
SPRINGER BRIEFS IN STATISTICS

Nicholas T. Longford

Statistical 
Decision Theory



SpringerBriefs in Statistics

For further volumes:
http://www.springer.com/series/8921

http://www.springer.com/series/8921


Nicholas T. Longford

Statistical Decision Theory

123



Nicholas T. Longford
SNTL and Department of Economics and Business
Universitat Pompeu Fabra
Barcelona
Spain

ISSN 2191-544X ISSN 2191-5458 (electronic)
ISBN 978-3-642-40432-0 ISBN 978-3-642-40433-7 (eBook)
DOI 10.1007/978-3-642-40433-7
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013948867

� The Author(s) 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed. Exempted from this legal reservation are brief
excerpts in connection with reviews or scholarly analysis or material supplied specifically for the
purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the
work. Duplication of this publication or parts thereof is permitted only under the provisions of
the Copyright Law of the Publisher’s location, in its current version, and permission for use must
always be obtained from Springer. Permissions for use may be obtained through RightsLink at the
Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt
from the relevant protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



To Mr. A. Horger and his colleagues



Preface

Making decisions is at the heart of all human activity, mundane as well as
adventurous, for both livelihood and fun. It is an abstract process in which we try
to anticipate what may happen if we choose one course of action or another, and
weigh carefully which one is safer, more enjoyable and profitable, or will bear
greater benefits of some other kind. The definition of statistics assumed in this
volume is that of making decisions in the presence of uncertainty and with limited
resources. In this perspective, any meaningful analysis should closely look at the
consequences of the possible outcomes and of the recommendations based on
them.

Uncertainty means that we may get it wrong. For example, even a competently
executed test of a hypothesis may conclude with evidence against the null when in
fact the null is valid. We do not allow a 5 % chance when crossing a road known to
be busy—it makes sense to look at and listen to the traffic, appreciating the
consequences of getting this everyday manouevre wrong. In a statistical analysis,
the consequences of the errors we commit may or may not be as lop-sided as in
this example, but their balance is a relevant factor in the analysis.

To my regret, I have come to this view only recently, prompted by my expe-
riences in consulting in which some clients have dismissed the standard format of
an analysis that concludes with a hypothesis test, a confidence interval, or an
estimate, because such a statement requires further nontrivial processing (inter-
pretation) to decide what to do: how to alter business practices, production set-
tings, strategic goals, medical treatment regimes, and the like. I got the drift and
re-discovered the work of Morris DeGroot, Tom Ferguson, Dennis Lindley and
Jim Berger, and this volume is a document of my conversion—not to a Bayesian,
but to regarding a decision as the ultimate goal of an analysis.

The volume has an unashamed partisan character; I would like to convert the
reader to the perspective I present, or at least to appreciate its merits, together with
its practical feasibility and the potential appeal to a client.

Chapter 1 introduces the main ideas and terminology, discusses the established
formats in which the results of statistical analyses are most frequently presented,
and highlights their unsatisfactory features. Chapters 2 and 3 deal with two ele-
mentary problems, estimation of the mean and variance of a normal random
sample, when the consequences of errors with one sign differ from those with the
other sign. The problem of choosing one of the options (courses of action) is also
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addressed. Chapter 4 introduces the Bayesian paradigm as a vehicle for incorpo-
rating prior information about the parameters involved in a model. These priors are
informative and are regarded as important as the data. Chapter 5 steps beyond the
confines of the normal distribution and shows that decisions with samples from
and statistics with some other distributions involve calculus not substantially more
complex than in the normal case. Chapters 6 and 7 deal with two applications,
classification and small-area estimation, in which, I believe, the absence of a
transparent discussion of losses (utilities) has led the development astray, some-
times in the direction of irrelevance. Chapter 8 deals with study design. Its length
and location in the volume do no justice to the importance of design in practice,
but without having settled on the method of analysis its discussion would not be
constructive.

All the evaluations described in this volume were made in R (R Development
Core Team, 2009), with user-defined functions. Apart from working out all the
examples, this also had the purpose of quality control of all the math expressions in
the text. The entire library is available from www.sntl.co.uk/Decide.html. How-
ever, a reader may draw greater benefit from the volume by implementing some or
all the algorithms himself or herself, exploring alternative graphical displays and
assessing firsthand the programming effort required.

