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Preface 

 

Bayesian methods are being used more often than ever before in biology and
medicine. For example, at the University of Texas MD Anderson Cancer
Center, Bayesian sequential stopping rules routinely are used for the design
of clinical trials. This book is based on the author’s experience working with
a variety of researchers, including radiologists, pathologists, and medical
oncologists. The majority of that experience has been with the Division of
Diagnostic Imaging, where radiologists determine the extent of disease
among patients undergoing treatment. Diagnosis, via medical imaging, is
essential in order to assess the effect of the various therapies provided to the
patient. Another source of information for the author has been the ability to
work with medical oncologists in their design of Phase I, II, and III clinical
trials. The author has found Bayesian methods for the design and analysis
of clinical trials to be quite useful because prior information, in the form of
previous related studies, is always available and easily incorporated into the
design of future studies.

Based on this experience and the wealth of information available to the
author, this book should give the biostatistics student a good idea of what
to expect and how to work with healthcare researchers. It is an introductory
book with a Bayesian flavor and is directed toward diagnostic medicine.
Students with a good background in the basic methods courses of regression
and the analysis of variance and in the introductory courses in probability
and mathematical statistics should benefit greatly from the book. With this
type of background, the student will be able to learn Bayesian statistics and
how to apply it to important problems in medicine and biology. In addition,
it should serve as a useful reference for those providing statistical assistance
to medical scientists. 

In the book, the reader is introduced to various diagnostic medical proce-
dures, then presented with the fundamentals of Bayesian statistics and asso-
ciated computing methods. Next, the foundation for the analysis of
diagnostic test accuracy is outlined and the Bayesian way to analyze such
data is explained, using many author-assisted studies. Of special interest is
the estimation of the area under the receiver operating characteristic (ROC)
curve for determining diagnostic accuracy. Also described in the book is a
novel way to estimate the area when the image data are clustered.  

Some of the material in this book is similar to that found in 

 

Statistical
Methods in

 

 

 

Diagnostic Medicine

 

 by Zhou, Obuchowski, and McClish and 

 

The
Statistical

 

 

 

Evaluation of Medical Tests for Classification and Prediction

 

 by Pepe.
Several examples from these sources are analyzed from a Bayesian perspec-
tive. However, this book is entirely from a Bayesian perspective and presents
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a great deal of material not stressed in the above-mentioned references. This
material includes Bayesian methods of agreement between readers and the
role diagnostic medicine plays in the design of clinical trials, and should
complement as well as expand on the books by Pepe and by Zhou et al. A
unique feature of this book is that the Minitab

 

®

 

 and WinBUGS

 

®

 

 packages
are employed to provide Bayesian inferences. After reading the book, the
student will be able to provide a Bayesian analysis for a large variety of
interesting and practical problems. 
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1

 

Chapter 1

 

Introduction

 

1.1 Introduction

 

This book is about how to use Bayesian statistical methods to design and
analyze studies involving diagnostic medicine. It grew out of the author’s
experience in consulting with many investigators of the Division of Diag-
nostic Imaging at The University of Texas MD Anderson Cancer Center
(MDACC) in Houston. In a modern medical center, diagnostic imaging is
ubiquitous and crucial for patient management, from the initial diagnosis to
assessing the extent of disease as the patient is being treated.

 

1.2 Statistical Methods in Diagnostic Medicine

 

Biostatistics plays a pivotal role in the imaging literature, as can be discerned
by reading articles in the mainline journals, such as 

 

Academic Radiology

 

, 

 

The
American Journal of Roentgenology

 

, and 

 

Radiology

 

, and the more specialized,
such as 

 

The Journal of Computed Assisted Tomography

 

, 

 

The Journal of Magnetic
Resonance Imaging

 

, 

 

The Journal of Nuclear Medicine

 

, and 

 

Ultrasound in Medicine

 

.
As we will see, the usual methods ranging from the t-test and chi-squared
test to others, such as the analysis of variance and various regression tech-
niques, are standard fare for medical diagnostic studies. There are also some
methods that are somewhat unique to the field, including ways to estimate
diagnostic test accuracy and methods to measure the agreement between
imaging modalities and/or readers. Also important to imaging research are
the elements of good statistical design, including replication, randomization,
and blocking in the planning of clinical investigations.

Diagnostic imaging is employed in clinical trials, such as Phase II trials,
where the main objective is to determine the response to a new therapy and
where the response is based on an image measurement. Patient sample size,
based on Bayesian sequential stopping rules, is another application that has
proven to be quite beneficial in the development of new medical therapies.
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The Bayesian approach will be used throughout this book for all aspects
of the design and analysis of diagnostic studies. Also, standard non-Bayesian
methods will be employed on certain occasions when deemed appropriate.  

 

1.3 Preview of Book

 

Chapter 2 is an introduction to the fundamental areas of interest in diagnostic
medicine, including a brief description of the main imaging modalities,
namely X-ray, computed tomography, magnetic resonance imaging, and
nuclear medicine procedures. A brief explanation of how diagnostic imaging
is involved in large population screening and in the day-to-day patient
management is provided. The estimation of diagnostic accuracy is not only
essential to the diagnosis of a patient, but also for the assessment of patient
progress during therapy. Estimating agreement between various readers
and/or modalities is crucial for the training of radiologists, for comparing
imaging techniques, and in assessing the success of therapy. The develop-
ment of an imaging modality involves three phases (Phase I, Phase II, and
Phase III developmental trials) and these will be explained along with
numerous examples. A description of the role diagnostic imaging plays in
the various phases of a clinical trail is provided. In addition, the literature
of the field, including the various books and journals, is reviewed.

The purpose of Chapter 3 is to introduce the reader to other areas of
diagnostic medicine. In addition to diagnostic imaging, there are many other
services that provide diagnostic information, including pathology and sur-
gery. For example, in the treatment of breast cancer, it is imperative to know
the extent of metastasis to the axillary lymph nodes. Sentinel lymph node
(SLN) biopsies are performed to determine if there is lymph node involve-
ment, and diagnostic imaging (including nuclear medicine and interven-
tional radiology), pathology, and surgery are key components for the
procedure. This chapter will examine the role of SLN biopsy in lung cancer
and in melanoma. Of course, the biostatistical methods for determining
accuracy and agreement are the same as those for diagnostic imaging, and
their application to nonimaging tests will be shown. 

Chapter 4 provides an introduction to Bayesian statistics, beginning with
Bayes theorem and how prior information is found and used. Inferential
techniques of estimation and testing hypotheses based on the posterior and
predictive distributions are introduced. Also, how they are to be applied in
diagnostic imaging is revealed. The computing algorithms along with the
corresponding software for direct and indirect sampling from posterior dis-
tributions are briefly outlined. This book is unique in that the sample sizes
are to be determined by fully Bayesian techniques, and the software that is
used to estimate the sample size is described. Some of the packages are
off–the-shelf, while others have been developed at MDACC. 
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Chapter 5 introduces the estimation of accuracy by sensitivity, specificity,
and positive and negative predictive values for ordinal and continuous
diagnostic measurements. Numerous examples taken from the literature
illustrate the various concepts involved in test accuracy. The area under the
receive operating characteristic (ROC) curve gives the overall intrinsic accu-
racy of an imaging modality, and Bayesian techniques that estimate this area
are explained for ordinal and continuous data. Special software for Bayesian
ROC analysis is introduced and illustrated with several examples analyzed
by the author at MDACC. Also discussed are some specialized topics in test
accuracy, such as problems of localization and detection, where multiple
images are taken per patient. This induces a correlation between images
within patients and special methods that take into account that correlation.
The last topic of the chapter is on Bayesian sample size estimation for diag-
nostic accuracy.  

In Chapter 6, the topics on diagnostic accuracy explained in the previous
chapter are generalized to include patient covariate information. We know
that test accuracy depends on many factors including patient characteristics,
such as age, gender, therapy received, other biomarkers, stage of disease,
etc. The importance of the risk score when taking into account patient cova-
riates is emphasized and illustrated with many examples. Again, examples
are based on the author’s consultation with investigators in the imaging
division of MDACC.   

Often, the clinical investigator wants to know the extent of agreement
between several readers or observers who are making diagnostic decisions.
For example, one study at MDACC consisted of five readers estimating the
size of a lung cancer lesion at various times in response to therapy. It is
important to know the inter- and intra-observer agreement because it has a
bearing on the decision to declare a therapy a success or a failure. Or suppose
several readers are using a confidence level ordinal score to classify the status
of lesions seen on a mammogram of a screening trial for breast cancer. How
well do the readers agree? Chapter 7 discusses the statistical methods for
estimating the agreement between and within observers, including a Baye-
sian version of the Kappa statistic to estimate agreement with ordinal data;
for continuous data, regression techniques (including a Bayesian version of
Bland-Altman) for calibration will estimate the agreement. In another
example, three readers, reading the same image, measure the length and
width of the major axis of spicules observed on mammograms. To measure
inter-observer variability, analysis of variance methods, using random effects
for readers and patients, calculate the agreement via the intra-class correla-
tion coefficient. 

Imaging techniques are utilized to measure the extent of response to ther-
apy. For example, in many Phase II clinical trails for disease with solid
tumors, the efficacy of the therapy is measured by the change in the size of
the lesion from start of treatment. Imaging the tumor size is crucial. Chapter 8
provides the necessary detail in explaining the protocol review process for
cancer clinical trials, how the tumor response is categorized, using World
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Health Organization (WHO) and response evaluation criteria in solid tumors
(RECIST) criteria, and lastly how Bayesian sequential methods are employed
to monitor the trial and to estimate the sample size. Also discussed is the
software development of Bayesian methods for the design and analysis of
clinical trials at MDACC. Examples taken from the protocol review at
MDACC illustrate how to apply Bayesian methods to this important appli-
cation of diagnostic medicine.

Chapter 9 introduces other topics in diagnostic medicine that are not
considered in the previous eight chapters. For example, how is the accuracy
of a test estimated when there is no reliable gold standard, or how is accuracy
estimated when only those that test positive are subject to the gold standard?
Or suppose the gold standard is not binary, but is possibly continuous, then
how is accuracy to be determined? Thus, this chapter emphasizes topics that
do not fit the standard mold, but are variations of the basic themes intro-
duced in the previous chapters. Other areas of medicine in addition to
diagnostic imaging employ diagnostic tests for the management of the
patient. For example, the whole idea of biomarkers, including the expanding
area of genetic microarrays, is to use such information for medical diagnoses
or as prognostic factors for patient morbidity and survival.

 

1.4 Datasets for the Book

 

The datasets used for this book come from the following sources: (1) the
protocol review process of clinical trials at MDACC, where the author was
either a reviewer or a collaborator on the protocol; (2) the author’s consul-
tations with the scientific and clinical faculty of the Division of Diagnostic
Imaging at MDACC with some 32 datasets; (3) the six datasets accompanying
the excellent book by M. S. Pepe

 

1

 

 (see: http//www.fhcrc.org/labs/pepe/
Book) 

 

The Statistical Evaluation of Medical Tests for Classification and Prediction

 

;

 

(4) the information contained in the examples of the WinBUGS

 

®

 

 package;
and (5) other miscellaneous sources, including the examples and prob-
lems in 

 

Statistical Methods in Diagnostic Medicine

 

 by Zhou, McClish, and
Obuchowski.

 

2

 

 Also, various articles by N. A. Obuchowski appearing in 

 

The
American Journal of Roentgenology

 

 and 

 

Academic Radiology

 

 provided the author
with useful information for this book, and several of her examples are
included. 

 

1.5 Software

 

WinBUGS will be used for the Bayesian analysis when sampling from the
posterior distribution is appropriate. On the other hand, when direct sam-
pling from the posterior distribution is called for, Minitab

 



 

 is often employed
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for the posterior analysis. Many specialized Bayesian programs for the
design and analysis of clinical trials have been developed at the Department
of Biostatistics and Applied Mathematics at MDACC, some of which will be
used for the design of clinical trials. 

Why is the Bayesian approach taken here? The author has been a Bayesian
theorist since 1974, when he was on a sabbatical leave to study at University
College London. A colleague persuaded him of the advantages of such an
approach. The main advantage, of course, is that it is a practical way to
utilize prior information, which, in a medical setting, is all around and
should be used to one’s advantage. It would be a pity not to use it. 

 

References

 

1. Pepe, M.S., The Statistical Evaluation of Medical Tests for Classification and
Prediction, Oxford University Press, 2003, Oxford, U.K.

2. Zhou, H.H., McClish, D.K., and Obuchowski, N.A., Statistical Methods for
Diagnostic Medicine, John Wiley & Sons, 2002, New York. 
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Chapter 2

 

Diagnostic Medicine

 

2.1 Introduction

 

In this chapter is a brief description of diagnostic imaging and other diag-
nostic techniques routinely used at a major healthcare institution. At MD
Anderson Cancer Center (MDACC), the Division of Diagnostic Imaging is
made up of the following departments: Diagnostic Radiology, Experimental
Diagnostic Imaging, Imaging Physics, Nuclear Medicine, and Interventional
Radiology. There were approximately 100 faculty members during the
2003–2004 academic year. Diagnostic imaging provides an extremely impor-
tant role in the overall care of the cancer patient, including diagnosis, staging,
and monitoring of patients during their stay in the hospital. Most of the
examples in this book are taken from diagnostic imaging studies; however,
there are many other ways to perform diagnoses, and some of these are
explained in Chapter 3. 

 

2.2 Imaging Modalities

 

The primary modalities for diagnostic imaging are X-ray, fluoroscopy, mam-
mography, computer tomography (CT), ultrasonography (US), magnetic res-
onance imaging (MRI), and nuclear medicine. Each one has advantages and
disadvantages with regard to image quality, depending on the particular
clinical situation. Broadly speaking, image quality consists of three compo-
nents. The first is contrast. Contrast is good when important physical differ-
ences in anatomy and tissue are displayed with corresponding different
shades of gray levels. The ability to display fine detail is another important
aspect of image quality and is called resolution. Anything that interferes
with image quality is referred to as noise, which is the third component.
Obviously, noise needs to be minimized in order to improve image quality. 

Medical images are best thought of as being produced by tracking certain
probes as they pass through the body. A stream of X-rays is passed through
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the patient and captured on film as the stream exits. An X-ray is a stream of
photons, which are discrete packets of energy. As they pass through the body,
various tissues interact with the photons and these collisions remove and
scatter some of the photons. The various tissues reduce the amount of energy
in various parts of the stream by different amounts. A shadow is produced
that appears on special photographic film producing an image. If the density
of the object that is the target is much higher than that of the surrounding
environment (as bone), the X-ray does a good job of locating it. Some lesions
have densities that are quite similar to the surrounding medium and are
difficult to detect. Generally speaking, the X-ray has very good resolution and
the noise is easy to control, but has low contrast in certain cases. The X-ray is
routine in all medical settings and is the most utilized of all imaging devices. 

A close relative of the X-ray is fluoroscopy. In this modality, the exiting
beam is processed further by projecting it onto an image intensifier, which
is a vacuum tube that transforms the X-ray shadow onto an optical image.
This mode has about the same image quality as the X-ray, but allows the
radiologist to manage images in real time. For example, it allows the operator
to visualize the movement of a contrast agent past certain landmark locations
in the gastrointestinal (GI) tract or vascular system.

Still another variation of the X-ray is computer tomography or CT, which
overcomes some of the limitations of X-rays. The superimposition of shadows
of overlapping tissues and other anatomical structures often obscure detail
in the image. CT does produce images quite differently than X-rays; however
it does use X-rays, but the detection and processing of the shadows is quite
sophisticated and is the distinctive feature of the modality that vastly
improves the image over that of the X-ray. CT has good contrast among the
soft tissues (e.g., lung and brain tissue) and good resolution. The X-ray takes
information from a three-dimensional structure and projects it onto a two-
dimensional image, which causes the loss of detail due to overlapping tissues.
To overcome this problem, the patient is placed in a circle and inside the circle
is an X-ray source and embedded in the circle is an array of detectors that
capture the shadow of the X-ray beam. The X-ray source irradiates a thin slice
of tissue across the patient and the detector captures the shadow. The X-ray
source moves to a close adjacent location and the process is repeated, say,
700 times. The X-ray source circumscribes the patient through 360 degrees.
The source then repeats the above process with another thin slice. For a given
slice, there are 700 projections of that slice and these 700 projections are
processed via computer and back projection algorithms to produce the two-
dimensional representation.  The computer works backward from the projec-
tions to reconstruct the spatial distribution of the structure of the thin slice.
In other words, CT answers the following question: What does the original
structure need to resemble in order to produce the 700 generated projections?

A good example of CT (using the GE Imatron C-100 Ultrafast) is screening
for coronary heart disease, where the coronary artery calcium score indicates
the degree of disease severity. See Mielke et al.

 

1-3

 

 and Dasgupta

 

4

 

 where the
accuracy of coronary artery calcium to diagnose heart disease is estimated
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by the area under the receiving operating characteristic (ROC) curve. These
examples will be examined from a Bayesian perspective in later chapters.  

Mammography is still another variation of the X-ray. While some small
masses can be detected by a physician or by self-examination, mammogra-
phy has the ability to detect very small lesions. However, the smaller they
are the more difficult they are to detect. Mammography consists of a spe-
cialized X-ray tube and generator, a breast compression device, an antiscatter
grid, and film. The procedure must be able to reveal small differences in
breast density, possibly indicative of suspicious mass, and it must also be
able to detect small calcifications that may have importance for diagnosis.
All the attributes of good image quality are required, namely high contrast,
good resolution, and low noise. Later in this book, the role of mammography
in screening for breast cancer will be described.  

A completely different form of imaging is magnetic resonance imaging
(MRI). A beam of photons is not passed through the body, but instead the
body is placed in a large magnet and the hydrogen atoms (in the water
molecules) line up in the same direction as the magnetic field. When the
magnetic field is disrupted by directing radio energy into the field, the
magnetic orientation of the hydrogen atoms is disrupted. The radio source
is switched off and the magnetic orientation of the hydrogen atoms returns
to the original state. The manner (referred to as T1 and T2 relaxation times)
and way in which they return to the original state produces the image.
Essentially, what is being measured is the proton density per unit volume
of imaged material. The actual image looks like an X-ray; however the
principal foundations of MRI are completely different. The same image
processing technology as used in CT can be used in MRI to process the
images. For example, thin slices and backward projection methods are often
made to improve the MRI image quality. MRI has excellent resolution and
contrast among the soft tissues and displays good anatomical detail.

Nuclear medicine is the joining of nuclear physics, nuclear chemistry, and
radiation detection. A radioactive chemical substance called a radiopharma-
ceutical is injected, usually intravenously (IV), where it concentrates in a
particular tissue or organ of interest. The substance emits gamma rays that
are detected by gamma cameras and then the captured gamma particles are
counted by the camera. There are two principal gamma cameras: PET
(positron emission tomography) and SPECT (single photon emission com-
puted tomography). Nuclear imaging is often used to view physiological
processes. For example, FDG-PET (florodeoxyglucose-PET) is frequently
used to measure glucose metabolism, where the radiopharmaceutical (18) F-
florodeoxyglucose is absorbed by every cell in the body. The higher the
observed radioactivity as measured by PET, the higher the glucose metabo-
lism. In some cancer studies, the malignant lesion has an increased glucose
metabolism compared to the adjacent nonmalignant tissue and, thus, is
useful in the diagnosis and staging of disease. 

Another area where nuclear medicine is useful is in cardiac perfusion
studies. For example, radiation therapy of esophageal cancer often induces

 

C7672_C002.fm  Page 9  Wednesday, May 16, 2007  10:35 AM

© 2007 by Taylor & Francis Group, LLC



 

10

 

Bayesian Methods in Diagnostic Medicine

 

damage to the heart in the form of ischemia and scaring. The damage can
be assessed by a nuclear medicine procedure, such as the exercise stress test,
where thallium is administered via IV to the patient and concentrates in the
heart muscle, and the resulting radioactivity is counted by SPECT to produce
the image. Among the soft tissues, nuclear medicine procedures have fair-
to-good contrast, but poor resolution and noise can be a problem for image
quality. Figure 2.1 shows six SPECT images taken during one cycle of the
heart for a myocardial perfusion study of Gayed

 

5

 

 in order to determine the
status of the heart of a cancer patient.

Ultrasonography (US) is the last modality to be described. It is based on a
physical stream of energy passing through the body. The source is a transducer
that converts electrical energy into a brief pulse of high-frequency acoustical
energy to be transmitted into patient tissues. The transducer acts as a trans-
mitter and receiver. The receiver detects echoes of sound deflected from the
tissues, where the depth of a particular echo is measured by the round trip
time of the transmitted emission. The images are viewed in real time on a
monitor and the images are produced by interrogating patient tissue in the
field of view. The real-time images are produced rapidly on the monitor allow-
ing one to view moving tissue, such as respiration and cardiac motion. The
US examination consists of applying the US transducer to the patient’s skin
using a water-soluble gel to make the connection secure for good transmission
of the signal. Image quality is adversely affected by bone and by gas-filled

 

FIGURE 2.1

 

SPECT images of myocardial perfusion.
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structures, such as bowel and lung. For example, bone causes almost compete
absorption of the signal producing an acoustic shadow on the image that hides
the detail of tissues near the bone, while soft tissue, gas-filled objects produce
a complete reflection of sound energy that eliminates visualization of deep
structures. In spite of these drawbacks, the mode has many advantages, one
of which is the noninvasive nature of the procedure. US is used to image a
multitude of clinical challenges and is very beneficial when solving a particular
clinical problem, such as viewing the development of a fetus.  

Various modalities are often combined to improve overall diagnostic accu-
racy. For example, recently PET and CT have been combined to diagnose and
stage esophageal cancer. When two modalities are combined, one must devise
certain rules to decide when the combined procedure will produce a “positive”
or “negative” determination. In another interesting study, US and CT were
combined and their accuracy compared to FDG-PET. The ideas involved in
measuring the accuracy of combined modalities will be outlined in Chapter 6. 

It is important to remember, that the imaging device does not make the
diagnosis, but rather the radiologist and others make the diagnosis. The
modality is an aid to the radiologists and to others who are responsible for
the treatment of the patient. After the radiologist reads the image, how is
this information transformed to a scale where the biostatistician and others
are able to use it for their own purposes? 

For a nontechnical introduction to diagnostic imaging, Wolbarst

 

6 

 

presents a
very readable account. In addition, Jawad,

 

7

 

 Chandra,

 

8

 

 Seeram,

 

9

 

 and Markisz
and Aquilia

 

10

 

 are standard references to cardiac ultrasound, nuclear medicine,
computed tomography, and magnetic resonance imaging respectively.

 

2.3 Activities in Diagnostic Imaging

 

As stated earlier, diagnostic methods are ubiquitous in the healthcare system.
These activities will be divided generally into two categories: (1) screening
for preclinical disease, such as for breast cancer, heart disease, and lung
cancer; and (2) as part of patient management during his/her stay in a large,
modern healthcare facility. The emphasis in this book will be on the latter,
where the patient has been diagnosed with the help of imaging and then is
followed and monitored during his/her stay in the hospital. During the
patient’s stay, the following imaging activities are usually involved: 

• Primary diagnosis or confirmation of earlier diagnoses.
• Diagnostic imaging to determine the extent of disease, including

biopsy procedures, so-called staging studies, and follow-up medical
procedures, such as surgery for biopsy or other forms of therapy.

• Monitoring the progression of the disease during therapy, such as
in Phase II clinical trials.  
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Screening for disease, such as breast cancer, is performed to detect disease in
the early phase, before symptoms appear. The early detection of disease when
treatment is more effective and less expensive is the main objective of screening.
It is assumed that early detection will lead to a more favorable diagnosis and
that early treatment will be more effective than treatment given after symptoms
appear. Another important goal of screening is to identify risk factors that
would predispose the subject to a higher than average risk of developing
disease. Imaging is almost always involved in the diagnosis of disease, but
mammography is the only examination in wide use today as a screening tool.
There are some other areas where screening is being tested, namely, in lung
cancer with multidetector CT and in the detection of colorectal adenomatous
polyps. One of the most important and difficult problems in clinical medicine
is making recommendations for imaging studies for disease screening. 

Screening should only be performed if the disease is serious and in the
preclinical phase, and on a population that is at relatively high risk for devel-
oping the disease. Screening would not be effective if the disease can be
effectively treated after the appearance of symptoms. If a false positive occurs,
the patient is subjected to unnecessary follow-up procedures, such as surgery,
additional imaging, and pathological testing for extent of the disease. 

A diagnostic test, such as mammography, is efficacious only if it is accurate,
that is, has good diagnostic characteristics, such as high sensitivity, specific-
ity, and positive predictive value, and where a survival advantage can be
demonstrated. How should a study be designed in order to evaluate the
effectiveness of an imaging screening procedure? Of course, randomized
studies have an advantage and are the basis for a recent article by Shen
et al.

 

11

 

 who reported on the survival advantage of screening detected cases
over control groups. This investigation used data from three randomized
studies with a total of 65,170 patients, and used Cox regression techniques
to control for the so-called lead-time bias (detection of early stage disease
with screening), tumor size, stage of disease, lymph node status, and age.
They conclude that mammography screening is indeed effective. For addi-
tional information on the advantages of mammography, see Berry et al.

 

12

 

 For
recent Bayesian contributions to the estimation of sensitivity and lead-time
in mammography, see Wu, Rosner, and Broemeling.

 

13,14

 

The entire area of diagnostic screening has voluminous literature. This
book will not focus on screening, and the reader is referred to Shen et al.
who cite the most relevant studies. Some aspects of the Bayesian approach
to screening for breast cancer is found in Chapter 9.

 

2.4 Accuracy and Agreement

 

How good is a diagnostic procedure? For example, suppose one is using
mammography to diagnose breast cancer. How well does it correctly classify
patients who have the disease and those who do not? Among those patients

 

C7672_C002.fm  Page 12  Wednesday, May 16, 2007  10:35 AM

© 2007 by Taylor & Francis Group, LLC



 

Diagnostic Medicine

 

13

who have been classified with disease, what proportion actually has it? And,
among those who were designated without disease, how many actually do
not have it? To answer these questions, one must have a gold standard by
which the true status of disease is determined. Thus, the gold standard will
divide the patients into two groups: those with and those without the disease. 

Another question is how does the radiologist decide when to classify an
image as showing a malignant lesion? Often a confidence level scale is used
where (1) designates definitely no malignancy, (2) probably no malignancy,
(3) indeterminate, (4) probably a malignant lesion, and (5) definitely a malig-
nant lesion. Given this diagnostic ordinal scale, how does the reader decide
when to designate a patient as diseased? In the case of mammography, a
score of 4 or 5 is often used to classify a patient as having the disease, in
which case, each image can be classified as either (1) a true positive, (2) a
true negative, (3) a false positive, and (4) a false negative. Of course, these
four possibilities can only be used if one knows the true status of disease as
given by the gold standard. Given these four outcomes, one may estimate
the accuracy of the procedure with the usual measures of sensitivity, speci-
ficity, and positive and negative predictive values. For example, the specific-
ity is estimated as the proportion of patients who test negative, among those
who do not have the disease. There are many statistical methods to estimate
test accuracy and will be explained in detail in Chapter 4. The idea of the
area under the ROC curve will be explained and many examples introduced
that will demonstrate its use as an overall measure of test accuracy.

Other factors that need to be taken into account are: 

1. Design of the study.
2. Gold standard and how it is utilized.
3. Variability among and between observers and the input of others

involved in diagnostic decisions. 

With regard to the design, several questions must be asked. For example,
how are the patients selected? Is one group of patients selected at random
from a particular population or are two groups of patients, diseased and
nondiseased, selected? Or, are they selected from patient charts, such as in a
retrospective review? Along with this, what is the nature of the population
from which the patients are selected? Is it a screening population, a community
clinic, or a group of patients undergoing biopsies? These factors all affect the
final determination of the accuracy as well as what biases will be introduced. 

The gold standard often depends on surgery for biopsy, the pathology
report from the lab, and additional imaging procedures. When and how the
gold standard is used, often depends on the results of the diagnostic test.
Often, only those who test positive for disease are subjected to the gold
standard, while those who test negative are not. For example, with mam-
mography, those who test positive are tested further with biopsy and tests
for histology. While among those who test negative, follow-up of patient
status is the gold standard.
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Lastly, with regard to reader variability, it is important to remember that
the diagnostic device is an aid to the people who make the diagnosis and
that the diagnosis is made by group consensus (e.g., cardiologists, oncolo-
gists, surgeons, radiologists, pathologists, etc.). All of this introduces vari-
ability and error into the final determination of disease status.  

Is agreement between and among observers (radiologists, pathologists,
surgeons, etc.) an important component of diagnostic medicine? Of course
it is. Suppose a Phase II clinical trial is being conducted to determine the
efficacy of new treatment for advanced prostate cancer with, say, 35 patients.
The major endpoint is tumor response to therapy, which is based on the
change in tumor size from baseline to some future time point. Often the
percent change from baseline is used and, furthermore, this determination
depends on the readings of the same images of several radiologists. Since
they differ in regard to training and experience, their determination of the
change varies from reader to reader. How is this taken into account? How
is a consensus reached?

Statistical methods that consider and measure agreement are well devel-
oped. For example, with ordinal test scores, agreement between observers
is often measured by the Kappa statistic, while, if the test score is continuous,
regression techniques for calibration (e.g., Bland-Altman) are frequently
ordered to assess accuracy within and between observers. Analysis of vari-
ance techniques that account for various sources (patients, readers, modali-
ties, replications, etc.) of variability help in estimating the between and
within reader variability via the intra-class correlation coefficient. In
Chapter 4 and Chapter 5, test accuracy and agreement between observers
will be revealed in detail.  

Kundel and Polansky

 

15

 

 give a brief introduction to the various issues
concerning the measurement of agreement between observers in diagnostic
imaging, and Shoukri

 

16

 

 has an excellent book on the subject.  

 

2.5 Developmental Trials for Imaging

 

When developing a new imaging modality, the diagnostic procedure must
successfully complete three phases labeled I, II, and III. This is similar to the
designation for patient clinical trials, but what is referred to here is for the
development of medical devices. The different phases are for different objec-
tives of test accuracy.

Phase I consists of exploratory trials and is usually retrospective with 10 to
50 patients and 2 to 3 readers. There are two populations, a homogenous group
of diseased subjects who are definitely known to have the disease, and a
second group of homogenous people definitely known not to have the disease.
The key word here is homogenous, where the symptoms of the disease are
more or less the same among diseased patients, while the nondiseased are
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healthy in the same way. The accuracy is measured by true positive and false
positive rates as well as the area under the ROC curve. Thus, if the accuracy
is not good, the modality needs to be improved. (See Bogaert et al.

 

17

 

 for a good
example of Phase I developmental trial involving MRI angiography.)

If a device has sufficient accuracy during Phase I, it is then studied in
Phase II trials. These trials, also called challenge trials, typically enroll 50 to
200 cases and 5 to 10 observers. Like Phase I trials, Phase II trials are also
retrospective, but with a wide spectrum of the disease in the two groups.
Thus, if the disease is nonsmall cell lung cancer, patients with different
manifestations (different ages, different stages of disease, and patients who
have disease similar to nonsmall cell lung cancer) of disease are included.
It is more difficult for the device to distinguish between diseased and non-
diseased subjects. Among the nondiseased, the patients are also heteroge-
neous. Test accuracy is measured as in a Phase I trial, and the association
between accuracy and the pathological, clinical, and co-morbid features of
the patient can be investigated with regression modeling. The comparison
between digital radiography and conventional chest imaging was performed
as a Phase II trial by Theate et al.

 

18

 

Beam et al.

 

19

 

 investigated the interpretation of screening mammograms
as a Phase III trial using 108 readers, 79 images read twice by each reader,
and many healthcare centers. The sensitivity (proportion of patients among
the diseased who test positive) ranged from .47 to 1 and specificity (propor-
tion of patients who do not have the disease who test negative) from .36  to
.99 across readers. Phase III trials are prospective and are designed to esti-
mate test performance in a well-defined clinical population and involve at
least 10 observers, several hundred cases, and competing modalities. A
device should pass all three phases before becoming a standard in a general
clinical setting.

Note that it is important to know the inter-observer variability in these
trials because the accuracy of the modality depends not only on the device,
but the interpretation of the image via the various readers. Pepe gives more
detail, in Chapter 8, in the description of developmental trials, and
Obuchowski

 

21

 

 provides sample size tables for the number of observers and
the number of patients in trials for device development.

 

2.6 Protocol Review and Clinical Trials

 

As we have seen, diagnostic procedures are performed in all areas of patient
care, and now we will see just how it appears in the patient’s experience
with clinical trials. First, we examine the essential elements of a protocol,
the protocol review process, and the role diagnostic imaging in Phase II trials.
Crowley’s

 

22

 

 book is an excellent reference to statistical consideration in clin-
ical trials.
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2.6.1 The Protocol

 

Protocol states in detail how the medical study is organized and executed.
There are several types: cooperative group protocols, National Cancer Insti-
tute (NCI) protocols, those submitted by a pharmaceutical or medical device
company, and those that are initiated by a principal investigator at the
institution. The protocol should include the following components: 

1. An explanation of the scientific basis for the study.
2. A summary of the results of all previous related studies and exper-

iments of the study intervention.
3. Patient eligibility and ineligibility criteria.
4. A list of the major and minor endpoints, including their definitions

and how and when they will be measured. 
5. Definitions of evaluable and intent-to-treat populations.
6. Estimated patient accrual rates by site.
7. A statistical section that outlines a detailed power analysis for sam-

ple size, a description of rules for stopping early, methods for ran-
domizing patients, and the proposed statistical analysis.

8. Nonstatistical stopping rules for safety considerations. 

Additional documentation that must accompany the protocol is a list of
all NCI toxicities and the patient-informed consent form. For protocols ini-
tiated by private companies, a biostatistician is assigned to review it, but for
protocols initiated at MDACC, the study has one biostatistician assigned as
a collaborator (the one who assisted the principal investigator (PI) in the
statistical design) and a different statistician who reviews the protocol and
presents it to the department for approval.

Every protocol at MDACC is reviewed in three steps: first by the Depart-
ment of Biostatistics and Applied Mathematics, then by the Clinical Research
Committee (CRC), and lastly by the Institutional Review Board (IRB). During
the first review, a biostatistician presents the protocol in written and oral
form to the department, where there is a set procedure for this presentation.
The presentation is concluded with a list of major and minor concerns
regarding the revision of the protocol. The department then discusses the
above-mentioned tentative revisions and votes to approve a directive to be
sent to the PI. If need be, the PI then revises the protocol accordingly, often
with the help of the biostatistical collaborator and/or the reviewer.

 

2.6.2 Phase I, II, and III Clinical Designs

 

The important role played by diagnostic imaging in clinical trials can be
found in Chapter 8, and the following briefly describes Phase I, II, and III
clinical trials. Phase I trials evaluate how a treatment is to be administered
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and how that treatment affects the human body. First, consider a Phase I
study that evaluates safety among a set of doses of a new treatment. The study
will be designed to determine the maximum tolerable dose (MTD), which is
the dose whereby at higher doses the safety of the patient would be com-
promised. One is assuming that as the dose level increases, the probability
of toxicity increases and the probability of efficacy also increases. The main
endpoint in a Phase I study is a measure of toxicity experienced by the patient
as a result of the treatment, while the secondary endpoint is a measure of
efficacy. To define the toxicity endpoint, the investigator characterizes the
dose limiting toxicity (DLT), which is a set of toxicities that are severe enough
to prevent giving more of the treatment at higher doses. The investigator
bases the DLT on knowledge of the disease, treatment, and the patients who
are eligible for the trial. Investigators are guided by the NCI list of common
toxicities or in some other manner that is appropriate for the particular study.
Phase I trial objectives may include the study of the pharmacokinetics and
pharmacodynamics of the drug; however, we will not emphasize this here.
Primarily, the goal of Phase I studies is to profile the toxicity of the drug or
intervention using a set of doses and a well-defined DLT.

Once a particular treatment or intervention has been studied with a Phase I
trial and the MTD has been selected and we are satisfied that the treatment
will be safe, studies of the treatment may progress to Phase II trials to
determine if the treatment holds sufficient promise. Typically, the target
population is patients with a specific disease, disease site, histology, or stage,
or patients undergoing some surgical or anesthetic procedure. Often the
treatment dose is the MTD determined from previous Phase I trials.
Although limited dose finding is sometimes allowed to accommodate dif-
ferent patient populations, the primary endpoints are measures of efficacy,
while safety is secondary.

Diagnostic imaging plays a crucial role in Phase II trials. Often the primary
endpoint is the fraction of patients who experience a response to therapy, and
often the response is based on the change in tumor size as measured from
baseline to some future point at the end of the treatment cycle. Thus, the
major endpoint in such a study is a diagnostic one provided by radiologists.

We are now at the point where we have an intervention (drug or procedure)
that has been studied in a series of Phase I and Phase II trials and has
demonstrated sufficient promise to be compared to the standard clinical
treatment in a large randomized study. 

Phase III trials are confirmatory, where the study procedure is to be
compared to the standard therapy with the goal of providing evidence that
the study drug will provide substantial improvement in survival time, in
disease-free survival, or some other time-to-event endpoint, such as time to
response or time to hospitalization, etc. They should be designed to have a
sufficient sample size to detect clinically relevant differences and are usually
done in a multicenter setting. Provisions are made for an interim look by an
independent Data Safety Monitoring Board (DSMB), where the trial may be
stopped early for reasons of safety and/or efficacy. 
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2.7 The Literature

 

As mentioned earlier, biostatistics play a pivotal role in the imaging litera-
ture, as can be discerned by reading articles in the mainline journals, such
as 

 

Academic Radiology

 

, 

 

The American Journal of Roentgenology

 

, and 

 

Radiology

 

,
and the more specialized, such as 

 

The Journal of Computed Assisted Tomography

 

,

 

The Journal of Magnetic Resonance Imaging

 

, 

 

The Journal of Nuclear Medicine

 

, and

 

Ultrasound in Medicine

 

. 
For some reference books in the area of general diagnostic imaging, the

standard one is 

 

Fundamentals of Diagnostic Radiology

 

, edited by Brant and
Helms.

 

23

 

 This book is primarily for radiologists and discusses the fundamen-
tals of imaging principals and provides a description of the latest clinical
applications. 

Two relevant statistical books are 

 

The Statistical Evaluation of Medical Tests
for Classification and Prediction

 

 by Pepe

 

20

 

 and 

 

Statistical Methods in Diagnostic
Medicine

 

 by Zhou, McClish, and Obuchowski.

 

24

 

 Both are excellent and
intended for biostatisticians. 
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Chapter 3

 

Other Diagnostic Procedures

 

3.1 Introduction

 

Several stages are involved in the determination of a definitive diagnosis.
For example, a screening mammography might reveal a suspicious lesion,
which is followed with a biopsy of the lesion. Also, many people are
involved in the diagnostic process and, as has been emphasized, diagnostic
imaging plays a major role in that effort. In addition to radiologists, there
are oncologists, surgeons, nurses, pathologists, and geneticists. The pathol-
ogists play a crucial role in performing the histologic tests on cell specimens
taken from a biopsy, as does the microbiologist and geneticist, who are
developing new techniques that measure gene sensitivity from DNA spec-
imens. Three examples are described below: (1) diagnosis of metastasis of
the primary melanoma lesion to the lymph nodes, (2) a biopsy of lung
nodules, and (3) screening for coronary artery disease with CT. 

 

3.2 Sentinel Lymph Node Biopsy for Melanoma

 

The sentinel lymph node (SLN) biopsy is employed to diagnose the metasta-
sis of many forms of cancer including breast, prostate, and lung. Its use in
melanoma is outlined below. 

The technique involves the cooperation of a melanoma oncologist, a
surgical team to dissect the lymph nodes, diagnostic radiologists who
will perform the nuclear medicine procedure, and pathologists who
examine the lymph node samples. The following description of the tech-
nique is based on Pawlik and Gershenwald.

 

1

 

 The early procedures are
described by Morton et al.

 

2

 

 and consisted of injecting a blue dye intrad-
ermally around the primary lesion and biopsy site where the lymphatic
system takes up the dye and carries it, via afferent lymphatics, to the
draining regional node basins. Surgeons then explore the draining nodal
basin and the first draining lymph nodes. The SLNs are identified by
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their uptake of blue dye, dissected and sent to pathology for histological
examination of malignancy. 

These early methods were recently revised to include a nuclear medi-
cine application using a handheld gamma camera. (See Gershenwald
et al.

 

3

 

 for a good explanation of this.) With this technique, intra-operative
mapping uses a handheld gamma probe, where .5 to 1.0 mCi (millicurie)
of a radiopharmaceutical is injected intradermally around the intact mel-
anoma. The gamma camera monitors the level of radioactivity from the
injection sites to the location of the SLNs and is also employed to assist
the surgeons with the dissection of the lymph nodes. This probe is used
transcutaneously prior to surgery and has an accuracy of 96 to 99% in
the correct identification of the SLNs. Histological examination of the
lymph node specimens determine if the lymph node basin has malignant
melanoma cells.

 

3.3 Tumor Depth to Diagnose Metastatic Melanoma 

 

A SLN biopsy for melanoma metastasis is illustrated in a recent study by
Rousseau et al.

 

4

 

 where the records of 1376 melanoma patients were reviewed.
The main objective was to diagnose metastasis to the lymph nodes where
the gold standard is the outcome of the SLN biopsy and the diagnosis is
made on the basis of tumor depth of the primary lesion, the Clark level of
the primary, the age and gender of the patient, the presence of an ulcerated
primary, and the site (axial or extremity) of the primary lesion. The overall
incidence of a positive biopsy was 16.9%, the median age was 51 years, and
58% were male. A multivariate analysis with logistic regression showed that
tumor thickness and ulceration were highly significant in predicting SLN
status. For additional details about this study, refer to Rousseau et al., but
here the focus will be on tumor thickness for the diagnosis of lymph node
metastasis.

How accurate is tumor thickness for the diagnosis of lymph node metasta-
sis? The original measurement of tumor thickness was categorized into four
groups: (1) 

 

≤

 

1 mm, (2) 1.01 to 2.00 mm, (3) 2.01 to 4.00 mm, and (4) 

 

>

 

 4.00 mm.
If groups 3 and 4 are used to designate a positive (lymph node metastasis)
test and groups 1 and 2 a negative test, the sensitivity and specificity are
calculated as 156/234 

 

=

 

 .666 and 832/1147 

 

=

 

 .725, respectively. There were
234 patients with a positive SLN biopsy and, among those, 156 had a tumor
thickness greater than 2.00 mm; on the other hand, there were 832 patients
with a tumor thickness of 

 

≤

 

2.00 mm among 1147 with a negative SLN biopsy.
Also, using the original continuous measurement and a conventional esti-
mation method, the area under the receiving operating characteristic (ROC)
curve is .767 with a standard deviation of .016. 
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This type of problem will be studied in the chapters to come, but from a
Bayesian perspective.

