The chapter describes the difficult task of developing an algorithm to

generate random numbers that are statistically valid and have a large cycle length.

The linear congruent method is currently the common way to generate the random

numbers for a computer. The parameters of this method include the multiplier and

the seed. Only a few multipliers are statistically recommended, and two popular

ones in use for 32-bit word length computers are presented. Another parameter is

the seed and this allows the analyst the choice of altering the sequence of random

numbers with each run, and also when necessary, offers the choice of using the

same sequence of random numbers from one run to another.
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Chapter 3

Generating Random Variates

Introduction

Random variables are classified as discrete or continuous. Discrete is when the

variable can take on a specified list of values, and continuous is when the variable

can assume any value in a specified interval. The mathematical function that relates

the values of the random variable with a probability is the probability distribution.

When a value of the variable is randomly chosen according to the probability

distribution, it is called a random variate. This chapter describes the common

methods to generate random variates for random variables from various probability

distributions. Two methods are in general use for this purpose, one is called the

Inverse Transform method (IT), and the other is the Accept-Reject method (AR).

The ITmethod is generally preferred assuming the distribution function transforms as

needed. If the distribution is mathematically complicated and not easily transformed,

the IT method becomes complicated and is not easily used. The ARmethod generally

requires more steps than the IT method. The chapter presents various adaptations of

these two methods.

For notation in this chapter, and in the entire book, when a continuous uniform

variate falls equally in the range from zero to one, the notation will be u ~ U(0,1).

In the examples of the book, when a variate of u ~ U(0,1) is obtained, for simplic-

ity, only two or three decimals are used to show how the routine is run. Of course,

in real simulation situations, the u variates with all decimals in place are needed.

Inverse Transform Method

Perhaps the most common way to generate a random variate for a random variable

is by the inverse transform method. The method applies to continuous and discrete

variables.

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0_3,
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Continuous Variables

Suppose x is a continuous random variable with probability density f(x) for a � x� b.

The cumulative distribution function (cdf) of x becomes FðxÞ ¼ Ðx

a

f ðxÞdx where

0 � F(x) � 1. Since u � U(0,1) and F(x) both range between 0 and 1, a random

variate of u is generated and then F(x) is set to equal u, from which the associated

value of x is found. The routine below describes the procedure:

1. Generate a standard uniform random variate u � U(0,1).

2. Set F(x) ¼ u.

3. Find the value of x that corresponds to F(x) ¼ u, i.e., x ¼ F�1(u).

4. Return x.

The function F�1(u) is called the inverse function of F(x) ¼ u.

Example 3.1 Suppose x is a random variable with

fðxÞ ¼ 0:125x for 0 � x � 4:

The associated cdf is below:

FðxÞ ¼ 0:0625x2 for 0 � x � 4:

To find a random variate of x, the inverse function of F(x) is derived as below:

1. Set u ¼ F(x) ¼ 0.0625x2.

2. Hence, x ¼ F�1ðuÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=0:0625

p
.

3. Generate a random variate, u ~ U(0,1). Assume u ¼ 0.71.

4. Compute x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:71=0:0625

p ¼ 3:370.

5. Return x ¼ 3.370.

Discrete Variables

Now consider a discrete random variable, xi, where i ¼ 1, 2, . . .. with probability

distribution P(xi) for i ¼ 1, 2, . . .. The cumulative distribution function of xi is

F(xi) ¼ P(x � xi). To generate a random variate with the inverse transform

method, the following routine is run:

1. Generate a random standard uniform variate, u � U(0,1).

2. From F(xi), find the minimum i, say i0, where u < F(xi).

3. Return xio.

Example 3.2 Suppose a discrete random variable x with range, (0, 1, 2, 3) and

probabilities, p(0) ¼ 0.4, p(1) ¼ 0.3, p(2) ¼ 0.2 and p(3) ¼ 0.1.Note the cumulative

distribution function becomes: F(0) ¼ 0.4, F(1) ¼ 0.7, F(2) ¼ 0.9 and F(3) ¼ 1.0.
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Assume a simulation model is in progress and a random variate of x is needed.

To comply, the following routine is run:

1. Generate a random standard uniform, u ~ U(0,1), say, u ¼ 0.548.

2. Find the minimum x where u < F(x). Note this is x ¼ 1.

3. Return x ¼ 1.

Accept-Reject Method

Consider x as a continuous random variable with density f(x) for a � x � b.

Further, for notation sake, let ~x denote the mode of x, and thereby f’ ¼ f(~x) is the
density value at the mode of x. Note where all values of f(x) will be equal or less

than f’. To find a random variate of x, the following routine of five steps is run:

1. Generate two uniform random variates, u ~ U(0,1), as u1, u2.

2. Find x ¼ a þ u1(b�a).

3. Compute f(x).

4. If u2 < f(x)/f’, then accept x and go to 5.

Else, reject x and repeat steps 1–4.

5. Return x.

Example 3.3 Suppose x is a random variable with

fðxÞ ¼ 0:125x for 0 � x � 4:

The mode is at ~x ¼ 4 and thereby f’ ¼ f(4) ¼ 0.5. So, now the four steps noted

above are followed:

1. Generate (u1, u2) ¼ (0.26, 0,83), say.

2. x ¼ 0 þ 0.26(4�0) ¼ 1.04.

3. f(1.04) ¼ 0.13.

4. Since 0.83 > 0.13/0.50 ¼ 0.26, reject x ¼ 1.04, and repeat the steps 1–4.

1. Generate (u1, u2) ¼ (0.72, 0,15), say.

2. x ¼ 0 þ 0.72(4�0) ¼ 2.88.

3. f(2.88) ¼ 0.36.

4. Since 0.15 < 0.36/0.50 ¼ 0.72, accept x ¼ 2.88.

5. Return x ¼ 2.88.

Truncated Variables

Sometimes, when the inverse transform method applies, the random variable of

interest is a truncated portion of another random variable. For example, suppose x

has density f(x) for a � x � b, and F(x) is the associated cumulative distribution
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function of x. But assume the variable of interest is only a portion of the original

density where c � x � d and the limits c, d are within the original limits of a and b,

Therefore, a � c � x � d � b. Note the new density of this truncated variable

becomes,

gðxÞ ¼ fðxÞ= FðdÞ � FðcÞ½ � for c � x � d

To find a random variate of this truncated variable, the following routine is

applied. Note, however, the routine listed below does not need the truncated density

g(x) just described above:

1. Compute F(c) and F(d).

2. Generate a random uniform variate u � U(0,1).

3. Find v ¼ F(c) þ u[F(d)�F(c)].

Note, F(c) � v � F(d).

4. Set the cumulative distribution to v, i.e., F(x) ¼ v.

5. Find the value of x that corresponds to F(x) ¼ v, i.e., x ¼ F�1(v).

6. Return x.

Example 3.4 Suppose x is a random variable with

fðxÞ ¼ 0:125x for 0 � x � 4:

and recall the cdf below,

FðxÞ ¼ 0:0625x2 for 0 � x � 4:

Assume a random variate between the limits of 1 and 2 is required in a simu-

lation analysis, i.e., 1 � x � 2. To accomplish, the four steps below are followed:

1. Note, F(1) ¼ 0.0625 and F(2) ¼ 0.2500.

2. Generate a random u ~ U(0,1), say u ¼ 0.63.

3. v ¼ 0.0625 þ 0.63[0.2500�0.0625] ¼ 0.1806.

4. x ¼ F�1ð0:1806Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:1806=0:0625

p
¼ 1:70:

5. Return x ¼ 1.70.

Order Statistics

Suppose n samples are taken from a continuous random variable, x, with density

f(x) and cumulative distribution F(x), and these are labeled as (x1, . . ., xn). Sorting
the n samples from low to high yields, x(1) � x(2) � . . ...� x(n)where x(i) is the i-th

lowest value in the sample.
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Sorted Values

The notation y is here used to denote the i-th sorted value from the n samples of x.

From order statistics, the probability density of y becomes:

gðyÞ ¼ n!= ði� 1Þ!ðn� iÞ!½ �fðyÞFðyÞi�1
1� FðyÞ½ �n�i

Note, there is one value of x ¼ y, (i-1) values of x smaller than y, and (n-i)

values larger than y. See Rose and Smith, (2002) for more detail on order statistics.

Minimum Value

Suppose y is the smallest value of x, whereby, y ¼ min(x1, . . ., xn). The probability
density of y becomes:

gðyÞ ¼ nfðyÞ 1� FðyÞ½ �n�1

and the corresponding distribution function is:

GðyÞ ¼ 1� FðyÞ½ �n

To generate a random variate for the minimum of n values from a continuous

random variable x, the following routine is run:

1. Generate a random u � U(0,1).

2. Set G(y) ¼ u and F(y) ¼ v.

Hence, u ¼ (1�v)nand v ¼ [1�u1/n].

3. Using the inverse transform method, compute y ¼ F�1(v).

4. Return y.

Maximum Value

When w is the largest value of x, then w ¼ max(x1, . . ., xn). Hence, the probability
density of w becomes:

gðwÞ ¼ nfðwÞ FðwÞn�1

and the corresponding distribution function is,

GðwÞ ¼ FðwÞn
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To generate a random variate for the maximum of n values of a continuous

random variable x, the following routine is run:

1. Generate a random u � U(0,1).

2. Set G(w) ¼ u and F(w) ¼ v.

Hence, u ¼ vn.

and v ¼ u1/n.

3. Using the inverse transform, compute w ¼ F�1(v).

4. Return w.

Example 3.5 Suppose the density for a random variable x is f(x) ¼ 0.125x

(0 � x � 4), and thereby, the cumulative distribution is,

FðxÞ ¼ 0:0625x2 for 0 � x � 4:

Recall, also where the inverse function is

F�1ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=0:0625

p

Suppose n ¼ 8 samples of x are taken and of interest is to generate a random

variate for the minimum value of the samples. To accomplish, the following steps

are taken:

1. Generate a random variate u � U(0,1), say u ¼ 0.37.

2. v ¼ [1�0.371/8] ¼ 0.117.

3. y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:117=0:0625

p
¼ 1:367:

4. Return y ¼ 1.367.

Note F(1.367) ¼ 0.117.

Example 3.6 Suppose the density for a random variable x is f(x) ¼ 0.125x

(0 � x � 4), and thereby, the cumulative distribution is,

FðxÞ ¼ 0:0625x2 for 0 � x � 4:

Recall, also where the inverse function is

F�1ðuÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u=0:0625

p

Suppose n ¼ 8 samples of x are taken and of interest is to generate a random

variate for the maximum value of the samples. To accomplish, the following steps

are taken:

1. Generate a random variate u � U(0,1), say u ¼ 0.28.

2. v ¼ 0.281/8 ¼ 0.853.

3. w ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:853=0:0625

p
¼ 3:694:

4. Return w ¼ 3.694.

Note F(3.694) ¼ 0.853.
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Composition

Sometimes the random variable is composed of a series of probability densities

where each density occurs with a probability. This happens when there are k

densities, fi(x), where the probability of density i being selected is pi, and the sum

of all the pi is one. In essence, x is a random variable with probability density

as below:

fðxÞ ¼ p1f1ðxÞ þ . . . :þ pkfkðxÞ

and
Pk

i¼1

pi ¼ 1

Note, where each of the k densities, fi(x), has a unique cumulative distribution

function, Fi(x), and a corresponding unique inverse function, Fi
�1(u).

The composition can be described as below.

i fi(x) pi Gi

1 f1(x) p1 G1 ¼ p1
. . .

k fk(x) pk Gk ¼ Gk�1þ pk

The term Gi is the cumulative distribution function of the pi’s, and when i ¼ k,

Gk ¼ 1.

Example 3.7 The density for variable x is composed of two separate densities,

f1(x) ¼ 1.25x for (0 � x � 4) and f2(x) ¼ 0.25 for (2 � x � 6). The associated

probabilities are p1 ¼ 0.6 for f1(x), and p2 ¼ .4 for f2(x). So, G1 ¼ 0.6 and

G2 ¼ 1.0. Note also, F1
�1ðuÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u=0:0625
p

, and F2
�1(u) ¼ 2 þ 4u. To generate

a random x, two random u � U(0,1), are needed, u1 and u2. The steps below are

followed:

1. Find two random uniform variates, u ~ U(0,1). Say (u1, u2) ¼ (0.14, 0.53).

2. Since u1 < G1 ¼ 0.60, density f1(x) is used.

3. x ¼ F1
�1ð0:53Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:53=0:0625
p ¼ 2:91.

4. Return x ¼ 2.91.

Summation

On some occasions when generating a random variate, the sum of a random variable

is needed, as in y ¼ (x1 þ . . . þ xk). For notation convenience in this section, y

will denote the sum of k independent samples of x, where x is a random variable

with distribution f(x). This method of summing is applied in subsequent chapters, in

a convolution manner, to generate a random variate for the continuous Erlang

distribution, and also for the discrete Pascal distribution.
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To generate a random value of y from a continuous x with the inverse transform,

F�1(u), known, the following loop is followed:

1. Set y ¼ 0.

2. For i ¼ 1 to k.

3. Generate a random ui � U(0,1).

4. xi ¼ F�1(ui).

5. y ¼ y þ xi.

6. Next i.

7. Return y.

Example 3.8 Suppose x is a continuous random variable with density f(x) ¼
0.125x for (0 � x � 4). The associated inverse function of x is F�1ðuÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u=0:0625
p

. Assume a sum of k ¼ 2 is called and the result is another random

variate y. The steps below show how one random observation of y is generated:

1. Generate (u1, u2) ¼ (0.44, 0.23), say.

2. x1 ¼ F�1ð0:44Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:44=0:0625

p
¼ 2:653

y ¼ 2:653:

3. x2 ¼ F�1ð0:23Þ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:23=0:0625

p ¼ 1:918.

y ¼ 2:653þ 1:918 ¼ 4:571.

4. Return y ¼ 4.571.

Triangular Distribution

The triangular is a continuous distribution that is sometimes used in simulation

models when the true distribution of the variable is not known. To apply, the analyst

estimates the minimum value of the variable, the maximum value, and the most

likely value. These estimated values are denoted as: a, b and ~x, respectively. The
random variable is labeled as x where (a � x � b) and (a � ~x � b).

Another variable is now introduced and follows the standard triangular distri-
bution. The random variable is x0 and this ranges from 0 to 1 where the most likely

value (the mode) is labeled ~x0. So (0 � x0 � 1) and (0 � ~x0 � 1). The notation for

the two variables,triangular x and standard triangular x’, are below:

x � Tða; b; ~xÞ

x0 � Tð0; 1; ~x0Þ

The standard triangular x’ is related to the triangular x as follows:

x0 ¼ ðx� aÞ=ðb� aÞ
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and

~x0 ¼ ð~x� aÞ=ðb� aÞ

The probability density of x’ is the following:

fðx0Þ ¼ 2x0=~x0 ð0 � x0 � ~x0Þ
2ð1� x0Þ=ð1� ~x0Þ ð~x0 < x0 � 1Þ

and the associated cumulative distribution function becomes:

Fðx0Þ ¼ x02=~x ð0 � x0 � ~x0Þ
1� ð1� x0Þ2=ð1� ~x0Þ ð~x0<x0 � 1Þ

The mean and variance of the standard triangular x’ are below.

Eðx0Þ ¼ ð~x0 þ 1Þ=3

Vðx0Þ ¼ ð1þ ~x02 � ~x0Þ=18

The expected value and variance of the triangular x is related to the same from

the standard triangular x0 as shown below.

EðxÞ ¼ aþ Eðx0Þ½b� a�

VðxÞ ¼ Vðx0Þ½b� a�2

To find a random variate for a standard triangular x0 ~ T(0,1,~x0), the following

routine is run:

1. Generate a random u � U(0,1).

2. If u � ~x0 x0 ¼ ffiffiffiffiffiffi
u~x0

p
.

If u >~x0 x0 ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� ~x0Þð1� uÞp
.

3. Return x0.

Note the corresponding value of T(a,b,~x) becomes x ¼ a + x0(b�a).

Example 3.9 Consider a variable x that is from a triangular distribution where x

ranges from 20 to 60 and the most likely value is 30. When a random variate of x is

needed in a simulation model, the following steps take place:

1. The mode ~x0 for the standard triangular distribution is computed by ~x0 ¼ (30�20)/

(60�20) ¼ 0.25.

2. A random uniform variate,u ~ U(0,1), is generated. Say u ¼ 0.38.

3. Since u>~x0; x0 ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 0:25Þð1� 0:38Þp ¼ 0:318.

4. x ¼ 20 þ 0.318[60�20] ¼ 32.72.

5. Return x ¼ 32.72.
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Empirical Ungrouped Data

Sometimes, in simulation modeling, the data for a variable is not used to seek the

theoretical continuous density, but instead is applied directly to define the distribu-

tion. The density that results is called the empirical distribution. Suppose the data is

denoted as (x1, . . ., xn), and when sorted from low to high, it becomes x(1) � x(2)
� . . . � x(n). The data is then arranged in tabular form as below, along with the

associated cumulative distribution function, Fx(i).

i x(i) Fx(i) ¼ (i-1)/(n-1)

1 x(1) 0

2 x(2) 1/(n-1)

. . .

n x(n) 1

To generate a random x, the composition method is used in the following way:

1. Generate two random uniform variates, u ~ U(0,1), u1 and u2.

2. If Fx(i) � u1 < Fx(iþ1), set x ¼ x(i) þ u2[x(i þ 1)�x(i)].

3. Return x.

Example 3.10 Suppose five observations of a continuous random variable are the

following: 10, 5, 2, 20, 11. When sorted, they become: 2, 5, 10, 11, 20. The tabular

form and the cumulative distribution function are listed below:

i x(i) Fx(i)

1 2 0.00

2 5 0.25

3 10 0.50

4 11 0.75

5 20 1.00

To generate a random x by the composition method, the following steps are

followed:

1. Generate two random uniform variates, say (u1, u2) ¼ (0.82, 0.13).

2. Since 0.75 � 0.82 < 1.00, i ¼ 4, and x ¼ 11 þ 0.13[20�11] ¼ 12.17.

3. Return x ¼12.17.

Another way to generate the random variate is by the inverse transform method,

as given below:

1. Generate a random uniform variate, u ~ U(0,1).

2. If Fx(i) � u < Fx(iþ1), set x ¼ x(i) þ {[u�Fx(i)]/[Fx(iþ1)�Fx(i)]}[x(i þ 1)�x(i)].

3. Return x.
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Example 3.11 Assume the same data (2, 5, 10, 11, 20) as Example 3.10.

To generate a random x by the inverse transform method, the following steps are

followed:

1. Generate a random uniform variate, say u ¼ 0.82.

2. Since 0.75 � 0.82 < 1.00, i ¼ 4, and

x ¼ 11 þ {[0.82�0.75]/[1.00�0.75]}[20�11] ¼ 13.52.

3. Return x ¼13.52.

Empirical Grouped Data

Sometimes the data comes in grouped form as shown in the table below. Note the k

intervals where (ai � x < bi) identify the limits of x within each interval, and fi is

the frequency of samples in interval i. The sum of the frequencies is denoted as n.

The cumulative distribution function for interval i becomes Fi ¼ Fi�1þ fi/n, where

F0 ¼ 0.

i [ai, bi) fi Fi

F0 ¼ 0

1 [a1,b1) f1 F1 ¼ F0 þ f1/n

2 [a2,b2) f2 F2 ¼ F1 þ f2/n

. . .

k [ak,bk) fk Fk ¼ Fk�1 þ fk/n

To generate a random x, the composition method is used in the following way:

1. Generate two random uniform variates, u ~ U(0,1), u1, u2.

2. Find the interval, i, where Fi�1 � u1 < Fi, and set x ¼ ai þ u2(bi�ai).

3. Return x.

Example 3.12 Suppose a variable to be used in a simulation study is presented in

grouped form with the five intervals as listed below. Note, the table lists the range

within each interval, the associated frequency and also the cumulative distribution.

The sum of the frequencies is n ¼ 80.

i [ai, bi) fi Fi

1 [5,8) 2 0.0250

2 [8,11) 27 0.3625

3 [11,13) 32 0.7625

4 [13,15) 15 0.9500

5 [15,18) 4 1.0000

To find a random x by the composition method, the routine below is applied:

1. Generate two random uniform variates, u ~ U(0,1). Say (u1, u2) ¼ (0.91, 0.37).

2. Since 0.7625 � 0.91 < 0.9500, i ¼ 4 and x ¼ 13þ 0.37(15�13) ¼ 13.74.

3. Return x ¼ 13.74.
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Another way to generate the random variate is by the inverse transform method

as shown below:

1. Generate a random uniform variate, u � U(0,1).

2. Find the interval, i, where Fi�1 � u < Fi, and set x ¼ ai þ {[u�Fi�1]/

[Fi�Fi�1]}(bi�ai).

3. Return x.

Example 3.13 Assume the same data as in Example 3.12. To find a random x by

the inverse transform method, the routine below applies:

1. Generate a random uniform variate, u ~ U(0,1). Say u ¼ 0.91.

2. Since 0.7625 � 0.91 < 0.9500, i ¼ 4 and

x ¼ 13þ {[0.91�0.7625]/[0.9500�0.7625]}(15�13) ¼ 14.573.

3. Return x ¼ 14.573.

Summary

This chapter shows how the continuous uniform u ~ U(0,1) random variates are

used to generate random variates for random variables from defined probability

distributions. To accomplish in a computer simulation model, a random number

generator algorithm is applied whenever a random uniform u ~ U(0,1) variate is

needed. The random number generator is the catalyst that delivers the uniform,

u ~ U(0,1), random variates, one after another, as they are needed in the simulation

model. This is essential since it allows the analyst the opportunity to create

simulation models that use any probability distribution that pertains and gives

flexibility to emulate the actual system under study.
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Chapter 4

Generating Continuous Random Variates

Introduction

A continuous random variable has a mathematical function that defines the relative

likelihood that any value in a defined interval will occur by chance. The mathe-

matical function is called the probability density. For example, the interval could be

all values from 10 to 50, or might be all values zero or larger, and so forth. This

chapter considers the more common continuous probability distributions and shows

how to generate random variates for each. The probability distributions described

here are the following: the continuous uniform, exponential, Erlang, gamma, beta,

Weibull, normal, lognormal, chi-square, student’s t, and Fishers F. Because the

standard normal distribution is so useful in statistics and in simulation, and no

closed-form formula is available, the chapter also lists the Hastings approximation

formula that measures the relationship between the variable value and its associated

cumulative probability.

Continuous Uniform

A variable x is defined as continuous uniform with parameters a; bð Þ when x is

equally likely to fall anywhere from a to b. For example, suppose an experiment in a

laboratory gives a temperature reading that rounds to 30� Fahrenheit. The true

temperature, though, in three decimals, would be somewhere between 29.500� and
30.499�. Hence, assume a continuous distribution where x has parameters

a ¼ 29.500 and b ¼ 30.499.

The probability density of x is,

fðxÞ ¼ 1=ðb� aÞ for a � x � b

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0_4,
# Springer Science+Business Media New York 2013
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and the cumulative distribution function becomes,

FðxÞ ¼ ðx� aÞ=ðb� aÞ for a � x � b

The expected value and the variance of x are the following:

EðxÞ ¼ ðbþ aÞ=2

VðxÞ ¼ ðb� aÞ2=12

To generate a random variate from the continuous uniform distribution, the

following routine is run:

1. Generate a random uniform u � U(0,1)

2. x ¼ a þ u(b � a)

3. Return x

Example 4.1 Suppose x is continuous uniform with parameters (10, 20) and a

random variate of x is needed. To accomplish, the following steps are followed:

1. Generate a random uniform u � U(0,1), say u ¼ 0.68

2. x ¼ 10 þ 0.68(20 � 10) ¼ 16.8

3. Return x ¼ 16.8

Exponential

The exponential distribution is heavily used in many applications and especially in

queuing systems to define the time between units arriving to a system, and also for

the times associated with servicing the units in the system. The probability density,

f(x), is largest at x ¼ 0 and continually decreases as x increases. The density has

one parameter, y, and is defined as below:

fðxÞ ¼ ye�yx for x � 0

The associated cumulative distribution function becomes,

FðxÞ ¼ 1� e�yx for x � 0

The mean and variance of x are the following,

m ¼ 1=y

and

s2 ¼ 1=y2
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The inverse transform method is used to generate a random variate x in the

following way. A random continuous uniform variate from u � U(0,1) is obtained

and is set equal to F(x) as below:

FðxÞ ¼ u ¼ 1� e�yx

Now, solving for x, yields the random variate of x by the relation,

x ¼ �1=y lnð1� uÞ

where ln denotes the natural logarithm.

Standard Exponential

Note, the expected value of x is EðxÞ ¼ 1=y,and in the special case when y ¼ 1, the

expected value of x is E(x) ¼ 1. When x ¼ 1 (the mean), F(1) ¼ 0.632, indicating

that 63.2 % of the values of x are below the mean value and 36.8 % are above.

In this special situation at E(x) ¼ 1, the distribution is like a standard exponential

distribution. The list below relates some selective values of the cumulative distri-

bution function, F(x), with the corresponding values of x.

F(x) x

0.0 0.000

0.1 0.105

0.2 0.223

0.3 0.357

0.4 0.511

0.5 0.693

0.6 0.916

0.7 1.204

0.8 1.609

0.9 2.303

Note, the median occurs at x ¼ 0.693 and the mean at x ¼ 1.00, indicating the

distribution skews far to the right.

Example 4.2 Assume an exponential distributed random variable x with a mean of

20 and a random variate of x is called in a simulation model. To generate the

random x, the following steps are followed:

1. Generate a random uniform u � U(0,1), say u ¼ 0.17

2. x ¼ �20 � ln(1�0.17) ¼ 3.727

3. Return x ¼ 3.727
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Erlang

In some queuing systems, the time associated with arrivals and service times is

assumed as an Erlang continuous random variable. The Erlang variable has two

parameters, y and k. The parameter y is the scale parameter, and k, an integer,

identifies the number of independent exponential variables that are summed

together to form the Erlang variable. In this way, the Erlang variable x is related

to the exponential variable y as below:

x ¼ ðy1 þ . . .þ ykÞ;

The expected value of x is related to the expected value of y as below:

EðxÞ ¼ kEðyÞ ¼ k=y

and the variance of x is derived from adding k variances of y, V(y), as below:

VðxÞ ¼ kVðyÞ ¼ k=y2

Note, when k ¼ 1, the Erlang variable is the same as an exponential variable

where the mode is zero and the density skews far to the right. As k increases, the

shape of the Erlang density resembles a normal variable, via the central limit

theorem.

The probability density of x is

fðxÞ ¼ xk�1yke�yx=ðk� 1Þ! x � 0

and the cumulative distribution function is

FðxÞ ¼ 1� e�yx
Xk�1

j¼0

ðyxÞj=j! x � 0

To generate a random Erlang variate of x with parameters, y and k, the following
routine is run:

1. Set x ¼ 0

2. For j ¼ 1 to k

3. Generate a random continuous uniform variate u � U(0,1)

4. y ¼ �ð1=yÞ ln ð1� uÞ
5. Sum x ¼ x þ y

6. Next j

7. Return x
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Example 4.3 Suppose a random Erlang variate is needed in a simulation run

for variable x with parameter k ¼ 4 and whose mean is 20. Note, because E(x) ¼
4/y ¼ 20, y ¼ 4/20 ¼ 0.20. The following three steps yield the random x:

1. Generate four randomcontinuous uniform u � U(0,1) variates, say (u1,u2, u3, u4) ¼
(0.27, 0.69, 0.18, 0.76).

2. Using y ¼ �(1/0.2)[ln(1 � u)], the corresponding random exponential variates

are: (y1, y2, y3, y4) ¼ (1.574, 5.856, 0.992, 7.136).

3. Summing the four exponentials yields: x ¼ 14.658.

4. Return x ¼ 14.658.

Gamma

The gamma distribution is almost the same as the Erlang distribution, except the

parameter k is any value larger than zero whereas k is a positive integer for the

Erlang. Also, x is any value greater or equal to zero. The density of the gamma is:

fðxÞ ¼ xk�1yke�yx=GðkÞ x � 0

where G(k) is called the gamma function, (not a density), defined as

GðkÞ ¼
ð1

0

tk�1e�tdt for k>0

When k is a positive integer, G(k) ¼ (k � 1)!

The mean and variance of x are the following:

m ¼ k=y

and

s2 ¼ k=y2

To generate a random gamma variate is not easy. The method presented here

depends on whether k < 1 or k > 1. Note, when, k ¼ 1, the distribution is the same

as an exponential.

When k < 1

A routine to generate a random x, when k < 1, comes from Ahrens and Dieter

(1974). It is based on the Accept-Reject method and is shown below in five steps.

In the computations below, x0 is a gamma variate with y ¼ 1, and x is a gamma

variate with any positive y:
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1. Set b ¼ (e þ k)/e where e � 2.71828 is the base of the natural logarithm.

2. Generate two random uniform u � U(0,1)variates, u1 and u2.

p ¼ bu1
if p > 1 go to step 4

if p � 1 go to step 3

3. y ¼ p1/k

if u2 � e�y, set x0 ¼ y, go to step 5

if u2 > e�y, go to step 2

4. y ¼ �ln[(b � p)/k]

if u2 � yk � 1, set x0 ¼ y, go to step 5

if u2 > yk � 1, go to step 2

5. Return x ¼ x0/y.

When k > 1

Cheng (1977) developed the routine to generate a random x when k > 1. The

method uses the Accept-Reject method as shown in the five steps listed below. Note

below where x0 is a gamma variate with y ¼1, and x is a gamma variate with any

positive y:

1. Set a ¼ 1/
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2k � 1

p
b ¼ k � ln4, where ln ¼ natural logarithm.

q ¼ k þ 1/a

c ¼ 4.5

d ¼ 1 þ ln(4.5)

2. Generate two random uniform u � U(0,1) varites, u1 and u2.

v ¼ a � ln[u1/(1 � u1)]

y ¼ kev

z ¼ u1
2u2

w ¼ b þ qv � y

3. if w þ d � cz � 0, set x0 ¼ y, go to step 5

if w þ d � cz < 0, go to step 4

4. if w � ln(z), set x0 ¼ y, go to step 5

If w < ln(z), goto step 2

5. Return x ¼ x0/y.

Example 4.4 Suppose x is gamma distributed with a mean of 0.1 and the variance ¼
0.02. Since, m ¼ k/y, and s2 ¼ k/y2, then solving for k and y, yields k ¼ 0.5 and

y ¼ 5. The computations are below:

1. e ¼ 2.718

b ¼ 1.184

2. (u1, u2) ¼ (0.71, 0.21), say.

Since p ¼ 0.841 � 1, go to step 3
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3. y ¼ 0.707

e�y ¼ 0.493

Since u2 � 0.493, x0 ¼ 0.707

4. Return x ¼ 0.707/5 ¼ 0.141.

Example 4.5 Suppose x is gamma distributed with a mean of 10 and the variance ¼
66.6. Since, m ¼ k/y, and s2 ¼ k/y2, then solving for k and y, yields k ¼ 1.5 and

y � 0.15. The computations are below:

1. a ¼ 0.707

b ¼ 0.114

q ¼ 2.914

c ¼ 4.5

d ¼ 2.504

2. (u1, u2) ¼ (0.15, 0.74), say

v ¼ �1.226

y ¼ 0.440

z ¼ 0.0167

w ¼ �3.899

3. Since w þ d�cz < 0, go to 4

4. ln(z) ¼ �4.092

Since w � ln(z), x0 ¼ 0.440

5. Return x ¼ 0.440/0.15 ¼ 2.933

Beta

The beta distribution has two parameters (k1,k2) where k1 > 0 and k2 > 0, and

takes on many shapes depending on the values of the parameters. The variable

denoted as x, lies within two limits, a and b where (a � x � b).

