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Preface

I was fortunate to have a rich and diverse career in industry and academia. This
included working at International Harvester as supervisor of operations research in
the corporate headquarters; at IIT Research Institute (IITRI) as a senior scientist
with applications that spanned world-wide in industry and government; as a
professor in the Industrial Engineering Department at the Illinois Institute of
Technology (IIT), in the Stuart School of Business at IIT; and the many years of
consulting assignments with industry and government throughout the world. At
IIT, I was fortunate to be assigned a broad array of courses, gaining a wide breadth
with the variety of topics, and with the added knowledge I acquired from the
students, and with every repeat of the course. I also was privileged to serve as the
advisor to many bright Ph.D. students as they carried on their dissertation research.
Bits of knowledge from the various courses and research helped me in the
classroom, and also in my consulting assignments. I used my industry knowledge
in classroom lectures so the students could see how some of the textbook meth-
odologies actually are applied in industry. At the same time, the knowledge
I gained from the classroom helped me to formulate and develop solutions to
industry queuing applications as they unfolded. This variety of experience allowed
me to view how queuing theory is and can be used in industry. This book is based
on this total experience and also includes the quantitative methods that I found
doable and useful.

Thanks especially to my wife, Elaine Thomopoulos, who encouraged me to
write this book, and who gave consultation whenever needed. Thanks also to the
many people who have helped and inspired me over the years and some are former
IIT students from my queuing classes. I can name only a few here. Raida Abuizam
(Purdue University—Calumet), Bob Allen (R. R. Donnelly), Deepak Bammi
(Bammi Associates), Wayne Bancroft (Walgreens), Harry Bock (Florsheim Shoe
Company), Debbie Cernauskas (Benedictine University), Edine Dahel (Monterey
Institute), Ahmed El Melegy (Cairo University), Tom Galvin (Northern Illinois
University), Ranko Glisic (IIT), John Garofalakis (Patras University), Tom
Georginis (Lewis University), Shail Godambe (Motorola, Northern Illinois
University), M. Zia Hassan (Illinois Institute of Technology), Willard Huson
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(Navistar), Robert Janc (IIT Research Institute), Marsha Jance (Indiana Univer-
sity—Richmond), Chuck Jones (Illinois Institute of Technology), Arvid Johnson
(Domenican University), Montira Jantaravareerat (IIT), Tom Knowles (Illinois
Institute of Technology), Joachim Lauer (Northern Illinois University), Carol
Lindee (Panduit), Nick Malham (FIC Inc.), Barry Marks (IIT Research Institute),
Peter McManamon (IIT Research Institute), Fotis Mouzakis (Cass Business School
of London), Pissanu Manaspiti (Rangsit University), Pricha Pantumsinchai
(M-Focus), Noln Plumchitchom (IIT), Ted Prenting (Marist College), Athapol
Ruangkanjanases (Marist College), Walter Ryder (University of Southern
California), Hendrarto Supangkat (IIT), Ornlatcha Sivarak (Mahidol University),
Spencer Smith (Illinois Institute of Technology), Mark Spieglan (FIC Inc.), Paul
Spirakis (Patras University), Tongsakorn Vaivong (IIT), Reino Warren (University
of Michigan—Flint) and Colleen Wilder (Valparaiso University).

Nick T. Thomopoulos
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Fundamentals of Queuing Systems

Fundamentals of Queuing Systems describes the methods used to measure the
probabilities and statistics for a wide variety of queuing systems. The material is
timeless and the book will never become obsolete. The systems include infinite
and finite arrival populations, single and multiple service facilities, and queues that
are infinite, finite and none at all. Arrival times that are exponential and Erlang,
and service times that are exponential, constant, Erlang and arbitrary. The book
includes priority disciplines, 2 input populations, tandem systems, repeat service,
waiting time densities for single and multi server systems, and matrix solution
methods. The book introduces the concept of reusable inventory, service level,
how to use reduced equations, and how to apply matrix solutions to approximate
infinite queues. The book presents the basic topics that people want and should
know in the work place. The presentation is easy to read for students and
practitioners and there is little need to delve into difficult mathematical
relationships. Numerical examples are presented to guide the reader on applica-
tions. Practitioners will be able to apply the methods learned to designing queuing
systems in industry and government that even reach beyond this book. The typical
worker will want the book on their bookshelf for reference when needed. The
potential market is vast. It includes everyone in professional organizations like
IEEE, DSI and INFORMS, people in industry, and students in management
science, industrial engineering, electrical engineering and computer engineering.

Nick T. Thomopoulos has degrees in business (B.S.) and in mathematics
(M.A.) from the University of Illinois, and in industrial engineering (Ph.D.) from
Illinois Institute of Technology. He was supervisor of operations research at
International Harvester, senior scientist at IIT Research Institute, and is a professor
emeritus at Illinois Institute of Technology. He is the co-author of Assembly Line
Systems, Hayden Books, (1974), author of Applied Forecasting Methods, Prentice
Hall (1980), Inventory Management and Planning, Hitchcock Publishing Com-
pany (1990), and Quantitative Methods along the Supply Chain, Atlantic
Publishers and Distributors (2011). He has published numerous papers, and for
many years, he has consulted in a wide variety of industries in the United States,
Europe and Asia. Nick has received honors over the years, such as the Rist Prize in
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1972 from the Military Operations Research Society for new developments in
queuing theory, the Distinguished Professor Award in Bangkok, Thailand in 2005
from the IIT Asian Alumni Association, and the Professional Achievement Award
in 2009 from the IIT Alumni Association.

Nick T. Thomopoulos
Professor Emeritus

Illinois Institute of Technology
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Chapter 1
Introduction

Abstract This chapter provides a quick summary of the contents in each of the
remaining chapters. Also included is an early history on queuing theory, and a
large list of examples.

1.1 Introduction

Queuing theory is a form of probability that pertains to the study of waiting lines
(queues). This is for a system with a steady inflow of units (customers) and a
specified number of servers (service facilities). The analyst wants to know if the
number of service facilities in the system is adequate to handle the inflow of
demands. The goal is to calculate various performance measures of the system.
These include the probability a server is immediately available to a new arrival,
the average number of units in the queue, in the system, and the corresponding
times in the queue and system.

The word queue comes from the French interpretation of Latin cauda, meaning
a tail. According the Funk and Wagnall’s New International Dictionary, a queue is
‘‘a line of persons or vehicles waiting in the order of their arrival.’’ The word
queue is the common way to refer to a line in England.

1.2 The Queuing System

A typical queuing system includes the following components:

Input population = the source of units that become the customers to the system.
Arrivals = the units from the population that enter the system seeking

service.

N. T. Thomopoulos, Fundamentals of Queuing Systems,
DOI: 10.1007/978-1-4614-3713-0_1, � Springer Science+Business Media New York 2012
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Queue = the line that houses the units that are awaiting their turn to be
serviced.

Service facilities = the place where the units are processed.
Departures = the units that have completed their service and leave the

system.

A depiction of the queuing system is below in Fig. 1.1.

1.3 Early Literature

Agner Krarup Erlang (1878–1929), a Danish mathematician, invented the fields of
traffic engineering and queuing theory starting in the 1900s. While working for the
Copenhagen Telephone Company, he was confronted with the classic problem of
determining how many circuits were needed to provide an acceptable telephone
service. He formed the mathematical way of determining how many telephone
operators were needed to handle a given volume of calls. He is the founder on the
theory of telephone traffic and over his career, he published papers, starting in
1909, that became the foundation of queuing theory. He also developed the Erlang
probability distribution, which plays a significant role in various queuing
applications.

Queueing theory is now an important branch of operations research and has
many applications. It measures the flow of demands into and out of the queuing
system, and thereby is used to make decisions on the minimum number of resources
needed. Queuing theory is used in business, engineering, public service, traffic,
healthcare, finance and the military. A vast number of applications in all fields have
been implemented and published since Erlang. Only a few are named here.

In 1953, David G. Kendall introduced Kendall’s notation to describe the
characteristics of a queuing system. This A/B/C notation is standard in queuing
theory. The A/B/C code identifies a system where: A is the arrival time distri-
bution, B is the service time distribution, and C is the number of servers.

In 1961, Thomas L. Saaty, authored one of the first comprehensive books on
queuing theory. Another early and informative publication was by Phillip M.
Morse in 1958.

In the 1960s, Leornard Kleinrock used queuing theory to applications on
packed switching networks. His developments have evolved as the foundation in
the birth of the Internet. In 1969, his Host computer became the first node of the
Internet, and it was from there that he directed the transmission of the first message
to pass over the Internet.

service

input queue    facility(s)

population arrivals x..…x      [x] departures→ → →

Fig. 1.1 A typical queuing
system
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In 1990, Thomopoulos’ book ‘‘Strategic Inventory Management and Planning’’
included many tables with measurements from a wide variety of queuing systems.
The book introduced the concept of reusable inventory. The servers in the queuing
systems can be thought of as reusable inventory that are used to fill the customer
demands and do not leave the firm’s possession once a demand is fulfilled. This
type of inventory demand takes place when a demand occurs for use of the item
and, and upon completion, the item remains to meet the next demand. When a
demand cannot immediately enter the service facility, the demand is either in a
backorder state or is a lost sale.

1.4 Some Applications

Applications in queuing theory are vast and vital. Through the use of queuing
theory, management can design a system that runs smoothly and efficiently, with
minimum waiting time for the customers and minimum idle time for the facility.
Various applications in the use of queuing theory follow:

Backorder Applications: If all of the reusable inventory items are occupied
when a demand arrives, and if the demand will or can wait, in essence the
demand enters the queue and is in a backorder state. These are systems with an
infinite queue length, or a finite queue length when space in the queue is still
available. The common goal is to determine the number of service facilities to
have available to efficiently service the customers with minimal waiting time.
Some examples are:

• In a manufacturing plant, forklift trucks are used in running the daily operations.
As each forklift truck need arises, the next available forklift truck performs the
task and upon completion, awaits the next task, and in this way, the forklift
trucks are the service facilities.

• In a similar way, specialized tools, fixtures and machines are needed to run the
manufacturing operation and they then become the service facilities for the system.

• In a shoe factory, a large (and expensive) inventory of molds (called lasts) are
needed in the manufacturing process. Each last is dedicated to a specific pair of
shoes (by style and size). A pair of lasts remain in a pair of shoes for about two
days in manufacturing, and thereby a large inventory of lasts are needed. An
important decision for the management is to determine the composition of lasts
(by style and size) to have in the plant inventory to allow the shoe scheduling to
carryon in an efficient manner. The lasts become the service facility items in the
plant.

• In distribution centers, examples of reusable inventory items (service facilites)
are the binding machines, forklift trucks, receiving docks, shipping docks and
order picking personnel.

• In a service repair shop, the service facilities (reusable items) are the specialized
tools, fixtures and operators.

1.3 Early Literature 3



• In an office, examples of service facilities are fax machines, computer terminals,
copy machines and printers, as well as the operators who repair and maintain
these items.

• In retail locations (dealers and stores), the reusable items (service facilities)
include the checkout counters, sales clerks, gas pumps in a gas station, push
carts (in a grocery store) and tables (in a restaurant).

Lost Sales Applications: If a customer arrives to a system when all the service
facilites are occupied, and if the customer cannot or will not wait, the system is
classified as a lost sale state. This would be a system with no queue, or with a finite
queue space when the queue is full. A common goal is to determine the number of
service facilities to have available to minimize the number of lost customers.
Various examples are listed below:

• In the event all the pump locations in a gas station are occurpied with cars, and
when new customers will not wait for an empty pump, the potential customers to
the station become lost customers. In this situation, the gas pumps are the
service facilities.

• A restaurant will lose potential customers when all tables are occupied, and
when new customers will not wait for an empty table and go elsewhere. The
tables are the service facilities in this system.

• A rental agency loses a sale when a potential customer finds that all units of the
item sought are leased out, and the customer goes elsewhere for the item. Each
of the rental items in the agency become service facilities.

• A sales office with a limited number of phone lines may lose potential customers
that call the office when all of the lines are busy. The office manager may
wonder how many lines to have available to handle all the potential calls.

• In a car dealership, the typical customer insists on a loaner car in order to leave
his/her auto at the facility for repair. The loaner cars become the service
facilities at the dealership.

Other Applications: More uses of queuing theory are described below.

• A city is partitioned into a finite number of patrol beats that are designed from a
contiguous set of blocks so that one patrol car can efficiently service the expected
number of calls in the beat. The projected number of calls by block are summed
to determine the projected calls for the patrol beat. The number of beats and the
beat configurations usually vary by hour of day, day of week and month of year.

• On an expressway, the number of tollbooths to have open by day of week and
hour of day are scheduled to minimize delays for the incoming traffic, and also
to minimize idle time of the tollbooth operators.

• The scheduling frequency of aircraft in and out of an airport depends on the
number of runways available. The concern at the airport is to minimize the wait
time for the arriving (in the air) aircraft, and the departing (on the ground)
aircraft. The runways of the airport are the service facilities, and so also are the
airport controllers, and all the auxiliary crews that service arrival and/or
departure flights.
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• In a windshield manufacuting plant, an inventory of molds for each car model
and year is used in the manufacturing process. One mold is needed to produce
one windshield. The molds are expensive and take up much space. A forecast
(on new cars and on cars that need replacements for damaged windshields)
projects the demands (by car model and year) for the future time horizon. The
forecast is needed to determine how many of each mold (by car model and year)
to have in the plant inventory to efficiently run the windshield manufacturing
operation.

More Applications: Below lists some more application of queuing theory.

• A bank wants to determine how many teller booths to have open to service the
customers by hour of the day, and by day of week.

• Airport management wants to know how many crews to have available at an
airport to maintain and clean the just-arrived aircraft for ready status as a
departing aircraft.

• An ambulance service facility seeks to know how many ambulance crews to
have in its district to meet the calls for service.

• The management of a distribution center wants to know how to allocate a fixed
number of receiving docks by category of incoming trucks such as: truck-load,
less-truck-load, UPS, local delivery, and so forth. The goal is to minimize the
incoming trucks idle time in the yard awaiting their turn to the receiving
docks.

• A military commander wants to know the number of medics to have available in
a combat setting in order to reduce the time to service the wounded combatants.

• An architect inquires on the number and size of elevators in a multi-story office
building to accommodate the day and hourly flow of people.

• An architect needs to know how many washrooms to include in the design for a
ballpark, and further, how many stools, urinals and sinks should be available
within each washroom facility.

• A manager of a large grocery store wants to know how many employees to
assign to the delicatessen counter to service the customers.

• A postal manager seeks to determine the number of postal windows to have
open in a post office by day and hour of the week, to minimize the wait time of
the arriving customers.

• An architect inquires how many parking spaces to have available in a shopping
center to efficiently service the arriving customers.

• A military logistics officer wants to know how many radio frequencies in their
comunication system are needed for a fleet of ships to allow operators to send
and receive messages with minimal delay time across a series of networks that
share the radio frequencies. The radio frequencies become the service
facilities.

• The military logistics officer also seeks how to allocate the radio frequencies to
the various networks in the fleet of ships.

• A military logistics officer officer wants to know how many repair stations
should be available to service the key equpment in a military operation.
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1.5 Chapter Summaries

This book provides solutions to a wide variety of queuing systems. The following
is a quick summary of the contents in each of the remaining chapters. By
reviewing the queuing systems of this book, and following the methods of solu-
tion, the reader should be able to expand the methods to a wider spectrum of
systems than are shown here.

Chapter 2 gives a summary on some of the key mathematical and probability
concepts that are needed as a foundation for the remaining chapters. The chapter
introduces the concepts that are used in the subsequent text so that they do not
need to be repeated throughout the book. This includes a definition of the
Poisson, Exponential and Erlang distributions and how they are related to each
other. The chapter also lists the Postulates that are needed to define a queuing
system. The postulates are used to identify a particular queuing system by way
of difference equations. The difference equations yield the differential and
equilibrium equations and finally the reduced equations. The equilibrium and/or
the reduced equations are needed to generate the probability distribution on the
number of units in the system, and then the various performance measures.

Chapters 3–5 describe systems where one service facility is in place. The input
and output times are exponential. These chapters concern systems with an infinite
queue, a finite queue and with no queue. An infinite queue example could be the
airline passengers arriving to a security checkpoint in the airport. The checkpoint
is the service facility and the passengers are the arrivals. A finite queue example is
a one-man barbershop with three seats for the waiting customers. A no queue
example is a rental store with one electric saw available for rental customers to
check out. The saw is the service facility and the rental time becomes the service
time. When the saw is out, future customers will not wait and go elsewhere.

Chapters 6–8 pertain to systems with a multiple number of service facilities. The
input and output times are exponential. They are for systems with an infinite queue,
a finite queue and no queue. An infinite queue example could be the cars on an
expressway arriving to a toll center with three tollbooths. A finite queue example is
a beauty shop with two hair stylists and with room for only five customers in the
shop. A no queue example is a phone system in a real estate company with a five
lines available to receive calls. When all lines are busy, any new call is lost.

Chapters 9 and 10 show how to analyze a one server system when the service
times are from an arbitrary distribution. An example is a lift truck in a warehouse
that hauls stock from the receiving dock to the storage area where the hauling time
is normally distributed and not exponential. The lift truck is the service facility.
Another example are the calls for service to a squad car in a one car patrol beat,
where some calls are for minor scrapes and others are major incidents and the
combined service times are not exponential.

Chapters 11 and 12 pertain to systems that have a limited number of units in the
input population. These may be M machines in a shop that occasionally require
service from one or R repairmen. This could be a firm with five copy machines and
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one repairman. Another example is a taxi fleet of 100 cabs with four service
mechanics on duty to maintain and repair the cabs as needed.

Chapters 13 and 14 describe systems where the service of a unit may have to be
repeated. These are for systems that have one server, and that have multi servers,
respectively. An example of the former may be a one operator machine shop
fabrication of a fixture that is tested at the end to see if it passes a strength test. If
not, another fixture must be fabricated. An example of the latter is a warehouse
with several order pickers that receive customer orders. When an order is picked
incorrectly it must be repeated.

Chapter 15 introduces a series of two systems where the arriving units goes from
one system to another in a tandem way to receive processing. An example would be
the patients arriving to a medical center where the first system is filling out the paper
and insurance forms, and the second system is getting the medical attention.

Chapters 16 and 17 describe systems where the service discipline behaves in a
preemptive priority way. The systems described are for exponential and arbitrary
service times. An example could be a military unit using a one-frequency radio
system where the top commander could interrupt any ongoing call whenever
needed. Another example concerns the patients coming to an emergency clinic
where some need immediate emergency treatment and others do not. The emer-
gency patients override the non-emergency patients.

Chapter 18 shows how to analyze a system when the service time is constant.
An example would be cars arriving to a carwash where the service time is always
the same.

Chapters 19–21 describe systems when one or both of the arrival and service
times are Erlang distributed. An example would be a jogging shoe manufacturer
that uses a mold (called a last) to produce a shoe of a certain size and width. The
arrival time between needs for the mold is exponential, and the time to use
the mold on the shoe is Erlang. An example of Erlang arrivals and exponential
service may be trucks that arrive to a receiving dock with one unloading crew.
As the trucks come in, the crew unloads each truck in the order of arrival. Here, the
crew is the service facility. An example of Erlang arrivals and service is a furniture
store where, on each sale, the store has a stockman who fetches the item in
the back storage area of the store, brings it to the customer’s vehicle and helps to
load the item in the vehicle. In this situation, the stockman is the service facility.

Chapters 22 and 23 show how to derive the waiting time density for a one
server system and for a multi server system, respectively. An example with one
service facility is when a moderate size city designs a beat for a squad car and
wants to determine the probability that at least 90 percent of the calls received for
the beat can begin service before 10 minutes. The squad car is the service facility
and the calls within the beat are the arrivals. A multiple service facility example is
when a package delivery service wants to determine the number of delivery
vehicles to have in its fleet so the probability that a delivery begins within
20 minutes of the call. For a given number of vehicles, the probability is measured.
If the probability is too high, another vehicle is added and the probability is again
measured.
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Chapter 2
Preliminary Concepts

Abstract This chapter describes the mathematical and probability concepts
that are the foundation for the remaining chapters of the book. This includes the
Poisson, Exponential and Erlang distributions, the Postulates that define a queuing
system, and also the difference, differential, equilbrium and reduced equations.
The equilibrium and/or the reduced equations are used to generate the probability
distribution on the number of units in the system, and the various performance
measures of the system.

2.1 Introduction

This chapter gives an overview on some of the key mathematical and probability
concepts that are used in queuing theory. The chapter introduces the concepts that are
used in the subsequent text so that they do not need to be repeated throughout the
book. This includes a definition of the Poisson, Exponential and Erlang
distributions and how they are related to each other. The chapter also lists the Pos-
tulates that are needed to define a queuing system. The postulates are used to identify
a particular queuing system by way of difference equations. The difference equations
yield the differential and equilibrium equations and finally the reduced equations.
The equilibrium and/or the reduced equations are needed to generate the probability
distribution of n units in the system, and then the various performance measures.

2.2 Some Useful Relations

Some of the identities that are used in developing the queuing models are listed
here. Equations 2.1–2.3 are identities of infinite sums that apply when 0 \ h\ 1.
Equations 2.4–2.8 are identities that concern finite sums, and Eq. 2.9 is an identity
that pertains to the exponent term.

N. T. Thomopoulos, Fundamentals of Queuing Systems,
DOI: 10.1007/978-1-4614-3713-0_2, � Springer Science+Business Media New York 2012
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X
k� 0

hk ¼ 1=ð1� hÞ ð2:1Þ
X

k� 0
khk ¼ h=ð1� hÞ2 ð2:2Þ

X
k� 0

k2hk ¼ hð1þ hÞ=ð1� hÞ3 ð2:3Þ

XN

k¼1
1 ¼ N ð2:4Þ

XN

k¼1
k ¼ N Nþ 1ð Þ=2 ð2:5Þ

XN

k¼1
k2 ¼ N Nþ 1ð Þ 2Nþ 1ð Þ=6 ð2:6Þ

XN

k¼0
xk ¼ 1� xNþ1

� �
= 1� xð Þ x 6¼ 1 ð2:7Þ

XN

k¼0
kxk ¼ x 1� Nþ 1ð ÞxN þ NxNþ1

� �
= 1� xð Þ2 x 6¼ 1 ð2:8Þ

eax ¼
X

k� 0
ðaxÞk=k! ð2:9Þ

2.3 Exponential Distribution

Consider a random variable t that is continuous with t C 0 and follows the
exponential distribution. The probability density of t is f(t) = he-ht, and the
corresponding cumulative distribution is F(t) = 1 - e-ht. For the exponential
variable t, the expected value and variance are E(t) = 1/h, and V(t) = 1/h2,
respectively.

2.4 Poisson Distribution

The Poisson probability distribution has a discrete variable n where n = 0, 1, 2,….
The probability distribution of n is Pn = hne-h/n!. The expected value and vari-
ance of n are E(n) = h, and V(n) = h, respectively.

The Poisson distribution can also be defined in units of time t. In this situation,
the discrete variable n represents the number of occurrences in time t. The
probability of n units in time t becomes,

P n,tð Þ ¼ ðhtÞne�ðhtÞ=n!:
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2.5 Relation Between the Exponential and Poisson Distributions

The Poisson distribution and the exponential distribution are related as shown
here. Recall the exponential probability density is

f tð Þ ¼ he�ht

Suppose s is exponential with expected value 1/h, and n is Poisson with mean h.
From the exponential,

Pðs[ tÞ ¼ 1� F tð Þ
¼ e�ht

¼ P n ¼ 0 in tð Þ
¼ P 0; tð Þ

where the latter is Poisson. Also, note below, where the probability of n units in
time t, P(n,t), becomes Poisson.

P 0; tð Þ ¼ e�ht

P 1; tð Þ ¼
Z t

s¼0

Pð0; sÞ fðt� sÞds ¼ hte�ht

P 2; tð Þ ¼
Z t

s¼0

Pð1; sÞ fðt� sÞds ¼ ðhtÞ2e�ht=2!

. . .

P n; tð Þ ¼
Z t

s¼0

Pðn� 1; sÞ fðt� sÞds ¼ ðhtÞne�ht=n!

In the following discussion, h is replaced with k for arrival times. So when the
arrivals to a system are exponential with an average time of 1/k the number of
units that arrive to the system in a unit of time is Poisson distributed with an
average of k. In the same way, if the number of units that arrive to a system is
Poisson with parameter k, the time between arrivals is exponential with an average
of 1/k.

In the following discussion, h is replaced with l for service times. Hence, when
the time to process the units is exponential and the average service time is 1/l, the
number of units that are serviced, during a continuously busy span of time, is
Poisson distributed with an average of l in a unit of time. If the units coming out
of a continuously busy service facility is Poisson with a parameter of l, the time to
service the units are exponential with an average of 1/l.

2.5 Relation Between the Exponential and Poisson Distributions 11



2.6 Convolution of Two Poisson Variables

Consider two Poisson random variables, x1 and x2, with parameters h1 and h2,
respectively. Now assume another variable x = x1 ? x2 is formed. Note the
convolution below.

P xð Þ ¼
Xx

x1¼0

P x1ð ÞP x� x1ð Þ

¼
Xx

x1¼0

e�h1hx1
1 =x1!

� �
e�h2hx�x1

2 = x� x1ð Þ!
� �

¼ e�ðh1þh2Þhx
2

Xx

x1¼0

ðh1=h2Þx1= x1! x� x1ð Þ!½ �

¼ e�ðh1þh2Þðh1 þ h2Þx=x!

Thus, x is also Poisson with parameter (h1 ? h2).

2.7 Erlang Distribution

In some queuing systems, the time associated with arrivals and service times is
assumed as an Erlang continuous random variable. The Erlang variable has
two parameters, h and k. The parameter k represents the number of exponential
variables that are summed together to form the Erlang variable. Note, if y is an
exponential variable with E(y) = 1/h, and x is the sum of k y’s, then

x = (y1 ? … ? yk),

and the expected value of x becomes,

E(x) = kE(y) = k/h.

Further, the variance of x, denoted as V(x), is derived from adding k variances of
y, V(y), as below:

V(x) = kV(y) = k/h2

Note, when k = 1, the Erlang variable is the same as an exponential variable where
the mode is zero and the density is skewed to the right. As k increases, the mode moves
further away from zero and becomes less skewed to the right. As k increases, the shape
of the Erlang density starts to resemble a normal density, via the central limit theorem.

2.8 Memory-Less Property of the Exponential Distribution

Recall, when a random variable t is exponential, the probability density is

f(t) = he-ht
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and the cumulative distribution is

F(t) = 1 - e-ht

For a time increment h, the probability that t is larger than h becomes

P(t [ h) = e-hh

At t = (t0 ? h), the probability t is larger than (t0 ? h) is

P(t [ t0 ? h) = e-h(t0 + h)

The conditional probability of t [ (t0 ? h) given t [ t0 is

P(t [ t0 ? h|t [ t0) = e-h(t0 + h)/e-ht0 = e-hh

Note the probabilities P(t [ t0 ? h|t [ t0) and P(t [ h) are the same, i.e.,

P(t [ t0 ? h|t [ t0) = P(t [ h) = e-hh

Because the two probabilities are the same, the exponential distribution is
called a memory-less probability distribution.

2.9 Cumulative Distribution for a Small Increment h

Consider time t that follows the exponential distribution, and observe, for a particular
time increment h, the cumulative distribution of h becomes F(h) = 1 -e-hh.
Note the expression for F(h) can be converted using Eq. (2.9) above in the following
way.

F hð Þ ¼ P t\hð Þ ¼ 1� e�hh

¼ 1� ½ð�hhÞ0=0!þ ð�hhÞ1=1!þ ð�hhÞ2=2!þ . . .�
¼ 1� ½1þ ð�hhÞ1=1!þ ð�hhÞ2=2!þ . . .�
¼ hh � ½ð�hhÞ2=2!þ ð�hhÞ3=3!þ . . .�
¼ hhþ o hð Þ

where

o(h) = -[(-hh)2/2! ? (-hh)3/3! ? …]

Note o(h) is a function that approaches zero faster than h. That is

Lim
h!0
fo hð Þ=hg ¼ 0

Thereby, as h approaches zero, o(h) also approaches zero. This expression
concerning the probability distribution of h is applied subsequently to define the
postulates in the queuing analysis.

2.8 Memory-Less Property of the Exponential Distribution 13



2.10 Probability Postulates

Assume a queuing system where the arrivals follow an exponential distribution
and the average time between arrivals is 1/k. As shown above, the probability that
the time between two arrivals is h or less becomes [kh ? o(h)]. Also, we assume
the service time follows an exponential distribution with an average service time
of 1/k. Hence, the probability is [lh ? o(h)] that the service time is less than h.
Also consider the two events: A = event of an arrival in time interval h, and
D = event of a departure in time interval h.

Now note the probabilities listed below that concern the events of A and D
during the time interval from t to t ? h, and denoted here as (t, t ? h). Recall, h
approaches zero.

P[A in (t,t ? h)] = [kh ? o(h)]
P[D in (t,t ? h)] = [lh ? o(h)]
P[neither A or D in (t,t ? h)] = [1 - kh - o(h)][1 - lh - o(h)] = [1 - kh -

lh ? o(h)]
P[2 or more A and/or D in (t,t ? h)] = o(h)

These four probabilities are the postulates that define most of the queuing
systems that follow.

2.11 Difference Equations

Consider a queuing system with one service facility, infinite queue length, with
exponential arrival times with an average of 1/k and exponential service times with an
average of 1/l. The difference equations specify how the system operates. This is the
first step to define a queuing system. The difference equations specify how the
probability of n units in the system may change as time goes from t to (t ? h), denoted
as (t,t ? h), and where h is a very small increment of time. The number of units n in
the system at any time period are integers of n C 0. As described earlier, o(h) is a
function that approaches zero faster than h. The difference equations are below:

n = 0 P0(t ? h) = (1 - kh)P0(t) ? lhP1(t) ? o(h)
n C 1 Pn(t ? h) = (1 - kh - lh)Pn(t) ? khPn-1(t) ? lhPn+1(t) ? o(h)

2.12 Differential Equations

Differential equations are obtained from the difference equations when the time
increment h approaches zero. They are needed in an interim manner to subsequently
yield the equilibrium equations. To convert, the three identities listed below are
applied. The first shows how the derivative is formed. The second expresses the
probability without the increment of h, and the third concerns the function o(h).
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Lim
h!0

Pn tþ hð Þ � Pn tð Þ½ �=hf g ¼ Pn tð Þ0

Lim
h!0

khþ lh½ ÞPn tð Þ�=hf g ¼ kþ lð ÞPn tð Þ½ �
Lim
h!0
fo hÞ=hg ¼ 0ð

Thus, as h approaches zero in the difference equations, the following set of the
differential equations evolve:

2.13 Equilibrium Equations

The equilibrium equations are obtained by studying what happens to the differ-
ential equations when time t approaches infinity under equilibrium conditions. The
two identities below are used in this process.