 

3.4 Biopsy for Nonsmall Cell Lung Cancer 

 

At the MD Anderson Cancer Center (MDACC), the Department of Interven-
tional Radiology is part of the Division of Diagnostic Imaging and where
they perform invasive biopsy procedures. For example, they perform biop-
sies of lung lesions using a computed tomography (CT)-guided technique
(see Gupta et al.

 

5

 

). The Gupta example described below compares two meth-
ods of biopsy, short vs. long needle path, for target lesions less than 2 cm in
size. The objective is to retrieve a specimen of the lesion to be examined for
malignancy by a cytopathologist.

Many people are involved, including those assisting the interventional
radiologist in guiding the needle to the target lesion, which was earlier
detected and located by various imaging modalities. Of main concern is
the occurrence of a pneumothorax, which can result in a collapsed lung
and bleeding, sometimes requiring a chest tube for draining fluid from the
chest cavity.

This cohort study included 176 patients (79 men and 97 women, ranging
in age from 18 to 84 years). This was not a randomized study, and patient
information came from all persons who underwent a CT-guided biopsy for
lung nodules during the period from November 1, 2000 to December 31, 2002.
There were two groups: Group A with 48 patients, where the needle path
was less than 1 cm in length of aerated lung, and Group B with 128 patients,
where the needle path length was greater than 1 cm.

The two groups were similar with regard to age, gender, lesion size, and
lesion location. The major endpoints were diagnostic yield (number of diag-
nostic samples and test accuracy, measured by sensitivity and specificity)
and frequency of pneumothorax. The report from pathology served as a gold
standard for test accuracy.

The statistical analysis consisted of estimating test accuracy of the two
methods and comparing accuracy via the chi-square test. There was no
significant difference between the two groups with regard to sensitivity and
specificity; however there were significant differences between the two with
regard to complications from the procedure. For example, the pneumothorax
rate of 35/48 

 

=

 

 .73 was larger for the short needle path group compared to
38/128 

 

=

 

 .29 for the long needle path group. 
As a follow-up to this, a recent study of 191 lung biopsy patients who

experienced pneumothorax, was performed. In that study, the principal aim
was to identify those factors that significantly impact the development of a
persistent air leak of the lung. 
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3.5 Coronary Artery Disease

 

A common scenario in the diagnosis of coronary artery disease is as follows.
Following complaints of chest pain, the patient undergoes an exercise stress
test and, if necessary, followed by an angiogram, a catheterization of the
coronary arteries. There are several experimental studies that involve a CT
determination of the coronary artery calcium (CAC) in the coronary arteries.
One such study involved 1958 men and 1281 women who were referred to
the Shields Coronary Artery Center in Spokane, WA over the period from
January 1990 to May 1998. Some of the subjects had been diagnosed with
coronary artery disease, while others were referred because they were sus-
pected of having the disease. Measurements of CAC were made with the
GE Imatron C-100 Ultrafast CT Scanner. (See Mielke et al.

 

6

 

 for more details
of the Spokane study.) In Chapter 5 of this book, the diagnostic accuracy of
CAC is examined with a Bayesian technique for this study. 

Another way to diagnose coronary artery disease is to measure the degree
of stenosis in the arteries by magnetic resonance angiography. For example,
Obuchowski

 

7

 

 used the results of a study by Masaryk et al.

 

8

 

 to illustrate a
nonparametric way of estimating the area under the ROC curve for clustered
data. There were two readers and two measurements per patient, one for
the left and one for the right coronary arteries, and the correlation introduced
by this clustering effect was taken into account by Obuchowski’s analysis.
This makes a perfect example for comparing readers, and a Bayesian analog
is introduced in Chapter 5.  
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Chapter 4

 

Bayesian Statistics

 

4.1 Introduction

 

The previous three chapters presented the scientific background necessary
in order to appreciate the statistical applications that will be encountered
in Chapter 4 through Chapter 9. Bayesian methods will be employed to
design and analyze studies in medical diagnostics. This chapter describes
Bayesian inference by introducing Bayes theorem, the foundation of the
subject. This is followed with a description of the theorem: The prior
information from the sample given by the likelihood function and the
posterior distribution, which is the basis of all inferential techniques in
Bayesian statistics. Next is a description of the main two elements of
inference, namely estimation and tests of hypotheses. Also included is a
demonstration of the Bayesian predictive density, another important com-
ponent of inference.

The remaining sections of the chapter list the important distributions for
Bayesian inference, including the binomial, Beta, multinomial, Dirichlet, normal,
gamma, normal-gamma, and the univariate and multivariate t-distributions.
These are used to analyze the accuracy of diagnostic tests. Next, the previous
distributions are illustrated by making Bayesian inferences for diagnostic
accuracy in imaging studies: a Bayesian principle. 

Of course, inferential procedures can only be applied if there is adequate
computing available. If the posterior distribution is known, analytical
methods are often sufficient to implement Bayesian inferences, or direct
sampling from the posterior distribution will give the necessary informa-
tion. Direct sampling is easily done if the relevant random number gener-
ators are available. On the other hand, if the posterior distribution is quite
complicated and not a recognized standard distribution and/or random
number generators are not available, it is often necessary to generate sam-
ples from the posterior distribution by indirect means. To address this
problem, Monte Carlo Markov Chain (MCMC) techniques have been devel-
oped over the past 25 years and have been a major contributor to the
successful application of Bayesian methods for the analysis of complicated
problems. 
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Minitab

 

®

 

, S-plus

 

®

 

, SAS

 

®

 

, and other packages provide random number
generators for direct sampling from the posterior distribution for many
standard posterior distributions. For indirect sampling, WinBUGS

 

®

 

 (which
employs Gibbs sampling, the Metropolis-Hasting (MH) algorithm, and
hybrid Gibbs/MH algorithms) is a good alternative. At the MD Anderson
Cancer Center (MDACC), where Bayesian applications are routine, several
special purpose programs are available for designing (including sample size
justification) and analyzing clinical trials and will be described in a later
section of this chapter.

 

4.2 Bayes Theorem

 

Suppose 

 

X

 

 is a continuous observable random vector and 

 

θ

 

 is an
unknown parameter vector, and suppose the conditional density of 

 

X

 

 given

 

θ 

 

is denoted by 

 

f(x

 

/

 

θ

 

), then the conditional density of

 

 θ

 

, given 

 

X

 

 

 

=

 

 

 

x

 

, is 

 

ξ

 

(

 

θ

 

/

 

x

 

) 

 

=

 

 c f(

 

x

 

/

 

θ

 

) 

 

ξ

 

(

 

θ

 

),

 

θ

 

and

 

x R

 

. (4.1)

The normalizing constant 

 

c

 

 > 0 is chosen so that the integral of 

 

f

 

( )
with respect to 

 

θ

 

 is unity. The above equation is referred to as Bayes theorem
and is the foundation of all statistical inferences to be employed in the
analysis of data. If 

 

X

 

 is discrete, 

 

f(x

 

/

 

θ

 

) is the probability mass function of 

 

X

 

.
The density

 

 ξ

 

(

 

θ

 

) is the prior density of

 

 θ

 

 and represents the knowledge one
possesses about the parameter before one observes 

 

X

 

. This prior information
is most likely available to the experimenter from other previous related
experiments. Note that

 

 θ

 

 is considered a random variable and that Bayes
theorem transforms one’s prior knowledge of 

 

θ

 

, represented by its prior
density, to the posterior density, and that the transformation is the combining
of the prior information about 

 

θ 

 

with the sample information represented
by 

 

f(x

 

/

 

θ

 

). If 

 

x

 

 

 

=

 

 (

 

x

 

1

 

, 

 

x

 

2

 

,…, 

 

x

 

n

 

) represents a random sample of size 

 

n

 

 from the
sample space, then Bayes theorem is given by

 

ξ

 

(

 

θ

 

/

 

x

 

) 

 

∝

 

 

 

ξ

 

(

 

θ

 

),

 

x

 

i

 

and (4.2)

where the proportionality is with respect to 

 

θ

 

. The term is called
the likelihood function of 

 

θ

 

 and is the information one has about 

 

θ 

 

as induced
by the sample information.

The beginnings of our subject is “an essay toward solving a problem in
the doctrine of chances” by the Rev. Thomas Bayes.

 

1

 

 He considered a bino-
mial experiment with 

 

n

 

 trials and assumed the probability 

 

θ 

 

of success was
uniformly distributed and presented a way to calculate 

 

Pr

 

( ,
where 

 

X

 

 is the number of successes in 

 

n

 

 independent trials. This was a first

∈ ⊂Ω Rm

∈Ω ∈

x/ θ ξ θ( )

f xi

i

i n

( / )θ
=

=

∏
1

∈R ∈Ω

∏ =
=

i
i n

if x1 ( / )θ

a b X p≤ ≤ =θ / )
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in the sense that Bayes was making inferences via 

 

ξ

 

(

 

θ

 

/

 

x

 

), the conditional
density of

 

 θ

 

, given 

 

X

 

 

 

=

 

 

 

x

 

. Also, by assuming the parameter was uniformly
distributed, he was assuming vague prior information for

 

 θ

 

.
Arguably, Laplace

 

2,3

 

 made the greatest contributions to inverse probability (he
was unaware of Bayes) beginning in 1774 with “Memorie sur la probabilite des
causes par la evenemens,” with his own version of Bayes theorem. His contri-
butions spanned a period of some 40 years and culminated in “Theorie analy-
tique des probabilites.” (See Stigler

 

4

 

 and Chapter 9 through Chapter 20 of Hald

 

5,6

 

for the history of Laplace’s monumental contributions to inverse probability.) 
It was in relatively modern times that Bayesian statistics began its resur-

gence with works by Lhoste,

 

7

 

 Jeffreys,

 

8

 

 Savage,

 

9

 

 and Lindley.

 

10

 

 According to
Broemeling and Broemeling,

 

11

 

 Lhoste was the first to justify noninformative
priors by invariance principals, a tradition carried on by Jeffreys. Savage’s
book was a major contribution in that Bayesian inference and decision theory
were put on a sound theoretical footing as a consequence of certain axioms
of probability and utility. Lindley’s two volumes illustrated the relevance of
Bayesian inference to everyday statistical problems and was quite influential
and set the tone and style for later books, such as Box and Tiao,

 

12

 

 Zellner,

 

13

 

and Broemeling.

 

14

 

 Box and Tiao and Broemeling presented Bayesian methods
for the usual statistical problems of the analysis of variance and regression,
while Zellner focused Bayesian methods on certain regression problems in
econometrics. During this period, inferential problems were solved analyti-
cally or by numerical integration. Models with many parameters (such as
hierarchical models with many levels) were difficult to use because, at that
time, numerical integration methods had limited capability in higher dimen-
sions. (For a good history of Bayesian (inverse probability) inference, see
Chapter 3 of Stigler and the two volumes of Hald, which present a compre-
hensive history and are invaluable as a reference.) 

The past 20 years is characterized by the development of resampling
techniques where samples are generated from the posterior distribution via
MCMC methods, such as Gibbs sampling. Because the computing technology
is available, large samples generated from the posterior make it possible to
make statistical inferences and to employ multilevel hierarchical models to
solve complex but practical problems. (See Leonard and Hsu,

 

15

 

 Gelman
et al.,

 

16

 

 Congdon,

 

17–19

 

 Carlin and Louis,

 

20

 

 who demonstrate the utility of
MCMC techniques in Bayesian statistics.)

 

4.3 Prior Information

 

Bayesian inference is initiated with prior information, a crucial component
of Bayes rule (Equation (4.2)). Bayes assumed the prior distribution of the
parameter is uniform, namely

 

=

 

 1, , (4.3)ξ θ( ) 0 1≤ ≤θ
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where 

 

θ 

 

is probability of success in 

 

n

 

 independent trials and 

 

=

 

, (4.4) 

where 

 

x

 

 is the number of successes 

 

=

 

 0, 1, 2, …, 

 

n

 

. The conditional distribution
of 

 

X

 

, the number of successes is binomial and denoted by 

 

X

 

 ~ Binomial(

 

θ

 

, 

 

n

 

).
The uniform prior was used for many years, until Lhoste employed

 

=

 

, , (4.5)

to represent prior information that is noninformative and an improper
density function. Lhoste

 

7

 

 based this prior on certain invariance principals,
quite similar to what Jeffreys

 

8

 

 did in 1931. Lhoste also developed a nonin-
formative prior for the standard deviation 

 

σ 

 

of a normal population with
density

 

=

 

, and (4.6) 

Lhoste used invariance as follows. He reasoned that the prior density of

 

σ 

 

and the prior density of 1/

 

σ

 

 should be the same, and this led to

 

=

 

 1/

 

σ

 

. (4.7) 

Jeffreys used the same approach in developing noninformative priors for
binomial and normal populations, but also developed noninformative priors
for multiparameter models, including the mean and standard deviation for
the normal density as 

 

=

 

 1/

 

σ

 

, and  (4.8) 

Noninformative priors where ubiquitous from the 1920s to the 1980s and
were included in all the textbooks of that era. For example, see Box and
Tiao,

 

12

 

 Zellner,

 

13

 

 and Broemeling.

 

14 

 

Looking back, it is somewhat ironic that noninformative priors were almost
always used, even though informative prior information was almost always
available. This limited the utility of the Bayesian approach, and people saw
very little advantage over the conventional way of doing business. The major
strength of the Bayesian way is that it a convenient, practical, and logical
method of utilizing informative prior information. Surely, the investigator
knows informative prior information from previous related studies. 

How does one express informative information with a prior density? For
example, suppose one has informative prior information for the binomial

f x( / )θ
n

x
x n x









 − −θ θ( )1

ξ θ( ) θ θ− −−1 11( ) 0 1≤ ≤θ

f x( / , )θ σ 1 2 1 2 2/ exp ( / )( )πσ σ µ( ) − −x µ ∈R σ > 0.

ξ σ( )

ξ µ σ( , ) µ ∈R σ > 0.
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population (Equation (4.4)). Consider 

= , , (4.9)

as the prior density for θ. 
For example, suppose from a previous study with 20 trials, there were 6

successes and 14 failures, then the probability mass function for the observed
number of successes x = 6 is 

= , . (4.10)

As a function of θ, Equation (4.10) is the likelihood function for θ, which
is a Beta (7,15) density and expresses informative prior information, which
will be combined with Equation (4.4), via Bayes theorem, in order to make
inferences (estimation, tests of hypotheses, and predictions) about the param-
eter. The Beta distribution is an example of a conjugate density because the
prior and posterior distributions for θ belong to the same parametric family.
Thus, the likelihood function based on previous sample information can serve
as a source of informative prior information. The binomial and Beta distri-
butions occur quite frequently in diagnostic medicine, as, for example, in
Phase II clinical trials and in estimating the accuracy of diagnostic tests. 

Of course, the normal density (Equation (4.6)) also plays an important role
as a population model in diagnostic imaging, when the diagnostic variable
is a continuous measurement. How is informative prior information
expressed for µ and σ? Suppose a previous study has m observations
x = , then the density of x, given µ and σ, is

f(x/µ,σ)∝ exp−

exp− . (4.11)

This is a conjugate density for the two-parameter normal family and is
called the normal-inverse gamma density. It is the product of two functions,
where the first, as a function of µ and σ, is the conditional density of µ given
σ with mean x and variance , while the second function is a function
of σ only and is an inverse gamma.

Thus, if one knows the results of a previous experiment, the likelihood
function for µ and τ provides informative prior information for the normal
population. Such prior information will be relevant when considering esti-
mation of the area under the receiving operating characteristic (ROC) curve
for continuous diagnostic test data.

ξ θ( ) [ ( )/ ( ) ( )] ( )Γ Γ Γα β α β θ θα β+ −− −1 11 0 1≤ ≤θ

f ( / )6 θ
20
6









 θ θ6 141( )− 0 1≤ ≤θ

( , , , )x x xm1 2 …

m / 2 2πσ  ( / )m 2 2σ ( )x − µ 2
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−
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With the advent of MCMC techniques for sampling the posterior distri-
bution of complex hierarchical models, prior information is expressed in a
more complex fashion because there are several levels of parameters. Such
an example is taken from volume 1 of the help section of version 1.4 of
WinBUGS and is based on a study by Carlin21 who considered a Bayesian
approach to meta-analysis, and includes the following example of 22 trials
of beta blockers to prevent mortality after myocardial infarction (Table 4.1).

The following are the program statements: 
model

{

for( i in 1 : Num ) {

rc[i] ~ dbin(pc[i], nc[i])

rt[i] ~ dbin(pt[i], nt[i])

logit(pc[i]) <- m[i]

logit(pt[i]) <- m[i] + d[i] (4.12)
m[i] ~ dnorm(0.0,1.0E-5)

d[i] ~ dnorm(delta, tau)

}

delta ~ dnorm(0.0,1.0E-6)

tau ~ dgamma(0.001,0.001)

delta.new ~ dnorm(d, tau)

sigma <- 1 / sqrt(tau)

}

For each trial, a different probability of a success is given for the control
and treatment groups, and the probabilities are transformed to the logit scale,
then the parameters of the logit are given normal noninformative priors.
Thus, the ms are given independent normal distributions with mean 0.0 and
precision .00001. The ds are given a normal (delta, tau) distribution, and the
delta is given a normal (0.0, .000001) distribution. There are three levels of

TABLE 4.1

 Mortality Study: Deaths/Total

Trial Treated Control

1 3/38 3/39
2 7/114 14/116
3 5/69 11/93
4 102/1533 127/1520

... … …
20 32/209 40/218
21 27/391 43/364
22 22/680 39/674
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parameters involved in this example. The success probabilities, the logit
parameters, namely the ms and ds, and finally at the third stage the normal
(0.0, .000001) distribution for delta, which is the mean of the second level d
parameters. 

Another third level parameter is the precision tau of the delta parameters,
which is given a noninformative gamma (0.001, .001) distribution. The tau
parameter is the inverse of the variance. The main parameter of interest is
delta because, if it is zero, there is no difference in mortality between the
control and treatment groups. We will return to this example when discussing
Gibbs sampling. 

4.4 Posterior Information

The preceding section explained how prior information is expressed in an
informative or vague way. Several examples were given and these will be
revisited to determine the posterior distribution of the parameters.

In the Bayes example, where X ~ Binomial (θ, n), a uniform distribution
for θ was used. What is the posterior distribution? By Bayes theorem

, (4.13)

where x is the observed number of successes in n trials. Of course, this is
recognized as a Beta (x + 1, n – x + 1) distribution with a posterior mean of
(x + 1)/(n  + 2). On the other hand, if the Lhoste prior 

= , ,

is used, the posterior distribution of θ is Beta (x, n – x) with mean x/n, the
usual estimator of θ. The conjugate prior (Equation (4.9)) results in a
Beta  with mean . Suppose the prior is infor-
mative with a previous 10 successes in 30 trials, then and , and
the posterior distribution is Beta  If the current experiment
has 40 trials and 15 successes, the posterior distribution is Beta (26, 46) with
mean 26/72 = .361, compared to a prior mean of .343. Figure 4.1 gives the
posterior density of θ based on a histogram of 1000 θ values generated from
the Beta (26,46 ) distribution. The author used Minitab to generate the θ
values for the histogram. 

Now, let us consider a random sample x = of size n from a
normal population, where is the inverse of the variance, and
suppose the prior information is vague and the Jeffrey’s prior 

ξ θ θ θ( / ) ( )x
n

x
x n x∝









 − −1

ξ θ( ) θ θ− −−1 11( ) 0 1≤ ≤θ

( , )x n x+ − +α β ( )/( )x n+ + +α α β
α = 11 β = 21

( , ).x n x+ − +11 21

( , , , )x x xn1 2 …
( , / )µ τ1 τ σ= 1 2/

ξ µ τ τ( , ) /∝ 1
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34 Bayesian Methods in Diagnostic Medicine

is appropriate, then the posterior density of the parameters is 

. (4.14)

Using the properties of the gamma density, τ is eliminated by integrating
the joint density with respect to τ to give

, (4.15) 

which is recognized as a t distribution with n – 1 degrees of freedom,
location  and precision n/S2. Transforming to , the resulting
variable has a Student’s t-distribution with n – 1 degrees of freedom. Note
the mean of µ is the sample mean, while the variance is [(n-1)/n(n-3)]S2, n > 3.

Eliminating µ from Equation (4.14) results in the marginal distribution
of τ as

, τ > 0, (4.16)

which is a gamma density with parameters (n – 1)/2 and (n – 1)S2/2. 
We return to the Carlin21 example found in WinBUGS where the mor-

tality of the treatment (beta blockers to prevent heart attack) and control
groups is compared on the basis of a meta-analysis of 22 clinical trials.

FIGURE 4.1
Posterior distribution of theta.
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The posterior analysis will be executed with the emphasis placed on the
posterior distribution of delta, which measures the effect of the beta
blocker treatment. If the effect is zero, beta blockers have no effect on
mortality compared to the control groups. The program statements are
given by Equation (4.12), and the analysis executed with 50,000 values
generated from the posterior distributions of delta and sigma = 1/tau. The
parameter d is the mean of the delta parameters, while sigma is the
standard deviation, and both parameters are given noninformative prior
distributions. The characteristics of the posterior distribution of delta and
tau are given in Table 4.2.

The analysis also generates a graph of the posterior densities. See Figure 4.2
for the graph of the posterior distributions of d. Is there a treatment effect?
The mass of the posterior distribution is to the left of zero where the lower
2 % point is –.3701 and the upper –.1265, thus the posterior evidence
suggests that delta is not zero on the logit scale and that beta blockers lower
the mortality of a heart attack.

In Figure 4.3, one sees the posterior distribution of sigma is skewed to the
right. This plot was done with the WinBUGS package. The actual execution
of the simulation will be explained later in this chapter.

TABLE 4.2

 Posterior Distribution of Delta and Sigma

Parameter Mean Std. Dev. Median Lower Upper

delta –.2513 .061 –.2313. –.3701 –.1265
sigma .1143 .0672 .1020 .0265 .2731

FIGURE 4.2
Posterior distribution of d.
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36 Bayesian Methods in Diagnostic Medicine

4.5 Inference

4.5.1 Introduction

In a statistical context, “inference” usually means estimation of parameters,
tests of hypotheses, and prediction of future observations. With the Bayesian
approach, all inferences are based on the posterior distribution of the param-
eters, which in turn is based on the sample via the likelihood function and
the prior distribution. We have seen the role of the prior and likelihood
function in determining the posterior distribution, and presently we will
focus on the determination of point and interval estimation of the model
and, later, will concentrate on how the posterior distribution determines a
test of hypothesis. 

When a model has only one parameter, one would estimate that parameter
by listing its characteristics, such as the posterior mean, media, and standard
deviation, and plotting the posterior density. On the other hand, if there are
several parameters, one would determine the marginal posterior distribution
of the relevant parameters and, as above, calculate its characteristics (e.g.,
mean, median, mode, standard deviation, etc.) and plot the densities. Interval
estimates of the parameters are also usually reported and are termed “cred-
ible” intervals. 

4.5.2 Estimation

Suppose we want to estimate θ of the binomial example of the previous
section, where the density is shown in Figure 4.1. The posterior distribution
is Beta (21,46) with the following characteristics: mean = .361, median = .362,
standard deviation = .055 lower 2 % point = .254, and .473 = upper 2 %
point. The mean and median are the same as implied by the symmetry of
the plot in Figure 4.1, while the lower and upper 2 % points determine a
95% credible interval of (.254, .473) for θ.

Inferences for the normal (µ, τ) population are somewhat more demanding
because both parameters are unknown. Assuming the vague prior density

FIGURE 4.3
Posterior density of sigma.
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Bayesian Statistics 37

, the marginal posterior distribution of the population mean µ
is a t-distribution with n – 1 degrees of freedom, mean , and precision n/
S2 (S2is the sample variance), thus the mean and the median are the same
and provide a natural estimator of µ, and because of the symmetry of the t-
density, a (1 − α) credible interval for µ is where is the
upper 100 α/2% point of the t-distribution with n – 1 degrees of freedom.
Suppose n = 10, x = (1,2,3,4,5,6,7,8,9,10), = 5.500 and S = 3.028, then the
histogram of 1000 values generated from the t (9, 5.5, 1.090) distribution is
given in Figure 4.4. A 95% credible interval is 5.5 ± .822 (3.028)/3.162 = (4.713,
6.287). Using the same dataset, the following WinBUGS instructions below
were used to analyze the problem. 

model

{ for( i in 1:10) { x[i]~dnorm(mu,tau) }

mu~dnorm (0.0,.0001)

tau ~dgamma( .0001,.0001) (4.17)
sigma <- 1/tau }

list( x = c(1,2,3,4,5,6,7,8,9,10))

list( mu = 0, tau = 1)

Note that a somewhat different prior was employed here compared to
previously, in that µ and τ are independent and assigned proper but nonin-
formative distributions. The corresponding analysis is given in Table 4.3.

Upper and lower refer to the lower and upper 2 % points of the posterior
distribution. The plot of the posterior density of µ is the same as in Figure 4.4.
The posterior density of sigma (Figure 4.5) shows the skewness to the right

FIGURE 4.4
Posterior distribution of mu.
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38 Bayesian Methods in Diagnostic Medicine

with a median of 9.92, a mean of 11.86 and a 95% credible interval of
(4.33, 30.47).

The program generated 10,000 samples from the posterior distribution of
µ using a Gibbs sampling algorithm, and one did not have to know the
analytical form (e.g., a formula) for the posterior density. 

4.5.3 Testing Hypotheses 

4.5.3.1 Introduction

An important feature of inference is testing hypotheses. Often in accuracy
studies, the scientific hypothesis of that study can be expressed in statistical
terms and a formal test implemented. Suppose = is a partition of the
parameter space, then the null hypothesis is designated as H: and the
alternative by A: , and a test of H vs. A consists of rejecting H in favor of
A if the observations x = belong to a critical region C. In the usual
approach, the critical region is based on the probabilities of type I errors, namely
Pr(C/θ), where , and of type II errors 1–Pr(C/θ), where . This
approach to testing hypothesis was developed by Neyman and Pearson and
can be found in many of the standard references, such as Lehmann.22

In the Bayesian approach, the decision to reject the null hypothesis is based
on the probability of the alternative hypothesis 

= Pr , (4.18)

and the probability of the null hypothesis

= Pr .

TABLE 4.3 

Posterior Distribution of µ and

Parameter Mean Std. Dev. Median Lower Upper

mu 5.48 1.10 5.49 3.30 7.67
sigma 11.86 7.77 9.92 4.33 30.47

FIGURE 4.5
Density of sigma.
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Bayesian Statistics 39

Thus, the larger the , the more the indication that H is false. If and
denote the prior probabilities of the null and alternative hypotheses, respec-
tively, the Bayes factor is defined as

B = , (4.19)

where the numerator is the posterior odds of the null hypothesis relative to
the alternative, and the denominator is the corresponding prior odds. 

Suppose θ is scalar and that H: and A: , where , and is
a subset of the real numbers, then H and A are one-sided hypotheses. This
situation can occur when there are so-called nuisance parameters in the
model. For example, if θ is the mean of normal population, then the unknown
standard deviation would be considered a nuisance parameter since the
primary focus is on the mean.

On the other hand, suppose H: and A: , then the alternative is
two-sided, and the null is referred to as a sharp null hypothesis. Note, in
this situation, θ can be multidimensional and nuisance parameters can be
present. For a sharp null hypothesis, special attention to the prior must be
given to the null hypothesis. Let denote the probability of the null hypoth-
esis, let , and suppose is the prior density of θ when . 

The marginal density of X is

, (4.20)

where 

.

The posterior probabilities of the null and alternative hypotheses are 

(4.21)

and , respectively.

4.5.3.2 Binomial Example of Testing

A binomial example is considered in the context of a Phase II clinical trial,
where the null and alternative hypotheses are one-sided. Consider a random
sample from a Bernoulli population with parameters n and θ, where n is the
number of patients and θ is the probability of a response. Let X be the number
of responses among n patients, and suppose the null hypothesis is H:
vs. the alternative A: θ > . From previous related studies and the experience
of the investigators, the prior information for θ is determined to be Beta (a,b),

ς1 π0 π1
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40 Bayesian Methods in Diagnostic Medicine

thus the posterior distribution of θ is Beta (x + a, n – x + b), where x is the
observed number of responses among n patients. The null hypothesis is
rejected in favor of the alternative when

Pr[θ > / x, n] > γ, (4.22)

where γ is usually some “large” value as .90, .95, or .99. The above equation
determines the critical region of the test, thus the power function is

g(θ) = Pr  {Pr[θ > /x, n] > γ}, (4.23) 

where the outer probability is with respect to the conditional distribution of
X given θ.   

4.5.3.3 Comparing Two Binomial Populations

Comparing two binomial populations is a common problem in statistics and
involves the null hypothesis H: vs. the alternative A: , where
and are parameters from two Bernoulli populations. The two Bernoulli
parameters might be the sensitivities of two diagnostic modalities.

Assuming the prior probability of the null hypothesis is and assigning
independent uniform priors for the two Bernoulli parameters, it can be
shown (see Equation 4.21) that the Bayesian test rejects H in favor of A if the
posterior probability P of the alternative hypothesis satisfies

P > γ, (4.24) 

where

P = D2/D (4.25) 

and D = D1 + D2. It can be shown (see Equation 4.21) that 

D1 =  (4.26)

where Γ is the gamma function.
Note that D2 = (1 – π)(n1 + 1)−1 (n2 + 1)−1, and π is the prior probability of

the null hypothesis. X1 and X2 are the number of responses from the two
binomial populations with parameters  and , respectively. 

Note that the power function is given by

g( ) = Pr [P > γ/ ], ( ) × , (4.27)
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where P is given by Equation (4.25) and the outer probability is with respect
to the conditional distribution of X1 and X2, given θ1 and θ2. This will be
used for sample size calculations in the following section.

4.5.3.4 Sharp Null Hypothesis for the Normal Mean

Let N( ) denote a normal population with mean θ and precision τ, where
both are unknown and then suppose we want to test the null hypothesis
H:  vs. A: , based on a random sample of size n with sample
mean  and variance . Assume the prior probability of the null hypothesis
is α and a noninformative prior distribution 

ξ( )

for θ and τ, then the Bayesian test is to reject the null in favor of the alternative
if the posterior probability P of the alternative hypothesis satisfies 

P > γ

where 

P = D2/D (4.28) 

and

D = D1 + D2.

It can be shown (see Equation 4.21) that 

D1 = {αΓ(n/2)2 }/{(2π)  [n(  – )2 + (n – 1) ] }  

and

D2 = {(1 – α)Γ((n – 1)/2) 2 }/{(2π) [ ] }  

where α is the prior probability of the null hypothesis. 
The above three examples involve standard one- and two-sample problems

and will be applied in the context of diagnostic test accuracy and reader
agreement studies and will be visited again when illustrating sample size
estimation.

4.6 Sample Size 

4.6.1 Introduction

When designing a study for diagnostic accuracy, one must take into consid-
eration the reliability of the study. The more patients in the study, the more
information is available for estimation and tests of hypotheses. The main

θ τ, −1

θ θ= 0 θ θ≠ 0

x S2

θ τ, ∝ 1/ τ

n/2 n/2 θ0 x S2 n/2

( )/n−1 2 ( )/n−1 2 ( )n S− 1 2 ( )/n−1 2
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42 Bayesian Methods in Diagnostic Medicine

focus will be in justifying the sample size to minimize the errors in testing
hypotheses. 

For example, suppose two imaging modalities (e.g., CT vs. MRI) for diag-
nosing lung cancer are to be compared on the basis of test accuracy (sensi-
tivity, specificity, and the area under the ROC curve). How many patients
are sufficient to reject the null hypothesis that the test accuracy is the same
for both modalities in favor of the alternative that one has greater accuracy
than the other? Such examples will be introduced in the next section using
the one- and two-sample binomial studies of the previous section. 

Suppose a Phase II clinical trial is to be designed where diagnostic imaging
is monitoring the response of a solid tumor to therapy. In these cases, a
sequential sampling plan, with stopping rules, is appropriate for testing the
null hypothesis that the response rate is less than some predetermined value
and below which the therapy would no longer be of interest. Bayesian
sequential techniques that estimate the sample size and that determine stop-
ping rules will be discussed in detail in Chapter 8. 

4.6.2 A One-Sample Binomial for Response 

The binomial example of Section 4.5.3.2 is revisited here where a clinical trial
is considered with one-sided null and alternative hypotheses. Consider a
random sample from a Bernoulli population with parameters n and θ, where
n is the number of patients and θ is the probability of a response. Let X be
the number of responses among n patients, and suppose the null hypotheses
are H: vs. the alternative A: θ > . From previous related studies and
the experience of the investigators, the prior information for θ is determined
to be Beta (a,b), thus the posterior distribution of θ is Beta (x + a, n – x + b).
The null hypothesis is rejected in favor of the alternative when

Pr[θ > /x, n] > γ

where γ is usually some “large” value as .90, .95, or .99. The above equation
determines the critical region of the test, thus the power function of the test is

g(θ) = Pr {Pr[θ > /x, n] > γ}  

where the outer probability is with respect to the conditional distribution of
X given θ.

The power (Equation 4.23) at a given value of θ is interpreted as a simu-
lation as follows: 

1. Select n and θ and set I = 0.
2. Generate X ~ Binomial (θ, n). 
3. Generate θ ~ Beta(x + a, n – x + b).
4. If Pr [θ> /x, n] > γ, let the counter I = I + 1, otherwise let I = I. (4.29)

θ θ≤ 0 θ0

θ0

X/θ θ0

θ0
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5. Repeat (1) – (4) M times, where M is “large.” 
6. Select another θ and repeat (2) – (5), then the power is estimated as I/M.

We consider a typical trial where the historical rate for response to therapy
is .20, thus the trial is to be stopped if this rate exceeds the historical value.
Response rates are carefully defined in the study protocol. The null and
alternative hypotheses are given as

H: and A: (4.30)

where θ is the response rate to therapy. The null hypothesis is rejected if the
posterior probability of the alternative hypothesis is greater than the thresh-
old value γ.

When a uniform prior is appropriate, the power curve for the following
scenarios is computed (see Equation (4.23) and Equation (4.29)), with sample
sizes n = 125, 205, and 500, threshold values γ = .90, .95, .99, M = 1000, and
null value = .20. (See Table 4.4 below for the power of the test for various
values of θ.)

Note that the power of the test at and γ = .95 is .841, .958, and .999
for N = 125, 205, and 500, respectively. 

The Bayesian test behaves in a reasonable way. For the conventional type I
error of .05, a sample size of N = 125 would be sufficient to detect the
difference .3 vs. .2 with a power of .841. On the other hand, in order to detect
the alternative .4 with 125 patients, the power is essentially 1. To estimate
the sample size for scenarios other than those given by the table, one must
use the simulation (Equation (4.29)). When employing a conventional sample
size program, such as PASS®, the power is .80 for detecting a response rate
of .3, which is comparable to the .841 with the Bayesian simulation.    

TABLE 4.4

Power Function for H vs. A, N = 125,205,500

γ
.90 .95 .99

 θ

0 0,0,0 0,0,0 0,0,0
.1 0,0,0 0,0,0 0,0,0
.2 .107, .099, .08 .047, .051, .05 .013, .013, .008
.3 .897, .97,1 .841, .958, .999 .615, .82, .996
.4 1,1,1 1,1,1 .996,1,1
.5 1,1,1 1,1,1 1,1,1
.6 1,1,1 1,1,1 1,1,1
.7 1,1,1 1,1,1 1,1,1
.8 1,1,1 1,1,1 1,1,1
.9 1,1,1 1,1,1 1,1,1

1.0 1,1,1 1,1,1 1,1,1

θ ≤ .20 θ > .20

θ0

θ = .30
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4.6.3 One-Sample Binomial with Prior Information

Suppose we consider the same problem as above, but where prior informa-
tion is available with 50 patients, 10 of who have responded to therapy. The
null and alternative hypotheses are as above; however the null is rejected
whenever 

Pr[θ > φ/x, n] > γ (4.31)

where θ is independent of φ ~ Beta (10,40). This can be considered as a two-
sample problem where a future study is to be compared to a historical
control. As above, using the simulation rules of Equation (4.29), the power
function for the critical region (Equation (4.31)) is computed. (See Table 4.5
with the same sample sizes and threshold values as in Table 4.4.) 

The power of the test is .758, .865, and .982 for θ = .4, for N = 125, 205, and
500, respectively. 

We see how important prior information is for testing hypotheses. If the
hypothesis is rejected with the critical region

Pr[θ > .2/x, n] > γ, (4.32) 

the power (see Table 4.4) will be larger than the corresponding power (see
Table 4.5) determined by the critical region (Equation (4.31)) because of the
additional variability introduced by the historical information contained in
φ. Thus, larger sample sizes are required with the approach (Equation (4.31))
to achieve the same power as with the test given by Equation (4.32). On
the other hand, if the prior information is incorporated directly into the
likelihood function, the power function is higher for all values of θ, because
of the increased sample size. Of course, if this is done, one is ignoring the
prior variability of the historical control.  

TABLE 4.5 

Power for One-Sample Binomial with Prior Information 

γ
 θ .90 .95 .99

0 0,0,0 0,0,0 0,0,0
  .1 0,0,0 0,0,0 0,0,0
  .2 .016, .001, .000 .002, .000, .000 .000, .000, .000
  .3 .629, .712, .850 .362, .374, .437 .004, .026, .011
  .4 .996, .999,1 .973, .998,1 *.758, .865, .982
  .5 1,1,1 1,1,1 .999,1,1
  .6 1,1,1 1,1,1 1,1,1
  .7 1,1,1 1,1,1 1,1,1
  .8 1,1,1 1,1,1 1,1,1
  .9 1,1,1 1,1,1 1,1,1
 1.0 1,1,1 1,1,1 1,1,1
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4.6.4 Comparing Two Binomial Populations

The case of two binomial populations was introduced in Section 4.5.3.3
where Equation (4.27) determines the power function for testing H: vs.
the alternative A: . The power function of the test at ( is

g( ) = Pr [P > γ/ ], ( ) × .

Suppose n1 = 20 = n2 are the sample sizes of the two groups and the prior
probability of the null hypotheses is .5. The power at each point ( is
calculated via simulation, similar to that given by Equation (4.12) with γ = .90.
The values are given in Table 4.6.

When the power is calculated with PASS for the two-sample, two-tailed
binomial test with alpha = .013, sample sizes n1 = 20 = n2, and ( = (.3, .9),
the power is .922, which is less than the power of the Bayesian test. Adjust-
ments in γ of the Bayesian test would give a power equal to that of the
conventional test. For the θ1 and θ2 values considered, the maximum type I
error for the Bayesian test is approximately .013. 

4.7 Computing

4.7.1 Introduction 

This section introduces the computing algorithms and software that will be
used for the Bayesian analysis of problems in diagnostic accuracy. In the
previous sections, direct methods of computing the characteristics of the pos-
terior distribution were demonstrated with some standard one-sample and
two-sample problems. An example of this is the posterior analysis of a

TABLE 4.6

Power for Two-Sample Binomial 

θ2

.1 .2 .3 .4 .5 .6 .7 .8 .9 1

q1

.1 .004 .032 .135 .360 .621 .842 .958 .992 1 1

.2 .031 .011 .028 .106 .281 .536 .744 .913 .997 1

.3 .171 .028 .006 .029 .107 .252 .487 .767 .961 1

.4 .368 .098 .025 .013 .028 .075 .244 .542 .847 .999

.5 .619 .289 .100 .022 .007 .017 .108 .291 .640 .981

.6 .827 .527 .237 .086 .035 .005 .027 .116 .357 .882

.7 .950 .775 .464 .254 .113 .037 .013 .049 .171 .587

.8 .996 .928 .768 .491 .316 .132 .028 .010 .040 .205

.9 1 .996 .946 .840 .647 .359 .156 .037 .006 .014
1 1 1 1 1 .984 .873 .567 .200 .017 .000

θ θ1 2=
θ θ1 2≠ θ θ1 2, )

θ θ1 2, x x1 2 1 2, / ,θ θ x x n n1 2 1 2, , , θ θ1 2, ∈( , )0 1 ( , )0 1

θ θ1 2, )

θ θ1 2, )
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binomial population (Equation (4.13)), where the posterior distribution of θ
was Beta and samples were generated from its posterior distribution by a
random number generator in Minitab.   

Also, MCMC techniques for sampling from the posterior distribution were
illustrated by comparing the mortality of beta blockers for prevention of
heart attacks with the control group. The WinBUGS statements are listed in
Equation (4.12), and the analysis consisted of plotting the posterior density
of the parameter that measures the effect of treatment on mortality.

4.7.2 Direct Methods of Computation 

To illustrate the direct method for the Bayesian analysis of a problem, the
accuracy of a binary test is considered. How well does the test differentiate
between diseased and nondiseased patients? Consider Table 4.7 that clas-
sifies patients by disease status negative or positive, (D = 0 or D = 1), and
the results of a new diagnostic test as negative or positive (X = 0 or X = 1).
(See Jarvik23 for additional details on binary tests for accuracy of diagnostic
procedures.) 

Suppose the patients are classified by disease status and by the outcome of
a new diagnostic test, with the results given by Table 4.8, and let the corre-
sponding joint probabilities of disease and test results be given as in the table.

The probability that a nondiseased patient will have a negative test (a true
negative (TN)) is P(X = 0, D = 0) = ; the probability that a patient will have
a positive test results is P(X = 1) = ; and the probability of a true positive
(TP) is P(X = 1, D = 1) = , etc.

If the patients are selected at random from the population, the disease
incidence is P(D = 1) = . In order to perform a Bayesian determination of
test accuracy, a prior probability density must be assigned to the parameters,

TABLE 4.7 

Distribution of Patients for Test Accuracy 

Disease Status
New Test D = 0 D = 1 Row Total

X = 0 n00 n01 n0.

X = 1 n10 n11 n1.

Column Total n.0 n.1

TABLE 4.8

Joint Probabilities of Disease Status and Test Results

Disease Status
New Test D = 0 D = 1 Row Total

X = 0 θ00(TN) θ01(FN) θ0.

X = 1 θ10 (FP) θ11(TP) θ1.

Column Total θ.0 θ.1

θ00

θ1.

θ11

θ.1
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which when combined with the likelihood function 

L(θ/n)

via the Bayes theorem, yields the posterior density. The parameter θ = (θ00,θ01,
θ10,θ11) is the vector of unknown parameters, and the likelihood function is
based on the joint multinomial distribution of n = of the
number of patients in each category, given θ. If a uniform prior density is
appropriate, the joint density of the parameters is

= , (4.33)

where  and . Therefore θ ∼ Dir (n00 + 1, n01 + 1, n10 + 1, n11

+ 1), a Dirichlet distribution, and all inferences will be based on it. 
Suppose the results of the diagnostic test are given by Table 4.9.
How is test accuracy estimated? For example, what is the estimated

sensitivity

P(X = 1/D = 1) = ? (4.34)

Minitab is used to directly sample from the posterior distribution of the
four parameters of the Dirichlet as follows:

1. Generate 1000 values from the joint distribution of .
This will produce four columns of Dirichlet values in the worksheet.
For the fifth column, calculate the sensitivity .