Standard Beta

Another distribution is introduced and is called the standard beta. This distribution

has the same parameters (k1,k2) as the beta distribution, but the limits are

constrained to the range (0,1). So when x is a beta with a range (a,b), x0 is a

standard beta with a range (0,1). When they both have the same parameters, x and x0

are related as below:

x0 ¼ ðx� aÞ=ðb� aÞ

and

x ¼ aþ x0ðb� aÞ

Beta 33



The probability density for x0 is the following:

fðx0Þ ¼ ðx0Þk1�1ð1� x0Þk2�1
=Bðk1; k2Þ ð0 � x0 � 1Þ

where

Bðc; dÞ ¼ beta function ¼
ð1

0

tc�1ð1� tÞd�1dt

The expected value of x0 is

Eðx0Þ ¼ k1=ðk1 þ k2Þ

and the variance is

Vðx0Þ ¼ k1k2= ðk1 þ k2Þ2ðk1 þ k2 þ 1Þ
h i

The corresponding expected value and variance of x becomes,

EðxÞ ¼ aþ Eðx0Þðb� aÞ

VðxÞ ¼ ðb� aÞ2Vðx0Þ

The mode of the standard beta variable could be 0 or 1 depending on the values

of k1 and k2. However, when k1 > 1 and k2 > 1, the mode lies between 0 and 1 and

is computed by,

~x0 ¼ ðk1 � 1Þ=ðk1 þ k2 � 2Þ

The mode for the beta variable becomes:

~x ¼ aþ ~x0ðb� aÞ

Below is a list describing the relation between the parameters and the shape of

the distribution.

Parameters Shape

k1 < 1 and k2 � 1 Mode at zero (right skewed)

k1 � 1 and k2 < 1 Mode at one (left skewed)

k1 ¼ 1 and k2 > 1 Ramp down from zero to one

k1 > 1 and k2 ¼ 1 Ramp up from zero to one

k1 < 1 and k2 < 1 Bathtub shape

k1 > 1 and k2 > 1 and k1 > k2 Mode between zero and one (left skewed)

k1 > 1 and k2 > 1 and k2 > k1 Mode between zero and one (right skewed)

k1 > 1 and k2 > 1 and k1 ¼ k2 Mode in middle, symmetrical, normal like

k1 ¼ k2 ¼ 1 Uniform
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To generate a random beta variate x with parameters (k1,k2), and with the range

(a, b) the following routine is run:

1. Generate a random gamma variate, g1, with parameters k1 and y1 ¼1.

Generate a random gamma variate, g2, with parameters k2 and y2 ¼1.

2. x0 ¼ g1/(g1 þ g2)

3. x ¼ a þ x0(b � a)

4. Return x

Example 4.6 Suppose x is a beta random variable with parameters (2,4) and has a

range of 10–50. The following steps are followed to show how to generate a random x:

1. A random gamma variate is generated with (k1 ¼ 2, y1 ¼1), say, g1 ¼ 1.71.

A random gamma variate is generated with (k2 ¼ 4, y2 ¼1), say, g2 ¼ 4.01.

2. The random standard beta variate is x0 ¼ 1.71/(1.71 þ 4.01) ¼ 0.299

3. The random beta variate is x ¼ 10 þ 0.299(50 � 10) ¼ 21.958

4. Return x ¼ 21.958

Weibull

The Weibull distribution has two parameters, k1 > 0 and k2 > 0, and the random

variable, denoted as x, ranges from zero and above. The density is

fðxÞ ¼ k1 k
~
2

k1
xk1 exp � x=k2ð Þk1

h i
x>0

and the cumulative distribution function

FðxÞ ¼ 1� exp � x=k2ð Þk1
h i

x>0

The expected value and variance of x are listed below,

EðxÞ ¼ k2=k1G 1=k1ð Þ

VðxÞ ¼ k2
2=k1 2G 2=k1ð Þ � 1=k1G 1=k1ð Þ2

h i

Recall G denotes the gamma function described earlier in this chapter. When the

parameter k1 � 1, the shape of the density is exponential like. When k1 > 1, the

shape has a mode greater than zero and skews to the right, and at k1 � 3, the density

shape starts looking like a normal distribution.

To generate a random x from the Weibull, the inverse transform method is used.

Setting a random uniform variate u � U(0,1) to F(x), and solving for x, yields the

following:
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x ¼ k2 � lnð1� uÞ½ 	1=k1

Example 4.7 Suppose x is Weibull distributed with parameters k1 ¼ 4, k2 ¼ 10,

and a random x is called in a simulation run. The following steps are followed:

1. Generate a random uniform u � U(0,1). Say u ¼ 0.92.

2. x ¼ 10[�ln(1 � 0.92)]1/4 ¼ 12.61.

3. Return x ¼ 12.61.

Normal Distribution

The normal distribution is symmetrical with a bell shaped density. Its mean is

denoted as m and the standard deviation as s. This is perhaps the most widely used

probability distribution in business and scientific applications. A companion distri-

bution, the standard normal distribution, has a mean of zero, a standard deviation of

one, and has the same shape as the normal distribution. The notation for the normal

variable is x � N(m,s2), and its counterpart, the standard normal is z � N(0,1). The

variable z is related to x by the relation: z ¼ (x�m)/s. In the same way, x is

obtained from z by: x ¼ m þ zs. When k represents a particular value of z, the

probability density is f(k) ¼ 1/
ffiffiffiffiffiffi
2p

p
exp(�k2/2). The probability that z is less than k

is denoted as F(k) and is computed by F(k) ¼ Ð k
�1 f ðzÞdz.

There is no closed-form solution for the cumulative distribution F(z). A way to

approximate F(z) has been developed by C.Hastings, Jr. (1955), and also reported

by A. Abramowitz and I. A. Stegun (1964). Two methods credited to Hastings are

listed below.

Hastings Approximation of F(z) from z

To find F(z) from a particular value of z, the following routine is run:

1. d1 ¼ 0.0498673470

d2 ¼ 0.0211410061

d3 ¼ 0.0032776263

d4 ¼ 0.0000380036

d5 ¼ 0.0000488906

d6 ¼ 0.0000053830

2. If z � 0, k ¼ z

If z < 0, k ¼ �z

3. F ¼ 1 � 0.5[1 þ d1k þ d2k
2 þ d3k

3 þ d4k
4 þ d5k

5 þ d6k
6]�16

4. if z � 0, F(z) ¼ F
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If z < 0, F(z) ¼ 1 � F

5. Return F(z)

Hastings Approximation of z from F(z)

Another useful approximation also comes from Hastings, and gives a formula that

yields a random z from a value of F(z). The routine is listed below:

1. c0 ¼ 2.515517

c1 ¼ 0.802853

c2 ¼ 0.010328

d1 ¼ 1.432788

d2 ¼ 0.189269

d3 ¼ 0.001308

2. H(z) ¼1 � F(z)

If H(z) � 0.5, H ¼ H(z)

If H(z) > 0.5, H ¼ 1 � H(z)

3. t ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1=H2Þp

where ln ¼ natural logarithm

4. k ¼ t � [c0 þ c1t þ c2t
2]/[1 þ d1t þ d2t

2 þ d3t
3]

5. If H(z) � 0.5, z ¼ k

If H(z) > 0.5, z ¼ �k

6. Return z

The literature reports various ways to generate a random standard normal variate z.

Three of the methods are presented here.

Hastings Method

The first way utilizes the Hastings method that finds a z from F(z), and is based

on the inverse transform method. The routine uses one standard uniform variate,

u � U(0,1), as shown below:

1. Generate a random continuous uniform variate u � U(0,1).

2. Set F(z) ¼ u.

3. Use Hastings Approximation of z from F(z) to generate a random standard

normal variate z.

4. Return z.
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Convolution Method

A second way to generate a random standard normal variate uses twelve random

continuous uniform variates. The routine is listed below:

1. z ¼ �6

2. For i ¼ 1 to 12

3. Generate a random uniform variate u � U(0,1)

4. z ¼ z þ u

5. Next i

6. Return z

Note in the above routine, E(u) ¼ 0.5 and V(u) ¼ 1/12, and thereby, E(z) ¼ 0

andV(z) ¼ 1. Also since z is based on the convolution of twelve continuous uniform

u � U(0,1) variates, the central limit theorem applies and hence, z � N(0,1).

Example 4.7 The routine below shows how to use the convolution method to

generate a random z � N(0.1):

1. Set z ¼ �6.0

2. Sum 12 random continuous uniform variates, u � U(0,1), say Su ¼ 7.12

3. z ¼ �6.0 þ Su ¼ 1.12

4. Return z ¼ 1.12

Sine-Cosine Method

A third way generates two random standard normal variates, z1, z2. This method

comes from a paper by Box and Muller (1958). The routine requires two random

continuous uniform variates to generate the two random standard normal variates.

The routine is listed below:

1. Generate two random continuous uniform variates, u1 and u2

2. z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 lnðu1Þ

p
cos 2pðu2Þ½ 	

z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 lnðu1Þ

p
sin 2pðu2Þ½ 	

3. Return z1 and z2

Example 4.8 Suppose x is normally distributed with mean 40 and standard devia-

tion 10, and a random normal variate of x is needed. Using the Sine-Cosine method,

the steps below follow:

1. Two random continuous uniform u � U(0,1)variates are (u1, u2) ¼ (.37, .54), say

2. z1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 lnðu1Þ

p
cos 2pðu2Þ½ 	 ¼ �1:3658

z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2 lnðu1Þ

p
sin 2pðu2Þ½ 	 ¼ �0:3506

3. x ¼ 40 � 1.3658 � 10 ¼ 26.342

4. Return x ¼ 26.342.
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Lognormal

The lognormal distribution with variable x > 0, reaches a peak greater than zero

and skews far to the right. This variable is related to a counterpart normal variable y,

in the following way.

y ¼ lnðxÞ

where ln is the natural logarithm. In the same way, x is related to y by the relation

below:

x ¼ ey:

The variable y is normally distributed with mean and variance, my and sy
2,

respectively, and x is lognormal with mean and variance, mx and sx
2. The notation

for x and y are as below:

x � LN my;sy
2

� �

y � N my;sy
2

� �

Note, the parameters to define the distribution of x, are themean and variance of y.

The parameters between x and y are related in the following way:

mx ¼ exp my þ sy
2=2

� �

sx
2 ¼ exp 2my þ sy

2
� �

exp sy
2

� �� 1
� �

my ¼ ln mx
2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2x þ s2x

q� �

sy
2 ¼ ln 1þ sx

2= mx
2

� �

To generate a random x with parameters my and sy
2, the following routine is run:

1. Generate a random standard normal variate, z.

2. A random normal variate becomes: y ¼ my þ zsy.

3. The random lognormal variate is x ¼ ey.

4. Return x.

Example 4.9 Suppose x is lognormal with mean mx ¼ 10, variance sx
2 ¼ 400,

and a random lognormal variate of x is needed. The steps below show how to find a

random x:
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1. The mean and variance of y become:

my ¼ ln mx
2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2x þ s2x

p� � ¼ 1:498

sy
2 ¼ ln 1þ sx

2= mx
2½ 	 ¼ 1:609

The standard deviation of y is sy ¼ 1.269.

2. A random standard normal variate is generated as z ¼ 1.37, say.

3. The random normal variate becomes y ¼ 1.498 þ 1.37 � 1.269 ¼ 3.236.

4. The random lognormal variate is x ¼ e3.236 ¼ 25.44.

5. Return x ¼ 25.44.

Chi-Square

The chi-square distribution is one of the most frequently used distributions in

statistical analysis, usually to test the variability of the variance of a variable. The

chi-square variable is denoted as w2 and is associated with a parameter k, the

degrees of freedom. The variable w2 is greater or equal to zero, and the parameter

k is a positive integer. When, w ¼ w2, the probability density of w, with parameter

k, is listed below:

fðwÞ ¼ ½wðk=2�1Þe�w=2	= 2k=2Gðk=2Þ
h i

w � 0

The mean and variance of w (and w2) are E(w) ¼ k and V(w) ¼ 2k, respec-

tively. So, the mean and variance of w2 with k degrees of freedom are:

Eðw2Þ ¼ k

Vðw2Þ ¼ 2k

Probability tables values of chi-square with parameter k and probability P(w2 >
w2a) ¼ a are listed in most statistical books, and usually for k � 100.

The variable chi-square with degrees of freedom k is related to the standard

normal variable as shown below:

w2 ¼ z1
2 þ . . .þ zk

2

where z1 to zk are standard normal variates.
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Approximation Formula

When the parameter k is large (k >30), thanks to the central limit theorem, the

chi-square probability density is shaped like a normal distribution whereby, w2 �
N(k,2k). Using this relation, an approximation to the a-percent chi-square value is
shown below:

w2a � kþ za
ffiffiffiffiffi
2k

p

where z is a standard normal variable with P(z > za) ¼ a and thereby

P(w2 > w2a) � a.

Relation to Gamma

It is also noted where the density f(w) has the same shape as the gamma distribution

with parameters y and k0 when the gamma parameters are set as: y ¼ 2 and k0 ¼ k/2,

Generate a Random Chi-Square Variate

A random chi-square variate with degrees of freedom, k, can be generated by

summing k standard normal variates as shown in the routine below:

1. w2 ¼ 0

2. For i ¼ 1 to k

3. Generate a standard normal variate z

4. w2 ¼ w2 þ z2

5. Next i

6. Return w2

Another way to generate the chi-square variate is by using the gamma relationship

noted above. For chi-square with parameter k, generate a gamma with parameters,

(2, k/2) and the outcome becomes the random chi-square variate.

When k is large, (k > 30), the normal approximation given above, can be used

to generate the chi-square variate. In this situation the chi-square variate is

approximated by the normal distribution with a mean k and variance 2k.

Example 4.10 Suppose a random chi-square with degrees of freedom k ¼ 3 is

needed in a simulation run. To generate a random chi-square, the steps below are

followed:

1. Suppose three random standard normal variates are: (z1, z2, z3) ¼ (0.47, �0.81,

1.04), say.

2. w2 ¼ 0.472 þ �0.812 þ 1.042 ¼ 1.9586.

3. Return w2 ¼ 1.9586.
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Example 4.11 Suppose a simulation model needs a chi-square random variate with

239 degrees of freedom. To accomplish, the following routine is run:

1. Generate a random standard normal z � N(0,1), say z ¼ 1.34.

2. w2 ¼ int 239þ 1:34
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2� 239

p þ 0:5
� � ¼ 269

3. Return w2 ¼ 269

Student’s t

The student’s t distribution is an important distribution used in statistical analysis,

usually to test the significance of the mean value of a variable. The distribution is

often referred as the t distribution. The spread of the distribution is much like the

standard normal distribution but the tails can reach out farther to the right and left,

depending on a parameter k, the degrees of freedom. The expected value and

variance of t are listed below:

EðtÞ ¼ 0

VðtÞ ¼ k=ðk� 2Þ at k>2

When k > 30, the student’s t distribution is approximated by the standard

normal distribution.

The variable t, with parameter k, is related to the standard normal distribution

and the chi-square distribution by the relation below:

t ¼ z=
ffiffiffiffiffiffiffiffiffi
w2k=k

q

Generate a Random Variate

To generate a random t with parameter k, the following routine is run:

1. Generate a random standard normal variate, z � N(0,1).

2. Generate a random chi-square variate with parameter k, w2k .
3. t ¼ z=

ffiffiffiffiffiffiffiffiffi
w2k=k

p

4. Return t.

Example 4.12 Suppose a random variate t with degrees of freedom k ¼ 6 is

needed in a simulation analysis. To accomplish, the steps below are followed.

1. A random standard normal variate is generated as z ¼ 0.71, say.

2. A random chi-square variate with parameter k ¼ 6 is generated as w26 ¼ 6:29, say.

3. t ¼ 0:71=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6:29=6

p ¼ 0:693.
4. Return t ¼ 0.693.

42 4 Generating Continuous Random Variates



Fishers’ F

Fisher’s F distribution is an important distribution used in statistical analysis and

pertains when the two or more variances from normal variables are under review.

The variable F is greater than zero, and has two parameters, u and v, where both are

positive integers. The variable F is derived from two independent chi square

variables, w1
2 and w2

2 with degree of freedom, u and v, respectively, as shown below.

F ¼ w1
2=u

� �
= w2

2=v
� �

and F>0

The expected value and variance of F are listed below,

EðFÞ ¼ v=ðv� 2Þ when v>2

VðFÞ ¼ 2v2ðuþ v� 2Þ� �
= uðv� 2Þ2ðv� 4Þ
h i

when v>4

Table values, Fa,u,v, of F with parameters u and v are listed in most statistical

books where P[F > Fa,u,] ¼ a. Note the relation below that shows how the lower

tail values of F with degrees of freedom v and u is related to the upper tail values

when the degrees of freedom are u and v.

Fð1�aÞ;v;u ¼ 1=Fa;u;v

In statistical analysis, suppose x1 and x2 are two normally distributed variables

with variances s1
2 and s2

2, respectively, and s1
2 and s2

2 are the corresponding

sample variances when n1 and n2 are the number of samples taken for x1 and x2,
respectively. The ratio,

F ¼ s1
2= s1

2
� �

= s2
2=s2

2
� �

is distributed as an F variable with degrees of freedom n1
0 ¼ n1�1 and n2

0 ¼ n2�1.

When s1
2 and s2

2 are equal, the ratio becomes,

F ¼ s1
2=s2

2

Note, u ¼ n1
0 and v ¼ n2

0 is the notation for the degrees of freedom. To generate

a random F with parameters, u and v, the following routine is run:

1. Generate w1
2 and w2

2 with degree of freedom, u and v, respectively.

2. F ¼ [w1
2/u]/[w2

2/v]

3. Return F

Example 4.13 Suppose a random variate of F with degrees of freedom 4 and 6 is

needed in a simulation run. The steps below show how the random F is derived:
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1. Suppose w1
2 ¼ 3.4 and w2

2 ¼ 8.3, are randomly generated.

2. F ¼ [3.4/4]/[8.3/6] ¼ 0.61

3. Return F ¼ 0.61

Summary

This chapter shows how to transform the continuous uniform random variates,

u � U(0,1), to random variates for a variable that comes from one of the common

continuous probability distributions. The probability distributions described here

are the following: the continuous uniform, exponential, Erlang, gamma, beta,

Weibull, normal, lognormal, chi-square, student’s t, and Fishers F. The chapter

also shows how to use the (Hastings) approximation formulas for the standard

normal distribution.
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Chapter 5

Generating Discrete Random Variates

Introduction

A discrete random variable includes a specified list of exact values where each is

assigned a probability of occurring by chance. The variable can take on a particular

set of discrete events, like tossing a coin (head or tail), or rolling a die (1,2,3,4,5,6).

This chapter considers the more common discrete probability distributions and

shows how to generate random variates for each. The probability distributions

described here are the following: discrete arbitrary, discrete uniform, Bernoulli,

binomial, hyper geometric, geometric, Pascal and Poisson.

Discrete Arbitrary

A variable x is defined as discrete when a set number of values of x can occur, as xi
for i ¼ 1 to N, and N could be finite or infinite. Generally, xi are the positive

integers as xi ¼ 0, 1, 2,. . .. The probability of a particular value xi is denoted as

P(xi) ¼ P(x ¼ xi). Hence, P(x1), . . ., P(xN) define the probability distribution of x.

The sum of all the probabilities is equal to one, i.e.,

X

i

PðxiÞ ¼ 1

The expected value of x is obtained as below:

EðxÞ ¼
X

i

xiPðxiÞ

and the associated variance is,

VðxÞ ¼ Eðx2Þ � EðxÞ2

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0_5,
# Springer Science+Business Media New York 2013
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where,

Eðx2Þ ¼
X

i

x2i PðxiÞ

The cumulative distribution function of x is denoted as F(xi) and is computed by

FðxiÞ ¼ Pðx � xiÞ

To generate a random variate x from an arbitrary probability distribution, the

following routine is run:

1. For each xi, find F(xi) i ¼ 1 to N.

2. Generate a random continuous uniform u � U(0,1).

3. Locate the smallest xi where u < F(xi).

4. Set x ¼ xi.

5. Return x.

Example 5.1 Suppose x is discrete with the following probability distribution, and

the associated cumulative distribution function.

x P(x) F(x)

0 0.4 0.4

1 0.3 0.7

2 0.2 0.9

3 0.1 1.0

To obtain a random x, the following steps are taken:

1. Generate a random u � U(0,1), say u ¼ 0.57.

2. Note, x ¼ 1 is the smallest x where u ¼ 0.57 < F(1) ¼ 0.7.

3. Return x ¼ 1.

Discrete Uniform

A variable x follows the discrete uniform distribution with parameter (a,b) when x

takes on all integers from a to b with equal probabilities. The probability of x

becomes,

pðxÞ ¼ 1=ðb� aþ 1Þ x ¼ a to b

The cumulative distribution function is

FðxÞ ¼ ðx� aþ 1Þ=ðb� aþ 1Þ x ¼ a to b
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The expected value and the variance of x are listed below:

EðxÞ ¼ ðaþ bÞ=2

VðxÞ ¼ ðb� aþ 1Þ2 � 1
h i

=12

To generate a random discrete uniform variate of x, the routine below is

followed:

1. Generate a random continuous uniform u � U(0,1).

2. x ¼ ceiling [(a�1) þ u(b�a þ 1)].

3. Return x.

Example 5.2 Suppose an analyst needs a random discrete uniform variate for use

in a simulation model in progress where x includes all integers from 10 to 20.

To compute, the following steps are taken:

1. Generate a continuous uniform random u � U(0,1), say u ¼ 0.714.

2. Calculate x ¼ ceiling [(10�1) þ 0.714 (20�10 þ 1)] ¼ ceiling [16.854] ¼ 17.

3. Return x ¼ 17.

Bernoulli

Suppose the variable x is distributed as a Bernoulli variable of x ¼ 0 or 1, where the

probability of each is the following:

Pðx ¼ 0Þ ¼ 1� p

Pðx ¼ 1Þ ¼ p

The expected value and variance of x are the following:

EðxÞ ¼ p

VðxÞ ¼ pð1� pÞ

To generate a random Bernoulli variate x, the following three steps are taken:

1. Generate a random uniform u � U(0,1).

2. If u < p, x ¼ 1; else, x ¼ 0.

3. Return x.
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Example 5.3 Consider a Bernoulli x with p ¼ 0.70. A random x is generated as

follows:

1. Generate a random u � U(0,1), say u ¼ 0.48.

2. Since u < p ¼ 0.70, x ¼ 1.

3. Return x ¼ 1.

Binomial

The variable x is distributed as a Binomial when x is the number of success’ in n

independent trials of an experiment with p the probability of a success per trial. The

variable x can take on the integer values of 0–n. The probability of x is the

following:

PðxÞ ¼ n!= x!ðn� xÞ!½ �pxð1� pÞn�x
x ¼ 0; . . . :; n

The expected value and variance of x are listed below:

EðxÞ ¼ np

VðxÞ ¼ npð1� pÞ

The cumulative distribution function of x, denoted as F(x), is the probability of

the variable achieving the value of x or smaller. When x ¼ xo, say,

FðxoÞ ¼ Pðx � xoÞ:

To generate a random binomial variate of x, one of the three routines listed

below may be used.

When n is Small

When n is small to moderate in size, the following routine is efficient:

1. Set x ¼ 0.

2. For i ¼ 1 to n

Generate a random continuous uniform variate, u � U(0,1)

If u < p, x ¼ x þ 1

Next i.

3. Return x.
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Normal Approximation

When n is large and if p � 0.5 with np > 5, or if p > 0.5 with n(1�p) > 5, then x

can be approximated with the normal distribution, whereby x � N[np, np(1�p)].

The routine listed below will generate a random x:

1. Generate a random standard normal variate, z � N(0,1).

2. x ¼ integer npþ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1� pÞ

p
þ 0:5

h i
:

3. Return x.

Poisson Approximation

When n is large and p is small, and the above normal approximation does not apply,

x is approximated by the Poisson distribution that is described subsequently in this

chapter:

1. The expected value of the Poisson variable is denoted here asy, where E(x)¼y¼ np.

2. Generate a random Poisson variate x with parameter y.
3. Return x.

Example 5.4 Suppose x is binomial distributed with n ¼ 5 trials and p ¼ 0.375.

To generate a random binomial x, five continuous uniform variates,u � U(0,1), are

needed as shown below:

1. Suppose the five uniform variates are the following: 0.286, 0.949, 0.710, 0.633,

and 0.325.

2. Since two of the variates are below p ¼ 0.375, x ¼ 2.

3. Return x ¼ 2.

Example 5.5 Assume 100 independent Bernoulli trials are run where the probabil-

ity of a success per trial is p ¼ 0.40. Of interest is to generate a random binomial

variate x. Since n ¼ 100, p ¼ 0.40 and np ¼ 40, the normal approximation to

the binomial can be used. The mean and variance of the normal are, m ¼ np ¼ 40

and s2 ¼ npð1� pÞ ¼ 24, respectively. Hence s ¼ 4.89. The following routine

generates the random x:

1. Generate a random standard normal variate z, say z ¼ 0.87.

2. x ¼ integer[m þ zs þ 0.5] ¼ 44.

3. Return x ¼ 44.

Example 5.6 Suppose a random binomial variate x is needed from a sample of

n ¼ 1,000 trials with p ¼ 0.001. With np ¼ 1.0, the normal distribution does not

apply, but the Poisson distribution is applicable with y¼ 1.00. Later in this chapter,

the way to generate a random x from the Poisson distribution is shown:

1. Generate a random Poisson variate with parameter y ¼ 1.00, say x ¼ 2.

2. Return x ¼ 2.
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Hyper Geometric

The variable x is distributed as a hyper geometric when x is the number of

defectives in n samples taken without replacement from a population of size N

with D defectives. The variable x can take on the integer values of zero to the

smaller of D and n. The probability of x is the following:

PðxÞ ¼ N � D
n� x

� �
D
x

� ��
N
n

� �
x ¼ 0; . . . ; minðn;DÞ

The expected value and variance of x are listed below:

EðxÞ ¼ nD=N

VðxÞ ¼ n½D=N�½1� D=N�½N� n�=½N� 1�

To generate a random hyper geometric variate, the following routine is run. The

parameter notations are N ¼ population size, D ¼ number of defects in the popu-

lation, and n ¼ number of samples without replacement:

1. Set N1 ¼ N, D1 ¼ D and x ¼ 0.

2. For i ¼ 1 to n

p ¼ D1/N1

Generate a random continuous uniform u � U(0,1)

N1 ¼ N1 - 1

If u < p, x ¼ x þ 1 and D1 ¼ D1�1

Next i.

3. Return x.

Example 5.7 Suppose a situation where a lot of ten units contains two defectives

and a sample of size four is taken without replacement. The goal is to generate a

random hyper geometric variate on the number of defective units, x, observed in the

sample. Note, N ¼ 10, D ¼ 2 and n ¼ 4. The steps below show how a random x is

generated:

1. Set N1 ¼ N ¼ 10, D1 ¼ D ¼ 2 and n ¼ 4.

2. Start loop.

3. At i ¼ 1, p ¼ D1/N1 ¼ 0.200, u ¼ 0.37 say. Since u � p,set N1 ¼ 9.

4. At i ¼ 2, p ¼ D1/N1 ¼ 0.222, u ¼ 0.51 say. Since u � p, set N1 ¼ 8.

5. At i ¼ 3, p ¼ D1/N1 ¼ 0.250, u ¼ 0.14 say. Since u < p, set N1 ¼ 7, x ¼ 1,

D1 ¼ 1.

6. At i ¼ 4, p ¼ D1/N1 ¼ 0.143, u ¼ 0.84 say. Since u � p, set N1 ¼ 6.

7. End loop.

8. Return x ¼ 1.
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Geometric

A variable x is distributed by the geometric distribution when x measures the

number of trials to achieve a success, and where the probability of a success, p,

remains the same for each trial. The probability of x is listed below.

PðxÞ ¼ pð1� pÞx�1
x ¼ 1; 2; . . .

The cumulative distribution function of x is the following:

FðxÞ ¼ 1� ð1� pÞx x ¼ 1; 2; . . .

The expected value and the corresponding variance of x are listed below:

EðxÞ ¼ 1=p

VðxÞ ¼ ð1� pÞ=p2

To generate a random geometric variate of x (number of trials to achieve a

success), the following routine is run:

1. Generate a random continuous uniform u � U(0,1).

2. x ¼ integer[ln(1�u)/ln(1�p)] þ 1, where ln ¼ natural logarithm.

3. Return x.

Example 5.8 Suppose an experiment is run where the probability of a success is

p ¼ 0.20 and a random geometric variate of x, the number of trials till the first

success, is needed. To accomplish, the following three steps are shown:

1. Generate a random uniform from u � U(0,1), say, u ¼ 0.27.

2. x ¼ integer[ln(1�.27)/ln(1�.2)] þ 1 ¼ 2.

3. Return x ¼ 2.

When the variable is defined as the number of failures till obtain a success, the

variable is x0 ¼ x�1 and x0 ¼ 0, 1, . . . The probability of x0 is below:

Pðx0Þ ¼ pð1� pÞx0 x0 ¼ 0; 1; 2; . . .

The cumulative distribution function is the following:

Fðx0Þ ¼ 1� ð1� pÞx0þ1
x0 ¼ 0; 1; 2; . . .

Also, E(x0) ¼ E(x)�1 ¼ (1�p)/p and V(x0) ¼ V(x) ¼ (1�p)/p2.
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Pascal

A variable x follows the Pascal distribution when x represents the number of trials

needed to gain k successes when the probability of a success is p. This distribution is

also called the negative binomial distribution. The probability of x is listed below:

PðxÞ ¼ x� 1

k � 1

� �
pkð1� pÞx�k

x ¼ k; kþ 1; . . .

The cumulative distribution function is,

FðxÞ ¼
Xx

y¼k

PðyÞ x ¼ k; kþ 1; . . .

The mean and variance of x are given below:

EðxÞ ¼ k=p

VðxÞ ¼ kð1� pÞ=p2

To generate a random Pascal variate of x, the following routine is run:

1. x ¼ 0

2. For i ¼ 1 to k

Generate y, a random geometric variate with parameter p

(Note, y ¼ number of trials till a success.)

x ¼ x þ y

Next i

3. Return x

Example 5.9 Suppose x is distributed as a Pascal variable with p ¼ 0.5 and k ¼ 5,

whereby x represents the number of trials until five successes. The following steps

illustrate how x is generated:

1. x ¼ 0.

2. At i ¼ 1, generate a geometric y with p ¼ .5, say y ¼ 3. x ¼ 3.

3. At i ¼ 2, generate a geometric y with p ¼ .5, say y ¼ 1. x ¼ 4.

4. At i ¼ 3, generate a geometric y with p ¼ .5, say y ¼ 2. x ¼ 6.

5. At i ¼ 4, generate a geometric y with p ¼ .5, say y ¼ 4 x ¼ 10.

6. At i ¼ 5, generate a geometric y with p ¼ .5, say y ¼ 2. x ¼ 12.

7. Return x ¼ 12.

When the variable is defined as the number of failures till obtain k successes,

the variable is x0 ¼ x�k and x0 ¼ 0, 1, . . . Also, E(x0) ¼ E(x)�k ¼ k(1�p)/p and

V(x0) ¼ V(x) ¼ k(1�p)/p2.
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Poisson

The variable x is described as Poisson distributed when events occur at a constant

rate, y, during a specified interval of time. Could be the number of vehicles crossing

an intersection each minute, or the demand for a product over a month’s interval of

time. The probability of x is listed below.

PðxÞ ¼ yxe�y=x! x ¼ 0; 1; 2; . . . ::

The expected value and variance of x are shown below:

EðxÞ ¼ y

VðxÞ ¼ y

Relation to the Exponential Distribution

The Poisson and the exponential distributions are related since the time, t, between

events from a Poisson variable is distributed as exponential with EðtÞ ¼ 1=y. This
relation is used to randomly generate a value of x.

Generating a Random Poisson Variate

To generate a random variate of x from the Poisson distribution with parameter, y,
the following routine is run.

1. Set x ¼ 0, i ¼ 0 and St ¼ 0.

2. i ¼ i þ 1, generate a random exponential variate, t, with EðtÞ ¼ 1=y, and set

St ¼ St þ t.

3. if St > 1, go to step 5.

4. if St � 1, x ¼ x þ 1, goto step 2.

5. Return x.

Example 5.10 Assume x is a random variable that follows the Poisson distribution

where the expected occurrences in an interval of time is y¼ 2.4. In the steps below,

note how a random Poisson variate x, is derived from randomly generated expo-

nential t variates with expected value of 1/2.4:

1. x ¼ 0 and St ¼ 0.