The original intention of the volume was to communicate the relevance, fea-
sibility, and value of decision theory for the ‘everyday’ statistical problems to
(statistical) professionals, but I paid attention during the revisions also to the
potential of using the text in a graduate course in statistics. A good background in
calculus and linear algebra is important and proficiency in R is a distinct advan-
tage. With it, the text can be used in a graduate course in one academic quarter.
The necessary background from other textbooks can be combined with this text in
a semester. If a topic has to be dropped from the course, Chaps. 6 or 7 are better
choices than Chap. 8.

I would like to thank Aleix Ruiz de Villa Robert for insightful comments on
parts of the manuscript, to Omiros Papaspiliopoulos for highly informative dis-
cussions, and to Springer-Verlag for the original idea, assistance with preparation
of the manuscript, arranging helpful reviews of a draft manuscript and smooth and
timely production of the monograph. The project was partly supported by a grant
from the Spanish Ministry of Science and Innovation.

Barcelona, April 2013
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Chapter 1
Introduction

Most statisticians are accustomed to concluding the formal part of their analysis by
one or several estimates, confidence intervals or by the verdict of a hypothesis test,
formulated as either failure to reject or rejection of the hypothesis. We refer to them
as inferential statements. In some simple settings, there is a clear computational
protocol for producing such a statement, which can be traced to the general theory
for the underlying principles and rationale. The principles are not complete, and
have to be supplemented by some widely adopted conventions that have a question-
able foundation, such as the choice of 5 % for the level of significance (the size) of
the test. (There is no profound reason for not using 4.5 % instead.) There may be argu-
ments about the appropriateness of the assumptions that correspond to the adopted
setting, such as normality, independence and linearity in an ordinary regression, and
diagnostic procedures offer some ways of arbitrating about them.

Throughout this book, we assume that an analysis is conducted on the request of a
client who has a particular agenda, looking for the answer to a particular question that
pertains to the analysed data. The analyst’s formal inferential statement is followed
by its interpretation, a discussion of how the result relates to the client’s problem,
that is, a translation of the result to the language and context of the client. In this
step, the traditional textbook offers plenty of examples but few principles, arguing,
in essence, that every problem is different, and that practical experience is the best
instructor.

If the communication between the analyst and the client is not sufficiently close,
the interpretation, or part of it, may be left to the client. The thesis put forward in
this chapter, and developed in the following chapters, is that this ‘interpretation’ is a
nontrivial activity that requires evaluations that are firmly in the remit of a statistical
analyst. Moreover, it can be connected to basic scientific principles, and can thus be
formalised. This approach is universal, applicable to a wide range of problems that are
generally regarded as statistical, but its application is computationally challenging in
some complex settings. However, sparing computers is a dubious scientific strategy.

N. T. Longford, Statistical Decision Theory, 1
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-40433-7_1,
© The Author(s) 2013



2 1 Introduction

1.1 The Role of Statistics

Our starting point is a definition of statistics as a profession or scientific field. We
define its role as

making purposeful decisions in the presence of uncertainty with limited resources.

The key terms in this definition, purposeful decision, uncertainty and limited
resources, are discussed next.

A purposeful decision is what the client wants to make in the pursuit of a profes-
sional goal, and why he or she approaches a statistician, or engages in a statistical
activity. The underlying purpose, or goal, may be to save resources in a manufacturing
process, confirm the quality of a production process or an innovation, improve the
services provided or understand a natural or social phenomenon. For most part, we
reduce our attention to the task of choosing between two courses of action (options),
A and B. These actions are exclusive—one of them has to be taken, and they are
complementary — it is impossible to take both of them. Note that taking ‘no action’,
such as dismissing a suspect from a police station without any charge, is itself a
course of action; its complement is charging the suspect (and following it up by the
standard police procedures). Dealing with any finite number of options, A, B, C,
…, Z, can be organised into a set of choices between two options. First we decide
between A and the union of B, C, …, Z (B – Z, for short); if we choose the union, we
next decide between B and C – Z, and so on, until we choose a singular option, such
as P, or end up having to choose between Y and Z.