Lim
t!1

Pn tð Þ0
� �

¼ 0

Lim
t!1

Pn tð Þf g ¼ Pn

Applying the above identities to the differential equations yields the following
equilibrium equations:

2.14 Reduced Equations

Algebra is needed at this point to transform the equilibrium equations to reduced
equations as is shown here. Note below where the equilibrium equations for n = 0,
1, 2, say, are listed on the left-hand-side, and the corresponding reduced equations
are on the right-hand-side. When n = 0, the equilibrium equation and the associ-
ated reduced equation are the same. For n C 1, the reduced equation for n is derived
from the corresponding (n) equilibrium equation and the (n - 1) reduced equation.

n = 0 P0(t)0 = (-k)P0(t) ? lP1(t)
n C 1 Pn(t)0 = (-k-l)Pn(t) ? kPn-1(t) ? lPn+1(t)

n = 0 0 = -kP0 ? lP1

n C 1 0 = -(k ? l)Pn ? kPn-1 ? lPn+1

2.12 Differential Equations 15



The general form for the reduced equations becomes the following:

2.15 Probability of n Units in the System (Pn)

The common notation in queuing is to use n as the number of units in the system at
an arbitrary moment in time. In this way, n is discrete where n is zero or larger.
One measure of interest in studying queuing systems is the probability of n units in
the system, and this is denoted as Pn for n C 0.

2.16 Performance Measures

Some of the other measures of interest in queuing systems are listed below:

Po = probability the system is empty
Ls = expected number of units in the service facility
Lq = expected number of units in the queue
L = expected number of units in the system
Ws = expected time in the service facility
Wq = expected time in the queue
W = expected time in the system
Wq0 = expected time in the queue given the arrival is delayed
SL = service level = probability the arrival is not delayed in the queue
Ploss = probability an arrival is lost (does not enter the system)

2.17 Wait Time in Queue Given a Delay (Wq0)

Using conditional expectation notation, Wq0 = Wq|D where D is the event that the
arrival is delayed waiting in the queue before being serviced. Using the same
notation, D0 = event the arrival is not delayed. In general,

n = 0 0 = -kP0 ? lP1 ) 0 = -kP0 ? lP1

n = 1 0 = -(k ? l)P1 ? kP0 ? lP2 ) 0 = -kP1 ? lP2

n = 2 0 = -(k ? l)P2 ? kP1 ? lP3 ) 0 = -kP2 ? lP3

0 = -kPn-1 ? lPn n C 1
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Wq|D = wait time in queue given delay
Wq|D0 = wait time in queue given no delay
and
P(D) = probability of a delay
P(D0) = probability of no delay
The relation between the waiting time (Wq) and the conditional waiting times
(Wq|D0,Wq|D) is below:
Wq = Wq|D0P(D0) ? Wq|DP(D)
Since, Wq|D0 = 0,
Wq0 = Wq|D = Wq/P(D)

2.18 Little’s Law

In 1961, John Little published a paper showing that the expected number of units
in the system, L, is related to the expected time in the system, W, by L = kW, as
long as the arrival rate k is constant. In the same way, the following three relations
are established:

Using Little’s Law,

2.19 Kendall’s Notation

In queuing theory, Kendall’s notation is the standard way to describe and classify
the queuing systems. This method of classifying the systems was first suggested by
D. G. Kendall in 1953 as a three-factor A/B/C notation system for identifying
queues. It has since been extended to include up to six different factors.

The 3 factor notation (A/B/C) signifies the following:

A = arrival process
B = service time process
C = number servers

L = kW = expected number of units in the system
Ls = kWs = expected number of units in the service facility
Lq = kWq = expected number of units in the queue

W = L/k = expected time in the system
Ws = Ls/k = expected time in the service facility
Wq = Lq/k = expected time in the queue

2.17 Wait Time in Queue Given a Delay (Wq0) 17



The six (6) factors (A/B/C/K/N/D) go even further where the latter three factors
denote the following:

The arrival and service time factors (A,B)are denoted as below:

M = Markovian (Poisson or Exponential)
D = deterministic
Ek = Erlang with k stages
G = general

The service discipline (D)may take on the notation given below:

FIFO = first-in first-out
LIFO = last-in first-out
Random
Priority = preemptive or non-preemptive

Bibliography

Kendall, D. G. (1953). Stochastic processes occurring in the theory of queues and their
analysis by the method of the imbedded Markov chain. Annals of Mathematical Statistics,
24(3), 338–354.

Little, J. D. C. (1961). A proof of the queuing formula L = kW. Operations Research, 9(3), 383–
387.

K = number places in system (assume K = infinity unless specify other)
N = calling population (assume N = infinity unless specify other)
D = service discipline (assume non-priority unless specify other)
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Chapter 3
One Server, Infinite Queue (M/M/1)

Abstract This chapter pertains to a one-server, infinite capacity system with
exponential inter-arrival and service times. Could be the airline passengers
arriving to a security checkpoint in the airport. The checkpoint is the service
facility and the passengers are the arrivals. The difference, equilibrium and
reduced equations are listed. The probability on n units in the system, and the
corresponding performance measures are developed. Examples are presented to
guide the reader.

3.1 Introduction

Consider a system with one server and an infinite queue where the inter-arrival
and the service times have exponential probability densities. The average time
between arriving customers is 1/k and the average service time is 1/l. This could
be cars arriving to a drive-through lane at a fast-food restaurant during the morning
hours. The following notation applies here:

sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
q = ss/sa = k/l = utilization ratio
q\ 1 is needed to assure the system is in equilibrium
n = number of units in the system (n C 0)

Below is a list of the difference equations. Following are the corresponding
equilibrium equations and then the reduced equations.

N. T. Thomopoulos, Fundamentals of Queuing Systems,
DOI: 10.1007/978-1-4614-3713-0_3, � Springer Science+Business Media New York 2012
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3.2 Difference Equations

n ¼ 0 P0 tþ hð Þ ¼ ð1� khÞP0 tð Þ þ lhP1 tð Þ þ o hð Þ
n � 1 Pn tþ hð Þ ¼ ð1� kh� lhÞPn tð Þ þ khPn�1 tð Þ þ lhPnþ1 tð Þ þ o hð Þ

3.3 Equilibrium Equations

n ¼ 0 0 ¼ �kP0 þ lP1

n � 1 0 ¼ �ðkþ lÞPn þ kPn�1 þ lPnþ1

3.4 Reduced Equations

0 ¼ �kPn�1 þ lPn n � 1

3.5 Probability on n Units in the System

Using the reduced equations and the notation q = k/l, the probability of n units in
the system becomes.

Pn ¼ k=lPn�1 ¼ qPn�1 n � 1

It is observed that

P0 = q0 P0

P1 = qP0 = q1 P0

P2 = qP1 = q2 P0

and so forth, whereby,

Pn ¼ qnPo n� 0

Because all the probabilities sum to unity,
P

n� 0 Pn ¼ Po

P
n� 0 qn ¼ 1

Recall where q\ 1 because of equilibrium. This allows applying (2.1) to the
above relation to yield,

20 3 One Server, Infinite Queue (M/M/1)
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Po

P
n� 0

qn ¼ Po1=ð1� qÞ ¼ 1

Thereby,

P0 = (1-q).

Finally, the probability of n units in the system becomes

Pn ¼ qnð1� qÞ n� 0

3.6 Probability the System is Idle

The probability the system is empty is merely the probability that n = 0, i.e.,

Po ¼ ð1� qÞ:

3.7 Expected Units in the Service Facility (Ls)

A handy relation concerns the expected number of arrivals A and departures D,
that occur in a specified time interval T, is shown in the two probability expres-
sions below.

E A in Tð Þ ¼ kT P0 þ P1 þ . . .½ � ¼ kT
E D in Tð Þ ¼ lT P1 þ P2 þ . . .½ � ¼ lT 1� Poð Þ ¼ lT Ls

Note the latter expression is related to both P0 and Ls. Further, since the system
is in an equilibrium state, E(A in T) = E(D in T), and thereby

kT = lT(1-Po) = lT Ls
Po = (1-k/l) = (1-q)

and

Ls = q.

3.8 Expected Units in the Queue (Lq)

The expected number of units in the queue is obtained with use of (2.2) as below,

Lq ¼
X

n� 1

n� 1ð ÞPn ¼
X

n� 1

n� 1ð Þqnð1� qÞ ¼ q2= 1� qð Þ
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3.9 Expected Units in the System (L)

The expected number of units in the system (service facility plus queue) is

L ¼ Ls þ Lq ¼ q= 1� qð Þ

3.10 Expected Time in Service (Ws), Queue (Wq)
and System (W)

Using Little’s Law,

Ws ¼ Ls=k ¼ 1=l
Wq ¼ Lq=k ¼ q= l 1� qð Þ½ �
W ¼ Ws þ Wq ¼ 1= l 1� qð Þ½ �

3.11 Expected Time in the Queue Given a Delay (Wq0)

Another useful system statistic is the expected time in the queue for an arrival
that is delayed in the queue. Note that an arrival that is not delayed will not
have to wait in the queue. Wq is the average of both of these events. So it is
helpful to introduce the events D and D0, where D = the event a new arrival is
delayed, and D0 = the event of not delayed. Note the probabilities for these
events,

P D0ð Þ ¼ Po ¼ 1� q

P Dð Þ ¼ 1� Poð Þ ¼ q

The corresponding conditional waiting times in the queue are:

WqjD0 ¼ wait time in queue given no delay
WqjD ¼ wait time in queue given delay

The relation between the waiting time (Wq) and the conditional waiting times
(Wq|D0,Wq|D) is below:

Wq ¼ WqjD0P D0ð Þ þ WqjDP Dð Þ
Since WqjD0 ¼ 0;
Wq0 ¼ WqjD ¼ Wq=P Dð Þ ¼ Wq= 1� P0ð Þ ¼ Wq=q

22 3 One Server, Infinite Queue (M/M/1)



3.12 Service Level

The service level (SL) is the probability a new arrival does not wait for service.
In this one server system, this is merely P0, the probability the system is empty. Hence,

SL ¼ P0:

Example 3.1
Suppose a one-service facility system with infinite capacity, and with exponential
arrival and service times. The average time between arrivals is 10 min, and the
average time per service is 8 min. Some of the key probabilities and statistics
associated with this system are listed below.

Input:
One server
Infinite capacity
Exponential input and output
sa = 10 min = average time between arrivals
ss = 8 min = average service time

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
k = 60/sa = 6 per hour
l = 60/ss = 7.5 per hour
q = k/l = 0.80 = utilization ratio
Pn = (.20).80n n C 0
Po = 0.2000
P1 = 0.1600
P2 = 0.1280
P3 = 0.1024
…
Ls = 1-Po = 0.80
Lq = 3.20
L = Lq ? Ls = 4.00
Ws = Ls/k = 8 min = 0.1333 h
Wq = Lq/k = 32 min = 0.5333 h
W = Wq ? Ws = 40 min = 0.6666 h
Wq0 = 40 min = 0.6666 h
SL = 0.20 = service level
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Example 3.2
Consider a one-man grease and oil shop that is open 10 h a day, where customers
arrive on average every 10 min, and the average service time is 8 min. All is
exponential. The average fee is $40 per car, and the average labor cost is $40 per
hour. The owner wants to know what changes occur if he buys new equipment, at
$50,000, that will allow him to reduce the average service time to 4 min. With the
new equipment, he projects customers will come more often with an average
arrival time of 8 min. Note the following measures below:

Input:
One-server
Infinite capacity
Exponential input and output
10-hour day
Average fee = $40 per car
Average labor cost = $40 per hour

Current Proposed
Capital cost $50,000
Average arrival time (sa) 10 min 8 min
Average service time (ss) 8 min 4 min
Computations:
q(sr/sa) 0.80 0.50
k (per hour) 6.0 7.5
10 h fee (k 9 10 9 40) $2,400 $3,000
10 h labor (10 9 40) $400 $400
10 h free minutes (P0 9 10 9 60) 120 300
SL = 1-q 0.20 0.50
Lq 3.20 0.50
Wq = Lq/k 9 60 (min) 32.00 4.00
Payback days (50,000/600) 83.33

Example 3.3
The table below gives comparative results for q = 0.1–0.9 when one service
facility, exponential arrival times, exponential service times and infinite queue
capacity. The measures listed are P0, Lq, Ls, L, Wq, Ws, W, Wq0 and SL.
For simplicity, the average service time is ss = 1.00, and thereby Ws = 1.00 for
all situations.
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k q P0 Lq Ls L Wq Ws W Wq0 SL
1 0.1 0.90 0.01 0.10 0.11 0.11 1.00 1.11 1.11 0.90
1 0.2 0.80 0.05 0.20 0.25 0.25 1.00 1.25 1.25 0.80
1 0.3 0.70 0.13 0.30 0.43 0.43 1.00 1.43 1.43 0.70
1 0.4 0.60 0.27 0.40 0.67 0.67 1.00 1.67 1.67 0.60
1 0.5 0.50 0.50 0.50 1.00 1.00 1.00 2.00 2.00 0.50
1 0.6 0.40 0.90 0.60 1.50 1.50 1.00 2.50 2.50 0.40
1 0.7 0.30 1.63 0.70 2.33 2.33 1.00 3.33 3.33 0.30
1 0.8 0.20 3.20 0.80 4.00 4.00 1.00 5.00 5.00 0.20
1 0.9 0.10 8.10 0.90 9.00 9.00 1.00 10.00 10.00 0.10

The table above can be used for any one server, infinite capacity queuing system
with exponential arrival and service times. For example, if the average service time is
ss = 8 min, and the utilization ratio was q = 0.80, as in Example 3.1, all the mea-
sures listed above are the same, with a minor adjustment to the wait time measures.
For this situation, Wq = 4.00 9 ss = 32.00 min, Ws = 1.00 9 ss = 8.00 min,
W = 5.00 9 ss = 40.00 min, and Wq0 = 5.00 9 ss = 40.00 min.
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Chapter 4
One Server, Finite Queue (M/M/1/N)

Abstract This chapter explores the one-server, finite capacity system with
exponential inter-arrival and service times. Could be, a one-man barbershop with
three seats for the waiting customers. The difference, equilibrium and reduced
equations are listed, and the probability on the number of units in the system are
developed, along with the performance measures. Examples are presented.

4.1 Introduction

Suppose a system with one server and a finite queue where the maximum number
of units allowed in the system is N, and where the inter-arrival and the service
times have exponential probability densities. Further, the average time between
arriving customers is 1/k average service time is 1/l. A finite queue example is a
three line telephone service with one operator receiving information from a caller,
while two lines are open for customers waiting to talk to the operator. When all
three lines are full, potential new calls are lost.

The following notation applies here:

sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
q = ss/sa = k/l = utilization ratio
N = maximum units allowed in the system
n = number of units in the system n = (0,N)

Below is a list of the difference equations, the corresponding equilibrium
equations and then the reduced equations. These are needed to develop the
probability and statistical measures for the system.

N. T. Thomopoulos, Fundamentals of Queuing Systems,
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4.2 Difference Equations

n = 0 P0(t ? h) = (1-kh)P0(t) ? lhP1(t) ? o(h)
n = (1,N-1) Pn(t ? h) = (1-kh-lh)Pn(t) ? khPn-1(t) ? lhPn+1(t) ? o(h)
n = N PN(t ? h) = (1-lh)PN(t) ? khPN-1(t) ? o(h)

4.3 Equilibrium Equations

n = 0 0 = -kP0 ? lP1

n = (1,N-1) 0 = -(k ? l)Pn ? kPn-1 ? lPn+1

n = N 0 = -lPN ? kPN-1

4.4 Reduced Equations

0 ¼ �kPn�1 þ lPn n ¼ 1;Nð Þ

4.5 Probability on n Units in the System

Using the reduced equations and the notation q = k/l the probability of n units in
the system becomes,

Pn ¼ k=lPn�1 ¼ qPn�1 n ¼ 1;Nð Þ

It is observed that

P0 = q0 P0

P1 = qP0 = q1 P0

P2 = qP1 = q2 P0

…
PN = qPN-1 = qN P0

and so forth, whereby,

Pn ¼ qnP0 n ¼ 0;Nð Þ

Because all the probabilities sum to unity,

PN

n¼0
Pn ¼ P0

PN

n¼0
qn ¼ 1
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In this system, the utilization ratio, q is greater than zero and could even be higher
than one. To find P0, the above relation is used with identity (2.7) as shown below.

Po

PN

n¼0
qn ¼ Po 1� qNþ1ð Þ

�
1� qð Þ

� �

and thereby,

P0 ¼ ð1� qÞ=ð1� qNþ1Þ

Finally, the probability of n units in the system becomes

Pn ¼ qnð1� qÞ=ð1 � qNþ1Þ n ¼ 0;Nð Þ

4.6 Probability the System is Idle

The probability the system is empty is merely the probability that n = 0, i.e.,

Po ¼ ð1� qÞ=ð1� qNþ1Þ

4.7 Expected Units in the Service Facility (Ls)

A handy set of relations concerns the expected number of arrivals A and departures
D that occur in a specified time interval T. These are shown below.

E A in Tð Þ ¼ kT½P0 þ P1 þ . . .þ PN�1� ¼ k½1� PN�T
E D in Tð Þ ¼ lT½P1 þ P2 þ . . .þ PN� ¼ lTð1� PoÞ ¼ lT Ls

Note the latter expression is related to both P0 and Ls. Further, since the system
is in an equilibrium state, E(A in T) = E(D in T), and thereby

k½1� PN� ¼ l 1� Poð Þ ¼ lLs

4.8 Lambda and Rho Effective

Because the queue size is finite, when the system is full, any new arrival is blocked
from entering the system and becomes lost forever. Thereby, the average number
of arrivals per unit of time that enter the system is less or equal to k, and is here
called lambda effective and labeled as ke. It is convenient to now define lambda
effective and rho effective as below:

ke = k[1-PN] = ‘‘lambda effective’’
qe = ke/l = ‘‘rho effective’’
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In this context,

k = expected number of arrivals in a unit of time,
ke = expected number of units that enter the system in a unit of time,
k-ke = expected number of units that are lost per unit of time,
q = utilization rate, and could be greater than one,
qe = effective utilization rate, and is less than one.

Since k 1� PN½ � ¼ l 1� Poð Þ ¼ lLs:

Po¼ 1� ke=l ¼ 1� qe

and

Ls ¼ qe:

4.9 Expected Units in the Queue (Lq)

The expected number of units in the queue is obtained, with use of (2.8), as below,

Lq ¼
XN

n¼1

ðn� 1ÞPn

¼
XN

n¼1

n� 1ð Þqn 1� qð Þ
�

1� qNþ1
� �

¼ q2 1� NqN�1 þ N - 1ð ÞqN
� ��

1� qð Þ 1� qNþ1
� �� �

4.10 Expected Units in the System (L)

The expected number of units in the system (service facility plus queue) is

L = Ls ? Lq

4.11 Expected Time in Service (Ws), Queue (Wq)
and System (W)

Using Little’s Law,
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Ws ¼ Ls=ke

Wq ¼ Lq=ke

W ¼ L=ke ¼Ws þ Wq

4.12 Expected Time in the Queue Given a Delay (Wq0)

Another useful system statistic is the expected time in the queue for an arrival that
is delayed in the queue. Note that an arrival that is not delayed will not have to
wait in the queue. Wq is the average of both of these events. So it is helpful to
introduce the events D and D0, where D = the event a new arrival is delayed, and
D0 = the event of not delayed. The probabilities for these events are:

P D0ð Þ ¼ Po

P Dð Þ ¼ 1� Poð Þ

The corresponding conditional waiting times in the queue are:

WqjD0 ¼ wait time in queue given no delay
WqjD ¼ wait time in queue given a delay

The relation between the waiting time (Wq) and the conditional waiting times
(Wq|D0,Wq|D) is below:
Wq ¼ WqjD0P D0ð Þ þ WqjDPðD)

Since WqjD0 ¼ 0;

Wq0 ¼WqjD ¼Wq=P Dð Þ ¼Wq= 1� P0ð Þ

4.13 Service Level (SL) and Loss Probability (Ploss)

The service level (SL) is the probability an arrival to the system is not delayed in
the queue, and this is simply P0. The loss probability (Ploss) is the probability a
new arrival is lost because the system capacity is too small. This is merely PN, the
probability the system is full, where any new arrival is blocked from entering.
Hence,

SL = P0

Ploss = PN
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Example 4.1
Suppose a one service facility system with finite capacity where N = 5 is the
maximum number of units allowed in the system, and where the arrival and service
times are exponential. The average time between arrivals is 10 min, and the
average time per service is 8 min. Some of the key probabilities and statistics
associated with this system are listed below.

Input:
One-server
N = 5 = system capacity
Exponential input and output
sa = 10 min = average time between arrivals
ss = 8 min = average service time
Computations:
k = 1/sa = 0.10 per minute
k = 60/sa = 6 per hour
l = 1/ss = 0.125 per minute
l = 60/ss = 7.5 per hour
Pn = (0.271).80n n = (0,5)
Po = 0.2710
P1 = 0.2168
P2 = 0.1734
P3 = 0.1387
P4 = 0.1110
P5 = 0.0888
ke = k[1-P5] = 0.0911 per minute
ke = 5.4672 per hour
ke = 0.7290
Ls = P1 ? P2 ? P3 ? P4 ? P5 = 0.729
Lq = 1P2 ? 2P3 ? 3P4 ? 4P5 = 1.139
L = 1.868
Ws = Ls/ke = 8 min = 0.1333 h
Wq = Lq/ke = 12.50 min = 0.2083 h
W = 20.52 min = 0.3417 h
Wq0 = 17.14 min = 0.2857 h
SL = P0 = 0.2710
Ploss = P5 = 0.0888

Example 4.2
A one-man barbershop is open 8 h a day and five days a week where customers
arrive on average every 15 min and the average service time is 12 min. All is
exponential. The average fee is $12 per cut. The shop has room for only two
customers to wait (N = 3). When the shop is full, the potential customers do not
enter. Note the following measures below:
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Input:
One server
N = 3 = system capacity
Exponential input and output
Shop is open 8-hours a day and 5 days a week
Average fee is $12 per customer
Average inter-arrival time (sa) 15 min
Average service time (ss) 12 min

Computations:
q (ss/sa) 0.80
k (per hour) = 60/sa 4.00
ke (per hour) = k[1-P3] 3.31
ke (per minute) = ke (per hour)/60 0.055
Expected customers per week (40ke) 132
Expected customers lost per week [40(k–ke)] 28
Expected weekly fees (132 9 12) $1584
Expected weekly fees lost (28 9 12) $336
Note: P0 = 0.339

P1 = 0.271
P2 = 0.217
P3 = 0.173

SL = P0 0.34
Lq = 1P2 ? 2P3 0.563
Wq (minutes) = Lq/ke 10.2

Example 4.3
The table below lists values of Ploss, for q = 0.1–0.9 and N = 1–10, when one
service facility and all times are exponential. Blanks are the same as 0.00.

Ploss

q/N 1 2 3 4 5 6 7 8 9 10
0.1 0.09 0.01 0.00
0.2 0.17 0.03 0.01 0.00
0.3 0.23 0.06 0.02 0.01 0.00
0.4 0.29 0.10 0.04 0.02 0.01 0.00
0.5 0.33 0.14 0.07 0.03 0.02 0.01 0.00
0.6 0.38 0.18 0.10 0.06 0.03 0.02 0.01 0.01 0.00
0.7 0.41 0.22 0.14 0.09 0.06 0.04 0.03 0.02 0.01 0.01
0.8 0.44 0.26 0.17 0.12 0.09 0.07 0.05 0.04 0.03 0.02
0.9 0.47 0.30 0.21 0.16 0.13 0.10 0.08 0.07 0.06 0.05

Note when q = 0.8 and N = 3. Ploss = 0.17.
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Chapter 5
One Server, No Queue (M/M/1/1)

Abstract This chapter applies to a one-server, no queue system with exponential
inter-arrival and service times. Could be a rental store with one electric saw
available to rent. The saw is the service facility and the rental time becomes the
service time. When the saw is out, future customers do not wait and go elsewhere.
The difference, equilibrium and reduced equations are listed. The probability of
n units in the system, and the performance measures are developed. Examples are
presented.

5.1 Introduction

Suppose a system with one server and no queue where the maximum number of
units allowed in the system is one, and where the inter-arrival and the service times
have exponential probability densities. Further, the average time between arriving
customers is 1/k and the average service time is 1/l. This could be a one person
taxi service where customers are accepted only when the taxi is empty.

The following notation applies here:

sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
q = ss/sa = k/l = utilization ratio
n = number of units in the system n = (0,1)

Below is a list of the difference equations, the corresponding equilibrium
equations and then the reduced equations. These are needed to develop the
probability and statistical measures for the system.
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5.2 Difference Equations

n = 0 P0(t ? h) = (1 - kh)P0(t) ? lhP1(t) ? o(h)
n = 1 P1(t ? h) = (1 - lh)P1(t) ? khP0(t) ? o(h)

5.3 Equilibrium Equations

n = 0 0 = -kP0 ? lP1

n = 1 0 = -lP1 ? kP0

5.4 Reduced Equation

0 ¼ �kP0 þ lP1 n ¼ 1

5.5 Probability on n Units in the System

Using the reduced equation and the notation q = k/l the probability of one unit in
the system becomes,

P1 = k/lP0 = qP0

It is observed that

P0 = q0 P0

P1 = qP0 = q1 P0

whereby,

Pn ¼ qn P0 n ¼ 0; 1ð Þ

Because the probabilities sum to unity,

P0 ? P1 = 1

In this system, the utilization ratio, q is greater than zero and could even be higher
than one. To find P0 and P1,the above relation is used as shown below.

P0[1 ? q] = 1

and thereby,
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P0 = 1/(1 ? q)

P1 = q/(1 ? q)

Finally, the probability of n units in the system becomes

Pn = qn/(1 ? q) n = (0,1)

5.6 Probability the System is Empty

The probability the system is empty is merely the probability that n = 0, i.e.,

Po = 1/(1 ? q)

5.7 Expected Units in the Service Facility (Ls)

The expected number of units in the system is

Ls = 0P0 ? 1P1 = q/(1 ? q)

5.8 Lambda and Rho Effective

It is convenient to now define lambda effective and rho effective as below:

ke = k[1 – P1] = k/(1 ? q) = ‘‘lambda effective’’

qe = ke/l = q(1 ? q) = ‘‘rho effective’’

In this context,
k = expected number of arrivals in a unit of time,
ke = expected number of units that enter the system in a unit of time,
k - ke = expected number of units that are lost per unit of time,
q = utilization ratio, and could be greater than one,
qe = effective utilization ratio, and will be less than one.

Po = 1 - ke/l =1 - qe
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5.9 Expected Units in the Queue (Lq)

Since this system has no queue,

Lq = 0

5.10 Expected Units in the System (L)

The expected number of units in the system is the same as the expected number of
units in the service facility, i.e.,

L = Ls

5.11 Expected Time in Service (Ws), Queue (Wq)
and System (W)

Ws = 1/l

Wq = 0

W = Ws

5.12 Service Level and Loss Probability

The service level (SL) is the probability an arrival to the system is not delayed in
the queue, and this is simply P0. The loss probability (Ploss) is the probability a
new arrival is lost because the system capacity is too small. This is P1, the
probability the system is full, because when n = 1, any new arrival is blocked
from entering. Hence,

SL = P0

Ploss = P1

Example 5.1

Suppose a one-service facility system with no queue, and where the arrival and
service times are exponential. The average time between arrivals is 10 min, and
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the average time per service is 8 min. Some of the key probabilities and statistics
associated with this system are listed below.

Input:
One-server
No queue
Exponential input and output
sa = expected time between arrivals = 10 min
ss = expected service time = 8 min

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
k = 60/sa = 6 per hour
l = 60/ss = 7.5 per hour
q = k/l = 0.80
Po = 1/[1 ? q] = 0.5556
P1 = q/[1 ? q] = 0.4444
ke = k[1 - P1] = 0.0556 per minute
ke = 3.3333 per hour
qe = 0.4444
Ls = P1 = 0.444
Lq = 0
L = 0.444
Ws = 8 min = 0.1333 h
Wq = 0
W = 8 min = 0.1333 h
Wq0 = 0
SL = P0 = 0.5556
Ploss = P1 = 0.4444

Example 5.2

A rental agency is open 6 days a week. They have one trailer for rent at $100 per
day. The average customer arrivals are one per two days and the average rental
time is 2.5 days. Customers will not wait for the trailer if it is out. Below are some
of the statistics for the agency.

Input:
One-server
No queue
Agency is open 6 days a week
Rental rate is $100 per day
Average inter-arrival time (days) = sa 2.00
Average service time (days) = ss 2.50
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Computations:
q = ss/sa 1.25
P0 = 1/(1 ? q) 0.444
P1 = q/(1 ? q) 0.556
k (per day) = 1/sa 0.500
l (per day) = 1/ss 0.400
ke (per day) = k(1 - q) 0.222
qe = ke/l 0.555
Expected customers per week (ke 9 6) 1.332
Expected customers lost per week (k - ke) 9 6 1.668
Expected fees per week ($) (1.332 9 100 9 2.5) 333
Expected fees lost per week ($) (1.668 9 100 9 2.5) 417

Example 5.3

The table below gives comparative results for q = 0.1–10.0 when one service
facility, exponential arrival times, exponential service times and no queue
capacity. The measures listed are:Ploss, qe and SL. Note, the higher the utilization
ratio, q, the greater the portion of lost customers, Ploss. Also note how rho
effective, qe, is always less than one. This is necessary to have equilibrium when
only one service facility.

K q Ploss qe SL
1 0.1 0.09 0.09 0.91
1 0.5 0.33 0.33 0.67
1 1.0 0.50 0.50 0.50
1 2.0 0.67 0.67 0.33
1 5.0 0.83 0.83 0.17
1 10.0 0.91 0.91 0.09
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Chapter 6
Multi Servers, Infinite Queue (M/M/k)

Abstract This chapter pertains to a multi-server, infinite capacity system with
exponential inter-arrival and service times. Could be cars on an expressway
arriving to a toll center with three tollbooths. The probability on n units, and the
performance measures of the system are developed. The difference, equilibrium
and reduced equations are listed, and examples are presented.

6.1 Introduction

Consider a system with k servers and an infinite queue where the inter-arrival and
the service times have exponential probability densities. The average time between
arriving units (customers) is 1/k, and the average service time is 1/l. This could
be the customers arriving to six checkout counters in a Wall Mart store. The
following notation applies here:

sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
k = number of service facilities
q = ss/sa = k/l = utilization ratio
q/k \ 1 is needed to ensure the system is in equilibrium
n = number of units in the system (n C 0)

Below is a list of the difference equations. Following are the corresponding
equilibrium equations and then the reduced equations.
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6.2 Difference Equations

6.3 Equilibrium Equations

6.4 Reduced Equations

6.5 Probability on n Units in the System

Using the reduced equations and the notation q = k/l, the probability of n units in
the system are as below. For n = 0 to k, the reduced equations yield the following;

When n is k ? 1 and larger, the reduced equations yield the relations listed
below.

n = 0 P0(t ? h) = (1 - kh)P0(t) ? lhP1(t) ? o(h)
n = (1,k - 1) Pn(t ? h) = (1 - kh - nlh)Pn(t) ? khPn-1(t) ?