2. At i ¼ 1, t ¼ 0.21 say, St ¼ 0.21, x ¼ 1.

3. At i ¼ 2, t ¼ 0.43 say, St ¼ 0.64, x ¼ 2.

4. At i ¼ 3, t ¼ 0.09 say, St ¼ 0.73, x ¼ 3.

5. At i ¼ 4, t ¼ 0.31 say, St ¼ 1.04.

6. Return x ¼ 3.
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Example 5.11 A gas station is open 24 h a day where 200–300 vehicles arrive for

gas each day, equally distributed. Eighty percent of the vehicles are cars, 15 % are

trucks and 5 % motorcycles. The consumption of gas per vehicle is a truncated

exponential with a minimum and average known by vehicle type. Cars consume on

average 11 gal with a minimum of 3 gal. Trucks consumer a minimum of 8 gal and

an average of 20 gal. The motorcycles consume a minimum of 2 gal and an average

of 4 gal. The analyst wants to determine the distribution of the total consumption of

gas for a day.

A simulation model is developed and run for 1,000 days. On the first day, 228

vehicles enter the station and for each of the 228 vehicles, the type of vehicle and

the amount of gas consumed is randomly generated. The sum of gas consumed in

the first day is G ¼ 2,596 gal. The simulation is carried on for 1,000 days and the

amount of gas consumed is recorded for each day. Now with 1,000 values of G, the

gas consumed per day, the next step is to sort the values of G from low to high to

yield Gð1Þ � Gð2Þ � . . . � Gð1000Þ. The p-quantile is estimated by Gðp� 1000Þ.
For example, the 0.01 quantile is estimated using 0:01� 1000 ¼ 10 where

G(10) ¼ 2,202, that is the tenth smallest value of G. The table below lists various

p-quantiles of the daily gas consumption.

p G(p)

0.01 2,202

0.05 2,336

0.10 2,436

0.20 2,546

0.30 2,658

0.40 2,768

0.50 2,883

0.60 3,014

0.70 3,138

0.80 3,261

0.90 3,396

0.95 3,503

0.99 3,656

The results show where there is a 5 % chance that G will exceed 3,503 gal and a

1 % chance that G will exceed 3,656 gal. Further, an estimate of the 90 % prediction

interval on G becomes Pð2336 � G � 3503Þ ¼ 0:90.

Example 5.12 An always-open truck dealership has ten bays to service trucks for

maintenance and service. The arrival rate of trucks is Poisson distributed with 6.67

vehicles per day, and the service rate is also Poisson with a service rate of 1.33

vehicles per day. The vehicles require n parts in the service operation and the

probability of n, denoted as P(n), is as follows:

n 3 4 5 6 7 8

P(n) 0.11 0.17 0.22 0.28 0.18 0.04
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Four types of parts are described depending on the source of the supplier: PDC

(parts distribution center), OEM (original equipment manufacturer), DSH (direct

ship supplier), NST (Non stocked part). The table below lists the probability the

vehicle needs one of these type of parts, P(type); the service level for each type of

part, (SL), where SL ¼ P(part is available in dealer); and the lead time to obtain the

part in days (LT). Note, the dealer is limited on space and budget and must set his

service levels accordingly. The higher the service level, the more inventory in

pieces and in investment.

Part type PDC OEM DSH NST

P(type) 0.50 0.30 0.19 0.01

SL 0.93 0.92 0.95 0.00

LT 1.25 1.50 2.50 1.50

A simulation model is developed and is run until 5,000 vehicles are processed in

the dealership. The first 500 vehicles are used as the transient stage, whereby the

equilibrium stage is for the final 4,500 vehicles. This is where all the measurements

are tallied. The table below shows some of the statistics gathered from the final

4,500 vehicles.

Bay averages per vehicle:

Empty time ¼ 0.19 days

Service time ¼ 0.75 days

Wait time for part(s) ¼ 0.56 days

Total time ¼ 1.50 days

Vehicle averages:

Wait time in yard ¼ 0.09 days

Service time ¼ 0.75 days

Wait time for part(s) ¼ 0.56 days

Total time ¼ 1.40 days

The results show where the average bay is empty for 0.19 days for each vehicle it

processes. Further the average service time is 0.75 days and the average idle time

per vehicle waiting to receive the out-of-stock part(s) is 0.56 days. The average wait

time a vehicle is in the yard prior to service is 0.09 days and the average time in the

dealership is 1.40 days. Note also where the average time between vehicles for a

bay is 1.50 days.

Summary

This chapter shows how to transform continuous uniform random variates, u �
U(0,1), to random discrete variates for a variable that comes from one of the more

common discrete probability distributions. The probability distributions described

here are the following: discrete arbitrary, discrete uniform, Bernoulli, binomial,

hyper-geometric, geometric, Pascal and Poisson.
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Chapter 6

Generating Multivariate Random Variates

Introduction

When two or more random variables are jointly related in a probability way, they

are labeled as multivariate random variables. The probability of the variables

occurring together is defined by a joint probability distribution. In most situations,

all of the variables included in the distribution are continuous or all are discrete; and

on less situations, they are a mixture between continuous and discrete. This chapter

considers some of the more popular multivariate distributions and shows how to

generate random variates for each. The probability distributions described here are

the following: multivariate discrete arbitrary, multinomial, multivariate hyper geo-

metric, bivariate normal, bivariate lognormal, multivariate normal and multivariate

lognormal. The Cholesky decomposition method is also described since it is needed

to generate random variates from the multivariate normal and the multivariate

lognormal distributions.

Multivariate Discrete Arbitrary

Suppose k discrete random variables (x1,. . .,xk) are jointly related by the probability
distribution P(x1,. . .,xk). The sum of the probabilities over all possible values of the

k variables is one, i.e.,
X

x1::xk
Pðx1 . . . xkÞ ¼ 1:0

Consider one of the k variables, say xj. The marginal probability of xj, denoted as

P(xj. . .), is obtained by summing the joint probability distribution over all xi except

xj, as shown below,

Pðxj . . .Þ ¼
X

all:x: :but:xj

Pðx1; x2; . . . ; xkÞ

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0_6,
# Springer Science+Business Media New York 2013
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The partial expectation of xj is obtained as follows,

Eðxj . . .Þ ¼
X

xj

xjPðxj . . .Þ

and the partial variance is

Vðxj . . .Þ ¼ E xj
2 . . .

� �� Eðxj . . . Þ2

where

E xj
2 . . .

� � ¼
X

xj

xj
2Pðxj . . .Þ

Generate a Random Set of Variates

The steps below show how to generate a random set of variates for the variables,

x1,x2,. . .,xk.

1. Get P(x1. . .), the marginal probability of x1, and also F(x1. . .), the corresponding
cumulative distribution.

Generate a random continuous uniform variate u � U(0,1).

Locate the smallest value of x1 where u < F(x1. . .), say x10.

2. Get P(x2|x10. . .), the marginal probability of x2 given x10, and also F(x2|x10. . .),
the corresponding cumulative distribution.

Generate a random uniform continuous variate u � U(0,1).

Locate the smallest value of x2 where u < F(x2|x10. . .), say x20.

3. Get P(x3|x10x20. . .), the marginal probability of x3 given x10 and x20, and also

F(x3|x10x20. . .), the corresponding cumulative distribution.

Generate a random continuous uniform variate u � U(0,1).

Locate the smallest value of x3 where u < F(x3|x10x20. . .), say x30.

4. Repeat in the same way until get xk0.

5. Return (x10, . . ., xk0).

Example 6.1 Suppose a three variable joint probability distribution with variables,

x1, x2, x3 where the possible values for x1 is 0,1,2, for x2 it is 0,1, and for x3 it is 1,2,3.

The probability distribution P(x1,x2,x3) is listed below. Note the sum of all

probabilities is one. Below shows how to generate one set of random variates.
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P(x1,x2,x3)

x3 1 2 3 | 1 2 3
x2 0 | 1

x1
0 | 0.12 0.10 0.08 | 0.08 0.06 0.05 |
1 | 0.08 0.06 0.04 | 0.05 0.04 0.03 |
2 | 0.06 0.04 0.02 | 0.04 0.03 0.02 |

1. Themarginal distribution for x1 and the associated cumulative distribution is below:

P(0..) ¼ 0.49 F(0..) ¼ 0.49

P(1..) ¼ 0.30 F(1..) ¼ 0.79

P(2..) ¼ 0.21 F(2..) ¼ 1.00

Generate a random u � U(0,1), u ¼ 0.37 say. Hence x10 ¼ 0.

2. The marginal distribution for x2 given x10 ¼ 0, and the associated cumulative

distribution is below:

P(0|0.) ¼ 0.30/0.49 ¼ 0.612 F(0|0.) ¼ 0.612

P(1|0.) ¼ 0.19/0.49 ¼ 0.388 F(1|0.) ¼ 1.000

Generate a random u � U(0,1), u ¼ 0.65 say. Hence x20 ¼ 1.

3. The marginal distribution for x3 given x10 ¼ 0 and x20 ¼ 1, and the associated

cumulative distribution is below.

P(1|01) ¼ 0.08/0.19 ¼ 0.421 F(1|01) ¼ 0.421

P(2|01) ¼ 0.06/0.19 ¼ 0.316 F(2|01) ¼ 0.737

P(3|01) ¼ 0.05/0.19 ¼ 0.263 F(3|01) ¼ 1.000

Generate a random u � U(0,1), u ¼ 0.84 say. Hence x30 ¼ 3.

4. Return (x10, x20, x30) ¼ (0, 1, 3)

Multinomial

Suppose an experiment has k mutually exclusive possible outcomes, A1, . . ., Ak,

with probabilities p1, . . . , pk, respectively, and
Pk

i¼1

pi ¼ 1.0. With n independent

trials of the experiment, the random variables are x1, . . ., xk representing the

number of times event Ai (i ¼ 1, . . ., k) has occurred. Note
Pk

i¼1

xi ¼ n. The

probability of xi is as follows:

Pðx1; . . . ; xkÞ ¼ n!=½x1!::::xk!�p1x1 . . . pkxk
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The marginal probability of each individual variable, xi, is a binomial random

variable with parameters, n and pi. The associated mean and variance of xi are

listed below.

EðxiÞ ¼ npi

VðxiÞ ¼ npið1� piÞ

Generating Random Multinomial Variates

The steps below show how to randomly generate a set of multinomial variates

(x1, . . ., xk) from n trials with probabilities, p1, . . . , pk.

1. For i ¼ 1 to k

pi
0 ¼ pi=

Pk

j¼i

pj

ni
0 ¼ n�Pi�1

j¼1

xj

Generate a random Binomial variate, xi, with parameters, ni
0 and pi

0.

Next i

2. Return x1, . . ., xk

Example 6.2 Suppose an experiment with three possible outcomes with

probabilities 0.5, 0.3 and 0.2, respectively, where five trials of the experiment are

run. Of need is to randomly generate the multinomial variate set (x1, x2, x3) for this

situation. The steps below show how this is done.

1. At i ¼ 1, with parameters n1
0 ¼ 5, p1

0 ¼ 0.5, generate a random binomial, say

x1 ¼ 2.

2. At i ¼ 2, with parameters n2
0 ¼ 3, p2

0 ¼ 0.6, generate a random binomial, say

x2 ¼ 2.

3. At i ¼ 3, with parameters n3
0 ¼ 1, p3

0 ¼ 1.0, generate a random binomial, say

x3 ¼ 1.

4. Return (x1, x2, x3) ¼ (2, 2, 1).

Multivariate Hyper Geometric

Suppose a population of N items where some are non-defective and the remainder are

defective falling into k defective categories with number of defectives, D1, . . ., Dk.

A sample of n items are taken without replacement and the outcomes are x1, . . ., xk
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defective items. Note, xi ¼ number of defective items of the ith category in the

sample. The random variables follow the Multivariate Hyper Geometric distribution.

The probability distribution is listed below,

Pðx1; . . . ; xkÞ ¼ N � SD
n� Sx

� �
D1

x1

� �
. . . :

Dk

xk

� ��
N
n

� �

where

SD ¼ Pk

i¼1

Di ¼ sum of defective items in the population

Sx ¼ Pk

i¼1

xi ¼ sum of defective items in the sample

n � Sx ¼ sum of non-defective items in the sample

Generating Random Variates

To generate a random set of output variates for the Multivariate Hyper Geometric

distribution, the following routine is run. Recall the notation of N, n, D1, . . ., Dk and

x1, . . ., xk.

1. Initialize D1i ¼ Di for i ¼ 1 to k, and N1 ¼ N.

2. For j ¼ 1 to n

Generate a random uniform u � U(0,1).

F ¼ 0

For i ¼ 1 to k

p ¼ D1i/N1

F ¼ F þ p

If u < F, xi ¼ xi þ 1, D1i ¼ D1i � 1, go to 3

Next i

3. N1 ¼ N1 � 1

Next j

4. Return (x1, . . ., xk).

Example 6.3 Suppose a lot of size 20 comes in to a receiving dock with three

types of defectives. There are 4 defective of type 1, 3 defectives of type 2, and

2 defectives of type 3. Eleven of the items have no defectives. A sample of size

four is taken without replacement and of need is to generate a random set of

output variates, x1, x2, x3. The method to obtain the variates is shown below.

For simplicity, the fractions are carried out only to two decimal places.
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1. Initialize N1 ¼ 20, (D11, D12, D13) ¼ (4,3,2),

x1 ¼ 0, x2 ¼ 0, x3 ¼ 0.

2. At j ¼ 1, u ¼ 0.71 say, F ¼ 0.

At i ¼ 1, p ¼ 4/20 ¼ 0.20, F ¼ 0.20

At i ¼ 2, p ¼ 3/20 ¼ 0.15, F ¼ 0.35

At i ¼ 3, p ¼ 2/20 ¼ 0.10, F ¼ 0.45

N1 ¼ 19

3. At j ¼ 2, u ¼ 0.34 say, F ¼ 0.

At i ¼ 1, p ¼ 4/19 ¼ 0.21, F ¼ 0.21

At i ¼ 2, p ¼ 3/19 ¼ 0.16, F ¼ 0.37, x2 ¼ x2 þ 1, D12 ¼ 2

N1 ¼ 18

4. At j ¼ 3, u ¼ 0.63 say, F ¼ 0.

At i ¼ 1, p ¼ 4/18 ¼ 0.22, F ¼ 0.22

At i ¼ 2, p ¼ 2/18 ¼ 0.11, F ¼ 0.33

At i ¼ 3, p ¼ 2/18 ¼ 0.11, F ¼ 0.44

N1 ¼ 17

5. At j ¼ 4, u ¼ 0.14 say, F ¼ 0.

At i ¼ 1, p ¼ 4/17 ¼ 0.23, F ¼ 0.23, x1 ¼ x1 þ 1, D11 ¼ 3

N1 ¼ 16

6. Return (x1, x2, x3) ¼ (1,1,0)

Bivariate Normal

Consider variables x1 and x2 that are jointly related via the bivariate normal

distribution (BVN) as below:

fðx1; x2Þ ¼1=½2ps1s2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� r2

p
Þ expf�f½ðx1 � m1Þ=s1�2 þ ½ðx2 � m2Þ=s2�2

� 2r½ðx1 � m1Þðx2 � m2Þ=s1s2�g=2ð1� r2Þg

where (m1, m2, s1, s2, r) are five parameters of the distribution.

Marginal Distributions

The marginal distributions of x1 and x2 are normally distributed, whereby,

x1 � Nðm1;s1
2Þ
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and

x2 � Nðm2;s2
2Þ

The expected value and variance of x1 are,

Eðx1Þ ¼ m1

Vðx1Þ ¼ s1
2

respectively.

The corresponding values for x2 are

Eðx2Þ ¼ m2;

Vðx2Þ ¼ s2
2

The correlation between x1 and x2 is r. Note,

r ¼ s12=ðs1s2Þ

where s12 is the covariance between x1 and x2. The covariance is also denoted as

C(x1,x2) and is obtained from,

Cðx1; x2Þ ¼ Eðx1x2Þ � Eðx1ÞEðx2Þ

Conditional Distributions

When x1 ¼ x10, say, the conditional mean of x2 is

mx2jx10 ¼ m2 þ rðs2=s1Þðx10 � m1Þ

The corresponding variance is

sx2jx12 ¼ s2
2ð1� r2Þ

and is the same for all values of x1.

The associated conditional distribution of x2 given x10 is also normally

distributed as,

x2jx10 � N mx2jx10;sx2jx12
� 	
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In the same way, when x2 ¼ x20, say, the conditional mean of x1 is

mx1jx20 ¼ m1 þ rðs1=s2Þðx20 � m2Þ

The corresponding variance is

sx1jx22 ¼ s1
2ð1� r2Þ

and is the same for all values of x2.

The associated conditional distribution of x1 given x20 is also normally

distributed as,

x1jx20 � N mx1jx20;sx1jx22
� 	

Generate Random Variates (x1, x2)

To generate a random pair of x1 and x2 with parameters (m1,m2, s1,s2,r), the
following routine is run.

1. Generate a random standard normal, z � N(0,1), say z1.

2. A random x1 is computed by x10 ¼ m1 þ z1s1

3. The conditional mean and variance of x2 now become, mx2|x10 ¼ m2 þ r(s2/s1)

(x10 � m1) and sx2|x1
2 ¼ s2

2(1 � r2) , respectively.
4. Generate another random standard normal, z � N(0,1), say z2.

5. The random x2 is computed by x20 ¼ mx2|x10 þ z2sx2|x1

6. Return (x10,x20)

Example 6.4 Suppose the pair (x1,x2) are related by the bivariate normal distribu-

tion with parameters (5,8, 1,4,0.5) and a random variate of the pair is needed. The

following routine is run.

1. Generate a random standard normal from z � N(0,1), say, z1 ¼ 0.72.

2. The random variate of x1 becomes x10 ¼ 5 þ 0.72(1) ¼ 5.72

3. The mean and variance of the conditional x2 variable now are, mx2|5.72 ¼ 8 þ 0.5

(2/1)(5.72 � 5.00) ¼ 8.72, and sx2|5.72
2 ¼ 4(1 � 0.52) ¼ 3

4. The conditional standard deviation is sx2|5.72 ¼ 30.5 ¼ 1.732

5. Generate another standard normal variate of z � N(0,1), say, z2 ¼ �1.08.

6. The random variate for x2 now becomes, x20 ¼ 8.72 � 1.08 (1.732) ¼ 6.85

7. Return (x10,x20) ¼ (5.72, 6.85).

Example 6.5 Consider the bivariate normal variables (x1,x2) with parameters

m1 ¼ 0, m2 ¼ 0, s1 ¼ 1, s2 ¼ 1 and r. A researcher is seeking the four following

cumulative probability distributions, F(0,0), F(1,0), F(0,1), F(1,1), at the three
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correlations, r ¼ �0.5, 0.0 and 0.5. Recall, F(x10,x20) ¼ P(x1 � x10, and

x2 � x20). To comply, a simulation model is developed to find the probabilities

needed. For a given x10, and x20, n trials are run where the values of x1 and x2 are

randomly generated to conform with the stated parameters. The program is run with

n trials where g represents the number of times in the n trials the generated values

were both less or equal to x10, and x20. The estimate of the probability is computed

by F(x10,x20) ¼ g/n.

The table below lists the simulation findings where various number of trials are

run at n ¼ 50, 100, 500 and 1,000. Note, at r ¼ 0, the true value of the cumulative

distribution is known at x10, and x20 and is listed in the table at n ¼ 1. The results

point to the need for more trials to sharpen the probability estimates.

r n F(0,0) F(1,0) F(0,1) F(1,1)

�0.50 50 0.180 0.310 0.460 0.760

100 0.160 0.410 0.340 0.710

500 0.174 0.372 0.372 0.696

1,000 0.159 0.360 0.357 0.652

0.00 50 0.360 0.580 0.480 0.780

100 0.250 0.490 0.330 0.650

500 0.234 0.412 0.400 0.668

1,000 0.233 0.395 0.405 0.687

1 0.250 0.421 0.421 0.708

0.50 50 0.380 0.500 0.520 0.760

100 0.270 0.430 0.420 0.660

500 0.326 0.476 0.448 0.742

1,000 0.370 0.468 0.509 0.748

Bivariate Lognormal

When the pair x1,x2 are bivariate lognormal (BVLN), the distribution is noted as

BVLN(my1, my2, ,sy1, sy2, ry), where my1 and my2 are the means of the y1 ¼ ln(x1)

and y2 ¼ ln(x2). Also sy1 and sy2 are the corresponding standard deviations of y1
and y2. ry is the correlation between y1 and y2. The transformed pair, (y1, y2) are

distributed by the bivariate normal distribution and the notation is BVN(my1, my2,
sy1, sy2, ry). Note x1 ¼ ey1 and x2 ¼ ey2.

Generate a Random Pair (x1, x2)

To generate a random pair (x1, x2), the following routine is run.

1. Find my1, my2, sy1, sy2 and ry.
2. From the standard normal, z � N(0,1), generate two random values, say, z1, z2.

3. Get a random y1 by y10 ¼ my1 þ z1sy1
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4. Now find the conditional mean and standard deviation of y2, given y10, from

my2|y10 ¼ my2 þ ry(sy2/sy1)(y10 � my1), and sy2|y1
2 ¼ sy2

2(1 � ry
2).

5. Get a random y2 by y20 ¼ my2|y10 þ z2 sy2|y1.

6. Now, x1 ¼ ey10 and x2 ¼ e y20.

7. Return x1, x2.

Example 6.6 Assume x1, x2 are a pair of bivariate lognormal variables with

parameters BVLN(5,8,1,2,0.5), and a set of random variates is needed. The follow-

ing steps are followed:

1. From z � N(0,1), get the pair of random variates, say: z1 ¼ 0.72 and

z2 ¼ �1.08.

2. A random y1 becomes y10 ¼ 5 þ 0.72(1) ¼ 5.72

3. The mean and standard deviation of y2 given y10 ¼ 5.72 are my2|5.72 ¼ 8.72, and

sy2|5.72 ¼ 1.732.

4. So now, the random y2 becomes, y20 ¼ 8.72 � 1.08(1.732) ¼ 6.85.

5. Finally, the pair needed are x1 ¼ e5.72 ¼ 304.90 and x2 ¼ e6.85 ¼ 943.88.

6. Return (x1, x2) ¼ (304.90, 943.88).

Multivariate Normal

When k variables, x1, . . ., xk, are related by the multivariate normal distribution, the

parameters are m and S. The parameter m is a k-dimensional vector whose transpose

mT ¼ [m1 ,. . .., mk] houses the mean of each of the variables, and S is a k-by-k

matrix, that contains sij in row i and column j, where sij is the covariance between

variables i and j. Note, the covariances along the main diagonal, sii, are the

variances of variable i, i ¼ 1 to k. Thus si
2 ¼ sii, i ¼ 1 to k.

Cholesky Decomposition

An important relation is the Cholesky decomposition of the matrix S where,

S ¼ CCT

and C is a k-by-k matrix where the upper diagonal is all zeros and the diagonal and

lower diagonal contain the elements cij. For a full discussion, see Gentle (1998).

The values of the elements of matrix C are computed in the three stages listed

below.

Column 1 elements: ci1 ¼ si1=
ffiffiffiffiffiffiffi
s11

p
i ¼ 1; . . . :; k

Main diagonal elements: cii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sii �
Pi�1

m¼1

c2im

s

i ¼ 2; . . . ; k
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Lower diagonal elements: cij ¼ sij �
Pj�1

m¼1

cimcjm


 �
=cjj 1<j<i � k

As stated earlier, the upper diagonal elements of C are all zero.

Generate a Random Set [x1, . . . , xk]

To generate a random set of variables from the k-dimensional multivariate distri-

bution, the following routine is run.

1. From the variance-covariance matrix S, compute the matrix C.

2. Using the standard normal distribution, z � N(0,1), generate k random variates:

z1,. . .., zk, and insert them in a k-dimensional vector Z, where the transpose is

ZT ¼ [z1,. . .., zk].
3. The random variates of the k variables will be placed in a k-dimensional vector

X, whose transpose is XT ¼ [x1, . . ., xk].
4. So now, the k random variates of the k variables are obtained by the following

matrix manipulation, X ¼ CZ þ m.
Another way is to compute the xi as below:

xi ¼
Pk

j¼1

cijzj þ mi i ¼ 1; . . . ; k

Example 6.7 When k ¼ 2, the matrices, S, C and X are as below:

S ¼ s11 s12
s21 s22


 �
¼ s21 rs1s2

rs2s1 s22


 �

C ¼ c11 c12
c21 c22


 �
¼ s1 0

rs2 s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� r2Þp


 �

X ¼ x1
x2


 �
¼ m1 þ z1s1

m2 þ z1rs2 þ z2s2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� r2Þp


 �

Example 6.8 Consider the k ¼ 3 dimensional multivariate normal distribution

with the mean vector and variance covariance matrix as below.

m ¼
100

80

140

2

4

3

5

S ¼
64 20 �10

20 25 36

�10 36 100

2

4

3

5
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The C matrix becomes:

C ¼
8 0 0

2:5 4:33 0

�1:25 9:04 4:09

2

4

3

5

When the three entries of the standard normal variates are: z1 ¼ �0.02,

z2 ¼ 2.00, z3 ¼ �1.20, and the matrix manipulation of X ¼ CZ þ m is applied,

the random normal variates become:

X ¼
x1
x2
x3

2

4

3

5 ¼
99:84
88:16
153:20

2

4

3

5

Multivariate Lognormal

When k variables, x1, . . ., xk, are related by themultivariate lognormal distribution, the

associated bivariate normal variables are y1,. . ., yk, where yi ¼ ln(xi) i ¼ 1,. . ., k. The
parameters for this distribution are derived from the k variables, y1,. . ., yk.

The parameters are listed in the transposed k-dimensional vector, m, whose transpose
is mT ¼ [m1 ,. . .., mk], that houses the mean of each of the yi variables, and the k-by-k

matrix, S, that containssij in row i and column j, where sij is the covariance between

variables yi and yj. Note, the covariances along the main diagonal, sii, are the

variances of variable yi, i ¼ 1 to k. Thus si
2 ¼ sii, i ¼ 1 to k.

Cholesky Decomposition

The Cholesky decomposition of the matrix S is used here where,

S ¼ CCT

and C is a k-by-k matrix where the upper diagonal is all zeros and the diagonal and

lower diagonal contain the elements cij. As shown earlier, the values of the elements

of matrix C are computed in the three stages listed below.

Column 1 elements: ci1 ¼ si1=
ffiffiffiffiffiffiffi
s11

p
i ¼ 1; . . . :; k

Main diagonal elements: cii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sii �
Pi�1

m¼1

c2im

s

i ¼ 2; . . . ; k

Lower diagonal elements: cij ¼ sij �
Pj�1

m¼1

cimcjm


 ��
cjj 1<j<i � k

The upper diagonal elements of C are all zero.
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Generate a Random Set [x1, . . . , xk]

To generate a random set of variables from the k-dimensional multivariate distri-

bution, the following routine is run.

1. Convert the lognormal variables x to y by yi ¼ ln(xi) i ¼ 1, . . ., k.
2. From the data of (y1, . . .,yk), compute the mean and variance-covariance matrix S.
3. From S compute the matrix C.

4. Using the standard normal distribution, z � N(0,1), generate k random variates:

z1,. . .., zk, and insert them in a k-dimensional vector Z, where the transpose is

ZT ¼ [z1,. . .., zk].
5. The random variates of the k variables will be placed in a k-dimensional vector

Y, whose transpose is YT ¼ [y1, . . ., yk].
6. So now, the k random variates of the k variables are obtained by the following

matrix manipulation, Y ¼ CZ þ m.
Another way is to compute the yi as below:

yi ¼
Pk

j¼1

cijzj þ mi i ¼ 1; . . . ; k

7. Finally, convert the k random y variates to k random x variates by the relation

xi ¼ eyi, i ¼ 1,,,., k.

8. Return (x1, . . ., xk)

Example 6.9 Consider variables (x1, x2, x3) from the multivariate lognormal

distribution with converted variables (y1, y2, y3) from the associated multivariate

normal distribution, and their parameters below:

my ¼
�5

2

�8

2

4

3

5

Sy ¼
64 20 �10

20 25 36

�10 36 100

2
4

3
5

The C matrix from the above becomes:

C ¼
8 0 0

2:5 4:33 0

�1:25 9:04 4:09

2
4

3
5

When the three entries of the standard normal variates are: z1 ¼ 0.72, z2 ¼ 1.00,

z3 ¼ �1.04, and the matrix manipulation of Y ¼ CZ þ my is applied, the random
normal variates become:

Multivariate Lognormal 69



Y ¼
y1
y2
y3

2

4

3

5 ¼
0:76
8:13
�4:11

2

4

3

5

Finally, convert y1, y2, y3, to x1, x2, x3 by xi ¼ eyi for i ¼ 1, 2, 3. The multivari-

ate lognormal variates are below.

X ¼
x1
x2
x3

2
4

3
5 ¼

1:82
3394:80
0:02

2
4

3
5

Summary

This chapter considers some of the more popular multivariate distributions and

shows how to generate random variates for each. The probability distributions

described are the following: multivariate discrete arbitrary, multinomial, multivari-

ate hyper geometric, bivariate normal, bivariate lognormal, multivariate normal and

multivariate lognormal. The Cholesky decomposition method is also presented

because of its important role in generating random variates from the multivariate

normal and multivariate lognormal distributions.
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Chapter 7

Special Applications

Introduction

This chapter shows how to generate random variates for applications that are not

directly bound by a probability distribution as was described in some of the earlier

chapters. The applications are instructively useful and often are needed as such in

simulation models. They are the following: Poisson process, constant Poisson

process, batch arrivals, active redundancy, standby redundancy, random integers

without replacement and poker.

Poisson Process

There are many simulation models where a series of events take place over a fixed

time horizon, say, from t ¼ 0 to T. In this section, the arrivals are from a Poisson

process, whereby the time between events are distributed via the exponential

density. Further, when the expected time between arrivals changes over the time

horizon, additional information is needed concerning various points of time in the

interval, B(j), and the associated expected time between arrivals, A(j). At t ¼ 0, the

average time between arrivals is A(1), and the point in time is B(1) ¼ 0, An interval

of time later, say at B(2), the average time between arrivals is A(2), and so forth. In

this way, A(j) and B(j) jointly identify how the average time between arrivals vary

from t ¼ 0 to T. At t ¼ T, the last entry of j occurs and is denoted as j ¼ J, and B

(J) ¼ T. Note, A(J) gives the associated average time at t ¼ T, whereby B(J) ¼ T.

For any other time from 0 to T, interpolation is used to determine the average time

at t, as is described in the routine below:

1. Parameters and initial values: T ¼ length of time horizon, J ¼ number of points in

time from 0 to T, B(j) ¼ the j-th point in time, and A(j) ¼ average time between

arrivals at time B(j), j ¼ 1 to J, t(0) ¼ 0 is the starting point, and n is an index.

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0_7,
# Springer Science+Business Media New York 2013
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2. Using t(n) and {B(j) j ¼ 1 to J}, find the minimum jo where t(n) � B(jo).

3. The average time between arrivals becomes: A ¼ A(jo) + {[t(n)�B(jo)]/

[B(jo + 1)�B(jo)]}[A(jo + 1)�A(jo)].

4. Get a random uniform u ~ U(0,1).

5. Use A and u and the exponential density to generate the random time between

the arrivals, x ¼ �A� lnð1� uÞ.
6. If [t(n�1) + x] � T, n ¼ n + 1, t(n) ¼ [t(n�1) + x], go to 2.

7. If [t(n�1) + x] > T, end, go to 8.

8. Return {t(i), i ¼ 1 to n}.

Example 7.1 Suppose T ¼ 24 and J ¼ 5. {B(j), j ¼ 1 to 5} ¼ {0, 8, 14, 18, 24},

{A(j), j ¼ 1 to 5} ¼ {5, 4, 2, 3, 5}, and the time between arrivals are from a

Poisson process, with the exponential density. The routine below shows how to find

the time of arrival for the first three units:

1. n ¼ 0.

At t(0) ¼ 0, jo ¼ 1, since B(1) � t(0) < B(2).

The average time is: A ¼ 5 + (0�0)/(8�0) � (4�5) ¼ 5.0.

Get u ~ U(0,1), assume u ¼ 0.72.

The random time is: x ¼ �5.0 � ln(1�0.72) ¼ 6.36.

n ¼ n + 1 ¼ 1, t(1) ¼ 0 + 6.36 ¼ 6.36.

2. n ¼ 1.