2. Calculate the descriptive statistics (mean, median, standard devia-
tion) for the 1000 sensitivity values of the fifth column.

3. Estimate the lower and upper 2  percentiles from the sorted 1000
sensitivity values.

4. Plot the histogram of the sensitivity values.

In a similar way, the positive predictive value 

P(D = 1/X = 1) = (4.35)

TABLE 4.9 

Results of Diagnostic Test

Disease Status
New Test D = 0 D = 1 Row Total

X = 0 90 10 100
X = 1 10 90 100
Column Total 100 100 200

∝θ θ θ θ00 01 10 11
00 01 10 11n n n n

( , , , )n n n n00 01 10 11

ξ θ( / )n { ( )/ ( ) ( ) ( ) (Γ Γ Γ Γ Γn n n n n n n n00 01 10 11 00 01 10 11+ + + ))}θ θ θ θ00 01 10 11
00 01 10 11n n n n

0 1≤ ≤θij Σ Σi
i

j
j

ij=
=

=
= =0

1
0
1 1θ

θ θ θ11 01 11/( )+

( , , , )θ θ θ θ00 01 10 11

θ θ θ11 01 11/( )+

1
2

θ θ θ11 10 11/( )+
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is estimated with a posterior mean = .489, median = .886, sd = .136, and 95%
credible interval (.477, .989), and as with the sensitivity, has a posterior
distribution, which is skewed to the left. The histogram of 1000 values
generated from the marginal posterior distribution of the sensitivity shows
the skewness (Figure 4.6). Other measures of accuracy include the specific-
ity , and the negative predictive value 

P(D = 0/X = 0) = .  

Direct sampling will be used frequently for the more elementary problems
in diagnostic accuracy and Minitab® can be downloaded at www.minitab.com   

The WinBUGS program below will execute the same analysis as Minitab. 
model; 

{ 

  g00 ~dgamma(a00,b00);

  g01 ~dgamma(a01,b01);

  g10 ~dgamma(a10,b10);

  g11 ~dgamma(a11,b11);

  h<- g00+g01+g10+g11;

  

  theta00<-g00/h

  theta01<-g01/h

  theta10<-g10/h

  theta11<-g11/h

FIGURE 4.6
Histogram of the sensitivity.
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  # the theta are those in Table 4.8 

  sen<-theta11/(theta01+theta11)

  # sen is the sensitivity

  ppv<- theta11/(theta10+theta11) 

  # ppv is the positive predictive value 

  } 

  list( a00 =91, b00 = 2, a01 = 11, b01 = 2, a10 =11, 
b10 = 2, a11 = 91, b11 = 2)

  list( g00 = 2, g01=2,g10=2,g11=2)

The program uses the same approach as Minitab to calculate the sensitivity
and specificity, namely DeGroot24, p. 63, prob. 5. The notation used mimics
that of Table 4.8 and Equation (4.34) and Equation (4.35). More details on
executing this program are described in the following sections.  

4.7.3 Gibbs Sampling 

4.7.3.1 Introduction

The direct sampling approach described above will be used frequently; how-
ever it has some limitations. For example, when considering a hierarchical
model with many levels of parameters, it is more appropriate to use an
MCMC technique in order to sample from the many posterior distributions.
Gibbs sampling can be thought of as a practical way to implement the fact
that the joint distribution of two random variables is determined by the two
conditional distributions. 

The two variable cases are considered first by starting with a pair
of random variables. The Gibbs sampler generates a random sample from
the joint distribution of θ1 and θ2 by sampling from the conditional distri-
butions of θ1, given θ2, and from θ2, given θ1. The Gibbs sequence of size k 

 (4.36)

is generated by first choosing the initial values , while the remaining
are obtained iteratively by alternating values from the two conditional dis-
tributions. Under quite general conditions, for large enough k, the final two
values are samples from their respective marginal distributions. To
generate a random sample of size n from the joint posterior distribution,
generate the above Gibbs sequence n times. Having generated values from
the marginal distributions with large k and n, the sample mean and variance
will converge to the corresponding mean and variance of the posterior dis-
tribution of . 

Gibbs sampling is an example of an MCMC because the generated samples
are drawn from the limiting distribution of a 2 × 2 Markov chain. (See Casella
and George25 for proof that the generated values are indeed values from the

( , )θ θ1 2

θ θ θ θ θ θ θ θ2
0

1
0

2
1

1
1

2
2

1
2

2 1, ; , ; , ; ; ,… k k

θ θ2
0

1
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θ θ2 1
k k,

( , )θ θ1 2
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50 Bayesian Methods in Diagnostic Medicine

appropriate marginal distributions.) Of course, Gibbs sequences can be gen-
erated from the joint distribution of three, four, and more random variables.

The Gibbs sampling scheme is illustrated with three random variables for
the common normal mean problem.

4.7.3.2 Common Mean of Normal Populations

Gregurich and Broemeling26 describe the various steps in Gibbs sampling to
determine the posterior distribution of the parameters in independent nor-
mal populations with a common mean.

In situations where the integration of the joint density is extremely difficult,
an algorithm known as the Gibbs sampler has proven to be a good alternative.
The Gibbs sampler generates a sample from the joint density by sampling
instead from the conditional densities, which are often known. According to
Casella and George, by generating a large enough sample, characteristics of
the marginal density and even the density itself can be obtained. Since the
conditional posterior distributions are easily obtained, the Gibbs sampling
method will be used.

The Gibbs sampling approach can be best explained by illustrating the
procedure using two normal populations with a common mean q. Thus,
let , be a random sample of size ni from a normal population
for .

The likelihood function for is

where

,  

and

.

The prior distribution for the parameters is assumed to be a
vague prior defined as

, .  

yij j ni= 1 2, , ,…
i = 1 2,

θ τ τ, ,1 2and

L data n s n
n

( , , / ) exp ( ) (θ τ τ τ τ θ1 2 1
2 1

1 1
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Then, combining the above gives the posterior density of the parameters as 

. 

Therefore, the conditional posterior distribution of τ1 and τ2, given θ, is

, (4.37)

for i = 1, 2 and and are independent.
The conditional posterior distribution of θ given τ1 and τ2 is normal. It can

be shown that

. (4.38)

Given the starting values where

,

, 

and

,

draw from the normal conditional distribution of θ, given 
. Then draw from the conditional gamma distribution,

given . And, lastly, draw from the conditional gamma distribution
of τ2, given . Then generate 

.

Continue this process until there are t-iterations . For large
t, would be one sample from the marginal distribution of from the
marginal distribution of τ1, and from the marginal distribution of τ2.
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Independently repeating the above Gibbs process m times produces m 3-
tuple parameter values , which represents a random
sample of size m from the joint posterior distribution of The statis-
tical inferences are drawn from the m sample values generated by the Gibbs
sampler. 

The statistical inferences can be drawn from the m sample values gen-
erated by the Gibbs sampler. The Gibbs sampler will produce four col-
umns of samples (Table 4.10). Each row is a sample drawn from the
posterior distribution of . The first column is the sequence of the
sample m, the second column is a random sample of size m from the
poly-t-distribution of θ, and the third and fourth columns are also random
samples of size m, but from the marginal posterior distributions of ,
respectively. 

To obtain the characteristics of the marginal posterior distribution of a
parameter, such as the mean and variance, it should be noted that the Gibbs
sampler generates a sample of values of a marginal distribution from the
conditional distributions without the actual marginal distribution. By simu-
lating a large enough sample, the characteristics of the marginal can be
calculated. If m is “large,” the sample mean of the column of θs is

 

thus, the mean of the posterior distribution of θ. The sample variance 

is the variance of the posterior distribution of θ.
Additional characteristics, such as the median, mode, and the 95% credible

region of the posterior distribution of the parameter q, can be calculated
from the samples generated by the Gibbs technique. Hypothesis testing can
also be performed. Similar characteristics of the parameters τ1 and τ2 can be
calculated from the samples resulting from the Gibbs method.

TABLE 4.10

Random Samples from Posterior Distribution

# θ τ1 τ2

1
2
… … … …
m

( , , ), , , ,( ) ( ) ( )θ τ τj
t

j
t

j
t j m1 2 1 2= …

( , , ).θ τ τ1 2

( , , )θ τ τ1 2

τ τ1 2and

E data mj
t

j

m

( / )θ θ θ= =
=

∑
1

( )m j
t

j

m

− − 
−

=
∑1 1

2

1

θ θ

θ1
t τ11

t τ21
t

θ2
t τ21

t τ22
t

θm
t τ1m

t τ2m
t

C7672_C004.fm  Page 52  Wednesday, May 16, 2007  10:38 AM

© 2007 by Taylor & Francis Group, LLC



Bayesian Statistics 53

The example is from Box and Tiao12, p. 481. It is referred to as “the weighted
mean problem.” It has two sets of normally distributed independent samples
with a common mean and different variances. Samples from the posterior
distributions were generated from Gibbs sequences using the statistical soft-
ware Minitab. The final value of each sequence was used to approximate the
marginal posterior distribution of the parameters and τ2. All Gibbs
sequences were generated holding the value of t equal to 50. Each example
has the results of the parameters using four different Gibbs sampler sizes
where the sample size m is equal to 250, 500, 750, and 1500. 

The “weighted mean problem” has two sets of normally distributed
independent observations with a common mean, but different variances.
The estimated values of q determined by the Gibbs sampling method are
shown in Table 4.11. The mean value of the posterior distribution of q
generated from the 250 Gibbs sequences is 108.42, with 0.07 the standard
error of the mean. The mean value of q generated from 500 and 750 Gibbs
sequences have the same value of 108.31, and the standard errors of the
mean equal 0.04 and 0.03, respectively. The mean value of q generated
from 1500 Gibbs sequences is 108.36 and a standard error of the mean of
0.02. Box and Tiao determined the posterior distribution of q using an
approximation approach. They estimated the value of q to be 108.43. This
is close to the value generated using the Gibbs sampler method. The exact
posterior distribution of q is the poly-t distribution. The effect of m appears
to be minimal indicating that 500 to 750 iterations of the Gibbs sequence
are sufficient.

4.7.3.3 MCMC Sampling with WinBUGS

The real power of MCMC techniques is when the posterior analysis is based
on a hierarchical model that has several levels of parameters. The Carlin21

example is revisited and is described in the help section of volume I of
version 1.4 of the users manual, and the advantages of MCMC techniques
are shown. The example was provided to illustrate a Bayesian posterior
analysis in Section 4.3, and the program statements and worksheet are
given below:

TABLE 4.11

Results from Gibbs Sampling

m Mean
Standard Error

Mean
95% Credible

Interval

250 108.42 .07 106.03, 110.65
500 108.31 .04 106.35, 110.21
750 108.31 .03 106.64, 110.15
1500 108.36 .02 106.51, 110.26

θ τ, 1
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model

{

for( i in 1 : Num ) {

rc[i] ~ dbin(pc[i], nc[i])

rt[i] ~ dbin(pt[i], nt[i])

logit(pc[i]) <- m[i]

logit(pt[i]) <- m[i] + d[i] (4.12)

m[i] ~ dnorm(0.0,1.0E-5)

d[i] ~ dnorm(delta, tau)

}

delta ~ dnorm(0.0,1.0E-6)

tau ~ dgamma(0.001,0.001)

Data

list(rt = c(3, 7, 5, 102, 28, 4, 98, 60, 25, 138, 64, 
45, 9, 57, 25, 33, 28, 8, 6, 32, 27, 22 ),

nt = c(38, 114, 69, 1533, 355, 59, 945, 632, 278,1916, 
873, 263, 291, 858, 154, 207, 251, 151, 174, 209, 391, 
680),

rc = c(3, 14, 11, 127, 27, 6, 152, 48, 37, 188, 52, 47, 
16, 45, 31, 38, 12, 6, 3, 40, 43, 39),

nc = c(39, 116, 93, 1520, 365, 52, 939, 471, 282, 1921, 
583, 266, 293, 883, 147, 213, 122, 154, 134, 218, 364, 
674),

Num = 22)

Inits

list(delta = 0, d.new = 0, tau=1, m = c(0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

d = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 
0, 0, 0, 0, 0, 0))

TABLE 4.12

Gibbs Sampling with WinBUGS

Parameter Mean sd MC Error 2.5% Median 97.5%

delta –.2489 .06282 .02297 –.3734 –.248 –.1239
tau 254 424.9 20.98 13.12 94.59 1511
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This is a meta analysis that combines the information from 22 clinical trials
that compare the mortality of the treatment group with a corresponding
control group. The above statements are interpreted as follows.

Table 4.1 indicates that there are 38 patients in the treatment group of the
first trial with 3 deaths compared to 3 deaths among 39 patients in the control
group. 

The worksheet above shows how the dataset is represented under the label
“Data” with four columns: (1) the rt column listing the number of deaths in
the 22 trials of the treatment group, (2) the nt column is the number of
patients in the 22 trials of the treatment group, (3) the rc column is the
number of deaths in the 22 control group trials, and (4) the nc the number
of patients in the 22 control group trials. The Num = 22 is the number of
clinical trials in the meta analysis. 

The MCMC technique is iterative and initial values are required to begin
the generation of the sequences. The initial values appear under the label
“Inits,” thus delta = 0, tau = 1 are the initial values of the delta and tau
parameters, respectively, while 22 initial values (i.e., zeroes) are required for
the mi and di. The program is executed as follows:

1. Using the specification tool of the model menu: Click on the model
menu and select the specification tool. Click on the word model at
the beginning of the program statements, then click on check model
box of the specification tool and the response should be “model is
syntactically correct.” Then click on the list statement in the work-
sheet, which appears to the right of the Data label, then click load
data on the specification tool. Click on compile box of the specifica-
tion tool and the response should be “model compiled.” Lastly, click
on Inits box of the specification tool and click on the word list, which
appears to the right of the label Inits of the worksheet, and the
response will be “model initialized.”

2. To execute the program, bring down the model menu again and click
on the updates icon. For the updates box, put the number of samples
to be generated, say 10,000, and put, say, 100 for the length of the
sequence in the refresh box. 

3. Bring down the inference menu, and click on sample monitors tool.
This will specify what parameters are to estimated. In the node box,
type delta and click on set, then type tau in the node box and click on
set, then type * in the node box. You are now ready to generate 10,000
samples from the marginal posterior distributions of delta and tau.

4. Return to the updates tool and click on the updates box. This executes
the program.

5. In the samples monitor tool, click on stats, and the descriptive statistics
(mean, sd, mc error, 2 %, median, 97.5%) from the posterior distri-
bution are displayed. The outcomes are given above under the
Results section of the worksheet. 

1
2
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For an experienced user of the software, the above actions will be familiar
and easy to do; however, for the novice, it will appear somewhat confusing.
The software requires some experience and the beginner can download
WinBUGS at www.mrc-bsu.cam.ac.uk/bugs. The download will have a
users manual and a very useful help menu, where many examples are
provided that will be of invaluable assistance to the new user. Another good
reference for using this software is Appendix B of Woodworth.27

4.8 Exercises

4.1. For the Beta density with parameters α and β, show that the mean
is and the variance is .

4.2. From Equation (4.11), show the following: If the normal distribution
is parameterized with µ and the precision τ = 1/ , the conjugate
distribution is as follows: (1) the conditional distribution of µ, given
τ, is normal with mean and precision mτ, and (2) the marginal
distribution of τ is gamma with parameters (m – 1)/2 and

/2 = (m – 1)S2/2, where S2 is the sample variance. 
4.3. Verify Table 4.2. 
4.4. Verify the following statement : To generate values from the t(n − 1,

distribution, generate values from Student’s t-distribution
with n – 1 degrees of freedom and multiply each by and then
add .

4.5: Verify Table 4.3.
4.6. Derive Equation (4.20) and Equation (4.21).
4.7. Verify Equation (4.23).
4.8. Describe the simulation used to compute the power (Equation (4.27))

for Table 4.4.
4.9. Verify that the descriptive statistics for the posterior distribution of

the sensitivity are: posterior mean = .84, median = .89, sd = .133,
lower 2 % = .461, and upper 2 % = .9842. The histogram of the
sensitivity values is shown in Figure 4.6 and reflects the left skew-
ness, which is shown by the median of .89, compared to a mean of
.84. The maximum likelihood estimate is .90, with a standard devi-
ation of .03. (See Equation (4.34) and Table 4.9.)

4.10. Verify Equation (4.37) and Equation (4.38).
4.12. Refer to Equation (4.38) and derive the marginal density of θ (the

common mean of two normal populations).
4.13. Write a WinBUGS program and compute the posterior distribution

of the common mean appearing in Table 4.11. Compare the results
with those given by Minitab in Table 4.11.
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4.14. See the results section of the WinBUGS program (Equation (4.12)).Verify
the results of the posterior analysis of delta and tau using the statements
in the program and the description for executing the program.

References

1. Bayes, T., An essay towards solving a problem in the doctrine of chances, Philo.
Trans. Roy. Soc. London, 53, 370, 1764. 

2. Laplace, P.S., Memorie sur la probabilite de causes per les evenemens, Memories de
l’Academie royale des sciences presentes par divers savans, 1774, 621. 

3. Laplace, P.S., Memorie des les probabilities, Memories de l’Academie des sciences de
Paris, 1778, 227.

4. Stigler, M., The history of statistics. The Measurement of Uncertainty before 1900,
The Belknap Press of Harvard University Press, Cambridge, MA, 1986.

5. Hald, A.A., A History of Mathematical Statistics from 1750-1930, Wiley Inter-
science, 1990, London.

6. Hald, A.A., History of Mathematical Statistics before 1750, Wiley Interscience,
1998, London.

7. Lhoste, E., Le calcul des probabilites appliqué a l’artillerie, lois de probabilite a prior,
Revu d’artillirie, Mai, 405, 1923. 

8. Jeffreys, H., An Introduction to Probability, Clarendon Press, 1939, Oxford, U.K.
9. Savage, L.J, The Foundation of Statistics, John Wiley & Sons, 1954, New York.

10. Lindley, D.V., Introduction to Probability and Statistics from a Bayesian Viewpoint,
Vol. I and II, Cambridge University Press, 1965, Cambridge, U.K.

11. Broemeling, L.D and Broemeling, A.L., Studies in the history of probability and
statistics XLVIII: the Bayesian contributions of Ernest Lhoste, Biometrika,
90(3),728, 2003.

12. Box, G.E.P. and Tiao, G.C., Bayesian Inference in Statistical Analysis, Addison
Wesley, 1973, Reading, MA.

13. Zellner, A., An Introduction to Bayesian Inference in Econometrics, John Wiley &
Sons, 1971, New York.

14. Broemeling, L.D., The Bayesian Analysis of Linear Models, Marcel Dekker, 1985,
New York.

15. Leonard, T. and Hsu, J.S.J., Bayesian Methods. An Analysis for Statisticians and
Interdisciplinary Researchers, Cambridge University Press, 1999, Cambridge,
U.K. 

16. Gelman, A., Carlin, J.B., Stern, H.S., and Rubin, D.B., Bayesian Data Analysis,
Chapman & Hall/CRC, 1997, Boca Raton, FL.

17. Congdon, P., Bayesian Statistical Modeling, John Wiley & Sons, 2001, London.
18. Congdon, P., Applied Bayesian Modeling, John Wiley & Sons, 2003, New York.
19. Congdon, P., Bayesian Models for Categorical Data, John Wiley & Sons, 2005,

New York.
20. Carlin, B.P. and Louis, T.A., Bayes and Empirical Bayes for Data Analysis,

Chapman & Hall, 1996, New York.
21. Carlin, B.P., Taken from the Help Section of Vol. I of WinBUGS version 1.4,

January 2003, Blocker: Random affects meta analysis of clinical trials.
22. Lehmann, E.L., Testing Statistical Hypotheses, John Wiley & Sons, 1959, New York.

C7672_C004.fm  Page 57  Wednesday, May 16, 2007  10:38 AM

© 2007 by Taylor & Francis Group, LLC



58 Bayesian Methods in Diagnostic Medicine

23. Jarvik, G.J. Fundamentals of clinical research for radiologists. The research
framework, Am. J. Roentgenol., 176, 873, 2001.

24. DeGroot, M.H., Optimal Statistical Decisions, McGraw-Hill, 1970, New York. 
25. Casella, G. and George, E.I., Explaining the Gibbs sampler, Am. Stat., 46, 167, 1992.
26. Gregurich, M.A., and Broemeling, L.D., A Bayesian analysis for estimating the

common mean of independent normal populations using the Gibbs sampler,
Commun. Stat. Theor. Meth., 26 (1), 25, 1997.

27. Woodworth, G.G., Biostatistics, a Bayesian Introduction, Wiley Interscience, 2005,
Hoboken, NJ.

C7672_C004.fm  Page 58  Wednesday, May 16, 2007  10:38 AM

© 2007 by Taylor & Francis Group, LLC



 

59

 

Chapter 5

 

Bayesian Methods for Diagnostic Accuracy

 

5.1 Introduction

 

This chapter describes the methodology for making inferences with respect
to the basic measures of test accuracy and will begin with a section on the
design of such studies. The elements of good design will be explained in the
context of a protocol submission of a trial to assess the accuracy of a diag-
nostic test in a clinical situation. The submission procedure at the MD
Anderson Cancer Center (MDACC) is very formal and all submissions are
required to contain evidence of a well-designed experiment. The first step
in protocol submission is the review by the Department of Biostatistics and
Applied Mathematics.

After describing the components of designing a diagnostic study, this
chapter introduces Bayesian methods for the analysis of diagnostic test accu-
racy, including the estimation of sensitivity, specificity, positive and negative
predictive values, positive and negative diagnostic likelihood ratios, and
receiving operating characteristic (ROC) curves. A Bayesian analysis deter-
mines the posterior distribution of the relevant parameter and its character-
istics, such as the posterior mean, median, standard deviation, credible
intervals, and associated plots of the density. 

The analysis of test accuracy data is introduced first with binary and
ordinal diagnostic test data, and then the Bayesian analysis is repeated with
quantitative scores. Various imaging modalities are compared in a Bayesian
framework by testing hypotheses, such as that one modality has greater
accuracy (e.g., sensitivity or ROC area) than another, or that two modalities
have equivalent accuracy.

This is followed by more specialized topics including localization and
detection of disease by diagnostic tests where the image is partitioned into
regions of interest (ROI). This is interesting statistically because of the
correlation between regions of the same image are correlated. The analysis
of correlated data in such a scenario has been approached by Obuchowski

 

1

 

and, based on her ideas, a Bayesian technique to estimate the ROC area is
developed.
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In order to compare modalities and/or readers in multimodality and multi-
reader studies, special techniques are required. Lastly, sample size estimation
to test hypotheses about diagnostic accuracies are explained and many exam-
ples given to elucidate the Bayesian approach. 

 

5.2 Study Design

 

The elements of good study design for clinical trials of diagnostic tests
are explained in the context of the submission of a protocol at MDACC.
The Department of Biostatistics and Applied Mathematics first reviews all
protocols, which are essentially of two types, those that originate locally
here at the institution and those submitted by pharmacutical or medical
device companies. For the latter, the protocol is critiqued and reviewed by
a statistician in the department. For those studies originating within the
institution, a biostatistician would assist the investigator with the design of
the study, but the protocol would be reviewed by a different person and
presented to the department for approval. The protocol is reviewed by the
department and, if necessary, revised according to the suggestions recom-
mended by the departmental consensus. The principal investigator (PI) then
revises the protocol, often with the assistance of the statistician. 

 

5.2.1 The Protocol

 

There are many types of protocols submitted; however, only those dealing
mainly with diagnostic tests are considered here. Of course, diagnostic pro-
cedures are usually a part of all clinical trials and these will be described in
later chapters. Briefly, the protocol outline is:

1. Objectives
2. Background
3. Patient and reader selection
4. Study plan
5. Number of patients
6. Statistical design and analysis
7. References 

 

5.2.2 Objectives

 

The study’s primary and secondary aims are given in the first section of the
protocol. The study design is illustrated by a protocol with two nuclear
medicine procedures: one using an iodine radionuclide with single photon
emission computed tomography (SPECT) (Iodine-123 MIBG (metaiodoben-
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zylguanidine) SPECT) and the other with thallium (Ti- 201 SPECT) that will
be used to measure the amount of damage (e.g., scarring of the cardiac wall
and nerve damage) to the heart caused by radio therapy to the chest. The main
objective is to determine the association between the delivered dose to the
target lesion and the nerve damage caused by radiotherapy to the chest. It
is an important study because little work in this area has been done.

 

5.2.3 Background

 

The recent relevant literature on previous studies should be cited in the
Background section of the protocol. It is a very important component
because it gives the rationale for doing the study and it often provides
information that is essential for sample size estimation. The background
information is often a source of preliminary information, which will be
employed as prior information for the Bayesian analysis. In the nuclear
medicine example, there is a great deal of information on cardiac morbidity
and mortality from radiotherapy, but very little on diagnostic imaging pro-
cedures that assess the amount of innervation damage. There are only two
references citing studies using I-123 MIBG SPECT to assess nerve damage
to the heart.

 

5.2.4 Patient and Reader Selection

 

The Patient and Reader Selection component provides the inclusion (those
who can be admitted) criteria and the ineligibility (those who cannot be
admitted) criteria. Generally speaking, those to be included are diseased,
but not too diseased to be admitted, while those that are too sick will be
excluded. In diagnostic studies when several readers are involved to inter-
pret the diagnostic information, the relationship between how the patients
are selected and how the readers are selected must be described. For
example, in a traditional selection with two imaging modalities, the same
readers will be used to interpret both images and the same patients will be
imaged by the two modalities. There are many variations to this scenario,
including unpaired patient–unpaired readers, where there are two sets of
patients, one for image A and the other for image B, and there are two distinct
sets of readers, one for image A and one for image B. Also, there are paired
patient and unpaired reader selection plans, etc. For additional selection
plans, see Zhou et al.

 

2

 

, Chap. 3.
If the readers are to interpret two images, is the order randomized to

eliminate order bias, and how is a final determination of image interpretation
to be handled? How the patients are selected will also affect the sample size
estimation, and it could affect any future analysis. For example, the analysis
for comparing image accuracy in a paired patient design would be different
than that for an unpaired patient selection. If one set of patients is selected
at random from a diseased population and the other set selected from a
nondiseased population, is this a randomized trial?
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Patient and reader selection designs often depend on the type of trial. When
developing a new imaging modality, the test should pass three Phases: I, II,
and III. The different phases are for different objectives of test accuracy and
are as follows: the relation (i.e., paired or unpaired) between patients and
the diagnostic modalities and the relation between the readers and modali-
ties should be described in the protocol. The Phase I, II, and III trials for
imaging devices were described in a previous chapter, and one is referred
to Bogaert et al.

 

3

 

 for an example of a Phase I developmental trial involving
MRI angiography. For an example of a Phase II trial, see Theate et al.

 

4

 

 and
finally for a Phase III trial, see Beam et al.

 

5

 

 who investigated the interpretation
of screening mammograms.

Note that it is important to know the inter-observer variability in these
trials because the accuracy of the modality depends not only on the device,
but the interpretation of the image via the various readers. Pepe

 

6

 

 (Chapter 8)
gives more detail in the description of developmental trials, and Zhou et al.

 

2

 

provide the analysis for studies with multiple readers and multiple modal-
ities for trials of device development.

For the nuclear medicine trial, which is used to motivate the steps involved
in the design of a protocol, the paired patients are imaged by both proce-
dures; however, the two modalities will not be compared because they are
measuring different things. The iodine radionuclide test is measuring nerve
damage to the heart, while the thallium stress test is measuring cardiac
perfusion variables, like wall scaring and left ventricular ejection fraction,
which are other indicators of cardiac damage. 

 

5.2.5 Study Plan

 

For this section of the protocol, the details of how the diagnostic tests are to
be implemented are spelled out. 

Returning to the trial being designed, the study plan is as follows. The
sympathetic nervous system of the heart will be imaged using I-123 MIBG,
while at the same time performing an exercise stress test using thallium-201
(Tl-201). The patients will be imaged prior to initiation of radiation therapy
and at 6 to 12 months after completion of radiation therapy. Stress myocardial
perfusion imaging is a standard of care test of baseline evaluation of myo-
cardial perfusion and possible radiation-induced coronary artery disease
after radiation therapy of tumors close to the heart. Presently at MDACC,
stress myocardial perfusion is performed using the dual isotope method
where the patient is injected with thallium-201 for the resting part of the
study and, immediately after rest, the patient is injected with technetium-
99m (Tc-99m) tetrofosmin at peak stress and imaging is repeated for the
stress part of the study. 

Next, is the plan to image the patient. This includes details of administering
the first radio pharmaceutical I-123 MIBG, including the dose injected intra-
venously (IV) and how the resulting radioactivity is to be imaged by the
gamma camera, in this case SPECT. This is followed by a description of
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administering the thallium exercise stress test for cardiac perfusion. The
patient is imaged with both nuclear medicine procedures before and after
radiotherapy. There are two types of cardiac damage variables, those for
nerve damage and those measuring scaring of the heart wall and left ven-
tricular ejection fraction, a measure of cardiac output. If radiotherapy is
damaging the heart, one would expect to observe it by comparing the post-
therapy measurements of heart damage to the corresponding pretherapy
values. 

Lastly, the image processing details are described. For the cardiac damage
study, standard filtered back projection techniques to obtain SPECT images
will be employed for both imaging modalities. In order to obtain wall motion
images and ejection fraction values, gated motion images are required, thus
cardiac motion will not affect the image quality. In order to detect nerve
damage, the uptake of norepinephrine can be estimated with the I-123 MIBG
SPECT procedure. This illustrates the ability of a nuclear procedure to
measure metabolic processes.  

 

5.2.6 Number of Patients

 

The total number of patients and the monthly accrual rate is described. For
multi-institutional trials, the rates for each institution are provided. The total
sample size is justified in the power analysis of the statistics section. A
maximum of 40 patients accrued at 2 to 3 per month should be sufficient for
the cardiac damage protocol. 

 

5.2.7 Statistical Design and Analysis

 

The statistical section should provide a detailed power analysis that out-
lines the justification for the sample size. The power analysis should show
how the results of previously related studies are used to predict the results
of the planned study. It should also provide a brief description of the design
of the study, including how the readers and patients interface (i.e., paired
with the modalities) with the diagnostic tests. The Phase (I, II, or III) of the
study should be identified as well as an outline of how the study results
will be analyzed. 

For the planning of the Phase I nuclear medicine protocol, the power
analysis is as follows: the sample size will be based on the expected associ-
ation between nerve damage measured by uptake of norepinephrine (as
determined by I-123 MIBG) and the dose of radiotherapy (RT) administered
to the target lesion measured in Gy (gray unit for absorbed dose of radiation).

If RT is damaging cardiac innervation, one would expect the mean uptake
ratio to be 2.5 before RT with a range from 1.5 to 3.5; while after therapy,
one would expect the average uptake ratio of norepinephrine to be 1.5 with
a range from .5 to 2.5. Assuming a correlation of .5 between pre- and post-
therapy for the uptake values of norepinephrine, the standard deviation of
the difference is .5. 
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The independent variable for the association is the RT delivered dose,
which will have a range of 40 to 60 Gy, with a average dose of 50 Gy and
a standard deviation of 5 Gy. The dose is expected to have an effect on
the cardiac nerve damage. When the delivered dose is 40 Gy, it is reason-
able to expect an average uptake in the difference to be 0, while if the
delivered dose is 60 Gy, it is reasonable to expect the difference in the post
minus preuptake values to average 1. Assuming a linear regression between
the difference in the uptake values as the dependent variable and the
administered dose as the independent variable, the regression line will be
approximately

 

Y

 

 = .05

 

X

 

 –2

where 

 

X

 

 is the delivered dose in Gy, and 

 

Y

 

 is the difference in the post minus
preRT uptake values. The null hypothesis is that the slope of the regression
is zero vs. the alternative hypothesis that the slope is positive. Assuming
under the alternative, the slope is .05, the power of the test with an alpha =
.05 is .68, .86, and .94 corresponding to sample sizes 20, 30, and 40, respec-
tively. It appears reasonable that 30 patients will show a strong association
between damage to the nerves of the heart and the delivered dose to the
target lesion.

The power analysis describes what to expect in regard to the nerve damage
to the heart in terms of the uptake ratios of norepinephrine, measured before
and after radiotherapy. The hypothetical association between the nerve dam-
age and the dose delivered to the target lesion is given by the above regres-
sion equation. The power was computed with a standard software package
NCSS

 



 

, and suggests 30 patients as a reasonable number to detect the desired
association. This is somewhat hypothetical in a sense, but is based on pre-
vious studies of heart damage caused by radiotherapy to lesions that are
close to the heart. The power analysis could just as well be done from a
Bayesian perspective (see Broemeling

 

7

 

 for the Bayesian analysis of a linear
regression model). 

Note, the power analysis is based on just two of the many endpoints that
could have been used. There are many ways to measure cardiac nerve dam-
age and many to measure other damage to the heart, such as left ventricle
ejection fraction and scarring to the heart wall. The power analysis should
be brief, but at the same time informative, so that other statisticians can
review the work.

 

5.2.8 References

 

I think of this as the most important section of the protocol because the
study is only fit to be run if previous studies show a need. Also, to the
statistician, the results from previous studies are invaluable for the power
analysis.
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5.3 Bayesian Methods for Test Accuracy: Binary
and Ordinal Data 

 

5.3.1 Introduction

 

This section will introduce Bayesian techniques to estimate and test
hypotheses concerning the basic measures of test accuracy. The measures
of test accuracy are (1) classification probabilities, (2) predictive measures, and
(3) diagnostic likelihood ratios. The classification probabilities are the false
positive fraction (FPF) and true positive fraction (TPF), while there are two
predictive values: the positive predictive value (PPV) and the negative pre-
dictive value (NPV). Lastly, there are two diagnostic likelihood ratios, the
positive diagnositc likelihood ratio (PDLR) and the negative diagnositc like-
lihood ratio (NDLR). These measures will be defined in the next section in
the context of a cohort study. Thus, there is a random sample of size 

 

n

 

 selected
from the target population and a gold standard, therefore, each patient is
classified into four categories in Table 5.1.

The 

 

n

 

ij

 

 are the number of subjects with test score 

 

i

 

 = 0 or 1 and disease
status 

 

j

 

 = 0 or 1, while 

 

θ

 

ij

 

 is the corresponding probability. 

 

5.3.2 Classification Probabilities 

 

The basic measures of test accuracy are the TPF (sensitivity) and the FPF (1–
specificity) where,

TPF (

 

θ

 

) = 

 

θ

 

11
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θ

 

11

 

 

 

+ θ

 

01

 

) = 

 

P(X

 

 = 1/

 

D

 

 = 1), (5.1)

and

FPR (

 

θ

 

) = 

 

θ

 

10

 

/(

 

θ

 

00

 

 + 

 

θ

 

10

 

) = 

 

P

 

(

 

X

 

 = 1/D = 0). (5.2)

It is important to know that the TPF and FPF are unknown parameters
and are functions of 

 

θ

 

. The Bayesian analysis determines the posterior dis-
tribution of these quantities from which the parameters are estimated and
certain tests of hypotheses performed. Assume the prior information is based
on a previous study, with results given in Table 5.2 

 

TABLE 5.1 
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where 

 

m

 

 subjects have been classified in the same way as those in Table 5.1.
The density based on prior information is

(5.3) 

thus, the likelihood function for 

 

θ

 

 

 

=

 

 (

 

θ

 

00

 

, 

 

θ

 

01

 

, 

 

θ

 

10

 

, 

 

θ

 

11

 

) is 

(5.4) 

and the posterior distribution is Dirichlet,
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 + 1).

If there is no prior information, the 

 

m

 

ij

 

 

 

are zero, and one, in effect, is
assuming a uniform prior distribution for 

 

θ

 

. 
Direct sampling from the Dirichlet distribution, using Minitab

 



 

, will deter-
mine the posterior distribution of these classification probabilities. As an
example, consider the Coronary Artery Surgery Study (CASS) example
examined by Pepe

 

6

 

 and based on the study by Weiner et al.

 

7

 

 This is a cohort
study of 1465 subjects, where each is classified as to disease status (coronary
artery disease (CAD) via an angiogram) and a diagnostic test, the exercise
stress test (EST), which is a nuclear medicine procedure (Table 5.3). (See
Chapter 2, Section 2.2 for a brief description of nuclear medicine imaging.) 

The TPF and FPF are estimated by sampling from their posterior distribu-
tions. Since the joint posterior distribution of the parameters is Dirichlet,
1000 samples are generated from their distribution, resulting in four columns
of the Minitab worksheet. There is one column for each Dirichlet parameter.
The 1000 FPF and TPF values are transformed from the four columns accord-
ing to Equation (5.1) and Equation (5.2), which give 1000 samples from their
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TABLE 5.3 

 

Exercise Stress Test and Heart Disease
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posterior distributions. The properties of the posterior distributions are cal-
culated and shown in Table 5.4 

A plot of the 1000 values sampled from the joint posterior distribution of
(FPF, TPF) is presented in Figure 5.1, along with the histograms of the two
marginal posterior distributions.  

How does one determine a joint credible region for (TPF, FPF)? Consider
the rectangular region (.224, .972) × (.024, .803) for the two parameters, then
what is the posterior probability that (TPF, FPF) ∈ (.224, .972) × (.024, .803)?
This can be computed from Minitab by creating a column labeled “joint”
from the worksheet by the command: “joint’” = (.224 < = ‘tpf’) and (‘tpf’ <
= .972) and (.024 < = ‘fpf’) and (‘fpf’ < = .803). Thus generating 1000 binary
values for the “joint” column, with a 0 when the (TPF, FPF) pair is not

TABLE 5.4

Posterior Distribution of TPF and FPF

Parameter Mean STD Median 97. 5% CI

TPF(θ) .753 .176 .796 (.224, .972)
FPF(θ) .311 .206 .271 (.024, .803)

FIGURE 5.1
TPF vs. FPF.
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included in the region and with a 1 when it is. Now compute the mean of
the “joint” column to give the posterior probability, namely 

P{(TPF, FPF/data) ∈ (.224, .972) × (.024, .803)} = .962, (5.5) 

therefore, the credible region has a posterior content of 96.2% .  
Consider a test of the hypothesis H: TPF < FPF vs. A: TPF ≥ FPF. If the

posterior probability of the alternative hypothesis is reasonably large, then
the null would be rejected in favor of the alternative, but, in fact

P(TPF ≥ FPF /data) = .586(.492), (5.6)

where .492 is the standard deviation. Such a test is important in comparing
the sensitivity of the test to its specificity.

5.3.3 Predictive Values

The second set of measures of test accuracy is the positive predictive value
(PPV) and the negative predictive value (NPV), defined as follows:

PPV (θ) = θ11/(θ01 + θ11) = P(D = 1/X = 1) (5.7) 

and

NPV (θ) = θ00/(θ00 + θ01) = P(D = 0/X = 0).  (5.8)

Since these two quantities depend on disease incidence, it is important
that the patients are selected at random from the target population, so
that when estimating the predictive values, the estimated disease inci-
dence is done without bias. Returning to the CASS example, the posterior
distributions of the predictive values are provided in Table 5.5. They
answer the question of primary interest to the patient — Do I have a
disease or don’t I? 

The PPV distribution is skewed to the left, thus a reasonable estimate of
it is .868. Note that a perfect test occurs when PPV = NPV = 1. 

TABLE 5.5 

Distribution of Predictive Values

Parameter Mean STD Median 95 % CI

PPV(θ) .827 .150 .868 (.400, .984)
NPV(θ) .585 .220 .606 (.139, .936)
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5.3.4 Diagnostic Likelihood Ratios 

The diagnostic likelihood ratios are a third group of test accuracy measures
and are 

PDLR (θ) = P(X = 1/D = 1)/P(X = 1/D = 0) 

= [θ11/(θ11 + θ01)]/[θ10/(θ10 + θ00)]

= TPF (θ)/FPF (θ), (5.8) 

and

NDLR (θ) = P(X = 0/D = 1)/P(X = 0/D = 0) 

= [θ01/(θ11 + θ01)]/[θ00/(θ10 + θ00)] 

= FNF(θ)/ TNF(θ) (5.9)

With regard to the PDLR, the more accurate the diagnostic test becomes,
the numerator (TPF) tends to become larger and the denominator (FPF) tends
to become smaller, but for the NDLR, the opposite is true, the numerator
(FNF) tends to become smaller and the denominator (TNF) tends to become
larger. The range of both is (0, ∞).

 For the CASS dataset, the characteristics of the posterior distribution are
given in Table 5.6.

The posterior distribution of the PDLR is highly skewed to the right with
a mean of 4.78 compared to a median of 2.70, therefore, the mean could give
a misleading high value for the accuracy. The median PDLR implies the TPF
is 2.7 times larger than the FPF. For additional information about these basic
measures of accuracy, Pepe6 provides a summary.

5.3.5 ROC Curve

Consider the results of mammography given to 60 women of which 30 had
the disease (Table 5.7). This is presented in Zhou et al.2 

The radiologist assigns a score from 1 to 5 to each mammogram, where 1
indicates a normal lesion, 2 a benign, 3 a lesion that is probably benign, 4
indicates suspicious, and 5 malignant. How would one estimate the accuracy

TABLE 5.6 

Distribution of Diagnostic Likelihood Ratios

Parameter Mean STD Median 95 5% CI
PDLR(θ) 4.780 7.310 2.707 (.726, 20.92)
NDLR(θ) .424 .466 .3045 (.039, 1.45)
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for mammography from this information? When the test results are binary,
the observed TPF and FPF are calculated, but here there are 5 possible results
for each image. The scores could be converted to binary by designating 4 as
the threshold, then scores 1 to 3 are negative and 4 to 5 are positive test results.
Then estimate the TPF as tpf = 23/30 and the specificity (1 − FPF) as (1 − fpf) =
21/30. Another approach would be to use each test result as a threshold and
calculate the tpf and fpf (depicted in Table 5.8).

Of the 30 diseased, 30 had a score of at least 1, while 23 had a score of at
least 4. On the other hand, of the 30 without cancer, 30 had a score of at least
1, and 8 had a score of at least 4, etc. Figure 5.2 is a plot of the observed true
and false positive values of Table 5.8. What does this graph tell us about the
accuracy of mammography? 

The area under the ROC gives the intrinsic accuracy of a diagnostic test
and can be interpreted in several ways (see Zhou et al.2): either as the average
sensitivity for all values of specificity, or the average specificity for all values
of sensitivity, or as the probability that the diagnostic score of a diseased
patient is more of an indication of disease than the score of a patient without
the disease or condition. The problem is in determining the area under the
curve. For the graph in Figure 5.2, there are five points corresponding to the
five threshold values. If the diagnostic score can be considered continuous
(e.g., the coronary artery calcium score), then the curve through the points
becomes more discernible and the area easier to determine.