(n ? 1)lhPn+1(t) ? o(h)
n C k Pn(t ? h) = (1 - kh – klh)Pn(t) ? khPn-1(t) ?

klhPn+1(t) ? o(h)

n = 0 0 = -kP0 ? lP1

n = (1,k - 1) 0 = -(k ? nl)Pn ? kPn-1 ? (n ? 1)lPn+1

n C k 0 = -(k ? kl)Pn ? kPn-1 ? klPn+1

0 = - kPn-1 ? nlPn n = (1,k)
0 = - kPn-1 ? klPn n [ k

P0 = q0P0

P1 = qP0 = q1P0

P2 = q/2P1 = q2/2!P0

P3 = q/3P2 = q3/3!P0

…
Pn = q/nPn–1 = qn/n!P0 n = (0,k)

Pk+1 = q/kPk = qk+1/[k!k]P0

Pk+2 = q/kPk+1 = qk+2/[k!k2]P0

…
Pn = q/kPn–1 = qn/[k!kn-k]P0 n [ k
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Summarizing,

At n = k, both of the above equations are the same; and because probabilities
across all values of n sum to unity, the relation below applies.

Rn� 0Pn ¼ P0f
Xk�1

n¼0

qn=n!þ
X

n� k

qn=½k!kn�k�g

¼ P0f
Xk�1

n¼0

qn=n!þ qk=k!
X

n� k

qn�k=kn�k�g

For equilibrium, q/k \ 1. Applying (2.2) on the above right-hand term yields,

Rn� 0Pn ¼ P0f
Xk�1

n¼0

qn=n!þ qk=½ðk� 1Þ!ðk� qÞ�g

So now, the probability of n = 0 is:

P0 ¼ 1=f
Xk�1

n¼0

qn=n!þ qk=½ðk� 1Þ!ðk� qÞ�g

Finally, the probability of n units in the system becomes

Pn ¼
qn=n!P0 n ¼ ð0; k� 1Þ

qn=½k!kn�k�P0 n� k

�

6.6 Expected Units in the Service Facility (Ls)

Below lists the relations for the expected number of arrivals A, and expected
number of departures D in a specified time interval T.

E(A in T) = kT[P0 ? P1 ? …] = kT
E(D in T) = lT[P1 ? 2P2 ? … ? kPk ? kPK+1 ? …] = lTLs

Note the latter expression is related to Ls. Further, since the system is in an
equilibrium state, E(A in T) = E(D in T), and thereby

k = lLs

and

Ls = q.

Pn = qn/n!P0 n = (0,k)
Pn = qn/[k!kn-k]P0 n [ k
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6.7 Expected Units in the Queue (Lq)

The expected number of units in the queue is obtained, with use of (2.2), as below,

Lq ¼
X

n [ k

n� kð ÞPn ¼
X

n [ k

n� kð Þqn=½k!kn�k�P0

¼ P0q
k=k!

X

n [ k

n� kð Þqn�k=kn�k�

Now using (2.3), yields,

Lq ¼ P0q
kþ1=½ðk� 1Þ!ðk� qÞ2�

6.8 Expected Units in the System (L)

The expected number of units in the system (service facility plus queue) is

L = Ls ? Lq

6.9 Expected Time in Service (Ws), Queue (Wq)
and System (W)

Using Little’s Law,

Ws ¼ Ls=k ¼ 1=l

Wq ¼ Lq=k

W ¼WsþWq

6.10 Expected Time in the Queue Given a Delay (Wq0)

Another useful system statistic is the expected time in the queue for an arrival that
is delayed in the queue. Note that an arrival that is not delayed will not have to
wait in the queue. Wq is the average of both of these events. So it is helpful to
introduce the events D and D0, where D = the event a new arrival is delayed, and
D0 = the event of not delayed. Note the probabilities for these events,

P(D0) = Pn\k

P(D) = PnCk
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The corresponding conditional waiting times in the queue are:

Wq|D0 = wait time in queue given no delay
Wq|D = wait time in queue given a delay

The relation between the waiting time (Wq) and the conditional waiting times
(Wq|D0,Wq|D) is below:

Wq = Wq|D0P(D0) ? Wq|DP(D)
Since Wq|D0 = 0,
Wq0 = Wq|D = Wq/P(D) = Wq/PnCk

6.11 Service Level

The service level (SL) is the probability a new arrival does not wait for service.
This is the probability that n is less than k, Pn\k. Hence,

SL = Pn\k

Example 6.1

Suppose a two-service facility system with infinite capacity, and with exponential
arrival and service times. The average time between arrivals is 10 min, and the
average time per service is 8 min. Some of the key probabilities and statistics
associated with this system are listed below.

Input:
Two-servers
Infinite capacity
Exponential input and output
sa = expected time between arrivals = 10 min
ss = expected service time = 8 min
Computations:

k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
k = 60/sa = 6 per hour
l = 60/ss = 7.5 per hour
q = k/l = 0.80
Pn = (.4286).80n/n! n = (0,2)
Pn = (.2143).80n/2n - 2 n C 3
Po = 0.429
P1 = 0.343
P2 = 0.137
P3 = 0.055
…

(continued)
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Example 6.2

Consider a one-man (operator) grease and oil shop that is open 10 h a day, where
customers arrive on average every 10 min and the average service time is 8 min.
All is exponential. The average fee is $40 per car and the average labor cost is $40
per hour. The owner wants to know what changes occur if he has two operators.
With the two operators, he projects customers will come more often with an
average arrival time of 8 min. Note the following measures below:

(continued)
Ls = q = 0.800
Lq = 0.152
L = Lq ? Ls = 0.952
Ws = 8 min = 0.133 h
Wq = Lq/k (per minute) = 1.52 min = 0.025 h
W = L/k (per minute) = 9.52 min = 0.159 h
PnC2 = 1 - (P0 ? P1) = 0.228
Wq0 = 6.67 min = 0.111 h
SL = Po ? P1 = 0.772

Input:
Infinite capacity
Exponential input and output
Shop is open 10 h a day
Average fee = $40 per car
Average labor cost = $40 per hour
Number operators 1 2
Average arrival time (minutes) = sa 10 8
Average service time (minutes) = ss 8 8

Computations:
q = ss/sa 0.80 1.00
k (per minute) = 1/sa 0.100 0.125
l (per minute) = 1/ss 0.125 0.125
k (per hour) = 60/sa 6.0 7.5
Expected 10-hour fees (k 9 10 9 40) $2,400 $3,000
Expected 10-hour labor cost (10 9 40) $400 $800
P0 0.200 0.333
P1 …… 0.333
…
Lq 3.200 0.333
Wq (minutes) (Lq/k) 32.00 2.67

1. operator (P0 9 10 9 60) 120
2. operators (2P0 ? 1P1) 9 (10 9 60) 600

SL:
1. operator (P0) 0.200
2. operators (P0 ? P1) 0.666
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Example 6.3

The table below gives comparative results for service facilities of 2, 5 and 10, and
each with three levels of utilization ratios, q, and all with exponential arrival times,
exponential service times and infinite queue capacity. The measures listed are P0,
Lq, Ls, L, Wq, Ws, W, Wq0 and SL. For simplicity, the average service time is
ss = 1.00, and thereby Ws = 1.00 for all situations.

The table above can be used for any queuing system with a corresponding number
of servers and exponential arrival and service times, and with infinite queue.
For example, if five servers where the utilization ratio is q = 2.0, and the average
service time is ss = 8 min, then Wq = 0.02 9 ss = 0.16 min, Ws = 1.00 9 ss =

8.00 min, W = 1.02 9 ss = 8.16 min, and Wq0 = 0.33 9 ss = 2.64 min.

Example 6.4

The table below gives the minimum number of service facilities (k) needed to
achieve the SL in an infinite queue capacity system with selected values of the
utilization ratio (q) ranging from 0.1 to 700.

k q P0 Lq Ls L Wq Ws W Wq0 SL
2 0.5 0.60 0.03 0.50 0.53 0.07 1.00 1.07 0.67 0.90
2 1.0 0.33 0.33 1.00 1.33 0.33 1.00 1.33 1.00 0.67
2 1.8 0.05 7.67 1.80 9.47 4.26 1.00 5.26 5.00 0.15
5 1.0 0.37 0.00 1.00 1.00 0.00 1.00 1.00 0.25 1.00
5 2.0 0.13 0.04 2.00 2.04 0.02 1.00 1.02 0.33 0.94
5 3.0 0.05 0.35 3.00 3.35 0.12 1.00 1.12 0.50 0.76
10 5.0 0.01 0.04 5.00 5.04 0.01 1.00 1.01 0.20 0.96
10 7.0 0.00 0.52 7.00 7.52 0.07 1.00 1.07 0.33 0.78
10 9.0 0.00 6.02 9.00 15.02 0.67 1.00 1.67 1.00 0.33

SL
0.85 0.90 0.95 0.99

q k
0.1 1 1 2 2
0.2 2 2 2 3
0.3 2 2 2 3
0.4 2 2 3 3
0.5 2 2 3 4
0.6 2 3 3 4
0.7 3 3 3 4
0.8 3 3 4 4
0.9 3 3 4 5
1 3 3 4 5
2 5 5 6 7
3 6 6 7 9

(continued)
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Example 6.5
Consider a sports jogging shoe manufacturer using a mold (called a ‘last’) to
produce a certain style shoe. The forecast calls for 250 pair for a five day week and
size 9 traditionally gets 20 percent of the orders. For size 9, ten percent of the
orders are for a narrow (9 N) width, 50 percent for medium (9 M), and 40 percent
for wide (9 W). On average, the last stays in the shoe for one day in the manu-
facturing process. The plant management wants to know how many lasts to have in
the plant inventory by width in size 9 to achieve SLs between 85 to 99 percent.
Note the table below. The forecast for size 9 is 0.20 9 250 = 50 per week.

Note the average service time is ss = 1 day, and therefore, l = 1 per day for all
sizes. The five day forecast for size 9 N is f5 = .10 9 50 = 5, and for one day it is
f1 = f5/5 = 1.0. Hence, k = 1 per day, and because l = 1, q = 1.0. Using the
results from Example 6.4, the table lists the minimum number of lasts needed (k) by
SL as 3, 3, 4 and 5. In a corresponding way, the minimum number of lasts needed for
sizes 9 M and 9 W by SL are shown. The sum of the three lasts needed range from 19
to 27.

SL
0.85 0.90 0.95 0.99

Size % f5 f1 k l q k
9 N 10 5 1 1 1 1.0 3 3 4 5
9 M 50 25 5 5 1 5.0 9 9 10 12
9 W 40 20 4 4 1 4.0 7 8 9 10
Sum 19 20 23 27

(continued)
4 7 8 9 10
5 9 9 10 12
10 15 16 17 19
20 26 27 29 32
30 38 39 41 45
40 49 50 52 57
50 60 61 64 66
60 70 72 75 80
70 81 83 86 92
80 92 94 97 103
90 102 105 108 114
100 113 115 119 125
200 218 221 226 235
300 322 326 331 343
400 425 429 436 449
500 528 533 540 555
600 631 636 644 660
700 733 739 747 765
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Chapter 7
Multi Servers, Finite Queue (M/M/k/N)

Abstract This chapter explores a multi-server, finite capacity system with
exponential inter-arrival and service times. An example is a beauty shop with two
hair stylists and with room for only five customers in the shop. The difference,
equilibrium and reduced equations are listed. The probability on n units, and the
performance measures are developed. Examples are presented to guide the reader.

7.1 Introduction

Consider a system with k servers and a finite queue where N is the maximum
number of units allowed in the system. The inter-arrival and the service times have
exponential probability densities, where the average time between arriving cus-
tomers is 1/k and the average service time is 1/l. Could be cars at a gas station
with four pumps and room for only six cars in the station. The following notation
applies here:

sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
q = ss/sa = k/l = utilization ratio
k = number of service facilities
N = maximum units allowed in the system
n = number of units in the system n = (0,N)

Below is a list of the difference equations. Following are the corresponding
equilibrium equations and then the reduced equations.

N. T. Thomopoulos, Fundamentals of Queuing Systems,
DOI: 10.1007/978-1-4614-3713-0_7, � Springer Science+Business Media New York 2012
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7.2 Difference Equations

7.3 Equilibrium Equations

7.4 Reduced Equations

7.5 Probability on n Units in the System

Using the reduced equations and the notation q = k/l, the probability of n units in
the system are as below. For n = 0 to k, the reduced equations yield the following;

n = 0 P0(t ? h) = (1 – kh)P0(t) ? lhP1(t) ? o(h)
n = (1,k–1) Pn(t ? h) = (1 – kh – nlh)Pn(t) ? khPn–1(t)

? (n ? 1)lhPn+1(t) ? o(h)
n = (k,N–1) Pn(t ? h) = (1 – kh – klh)Pn(t) ? khPn–1(t)

? klhPn+1(t) ? o(h)
n = N PN(t ? h) = (1 – klh)PN(t) ? khPN–1(t) ? o(h)

n = 0 0 = – kP0 ? lP1

n = (1,k–1) 0 = – (k ? nl)Pn ? kPn–1 ? (n ? 1)lPn+1

n = (k,N–1) 0 = – (k ? kl)Pn ? kPn–1 ? klPn+1

n = N 0 = – (kl)PN ? kPN–1

0 = – kPn–1 ? nlPn n = (1,k)
0 = – kPn–1 ? klPn n = (k ? 1,N)

P0 = q0P0

P1 = qP0 = q1P0

P2 = q/2P1 = q2/2!P0

P3 = q/3P2 = q3/3!P0

…
Pn = q/nPn–1 = qn/n!P0 n = (0,k)
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When n is k ? 1 and larger, the reduced equations yield the relations listed
below.

Summarizing,

At n = k, both of the above equations are the same; and because the proba-
bilities across all values of n sum to unity, the relation below applies.

Rn� 0Pn ¼ P0f
Xk�1

n¼0

qn=n!þ
XN

n¼k

qn=½k!kn�k�g

¼ P0f
Xk�1

n¼0

qn=n!þ qk=k!
XN

n¼k

qn�k=kn�k�g

Applying (2.7) on the above right-hand term yields,

Rn� 0Pn ¼ P0f
Xk�1

n¼0

qn=n!þ qk=k!½ðkN�kþ1 � qN�kþ1Þ=ðk� qÞkN�k�g

So now, the probability of n = 0 becomes:

P0 ¼ 1=f
Xk�1

n¼0

qn=n!þ qk=k!½ðkN�kþ1 � qN�kþ1Þ=ðk� qÞkN�k�g

Finally, the probability of n units in the system is

Pn ¼
qn=n!P0 n ¼ 0; kð Þ
qn=½k!kn�k�P0 n ¼ kþ 1;Nð Þ

�

7.6 Expected Units in the Service Facility (Ls)

Below lists the relations for the expected number of arrivals A, and expected
number of departures D in a specified time interval T.

E(A in T) = kT[P0 ? P1 ? … ? PN – 1] = kT [1 – PN]
E(D in T) = lT[P1 ? 2P2 ? … ? kPk ? kPK+1 ? … ? kPN] = lTLs

Pk+1 = q/kPk = qk+1/[k!k]P0

Pk+2 = q/kPk+1 = qk+2/[k!k2]P0

…
Pn = q/kPn–1 = qn/[k!kn-k]P0 n= (k ? 1,N)

Pn = qn/n!P0 n = (0,k)
Pn = qn/[k!kn-k]P0 n = (k ? 1,N)
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Note the latter expression includes Ls. Further, since the system is in an
equilibrium state, E(A in T) = E(D in T), and thereby

k[1 – PN] = lLs

7.7 Lambda and Rho Effective

It is convenient to now define lambda effective and rho effective as below:

ke = k[1 – PN] = ‘‘lambda effective’’
q e = ke/l = ‘‘rho effective’’

In this context,

k = expected number of arrivals in a unit of time,
ke = expected number of units that enter the system in a unit of time,
k – ke = expected number of units that are lost per unit of time,
q = utilization rate,
qe = effective utilization rate,
q/k = might be larger than one,
qe/k = will be less than one.

Since k[1 – PN] = l Ls.
Ls = qe .

7.8 Expected Units in the Queue (Lq)

The expected number of units in the queue is obtained as below,

Lq ¼
XN

n¼k

ðn� kÞPn ¼
XN

n¼k

ðn� kÞqn=½k!kn�k�P0

7.9 Expected Units in the System (L)

The expected number of units in the system (service facility plus queue) is

L = Ls ? Lq
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7.10 Expected Time in Service (Ws), Queue (Wq)
and System (W)

Using Little’s Law,

Ws = Ls/ke = 1/l
Wq = Lq/ke

W = L/ke = Ws ? Wq

7.11 Expected Time in the Queue Given a Delay (Wq0)

Another useful system statistic is the expected time in the queue for an arrival that
is delayed in the queue. Note that an arrival that is not delayed will not have to
wait in the queue. Wq is the average of both of these events. So it is helpful to
introduce the events D and D0, where D = the event a new arrival is delayed,
and D0 = the event of not delayed. The probabilities for these events are,

P(D0) = Pn\k

P(D) = PnCk

The corresponding conditional waiting times in the queue are:

Wq|D0 = wait time in queue given no delay
Wq|D = wait time in queue given a delay

The relation between the waiting time (Wq) and the conditional waiting times
(Wq|D0,Wq|D) is below:

Wq = Wq|D0P(D0) ? Wq|DP(D)
Since Wq|D0 = 0,
Wq0 = Wq|D = Wq/P(D) = Wq/PnCk

7.12 Service Level and Loss Probability

The service level (SL) is the probability an arrival to the system is not delayed in
the queue, and this is simply Pn\k. The loss probability (Ploss) is the probability a
new arrival is lost because the system capacity is too small. This is merely PN. It is
the probability the system is full, where any new arrival is blocked from entering.
Hence,

SL = Pn\k

Ploss = PN
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Example 7.1

Suppose a two-service facility system with finite capacity, where the maximum
number of units allowed in the system is five, and where the arrival and service
times are exponential. The average time between arrivals is 10 min, and the
average time per service is 8 min. Some of the key probabilities and statistics
associated with this system are listed below.

Input:
k = 2 servers
N = 5 is system capacity
sa = 10 min
ss = 8 min
Input and output are exponential

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
k = 60/sa = 6 per hour
l = 60/ss = 7.5 per hour
q = k/l = 0.80
Pn = (.431).80n/n! n = (0, 2)
Pn = (.431).80n/(2!2n-2) n = (3, 5)
Po = 0.431
P1 = 0.345
P2 = 0.138
P3 = 0.055
P4 = 0.022
P5 = 0.009
ke = k(per minute)[1 – P5] = 0.0991 min
ke = k(per hour)[1 – P5] = 5.946 per hour
qe = ke/l = 0.793
Ls = 1P1 ? 2[P2 ? P3 ? P4 ? P5] = 0.793
Lq = 1P3 ? 2P4 ? 3P5 = 0.126
L = Lq+Ls = 0.919
Ws = Ls/ke = 8 min = 0.133 h
Wq = Lq/ke = 1.27 min = 0.021 h
W = Wq+Ws = 9.27 min = 0.154 h
Wq0 = 5.77 min = 0.096 h
SL = P0 ? P1 = 0.78
Ploss = P5 = 0.009
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Example 7.2

A one-man barbershop is open 8 h a day and five days a week where customers
arrive on average every 15 min and the average service time is 12 min. All is
exponential. The average fee is $12 per cut. The shop has room for only two
customers to wait (N = 3), if the shop is full, the potential customers do not enter.
The owner wants to know how much his weekly fees will grow if he has two
barbers. Note the following measures below:

Example 7.3

The table below lists the loss probability, Ploss, for selected parameter values of:
k, the number of service facilities, q, the utilization ratio, and N, the system
capacity. The parameter ranges are k = (1, 2, 3), q = (0.5, 1.0, 1.5, 2.0, 2.5, 3.0),
and N = (1 to 10). Note, for example, when k = 2, q = 1.5 and N = 4,

Number of barbers (k) 1 2
Input:
Number operators is k
System capacity is N = 3
Shop is open 40 h per week
Input and output are exponential
Average fee = $12
sa = average arrival time (minutes) 15 15
ss = average service time (minutes) 12 12

Computations:
q 0.80 0.80
P0 0.339 0.445
P1 0.271 0.356
P2 0.217 0.142
P3 0.173 0.056
k (per hour) = 60/sa 4.00 4.00
ke (per hour) = k [1 – P3] 3.31 3.78
ke (per minute) = k [1 – P3]/60 0.055 0.063
Expected customers per week (40ke) 132 151
Expected customers lost per week [40(k – ke)] 28 9
Expected weekly fees 12 9 (40ke) $1584 $1812
Expected weekly fees lost 12 9 [40(k – ke)] $336 $108
SL (P0) 0.34
SL (P0 ? P1) 0.80
Lq (1P2 ? 2P3) 0.563
Lq (1P3) 0.056
Wq (minutes) 10.2 0.9
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Ploss = 0.12, indicating that twelve percent of the potential arrivals to the system
are lost due to limited space in the capacity. Also if k = 3, Ploss = 0.06.

Example 7.4

A fast food restaurant has room for only six cars (N = 6) in its drive-through lot.
During the busy hours, cars arrive on average every 1.5 min. The average time to
service a customer is 3.0 min. All times are exponential. Note, k = 60/1.5 = 40
per hour, l = 60/3.0 = 20 per hour, and q = 40/20 = 2.0. When the lot is full,
new arrivals do not enter. The average profit per car is $10, and the service facility
cost is $50 per hour. If all of the potential customers are serviced, the average
profit per hour would be k 9 10 = $400.

Using the results from Example 7.3, when one service facility is open, k = 1,
Ploss = 0.50, and the average profit per hour is (1 – .50) 9 400 = $200. If two
servers are open, k = 2, Ploss = 0.15 and the average profit per hour is (1 – .15) 9

400 = $340. When three servers are open, k = 3, Ploss = 0.05 and the average
profit per hour is (1 – .05) 9 400 = $380. Note, the average service cost per hour
when one server (k = 1) is $50, when two servers (k = 2), it is $100, and when three
servers (k = 3), $150. These results should help management decide how many
servers to have on duty during the busy hours.

N
1 2 3 4 5 6 7 8 9 10

k q Ploss
1 0.5 0.33 0.14 0.07 0.03 0.02 0.01 0.00
1 1.0 0.50 0.33 0.25 0.20 0.17 0.14 0.13 0.11 0.10 0.09
1 1.5 0.60 0.47 0.42 0.38 0.37 0.35 0.35 0.34 0.34 0.34
1 2.0 0.67 0.57 0.53 0.52 0.51 0.50 0.50 0.50 0.50 0.50
1 2.5 0.71 0.64 0.62 0.61 0.60 0.60 0.60 0.60 0.60 0.60
1 3.0 0.75 0.69 0.68 0.67 0.67 0.67 0.67 0.67 0.67 0.67

2 0.5 0.08 0.02 0.00
2 1.0 0.20 0.09 0.04 0.02 0.01 0.01 0.00
2 1.5 0.31 0.19 0.12 0.09 0.06 0.04 0.03 0.02 0.02
2 2.0 0.40 0.29 0.22 0.18 0.15 0.13 0.12 0.11 0.10
2 2.5 0.47 0.37 0.32 0.28 0.26 0.25 0.24 0.23 0.22
2 3.0 0.53 0.44 0.40 0.37 0.36 0.35 0.34 0.34 0.34

3 0.5 0.01 0.00
3 1.0 0.06 0.02 0.01 0.00
3 1.5 0.13 0.06 0.03 0.02 0.01 0.00
3 2.0 0.21 0.12 0.08 0.05 0.03 0.02 0.01 0.01
3 2.5 0.28 0.19 0.14 0.10 0.08 0.06 0.05 0.04
3 3.0 0.35 0.26 0.20 0.17 0.15 0.13 0.11 0.10
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Chapter 8
Multi Servers, No Queue (M/M/k/k)

Abstract This chapter pertains to a multi-server, no queue system with expo-
nential inter-arrival and service times. An example is a phone system in a real
estate company with five lines available to receive calls. When all lines are
busy, new calls are lost. The corresponding difference, equilibrium and reduced
equations are listed. The probability on n units, and the performance measures are
developed. Examples are presented to guide the reader.

8.1 Introduction

Consider a system with k servers and no queue. The inter-arrival and the service
times have exponential probability densities, where the average time between
arriving customers is 1/k and the average service time is 1/l. This could be a rental
agency with only two small cargo trailers available for let. When both trailers are
let out, potential customers go elsewhere. The following notation applies here:

sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
q = ss/sa = k/l = utilization ratio
k = number of service facilities
n = number of units in the system n = (0,k)

Below is a list of the difference equations: following are the corresponding
equilibrium equations and then the reduced equations.

N. T. Thomopoulos, Fundamentals of Queuing Systems,
DOI: 10.1007/978-1-4614-3713-0_8, � Springer Science+Business Media New York 2012

57



8.2 Difference Equations

8.3 Equilibrium Equations

8.4 Reduced Equations

8.5 Probability of n Units in the System

Using the reduced equations and the notation q = k/l, the probability of n units in
the system are as below. For n = 0 to k, the reduced equations yield the following;

Summarizing,

Because the probabilities across all values of n sum to unity, the relation below applies.

Pn ¼ P0

Xk

n¼0

qn=n!

n = 0 P0(t ? h) = (1 - kh)P0(t) ? lhP1(t) ? o(h)
n = (1,k - 1) Pn(t ? h) = (1 - kh - nlh)Pn(t) ? khPn-1(t) ? (n ? 1)

lhPn+1(t) ? o(h)
n = k Pk(t ? h) = (1 - klh)Pk(t) ? khPk-1(t) ? o(h)

n = 0 0 = -kP0 ? lP1

n = (1,k - 1) 0 = -(k ? nl)Pn ? kPn-1 ? (n ? 1)lPn+1

n = k 0 = -(kl)Pk ? kPk-1

0 = -kPn-1 ? nlPn n = (1,k)

P0 = q0P0

P1 = qP0 = q1P0

P2 = q/2P1 = q2/2!P0

P3 = q/3P2 = q3/3!P0

…

Pn = q/nPn-1 = qn/n!P0 n = (0,k)

Pn = qn/n!P0 n = (0,k)
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So now, the probability of n = 0 becomes:

P0 ¼ 1=
Xk

n¼0

qn=n!

Finally, the probability of n units in the system is

8.6 Expected Units in the Service Facility (Ls)

Below lists the relations for the expected number of arrivals A, and expected
number of departures D in a specified time interval T.

E(A in T) = kT[P0 ? P1 ? … ? Pk-1] = kT [1 – Pk]
E(D in T) = lT[P1 ? 2P2 ? … ? kPk] = lTLs

Note the latter expression includes Ls. Further, since the system is in an
equilibrium state, E(A in T) = E(D in T), and thereby,

k[1 – Pk] = lLs

8.7 Lambda and Rho Effective

It is convenient to now define lambda effective and rho effective as below:

ke = k[1 – Pk] = ‘‘lambda effective’’
q e = ke/l = ‘‘rho effective’’

In this context,

k = expected number of arrivals in a unit of time,
ke = expected number of units that enter the system in a unit of time,
k - ke = expected number of units that are lost per unit of time,
q = utilization ratio,
qe = effective utilization ratio,
q/k = might be larger than one,
qe/k = will be less than one.

Since k[1 – Pk] = lLs.

Ls = qe .

Pn = qn/n![1/
Pk

n¼0
qn/n!]

n = (0,k)
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8.8 Expected Units in the Queue (Lq)

There is no queue in this system, and thereby,

Lq = 0

8.9 Expected Units in the System (L)

The expected number of units in the system is

L = Ls

8.10 Expected Time in Service (Ws), Queue (Wq)
and System (W)

Using Little’s Law,

Ws = Ls/ke = 1/l
Wq = 0
W = L/ke = Ws

8.11 Loss Probability

The loss probability (Ploss) is the probability a new arrival is lost because the
system is full. This is merely Pk. Hence,

Ploss = Pk

Example 8.1
Suppose a two-service facility system with no queue, and where the arrival and
service times are exponential. The average time between arrivals is 10 min, and
the average time per service is 8 min. Some of the key probabilities and statistics
associated with this system are listed below.

Input:
k = 2-servers
No queue
Input and output are exponential
sa = expected time between arrivals = 10 min
ss = expected service time = 8 min

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
k = 60/sa = 6 per hour
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l = 60/ss = 7.5 per hour
q = k/l = 0.80
Pn = (.4717).80n/n! n = (0, 2)
Po = 0.472
P1 = 0.377
P2 = 0.151
ke = k[1 – P2] = 5.094 per hour
qe = ke/l = 0.680
Ls = (1P1 ? 2P2) = 0.680
Lq = 0
L = 0.680
Ws = Ls/ke = 0.133 h
Wq = 0
W = 0.133 h
Wq0 = 0
Ploss = P2 = 0.151

Example 8.2
A rental agency is open 6 days a week. They have one trailer for rent at $100 per
day. The average arrivals are one per two days and the average rental time is
2.5 days. Customers will not wait for the trailer if it is out. The owner can buy
another trailer for $10,000 and wants to know the financial changes to the agency
if he does so. Below are some of the statistics for the agency, including the number
of weeks to payback the $10,000 investment.

Input:
Number of trailers (k = N) 1 2
No queue
Input and output are exponential
Agency open 6 days a week
Rent is $100 per day
Investment ($) 10,000
sa = average inter-arrival time (days) 2.00 2.00
ss = average service time (days) 2.50 2.50

Computations:
P0 0.444 0.472
P1 0.556 0.377
P2 0.151
k (per day) = (1/sa) 0.500 0.500
ke (per day) = k[1 – PN] 0.222 0.424
Expected customers per week = (ke 9 6) 1.332 2.544
Expected customers lost per week = (k - ke)6 1.668 0.456
Expected fees per week ($) = 2.5 9 100(ke 9 6) 333 636
Expected fees lost per week ($) 2.5 9 100(k - ke) 417 114
Weeks for payback [10,000/(636 - 333] 33
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Example 8.3
The table below gives comparative results when 2, 5 and 10 service facilities (k)
are available and each with three levels of the utilization ratio, q. The arrival times
and the service times are exponential and there is no queue capacity. That is, the
maximum number of units allowed in the system is k, the same as the number of
service facilities. The measures listed are: P0, L, Ploss, qe and qe/k. Note, as the
utilization ratio, q, increases, the measures L and Ploss also increase. Note also,
the measure qe/k is always less than one. This is necessary to have equilibrium in
the system.