At t(1) ¼ 6.36, jo ¼ 1, since Bð1Þ � tð1Þ<Bð2Þ.
The average time is: A ¼ 5þ ð6:36� 0Þ=ð8� 0Þ � ð4� 5Þ ¼ 4:205.
Get u ~ U(0,1), assume u ¼ 0.38.

The random time is: x ¼ �4:205� lnð1� 0:38Þ ¼ 2:01.
n ¼ n + 1 ¼ 2, t(2) ¼ 6.36 + 2.01 ¼ 8.37.

3. n ¼ 2.

At t(2) ¼ 8.37, jo ¼ 2, since Bð2Þ � tð2Þ<Bð3Þ.
The average time is: A ¼ 4þ ð8:37� 8Þ=ð14� 8Þ � ð2� 4Þ ¼ 3:666.
Get u ~ U(0,1), assume u ¼ 0.17.

The random time is: x ¼ 3:666� lnð1� 0:17Þ ¼ 0:68.
n ¼ n + 1 ¼ 3, t(3) ¼ 8.37 + 0.68 ¼ 9.05.

4. The first three arrivals occur at times: 6.36, 8.37, 9.05.

Constant Poisson Process

In the event the expected inter-arrival time is the same for the whole time horizon,

then J ¼ 2 periods in the time horizon, B(1) ¼ 0 is the start time, B(2) ¼ T is the

end time, and A(1) ¼ A(2) are the arrival rates for time periods 1 and 2.
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Batch Arrivals

Consider a simulation model where units arrive to a system in batch sizes of one or

more. The model generates the random time of arrival and the associated batch size.

One way to describe the batch size distribution is by the modified Poisson distri-

bution. Since each individual batch size, x, is one or larger, the expected value of x

is EðxÞ � 1:0. The modified Poisson becomes x ¼ y + 1, where y is a Poisson

variable with mean m ¼ E(x)�1. So, to generate a random x, the following routine

is run:

1. For a Poisson variable y with parameter m, generate a random Poisson y.

2. Set x ¼ y + 1.

3. Return x.

Example 7.2 Suppose the average batch size for a simulation run is 1.6, and a

random variate of the batch size, y, is needed. The following routine is run:

1. From the Poisson distribution with parameter m ¼ E(x)�1 ¼ 0.6, generate a

random y. Assume the random Poisson y ¼ 0.

2. Hence, x ¼ y + 1 ¼ 0 + 1 ¼ 1.

3. Return x ¼ 1.

Active Redundancy

An active redundancy is when the reliability of a unit, with m components, is

satisfied as long as one of the components of the unit is still running. The m

components are run simultaneously and the last component to fail is the run time

of the unit. Assume the run time, y, of each component is based on the exponential

distribution with parameter y. The run times for the m components are (y1, . . ., ym)
and the run time for the unit becomes, x ¼ max(y1, . . ., ym).

Generate a Random Variate

To generate a random variate for a unit with an active redundancy of m components

with expected run time EðyÞ ¼ 1=y, the following routine is run:

1. For i ¼ 1 to m.

2. From the continuous uniform u ~ U(0,1), generate a random u.

3. Generate a random exponential by yi ¼ ð�1=yÞ lnð1� uÞ.
4. Next i.

5. x ¼ max(y1, . . .,ym).
6. Return x.
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Example 7.3 Consider a unit that has three active redundant components with run

times following the exponential density and each with an expected run time of 10 h.

The routine below generates one random variate of the unit run time:

1. At i ¼ 1, generate a random exponential with mean 10, say, y1 ¼ 7.4.

2. At i ¼ 2, generate a random exponential with mean 10, say, y2 ¼ 15.1.

3. At i ¼ 3, generate a random exponential with mean 10, say, y3 ¼ 4.2.

4. The run time for the unit is x ¼ max(7.4, 15.1, 4.2) ¼ 15.1.

5. Return x ¼ 15.1.

Example 7.4 A component is in the design stage and will include m identical

subcomponents in an active redundancy manner. All m subcomponents start and

run together. The component run time ends when the last subcomponent fails. The

time to fail, t, for each subcomponent follows a gamma distribution with parameters

k ¼ 3 and 1/ y ¼ 6.0 (1,000 h), whereby the time to fail, t, has a mean of

E(t) ¼ 18 (1,000 h). The design engineer wants to know the minimum number

of the subcomponents to include in the active redundancy package so that the time

to fail for the component, T, has a reliability of R equal to 0.99 or greater at

20 (1,000 h). Note T ¼ max(t1, . . .., tm) and the goal is to have

R ¼ P T � 20 ð1000 hoursÞ½ � � 0:99.
A simulation model is developed to find the minimum number of

subcomponents to achieve the reliability specified. In the table, m denotes the

number of subcomponents, n is the number of trials in a run – where in each trial,

T is computed from m random variates of the gamma distribution with the stated

parameters, g is number of the trials in the run where T � 20 (1,000 h), and

R ¼ g/n is an estimate of the probability that T will be 20 (1,000 h) or greater. The

simulation results are listed below where the number of components (m) increases

by one with each simulation run of n ¼ 1,000 trials. Note, at m ¼ 11, R ¼ 0.993

and at m ¼ 12, R ¼ 0.998. Hence, the minimum value of m is 11 and the reliability

is estimated as R ¼ 0.993.

m n g R

1 1,000 318 0.318

2 1,000 588 0.588

3 1,000 707 0.707

4 1,000 802 0.802

5 1,000 883 0.883

6 1,000 927 0.927

7 1,000 961 0.961

8 1,000 975 0.975

9 1,000 973 0.973

10 1,000 980 0.980

11 1,000 993 0.993

12 1,000 998 0.998
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Standby Redundancy

A unit with standby redundancy is defined when the run time of the unit is the sum

of the run times of m components that are run one after the other. That is, when one

component fails, another starts running. This model assumes the run time, y, of each

component is based on the exponential distribution with parameter y. The run times

for the m components are (y1, . . ., ym), and the run time for the unit becomes,

x ¼ (y1 + . . . + ym).

Generate a Random Variate

To generate a random variate for a unit with a standby redundancy of m components

with expected run time EðyÞ ¼ 1=y, the following routine is run:

1. For i ¼ 1 to m.

2. From the continuous uniform u ~ U(0,1), generate a random u.

3. Generate a random exponential by yi ¼ ð�1=yÞ lnð1� uÞ.
4. Next i.

5. x ¼ (y1 + . . . + ym).

6. Return x.

Example 7.5 Consider a unit that has four standby redundant components with run

times following the exponential density and each with an expected run time of 5 h.

The routine below generates one random variate of the unit run time:

1. At i ¼ 1, generate a random exponential with mean 5, say, y1 ¼ 2.7.

2. At i ¼ 2, generate a random exponential with mean 5, say, y2 ¼ 9.3.

3. At i ¼ 3, generate a random exponential with mean 5, say, y3 ¼ 7.2.

4. At i ¼ 4, generate a random exponential with mean 5, say, y4 ¼ 1.8.

5. The run time for the unit is x ¼ (2.7 + 9.3 + 7.2 + 1.8) ¼ 19.0.

6. Return x ¼ 19.0.

Example 7.6 A component is in the design stage and will include m identical

subcomponents in a standby redundancy manner. One subcomponent is run at a

time; when it fails, and another is still available, the next subcomponent starts its run.

The component run time ends when the last subcomponent fails. The time to

fail for each subcomponent follows a gamma distribution with parameters k ¼ 3

and 1=y ¼ 6:0 (1,000 h), whereby the time to fail, t, has a mean of E(t) ¼ 18

(1,000 h). The design engineer wants to know the minimum number of the sub-

components to include in the standby redundancy package so that the time to fail for

the component, T, has a reliability of R equal to 0.99 or larger at 20 (1,000 h). Note

T ¼ t1 + . . .. + tm and the goal is to have R ¼ P T � 20 ð1000 hoursÞ½ � � 0:99.
A simulation model is developed to find the minimum number of subcomponents

to achieve the reliability specified. In the table, m denotes the number of

subcomponents, n is the number of trials in a run – where in each trial T is
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computed from m random variates of the gamma distribution with the stated

parameters, g is number of the trials in the run where T � 20 (1,000 h), and

R ¼ g/n is an estimate of the probability that T will be 20 (1,000 h) or greater.

The simulation results are listed below where the number of components (m)

increases by one with each simulation run of n ¼ 1,000 trials. Note, at m ¼ 3,

R ¼ 0.993 and at m ¼ 4, R ¼ 0.999. Hence, the minimum value of m is three

and the reliability is estimated as R ¼ 0.993.

m n g R

1 1,000 348 0.348

2 1,000 871 0.871

3 1,000 993 0.993

4 1,000 999 0.999

Random Integers Without Replacement

Consider N unique items where n of them will be arranged in a random sequence

and none will be repeated. The N items are identified by D(i) i ¼ 1 to N. The n

items in sequence are E(1), . . ., E(n).

Generate a Random Sequence

The routine below shows how to generate a random sequence of n samples without

replacement from N unique items in a population:

1. The parameters are N ¼ population size, n ¼ sample size without replace-

ment, {D(i), i ¼ 1 to N} identifies the N unique items, and {E(j) j ¼ 1 to n}

denotes the n random items in sequence.

2. ND ¼ N ¼ number of unique items remaining.

3. For j ¼ 1 to n.

4. Generate a random discrete uniform integer, k, (1�ND).

Set E(j) ¼ D(k).

5. ND ¼ ND�1.

6. For m ¼ k to ND.

7. D(m) ¼ D(m + 1).

8. Next m.

9. Next j.

10. Return [E(1), . . ., E(n)].

Example 7.7 Suppose a population of N ¼ 10 integers, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

where n ¼ 5 will be selected randomly in sequence. The routine below is run:

1. At j ¼ 1, ND ¼ 10 and D(i) ¼ (1,2,3,4,5,6,7,8,9,10).

Using the discrete uniform (1,10), randomly generate k, say k ¼ 7.

76 7 Special Applications



Hence, E(1) ¼ 7. ND ¼ 9 and D(i) ¼ (1,2,3,4,5,6,8,9,10).

2. At j ¼ 2, ND ¼ 9 and D(i) ¼ (1,2,3,4,5,6,8,9,10).

Using the discrete uniform (1,9), randomly generate k, say k ¼ 4.

Hence, E(2) ¼ 4. ND ¼ 8 and D(i) ¼ (1,2,3,5,6,8,9,10).

3. At j ¼ 3, ND ¼ 8 and D(i) ¼ (1,2,3,5,6,8,9,10).

Using the discrete uniform (1,8), randomly generate k, say k ¼ 6.

Hence, E(3) ¼ 8. ND ¼ 7 and D(i) ¼ (1,2,3,5,6,9,10).

4. At j ¼ 4, ND ¼ 7 and D(i) ¼ (1,2,3,5,6,9,10).

Using the discrete uniform (1,7), randomly generate k, say k ¼ 4.

Hence, E(4) ¼ 5. ND ¼ 6 and D(i) ¼ (1,2,3,6,9,10).

5. At j ¼ 5, ND ¼ 6 and D(i) ¼ (1,2,3,6,9,10).

Using the discrete uniform (1,6), randomly generate k, say k ¼ 6.

Hence, E(5) ¼ 10. ND ¼ 5 and D(i) ¼ (1,2,3,6,9).

6. Return (7, 4, 8, 5, 10).

Poker

A deck of cards has 52 unique items. For simplicity, the items are here labeled as

D(i) i ¼ 1 to 52. The notation is (H, D, S, C) for (hearts, diamonds, spades, clubs)

and (A,2,3,4,5,6,7,8,9,10,J,Q,K) for (ace, 2,3,4,5,6,7,8,9,10, jack, queen, king). The

52 items become:

{D(i) i ¼ 1 to 13} ¼ {AH, 2H, 3H, 4H, 5H, 6H, 7H, 8H, 9H, 10H, JH, QH, KH}

{D(i) i ¼ 14 to 26} ¼ {AD, 2D, 3D, 4D, 5D, 6D, 7D, 8D, 9D, 10D, JD, QD, KD}

{D(i) i ¼ 27 to 39} ¼ {AS, 2S, 3S, 4S, 5S, 6S, 7S, 8S, 9S, 10S, JS, QS, KS}

{D(i) i ¼ 40 to 52} ¼ {AC, 2C, 3C, 4C, 5C, 6C, 7C, 8C, 9C, 10C, JC, QC, KC}

The model developed here assumes two players (A,B) and each are dealt five

cards from the deck of 52 cards. Altogether, ten cards are dealt, the first five to

player A and the next five to B.

Generate Random Hands to Players A and B

The routine below shows how to generate random hands of five cards each to

players A and B:

1. Using the random integer method of 52 unique integers, randomly generate

n ¼ 10 integers in sequence and label as: {E(j) j ¼ 1 to 10}.

2. Use {E(j) j ¼ 1 to 5} to select from the set D(i), the five cards for player A.

Label as {C(k) k ¼ 1 to 5}.

3. Use {E(j) j ¼ 6 to 10} to select from the set D(i), the five cards for player B.

Label as {C(k) k ¼ 6 to 10}.
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4. Return {C(k) k ¼ 1 to 5} for player A, and {C(k) k ¼ 6 to 10} for player B.

Example 7.8 The routine below shows how to deal five cards to players A and B

from the deck of 52 cards, where the dealt cards are without replacement:

1. Using the Random Integer method with N ¼ 52, generate n ¼ 10 randomly

sequenced integers, {E(1), . . ., E(10)}. Say, {27, 5, 24, 16, 14, 32, 47, 31, 4, 25}.
2. For player A, the first five integers {27, 5, 24, 16, 14} yield {AS, 5H, JD,

3D, AD}.

3. For player B, the next five integers {32, 47, 31, 4, 25} yield {6S, 8C, 5S, 4H,

QD}.

4. Return C(k) k ¼ 1 to 5 ¼ {AS, 5H, JD, 3D, AD} for player A, and C(k)

k ¼ 6 to 10 ¼ {6S, 8C, 5S, 4H, QD} for player B.

Summary

This chapter concerns applications that are not from the common probability

distributions, continuous or discrete. The applications are instructive since they

show some popular deviations in generating random variates as is often needed in

building computer simulation models. The applications presented are the Poisson

process, constant Poisson process, batch arrivals, active redundancy, standby

redundancy, random integers without replacement and poker.
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Chapter 8

Output from Simulation Runs

Introduction

Computer simulation models are generally developed to study the performance of a

system that is too complicated for analytical solutions. The usual goal of the analyst

is to develop a computer simulation model that emulates the activities of the actual

system as best as possible. Many of these models are from terminating and

nonterminating systems.

A terminating system is when a defined starting event B and an ending event C

are specified, and so, each run of the simulation model begins at B and ends at C.

This could be a model of a car wash that opens each day at 6 a.m. and closes at 8 p.

m. Each simulation run would randomly emulate the activities from B to C.

A nonterminating system is where there is no beginning or ending events to

the system. The system often begins in a transient stage and eventually falls into

either an equilibrium stage or a cyclical stage. This could be a study of a

maintenance and repair shop that is always open. At the outset of the simulation

model run, the system is empty and may take some time to enter either an

equilibrium stage or a cyclical stage. This initial time period is called the

transient stage.

A nonterminating system with transient and equilibrium stages might be a

system where the inter-arrival flow of new customers to the shop is steadily coming

from the same probability distribution. In the run of the simulation model, the

system begins in the transient stage and thereafter the flow of activities continues in

the equilibrium stage.

A nonterminating model with transient and cyclical stages could be a model of a

system where the probability distribution of the inter-arrival flow of new customers

varies by the hour of the day. The simulation run begins in a transient stage and

passes to the cyclical stage thereafter.

In either system, while the analyst is developing the computer model, he/she

includes code in the model to collect data of interest for later study. This output data

is used subsequently to statistically analyze the performance of the system.

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0_8,
# Springer Science+Business Media New York 2013
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Terminating System

A terminating system is when at some point in time, or in events, the system comes

to a natural end. Various portions of each run of the computer simulation model

may be of interest to the analyst, and for each portion, a collection of output

measures are saved for subsequent statistical analysis. To illustrate, an example is

provided below.

Suppose an analyst is developing a computer simulation model of a large car

wash system. Assume, the business opens at 8 a.m. and closes at 8 p.m; and at the

beginning of the day, the car wash is empty. During the open hours, the customer

arrival rate varies over the day. The end of the day is when the last car enters before

closing time of 8 p.m. The analyst may be interested in the activities at different

interval times of the day, perhaps from 8 to 12 a.m., 12 to 4 p.m. and 4 to 8 p.m. For

convenience, the time periods are labeled as j (j ¼ 1 to 3). Also suppose the

measures of interest (denoted by index k), are collected for each time interval j.

In the example, assume these are the following:

x1j ¼ number vehicle arrivals in j

x2j ¼ number vehicles serviced without waiting in j

x3j ¼ total vehicle wait time in j

x4j ¼ total system idle time in j

p1j ¼ x2j/x1j ¼ percent of vehicles that do not need to wait in j

Suppose further, the model is run n times, each with a different string of random

variates, where i denotes the run number, whereby i ¼ 1 to n. So the output data for

the n runs of the simulation model would be the following:

xkji k ¼ 1 to 4; j ¼ 1 to 3 and i ¼ 1 to n

p1ji k ¼ 1; j ¼ 1 to 3 and i ¼ 1 to n

As demonstrated, a large variety of output data could be collected for the

simulation model and this is the type of data that will subsequently require some

sort of statistical analysis to measure the performance of the system. Chapter 9

describes the typical statistical methods.

Nonterminating Transient Equilibrium Systems

The computer simulation model could be for a system that is nonterminating and

evolves into an equilibrium state. The computer model would begin empty and flow

through a transient stage prior to reaching the equilibrium stage. To illustrate,

suppose the system under study is a mixed model assembly line where at the

beginning of the simulation there are no units on the line. One by one, units are
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placed in station 1 and they move on up to station 2 and beyond, while new units are

arriving to station 1. When the line is filled up in all stations, the transient staged

ends and this is the start of the equilibrium stage. From that point on the system is in

its equilibrium stage. In the example provided, this is fairly obvious; but in the

general case, it is not obvious and a concern is how to determine when the transient

stage ends.

Identifying the End of the Transient Stage

Suppose a variable of interest from the model is denoted as xki, the average of

output index k in the i-th interval (batch) of events. The batches are run one after the

other and the average for each batch is measured on every output index k. The

difference from one batch to the previous is measured and the end of the transient

stage is signaled when the differences begin to cycle around zero. The analyst seeks

the event index i where thereafter, the average difference between two successive

measures is sufficiently close to zero, i.e., ðxk;iþ1 � xk;iÞ � 0 . So, the transient

stage, for output variable k, ends when such value of i is identified, say i ¼ A,

whereby the equilibrium stage follows. For convenience sake, the analyst would

likely choose one value of A that defines the end of the transient stage for all K

output variables.

Output Data

The output for each run begins after the transient period of A events has elapsed.

When K is the number of output variables of interest, and n is the number of

simulation runs during the equilibrium period, the output becomes the following:

xki k ¼ 1 to K and i ¼ 1 to n:

This is the output data that is subsequently analyzed by statistical methods.

Example 8.1 A one service facility with infinite capacity queuing system is under

review with parameters ta ¼ expected time between arrivals and ts ¼ expected

service time. The arrival rate is l ¼ 1/ta and the service rate is m ¼ 1/ts. The inter-
arrival times and the service times are exponentially distributed. The utilization

ratio is r ¼ l/m ¼ ts/ta where r must be less than one to attain an equilibrium

system. This is a common queuing system listed in many textbooks. Two of the

performance measures of this system is the expected time a unit is in the system,

denoted as w, and another is the probability a new arrival is delayed in the queue

before it enters the service facility, Pd. The analytical solution for this model is

w ¼ 1/[(1 � r)m] and Pd ¼ r.
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A simulation model is developed for this system to demonstrate some of the

concepts. Two set of parameters are shown, one is where r ¼ 0.10 and another when

r ¼ 0.50. In both situations, m ¼ 1. The simulation is run in batch sizes on n ¼ 500

arrivals to measure the average time a unit spends in the system, w, and the

probability a new arrival has to wait for service, Pd. The results are listed in the

table below where arrivals reach 3,000. In the table, for each batch of n ¼ 500

arrivals, w is the average time an arrival is in the system and Pd is the portion that are

delayed in the queue before entering the service facility. The difference from

one batch to another is measured as dw and dPd. For example, at r ¼ 0.1,

dw ¼ (1.05 � 0.00) ¼ 1.05 for the first batch, dw ¼ (1.14 � 1.05) ¼ 0.09 for

the second batch, and so forth. The end of the transient stage is signaled when the

difference from one batch to another start to cycle around zero.

Runs w

r ¼ 0.10

dw dPdPd

1–500 1.05 0.086 1.05 0.086

501–1,000 1.14 0.112 0.09 0.026

1,001–1,500 1.18 0.106 0.04 �0.006

1,501–2,000 1.05 0.116 �0.13 0.010

2,001–2,500 1.01 0.081 �0 .04 �0.035

2,501–3,000 1.08 0.106 0.07 0.025

Runs w

r ¼ 0.50

dw dPdPd

1–500 1.75 0.448 1.75 0.448

501–1,000 2.52 0.548 0.77 0.100

1,001–1,500 2.01 0.474 �0.51 �0.074

1,501–2,000 1.78 0.462 �0.23 �0.012

2,001–2,500 2.05 0.516 0.27 0.044

2,501–3,000 1.77 0.524 �0.28 0.008

At r ¼ 0.10, note how dw and dPd start to cycle around zero after 1,000 arrivals,

and this signals the transient stage is ending at n ¼ 1,000 arrivals. At r ¼ 0.50, dw

and dPd both start to cycle around zero after 1,500 arrivals, indicating the transient

stage ends at n ¼ 1,500 arrivals, and the equilibrium stage begins.

Partitions and Buffers

Another way to collect the data for this system is described here. For all the events

after the transent stage ends, the analyst could specify two parameters, N and M that

will be used in partitions and buffers, respectively. Each partition is of length N and

every buffer is of length M, where typically N � M. As the simulation model

progresses, the partitions and buffers will follow in a leapfrog manner one after the

other. For example, the progression of events is the following:
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1 to N Partition 1

N + 1 to N + M Buffer 1

N + M + 1 to 2N + M Partition 2

2N + M + 1 to 2N + 2M Buffer 2

2N + 2M + 1 to 3N + 2M Partition 3

. . .

The run stops after n partitions.

Statistical measures will only include the data from the partitions, and not the

buffers. The buffers are needed to allow the measures from one partition to the next

to be far enough apart from each other where the status of one partition does not

influence the status of the next. This way, the variable measures from the individual

partitions are independent.

Suppose n is the number of partitions in the run and K is the number of output

measures of interest that are collected for each partition. So, for output measure k of

partition i, the output data saved would be xki where k ¼ 1 to K and i ¼ 1 to n.

Nonterminating Transient Cyclical Systems

The computer simulation model could be for a system that is nonterminating and

progresses into a cyclical state. The computer model would begin empty and flow

through a transient stage prior to reaching the cyclical stage. To illustrate, suppose

the system under study is a car repair center where customers leave their vehicles

for maintenance or repair. The shop is open 12 h a day and the vehicles remain in

the system, even overnight, until the service is finished. The arrival rate varies by

the time of day and as such the system follows a cyclical daily pattern. In the

computer simulation model, after the transition stage ends, the status evolves into

daily cycles.

Output Data

Upon identifying A, the number of events until the cyclical stage begins, the

computer simulation model now runs with n different strings of random numbers.

The output for each run begins after the transient period of A events have elapsed.

When K is the number of output measures of interest and n is the number of runs,

the output becomes the following:

xki k ¼ 1 to K and i ¼ 1 to n:

This is the output data that is subsequently analyzed by statistical study.
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Cyclical Partitions and Buffers

The output measures might be collected for each cycle and even at different

intervals of the cycle. Suppose K is the number of variables of interest, J is the

number of intervals in a cycle to measure, and n is the number of partitions. Hence,

the data collected after n partitions is the following:

xkji for k ¼ 1 to K; j ¼ 1 to J and i ¼ 1 to n

This would be the data for the subsequent statistical analysis.

To ensure the data from each cycle is independent, the concept of partitions and

buffers could still be in place. To begin, the partitions would be the every second

day cycle and the buffer would be the day in-between. So, the n partitions collected

for the output would come from every second day of the simulation run. On some

occasions, the analyst may select each third or fourth day to represent a partition.

Other Models

Some simulation models are not time or event related and have none of the

associated traits described earlier as terminating, transient or equilibrium. Instead,

the simulation model may be used to develop data that can be used in subsequent

analysis. Several examples are provided below.

Forecasting Database

An analyst is testing a time series forecasting system that uses up to 24 months of

historical demands and generates forecasts for the coming 12 months. The forecasts

are of the horizontal, trend and seasonal type. The forecast system processes one

part at a time and determines the forecast model to use and estimates the

coefficients associated with the forecast model. The forecasts for each of the next

12 months are then generated.

To analyze the efficiency of the forecast system, the analyst wants to generate a

database record for a series of parts to process through the forecast system. This

requires the fields in the part record as: part number, description (optional), number

months of history (1–24), and the 24 most recent history demands that are available

(could be from horizontal, trend or seasonal). The simulation model would need to

generate the data, one field at a time, in a way that is realistic and would allow the

analyst to measure the efficiency of the forecasting system.

The simulation model could generate any number of part number records, 10,

100, 1,000, as needed. It would be good for each part record to have a comment field

to identify the type of history data (horizontal, trend, seasonal) so the results could
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compare with the forecast model generated. The analyst could also occasionally

insert an outlier demand in one of the history fields to see how competent the

forecast system is to detect for outliers and adjust accordingly. The output record

for each part might include the following:

Part, Comments, Number Months History, D1, D2, . . .., D24.

Forecast and Replenish Database

In the event the system also has replenish capability, the forecast-replenish

system would then compute the order size, safety stock, order point and order

level. Depending on the on-hand and on-order data, the system would compute

the replenish quantity needed, if any, for each part. The simulation part data now

includes fields with the following: on-hand, on-order, cost per unit, multiple

quantity, minimum buy quantity, lead time, and price break data when

they pertain.

The simulation model has to coordinate this data for each part with the above

forecast data generated to yield a realistic database record for each part.

Comments should be included in a field to allow the analyst to compare the

forecast-replenish system results with the data provided. When the on-hand and

on-order are low, a replenish quantity should be called in the subsequent

replenishment routine. When the on-hand is low and the on-order high, no

replenish quantity is needed, and so forth. The additional data per part may

include the following:

Part, Cost, Multiple Quantity, Min Quantity, Lead Time, On-Hand, On-Order,

Price Break Data.

Example 8.2 An inventory manager is seeking guidance on how to set the

forecasting parameter, a (alpha) that plays an important role in controlling the

inventory. In particular, the horizontal single smoothing forecasting model is in

use to generate the forecasts for the future months for many of the parts in the

inventory. The particular values of a under consideration are: 0.05, 0.10, 0.20,

0.30, 0.40 and 0.50.

A simulation model is developed to randomly generate, for each part, 48 months

of demand history that follows a horizontal demand pattern with a coefficient of

variation (cov) set at 0.30. The demands are randomly generated using the normal

distribution. The cov implies, the standard deviation of the demands is s ¼ 0.30m
where m is the average demand per month. Essentially, cov ¼ s/m where s is the

standard deviation of each monthly demand. So for each part in the simulation

study, the demands generated are: x1, . . .. ,x48.
The forecast model is run through the first 24 months of history and the

forecast for the next 12 months of demands is generated. Starting with the month

24 forecast, the forecast errors are measured for each of the next 12 months, and

the standard error of the forecast error is tabulated. From month 24 to month 36,

the forecast model moves forward and the forecast errors are measured in the

same way.
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Altogether, 13 sets of forecasts are generated for each part, (one each for months

24–36), and the corresponding forecast errors are measured. Finally, the cov of the 1

month ahead forecast error is measured by cov ¼ s=�x , where s is the standard

deviation of 1 month ahead forecast error, and �x is the average 1 month demand.

This process is followed for each of the six parameter values of a listed earlier,

and also for 100 parts where the demand stream of 48 months are each generated

with a different set of random numbers. The average cov from all of the 100 parts

are listed in the table below for each of the a values under review. The results

clearly show where the smaller value of the parameter a yields the best forecast

results. The forecaster is cautiously aware that in the simulation model all the data

are from a horizontal demand pattern and the accuracy results are for history

patterns that are truly of that type.

a Cov

0.05 0.297

0.10 0.305

0.20 0.315

0.30 0.318

0.40 0.325

0.50 0.344

Example 8.3 An inventory manager is concerned on the forecast accuracy for a

part depending on the number of month’s history (nmh) demand that is available

to generate the forecast. The forecast manager is using the horizontal single

smoothing model that generates the forecasts for the future months, for many

of the parts in the inventory. The parameter for the forecast model is set as

a ¼ 0.10.

A simulation model is developed to randomly generate 36 months of demand

history that follows a horizontal demand pattern with a coefficient of variation

(cov) set at 0.30. The demands are randomly varied using the normal distribu-

tion. The standard deviation of the demands is s ¼ 0.30m where m is the average

demand per month. So for each part in the simulation study, the demands

generated are: x1, . . .. ,x36.
The forecast model is run through the first 24 months of history and the forecast

for the next 12 months of demands is generated. The forecast errors are measured

for each of the next 12 months from which the standard error of the forecast error is

tabulated. Finally, the cov of the 1 month forecast error is measured by cov ¼ s=�x,
where s is the standard deviation of 1 month forecast error, and �x is the average 1

month demand.

The table below lists the results from one such part by nmh. The table clearly

shows how the cov improves as the nmh increases from 1 to 24.
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Month nmh Cov

1 1 0.71

2 2 0.60

3 3 0.55

4 4 0.50

5 5 0.45

6 6 0.46

7 7 0.56

8 8 0.55

9 9 0.45

10 10 0.43

11 11 0.38

12 12 0.36

13 13 0.38

14 14 0.31

15 15 0.31

16 16 0.32

17 17 0.34

18 18 0.36

19 19 0.27

20 20 0.28

21 21 0.31

22 22 0.28

23 23 0.28

24 24 0.32

Example 8.4 An inventory manager is wondering whether to include logic in

the forecasting model to detect and adjust the demand history for outlier

demands prior to generating the forecasts. An outlier demand is where one (or

more) months have a demand that is much larger (or smaller) than the normal

flow of the other demands in the history. Of specific interest is the affect on the

horizontal single smoothing model that generates the forecasts for the future

months for many of the parts in the inventory. The parameter for the forecast

model is set at a ¼ 0.10.

A simulation model is developed to randomly generate 36 months of demand

history that follows a horizontal demand pattern with a coefficient of variation (cov)

set at 0.30. The demands are randomly varied using the normal distribution. The

standard deviation of the demands is s ¼ 0.30m where m is the average demand per

month. So for each part in the simulation study, the demands generated are: x1, . . .. ,x36.
Three sets of demand history are generated for each part. The first set has no outliers.

The next two sets have one outlier inserted in the demand history somewhere in

months 1–24.

For each of the three sets (no outlier, one outlier, one outlier), the forecast model

is run through the first 24 months of history and the forecast for the next 12 months

of demands is generated. The forecast errors are measured for each of the next 12

months from which the standard error of the forecast error is tabulated. Finally, the

cov of the 1 month forecast error is measured by cov ¼ s=�x, where s is the standard
deviation of 1 month forecast error, and �x is the average 1 month demand.

Other Models 87



The table below lists the results from each of the three sets of demand history

from the same part. The table shows how the cov increases tremendously when

the part has one outlier in the demand history. The forecast manager can now

clearly see how important it is to include logic in the forecasting routine to

detect for outlier demands and adjust accordingly prior to forecasting.

Part Demand history Cov

1 No outlier 0.343

2 One outlier 0.611

3 One outlier 0.476

Example 8.5 An inventory manager is seeking guidance on various decisions

concerning the seasonal forecasting model. One of the decisions concerns the

three parameters to the model: a (for the average), b (for the trend) and g (for the

seasonal pattern). The particular values of a under consideration are: 0.05, 0.10,

0.20, 0.30, 0.40 and 0.50. The values for b and g both are (0.10 and 0.20).