In the case of discrete data, the area under the curve as determined by a
linear interpolation of the points on the graph (including (0,0) and (1,1)) have
the following interpretation:

AUC = P(Y > X) + (1/2)P(Y = X). (5.10)

See Pepe6 where it is assumed that one patient is selected at random
from the population of diseased patients, with a diagnostic score of Y,

TABLE 5.7

 Mammogram Test Results 

Status
Normal

(1)
Benign

(2)
Probably Benign

(3)
Suspicious

(4)
Malignant

(5) Total

Cancer 1 0 6 11 12 30
No Cancer 9 2 11 8 0 30

TABLE 5.8 

TPF vs. FPF for Mammography Test Results

Status
Normal

(1)
Benign

(2)
Probably Benign

(3)
Suspicious

(4)
Malignant

(5) 

tpf 30/30 = 1.00 30/30 = 1.00 29/30 = .966 23/30 = .766 12/30 = .400
fpf 30/30 = 1.00 21/30 = .700 19/30 = .633 8/30 = .266 0/30 = 0.000
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while another patient, with a score of X, is selected independently from
the population of nondiseased patients. Note that the area under the curve
(AUC) depends on the parameters of the model. Let us return to the
mammography example and estimate the area under the curve via a
Bayesian method. The histogram of the posterior distribution of the ROC
area is shown in Figure 5.3. 

FIGURE 5.2
Empirical ROC graph for mammography.

FIGURE 5.3
Posterior distribution of ROC area for mammography.
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For the mammography example, the area is defined as 

AUC (θ, φ) = P(Y > X/θ, φ) + (1/2)P(Y = X/θ, φ), (5.11)

where Y (= 1, 2, 3, 4, 5) is the diagnostic score for a person with breast cancer
and X (=1, 2, 3, 4, 5) for a person without. It can be shown 

AUC (θ, φ) = . (5.12)

It is assumed the Y and X are independent, given the parameters, and that 

P(Y = i) = θi and P(X = j) = φj, i, j = 1,2,3,4,5. 

AUC is a parameter that depends on θ and φ. 
Their posterior distributions are θ/data ~ Dir (2, 17, 12, 13) and independent

of φ/data ~ Dir (10, 3, 12, 9, 1), assuming a uniform prior for the parameters
(see Table 5.7). 

Samples from the posterior distribution of the AUC are generated by
sampling from the posterior distributions of θ and φ. This was done with
Minitab, where 5 columns of the worksheet were used to generate
1000 samples from the Dirichlet posterior distribution of θ, and 5 columns
to generate 1000 samples from the posterior distribution of φ. Consequently,
using Formula (5.12), 1000 values are computed from the posterior distribu-
tion of AUC. The mean and median of the posterior distribution of AUC are
.768 and .782, respectively; the standard deviation is .091 and a 95% credible
interval (.560, .910). The skewness to the left produces a “wide” interval
estimate of the ROC area. This value is to be compared to the value found
by Zhou et al.2

Lastly, the mammography example is concluded with a test for the use-
fulness of the procedure. Obviously, a perfect test has an ROC area of 1,
and a useless test area of .5. Thus, consider a Bayesian test of H: AUC < .5
vs. the alternative A: AUC ≥ .5. How is this performed with Minitab? From
the worksheet, create a column with the command area > .5, which will
generate 1000 binary values: 0 when the condition is not satisfied and 1
when it is. The mean of this column is the probability of the alternative
hypothesis and

P(AUC(θ, φ) ≥ .5/data) = .991. 

Therefore, by this criterion, mammography is a useful procedure.
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5.4 Bayesian Methods for Test Accuracy: Quantitative Variables

5.4.1 Introduction

The methods introduced previously for discrete diagnostic tests apply to
quantitative variables as well. The basic measures of test accuracy, including
classification probabilities, predictive measures, and diagnostic likelihood
ratios, all apply to continuous variables, such as blood glucose levels to
diagnose diabetes, the levels of glucose metabolism in nuclear medicine
procedures, and the PSA (prostate specific antigen) levels to help diagnose
prostate cancer. Other quantitative variables to be considered in this book
are coronary artery calcium (CAC) levels in coronary heart disease, and
standardized uptake levels to assess metastasis to the spinal column. 

In clinical practice, quantitative variables are often dichotomized. For
example, CAC levels in excess of 400, PSA levels in excess of 4 ng/ml, and
blood glucose levels in excess of 126 mg/dL are standard threshold values.
Of course, with a threshold value and a gold standard, the diagnostic accu-
racy can be estimated with the Bayesian methods previously introduced. In
this section, methods for choosing a threshold value are explained in the
context of a cost benefit analysis.

The primary focus on test accuracy will be the area under the ROC curve.
Its mathematical properties will be outlined and Bayesian methods of esti-
mating the area explained.

5.4.2 The Spokane Heart Study  

The Spokane Heart Study was conducted at Washington State University
and the CT imaging was implemented at the Shields Coronary Artery
Center in Spokane. Over a period of 10 years there were nearly 4400 patient
visits, where cardiologist referred the majority of the patients. Thus, the
relevant population was community based and a comprehensive history
was taken of each patient’s symptoms. These patients had confirmed coro-
nary artery disease or were at high risk for the disease.

At the time, the use of CAC to assist in the diagnosis and patient manage-
ment was not an accepted standard procedure; however, since then it is
gradually being accepted. There are several experimental studies that
involve a CT (computed tomography) determination of the CAC in the
coronary arteries. Measurements of CAC were made with the Imatron C-100
Ultrafast CT Scanner. The description of the Spokane study is given in
Mielke et al.9 The CAC score is a positive score and is the sum of several
CAC scores corresponding to the various coronary arteries and gives a
measure of the amount of plaque burden.

Rumberger et al.10 developed a risk index for CAD by categorizing the
CAC scores as follows: 
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• A value of 1 is a CAC score of zero and indicates very low risk.
• A value of 2 is assigned for CAC scores between 1 and 10 and

represents low risk of disease.
• CAC scores between 11 and 100 indicated a moderate risk and are

assigned a value of 3.
• A value of 4 is assigned to scores between 101 and 400 for high risk.
• A very high risk has a value of 5 for CAC scores greater than 400. 

With the occurrence of infarction as a gold standard, the 130 patients who
had an infarct were assigned the following risk scores: 

Very low risk: 12
Low risk: 6
Moderate risk: 27
High risk: 40
Very high risk: 45

As for the 4263 patients who did not experience an infarct, they were
assigned to the following risk categories.

Very low risk: 1818
Low risk: 527
Moderate risk: 814
High risk: 648
Very high risk: 454

Assuming a uniform prior distribution for the parameters, the posterior
distribution of θ = (θ1, θ2, θ3, θ4, θ5) is Dirichlet (13, 7, 28, 41, 46), where θ1

is the probability a diseased patient has a low risk of disease, etc., and in
a similar fashion, the posterior distribution of φ = (φ1, φ2, φ3, φ4, φ5) is
Dirichlet (1819, 528, 815, 649, 455), where φ5 is the probability a patient
without an infarct has a very high risk of disease. If high risk is the
threshold, it can be shown that the TPF (θ) has a Beta distribution with
mean .626, median .639, and standard deviation .150. On the hand, the FPF
(φ) has a Beta posterior distribution with mean .272, median .251, and
standard deviation .133.

5.4.3 ROC Area

The area under the ROC curve gives an intrinsic value to the accuracy of a
diagnostic test and has a long history beginning in signal detection theory.
See Egan11 for the early use of the ROC curve in signal detection theory.
Also, the books by Pepe6 and Zhou et al.2 provide the history as well as the
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latest statistical methods (non Bayesian) for using ROC curves in diagnostic
medicine. The ROC area is generally accepted as the way to measure diag-
nostic accuracy in radiology.

Let X be a quantitative variable and r a threshold value, and consider the
test positive when X ≥ r, otherwise negative, then the ROC curve is the set
of all points

ROC(.) = { [FPF(r) ,TPF(r)], r any real number} 

  = {[t, ROC(t)], t ∈ (0, 1)}, (5.13)

where t = FPF(r), that is, r is the threshold corresponding to t. As r becomes
large, FPF(r) and TPF(r) tend to zero, while if r becomes small, FPF(r) and
TPF(r) tend to 1, thus the ROC curve passes through (0,0) and (1,1). If the
area under the curve is 1, the test is discriminating perfectly between the
diseased and nondiseased groups, while if the area is .5, the test cannot
discriminate between the two groups.

Chapter 4 of Pepe presents several useful properties of the ROC curve:
(1) the invariance of the ROC curve under monotone increasing transforma-
tions of X, (2) interpreting the ROC area for continuous variables as AUC =
P(X > Y ), and (3) a formula for the AUC area when X is normally distributed. 

The Bayesian approach to estimating the ROC area is based on AUC = Φ
[a/ ], where X is normally distributed, a = (µD − µD)/σD, and b = σD/σD.
The mean and standard deviation of the X for the diseased population are
µD and σD, respectively, while µD and σD are the mean and standard deviation
of X for the nondiseased. Φ is the cumulative distribution function of the
standard normal distribution. This formula is cited by many authors; how-
ever, Pepe presents an excellent discussion of its use. 

Note the ROC area AUC depends on the unknown parameters of the
model. Bayesian methods for estimating the ROC area will be illustrated
by referring to an example found in Zhou et al., which is based on the
study by Hans et al.12 The data are given in Table 4.12 of Zhou and refer
to the use of CK-BB, an enzyme in the spinal fluid collected within 24 hours
of injury, to predict the outcome of severe trauma. 

The WinBUGS® statements below are a modification of those presented
by O’Malley et al.13 The program is based on the binormal assumption,
where the diagnostic variable X has a normal distribution for both popu-
lations. The model is a linear regression model with three regression coef-
ficients: a constant, the group effect, and an effect for age. If the covariable
is not to be included, delete the third regression coefficient beta 3. The first
level parameters are the µs and precisions of the observations (the CK-BB
levels, one for each patient) where each patient has a mean expressed as a
linear regression on the group effect and the age effect. The regression
coefficients are second-level parameters and given uninformative normal
distributions, while the two precision parameters are given noninformative
gamma distributions.

1 2+ b
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There are two list statements, the first of which consists of three vectors
for the data. The y vector lists the CK-BB values, the vector d is a group
identification vector, and the third vector age lists the age of each patient.
The second list statement specifies the initial values for the Monte Carlo
Markov Chain (MCMC) algorithm. The vector beta lists the initial values for
the regression coefficients, and the vector precy, the initial values for the two
precision parameters. 

There are 60 patients, 19 who do not have severe trauma. The primary
parameters of the AUC are a and b. The initial run is made without the
covariable. The characteristics of the posterior AUC area are: mean = .783,
median = .787, std = .052, a 95% credible interval of (.670, .875), and the plot
of the posterior distribution for the area in Figure 5.4. The refreshing
sequence length is 500 samples, and 75,000 samples were generated from
the posterior distribution of AUC, with an MC error of .0002103. See Table
5.9 for additional results of the posterior analysis. These results are compa-
rable to Zhou et al.2, which gave an area of .790, based on the original
observations and the property (4) above. They also estimated the area as .818
with the logs of the observations. 

model

{

# likelihood function

for(i in 1:N) {

y[i]~ dnorm(mu[i],precy[d[i]+1]);

FIGURE 5.4
AUC area CB-KK.

TABLE 5.9 

Posterior Distribution of AUC

Parameter Mean STD Lower 21/2 Median Upper 21/2

 a .823 .190 .452 .822 1.201
 b .253 .053 .167 .247 .376
 auc .783 .052 .670 .787 .875

Area

    0.4     0.6     0.8

0.0
2.0
4.0
6.0
8.0

1.0
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# yt[i] <- log(y[i]); # logarithmic transformation

mu[i] <- beta[1] + beta[2]*d[i] + beta[3]*age[i] ;

}

# prior distributions  noninformative prior; similarly 
for informative priors

for(i in 1:P) {

beta[i] ~ dnorm(0, 0.000001);

}

for(i in 1:K) {

precy[i]~dgamma(0.001, 0.001);

vary[i] <- 1.0/precy[i];}

# calculates area under the curve

a <- beta[2]/sqrt(vary[2]); # ROC curve parameters

la2 <- vary[1]/vary[2];

auc <- phi(a/sqrt(1+la2)

b<- sqrt(la2)

fpf<- phi((a*b-sqrt(a*a+2*(1-b*b)*log(ka/b))/(1-b*b)))

tpf<- phi((a - b*sqrt(a*a+(1-b*b)*log(ka/b))/(1-
b*b)));}

list (K=2, P=3, N=60, 
y=c(140,1087,230,183,1256,700,16,800,253,740,126,153,
283,90,303,193,76,1370,543,913,230,463,60,509,576,671
,80,490,156,356,350,323,1560,120,216,443,523,76,303,3
53,206,136,286,281,23,200,146,220,96,100,60,17,27,126
,100,253,70,40,6,46),

d=c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0),

age=c(4,7,8,11,15,16,16,16,17,18,18,18,19,19,19,19,20
,20,20,20,20,21,22,23,23,24,29,29,29,30,40,41,45,45,5
0,51,56,59,61,61,62,6,6,7,8,8,10,11,12,12,16,17,18,18
,19,24,28,35,38,46))

list(beta=c(0,0,0),precy=c(1,1))

5.4.4 Definition of the ROC Curve

The ROC curve is defined by Equation (5.13) and under the assumption of
binormality has the representation

 [t, 1 − Φ (bZt – a)] t ∈ (0, 1), (5.14)
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where t is the FPF, t = 1 − Φ (Zt), thus Zt is the upper t percentage point of
the standard normal distribution. Note that a and b are unknown parameters
and have a posterior distribution. Therefore, what should be used for the
values of a and b in Equation (5.14) when plotting the curve? 

If the posterior medians of a and b are used (see Table 5.9), the graph for
the ROC curve is given in Figure 5.5.

5.4.5 Choice of Optimal Threshold Value

Cost considerations are often used to select a threshold value for a diagnostic
test. For example, Zhou et al.2 base the choice of an optimal cutoff value on
minimizing the total cost

C = TPF p (Ctp − Cfn) + FPF(1 – p) (Cfp − Ctn) + C0 + pCfn + (1 − p)Ctn, 

where p is the disease incidence, C0 is the cost of performing the test, while
Ctp, Cfn, Cfp and Ctn are the costs of a true positive, false negative, false positive,
and true negative, respectively. When this expression is differentiated with
respect to FPF, the slope to the curve at the optimal point is

κ = (1–p)R/p,

where  (5.15)

R = (Ctn − Cfp)/(Ctp − Cfn). 

FIGURE 5.5
Binormal ROC curve head trauma study.
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Assuming binormality, Somoza and Mossman14 have shown that the opti-
mal point is (FPF, TPF) where

FPF(a,b) =

and                                                (5.16) 

TPF(a,b) = .

Treating κ as a constant, the coordinates of the optimal point are functions
of the parameters a and b and have posterior distributions. Assuming binor-
mality, Zhou et al. Equation (5.16) of the optimal point for values of κ for
R = .5, 1, 1.5 and p = .2, .5, .67. 

The statements corresponding to Equation (5.16) appear in the above work-
sheet. Generating 75,000 samples from the joint posterior distribution (fpf,
tpf) with a refreshing sequence of length 500, the posterior distribution of
the coordinates of the optimal point are shown in Table 5.10 for κ = .5 (p =
.5 and R = 1). What is the threshold for CB-KK corresponding to the coor-
dinates of the optimal point? 

5.5 Clustered Data: Detection and Localization

5.5.1 Introduction

In assessing the area under the receiver operating characteristics (ROC)
curve for the accuracy of a diagnostic test, it is imperative to detect and
locate multiple abnormalities per image. This approach takes this into
account by adopting a statistical model that allows for correlation between
the reader scores of several regions of interest (ROI). 

The ROI method of partitioning the image is taken. The readers give a score
to each ROI in the image and the statistical model takes into account the corre-
lation between the scores of the ROIs (regions of interest) of an image in esti-
mating test accuracy. The test accuracy is given by P(Y > Z) + (1/2)P(Y = Z)

TABLE 5.10 

Posterior Distribution Coordinates of Optimal Point κ = .5

Coordinates Mean STD Lower 21/2 Median Upper 21/2

TPF .692 .051 .584 .694 .786
FPF .096 .028 .056 .094 .167

φ κ[ ( ) ln( / )] /( )ab a b b b− + − −{ }2 2 22 1 1

φ κ[ ( ) ln( / )] /( )a b a b b b− + − −{ }2 2 21 1
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where Y is a discrete diagnostic measurement of an affected ROI and Z is
the diagnostic measurement of an unaffected ROI. This way of measuring
test accuracy is equivalent to the area under the ROC curve. The parameters
are the parameters of a multinomial distribution. Based on the multinomial
distribution, a Bayesian method of inference is adopted for estimating the
test accuracy.

Using a multinomial model for the test results, a Bayesian method based
on the predictive distribution of future diagnostic scores is employed to find
the test accuracy. By resampling from the posterior distribution of the model
parameters, samples from the posterior distribution of test accuracy are also
generated. Using these samples, the posterior mean, standard deviation, and
credible intervals are calculated in order to estimate the area under the ROC
curve. A Bayesian way to estimate test accuracy is easy to perform with
standard software packages and has the advantage of employing the efficient
inclusion of information from prior related imaging studies.

Obuchowski et al.1 demonstrate how the ROI method is used to estimate
the area under the ROC curve. They conclude that the ROI method
appropriately captures the detection and localization of multiple abnor-
malities and is better suited than the free-response ROC curve method.
In the ROI approach, the image is partitioned into clinically relevant,
mutually exclusive regions. For example, in mammography, there are five
ROIs: upper outer, upper inner, lower outer, lower inner, and retroareolar.
The reader assigns a score to each ROI that ranges from 1 to 5 as to the
confidence of the presence of an abnormality, thus the reader’s ability to
find abnormalities and to locate them is easily determined. They continue
by presenting a way to take into account the correlation between the
scores of the several ROIs of the same image. I will not go into the details
of the Obuchowki et al. study, but will adopt their ROI approach as the
preferred method of assessing test accuracy when there are many ROIs
per image.

5.5.2 Bayesian ROC Curve for Clustered Information

The proposed method is based on the ROI (not on a per patient basis) method
and the Bayesian way to make statistical inferences. Suppose that a ROI is
selected at random from a group of m affected (based on the gold standard)
ROIs and let Y be the ordinal diagnostic measurement observed on that ROI,
and let Z be the measurement of an ROI selected at random from the set of
n unaffected ROIs. The accuracy of the test is given by the area under the
ROC curve and is estimated by 

P(Y > Z) + P(Y = Z)/2 (5.17) 

and provides the investigator with the overall accuracy of the diagnostic test. 
Suppose Y and Z have possible values 1, 2, 3, 4,…, and r where larger

values are more of an indication that the ROI is affected; the study results
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then can be represented by the following likelihood function for θ and φ.  

(5.18) 

where θ = (θ1, θ2,…,θr) and φ = (φ1, φ2,…,φr). The diagnostic measurement of
an affected ROI is such that Y = i with probability θi.

Similarly, for an unaffected ROI, Z = i with probability φi where Yi is the
frequency of Y = i and Zi the frequency that Z = i (i = 1,2,…, r).

Note that this likelihood function is based on the multinomial distribution.
We see that and For a given study, the
values of m, n, the Yi, and the Zi are known, but the θi and φi are not and
must be estimated from the data.

To do this using the Bayesian approach, a prior density for the parameters
must be specified. Suppose 

is the prior density, then the posterior density of the model parameters is

 (5.19).

The posterior density is that of a Dirichlet distribution and the θi and φi

are correlated. Because of the constraint, the correlation between the proba-
bilities of the scores of the affected and unaffected ROIs have been taken
into account, an essential requirement for the ROI method of detection and
localization.  

The posterior distribution of θ = (θ1,θ2,…,θr) and φ = (φ1,φ2,…,φr) is Dirichlet
with parameter (Y1 + α1,Y2 + α2,…,Yr + αr,Z1 + β1,Z2 + β2,…,Zr + βr).

It should be stressed that the prior distribution must be chosen with care.
There are essentially two cases to consider: (1) prior information from pre-
vious related experiments, and (2) little prior information is available. We
will discuss this further when examples are to be illustrated.

If one lets 

(5.20)     

then is the probability that Y = i when sampling only from the affected
ROIs. Suppose an ROI is selected at random from the population of unaffected
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ROIs, then is the probability that Z = i where 

(5.21)

How does the probability Pr(Y > Z) + (1/2)Pr(Y = Z) depends on the model
parameters? The following gives the number of ways that Y ≥ Z and the
corresponding probabilities.

1. Y = 1 and Z = 1 with probability , or
2. Y = 2 and Z = 1 or 2 with probability , or.
.
.

 .
   r. Y = r and Z = 1 or 2 or, . . . or r with probability .

In general, the area under the ROC curve is defined as 

(5.22) 

Suppose a “large” number M (say, 10,000) samples are generated from the
posterior Dirichlet distribution of θ and φ, then this provides M samples
generated from the posterior distribution of θ∗ and φ∗ via Equation (5.19),
Equation (5.20) and Equation (5.21), and also provides M samples from the
posterior distributions of A(θ, φ) via Equation (5.22). Based on these samples,
the posterior mean, median, standard deviation, and 95% credible interval
(or other posterior characteristic) are easily computed.

How large is M? One way to choose M is to choose it large enough so that
the generated posterior mean of θ1 agrees (to, say, two decimal places) with
its known true value. Since the posterior distribution of θ1 is Beta, its mean
is known, and can be compared to the value computed by resampling. 

5.5.3 Clustered Data in Mammography 

This method for clustered data is illustrated from an example taken from Zhou
et al.2 and is based on a study of mammography where there are five ROIs:
upper outer, upper inner, lower outer, lower inner, and retroareolar for the right
breast. The reader assigns a score to each ROI that ranges from 1 to 4 that
indicates the degree of malignancy. There are 58 patients and for each a score
from 1 to 4 was assigned to each of the five ROIs. As determined by a gold
standard, there were 15 abnormal (malignant) ROIs and 275 normal (non-
malignant) ROIs. Assuming a uniform prior for the parameters, the joint poste-
rior distribution of θ = (θ1,θ2,…θ4) and φ = (φ1,φ2,…φ4) is Dirichlet with parameter
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(6, 1, 3, 9, 236, 16, 11, 16), that is to say, among the abnormal ROIs, 5 had a score
of 1, none with a score of 2, 2 with a score of 3, and 8 with a score of 4. Among
the malignant ROIs, there are 235 with a score of 1, 15 with a score of 2, 10 with
a score 3, and 15 with a value of 4. Increasing values of the diagnostic score
indicate a larger chance of malignancy. The area under the curve is

(5.23)

Using Minitab, 1000 values were generated from the Dirichlet (6, 1, 3, 9,
236, 16, 11, 16) posterior distribution of θ and φ. Eight columns of generated
values were determined where the first four columns were for the theta
parameters and the remaining for the phi parameters. The correlation
between these are shown in Table 5.11.

Then, 1000 values are computed from the posterior distribution of the
and , and, lastly, 1000 values from the ROC area

(5.23). The histogram of the posterior distribution is given in Figure 5.6.
The characteristics of the posterior distribution are: mean = .759, median =

.774, std  = .115, and a 95% credible interval (.503, .906). On the other hand,
Zhou et al. report an ROC area of .8098 (.0679). Taking into account the
skewness of the posterior distribution, the median is comparable to their
estimate. The formula (5.23) of the ROC area is based on a linear interpolation
of the 6 points, including (0,0) and (1,1), on the empirical ROC graph. Alter-
natively, suppose the ROC area is based instead on

 P(Y ≥ Z/parameters ) or, equivalently, 

then the ROC area is estimated by: mean = .910, median = .934, std = .076 ,
and 95% credible interval (.697, .987). The median estimate of the area is .16

TABLE 5.11

Correlations between Normal and Abnormal ROI Parameters 
Mammography Clustered Data

θ1 θ2 θ3 θ4 φ1 φ2 φ3 φ4

θ2 .309
θ3 .387 .268
θ4 .237 .297 .331
φ1 –.543 −.483 –.543 –.593
φ2 .290 .251 .309 .270 –.670
φ3 .303 .361 .349 .340 –.675 .280
φ4 .227 .297 .247 .235 –.700 .235 .307
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larger than previously and is .125 larger than that reported by Zhou et al. I
would expect the first Bayesian estimate to underestimate the area because
it is based on linear interpolation of 4 points on the graph. Also, I would expect
the latter Bayesian estimate to overestimate the area because the formula
P(Y ≥ Z/parameters ) is an appropriate estimate when the data are continuous.

5.6 Comparing Accuracy between Modalities

To compare modalities, the CASS dataset is again used where the EST (exer-
cise stress test) and CPH (chest pain history) are used to diagnose coronary
artery disease. The example was employed to illustrate the Bayesian estima-
tion of the basic measures of test accuracy (see Section 5.3), including the
classification probabilities, diagnostic likelihood ratios, and the predictive
probabilities. There are 1465 subjects all of who had an EST and a record of
chest pain. This paired study is given in Table 5.12 (see Pepe6).

FIGURE 5.6
Posterior distribution ROC area: clustered mammography information.

TABLE 5.12A 

CASS Study for Diseased Subjects

CPH
0 1 Total

 EST

0 25 183 208
1 29 786 815

Total 54 969 1023
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The Bayesian analysis will consist of finding the posterior distribution of
the sensitivity and specificity of the two modalities and comparing them on
the basis of the ratios of the two basic measures. Let θij be the probability
that a diseased subject has an EST score of i and a record of chest pain j
where i, j = 0, 1 and where 0 indicates negative outcome and 1 indicates a
positive. In a similar manner, let φij be the corresponding probability for a
nondiseased subject.

Assuming a uniform prior distribution for θ = (θ00,θ01,θ10,θ11) and φ =
(φ00,φ01,φ10,φ11), their joint posterior distribution is Dirichlet with parameter (26,
184, 30, 787; 152, 177, 47, 70). Note that this is a joint posterior distribution of
eight parameters. The truncated distribution of θ is the distribution of the 

(5.24)

and the truncated distribution of φ is the distribution of the

(5.25)

The sensitivity (TPF) for EST and CPH are

Senest = . (5.26) 

and

Sencph = (5.27)  

respectively, where the dot notation indicates summation of the over the
missing subscript. In a similar way, the specificity (1 – FPF) for the EST and
CPH modalities are

Spest = (5.28)

TABLE 5.12B

 CASS Study for Nondiseased Subjects

CPH
0 1 Total

 EST

0 151 176 327
1 46 69 115

Total 197 245 442

θ θ θij ij

j

j

i

i

ij

=

=

=

=

∑∑ =
0

1

0

1
* .

φ φij ij

j

j

i

i
* .=

=

=

=

=

∑∑
0

1

0

1

θ1
*

θ.
*
1

θij
*

φ1.
*

C7672_C005.fm  Page 85  Wednesday, May 16, 2007  10:39 AM

© 2007 by Taylor & Francis Group, LLC



86 Bayesian Methods in Diagnostic Medicine

and

Spcph = (5.29) 

respectively. 
Also, the area under the ROC curve for EST is 

Aest = (5.30)

and for CPH 

Acph = (5.31)

The posterior distribution for eight multinomial parameters θ =
(θ00,θ01,θ10,θ11) and φ = (φ00,φ01,φ10,φ11) were determined with Minitab by gen-
erating 1000 values in 8 columns of the worksheet. Then the values used for
the truncated distributions of the and the were computed via (5.24) and
(5.25), giving 8 more columns in the worksheet . Additional columns for the
various measures of accuracy were computed from the appropriate formulas
above. The descriptive statistics for these columns provide the posterior
mean, standard deviation, and median. The 95% credible intervals were
computed by sorting the 1000 values in ascending order and using the 25th
and 975th values as estimates of the lower and upper 2 % points, respec-
tively, of the posterior distribution. 

The sensitivity and specificity between the EST and CPH are compared
on the basis of a ratio, while the ROC areas between modalities are com-
pared by the difference in the areas. It appears from Table 5.13 that the

TABLE 5.13

Comparison between EST and CPH

Parameter Mean Median STD Credible Interval

EST Sensitivity .756 .798 .162
CPH Sensitivity .928 .943 .052
rsen(CPH,EST) 1.316 1.172 .523 .978, 2.51
EST Specificity .716 .738 .135
CPH Specificity .450 .444 .172
rsp(CPH,EST) .657 .628 .301 .170, 1.293
ROC Area ETS* .736 .753 .103
ROC Area CPH* .689 .686 .090
ROC Area ETS** .932 .948 .058
ROC Area CPH** .960 .969 .033
Difference* ROC Areas –.047 .047 .131 –.216, .278
Difference** ROC Areas –.028 –.016 .058 –.172, .059

*Based on the P(Y > Z/θ∗, φ∗) + (1/2)P(Y = Z/θ∗, φ∗)
**Based on P(Y ≥ Z/θ∗, φ∗).
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two modalities are different with regard to sensitivity and specificity, but
not with respect to the area under the ROC curve. The histogram of the
difference of the ROC area of EST and the ROC area of CPH is given by
Figure 5.7. 

In order to compare the sensitivities of the two modalities, consider a test of

H: rsen(CPH,EST) < 1 vs. A: rsen(CPH,EST) > 1 

where

rsen(CPH,EST) = sencph/senets. 

It may be shown that the posterior probability of the alternative hypoth-
esis is

P(rsen(CPH,EST) >1/data) = .950(.211). (5.32)

5.7 Sample Size Determination

5.7.1 Introduction

An important element in designing an experiment is to estimate the sample
size that is necessary to accomplish the objectives of the study. As we have
seen, the study objectives are specified in the protocol where they are
rephrased in statistical language, usually in terms of testing hypotheses.
Beginning with discrete diagnostic tests, sample sizes for one test and then
for two diagnostic tests are estimated with a Bayesian foundation. Sample

FIGURE 5.7
Posterior distribution histogram of difference in ROC area EST minus CPH.
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88 Bayesian Methods in Diagnostic Medicine

sizes for tests concerning hypotheses about the basic measures of accuracy
are derived, then these are extended to tests of hypotheses about areas of
ROC curves, both for a single diagnostic procedure or for comparing ROC
areas between two modalities or readers. The section is concluded with a
sample size estimation for continuous diagnostic scores where the binormal
assumption is appropriate.

5.7.2 Discrete Diagnostic Scores

Assuming discrete diagnostic scores, sample size estimation for tests of
hypotheses about classification probabilities, predictive probabilities, and
diagnostic ratios will be introduced with a Bayesian focus. It is important to
note that the sample size is constrained by practical limitations, including
study cost and time constraints of the people involved. For example, in a
busy university radiology department, scheduling of patients to undergo
certain imaging techniques is always a problem because of the competing
allocation of resources. The sample size will be based on the posterior prob-
ability of the alternative hypothesis, and previous knowledge of prior related
studies is essential for successful study design. The investigator should be
able to provide the statistician with a good guess of the future study results.

Only Bayesian principles will be used to estimate the sample size, thus,
frequency concepts, such as power and Type I error, will not be invoked at
this time. 

5.7.2.1 Binary Tests 

A Bayesian approach is taken for the selection of sample size. The usual
ideas of Type I error and power will be avoided. Instead, the ideas of the
posterior distribution of the parameters will be introduced. Therefore, the
necessity for the Bayes theorem. 

Suppose the population has a Bernoulli density, and let X be the number
of successes in n trials, and suppose θ is the probability of a success on each
trial, the density of X is then 

f(x|θ) ∝ θx (1 − θ)n − x,

where x = 0, 1, 2 ,…, n, and 0 ≤ θ ≤ 1.
If our information about θ is vague, we can use a uniform density for the

parameter. This means the posterior density for θ is

f(x|θ) ∝ θx (1 − θ)n − x, 0 ≤ θ ≤ 1.

This is considered as a function of θ and is a Beta distribution with param-
eters a = x + 1 and b = n – x + 1. All Bayesian inferences are based on this
distribution. The mean of this distribution is

a/(a + b)
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and the variance of θ is

(a/(a + b))(a/(a + b))(1/(a + b + 1).

Note that r = x/n is the proportion of successes in n trials. 
We plan to select a random sample of size n from a Bernoulli population

with θ as the population proportion. Let x be the number of successes and
r = x/n the sample proportion. The null hypothesis is 

H: θ ≤ θ0 vs. A: θ ≥ θ0

and the null hypothesis is rejected in favor of the alternative if

Pr(θ ≥ θ0|n, x) = P, (5.33)

where P is given. How is n selected so that Equation (5.33) is satisfied?
Obviously, we need information from the investigator, thus he or she is

asked: In a future experiment, what do you expect the sample proportion r
to be? Can you give a range of values for r? Alternatively, the experimenter
could give us the results of previous related experiments reported as the
number of successes in m past trials. 

Note that Equation (5.33) can be verified if the posterior distribution of θ
is known. As an example, consider 

H: θ < .2 vs. A: θ ≥ .2,

where θ is the probability of the FPF of a binary diagnostic test. The historical
rate of falsely declaring the test result as positive is 20%, and it is important
to detect a FPF in excess of the historical rate. The clinical diagnostic radi-
ologists believe the sample proportion r will vary from .22 to .30. What is
the sample size? The null hypothesis is rejected if

Pr(θ ≥ .2| r, n) = .9.

The sample proportion r is varied from .22 to .30, and n is varied over
realistic values of the posterior probability P of the alternative hypothesis.
The sample sizes vary in a reasonable way by increasing with rising values
of P for a fixed r.

For example, if the future observed FPF is r = .22, P = .939, the required
sample size is 1000, and the null hypothesis is rejected. On the other hand,
when r = .25 and P = .920, the hypothesis is rejected with 100 patients. The
sample size is decreasing with increasing r and only 25 patients are required
when r = .30 in order to reject the null hypothesis. 

See Table 5.14 for the sample sizes for various values of r and P. The
values of r should represent what the experimenter reasonably expects
to occur.
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90 Bayesian Methods in Diagnostic Medicine

When designing a Phase II developmental trial for a binary diagnostic test,
both the FPF and TPF are taken into account in estimating the sample size.
To do this, a joint credible region for the two-dimensional parameter (θ, φ)
is used to test the null hypothesis H: θ ≥ θ0 or φ ≤ φ0 vs. the alternative A: θ
< θ0 and φ > φ0 where θ is the probability of a false positive and φ the
probability of a true positive. Therefore, the trial should answer the question:
Is the false positive rate less than some specified amount θ0, and does the
true positive fraction exceed the value φ0? For example, Pepe6 examines the
development of a diagnostic test for chlamydia where the test must have a
sensitivity of at least .75 (= φ0) and a specificity of .80 (1 – θ0). How does the
Bayesian address this problem? Table 5.15 presents several scenarios that
depict various rates of false and true positives. For each row, the univariate
and joint probabilities of the alternative hypothesis are computed. The joint
probability is the posterior probability of the joint credible region, which is
the Cartesian product of (θ < .2/data) and (φ > .75/data). Minitab was used

TABLE 5.14

Sample Sizes for FPF

r a* b* a + b P

r rn + 1 (1 – r)n + 1 n + 2 ?

.22 12 38 52 .712

.22 23 79 102 .704

.22 45 157 202 .779

.22 89 313 402 .886

.22 221 781 1002 .939

.25 13.5 38.5 52 .834

.25 26 74 102 .920

.25 51 151 202 .96

.25 126 376 502 .998

.30 4 8 12 .837

.30 8.5 18.5 27 .91

.30 31 71 102 .99

.35 10.45 18.55 29 .88

*a and b are the parameters of the Beta distribution.

TABLE 5.15

Sample Sizes for a Binary Diagnostic Test

# Non
diseased # Diseased # FP(%) # TP(%) P(θ < .2/data) P(φ > .75/data)

Joint 
Probability

46 64 7(15.2) 51(79.6) .584 .522 .334
46 64 5(10) 55(85) .682 .752 .509
70 100 4(5.7) 91(91.2) .870 .833 .719
46 64 1(2) 61(95) .946 .934 .887*

100 150 2(2) 142(94.6) .925 .929 .90
70 100 1(1.42) 95(95.6) .976 .935 .912

150 200 3(2) 190(95) .970 .952 .924
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for this analysis, generating two columns, one for each parameter and each
having a Beta distribution.

Suppose the null hypothesis is rejected when the joint probability is at
least .85, then if 1 false positive occurs out of 46 nondiseased patients, and
61 true positive occur out of 64 diseased patients, the null hypothesis would
be rejected with a probability of .887. The hypothetical FPF fraction is 2%
and the hypothetical true positive fraction is 95%. 

Comparing two binomial populations is a common problem in statistics
and involves the null hypothesis H: θ1 = θ2 vs. the alternative A: φ1 ≠ φ2 where
θ1 and θ2 are parameters from two Bernoulli populations. The two Bernoulli
parameters might be the sensitivities of two diagnostic modalities.

Assuming the prior probability of the null hypothesis is π and assigning
independent uniform priors for the two Bernoulli parameters, it can be
shown that the Bayesian test rejects H in favor of A if the posterior probability
P of the alternative hypothesis satisfies 

P > γ  (5.34) 

where

P = D2/D (5.35) 

and D = D1 + D2. It can be shown (see 4.26) that 

(5.36) 

where Γ is the gamma function and

D2= (1 – π)(n1 + 1)−1(n1 + 1)−1.

X1 and X2 are the number of successes from the two binomial populations
with parameters (θ1,n1) and (θ2,n2), respectively. 

5.7.2.2 Multinomial Outcomes

Consider the mammography example with 60 patients given in Table 5.7.
(See Section 5.3.5.)

In a previous section, it was shown that the ROC area is estimated as .768
(.091). Suppose the null hypothesis is H: auc = .7 vs. the alternative A: auc >
.7, and that the null hypothesis is rejected if 

P(auc > .7 /data) > .90. (5.37)

For the above outcomes, it can be shown that P(auc > .7/data) = .778, thus
there is not sufficient evidence to reject the null hypothesis. Suppose the
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92 Bayesian Methods in Diagnostic Medicine

outcomes would have been as shown in Table 5.16. Do these outcomes
provide enough evidence to reject the null hypothesis? It can be shown the
ROC area is .852(.066) and that P(auc > .7/data) = .976, therefore the null
would be rejected. As the estimated ROC area increases, the probability of
the alternative hypothesis increases for the same sample size. On the other
hand, suppose the outcomes would have been as seen in Table 5.17? Then,
the estimated ROC area is .371(.174) and P(auc >.7/data) = .050, conse-
quently, the null hypothesis would not be rejected. The above shows the
effect of the estimated ROC area on the probability of rejecting the null
hypothesis. Note the sample size was the same for all scenarios. 

5.7.3 Sample Sizes: Continuous Diagnostic Scores

When the diagnostic score is continuous, there are several approaches to
estimating the ROC area, such as: (1) the binormal model, (2) the nonpara-
metric approach, and (3) using an exponential distribution for the scores.
The binormal approach will be used here, but the reader is referred to Zhou
et al.2 and to Pepe6 for descriptions of nonparametric procedures, including
the Mann–Whitney U-Test. Hanley and McNeil15 estimate the ROC based
on an exponential distribution for the diagnostic scores, and Hanley16 pro-
vides a good introduction. 

In what is to follow, sample size estimates are introduced for estimating
and testing hypotheses about one ROC area; this is followed by a Bayesian
approach to finding the sample sizes in order to compare two ROC areas.   

5.7.3.1 One ROC Curve

The binormal model for the ROC curve is based on a normal distribution
for the diagnostic scores of the independent diseased and nondiseased pop-
ulations.   

TABLE 5.16

 Alternative Mammogram Test Results I

Status
Normal

(1)
Benign

(2)
Probably Benign

(3)
Suspicious

(4)
Malignant

(5) Total

Cancer 0 0 5 13 12 30
No Cancer 11 8 7 4 0 30

TABLE 5.17

 Alternative Mammogram Test Results II

Status
Normal

(1)
Benign

(2)
Probably Benign

(3)
Suspicious

(4)
Malignant

(5) Total

Cancer 9 2 11 8 0 30
No Cancer 1 0 6 11 12 30
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Let us consider a random sample xi = (xi1,xi2,…,xini) of size ni (i = 1, 2 ) from a
normal (µi,1/τi) population where τi = 1/  is the inverse of the variance, and
suppose the prior information is vague and that Jeffrey’s prior ξ(µi,τi) ∝ 1/τi

is appropriate, then the posterior density of the parameters is 

 (5.38) 

From this, it follows that the posterior distribution of µi/τi is normal with
mean xi and precision niτi and that the marginal posterior distribution of τi

is gamma with parameters ai = (ni − 1)/2 and bi = (ni − 1)Si
2/2 where Si

2  is the
sample variance.

It can be shown that the area under the ROC curve is given by

A(µ1,µ2,τ1,τ2/data) = Φ [(µ2 − µ1)/(1/τ1 + 1/τ2)], (5.39) 

where Φ is the CDF of the standard normal distribution. The subscript 2
labels the diseased population, and the subscript 1 denotes the nondiseased
population. To summarize, assuming a vague prior density for the param-
eters, the posterior distribution of the population mean and precision is
normal gamma. Therefore, the posterior distribution of the ROC area is
induced by the posterior distribution of the four population parameters. The
Bayesian approach to estimating the ROC area is based on the so-called
binormal assumption. Note that the ROC area AUC depends on the
unknown parameters of the model. Bayesian methods for estimating the
ROC area will be illustrated by referring to an example found in Zhou et al.
that is based on the study by Hans et al.12 The data are given in Table 4.12
of Zhou et al. and refer to the use of CK-BB, an enzyme in the spinal fluid
collected within 24 hours of injury to predict the outcome of severe trauma.
(This example was also used in Section 5.4.)

There are 60 patients and 19 do not have severe trauma. The 41 patients
who had a poor outcome have a mean CK-BB level of 427.29 with a standard
deviation of 372.63, while for those 19 patients with a good outcome, the
mean CK-BB level was 151.5 with a standard deviation of 91.11. 