Example 8.4
The table below gives the minimum number of service facilities (k) needed in a no
queue capacity system to achieve the service level (SL) with selected values of the
utilization ratio (q) ranging from 0.1 to 700.

k q P0 L Ploss qe qe/k
2 0.5 0.615 0.462 0.077 0.46 0.23
2 1.0 0.400 0.800 0.200 0.80 0.40
2 1.8 0.226 1.140 0.367 1.14 0.57

5 1.0 0.368 0.997 0.003 0.99 0.20
5 2.0 0.138 1.927 0.037 1.93 0.39
5 3.0 0.054 2.670 0.110 2.67 0.53

10 5.0 0.007 4.908 0.018 4.91 0.49
10 7.0 0.001 6.449 0.079 6.45 0.65
10 9.0 0.000 7.488 0.168 7.49 0.75

SL
0.85 0.90 0.95 0.99

q k
0.1 1 1 2 2
0.2 2 2 2 3
0.3 2 2 2 3
0.4 2 2 3 3
0.5 2 2 3 4
0.6 2 3 3 4
0.7 2 3 3 4
0.8 3 3 3 4
0.9 3 3 4 5

1 3 3 4 5

(continued)
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(continued)
2 4 4 5 7
3 5 6 7 8
4 6 7 8 10
5 7 8 9 11

10 12 13 15 18
20 21 23 26 30
30 30 32 36 42
40 38 42 46 53
50 47 51 56 64
60 56 60 66 75
70 64 69 76 85
80 73 78 86 96
90 81 88 95 107

100 90 97 105 117
200 175 188 202 221
300 261 278 298 324
400 346 368 394 426
500 431 458 489 527
600 516 549 585 628
700 601 639 680 728

Example 8.5
Consider a rental agency, open seven days a week, and suppose for items A, B, C,
D, E, the average rental time is one day. Assume, the calls per week for each item
are 7, 14, 21, 35 and 70, respectively. The customer will not wait if the item is out
of stock. The management wants to know how many of the items to have in the
store to achieve a service level of: SL = 0.85, 0.90, 0.95 and 0.99. Note the table
below gives the seven day forecast (f7) by item. Also listed are the one day
forecasts (f1) and the associated queuing parameters by item, k, l and q. Using the
results from Example 8.4, the table lists the minimum number of units (k), by item,
to have in stock to achieve the service level.

SL
0.85 0.90 0.95 0.99

Item f7 f1 k l q k
A 7 1 1 1 1 3 3 4 5
B 14 2 2 1 2 4 4 5 7
C 21 3 3 1 3 5 6 7 8
D 35 5 5 1 5 7 8 9 11
E 70 10 10 1 10 12 13 15 18
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Chapter 9
One Server, Arbitrary Service (M/G/1)

Abstract This chapter considers a one-server, infinite capacity system with
exponential inter-arrival times, and arbitrary service times with the average and
standard deviation known. Could be a lift truck in a warehouse that hauls stock
from the receiving dock to the storage area where the hauling time is normally
distributed (not exponential). The lift truck is the service facility. The performance
measures are developed and examples are presented.

9.1 Introduction

This chapter is sometimes referred as the Pollaczek–Khintchin formula, named
after the authors of this important development. Their method considers a system
with one server and an infinite queue where the inter-arrival time is exponential,
and the service time ts has an arbitrary distribution that could be either continuous
or discrete. The average time between arriving customers is 1/k. The average
service time is 1/l and the associated variance is r2. An example is the calls for
service to a squad car in a one car patrol beat. The arrivals are Poisson distributed
and the service times are not exponential. The following notation applies here:

sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
r2 = variance of the time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
q = ss/sa = k/l = utilization ratio
q\ 1 is needed to assure the system is in equilibrium
n = number of units in the system
Pn = probability of n units in the system (n C 0)
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9.2 Expected Units in the Service Facility (Ls) and Probability
the System is Empty (P0)

Consider the expected number of arrivals A, and departures D, that occur in a
specified time interval T. The two probability expressions concerning A and D in T
are listed below.

E(A in T) = kT[P0 ? P1 ? …] = kT
E(D in T) = lT[P1 ? P2 ? …] = lT(1 - Po) = lT Ls

Note the latter expression is related to both P0 and Ls. Further, since the system
is in an equilibrium state, E(A in T) = E(D in T), and thereby

k = l(1 - Po)
Po = (1 - k/l) = (1 - q)

and

Ls = q.

9.3 Three Events

Consider the three events in the system that concern the time of departure from
two units.

(1) To begin, suppose n units are in the queue, just prior to the departure of a unit
in service.

(2) Just after the departure, there are (n - 1) units in the queue and one unit
starting service.

(3) When the unit in service departs, there are now n 0 = [(n - 1) ? r ? d] units
in the system. The r units are those that entered the system while the just
departed unit was being serviced. The variable d is defined below.

d ¼ 0 if n� 1
¼ 1 if n ¼ 0

9.4 Expected Value of n0, E(n0)

Below lists the expected value of n0.

Eðn0Þ ¼ Eðrþ n� 1þ dÞ
¼ E rð Þ þ E nð Þ � 1þ EðdÞ
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Since the system is in equilibrium,

E(n0) = E(n)

and thereby,

0 = E(r) – 1 ? E(d)

and

E(r) = 1 – E(d)

Note,

E(d) ¼ 0Pn� 1 þ 1Pn¼0

¼ 0þ P0

¼ 1� q

Since d ¼ d2; E dð Þ ¼ E d2
� �

and thereby,

E(d2) = 1 – q

Further,

E(r) = 1 – (1 – q) = q

9.5 Expected Value of n02, E(n02)

Eðn02Þ ¼ E½ðrþ n� 1þ dÞ2�
¼ E r2

� �
þ E n2

� �
þ 1þ E d2

� �
þ 2E rn½ � � 2E½r� þ 2E rd½ �

� 2E n½ � þ 2E nd½ � � 2E d½ �

Now since the system is in equilibrium,

Eðn02Þ ¼ E n2
� �

and now,

0 ¼ E r2
� �
þ 1þ E d2

� �
þ 2E rn½ � � 2E½rg þ 2E rd½ � � 2E n½ � þ 2E nd½ � � 2E d½ �

Because r and n are independent,

E rn½ � ¼ E r½ �E n½ � ¼ qE n½ �
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Also, because r and d are independent,

E rd½ � ¼ E r½ �E d½ � ¼ qð1� qÞ

Note, the relation between n and d gives

E nd½ � ¼ 0

Recall that the r arrivals occur during the time for service, ts, and since r is
Poisson, this leads to the relation below.

E r2
� �
¼
Z

E r2jts
� �

f tsð Þdts

¼
Z
½kts þ k2t2

s �f tsð Þdts

¼ qþ k2E t2
s

� �

¼ qþ k2r2 þ q2

Finally, the prior relation becomes.

0 ¼ qþ k2r2 þ q2 þ 1þ 1� qþ 2qE n½ � � 2qþ 2qð1� qÞ � 2E n½ � þ 0� 2ð1� qÞ

Combining terms,

0 ¼ 2q� q2 þ k2r2 þ 2ðq� 1ÞE½ng

9.6 Expected Number of Units in the System (L)

Applying more algebra, and noting E[n] = L, the expected number of units in the
system, yields,

L ¼ ½k2r2 þ 2q� q2 =� ½2ð1� qÞ�

9.7 Expected Number of Units in the Queue (Lq)

The associated expression, Lq, for the expected number of units in the queue
becomes,

Lq ¼ ½k2r2 þ q2 =� ½2ð1� qÞ�
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9.8 Expected Time in Service (Ws), Queue (Wq)
and System (W)

Using Little’s Law,

Ws = Ls/k = 1/l
Wq = Lq/k
W = Ws ? Wq

9.9 Expected Time in the Queue Given a Delay (Wq0)

Another useful system statistic is the expected time in the queue for an arrival
that is delayed in the queue. Note that an arrival that is not delayed will not
have to wait in the queue. Wq is the average of both of these events. So it
is helpful to introduce the events D and D0, where D = the event a new arrival
is delayed, and D0 = the event of not delayed. Note the probabilities for these
events,

P(D0) = Po = 1 - q
P(D) = (1 – Po) = q

The corresponding conditional waiting times in the queue are:

Wq|D0 = wait time in queue given no delay
Wq|D = wait time in queue given delay

The relation between the waiting time (Wq) and the conditional waiting times
(Wq|D0,Wq|D) is below:

Wq = Wq|D0P(D0) ? Wq|DP(D)
Since Wq|D0 = 0,
Wq0 = Wq|D = Wq/P(D) = Wq/(1 - P0) = Wq/q

9.10 Service Level

The service level (SL) is the probability a new arrival does not wait for service.
This is merely P0, the probability the system is empty. Hence,

SL = P0.
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9.11 Summary of the Statistical Measures

Below is a summary of the statistical measures for this system.

Po = 1 - k/l = (1 - q)
Ls = q
Lq = [k2r2 ? q2]/[2(1 - q)]
L = [k2r2 ? 2q - q2]/[2(1 - q)]
Ws = Ls/k = 1/l
Wq = Lq/k
W = Ws ? Wq
Wq0 = Wq/q
SL = P0 = 1 - q

Example 9.1
Suppose a one service facility system with infinite capacity, and with expo-
nential arrivals. The average time between arrivals is 10 min. The average time
per service is 8 min, and the standard deviation of service is r = 1 min. Some
of the key probabilities and statistics associated with this system are listed
below.

Input:
One-server
Infinite queue
Arrival times are exponential
Service times are not exponential
sa = average arrival times = 10 min
ss = average service times = 8 min
r2 = variance of service times = 1 minute2

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
k = 60/sa = 6 per hour
l = 60/ss = 7.5 per hour
q = k/l = 0.80
Po = 0.2000
Ls = 0.80
Lq = 1.625
L = 2.425
Ws = 8 min
Wq = 16.25 min
W = 24.25 min
Wq0 = 20.31 min
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Example 9.2
The table below gives comparative results for a queuing system with one service
facility, and with three levels of utilization ratios, (q = 0.1, 0.5, 0.9), where the
arrival times are exponential and the service times are arbitrary with coefficient of
variation, (cov = 0.0, 0.4, 1.0, 2.0), and the queue capacity is infinite. The mea-
sures listed are P0, Lq, Wq, Ws, Wq0 and SL. For simplicity, the average service
time is ss = 1.00, and thereby Ws = 1.00 for all situations. At cov = 0, the
service time is a constant; at cov = 0.4, the service time is like a normal distri-
bution; at cov = 1.0, the service time is exponential; and at cov = 2.0, the service
time is highly tilted towards zero. Note how Lq, Wq and Wq0 increase directly
with increases in cov, even when k and q remain unchanged.

k q cov P0 Lq Wq Ws Wq0 SL
1 0.1 0.0 0.90 0.01 0.06 1.00 0.56 0.90
1 0.1 0.4 0.90 0.01 0.06 1.00 0.64 0.90
1 0.1 1.0 0.90 0.01 0.11 1.00 1.11 0.90
1 0.1 2.0 0.90 0.03 0.28 1.00 2.78 0.90
1 0.5 0.0 0.50 0.25 0.50 1.00 1.00 0.50
1 0.5 0.4 0.50 0.29 0.58 1.00 1.16 0.50
1 0.5 1.0 0.50 0.50 1.00 1.00 2.00 0.50
1 0.5 2.0 0.50 1.25 2.50 1.00 5.00 0.50
1 0.9 0.0 0.10 4.05 4.50 1.00 5.00 0.10
1 0.9 0.4 0.10 4.70 5.22 1.00 5.80 0.10
1 0.9 1.0 0.10 8.10 9.00 1.00 10.00 0.10
1 0.9 2.0 0.10 20.25 22.50 1.00 25.00 0.10

The table above can be used for any corresponding one server, infinite capacity
queuing system with exponential arrival and arbitrary times. For example, if the
average service time is ss = 8 min, and the utilization ratio was q = 0.50, and the
coefficient of variation is cov = 0.4, all the measures listed above are the same, with
a minor adjustment to the wait time measures. For this situation, Wq = 0.58 9

ss = 4.64 min, Ws = 1.00 9 ss = 8.00 min, W = 1.58 9 ss = 12.64 min, and
Wq0 = 1.16 9 ss = 9.28 min.
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Chapter 10
2 Populations, One Server, Arbitrary
Service (M/G/1/2)

Abstract This chapter pertains when arrivals from two populations come to a
system with one server and infinite capacity. The inter-arrival times are expo-
nential and the services times from each population are arbitrary. An example are
the calls for service to a squad car in a one-car patrol beat, where some calls are for
minor scrapes and others are major incidents, and the combined service times are
not exponential. The performance measures of the system are developed, and
examples are presented.

10.1 Introduction

This chapter concerns two populations of customers, where the inter-arrivals times
follow the exponential probability density and the service times are arbitrary. The
chapter shows how to measure the statistics for the total system and for each of the
individual populations. It is noted where the results from the chapter could easily
be extended to include three or more arrival populations. This chapter is also an
extension to Chap. 9 where the Pollaczek–Khintchin formula was developed. The
average time between arriving customers is 1/k1 and 1/k2 for populations 1 and 2,
respectively. The average service times are 1/l1 and 1/l2, and the associated
variances are r1

2 and r2
2 for populations 1 and 2, respectively. This could be a

situation where cars enter a one-car service garage, and some cars are for main-
tenance only (e.g., grease and oil), and others are for repair (e.g., transmission
fault). The following notation applies here:

sa1, sa2 = average inter-arrival time for units from populations 1 and 2
k1, k2 = average number of arrivals per unit of time from populations 1 and 2
ss1, ss2 = average service time for units from populations 1 and 2
r1

2, r1
2 = variance of service times from populations 1 and 2
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l1, l2 = average number of units of populations 1 and 2 that are processed in a
unit of time for a continuously busy service facility

k = k1 ? k2

1/l = average service time for an arbitrary unit
q = k/l = utilization ratio
q\ 1 is needed to assure the system is in equilibrium
n1, n2 = number of units in the system from populations 1 and 2
n = n1 ? n2 = total number of units in the system (n C 0)
Pn = probability of n units in the system

10.2 Expected Time for an Arbitrary Arrival (1/k)

Recall from Chap. 2, the convolution of two Poisson variables gives yet another
Poisson variable, and thereby the expected arrival rate for an arbitrary unit to the
system is

k = k1 ? k2

So now, the time between arrivals (ta) to the system is exponential with an
average time of E(ta) = 1/k

Note also where (k1/k) is the probability a unit in the system is from population 1,
and (k2/k) is the corresponding probability the unit is from population 2.

10.3 Expected Time and Variance of Time
in Service (1/l) and r2

For an arbitrary unit, the expected service time is the following,
E tsð Þ ¼ 1=l

¼ 1=l1ð Þ k1=kð Þ þ 1=l2ð Þðk2=kÞ
¼ ðq1 þ q2Þ=k

and thereby the corresponding service rate is

l = 1/E(ts)

To compute the associated variance, E(ts
2) is needed. This requires using the

variances for populations 1 and 2 in the following way. For population 1, the
variance of the service time (ts1) is computed by the following expression,

V(ts1) = E(ts1
2 ) - E(ts1)2

Hence,

E(ts1
2 ) = V(ts1) ? E(ts1)2
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In the same way, the corresponding relation for a unit from population 2
becomes,

E(ts2
2 ) = V(ts2) ? E(ts2)2

Thereby, for an arbitrary unit in the system, the expression below applies,

E(ts
2) = (r1

2 +1/l1
2)(k1/k) ? (r2

2 +1/l2
2)(k2/k)

So now the variance for an arbitrary unit in the system is computed by,

V(ts) = r2 = E(ts
2) - E(ts)

2

10.4 Statistics for an Arbitrary Unit in the System

Note, the parameters k, l and r2 are now known for the total system. Further, the
arrivals are Poisson distributed and the service times are arbitrary and this allows
using the results from Chap. 9 to measure the statistics for the total system. Hence,
for an arbitrary unit, the following statistics are readily obtained:

Po = 1 - k/l = (1 - q)
Ls = q
Lq = [k2r2 ? q2]/[2(1 - q)]
L = [k2r2 ? 2q - q2]/[2(1 - q)]
Ws = Ls/k = 1/l
Wq = Lq/k
W = Ws ? Wq
Wq0 = Wq/q
SL = P0 = 1 - q

10.5 Expected Number of Units in Service (Ls, Ls1, Ls2)

The expected number of units in the service facility for the system is denoted as
Ls. Ls can be written as below.
Ls ¼ k=l ¼ q

¼ k1 þ k2ð Þðq1 þ q2Þ=k
¼ q1 þ q2

Thereby, the expected number of units in the service facility for populations 1
and 2 are listed below.

Ls1 = k1/l1 = q1

Ls2 = k2/l2 = q2
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10.6 Expected Number of Units in Queue
(Lq, Lq1, Lq2)

The expected number of units in the queue for the system is Lq. The corresponding
number by population is determined as follows:

Lq1 = (k1/k)Lq
Lq2 = (k2/k)Lq

10.7 Expected Number of Units in the System
(L, L1, L2)

The expected number of units in the system is L. The corresponding number by
population is determined as follows:

L1 = Ls1 ? Lq1

L2 = Ls2 ? Lq2

10.8 Expected Time in Service (Ws, Ws1, Ws2)

The expected time in the service facility for the system is Ws. The corresponding
time by population is determined as follows:

Ws1 = 1/l1

Ws2 = 1/l2

10.9 Expected Time in Queue (Wq, Wq1, Wq2)

The expected time in the queue for the system is Wq. The corresponding time by
population is determined as follows:

Wq1 = Wq
Wq2 = Wq
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10.10 Expected Time in the System (W, W1, W2)

The expected time in the system is W. The corresponding time by population is
determined as follows:

W1 = Ws1 ? Wq1

W2 = Ws2 ? Wq2

10.11 Expected Time in Queue Given a Delay
(Wq0, Wq01, Wq02)

The expected wait time in the queue given a delay for the system is Wq0. The
corresponding time by population is determined as follows:

Wq01 = Wq0

Wq02 = Wq0

10.12 Service Level (SL, SL1, SL2)

The service level is the probability that an arrival to the system does not wait to
enter the service facility. For the system, this is SL = P0. In the same way, the
service level for each population is also the same as SL, i.e., the probability the
system is empty when the new arrival enters the system, yielding,

SL1 = SL2 = SL = P0

Example 10.1
Consider a one-service facility system with infinite capacity, and with two input
populations with exponential arrival times. The average time between arrivals is
30 min for population 1, and 10 min for population 2. The service times are not
exponential and the average service times are 10 and 4 min for populations 1 and
2, respectively. The variances of the service times are 2.0 and 1.0 min2 for pop-
ulations 1 and 2, respectively. Some of the key probabilities and statistics asso-
ciated with this system are listed below.

Input:
Two arrival populations (1,2)
One server
Infinite queue
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Population inter-arrival times are exponential

sa1 = average inter-arrival time for population 1 = 30 min
sa2 = average inter-arrival time for population 2 = 10 min

Population service times are not exponential

ss1 = average service time for population 1 = 10 min
ss2 = average service time for population 2 = 4 min
r1

2 = variance of service time for population 1 = 2
r2

2 = variance of service time for population 2 = 1

Computations:
Population arrival and service rates

k1 = 1/sa1 = 0.033/min = 2/hour
l1 = 1/ss1 = 0.100/min = 6/hour
k2 = 1/sa2 = 0.100/min = 6/hour
l2 = 1/ss2 = 0.250/min = 15/hour

Arbitrary inter-arrival times are exponential

k = 0.133/min = 8/hour
sa = 7.5 min = 0.125 h

Arbitrary service times are not exponential

ss = 5.5 min = 0.092 h
r2 = 8.0 min2

l = 0.182/min = 10.91/hour

Statistical measures:
Arbitrary unit Population 1 Population 2
q = k/l = 0.733
Po = 0.267
Ls = 0.733 Ls1 = 0.333 Ls2 = 0.400
Lq = 1.270 Lq1 = 0.317 Lq2 = 0.952
L = 2.003 L1 = 0.650 L2 = 1.352
Ws = 5.5 min Ws1 = 10.00 min Ws2 = 4.00 min
Wq = 9.54 min Wq1 = 9.54 min Wq2 = 9.54 min
W = 15.04 min W1 = 19.54 min W2 = 13.54 min
Wq0 = 13.01 min Wq1

0 = 13.01 min Wq2
0 = 13.01 min

SL = 0.267 SL1 = 0.267 SL2 = 0.267

Note, Ls = Ls1 ? Ls2, Lq = Lq1 ? Lq2 and L = L1 ? L2. Also, Ws = ss,
Ws1 = ss1 and Ws2 = ss2
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Chapter 11
M Machines, One Repairman (M/M/1/M)

Abstract This chapter explores a system with a limited number of units in the input
population, like M machines in a shop that occasionally require service from one
repairman. The inter-arrival time per unit and the service times are exponential.
This could be a firm with five copy machines and one repairman. The probability on
the number of units in the system is derived, and the performance measures of the
system are developed. Examples are presented.

11.1 Introduction

Consider a system with M machines and one repairman and where the run time per
machine and the service times have exponential probability densities. The average
run time for a machine before it needs repair is 1/k and the average service time is
1/l. An example is a cargo ship with six diesel engines and one operator is
available to handle all the maintenance and repair needs. The following notation
applies here:

M = population size (machines)
sa = 1/k = average run time per unit
ss = 1/l = average time to service a unit
k = average arrival rate per machine in a unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
q = ss/sa = k/l
n = number of units in the system n = (0, M)

Below is a list of the difference equations. Following are the corresponding
equilibrium equations and then the reduced equations.
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11.2 Difference Equations

n = 0 P0(t ? h) = (1 - Mkh)P0(t) ? lhP1(t) ? o(h)
n = (1,M - 1) Pn(t ? h) = (1 - (M–n)kh - lh)Pn(t) ? (M–

n ? 1)khPn-1(t) ? lhPn+1(t) ? o(h)
n = M PM(t ? h) = (1 - lh)PM(t) ? khPM-1(t) ? o(h)

11.3 Equilibrium Equations

n = 0 0 = -MkP0 ? lP1

n = (1,M - 1) 0 = -([M–n]k ? l)Pn ? (M–n ? 1)kPn-1 ? lPn+1

n = M 0 = -lPM ? kPM-1

11.4 Reduced Equations

0 = -(M–n)kPn ? lPn+1 n = (0,M - 1)

11.5 Probability on n Units in the System

Using the reduced equations and the notation q = k/l, the probability of n = 1, 2
and 3 units in the system becomes:

P1 = MqP0 = Lq1 P0

P2 = (M - 1)qP1 = M(M - 1)q2 P0

P3 = (M - 2)qP2 = M(M - 1)(M - 2)q3 P0

and so forth, whereby,

Pn = M!/(M–n)!qn P0 n = (1,M)

Because P0 = P0 and all the probabilities sum to unity,
PM

n¼0
Pn ¼ P0

PM

n¼0
qnM!= M� nð Þ! ¼ 1

thereby,

P0 ¼ 1=
PM

n¼0
qnM!= M� nð Þ!

Finally, the probability of n units in the system becomes

Pn ¼ qnM!= M� nð Þ!=
PM

n¼0
qnM!= M� nð Þ! n ¼ 0;Mð Þ
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11.6 Probability the System is Empty

The probability the system is empty is merely the probability that n = 0, i.e.,

Po ¼ 1=
PM

n¼0
qnM!= M� nð Þ!

11.7 Expected Units in the Service Facility (Ls)

Note the expected number of units in the service facility is listed below.

Ls ¼
PM

n¼1
Pn ¼ 1� P0

11.8 Expected Units in the System (L)

The reduced equations are needed to find the expected number of units in the
system. Recall, the reduced equations give the following:

0 = -(M–n)kPn ? lPn+1 n = (0,M - 1)

Now summing, yields
XM�1

n¼0

½� M� nð ÞkPn þ lPnþ1� ¼
XM�1

n¼0

½�MkPn þ nkPn þ lPnþ1�

¼ �Mk 1� PMð Þ þ kðL�MPMÞ þ l 1� P0ð Þ
¼ �Mkþ kLþ l 1� P0ð Þ

Solving for L, gives,

L = M – (1 – P0)/q

11.9 Expected Units in the Queue (Lq)

So now, the expected number of units in the queue becomes,

Lq = L – Ls

11.10 Expected Time in Service (Ws)

The expected time in the service facility is the following,

Ws = 1/l
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Because the arrival rate to the service facility is not constant, Little’s Law does
not apply, and so it is not possible to compute the expected time for a unit in the
queue (Wq) and in the system (W) using Little’s Law.

11.11 Service Level

The service level (SL) is the probability a new arrival does not wait for service.
This is merely P0, the probability the system is empty. Hence,

SL = P0.

Example 11.1
Suppose a one operator (repairman) system with five machines, and with exponential
arrival and service times. The average run time per machine before needing repair is
20 h and the average service time per machine is two hours. See Fig. 11.1 Some of
the key probabilities and statistics associated with this system are listed below.

Input:
M = 5-machines
R = 1-repairman
Run time per machine and service times are exponential
sa = average run time per machine = 20 h
ss = average service time = 2 h

Computations:
k = 1/sa = 0.05 per hour
l = 1/ss = 0.50 per hour
q = k/l = 0.10
Pn = 0.564[0.10n 5!/(5 - n)!]
Po = 0.564
P1 = 0.282
P2 = 0.113
P3 = 0.034
P4 = 0.007

Running machines Queue Repairman
X X X

X
X

Fig. 11.1 Depiction of a shop with M = five machines and R = one repairman. X identifies
each machine. The example shows an instant when three machines are running, one is in the
queue and another is in repair. The run time per machine before it needs repair is sa = 20 h
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P5 = 0.001
Ls = P1 ? P2 ? P3 ? P4 ? P5 = 0.436
L = 1P1 ? 2P2 ? 3P3 ? 4P4 ? 5P5 = 0.640
Lq = 1P2 ? 2P3 ? 3P4 ? 4P5 = 0.204
Ws = ss = 2 h
SL = P0 = 0.564

Example 11.2
Consider the data from Example 11.1 and assume the shop is open 8 h a day and
5 days a week. Each running machine yields $1,000 an hour and the operator cost
is $800 per day. The financial statistics are listed below.

Input:
Shop is open 8 h per day and 5 days per week
Yield is $1000 per hour for each running machine
Cost is $800 per day

Computations:
Machine-hours running per week = (5 – L) 9 40 174.4
Machine-hours in repair-shop per week = (L) 9 40 25.6
Yield per week ($) = (5 – L) 9 40 9 1000 174,400
Lost yield per week ($) = (L) 9 40 9 1000 25,600
Labor cost per week ($) = 5 9 800 4,000

Example 11.3
The table below gives comparative results for a queuing system with limited
population sizes of M = 5, 10 and 15 machines, and when one repairman, R = 1.
The utilization ratios per machine are q = 0.01, 0.05 and 0.10. Further, the arrival
times and service times are exponential. The measures listed are P0, Lq, Ls, L, and
SL. Recall, q = ss/sa and thereby, q = 0.01 indicates the average service time for
a machine is one percent of the average run time. At q = 0.05, the average service
time is five percent of the average run time for a machine. At q = 0.10, the
average service time is ten percent of the average machine run time.

The values listed in the table below are obtained from computer calculations
that use the equations listed in the chapter.

M R q P0 Lq Ls L SL
5 1 0.01 0.96 0.00 0.04 0.04 0.96
5 1 0.05 0.81 0.03 0.09 0.22 0.81
5 1 0.10 0.65 0.11 0.35 0.47 0.65
10 1 0.01 0.90 0.01 0.10 0.11 0.90
10 1 0.05 0.54 0.30 0.46 0.76 0.54
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10 1 0.10 0.21 1.36 0.79 2.15 0.21
15 1 0.01 0.85 0.02 0.15 0.17 0.85
15 1 0.05 0.33 0.93 0.67 1.60 0.33
15 1 0.10 0.04 4.40 0.96 5.36 0.04
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Chapter 12
M Machines, R Repairmen (M/M/R/M)

Abstract This chapter pertains for a system with a limited number of units in the
input population, like M machines in a shop that occasionally require service from
R servers (repairmen). The inter-arrival time per unit and the service times are
exponential. An example is a taxi fleet of 100 cabs with four service mechanics on
duty to maintain and repair the cabs as needed. The probability on number of units
in the repair system is generated. The basic performance measures of the system
are developed and examples are presented.

12.1 Introduction

Consider a system with M machines and R repairmen and where the run time per
machine and the service times have exponential probability densities. The average
run time for a machine before it needs repair is 1/k and the average service time is
1/l. This could be a firm with five printing presses and two repairmen. The
following notation applies here:

M = population size (number machines)
R = number of service facilities (repairmen)
sa = 1/k = average run time per unit
ss = 1/l = average time to service a unit
k = average arrival rate per machine in a unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
q = ss/sa = k/l
n = number of units in the system n = (0, M)

Below is a list of the difference equations. Following are the corresponding
equilibrium equations and then the reduced equations.
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12.2 Difference Equations

n = 0 P0(t ? h) = (1 - Mkh)P0(t) ? lhP1(t) ? o(h)
n = (1,R - 1) Pn(t ? h) = (1 - (M–n)kh - nlh)Pn(t) ? (M–n ? 1)

khPn - 1(t) ? (n ? 1)lhPn+1(t) ? o(h)
n = (R,M - 1) Pn(t ? h) = (1 - (M–n)kh - Rlh)Pn(t) ? (M–n ? 1)

khPn - 1(t) ? RlhPn+1(t) ? o(h)
n = M PM(t ? h) = (1 - Rlh)PM(t) ? khPM-1(t) ? o(h)

12.3 Equilibrium Equations

n = 0 0 = -MkP0 ? lP1

n = (1,R - 1) 0 = [ - (M - n)k - nl]Pn ? (M–n ? 1)kPn-1

? (n ? 1)lPn+1

n = (R,M - 1) 0 = [ - (M - n)k - Rl]Pn ? (M–n ? 1)kPn-1 ? RlPn+1

n = M 0 = [ - Rl]PM ? kPM-1

12.4 Reduced Equations

0 = -(M – n)kPn ? (n ? 1)lPn+1 n = (0,R - 1)
0 = -(M – n)kPn ? RlPn+1 n = (R,M - 1)

12.5 Probability on n Units in the System

When n \ R, the reduced equations give the probabilities listed below for n = 1, 2
and 3:

P1 = MqP0 = Lq1 P0

P2 = [(M - 1)q/2]P1 = M(M - 1)q2/2!P0

P3 = [(M - 2)q/3]P2 = M(M - 1)(M - 2)q3/3!P0

and so forth, whereby,

Pn = qn M!/[(M–n)!n!] P0 n = (0,R)

When n = (R,M - 1), the probabilities are:
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n = R PR+1 = [(M - R)/R]qPR = qR+1 M!/[(M - R)!R!R]P0

n = R ? 1 PR+2 = [(M - R - 1)/R]qPR+1 = qR+2 M!/[(M - R - 1)!R!R2] P0

and in general,

Pn = qn M!/[(M–n)!R!Rn-R] P0 n = (R ? 1,M)

Because all the probabilities sum to unity,

PM

n¼0
Pn = P0{

PR

n¼0
qn M!/[(M–n)!n!] ?

PM

n¼Rþ1
qn M!/[(M–n)!R!Rn-R]}

thereby,

P0 = 1/{
PR

n¼0
qn M!/[(M–n)!n!] ?

PM

n¼Rþ1
qn M!/[(M–n)!R!Rn-R]}

Finally, the probability of n units in the system becomes

Pn = P0q
n M!/[(M–n)!n!] n = (0,R)

= P0q
n M!/[(M–n)!R!Rn-R] n = (R ? 1,M)

12.6 Expected Units in the Service Facility (Ls)

The expected number of units in the service facility is computed as below.