A simulation model is developed to randomly generate, for each part, 48 months

of demand history that follows a seasonal demand pattern with a coefficient of

variation (cov) set at 0.30. The demands are randomly generated using the normal

distribution. So for each part in the simulation study, the demands generated are:

x1, . . .. ,x48.
The forecast model is run through the first 24 months of history and the forecast

for the next 12 months of demands is generated. Starting with the month 24 forecast,

the forecast errors are measured for each of the next 12 months, and the standard

error of the forecast error is tabulated. From month 24 to month 36, the forecast

model moves forward and the forecast errors are measured in the same way.

Altogether, 13 sets of forecasts are computed for each part, (one each for months

24–36), and the corresponding forecast errors are measured. Finally, the cov of the 1

month ahead forecast error is measured by cov ¼ s=�x , where s is the standard

deviation of 1 month ahead forecast error and �x is the average 1 month demand.

This process is followed for each combination of the parameter values of a, b, g
listed earlier, and also for 100 parts where the demand stream of 48 months are each

generated with a different set of random numbers. The average cov from all of the

100 parts are listed in the table below for each parameter (a, b, g) combination. The

results show where the smaller value of the parameters yields the best results. The

forecaster is cautiously aware that all the data are from a seasonal demand pattern

and the accuracy results are for history patterns that are truly of that type.

Cov when the demand pattern is seasonal and the seasonal forecast model is run

with the following parameter values:

β = 0.10 β = 0.10 β = 0.20 β = 0.20
γ = 0.10 γ = 0.20 γ = 0.10 γ = 0.20

α covcov cov cov
0.05 0.306 0.316 0.307 0.312
0.10 0.314 0.317 0.315 0.329
0.20 0.318 0.325 0.320 0.333
0.30 0.337 0.338 0.347 0.357
0.40 0.341 0.351 0.347 0.357
0.50 0.357 0.366 0.369 0.383
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Example 8.6 An inventory manager is seeking guidance on various decisions

concerning the seasonal demand pattern. One of the decisions concerns the forecast

model to apply: horizontal, trend or seasonal. The horizontal model uses the

parameter a; the trend model uses parameters a, b; and the seasonal model uses

the parameters: a (for the average), b (for the trend) and g (for the seasonal pattern).
The particular values of a under consideration are: 0.05, 0.10, 0.20, 0.30, 0.40 and

0.50. The values for b and g are (0.10 and 0.10).

A simulation model is developed to randomly generate, for each part, 48

months of demand history that follows a seasonal demand pattern with a coeffi-

cient of variation (cov) set at 0.30. The demands are randomly generated using

the normal distribution. So for each part in the simulation study, the demands

generated are: x1, . . .. ,x48. The forecast model is run through the first 24 months

of history and the forecast for the next 12 months of demands is generated.

Starting with the month 24 forecast, the forecast errors are measured for each of

the next 12 months, and the standard error of the forecast error is tabulated.

From month 24 to month 36, the forecast model moves forward and the forecast

errors are measured in the same way. Altogether, 13 sets of forecasts are

generated for each part, (one each for months 24–36), and the corresponding

forecast errors are measured. Finally, the cov of the 1 month ahead forecast error

is measured by cov ¼ s=�x, where s is the standard deviation of 1 month ahead

forecast error, and �x is the average 1 month demand.

This process is followed for each combination of the parameter values of a,
b, g listed earlier, and also for 100 parts where the demand stream of 48

months are each generated with a different set of random numbers. Each of

the three forecast models are run with the same data. The average cov from all

of the 100 parts are listed in the table below for each forecast model and of

every a, b, g combination. The results clearly show that the best forecasts for

the data from a seasonal demand pattern are those that are generated from the

seasonal forecast model. The better forecasts are also those with the smaller

parameter values.

Cov when the demand pattern is seasonal and the forecast models (horizontal,

trend, seasonal) are run with the following parameter values:

Forecast model
horizontal trend seasonal

β = 0.10 β = 0.10
γ = 0.10

α covcov cov
0.05 0.443 0.404 0.306
0.10 0.429 0.419 0.314
0.20 0.424 0.435 0.325
0.30 0.423 0.442 0.337
0.40 0.409 0.428 0.341
0.50 0.400 0.418 0.357

Other Models 89



Summary

Computer simulation models are mainly developed to emulate actual systems

that are too complex to analyze mathematically. The systems often fall into the

terminating or the nonterminating type. The chapter describes how output data is

collected for either type of system. Terminating systems have a defined begin-

ning and ending event, and nonterminating systems include a combination of

transient, equilibrium and cyclical stages. The output data from these systems are

needed subsequently to statistically analyze the performance of the system that is

under study. Another simulation model presented is one that creates the database

to be used as test data for software applications like forecasting and inventory

replenishments.
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Chapter 9

Analysis of Output Data

Introduction

This chapter is a quick review on some of the common statistical tests that are useful

in analyzing the output data from runs of a computer simulation model. This pertains

when each run of the model yields a group of k unique output measures that are of

interest to the analyst. When the model is run n times, each with a different string of

continuous uniform u ~ U(0,1) random variates, the output data is generated inde-

pendently from run to run, and therefore the data can be analyzed using ordinary

statistical methods. See, for example, Hines et al. (2003) for a full description on

statistical methods. Some of the output data may be of the variable type and some

may be of the proportion type. The appropriate statistical method for each type of

data is applied as needed. This includes, measuring the average value and computing

the confidence interval of the true mean. Oftentimes, the simulation model is run

with one or more control input variables in a ‘what if’ manner. The output data

between the two or more settings of the control variables can be compared using

appropriate statistical tools. This includes testing for significant difference between

two means, between two proportions, and between k or more means.

Example 9.1 A maintenance and repair shop for cars is open Monday through

Saturday from 8 a.m. till 6 p.m. The cars needing service arrive during the day with

an average arrival rate via the Poisson distribution. The service times vary via a

gamma distribution with a location parameter to signify the minimum time of

service. A simulation model is developed to emulate the daily activities and the

model collects a series of measures of interest to the analyst. The number of

independent runs of the model is n. Some of the measures collected in each run

of the model are listed below:

n0 ¼ number of bays (this is a control parameter)

n1 ¼ number of vehicles that arrive for service.

n2 ¼ number of parts needed to complete the service.

n3 ¼ number of vehicles serviced without a delay.

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0_9,
# Springer Science+Business Media New York 2013
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n4 ¼ number of needed parts that are available in the stock room.

n5 ¼ the number of vehicles that wait in queue over 60 min.

S1 ¼ sum wait time for delayed vehicles.

S2 ¼ sum idle time for a repair bay over the day.

Variable Type Data

The variable type data for the individual daily run are the following:

x1 ¼ S1/n1 ¼ average wait time per vehicle.

x2 ¼ S2/(10 � n0) ¼ average idle time per hour per bay.

x3 ¼ n3/n1 ¼ service level for the vehicles.

x4 ¼ n4/n2 ¼ service level for the parts.

Proportion Type Data

When n replications of the simulation model are run, and n5 is the number of days

when one or more vehicles wait at least 60 min for service, then,

p ¼ n5/n is the proportion of days when a vehicle waits 60 or more minutes.

Analysis of Variable Type Data

Variable type data is like time to complete a service on an item in repair, strength

of a steel beam, elasticity from rubber compound, labor cost to service a vehicle,

and so forth. Upon completion of n replications of a simulation model, the analyst

may be interested in determining the point estimate on the variable measured in

the model and also the corresponding confidence interval. The analyst may

further inquire on how many replications are needed to gain the precision desired

in the estimate.

Consider the output measure, x, from a run of a simulation model. The variable x

could be the average of a large number of events that take place in the model. In the

service department of the car dealership model, x could be the average time a

customer waits for service on the vehicle. In the typical situation, the distribution

and the mean and variance of x are unknown. When n replications of the simulation

are run, with the same initial conditions and with different streams of continuous

uniform u ~ U(0,1) random variates, then the output data, x1, . . ., xn, for each

random variable can be treated as independent observations of the random variable.
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Some of the more common statistical tools for analyzing the output data are

presented below. Each of the tools are valid as long as the n sample observations,

x1, . . ., xn, are statistically independent.

Sample Mean and Variance

Using the n output results, x1, . . ., xn, the sample mean and variance of x are

computed as below:

�x ¼
Xn

i¼1

xi=n

s2 ¼
Xn

i¼1

ðxi � �xÞ2= n� 1ð Þ

The standard deviation of x is s ¼
ffiffiffiffi
s2

p
, and the standard error of the mean, s�x, is

obtained by,

s�x ¼ s=
ffiffiffi
n

p

The associated degrees of freedom is (n � 1).

So now, �x is an estimate of the true mean, m, and s is an estimate of the true

standard deviation, s. Note the true values of the parameters (m and s) are

unknown. Also not known is the distribution of x.

Confidence Interval of m when x is Normal

In the event, x is normally distributed, the (1 � a) confidence interval of m
becomes,

L � m � U

where, the upper and lower confidence limits (U, L) are, obtained from

U ¼ �xþ ta 2= s�x

L ¼ �x� ta 2= s�x
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Note, ta/2, has (n � 1) degrees of freedom and is the a/2 upper-tail percentage-

point of the student’s t distribution where P(t > ta/2) ¼ a/2. Hence,

PðL � m � UÞ ¼ 1� a:

In the event n is large, say n > 30, the standard normal variable, z, can be used in

place of the student’s variable, t. In this event, the confidence limits become,

U ¼ �xþ za 2= s�x

L ¼ �x� za 2= s�x

where za/2 is the z value from N(0,1)that gives P(z > za/2) ¼ a/2.

Approximate Confidence Interval of m when x is Not Normal

In the event, x is not normally distributed, and the sample size is small, an

approximate (1 � a) confidence interval of m is computed in the same way. That is,

L � m � U

where, the upper and lower confidence limits (U, L) are, obtained from

U ¼ �xþ ta 2= s�x

L ¼ �x� ta 2= s�x

The term ta/2 is the upper-tail percentage-point from the student’s t distribution

with degrees of freedom (n � 1), where P(t > ta/2) ¼ a/2. But since, x is not

normal, the exact probability of the interval is not truly known and is

approximated as,

PðL � m � UÞ � 1� a:

Central Limit Theorem

When n increases, the Central Limit Theorem applies, and the distribution shape of

the sample mean approaches a normal distribution. Hence, the standard normal

variable, z, replaces the student’s variable, t and the confidence limits become,
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U ¼ �xþ za 2= s�x

L ¼ �x� za 2= s�x

where za/2 is the z value that gives P(z > za/2) ¼ a/2. The confidence interval on m
becomes,

PðL � m � UÞ ¼ 1� a:

Example 9.2 Suppose a simulation run yields a variable, x with each trial run of

the simulation. Assume further, the simulation is run with n ¼ 10 repetitions, and

each repetition begins with the same initial values and terminates over the same

length of events. The only difference is the stream of random variates used in each

of the simulation runs. So, as much as possible, there are now n output results, x1,

. . ., xn, that are from the same distribution and are independently generated.

Assume further, the sample mean and variance from the ten samples are the

following:

�x ¼ 20:0

and

s2 ¼ 25:0;

respectively. The standard deviation becomes s ¼ 5, and the standard error of the

mean is,

s�x ¼ s=
ffiffiffi
n

p ¼ 1:58:

Also, the degrees of freedom is (10 � 1) ¼ 9 for this data.

Because the true distribution of x is not known, an approximate confidence

interval is computed. The student’s t variable needed for a 95 % confidence is t0.025.

Since the degrees of freedom is 9, the search of the student t distribution yields,

t0.025 ¼ 2.262. The approximate upper and lower 95 % confidence limits on m can

now be computed and become,

U ¼ 20þ 2:262� 1:58 ¼ 23:57

L ¼ 20� 2:262� 1:58 ¼ 16:43

The corresponding approximate confidence interval is ð16:43 � m � 23:57Þ ,
where

Pð16:43 � m � 23:57Þ � 0:95
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When Need More Accuracy

Suppose the analyst wants the length of the (1 � a) confidence interval, currently
(U � L), to shrink to 2E, and all else remains the same. The number of repetitions

to achieve this goal is obtained from the relation below,

n ¼ ½ðs� ta 2= Þ=E�2

where s is the sample standard deviation, t is the student’s t value and E is the

precision sought. Note the student’s t value must be coordinated with degree of

freedom (n � 1). The problem with the above relation is that the t value cannot be

inserted in the formula until the sample size n is known.

A way to approximate the formula is to use the normal z value instead of the

student’s t value in the above formula. Replacing t with z yields,

n ¼ ½ðs� za 2= Þ=E�2

The above estimate of n will be less or equal to the counterpart value of n when

the student’s t is used. As n gets larger, (n > 30), the difference between using the

t and z value is minor.

Example 9.3 Consider the approximate 95 % confidence interval that is shown in

Example 9.2. Suppose the analyst wants the length of the 95 confidence interval to

shrink from the current (U � L) ¼ (23.57 � 16.43) ¼ 7.14 to (U � L) ¼ 4.0.

The number of repetitions to achieve this goal is obtained from the relation below,

n ¼ ½ðs� za 2= Þ=E�2 ¼ ½ð5� 1:96Þ=2�2 ¼ 24:01

So, in this example, n ¼ 24 repetitions are needed. Because, n ¼ 10 repetitions

have already been run, 14 new repetitions are needed.

Analysis of Proportion Type Data

Proportion type data is like the portion of trials an event occurs. Examples are: the

portion of units that have defects; the portion of customers who use a credit card for

a purchase; the portion of customers in a gas station that use premium gas; the

portion of police calls that have to wait more than 10 min for service, and so forth.

Upon completion of n replications of a simulation model, the analyst may be

interested in determining the point estimate of the proportion measured in the

model, and also on the corresponding confidence interval. The analyst may also

inquire how many replications are needed to gain more precision.
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Proportion Estimate and Its Variance

Using the n output results, let w represent the number from the n replications where

a specified event occurs. The estimated proportion is obtained by,

p̂ ¼ w=n

The corresponding variance is

sp̂2 ¼ p̂ð1� p̂Þ=n

and the standard error of p̂ becomes,

sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1� p̂Þ=n

p

Confidence Interval of p

The distribution on the estimate of p is approximated by the normal distribution

when np � 5 at p � 0:50, or when nð1� pÞ � 5 at p � 0:50. So when the number of

replications, n, is sufficiently large, the (1 � a) confidence interval on the true

proportion, p, can be computed in the following way. Let U and L be the upper and

lower confidence limits, respectively, whereby,

L � p � U

The confidence limits are computed as follows,

U ¼ p̂þ za 2= sp̂

L ¼ p̂� za=2 sp̂

The probability on the confidence interval is,

PðL � p � UÞ ¼ ð1� aÞ:

Example 9.4 Suppose a terminating simulation model is run with n ¼ 60

replications, and an event A occurs on w ¼ 6 of the replications. The analyst

wants to estimate the portion of times the event will occur. The estimate of the

portion of times event A occurs is

p̂ ¼ 6=60 ¼ 0:10:
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The variance of the estimate is the following.

sp̂2 ¼ 0:10 ð1� 0:10Þ
60

¼ 0:0015

and the standard error of p becomes,

sp̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:0015

p
¼ 0:039

Since the estimate of p ðp̂ ¼ 0:10Þ is less than 0.50 and n(1 � p) ¼ 6.0 is larger

than 5, the normal approximation can be applied and the confidence limit is

computed as below. Recall, z0.025 ¼ 1.96.

The 95 % confidence limits on p becomes,

U ¼ 0:10þ 1:96� 0:039 ¼ 0:176

L ¼ 0:10� 1:96� 0:039 ¼ 0:024

whereby, the 95 % confidence interval is

ð0:024 � p � 0:176Þ

and the associated probability is

Pð0:024 � p � 0:176Þ ¼ 0:95:

When Need More Accuracy

In the event the analyst desires more accuracy on the estimate of the proportion, p,

the number of repetitions needs to increase. The following formula computes the

size of n for the accuracy desired. Suppose (1 � a) is fixed and the tolerance

E ¼ 0.5(U � L) desired is specified. So the number of repetitions becomes,

n ¼ pð1� pÞ½za 2= =E�2

If an estimate on the proportion p is not available, then set p ¼ 0.5, and the

number of repetitions becomes

n ¼ ð0:25Þ½za 2= =E�2

Example 9.5 Consider Example 9.4 again, and assume the analyst needs more

accuracy in the estimate of p. He/she wants to lower the 95 % tolerance from 0.5

(0.176 � 0.24) ¼ 0.076 to E ¼ 0.050. The question is how many more repetitions
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are needed to accomplish. The above formula is used assuming p ¼ 0.10 and letting

(1 � a) ¼ 0.95. Hence, a ¼ 0.05 and za/2 ¼ 1.96. The number of repetitions

needed becomes,

n ¼ ð0:1Þð0:9Þ½1:96=0:05�2 ¼ 138:3:

Since, 60 repetitions have already been run, 79 more are needed.

Example 9.6 Amachine shop has an order for ten units (No ¼ 10) of a product that

require processing on two machines, M1 andM2. One component is produced onM1

and another onM2. The two components are combined to yield the final product. The

machine processing is expensive and difficult where defective components can

occur on each machine. The management of the shop wants to determine in advance

howmany units to start, Ns, at the outset to be 95% certain the number of good units,

Ng, of the final product is equal or larger than the required units of No ¼ 10. In

essence, they want to determine Ns where PðNg � NoÞ � 0:95.
When M1 launches Ns units at the start, the raw material is gathered and the units

are processed one after the other. The number of good units from M1 is denoted as

g1, whereby the number of defective units is d1 ¼ Ns � g1. A defective unit from

processing on M1 can occur in two ways, (1) when the raw material is defective, and

(2) when the processed unit fails a strength test. The probability of a defective raw

material is P(d) ¼ 0.03. The strength of the material, S1, is equally likely to fall as

10 � S1 � 20 . The force, F1, is distributed as an exponential distribution with

expected value E(F1) ¼ 5.0. If F1 > S1, the unit is defective since the strength is

not adequate.

When M2 launches Ns units at the start, the raw material is gathered and the units

are processed one after the other. The number of good units fromM2 is denoted as g2,

whereby the number of defective units is d2 ¼ Ns � g2. A defective unit from

processing on M2 can occur in two ways, (1) when the raw material is defective,

and (2)when the processed unit fails a strength test. The probability of a defective raw

material is P(d) ¼ 0.05. The strength of the material, S2, is equally likely to fall as

15 � S2 � 24 . The force, F2, is distributed as an exponential distribution with

expected value E(F2) ¼ 6.0. If F2 > S2, the unit is defective since the strength is

not adequate.

The good units from M1 and M2 are combined to yield the final product. The

number of good units in the final product is Ng ¼ Min(g1, g2). Recall the goal is to

begin Ns units on both machines so that the probability ofNg � No is 0.95 or better.

A simulation model is developed to guide the management on the size of Ns

to apply.

The results are listed below where the number of units to start, Ns, ranges from

10 to 15. For each attempt at Ns, the simulation is run 1,000 times to estimate the

probability that the number of good units will be ten or larger. At Ns ¼ 10, for

example, the probability is 0.156 indicating that on 156 of the 1,000 trials, Ng was

ten or larger, and this is far short of the goal. Note at Ns ¼ 13, the probability

reaches 0.952 and this is the minimum value of Ns to achieve the specified goal of

the management.
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No Ns PðNg � NoÞ
10 10 0.156

10 11 0.537

10 12 0.850

10 13 0.952

10 14 0.988

10 15 0.999

Example 9.7 In Example 9.6, from 1,000 trials with control variable Ns ¼ 13 as

the number of units to start production, the number of runs producing ten or more

good units becomes 952. This is a proportion situation where the estimate of the

proportion of good units, p, becomes p̂ ¼ 952=1000 ¼ 0:952 . The associated

standard deviation of this estimate is sp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið:952� :048Þ=1000p ¼ :0067. Hence,

the 90 % confidence limits of p are,

L ¼ 0:952� 1:645� :0067 ¼ 0:941

U ¼ 0:952þ 1:645� :0067 ¼ 0:963

Finally, the 90 % confidence interval is

Pð0:941 � p � 0:963Þ ¼ 0:90:

Based on the confidence interval, since L ¼ 0.941 is less than 0.95, the manage-

ment should be aware, with 90 % confidence, the proportion of good units could be

lower than the goal of 0.95, when Ns ¼ 13. Instead of settling on Ns ¼ 14 units to

start the production process, the analyst could consider taking more samples to gain

a higher precision on the estimate of p at Ns ¼ 13.

Comparing Two Options

Sometimes the analyst is seeking the better solution when two or more control

options are in consideration. An example could be a mixed model assembly line

where k different models are produced on the line and the analyst is seeking the best

way to send the different models down the line for the day. One way is to send each

model down the line in batches, and another way is to send them down the line in a

random order. The assembly time for each model is known by station. A simulation

model is developed and is run for a day’s activity and the following type of

measures are tallied. Idle time is recorded when an operator in a station must wait

for the next unit in sequence before he/she can begin its work. Congestion is when

the operator has extended work on a unit and is forced to continue working on the

unit even when the next unit arrives at the station on a moving conveyer. A goal is

to minimize the idle time and congestion time over the day’s activities.
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S1 ¼ sum of idle time across all stations and models for the day.

S2 ¼ sum of congestion time across all stations and models for the day.

N1 ¼ number of units assembled for the day.

N2 ¼ number of stations on the line.

N3 ¼ number of units with congestion over the day.

The computations for the day are the following:

x1 ¼ S1=ðN1� N2Þ ¼ average idle time per station per unit assembled.

x2 ¼ S2 =ðN1� N2Þ ¼ average congestion time per station per unit assembled.

p1 ¼ N3=N1 ¼ proportion of units with congestion.

Note, the measures x1 and x2 are variable type data, and p1 is proportion

type data.

Comparing Two Means when Variable Type Data

Suppose a terminating simulation model has two different options (1 and 2) and the

analyst wants to compare the one against the other to see which is more preferable.

For option 1, n1 repetitions of simulation runs are taken and the output yields a

sample mean �x1 and variance s
2
1. For option 2, n2 simulation runs are generated and

the results give �x2 and s22. Typically, the number of simulation runs are the same,

whereby n1 ¼ n2. The true mean and variance of options 1 and 2 are not known and

are estimated by the sample simulation runs.

Comparing x1 and x2

The estimate of the difference between the true means is measured by, �x1 � �x2 .
Denoting the true means of options 1 and 2 by m1 and m2, respectively, the

difference between the sample means is an estimate of the difference between the

true means. The expected value of the difference yields the following,

Eð�x1 � �x2Þ ¼ ðm1 � m2Þ

Confidence Interval of (m1 � m2) when Normal Distribution

When both variables x1 and x2 are normally distributed, it is possible to compute a

(1 � a) confidence interval on the difference between the two means, (m1 � m2).
The result will yield upper and lower confidence limits, (U, L) where,
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L � ðm1 � m2Þ � U

and

P½L � ðm1 � m2Þ � U� ¼ ð1� aÞ

The lower and upper limits are computed in the following way,

U ¼ ð�x1 � �x2Þ þ ta 2= sð�x1��x2Þ

L ¼ ð�x1 � �x2Þ � ta 2= sð�x1��x2Þ

Where

sð�x1��x2Þ ¼ standard error of the difference between the two means,

ta/2 ¼ the student’s t value with degrees of freedom df.

The way to compute the above standard error and degrees of freedom will be

given subsequently.

Significant Test

The significance of the difference between the two options can be noted by use of

the confidence interval by observing the range of values from confidence limits L to

U. In the event the interval (L to U) passes through zero, the means of the two

options are not significantly different with (1 � a) confidence level. When the

interval is always positive, the mean of option 1 is significantly higher than the

mean of option 2. On the other hand, if the interval is always negative, the mean of

option 1 is significantly smaller than the mean of option 2.

When s1 ¼ s2

When the true standard deviations of the two options are assumed the same, the way

to measure the standard error of the difference between the two means is shown

below.

First, the two sample variances are combined to estimate the common variance.

The is called the pooled estimate of the variance and is computed as follows,

s2 ¼ ðn1 � 1Þs12 þ ðn2 � 1Þs22
� �

=½n1 þ n2 � 2�
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Second, the standard error on the difference between the two means becomes,

sð�x1��x2Þ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n1
þ 1

n2

r

and the corresponding degrees of freedom is,

df ¼ ðn1 þ n2 � 2Þ:

When s1 6¼ s2

When the true standard deviations of the two options are not assumed the same, the

way to measure the standard error of the difference between the two means is

below:

sð�x1��x2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s21
n1

þ s22
n2

s

The corresponding degrees of freedom, df, is computed in the following way.

First, the variance error of the mean for options 1 and 2 are measured as below,

s�x1
2 ¼ s21=n1

s�x2
2 ¼ s22=n1

The degrees of freedom becomes,

df ¼ ½s�x12 þ s�x2
2�2=½s�x14=ðn1 þ 1Þ þ s�x2

4=ðn2 þ 1Þ� � 2

Approximate Confidence Interval of (m1 � m2) when Not Normal

When one or both variables x1 and x2 are not normally distributed, it is possible to

compute an approximate (1 � a) confidence interval on the difference between the
two means, (m1 � m2) in the same way as shown above when the normal distribu-

tion applies. The result will yield approximate upper and lower confidence limits,

(U, L) where,
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L � ðm1 � m2Þ � U

and

P½L � ðm1 � m2Þ � U� � ð1� aÞ

The upper and lower limits are computed in the following way,

U ¼ ð�x1 � �x2Þ þ ta 2= sð�x1��x2Þ

L ¼ ð�x1 � �x2Þ � ta 2= sð�x1��x2Þ

As Degrees of Freedom Increases

Via the central limit theorem, as the degrees of freedom increases, the shape of the

distribution of ð�x1 � �x2Þ increasingly resembles a normal distribution, and eventu-

ally the approximation term in the confidence interval is dropped.

Example 9.8 Suppose a terminating simulation model has two options, (1,2), and

ten simulation runs of each are taken. The goal is to compare the difference between

the means of each option. Assume the sample mean and variance of the two options

are computed and the results are listed below.

Option 1: n1 ¼ 10, �x1 ¼ 50, and s21 ¼ 36.

Option 2: n2 ¼ 10, �x2 ¼ 46, and s21 ¼ 27.

The analyst assumes the variables x1 and x2 are sufficiently close to a normal

distribution, and also the variances of the two options are equal. Hence, the standard

error of the difference between the two means is computed as follows.

First, the pooled estimate of the variance is calculated as below.

s2 ¼ ð10� 1Þ36þ ð10� 1Þ27½ �=½10þ 10� 2�
¼ 31:5

The pooled standard deviation becomes,

s ¼
ffiffiffiffiffiffiffiffiffi
31:5

p
¼ 5:61

Second, the standard error on the difference between the means is calculated as,
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sð�x1��x2Þ ¼ 5:61

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

10
þ 1

10

r

¼ 2:51

The associated degrees of freedom is df ¼ (n1 + n2 � 2) ¼ 18.

To compute the (1 � a) ¼ 0.95 confidence interval, the lower and upper confi-

dence limits are found in the following way.

The student’s t variable for a/2 ¼ 0.025 and for 18 degrees of freedom is

searched on the student’s t table to find,

t0:025 ¼ 2:101

Hence, the upper and lower confidence limits are computed as below,

U ¼ ð50� 46Þ þ 2:101� 2:51 ¼ 5:27

L ¼ ð50� 46Þ � 2:101� 2:51 ¼ �1:27

The 0.95 confidence interval is,

� 1:27 � ðm1 � m2Þ � 5:27:

Note, the range of the confidence interval passes across zero. Hence, with the

sample sizes taken so far, there is no evidence of a significant difference between

the means of the two options at the (1 � a) ¼ 95 % confidence level.

Comparing the Proportions Between Two Options

Suppose a terminating simulation model has two different options (1 and 2) and the

analyst wants to compare the one against the other to see which is more preferable.

For option 1, n1 repetitions of simulation runs are taken and x1 of them have an

attribute of interest. The proportion of repetitions that have the attribute is measured

by p̂1 ¼ x1=n1. For option 2, n2 repetitions are taken, x2 have the attribute and the

proportion becomes p̂2 ¼ x2=n2. Typically, the number of simulation runs are the

same, whereby n1 ¼ n2. The true proportions of options 1 and 2 are not known and

are estimated by the sample simulation runs.

Comparing p1 and p2

The estimate of the difference between the two true proportions p1 and p2 is

measured by the difference of their estimates p̂1 and p̂2 . The expected value of

the difference yields the following,
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Eðp̂1 � p̂2Þ ¼ ðp1 � p2Þ

and the estimate of the difference in the two proportions is p̂1 � p̂2.

Confidence Interval of (p1 � p2)

When a sufficient number of repetitions (n1, n2) are taken, the normal distribution

applies to the shape of the difference between p̂1 and p̂2 , and it is possible to

compute a (1 � a) confidence interval on the difference between the two

proportions, (p1 � p2). The result will yield upper and lower confidence limits,

(U, L) where,

L � ðp1 � p2Þ � U

and

P½L � ðp1 � p2Þ � U� ¼ ð1� aÞ

The lower and upper limits are computed in the following way,

L ¼ ðp̂1 � p̂2Þ � za 2= sp1�p2

U ¼ ðp̂1 � p̂2Þ þ za 2= sp1�p2

where

sp1 � p2 ¼ standard error of the difference between the two proportions,

za/2 ¼ the standard normal variable where P(z > za/2) ¼ a/2.

The standard error sp1 � p2 is calculated as follows,

sp1
2 ¼ p̂1ð1� p̂1Þ=n1

sp2
2 ¼ p̂2ð1� p̂2Þ=n2

sp1�p2 ¼ ½sp12 þ sp2
2�0:5
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Significant Test

The significance of the difference between the two options can be noted by use of

the confidence interval by observing the range of values from confidence limits L to

U. In the event the interval (L to U) passes through zero, the proportions of the two

options are not significantly different with (1 � a) confidence level. When the

interval is always positive, the proportion of option 1 is significantly higher than the

proportion of option 2. On the other hand, if the interval is always negative, the

proportion of option 1 is significantly smaller than the proportion of option 2.

Example 9.9 Suppose a terminating simulation model is run with two options to

determine which is preferable with respected to an event, A. Option 1 is

run with n1 ¼ 200 repetitions and event A occurs on x1 ¼ 28 occasions. Hence,

p̂1 ¼ x1=n1 ¼ 0:14 is the portion of times that event A has occurred. Option 2 is

run with n2 ¼ 200 repetitions and event A occurs on x2 ¼ 44 occasions, whereas,

p̂2 ¼ x2=n2 ¼ 0:22. The analyst wants to determine the 95 % confidence interval on

the difference between the two proportions, (p1 � p2).

The point estimate on the true difference between the two proportions is,

ðp̂1 � p̂2Þ ¼ 0:14� 0:22ð Þ ¼ �0:08:

The variance of each of the proportions is,

sp2
1
¼ 0:14ð Þ 1� 0:14ð Þ=200 ¼ 0:00060:

sp2
2
¼ 0:22ð Þ 1� 0:22ð Þ=200 ¼ 0:00086:

The standard error between the two proportions is now computed as below,

sp1�p2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:00060þ 0:00086

p

¼ 0:0382

To compute the confidence interval with (1 � a) ¼ 0.95, we need the standard

normal value of z0.025 ¼ 1.96. The confidence limits become,

U ¼ ð0:14� 0:22Þ þ 1:96� 0:0382 ¼ �0:0052

L ¼ ð0:14� 0:22Þ � 1:96� 0:0382 ¼ �0:1546

Therefore, the 95 % confidence interval is,

ð�0:1546 � p1 � p2 � �0:0052Þ
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and the associated probability is

Pð�0:1546 � p1 � p2 � �0:0052Þ ¼ 0:95:

Finally, since the range from the lower limit to the upper limit is all negative

numbers, the difference between the two proportions is significant at the 0.95

confidence level, and thereby, p1 is significantly smaller than p2.

Comparing k Means of Variable Type Data

Suppose a simulation model with terminating type data where the analyst is

comparing various options in the model seeking the combination of options that

yield the optimal efficiency. Could be a mixed model assembly line simulation

model where the analyst is seeking the best way to sequence the units down the line

to minimize the total idle time and congestion time on the line. One of the output

measures is a variable type data. Each option is run with n repetitions and various

outputs results are measured. The analyst wants to determine whether the difference

in the output measure is significant.