Uncertainty refers to incompleteness of the available data. For example, an exper-
iment can be conducted on only so many units, because the conduct consumes
(client’s) resources. The resources include materials, funding, time, but also the
goodwill of the (human) subjects involved in the experiment. We can (and should)
consider also ethical costs; we are bound by codes of good practice and laws that
prescribe minimum exposure of human subjects, animals and the environment in
general to any potential harm.

Complete data refers to having information based on which the client could choose
among the contemplated courses of action without any difficulty. For example, if we
could establish how a particular compound (a drug) suppresses certain symptoms
of a disease in every patient who is suffering (or will in the future suffer) from a
particular disease, the developer’s decision would be simple and instant. However,
the drug can be administered experimentally only to a small or moderate number
of subjects, and only one such study is permitted by the regulatory authority. As a
result, we have to work with incomplete information. Another source of incomplete-
ness is that the observations made in the process of data collection are not precise
(clinical); measurements are subject to rounding, imperfect instrumentation and they
involve subjects’ verbal responses (including opinions) that require the data collec-
tor’s interpretation (coding). They are affected by momentary influences that include
poor disposition, fatigue brought on by the interview and everyday distractions.

As an aside, we remark that statistics is not solely about data analysis. The client
may (and often should) consult the statistical analyst in the planning stage, before
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expending resources on the conduct of a study and data collection. Design of a study
is a key element of statistics. It can be regarded as an exploration of how reliable
the results of a study will be depending on how the study is organised. That is, the
statistician’s remit includes advice on how to expend the available resources on a
study (to collect data) in a manner that best serves the client’s interests.

Apart from the expertise generally associated with statistics, serving these interests
entails the ability to conduct a dialogue with the client in which the relevant details
are elicited. The details include background to the (planned or already concluded)
study, information about related studies and the subject matter in general that would
help the analyst identify an appropriate way (method) of solving the problem and,
foremost, the client’s purpose (perspective). The premise of the dialogue is that the
analyst would identify the best course of action at a particular juncture in the client’s
business, had it not been for incompleteness of the available information.

Having access only to incomplete information, the analyst’s answer may be incor-
rect. That is, if the complete information were available, the correct answer (the
appropriate course of action) would be identified, whereas with the available infor-
mation the analyst can only do the best that can be done. But the client has a key input
into what the qualifier ‘best’ means in this context, and the basis of this qualification
is an assessment of the losses (damage, harm, additional expense, and the like), if
instead of the optimal another course of action were taken. Another client may assess
the consequences of these errors differently—the analysis is tailored to the particular
client’s interests, perspectives and purpose. In this respect, the statistical analysis is
subjective.

A disclaimer is in order. The error mentioned earlier is not a fault of the analyst, and
does not imply incorrectness of his or her analysis. It is an inevitable consequence
of the incompleteness of the information available for the analysis. However, the
analyst should ensure that, in some well defined way, the consequences of such
errors are minimised. This ‘way’, or criterion, has to be agreed with the client. A
default criterion is a simple solution, but it may be found wanting later. The criterion
is applied by an interplay of the design (what kind of data to collect, and how) and
analysis (how to process the collected data). Attention to one aspect is not sufficient,
although one cannot do much about the design once the study (data collection) has
been completed.

Incompleteness of information should never serve as the analyst’s excuse, and
should not be regarded as one side of a dichotomy, completeness being the other.
Incompleteness is an implaccable adversary. We rarely have the capacity to eradicate
even some of its minor aspects without some sacrifice that impedes our ability to
combat some other aspects. A better strategy is to carefully target the available
resources on the aspects that are most detrimental to our client’s interests.

Often there is ample scope for identifying sources of information that would
supplement the focal source. Such information may be in a form other than a dataset,
and its incorporation in the analysis may be challenging, but the related ‘detective’
work should be motivated by the prospect of higher quality of the analyst’s output,
and better service to the client.
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In summary, we seek in statistics to do the best that can be done with the avail-
able resources. The ‘best’ is defined by a criterion tailored to the problem at hand,
reflecting the perspective and priorities of the client, and ‘resources’ are interpreted
broadly as information, including data, together with our limited capacity to collect
(new) data in a purposeful way.