Ls =
PR�1

n¼0
nPn ? R

PM

n¼R
Pn

12.7 Expected Units in the Queue (Lq)

The expected number of units in the queue is computed as below,

Lq =
PM

n¼R
(n - R)Pn
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Running machines Queue Repairman
X X X

XX

Fig. 12.1 Depiction of a shop with M = five machines and R = two-repairmen. X identifies
each machine. The example shows an instant when two machines are running, one is in the queue
and two are in repair. The run-time per machine before it needs repair is sa = 20 h

12.8 Expected Units in the System (L)

So now, the expected number of units in the system becomes,

L = Ls ? Lq

12.9 Expected Time in Service (Ws)

The expected time in the service facility is the following,

Ws = 1/l
Because the arrival rate to the service facility is not constant Little’s Law does not
apply, and so it is not possible to compute the expected time for a unit in the queue
(Wq) and in the system (W).

12.10 Service Level

The service level (SL) is the probability a new arrival does not wait for service.
This is merely Pn\R. Hence,

SL =
PR�1

n¼0
Pn

Example 12.1
Suppose a two-operator (repairmen) system with five machines, and with expo-
nential arrival and service times. The average run time per machine before needing
repair is 10 h and the average service time is 2 h (see Fig. 12.1). Some of the key
probabilities and statistics associated with this system are listed below.

Input:
M = number of machines = 5
R = number of repairmen = 2
Run times and service times are exponential
sa = average run time per machine = 10 h
ss = average service time = 2 h
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Computations:
k = 1/sa = 0.10 per hour
l = 1/ss = 0.50 per hour
q = k/l = 0.20
Pn = 0.391[.2n]5!/[(5 - n)!n!] n = (0,2)
= 0.391[.2n]5!/[(5 - n)!2!2n-2] n = (3,5)
Po = 0.391
P1 = 0.391
P2 = 0.156
P3 = 0.047
P4 = 0.009
P5 = 0.001
Ls = 1P1 ? 2P2 ? 2P3 ? 2P4 ? 2P5 = 0.82
Lq = 1P3 ? 2P4 ? 3P5 = 0.07
L = 1P1 ? 2P2 ? 3P3 ? 4P4 ? 5P5 = 0.89
Ws = ss = 2 h
SL = P0 ? P1 = 0.782

Example 12.2
Consider the same data from Examples 11.1 and 11.2 where the shop is open 8 h a
day and 5 days a week. But now the shop has two operators. Recall, the average
run time per machine is 20 h and the average service time is two hours. Also, each
running machine yields $1,000 an hour and each operator’s cost is $800 per day.
The financial statistics are listed below.

R = Number of operators 1 2
M = Number of machines 5 5
Shop open 8 h per day and 5 days per week
Yield = $1000 per machine running hour
Cost = $800 per day per repairman

Computations:
q 0.10 0.10
Po 0.564 0.622
P1 0.282 0.311
P2 0.113 0.062
P3 0.034 0.005
P4 0.007 0.001
P5 0.001 0.000
L = (1P1 ? 2P2 ? 3P3 ? 4P4 ? 5P5) 0.64 0.45
M-L 4.36 4.55
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(continued)
Machine-hours running per
week = (M-L) 9 40

174.4 182.0

Machine-hours in-repair shop per
week = 40L

25.6 18.0

Yield per week ($) = (M-L) 9 40
9 1000

174,400 182,000

Lost yield per week
($) = 40L 9 1000

25,600 18,000

Labor cost per week ($) = R9800 4,000 8,000

Example 12.3
The table below gives comparative results for a queuing system with R = 2 and 3
repairmen, and limited population sizes of M machines. When 2 repairmen,
M = 10, 20 and 30; when 3 repairmen, M = 20, 30 and 40. The utilization ratios
per machine are q = 0.01 and 0.05, and the arrival times and service times are
exponential. The measures listed are P0, Lq, Ls, L, and SL. Recall, q = ss/sa and
thereby, q = 0.01 indicates the average service time for a machine is one percent
of the average machine run time. At q = 0.05, the average service time is five
percent of the average machine run time. The run time is the machine operating
time before it needs repair.

The values in the table below are derived from computer calculations that use the
equations listed in the chapter.

M R q P0 Lq Ls L SL
10 2 0.01 0.91 0.00 0.10 0.10 1.00
10 2 0.05 0.61 0.02 0.48 0.50 0.91
20 2 0.01 0.82 0.00 0.20 0.20 0.98
20 2 0.05 0.35 0.21 0.94 1.15 0.71
30 2 0.01 0.74 0.01 0.30 0.30 0.96
30 2 0.05 0.18 0.94 1.38 2.32 0.44
20 3 0.01 0.82 0.00 0.20 0.20 1.00
20 3 0.05 0.37 0.03 0.95 0.98 0.93
30 3 0.01 0.74 0.00 0.30 0.30 1.00
30 3 0.05 0.22 0.15 1.42 1.57 0.80
40 3 0.01 0.67 0.00 0.40 0.40 0.99
40 3 0.05 0.13 0.51 1.88 2.39 0.62

Example 12.4
The table below lists the values of L (number of units in the queue plus in repair)
when: q = 0.01, the number of repairmen is R = 1, 2, 3, 4, and the number of
machines, M, range from 6 to 150. Note q = ss/sa = 0.01, where sa is the average
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run time for a machine before it needs repair, and ss is the average repair time for a
machine. So in this example, the repair time for a machine is small compared to
the run time, i.e., one percent. L is the number of machines out of M that are non-
productive and are in need of repair.

The values of L listed in the table below are derived from computer calculations
that use the equations in the chapter.

Values of L at q = 0.01
M/R 1 2 3 4
6 0.06 0.06 0.06 0.06
8 0.08 0.08 0.08 0.08
10 0.11 0.10 0.10 0.10
15 0.17 0.15 0.15 0.15
20 0.24 0.20 0.20 0.20
30 0.41 0.30 0.30 0.30
40 0.63 0.41 0.40 0.40
50 0.93 0.52 0.50 0.50
60 1.35 0.65 0.60 0.59
70 1.97 0.78 0.70 0.69
80 2.95 0.93 0.81 0.79
90 4.61 1.10 0.92 0.89
100 7.57 1.29 1.03 1.00
150 50.00 3.04 1.70 1.53

Note when M = 100 and R = 1, the number of machines in queue plus
in repair is L = 7.57. When R = 2 repairmen, L drops to 1.29
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Chapter 13
One Server, Repeat Service (M/M/1/h)

Abstract This chapter concerns a system with one-server, infinite capacity,
exponential inter-arrival and service times, and where the service may need to be
repeated. An example is a one-operator machine shop fabrication of a fixture that
is tested at the end to see if it passes a strength test. If not, another fixture must be
fabricated. The probability on n units in the system is developed. Examples are
presented.

13.1 Introduction

Consider a system with one server and an infinite queue where the inter-arrival and
the service times have exponential probability densities. The average time between
arriving customers is 1/k and the average service time is 1/l. The probability is h
of a fault in the service, whereby the service needs to be repeated. This could be a
print shop where the quality of a job could be faulty and the job must be repeated.
The following notation applies here:

sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
h = probability the service must be repeated
q = ss/sa = k/l = utilization ratio
q/(1 - h) \ 1 is needed to assure the system is in equilibrium
n = number of units in the system (n C 0)

Below is a list of the difference equations for the system. Following are the
corresponding equilibrium equations and then the reduced equations.
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13.2 Difference Equations

13.3 Equilibrium Equations

13.4 Reduced Equations h

13.5 Probability on n Units in the System

Using the reduced equations and the notation q0 = k/[(1 - h)l], the probability of
n units in the system becomes.

Pn = k/[(1 - h)l]Pn-1 = q0Pn-1 n C 1
It is observed that

and so forth, whereby,

Because all the probabilities sum to unity,

RnC0 Pn = P0 RnC0q0
n = 1

To maintain equilibrium, it is necessary for q0\ 1, and because q0 = q/(1 -

h), we need q\ (1 - h). This allows applying (2.1) to the above relation to yield,

P0 RnC0q0
n = P01/(1 - q0)

n = 0 P0(t ? h) = (1 - kh)P0(t) ? (1 - h)lhP1(t) ? o(h)
n C 1 Pn(t ? h) = (1 - kh - (1 - h)lh)Pn(t) ? khPn-1(t)

? (1 - h)lhPn+1(t) ? hlhPn(t) ? o(h)

n = 0 0 = - kP0 ? (1 - h)lP1
n C 1 0 = - (k ? l)Pn ? kPn-1+(1 - h)lPn+1

0 = - kPn-1 ? (1 - h)lPn n C 1

P0 = q00 P0
P1 = q0P0 = q01 P0
P2 = q0P1 = q02 P0

Pn = q0nP0 n C 0
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thereby,
P0 = (1 - q0).

Finally, the probability of n units in the system becomes

13.6 Expected Runs

The expected number of runs to get a good unit is obtained from the geometric
distribution. Let x represent the number of runs until a good unit results when h is
the probability of a defective unit. The expected value of x becomes,

E(x) = 1/(1 - h).

Example 13.1
Suppose a one-service facility system with infinite capacity, and with exponential
arrival and service times. The average time between arrivals is 10 min, and the
average time per service is 8 min. The probability the service must repeat is 0.10.
Some of the key probabilities and statistics associated with this system are listed
below.

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
k = 60/sa = 6 per hour
l = 60/ss = 7.5 per hour
q = k/l = 0.80
q0 = q/(1 - h) = 0.889
Pn = (.111).889n n C 0
Po = 0.111
P1 = 0.099
P2 = 0.088
P3 = 0.078
…

Pn = q0n(1 - q0) n C 0

Input:
One server
Infinite capacity
Arrival and service times are exponential
sa = expected time between arrivals = 10 min
ss = expected time for service = 8 min
h = 0.10 = probability service must repeat
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Example 13.2
Consider the data from Example 13.1, and assume the average fee per job is $100
and the material cost is $40 per job. Recall, the average time between arrivals is
10 min, and the average time per service is 8 min. Also, the shop is open 40 h per
week. The data below compares the financial costs when the repeat probability
goes from 0.10 to 0.05.

Input:
Shop open 40 h per week
One-server
Infinite capacity
Average fee per job is $100
Material cost per job is $40
k = expected arrivals per hour = 6
Repeat probability = h 0.10 0.05

Computations:
Jobs per week = (k40) 240 240
Expected (runs/good unit) = 1/(1 - h) 1.111 1.053
Expected repeat runs per week = h/(1 - h)k40 26.7 12.6
Expected runs per week = 1/(1 - h)k40 252.6 266.7
Expected fees per week ($) = k40 9 100 24,000 24,000
Expected material cost per week ($) = k40 9 40 9 1/(1 - h) 10,666 10,105
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Chapter 14
Multi Servers, Repeat Service (M/M/k/h)

Abstract This chapter explores a system with multi-servers, infinite capacity,
exponential inter-arrival and service times, and where the service may need to be
repeated. An example is a warehouse with several order pickers that receive
customer orders. When an order is picked incorrectly it must be repeated.
The probability on n units in the system is developed. Examples are presented.

14.1 Introduction

Consider a system with k servers and an infinite queue where the inter-arrival and
the service times have exponential probability densities. The average time between
arriving customers is 1/k and the average service time is 1/l. The probability is h
that the serviced unit has a fault and thereby the service must be repeated.
An example might be a busy shoe store with two salesmen and where the foot of
each customer is measured prior to bringing out a pair of shoes for the customer to
test. Should the customer not like the comfort of the shoe, the salesman is obliged
to fetch another size or style shoe and repeat the process. The following notation
applies here:

h = probability the service must repeat
sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
q = ss/sa = k/l = utilization ratio
q0 = q/[1 - h]
q0/k \ 1 is needed to ensure the system is in equilibrium
k = number of service facilities
n = number of units in the system (n C 0)

N. T. Thomopoulos, Fundamentals of Queuing Systems,
DOI: 10.1007/978-1-4614-3713-0_14, � Springer Science+Business Media New York 2012

97



Below is a list of the difference equations. Following are the corresponding
equilibrium equations and then the reduced equations.

14.2 Difference Equations

n = 0 P0(t ? h) = (1 - kh)P0(t) ? (1 - h)lhP1(t) ? o(h)
n = (1,k - 1) Pn(t ? h) = (1 - kh - (1 - h)nlh)Pn(t) ? khPn-1(t)

? (1 - h)(n ? 1)lhPn+1(t) ? hnlhPn(t) o(h)
n C k Pn(t ? h) = (1 - kh - (1 - h)klh)Pn(t) ? khPn-1(t)

? (1 - h)klhPn+1(t) ? hklhPn(t) ? o(h)

14.3 Equilibrium Equations

n = 0 0 = -kP0 ? (1 - h)lP1

n = (1,k - 1) 0 = -(k ? nl)Pn ? kPn-1 ? (1 - h)(n ? 1)lPn+1

n C k 0 = -(k ? kl)Pn ? kPn-1 ? (1 - h)klPn+1

14.4 Reduced Equations

0 = -kPn-1 ? (1 - h)nlPn n = (1,k)
0 = -kPn-1 ? (1 - h)klPn n [ k

14.5 Probability on n Units in the System

For convenience, the following analysis uses the notations q = k/l, and q0 = q/
(1 - h). At n = 0 to k, the reduced equations becomes the following;

P0 = q00P0

P1 = q0P0 = q01P0

P2 = q0/2P1 = q02/2!P0

P3 = q0/3P2 = q03/3!P0

…

Pn = q0/nPn-1 = q0n/n!P0 n = (0,k)
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When n is k ? 1 and larger, the reduced equations yield the relations listed below.

Pk+1 = q0/kPk = q0k+1/[k!k]P0

Pk+2 = q0/kPk+1 = q0k+2/[k!k2]P0

…

Pn = q0/kPn-1 = q0n/[k!kn-k]P0 n [ k

Summarizing,

At n = k, both of the above equations are the same; and because probabilities
across all values of n sum to unity, the relation below applies.

RnC0 Pn = P0{
Pk�1

n¼0
q0n/n! ?

P
n� k

q0n/[k!kn-k]}

= P0{
Pk�1

n¼0
q0n/n! ? q0k/k!

P
n� k

q0n-k/kn-k]}

For equilibrium, q0/k \ 1. Applying (2.2) on the above right-hand term yields,

RnC0 Pn = P0{
Pk�1

n¼0
q0n/n! ? q0k/[(k-1)!(k-q0)]}

So now, the probability of n = 0 becomes:

P0 = 1/{
Pk�1

n¼0
q0n/n! ? q0k/[(k - 1)!(k - q0)]}

Finally, the probability of n units in the system becomes

Pn ¼
q0n=n!P0 n ¼ ð0; k� 1Þ
q0n= k!kn�k

� �
P0 n� k

�

14.6 Expected Runs

The expected number of runs to get a good unit is obtained from the geometric
distribution. Let x represent the number of runs until a good unit results when h is
the probability of a defective unit. The expected value of x becomes,

E(x) = 1/(1 - h).

Pn = q0n/n!P0 n = (0,k)
Pn = q0n/[k!kn-k]P0 n [ k
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Example 14.1
Suppose a two-service facility system with infinite capacity, and with exponential
arrival and service times. The average time between arrivals is 10 min, and the
average time per service is 8 min. The probability the service must repeat is
h = 0.20. Some of the key probabilities and statistics associated with this system
are listed below.

Input:
Two-servers
Infinite capacity
Arrival and service times are exponential
sa = expected time between arrivals = 10 min
ss = expected service time = 8 min
h = 0.20 = probability the service must repeat

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
k = 60/sa = 6 per hour
l = 60/ss = 7.5 per hour
q = k/l = 0.80
q0 = k/[(1 - h)l] = 1.00
q0/2 = 0.50
Pn = 0.333/n! n = (0,2)
Pn = 0.167/2n-2 n C 3
Po = 0.333
P1 = 0.333
P2 = 0.167
P3 = 0.083
…

Example 14.2
Consider the data from Example 14.1, and assume the average fee per job is
$100 and the material cost is $40 per job. The shop is open 40 h per week.
The financial data below compares the costs when the repeat probability goes
from 0.20 to 0.10.

Input:
Shop open 40 h per week
Two-servers
Infinite capacity
Average fee per job is $100
Material cost per job is $40
k = expected arrivals per hour = 6
Repeat probability = h 0.20 0.10
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Computations:
Expected jobs per week = k40 240 240
Expected runs per good unit = 1/(1 - h) 1.25 1.11
Expected repeat runs per week = h/(1 - h)k40 60 26.7
Expected runs per week = 1/(1 - h)k40 300 266.7
Expected fees per week ($) = k40 9 100 24,000 24,000
Expected material cost per week ($) = k40 9 40 9 1/(1 - h) 12,000 10,667
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Chapter 15
Tandem Queues (M/M/1: M/M/1)

Abstract This chapter considers a series of two systems where the arriving units
are treated in one system and then in another system in a tandem way. This could
be patients arriving to a medical center where the first system is filling out the
paper and insurance forms, and the second system is receiving the medical
attention. The probability on the number of units in the system, and the basic
performance measures of the system are developed. Examples are presented.

15.1 Introduction

Tandem queues occur when the departing units from one system become the new
arrivals to a downstream system. Tandem queues are also called queues-in-series.
These are two systems, each with one server and an infinite queue capacity where
the inter-arrival and the service times have exponential probability densities. The
average inter-arrival time to system 1 is 1/k. The average service times are 1/l1 for
system 1, and 1/l2 for system 2. An example may be the vast of citizens entering a
state auto license bureau to receive a new driver’s license. After passing the
preliminary quiz and eye site exam, the citizen enters a queue to fill out forms and
pay a fee to the state. From there, the citizen proceeds to another queue to take a
road test on driving capability. It is noted that the application for two systems in
series could readily be extended to three or more systems in series. The following
notation applies here:

sa = 1/k = average time between arrivals
ss1 = 1/l1 = average time to service a unit in system 1
ss2 = 1/l2 = average time to service a unit in system 2
k = average number of arrivals per unit of time
l1, l2 = service rates for systems 1 and 2, respectively
q1 = ss1/sa = k/l1 = utilization ratio for system 1
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q2 = ss2/sa = k/l2 = utilization ratio for system 2
q1 \ 1 and q2 \ 1 are needed to assure the systems are in equilibrium
n1, n2 = number of units in systems 1 and 2, respectively
n = n1 ? n2 = number of units in both systems (n C 0)

15.2 Statistics for System 1

Recall the probability and statistics developed for an (M/M/1) system in Chap. 3.
Since system 1 is also an (M/M/1) system and is completely independent from
system 2, the system 1 probability and statistics are the same as listed in Chap. 3.
These are summarized below:

Pn1 = q1
n1 (1 - q1) n1 C 0

Pn1=0 = (1 - q1)
Ls1 = q1

Lq1 = q1
2/(1 - q1)

L1 = Ls1 ? Lq1 = q1/(1 - q1)
Ws1 = 1/l1

Wq1 = q1/[l1(1 - q1)]
W1 = Ws1 ? Wq1

Wq1
0 = Wq1/q1

SL1 = (1 - q1)

15.3 Output from System 1

Because the service times from system 1 are exponentially distributed with an
average of 1/l1, the output rate while the facility is continuously busy is Poisson
distributed with a rate of l1. But also, because the system is in equilibrium, the input
and output distributions and the corresponding rates are the same. That is, since the
inter-arrival times to system 1 are exponential with an average time of 1/k, the inter-
departure times from the system are also exponential with a rate of 1/k. At the same
time the number of outputs from the system is Poisson distributed with a rate of k.

15.4 Statistics for System 2

Because the output units from system 1 are Poisson with a rate of k, and these are
the input units to system 2 downstream, system 2 also has exponential arrivals with
an average time of 1/k. Also since system 2 has one server and an infinite queue
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with exponential service times and with an average of 1/l2, the system is classified
as (M/M/1). As long as the utilization rate q2 for system 2 is less than one, the
system also is in equilibrium. The probability and statistics for this system are
listed below:

Pn2 = q2
n2 (1 - q2) n2 C 0

Pn2=0 = (1 - q2)
Ls2 = q2

Lq2 = q2
2/(1 - q2)

L2 = Ls2 ? Lq2 = q2/(1 - q2)
Ws2 = 1/l2

Wq2 = q2/[l2(1 - q2)]
W2 = Ws2 ? Wq2

Wq2
0 = Wq2/q2

SL2 = (1 - q2)

15.5 Number of Units in Both Systems

The number of units in both systems is n = n1 ? n2. The probability of n is
developed from the convolution below.

Pn ¼
Xn

n1¼0

Pn1Pn�n1

¼ ð1� q1Þ ð1� q2Þ
Xn

n1¼0

qn1
1 qn�n1

2

¼ ð1� q1Þ ð1� q2Þqn
2

Xn

n1¼0

ðq1=q2Þn1

Now applying (2.7),

Pn ¼ ð1� q1Þ ð1� q2Þqn
2½1� ðq1=q2Þnþ1�=½1� ðq1=q2Þ�

¼ ð1� q1Þ ð1� q2Þ½qnþ1
2 � qnþ1

1 =½q2�q1� �

15.6 Statistics for the Total System

The statistics for the total system can now be computed. These are listed below:

Ls = Ls1 ? Ls2

Lq = Lq1 ? Lq2
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L = L1 ? L2

Ws = Ws1 ? Ws2

Wq = Wq1 ? Wq2

W = W1 ? W2

Example 15.1
Suppose two systems in series where the departures from system 1 go directly to
system 2 for service. Each system has one service facility and an infinite queue.
Also, all of the arrival and service times are exponential. The average time
between arrivals to system 1 is 10 min, and the average time per service is 8 min
for system 1, and 5 min for system 2. See Fig. 15.1. Some of the key probabilities
and statistics associated with this system are listed below.

Input:
2 systems in series (1,2)
One-server per system
Infinite capacity per system
Inter-arrival times and service times are exponential
sa = expected time between arrivals = 10 min
ss1 = expected service time for system 1 = 8 min
ss2 = expected service time for system 2 = 5 min

Computations:
System 1:

k = 1/sa = 0.10 per minute
l1 = 1/ss1 = 0.125 per minute
q1 = k/l1 = 0.80
n1 = number of units in system 1
Pn1 = (.20).80n1 n1 C 0

System 2:

k = 1/sa = 0.10 per minute
l2 = 1/ss2 = 0.200 per minute
q2 = k/l2 = 0.50
n2 = number of units in system 2
Pn2 = (.50).50n2 n2 C 0

---------System 1---------- ------------- System 2

Population queue service facility queue service facility 

X……X X……X1 2 [X]  [X] 

-------------

Fig. 15.1 Two queuing systems in series where the arrival units are first serviced in system 1 and
then in system 2
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Total:

n = n1 ? n2 = number of units in systems 1 and 2
Pn = (1 - .8)(1 -.5)[.5n+1 - .8n+1]/[.5 - .8] n C 0

System 1 System 2 Total
Po 0.200 0.500 0.100
P1 0.160 0.250 0.130
P2 0.128 0.125 0.129
P3 0.102 0.067 0.116
…
Ls 0.80 0.50 1.30
Lq 3.20 0.50 3.70
L 4.00 1.00 5.00
Ws 8 min 5 min 13 min
Wq 32 min 5 min 37 min
W 40 min 10 min 50 min
Wq0 40 min 10 min 50 min
SL 0.20 0.50
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Chapter 16
Priority System, One Server, Infinite
Queue (M/M/1//P)

Abstract This chapter pertains to a systems where the service discipline behaves
in a preemptive priority way. The system has one server, infinite capacity, expo-
nential inter-arrival and service times. An example is a military unit using a one-
frequency radio system where the top commander can interrupt any ongoing call
whenever needed. The probability on n units, and the basic performance measures
of the system are developed. Examples are presented.

16.1 Introduction

This chapter concerns two populations of customers, one with high priority and the
other with low priority. Should a high priority unit enter the system while a low
priority unit is being serviced, the high priority unit bumps the low priority unit
and takes over the service facility. Afterwards, when the bumped unit continues
service, it does so from where it left off. This system is called a preemptive priority
system. The inter-arrival and service times from each population follows the
exponential probability density. The chapter shows how to measure the statistics
for the total system and for each of the individual populations. The average arrival
rates are k1 and k2 for populations 1 and 2, respectively. She average service times
are 1/l for both populations. This two-priority system could be patients coming to
an emergency clinic where some need immediate emergency treatment and others
do not. The reader should be aware that the methods of this chapter could be
extended for three or more priority populations. The method could also be
extended to allow separate service times for each population.

The following notation applies here:

Populations 1 and 2 have high and low priority, respectively
sa1, sa2 = average inter-arrival time for units from populations 1 and 2
k1, k2 = average number of arrivals per unit of time from populations 1 and 2
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ss1, ss2 = average service time for units from populations 1 and 2
l1 = l2 = l = average number of units of populations 1 and 2 that are processed
in a unit of time from a continuously busy service facility
q1 = k1/l = utilization ratio for population 1
q2 = k2/l = utilization ratio for population 2
k = k1 ? k2 = arrival rate for the total system
q = q1 ? q2 = k/l = utilization ratio for the total system
q\ 1 is needed to assure the system is in equilibrium
n1, n2 = number of units in the system from populations 1 and 2
n = n1 ? n2 = total number of units in the system (n C 0)

16.2 Statistics for the Total System

Since the arrival rates from populations 1 and 2 are k1 and k2, the expected arrival
rate for an arbitrary unit to the total system is

k = k1 ? k2

So now, the time between arrivals (ta) to the system is exponential with an
average time of E(ta) = sa = 1/k

For both the high and low priority units, the service times are also exponential
and the service rates are l. Hence l is the service rate for the total system and
thereby the associated utilization ratio is

q ¼ k=l

¼ q1 þ q2

Note, the total system is classified as an (M/M/1) system, the same as described
in Chap. 3. In the following analysis, n is the number of units in the total system.
So using the Chap. 3 results, the probability and statistics for the total system are
as below:

Pn = qn (1 - q) n C 0
Pn=0 = (1 - q)
Ls = q
Lq = q2/(1 - q)
L = Ls ? Lq = q/(1 - q)
Ws = 1/l
Wq = q/[l(1 - q)]
W = Ws ? Wq = 1/[l(1 - q)]
Wq0 = Wq/q
SL = (1 - q)
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16.3 Statistics for the Top Priority Units

In this preemptive priority system, the top priority units are using the system as
though the low priority units are not involved. Should a top priority unit enter
when a low priority is in service, without hesitation, the top priority unit takes over
the service facility. So in this way, the top priority units are operating the system
with a utilization ratio of q1 and the system is classified as (M/M/1). In the
following analysis, n1 is the number of high priority units in the system. The
probability and statistics for the high priority units are also taken from those
developed in Chap. 3. They are the following:

Pn1 = q1
n1 (1 - q1) n1 C 0

Pn1=0 = (1 - q1)
Ls1 = q1

Lq1 = q1
2/(1 - q1)

L1 = Ls1 ? Lq1 = q1/(1 - q1)
Ws1 = 1/l1

Wq1 = q1/[l1(1 - q1)]
W1 = Ws1 ? Wq1 = 1/[l1(1 - q1)]
Wq1

0 = Wq1/q1

SL1 = (1 - q1)

16.4 Statistics for the Low Priority Units

In this preemptive system, the low priority units are allowed to use the service
facilities as long as there are no high priority units in the system. In essence, they
are delegated to remain in the queue while the high priority units are being ser-
viced. Below shows how to measure the statistics for the low priority units.

16.5 Expected Units in Service (Ls), Queue (Lq) and System (L)

Since,

Ls ¼ Ls1 þ Ls2;

and

Ls ¼ q

¼ q1 þ q2

then
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Ls2 ¼ Ls� Ls1 ¼ q2

In the same way,

Lq2 ¼ Lq� Lq1

and thereby,

L2 ¼ Ls2 þ Lq2

16.6 Expected Time in Service (Ws), Queue (Wq)
and System (W)

The expected time is the service facility for a low priority unit is merely,

Ws2 ¼ 1=l

To obtain the expected time in the queue for a low priority item, the following
relation for the expected queue time for the total system is needed. This is

Wq ¼Wq1ðk1=kÞ þWq2ðk2=kÞ

Thereby,

Wq2 ¼ ½Wq�Wq1ðk1=kÞ�=ðk2=kÞ

Using Ws2 and Wq2, the total time in the system becomes,

W2 ¼Ws2 þWq2

16.7 Expected Time in Queue (Wq0) for a Delayed Item

To compute the wait time in the queue, given the unit is delayed, is obtained from
the relation below,

Wq0 ¼Wq01ðk1=kÞ þWq02ðk2=kÞ

Hence,

Wq02 ¼ ½Wq0 �Wq01ðk1=kÞ�=ðk2=kÞ

Example 16.1
Suppose a one-service facility system with infinite capacity, and with two input
populations with exponential arrival and service times. One population has high
preemptive priority over the other low priority population. The average time
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between arrivals is 25 min for population 1, and 25 min for population 2. The
average time per service is 10 min for populations 1 and 2. Some of the key
probabilities and statistics associated with this system are listed below.

Input:
One server
Infinite capacity
2 input populations (1,2)
The population inter-arrival and service times are exponential
Population 1 has high priority

sa1 ¼ expected time between arrivals for population 1 ¼ 25 min

ss1 ¼ expected service time for population 1 ¼ 10 min

Population 2 has low priority

sa2 ¼ expected time between arrivals for population 2 ¼ 25 min

ss2 ¼ expected service time for population 2 ¼ 10 min

Computations:
Total system high priority low priority

sa 12.5 min 25 min 25 min
ss 10 min 10 min 10 min
k (1/sa) 0.08/min 0.04/min 0.04/min
l (1/ss) 0.10/min 0.10/min 0.10/min
q (k/l) 0.80 0.40 0.40
Pn 0.20(0.80n) 0.60(0.40n1)
Po 0.2000 0.6000
P1 0.1600 0.2400
P2 0.1280 0.0960
P3 0.1024 0.0384
…
Ls 0.800 0.400 0.400
Lq 3.200 0.267 2.933
L 4.000 0.667 3.333
Ws 10 min 10 min 10 min
Wq 40 min 6.67 min 73.33 min
W 50 min 16.67 min 83.33 min
Wq0 50 min 16.67 min 83.33 min
SL 0.20 0.60
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Chapter 17
Priority, One Server, Arbitrary Service
(M/G/1//P)

Abstract This chapter explores a system where the service discipline is pre-
emptive priority. The system has one-server, infinite capacity, exponential inter-
arrival times and arbitrary service times. An example is a clinic where some
patients need immediate emergency treatment and others do not. The emergency
patients override the non-emergency patients. The probability on n units, and the
basic performance measures of the system are developed. Examples are presented.

17.1 Introduction

This chapter concerns two populations of customers, one with high priority and the
other with low priority. Should a high priority unit enter the system while a low
priority unit is being serviced, the high priority unit bumps the low priority unit
and takes over the service facility. Subsequently, when the bumped unit continues
service, it does so from where it left off. This system is called a preemptive priority
system. The inter-arrival times follows the exponential probability density. The
service times have arbitrary distributions that could be discrete or continuous. The
chapter shows how to measure the statistics for the total system and for each of the
individual populations. The average arrival rates are k1 and k2 for populations 1
and 2, respectively. She average service times are 1/l1 and 1/l2, and the associ-
ated variances are r1

2 and r2
2 for populations 1 and 2, respectively. This two priority

system could be calls for help in a police beat where some calls need immediate
emergency treatment and others do not. The methods of this chapter could be
extended for three or more priority populations.