The one-way analysis of variance is a method to test for significant differences in

the output results. In the event, the options are found significantly different in an

output measure, the next step is to determine which option(s) give significantly

better results. Below shows how to use the one-way analysis of variance method.

One-Way Analysis of Variance

Assume k treatments and n repetitions of each are observed (in simulation runs).

Note, in this situation, treatment is the same as option and is the common term

in use for analysis of variance. When k treatments and n repetitions, the data

available are:

xij i ¼ 1; . . . ; k and j ¼ 1; . . . ; n:

The one-way analysis of variance method assumes each of the options, i, have

mean mi and variance s2, all not known, and all are normally distributed. The null

hypothesis is below:

Ho : m1 ¼ . . . ¼ mk

The Type I error for this test is: a ¼ P(reject Ho | Ho is true).
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In the event Ho is rejected, the analyst will seek the option(s) that yield signifi-

cantly better results. One way to do this is by comparing the difference of two

variables, as described earlier in this chapter. More of this is given subsequently.

A first step in using this method is to calculate the sample averages for each

treatment, i, and for the total of all treatments as shown below.

�xi ¼
Xn

j¼1

xij=n i ¼ 1 to k

�x ¼
Xk

i¼1

�xl=k

A second step is to compute, the sum of squares of treatments, (SSTR), and the

sum of squares of error, (SSE) as below.

SSTR ¼ n
Xk

i¼1

ð�xi � �xÞ2

SSE ¼
Xk

i¼1

Xn

j¼1

ðxij � �xlÞ2

The degrees of freedom for the treatments and for the error are the following:

dfTR ¼ k� 1

dfE ¼ nk� k

Next, the mean square for the treatments and the mean square of errors are

obtained as follows:

MSTR ¼ SSTR=dfTR

MSE ¼ SSE=dfE

The residual errors for each observation are denoted as, eij ¼ ðxij � �xiÞ, and the

estimate of the variance becomes,

ŝ2 ¼ MSE

Further, the expected value of MSE is

EðMSEÞ ¼ s2
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The expected value of MSTR depends on whether Ho is true or not, as below,

EðMSTRÞ ¼ s2 when Ho is true

EðMSTRÞ>s2 when Ho is not true

To test if the null hypothesis is true, Fisher’s test is applied and Fo is computed

by,

Fo ¼ MSTR=MSE

Fo has the pair of degrees of freedom (dfTR, dfE).

Next, the Fisher’s F table is searched to find the value with confidence level a
and degrees of freedom, (dfTR, dfE), denoted as Fa(dfTR, dfE). Finally, Ho is accepted
or rejected depending on the outcome from below:

If Fo � FaðdfTR; dfEÞ; accept Ho

If Fo>FaðdfTR; dfEÞ;reject Ho

Example 9.10 Suppose a simulation model is run with k ¼ 3 options (treatments)

and n ¼ 5 repetitions for each option. One of the output measures is of the variable

type and the smaller the value the better. The analyst is seeking whether any of the

options yields significantly better results. The sample averages of the options and

for the total are below:

Option i

Observation j

1 2 3 4 5 Average

1 10 9 11 8 12 �x1 ¼ 10:0

2 6 10 7 8 9 �x2 ¼ 8:0

3 9 5 6 9 6 �x3 ¼ 7:0

Total �x ¼ 8:33

The associated sum of squares, degrees of freedom and mean squares are below.

Sum of squares Degrees of freedom Mean squares

SSTR ¼ 23.35 dfTR ¼ 2 MSTR ¼ 11.675

SSE ¼ 34.00 dfE ¼ 12 MSE ¼ 2.833

The measure of Fisher’s F is

Fo ¼ MSTR=MSE ¼ 11:675=2:833 ¼ 4:12
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The F value in Fisher’s tables with a ¼ 0.05 and degrees of freedom (dfTR, dfE)

¼ (2, 12) yields, F0.05(2,12) ¼ 3.89.

Since, Fo > 3.89, the null hypothesis is rejected, indicating there is a significant

difference in the means from two or more of the options.

In this example, the smaller the mean, the better. The simulation results show

where option 3 gives the best results and option 2 is the next best. The next step is to

determine whether the sample mean values of options 2 and 3 are significantly

different of not.

Example 9.11 Continuing with Example 9.10, the goal now is to determine

whether the means of options 2 and 3 are significantly different. The estimate of

the variance for the residual errors is ŝ2 ¼ MSE ¼ 2:833; thereby, the standard

error is ŝ ¼
ffiffiffiffiffi
ŝ2

p
¼ 1:683 , and the associated degrees of freedom is dfE ¼ 12.

The (1 � a) ¼ 95 % confidence limits (U and L) between the means of options

2 and 3 is computed using the student’s t value with a/2 ¼ 0.025 and dfE ¼ 12,

whereby ta/2 ¼ 2.179. Hence,

U ¼ ð�x3 � �x2Þ þ ta 2= ŝ=
ffiffiffiffiffiffiffiffiffi
ð2nÞ

p
¼ 0:160

L ¼ ð�x3 � �x2Þ � ta 2= ŝ=
ffiffiffiffiffiffiffiffiffi
ð2nÞ

p
¼ �2:160

The 95 % confidence interval becomes,

ð�2:16 � m3 � m2 � 0:16Þ

and the corresponding probability is

Pð�2:16 � m3 � m2 � 0:16Þ ¼ 0:95

Because the values from L to U pass through zero, the mean of option 3 is not

significantly smaller than the mean of option 2 with 95 % confidence.

Example 9.12 The 95 % confidence intervals of all three comparisons are below:

Pð�2:16 � m3 � m2 � 0:16Þ ¼ 0:95

Pð�3:16 � m2 � m1 � �0:84Þ ¼ 0:95

Pð�4:16 � m3 � m1 � �1:84Þ ¼ 0:95

The results show where option 1 is significantly higher from options 2 and 3

since the upper and lower limits are both negative and do not pass through zero. As

stated, options 2 and 3 are not significantly different from each other, but option 1 is

significantly higher. The analyst might consider taking more samples to gain further

precision on comparing the difference between options 2 and 3.
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Summary

This chapter describes the common statistical methods that are used to analyze the

output data from computer models that are based on terminating and nonterminat-

ing systems. The statistical methods are essentially the same that are described in

the common statistical textbooks. They include measuring the average, standard

deviation, confidence interval from output data, some of the variable type and some

of the proportion type. The methods described also pertain when the two or more

variables are in review.
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Chapter 10

Choosing the Probability Distribution from Data

Introduction

In building a simulation model, the analyst often includes several input variables of

the control and random type. The control variables are those that are of the “what if”

type. Often, the purpose of the simulation model is to determine how to set the

control variables seeking optimal results. For example, in an inventory simulation

model, the control variables may be the service level and the holding rate, both of

which are controlled by the inventory manager. On each run of the model, the

analyst sets the values of the control variables and observes the output measures to

see how the system reacts.

Another type of variable is the input random variables, and these are of the

continuous and discrete type. This type of variable is needed to match, as best as

possible, the real life system for which the simulation model is seeking to

emulate. For each such variable, the analyst is confronted with choosing the

probability distribution to apply and the parameter value(s) to use. Often empiri-

cal or sample data is available to assist in choosing the distribution to apply and

in estimating the associated parameter values. Sometimes two or more

distributions may seem appropriate and the one to select is needed. The authen-

ticity of the simulation model largely depends on how well the analyst can

emulate the real system. Choosing the random variables and their parameter

values is vital in this process.

This chapter gives guidance on the steps to find the probability distribution to

use in the simulation model and how to estimate the parameter values that

pertain. For each of the random variables in the simulation model with data

available, the following steps are described: verify the data is independent,

compute various statistical measures, choose the candidate probability

distributions, estimate the parameter(s) for each probability distribution, and

determine the adequacy of the fit.

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0_10,
# Springer Science+Business Media New York 2013
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Collecting the Data

For each random variable in the simulation model, the analyst is obliged to seek

actual data (empirical or sample) from the real system under study. For example, if

the variable is the number of units purchased with each customer order for an item,

the data collected might be the history of number of pieces from each order, for the

item, in the past year, say. Since the numbers are integers, the variable is from a

discrete probability distribution. The data is recorded and identified as x1, . . ., xn,
where n is the number of data entries collected. Subsequently, this sample or

empirical data is the catalyst in selecting the probability distribution for the

variable. The data is also needed to estimate the distribution’s parameter value,

and subsequently is applied to compare fitted values with the actual values.

Test for Independence

The data should be independently collected so that the subsequent statistical

measures yield valid estimates. An example when not independent is the wait

time for cars at a tollbooth line when the times are observed one car after the

other. When the line is long, the successive wait times will remain high for the

consecutive cars in a line. A way to avoid correlated data is to spread the samples

out and not collect them one after the other. The common method to test for

independent sequential data is to measure the autocorrelation with various lags.

Autocorrelation

Suppose the data, x1, . . ., xn, is sequentially collected, and thereby may not be

independent. A way to detect for independence is by measuring the autocorrelation

of the data with various lags. The sample autocorrelation with a lag of k, denoted as

rk, is computed as below.

rk ¼
Xn

i¼kþ1

ðxi � �xÞðxi�k � �xÞ
Pn

i¼1

ðxi � �xÞ2
k ¼ 1; 2; 3; ::

where �x is the average of all x’s. When all sample autocorrelations are near zero,

plus or minus, the data is assumed independent. In the event the data appears not

independent, the sample should be retaken, perhaps sampling one item out of each

five items, or one item per hour, so forth.
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Example 10.1 Assume a series of observations are taken in sequence and the first

three autocorrelations, say, are: 0.89, 0.54, 0.39 for lags of k ¼ 1, 2, 3, respectively.

Since they are not near zero (plus or minus), the data does not appear as indepen-

dent. On the other hand, if the first three autocorrelations were: 0.07, �0.13, 0.18,

the data does appear independent.

Some Useful Statistical Measures

A variety of statistical measures can be computed from the sample data, x1, . . ., xn.
Some that are useful in selecting the probability distribution are listed here:

xð1Þ ¼ minimum

xðnÞ ¼ maximum

�x ¼ average

s ¼ standard deviation

cov ¼ s=�x ¼ coefficient of variation

t ¼ s2=�x ¼ lexis ratio

Example 10.2 Suppose 20 samples are the following: [5.3, 9.8, 5.1, 0.6, 3.9, 8.1,

4.0, 0.1, 4.6, 0.6, 2.9, 7.1, 2.7, 7.0, 2.5, 5.8, 3.0, 7.6, 3.5, 7.7]. The statistical

measures from this data are listed below.

xð1Þ ¼ 0:1

xð20Þ ¼ 9:8

�x ¼ 4:595

s ¼ 2:713

cov ¼ 0:590

t ¼ 1:602

Location Parameter

Sometimes it is useful to estimate the location parameter for a distribution, labeled

here as g. This represents the minimum value of x, whereby, x � g. Consider the
sorted sample data denoted as xð1Þ � xð2Þ � . . . � xðnÞ. A way to estimate g for

the Wiebull distribution is given by Zanakis (1979) and is below,
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ĝ ¼ ½x ð1Þ x ðnÞ � xðkÞ2�=½x ð1Þ þ xðnÞ � 2xðkÞ�

where k is the smallest index with x(k) > x(1).

Example 10.3 Suppose 50 observations are taken and are sorted as follows: [16.3,

21.3, 27.4, 35.7, 38.4, . . ., 51.4], where 16.3 is the smallest and 51.4 the largest in the

sample. Using the formula given above, the estimate of the minimum value of x

becomes,

ĝ ¼ ð16:3� 51:4� 21:32Þ=ð16:3þ 51:4� 2� 21:3Þ ¼ 15:3

Candidate Probability Distributions

The typical probability distribution candidates for a continuous random variable are

the following: continuous uniform, normal, exponential, lognormal, gamma, beta

and Wiebull. The more common discrete probability distributions are the discrete

uniform, binomial, geometric, Pascal and Poisson.

Transforming Variables

In the pursuit of seeking the candidate distribution to use, it is sometimes helpful to

convert a variable x to another variable, x0, where x0 ranges from zero to one, or

where x0 is zero or larger. More discussion is below.

Transform Data to (0,1)

A way to convert a variable to a range where x0 lies between 0 and 1 is described

here. Recall the summary statistics of the variable x as listed earlier. It is possible to

estimate the summary statistics when the variable is transformed to lie between 0 and

1. For convenience in notation, let a0 ¼ x(1)for the minimum, and b0 ¼ x(n)

for the maximum. When x is converted to x0 by the relation x0 ¼ (x � a0)/(b0 � a0),
the sample average and standard deviation become, �x0 ¼ ð�x� a0Þ=ðb0 � a0Þ , and
s0 ¼ s/(b0 � a0), respectively. The corresponding coefficient of variation is cov0

¼ ½s=ð�x� a0Þ� . The cov of this measure may be useful when selecting the

distribution to apply.
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Transform Data to ðx � 0Þ

Away to convert a variable to a range where x0 lies approximately zero and larger is

described here. Recall again the summary statistics of the variable x as listed earlier,

and once more use the notation a0 ¼ x(1) for the minimum. When x is converted to

x0 by the relation x0 ¼ (x�a0), the range of x0 becomes zero or larger. The

corresponding sample average and standard deviation become, �x0 ¼ ð�x� a0Þ, and
s0 ¼ s, respectively. Finally, the coefficient of variation is cov0 ¼ s=ð�x� a0Þ.

Candidate Continuous Distributions

Below is a brief review on some of the properties of the continuous probability

distributions. These are the following: continuous uniform, normal, exponential,

lognormal, gamma, beta andWeibull. Of particular interest with each distribution is

the coefficient of variation (cov) and its range of values that apply. When sample

data is available, the sample cov can be measured and compared to each

distribution’s range to help narrow the choice for a candidate distribution.

Continuous Uniform

The random variable x from the continuous uniform distribution (0,1) has a range of

zero to one. The mean is m ¼ 0:5 and standard deviation is s ¼ 1=
ffiffiffiffiffi
12

p ¼ 0:289,
and thereby, the coefficient of variation becomes cov ¼ s=m ¼ 0:577.

Normal

When a variable x is normally distributed with mean m and standard deviation s, the
notation is x~Nðm; s2Þ. Note, the coefficient of variation for x is cov ¼ s=m. When

all x values are zero or larger, the coefficient of variation is always 0.33 or smaller,

i.e., cov � 0:33.

Exponential

Recall the exponential distribution where the variable x is zero or larger. The mean,

m; and standard deviation, s; of this distribution have the same value and thereby,

the coefficient of variation is cov ¼ s=m ¼ 1:00.
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Lognormal

When the variable x of a lognormal distribution is converted to the natural logarithm,

(x0 ¼ ln(x)), the notation for x is x~LNðm0; s02Þ, and for the transformation, it is

x0~Nðm0; s02Þ. Note, the parameters m0 and s02, are the mean and variance, respec-

tively, of x0 the normal distributed variable and not the lognormal distributed

variable. The coefficient of variation for the variable x0 becomes cov0 ¼ s0=m0.

Gamma

The variable x from the (standard) gamma distribution is always zero or larger and

has parameters (k; y). Recall, the mean and variance of x arem ¼ k=y, ands2 ¼ k=y2,
respectively, and therefore, the coefficient of variation is cov ¼ 1=

ffiffiffi
k

p
. When k>1,

cov is less than one. When k � 1, cov is one or larger. Note, the mode is (k � 1)/y
when k � 1, and is zero when k < 1.

Beta

The variable x from a beta distribution has many shapes that could skew right or

left or be symmetric and look like the uniform, normal and may even have a

bathtub-like shape. This distribution emulates most shapes, but is a bit difficult

to apply. The parameters are ðk1; k2Þ , and the mean and variance are shown

below:

m ¼ k1
k1 þ k2

s2 ¼ ðk1k2Þ
ðk1 þ k2Þ2ðk1 þ k2 þ 1Þ

Weibull

The variable x from a Wiebull distribution has three parameters, ðk1; k2; gÞ, where g
is the location parameter and can be estimated from the relation given earlier. The

values of x are greater than g and the shape is skewed to the right after the mode is

reached. The mean and variance are below:
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m ¼ k2
k1

G
1

k1

� �

s2 ¼ ðk22Þ
k1 2G 2

k1

� �
� 1=k1G 1

k1

� �2
� �

Some Candidate Discrete Distributions

An important statistic to determine the candidate discrete distribution is the lexis

ratio, t ¼ s2
m . The lexis ratio can be estimated from sample data by t̂ ¼ ŝ2

m̂ , where

m̂ ¼ �x ¼ sample average, and ŝ2 ¼ s2 ¼ sample variance. Below is a description

on some of the properties concerning the lexis ratio for the more common discrete

distributions.

Discrete Uniform

The variable x with the discrete uniform distribution has parameters, (a,b), where x

are all the integers from a to b. The mean and variance of x are m ¼ ðaþ bÞ=2 and

s2 ¼ ½ðb� aþ 1Þ2 � 1�=12, respectively. When a ¼ 0, the lexis ratio is t ¼ s2=m
¼ ½ðbþ 1Þ2 � 1�=6b. Note, when b � 4, t � 1.

Binomial

The parameters for the binomial distribution are n (number of trials) and p (proba-

bility of a success per trial). The random variable is x (number of successes in n

trials). The mean of x is m ¼ np, and the variance is s2 ¼ npð1� pÞ. Hence, the
lexis ratio, t ¼ s2=m ¼ ð1� pÞ<1.

Geometric

Recall the geometric distribution where the parameter is p, the probability of a

success on each trial. When the random variable is x (number of fails

until the first success), x ¼ 0, 1, . . ., the mean is m ¼ ð1� pÞ=p, the variance
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is s2 ¼ ð1� pÞ=p2, and the lexis ratio for x0 becomes t ¼ s2=m ¼ 1=p that is

always larger than one.

But when x0 ¼ (x + 1) the variable is the number of trials until a success,

x0 ¼ 1, 2, . . ., the mean is m ¼ 1=p, and the variance is s2 ¼ ð1� pÞ=p2. The lexis
ratio, t ¼ s2=m ¼ ð1� pÞ=p , is inconclusive since the ratio ranges below and

above one.

Pascal

The parameters for the Pascal distribution are p (probability of a success) and

k (number of successes). The random variable is x (number of fails till k successes),

where x ¼ 0, 1, 2,. . ., the mean is m ¼ kð1� pÞ=p , and the variance is

s2 ¼ kð1� pÞ=p2. The lexis ratio is t ¼ s2=m ¼ 1=p>1.

But when x0 ¼ (x + k) is the number of trials until k success’s, x0 ¼ k, k + 1, . . .,

the mean is m ¼ k=p, the variance remains as s2 ¼ kð1� pÞ=p2, and the lexis ratio

becomes t ¼ s2=m ¼ ð1� pÞ=p. In this situation, the lexis ratio ranges above and

below one.

Poisson

The parameter for the Poisson distribution is y (rate per unit of measure), where the

unit of measure is typically a unit of time (minute, hour), and so forth. The random

variable is x (number of events in a unit of measure). Since the mean of x is m ¼ y,
and the variance is s2 ¼ y, the lexis ratio becomes t ¼ s2=m ¼ 1.

Estimating Parameters for Continuous Distributions

Below gives the popular ways to estimate the parameters for the common continu-

ous distributions. These are by the maximum-likelihood estimators and/or the

method-of-moment estimators.

Continuous Uniform

The parameters of the continuous uniform distribution are (a,b) where the variable x

is equally likely to fall anywhere from a to b. When the data x1, . . ., xn is available,
the maximum likelihood estimates of the parameters are as follows:

â ¼ minðx1; . . . ; xnÞ
b̂ ¼ maxðx1; . . . ; xnÞ
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Another way to estimate the parameters for this distribution is by the

method-of-moments. The same data is used to first compute the sample aver-

age, �x , and the sample standard deviation, s. Next, the estimates of the

parameters are obtained in the following way:

â ¼ �x�
ffiffiffiffiffi
12

p
s=2

b̂ ¼ �xþ
ffiffiffiffiffi
12

p
s=2

Example 10.4 Consider a situation where the sample of n ¼ 20 yield the follow-

ing sorted data: [0.1, 0.6, 0.6, 2.5, 2.7, 2.9, 3.0, 3.5, 3.9, 4.0, 4.6, 5.1, 5.3, 5.8, 7.0,

7.1, 7.6, 7.7, 8.1, 9.8], and suppose the analyst suspects the data comes from a

continuous uniform distribution and thereby needs estimates of the parameters, a

and b. From the maximum likelihood estimator method, the estimates of the

parameters are â ¼ 0:1 and b̂ ¼ 9:8.
Another way to estimate the parameters is by the method-of-moments. To find

the estimates this way, the average and standard deviation of the data entries are

needed, and they are: �x ¼ 4:595 and s ¼ 2.713, respectively. Thereby the method-

of-moment estimates become â ¼ �0:10 and b̂ ¼ 9:29.

Normal Distribution

The normal distribution has two parameters, m, the mean, and s2, the variance.

The estimates are obtained from the sample mean, �x, and sample variance, s2,

as below,

m̂ ¼ �x

ŝ2 ¼ s2

Example 10.5 Suppose the analyst has ten sample sorted data entries as [1.3, 6.4,

7.1, 8.7, 9.1, 10.2, 11.5, 14.3, 16.1, 18.0]. The sample average is �x ¼ 10:27 and the

standard deviation is s ¼ 4.95. Hence, x is estimated as: N(10.27, 4.952).

Exponential

The exponential distribution has one parameter, y, where the mean and standard

deviation of x are equal wherebym ¼ s ¼ 1
y . The maximum-likelihood-estimator of

the parameter is based on the sample mean, �x, as shown below,

ŷ ¼ 1=�x
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Example 10.6 Suppose the analyst has the following data with n ¼ 10

observations: 3.0, 5.7, 10.8, 0.3, 1.5, 2.5, 4.5, 7.3, 1.3, 2.1, and assumes the data

comes from an exponential distribution. The sample average is �x ¼ 3:90 , and

thereby the estimate of the exponential parameter is ŷ ¼ 1=�x ¼ 1=3:90 ¼ 0:256.
Upon further computations, the standard deviation of the ten observations is

measured as s ¼ 3.24, not too far away from the average of 3.90.

Lognormal

Consider the variable x of the lognormal distribution, and another related variable,

y, that is the natural logarithm of x, i.e. y ¼ ln(x). The parameters for x are the

mean and variance of y and are denoted as, my, and sy
2, respectively. To estimate

the parameters, the n corresponding values of y (y1, . . ., yn) are needed to give the

sample average, �y, and the sample variance, sy
2. The estimates of the parameters for

the lognormal distribution are the following:

m̂y ¼ �y

ŝy2 ¼ sy
2

Example10.7 Assume the analyst has collected ten sample entries as X ¼ [0.3,

1.3, 1.5, 2.1, 2.5, 3.0, 4.5, 5.7, 7.3, 10.8]. Upon taking the natural logarithm of each,

y ¼ ln(x), the sample now has ten variables on y. The corresponding values of y are

Y ¼ [�1.204, 0.262, 0.405, 0.742, 0.916, 1.099, 1.504, 1.741, 1.988, 2.379]. The

mean and variance of the n ¼ 10 observations of y are �y ¼ 0:983 and sy
2 ¼ 1.057.

Gamma

The variable x from the gamma distribution has two parameters ðk; yÞ. The mean of

x is m ¼ k=y, and the variance is s2 ¼ k=y2. One way to estimate the parameters is

by the method-of-moments using the sample average, �x, and the sample variance, s2

that are computed from data, x1, . . ., xn. The estimate of the gamma parameters are

derived from,

ŷ ¼ �x=s2

k̂ ¼ �xŷ
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Example 10.8 Assume a sample of n entries, x1, . . ., xn, are collected, from which

the average and variance are measured as �x ¼ 10:8 and s2 ¼ 4.3, respectively. The

analyst wants to estimate the gamma parameters for this data. Using the method of

moments, the estimates are: ŷ ¼ 2:51 and k̂ ¼ 27:12.

Beta

The variable x from the beta distribution (0–1) has two parameters (k1,k2). The

mean of x is m ¼ k1
k1þk2

, and when the two parameters are greater than zero, (k1 > 0,

k2 > 0), the mode is ~m ¼ ðk1�1Þ
ðk1þk2�2Þ . In the typical situation, the distribution skews to

the right. This occurs when k2 > k1 > 1. For this situation, a way to estimate the

parameters is with use of the sample average, �x , and the sample mode, ~x . From
the two equations and two unknowns, and some algebra, the estimates of the

parameters are computed as below:

k̂1 ¼ �x½2~x� 1�=½~x� �x�

k̂2 ¼ ½1� �x�k̂1=�x

Example 10.9 Assume sample data of x that lies between 0 and 1, and yield the

average andmode as�x ¼ 0:4and~x ¼ 0:2, respectively. The analyst wants to estimate

the parameters for a beta distribution in the range (0–1). The estimates are below:

k̂1 ¼ 0:4½2� 0:2� 1�=½0:2� 0:4� ¼ 1:2

k̂2 ¼ ½1� 0:4�1:2=½0:4� ¼ 1:8

Estimating Parameters for Discrete Distributions

Below gives the popular ways to estimate the parameters for the common discrete

distributions. These are by the maximum-likelihood estimators and/or the method-

of-moment estimators.

Discrete Uniform

The variable x from the discrete uniform distribution has two parameters (a,b)

where the variable x is equally likely to fall as an integer from a to b. The sample

data (x1, . . ., xn) is used to find the minimum, x(1), and maximum, x(n). The maximum

likelihood estimator of the parameters, a and b, are obtained as below:
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â ¼ xð1Þ

b̂ ¼ xðnÞ

Another way to estimate the parameters is by the method-of-moments. The mean

of x is m ¼ (a + b)/2 and the variance is s2 ¼ [(b�a�1)2�1]/12. Using the sample

mean �x , and sample variance, s2, and a bit of algebra, the following parameter

estimates are found:

â ¼ floor integer of ð�xþ 0:5� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12s2 þ 1

p
Þ

b̂ ¼ ceiling integer of ð�x� 0:5þ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12s2 þ 1

p
Þ

Example 10.10 Suppose an analyst collects ten discrete sample data [7, 5, 4, 8, 5,

4, 12, 9, 2, 8] and wants to estimate the min and max coefficients from a discrete

uniform distribution. Using the maximum likelihood estimator, the minimum and

maximum estimates are:

â ¼ 2

b̂ ¼ 12

The method-of-moment estimate of the parameters requires finding the sample

average and sample variance. These are: �x ¼ 6:4 and s2 ¼ 8.711. So now, the

estimate of the parameters become,

â ¼ floor ð6:4þ 0:5� 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 8:711þ 1

p Þ ¼ floor ð1:764Þ ¼ 1

b̂ ¼ ceiling ð6:4� 0:5þ 0:5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12� 8:711þ 1

p Þ ¼ ceilingð11:036Þ ¼ 12

Binomial

The variable x from the binomial distribution has parameters (n, p), where typically

n is known and p is not. The expected value of x is E(x) ¼ np, and thereby, when a

sample of n trials yields x successes, the maximum likelihood estimate of p is,

p̂ ¼ x=n:

In the event the n trial experiment is run m times, and the results are (x1, . . ., xm),
with an average of �x, the estimate of p becomes,

p̂ ¼ �x=n:
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Example 10.11 Suppose m ¼ 5 experiments of binomial data with n ¼ 8 trials are

observed with the results: [1, 3, 2, 2, 0]. Since the average is �x ¼ 1:6, the estimate of

p is p̂ ¼ 1:6=8 ¼ 0:2.

Geometric

Consider the geometric distribution where the variable x (0, 1, 2, . . .) is the number

of fails before the first success and p is the probability of a success per trial. The

expected value of x is E(x) ¼ (1�p)/p. When m samples of x are taken, with results

(x1, . . ., xm), and a sample average �x , the maximum-likelihood-estimator of

p becomes,

p̂ ¼ 1=ð�xþ 1Þ:

Example 10.12 Suppose m ¼ 8 samples from geometric data are observed and

yield the following values of x: [3,6, 2, 5, 4, 4, 1, 5] where x is the number of

failures till the first success. The analyst wants to estimate the probability of

a success, p, and since the average of x is �x ¼ 3:75 , the estimate becomes

p̂ ¼1=ð3:75þ 1Þ ¼ 0:211.

Pascal

Recall the Pascal distribution where the variable x is the number of failures till k

success’s. The parameters are (k, p), where k is known, and assume p is not known.

When m samples of x are taken, with results (x1, . . ., xm), and a sample average �x is
computed, the maximum-likelihood-estimator of p becomes the following:

p̂ ¼ k=ð�xþ kÞ:

Example 10.13 Suppose m ¼ 5 samples from the Pascal distribution with param-

eter k ¼ 4 are observed and yield the following data entries of x: [6, 4, 7, 5, 6]

where x is the number of failures till k successes. The analyst wants to estimate

the probability of a success, and since the average of x is �x ¼ 5:60, the estimate is

p̂ ¼ 4=ð5:60þ 4Þ ¼ 0:417.

Poisson

The variable x (0, 1, 2, . . .) from the Poisson distribution has parameter y . The
expected value of x is EðxÞ ¼ y. When m samples of x (x1, . . ., xm) are collected,
the sample average of x is readily computed as �x . Using the sample mean, the

maximum likelihood estimator of y becomes,

ŷ ¼ �x:
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Example 10.14 Suppose m ¼ 10 samples from Poisson data are observed and

yield the following values of x: [0, 0, 1, 2, 2, 0, 1, 2, 0, 1]. The analyst wants to

estimate the Poisson parameter, y , and since the average of x is �x ¼ 0:90 , the

estimate is ŷ ¼ 0:90.

Q-Q Plot

The Q-Q plot is a graphical way to compare the quantiles of sample (empirical) data

to the quantiles from a specified probability distribution as a way of observing the

goodness-of-fit. This plot applies to continuous probability distributions. See Wilk

and Ganandel (1968) for a fuller description on the Q-Q (quantile to quantile) plot.

To carryout, the empirical or sample data [x1,, . . ., xn] are first arranged in sorted

order [x(1),. . . ., x(n)] where x(1) is the smallest value and x(n) the largest. The

quantiles for the sample data are merely [x(1), . . ., x(n)]. The empirical cumulative

distribution function (cdf) of the sample quantiles is computed and denoted as

F½xðiÞ� ¼ wi ¼ ði� 0:5Þ=n i ¼ 1 to n

For example if n ¼ 10, and i ¼ 1, F[x(1)] ¼ w1 ¼ 0.05. At i ¼ 2, F[x(2)] ¼
w2 ¼ 0.15; at i ¼ 10, F[x(10)] ¼ w10 ¼0.95, and so forth. The set of ten

probabilities are denoted as Ps ¼ [w1, . . ., w10]. Note, for each x(i), there is an

associated wi.

Consider a probability distribution, f(x) where the cumulative probability distri-

bution is F(x). The corresponding quantiles for this distribution are obtained by the

inverse function,

xi
0 ¼ F�1ðwiÞ i ¼ 1 to n

For each quantile from the sample, a corresponding quantile is computed for

the probability distribution. For convenience, the pair of quantiles are labeled as

Xs ¼ [x(1), . . ., x(n)] for the sample data, and Xf ¼ [x1
0, . . ., xn0] for the fit from

the probability model.

The n pair of quantiles are now placed on a scatter plot with the sample quantiles,

Xs, on the x-axis and the probability model quantiles, Xf, on the y-axis. In the event

the probability model is a good fit to the sample data, the scatter plot will look like a

straight line going through a 45� angle from the lower left-hand side to the upper

right-hand side, and the scale of the x and y axis will be similar. In the literature, it is

noted where some references place, Xs on the y-axis and Xf on the x-axis.

Example 10.15 Suppose n¼5 sample (or empirical)data of a variable are observed

as: [8.3, 2.5, 1.3, 9.4, 5.0]. The data are sorted and the sample quantiles are:

Xs ¼ [1.3, 2.5, 5.0, 8.3, 9.4]. The set of empirical probabilities are obtained from

the n samples and are listed in vector form as: Ps ¼ [0.1, 0.3, 0.5, 0.7, 0.9].
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Assume the sample data are to be compared to a continuous uniform distribution

where f(x) ¼ 0.1 for 0 � x � 10. Since the cumulative distribution of x becomes

F(x) ¼ 0.1x ¼ w, the quantile for each w is obtained by x ¼ F�1(w) ¼ w/0.1.