Below are the program statements for the Bayesian estimation of the area
under the ROC curve based on the posterior distribution of the four popu-
lation parameters.  
model

# Zhou et al head trauma

{ area <- phi((mu2-mu1)/sqrt(1/tau1 + 1/tau2))

# based on formula (5.39) 

# mu2 is mean of patients with poor outcome 

# vague prior density for the mean and precision 

mu1~ dnorm(117.52, prec1)

# mu1 is mean of patients with a good outcome

σ i
2

ξ µ τ τ τ µ( , / ) exp ( / ) ( )/
i i i

n
i i i idata n xi∝ − − +−2 1 22 (( ) .n Si i− 1 2
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mu2~dnorm (427.29, prec2)

prec1<-n1*tau1

prec2<-n2*tau2

# tau1 is precision of those with good outcome 

tau1~dgamma( a1,b1)

# tau2 is precision of those with poor outcome 

tau2 ~dgamma(a2,b2)

# binormal parameters

a<-(mu2-mu1)*sqrt(tau2)

b<-sqrt(tau2/tau1)

c<-step(area-.80)

}

list( n1= 19, n2=41, a1=9, b1= 74709.28, a2= 20, b2= 
2777062.33)

list( mu1= 0, mu2= 0,  tau1 =1, tau2 =1) 

To show the effect of sample size on inference, two basic scenarios are
used: (1) the sample sizes are increased by a factor of 4, keeping the
sample means and standard deviations constant at the levels found in the
original study to determine the effect of estimating the area (Table 5.18A),
and (2) increasing the mean level of CK-BB for those with a poor outcome
from 427 to 527 and increasing the sample size by a factor of 4 to see the
effect on the probability of the alternative hypothesis, P(area > .80/data)
(Table 5.18B). 

These results show that when the sample size is increased by a factor of
4, the standard deviation of the posterior distribution of the area decreases
by a factor of 2. Of course, the same result would be obtained with the
frequency properties of the sample mean. 

In this case, the sample mean of those with poor outcome was increased
from 427 to 527, resulting in a posterior mean area of about .85. Suppose the
null hypothesis is that H: auc < .8 vs. the alternative that A: auc > .8, and H
is rejected if 

P(auc > .8/data) > .90, 

TABLE 5.18A

Sample Size for Estimating the ROC Area

n1 n2 Area SD Interval

5 10 .763 .108 .52, .93
19 41 .784 .052 .67, .87
76 164 .787 .026 .73, .84

304 656 .789 .013 .76, .81
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then, 76 patients with a good outcome (with a sample mean CK-BB level of
117.52 and standard deviation of 91.11) and 164 patients with a poor outcome
(mean level 527, with a standard deviation of 327) would be sufficient to
reject the null hypothesis. It is important to note that the sample means and
standard deviations of the patients in the two groups should be chosen with
care and based on previous related studies. Thus, the choice of 527 as the
sample mean of CK-BB for those with a poor outcome should be reasonably
expected to occur in a future study.

5.7.3.2 Two ROC Curves 

The following program statements compute the ROC areas under the curve
for two independent diagnostic tests comparing the diagnostic accuracy for
the head trauma information considered above and taken from Zhou et al.2
This is an obvious expansion of the previous WinBUGS program and is
somewhat hypothetical in that, for the second group, the mean CK-BB level
for the patients with a good outcome is the same (117.52, with a standard
deviation of 91.11) as that in the original study; however, the mean level for
those with a poor outcome increased from 427.29 (with a standard deviation
of 372.63) to 527.29 (with a standard deviation of 372.63). The sample sizes
for the two groups are the same as in the original study, namely 41 with a
good outcome and 19 with a poor one. 

With this sample size, what is the difference in the two areas? To answer
this question, suppose the null hypothesis is 

H: a < .025 vs. the alternative A: a > .025 

where a is the absolute value of the difference in the two ROC areas. See the
relevant statement below, namely a < –abs(diff). The posterior probability of
the alternative hypothesis is 

P(a > .025/data) = .826. 

The statement b < –step(a– .025) calculates this probability and the MCMC
procedure is based on 25,000 simulations with a refreshing rate of 500. Is
this sufficient evidence to reject the null hypothesis? On the other hand, 

P( a > .05/data) = .648

TABLE 5.18B

Sample Sizes for Testing Hypothesis

n1 n2 Area SD Interval P(area > .8/data)

5 10 .842 .091 .62, .97 .720
19 41 .850 .045 .74, .92 .862
76 164 .856 .022 .80, .89 .989

304 656 .857 .011 .83, .87 1.00
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 and 

P(a > .10/data) = .333, 

which puts the statement P(a > .025/data) = .826 into perspective. It can also
be shown that the estimated areas of the two groups are .784 (.053) and .853
(.044), respectively. 
Model; 

{ 

auc1 <- phi((mu2-mu1)/sqrt(1/p1 + 1/p2)) 

auc2 <- phi((vu2-vu1)/sqrt(1/q1 + 1/q2)) 

diff <-auc1-auc2 

mu1~dnorm(117.52,prec1) 

mu2~dnorm(427.29,prec2) 

# mu1 is mean CB-KK level for those with good outcome 
of group 1

# mu2 is mean CB-KK level for those with a poor outcome 
of group 1

# prec1 is the precision of those with good outcome 
group 1

# prec2 is precision of those with a poor outcome group1

prec1<-n1*p1 

prec2<-n2*p2 

vu1~ dnorm( 117.52 ,qrec1) 

vu2 ~dnorm(527.29 ,qrec2) 

# vu 1 is mean level with a good outcome of group 2

# vu 2 is mean level with a poor outcome of group 2

# qrec1 is the precision of those with good outcome 
group 2

# qrec2 is precision of those with a poor outcome group 
2

qrec1<-m1*q1 

qrec2<-m2

p1~dgamma(a1,b1) 

p2~dgamma(a2,b2) 

q1~dgamma(e1,f1) 

q2~dgamma(e2,f2) 

a<-abs(diff)

b<-step(a-.025)
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c<-step(a-.05)

d<-step(a-.10)

} 

list(n1=19, n2= 41, a1 = 9, b1= 74709.28, a2= 20, b2 = 
2777062.33,m1=19 ,m2 = 41, e1= 9.5, f1= 74709.28, e2= 
20.5, f2 = 2777062.33) 

list( mu1= 0, mu2= 0,vu1= 0,vu2= 0, 
p1=1,p2=1,q1=1,q2=1)

5.8 Exercises

5.1. Verify Equation (5.12).  
5.2. Using Equation (5.12), find the ROC area for the Spokane Heart

Study. (See Section 5.4.2.)
5.3. How would one estimate the proportion of ties P(Y = Z) in the scores

of the normal and abnormal ROIs for the clustered mammography
data. Use Equation (5.23).

5.4. Refer to Section 5.6. Does the Bayesian analysis agree with the con-
ventional analysis of Pepe6? 
a. The two ROC areas are based on 4 (including (0,0) and (1,1))

points of the ROC curve. Is the first underestimating the area? Is
the second overestimating the area? Why?

b. What is the analysis for unpaired data? Assume two independent
groups. What is the estimate of P(Y = Z)? Test the H:
rsp(CPH,ETS) > 1 vs. A: rsp(CPH,ETS) < 1.

c. Verify Table 5.13.
5.5. See Section 5.7.2.1 and Table 5.14. Develop a scenario with a FPF

= 10% and a TPF = 85%, and find the sample size that gives a
joint posterior probability of .80. How does your result compare
to Pepe?

5.6. See Equation (5.36) of Section 5.7.2.1. Find the sample size (the
number of diseased patients) for testing the null hypothesis H: θ1 = θ2

vs. the alternative A: θ1 ≠ θ2 where θ1 and the θ2 are the sensitivities
of two diagnostic tests. Assume equal number (n1 = n2) of subjects
in two groups and reject H whenever

P(θ1 ≠ θ2/n1,n2,x1,x2) = .90. 
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Assume the two groups of patients are independent. Find the sample
sizes assuming the two sample sensitivities (the fraction of patients
with a positive test results) are .70 and .90, respectively, for groups
1 and 2. Also assume, a priori, that the probability of the null hypoth-
esis is .5 and that, under the alternative hypothesis, the prior den-
sities of the sensitivities are uniform over (0,1). 

5.7. See Section 5.7.2.2. Suppose the outcomes for mammography are
what is shown in Table 5.19: 
a. What is the estimated ROC area using the Bayesian approach? 
b. Using the criterion

P( auc > .7 / data) > .98, 

will the null hypothesis be rejected?
c. As the test scores increase, does the probability of breast cancer

decrease? Explain. 
5.8. Verify Equation (5.39).
5.9. Verify Table 5.18A and Table 5.18B. What is the estimation error in

estimating the mean ROC area for 82 patients with a poor outcome
and 38 with a good outcome? Assume the sample means and vari-
ances are the same as those used in Table 5.18A.

5.10. See Table 5.18A Fewer patients (< 76 with a good outcome and <
164 with a poor outcome) could be used to reject the null hypothesis.
Find a smaller number of patients in each that would be sufficient.
What is the smallest number in each group? Use the program asso-
ciated with the table.  

5.11. See Section 5.7.3.2. The above scenario assumes the two groups are
independent;  however, in practice, it is more likely that the two
groups are dependent, as in the case of two readers. Write a Win-
BUGS program to cover this situation and explore the effect of sam-
ple size on the posterior probability of absolute difference in the two
correlated ROC areas.

5.12. Derive the formula: AUC = where X is normally dis-
tributed, a = (µD − µD)/σD, and b = σD/σD.  The mean and standard
deviation of the X for the diseased population are µD and σD,

TABLE 5.19

Mammography Test Results for Problem 5.7

Status
Normal

(1)
Benign

(2)
Probably Benign

(3)
Suspicious

(4)
Malignant

(5) Total

Cancer 0 0 0 12 18 30
No Cancer 18 8 4 0 0 30

Φ[ / ],a b1 2+
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respectively, while µD and σD are the mean and standard deviation
of X for the nondiseased. Φ is the cumulative distribution function
of the standard normal distribution. 
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Chapter 6

 

Regression and Test Accuracy

 

6.1 Introduction 

 

It is well known that test accuracy depends on many factors, including
differences in readers and differences in various patient characteristics. For
example, the age of the patient, their gender, the stage of the disease, and
the therapy received, all have a bearing on the measured test accuracy. This
chapter describes Bayesian regression procedures for estimating the effect
of patient and reader covariates on test accuracy, as measured by classifica-
tion probabilities, predictive probabilities, and diagnostic likelihood ratios.
In the case of quantitative diagnostic scores, regression techniques will be
used to allow for these patient and reader characteristics when estimating
the ROC area. For additional information on this, refer to Pepe

 

1

 

 (Chaps. 3
and 6) and to Zhou et al.

 

2

 

 (Chap. 8).
In the following, Bayesian regression techniques for binary test scores will

be  illustrated with an audiology example taken from Leisenring et al.

 

3

 

 and
also analyzed by Pepe. In this example, the probability of a false positive on
the hearing test of the ear of a patient is regressed on patient covariates,
including age, severity of disease, and location of the hearing test. Two
modeling approaches are taken: (1) using the log linear function illustrated
by Pepe, and (2) using a logistic link function. By way of contrast and
comparison, a nonBayesian analysis is also presented for the audiology
study. In addition, the effect of patient covariates on other measures of test
accuracy, including true positive fraction and the positive diagnostic likeli-
hood ratio, are examined with regression techniques using log and logit link
functions.

Two additional examples estimate the effect of patients’ covariates on a
continuous test result. The first example determines the effect of gender on
response to therapy for lung cancer, then uses that information to examine
the effect on the area under the receiving operating characteristic (ROC)
curve. The second example involves the measurement of prostate specific
antigen to diagnose prostate cancer and investigates the effect of age on
properties of the ROC curve.
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6.2 Audiology Study 

 

6.2.1 Introduction

 

The dataset for this study can be downloaded at 

 

http://www.fhcrc.org/labs/
pepe/book

 

 and is analyzed extensively in Pepe. Earlier various analyses appear
in Leisenring et al.

 

3–5

 

 It comprises 3152 cases where the experimental unit is
an ear. There were three modalities (diagnostic tests a, b, and c) and each hearing
test took place in either a room or booth. The result was binary with 1690
tests being designated as positive (hearing impaired) and 1460 being desig-
nated as not hearing impaired. According to the gold standard, 1256 ears
were indeed impaired, while 1896 were not impaired. Other patient covari-
ates were age and disease severity.

Among the tests, 1039 were given test a, 1053 were given test b, and 1060
test c. Among the 1039 ears receiving test a, 515 were administered in a room
and 524 in a booth. Also, 633 were declared normal according to the gold
standard, while the remaining 406 were designated hearing impaired.
Among the 633 who were declared to have normal ears, the number of false
positives that occurred was 253, with 380 true negative. 

 

6.2.2 Log Link Function

 

The analysis for this data appears in Pepe

 

1

 

(p. 54) where the true positive
occurrence is modeled with a generalized linear model using a log link func-
tion with age, location (room or booth), and severity of disease as patient
covariates. There are 253 false positives among the 633 normal ears given test a. 

The log link model is 

where 

 

φ

 

 is the probability of a false positive, 

 

x

 

1

 

 is the age of the patient, and
x

 

2

 

 indicates the location where x

 

2

 

 

 

=

 

 1 for a booth and x

 

2

 

 

 

=

 

 0 for a room. The
program statements follow.

 

model

{

( for( i in 1 : N ) {

r[i] ~ dbern(p[i])

p[i]<- exp(alpha[1] + alpha[2] * x1 [i]+alpha 
[3]*x2[i])

}

phat <- mean(p[])

for (i in 1:3){

φ α α α= + +exp( )1 2 1 3 2x x
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beta[i] ~ dnorm(0.0,0.0001)}

e <-exp(alpha[2])

f <-exp(alpha[3])

}

 

The 

 

r

 

 vector is the occurrence of false positives (1 indicates a false positive
and  0 indicates a true negative). The vector 

 

x

 

1

 

 contains the age of a patient
and the vector of locations (room or booth) is 

 

x

 

2

 

. The vector of false positive
probabilities is given by p[], and the alpha coefficients are the regression
parameters on the log scale. These parameters are given a vague normal
prior with mean 0.0 and precision 0.0001. The main parameter is f, which
estimates the ratio of the false positive rate of a booth to that of a room. The
number of samples generated was 25,000, and 100 observations were
refreshed. The Bayesian analysis is given in Table 6.1. 

Age has little  effect on the probability of a false positive; however, as for
location, the ratio of the false positive fraction of a booth to the false positive
fraction of a room is estimated as 1.194 with a 95% credible interval of (.98,
1.445). This estimate is adjusted for age. How does this compare to Pepe’s
analysis (Table 3.9, on p. 54)? The estimate of f is 1.18, with a 95% confidence
interval of (.96, 1.46), which is quite close to the Bayesian, which is not a
surprising result because the Bayesian analysis employed a vague prior for
the model parameters. The observed estimate of the false positive rate for a
booth is 134/310 

 

=

 

 0.432 compared to 119/323 

 

=

 

 0.368 for a room, thus the
raw ratio of booth to room is 1.1739. In order to compare the other parameters
between the Bayesian and the Pepe analysis, see Table 6.1 and Pepe
(Table 3.9.) Note that phat is the estimate of the overall false positive rate
for the normal ears and is estimated as 0.1973. To run this program, the data
must be imported from the worksheet provided in the downloaded file,
which can be accessed from the Internet address given above. 

 

6.2.3 Logistic Link 

 

Another plausible approach to assessing the effect of patient covariates on
the false positive rate is with the logistic link function that appears in the
WinBUGS

 



 

 program below:

 

TABLE 6.1

 

Posterior Distribution of Audiology Study

 

Parameter Mean SD 2.5% Median 97.5%

 

e 1.008 .0089 .9888 1.008 1.028
f 1.194 .119 .98 1.188 1.445
alpha[1]

 

−

 

1.303 .368

 

−

 

2.037

 

−

 

1.296

 

−

 

0.5869
alpha[2] .0081 .0097

 

−

 

.0112 .00807 .0274
alpha[3] .1725 .0994

 

−

 

.0202 .1719 .3683
phat .1973 .0095 .1787 .1972 .2163
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model

{

for(i in1:N) {

r[i] ~ dbern(p[i])

logit(p[i])<- beta[1] + beta[2] * 
x4[i]+beta[3]*x2[i]+beta[4]*x2[i]*x4[i]

}

phat <- mean(p[])

for (i in 1:4)

beta[i] ~ dnorm(0.0,0.0001)}

e<-exp(beta[2])

f<-exp(beta[3])

g<-exp(beta[4])

}

 

The r vector is as before, the vector of false positive occurrences among
ears given the hearing test a or b, x

 

2

 

 is the vector of locations (room or booth),
and x

 

4

 

 (

 

=

 

 1 for test a and 0 for test b) is the indicator vector for test mode.
The logistic link is quite natural as a model for binary information such as
the occurrence of a false positive, and has the advantage over the log link
in that, with the latter, the false positive rate might exceed the value 1. On
the other hand, the interpretation of the model parameters is somewhat more
complex with the logistic link, that is, with the logistic, one employs odds
ratios, while with the log link, interpretation of the model coefficient is as a
ratio of probabilities. 

We now return to a different aspect of the audiology example, which was
described by Pepe

 

1

 

 (Table 3.12, p. 57). Here, the false positive occurrence was
regressed on the test modality (a vs. b), the location (room vs. booth), and
the location by test interaction. The later interaction estimates the odds ratio
of a false positive for test a vs. b for a booth compared to the odds ratio of a
false positive of test a vs. test b for a room. This interaction effect is estimated
by the exp(beta[4]) 

 

=

 

 g in the above listing of program statements. In this
program, one must import the three vectors r, x

 

2

 

, and x

 

4

 

 into the worksheet
above from the Internet address. The regression coefficients are given vague
prior normal distributions and phat estimates the overall false positive rate
among those ears receiving tests a and b hearing modalities. The logistic
Bayesian analysis provided the posterior results depicted in Table 6.2.

Regarding 

 

g

 

 as the main parameter of interest, the odds ratio of a booth
vs. the odds ratio for a room is estimated as 1.434, and the corresponding
credible interval is (.8817, 2.21) and, of course, this is an adjusted estimate.
Therefore, the odds ratio for a booth is 43% larger compared to the odds
ratio for a room. The graph of the posterior density of 

 

g

 

 is shown in
Figure 6.1. The simulation used 24,500 observations from the posterior
distribution of 

 

g

 

, while refreshing with 500 observations.
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6.2.4 Diagnostic Likelihood Ratio

 

The positive diagnostic likelihood

 

 

 

ratio was briefly discussed in Section 5.3.4
and is defined as 

PDLR 

 

=

 

 TPF/FPF (6.1)

where TPF is the true positive fraction and FPF is the false positive fraction.
Thus, if

log(TPF) 

 

=

 

 beta[1] 

 

+

 

 beta[2]

 

X

 

  

and

log(FPF) 

 

=

 

 alpha[1] 

 

+

 

 alpha[2]

 

X

 

 

where 

 

X

 

 is the indictor function for test a or b (

 

X

 

 

 

=

 

 1 for test a and 0 for test b),
then

log(PDLR) 

 

=

 

 beta[1] 

 

−

 

 alpha[1] 

 

+

 

 (beta[2] 

 

−

 

 alpha[2])

 

X

 

(6.2)

and exp(beta[2] 

 

−

 

 alpha[2]) is the ratio of the positive diagnostic likelihood
ratios (PDLRs) for test a relative to test b. The TPF is estimated from the
diseased patients and the FPF from only the nondiseased.

 

TABLE 6.2

 

Posterior Distribution of False Positive Rate

 

Parameter Mean SD 2.5% Median 97.5%

 

e .9878 .1627 .7115 .9746 1.346
f .9457 .167 .6735 .9331 1.29
g 1.434 .339 .8817 1.395 2.21
beta[1]

 

−

 

.513 .1142

 

−

 

.7411

 

−

 

.513

 

−

 

.2902
beta[2]

 

−

 

.0255 .1633

 

−

 

.3404

 

−

 

.0257 .2971
beta[3]

 

−

 

.0695 .1652

 

−

 

.3953

 

−

 

.0692 .2543
beta[4] .3333 .2337

 

−

 

.1295 .3328 .793
phat .3833 .0135 .3568 .3831 .4106

 

FIGURE 6.1

 

Posterior Distribution of 
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Below is the program for estimating the PDLR and the effect of the test
modality (test a or b) on the PDLR. The program below can be typed directly
onto the WinBUGS worksheet and executed. There are 529 hearing impaired
ears with information on the true positive status (given by the tp ((true
positive)) vector), along with the matched information on test a or b (given
by the x

 

4

 

 vector). With regard to the false positive information, there are 1276
normal ears with false positive information indicated by the vector fp (false
positive) and the corresponding information on the occurrence of test a or
test b, given by the vector x

 

5

 

. There are two parameters of interest, namely
PDLR and the ratio of the PDLR for test a relative to test b. The results of
running the program are given in Table 6.3.

 

model

{

for( i in 1 : M ) {

fp[i] ~ dbern(p[i])

p[i] <- exp(beta[1] + beta[2] * 

 

×

 

5[i])

}

for(i in 1:N) { tp[i]~dbern(q[i])

q[i]<-exp(alpha[1]+alpha[2]*

 

×

 

4[i])

}

tphat<-mean(q[])

fphat <- mean(p[])

for (i in 1:2 ){

beta[i] ~ dnorm(0.0,0.0001)

alpha[i] ~dnorm(0.0,0.0001)

}

a<-exp(alpha[2])

 

TABLE 6.3

 

Posterior Distribution of the Positive Diagnostic 

 

Likelihood Ratio Audiology Example

 

Parameter Mean SD 2.5% Median 97.5%

 

alpha[1] –1.547 .1273 –1.786 –1.557 –1.282
alpha[2] 1.382 .1296 1.105 1.392 1.621
beta[1] –1.005 .052 –1.111 –1.004 –.9053
beta[2] .08506 .07002 –.04601 .0839 .2214
fphat .3826 .01357 .3565 .3828 .4088
tphat .6016 .01625 .5727 .6043 .6369
pdlr 1.582 .07094 1.45 1.58 1.725
rpdlrab 3.696 .5355 2.641 3.688 4.795
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b<-exp(beta[2])

rpdlrab <- exp(alpha[2]-beta[2])

pdlr<-tphat/fphat

}

 

What does this tell us about the effect of test modality on the value of the
positive diagnostic likelihood ratio? The average value over test a and
test b is 1.58, with a 95% credible interval of 1.45 to 1.725. On the other hand,
the ratio of the PDLR for test a relative to test b is given by RPDLRAB and
has a posterior mean of 3.696, that is, the average value of the positive
diagnostic ratio for test a is 3.69 times the PDLR for test b.

 

6.3 ROC Area and Patient Covariates

 

6.3.1 Introduction

 

When the diagnostic scores are binary, the accuracy is measured by sensi-
tivity and specificity; however, when they are continuous, the acknowledged
method of determining accuracy is with the area under the ROC curve. If
the diagnostic score is continuous, the score could be dichotomized, and the
sensitivity and specificity estimated; however, this could result in a loss of
information leading to estimates of test accuracy that are unreliable. When
the continuous score is dichotomized, the threshold value must be chosen
with care, as we have seen in previous chapters. 

As with binary scores, patient covariate effects on the diagnostic score should
be taken into account when estimating the area under the ROC curve. The
problem of assessing the effect of covariates on the ROC curve was first con-
sidered by Tosteson and Begg

 

6

 

 for ordinal data, but was later generalized to
continuous scores by Toledano and Gatsonis.

 

7

 

 For a good introduction to the
subject, see Pepe

 

1

 

 (Chap. 6), who presents several methods of incorporating
patient covariate information into the ROC curve. She describes nonparametric,
semiparametric, and parametric regression methods to estimate the ROC area. 

For the binormal model (assuming the diagnostic scores are normally
distributed), the induced ROC curve technique of regressing the diagnostic
score on covariates will be adopted for the Bayesian approach taken here. 

Two examples are used to illustrate the effect of patient covariates on the
ROC curve. First, an example taken from Holtbrugge and Schumacher

 

8

 

demonstrates the effect of gender on the ROC area. It is a clinical study of
two therapies for lung cancer and was analyzed from a Bayesian viewpoint
by Gregurich,

 

9

 

 who developed an ordinal regression technique based on a
generalized least squares concept to compare the two therapies. The diag-
nostic score is the response to therapy, measured on a four-point ordinal
scale. The area under the ROC curve measures the separation between the
two therapy patient groups. The second example is taken from a study of
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Etzioni et al.

 

10

 

 about the effect of age on prostate specific antigen (PSA) and,
consequently, on the area of the ROC curve. The latter investigation is further
examined in Pepe. A simple WinBUGS program performs a regression of the
diagnostic score on patient covariates and disease status to see how the ROC
area is affected. The same program also estimates the area under the curve. 

 

6.3.2 ROC Curve as Response to Therapy

 

The Holtbrugge and Schumacher

 

8

 

 study was a clinical trial with two thera-
peutic strategies where the treatments were compared with respect to tumor
response. The sequential therapy method was used in the first group, who
were given the same combination of agents, while the second group was
given an alternating approach with three different combinations of agents
alternating from cycle to cycle. The tumor response was assessed at the end
of treatment as: progressive disease, no change, partial remission, and com-
plete remission. The Table 6.4 provides the outcomes.

Gregurich

 

9

 

 analyzed the results with a Bayesian regression model for
ordinal data utilizing a generalized least squares approach. Our approach
will be to estimate the ROC area using the induced method where the tumor
response is regressed on gender and disease status with the program below.
The effect of gender on tumor response is assessed first and, if the effect is
“significant,” gender specific ROC areas can be estimated. From Table 6.4,
two columns, d and sex, can be constructed for input to the program. 

 

model;

# Calculates the induced ROC curve 

# Holtbrugge and Schumacher (1991) trial

{

# likelihood function

for(i in 1:N) {

y[i]~ dnorm(mu[i],precy[d[i]+1]);

mu[i] <- beta[1] + beta[2]*d[i] + beta[3]*sex[i] + 
beta[4]*sex[i]*d[i];

 

TABLE 6.4

 

Tumor Response

 

Therapy Gender
Progressive 

Disease No Change
Partial 

Remission
Complete 
Remission Total

 

Sequential Male 28 45 29 26 128
Female 4 12 5 2 23

Total 32 57 34 28 151
Alternating Male 41 44 20 20 125

Female 12 7 3 1 23
Total 53 51 23 21 148
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}# prior distributions – noninformative prior; 
similarly for informative priors

for(i in 1:P) {

beta[i] ~ dnorm(0, 0.000001);

}

for(i in 1:K) {

precy[i]~dgamma(0.001, 0.001);

vary[i] <- 1.0/precy[i];}

# calculates area under the curve

a <- beta[2]/sqrt(vary[2]); # ROC curve parameters

la2 <- vary[1]/vary[2];

auc <- phi(a/sqrt(1+la2))

b<- sqrt(la2)

 

The regression of 

 

Y

 

 on gender, disease, and the interaction between gender
and disease is 

 

Y

 

 

 

=

 

 beta[1] 

 

+

 

 beta[2]*d 

 

+

 

 beta[3]*sex 

 

+

 

 beta[4]*d*sex

 

+

 

(6.3)

where , and ~ N(0,1). When d 

 

=

 

 0 sequential
therapy is indicated, and d 

 

=

 

 1 the alternating, while sex 

 

=

 

 0 indicates female,
and sex 

 

=

 

 1, male. Note that 

 

Y

 

 (

 

=

 

 1,2,3,4) is the response variable where 1,
2, 3, 4 indicate progressive disease, no change, partial remission, and com-
plete response, respectively. 

The induced ROC curve is

 

ROC

 

sex

 

 

 

= Φ[

 

beta

 

[2]/σ1 + beta[4]/σ1 * sex + (σ0/σ1)Φ−1(1 − t)]  (6.4)

where is the standard normal CDF (cumulative distribution function) and
t is the false positive fraction. This curve is covariate specific and depends
on the value of the covariate sex = 0 or 1, but if beta[4] is zero, the covariate
has no effect on the ROC curve. Therefore, the approach is to first assess the
importance of the covariate, and if it is significant, estimate the ROC area
for different levels of the covariate. The estimated induced curve parameters
are given in Table 6.5.

The 95% credible interval for beta[4] is (−.3884, .909), which is evidence
that the covariate sex has a minimal effect on the ROC curve. Covariate
specific ROC curve areas were estimated with a posterior mean of .546 (.035)
for males and .552 (.080) for females, demonstrating that gender has little
effect on separating the effect of therapy. The posterior variances for the two
groups are not very different. 

σ εd *

σ σ σd I d I d= = + =1 01 0( ) ( ) ε

Φ
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6.3.3 Diagnosing Prostate Cancer 

In Etzione et al.,10 683 patients had their prostate specific antigen levels
measured for screening of prostate cancer and it was found that 454 did
not have the disease and 229 did. To download this dataset: http://
www.fhcrc.org/labs/pepe/book and see Pepe1 for the details of this study.
Patient covariates included age where the average age among those with-
out the disease was 64.8 and those with disease was also 64.8 years. Among
those with prostate cancer, the total prostate specific antigen (PSA) was
10.31 mg/dL, and was 2.02 mg/dL among those without. The total PSA
measurements were highly skewed to the right with mean and median
levels of 2.02 and 1.31, respectively, for those without disease, but were
10.31 and 4.39, respectively, for those with cancer. It was decided to take
logarithms of the total PSA levels for a binomial analysis. Also, for many
subjects, repeated measurements of total PSA levels were taken, but this
was not considered a covariate. The regression of log total PSA levels on
disease status (d = 0,1), age, and the age by disease interaction gave the
posterior analysis shown in Table 6.6.

The 95% credible interval for the age by disease interaction is (−.0372,
.0126), which suggests that age has a minimal effect on the ROC curve.
Adjusting for age, the ROC area was estimated at .9053 with a 95% credible
interval of (.625, .997). 

TABLE 6.5

Posterior Distribution of Induced ROC curve

Parameter Mean SD 2.5% Median 9.75%

beta[1] 3.305 .2158 2.882 3.304 3.73
beta[2 −.5325 .305 −1.123 −.5328 .0669
beta[3 −.4571 .2347 −.92 −.4557 −.001503
beta[4] .2605 .3314 −.3884 .261 .909
Vary0 1.077 .1281 .8538 1.067 1.354
Vary1 1.054 .1237 .8381 1.045 1.321

TABLE 6.6

Regression of PSA on Disease Status and Age

Parameter Effect Mean SD 2.5% Median 97.5%

beta[1] −2.399 .1066 .6253 .9391 −1.559
beta[2] Disease 2.056 .829 .4263 2.056 3.681
beta[3] Age .4256 .0062 .03025 .04261 .0548
beta[4] Age by disease interaction −.0123 .0127 −.0372 −.0123 .0126
vary0 Variance of nondiseased .5375 .0359 .4716 .5359 .6129
vary1 Variance of diseased 1.232 .116 1.023 1.225 1.48
auc area .9053 .1006 .6253 .9391 .9971
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6.4 Exercises

6.1 Write a WinBUGS program to estimate the overall true positive
fraction using the same audiology data file as in the example above.
(See Table 6.1.) Note that the cases for a true positive are not the
same as those for a false positive. Estimate the effect of age, location,
and severity of disease on the true positive rate with test a results
only. Employ the log link function and compare your results to Table
3.9 of Pepe.1

6.2 Using the same dataset as in Table 6.2 for the logistic link, perform
a Bayesian analysis with the log link and compare your results to
Table 3.12 of Pepe.

6.3 Using the same audiology data file in Table 6.2, perform the analysis
with a logistic link, but with the true positive occurrence as the
dependent variable. 

6.4 Using the dataset that was used in Section 6.2.2, perform a Bayesian
analysis, but with the logistic link. 

6.5 Devise a strategy for choosing between the log and logistic links to
analyze a given set of data. Explain in detail and provide a convinc-
ing argument.

6.6 Verify the last statement about the RPDLRAB mean value of 3.696
by amending the above program to give the ratio directly. Refer to
Table 6.3.

6.7 Verify the results of Table 6.5 and perform the posterior analysis for
the gender specific ROC curves. Estimate the ROC areas. 

6.8 To verify the results of Table 6.6, write a WinBUGS program.
6.9 Refer to Table 6.6 and Pepe(ex. 6.4, p. 144) and derive a formula for

the induced ROC curve.
6.10 For the prostate cancer example, estimate the area under the ROC

curve without covariates. 
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Chapter 7

 

Agreement

 

7.1 Introduction

 

This chapter discusses variability between readers in the diagnostic process.
The readers may be radiologists, pathologists, oncologists, surgeons, etc.,
and it is well known that variability does indeed exist and is a problem in
the medical sciences. The problem occurs because of errors in measurements
due to differences in diagnoses to differences in the intrinsic accuracy of
medical devices, differences in the ability and training of the radiologists or
pathologists, and differences in the experimental units under study.

 Shoukri

 

1

 

 describes the inconsistencies and inaccuracies in various medical
specialties. For example, he mentions the Birkelo et al.

 

2

 

 study, which describes
the variability between five readers attempting to diagnose pulmonary
tuberculosis. Clinicians also exhibit much variability in routine examinations
of the chest, according to Fletcher.

 

3

 

 The variability between physicians in
making diagnoses is common and a serious problem. The problem of inac-
curacies and inconsistencies is well known in diagnostic radiology; however,
the same cannot be said for other areas of medicine.

Variability between readers is a problem in clinical trials in assessing patient
progress. For example, in Phase II trials, the response to therapy is often
determined by a team of radiologists (among others) who classify the patient’s
progress based on the size of the tumor measured by a radiological device.
Differences in the radiologists’ assessments play an important role in the
outcome of the trial. Larger differences between readers imply less confidence
in the trials’ conclusions. But, such variability is rarely taken into account in
the conclusions of a Phase II trial. These ideas will be explored in Chapter 8.      

Several studies completed at the MD Anderson Cancer Center (MDACC)
on inter- and intra-observer differences between radiologists will be intro-
duced in this chapter. They will illustrate the sources of variation and how
to take them into account. These studies focus on differences between readers
in the following areas: (1) in measuring the size of a liver lesions via magnetic
resonance imaging (MRI) and (2) in measuring blood flow by computed
tomography (CT). The analysis of agreement will focus on estimating the
intra-class correlation coefficient (ICC) via the variance components of a
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mixed linear model. When the response is continuous, various regression
techniques will be employed to measure agreement. These procedures are
Bayesian analogs of the well-known frequency counterparts including the
ICC and Bland–Altman methods. 

The chapter starts with a description of the agreement between raters or
readers when binary values are assigned by each reader to each subject (or
image or specimen, etc.). This is generalized to include a discrete (more than
two, but finite) number of ratings assigned by each observer to all images.
Then, finally, the case of multiple observers is considered. The student will
recognize this as the usual introduction to the Kappa statistic and to the McNe-
mar test for the analysis of agreement between raters when the scores are binary.
However, the approach here is strictly Bayesian. For example, for binary data,
the posterior distribution of the Kappa parameter is derived. The Kappa param-
eter is simplified to include multiple raters, multiple ratings, and stratified
situations, and is the foundation for the corresponding Bayesian analysis.

The later parts of the chapter will describe regression techniques for includ-
ing patient covariate information in the analysis of agreement. The student
is referred to Shoukri

 

1

 

 for an introduction to the general problem of agree-
ment, both for continuous and discrete data and to an introduction to the
ICC for agreement between observers when the response is continuous. 

 

7.2 Agreement for Discrete Ratings

 

7.2.1 Binary Scores

 

Consider the 2 

 

×

 

 2 in Table 7.1 that gives a binary score to 

 

n

 

 subjects. Each
subject is classified as either positive or negative by both readers. 

Let 

 

θ

 

ij

 

 be the probability that rater 1 gives a score of 

 

i

 

 and rater 2 a score
of 

 

j

 

, where 

 

i

 

, 

 

j

 

 

 

= 

 

0 or 1, and let 

 

n

 

ij

 

 

 

be the corresponding number of subjects.
Obviously, the probability of agreement is the sum of the diagonal proba-
bilities; however, this measure of agreement is usually not used. Instead, the
Kappa parameter is often employed as an overall measure of agreement,
and is defined as 

(7.1)

 

TABLE 7.1 

 

Classification Table 

 

Rater 2
 

 

X

 

 

 

=

 

 0

 

X

 

 

 

=

 

 1

 

Rater 1 

 

X

 

 

 

=

 

 0 (

 

n

 

00

 

, 

 

θ

 

00

 

), (

 

n

 

01

 

, 

 

θ

 

01

 

)

 

X

 

 

 

=

 

 1 (

 

n

 

10

 

, 

 

θ

 

10

 

) (

 

n

 

11

 

, 

 

θ

 

11

 

)

κ θ θ θ θ θ θ θ θ θ= + − + − +[( ) ( )]/[ (. . . . . .00 11 0 0 1 1 0 0 11 .. . )]θ 1
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where the dot indicates summation of the 

 

θ

 

ij

 

 over the missing subscript.
Thus, the numerator of Kappa is the difference in two terms; the first is the
sum of the diagonal elements and the second assumes that the raters are
independent in their assignment of rating to subjects. The second term gives
the probability of agreement that will occur by chance, thus Kappa is a
chance corrected measure of agreement. Kappa varies over (-

 

∞

 

, 1) and is
sometimes given the following interpretation. (See Kundel and Polansky

 

4

 

for a discussion of the interpretation of Kappa.)
Why a chance corrected index? Should there be a correction for agreement

by chance? Suppose rater 1 is a radiologist using CT, while rater 2 is another
radiologist aided by an MRI. Then it is reasonable to assume that the raters
are using different criteria to make the positive or negative assessment of
disease. If so, any agreement would be due to chance. This would not be the
case if raters 1 and 2 are the same person using the same device for diagnosis
and the study is one of replication testing the intra-rater consistency. In any
case, the Kappa parameter can be estimated and the chance component of
agreement estimated as well.

The Bayesian approach will use Minitab

 



 

 to generate random samples
from the posterior distribution of the 

 

θ

 

ij

 

 and, consequently, from the posterior
distribution of the Kappa parameter. Once this is done, tests of hypotheses
about Kappa involving the degree of agreement can be performed and sam-
ple size questions addressed. 

Consider the following study of agreement with 100 cases (Table 7.2).
Minitab generated 1000 samples from the joint posterior distribution of the
parameters, which is Dirichlet (2,10,10,82), assuming a uniform prior distribu-
tion. Recall that this is done by first generating four independent columns
with gamma variates with first-shape parameters (2,10,10,82) and a common
second-shape parameter 2. The four columns are then divided by the total of
the four columns, resulting in the four columns as random samples from the
appropriate Dirichlet distribution. From the four columns of Dirichlet variates,
the Kappa value is computed, giving 1000 samples from the posterior distri-
bution of that parameter. The posterior analysis is shown in Table 7.3.

The posterior mean of the agreement parameter (

 

θ

 

00

 

 + θ

 

11

 

) and the chance
agreement parameter (

 

θ

 

0.

 

θ

 

.0

 

 + θ

 

1.

 

θ

 

.1

 

) have almost the same posterior mean
and standard deviation. This is as it should be. The table was constructed
so that the readers provide independent ratings. There is a slight right

 

TABLE 7.2

 

Classification Table 

 

Rater 2
 

 

X

 

 

 

=

 

 0

 

X

 

 

 

=

 

 1

 

Rater 1

 

X

 

 

 

=

 

 0 (1, 

 

θ

 

00

 

) (9, 

 

θ
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skewness exhibited by the posterior distribution of Kappa (Figure 7.1). For
further discussion, see Fisher and Van Belle

 

5

 

 (p. 527).
This example shows that there is good agreement and good chance agree-

ment that cancel each other to give poor chance corrected agreement por-
trayed by the Kappa parameter. The credible interval indicates the Kappa
parameter is not nonzero, which, of course, is as it should be. Since the
agreement and chance agreement values are the same, Kappa should be zero.
The sample size and sampling variability give empirical values that are not
quite the same.

 

7.2.2 Other Indices of Agreement

 

According to Shoukri,

 

1

 

 there are several other adjusted indices for agreement
including the G-coefficient and the Jacquard coefficient. For more informa-
tion about the former, see Maxwell.

 

6

 

 The G-coefficient is defined as

G 

 

=

 

 [ ] (7.2)

 

TABLE 7.3

 

Posterior Distribution for Agreement

 

Parameter Mean Median SD
95% Credible

Interval

 

Agreement .806 .808 .039 (.723, .875)
Chance Agreement .794 .794 .034 (.724, .858)
Kappa .057 .043 .032 (–.105, .297)

 

FIGURE 7.1

 

Posterior distribution of Kappa.
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where G 

 

=

 

 1 indicates perfect agreement and G 

 

=

 

 –1 perfect disagreement.
The other measure, the Jacquard coefficient, is

J 

 

=

 

, . (7.3) 

 

7.2.3 A Bayesian Version of McNemar

 

The McNemar test examines the hypothesis that both raters have the same
probability of assigning 1 to all subjects. That is

 

H

 

: vs.

 

A

 

: . (7.4)

Is the hypothesis rejected for the information in Table 7.2? Let 

 

d

 

 

 

=

 

,
then the histogram of 1000 values from the posterior distribution of the
differences is given in Figure 7.2. The posterior mean is .0018 and the pos-
terior standard deviation is .0437, with a 95% credible interval of (–.0857,
.0872). There is little evidence that the null hypothesis is false and one
concludes that both raters are using the same probability to assign the num-
ber 1 to a subject. 

 

7.2.4 Comparing Two Kappa Parameters

 

Shoukri (p. 34) compares two Kappa parameters in the study of ultrasound
and MRI to stage prostate cancer. The information is portrayed in Table 7.4A

 

FIGURE 7.2

 

Posterior distribution of the difference.
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and Table 7.4b. The agreement between ultrasound and pathological stage
is given in the first table, while the second table presents the association
between MRI and pathological staging. Pathological staging is considered
the gold standard.

The comparison is based on the posterior distribution of the difference
between the two Kappa parameters.

The agreement ultrasound and the agreement MRI parameters are the sum
of the diagonal terms, giving the overall agreement without the adjustment
for chance agreement. 

It is obvious that the agreement between MRI and pathology is greater
than that for ultrasound and pathology for staging prostate cancer lesions,
and the 95% credible interval for the difference in the two Kappa parameters
does not include zero. See Table 7.5.

 

TABLE 7.4A

 

 Stageing of Prostate Cancer with Ultrasound 

 

Pathological Stage
Advanced Localized Total

 

Ultrasound Stage

 

Advanced 45 50 95
Localized 60 90 150
Total 105 140 245

 

TABLE 7.4B

 

 Stageing of Prostate Cancer with MRI 

 

Pathological Stage
Advanced Localized Total

 

MRI Stage

 

Advanced 51 28 79
Localized 30 88 118
Total 81 116 197

 

TABLE 7.5

 

The Posterior Distributions for Comparing MRI Kappa Vs. Ultrasound Kappa

 

Parameter Mean Median SD
95% Credible

Interval

 

Agreement Ultra .551 .551 .089 (.488, .611)
Chance Agreement Ultra .515 .513 .031 (.501, .534)
Kappa Ultra .073 .072 .008 (–.049, .196)
Agreement MRI .704 .704 .032 (.633, .763)
Chance Agreement MRI .517 .516 .010 (.501, .540)
Kappa MRI .386 .386 .066 (.246, .513)
Difference 

 

=

 

 Kappa Ultra – Kappa MRI –.312 .312 .089 (–.491, –.136)
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7.2.5 Kappa and Stratification

 

Shourkri (p. 35), using hypothetical data, analyzes the association between
MRI and ultrasound as a function of lesion size. The usual approach is to
use a weighted Kappa parameter with weights chosen according to several
schemes. The weighted Kappa parameter is

(7.5)

where the sum of the weights is unity, 

 

κ

 

i

 

 is the usual Kappa parameter for
the i

 

th

 

 stratum, and is the weight assigned to the i

 

th

 

 stratum.
There are several weighting plans, including: (1) equal weighting, (2) weight-

ing by the sample size of a stratum, and (3) weighting by the inverse of the
sampling variance of the estimated Kappa parameter. The latter two
approaches appear preferable, but each has its drawbacks. For example,
Barlow et al.