The following notation applies here:

Populations 1 and 2 have high and low priority, respectively
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sa1, sa2 = average inter-arrival time for units from populations 1 and 2
k1, k2 = average number of arrivals per unit of time from populations 1 and 2
ss1, ss2 = average service time for units from populations 1 and 2
r1

2, r2
2 = variance of service times from populations 1 and 2

l1 = 1/sa1, l2 = 1/sa2

q1 = k1/l1 = utilization ratio for population 1
q2 = k2/l2 = utilization ratio for population 2
k = k1 ? k2 = arrival rate for the total system
sa = average inter-arrival time for an arbitrary unit
ss = average service time for an arbitrary unit
l = 1/ss

q = q1 ? q2 = k/l = utilization ratio for the total system
q\ 1 is needed to assure the system is in equilibrium
n1, n2 = number of units in the system from populations 1 and 2
n = n1 ? n2 = total number of units in the system (n C 0)

17.2 Statistics for the Total System

Since the arrivals from populations 1 and 2 follow a Poisson distribution with rates
k1 and k2, the total arrivals are Poisson, and the expected arrival rate for an
arbitrary unit to the total system is

k ¼ k1 þ k2

So now, the time between arrivals (ta) to the system is exponential with an
average time of E(ta) = sa = 1/k

17.3 Expected Time and Variance of Time in Service (1/l) and r2

For an arbitrary unit, the expected service time is the following:

E tsð Þ ¼ 1=l

¼ 1=l1ð Þ k1=kð Þ þ 1=l2ð Þðk2=kÞ
¼ ðq1 þ q2Þ=k

and thereby the corresponding service rate is

l ¼ 1=E tsð Þ
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To compute the associated variance, E(ts
2) is needed. This requires using the

variances for populations 1 and 2 in the following way. For population 1, the
variance of the service time (ts1) is computed as below,

V ts1ð Þ ¼ E t2
s1

� �
� E ts1ð Þ2

Hence,

E t2
s1

� �
¼ V ts1ð Þ þ E ts1ð Þ2

In the same way, the corresponding relation for a unit from population 2
becomes,

E t2
s2

� �
¼ V ts2ð Þ þ E ts2ð Þ2

Thereby, for an arbitrary unit in the system, the expression below applies,

E t2
s

� �
¼ ðr2

1 þ 1=l2
1Þ k1=kð Þ þ ðr2

2 þ 1=l2
2Þ k2=kð Þ

So now the variance for an arbitrary unit in the system is computed by,

V tsð Þ ¼ r2 ¼ E t2
s

� �
� E tsð Þ2

17.4 Statistics for an Arbitrary Unit in the System

Now with the parameters, k, l, q and r2 known for the total system, the results
from Chap. 9 can be used to measure the statistics. These are the following;

Po = 1 - k/l = (1 - q)
Ls = q
Lq = [k2r2 ? q2]/[2(1 - q)]
L = [k2r2 ? 2q - q2]/[2(1 - q)]
Ws = Ls/k = 1/l
Wq = Lq/k
W = Ws ? Wq
Wq0 = Wq/q
SL = P0 = 1 - q

17.5 Statistics for the Top Priority Units

In this preemptive priority system, the top priority units are using the system as
though the low priority units are not involved. Should a top priority unit enter
when a low priority is in service, without hesitation, the top priority unit takes over

17.3 Expected Time and Variance of Time in Service (1/l) and r2 117

http://dx.doi.org/10.1007/978-1-4614-3713-0_9
http://dx.doi.org/10.1007/978-1-4614-3713-0_9


the service facility. So in this way, the top priority units are operating the system
with a utilization ratio of q1 and the system is classified as (M/G/1). The
parameters for the top priority units are k1, l1, q1 and r1

2. In the following analysis,
n1 is the number of high priority units in the system. The probability and statistics
for the high priority units are also taken from those developed in Chap. 9. They are
the following:

Pn1=0 = 1- k1/l1 = (1 - q1)
Ls1 = q1

Lq1 = [k1
2r1

2 ? q1
2]/[2(1 - q1)]

L1 = [k1
2r1

2 ? 2q1 - q1
2]/[2(1 - q1)]

Ws1 = Ls1/k1 = 1/l1

Wq1 = Lq1/k1

W1 = Ws1 ? Wq1

Wq1
0 = Wq1/q1

SL1 = Pn1=0 = 1 - q1

17.6 Statistics for the Low Priority Units

In this preemptive system, the low priority units are allowed to use the service
facilities as long as there are no high priority units in the system. In essence, they
are delegated to remain in the queue while the high priority units are being ser-
viced. Below shows how to measure the statistics for the low priority units.

17.7 Expected Units in Service (Ls), Queue (Lq) and System (L)

Since,

Ls ¼ Ls1 þ Ls2;

and

Ls ¼ q

¼ q1 þ q2

then

Ls2 ¼ Ls� Ls1 ¼ q2

In the same way,

Lq2 ¼ Lq� Lq1
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and thereby,

L2 ¼ Ls2 þ Lq2

17.8 Expected Time in Service (Ws), Queue (Wq) and System
(W)

The expected time is the service facility for a low priority unit is merely,

Ws2 ¼ 1=l2

To obtain the expected time in the queue for a low priority item, the following
relation for the expected queue time for the total system is needed. This is

Wq ¼Wq1ðk1=kÞ þWq2ðk2=kÞ

Thereby,

Wq2 ¼ ½Wq�Wq1ðk1=kÞ�=ðk2=kÞ

Using Ws2 and Wq2, the total time in the system becomes,

W2 ¼Ws2 þWq2

17.9 Expected Time in Queue (Wq0) for a Delayed Item

To compute the wait time in the queue, given the unit is delayed, is obtained from
the relation below,

Wq0 ¼Wq01ðk1=kÞ þWq02ðk2=kÞ

Hence,

Wq02 ¼ ½Wq0 �Wq01ðk1=kÞ�=ðk2=kÞ

Example 17.1

Suppose a one service facility system with infinite capacity, and with two input
populations with exponential arrivals. One population has high preemptive priority
over the other low priority population. The average time between arrivals is
25 min for population 1, and 25 min for population 2. The average time per
service is 10 min for populations 1 and 2, and the associated variances are r1

2 = 1
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and r2
2 = 1, respectively. Some of the key probabilities and statistics associated

with this system are listed below.

Input:
One-server
Infinite capacity
2 arrival populations (1,2)
Inter-arrival times are exponential
Population 1

High preemptive priority
sa1 = expected time between arrivals = 25 min
ss1 = expected service time = 10 min
r1

2 = variance of service times = 1 min2

Population 2

Low priority
sa2 = expected time between arrivals = 25 min
ss2 = expected service time = 10 min
r2

2 = variance of service times = 1 min2

Computations:
Population 1:

k1 = 1/sa1 = 0.04/min
l1 = 1/ss1 = 0.10/min
E(ts1

2) = 101

Population 2:

k2 = 1/sa2 = 0.04/min
l2 = 1/ss2 = 0.10/min
E(ts2

2) = 101

Total system:

k = k1 ? k2 = 0.08/min
sa = 1/k = 12.5 min
E(ts) = ss = ss1(k1/k) ? ss2(k2/k) = 10 min
l = 1/ss = 0.10/min
E(ts2) = 101
r2 = E(ts2) – E(ts)2 = 1.0 min2
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Total system Population 1 Population 2
(high priority) (low priority)

sa 12.5 min 25 min 25 min
ss 10 min 10 min 10 min
k 0.08/min 0.04/min 0.04/min
l 0.10/min 0.10/min 0.10/min
r2 1.00 min2 1 min2 1 min2

q 0.80 0.40 0.40
Po 0.200 0.600
Ls 0.800 0.400 0.400
Lq 1.616 0.135 1.481
L 2.416 0.535 1.881
Ws 10 min 10 min 10 min
Wq 20.20 min 3.375 min 37.025 min
W 30.20 min 13.375 min 47.025 min
Wq0 25.25 min 8.437 min 42.063 min
SL 0.20 0.60
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Chapter 18
One Server, Constant Service (M/D/1)

Abstract This chapter concerns a one-server system with infinite capacity
where the inter-arrival times are exponential and the service times are constant.
An example is the cars arriving to a carwash where the service time is always the
same. The probability on n units in the system, and the related performance
measures are developed. Examples are presented.

18.1 Introduction

This is a system with one server and infinite queue where the time between
arriving customers is exponentially distributed with an average of 1/k. The service
time is constant and is always 1/l. An example could be a clothes washing
machine in an apartment building where the total cycle time is always the same.
The following notation applies here:

sa = 1/k = average time between arrivals
ss = 1/l = fixed time to service a unit
r2 = 0 = variance of the time to service a unit
k = average number of arrivals per unit of time
l = 1/sa

q = ss/sa = k/l = utilization ratio
q\ 1 is needed to assure the system is in equilibrium
n = number of units in the system
Pn = probability of n units in the system (n C 0)
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18.2 Summary of the Statistical Measures

This system is one with exponential input times and constant service times.
There is one service facility and an infinite queue. This system conforms with the
Pollaczek–Khintchin formula presented in Chap. 9 where the input times are
exponential and the output times are arbitrary. In the system of this chapter,
the service time is constant and as such, the variance is zero, i.e. r2 = 0. With the
parameters: k, l, q and r2 = 0, the statistical measures developed in Chap. 9
apply here. These are listed below using r2 = 0.

Po = 1 - k/l = (1 - q)
Ls = q
Lq = q2/[2(1 - q)]
L = [2q - q2]/[2(1 - q)]
Ws = Ls/k = 1/l
Wq = Lq/k
W = Ws ? Wq
Wq0 = Wq/q
SL = P0 = 1 - q

Example 18.1
Suppose a one service facility system with infinite capacity, and with exponential
arrivals. The average time between arrivals is 10 min. The time per service is
always 8 min. Some of the key probabilities and statistics associated with this
system are listed below.

Input:
One-server
Infinite capacity
Inter-arrival times are exponential
Service times are constant
sa = expected time between arrivals = 10 min
ss = service time = 8 min
r2 = variance of service time = 0

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
k = 60/sa = 6 per hour
l = 60/ss = 7.5 per hour
q = k/l = 0.80
Po = 0.2000
Ls = 0.80
Lq = 1.60
L = 2.40
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Ws = 8 min
Wq = 16 min
W = 24 min
Wq0 = 20 min
SL = 0.20

18.3 The Probability Distribution of n

For this constant service time system, it is also possible to generate the probability of
n units in the system. To begin, consider two moments in time, t and t0 = t ? 1/l.
Note, if an unit is in the service facility at time t, the unit will complete its service by t0,
since the service time is 1/l and is constant. So, the following probability statements
are defined:

Pn(t) = probability of n units in the system at time t
Pn(t0) = probability of n units in the system at time t0

Note, because of equilibrium, Pn(t0) = Pn(t) = Pn

P j t; t0ð Þ½ � ¼ probability of j arrivals from t to t0

¼ qjexpð�qÞ=j! j ¼ 0; 1; 2; . . .

where j Is Poisson with E(j) = k/l = q.
Note j is the number of arrivals in the length of time 1/l, between t and t0.
To begin in the pursuit to finding Pn, recall:

P0 = 1 – q.
n = 0

The difference equation for n = 0 is the following:

P0(t0) = P0(t) P[0(t,t0)] ? P1(t) P[0(t,t0)]

Since P0(t0) = P0(t) = P0, the relation below is formed:

P0 = P0 exp(-q) ? P1exp(-q)

With some algebra,

P1 = (1 – q)[exp(q) -1]
n = 1
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The difference equation for n = 1 is the following:

P1(t0) = P0(t) P[1(t,t0)] ? P1(t) P[1(t,t0)] ? P2(t) P[0(t,t0)]

Therefore,

P1 = P0 q exp(-q) ? P1 q exp(-q) ? P2exp(-q)

Again, with algebra,

P2 = (1 – q) [exp(2q) - q exp(q) - exp(q)]
n ‡ 2

For n of two or larger, the following expression for the probability is
formulated:

Pn = (1 – q)
Pn

j¼1
(-1)n-j exp(jq) [(jq)n-j/(n - j)! ? (jq)n-j-1/(n - j - 1)!] n C 2

When j = n, the right-hand term in the above equation is ignored.

Example 18.2
Continuing with the above example, k = 0.10 per minute, l = 1/ss = 0.125 per
minute and q = k/l = 0.80. The probabilities for n = 0, 1 and 2 are listed below:

P0 = (1 – q) = 0.200
P1 = (1 – q)[exp(q) -1] = 0.245
P2 = (1 – q) [exp(2q) - q exp(q) - exp(q)] = 0.189
…

Example 18.3
The table below gives comparative results for q = 0.1 to 0.9 when one service
facility, k = 1, exponential arrival times, constant service times and infinite queue
capacity. The measures listed are P0, Lq, Ls, L, Wq, Ws, W, Wq0 and SL. For
simplicity, the average service time is ss = 1.00, and thereby Ws = 1.00 for all
situations.

K q cov P0 Lq Ls L Wq Ws W Wq0 SL
1 0.1 0.0 0.90 0.01 0.10 0.11 0.06 1.00 1.06 0.56 0.90
1 0.2 0.0 0.80 0.02 0.20 0.23 0.12 1.00 1.13 0.63 0.80
1 0.3 0.0 0.70 0.06 0.30 0.36 0.21 1.00 1.21 0.71 0.70
1 0.4 0.0 0.60 0.13 0.40 0.53 0.33 1.00 1.33 0.83 0.60
1 0.5 0.0 0.50 0.25 0.50 0.75 0.50 1.00 1.50 1.00 0.50
1 0.6 0.0 0.40 0.45 0.60 1.05 0.75 1.00 1.75 1.25 0.40
1 0.7 0.0 0.30 0.82 0.70 1.52 1.17 1.00 2.17 1.67 0.30
1 0.8 0.0 0.20 1.60 0.80 2.40 2.00 1.00 3.00 2.50 0.20
1 0.9 0.0 0.10 4.05 0.90 4.95 4.50 1.00 5.50 5.00 0.10
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The table above can be used for any queuing system with one server and constant
service time. For example, if the average service time is ss = 8 min, and the utili-
zation ratio was q = 0.80, as in Example 18.1, all the measures listed above are the
same, with a minor adjustment to the wait time measures. For this situation,
Wq = 2.00 9 ss = 16.00 min, Ws = 1.00 9 ss = 8.00 min, W = 3.00 9 ss =

24.00 min, and Wq0 = 2.509ss = 20.00 min.
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Chapter 19
Exponential Arrivals, Erlang Service
(M/E2/1)

Abstract This chapter explores a one-server system with infinite capacity,
exponential inter-arrival times and Erlang 2-stage service times. Could be a jog-
ging shoe manufacturer that uses a mold (called a last) to produce a shoe of a
certain size and width. The arrival time between demands for the mold is expo-
nential, and the time to use the mold on the shoe is Erlang. For an infinite capacity
system, the performance measures are generated. For a finite capacity system,
matrix methods are introduced and the chapter shows how to compute the prob-
ability of n units in the system, and also the performance measures. The chapter
also shows how to extend the matrix method to compute the probabilities for an
infinite capacity system. Examples are presented.

19.1 Introduction

Suppose a system with one server and where the inter-arrival times have
exponential probability densities, and the service times have a 2-stage Erlang
probability density. Further, the average time between arriving customers is 1/k
and the average service time is 1/l. This could be the rental of a jack-hammer at a
hardware rental shop. For brevity, this chapter presents the 2-stage Erlang service
system. But the reader should recognize that the results given in this chapter could
readily be extended for a k-stage Erlang service system.

19.2 Connection Between the Exponential
and Erlang Distributions

Recall from Chap. 2, where the connection between the exponential and Erlang
distributions is given. If y is exponentially distributed with mean 1/h, and if
x = (y1 ? … ? yk), then x is Erlang with mean and variance, E(x) = k/h and
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V(x) = k/h2, respectively. In this chapter, however, the variables are t and ts,
where t is exponential with a mean of 1/(2l) and ts = (t1 ? t2). Thereby, k = 2, ts
is Erlang where the mean is E(ts) = 1/l and the variance is r2 = 1/(2l2).

In summary, the system of this chapter has one service facility, the arrival times
are exponential, the service times are Erlang with a known mean and variance, and
the queue capacity is infinite. Hence, the system conforms with the Pollaczek–
Khintchin formula that is presented in Chap. 9.

The following notation applies here:

sa = 1/k = average time between arrivals
k = average number of arrivals per unit of time
k = 2 = Erlang parameter
ss = s1 ? s2 = 1/(2l) ? 1/(2l) = 1/l = average time to service a unit
r2 = 1/(2l2) = variance of the service time
l = 1/ss

q = ss/sa = k/l = utilization ratio
q\ 1 is needed to assure equilibrium
n = number of units in the system (n C 0)

19.3 Measuring the Summary Statistics

So now, the summary statistics for this system can be computed using the results
developed in Chap. 9. These are the following:

Po = 1 – k/l = (1 – q)
Ls = q
Lq = [k2r2 ? q2]/[2(1 – q)]
L = [k2r2 ? 2q – q2]/[2(1 – q)]
Ws = Ls/k = 1/l
Wq = Lq/k
W = Ws ? Wq
Wq0 = Wq/q
SL = P0 = 1 – q

Example 19.1
Suppose a one service facility system with infinite capacity, and with exponential
arrivals. The average time between arrivals is 10 min. The service times are Erlang
with k = 2 and the average time per service is 8 min. Some of the key proba-
bilities and statistics associated with this system are listed below.

Input:
One-server
Infinite capacity
Inter-arrival times are exponential
Service times are Erlang with k = 2
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sa = expected time between arrivals = 10 min
ss = expected service time = 8 min

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
k = 60/sa = 6 per hour
l = 60/ss = 7.5 per hour
r2 = 1/(2l2) = 32 minute2

q = k/l = 0.80
Po = 0.20
Ls = 0.80
Lq = 2.40
L = 3.20
Ws = 8 min
Wq = 24 min
W = 32 min
Wq0 = 30 min

19.4 Finding the Probability of n Units in the System

With a bit more effort, it is also possible to compute the probabilities for this
system. To begin, it is necessary to artificially set the capacity of the system to a
finite size of N. The method presented here will later show how to find the value of
N that emulates an infinite capacity system.

The following notation is now added to those listed earlier for this system.

N = an artificial limit on the maximum units allowed in the system
(n,j) = states of the system
n = number of units in the system n = (0,N)
j = 0 at n = 0; j = 1, 2 at n C 1 to identify the stage of service

Note for this system, the states have two arguments, (n,j), where n = the
number of units in the system, and j identifies the stage of service from 1 to 2.
Recall from Chap. 2 where each stage is exponential and the two exponential
stages added together give the Erlang shape. The reader should be aware that when
the service times are Erlang with three or more stages, the method of solution is
merely an extension of the procedure shown here.

Below is a list of the difference equations and the corresponding equilibrium
equations. The equilibrium equations are needed to develop the probability and
statistical measures for the system.

19.3 Measuring the Summary Statistics 131

http://dx.doi.org/10.1007/978-1-4614-3713-0_2


19.5 Difference Equations

19.6 Equilibrium Equations

19.7 Matrix Solution

To solve for the probabilities, Pnj, requires matrix methods as will be shown below. To
illustrate, a small example where N = 2 is used for simplicity. When N = 2, the
unknown probabilities are: P00, P11, P12, P21, P22, and the equilibrium equations become:

(n,j)
(0,0) P00(t ? h) = (1 – kh)P00(t) ? 2lhP12(t) ? o(h)
(1,1) P11(t ? h) = (1 – kh – 2lh)P11(t) ? khP00(t) ? 2lh

P22(t) ? o(h)
(1,2) P12(t ? h) = (1 – kh – 2lh)P12(t) ? 2lhP11(t) ? o(h
(n,1) n = (2,N – 1) Pn1(t ? h) = (1 – kh – 2lh)Pn1(t) ? khPn–1,1(t) ? 2lh

Pn+1,2(t) ? o(h)
(n,2) n = (2,N – 1) Pn2(t ? h) = (1 – kh – 2lh)Pn2(t) ? khPn–1,2(t) ? 2lh

Pn1(t) ? o(h
(N,1) PN1(t ? h) = (1 – 2lh)PN1(t) ? khPN–1,1(t)
(N,2) PN2(t ? h) = (1 – 2lh)PN2(t) ? khPN–1,2(t) ? 2lh

PN1(t) ? o(h

(n,j)
(0,0) 0 = – kP00 ? 2lP12

(1,1) 0 = – (k ? 2l)P11 ? kP00 ? 2lP22

(1,2) 0 = – (k ? – 2l)P12 ? 2lP11

(n,1) n = (2,N – 1) 0 = – (k ? 2l)Pn1 ? kPn–1,1 ? 2lPn+1,2

(n,2) n = (2,N – 1) 0 = – (k ? – 2l)Pn2 ? kPn–1,2 ? 2lPn1

(N,1) 0 = – (2l)PN1 ? kPN–1,1

(N,2) 0 = – (2l)PN2 ? kPN–1,2 ? 2lPN1

(0,0) 0 = – kP00 ? 2lP12

(1,1) 0 = – (k ? 2l)P11 ? kP00 ? 2lP22

(1,2) 0 = – (k ? 2l)P12 ? 2lP11

(2,1) 0 = – (2l)P21 ? kP11

(2,2) 0 = – (2l)P22 ? kP12 ? 2lP21

19.8 Zero 5 Zero

When dealing with the more complex set of equilibrium equations, like above, it is
good practice to sum all the equations to ensure that 0 = 0. Since the sum of the
left-hand-side of the five equations sum to zero, the sum for the right-hand-side
should also be zero. This is needed to assure that all elements are correctly

132 19 Exponential Arrivals, Erlang Service (M/E2/1)



installed in the equations. This check is helpful to locate any elements that should
not be included and/or identify any that are missing. The analyst needs to do this
by checking that all the elements with a negative value have a corresponding
element with a positive value.

19.9 AP 5 BP00

For an N = 2 system, that has five equations, only the first four equations are
needed in the matrix form that are shown below.

AP = BP00

A is a 4 9 4 matrix, P and B are 4 9 1 vectors. P00 is a probability and is a
single 1 9 1 term. For this example, the elements of the matrices are listed below:

19.10 A, P and B

The matrix A is:

0 2l 0 0
�ðkþ 2lÞ 0 0 2l

2l �ðkþ 2lÞ 0 0
k 0 �2l 0

2

664

3

775

The vector P is:

P11

P12

P21

P22

2

664

3

775

and the vector B is:

k
�k
0

0

2
664

3
775

19.11 Solving for the Probabilities

Solving for the vector P requires the inverse of A, as below:

P ¼ A�1B P00

¼ Q P00
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The vector Q has elements: q11, q12, q21 and q22. Further, another q element
(q00) can be assigned to the probability, P00 since, P00 = q00P00. Hence, q00 = 1.
Since the sum of all the probabilities equal unity, the sum of the q elements are
used as below to compute P00:

P00 = 1/(q00 ? q11 ? q12 ? q21 ? q22)

So now, all of the probabilities can be computed as follows:

P11 = q11P00

P12 = q12P00

P21 = q21P00

P22 = q22P00

The probabilities Pn are now obtained as below:

P0 = P00

P1 = P11 ? P12

P2 = P21 ? P22

Note where the sum, P0 ? P1 ? P2 = 1.

19.12 When n 5 (0,N)

In the general case, when N is any positive integer, the method to solve for the
probabilities follows the same pattern. First, the equilibrium equations (less the final
one) are placed in the matrix form AP = BP00, and the inverse of A yields the vector
Q. The sum of the Q elements (plus q00) yields the value of P00, as shown earlier, from
where all the probabilities Pnj are derived. Finally, the probabilities of Pn become:

P0 = P00

Pn = Pn1 +Pn2 n = (1,N)

19.13 Lambda and Rho Effective

Recall from Chap. 4 where lambda effective is computed as below:

ke = k[1 – PN] = ‘‘lambda effective’’
q e = ke/l = ‘‘rho effective’’

In this context,

k = expected number of arrivals in a unit of time,
ke = expected number of units that enter the system in a unit of time,
k – ke = expected number of units that are lost per unit of time,
q = utilization ratio,
qe = effective utilization ratio, and is less than one.
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19.14 Probability and Statistics for an Infinite Capacity System

As ke/k approaches one, the system statistics and probabilities that are calculated for
this finite capacity system are very close to a system with infinite capacity. At the
outset, the analyst can set N = 20, say, and then measure the above ratio. If ke/k is too
low, then N is increased by increments of 5, say, until the accuracy desired is met. In
this way, this system that artificially sets a limit on the capacity can be used to find the
results needed for a system with infinite capacity. As q approaches one, N increases.

19.15 Expected Number of Units in the Service Facility (Ls)

The expected number of units in the service facility becomes:

Ls ¼
XN

n¼1

Pn

19.16 Expected Units in the Queue (Lq)

The expected number of units in the queue is obtained as below,

Lq ¼
XN

n¼1

ðn� 1ÞPn

19.17 Expected Units in the System (L)

The expected number of units in the system (service facility plus queue) is

L = Ls ? Lq

19.18 Expected Time in Service (Ws), Queue (Wq)
and System (W)

Using Little’s Law,

Ws = Ls/ke

Wq = Lq/ke

W = L/ke = Ws ? Wq

19.14 Probability and Statistics for an Infinite Capacity System 135



19.19 Expected Time in the Queue Given a Delay (Wq0)

Another useful system statistic is the expected time in the queue for an arrival that
is delayed in the queue. Note that an arrival that is not delayed will not have to
wait in the queue. Wq is the average of both of these events. So it is helpful to
introduce the events D and D0, where D = the event a new arrival is delayed, and
D0 = the event of not delayed. The probabilities for these events are:

P(D0) = Po

P(D) = (1 – Po)

The corresponding conditional waiting times in the queue are:

Wq|D0 = wait time in queue given no delay
Wq|D = wait time in queue given a delay

The relation between the waiting time (Wq) and the conditional waiting times
(Wq|D0,Wq|D) is below:

Wq = Wq|D0P(D0) ? Wq|DP(D)

Since Wq|D0 = 0,

Wq0 = Wq|D = Wq/P(D) = Wq/(1 – P0)

19.20 Service Level and Loss Probability

The service level (SL) is the probability an arrival to the system is not delayed in the
queue, and this is simply P0. The loss probability (Ploss) is the probability a new
arrival is lost because the system capacity is too small. This is merely PN, the
probability the system is full, where any new arrival is blocked from entering. Hence,

SL = P0

Ploss = PN

Note, Ploss is another measure on how high to set N so that the probability and
statistics results are close enough to an infinite capacity system. When Ploss is less
than 0.005, say, then N is adequate.

Example 19.2
Assume a system where arrivals are exponential with an average time of 1.0, and
the service is Erlang with k = 2 stages and has an average time of 0.5. Hence,
k = 1.0 and l = 2.0. To illustrate, using N = 2 as the system capacity, the
matrices of interest are shown below.
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Input:
One-server
Finite capacity with N = 2
Inter-arrival times are exponential
Service times are Erlang with k = 2
Expected arrival rate is k = 1.0
Expected service rate is l = 2.0

Computations:
The matrices A and B are formulated.
Then the vector Q = A-1B is generated.
Finally, all the probabilities Pnj are computed.

Below shows all the computations.

A =

0 4 0 0
�5 0 0 4
4 �5 0 0
1 0 �4 0

2

664

3

775

B =

1
�1
0

0

2

664

3

775

Now, taking the inverse of A and solving for Q yields,

Q =

0:3125
0:2500
0:0781
0:1406

2

664

3

775

From here, the probability P00 is computed as below:

P00 ¼ 1=½1:000þ 0:3125þ 0:2500þ 0:0781þ 0:1406�
¼ 0:5614

Hence,

P11 = 0.1754
P12 = 0.1404
P21 = 0.0438
P22 = 0.0789

Finally, the state probabilities are the following:

P0 = 0.5614
P1 = 0.3158
P2 = 0.1227
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Note, in this system with N = 2, the probability of a lost arrival is
Ploss = P2 = 0.1227. Since this is high, an approximation to an infinite capacity
system would require a much larger parameter N. Perhaps, N = 10 to start with.

Example 19.3
The coefficient of variation for an Erlang variable with k stages is cov = 1/

ffiffiffi
k
p

. The
table below lists the cov values for k ranging from 1 to 9. Note, when k = 1,
cov = 1.00 and the Erlang is the same as the exponential, and when k = 9,
cov = 0.33, whereby the Erlang distribution looks much like a normal distribution.

Example 19.4
The table below gives comparative results for a queuing system with one service
facility, where the utilization ratio is q = 0.50, the arrival times are exponential,
the service times are Erlang with parameters k = 1 to 9, and the queue capacity is
infinite. The measures listed are P0, Lq, Ls, L, Wq, Ws, W, Wq0 and SL.
For simplicity, the average service time is ss = 1.00, and thereby Ws = 1.00 for
all situations. The table entries are computed using the Pollaczek–Khintchin
equations developed in Chap. 9.

Note, the statistical measures: P0, Ls, Ws and SL are the same for all examples.
Further, Lq, L, Wq, W and Wq0 become smaller as the cov decreases from 1.00 to 0.33.

Erlang k cov
1 1.00
2 0.71
3 0.58
4 0.50
5 0.45
6 0.41
7 0.38
8 0.35
9 0.33

Erlang k cov P0 Lq Ls L Wq Ws W Wq0 SL
1 1.00 0.50 0.50 0.50 1.00 1.00 1.00 2.00 2.00 0.50
2 0.71 0.50 0.38 0.50 0.88 0.75 1.00 1.75 1.50 0.50
3 0.58 0.50 0.33 0.50 0.83 0.67 1.00 1.67 1.33 0.50
4 0.50 0.50 0.31 0.50 0.81 0.63 1.00 1.63 1.25 0.50
5 0.45 0.50 0.30 0.50 0.80 0.60 1.00 1.60 1.20 0.50
6 0.41 0.50 0.29 0.50 0.79 0.58 1.00 1.58 1.17 0.50
7 0.38 0.50 0.29 0.50 0.79 0.57 1.00 1.57 1.14 0.50
8 0.35 0.50 0.28 0.50 0.78 0.56 1.00 1.56 1.13 0.50
9 0.33 0.50 0.28 0.50 0.78 0.56 1.00 1.56 1.11 0.50
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Chapter 20
Erlang Arrivals, Exponential
Service (E2/M/1)

Abstract This chapter considers a one-server sytem with finite capacity, Erlang
2-stage inter-arrival times and exponential service times. An example is the trucks
that arrive to a receiving dock with one unloading crew. As the trucks come in, the
crew (the service facility) unloads each truck in the order of arrival. Matrix
methods are used to compute the probability of n units in the system. The prob-
abilities are used to derive the performance measures. The chapter shows how the
matrix method can extend to an infinite capacity system. Examples are presented.