For each probability on the sample set, Ps, an associated fit from the model quantile

is computed as

xi ¼ wi=0:1 i ¼ 1 to 5:

Thereby, the five probability fit quantiles are Xf ¼ [1.0, 3.0, 5.0, 7.0, 9.0]. The

Q-Q plot for the pair of quantiles (Xs, Xf) is shown in Fig. 10.1. Since the scatter

appears much like a straight line with a 45� fit, the conclusion is that the sample data

is a reasonably close fit to the continuous uniform distribution that is under

consideration.

Example 10.16 Consider once more the sample data from Example 10.15 where

n ¼ 5 and the sorted data yield the quantile set: Xs ¼ [1.3, 2.5, 5.0, 8.3, 9.4], and

associated empirical probabilities Ps ¼ [0.1, 0.3, 0.5, 0.7, 0.9].

Now suppose the sample data are to be compared to a continuous distribution, f

(x) ¼ x/50 for 0 � x � 10 . Note, the cumulative distribution of x becomes

F(x) ¼ x2/100 ¼ w. So now, for probability w, the quantile is computed by x

¼ F�1ðwÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100FðxÞp ¼ 10

ffiffiffiffi
w

p
. Hence, for each w in the sample set, Ps, an

associated fitted quantile is obtained by,

xi ¼ 10
ffiffiffiffiffi
wi

p
i ¼ 1 to 5:

Thereby, the five quantiles for the probability fit become Xf ¼ [3.2, 5.5, 7.1,

8.4, 9.5]. The Q-Q plot for the pair of quantiles (Xs, Xf) is shown in Fig. 10.2.

Since the scatter plot is not close to the 45� line, the conclusion is that the sample

data is not a good fit to the probability distribution under consideration.

Example 10.17 (Continuous Uniform Q-Q Plot). Consider the sample data from

Example 10.4, and suppose the analyst wants to run a Q-Q Plot assuming the

probability distribution is a continuous uniform distribution. Recall from the earlier

example, the MLE estimates of the parameters are â ¼ 0:1 and b̂ ¼ 9:8. Hence, the
probability function is estimated as f(x) ¼ 1/9.7 for 0:1 � x � 9:8, and the cumul-

ative distribution is F(x) ¼ (x�0.1)/9.7. So, when the cumulative probability

is w ¼ F(x), the associated quantile becomes w ¼ F�1(w) ¼ 0.1 + w(9.7). At

i ¼ 1, the minimum rank, wi ¼ (1�0.5)/20 ¼ 0.025 and x1
0 ¼ 0.1 + 0.025

(9.7) ¼ 0.345. At i ¼ 20, the maximum rank, w20 ¼ (20�0.5)/20 ¼ 0.975 and

x20
0 ¼ 0.1 + 0.975(9.7) ¼ 9.56, and so forth. The full set of quantiles for the

probability fit is denoted as Xf, and for simplicity, are listed here with one decimal

accuracy, Xf ¼ [0.3, 0.8, 1.3, 1.8, 2.3, 2.8, 3.3, 3.7, 4.2, 4.7, 5.2, 5.7, 6.2, 6.7, 7.1,

7.6, 8.1, 8.6, 9.1, 9.6].

Using the pair (Xs, Xf), the Q-Q Plot is in Fig. 10.3. The vector Xs contains the

sample data from Example 10.4. Note, the scatter plot closely fits a 45� angle from
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the lower left corner to the upper right corner, and thereby the sample data appears

as a good fit to the continuous distribution with parameters â ¼ 0:1 and b̂ ¼ 9:8.

Example 10.18 (Normal Q-Q Plot). Recall Example 10.5 where an analyst has

collected a sample of n ¼ 10 observations: [7.1, 9.1, 11.5, 16.1, 18.0, 14.3, 10.2,

8.7, 6.4, 1.3],and where the sample average and standard deviation of the data are:

�x ¼ 10:27 and s ¼ 4.95, respectively. The sorted values gives the sample quantile

set Xs ¼ [1.3, 6.4, 7.1, 8.7, 9.1, 10.2, 11.5, 14.3, 16.1, 18.0]. With n ¼ 10, the ith

sorted cumulative probability for the sample quantiles are wi ¼ (i � 0.5)/10 for

(i ¼ 1 to 10). The set Ps of cumulative probabilities is: Ps ¼ [0.05, 0.15, 0.25, 0.35,

0.45, 0.55, 0.65, 0.75, 0.85, 0.95]. Note the cumulative probabilities for i ¼ 1 is

w1 ¼ 0.05, for i ¼ 2, it is w2 ¼ 0.15, and so forth.

The analyst wishes to explore how the data fits with the normal distribution.

To do this, the z variable from the standard normal distribution is needed with each

w entry in the sample probability set Ps. This gives another set here denoted as

Z ¼ [�1.645,�1.036,�0.674,�0.385,�0.125, 0.125, 0.385, 0.674, 1.036, 1.645].

See Table A.1 in the Appendix. Note at i ¼ 1, w1 ¼ 0.05 and z1 ¼ �1.645,

whereby P(z < �1.645) ¼ 0.05. In the same way, all the z values are obtained

from the standard normal distribution. Now using the average, �x, standard deviation,
s, and z values, it is possible to compute the n ¼ 10 fitted quantiles for the normal

distribution by the following formula,

xi
0 ¼ �xþ zis i ¼ 1 to 10
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Fig. 10.1 Q-Q plot when f(x) ¼ 0.1 for 0 � x � 10
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Applying the above formula yields the quantiles for the probability model,

Xf ¼ [2.12, 5.14, 6.93, 8.36, 9.65, 10.89, 12.18, 13.61, 15.40, 18.42]. The Q-Q

Plot comparing the quantiles from the sample, Xs, with the quantiles from the

probability fit, Xf, is shown in Fig. 10.4. Since the plot closely follows the 45� line
from the lower left-hand side to the upper right-hand side, the sample data seems

like a good fit with the normal distribution.
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Fig. 10.3 Q-Q plot for the continuous uniform example
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Example 10.19 (Exponential Q-Q Plot). Recall the n ¼ 10 observations from

Example 10.6 where the sample average and standard deviation were �x ¼ 3:90 and
s ¼ 3.24, respectively. The sorted data yields the sample quantiles, Xs ¼ [0.3, 1.3,

1.5, 2.1, 2.5, 3.0, 4.5, 5.7, 7.3, 10.8]. Since n ¼ 10, the ith sorted cumulative

probability for the sample quantiles are wi ¼ (i � 0.5)/10 for (i ¼ 1 to 10), and

the set Ps of cumulative probabilities is: Ps ¼ [0.05, 0.15, 0.25, 0.35, 0.45, 0.55,

0.65, 0.75, 0.85, 0.95].

Now assume the analyst wants to compare the data to an exponential distribution

with parameter y ¼ 1=�x ¼ 1=3:9 ¼ 0:256. The exponential density is fðxÞ ¼ y exp
ð�yxÞ; and the cumulative distribution is, FðxÞ ¼ 1� expð�yxÞ . For a given

cumulative probability w ¼ F(x), the associated value of x is obtained by the

relation below.

x ¼ �1=y lnð1� wÞ

where ln is the natural logarithm.

So for the n ¼ 10 values of w listed above, the corresponding values of x are

computed and are the ten fitted quantiles for the exponential distribution. They are

labeled as Xf, whereXf ¼ [0.20, 0.63, 1.12, 1.68, 2.33, 3.11, 4.09, 5.41,7.40,11.68].

See Fig. 10.5 showing the Q-Q Plot that relates the sample quantiles, Xs, with the

exponential quantiles, Xf, is below. Because the plot is a good fit through a 45� line
from the lower left-hand corner to the upper right-hand corner, the exponential

distribution appears as a good fit to the ten sample observations.
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Example 10.20 (Lognormal Q-Q Plot) Suppose the analyst wants to run a Q-Q

Plot comparing the lognormal distribution on the same data of Example 10.7. Recall,

the ten observations are Xs ¼ [0.3, 1.3, 1.5, 2.1, 2.5, 3.0, 4.5, 5.7, 7.3, 10.8], and the

cumulative probabilities are: Ps ¼ [0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75,

0.85, 0.95]. This gives the set Z ¼ [�1.645,�1.036,�0.674,�0.385,�0.125, 0.125,

0.385, 0.674, 1.036, 1.645]. Recall at i ¼ 1, w1 ¼ 0.05 and z1 ¼ �1.645, whereby

P(z < �1.645) ¼ 0.05, and so forth. All the z values are obtained from the standard

normal distribution. To test for the lognormal, the natural logarithm of each sample

is taken as yi ¼ ln(xi) for i ¼ 1–10, The ten quantiles are the transformed data and

are denoted as Ys ¼ [�1.204, 0.262, 0.405, 0.742, 0.916, 1.099, 1.504, 1.741,

1.988, 2.379]. The average and standard deviation on the ten values of y are, �y ¼ 0

:9833 and s ¼ 1.0283, respectively. For each zi, the corresponding(fitted) entry is

obtained from the relation below,

yi
0 ¼ �yþ zis for i ¼ 1 to 10:

The ten fitted values of the normal distribution are now compared to their

counterpart yi (i ¼ 1 to 10), and are listed as Yf ¼ [�0.706, �0.080, 0.292,

0.589, 0.857, 1.113, 1.381, 1.678, 2.051, 2.677]. The ten-paired data of Ys and Yf

form the Q-Q Plot in Fig. 10.6. Since the plotted data lie below the 45� line from the

lower left-hand corner to the upper right-hand corner, the lognormal distribution

does not appear as a good fit for the data.
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Fig. 10.5 Q-Q plot for exponential example
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P-P Plot

The P-P plot is a graphical way to compare the cumulative distribution function

(cdf) of sample (or empirical) data to the cdf of a specified probability distribution

as a way of detecting the goodness-of-fit. The plot applies for both continuous and

discrete probability distributions. See Wilk and Ganandel (1968) for a fuller

description on the P-P (probability to probability) plot. To carryout, the sample

data (x1,, . . ., xn) are first arranged in sorted order [x(1),. . . ., x(n)] where x(1) is the
smallest value and x(n) the largest. The cdf for the sample data, F[x(i)] i ¼ 1 to n,

are denoted here as (w1, . . ., wn), where

wi ¼ F½xðiÞ� ¼ ði� 0:5Þ=n i ¼ 1 to n

For example if n ¼ 10, and i ¼ 1, F[(1)] ¼ w1 ¼ 0.05. At i ¼ 2, F[x(2)] ¼ 0.15;

at i ¼ 10, F[x(10)] ¼ w10 ¼ 0.95, and so forth. The set of ten probabilities are

denoted as Fs ¼ [w1, . . ., w10]. Note, there is one wi for each x(i).

Now consider a probability distribution, f(x) where the cumulative probability

distribution is F(x). The corresponding cdf’s for this distribution are obtained by

wi
0 ¼ FðxðiÞÞ i ¼ 1 to n

For each cdf from the sample, a corresponding cdf is computed for the probabil-

ity distribution. For convenience, the pair of cdf’s are labeled as Fs ¼ [w1, . . ., w10]

for the sample data, and Ff ¼ [w1
0, . . ., w10

0] for the probability model.

The n pair of cdf’s are now placed on a scatter plot with the sample cdf’s, Fs, on

the x-axis and the probability model cdf’s, Ff, on the y-axis. In the event the
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Fig. 10.6 Q-Q plot for the lognormal example

132 10 Choosing the Probability Distribution from Data



probability model is a good fit to the sample data, the scatter plot will look like a

straight line going through a 45� angle from the lower left hand side to the upper

right hand side, and the scale of the x-axis and y-axis are similar. Note, in some

references, Fs is placed on the y-axis and Ff on the x-axis.

Example 10.21 (Discrete Uniform) Recall Example 10.10 where n ¼ 10 samples

were taken from data assumed as discrete uniform, and where the maximum

likelihood estimates of the parameters are â ¼ 2 and b̂ ¼ 12 . The sorted data

becomes [2, 4, 4, 5, 5, 7, 8, 8, 9, 10]. Since n ¼ 10, the sample cdf for this data are

listed here as Fs ¼ [0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95]. Recall,

for a discrete uniform distribution, with parameters (a,b), the cdf is computed by

F[x] ¼ (x � a+1)/(b � a+1). Hence, the cdf’s for the fitted probability model

become: Ff ¼ [0.09, 0.27, 0.27, 0.36, 0.36, 0.55, 0.64, 0.64, 0.73, 0.81]. The P-P

Plot is shown in Fig. 10.7. Since the plotted points are similar to a 45� line, the

sample data appears reasonably close to a discrete uniform distribution.

Example 10.22 (Binomial) Consider Example 10.11 where m ¼ 5 samples on

binomial data for the number of successes in n ¼ 8 trials yields an estimate of

p̂ ¼ 0:20. The sorted data is Xs ¼ [0, 1, 2, 2, 3] and the cdf of the sample data

becomes: Fs ¼ [0.1, 0.3, 0.5, 0.7, 0.9]. From the binomial distribution, the proba-

bility of x successes in n ¼ 8 trials with p ¼ 0.2 are computed as: p(0) ¼ 0.168,

p(1) ¼ 0.336, p(2) ¼ 0.293, p(3) ¼ 0.146, . . . Hence the associated cdf’s for the

fitted probability model are: F(0) ¼ 0.168, F(1) ¼ 0.504, F(2) ¼ 0.797,

F(3) ¼ 0.943, ...., and thereby Ff ¼ [0.168, 0.504, 0.797, 0.797, 0.943]. Figure 10.8

is the P-P Plot for this data. The plot somewhat follows a 45� line and as such, the

binomial probability distribution appears as a fair fit to the data.

Example 10.23 (Geometric) Recall Example 10.12 where m ¼ 8 samples are

taken from a geometric distribution where x is the number of failures till a success.

The estimate of the success probability for the example is p̂ ¼ 0:211. The sorted
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Fig. 10.7 P-P plot for discrete uniform example
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data are Xs ¼ [1, 2, 3, 4, 4, 5, 5, 6], and the corresponding cdf’s are Fs ¼ [0.0625,

0.1875, 0.3125, 0.4375, 0.5625, 0.6875, 0.8125, 0.9375]. Using p ¼ 0.211, and the

cumulative distribution function,

FðxÞ ¼ 1� ð1� pÞxþ1
x ¼ 0; 1; . . .

Ff ¼ [0.377, 0.508, 0.612, 0.694, 0.694, 0.758, 0.758, 0.809]. Figure 10.9 is the

P-P Plot for this example. Since the plot does not follow a 45� line, the geometric

distribution does not appear as a good fit to the data.
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Example 10.24 (Poisson) Consider Example 10.14 with m ¼ 10 samples on

Poisson data where the parameter estimate is ŷ ¼ 0:90 and the sorted sample data

is Xs ¼ [0, 0, 0, 0, 1, 1, 1, 2, 2, 2]. The cdf of the sample data is Fs ¼ [0.05, 0.15,

0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95]. Applying the Poisson probability with

y ¼ 0:90, the probabilities of x are: p(0) ¼ 0.407, p(1) ¼ 0.366, p(2) ¼ 0.165, . . .,
which yields the cdf for the fit as Ff ¼ [0.407, 0.407, 0.407, 0.407, 0.773, 0.773,

0.773, 0.938, 0.938, 0.938, . . .].

Adjustment for Ties

In this example, there are (many) ties in the sample data, and special consideration is

applied in the P-P Plot. With ties in the sample (or empirical) data, the P-P plot only

considers one entry for each unique value of the data. In this way, Xs ¼ [0, 1, 2],

Fs ¼ [0.35, 0.65, 0.95], and Ff ¼ [0.407, 0.773, 0.938]. Figure 10.10 is the P-P Plot

for the cdf’s of the sample and the fit. Since, Fs is similar to Ff, the fit seems

appropriate.

Summary

Computer simulation models often include one or more variables that play impor-

tant roles in the model. Some of the random variables are of the continuous type and

others are discrete. The analyst is confronted with choosing the proper probability

distribution for each variable, and also with estimating the associated parameter(s)

value. The chapter describes some of the common ways to select the distribution

and to estimate the associated parameter values when some empirical or sample

data is available from the real system.
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Chapter 11

Choosing the Probability Distribution

When No Data

Introduction

Sometimes the analyst has no data to measure the parameters on one or more of the

input variables in a simulationmodel.When this occurs, the analyst is limited to a few

distributions where the parameter(s) may be estimated without empirical or sample

data. Instead of data, experts are consulted who give their judgment on various

parameters of the distributions. This chapter explores some of the more common

distributions where such expert opinions are useful. The distributions described here

are continuous and are the following: continuous uniform, triangular, beta, lognor-

mal and Weibull. The data provided by the experts is the following type: minimum

value, maximum value, most likely value, average value, and a p-quantile value.

Continuous Uniform

Recall the continuous uniform distribution, CU (a,b), with parameters, a and b,

where the variable x is equally likely to fall anywhere from a to b. The probability

distribution is f(x) ¼ 1/(b�a), and the cumulative distribution is F(x) ¼ (x � a)/

(b � a) for a � x � b. Sometimes the analyst wants to use this distribution but does

not have data to estimate the parameters, (a, b). Suppose expert(s) can help by

providing their opinions on the range of the statistics as below.

First assume the expert(s) can give the following two estimates on the

distribution:

â ¼ an estimate of the minimum value of x, and xa ¼ an estimate of the of

a-quantile of x whereP½x � xa� ¼ a. An estimate of the parameter b is needed to use

the distribution in the simulation model. Using the estimates provided, the cumula-

tive distribution becomes,

a ¼ FðxÞ ¼ ðxa � âÞ=ðb� âÞ;

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0_11,
# Springer Science+Business Media New York 2013
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and thereby the estimate of b is,

b̂ ¼ âþ ðxa � âÞ=a

Example 11.1 Suppose the analyst wants to use the continuous uniform distribution

in the simulation model and has estimates of the minimum value of x as â ¼ 10 and

the 0.9-quantitleas x0.9 ¼ 15. With this information, the estimate of b becomes,

b̂ ¼ 10þ 15� 10

0:90
¼ 15:56:

So now, the distribution to use is,

fðxÞ ¼ 1=5:56 for 10:00 � x � 15:56

Now assume the expert(s) can give the following two estimates on the

distribution:

b̂ ¼ an estimate of the maximum value of x, and xa ¼ an estimate of the of a-
quantile of x where P½x � xa� ¼ a. An estimate of the parameter a is needed to use

the distribution in the simulation model. Using the estimates provided, the cumula-

tive distribution becomes,

a ¼ FðxÞ ¼ ðxa � aÞ=ðb̂� aÞ;

and thereby, using b̂ and xa , and some algebra, the estimate of the minimum

parameter a is,

â ¼ ðxa � ab̂Þ=ð1� aÞ

Example 11.2 Assume a situation where the simulation analyst wants to use the

continuous uniform distribution and has estimates of b̂ ¼ 16 and the 0.1-quantile

x0.1 ¼ 11. The estimate of a becomes,

â ¼ ð11� 0:1� 16Þ=ð1� 0:1Þ ¼ 10:44

So now, the distribution to use is,

fðxÞ ¼ 1=5:56 for 10:44 � x � 16:00

The following sections show how to apply the triangular, beta, Weibull and

lognormal distributions in the simulation model when no data is available. See Law,

pages 370–375 (2007) for further discussion.
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Triangular

Recall, the triangular distribution applies for a continuous variable, x with three

parameters, (a, b, ~x), where the range of x is from a to b, and the mode is denoted as ~x.
When the analyst wants to use this distribution in a simulation model and has no

empirical or sample data to estimate the three parameters, he/she may turn to one or

more experts to gain the estimates of the following type:

â ¼ an estimate of the minimum value of x

b̂ ¼ an estimate of the maximum value of x

~̂x ¼ an estimate of the most likely value of x

So now, the triangular distribution can be used with parameters, â; b̂; ~̂x.
The associated standard triangular distribution, T(0, 1, ~x0),with variable x0 falls in

the range from 0 to 1. The most likely value of x0 is the mode denoted as ~x0 . The
mode of the standard triangular variable is computed from the corresponding

triangular variable by ~x0 ¼ ~̂x� â
� �ðb̂� âÞ.

Example 11.3 Suppose the analyst wants to use the continuous triangular distribution

in the simulation model and from experts opinions has estimates of â ¼ 10; b̂ ¼ 60

and ~̂x ¼ 20. To apply the standard triangular, with variable x0, the estimate of themode

becomes:

~x ¼ 20� 10

60� 10
¼ 0:20:

So the triangular distribution is T(10, 20, 60) and the associated standard

triangular distribution is T(0, 1, 0.20).

Beta

Recall the beta distributionhas two parameters (k1,k2) where k1> 0 and k2> 0,

and takes on many shapes depending on the values of the parameters. The

variable denoted as x, lies within two limits(a and b) where (a � x � b). The

distribution takes on many shapes, where it can skew to the right, skew to

the left, where the mode is at either of the limit end points (a, b), includes

various bathtub configurations, and also has symmetrical and uniform shapes.

These shapes depend on the values of the two parameters, k1, k2. Perhaps the

most common situations occur when k2>k1> 1 whereby the mode is greater than

the low limit, a, and the distribution is skewed to the right. This is the distribu-

tion of interest in this chapter.
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When the analyst wants to use this distribution in a simulation model and has no

empirical or sample data to estimate the four parameters, he/she may turn to one or

more experts who could provide estimates of the following type:

â ¼ an estimate of the minimum value of x

b̂ ¼ an estimate of the maximum value of x

m̂ ¼ an estimate of the mean of x

~̂x ¼ an estimate of the most likely value of x

Recall, for the beta distribution, the mean and mode of x are computed from the

parameters as follows:

m ¼ âþ ½k1=ðk1 þ k2Þ�ðb̂� âÞ

~x ¼ âþ ½ðk1 � 1Þ=ðk1 þ k2 � 2Þ�ðb̂� âÞ

Note there are two equations and two unknowns (k1, k2) when estimates of (â; b̂;

m̂; ~̂x) are given. Using algebra, and the estimates provided, it is possible to estimate the

unknown shape parameters, k1, k2 with the two equations listed below:

k̂1 ¼ ðm̂� âÞð2~̂x� â� b̂Þ� �
= ð~̂x� m̂Þðb̂� âÞ� �

k̂2 ¼ ðb̂� m̂Þk̂1
� �

= ðm̂� âÞ½ �

So now the analyst can use the beta distribution with estimates of all four

parameters, (k̂1; k̂2; â; b̂) in the simulation model.

Example 11.4 Assume a simulation model where the analyst wants to use the beta

distribution but has no empirical or sample data to estimate the parameters. The

analyst gets advice from an expert(s) that provides estimates of â ¼ 10, b̂ ¼ 60,

m̂ ¼ 30 and ~̂x ¼ 20 . Using the above equations, the estimates of the

parameters become,

bk1 ¼ ½ð30� 10Þð2� 20� 10� 60Þ�=½ð20� 30Þð60� 10Þ� ¼ 1:2

bk2 ¼ ½ð60� 30Þ 1:2�=ð30� 10Þ ¼ 1:8

Hence, the beta distribution can now be applied with the parameters, â ¼ 10;
bb ¼ 60; bk1 ¼ 1:2, and bk2 ¼ 1:8.
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Lognormal

Suppose a variable x � g where g is a location parameter to x. Now let x0 ¼ x� g
where x0 � 0 and x0 is lognormal. The corresponding normal variable to x0 is y ¼ ln

(x0) where ln is the natural logarithm, and thereby x0 ¼ ey. The mean and variance of

y are denoted as m and s2, respectively, whereby y � Nðm; s2Þ and x0 � LNðm; s2Þ.
Note also x ¼ gþ x0 ¼ gþ ey. Assume the simulation analyst wants to apply the

lognormal variable x in the simulation model but does not have any empirical or

sample data to estimate the parameters. Instead, the analyst relies on expert(s) who

are able to give the following estimates on the variable x:

g ¼ an estimate of the location parameter of x

~x ¼ an estimate of the most likely value (mode) of x

xa ¼ an estimate of the a-quantile value of x

Note, the mode of x0 and x are the following:

~x0 ¼ em�s2

~x ¼ gþ em�s

respectively. The a-quantile value of x becomes,

xa ¼ gþ emþza s

where z ~ N(0,1) and Pðz � zaÞ ¼ a.
Now note,

m� s2 ¼ lnð~x� gÞ
mþ zas ¼ lnðxa � gÞ

Applying some algebra,

½�s2 � zas� ¼ ln½ð~x� gÞ=ðxa � gÞ� ¼ c

Solving for s via the quadratic equation,

ŝ ¼ �za þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
za2 � 4c

ph i
=2

The estimate of the mean of y is below.

m̂ ¼ ŝ2 þ lnð~x� gÞ
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Finally, the analyst can now apply the lognormal distribution to the variable x

using the parameters:

g ¼ location parameter of x

m̂ ¼ mean of y

ŝ ¼ standard deviation of y

In essence, x � LNðg; m̂; ŝ2Þ.
Example 11.5 A simulation model is being developed and the analyst wants to use

the lognormal distribution but has no empirical or sample data to estimate the

parameters. The analyst gets advice from an expert(s) who provides estimates of

ĝ ¼ 100; ~x ¼ 200 and x0.9¼ 800. Note a¼ 0.90 and z0:90 ¼ 1:282. Using the above
results, the estimates of the parameters become,

c ¼ ln ð200� 100Þ=ð800� 100Þ½ � ¼ �1:946

ŝ ¼ �1:282þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1:282Þ2 � 4ð�1:946Þ

q� �
=2 ¼ 0:894

m̂ ¼ 0:8942 þ lnð200� 100Þ ¼ 5:404

Hence, the lognormal distribution can now be applied in the simulation model

with the parameters, ĝ ¼ 100; m̂ ¼ 5:404 and ŝ ¼ 0:894.
A quick check to ensure the estimates are correct is to measure the mode and/or

the a-quantile that were provided at the outset. The computations are below.

~x ¼ gþ em�s2 ¼ 100þ eð5:404�0:8942Þ ¼ 200

xa ¼ gþ emþzas ¼ 100þ eð5:404þ1:282�0:894Þ ¼ 800

Since the measures are the same as the specifications provided, (~x ¼ 200 and

x0.90 ¼ 800),the computations are accepted.

Weibull

Suppose a variable x � g where g is a location parameter to x. Now let x0 ¼ x� g
where x0 � 0 and x0 is Weibull distributed with parameters (k1, k2). Assume the

simulation analyst wants to apply the Weibull distribution in the simulation system

but does not have any empirical data to estimate the parameters. Instead, the analyst

relies on expert(s) who are able to give the following estimates on the variable x:
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g ¼ an estimate of the location parameter of x

~x ¼ an estimate of the most likely value (mode) of x

xa ¼ an estimate of the a-quantile value of x

When k1< 1, the mode of x0 is at x0 ¼ 0. The analysis here is when k1 � 1 and the

mode of x0 is greater than zero. For this situation, the mode is measured as below.

~x0 ¼ k2 ðk1 � 1Þ=k1½ �1=k1

The corresponding mode of x is

~x ¼ gþ k2 ðk1 � 1Þ=k1½ �1=k1

Using algebra, k2 becomes

k2 ¼ ð~x� gÞ= ðk1 � 1Þ=k1½ �1=k1

The cumulative distribution for the a-quantile is obtained by the following,

FðxaÞ ¼ 1� exp �½ðxa � gÞ=k2�k1
n o

¼ a

Hence,

lnð1� aÞ ¼ �½ðxa � gÞ=k2�k1

Applying algebra and solving for k2,

k2 ¼ ðxa � gÞ=fln½1=ð1� aÞ�g1=k1

So now,

ð~x� gÞ=½ðk1 � 1Þ=k1�1=k1 ¼ ðxa � gÞ= ln ½1=ð1� aÞ�1=k1

whereby,

ð~x� gÞ=ðxa � gÞ ¼ ðk1 � 1Þ=½k1 � ln½1=ð1� aÞ��f g1=k1
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Solving for k1

Because estimates of ~x; g and xa are provided, along with a, the only unknown in

the above equation is k1. At this point, an iterative search is made to find the value

of k1 where the right-hand-side of the above equation is equal to the left-hand-side.

The result is k̂1.

Solving for k2

Having found k̂1, the other parameter, k2, is now obtained from

k̂2 ¼ ð~x� gÞ=½ðk̂1 � 1Þ=k̂1�1=k̂1

Example 11.6 A simulation model is being developed and the analyst wants to use

the Weibull distribution but has no empirical or sample data to estimate the

parameters. The analyst gets advice from an expert(s) that provides estimates of

ĝ¼ 100; ~x ¼ 130 and x0.9 ¼ 500. Note a ¼ 0.90. To find the estimate of k1, the

following computations are needed to begin the iterative search:

ð~x� gÞ=ðxa � gÞ ¼ ð130� 100Þ=ð500� 100Þ ¼ 0:075

fðk1 � 1Þ=½k1 � ln½1=ð1� aÞ��g1=k1 ¼ fðk1 � 1Þ=½k1 � ln½1=ð1� 0:9Þ��g1=k1
¼ fðk1 � 1Þ=½k1 � 2:302�g1=k1

Note the left-hand-side (LHS) of the equation below. An iterative search of k1 is

now followed until the LHS is near to 0.075.

LHS ¼ fðk1 � 1Þ=½k1 � 2:302�g1=k1 ¼ 0:075

The search for k1 begins with k1 ¼ 2.00, and continues until k1 ¼ 1.14:

At k1 ¼ 2.00, LHS ¼ 0.46

At k1 ¼ 1.50, LHS ¼ 0.26

At k1 ¼ 1.20, LHS ¼ 0.11

At k1 ¼ 1.14, LHS ¼ 0.075

Hence, k̂1 ¼ 1:14.
So now, the estimate of k2 is the following:
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k̂2 ¼ ð~x� gÞ=½ðk̂1 � 1Þ=k̂1�1=k̂1
¼ ð130� 100Þ=½ð1:14� 1:00Þ=1:14�1=1:14
¼ 188:9

Finally, the estimates of the parameters are (k̂1 ¼ 1:14; k̂2 ¼ 188:9).
A quick check to ensure the estimates are correct, requires measuring the mode

and/or the a-quantile and compare the measures with those that were provided at

the outset. The computations are below.

~x ¼ gþ k2½ðk1 � 1Þ=k1�1=k1
¼ 100þ 188:9½ð1:14� 1:00Þ=1:14�1=1:14
¼ 130

xa ¼ gþ k2fln½1=ð1� aÞ�g1=k1

¼ 100þ 188:9 ln½1=ð1� 0:90�1=1:14
¼ 492:5

Since the above measures are sufficiently near the data provided, (~x ¼ 130 and

x0.90 ¼ 500) the parameters estimated are accepted.