 

8

 

 show that method (3) has smaller variance than method (2), but
that it also has a larger bias. 

Consider the following information on the agreement between MRI and
ultrasound, stratified by lesion size and involving 300 images (Table 7.6).
This information is taken from Shoukri (Table 3.6).

The analysis will use the sample size as weights for the weighted Kappa
Equation (7.5). The data is grouped into three strata: the 1 to 10 mm group,
the 11 to 20 mm group, and the 

 

≥

 

 21 mm group, with stratum sizes of 208,
68, and 24, respectively. The posterior analysis of the three Kappa parameters
is done the usual way with Minitab and 1000 generated observations from
the posterior distribution. (See Section 7.2.1.) The posterior distribution of
the Kappa parameter of the three strata and the overall weighted Kappa
appear in Table 7.7.

 

TABLE 7.6

 

MRI and Ultrasound Stratified by Lesion Size

 

Lesion
Size mm

Missed
by Both 

(0,0)

Seen by
MRI Only

(0,1)

Seen by 
Ultrasound Only 

(1,0)
Seen by

Both (1,1) Total

 

1–5 40 15 10 20 85
6–10 29 14 10 70 123
11–15 10 7 7 12 36
16–20 3 2 3 24 32
21–25 0 1 1 10 12
> 25 1 2 1 8 12
Total 83 41 32 144 300

 

Source:

 

 Adapted from Shoukri, M.M.,

 

 Measures of Interobserver Agreement

 

, Chapman
& Hall/ CRC, 2004, Boca Raton, FL. 
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As seen from Figure 7.3, the Kappa 3 histogram is centered to the left and
the histogram of Kappa 1 to the far right, and that the variability of Kappa 1
is the largest among the three.

 

7.2.6 Multiple Categories and Two Readers

 

Suppose that two radiologists are assigning c 

 

≥

 

 3 discrete categories to
images. How is agreement measured between the two? Kappa is generalized
in an obvious way to

(7.6)

where 

 

θ

 

ii

 

 is the probability that radiologist 1 gives a score of 

 

i

 

 and radiologist
2 a score of 

 

i

 

, where 

 

i

 

 

 

=

 

 1,2,…,c. As in the binary case, the first term in the
numerator is the probability of overall agreement (the sum of the probabilities

 

TABLE 7.7

 

Weighted Kappa for Stratified Analysis

 

Parameter Mean Median SD
95% Credible

Interval

 

Kappa 1 .515 .516 .057 (.398, .621)
Kappa 2 .350 .353 .111 (.117, .575)
Kappa 3 .195 .184 .187 (–.133, .589)
Weighted Kappa .452 .453 .049 (.350, .545)

 

FIGURE 7.3

 

Posterior distribution of three Kappas.
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in the c 

 

×

 

 c table of joint radiologist scores), while the second term is the
probability of agreement by chance. The marginal probabilities are 

 

θ

 

i.

 

 =
probability that radiologist 1 gives a score of i and θ.i is the probability that
radiologist 2 gives a score of i. One result of more categories is that there is
less chance of agreement between the two radiologists. The posterior analysis
would proceed in a similar fashion as the binary case. One would have the
joint Dirichlet distribution of C2 multinomial parameters θij and this posterior
distribution is easily determined by Minitab.

Another example by Shoukri (p.44), also analyzed by Landis and Koch,9
provides information for a Bayesian approach to estimating the agreement
via Equation (7.6) between two neurologists who are diagnosing patients into
one of four categories of multiple sclerosis (MS): (1) certain MS, (2) probable
MS, (3) possible MS, and (4) unlikely MS. (See Table 7.8 for the outcomes.) 

Thus, both neurologists diagnosed 38 patients as definitely having MS. Let
θij be the probability that neurologist 1 gives a diagnosis of i and the other
a diagnosis of j where i, j = 1, 2, 3, and 4. Assuming a uniform prior distri-
bution for the multinomial parameters, their posterior distribution is
Dirichlet (39,6,1,2,34, 12,4,1,11,15,6,7,4,8,4,11), and the analysis is easily done
with Minitab. The parameters of the Dirichlet are found by reading Table
7.8 from left to right and adding one to each cell entry. The posterior distri-
bution is based on 1000 observations generated from the above distribution
and as shown in Table 7.9.

The posterior distribution for the overall agreement is .412, but when
adjusted for chance, Kappa is estimated as .188 with the median. Kappa

TABLE 7.8

Agreement in Diagnosis of Multiple 
Sclerosis between Two Neurologists

Neurologist 2
1 2 3 4 Total

Neurologist 1

1 38 5 0 1 44
2 33 11 3 0 47
3 10 14 5 6 35
4 3 7 3 10 23

Total 84 37 11 17 149

TABLE 7.9

Posterior Distribution of Kappa for Agreement of Neurologists

Parameter Mean SD Median
95% Credible

Interval

Overall Agreement .413 .037 .412
Agreement by Chance .275 .014 .273
Kappa .191 .047 .188 (.103, .289)
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appears to be nonzero and is also estimated by the 95% credible interval
(.103, .289), thus giving poor to fair agreement in the diagnosis of MS between
the two neurologists. 

7.2.7 Multiple Categories 

Shoukri (p. 50) presents the diagnoses of cervical vertebral malformation
made by four veterinarian students. They were presented with 20 X-ray
images with the following binary ratings, where 0 indicates no malformation
and 1 designates malformation (Table 7.10).

Two X-rays received the ratings 0, 0, 0, and 0 by students 1, 2, 3, and 4,
respectively. Also, no X-ray received the ratings 0, 0, 0, and 1.

Let θijkl be the probability that students 1, 2, 3, and 4 give ratings i, j, k,
and l, respectively, to an X-ray, where i, j, k, l = 0, 1. Then the θijkl have a
Dirichlet distribution and, via Minitab, samples are easily generated from
the joint distribution. How is agreement measured with four readers? A
Kappa parameter can be estimated for the agreement of all four students.

The probability that all four agree is ag = and the probability
all agreeing by chance is 

agc = [  ], 

where is the probability that student 1 gives a rating of i, i = 0, 1, etc.
If the four students are assigning scores independently, 

, etc.
Thus, Kappa is 

κ = (ag − agc)/(1 − agc). (7.7)

TABLE 7.10

Ratings of 20 X-Rays by 4 Students

Rating Frequency

0 0 0 0 2
0 0 0 1 0
0 0 1 0 2
0 1 0 0 0
1 0 0 0 3
1 1 1 0 0
1 1 0 1 2
1 0 1 1 1
0 1 1 1 0
0 0 1 1 0
0 1 0 1 1
1 0 0 1 0
0 1 1 0 0
1 1 0 0 1
1 0 1 0 1
1 1 1 1 7
Total 20

( )θ θ0000 1111+

( * * * )... . .. .. . ...θ θ θ θ0 0 0 0 + ( * * * )... . .. .. . ...θ θ θ θ1 1 1 1

θi...

θ0000 =
( * * * )... . .. .. . ...θ θ θ θ0 0 0 0
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The G-coefficient for total agreement is

G = (ag − (1 − ag)) (7.8)

and is adjusted for the probability of nonagreement.
On the other hand, because there are multiple raters, partial agreement is

possible. For example, what is the probability that at least three students
agree? It is

ag3 = ag + . (7.9) 

When considering partial agreement, it is convenient to use a G-type
coefficient, namely 

G3 = (ag3 – (1 − ag3)). (7.10)

What are the posterior distributions of these measures of total and partial
agreement? (See Table 7.11.)

Total agreement of all four students is quite poor, estimated by the Kappa
parameter as .163 and a credible interval that includes 0. Also, the G-coefficient
is negative, indicating poor total agreement, but the partial agreement of at
least three students is judged as fairly good, with a G-coefficient of .640 (the
maximum value is 1).

7.2.8 Agreement and Covariate Information

How is patient covariate information included in the measure of agreement
between radiologists? Consider the G-coefficient defined as

G = [ ], (7.2)

TABLE 7.11

Posterior Distribution of Total and Partial Agreement of Four Students

Parameter Mean Median SD
95% Credible

Interval

ag, total agreement of four students .332 .331 .082
agc, agreement by chance of all four .198 .183 .058
Kappa, for agreement of all four students .163 .170 .117 (–.067, .369)
G-coefficient for total agreement of all four
students

–.334 –.336 .164 (–.648, –.005)

ag3, agreement of at least three students .819 .820 .096
G3, G-coefficient for agreement of at least
three students

.639 .640 .193 (.264, 1.000)

(θ θ θ θ θ θ θ0001 0010 0100 1000 1110 1101 1011+ + + + + + + θθ0111)

( ) ( )θ θ θ θ00 11 01 10+ − +
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for the 2 × 2 classification in Table 7.1. Note that agreement occurs with
probability

ag = (7.11)

and that of nonagreement with probability

nag = 1 – ag = . (7.12)

Since the occurrence of agreement is scored as a binary event, it is natural
to use logistic regression in order to determine the effect of covariates on ag
and, thus, on the G-coefficient. Therefore, let

G(x) = {ag(x) – [1 – ag(x)]} = 2ag(x)–1 (7.13)  

and consider the example of stratification in Table 7.6. However, suppose
the lesion size of each patient is used as the covariate x in G(x). Logistic
regression is used to regress the logit of ag(x) on x where x is the lesion size
of a patient.

There are 300 patients and on each the lesions size is assigned as in
Table 7.12. Refer to Table 7.6 where there are six categories of lesion size
and four categories of the joint classification of MRI and ultrasound.

A random sample of 70 lesion sizes is selected from the discrete uniform
distribution (6,7,8,9,10) and assigned to the 70 patients.

A logistic regression is performed where the dependent variable is the
occurrence of agreement between MRI and ultrasound. Agreement occurs
when a patient is missed (0,0) by both modalities or seen (1,1) by both. The
logistic model is

Logit[ag(x)/(1 – ag(x))] = (7.14)

TABLE 7.12

Lesion Size for Agreement of MRI and Ultrasound

Lesion
Size mm

Missed
by Both 

(0,0)

Seen by
MRI Only

(0,1)

Seen by 
Ultrasound Only 

(1,0)
Seen by 

Both (1,1) Total

1–5 40: 1–2 15: 2–3 10: 23 20: 3–5 85
6–10 29: 6–7 14: 7–8 10: 7–8 70: 6–10* 123
11–15 10: 11–12 7: 12–13 7: 12–13 12: 13–15 36
16–20 3: 16–17 2: 17–18 3: 17–18 24: 18–20 32
21–25 0: 21–22 1: 22–23 1: 22–23 10: 23–25 12
> 26 1: 26–30 2: 28–31 1: 28–31 8: 31-35 12
Total 83 41 32 144 300

( )θ θ00 11+

( )θ θ01 10+

β β1 2+ * x
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where x is the lesion size. The following program is executed to estimate the
beta parameters.
model

{

# x1 is lesion size 
#x2 is agreement 
for( i in 1 : 300 ) { 
x2[i] ~ dbern(p[i]) 
logit(p[i]) <- beta[1] + beta[2] * x1[i] 
q[i]<- exp(beta[1]+beta[2]*x1[i])/
(1+exp(1+beta[1]+beta[2]*x1[i])) 
} 
phat<-mean(p[]) 
qhat <- mean(q[]) 
for (i in 1:2 ){
beta[i] ~ dnorm(0.0,0.0001)}
}

The dependent vector is ×2[] and gives the occurrence of agreement, while
the vector of 300 lesion sizes is denoted by ×1[]. The posterior analysis for
the beta coefficients is given in Table 7.13.

Thus, the G-coefficient depends on x where 

G(x) = 2ag(x) – 1 

and 

ag(x) = exp(.893 + .026x)/[1 + exp(.893 + .026x)]. (7.15)

Note that ag(x) is the probability of agreement when the lesion size is x.
For this example, the effect of lesion size is minimal. Of course, in practice,
the covariate is often stratified and the G-coefficient estimated in each stra-
tum, and then a weighted G-coefficient is formed for an overall estimate of
agreement. 

TABLE 7.13

Logistic Regression for Agreement: Effect of Lesion Size

Parameter Mean Median SD
95% Credible

Interval

Beta[1] .893 .890 .224 (.453, 1.336)
Beta[2] .026 .026 .019 (–.011, .067)
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7.3 Agreement for a Continuous Response

7.3.1 Introduction

What does it take for two raters to agree? If the two produce identical paired
values on the same units, then they agree perfectly, and everyone would
agree on this definition. Of course, this is not seen very often. There are many
ways for raters to agree. For example, the average of their paired responses
could be the same or the standard deviations of the responses could be
similar. The correlation between the two paired responses could be high. Or,
if one reader’s response is regressed on the other’s response, the fitted line
could go through the origin with slope 1. The correlation between readers
can be high, but their mean values can be far apart. Thus, agreement is a
multifaceted phenomenon, in that two readers may agree according to one
criterion, but not agree with respect to another.

Readers do not agree, however, because of the randomness inherent in the
study. The randomness in the raters’ responses is caused by a variety of
sources including differences in the experimental units, differences between
the ability and experience of the raters, and differences in the measuring
devices (e.g., MRI, ultrasound, nuclear medicine techniques for diagnostic
radiology, or the differences in the histology methods of pathologists). 

This requires statistical methods to assess the degree of agreement. The
basic descriptive statistics should always be computed, namely the mean,
median, and standard deviation, listed by reader and, if necessary, by rep-
lications within readers. This should be accompanied by graphical methods
including Box plots (tools that display centering, spread, and distribution of
a continuous dataset) of the various responses, again listed by reader and
replication. This will give the inter- and intra-observer variation. The descrip-
tive statistics by themselves can tell almost the whole story about the agree-
ment between readers.

Based on the descriptive statistics and the graphical evidence, specialized
procedures can be invoked in order to further explore agreement. For con-
tinuous variables, regression and analysis of variance methods are the most
appropriate. For example, using the one-way random model where the levels
of the main factor are the different images of the study, and where the
readers are considered random, the intra-class correlation coefficient (ICC)
estimates the correlation between two readers within images. The ICC
approach is also appropriate for two-way layouts when there is replication
of a reader’s scores. Another use of the random model is to partition the
total variance into the sum of the variances of the various factors in the
model. Suppose there are three readers with replicate readings of the same
image, then there are several sources of variation, including patients, readers,
replications (within readers), and error. Each factor will have an associated
variance component, which is estimated by a Bayesian procedure. The sum
of the four variance components is the total variance of the experiment, thus
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the percent of the total variation due to each source can be estimated. It has
been the author’s experience that the between patient variance component
is always dominant and that the component for the replication factor is the
smallest. These ideas will be illustrated with an example from MDACC.

Linear regression methods may also be employed to assess the degree of
agreement between two readers. For example, suppose two readers are
measuring lesion size on the same set of images, so that their responses are
paired. The lesion size of one reader is regressed on the lesion size of other
and the intercept and slope estimated. If the two are in agreement, one would
expect the intercept to be zero and the slope to be 1. Indeed, if the two were
in perfect agreement, their paired values would be identical and the fitted
line would go through the origin with a slope of 1. On the other hand, if the
fitted line is far from going through the origin and/or, if the estimated slope
is not close to 1, this is evidence that the two readers are not in agreement.
Bayesian regression techniques will be employed to assess agreement. Addi-
tional regression methods for agreement include the Bland–Altman proce-
dure, but will not be pursued here. A good introduction to agreement with
continuous data is in Fleiss10 (Chap. 1). Shoukri1 is also a good, wide-ranging
reference to the general subject of agreement, including the use of mixed
and random models for estimating the ICC.

7.3.2 Intra-class Correlation Coefficient

7.3.2.1 One-Way Random Model

Let yij denote the observation in the ith row and jth column where

 (7.16)

where the are independent of the , for i = 1,2,...,r
and j = 1,2,…,c. The intra-class correlation coefficient is

(7.17)

and is the correlation between the two distinct observations in the same row. 
Note that if j ≠ j′

= =  (7.18)

and the ICC of Equation (7.17) is confirmed.
In diagnostic radiology, the rows usually represent images and the col-

umns readers, thus ICC is the common correlation between the ratings of
pairs of the reader.

y eij i ij= +θ

θ θ σi bnid~ ( , )2 e nidij w~ ( , )0 2σ

ρ σ σ σ= +( )b b w
2 2 2/

cov( , ) cov( , )' 'y y e eij ij i ij i ij= + +θ θ

cov( , )θ θi i σb
2
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Recently Kundra11 conducted a study involving the comparison of six MRI
sequences for the diagnosis of liver lesions. Three readers and 22 patients
were involved and the readers read the same image twice. There were
multiple lesions in the liver and, as part of the study, the lesion size of the
“largest” lesion was measured. This was done by measuring the major axis
of the lesion. The descriptive statistics are displayed in Table 7.14.

The Box plots of Figure 7.4 show the inter-reader variation in measuring
the major axis of the largest lesion of 22 patients, who were imaged with the
fast spin echo sequence. The plots reveal that readers 2 and 3 are in good
agreement with regard to the median lesion size and that they also have
similar variations about the median, as measured by the interquartile range.

TABLE 7.14

Descriptive Statistics of Lesion Size by Reader

Reader Mean (mm) Median SD
Interquartile

Range

1 37.21 34.34 26.01 26.00
2 32.75 26.50 18.54 30.75
3 33.57 27.00 24.47 32.00

FIGURE 7.4
Box plots of inter-reader variation for lesion size.
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Also, shown in Figure 7.5, is a P-P plot to assess the goodness of the fit of
the 22 lesion values for reader 1. This test for normality shows that the values
do not depart too much from the assumption of normality, a preliminary
test that is necessary for the analysis via the random one-way model. 

Table 7.15 provides the posterior analysis for estimating the intra-class
correlation coefficient Equation (7.17). For this example, only one replication
for each reader is included and only one MRI sequence (fast spin echo) was
considered. The program does give all the necessary information and the
data are included. The between and within variance components are denoted
by sigma2.b and sigma2.w, and the y matrix in the data list is the 22 × 3
matrix of lesion size values. The NA denotes a missing value.

FIGURE 7.5
P-P plot of lesion size.

TABLE 7.15

Posterior Distribution of the Intra-Class Correlation Coefficient

Parameter Mean Median SD
95% Credible

Interval

ρ .793 .793 .071 (.624, .903)
444.7 413 166 (219.4, 851.6)
108.8 104.6 27.4 (67.93, 174)

θ 33.24 33.24 4.72 (23.9, 42.57)
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model

{

for( i in 1 : patients ) {

m[i] ~ dnorm(theta, tau.b)

for( j in 1 : readers ) {

y[i , j] ~ dnorm(m[i], tau.w)

}

}

sigma2.w <- 1 / tau.w

sigma2.b <- 1 / tau.b

tau.w ~ dgamma(0.001, 0.001)

tau.b ~ dgamma(0.001, 0.001)

theta ~ dnorm(0.0, 1.0E-10)

ICC<-sigma2.b/(sigma2.b+sigma2.w)

} 

list(patients = 22, readers = 3, 

y = structure(.Data = c( 26.00, 22.00, 10.00, 

NA, 25.00, 25.00, 

NA, NA, 10.00, 

NA, 17.00, 19.00, 

20.00, 17.00, NA, 

30.00, 28.00, NA, 

39.00, 44.00, 40.00, 

33.00, 53.00, 40.00, 

46.00, 47.00, 27.00, 

26.00, 25.00, 26.00, 

50.00, 51.00, 49.00, 

44.00, 48.00, 47.00, 

77.00, 75.00, 74.00, 

116.00, 44.00, 104.00, 

11.00, 8.00, 12.00, 

10.00, 12.00, 9.00, 

12.00, 12.00, 15.00, 

61.00, 56.00, 53.00, 

21.00, 21.00, 27.00, 

13.00, 13.00, 15.00, 
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36.00, NA,NA, 

36.00, 37.00, 36.00), .Dim = c(22, 3))) 

list(theta= 34.48 ,tau.w=1, tau.b=1)

Therefore, the intra-class correlation coefficient is estimated as .79 with
a 95% credible interval of (.624, .903) indicating fairly good agreement
between the three readers. The analysis was based on 100,000 observa-
tions generated from the joint posterior distribution of the model param-
eters. The theta parameter is the overall mean with a credible interval of
(23.9, 42.57). Figure 7.6 illustrates the graph of the posterior density of
the ICC. 

7.3.2.2 Two-Way Random Model 

Let

(7.19)

where , the ~ , the , and the eijk~ nid (0, σ2),
where i = 1,2,…,r, j = 1,2,…,c, and k = 1,2,…,n. 

This is a two-way random model with two major factors. For our use, r is
the number of images, c the number of radiologists, and n the number of
replications, that is, each radiologist reads each image n times. With regard
to the MRI study of the previous section, r = 22 lesions, c = 3 radiologists,
and n = 2 replications. With this model, the intra-observer variability can be
measured by

= , k ≠ k’

= . (7.20)

FIGURE 7.6
Posterior density of ρ.
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In a similar manner, the inter-observer variability may be measured by

= , j ≠ j’.  (7.21)

7.3.3 Regression and Agreement

There are several regression techniques for agreement between readers pro-
viding continuous scores for diagnosis. The previous study of Kundra11

provides a nice illustration from diagnostic radiology where there were 3
radiologists measuring the lesion size of liver lesions in 22 patients. The
design was balanced and the readers were matched with the images and
each radiologist read each image twice. Also, there were six imaging modalities,
corresponding to six MRI sequences. A MRI sequence is a particular setting
for controlling the way the magnetic field is perturbed by the radio signal,
thus six different images of the same lesion are produced. The various
sequences display different image qualities. A small subset of the Kundra
study is employed for the use of Bayesian regression method.

If two readers agree perfectly, they would have identical readings for lesion
size for the same image and the graph of one reader’s readings on the other
reader’s would look like a line that passes closest to the origin with a slope
of approximately 1. Thus, the approach is to use linear regression by regress-
ing the scores of one reader on the scores of the other. For example, Kundra
considers 22 lesion size values for readers 1 and 2 on the first replication
using the first MRI sequence (fast spin echo). Regress reader 1 scores on
reader 2 scores with the following program. 

model;

{

# likelihood function

for(i in 1:N) {

y[i]~ dnorm(mu[i], precy);

mu[i] <- beta[1] + beta[2]*x[i];

}

# prior distributions – noninformative prior; similarly 
for informative priors

for(i in 1:P) {

beta[i] ~ dnorm(0, 0.000001);

}

precy~dgamma(.00001,.00001)

sigma<-1/precy

}

ρinter corr y yijk ij k( , )′
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list( N = 22, P = 2, y = c(26.00,NA,NA,NA,20.00,30.00,

39.00,33.00,46.00,26.00,50.00,

44.00,77.00,116.00,11.00,10.00,

12.00,61.00,21.00,13.00,36.00,

36.00),

x = c(22.00,25.00,24,17.00,17.00,28.00,

44.00,53.00,47.00,25.00,51.00,48.00,

75.00,44.00,8.00,12.00,12.00,56.00,

21.00,13.00,35,37.00))

list( beta = c(0,0), precy = 1 )

Based on the 95% credible intervals of Table 7.16, the slope is 1 and the
intercept is zero, indicting good agreement between readers 1 and 2. The
graph of Figure 7.7 confirms these informal statements. Of course, for a

TABLE 7.16

Posterior Distribution of the Intercept and Slope: Regression
of Reader 1 on Reader 2 Lesion Size

Parameter Mean Median SD
95% Credible

Interval

Intercept beta[1] 1.804 1.78 9.24 (–6.53, 20.31)
Slope beta[2] 1.038 1.03 .24 (.561, 1.518)
Standard deviation about
regression line

366.3 337.2 140.9 (181.6, 725.5)

FIGURE 7.7
Reader 1 vs. reader 2.
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complete analysis, the procedure should be repeated for all pairs of readers
for each replication. 

7.4 Combining Reader Information

Returning to the example of Kundra11 where there were three readers esti-
mating the size of liver lesions, suppose this information is used to judge
the efficacy of treatment in a clinical trial. The change in lesion size is
estimated by comparing the subsequent readings of lesion size to the baseline
readings and classifying the response into one of several categories, includ-
ing complete response, partial response, stable disease, or progressive dis-
ease. Which category a patient is assigned to depends on the percent change
from baseline. This will be looked at in detail in the following chapter.

In such a scenario, often two readers are used to estimate the size of a
lesion on each image, but if they disagree, the third radiologist adjudicates
the disagreement. Another approach will be pursued here: A statistical alter-
native where the reader information is averaged over all the readers. How
is this done from a Bayesian approach? 

Assuming the lesion sizes are normally distributed, the three scores from
the readers on the same image could be considered a random sample of size
22 (there are 22 patients, one lesion per patient) from a three-dimensional
multivariate normal distribution. If vague prior information is employed, the
posterior distribution of the mean image size has a multivariate t-distribution
with 19 degrees of freedom, mean vector 

 (7.22)

and precision matrix

 (7.23)

where n is the sample size (n = 22 patients ), k = number of measurements
(k = 3), the number of radiologists, and S is the 3 × 3 sum of squares and
cross products matrix, thus, the matrix of sample variances and covariances
is S/(n – k). In this case

 (7.24)

x =


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and

. (7.25)

Note that 

. (7.26)                           

The dispersion matrix is

. (7.27)

For more information on the multivariate t-distribution, see DeGroot12

(Chap. 5) and Box and Tiao13 (Chap. 8). 
The vague prior density for the multivariate normal is

. 

Of particular importance is the information on the marginal distribution
of the components of θ. The marginal distribution on, say, the first com-
ponent is

 (7.28)

where T11 is scalar and consists of the element in the first row and first column
of the precision matrix T, Equation (7.23), T12 is the row consisting of the
second and third elements of the first row of T, T21 is the transpose of T21,
and T22 is the 2 × 2 matrix consisting of the lower righthand corner of T.

Having determined the posterior distribution of θ, how is the information
from the three readers averaged to give an overall estimate of lesion size?
One approach is to use a weighted average where each reader’s mean is
weighted by the inverse of the variance of the posterior distribution for the
reader’s mean. For example, the posterior mean of the first reader is 37.21 cm
and is weighted by the inverse of the posterior distribution of θ1. Of course,
from Equation (7.23) and Equation (7.28), the precision of θ1 is easily deter-
mined. The weighted mean is

(7.29)

where . The mean and variance of the
posterior distribution of θi is and , respectively.
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7.5 Exercises

7.1 Perform the “classical” estimation of Kappa and give a 95% confi-
dence interval for Kappa; compare to the Bayesian analysis reported
in Table 7.3.

7.2 Discuss the advantages and disadvantages of G and J as measures
of agreement and compare them to the Kappa parameter, and find
the posterior distribution of G and J based on the information in
Table 7.2.

7.3 Test the sharp null hypothesis H vs. the alternative A in Section 7.2.3
using the formal test procedure outlined in Chapter 4, Section 4.5.3.3,
for comparing two binomial populations. Assume the prior proba-
bility of the null hypothesis is .5 and that, under the alternative
hypothesis, the prior distribution of the two binomial parameters
are independent and uniform over (0,1).

7.4 Perform the “classical” McNemar test from the information in
Table 7.2 and compare to the Bayesian test in the previous exercise. 

7.5 Compute Pr(Kappa MRI > Kappa Ultra/data). Use the information
in Table 7.4A and Table 7.4B. Does this probability complement the
conclusions in Table 7.5?

7.6 From Table 7.7, perform a weighted Kappa analysis, but use the
inverse of the posterior variance as the stratum weight and compare
your Kappa with the weighted Kappa in the table. Which one has
the smaller posterior variance? Test the null hypothesis that your
weighted Kappa is less than .36 vs. the alternative that is at least .36.
State and justify your conclusions.

7.7 In Table 7.6, quadruple the sample sizes and assess the effect on the
standard deviation of the weighted Kappa, using the strata sample
sizes as weights. Is the standard deviation of the “new” weighted
Kappa smaller than that of the weighted Kappa in the table?  

7.8 Estimate the G-coefficient for partial agreement of at least two stu-
dents.  Use Minitab and perform the posterior analysis, similar to
that given in Table 7.11. 

7.9 (a) Use the above program to find an average value of agreement
between MRI and ultrasound. (b) Also stratify on x to give the 6
strata of Table 7.12 and estimate the G-coefficient in each stratum,
then form an overall weighted G-coefficient. Compare the weighted
G-coefficient with the average value of agreement in part (a). 

7.10 Derive a formula for the inter-observer variability (Equation (7.21))
in terms of a ratio of sum of variance components similar to
Equation (7.20). 
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7.11 Based on the program of Section 7.3.2.1, write a similar program to
find the posterior distribution for the intra- and inter-observer vari-
ability. The dataset is given herein.

y is a matrix with dimension 22 × 3 × 2, indexed as i = 1,2,…,22, j =
1,2,3, and k = 1,2, for the 22 lesions, 3 radiologists, and 2 replications.

7.12 Define a random model that includes patients, readers, reps, and
modalities as the main factors and derive a formula similar to
Equation (7.20) for the parameter that measures the intra-observer
variation. 

7.13 The unweighted Kappa parameter (Equation (7.6)) is appropriate
when the diagnostic categories are nominal; that is, the categories
are not ordinal. Are the MS categories ordinal? For ordinal scores,
Cohen14 introduced the weighted Kappa parameter

(7.7)

Estimate the agreement (Equation (7.7)) between the two radiolo-
gists of Table 7.7 using assigned weights , and
compare to the estimated unweighted Kappa of Table 7.7. Which is
the more reliable estimator?

list( y = structure(.Data = c(
26.00, 38.00, 22.00, 48.00, 10.00, NA,

NA, NA, 25.00, 26.00, 25.00, 25.00,
NA, NA, NA, NA, 10.00, 12.00,
NA, 20.00, 17.00, 17.00, 19.00, 18.00,
20.00, 21.00, 17.00, 14.00,  NA,  NA,
30.00, 31.00, 28.00, 28.00,  NA, 30.00,
39.00, 38.00, 44.00, 43.00, 40.00, 39.00,
33.00, 33.00, 53.00, 39.00, 40.00, 35.00,
46.00, 44.00, 47.00, 54.00, 27.00, 27.00,
26.00, 27.00, 25.00, NA, 26.00, 27.00,
50.00, 48.00, 51.00, 45.00, 49.00, 48.00,
44.00, 43.00, 48.00, 41.00, 47.00, 47.00,
77.00, 79.00, 75.00, 70.00, 74.00, 73.00,

116.00, 101.00, 44.00, 43.00, 104.00, 88.00,
11.00, NA, 8.00,  NA, 12.00,  NA,
10.00, 11.00, 12.00, 14.00, 9.00, 9.00,
12.00, 10.00, 12.00, 12.00, 15.00, 13.00,
61.00, 65.00, 56.00, 65.00, 53.00, 61.00,
21.00, 21.00, 21.00, 30.00, 27.00, 22.00,
13.00, 14.00, 13.00, 15.00, 15.00, 15.00,
36.00, NA, NA, NA, NA, NA,
36.00, 35.00, 37.00, 37.00, 36.00, 33.00), .Dim = c(22, 3, 2)))
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7.14 Find the posterior distribution of the G-coefficient when the lesion
size is x = 15 mm, and estimate the agreement between MRI and
ultrasound. See Equation (7.15).

7.15 Refer to the example given in Section 7.4, using the Kundra11data.
Compute the weighted average of the lesion size by weighting the
mean of the posterior distribution of a reader’s mean by the inverse
of the variance of the posterior distribution of the reader’s mean.
That is, weight the posterior mean of θi by the inverse of the variance
of the posterior distribution of θi. See Equation (7.29).

7.16 Refer to Section 7.4. Assuming that the mean vector and precision
matrix of the multivariate normal are unknown, what is the conju-
gate prior density of θ and T?  

7.17 Gayed15 performed a cardiac perfusion study using MRI to mea-
sure cardiac function in cancer patients. One measure of cardiac
function is the amount of ischemia in the cardiac wall. Two deter-
minations of ischemia were made: one by multiple readers and the
other by an independent blinded radiologist. (See Table 7.17.)
(a) Assuming a uniform prior and using formula (7.6), find the

posterior distribution of Kappa. 
(b) Find the posterior distribution of the G-coefficient as defined for

multiple categories. 
(c) What is the usual Kappa value and how does it compare to the

Bayesian estimates of the Kappa parameter?

18. Gayed also studied the agreement between multiple readers and one
blinded reader for scoring wall motion of the heart. The ratings
for wall motion are normal, moderate, mild, and marked and are
given in Table 7.18.

(a) Assuming a uniform prior distribution, find the usual Kappa
value for agreement in wall motion scores. 

(b) What is the posterior distribution of the Kappa parameter and
the G-coefficient?

(c) Which of the two is preferred?

TABLE 7.17

MRI Results: Problem 17 

Blinded Reader 
Ischemia Scarring Normal Total

Multiple Readers

Ischemia 12 0 1 13
Scarring 0 3 2 5
Normal 1 0 33 34
Total 13 3 36 52
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TABLE 7.18

 MRI Agreement: Problem 18 

Blinded Reader
Normal Moderate Mild Marked Total

Multiple Readers

Normal 38 0 4 0 42
Moderate 0 1 0 0 1
Mild 3 0 3 0 6
Marked 0 0 0 2 2
Total 41 1 7 2 51
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Chapter 8

 

Diagnostic Imaging and Clinical Trials

 

8.1 Introduction

 

This chapter describes the interplay between diagnostic procedures and
therapeutic clinical trials. Indeed, diagnostic imaging is a crucial element
in the design and conduct of most clinical trials in oncology. For example,
diagnostic imaging is present in Phase I trials for safety studies of new
therapies, be they chemotherapy, radiotherapy, or biological. In order to
monitor the safety and efficacy endpoints of such trials, imaging procedures
determine the advance and extent of the disease and produce the primary
and secondary endpoints. The chapter introduces the three phases of clinical
trials and how imaging plays a role in the conduct of each trial. This is
followed by a description of the protocol for clinical trials in oncology and
a brief description of the protocol review process at the MD Anderson
Cancer Center (MDACC). The RECIST (response evaluation criteria in solid
tumors) criteria for response to therapy are introduced. This is a set of
guidelines for the radiologists in their determination of the patient’s
response to therapy and, hence, on the conclusions for the success or failure
of the trial. 

Bayesian sequential stopping rules for the design and conduct of clinical
trials are outlined and developed in the later parts of the chapter, then the
software developed at MDACC for the design of such trials is described.
The focus will be on Bayesian stopping rules for safety and efficacy in Phase I,
II, and III trials.

Lastly, several examples are presented. The first example is a Phase I trial
in renal cell carcinoma that illustrates a Bayesian dose finding based on
logistic regression, while the second is a hypothetical Phase II study devel-
oped by the author, but based on an actual study for inter-observer agree-
ment in lung cancer. The third illustrates a statistical stopping rule for a
Phase II trial in melanoma. For the three examples, the role of diagnostic
imaging is emphasized.
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8.2 Clinical Trials

 

8.2.1 Introduction

 

Thall,

 

1

 

 who emphasizes the role that ethics and science play in the design
and analysis of clinical trials, best explained the Bayesian methods in these
trials. He stresses the complexity of such studies because they involve deci-
sions for selecting therapies, the choice of dose levels of a particular regimen,
and, above all, the concern for the patient’s safety. Primarily for the concern
for patient safety, clinical trials should be conducted in a sequential fashion,
which calls for interim monitoring of patient outcomes. 

This section will review the three phases of a clinical trial and focus on the
role of diagnostic imaging in such studies. Later, Bayesian sequential stopping
rules for interim analysis of clinical trials will be explained in more detail.

 

8.2.2 Phase I Designs

 

Phase I trials evaluate how a treatment is to be administered and how that
treatment affects the human body. First, consider a Phase I study that eval-
uates safety among a set of doses of a new treatment. The study will be
designed to determine the maximum tolerable dose (MTD), which is the
dose whereby, at higher doses, the safety of the patient would be compro-
mised. One is assuming that as the dose level increases, the probability of
toxicity increases and also the probability of efficacy. The main endpoint in
a Phase I study is various measures of toxicity experienced by the patient
as a result of the treatment, while the secondary endpoint is various measures
of efficacy. To define the toxicity endpoint, the investigator characterizes the
dose limiting toxicity (DLT), which is a set of toxicities that are severe enough
to prevent giving more of the treatment at higher doses. The investigator
bases the DLT on knowledge of the disease, treatment, and the patients who
are eligible for the trial. Investigators are guided by the National Cancer
Institute (NCI) list of common toxicities or in some other manner that is
appropriate for the particular study. 

Prior to implementing a Phase I trial, the investigator must have decided
upon the treatment route of administration and schedule. Also required for
estimating the MTD are the patient population (defined via the eligibility
and ineligibility criteria), a starting dose and a set of dose levels to test, the
DLT, and the dose escalation. The dose escalation includes decisions of
selecting the MTD among a set of doses. The chosen starting dose is based
on other similar Phase I studies and/or information from animal experi-
ments. Once the investigator has chosen the dose levels to be tested, the dose
escalation can be described.

There are many dose-escalations rules, including the commonly used 3 

 

+

 

 3
design and the continual reassessment method (CRM). Since the early days
of the NCI, investigators have used traditional escalating rules, such as the
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3 

 

+

 

 3 design, for determining the MTD in oncology trials, while the CRM
(see Crowley

 

2

 

) is a newer development that is becoming more popular. The
3 

 

+

 

 3 design is based on cohorts of size 3 or 6, and there are several versions.
What is the role of diagnostic imaging in Phase I clinical trials? The

assessment of safety can include imaging of damage due to treatment and
can also be an integral part of the assessment of efficacy. If a solid tumor is
involved, imaging will measure the growth of that tumor during the course
of the trial and this information will then be used in planning the Phase II
trial and can serve as a source of prior information for a Bayesian sequential
design. Since therapeutic trials most often use patients with advanced dis-
ease, there are many tumors per patient that will be imaged for change from
start of treatment.

 

8.2.3 Phase II Trials

 

Once a particular treatment or intervention has been studied with a Phase I
trial and the MTD has been selected and one is satisfied that the treatment
will be safe, studies of the treatment may progress to Phase II trials to
determine if the treatment holds sufficient promise. Typically, the target
population is patients with a specific disease, disease site, histology, or stage,
or patients undergoing some surgical or other procedure. Often the treatment
dose is the MTD determined from previous Phase I trials. Although limited
dose finding is sometimes allowed to accommodate different patient popu-
lations, the primary endpoints are measures of efficacy, while safety would
be secondary.

It is in the Phase II trials that diagnostic imaging plays a crucial role. Often
the primary endpoint is the fraction of patients who experience a response to
therapy, and often the response is based on the change in tumor size as
measured from baseline to some future point at the end of the treatment cycle.
The response categories can be classified as a complete response, a partial
response, or no response depending on the percent relative change from
baseline. The WHO (World Health Organization) and RECIST criteria, as
described by Padhani and Ollivier,

 

3

 

 define the actual response categories that
must be carefully specified in the protocol. It is important to understand the
uncertainty introduced into such trials by the disagreement between the radi-
ologists, who are responsible for assigning the response to therapy to each
patient. This uncertainty is often unknown and unaccounted for by others,
including statisticians, who are designing and analyzing trial information.

The efficacy information from a Phase I trial also is important and largely
determines the type of Phase II trial to be designed. If little is known about
the efficacy, a Phase IIa trial can be performed with the goal of determining
a certain minimum efficacy. On the other hand, if the efficacy information
from Phase I trials indicates that the intervention does indeed have some
benefit, a Phase IIb trial may be implemented to determine if the treatment
has sufficient benefit compared to some standard treatment, either historical
(from past patient data) or from ongoing trials.
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Reviewed below is how prior information from the relevant Phase I trials
will be employed in the design of Bayesian sequential stopping rules and
sample size information of the planning of the Phase II trial.

Designs for Phase IIa trials include Gehan’s two-stage and Simon’s

 

4

 

 two-
stage. Also relevant are multistage designs that are explained in Crowley.

 

2

 

Simon’s two-stage is discussed here because it is the most popular for a
Phase IIa trial; however, Bayesian alternatives are becoming more widely
used because they are more flexible and can easily incorporate information
from prior related Phase I and II trials.

Phase II designs are based on statistical testing principals. Suppose 

 

p

 

 is
the probability of a treatment response, then one tests the null hypothesis
vs. the alternative hypothesis:

 

H

 

: 

 

p

 

 < 

 

p

 

0

 

 (e.g., 

 

=

 

 .05) vs.

 

A

 

: 

 

p 

 

≥

 

 

 

p

 

1

 

(e.g., 

 

=

 

 .25).

The null hypothesis states that the proportion of responses is less than or
equal to some specified proportion 

 

p

 

0

 

 that would not exhibit sufficient interest
for further development. The alternative hypothesis states that the proportion
of responses is greater than or equal to a proportion 

 

p

 

1

 

 that the investigator
considers clinically meaningful. If the alternative hypothesis is true, then fur-
ther testing could be deemed reasonable. Of course, this decision is based on
other considerations as well, such as any new information on safety. 

The values for 

 

p

 

0

 

 and 

 

p

 

1

 

 are specified in advance and depend on the results
of previous trials. Typical values of 

 

p

 

0

 

 are from .1 to .4, and typical values
for 

 

p

 

1

 

 are from 

 

p

 

0

 

 

 

+

 

 .15 to 

 

p

 

0

 

 

 

+

 

 .2. To use a Simon two-stage design, investi-
gators must also specify the probability of a Type I error 

 

α

 

, the probability
of rejecting the null hypothesis when it is true (declaring that the new
treatment has an effect above 

 

p

 

0

 

 when it actually does not), and 

 

β

 

, the
probability of accepting the null hypothesis when it is false (declaring that
the new treatment has no effect above 

 

p

 

0

 

 when it actually does). Note that
(1 – 

 

β

 

) is the power of the test.
Given these values, the Simon method will give the maximum sample size

 

n

 

, the stage 1 sample size 

 

n

 

1

 

, and the rejection rule at each stage. DeVita et al.