20.1 Introduction

Consider a system with one server and where the inter-arrival times are from a
2-stage Erlang probability distribution, and the service times are exponential.
Further, the average time between arriving customers is 1/k and the average
service time is 1/l. This could be a call for a windshield mold in a glass company
that builds windshields by model and year for the wide array of automobiles.
The windshield mold has the role of the service facility and the customer orders for
a particular windshield are the arrivals. New windshields are needed to replace
those that are damaged on automobiles.

Recall from Chap. 2, if x = (y1 ? … ? yk) and y is exponential with mean
1/h, then x is Erlang with mean and the variance E(x) = k/h and V(x) = k/h2,
respectively. But in this situation, the inter-arrival time is ta = (t1 ? t2) where t is
exponential with a mean of 1/(2k), and thereby ta is Erlang with k = 2 and has a
mean of E(ta) = 1/k.

To obtain the probabilities and summary statistics for this system, it is neces-
sary to artificially set the capacity to a finite size of N. The method of this chapter
will show how N can be set in a way where the results will be almost the same as
when the capacity is infinite.
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The following notation applies here:

sa = 1/k = average time between arrivals
k = average number of arrivals per unit of time
k = 2 = Erlang parameter
sa = s1 ? s2 = 1/(2k) ? 1/(2k) = 1/k = average inter-arrival time to the system
l = 1/ss

q = ss/sa = k/l = utilization ratio
q\ 1 is needed to maintain equilibrium
N = an artificial limit on the maximum units allowed in the system
(n,i) = states of the system
n = number of units in the system n = (0,N)
i = 1, 2 at n C 0 to identify the stage of the next arrival

For this system, the states have two arguments, (n,i) where n = the number of
units in the system, and i identifies the stage of the next arrival from 1 to 2. Recall
from Chap. 2 where each stage is exponential and the two exponential stages
added together give the Erlang shape. The reader should be aware that when the
inter-arrival times are Erlang with three or more stages, the method of solution is
merely an extension of the procedure shown here.

Below is a list of the difference equations and the corresponding equilibrium
equations. The equilibrium equations are needed to develop the probability and
statistical measures for the system.

20.2 Difference Equations

20.3 Equilibrium Equations

(n,i)
(0,1) P01(t ? h) = (1 – 2kh)P01(t) ? lhP11(t) ? o(h)
(0,2) P02(t ? h) = (1 – 2kh)P02(t) ? 2khP01(t) ? lhP12(t) ? o(h)
(n,1) n = (1,N – 1) Pn1(t ? h) = (1 – 2kh – lh)Pn1(t) ? 2khPn – 1,2(t)

? lhPn+1,1(t) ? o(h)
(n,2) n = (1,N – 1) Pn2(t ? h) = (1 – 2kh – lh)Pn2(t) ? 2khPn1(t) ? lh

Pn+1,2(t) ? o(h)
(N,1) PN1(t ? h) = (1 – 2kh – lh)PN1(t) ? 2khPN – 1,2(t) ? 2kh

PN2(t) ? o(h)
(N,2) PN2(t ? h) = (1 – 2kh – lh)PN2(t) ? 2khPN1(t) ? o(h)

(n,i)
(0,1) 0 = – 2kP01 ? lP11

(0,2) 0 = – 2kP02 ? 2kP01 ? lP12

(n,1) n = (1,N – 1) 0 = – (2k ? l)Pn1 ? 2kPn – 1,2 ? lPn+1,1

(n,2) n = (1,N – 1) 0 = – (2k ? l)Pn2 ? 2kPn1 ? lPn+1,2

(N,1) 0 = – (2k ? l)PN1 ? 2kPN – 1,2 ? 2kPN2

(N,2) 0 = – (2k ? l)PN2 ? 2kPN1
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20.4 Matrix Solution

To solve for the probabilities, Pni, requires matrix methods as will be shown below.
To illustrate, a small example where N = 2 is used for simplicity. When N = 2,
the unknown probabilities are: P01, P02, P11, P12, P21, P22, and the equilibrium
equations become:

20.5 Zero 5 Zero

When dealing with the more complex set of equilibrium equations, like above, it is
good practice to sum all the equations to ensure that 0 = 0. Since the sum of the
left-hand-side of the five equations sum to zero, the sum for the right-hand-side
should also be zero. This is needed to assure that all elements are correctly
installed in the equations. This check is helpful to locate any elements that should
not be included and/or identify any that are missing. The analyst needs to do this
by checking that all the elements with a negative value have a corresponding
element with a positive value.

20.6 AP 5 BP01

For an N = 2 system, that has six equations, only the first five equations are
needed in the matrix formulation of AP = BP01.

A is a 5 9 5 matrix, P and B are 5 9 1 vectors. P01 is a single 1 9 1 term. For
this example, the elements of the matrices are listed below:

20.7 A, P and B

The matrix A is:

0
�2k
2k
0

0

l 0 0 0
0 l 0 0

�ð2kþ lÞ 0 l 0
2k

0

�ð2kþ lÞ
2k

0

�ð2kþ lÞ
l

2k

2
66664

3
77775

(0,1) 0 = – 2kP01 ? lP11

(0,2) 0 = – 2kP02 ? 2kP01 ? lP12

(1,1) 0 = – (2k ? l)P11 ? 2k02 ? lP21

(1,2) 0 = – (2k ? l)P12 ? 2kP11 ? lP22

(2,1) 0 = – (2k ? l)P21 ? 2kP12 ? 2kP22

(2,2) 0 = – (2k ? l)P22 ? 2kP21
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The vector P is:

P02

P11

P12
P21

P22

2
66664

3
77775

and the vector B is:

2k
�2k

0
0

0

2
66664

3
77775

20.8 Solving for the Probabilities

Solving for the vector P requires the inverse of A, as below:

P ¼ A�1B P01

¼ Q P01

The vector Q has elements: q02, q11, q12, q21 and q22. Further, another q element
(q01) can be assigned to the probability, P01 since, P01 = q01P01. Hence, q01 = 1.
Since the sum of all the probabilities equal unity, the sum of the q elements are
used as below to compute P01.

P01 = 1/(q01 ? q02 ? q11 ? q12 ? q21 ? q22)

So now, all of the probabilities can be computed as follows:

P02 = q02P01

P11 = q11P01

P12 = q12P01

P21 = q21P01

P22 = q22P01

The probabilities Pn are now obtained as below:

P0 = P01 ? P02

P1 = P11 ? P12

P2 = P21 ? P22

Note where the sum, P0 ? P1 ? P2 = 1.

20.9 When n 5 (0,N)

In the general case, when N is any positive integer, the method to solve for
the probabilities follows the same pattern. First, the equilibrium equations (less the
final one) are placed in the matrix form AP = BP01, and the inverse of A yields the
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vector Q. The sum of the Q elements (plus q01) yields the value of P01, as shown
earlier, from where all the probabilities Pni are derived. Finally, the probabilities of
Pn become:

Pn = Pn1 +Pn2 n = (0,N)

20.10 Lambda and Rho Effective

Recall from Chap. 4 where lambda effective and rho effective are computed. In
this situation, they are as below:

ke = k[1 – PN2] = ‘‘lambda effective’’
q e = ke/l = ‘‘rho effective’’

In this context,

k = expected number of arrivals in a unit of time,
ke = expected number of units that enter the system in a unit of time,
k – ke = expected number of units that are lost per unit of time,
q = utilization ratio,
qe = effective utilization ratio, and is less than one.

20.11 Probability and Statistics for an Infinite
Capacity System

As ke/k approaches one, the system statistics and probabilities that are calculated
for this finite capacity system are very close to a system with infinite capacity.
At the outset, the analyst can set N = 20, say, and then measure the above ratio.
If ke/k is too low, then N is increased by increments of 5, say, until the accuracy
desired is met. In this way, this system, that artificially sets a limit on the capacity,
can be used to find the results needed for a system with infinite capacity. The
reader should recognize that as q increases, the larger N becomes.

20.12 Expected Number of Units in the Service Facility (Ls)

The expected number of units in the service facility becomes:

Ls ¼
XN

n¼1

Pn
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20.13 Expected Units in the Queue (Lq)

The expected number of units in the queue is obtained as below,

Lq ¼
XN

n¼1

ðn� 1ÞPn

20.14 Expected Units in the System (L)

The expected number of units in the system (service facility plus queue) is

L = Ls ? Lq

20.15 Expected Time in Service (Ws), Queue (Wq)
and System (W)

Using Little’s Law,

Ws = Ls/ke

Wq = Lq/ke

W = L/ke = Ws ? Wq

20.16 Expected Time in the Queue Given a Delay (Wq0)

Another useful system statistic is the expected time in the queue for an arrival that
is delayed in the queue. Note that an arrival that is not delayed will not have to
wait in the queue. Wq is the average of both of these events. So it is helpful to
introduce the events D and D0, where D = the event a new arrival is delayed, and
D0 = the event of not delayed. The probabilities for these events are:

P(D0) = Po

P(D) = (1 – Po)

The corresponding conditional waiting times in the queue are:

Wq|D0 = wait time in queue given no delay
Wq|D = wait time in queue given a delay

The relation between the waiting time (Wq) and the conditional waiting times
(Wq|D0,Wq|D) is below:
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Wq = Wq|D0P(D0) ? Wq|DP(D)

Since Wq|D0 = 0,

Wq0 = Wq|D = Wq/P(D) = Wq/(1 – P0)

20.17 Service Level and Loss Probability

The service level (SL) is the probability an arrival to the system is not delayed in the
queue, and this is simply P0. The loss probability (Ploss) is the probability a new
arrival is lost because the system capacity is too small. This is merely PN2, the
probability the system is full, where any new arrival is blocked from entering. Hence,

SL = P0

Ploss = PN2

Note, Ploss is another measure on how high to set N so that the probability and
statistics results are close enough to an infinite capacity system. When Ploss is less
than 0.005, say, then N is deemed adequate.

Example 20.1
Assume a system where arrivals are Erlang with k = 2 stages and with an average
arrival time of 1.0, and the service is exponential with an average time of 0.5.
Hence, k = 1.0 and l = 2.0. To illustrate, using N = 2 as the system capacity,
the matrices of interest are shown below.

Input:
One-server
Finite capacity with N = 2
Inter-arrival times are Erlang with k = 2
Service times are exponential
The arrival rate is k = 1.0
The service rate is l = 2.0

Computations:
The matrices A and B are formulated.
Then, the vector Q = A-1B is generated.
Finally, all the probabilities Pni are computed.

The computations for the example are showed below.

A =

0 2 0 0 0
�2 0 2 0 0
2 �4 0 2 0
0 2 �4 0 2
0 0 2 �4 2

2
66664

3
77775
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B =

2
�2
0
0

0

2

66664

3

77775

Now, taking the inverse of A and solving for Q yields,

Q =

1:6
1:0
0:6
0:4

0:2

2
66664

3
77775

From here, the probability P00 is computed as below:

P01 ¼ 1=½1:0þ 1:6þ 1:0þ 0:6þ 0:4þ 0:2�
¼ 0:2083

Hence,

P02 = 0.3333
P11 = 0.2083
P12 = 0.1250
P21 = 0.0833
P22 = 0.0416

Finally, the state probabilities are the following:

P0 = 0.5416
P1 = 0.3333
P2 = 0.1249

Note, in this system with N = 2, the probability of a lost arrival is
Ploss = PN2 = 0.0416. Since this is high, an approximation to an infinite capacity
system would require a larger parameter N. Perhaps, N = 10 to start with.
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Chapter 21
Erlang Arrivals, Erlang Service (E2/E2/1)

Abstract This chapter pertains to a one-server system with finite capacity, and
with Erlang 2-stage inter-arrival and service times. Could be a furniture store
where, on each sale, the store has a stockman who fetches the item in the back
storage area of the store, brings it to the customer’s vehicle and helps to load the
item in the vehicle. In this situation, the stockman is the service facility. Matrix
methods are used to compute the probability of n units in the system. The prob-
abilities are used to calculate the performance measures. The chapter shows how to
extend the matrix method for an infinite capacity system.

21.1 Introduction

Consider a system with one server and where the inter-arrival times and the service
times are from 2-stage Erlang probability distributions. Also, the average time
between arriving customers is 1/k and the average service time is 1/l. An example
could be calls arriving to a stock exchange to buy and/or sell stock and the
exchange has but one service facility to receive the calls.

Recall from Chap. 2, if x = (y1 ? … ? yk) and y is exponential with mean 1/
h, then x is Erlang with mean and the variance E(x) = k/h and V(x) = k/h2,
respectively. In this situation, the inter-arrival time is ta = (t1 ? t2) where the
right-hand-variables are exponential with a mean of 1/(2k), and so, ta is a 2-stage
Erlang variable with mean 1/k. The service times are also Erlang where
ts = t1 ? t2. and the t variables on the right-hand-side are exponential with
expected times of E(t) = 1/(2l). Thereby the service times have a 2-stage Erlang
distribution with expected time of E(ts) = 1/l.

To obtain the probabilities and summary statistics for this system, it is neces-
sary to artificially set the capacity to a finite size of N. The method of this chapter
will show how N can be set in a way where the results will be almost the same as
when the capacity is infinite.
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The following notation applies here:

k = 2 = Erlang parameter for the arrival times
k = 2 = Erlang parameter for the service times
sa = s1 ? s2 = 1/(2k) ? 1/(2k) = 1/k = average inter-arrival time to the system
ss = s1 ? s2 = 1/(2l) ? 1/(2l) = 1/l = average service time
k = 1/sa = average number of arrivals per unit of time
l = 1/ss

q = ss/sa = k/l = utilization ratio
q\ 1 to ensure equilibrium
N = an artificial limit on the maximum units allowed in the system
(n,i,j) = states of the system
n = number of units in the system n = (0,N)
i = 1, 2 at n C 0 to identify the stage of next arrival
j = 0, 1, 2. At n = 0, j = 0, and at n C 1, j = 1, 2 to identify the stage of the
current unit in service

For this system, the states have three arguments, (n,i,j) where n = the number of
units in the system; i identifies the stage (1 or 2) of the next arrival; and j gives the
stage (1 or 2) of the service time for the current unit in the service facility, and j = 0
is when no unit is in the service facility. Recall from Chap. 2, two exponential stages
added together give the Erlang shape with k = 2. The reader should be aware that
when the inter-arrival and the service times are Erlang with three or more stages, the
method of solution is merely an extension of the procedure described here.

Below is a list of the difference equations and the corresponding equilibrium
equations. The equilibrium equations are needed to develop the probability and
statistical measures for the system.

21.2 Difference Equations

(n,I,j)
(0,1,0) P010(t ? h) = (1 - 2kh)P010(t) ? 2lhP112(t) ? o(h)
(0,2,0) P020(t ? h) = (1 - 2kh)P020(t) ? 2khP010(t)

? 2lhP122(t) ? o(h)
(1,1,1) P111(t ? h) = (1 - 2kh - 2lh)P111(t) ? 2khP020(t)

? 2lhP212(t) ? o(h)
(1,1,2) Pn12(t ? h) = (1 - 2kh - 2lh)P112(t) ? 2lhP111 (t)

? o(h)
(1,2,1) P121(t ? h) = (1 - 2kh - 2lh)P121(t) ? 2khP111(t)

? 2lhP222(t) ? o(h)
(1,2,2) P122(t ? h) = (1 - 2kh - 2lh)P122(t) ? 2khP112(t)

? 2lhP121(t) ? o(h)

(continued)
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21.3 Equilibrium Equations

(n,I,j)
(0,1,0) 0 = -2kP010 ? 2lP112

(0,2,0) 0 = -2kP020 ? 2kP010 ? 2lP122

(1,1,1) 0 = -(2k ? 2l)P111 ? 2kP020 ? 2lP212

(1,1,2) 0 = -(2k ? 2l)P112 ? 2lP111

(1,2,1) 0 = -(2k ? 2l)P121 ? 2kP111 ? 2lP222

(1,2,2) 0 = -(2k ? 2l)P122 ? 2kP112 ? 2lP121

(n,1,1) n = (2,N - 1) 0 = -(2k ? 2l)Pn11 ? 2kPn-1,21 ? 2lPn+1,12

(n,1,2) n = (2,N - 1) 0 = -(2k ? 2l)Pn12 ? 2kPn-1,22 ? 2lPn11

(n,2,1) n = (2,N - 1) 0 = -(2k ? 2l)Pn21 ? 2kPn11 ? 2lPn+1,22

(n,2,2) n = (2,N - 1) 0 = -(2k ? 2l)Pn22 ? 2kPn12 ? 2lPn21

(N,1,1) 0 = -(2k ? 2l)PN11 ? 2kPN-1,21 ? 2kPN21

(N,1,2) 0 = -(2k ? 2l)PN12 ? 2kPN-1,22 ? 2kPN22 ? 2lPN11

(N,2,1) 0 = -(2k ? 2l)PN21 ? 2kPN11

(N,2,2) 0 = -(2k ? 2l)PN22 ? 2kPN12 ? 2lPN21

(n,1,1) n = (2,N - 1) Pn11(t ? h) = (1 - 2kh - 2lh)Pn11(t) ? 2khPn-1,21(t)
? 2lhPn+1,12(t) ? o(h)

(n,1,2) n = (2,N - 1) Pn12(t ? h) = (1 - 2kh - 2lh)Pn12(t) ? 2khPn-1,22(t)
? 2lhPn11 (t) ? o(h)

(n,2,1) n = (2,N - 1) Pn21(t ? h) = (1 - 2kh - 2lh)Pn21(t) ? 2khPn11(t)
? 2lhPn+1,22(t) ? o(h)

(n,2,2) n = (2,N - 1) Pn22(t ? h) = (1 - 2kh - 2lh)Pn22(t) ? 2khPn12(t)
? 2lhPn21(t) ? o(h)

(N,1,1) PN11(t ? h) = (1 - 2kh - 2lh)PN11(t)
? 2khPN-1,21(t) ? 2khPN21(t) ? o(h)

(N,1,2) PN12(t ? h) = (1 - 2kh - 2lh)PN12(t)
? 2khPN-1,22(t) ? 2khPN22(t)
? 2lhPN11(t) ? o(h)

(N,2,1) PN21(t ? h) = (1 - 2kh - 2lh)PN21(t) ? 2khPN11(t)
? o(h)

(N,2,2) PN22(t ? h) = (1 - 2kh - 2lh)PN22(t) ? 2khPN12(t)
? 2lhPN21(t) ? o(h)
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21.4 Matrix Solution

To solve for the probabilities, Pnij requires matrix methods as is shown below. To
illustrate, a small example where N = 2 is used for simplicity. When N = 2, the
unknown probabilities are: P010, P020, P111, P112, P121, P122, P211, P212, P221, P222.
The equilibrium equations are listed below:

(0,1,0) 0 = -2kP010 ? 2lP112

(0,2,0) 0 = -2kP020 ? 2kP010 ? 2lP122

(1,1,1) 0 = -(2k ? 2l)P111 ? 2kP020 ? 2lP212

(1,1,2) 0 = -(2k ? 2l)P112 ? 2lP111

(1,2,1) 0 = -(2k ? 2l)P121 ? 2kP111 ? 2lP222

(1,2,2) 0 = -(2k ? 2l)P122 ? 2kP112 ? 2lP121

(2,1,1) 0 = -(2k ? 2l)P211 ? 2kP121 ? 2kP221

(2,1,2) 0 = -(2k ? 2l)P212 ? 2kP122 ? 2kP222 ? 2lP211

(2,2,1) 0 = -(2k ? 2l)P221 ? 2kP211

(2,2,2) 0 = -(2k ? 2l)P222 ? 2kP212 ? 2lP221

21.5 Zero 5 Zero

When dealing with the more complex set of equilibrium equations, like above, it is
good practice to sum all the equations to ensure that 0 = 0. Since the sum of the
left-hand-side of the ten equations sum to zero, the sum for the right-hand-side
should also be zero. This is needed to assure that all elements are correctly
installed in the equations. This check is helpful to locate any elements that should
not be included and/or identify any that are missing. The analyst needs to do this
by checking that all the elements with a negative value have a corresponding
element with a positive value.

21.6 AP 5 BP010

For an N = 2 system, that has ten equations, the first nine equations are needed in
the matrix form that are shown below.

AP = BP010

A is a 9 9 9 matrix, P and B are 9 9 1 vectors. P010 is a single 1 9 1 term.
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21.7 Solving for the Probabilities

Solving for the vector P requires the inverse of A, as below:

P ¼ A�1B P010

¼ Q P010

The vector Q has elements: q020, q111, q112, q121, q122, q211, q212, q221, q222.
Further, another q element (q010) can be assigned to the probability, P010 since,
P010 = q010P010. Hence,

q010 = 1. Since the sum of all the probabilities equal unity, the sum of the q
elements are used as below to compute P010:

P010 = 1/(q010 ? q020 ? q111 ? q112 ? q121 ? q122 ? q211 ? q212 ? q221 ?

q222)
So now, all of the probabilities can be computed as follows:

P020 = q020P010

P111 = q111P010

P112 = q112P010

P121 = q121P010

P122 = q122P010

P211 = q211P010

P212 = q212P010

P221 = q221P010

P222 = q222P010

The probabilities Pn are obtained as below:

P0 = P010 ? P020

P1 = P111 ? P112 ? P121 ? P122

P2 = P211 ? P212 ? P221 ? P222

Note where the sum, P0 ? P1 ? P2 = 1.

21.8 When n 5 (0,N)

In the general case, when N is any positive integer, the method to solve for the
probabilities follows the same pattern. First, the equilibrium equations (less the final
one) are placed in the matrix form AP = BP010, and the inverse of A yields the vector
Q. The sum of the Q elements (plus q010) yields the value of P010, as shown earlier, from
where all the probabilities Pnij are derived. Finally, the probabilities of Pn become:

P0 = P010 ? P020 n = 0
Pn = Pn11 ? Pn12 ? Pn21 Pn22 n = (1,N)
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21.9 Lambda and Rho Effective

In this system, lambda effective and rho effective are computed as below:

ke = k[1 - PN21 - PN22] = ‘‘lambda effective’’
q e = ke/l = ‘‘rho effective’’

In this context,

k = expected number of arrivals in a unit of time,
ke = expected number of units that enter the system in a unit of time,
k - ke = expected number of units that are lost per unit of time,
qe = effective utilization ratio.

21.10 Probability and Statistics for an Infinite Capacity System

As ke/k approaches one, the system statistics and probabilities that are calculated
for this finite capacity system are very close to a system with infinite capacity.
At the outset, the analyst can set N = 20, say, and then measure the above ratio.
If ke/k is too low, then N is increased by increments of 5, say, until the accuracy
desired is met. In this way, this system that artificially sets a limit on the capacity
can be used to find the results needed for a system with infinite capacity.

21.11 Expected Number of Units in the Service Facility (Ls)

The expected number of units in the service facility becomes:

Ls ¼
XN

n¼1

Pn

21.12 Expected Units in the Queue (Lq)

The expected number of units in the queue is obtained as below,

Lq ¼
XN

n¼1

ðn� 1ÞPn

21.13 Expected Units in the System (L)

The expected number of units in the system (service facility plus queue) is

L = Ls ? Lq
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21.14 Expected Time in Service (Ws), Queue (Wq)
and System (W)

Using Little’s Law,

Ws = Ls/ke

Wq = Lq/ke

W = L/ke = Ws ? Wq

21.15 Expected Time in the Queue Given a Delay (Wq0)

Another useful system statistic is the expected time in the queue for an arrival that
is delayed in the queue. Note that an arrival that is not delayed will not have to
wait in the queue. Wq is the average of both of these events. So it is helpful to
introduce the events D and D0, where D = the event a new arrival is delayed, and
D0 = the event of not delayed. The probabilities for these events are:

P(D0) = Po

P(D) = (1 – Po)

The corresponding conditional waiting times in the queue are:

Wq|D0 = wait time in queue given no delay
Wq|D = wait time in queue given a delay

The relation between the waiting time (Wq) and the conditional waiting times
(Wq|D0,Wq|D) is below:

Wq = Wq|D0P(D0) ? Wq|DP(D)

Since Wq|D0 = 0,

Wq0 = Wq|D = Wq/P(D) = Wq/(1 - P0)

21.16 Service Level and Loss Probability

The service level (SL) is the probability an arrival to the system is not delayed in
the queue, and this is simply P0. The loss probability (Ploss) is the probability a
new arrival is lost because the system capacity is too small. This is merely
(PN21 ? PN22), the probability the system is full, where any new arrival is blocked
from entering. Hence,

SL = P0

Ploss = PN21 ? PN22

21.14 Expected Time in Service (Ws), Queue (Wq) and System (W) 153



Note, Ploss is another measure on how high to set N so that the probability and
statistics results are close enough to an infinite capacity system. When Ploss is less
than 0.005, say, then N would be deemed adequate.
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Chapter 22
Waiting Time Density, One Server
(M/M/1)

Abstract This chapter shows how to calculate the waiting time probabilities for a
one-server system, with infinite capacity, exponential inter-arrival times and
exponential service times, where the customers are serviced in a first-in-first-out
discipline. An example is when a city designs a beat for a squad car and wants to
determine the probability that at least 90 percent of the calls received for the beat
can begin service within 10 min. The squad car is the service facility and the calls
within the beat are the arrivals. Examples are presented.

22.1 Introduction

Consider a system with one server and an infinite queue where the inter-arrival and
the service times have exponential probability densities. The average time between
arriving customers is 1/k and the average service time is 1/l. This is the (M/M/1)
system described in Chap. 3. The reader should know that the expected wait time
values developed in Chap. 3 are averages for any service discipline. This chapter
shows how to measure the waiting time distribution when the first-in-first-out
(FIFO) service discipline is in use. The average times (Wq, Wq0) given earlier are
valid for any service discipline, but the probability density could vary by service
discipline. An example on the use of the probability density is when a small
hospital has one ambulance and wants to determine the probability that an
emergency call will have to wait more than 20 min to receive service. Some of the
notation and results for this system are listed below.

sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy
service facility
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q = ss/sa = k/l = utilization ratio.
q\ 1 is needed to assure the system is in equilibrium
k\ l
n = number of units in the system (n C 0)

22.2 Conditional Probability of Wait Time in Queue

Suppose n units are in the system when a new arrival enters the system. Of interest
is to find the probability that the wait time in the queue, t, for the new arrival lies
between (t0 and t0 ? dt). This is a conditional probability that depends on the size
of n, and is defined as below:

Pðt0\t\t0 þ dtj nÞ ¼ P½ðn� 1 departures in t0Þ& 1 departure in dtð Þjn�
¼ P½ðn� 1 departures in t0Þ� � P 1 departure in dtð Þ½ �
¼ ½e�lt0 ðlt0Þn�1�=ðn� 1Þ!� ldt

22.3 Probability of Wait Time in Queue

Thereby,

P(t0\t\t0 þ dtÞ ¼
X1

n¼1

Pðt0\t\t0 þ dt j nÞPn

¼
X1

n¼1

½e�lt0 ðlt0Þn�1�=ðn� 1Þ! ðldtÞqnð1� qÞ

¼ ðldtÞe�lt0qð1� qÞ
X1

n¼1

ðlt0qÞn�1=ðn� 1Þ!

Applying Equation (2.9) to the summation portion of the above, the probability
becomes:

P(t0\t\t0 þ dtÞ ¼ k 1� qð Þeðk�lÞt0dt

¼ fðt0Þdt

Thus,
f(t) = k(1 - q) e(k-l)t at n C 1

Pn = (1 – q)qn n C 0
P0 = (1 – q) n = 0
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Finally, the probability of the time in the queue becomes a mixed discrete and
continuous distribution as listed below:

To find the probability that the time in the queue is greater than t0 becomes,
P(t [ t0) =

R 0
t [ t f ðtÞdt = q e(k-l)t0

Example 22.1
Suppose a one service facility system with infinite capacity, and with exponential
arrival and service times. The average time between arrivals is 10 min, and the
average time per service is 8 min. Customers are serviced on a first-come-first
served basis. Some of the wait time statistics for this system are listed below.

Input:
One-server
Infinite capacity
Inter-arrival times are exponential
Service times are exponential
sa = expected time between arrivals = 10 min
ss = expected service time = 8 min
Service discipline is first-come-first-serve

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
q = k/l = 0.80
Pn = (.20).80n n C 0
Po = 0.2000
Ws = 8 min = 0.1333 h
Wq = 32 min = 0.5333 h
W = 40 min = 0.6666 h
Wq0 = 40 min = 0.6666 h
t = wait time in queue
P(t [ t0) = 0.80e(-0.025)t0

P(t = 0 min) = 0.200
P(t [ 0 min) = 0.800
P(t [ 10 min) = 0.623
P(t [ 20 min) = 0.485
P(t [ 30 min) = 0.378
P(t [ 40 min) = 0.294

P(t = 0) = P0 = (1 - q) (t = 0)
f(t) = k(1 - q) e(k-l)t (t [ 0)
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Example 22.2
The table below pertains to an infinite capacity queuing system with one service
facility, exponential arrivals and service times, where the average service time is
1/l = 1.00, and the customers are serviced on a first-in-first-out basis. In the table,
t is the waiting time in the queue, and the entries give the probability of t larger
than t0, P(t [ t0), for utilization ratios, q, ranging from 0.10 to 0.90. Note that
t0 = 1 is the same as the average service time.

The above table can be used for any average service time. For example, if
q = 0.8 and the average service time is 8 min, as in Example 22.1, the probability
P(t [ 8 min) = 0.65, since in the above table, P(t [ 1) = 0.65. Further,
P(t [ 16 min) = 0.54, and so forth.

P(t [ t0)
q P(t = 0) t0 0 1 2 3 4 5
0.10 0.90 0.10 0.04 0.02 0.01 0.00 0.00
0.20 0.80 0.20 0.09 0.04 0.02 0.01 0.00
0.30 0.70 0.30 0.15 0.07 0.04 0.02 0.01
0.40 0.60 0.40 0.22 0.12 0.07 0.04 0.02
0.50 0.50 0.50 0.30 0.18 0.11 0.07 0.04
0.60 0.40 0.60 0.40 0.27 0.18 0.12 0.08
0.70 0.30 0.70 0.52 0.38 0.28 0.21 0.16
0.80 0.20 0.80 0.65 0.54 0.44 0.36 0.29
0.90 0.10 0.90 0.81 0.74 0.67 0.60 0.55
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Chapter 23
Waiting Time Density, Multi
Servers (M/M/k)

Abstract This chapter shows how to calculate the waiting time probabilities for a
multi-server system, with infinite capacity, exponential inter-arrival times and
exponential service times, where the customers are serviced in a first-in-first-out
discipline. Could be a package delivery service that wants to determine the number
of delivery vehicles to have in its fleet so 90 percent of deliveries begin within
20 min of the call. Examples are presented.