Summary

Sometimes the analyst may need to develop a computer simulation model that

includes one or more variables where no empirical or sample data is available. This

is where he/she seeks opinions from one or more experts who give some estimates

on the characteristics of the variable. The chapter pertains to these situations and

shows some of the common ways to select the probability distribution and estimate

the associated parameters.
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Appendix A

Table A.1 Measures from the standard normal distribution

F(z) z F(z) z

0.010 2.327 0.510 0.025

0.020 �2.054 0.520 0.050

0.030 �1.881 0.530 0.075

0.040 �1.751 0.540 0.100

0.050 �1.645 0.550 0.125

0.060 �1.555 0.560 0.151

0.070 �1.476 0.570 0.176

0.080 �1.405 0.580 0.202

0.090 �1.341 0.590 0.227

0.100 �1.282 0.600 0.253

0.110 �1.227 0.610 0.279

0.120 �1.175 0.620 0.305

0.130 �1.126 0.630 0.331

0.140 �1.080 0.640 0.358

0.150 �1.036 0.650 0.385

0.160 �0.994 0.660 0.412

0.170 �0.954 0.670 0.439

0.180 �0.915 0.680 0.467

0.190 �0.878 0.690 0.495

0.200 �0.841 0.700 0.524

0.210 �0.806 0.710 0.553

0.220 �0.772 0.720 0.582

0.230 �0.739 0.730 0.612

0.240 �0.706 0.740 0.643

0.250 �0.674 0.750 0.674

0.260 �0.643 0.760 0.706

0.270 �0.612 0.770 0.739

0.280 �0.582 0.780 0.772

0.290 �0.553 0.790 0.806

0.300 �0.524 0.800 0.841

(continued)

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0,
# Springer Science+Business Media New York 2013
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Table A.1 (continued)

F(z) z F(z) z

0.310 �0.495 0.810 0.878

0.320 �0.467 0.820 0.915

0.330 �0.439 0.830 0.954

0.340 �0.412 0.840 0.994

0.350 �0.385 0.850 1.036

0.360 �0.358 0.860 1.080

0.370 �0.331 0.870 1.126

0.380 �0.305 0.880 1.175

0.390 �0.279 0.890 1.227

0.400 �0.253 0.900 1.282

0.410 �0.227 0.910 1.341

0.420 �0.202 0.920 1.405

0.430 �0.176 0.930 1.476

0.440 �0.151 0.940 1.555

0.450 �0.125 0.950 1.645

0.460 �0.100 0.960 1.751

0.470 �0.075 0.970 1.881

0.480 �0.050 0.980 2.054

0.490 �0.025 0.990 2.327

0.500 �0.000
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Table A.2 Probability

distributions, random

variables, notation and

parameters

Continuous distributions:

Standard uniform u ~ U(0,1)

Continuous uniform x ~ CU(a,b)

Exponential x ~ ExpðyÞ
Erlang x ~ Erlðk; yÞ
Gamma x ~ Gamðk; yÞ
Beta x ~ Beta(k1,k2,a,b)

Weibull x ~ We(k1,k2,g)
Normal x ~ N(m,s2)

Lognormal x ~ LN(my,sy
2)

Triangular x ~ TRða; b; ~xÞ)
Discrete distributions:

Discrete uniform x ~ DU(a,b)

Bernoulli x ~ Be(p)

Binomial x ~ Bin(n,p)

Geometric x ~ Ge(p)

Pascal x ~ Pa(k,p)

Hyper geometric x ~ HG(n,N,D)
Poisson x ~ PoðyÞ
Multivariate distributions:

Multivariate arbitrary x1,. . .,xk ~ MA(p1. . .k)

Multinomial x1,. . .,xk ~ MN(n,p1,. . .,pk)

Multivariate hyper

geometric

x1,. . .,xk ~ MHG(n,N,D1,. . .,Dk)

Bivariate normal x1, x2 ~ BVN(m1,m2,s1,s2,r)
Bivariate lognormal x1, x2 ~ BVLN(my1,my2,sy1,sy2,ry)
Multivariate normal x1,. . .,xk ~ MVN(m,S)
Multivariate lognormal x1,. . .,xk ~ MVLN(my,Sy)
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Table A.3 Continuous uniform u ~ U(0,1) random variates

0.3650 0.4899 0.1557 0.4745 0.2573 0.6288 0.5421 0.1563

0.5061 0.3905 0.1074 0.7840 0.4596 0.7537 0.5961 0.8327

0.0740 0.1055 0.3317 0.1282 0.0002 0.5368 0.6571 0.5440

0.1919 0.6789 0.4542 0.3570 0.1500 0.7044 0.9288 0.5302

0.4018 0.4619 0.4922 0.2076 0.3297 0.0954 0.5898 0.1699

0.4439 0.2729 0.8725 0.7507 0.2729 0.6736 0.2566 0.0899

0.7901 0.2973 0.2353 0.4805 0.2546 0.3406 0.0449 0.4824

0.5886 0.7549 0.9279 0.3310 0.5429 0.0807 0.6344 0.4100

0.9234 0.6202 0.3477 0.1492 0.4800 0.2194 0.9937 0.1304

0.5477 0.9230 0.5382 0.4064 0.8472 0.8262 0.6724 0.7219

0.4952 0.4130 0.6953 0.1791 0.4229 0.5432 0.8147 0.5409

0.2278 0.6192 0.4898 0.6808 0.8866 0.3705 0.3025 0.2929

0.2233 0.5845 0.3635 0.8760 0.4780 0.1906 0.6841 0.7474

0.1617 0.8078 0.2026 0.9568 0.0659 0.0615 0.7932 0.3796

0.1155 0.1738 0.0481 0.7148 0.5330 0.5610 0.2167 0.4680

0.3989 0.9031 0.7460 0.0886 0.6346 0.7130 0.0157 0.4311

0.9854 0.8026 0.6961 0.4176 0.7345 0.2772 0.3566 0.4335

0.6460 0.3478 0.1044 0.1854 0.0777 0.4328 0.9593 0.5420

0.2178 0.3790 0.3958 0.2815 0.5034 0.1387 0.5173 0.9654

0.6573 0.4411 0.6930 0.0645 0.7561 0.7005 0.4971 0.1554

0.7845 0.0503 0.5180 0.7570 0.8007 0.3252 0.9727 0.8043

0.8758 0.4166 0.1231 0.9542 0.7973 0.6963 0.4016 0.0163

0.5097 0.4061 0.1061 0.2761 0.6430 0.8491 0.4980 0.1878

0.3236 0.7708 0.2180 0.4470 0.2360 0.8784 0.6104 0.3744

0.5859 0.9316 0.5172 0.3303 0.8685 0.2591 0.2595 0.1787

0.7423 0.8409 0.2786 0.7030 0.4049 0.8116 0.7418 0.4377

0.3394 0.7106 0.3123 0.7988 0.1518 0.5930 0.9562 0.2431

0.9843 0.6330 0.5989 0.9026 0.5749 0.2452 0.8602 0.0750

0.2457 0.3786 0.3972 0.5266 0.2704 0.5812 0.2097 0.0787

0.6524 0.9003 0.2316 0.9499 0.8462 0.4412 0.4920 0.7695

0.1955 0.3262 0.4132 0.1527 0.6198 0.0994 0.2050 0.6925

0.9914 0.4714 0.0040 0.4258 0.2887 0.7525 0.8913 0.8219

0.0103 0.1517 0.3774 0.1881 0.9795 0.8721 0.5815 0.7294

0.0282 0.8279 0.7834 0.7912 0.3327 0.4509 0.5551 0.8033

0.2076 0.3647 0.5735 0.3442 0.5282 0.4255 0.5730 0.0500

0.9627 0.9331 0.9926 0.8396 0.4093 0.8053 0.9894 0.2584

0.0170 0.3391 0.6925 0.1104 0.1097 0.2906 0.3989 0.5590

0.8079 0.3096 0.3758 0.4010 0.8414 0.4096 0.7246 0.6588

0.6456 0.5161 0.2233 0.5828 0.7485 0.4565 0.9044 0.2830

0.2814 0.3681 0.0142 0.2947 0.9840 0.7613 0.5809 0.6057
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Table A.4 Standard normal random variates z ~ N(0,1)

�0.058 1.167 0.948 �0.173 �1.114 �0.823 1.163 �0.847

�1.843 �0.465 �0.503 �2.375 0.416 �0.291 1.131 0.533

�0.369 0.207 �1.338 0.367 �0.019 1.885 �1.382 0.321

0.776 0.003 0.168 �0.817 �0.380 �0.852 �0.026 1.273

0.567 0.303 0.302 �2.234 �0.068 1.506 �0.891 �0.292

�0.460 1.049 �0.086 �0.627 �0.922 1.526 �0.500 �1.494

�1.204 �1.251 �0.585 0.822 1.785 �0.661 �0.817 1.110

�1.005 �1.529 �0.219 �0.506 �0.662 0.638 �1.243 0.528

�0.636 1.845 2.548 1.332 0.587 �0.320 0.385 �0.674

�1.311 0.065 �0.183 0.841 �1.055 0.282 �1.208 �0.364

0.320 �0.114 �0.752 0.091 �0.614 �0.174 �0.736 1.151

1.169 �1.373 0.067 �0.288 �0.553 �0.746 1.651 0.127

2.710 �1.830 0.061 �0.102 1.228 1.074 �1.635 0.383

�0.019 �0.044 0.580 �0.596 2.391 �1.648 0.382 �0.701

1.580 0.992 �0.465 �0.452 �0.840 �2.280 0.237 �0.182

�1.329 1.847 �0.599 0.213 1.323 �0.629 0.030 0.447

�1.022 1.652 �1.785 0.840 �0.771 1.062 0.425 0.253

�0.212 0.098 1.578 �1.564 2.791 �0.890 �1.356 1.868

�1.049 �0.556 �0.350 1.569 0.482 �0.604 �0.524 0.486

�0.122 �2.494 �0.842 �0.630 1.341 0.364 1.270 �0.139

0.545 �1.334 �0.614 1.533 0.966 0.020 0.938 0.312

�0.512 0.867 1.187 0.313 �0.480 �0.069 �0.045 0.720

�0.193 �0.386 �0.030 �0.472 �1.273 0.230 0.357 �0.471

�0.836 �1.022 �0.288 2.560 �0.125 �1.392 �0.255 �1.256

1.784 0.587 �1.051 �0.648 1.813 0.322 0.280 �1.066

�0.547 1.636 �0.219 0.409 1.953 1.191 0.688 1.230

�0.477 �0.120 0.869 �0.199 0.270 1.595 �0.745 0.324

�1.096 �0.362 �1.561 �0.843 0.301 0.478 �1.170 0.473

2.071 0.791 1.278 0.672 1.145 �1.655 �0.173 �0.505

0.061 1.781 �0.265 1.101 �1.535 2.265 0.219 0.771

�0.526 �0.385 �0.278 0.762 �0.514 �0.132 �0.456 0.244

�0.527 �0.138 1.715 �1.463 �1.007 �1.651 �0.099 1.421

�1.220 0.651 �1.251 �1.132 1.338 0.462 �2.048 0.369

�0.315 0.677 0.425 �1.238 1.432 0.527 �0.077 2.720

1.036 0.195 �0.095 0.787 �0.251 �0.577 �0.401 0.666

�0.754 1.024 �1.087 0.073 �0.672 �1.405 3.332 0.964

0.288 �0.456 �1.264 �0.685 �0.234 0.049 0.032 �1.068

�1.299 0.699 �0.775 �0.232 �1.773 0.352 1.175 0.451

�0.417 0.995 0.791 �1.750 1.436 �1.364 0.797 �0.036

�1.402 0.500 0.409 �0.858 �0.322 �0.407 �1.502 �0.523

�0.031 �2.155 0.615 �0.612 �1.195 �0.519 �1.559 1.558

0.483 0.223 1.511 0.493 �0.773 0.116 0.349 �1.661
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Table A.5 Standard exponential random variates when E(x) ¼ 1.00

2.247 2.012 0.485 3.367 0.699 4.144 0.592 1.51

2.118 0.866 1.978 1.659 1.46 2.577 0.052 1.742

0.054 2.334 4.419 0.304 0.776 0.42 0.24 0.225

0.882 1.945 0.092 0.224 1.005 0.617 0.337 1.793

0.506 1.569 1.639 0.936 0.44 0.881 1.081 0.875

0.061 0.164 0.38 0.572 0.551 1.941 0.058 2.276

1.516 0.037 0.147 1.106 0.305 1.847 0.236 0.256

0.933 0.106 2.865 0.482 0.427 0.041 2.209 0.68

0.289 0.808 0.045 1.683 0.635 0.789 0.473 0.159

0.236 0.39 0.551 1.352 0.126 0.572 1.741 0.852

0.073 0.978 0.698 1.166 0.434 1.002 0.175 2.371

0.179 0.691 0.034 1.377 1.837 0.349 0.547 0.722

3.754 0.098 1.516 0.045 3.378 8.186 1.167 1.164

3.402 1.187 2.164 0.136 0.163 0.315 0.032 0.392

1.207 1.777 0.091 1.706 1.674 0.226 0.11 0.978

0.619 2.865 0.214 0.354 0.933 0.283 0.375 0.098

1.323 0.558 0.615 0.617 1.94 0.53 1.227 0.472

0.258 0.072 1.562 1.729 0.404 0.545 5.107 1.201

0.415 0.165 2.362 0.715 1.553 0.954 0.424 3.283

0.247 1.487 2.243 0.121 2.342 0.972 2.208 1.414

1.738 0.166 1.576 0.56 0.785 0.074 0.058 1.804

1.069 3.084 0.128 0.485 0.679 2.303 0.186 1.745

0.048 2.424 0.675 1.11 0.068 0.014 3.12 0.236

0.186 0.339 1.387 1.923 0.296 0.427 2.025 1.956

0.21 2.888 0.299 0.018 0.389 0.917 0.476 1.028

0.204 0.059 0.282 0.221 3.73 0.195 1.067 2.397

1.474 1.421 0.493 0.169 0.846 0.128 0.317 1.945

0.835 0.264 0.016 0.295 3.046 0.057 1.916 0.084

2.436 0.055 0.912 0.692 2.082 0.589 1.776 1.751

0.709 1.572 0.563 3.776 0.153 1.117 1.18 1.322

1.918 0.19 1.091 0.323 2.044 1.323 0.502 0.103

1.119 0.371 0.091 1.002 0.796 0.866 1.837 2.713

1.259 1.665 0.386 1.891 1.505 0.482 0.878 0.463

0.884 1.49 0.395 0.305 2.009 0.3 0.173 0.175

0.742 3.262 0.501 0.353 1.115 0.263 1.18 0.398

0.319 1.123 6.492 0.478 0.455 0.612 1.27 0.295

0.624 0.134 0.222 0.281 5.387 0.016 0.397 1.244

0.161 0.39 0.648 2.583 0.04 1.441 0.077 0.994

0.519 1.427 0.191 2.758 0.392 0.072 0.356 1.05

0.178 0.571 2.612 0.629 4.506 0.565 1.453 1.249
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Appendix B

Problems

In solving the problems, the student will occasionally need one or more random

variates of the uniform type, u ~ U(0,1), or of the standard normal type, z ~ N(0,1).

These are provided in the Appendix with random variates of each type, Table A.3

for u ~ U(0,1) and Table A.4 for z ~ (N(0,1). On each problem, the student should

begin on the first row and first column to retrieve the random variate, then the first

row and second column, and so forth. Hence, for u ~ U(0,1), the variates are:

0.3650, 0.4899, and so forth. For z ~ N(0,1), they are: �0.058, 1.167, so forth.

Chapter 2

2.1 Using the Linear Congruent method with parameters, m ¼ 16, a ¼ 5, b ¼ 1

and the seed w0 ¼ 7, list the next 16 entries of wi for i ¼ 1 to 16.

2.2 Use the Linear Congruent method with parameters, a ¼ 20, b ¼ 0, m ¼ 64

and w0 ¼ 3 to generate the next three entries of w.

2.3 Use the results of Problem 2.2 and list the three entries of the corresponding

uniform, u, distribution

Chapter 3

3.1 The variable x is continuous with probability density f(x) ¼ 3/8x2 for 0 � x

� 2. Use the inverse transform method to generate a random variate of x.

N.T. Thomopoulos, Essentials of Monte Carlo Simulation: Statistical Methods
for Building Simulation Models, DOI 10.1007/978-1-4614-6022-0,
# Springer Science+Business Media New York 2013
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3.2 The variable x is discrete with probability distribution:

x �1 0 1 2 3 4

p(x) 0.10 0.20 0.30 0.20 0.15 0.05

Use the inverse transform method to generate a random variate of x.

3.3 The variable x is continuouswith probability density f(x) ¼ 3/8x2 for0 � x � 2.

Use the Accept-Reject method to generate a random variate of x.

3.4 The variable x is continuouswith probability density f(x) ¼ 3/8x2 for0 � x � 2.

Use the inverse transform method to generate a random variate of x that is

restricted to lie within 1 and 2.

3.5 The variable x is continuouswith probability density f(x) ¼ 3/8x2 for0 � x � 2.

Use the inverse transform method to generate a random variate of y ¼ min(x1,

. . ., x8).
3.6 The variable x is continuous with probability density f(x) ¼ 3/8x2 for 0 � x

� 2 . Use the inverse transform method to generate a random variate of

y ¼ max(x1, . . ., x8).
3.7 The variable x is composed of three distributions, f1(x), f2(x) and f3(x) with

probabilities 0.5, 0.3, 0.2, respectively. f1(x) ¼ 0.1 for 0 < x < 10,

f2(x) ¼ 0.2x for 0 < x < 10 and f3(x) ¼ 0.003x2 for 0 < x, <10. Generate

one random variate of x.

3.8 The variable x is continuous with density f(x) ¼ 0.25x3 0 < x < 2. Generate

a random variate of y ¼ x1 + x2 + x3.

3.9 The variable x is triangular with a minimum value of �10, mode of 0 and

maximum of 20. Generate a random variate of x.

3.10 The variable x is continuous with empirical data of: 5. 8, 12, 20, 25, 3, 6,

10,15. Generate one random variate of x using the composition method.

3.11 The variable x is continuous with grouped empirical data as follows:

[a,b) Frequency

[0, 10) 36

[10–20) 10

[20–30) 4

Generate one random variate of x using the composition method.

Chapter 4

4.1 The variable x is a continuous uniform for �10 < x < 30. Use the inverse

transform method to generate a random variate of x.

4.2 The variable x is exponential with E(x) ¼ 5. Generate a random variate of x.

4.3 The variable x is Erlang with k ¼ 5 and E(x) ¼ 20. Generate a random

variate of x.
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4.4 The variable x is Gamma with sample data of �x ¼ 5:0 and s2 ¼ 10.0.

Generate a random variate of x.

4.5 The variable x is Gamma with sample data of �x ¼ 1:0 and s2 ¼ 10.0.

Generate a random variate of x.

4.6 The variable x is Beta with parameters, (k1, k2) ¼ (1, 8) and (a, b) ¼ (10, 90).

Two random Gammas are g1 ¼ 13 for (k1, k2) ¼ 10,1) and g2 ¼ 20 for (k1,

k2) ¼ (8,1). Find the random variate for the Beta.

4.7 The variable x is Weibull with parameters, (k1, k2) ¼ (2, 20). Generate a

random variate of x.

4.8 The variable x is Normal with mean ¼ 100 and variance ¼ 100. Use the

Sine-Cosine method to generate a random variate of x.

4.9 The variable x is Lognormal with mx ¼ 5 and sx ¼ 100. Generate a random

variate of x.

4.10 Generate a random variate for a chi-square variable with degrees of

freedom ¼ 5.

4.11 Generate a random variate for a chi-square variable with degrees of

freedom ¼ 153.

4.12 Generate a random variate for a student’s t with degrees of freedom ¼ 5. Get

z first.

4.13 Generate a random variate for an F distribution with degrees of freedom 5 and

2. Get chi square (df ¼ 5), first.

Chapter 5

5.1 The variable x is discrete with the following probability distribution.

x �1 0 1 2

P(x) 0.50 0.30 0.15 0.05

Generate one random variate of x.

5.2 The variable x is from a discrete uniform distribution where x ranges from�5

to 5. Generate a random variate of x.

5.3 Generate a random variate of x for a Bernoulli with p ¼ 0.30.

5.4 Generate a random variate of x for a Binomial with n ¼ 10 and p ¼ 0.30.

5.5 Generate a random variate of x for a Binomial with n ¼ 500 and p ¼ 0.20.

5.6 Generate a random variate of x for a Binomial with n ¼ 500 and p ¼ 0.001.

5.7 Generate a random variate of x for a Hyper Geometric with N ¼ 20, D ¼ 5

and n ¼ 2.

5.8 Generate a random variate of x for a Geometric with p ¼ 0.30. Note, x is the

number of trials till the first success.

5.9 Generate a random variate for a Pascal with p ¼ 0.30 and k ¼ 5. Note, x is

the number of trials till five successes.

5.10 Generate a random variate for a Poisson with E(x) ¼ 1.5.
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Chapter 6

6.1 The variables x1, x2, x3, x4 are jointly related by the following probabilities:

x1 0 1

x2 1 2 1 2

x3 x4
0 3 .01 .09 .02 .10

4 .03 .01 .04 .02

1 3 .05 .06 .06 .09

4 .07 .12 .08 .15

Generate one set of random variates for x1, x2, x3, x4.

6.3 Consider the multinomial distribution with k ¼ 4, p1 ¼ .4, p2 ¼ .3, p3 ¼ .2,

p4 ¼ .1 and n ¼ 5. Generate one set of random variates for x1, x2, x3, x4.

6.4 Consider x1, x2 that are related by the bivariate normal distribution with

m1 ¼ 1.0, m2 ¼ 0.8, s1 ¼ 0.2, s2 ¼0.1 and r ¼ 0.5. Generate one random

variate set of x1, x2.

6.6 Consider x1, x2 that are related by the bivariate lognormal distribution with

parameters my1 ¼ 20, my2 ¼ 2, sy1 ¼ 2, sy2 ¼ 0.5 and ry ¼ 0.8, where

yi ¼ ln(xi) for i ¼ 1,2. Generate one random variate set of x1, x2.

6.8 Generate the Cholesky matrix from the variance-covariance matrix:

16 4 2

4 4 1

2 1 1

2
4

3
5

6.9 The variables x1, x2, x3 are from a multivariate normal distribution with the

following matrices. Generate one random set of x1, x2, x3:

m ¼
20

6

10

2
4

3
5 C ¼

4 0 0

1 3 0

0:5 0:5 0:5

2
4

3
5

6.10 The variables x1, x2, x3 are from a multivariate lognormal distribution with the

following matrices from the transformed values of y1, y2, y3. Generate one

random set of x1, x2, x3:

my ¼
2:0
0:6
1:0

2
4

3
5 Cy ¼

4 0 0

1 3 0

0:5 0:5 0:5

2
4

3
5
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Chapter 7

7.1 Consider a Poisson process where A(j) ¼ arrival rate, B(j) ¼ time for j ¼ 1,

2, 3, 4:

j 1 2 3 4 . . . . . .

AðjÞ 2 3 5 4

BðjÞ 0 1 2 3

Generate the random times of the first three arrivals.

7.2 Generate the batch size, x, for an arrival where x ¼ y + 1 and y is Posson

distributed with E(y) ¼ 2.4.

7.3 Generate a random variate, x, that is the time to fail for a unit that has four

active redundant units, with times denoted as y, that are Exponential and E

(y) ¼ 100.

7.5 Generate a random variate, x, that is the time to fail for a unit that has four

standby redundant units, with times denoted as y, that are Exponential and E

(y) ¼ 100.

7.7 From the integers of 1–20, generate the sequence of n ¼ 5 of them randomly

without replacement.

7.8 From a deck of N ¼ 52 regular cards, generate a random hand for a player

who will receive five of the cards. Use the same index to identify cards as

listed in the text.

Chapter 9

9.2 Simulation results of n ¼ 11 runs yields �x ¼ 100 and s ¼ 18. Compute the

0.95 confidence limits for the true mean. Note, t10, 0.025 ¼ 2.228.

9.3 In Problem 9.2, the analyst wants (U – L) ¼ 5.0. How many more runs are

needed?

9.4 Simulation results of n ¼ 40 runs yield w ¼ 8 units with an attribute. Find the

0.95 confidence limits on the true proportion of units with the attribute.

9.5 In Problem 9.4, the analyst wants (U – L) ¼ 0.04. How many more runs are

needed?

9.6 Consider a machine shop where an order of No ¼ 15 is needed. A simulation

is run where the units started is Ns ¼ 20, and after n ¼ 1,000 simulation runs,

Ng ¼ 958 is the number of good units. The management wants to be 95%

certain that the number of good units will exceed No. Find the 0.95 confidence

interval on the probability that Ng will be equal or larger to No.

9.7 For Problem 9.6, how many more runs, if any, are needed so that the 0.95

confidence interval (from L to U) is always above the 0.95 specification mark?
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9.9 Suppose two options are run in a simulation with results of n1 ¼ 20, �x1 ¼ 1001
¼ 100 and s1 ¼ 30 for option 1, and n2 ¼ 20, �x2 ¼ 95 and s2 ¼ 25 for

option 2. Assuming the two variances are the same, find the 0.95 confi-

dence limits on the difference between the two means.

9.10 A simulation is run with four options (i) and four observations (j) of each are

run with results in the table below. Use the one-way-analysis-of-variance

method to determine if all the means of the four options are the same at the

0.05 significance level. Note F3,12,0.05 ¼ 3.49.

Observations (j)

1 2 3 4

Options (i)

1 5 7 6 4

2 3 5 6 2

3 8 9 7 8

4 6 4 4 6

9.12 Using the results of Problem 9.10, compute the 0.95 confidence interval on the

difference between each pair of means, and label any that are significantly

different. Note, t0.025,12 ¼ 2.179.

Chapter 10

10.2 A sample of n ¼ 10 data entries are the following: (10, 13, 9, 7, 8, 12, 15, 10,

3, 8). Compute the following: x(1), x(n), �x, s, cov, t.
10.3 From the data of Problem 10.2, compute the estimate of the location

parameter, g.
10.4 Consider the (n ¼ 15) sample data from a continuous uniform distribution:

(1.3, 1.4, 1.8, 2.3, 2.4, 2.5, 2.9, 3.1, 3.4, 3.9, 4.1, 4.7, 5.2, 5.7, 6.1). Find the

maximum likelihood estimates of the min and max parameters, (a, b). Now

find the method of moments estimators for a and b.

10.5 Suppose the n ¼ 12 sample data entries are the following: (10.4, 12.3, 13.5,

14.6, 15.1, 15.8, 16.2, 16.5, 17.3, 16.3, 15.1, 19.4). Assuming the data are

normally distributed, estimate the parameters of the mean and standard

deviation.

10.6 From the n ¼ 8 sample data: (0.7, 1.2, 1.8, 2.4, 4.0,10.3, 0.9, 1.4), estimate

the parameter for an exponential distribution.

10.7 Assume the lognormal variable x, with sample data: (10, 12, 15, 23, 40, 90,

217). Estimate the parameters for this distribution.

10.8 Suppose the variable x is assumed as gamma distributed and a sample of

n ¼ 50 yields the sample average of 33 and the sample variance of 342.

Estimate the parameters for the gamma distribution.
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10.9 Suppose the variable x is assumed as beta distributed and estimates of the

following are given: mean ¼ 60, mode ¼ 80, min ¼ 0, max ¼ 100. Esti-

mate the parameters for the beta distribution.

10.10 The following (n ¼ 11) sample data are: (3, 3, 5, 7, 8, 8, 11,12,13,15,16).

Assuming the data comes from a discrete uniform distribution, estimate the

maximum likelihood estimate for the min and max (a, b). Now estimate the

parameters using the method of moments.

10.11 Suppose the variable x is from a binomial distribution with n ¼ 10, p is

unknown, and m ¼ 8 samples of x are (3, 2, 1, 5, 3, 4, 3, 2). Find the

maximum likelihood estimate of p.

10.12 Suppose the variable x is from a geometric distribution where p is unknown,

and m ¼ 6 samples of x are (3, 5, 8, 4, 7, 3). Find the maximum likelihood

estimate of p. Recall, x ¼ number of failures till a success.

10.13 Suppose the variable x is from a Pascal distribution with k ¼ 3, p is

unknown, and m ¼ 10 samples of x are (8, 9, 9, 12, 10, 13, 10, 12,

11, 13). Find the maximum likelihood estimate of p. Recall, x ¼ number

of failures till three successes.

10.14 Suppose the variable x is from a Poisson distribution where the parameter is

unknown, and m ¼ 7 samples of x are (3, 5, 2, 7, 4, 4, 1). Find the maximum

likelihood estimate of the parameter.

10.15 Consider the (n ¼ 15) sample data from Problem 10.4 and the maximum

likelihood estimates of the parameters. Assuming the continuous uniform

distribution, list the vectors Xs and Xf for the Q-Q Plot.

10.16 Consider the (n ¼ 11) sample data from Problem 10.10 and the maximum

likelihood estimates of the parameters. Assuming the discrete uniform

distribution pertains, list the vectors Fs and Ff for the P-P Plot.

Chapter 11

11.1 Suppose the variable x is from a continuous uniform distribution and an expert

estimates the minimum value is 50 and the 0.75-quantile is 90. Estimate the

parameters for this distribution.

11.2 Suppose the variable x is from a continuous uniform distribution and an expert

estimates the maximum value is 100 and the 0.20-quantile is 40. Estimate the

parameters for this distribution.

11.3 Assume a variable x from the triangular distribution where an expert estimates

the following: min ¼ 5, most likely ¼ 20 and the max ¼ 30. Estimate the

parameters for the standard triangular distribution.

11.4 Assume a variable x from the beta distribution where an expert estimates the

following: min ¼ 5, mean ¼ 18, most likely ¼ 20 and the max ¼ 30. Esti-

mate the parameters for the beta distribution.
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11.5 Assume a variable x from the lognormal distribution where an expert

estimates the following: min ¼ 0, most likely ¼ 20 and the 0.95-quantile

¼ 100. Estimate the parameters for the lognormal distribution.

11.6 Assume a variable x from the Weibull distribution where an expert estimates

the following: min ¼ 0, most likely ¼ 20 and the 0.95-quantile ¼ 100. Esti-

mate the parameters for the Weibull distribution.
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Appendix C

Solutions

2.1 4, 5, 10, 3. 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7

2.2 60, 48, 0

2,3 0.9375, 0.750, 0.000

3.1 1.429

3.2 1

3.3 1.084

3.4 1.526

3.5 1.260

3.6 1.918

3.7 4.899

3.8 4.484

3.9 0.500

3.10 6.978

3.11 4.899

4.1 4.600

4.2 2.271

4.3 8.948

4.4 4.230

4.5 0.00058

4.6 41.515

4.7 13.478.

4.8 114.18

4.9 1.283

4.10 3.535

4.11 151.98

4.12 0.063

4.13 0.697

5.1 �1

5.2 �1

(continued)
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5.3 1

5.4 3

5.5 99

5.6 1

5.7 0

5.8 2

5.9 8

5.10 3

6.1 0,2,0,4

6.3 3,0,2,0

6.4 19.884, 2.326

6.6 2.686, 2.454

6.8 C ¼ 4 0 0

1 1.732 0

0.5 0.289 0.666

6.9 X ¼ 19.768

9.443

11.028

7.1 0.908, 2.865, 3.562

7.2 x ¼ 6

7.3 67.14

7.5 193.76

7.7 8, 11, 3, 12, 6

7.8 8 H, AD, 6D, AS, KD

9.2 (L,U) ¼ (87.908, 112.091)

9.3 188 more

9.4 (L,U) ¼ (0.076, 0.324)

9.5 1,497 more’

9.6 (L,U) ¼ (0.946, 0.970)

9.7 1,415 more

9.8 (L,U) ¼ (�12.11, 22.11)

9.9 (L,U) ¼ (�0.1917, 0.0317)

9.10 F ¼ 6.61 Significant

9.12 1 v 2 0.476, 2.524 s

1 v 3 �3.524, �1.475 s

1 v 4 �0.524, 1.524 ns

2 v 3 �5.024, �2.976 s

2 v 4 �2.024, 0.024 ns

3 v 4 1.976, 4.024 s

10.2 x(1) ¼ 3

x(10) ¼ 15

�x ¼ 9:5

s ¼ 3.375

cov ¼ 0.355

t ¼ 1.190

10.3 �1

10.4 MLE: a ¼ 1.3, b ¼ 6.1

MOM: a ¼ 0.746, b ¼ 6.025

(continued)
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10.5 N(15.208, 2.3552)

10.6 0.352

10.7 LN(3.457, 1.1392)

10.8 y ¼ 0:096

k ¼ 3.168

10.9 (a, b, k1, k2) ¼ (0,100,1.8,1.2)

10.10 MLE: a ¼ 3, b ¼ 16

MOM: a ¼ 1, b ¼ 17

10.11 0.2875

10.12 0.167

10.13 0.219

10.14 y ¼ 3:714

10.15 Xs ¼ (1.3,1.4, 1.8, 2.3, 2.4, 2.5, 2.9, 3.1, 3.4, 3.9, 4.1,4.7, 5.2, 5.7, 6.1)

Xf ¼ (1.46, 1.78, 2.10, 2.42, 2.74, 3.06, 3.38, 3.70, 4.02, 4.34, 4.66, 4.98, 5.30, 5.62, 5.94)

10.16 Fs ¼ (.045, .136, .227, .318, .409, 500, .591, .683, .774, .865, .955)

Ff ¼ (.071, .071, .214, .357, .429, .429, .643, .714, .786, .928, 1.000)

11.1 103.33

11.2 25

11.3 (0. 0.6, 1)

11.4 (5, 30, 1.3, 1.2)

11.5 LN(3.470, 0.6862)

11.6 k1 ¼ 1.44

k2 ¼ 45.54
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