 

5

 

provide tables for Simon’s two-stage design. For example, when alpha 

 

=

 

 .05,
beta 

 

=

 

 .20, 

 

p

 

0

 

 

 

=

 

 .05, and 

 

p

 

1

 

=

 

 .25, then 

 

n

 

1

 

 

 

=

 

 9, 

 

n

 

 

 

=

 

 17, and the trial would be
stopped early if there were 0 out of 9 responses. If there were 1 or more
responses with 9 patients, the trial is continued, and if there are 2 or fewer
responses among 17 patients, the null hypothesis is accepted, that is, the
intervention or treatment would not be of sufficient interest for further testing.
With this design, the trial is stopped early for lack of efficacy. The Simon design
can be used to justify the sample size and for stopping early. Stopping early
protects future patients from receiving inefficacious treatments.

There are some Bayesian designs that allow more flexibility. For example,
suppose the maximum sample size of 

 

N

 

 patients are accrued in 

 

k

 

 cohorts
of size 

 

n

 

 and that, after observing the response of patients at the end of
each cohort, the investigator computes the probability that the observed
proportion of responses 

 

p

 

 is greater than 

 

p

 

1

 

. If this probability is small, say,
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.10 or .20, the trial is stopped for lack of efficacy. This is very much like
the Simon design; however, a decision on lack of efficacy can be made after
each cohort of patients. See Thall et al.

 

6,7

 

 for additional information on
Phase II trials that use Bayesian stopping rules.

If the intervention under investigation has shown some activity, a Phase IIb
trial can be used to determine the extent of efficacy. This type of trial is
usually comparative since it has demonstrated prior efficacy; the study inter-
vention will be compared to some historical control or to some standard
current treatment via a randomized design. The advantage of using historical
controls over concurrent controls is the smaller number of patients required,
but the disadvantages of historical controls are that the patient populations
may not be comparable to those used in the current clinical trial.

 

8.2.4 Phase III Trials

 

We are now at the point where an intervention (drug or procedure) has been
studied in a series of Phase I and Phase II trials and has demonstrated
sufficient promise to be compared to the standard clinical treatment in a
large randomized study. 

Phase III trials are confirmatory where the study procedure is to be
compared to the standard therapy with the goal of providing evidence that
the study drug will provide substantial improvement in survival time or
in disease free survival or some other time-to-event endpoint, such as time
to response or time to hospitalization, etc. They should be designed to have
a sufficient sample size to detect clinically relevant differences and are
usually done in a multicenter setting. Provisions are made for interim looks
by an independent Data Safety Monitoring Board where the trial may be
stopped early for reasons of safety and/or efficacy. The response to therapy
may serve as a secondary endpoint in Phase III trails, thus, diagnostic
imaging plays a crucial role in the conduct of all clinical trials.

 

8.3 Protocol

 

What is a protocol? It states in detail how the medical study is to be organized
and executed. There are generally two types: those submitted by a pharma-
ceutical or medical device company and those that are initiated by a principal
investigator (PI) at the institution. The protocol should include the following
components:

1. An explanation of the scientific basis for the study.
2. A summary of the results of all previous related studies and exper-

iments of the study intervention.
3. The patient eligibility and ineligibility criteria.
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4. A list of the major and minor endpoints, including their definitions
and how and when they will be measured.

5. The definitions of evaluable and intent-to-treat populations.
6. The estimated patient accrual rates by site.
7. A statistical section that outlines a detailed power analysis for sample

size, a description of rules for stopping early, methods for randomizing
patients, and the proposed statistical analysis.

8. Nonstatistical stopping rules for safety considerations. 

Additional documentation that must accompany the protocol is a list of all
National Institutes of Health (NIH) toxicities and the patient-informed con-
sent form. For protocols initiated by private companies, a biostatistician is
assigned to review it, but for protocols initiated at MDACC, the study has
one biostatistician assigned as a collaborator (the one who assisted the PI in
the statistical design) and a different statistician who reviews it and presents
it to the department for approval.

Every protocol at MDACC is reviewed in three stages: first by the Depart-
ment of Biostatistics and Applied Mathematics, next by the Clinical Research
Committee (CRC), and lastly by the Institutional Review Board (IRB). During
the first review, a biostatistician presents the protocol in written and oral
form to the department, and there is a set procedure for this presentation.
The presentation is concluded with a list of major and minor concerns regard-
ing the revision of the protocol. Then, the department discusses the above-
mentioned recommended revisions and votes to approve a directive to be
sent to the PI. If need be, the PI then revises the protocol accordingly, often
with the help of the biostatistical collaborator and/or reviewer.

 

8.4 Guidelines for Tumor Response 

 

The RECIST criteria provide the radiologist with guidelines for determining
the change in tumor size in such a way that the response to therapy can be
judged and the success or failure of the trial evaluated. The following outline
will be useful for understanding the guidelines: eligibility, methods of mea-
surement, baseline identification of target and nontarget lesions, response
criteria, evaluation of best overall response, confirmation and duration of
response, and reporting of results. 

Only patients with measurable lesions are eligible, namely those that can
be accurately measured with computed tomography (CT) or magnetic res-
onance imaging (MRI). Both targeted and nontarget lesions are to be iden-
tified. A maximum of 10 lesions representative of all involved organs are
identified as target lesions, which must be accurately and repeatedly mea-
sured by the longest diameter of the lesion. The primary endpoint is the sum
of the longest diameters (SL) of the target lesions. All other lesions are
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identified as nontarget lesions. The RECIST criteria must take into account
many tumors per patient because the patients in these trials usually have
advanced disease, which has metastasized. 

Based on the SL of the target lesions, each patient is classified into the
following categories: 

• Complete response (CR) where all target lesions disappear.
• Partial response (PR) where there is at least a 30% decrease in the

SL of all target lesions using the baseline SL as a reference.
• Progressive disease (PD) where there is at least a 20% increase in the

SL, relative to the smallest value of SL recorded since the treatment
started.

• Stable disease (SD) where there is neither sufficient shrinkage to
qualify as PR or sufficient increase to quality as PD. 

There is also an evaluation of the nontarget lesions where the patient is
classified as: complete response, incomplete response/stable disease, and
progressive disease. The patient is then given an overall best response,
based on the response of the target and nontarget lesions, and, finally, the
patient is put into one of four overall categories: CR, PR, SD, and PD. (See
Therasse et al.

 

8

 

 for more detailed information on the RECIST guidelines
and Padhani and Ollivier

 

3

 

 for implications of those guidelines for diagnos-
tic radiologists.) 

The guidelines are only that and do not include the procedures of just how
they are to be implemented. For example, there is no mention of the number
of readers to be included or a procedure for the resolution of disagreement
between radiologists in their determination of the patient’s response to ther-
apy. All of these elements create an element of uncertainty, which is unknown
by others involved in the design and conduct of a clinical trail. This creates
uncertainty in the classification of a patient’s response to therapy and, con-
sequently, is not accounted for by the statisticians in their design and analysis
of Phase II clinical trials.

The study by Thiesse et al.

 

9

 

 gives one some idea of the uncertainty in the
process of assigning a patient’s response to treatment. The study evaluated
the impact of a review committee on the overall response status of a patient
for a large multicenter trial with 489 patients for renal cancer given cytokine
therapy (see Negrier et al.

 

10

 

). There were five response categories: CR, PR,
MR, SD, and PD where MR stands for marginal response. The review com-
mittee completed a blinded peer review of all responders and all litigious
cases. The results (Table 8.1) for 126 reviewed files are given in Thiesse et al. 

Using the generalization of the G-coefficient (Chapter 7) Equation(7.3), its
posterior distribution is easily found with Minitab® and provides a posterior
mean of .019, a median of .018, and a standard deviation of .089. This implies
that the agreement between the review committee and the original readers
was very poor. Indeed, the Thiesse study itself gives .32 as the Kappa
coefficient, which also confirms poor agreement. This indeed shows that
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disagreement among radiologists is quite common in the conduct of a clinical
trial and, in particular, in the assignment of a patient’s response to therapy. 

Many studies have demonstrated such lack of agreement between radi-
ologists. For example, a recent investigation of Erasmus et al.

 

11

 

 shows the
lack of consistency in measuring tumor size and poor intra- and inter-
observer agreement. In fact, for some lesions, there was as much as a 50%
difference in measuring the lesion size for two looks at the same image by
the same reader. 

 

8.5 Bayesian Sequential Stopping Rules

 

Due to the complexity of clinical trials and the incorporation of prior infor-
mation from other previous studies, the Bayesian approach to interim analysis
is quite appropriate. What is to be presented here is for Phase II trials where
response to therapy is the primary endpoint, while toxicity is a secondary
endpoint. Prior information on response and toxicity will be taken from
previous Phase I and II trials that are relevant to the “new” therapy. The
response to therapy is the main endpoint generated by radiologists using
the RECIST criteria. The software to implement the design of the Bayesian
stopping rule will be discussed and demonstrated in the next section.

Denote the following four probabilities of mutually exclusive and exhaus-
tive events for a Phase II trial of an experimental therapy as: 
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 probability
of response and toxicity, 
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 response and no toxicity, 
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 no response and
toxicity, and 
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 no response and no toxicity. Suppose the corresponding
probabilities of a previous standard relevant study are 
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respectively. Thus, the probability of a response with the experimental ther-
apy is
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have Dirichlet distributions, thus, so do (
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TABLE 8.1

 

Agreement between the Review Committee and the 

 

Original Report

 

Response by Review Committee
CR PR MR SD PD Total

 

Original Report 

 

CR 14 2 1 0 2 19
PR 4 38 4 6 10 62
MR 0 7 9 3 5 20
SD 0 0 1 4 15 20
PD 0 1 0 3 1 5
Total 18 48 11 16 33 126
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Now suppose, based on historical information, that among 

 

n

 

 patients on
the standard therapy, there are 

 

a

 

 responses, and among 

 

m

 

 patients, there are

 

b

 

 toxicities, while for the “new” experimental therapy,

 

 a priori

 

, there will be

 

c responses and d toxicities. 
Therefore, apriori, and . Frequently, the

prior information about experimental therapy is taken to be vague or non-
informative, and one could let 

and .

The alternative hypothesis is

A: or vs. the null H: and .

The rule to stop the trial after observing the number of responses and
toxicities is when

or  (8.1) 

where η and ε are usually selected “large,” say, .90 or .95. 
Thus, the trial is stopped if the posterior probability is high that the number

of responses with the experimental therapy is less than that of the standard
or if the posterior probability is large when the number of toxicities with the
experimental therapy exceeds that of the standard. Since and are cor-
related, the events and are not independent! 

Diagnostic imaging plays an important role for this type of trial. It is impor-
tant to know how the trial parameters are based on prior information. Such
information about efficacy, most likely, is the result of imaging the tumor size
in Phase I trials. For the trial at hand, the number of responses and number
of toxicities are based on imaging the size of the primary tumor and tumors
at the sites of metastases. Note that (the probability of a response) is based
on the RECIST criteria for categorizing patients into the various responses
categories: CR, PR, SD, and PD. The protocol must specify the definition of
response that is used in the Bayesian stopping rule. Usually, response means
the event CR or PR, which, as has been explained above, depends on the
change in tumor size from some reference time, defined in the protocol. The
protocol will not mention the number of readers or how disagreements
between readers are resolved. Of course, such information is not known to
the statisticians, who assist in the analysis of the trial information.

The following example is taken from Cook.12 Suppose a previous related
trial had 200 patients, among which a = 60 responded and 140 did not.
Among 160 of these patients, b = 40 experienced toxicities, but 120 did not
experience any serious side effects. Let the prior distribution of φr ~ beta

and , while the prior distributions for the corre-
sponding parameters of the melanoma group for response and toxicity are
assumed to be uniform. 

φr beta a n a~ ( , )− φt beta b m b~ ( , )−

θr beta~ ( , )1 1 θt beta~ ( , )1 1

θ φr r< θ φt t> θ φr r≥ θ φt t≤

Pr[ / ]θ φ ηr r data< > Pr[ / ]θ φ εt t data> >

φr φt

θ φr r< θ φt t>

θr

( , )60 140 φt beta~ ( , )40 120
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The trial is stopped when the null hypothesis is rejected, namely when 

or (8.2)

The stopping rule for response is shown in Table 8.2
Thus, if there are no responses among the first six patients, the trial is

stopped. One must know the response among at least six patients before
the stopping rule for response takes effect. On the other hand, the stopping
rule for toxicity is listed in Table 8.3. If the first three patients experience
toxicity, the trial is stopped. What are the frequency properties of this test?
Suppose the null hypothesis is “true” and that, hypothetically, θr = .4, θr = .2,

, and = .25, then using the above stopping rule, the probability of
stopping the trial with various sample sizes is given in Table 8.4.

The probability of stopping is equivalent to the probability of a type I error.
With only 3 patients, the probability is .008 of stopping the trial and, as the
sample size increases, the probability of stopping slowly increases to
28 patients, then the probability has to increase to 1 at the maximum sample
size of 30. Also for this scenario, the average number of patients is 26.7,
experiencing an average of 5.34 toxicities and an average of 1.68 responses.
The average number of patients treated is relatively large because this sce-
nario occurs when the null hypothesis is true. 

Now, suppose the alternative hypothesis is “true” with , θt = .35, ,
and = .25, then the probability of stopping is equivalent to the “power” of the
test and is given in Table 8.5.

With this particular scenario of the alternative hypothesis, the probability
of stopping or “power” gradually increases from .0429 with 3 patients to 1
with 30. The average number of responses is 2.8 with an average of 4.92
toxicities among an average of 14 treated patients. The probability of stop-
ping or power is approximately .8 with 29 patients.

TABLE 8.2 

Stopping Rule for Response

Response Boundary

0 6
1 12
2 17
3 22
4 27
5 30

Pr[ / ] .θ φr r data< > 95

Pr[ / ] . .θ φt t data> > 95

φr = .3 φt

θr = .2 φr = .3
φt
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TABLE 8.3

Stopping Rule for Toxicity

Toxicity Boundary

3 3
3 4
4 6
5 8
6 10
6 11
7 13
7 14
8 16
8 17
9 19

10 21
10 22
11 24
11 25
12 27
12 28
13 30

TABLE 8.4

Probability of Stopping: A Null 
Scenario θr = .4, θt = .2, φr = .3, and φt= .25

n 
Probability 
of Stopping

3 .0080
4 .0272
5 .1037
6 .1095
8 .1120
9 .1128

11 .1198
12 .1268
13 .1277
14 .1298
16 .1305
17 .1355
19 .1361
20 .1375
22 .1395
23 .1406
25 .1409
26 .1430
28 .1433
29 .439
30 1.000
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Thus, for any scenario of the probabilities for response and toxicity of the
experimental and standard therapies, the probability of stopping the trial
can be computed. This allows one to estimate the sampling properties of the
Bayesian test for stopping the trial. 

8.6 Software for Clinical Trials

The Department of Biostatistics and Applied Mathematics at MDACC is
developing many programs for the analysis and design of clinical and sci-
entific studies in medicine and biology. These can be accessed at http://
Biostatistics/mdanderson.org/SoftwareDownload/.

This library contains dozens of programs and are easily accessible to the
student. Only two of the most relevant for clinical trials will be described.
The first is appropriate for Phase I dose-finding trials, while the second is
used for Phase II trials, when the major endpoints are for response and
toxicity. The latter program is called Multc Lean and the former CRM
Simulator. 

TABLE 8.5

Probability of Stopping: An Alternative Scenario θr = .2, 
θt = .35, φr = .3, and φt = .25 

n
Probability 
of Stopping

3 .0429
4 .1265
5 .4235
6 .4517
8 .4680
9 .4980

11 .5132
12 .5798
13 .5881
14 .6044
16 .6125
17 .6713
19 .6780
20 .6902
22 .7261
23 .7361
25 .7409
26 .7763
28 .7802
29 .7874
30 1.000
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8.6.1 CRM Simulator for Phase I Trials

Phase I trials are the beginning for the study of a new agent or therapy, and
the first concern is for safety of the patient. The study is designed to deter-
mine the MTD, which is the dose whereby, at higher doses, the safety of the
patient would be compromised. We are assuming that, as the dose level
increases, the probability of toxicity increases and the probability of efficacy
also increases. The main endpoint in a Phase I study is various measures of
toxicity experienced by the patient as a result of the treatment, while the
secondary endpoint is various measures of efficacy. To define the toxicity
endpoint, the investigator specifies the DLT, which is a set of toxicities that
are severe enough to prevent giving more of the treatment at higher doses.
The investigator bases the DLT on knowledge of the disease, treatment, and
the patients who are eligible for the trial. Investigators are guided by the
NCI’s list of toxicities or in some other manner that is appropriate for the
particular study. 

Also required for estimating the MTD is the patient population defined
via the eligibility and ineligibility criteria, a starting dose and a set of dose
levels to test, the DLT, and the dose escalation. The dose escalation plan
includes decisions on how to select the MTD among a set of doses. The
chosen starting dose is based on other similar Phase I studies and/or infor-
mation from animal experiments. Once the investigator has chosen the dose
levels to be tested, the dose escalation can be described.

The CRM simulator uses only one endpoint, namely toxicity, and is easily
executed. The student should refer to the CRM Simulator Guide and Methods
of Description. Both technical reports can be accessed from the above Internet
address.

8.6.2 Multc Lean for Phase II Trials

The example of a Phase II trial in Section 8.5 was implemented using Multc
Lean. There are two major endpoints: one for the number of responses and
one for the number of toxicities among the maximum number of patients to
be accrued for the trial. The methods is best explained by the “Multc Lean
Statistical Tutorial” by Cook,12 which together with the program, can be
downloaded from the above address. The user must supply the maximum
number of patients to be accrued, and information about prior related stud-
ies. Prior therapy is referred to as the standard therapy, while the therapy
to be tested is referred to as the experimental therapy. Prior information
about the new treatment is usually given as noninformative or vague, while
that for the standard is more informative and usually provided with the
number of responses and the number of toxicities experienced by a given
number of patients in earlier Phase I studies.

Multc Lean consists of four parts: model input, stopping criteria, scenario
input, and scenario output. The model input statement specifies the prior
information for the standard and experimental treatments. With regard to
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the stopping criteria, recall from Section 8.5 that

or (8.3)

The first probability is for stopping the trial when the probability of a
response for the experimental therapy is less than that for the standard
therapy. If this probability exceeds 95%, the trial is stopped for lack of
efficacy, relative to the standard treatment. On the other hand, the trial is
stopped if the probability of toxicity with the experimental treatment exceeds
that of the standard with a high probability, in this case .95. All this infor-
mation is specified in the stopping criteria section of Multc Lean. As a result
of this information, the program provides stopping boundaries for response
(Table 8.2) and toxicity (Table 8.3). 

To know the frequency properties of the Bayesian stopping rule, Multc
Lean computes the probability of stopping the trial for all sample sizes, given
a particular scenario of values for  and φ = (φ1,φ2,φ3 , and,
therefore, for and . The stopping criteria (Equation (8.2)) are
given in terms of the response and toxicity parameters for the experimental

and standard (φr ,φt) therapies, which must be kept in mind when
running a particular scenario. For example, θr = .4, θt = .2, φr = .3, and φt = .25
was used when assuming the null hypothesis was true, while ,

, , and = .25 was employed for an alternative hypothesis
scenario. The program computes the probability of stopping, the average
number of patients treated, the number of responses to be expected, and the
average number of toxicities to be experienced by this average number of
patients. (See Table 8.4 and Table 8.5 for the outcome of the two scenarios
for the null and alternative hypotheses of this Phase II study.) 

8.7 Examples 

8.7.1 Phase I Trial for Renal Cell Carcinoma

Thall and Lee13 describe three designs for Phase I trials. The 3 + 3, CRM, and
Bayesian Logistic Regression are compared with regard to the percentage of
times the correct dose is selected, and they use prior information to design
a Phase I trial for renal cell carcinoma (RCC). Patients were previously treated
with interferon and are to be treated with a fixed dose of 5-Fluorouracil
(5-FU) and six dose levels of gemcitabine (GEM). These designs were briefly
mentioned in Section 8.2.2, but only the latter design will be described and
illustrated with WinBUGS.

Pr[ / ] .θ φr r data< > 95

Pr[ / ] . .θ φt t data> > 95

θ θ θ θ θ= ( , , , )1 2 3 4 φ4)
( , )θ θr t ( , )φ φr t

( , )θ θr t

θr = .2
θt = .35 φr = .3 φt

C7672_C008.fm  Page 154  Wednesday, May 16, 2007  10:42 AM

© 2007 by Taylor & Francis Group, LLC



Diagnostic Imaging and Clinical Trials 155

The logistic model for this design is 

where there are d dose levels , θi is the probability of a dose-
limiting toxicity at dose xi, and α and β are unknown parameters. Recall that
the objective of a Phase I trial is to estimate the MTD and to do this the
investigator must specify the number of dose levels d, the dose level xi, and
a target toxicity level T. The MTD is that dose where the probability of toxicity
is as close as possible to T. That is, doses greater than the MTD have prob-
abilities of toxicity that are as least as large as T, while for doses that are less
than the MTD, the corresponding probabilities of a dose-limiting toxicity are
less than or equal to T. 

Also to be specified is a rule for stopping the trial early. This can be
problematic and there is no unique way to do it. One can choose n patients
and test all n to estimate the MTD, or one can have a rule that stops the trial
early if a given number of patients have been treated at the next recom-
mended dose. Usually patients enter the trial in cohorts of size 3 or 6 and,
after each cohort is treated, the next recommended dose level is selected.

The logit model assumes that as the dose level increases, so does the
probability of a toxicity. However, it is usually true that as the dose level
increases so does the probability of a favorable response, which creates
somewhat of a dilemma, in that the two events, “toxicity” and “response,”
are competing with one another.

With the Bayesian approach, a prior probability for the parameters α and β
must be specified, and this is usually done by selecting two probabilities of
toxicity corresponding to two of the d dose levels, and “solving” the resulting
two equations for α  and β. This information is given by the study investigator
and based on previous related human and animal studies. This way of
estimating the MTD is taken from Thall and Lee (Table 1) and presented as
Table 8.6. They assume the target toxicity level is T = .25 and do not use an
early stopping rule, but use the information from all 36 patients. 

The prior distribution for α and β are chosen so the probabilities of toxicity
at doses 200 and 500 are .25 and .75, respectively, giving α = –1.1133 and
β = .0031808. This begins the process of selecting the MTD. With these initial
values for the parameters as prior information, three patients enter the trial
resulting in 0 toxicities, then the logistic model estimates the parameters and
the six probabilities of toxicity corresponding to the six dose levels. The dose
level 300 is the dose that has a probability of toxicity of .261, which is closest
to the target toxicity level T = .25, thus 300 is selected as the next recom-
mended dose. The process is repeated for the remaining 33 patients in cohorts
of size 3. At the twelfth cohort, the next recommended dose level is 400,
which is the estimated MTD. See the italicized numbers of Table 8.6.

It is important to remember that the primary aim of the Phase I trial is to
provide information about the safety of the therapy, but an important sec-
ondary objective is to gather information on the efficacy of the treatment.

Log xi i i[ /( )]θ θ α β1 − = +

x x xd1 2< < <...
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Both the estimated MTD and the information on efficacy will be used in any
following Phase II trials. Diagnostic imaging will determine the response of
the primary kidney tumor size and the response of the size of any metastatic
lesions to treatment. 

8.7.2 An Ideal Phase II Trial

As the first case of a Phase II trial that employs diagnostic imaging, Erasmus
et al.11 describe a hypothetical example based on real data. The study involves
5 readers, 40 lung cancer lesions, and 2 replications, that is, each reader views
the same image twice. All readers read the 40 lesions and the major endpoint
is the size of the lesion as determined by CT. The main focus of this study is
to estimate the inter- and intra-observer error, and the main conclusion is that
tumor size measurements are often inconsistent and can lead to incorrect
interpretations of response to therapy based on the WHO and RECIST criteria. 

Using the first replication of the five readers, the study results are used as
baseline measurements for a hypothetical Phase II study. The first 10 lesions
are used for patients with an intended complete response, and repeat mea-
surements are assigned at random for times 1 and 2. The second set of 10
lesions is used for an intended partial response category of patients where
the average lesion size decreased by 25% from time 0 to time 2. The basic
descriptive statistics for the trial are given in Table 8.7.

A normal random number generator is used to generate hypothetical
tumor size measurements by category of response and by the repeated
measurement times 0, 1, and 2. Thus, for the complete response category of
10 patients, there was a 64% decrease in the average lesion size, relative to
baseline. On the other hand, for the progressive disease category, the average
lesion size increases from 3.95 centimeters to 4.94, an increase of 25.06%. 

TABLE 8.6

Average Probability (%) of Toxicity by Dose of GEM (mg/m2)

Cohort
Assigned

Dose

Observed
Number
Toxicities 100 200 300 400 500 600

Prior 5.9 25 46.8 63.7 75 82.3
1 200 0 3.3 11.3 26.1 41.1 52.4 60.5
2 300 1 3.7 12.2 29.1 47.1 59.9 68.2
3 300 0 2.6 7.8 19.2 34.6 47.9 57.4
4 300 0 2.0 5.8 14.5 27.7 40.6 50.5
5 400 1 2.1 6.2 15.2 29.4 43.5 54.4
6 400 0 2.1 5.4 11.7 21.7 33.0 43.0
7 400 1 2.3 5.8 12.8 23.9 36.5 47.2
8 400 0 2.1 5.3 10.9 19.9 30.6 40.5
9 400 0 2.1 4.9 9.6 17.1 26.4 35.5

10 500 2 2.2 4.9 11.2 22.4 36.0 48.4
11 400 0 1.6 4.3 10.1 20.1 32.7 44.7
12 400 1 1.6 4.6 10.8 21.3 34.5 46.7

Source: Adapted from Thall, P.F. and Lee, S.J., Int. J. Gynecol. Cancer, 13, 251, 2003.
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There were five readers in this study and the mean (sd) readings for the
three times are given in Table 8.8.

Each reader has 10 lesions for each of the 4 response categories. Assuming
no disagreement between readers, how should their readings be used to
assign lesions to response categories, CR, PR, SD, and PD? Suppose the
lesions are assigned to two categories: response (including complete and
partial response) if the percent decrease in lesion size is less than 30%;
otherwise a lesion is assigned to the no response category. 

Differences between readers will be tested with a logistic regression using
the occurrence of response or no response as the dependent variable and
using two factors for the independent variables: the patient label (1,2…,40)
and the reader number (1,2,3,4). The logistic regression was performed using
the WinBUGS statements below. 

model

{
for(i in 1 : N ) {
y[i] ~ dbern(p[i])
logit(p[i]) <- beta[1] + beta[2]*n[i]+beta[3]*r[i]
}
phat <- mean(p[])
for (i in 1:3 ){
beta[i] ~ dnorm(0.0,0.0001)}

}

TABLE 8.7

Tumor Size Mean (sd) by Time and Response Category: Averaged over 10 Lesions 

Response
CR PR SD PD

Time 

0 3.77 (1.57) 4.79 (.958) 4.20 (1.69) 3.95 (1.70)
1 2.16 (1.51) 4.26 (1.11) 4.14 (1.93) 4.34 (1.81)
2 1.37 (1.31) 3.81 (.947) 4.19 (1.68) 4.94 (1.70)
% Increase from baseline –63.66 –20.45 .0023 25.06

TABLE 8.8

Average (sd) Lesion Size for Five Readers by Time: Averaged over 40 Lesions 

Reader
1 2 3 4 5

Time

0 3.92 (2.59) 3.70 (1.51) 4.42 (1.55) 4.36 (1.61) 4.14 (1.55)
1 3.48 (1.97) 3.09 (1.68) 3.83 (1.94) 3.92 (2.00) 3.56 (1.88)
2 3.24 (2.04) 3.02 (1.90) 3.72 (2.13) 3.64 (2.15) 3.37 (2.02)
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The list statement for the data includes the column y[] for the 200 occur-
rences of the overall response, while the n[] column contains the lesion id
(1,2,…,40). The 200 by 1 reader id column is the coefficient of beta[3] in the
logistic regression model. Zeros are given as the initial values of the three
beta coefficients in the list statement for initial values of the program. The
posterior analysis is given in Table 8.9. The lesion factor is included because
the readers were paired with lesions, thus the effect for readers, given by
beta[3], is adjusted for the lesion effect.

The lesion effect beta[2] is significant. Its 95% credible interval excludes
zero; however, the interval for the reader effect does include zero, implying
that reader differences have a minimal effect in estimating the tumor
response phat. The posterior mean of the overall response is .32 with a
standard deviation of .016 and a 95% credible interval of (.287, .352). Thus,
the estimate of the overall response to therapy is 32%.

Of course, for the hypothetical outcomes of lesion size, the author designed
the study so that there was good agreement between the readers.

8.7.3 Phase II Trial for Advanced Melanoma 

Melanoma is a cancer of the skin and about 55,000 new cases are diagnosed
annually culminating in approximately 8000 deaths. If not successfully
treated in the early stage, it metastasizes to the brain, lungs, and liver, and,
in this advanced stage, there are few promising therapies. The protocol to
be explained is for Stage IV melanoma with a therapy that has shown some
promise in other forms of cancer.

The therapy to be tested is an agent that is designed to be antiangiogenic
(i.e., designed to destroy the blood supply to the tumor) and there have
been several Phase I and Phase II trials that utilize this agent. In an early
European Phase I trial with 37 patients with solid tumors, no serious
toxicities were reported. In a Phase II study with 35 patients, this agent,
in combination with another, produced no toxicities. In a NCI study with
six patients, there were no objective responses, but three patients experi-
enced stable disease. In an ongoing Phase II trial, there have been some
minor toxicities and reports of one confirmed CR. Thus, prior information
leads us to use the following: With 72 patients, there hasn’t been any

TABLE 8.9

Posterior Distribution of Tumor Response

Parameter Mean SD Median
95% Credible

Interval

beta[1] 6.240 1.268 6.174 3.968, 8.906
beta[2] –.459

.076
–.453 –.626, –.325

beta[3] –.045 .214 –.045 –.471, .372
Phat: Overall response .320 .016 .320 .287, .352
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reported serious toxicities and, at the same time, little evidence of a favor-
able response to therapy.

Patients to be entered into this study must have a confirmed stage IV
disease, must have measurable disease with at least one lesion that can be
accurately measured over the course of the study, be at least 18 years of
age, and have a performance status that shows they are well enough to
complete the therapy. This is a randomized study, with patients randomly
assigned to two dose levels of chemotherapy where the endpoint is response
to therapy.

In order to assign patients to a response category, the RECIST criteria (see
Section 8.4) will be followed. A patient’s overall response is based on
dynamic CT scans of the target lesions. The final category is based on the
imaging results for the target lesions, the status of the nontarget lesions, and
the appearance of new lesions (Table 8.10).

In addition, the classification of response to the target lesions is based on
the change (see Section 8.4) in lesion size for the target lesions, relative to
some reference time, either at baseline or at some earlier time when the size
of the lesion was minimum. One cycle of therapy is 4 weeks and the protocol
must designate the times during this period when CT imaging of the target
lesions will take place. Several treatment cycles of therapy must be experi-
enced by patients in order for them to be assigned to an overall response
category and for the category to be confirmed.

A statistics section of the protocol contains the power analysis, a justifica-
tion for the sample size, and a description of the statistical analysis for the
study results. It was decided that 57 patients could be accrued at the rate of
3 to 4 per month for this single center trial. A Bayesian stopping rule must
be given that utilizes the information from prior Phase I and Phase II studies.
We have seen that, with a total of 72 patients, no toxicities were reported
and there was very little evidence of response to therapy (there were 3 of 6
who experienced SD in a European trial). Thus, there is good evidence of
no toxicity, but very little evidence of response to therapy. Also, there is very
little evidence for treatment response because these trials were designed
primarily to evaluate safety, not efficacy, thus the prior information for
response is designated as vague or uninformative.

TABLE 8.10

Overall Response to Therapy

Target Lesions Nontarget Lesions New Lesions Overall Response

CR CR No CR
CR SD/incomplete response No PR
PR Non-PD No PR
SD Non-PD No SD
PD Any Yes or No PD
Any PD Yes or No PD
Any Any Yes PD
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Multc Lean is used to design the stopping rule for this trial. Table 8.11
shows that prior distribution is for the probabilities of response and toxicity
of the standard and the melanoma trial.

Thus, one is quite confident that there was very little toxicity among the
72 patients of previous trials. A uniform prior is given to the probabilities
of a response for the standard and experimental therapies. Using Multc Lean,
the stopping rule is

or (8.4)

and the stopping boundaries for response are shown in Table 8.12.
The trial is stopped if there are 3 or less responses among the first

25 patients. On the other hand, Table 8.13 shows the stopping boundaries for
toxicity and the trial is stopped early if the first patient experiences toxicity.

What are the sampling properties of this stopping rule? The third section
of Multc Lean provides a way to estimate the probability of stopping for

TABLE 8.11

Prior Beta Distributions for the Standard
and Experimental Therapies

Category Therapy Beta Parameters

Response Standard (1,1)
Response Experimental (1,1)
Toxicity Standard (1,71)
Toxicity Experimental (.0278, 1.9722)

TABLE 8.12

Stopping Boundaries for Response

Responses Boundary

0 5
1 12
2 19
3 25
4 32
5 39
6 45
7 52
8 57

Pr[ / ] .θ φr r data< > 85

Pr[ / ] .θ φt t data> > 85
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various scenarios involving the probabilities of response and toxicity of the
experimental therapy relative to the corresponding probabilities of
[beta(1,1)] and [beta (1,71)] for the standard therapy. The five sce-
narios in Table 8.14 were assumed for the experimental therapy.

For each scenario, the probability of stopping for a given number of
patients (Table 8.15) can be computed with Multc Lean. (See scenario input
and output sections of the program.)

In addition, Multc Lean gives the average number of patients, the average
number of responses, and the average number of toxicities for each scenario
(Table 8.16).

TABLE 8.13

Stopping Boundaries for Toxicity

Toxicity Boundary

1 1–12
2 14–45
3 47–57

TABLE 8.14

Scenarios of the Melanoma Study

Probability of Response θr Probability of Toxicity θt Scenario

.5 .5 1

.01 .01 2

.2 .2 3

.21 .02 4

.60 .011 5

TABLE 8.15

Probability of Stopping Early for Melanoma Trial 

Scenario
n 1 2 3 4 5

1 .5000 .10000 .0200 .0200 .0110
5 .9697 .8532 .9548 .3848 .0639

10 .9999 .9133 .9592 .4439 .1143
20 1 .9867 .9994 .5654 .1366
40 1 .9994 1 .6442 .1666
56 1 .9998 1 .6707 .1795
57 1 1 1 1 1

φr = .5
φt = .0139
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8.8 Exercises

8.1 Verify the posterior analysis for the G-coefficient of Table 8.1. What
is the posterior distribution of the Kappa parameter? See formula
(7.6) in Chapter 7. 

8.2 Using Multc Lean, verify the results of the Phase II trial of Section
8.5. See Table 8.2 to Table 8.5.

8.3 Verify Table 8.6 with a logistic regression written in WinBUGS.
8.4 Suppose a lesion is classified overall as a response if the percentage

decrease in tumor size, relative to baseline, is less than 20%. Perform
a logistic regression similar to that given in Table 8.9 and test for
differences in readers.

8.5 Refer to Table 8.7 and generate lesion sizes, but where there are
significant reader differences. How should the overall response be
estimated in a Bayesian fashion? 

8.6 Using Multc Lean, verify the results of the melanoma trial in Table
8.12 and Table 8.13.

8.7 Refer to Table 8.15 and explain the difference in the probability of
stopping between scenarios 1 and 5.

8.8 By choosing different beta prior distributions for the parameters of
the standard and melanoma therapies and using Multc Lean,
describe the effect of the prior distribution on the probability of
stopping the trial.

8.9 Refer to Table 8.16 and explain why the average number of patients
for scenario 5 is much greater than that for scenario 1? What is the
effect of the stopping probabilities on the average number of patients?

8.10  Refer to formula (8.3) where the probability of stopping for response
and toxicity are both .85. Change these to .80 and .80, respectively,
and determine the effect on the average number of patients,
responses, and toxicities.

TABLE 8.16

Average Number of Patients, Responses, and Toxicities

Scenario 

Average 
Number 

of Patients

Average 
Number 

of Responses

Average 
Number 

of Toxicities

1 1.99 .999 .999
2 5.17 .517 .517
3 5.13 .102 .1076
4 26.29 5.52 .525
5 49.18 29.51 .541
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Chapter 9

 

Other Topics

 

9.1 Introduction

 

This final chapter of the book will present some additional advanced topics
in statistical techniques that are employed for the analysis of data encountered
in diagnostic medicine. For example, verification bias is an important topic
that occurs when not all of the test results are subject to a gold standard.
Screening for breast cancer is a good example of this. When the mammogram
is positive, the patient is usually sent for biopsy, which serves as the gold
standard. On the other hand, if the test result is negative, a biopsy is usually
not performed. In such as situation, follow-up for those patients who test
negative serves as the gold standard, however, this requires time and years
can pass before the results are confirmed. This is a case of extreme verification
bias and it is not possible to directly estimate the usual measures (true and
false positive fractions) of test accuracy. Less extreme forms of verification bias
occur when a certain percentage of negative test results are subject to the gold
standard. For example, negative test results may be subject to the gold stan-
dard if there are other patient characteristics that put them at high risk. 

Another form of bias occurs when the gold standard is not perfect, that
is, when there is an imperfect reference standard. In many diagnostic imag-
ing studies, the results of one imaging modality (e.g., CT) is “confirmed” by
another modality (e.g., MRI or by PET/CT). In many such studies, the
inaccuracy of the reference test is sometimes not taken into account in esti-
mating test accuracy.

How is test accuracy measured in survival studies? Suppose there is a
prognostic factor for survival, then how accurate is it in the prediction of
survival? Of course, a Cox-regression analysis provides some information
in this regard, but also one would like to have additional, more direct
information about the correlation or association of the diagnostic test with
survival. This will be explored using a Bayesian version based on an expo-
nential survival distribution with censored observations that determines the
association between median survival and the diagnostic test. An example
taken from a melanoma study of Ekmekcioglu et al.

 

1

 

 illustrates this idea.
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Another variation of this problem is when the gold standard is not binary,
but perhaps ordinal or continuous. Suppose one is measuring the size of a
lesion via computed tomography (CT) with surgery as the gold standard.
Then how is the area under the receiving operating characteristic (ROC)
curves estimated? Obuchowski

 

2,3

 

 proposes a method, which will be modified
with a Bayesian approach.

Screening for disease was briefly mentioned in earlier chapters and will
be developed in more depth here with reference to Bayesian approaches for
estimating sensitivity and lead-time for periodic cancer screening. 

Lastly, the Bayesian approach to decision theory in choosing an optimal
therapy (taking the accuracy of imaging modality into account) is briefly
described below, and the chapter concludes with a summary of the book
and a section about future trends in diagnostic medicine.

 

9.2 Imperfect Diagnostic Test Procedures

 

We do not live in an ideal world and this applies to the world of diagnostic
testing. For example, verification bias occurs when only a subset of the
subjects undergoing testing are subject to the gold standard. Another form
of bias is when the gold standard itself is not perfect. These situations are
quite common and the student should be familiar with them. Bayesian
methods that deal with these scenarios are introduced. 

 

9.2.1 Extreme Verification Bias

 

A good example of testing, when only those that test positive are referred
to the gold standard, is screening asymptomatic subjects for breast cancer
with mammography. Those that have negative mammograms are usually
not subject to a biopsy. Suppose that 

 

Y

 

 

 

=

 

 0, 1 indicates a negative and positive
test result, respectively, and that 

 

D

 

 

 

=

 

 0, 1 indicates the absence and presence
of disease, respectively, and that after screening 2000 women, there are 40
positive mammograms among those with disease (Table 9.1). 

Only the 50 who test positive have a biopsy, while the 1950 who test negative
do not. Therefore, the usual measures of test accuracy, true positive fraction

 

TABLE 9.1

 

Screening for Mammography 

 

Breast Cancer
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(TPF) and false positive fraction (FPF), are not directly estimable. However,
the test results are still informative because the detection probability (DP)

 

DP

 

 

 

=

 

 

 

P

 

[

 

Y

 

 

 

=

 

1, 

 

D

 

 

 

=

 

 1]  (9.1)

and the false referral probability (FRP)

FRP 

 

=

 

 

 

P

 

[

 

Y

 

 

 

=

 

 1, 

 

D

 

 

 

=

 

 0] (9.2)

are estimable.
Assuming a uniform prior distribution for 

 

θ

 

01

 

,

 

θ

 

11

 

, (1 

 

− θ

 

01

 

 

 

− θ

 

11

 

), their joint
posterior distribution is Dirichlet (11, 41, 1951), and the marginal distribution
of

 

 θ

 

00

 

 + θ

 

01

 

 is beta (1951, 51). The posterior analysis for the DP and FRP are
given in Table 9.2. 

The posterior analysis assumes that there are no observations in the (0,0)
and (0,1) categories, and also assumes a uniform prior distribution for all
three parameters. It is important to realize that there are no observations in
these categories because the 1950 subjects that test negative do not undergo
a biopsy. These patients will be followed and their disease status updated
with time, but for the present analysis, there isn’t any information on disease
verification. Of course, there is very informative prior information available
from other sources, which could be used in the analysis. Note that 

 

DP

 

 

 

= ρ 

 

TPF  (9.3)  

and 

FRP 

 

=

 

 (1 

 

−

 

 

 

ρ

 

) FPF, (9.4)

and the usual estimators of TPF and FPF are easily obtained if one knows the
disease prevalence 

 

=

 

 

 

P

 

[

 

D

 

 

 

=

 

 1]. The prevalence cannot be estimated from the
current study; however, such information is known with good credibility from
other studies, and the posterior distribution of TPF and FPF easily computed. 

Consider an example of diagnostic testing with a hypothetical screening
study with 2000 subjects is experimental with both mammography and
magnetic resonance imaging (

 

MRI

 

) testing for breast cancer, and that the

 

TABLE 9.2

 

The Posterior Analysis of Detection Probability

 

and False Referral Probability

 

Parameter Mean Median SD
95% Credible

Interval

 

DP .020 .020 .003 .014, .026
FRP .005 .005 .001 .002, .009
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diagnostic score is subject to the gold standard when one or both tests are
positive, with the results in Table 9.3. 

This is a paired study with 2000 MRI and mammography images classified
as positive or negative. When 

 

Y

 

 

 

=

 

 0 for both images, the person is not referred
to biopsy. An estimate of the DP for mammography is 40/2000 

 

=

 

 .02 vs. 30/
2000 

 

=

 

 .015 for MRI, while the false referral rates are FRP 

 

=

 

 10/2000 

 

=

 

 .005
for both modalities.

Recall that for mammography, the diagnostic score is an ordinal confidence
level with 5 values, where 1 indicates definitely not malignant and a 5 indi-
cating definitely malignant. Values of 4 (probably malignant) and 5 are scored
as positive for breast cancer. A similar scoring system is performed with MRI. 