23.1 Introduction

Consider a system with k servers and an infinite queue where the inter-arrival and the
service times have exponential probability densities. The average time between
arriving customers is 1/k and the average service time is 1/l. This is the (M/M/k)
system described in Chapter 6. The reader should know that the expected wait time
values developed in Chapter 6 are averages for any service discipline. This chapter
shows how to measure the waiting time distribution when the first-in-first-out
(FIFO) service discipline is in use. An example is when a popular pizza store wants
to determine the number of delivery drivers to have available to assure the customers
that 95 percent of the deliveries will take less than 40 min. The average times
(Wq, Wq0) given earlier are valid for any service discipline, but the probability
density could vary by service discipline. Some of the notation and results for this
system are listed below.

k = number of service facilities
sa = 1/k = average time between arrivals
ss = 1/l = average time to service a unit
k = average number of arrivals per unit of time
l = average number of units processed in a unit of time for a continuously busy

service facility

N. T. Thomopoulos, Fundamentals of Queuing Systems,
DOI: 10.1007/978-1-4614-3713-0_23, � Springer Science+Business Media New York 2012

159



q = ss/sa = k/l = utilization ratio
q\ k is needed to assure the system is in equilibrium
k\ kl
n = number of units in the system

P0 = 1/{
Pk�1

n¼0
qn/n! ? qk/[(k - 1)!(k - q)]}

23.2 Conditional Probability of Wait Time in Queue

Suppose n units, where (n [ k), are in the system when a new arrival enters the
system. Of interest is to find the probability that the wait time in the queue, t, for
the new arrival lies between (t0 and t0 ? dt). This is a conditional probability that
depends on the size of n, and is defined as below:

P(t0\ t \ t0 ? dt | n) = P[(n - k departures in t0) & (1 departure in dt)| n]

= P[(n - k departures in t0)] 9 P[(1 departure in dt)]

= [e-klt0 (klt0)n-k]/(n - k)! 9 kldt

23.3 Probability of Wait Time in Queue

Thereby,

P(t0\ t \ t0 ? dt) =
P

n� k
P(t0\ t \ t0 ? dt | n)Pn

=
P

n� k
[e-klt0(klt0)n-k/(n - k)!](kldt) Pn

= P0(kldt)e-klt0qk/k!
P

n� k
(klt0q)n-k/[(n - k)!kn-k]

Applying Eq. (2.9) to the summation portion on the right-hand-side of the above,
the probability becomes:

P(t0\ t \ t0 ? dt) = P0(kldt) [e-klt0qk/k!]ekt0

= f(t0)dt

Thus,

f(t) = P0lqke(k-kl)t/(k - 1)!

Pn = qn/n!P0 n = (0,k - 1)
qn/[k!kn-k]P0 n C k
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Finally, the probability of the time in the queue becomes a mixed discrete and
continuous distribution as listed below:

P(t = 0) = Pn\k (t = 0)

f(t) = P0lqke(k-kl)t/(k - 1)! (t [ 0)

To find the probability that the time in the queue t is greater than t0 becomes,

P(t [ t0) =
R1

t [ t0 f ðtÞdt = P0q
ke(k-kl)t0/[(k - 1)!(k - q)]

Example 23.1
Suppose a two-service facility system with infinite capacity, and with expo-

nential arrival and service times. The average time between arrivals is 10 min, and
the average time per service is 8 min. Customers are serviced on a first-come-first
serve basis. Some of the key probabilities and statistics associated with the waiting
time for this system are listed below.

Input:
Two-servers
Infinite capacity
Inter-arrival times are exponential
Service times are exponential
sa = expected time between arrivals = 10 min
ss = expected service time = 8 min
Service discipline is first-come-first-served

Computations:
k = 1/sa = 0.10 per minute
l = 1/ss = 0.125 per minute
q = k/l = 0.80
P0 = 0.4286
Pn = (0.4286).80n/n! n = (0,2)
Pn = (0.2143).80n/2n-2 n C 3
Ws = 8 min = 0.133 h
Wq = 1.52 min = 0.025 h
W = 9.52 min = 0.159 h
Wq0 = 6.67 min = 0.111 h
P(t [ t0) = 0.2286e(-0.15)t0

P(t = 0 min) = P(n = 0) ? P(n = 1) = 0.771
P(t [ 0 min) = 0.229
P(t [ 10 min) = 0.051
P(t [ 20 min) = 0.011

Example 23.2
The table below pertains to queuing systems with k = 2 and 3 service facilities,

infinite capacity, exponential arrivals and service times, where the average service
time is 1/l = 1.00, and the customers are serviced on a first-in-first-out basis. In

23.3 Probability of Wait Time in Queue 161



the table, t is the waiting time in the queue, and the entries give the probability of
t larger than t0, P(t [ t0), for utilization ratios, q, ranging from 0.50 to 1.50 at
k = 2; and 0.50 to 2.50 at k = 3. Note that t0 = 1 is the same as the average
service time.

P(t [ t0)

K q P(t = 0) t0 0 1 2 3 4

2 0.50 0.90 0.10 0.02 0.01 0.00 0.00
2 1.00 0.67 0.33 0.12 0.05 0.02 0.00
2 1.50 0.36 0.64 0.39 0.24 0.14 0.09

3 0.50 0.98 0.02 0.00 0.00 0.00 0.00
3 1.00 0.91 0.09 0.01 0.00 0.00 0.00
3 1.50 0.76 0.24 0.05 0.01 0.00 0.00
3 2.00 0.56 0.44 0.16 0.06 0.02 0.01
3 2.50 0.30 0.70 0.43 0.26 0.16 0.10

The above table can be used for any average service time. For example, if
k = 2 servers and q = 1.0 and the average service time is 8 min,
P(t [ 8 min) = 0.12 and P(t [ 16 min) = 0.05. If k = 3 servers and q = 1.00,
P(t [ 8 min) = 0.01 and P(t [ 16 min) = 0.00, and so forth.
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Problems

Chapter 3

3.1 A queuing system has one service facility, an infinite queue capacity, and has
exponential arrival and service times. The average arrival time is 5 h and the
average service time is 3 h.
Find, Lq, Ls, L, Wq, Ws, W, Wq0 and SL.

3.2 Assume the same system as Problem 3.1.
Find P0, P1, P2, P3 and Pn C 4.

3.3 Assume the same system as Problem 3.1. Suppose this is an auto repair shop
that is open 8 h a day and 5 days a week. Also, the average fee per car is $500.
Find, the following:
a. The expected fees per week.
b. The expected idle hours per week.

Chapter 4

4.1 A queuing system has one service facility, with a maximum capacity of N = 3
customers. The arrival and service times are exponential. The average arrival
time is 5 h and the average service time is 3 h.
Find, Lq, Ls, L, Wq, Ws, W and Wq0.

4.2 Assume the same system as Problem 4.1.
Find P0, P1, P2,P3 SL, Ploss and ke.

4.3 Assume the same system as Problem 4.1. Suppose this is an auto repair shop
that is open 8 h a day and 5 days a week. Also, the average fee per car is $500.
Find, the following:
a. The expected fees per week.
b. The expected idle hours per week.
c. The expected customers lost in a week.

4.4 Assume a one service facility system with capacity of N = 2 where all arrival
and service times are exponential. The arrival rates per hour are k0 = 4, k1 = 3,
and k2 = 0, the service rates per hour are l1 = 1 and l2 = 2.
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Find, P0, P1, P2, Lq, Ls, L and SL.
Note the equilibrium equations listed below:
0 = -k0P0 + l1P1

0 = -(k1 + l1)P1 + k0P0 + l2P2

0 = -l2P2 + k1P1

4.5 Consider the system of Problem 4.4 and suppose the facility is open 40 h a
week and the fee per customer is $50. Also the cost of labor per hour is $20.
Note, E(k) = k0P0 + k1P1 +k2P2.
Find the E(fees/week), E(labor cost/week) and E(idle hours/week)

Chapter 5

5.1 A queuing system has one service facility, with no queue space. The arrival
and service times are exponential. The average arrival time is 5 h and the
average service time is 3 h.
Find, Lq, Ls, L, Wq, Ws, W, Wq0, Sl, Ploss and k

5.2 Assume the same system as Problem 5.1. Find P0 and P1

5.3 Assume the same system as Problem 5.1. Suppose this is an auto repair shop
that is open 8 h a day and 5 days a week. Also, the average fee per car is $500.
Find, the following:
a. The expected fees per week.
b. The expected idle hours per week.
c. The expected customers lost in a week.

Chapter 6

6.1 A queuing system has two service facilities, an infinite queue capacity, and
has exponential arrival and service times. The average arrival time is 5 h and
the average service time is 3 h.
Find, Lq, Ls, L, Wq, Ws, W, Wq0 and SL.

6.2 Assume the same system as Problem 6.1.
Find P0, P1, P2, P3 and Pn C 4.

6.3 Assume the same system as Problem 6.1. Suppose this is an auto repair shop
that is open 8 h a day and 5 days a week. Also, the average fee per car is $500.
Find, the following:
a. The expected fees per week.
b. The expected idle hours per week.

Chapter 7

7.1 A queuing system has two service facilities and has a maximum capacity of
N = 3 customers. The arrival and service times are exponential. The average
arrival time is 5 h and the average service time is 3 h.
Find, Lq, Ls, L, Wq, Ws, W and Wq0.

7.2 Assume the same system as Problem 7.1.
Find P0, P1, P2 , P3, SL, Ploss and ke.
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7.3 Assume the same system as Problem 7.1. Suppose this is an auto repair shop
that is open 8 h a day and 5 days a week. Also, the average fee per car is $500.
Find, the following:
a. The expected fees per week.
b. The expected operator idle hours per week.
c. The expected customers lost in a week.

7.4 Assume a two service facility system with capacity of N = 3 where all arrival
and service times are exponential. The arrival rates per hour are k0 = 5, k1 = 4,
k2 = 3, and k3 = 0, the service rates per hour are l1 = 2, l2 = 3 and l3 = 4.
Find, P0, P1, P2, P3, Lq, Ls, L and SL.
Note the equilibrium equations listed below:
0 = -k0P0 + l1P1

0 = -(k1 + l1)P1 + k0P0 + 2l2P2

0 = -(k2 + 2l2)P2 + k1P1 + 2l3P3

0 = -2l3P3 + k2P2

7.5 A parking lot has 2 spaces where the customers are cars (need one space each) and
trucks (need two spaces each) and all arrival and service times are exponential.
The arrival rates for cars are 4 per hour, and for trucks, it is 2 per hour. The
average parking rate is 6 per hour for cars and trucks. Find Pn1n2 where n1 is the
number of cars in the system, and n2 is the number of trucks in the system.
Note the equilibrium equations listed below:
0 = -(k1 + k2)P00 + l1P10 + l2P01

0 = -(k1 + l1)P10 + k1P00 + 2 l1P20

0 = -(2l1)P20 + k1P10

0 = -l2P01 + k2P00

Chapter 8

8.1 A queuing system has two service facilities and no queue space. The arrival
and service times are exponential. The average arrival time is 5 h and the
average service time is 3 h.
Find, Lq, Ls, L, Wq, Ws, W and Wq0.

8.2 Assume the same system as Problem 8.1.
Find P0, P1, P2, SL, Ploss and ke.

8.3 Assume the same system as Problem 8.1. Suppose this is an auto repair shop
that is open 8 h a day and 5 days a week. Also, the average fee per car is $500.
Find, the following:
a. The expected fees per week.
b. The expected operator idle hours per week.
c. The expected customers lost in a week.

8.4 Assume a two service facility system with capacity of N = 2 where all arrival
and service times are exponential. The arrival rates per hour are k0 = 4, k1 = 2,
and k2 = 0, the service rates per hour are l1 = 8 and l2 = 4.
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Find, P0, P1, P2, Ls and SL.
Note the equilibrium equations listed below:
0 = -k0P0 + l1P1

0 = -(k1 + l1)P1 + k0P0 + 2l2P2

0 = -2l2P2 + k1P1

Chapter 9

9.1 A one server system has exponential arrivals and an infinite queue capacity.
The average arrival times are 5 min and the service times are normally
distributed with an average of 3 min and a standard deviation of 1 min.
Find P0, Lq, Ls, L, Wq, Ws, W, Wq0 and SL.

9.2 A one server system has exponential arrivals with an average time of 4 min
and the queue capacity is infinite. The service times are uniform ranging from
2 to 4 min.
Find P0, Lq, Ls, L, Wq, Ws, W, Wq0 and SL.

9.3 A one server system has exponential arrivals with an average time of 4 min
and the queue capacity is infinite. The service times, ts, are discrete distributed
with: P(ts = 2) = 0.2 and P(ts = 4) = 0.8.
Find P0, Lq, Ls, L, Wq, Ws, W, Wq0 and SL.

Chapter 10

10.1 A one server system has one service facility with an infinite queue capacity
and exponential arrivals from two populations. The average arrival times are
8 min from population 1, and 2 min from population 2. The service times
have a mean of two minutes and a standard deviation of zero minutes from
population 1, and a mean of one minute and a standard deviation of zero
minutes from population 2.
Find P0, Lq, Ls, L, Wq, Ws, W, Wq0 and SL.

10.2 For the system in 10.1, find the following statistics for population 1 and 2.
For populations 1, find: Lq, Ls, L, Wq, Ws, W, Wq0 and SL.
For populations 2, find: Lq, Ls, L, Wq, Ws, W, Wq0 and SL.

Chapter 11

11.1 Suppose a one repairman shop with six machines and the average run time
per machine is 5 h and the average service time is one h. All is exponential.
Find P0, P1, P2, P3, P4, P5, P6.

11.2 For the shop in 11.1, find the following: Ls, Lq, L, Ws and SL.
11.3 Suppose the shop in 11.1, is open 8 h a day and the yield per machine is

1,000 units per hour.
Find the expected yield per day; the expected yield lost per day; and the
expected repairman idle h per day.
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11.4 A one repairman shop has two machines, 1 and 2, where the average run time
for machine 1 is 1/k1 and for machine 2, it is 1/k2. The average service times
are 1/l for both machines. All times are exponential. The probabilities for
this system is Pn1n2j where n1 is the number of machine 1 in the service
facility, n2 is the number for machine 2, and j is the machine that is currently
in repair. List the equilibrium equations.

Chapter 12

12.1 Suppose a two repairman shop with six machines and the average run time
per machine is 5 h and the average service time is one hour. All is
exponential.
Find P0, P1, P2, P3, P4, P5, P6.

12.2 For the shop in 12.1, find the following: Ls, Lq, L, Ws and SL.
12.3 Suppose the shop in 12.1 is open 8 h a day and the yield per machine is 1,000

units per hour. Find the expected yield per day; the expected yield lost per
day; and the expected repairman idle hours per day.

12.4 A two repairmen shop has three machines, 1, 2 and 3, where the average run
times are 1/k1, 1/k2 and 1/k3, for machines 1, 2 and 3, respectively. The
average service times are 1/l1, 1/l2 and 1/l3, for machines 1, 2 and 3,
respectively. The probabilities for this system is Pn1n2n3j where n1 is the
number of machine 1 in the service facility, n2 is the number for machine 2,
n3 is the number for machine 3, and j is the machine that is currently in
repair. List the probabilities that pertain to this system.

Chapter 13

13.1 A queuing system has one service facility, an infinite queue capacity, and has
exponential arrival and service times. The average arrival time is 5 h and the
average service time is 3 h. The probability of a faulty unit coming out of the
service facility is 0.20; and all faulty units have to repeat the service.
Find P0, P1, P2.

13.2 For the system in 13.1, assume the fee per good unit is $1000, the material
cost per unit is $400, and the system is open 40 h a week. Find the following:
a. Expected fee per week.
b. Expected material cost per week.
c. Expected service facility idle hours per week.

Chapter 14

14.1 A queuing system has two service facilities, an infinite queue capacity, and
has exponential arrival and service times. The average arrival time is 5 h and
the average service time is 3 h. The probability of a faulty unit coming out of
the service facility is 0.20 and all faulty units have to repeat the service.
Find P0, P1, P2.
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14.2 For the system in 14.1, assume the fee per good unit is $1,000, the material
cost per unit is $400, and the system is open 40 h a week. Find the following:
a. Expected fee per week.
b. Expected material cost per week.
c. Expected service facility idle hours per week.

Chapter 15

15.1 Suppose a situation where the units are in tandem for three systems. All is
exponential and the queue capacity is infinite in each system. The average
arrival time to system 1 is 20 min. The service times to systems 1, 2 and 3 are
10 min, 8 and 4 min, respectively.
For each of the systems in tandem, find P0, Lq, Ls, L, Wq, Ws, W, Wq0 and SL.

15.2 For the queuing systems in 15.1, find the average hours in a queue, and the
total time in the three systems.

Chapter 16

16.1 A preemptive priority one server system has one service facility with an
infinite queue capacity and exponential arrivals from two populations. The
average arrival times are 60 min from population 1 (high priority), and 15
min from population 2 (low priority). The average service times are 6 min for
low and high priority units. All are exponential and the queue capacity is
infinite. For an arbitrary unit in the system, find P0, Lq, Ls, L, Wq, Ws, W,
Wq0 and SL.

16.2 For the system in 16.1, find the following statistics for high priority units: P0,
Lq, Ls, L, Wq, Ws, W, Wq0 and SL.

16.3 For the system in 16.2, find the following statistics for the low priority units:
Lq, Ls, L, Wq, Ws, W, Wq0.

Chapter 17

17.1 A preemptive priority one server system has one service facility with an
infinite queue capacity and exponential arrivals from two populations. The
average arrival times for high priority units are 8 min, and for the low
priority units it is 2 min. The service times have a mean of 2 min and a
standard deviation of zero for high priority, and a mean of one minute and a
standard deviation of zero for low priority.
For an arbitrary unit in the system, find P0, Lq, Ls, L, Wq, Ws, W, Wq0

and SL.
17.2 For the system in 17.1, find the following statistics for high priority units: P0,

Lq, Ls, L, Wq, Ws, W, Wq0 and SL.
17.3 For the system in 17.2, find the following statistics for the low priority units:

Lq, Ls, L, Wq, Ws, W, Wq0.
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Chapter 18

18.1 A queuing system has one service facility, an infinite queue capacity, and has
exponential arrival times. The service times are constant. The average arrival
time is 5 h and the service time is 3 h.
Find, Lq, Ls, L, Wq, Ws, W, Wq0 and SL.

18.2 For the system in 18.1, find P0, P1 and P2.

Chapter 19

19.1 Consider a one server queuing system with exponential arrivals and Erlang
service with three stages. The queue capacity is infinite. The average arrival
time is 20 min and the average service time is 18 min.
Find P0, Lq, Ls, L, Wq, Ws, W, Wq0 and SL

19.2 On Problem 19.1, suppose the capacity is N = 2 for the number of units in the
system. List the equilibrium equations.

Chapter 20

20.1 Consider a one server queuing system with Erlang arrivals of 2 stages, and
exponential service. Assume the capacity is N = 3. The average arrival time
is 20 min and the average service time is 18 min.
List the equilibrium equations for this system.

20.2 For the system in 20.1, list the matrices, A, B, P that would be needed to
solve for the state probabilities.

Chapter 21

21.1 Consider a one server queuing system with Erlang arrivals of 2 stages, and
Erlang service of 2 stages. Assume the capacity is N = 2. The average arrival
time is 20 min and the average service time is 18 min.
List the equilibrium equations for this system.

21.2 For the system in 21.1, list the matrices, A, B, P that would be needed to
solve for the state probabilities.

Chapter 22

22.1 A queuing system has one service facility, an infinite queue capacity, and has
exponential arrival and service times. The average arrival time is 5 h and the
average service time is 3 h. If t is the minutes of wait time in the queue, find,
P(t = 0), P(t [ 0), P(t [ 5) and P(t [ 10).

22.2 For the system in 22.1, find the conditional probability: P(t [10 min
|t[5 min).
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Chapter 23

23.1 A queuing system has two service facilities, an infinite queue capacity, and
has exponential arrival and service times. The average arrival time is 5 h and
the average service time is 3 h. If t is the wait time in the queue, find, P(t = 0),
P(t [ 0) and P(t [ 10 min).

23.2 For the system in 23.1, find the conditional probability: P(t[10 min|t[5 min).
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Solutions

3.1 Lq = 0.90, Ls = 0.60, L = 1.50
Wq = 4.50 h, Ws = 3.00 h, W = 7.50 h, Wq0 = 7.50 h
SL = 0.40

3.2 Pn (n = 0,3) = ( 0.400, 0.240, 0.144, 0.086)
P(n C4) = 0.130

3.3 E(fee/week) = $4000, E(idle hours per week) = 16 h.

4.1 Lq = 0.444, Ls = 0.178, L = 0.622
Wq = 2.22 h, Ws = 3.00 h, W = 5.22 h, Wq0 = 4.11 h

4.2 Pn (n = 0,3) = ( 0.460, 0.276, 0.166, 0.099)
SL = 0.46, Ploss = 0.099, ke = 0.18/hour

4.3 E(fee/week) = $3600, E(idle hours per week) = 18.4 h,
E(customers lost/week) = 0.80

4.4 P0 = 1/11, P1 = 4/11, P2 = 6/11, Ls = 10/11, Lq = 6/11, L = 16/11, SL = 1/11.
4.5 E(fee/week) = $1164, E(labor cost/week) = $800, E(idle hours /week) = 3.64

5.1 Lq = 0.00, Ls = 0.375, L = 0.375
Wq = 0 h, Ws = 3.00 h, W = 3.00 h, Wq0 = 0 h
SL = 0.625, Ploss = 0.375, ke = 0.125/hour

5.2 P0 = 0.625, P1 = 0.375
5.3 E(fee/week) = $2500, E(idle hours per week) = 25 h,

E(customers lost/week) = 3.00

6.1 Lq = 0.06, Ls = 0.60, L = 0.66
Wq = 0.30 h, Ws = 3.00 h, W = 3.30 h, Wq0 = 2.13 h
SL = 0.86

6.2 Pn (n = 0,3) = (0.538, 0.323, 0.097, 0.032)
P(nC4) = 0.900

6.3 E(fee/week) = $4000, E(idle hours per week) = 21.56 h.
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7.1 Lq = 0.029, Ls = 0.583, L = 0.612
Wq = 0.149 h, Ws = 3.00 h, W = 3.149 h, Wq0 = 1.173 h

7.2 Pn (n = 0,3) = (0.545, 0.327, 0.098, 0.029)
SL = 0.872, Ploss = 0.029, ke = 0.194/hour

7.3 E(fee/week) = $3880, E(idle hours per week) = 56.68 h,
E(customers lost/week) = 0.232

7.4 P0 = 0.173, P1 = 0.431, P2 = 0.289, P3 = 0.108,
Ls = 1.225, Lq = 0.108, L = 1.333, SL = 0.604.

7.5 P00 = 0.15, P10 = 0.60, P20 = 0.20, P01 = 0.05

8.1 Lq = 0.00, Ls = 0.539, L = 0.539
Wq = 0 h, Ws = 3.00 h, W = 3.00 h, Wq0 = 0 h

8.2 P0 = 0.562, P1 = 0.337, P2 = 0.101
SL = 0.899, Ploss = 0.101, ke = 0.099/hour

8.3 E(fee/week) = $1980, E(idle hours per week) = 58.44 h,
E(customers lost/week) = 3.96

8.4 P0 = 0.615, P1 = 0.308, P2 = 0.077, Ls = 0.462, SL = 0.923,

9.1 P0 = 0.40, Lq = 0.50, Ls = 0.60, L = 1.10
Wq = 2.5 min, Ws =3.0 min, W = 5.5 min, Wq0 = 4.17 min
SL = 0.40

9.2 P0 = 0.25, Lq = 1.15, Ls = 0.75, L = 1.90,
Wq = 5.75 min, Ws =3.00 min , W = 8.75 min, Wq0 = 7.67 min
SL = 0.25

9.3 P0 = 0.278, Lq = 0.984, Ls = 0.722, L = 1.7060,
Wq = 4.92 min, Ws =3.60 min , W = 8.52 min, Wq0 = 6.81 min
SL = 0.278

10.1 P0 = 0.25, Lq = 1.125, Ls = 0.750, L = 1.875
Wq = 1.80 min, Ws = 1.20 min, W = 3.00 min, Wq0 = 2.40 min
SL = 0.25

10.2 Population 1: Lq = 0.225, Ls = 0.150, L = 0.375
Wq = 0.36 min, Ws = 2.00 min, W = 2.36 min, Wq0 = 0.48 min
SL = 0.25
Populations 2: Lq = 0.900 min, Ls = 0.600 min, L = 1.500 min
Wq = 1.44 min, Ws = 1.00 min, W = 2.44 min, Wq0 = 1.92 min
SL = 0.25

11.1 Pn (n =0,6) = (0.185, 0.222, 0.222, 0.178, 0.107, 0.074, 0.015)
11.2 Ls = 0.81, Lq = 1.15, L = 1.96, Ws = 1.00, SL = 0.19
11.3 E(yield/day) = 32,320, E(lost yield/day) = 15,680,

E(Repairman lost hours/day) =1.48 h
11.4 0 = -(k1 + k2)P000 + l1P101 + l2P012

0 = -(k2 + l1)P101 + k1P000 + l2P112

0 = -(k1 + l2)P012 + k2P000 + l1P111
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0 = -l1P111 + k2P101

0 = -l2P112 + k1P012

12.1 Pn (n = (0,6)= (0.320, 0.384, 0.192, 0.077, 0.023, 0.004, 0.000)
12.2 Ls = 0.98, Lq = 0.14, L = 1.12, Ws = 1.00 hour, SL = 0.70
12.3 E(yield/day) = 39040, E(yield lost/day) = 8,960)

E(repairmen idle hours/day) = 8.192 h
12.4 P0000, P1001, P0102, P0013, P1101, P1102, P1011, P1013,

P0112, P0113, P1111, P1112, P1113

13.1 P0 = 0.2500, P1 = 0.1875, P2 = 0.1405
13.2 E(fee/week) = $8,000, E(material cost/week) = $4000

E(service facility idle hours/week) = 10 h

14.1 P0 = 0.211, P1 = 0.158, P2 = 0.059
14.2 E(fee/week) = $8,000, E(material cost/week) = $4000

E(service facility idle hours/week) = 23.2 h

15.1 System 1: P0 = 0.50, Lq = 0.50, Ls = 0.50, L = 1.00
Wq = 10 min, Ws = 10 min, W = 20 min, Wq0 = 20 min
SL = 0.50
System 2: P0 = 0.60, Lq = 0.27, Ls = 0.40, L = 0.67
Wq = 5.328 min, Ws = 8 min, W = 13.328 min, Wq0 = 13.328 min
SL = 0.60
System 3: P0 = 0.80, Lq = 0.05, Ls = 0.20, L = 0.25
Wq = 1.00 min, Ws = 4.00 min, W = 5.00 min, Wq0 = 5.00 min
SL = 0.80

16.1 All: P0 = 0.50, Lq = 0.50, Ls = 0.50, L = 1.00
Wq = 6 min, Ws = 6 min, W = 12 min, Wq0 = 12 min
SL = 0.50

16.2 High priority: P0 = 0.90, Lq = 0.01, Ls = 0.10, L = 0.11
Wq = 0.66 min, Ws = 6 min, W = 6.66 min, Wq0 = 6.66 min
SL = 0.90

16.3 Low priority: Lq = 0.49, Ls = 0.40, L = 0.89
Wq = 7.78 min, Ws = 6 min, W = 13.78 min, Wq0 = 13.78 min

17.1 All: P0 = 0.250, Lq = 1.25, Ls = 0.75, L = 2.00
Wq = 1.04 min, Ws = 1.20 min, W = 2.24 min, Wq0 = 1.39 min
SL = 0.25

17.2 High priority: P0 = 0.75, Lq = 0.042, Ls = 0.250, L = 0.292
Wq = 0.336 min, Ws = 2 min, W = 2.336 min, Wq0 = 1.394 min
SL = 0.75
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17.3 Low priority: Lq = 1.208, Ls = 0.50, L = 1.708
Wq = 1.216 min, Ws = 1 min, W = 2.216 min, Wq0 = 1.389 min

18.1 P0 = 0.40, Ls = 0.60, Lq = 0.45, L = 1.05
Ws = 3 h, Wq = 2.25 h, W = 5.25 h, Wq0 = 0.75 h

18.2 P0 = 0.40, P1 = 0.329, P2 = 0.162

19.1 P0 = 0.10, Ls = 0.90, Lq = 5.40, L = 6.30
Ws = 18 min, Wq = 108 min, W = 116 min, Wq0 = 120 min
SL = 0.10

19.2 0 = -kP00 + 3lP13

0 = -(k+3l)P11 + kP00 + 3lP23

0 = -(k+3l)P12 + 3lP11

0 = -(k+3l)P13 + 3lP12

0 = -(3l)P21 + kP11

0 = -(3l)P22 + kP12 + 3lP21

0 = -(3l)P23 + kP13 + 3lP22

20.1 0 = -2kP01 + lP11

0 = -2kP02 + 2kP01 +lP12

0 = -(2k+l)P11 + 2kP02 +lP21

0 = -(2k+l)P12 + 2kP11+lP22

0 = -(2k+l)P21 + 2kP12 +lP31

0 = -(2k+l)P22 + 2kP21 +lP32

0 = -(2k+l)P31 + 2kP22 +2kP32

0 = -(2k+l)P32 + 2kP31

20.2

A ¼

0 0:056 0 0 0 0 0
�0:10 0 0:056 0 0 0 0
0:10 �0:156 0 0:056 0 0 0

0 0:10 �0:156 0 0:056 0 0
0 0 0:10 �0:156 0 0:056 0
0 0 0 0:10 �0:156 0 0:056
0 0 0 0 0:10 �0:156 0:10

2

666666664

3

777777775

B ¼

0:10
�0:10

0
0
0
0
0

2
666666664

3
777777775

P ¼

P02

P11

P12

P21

P22

P31

P32

2
666666664

3
777777775
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21.1 0 = -0.10P010 + 0.11P112

0 = -0.10P020 + 0.10P010 + 0.11P122

0 = -0.21P111 + 0.10P020 + 0.11P212

0 = -0.21P112 + 0.11P111

0 = -0.21P121 + 0.10P111+ 0.11P222

0 = -0.21P122+ 0.10P112+ 0.11P121

0 = -0.21P211+ 0.10P121 + 0.10P221

0 = -0.21P212+ 0.10P122 + 0.10P222 + 0.11P211

0 = -0.21P221 + 0.10P211

0 = -0.21P222 + 0.10P212 + 0.11P221

21.2

A ¼

0 0 0:11 0 0 0 0 0 0
�0::10 0 0 0 0:11 0 0 0 0

0:10 �0:21 0 0 0 0 0:11 0 0
0 0:11 �0:21 0 0 0 0 0 0
0 0:10 0 �0:21 0 0 0 0 0:11
0 0 0:10 0:11 �0:21 0 0 0 0
0 0 0 0:10 0 �0:21 0 0:10 0
0 0 0 0 0:10 0:11 �0:21 0 0:10
0 0 0 0 0 0:10 0 �0:21 0

2
6666666666664

3
7777777777775

B ¼

�0:10

0:10
0
0
0
0
0
0
0

2
6666666666664

3
7777777777775

P ¼

P020

P111

P112

P121

P122

P211

P212

P221

P222

2
6666666666664

3
7777777777775

22.1 P(t = 0) = 0.40, P(t [ 0) = 0.60, P(t [ 5) = 0.594, P(t [ 10) = 0.587
22.2 P(t [ 10|t[5) = 0.988

23.1 P(t = 0) = 0.865, P(t [ 0) = 0.135, P(t [ 5) = 0.014, P(t [ 10) = 0.001
23.2 P(t [ 10|t[5) = 0.071
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