Assuming a uniform prior for 

 

η

 

, the vector of all 7 parameters, gives a
Dirichlet (6,6,6,1,11,31,1946) posterior distribution for

where

.

Note that the DP for mammography is

 

and for the MRI is

, 

while the FRPs are

and

.

 

TABLE 9.3

 

Mammography and MRI for Breast Cancer
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τ θ θ θ φ φ φ η= ( , , , , , , )01 10 11 01 10 11

η θ θ θ φ φ φ= − + + + + +1 01 10 11 01 10 11( )

DPmamm = +φ φ10 11

DPmri = +φ φ01 11

FRPmamm = +θ θ10 11

FRPmri = +θ θ01 11
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The TPF and FPF are not estimable individually, but the following ratios are:

rTPF(

 

mamm,mri

 

) 

 

=

 

and

rFPF(

 

mamm,mri

 

) 

 

=

 

. 

Thus, two modalities can be compared with the usual measures of test
accuracy. Minitab

 

®

 

 is used to determine the posterior distribution of 

 

τ

 

 with
1000 observations generated from the posterior distribution (Table 9.4).

The association between the detection probabilities of mammography and
MRI are illustrated with a plot of the 1000 pairs generated from their joint
posterior distribution given in Figure 9.1. 

 

TABLE 9.4

 

Posterior Distribution of 

 

τ

 

Parameter Mean Std

 

DP

 

mamm

 

.020 .003

 

DP

 

mri

 

.015 .002

 

FRP

 

mamm

 

.005 .001

 

FRP

 

mri

 

.005 .001
rTPF(mamm,mri) 1.321 .132
rFPF(mamm,mri) 1.045 .321

 

FIGURE 9.1

 

Detection probability of mammography vs. detection probability of MRI.
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Suppose a hypothetical national screening study for lung cancer is to be
conducted with 10,000 present and former smokers aged 55 years and older.
It will be a randomized study with 5000 allocated to X-ray imaging and CT.
The anticipated results are shown in Table 9.5.

The anticipated detection probability for CT is 400/5000 = 8% compared
to 5% with X-ray, and the percentage of positive results for both will be the
same, namely 500/5000 = 10%. Note that 9000 participants who test negative
will not have a biopsy for disease verification. The ongoing national lung
cancer screening trial has 50,000 subjects (see Moore et al.4)

9.2.2 Verification Bias 

The examples above are an extreme form of verification bias in that all who
test negative do not experience disease verification, but there are studies
where among those that test negative, a certain fraction would be subject to
the gold standard. This can occur with CT where the basic response is
measured in Hounsfield units (a quantitative scale for describing radio den-
sity) and is used to measure heart disease. Values above a certain threshold
indicate disease, while those below an absence. Suppose that an image is
formally negative with the diagnostic score below the threshold, but there
are other aspects of the image that might indicate a problem, whereas the
subject is referred to the gold standard. An example of this is testing for
coronary artery disease with a CT image that measures the amount of cal-
cium in the coronary arteries. 

There are other properties of the image that indicate the presence of
the disease, even though the calcium level is below the threshold. Per-
haps, the score is below the threshold, but on the high end, and to make
sure, the radiologist refers the patient to an exercise stress test in order
to verify the negative result.

Consider the example of verification bias in Table 9.6A, with 1250 patients
over 60 years of age.

TABLE 9.5

National Lung Cancer Screening CT and X-Ray

Modality Y = 1, D = 0 Y = 1, D = 1 Y = 0 Total

X-Ray 250 250 4500 5000
CT 100 400 4500 5000

TABLE 9.6A

Fully Observed

Y D = 0 D = 1 Total

Y = 0 900 100 1000
Y = 1 50 200 250
Total 950 300 1250
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The TPF = .667 and the FPF = .052, but suppose that 10% of those that test
negative are subject to the gold standard, then there are 350 patients that
have the disease status verified (Table 9.6B). When verification bias occurs,
the results in Table 9.6A are not available.

The estimated TPF = .952 is larger than it should be, as is the FPF = .357,
when compared to the .052 from the fully observed information.

Is it possible to determine reliable estimates of TPF and the FPF? It is
possible under the MAR (missing at random) assumption. This states that
the test negative patient is referred to the gold standard based only on the
test results Y. The key word is “only” in that the decision to refer a test
negative patient for disease verification cannot be based on considerations
other than the test result, such as, for example, other symptoms of the patient
or the fact that the patient might or might not belong to a high-risk group.

The MAR assumption is

P[D = 1/V = 1,Y] = P[D = 1/Y], (9.5)

which implies the prevalence of disease in the population, from which the
study group is selected, is the same as among those patients who are verified
for disease. This is another way of saying that the decision to refer a subject
for verification must depend only on the test result Y. It is easy to see why
it would be difficult to verify the MAR assumption. It would be necessary
to know the mind of the radiologists who are interpreting information from
the images and others who are making the referral decision. Presumably, the
radiologist is using all reliable information in the decision to refer a patient
to the gold standard.

But, supposing MAR is true, how is it used to estimate the TPF and FPF
from the selected data? The answer is Bayes theorem, namely

P[Y = 1/D = 1] = P[D = 1/Y = 1, V = 1]P[Y = 1]/P[D = 1] (9.6) 

where V = 1 indicates the case is verified and

P[D = 1] = P[D = 1/Y = 1, V = 1]P[Y = 1]+P[D = 1/Y = 0, V = 1]P[Y = 0].

But, the MAR assumption implies P[D = 1/Y = 1] = P[D = 1/V = 1,Y = 1],
thus the information from the verified data in Table 9.6B can be used to

TABLE 9.6B

Verified Data

Y D = 0 D = 1 Total

Y = 0 90, θ00 10, θ01 100
Y = 1 50,θ10 200,θ11 250
Total 140 210 350

C7672_C009.fm  Page 171  Friday, May 18, 2007  4:43 PM

© 2007 by Taylor & Francis Group, LLC



172 Bayesian Methods in Diagnostic Medicine

estimate the positive predictive value P[D = 1/Y = 1] and, hence, the TPF.
For the example, the TPF is estimated as

TPF = .8(.25)/[.8(.25) + .10(.75)] = .727,

which is the approximate estimate from the fully observed in Table 9.6A.
In order to find the posterior distribution of the TPF, consider Table 9.7 where

θijk = P[Y = i, D = j, V = k], and i, j ,k = 0,1. 

Let

φ11 = P[D = 1, Y = 1/V = 1] = P[Y = 1, D = 1, V = 1]/P[V = 1] = θ111/(θ111+θ110)

and

φ01 = P[D = 1,Y = 0/V = 1] = θ011/( θ010+ θ011),

then

TPF = (9.7)

Assuming a uniform prior density for the parameters, the posterior anal-
ysis is performed with Minitab using the information from Table 9.7. One
thousand observations are generated from the joint posterior distribution of
the parameters, with the results given in Table 9.8. 

Begg and Greenes5 derived asymptotic formulas for the confidence inter-
vals of the TPF and FPF, but the Bayesian intervals are exact. Pepe6 also
provides several examples of using these formulas. 

TABLE 9.7

Verified and Unverified Results

Test Result V = 1, D = 0 V = 0, D = 0 V = 1, D = 1 V = 0, D = 1 Total

Y = 0 90, θ010 810,θ000 10,θ001 90,θ001 1000
Y =1 200,θ110 50,θ111 250

TABLE 9.8

Posterior Distribution of the TPF with Verification Bias

Parameter Mean Std
95% Credible

Interval

TPF .656 .068 .531, .790

φ φ φ11 11 01/( ).+

C7672_C009.fm  Page 172  Friday, May 18, 2007  4:43 PM

© 2007 by Taylor & Francis Group, LLC



Other Topics 173

Of course, the test accuracy can also be computed from the data imputed
from the verified data of Table 9.6b by multiplying the cell totals of the row
with Y = 0 by the factor 1/P[V = 1] = 1/.10 = 10. Consider the findings in
Table 9.9 where

and i, j = 0,1.

9.2.3 Estimating Test Accuracy with No Gold Standard

Joseph et al.7 introduces a Bayesian approach to estimating disease preva-
lence, sensitivity, and specificity when there is no gold standard to verify
the results of a diagnostic test. The analysis is illustrated with an example
of two tests that diagnose Strongyloides infection in a group of Cambodian
refugees arriving in Montreal, Quebec, over an 8-month period. The results
are shown in Table 9.10.

Thus, serology and the stool examination both test positive for 38 sub-
jects, with serology giving a prevalence 125/162 = 77% and 25% with the
stool examination; a result not untypical of the two ways to diagnose the
infection.

First, the serology test is considered, where Joseph et al. employ latent
variables for the Bayesian approach. Suppose that when the disease is
present, y1 individuals out of 125 test positive and y2 out of 37 test negative
(Table 9.11) where , y2 = 0,1,…,37, and
where i, j = 0,1. The use of latent variables allows one to create hypothetical
scenarios of disease detection when the disease is present.

TABLE 9.9

Imputed Data (Data of Table 9.6A)

Y D = 0 D = 1 Total

Y = 0 900, γ00 100 γ01 1000
Y = 1 50, γ10 200 γ11 250
Total 950 300 1250

TABLE 9.10

Testing for Strongyloides Stercoralis in 162
Refugees in Montreal 

Stool Exam
Y = 1 Y = 0 Total 

Serology

Y = 1 38 87 125
Y = 0 2 35 37
Total 40 122 162

γ ij P Y i D j= = =[ , ]

y1 0 1 125= , , ..., θij P Y i D j= = =( , )
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The Bayesian analysis consists of combining the likelihood function with
the prior distribution for the unknown parameters p, s, and c for the preva-
lence, sensitivity, and specificity, respectively. The likelihood function is

 

where

. 

Note that p is the prevalence and s the sensitivity, thus, the likelihood
function is

(9.8)

where and . The specificity of the test is denoted
by c.

Prior information about prevalence p and the sensitivity and specificity of
serology is based on expert opinion of the McGill University Center of
Tropical Diseases (Montreal, Canada) and summarized as follows:

p ~ beta(1,1),

s ~ beta(21.96,5.49),

and (9.9)

c ~beta(4.1,1.76), 

thus, the average sensitivity is expected to be 21.96/(21.96 + 5.49) = .80 and
the expected specificity expected to be .70. Very little is known about the
prevalence of the infection, therefore, a uniform prior is selected for p. Com-
bining the likelihood function in Equation (9.8) with the prior information
in Equation (9.9) via Bayes theorem gives the joint posterior distribution of
p, s, and c.

TABLE 9.11

Latent Variables for Serology 

Serology D = 1 D = 0 Total

Y = 1 y1, θ11 (125 − y1),θ10 125
Y = 0 y2, θ01 (37− y2), θ00 37
Total y1 + y2 162 − y1 − y2 162

L data y y y y( / ) ( ) ( )θ θ θ θ θ= − −
11 10

125
01 00

371 1 2 2

θ θ θ θ θ= ( , , , )11 10 01 00

L p s c data p p s sy y y y y y( , , / ) ( ) ( )= − −+ − −1 2 1 2 11 1162 22 2 137 1251c cy y− −−( )

0 1 0 1≤ ≤ ≤ ≤p s, , 0 1≤ ≤c
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The following statements allow one to perform the posterior analysis.
model;

# this analysis is based on Joseph et al. (1995) 

{

y1~dbin(d,a)

# is the conditional distribution of y1 given y2, p, s, 
and c

y2~dbin(e,b)

# is the conditional distribution of y2 given y1, p, s, 
and c

p~dbeta(alp,bep)

# is the conditional distribution of p given y1, y2, s, 
and c

s~dbeta(as,bs)

# is the conditional distribution of s, given y1, y2, 
p, and c

c~dbeta(ac,bc)

# is the conditional distribution of c, given y1, y2, 
p, and s

d<-p*s/(p*s+(1-p)*(1-c))

# d is the probability parameter of the distribution of 
y1

e<-p*(1-s)/(p*(1-s)+(1-p)*c)

# e is the probability parameter of the distribution of 
y2

alp<-y1 + y2 + alphp

# alp is the alpha parameter of the distribution of p 

bep<-a + b – y1 – y2 + betp

# bep is the beta parameter of the distribution of p

as<-y1 + alphs

# as is the alpha parameter of the distribution of s

bs<-y2 + bets

# bs is the beta parameter of the distribution of s

ac<-b-y2+alphc

# ac is the alpha parameter of the distribution of c

bc<-a-y1+betc 

# bc is the beta parameter of the distribution of c

}
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list(a = 125, b = 37, alphp = 1,betp = 1,alphs = 21.96, 
bets = 5.49, alphc = 4.1, betc = 1.76)

# gives the values for the parameters of the 
distributions 

list(y1 = 60, y2 = 8, p = .5, s = .5,c = .5)

# gives the starting values for the distributions

The posterior distribution of p, s, and c is provided in Table 9.12.
The posterior analysis agrees very well with Joseph et al. The sensitivity

is good, the specificity only fair, but the information about p is quite infor-
mative. 

Figure 9.2 illustrates the posterior density of the sensitivity of the serology
test for Strongyloides.

According to Table 9.12, the standard deviation of specificity is much larger
than the standard deviation of the posterior distribution of sensitivity, thus,
one is less confident about the estimated value .608 for specificity compared
to .82 for sensitivity. Figure 9.2 and Figure 9.3 confirm this.

The Bayesian approach to test accuracy is easily extended to two diagnostic
tests for infection. The results for both tests are given in Table 9.10.  Table 9.13A
and Table 9.13B display the results when the latent variables are included.

TABLE 9.12

Posterior Distribution of Test Accuracy of Serology

Parameter Mean Median SD
95% Credible 

Interval

Sensitivity .829 .829 .050 .733, .926
Specificity .608 .621 .203 .230, .946
Prevalence .796 .845 .181 .254, .990
Y1 108.2 117 23.04 34,125
Y2 21.62 22 9.068 4,37

FIGURE 9.2
Posterior density of sensitivity of serology.
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Assuming conditional independence between the two tests, it can be
shown that the likelihood function is

= (1 – s1)  

(1 – c1) (1 – c2) (9.10)

where c1 and c2 are the specificities for stool and serology, respectively, and s1 s2

are the corresponding sensitivities, while p is the prevalence of Strongloides.
Note that the sensitivity, specificity, and prevalence are restricted to [0,1],

and the ranges for the latent variables are y1 = 0, 1,…, 38; y2 = 0,1,…,87; y3 =
0,1,…,2; and y4 = 0,1,…, 35.

FIGURE 9.3
Posterior density of specificity of serology.

TABLE 9.13A

 Stool and Serology: D = 1 

Stool Exam
Y = 1 Y = 0 Total 

Serology

Y = 1 y1 y2 y1 + y2

Y = 0 y3 y4 y3 + y4

Total y1 + y3 y2+ y4 y1 + y2+y3 + y4

TABLE 9.13B

Serology and Stool: D = 0 

Stool Exam
Y = 1 Y = 0 Total 

Serology

Y = 1 38 – y1 87 − y2 125 – y1 − y2

Y = 0 2 – y3 35 – y4 37 – y3 − y4

Total 40 – y1 − y3 122 − y2 − y4 162– y1 − y2 – y3 − y4

    0.0     0.5 1.0

0.0

0.5

1.0

1.5

2.0

L p c c s s data( , , , , / )1 2 1 2 p
y y y y

1 2 3 4
+ + +

s
y y
1

1 2
+

s
y y
2

1 3
+ y y3 4+ ( )1 2

2 4− +s y y

c y y
1
37 3 4− − c y y

2
122 2 4− − 125 1 2− −y y 40 1 3− −y y
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9.3 Test Accuracy and Survival Analysis

Often a diagnostic test is also a prognostic factor for survival. For exam-
ple, inducible nitric oxide synthase (iNOS) is used to diagnose metastasis
of melanoma from the primary lesion to the lymph nodes, and from the
lymph nodes to the other sites, such as the liver and lungs. Initially,
Ekmekcioglu et al.1 described the biological activity of iNOS and its
prognostic value for overall survival of patients measured from their
stage III diagnosis. Figure 9.4 shows the Kaplan–Meier plot comparing
groups of patients, those who have an iNOS score of 0 vs. those with an
iNOS score of 1. 

A Bayesian analysis based on the exponential distribution gives a median
survival for the iNOS = 0 group as 117 (26.2) months while, for the remaining
patients, it is estimated as 30.49(4.39). The complete analysis is provided in
Table 9.15.

Suppose T is the survival time with an exponential distribution with
parameter λ and density 

f(t) =

where

 t ≥ 0. (9.11)

FIGURE 9.4
Kaplan–Meier plots for iNOS.
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If there are r noncensored observations with survival times  and
n – r censored observations at times , then the likelihood func-
tion for λ  is

.  (9.12) 

Assuming a noninformative prior for λ, , 

~ gamma, . (9.13)

Since the mean survival time is 1/λ and the median survival time is
ln(1/2) /λ, their posterior distributions are easily determined for those with
iNOS = 0 and iNOS = 1.

From the Ekmekcioglu et al. study with 132 patients, the survival times and
censored times for both populations are given in Table 9.14. Based on this table
and the following program, the posterior analysis is given in Table 9.15.             

model;

# exponential survival with censored obs

# based on Ekmekcioglu et al. (2006)

# m0 is mean survival for iNOS = 0

TABLE 9.14

Survival Times for iNOS Groups

Censored iNOS Score r n – r

no 0 22 981
yes 0 47 3434
no 1 50 127
yes 1 13 391

TABLE 9.15

 Posterior Analysis for iNOS

Parameter Mean SD Median
95% Credible

Interval 

Median 0 117 26.2 113.3 76.47, 179.0
Median 1 30.49 4.39 30.09 23.07, 40.28
Mean 0 168.8 37.8 163.5 110.3, 256.8
Mean 1 43.99 6.33 43.42 33.28, 58.12
Ratio Median 3.919 1.045 3.772 2.309, 6.385

t t tr1 2≤ ≤ ...
t t tn r1 2

+ +
−

+≤ ≤ ...
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i

i
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i n r
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=
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= −

∑ ∑
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⎞⎞

⎠
⎟⎟

f ( ) /λ λ∝ 1

λ /data r t ti

i

i r

i

i

i n r

,
=

=
+

=

= −

∑ ∑+
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

1 1

∑ =
=

i
i r

it1 ∑ =
= − +

i
i n r

it1

C7672_C009.fm  Page 179  Friday, May 18, 2007  4:43 PM

© 2007 by Taylor & Francis Group, LLC



180 Bayesian Methods in Diagnostic Medicine

# m1 is mean survival for iNOS = 1

{  lambda0 ~ dgamma(a0, b0)

lambda1 ~ dgamma(a1, b1)

m0<-1/lambda0

m1<-1/lambda1

diffmean<- m0-m1

median0<-.6931/lambda0

median1<-.6931/lambda1

diffmedian<- median0-median1

ratiomedian<-median0/median

}

list(a0 = 22, b0 = 3542, a1 = 50, b1 = 2151)

list(lambda0 = 7, lambda1 = 7)

Of course, a Cox proportional hazard model gives a measure of association
between iNOS and overall survival; however, the above posterior distribu-
tion for the ratio γ of the median survival times also provides an estimate.
Indeed 

 (9.14)                                                   

has a posterior mean of 3.919(1.045) with a 95% credible interval of (2.309,
6.385). Note that is positive and has a range of where values close to
1 indicate a weak association between survival and iNOS. On the other hand,
values of less than 1 and large values greater than 1 indicate a stronger
association between the two iNOS groups and the survival times.

This approach is quite different from Pencina and D’Agostino8 who
develop a ROC-type value that measures the concordance between a diag-
nostic score and the corresponding survival times. 

9.4 ROC Curves with a Non-binary Gold Standard

There are many cases when the gold standard is not binary. For example,
suppose one is using CT to estimate the size of lung lesions where surgery
is the gold standard. This is a case where the gold standard is continuous.
Obuchowski2 gives an example of a continuous gold standard comparing
the diagnostic accuracy of several tests that estimate blood iron concentra-
tions. Serum ferritin is the gold standard used to verify the accuracies of two
tests: percent transferrin saturation and total binding capacity. This example
will be used to demonstrate the Bayesian approach.

γ = median median0 1/

γ ( , )0 ∞

γ
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The Bayesian approach is a modification of a nonparametric approach of
Obuchowski, who defines the estimated ROC area for N patients as

 (9.15)

where is the diagnostic score of the ith patient with a gold standard value
of t. Also, the kernel ϕ = 1, if t > s and or s > t and . In addition,

if t = s or , and otherwise. 
The interpretation of Equation (9.15) is familiar. It is the probability that a

person with a higher gold standard outcome has a larger diagnostic score
than a person with a lower gold standard score. For a given study, the value
of and its estimated standard deviation are known, and used to compute
the parameters of the posterior distribution of the ROC area. Obuchowski
provides an Internet address to download a Fortran program. 

The variance of the estimator is

 (9.16)

where

, and s = t. (9.17)

The posterior distribution of the ROC area is assumed to be

~ beta(a,b)  (9.18)

where a and b parameters given by 

a = vm

and 

b = v(1 – m), 

with m = , and v = 1/ ( ).
The iron concentration study (with total binding capacity as the diagnostic

test) of Obuchowski2 is used to illustrate the Bayesian approach. Based on
55 female subjects, = .829 and = .025, which gives a = 33.12 and b = 6.88.
The simple program below provides the estimated area and its standard

ˆ [ / ( )] ( , )θ ϕ= −
=

=

=

=

∑∑1 1
11

N N x xit js

j

j N

i

i N

xit

x xit js> x xjs it>
ϕ = .5 x xit js= ϕ = 0

θ̂

Var N N V xit

i

i N

(ˆ) [ /( / )( / ] [ ( ) ˆ]θ θ= − −
=

=

∑1 2 2 1 2

1

V x N x xit it js

j

j N

( ) [ /( )] ( , )= −
=

=

∑1 1
1

ϕ i j≠

θ

θ̂ sd̂ θ̂

θ̂ sd̂(ˆ)θ
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deviation as .829(.058), with a 95% credible interval (.699, .925). Note that a
and b are the parameters of the posterior distribution, thus, prior information
about the area can be easily expressed. In the example, a uniform prior was
used for .
model;

{#Obuchowski

auc~dbeta(a,b)

# auc is area under the ROC curve

}

list(a = 33.12, b = 6.88)

# a and b are parameters of the posterior of auc

list(auc = .5)

# auc = .5 is starting value

9.5 Periodic Screening in Cancer 

To introduce the Bayesian approach to estimating sensitivity for the screen-
ing of breast cancer with mammography, the recent results from Wu et al.9
are reported. This is followed by a description of a similar study (Wu et al.10)
for the estimation of the lead-time distribution for screening of the same
disease. Both inferences are illustrated in the Health Insurance Plan of
Greater New York (HIP) dataset. 

9.5.1 Inference for Sensitivity and Transition Probability

In the first study, the goal is to estimate the age-dependent sensitivity and
the transition probability (from the disease-free to the preclinical stage) in
periodic screening for breast cancer. The fundamental model for screening
consists of three stages, . Starting with the disease-free stage,
passing to the preclinical, and finally entering the clinical stage of breast
cancer where symptoms are displayed. Mammography is employed in the
disease-free and preclinical stages and when the disease is detected in the
preclinical phase, it allows for earlier treatment and longer survival for
the subject. (See Berry et al.11 for an account of the survival benefits from
mammography screening.) 

Based on studies of Zelen12, Lee and Zelen13, and Shen and Zelen14, Wu
et al.9 developed a Bayesian approach to estimating the transition probability,
from the disease-free to the preclinical stage, and the age-dependent sensi-
tivity for periodic screening. Suppose a group of asymptomatic women are
about to enter a screening program. Let w(t)dt denote the transition proba-
bility from to and let q(.) denote the probability density of the sojourn

θ

S0 → →S Sp c

S0 Sp
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time in the preclinical stage. Also let be the sensitivity (the probability
the mammogram is positive, conditional on being in the preclinical stage)
of the test for an individual aged t, who is about to enter a screening program
that is designed to have K-ordered examinations. The individual undergoes
examinations at ages where the ith screening interval is
defined as the time between the ith and (i + 1)-st exam and define the ith
generation as those who enter at the ith screening exam. The 0th genera-
tion are those that enter the preclinical stage before the first examination,
and .

The HIP study recruited 62,000 women who were randomized into the
study and control groups where the subjects in the former underwent four
annual screening exams with mammography plus a clinical examination for
breast cancer. For those in the control group, it was standard care. For the
HIP data, there are 25 age groups corresponding to ages 40 through 64, thus,
let , and suppose the exams are annual, that is, .
Suppose and denote the total number of individuals in the
group who entered the study at age and are undergoing the ith exam, the
number of these who were detected with disease, and the number who were
in the clinical stage within , respectively. The probability that a person
in the stage will be detected for disease at the initial exam is

 (9.19)

where is the survivor function for the sojourn time in the
preclinical stage. 

In a similar fashion, consider a woman of the ith generation who was
detected at the kth screening exam, which she did at age , then either (a)
she was undetected at the previous exams (k − i − 1) and had a sojourn time
of at least where is her age at entry into or (b) she entered

in the (k − 1)-st screening interval .
Therefore,

(9.20)

for k = 2,…, K.
Suppose denotes the probability that a woman enters the clinical

stage within where . If the individual is in generation i,
then i < k and she must have gone undetected in her (k − i) previous screen-
ings and had a sojourn time of (t − x), where x was her age of entry into .
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Another possibility is that she entered the preclinical stage after the kth exam
and developed clinical disease at time t. This implies

+ (9.21)

where .
Furthermore, the probability of being incident in is

(9.22)

for k = 1,2,…, K.
As reported by Shen and Zelen14, the likelihood for women aged at entry

to screening is 

 (9.23)

and the likelihood for the study group is

L =  (9.24) 

with K = 4.
The likelihood Equation (9.24) is revised to include functions for the spec-

ificity , the transition probability w(t)dt, and the probability density q(.)
of the sojourn time in . First, suppose the sensitivity at time t is

 (9.25)

where is the average age at entry for the study group, and  > 0. 
Secondly, let the transition function be

, (9.26)
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which is the density of a log normal distribution . Note that w(t)dt is
the transition probability from the disease-free state to the preclinical stage
during the time interval t to t + dt. According to Ries et al.,15 the life time
risk of being diagnosed with breast cancer is 15.7%, which is less than the
lifetime risk of entering the preclinical stage, thus, .20 is a reasonable upper
bound. Lastly, for the sojourn time, the survivorship function is 

. (9.27)

This form of the sojourn distribution is skewed to the right and has first
moment and a relatively simple form. This is quite different
from Walter and Day16, who used an exponential distribution.

The Bayesian analysis consists of estimating the six unknown parameters
and a prior distribution must be assigned. Consequently,

let the prior for be bivariate normal with mean (0,0), and diagonal co-
variance matrix with diagonal elements . Suppose that and
let the prior for  be uniform (0,1). For the parameters of the sojourn distri-
bution, suppose that independent of  A Monte
Carlo Markov Chain (MCMC) random sample was generated from the joint
posterior distribution using four subchains for and .The
MCMC used 30,000 steps with a burn-in of 10,000 iterations. After the burn-in,
the posterior was sampled every 20 steps to give a sample of 1000 from the joint
posterior distribution. The posterior analysis for the unknown parameters
appears in Table 9.16.

Using Equation (9.25) for sensitivity, the posterior mean ranges from .603
to .875 from 40 to 65 years of age, while the posterior standard deviation
ranges from .236 to .144 over the same period. The average age of a study
participant was 51.6 years, for which the posterior mean sensitivity is
.779(.186). This compares closely to Shapiro et al.17 with a value of .737,
computed as the ratio of screen-detected cases divided by the total number
of screen and interval detected cases during the 5 years of follow-up. 

As for the transition probability from the disease free to the preclinical
stage, the posterior medians ranged from 1.388* at age 40 to 2.735 *
at age 65, and the transition function Equation (9.26) appears to peak at
age 60.

TABLE 9.16

Posterior Distribution for HIP Study

Parameter Mean Median SD

b0 1.676 1.581 1.338
b1 .085 .084 .078
μ 4.340 4.329 .076
σ2 .190 .172 .076
κ 2.509 2.275 .927
ρ .886 .917 .287

( , )μ σ2

Q x x( ) /[ ( ) ]= +1 1 ρ κ

( / )csc( / )π ρκ π κ

θ μ σ κ ρ= ( , , , , , )b b0 1
2

( , )b b0 1

1010 μ ~ ( , )N 0 1010

σ2

κ ~ ( , )uniform 1 5 ρ ~ ( , ).uniform 0 2

( , ); ; ;b b0 1
2μ σ ( , )κ ρ

10 3− 10 3−
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The average sojourn time was estimated with a posterior mean of 1.88(1.65)
and a posterior median of 1.78 years. For more information about the pos-
terior analysis, refer to Wu et al. (Figures 1 and 2 of Reference 9).

How do these results compare to other recent studies? For example,
Chen et al.18 using data from Taiwan, estimated the mean sojourn time as
1.90 years, with a 95% confidence interval from 1.18 to 4.86 years, which
compares to a posterior mean estimate of 1.88 years for the present study.
However, they modeled the probability distribution as exponential and esti-
mated the sensitivity as 1.

With regard to sensitivity, the present Bayesian estimate varies with age
and is the first to present such information. Shen and Zelen14 assumed a
constant sensitivity and estimated it as .70(.20) with a so-called stable
model, while it was estimated as .72(.17) with their unstable model. The
mean sojourn time was 2.5(1.2) years with the stable model and 2.2(.89)
with the unstable, and both estimates are larger than the 1.88 Bayesian
estimate.

9.5.2 Bayesian Inference for Lead-Time

The probability distribution for the lead-time is developed for periodic
screening examinations. The lead-time is expressed as a mixture of a point
mass at zero and a continuous density over the positive numbers. Using the
HIP study, simulations are performed to estimate the proportion of breast
cancer patients who truly benefit from periodic exams under various screen-
ing time intervals. The posterior mean, median, and standard deviation of
the lead-time is computed for the various scenarios of screening interval
lengths. This information is quite valuable for those who design periodic
screening studies. 

The difference between the age at diagnosis with mammography and the
onset of clinical disease without screening is the lead-time. Suppose the
woman enters the preclinical state at time  and becomes clinically incident
at time , then ( ) is the sojourn time in the preclinical state. Suppose
she is given a mammogram at time t within and cancer is diagnosed,
then the lead-time is . The distribution of the lead-time depends on the
sojourn time, the sensitivity, and the transition probability into the pre-
clinical state. The optimality of a screening program depends very much on
the characteristics of the lead-time distribution, hence, good design also
depends on the properties of the lead-time.

The lead-time distribution is conditional in that it applies to only those
that develop the disease. The typical subject is asymptomatic, will experience
a series of screening exams, and will eventually develop breast cancer. Sup-
pose L denotes the lead-time, and that D = 1 indicates the presence of breast
cancer, otherwise D = 0. The lead-time distribution is a mixture of a point
mass at zero, P[L = 0/ D = 1], and a conditional density function f(z/ D = 1),
where 0 < z < and T is the life span of the subject. In order to compute

t1

t2 t t2 1−
( , )t t1 2

t t2 −

( )T t− 0
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the lead time distribution, P[D = 1], P[L = 0, D = 1] and the joint density
f(z, D =1) are required. Note that 

P[D = 1] = (9.28)

where w is the transition probability function and q the sojourn time density.
The subject is incident with clinical disease at age and makes the
transition from to at age x < t, thus, the sojourn time in the preclinical
state is (t – x).

To illustrate the main ideas only two screening exams are considered;
consider a group who will have screening exams at ages and . It can be
shown that

P[L = 0 , D = 1] =  (9.29)

where 

 (9.30) 

is the probability of being an interval case in , while is the
probability of being an interval case in , thus

Ι22 =

+ + .  (9.31)

In a similar way, it can be shown that the joint density is

f(z, D = 1) =  

(9.32a) 

and .
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On the other hand, when ,

f(z, D = 1) = . (9.32b) 

The screen-detected cases are now considered. Suppose there are K screening
exams and let Aj = {a screen detected case at the (j + 1)-st exam at time tj}
where j = 0,1,…,K – 1.

Then, the conditional probability density of the lead-time, given , is

f(z/ ) = f(z, )/ (9.33)

where

f(z, =  +   

(9.34)

and .
The denominator is

+ .  

(9.35)

All the essential elements have been defined for the computation of the
posterior distribution of the lead-time. The lead-time distribution depends
on the transition probability function w, the distribution q of the sojourn
time, and the time-dependent sensitivity , all of which were defined
earlier.

The posterior density , of all the parameters , was defined in the
previous section and, when it is combined with the conditional lead-time
distribution, gives the marginal density

f(L/data) = =

=  (1/n)  (9.36)

where is a sample generated from the posterior distribution .
From Equation (9.36) samples of size n can be generated from the posterior
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distribution of the lead-time L. The results from the earlier HIP study are
combined with the current model to make inferences about the lead-time
for women aged from 50 to 80 years entering a screening program. The
results are for both screen-detected and interval cases, allowing inferences
for the point mass at zero and the continuous density f(z/ data), for 0 < z <
40. Table 9.17 presents the posterior distribution of L as a function of the
time interval between consecutive exams. 

Thus, for a woman who begins annual screening at age 40 and continues
screenings through age 80, there is a 23% chance that she will not benefit
from screening. On the other hand, if she has exams every 6 months, the
probability she will benefit is 1–.0895 = .9105. Note that the benefit from
screening decreases as the interval between consecutive exams increase,
and that the average lead-time also decreases. As the lead-time increases
with decreasing interval length between exams, the better the chance of
treating the disease earlier. 

Of course, there are economic considerations to take into account. More
exams per unit time increase the total cost, and the more exams that are
scheduled, the chance of missing an exam also increases.

There are two major contributions: 

1. The model allows for inference of the lead-time that applies to the
total group, both of the screen-detected cases and the interval
detected. Earlier contributions such as Prorok19 included only the
screen-detected cases, thus, these results include his as a special case.

2. The model allows for any number of exams and any time interval
between consecutive exams. This is a powerful tool for the design
of screening trials. 

9.6 Decision Theory and Diagnostic Accuracy

What is the impact of a diagnostic test on subsequent care of the patient? Is
the most accurate test the most appropriate? In order to answer such ques-
tions, a decision theoretic approach can be very useful. 

TABLE 9.17

Posterior Distribution of the Lead-time

Interval
Months P(L = 0) Mean Median SD E(L/L > 0)

6 .0895 1.418 .50 2.111 1.557
9 .1604 1.282 .38 2.075 1.527

12 .2337 1.168 .30 2.040 1.524
18 .3652 .988 .16 1.969 1.556
24 .4681 .856 .08 1.901 1.605
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For example, suppose a physician is faced with the following problem: the
doctor examines a patient who presents with symptoms indicative of a life
threatening disease and surgery is a possibility, but carries a risk of death.
There are three possibilities: (1) do nothing, (2) perform surgery, or (3) order
an imaging test, and proceed accordingly. If nothing is done, the patient
avoids the risk of death by surgery. If the chance of having the disease is
high, surgery is appropriate if the risk of death by surgery is less than the
risk of having the disease. Finally an imaging test can be ordered and, if
negative, nothing is done, but if positive surgery is in order. Which of the
three alternatives should be taken? 

Decision theory can be used here if one has additional information. One
would need to know the probability of having the disease, the probability of
disease, if the test is positive, the probability of no disease if the test is negative,
the sensitivity and the specificity, and the chance of dying by surgery. 

Finally, one would need to know the life expectancy of the patient for the
following scenarios:

1.  Do nothing
a. When the disease is present
b. When disease it is not there 

2.  Surgery
a. When the disease is present and death by surgery
b. When the disease is present and no death by surgery
c. When the disease is not present and there is death by surgery 
d. When the disease is not present and there is no death by surgery

3. Imaging

a. When the test is positive, the disease is present, and death by
surgery

b. When the test is positive, the disease is present, and no death by
surgery

c. When the test is positive, the disease is not present, and there is
death due to surgery 

d. When the test is positive, the disease is not present, and there is
no death due to surgery

e. The test is negative and there is disease
f. The test is negative and there is no disease 

Therefore, the life expectancy must be specified for 10 scenarios, 2 for when
nothing is done, 4 when surgery is performed, and 6 under the imaging
alternative.
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Although decision theory can be helpful, one is faced with having to find
14 probabilities and 12 life expectancies. Where is such information found?
Once the information becomes available, the life expectancy under the three
alternatives can be computed, and the optimal alternative selected by choos-
ing the one with the smallest overall average life expectancy. This is summa-
rized in Table 9.18. (See Plevritis20 [Figure 1].)

For example, is the patient’s lifetime when the disease is present (D+),
while is the lifetime when the disease is present and there is death due
to surgery (S+). For the third alternative, is the lifetime when the imag-
ing test is positive (T+), the disease is present, and there is death due to
surgery, etc. 

One must find the values for the probabilities and average lifetimes. This
was done by Plevritis in an excellent introduction to decision making for
radiologists. These values are used in this presentation as follows. The
probabilities are represented as beta(a,b) random variables where the prob-
abilities are given by Plevritis. The probability is given by a/(a + b), where
a + b is the number of patients having the given probability, and the a + b
values are varied to reflect various levels of confidence in the probability
values. The lifetime is assumed to be an exponential random variable,
where the life expectancies are given in Table 2 of Plevritis. Once these are
given, the average life expectancy under the three scenarios can be com-
puted and the one with the smallest value selected as the optimal choice
of treatment. 

For example, the average value of is computed, assum-
ing P(D+) ~ beta(1,9), as exponential with mean 65, and as exponential
with mean 80 years; therefore, under the “do nothing” alternative, the life
expectancy is .1(65) + .9(80) = 78.5 years, assuming the two lifetimes are
independent. Note, that by assuming P(D+) ~ beta(1,9), one is assuming
there are 10 patients, one of which has disease. By varying a + b, one varies
the posterior standard deviation of the overall expected lifetime. It is inter-
esting how the test accuracy enters the computation for the average lifetime
for the test imaging alternative. For additional information on the decision
theory approach to diagnostic medicine, see Parmigiami21. 

TABLE 9.18

Lifetime for Three Alternatives

Option Lifetime

Do Nothing
Surgery +

Imaging

+

+

P D L P D L( ) ( )+ + −1 2

P D P S L P S L( )[ ( ) ( ) ]+ + + −3 4 P D P S L P S L( )[ ( ) ( ) ]− + + −5 6

P T P D T P S L P S L( ){ ( / )[ ( ) ( ) ]+ + + + + −7 8

P D T P S L P S L( / )[ ( ) ( ) ]}− + + + −9 10

P T P D T L P D T L( )[ ( / ) ( / ) ]+ + − + − −11 12

L1

L3

L7

P D L P D L( ) ( )+ + −1 2

L1 L2
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9.7 Exercises

9.1  Refer to Table 9.1 and Table 9.2. (a) Suppose the prevalence of breast
cancer among those eligible for the present study (say, from ages 35
to 60) is .05., then what is the posterior distribution of the TPF and
the FPF? (b) Is there a lower positive limit on the prevalence rate?
If so, estimate it. 

9.2 (a) Verify Table 9.4 and compute the 95% credible interval for each
parameter, and test the hypothesis that TPF for mammography is
greater than that for MRI. (b) Perform the posterior analysis of the
correlation between the detection probabilities of the two modalities.

9.3 Using Minitab, estimate the DP and FRP. (See Table 9.5.)
9.4 Referring to Table 9.5, the main hypothesis is that the .

Are the sample sizes sufficient? What are the implications for the
TPF of CT vs. X-ray?

9.5 The breast cancer screening trial with mammography and MRI was
paired, then compared to an unpaired layout for the national lung
cancer screening trial. Describe the advantages and disadvantages
of paired vs. unpaired designs. 

9.6 If a subset of the test negative subjects are subject to the gold stan-
dard, show that the TPF and FPF are biased upwards.

9.7 Show that Equation (9.7) follows from Bayes theorem.
9.8 Verify the posterior analysis of Table 9.8 and compare the 95% cred-

ible interval for the Bayesian analysis with the 95% confidence inter-
val for the TPF using result 7.4 of Pepe.6 Also find the posterior
mean, standard deviation, and the 95% credible interval for the FPF.  

9.9 Employing a uniform prior distribution for the four gamma param-
eters of Table 9.9, find the posterior distribution of the TPF. Use
Minitab or WinBUGS to generate observations from the joint poste-
rior distribution of the parameters. Are the posterior mean and stan-
dard deviation the same as those of Table 9.8? If not, explain why?
Of the two analyses (based on Table 9.7 and Table 9.9), which are
the most appropriate and which are the most misleading? Explain
your answers in detail.

9.10 The prior information for the stool exam parameters are s1 ~
beta(4.44,13.31) and c1 ~ beta(71.25,3.75) (see Joseph et al.7(p. 266)),
and when combined with the prior information for serology (see
Equation (9.9)) and the likelihood function Equation 9.10, the joint
posterior distribution is determined. Write a WinBUGS program and
perform the posterior analysis for the sensitivity and specificity of
both diagnostic tests and disease prevalence. Refer to the appendix
of the Joseph article. 

DP DPct x ray> −
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9.11 (a) Verify Table 9.15. (b) Test the hypothesis H:  1 vs. A:  > 1.
Is iNOS highly associated with survival? (c) Is the sample size suf-
ficient for testing H vs. A?

9.12 Extend the measure of association  Equation (9.14) between a diag-
nostic test and survival to include more than two ordinal diagnostic
scores.

9.13 Refer to formulas Equation (9.15) to Equation (9.18) and Obuchowski.2
(a) With the Bayesian approach, estimate the ROC area of the percent
transferrin saturation, assuming a uniform prior for the ROC area. (b)
Write a WinBUGS program that compares the ROC areas of the two
diagnostic tests. Do not ignore the correlation between the two areas. 

9.14 (a) Refer to Wu et al.9 and verify Figure 1 using formulas Equation
(9.25) and Equation (9.26) above. (b) From Table 9.16, is there evi-
dence that age affects the sensitivity? Test the relevant hypothesis.
(c) How well does the model fit the data? Describe the relevant
goodness of fit tests for adequacy of the Bayesian model.

9.15 From the literature, find other screening programs (heart disease
and lung cancer) and apply the concepts above to describe the tran-
sition probability from the disease-free state to the preclinical state,
the distribution of the sojourn time in the preclinical state, and the
time-dependent sensitivity function of the screening method (e.g.,
CT for lung cancer).

9.16 (a) Refer to Table 9.18 of Section 9.6 and write a WinBUGS program to
compute the average lifetime and the corresponding standard devia-
tions of the three alternatives. Assume the probabilities are beta random
variables and the lifetimes are exponentially distributed. Assume the
appropriate random variables are independent. (b) What alternative
gives the smallest life expectancy? The smallest standard deviation?
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