Design logically precedes analysis, but we will treat these two subjects in the
reverse order; design is easier to motivate when the issue of how to analyse the data
has been settled. For developing methods of analysis, we will assume certain standard
(default) designs.

The next section introduces the elementary terms used in the book. This is nec-
essary both for completeness of the text and because some of the terms are used
inconsistently in the literature.

1.2 Preliminaries

We will work with two primitive terms: population and variable. A population is
defined as a collection of units. Such a definition is proper only when there is
absolutely no ambiguity about any entity as to whether it is a member of the popu-
lation (one of the units) or not. A variable is defined in a population by a rule that
assigns to each member a particular value. The value does not have to be numeric.
The support of a variable is defined as the set of all values that the variable attains
in the population. With such values we associate operations that are well defined for
them. For example, comparison is an operation on ordered pairs of values. For any
pair x and y, one of the three relations holds: x < y, x = y or x > y. They are
complementary and exclusive. Further, x < y implies that y > x ; x < y and y < z
implies that x < z; and x = y and y = z implies that x = z.

For a variable (defined in a population), we can define various summaries. A
simple example for a variable with numeric values is its (or their) mean. We assume
that its evaluation would require next to no effort if the value were available for every
member of the population; that is, if in the narrow context of this population and the
variable we had complete information.

When the values of the variable are established (recorded, measured, elicited, or
made available by some other means) for only some members of the population, we
say that the variable is observed on a sample of units. We can treat this sample as a
population, and define for it a summary, such as the mean. We refer to it as the sample
mean. More generally, we define population and sample summaries of a variable. In
our example, the population mean has the sample mean as its sample counterpart.

In a particular statistical perspective, called frequentist, a population summary
is regarded as a fixed quantity, irrespective of whether its value is known or not.
This reflects the state of affairs in which its value is unaffected by our efforts to
establish it. In contrast, a sample mean depends on the units (subjects) that have
been (or will be) included in the sample. If the process of selecting (identifying)
a sample entails some randomness (happenstance or uncertainty), then the sample
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quantity also entails some randomness—a different sample may equally well have
been selected, and it would yield a different value of the quantity.

In the frequentist perspective, we consider replications (independent repeats) of
the process by which the data is generated and then processed to yield an inferential
statement. The quality of such a statement is assessed by a reference to replications.
The ideal, usually not attainable, is that every replicate statement is correct, that is, it
either does not differ from the population quantity that is the target of the inference or
is not in a contradiction with it. This ideal corresponds to the absence or irrelevance
of any uncertainty, coupled with an appropriate way of processing of the data (the
sample values). When there is some uncertainty the replicate statements differ (vary),
and we conventionally assess them by how frequently they are correct or how distant
they tend to be from the correct statement (the target).

When the conduct of a study is expensive, as is often the case, we can afford
only one replication of the study. The resulting dataset is referred to as the realised
version of the study, and the statement based on it as the realised statement. Thus, the
assessment of an inferential statement is abstract, relying on the design of the study
and its setting to infer what datasets and statements would be obtained in hypothetical
replications of the study. Here ‘study’ means a protocol for the conduct of a study;
the other meaning of ‘study’ is its realised version, the one-time implementation of
the study protocol.

The role of a theory is to identify statements about population quantities, that is,
protocols for the production of such statements, that would be favourably assessed
by the criterion agreed with the client. Of course, such statements are sample quan-
tities, subject to uncertainty. A particular challenge for the theory is that the correct
statement is not known.

An alternative to such a theory is offerred by the computer. We construct a com-
puter version of the data-generating process that can be inexpensively executed many
times, generating replicate datasets, and formulate the inferential statement based on
each replicate. These replicate statements are then assessed as originally intended
— how close they are to the target on average or how frequently they match it. This
process of generating and evaluating a set of replicate datasets is called simulation.

Neither a theory nor a computer simulation are perfect. The theory is precise and
reliable only in some stylised settings and cannot always be extended (extrapolated)
to the setting of a particular study. The computer may be more flexible, but the
data-generating process is rarely known completely. This problem is addressed by
simulating a range of plausible scenarios. The assessments based on them indicate
the plausible quality of the studied inferential statements. This approach, called
sensitivity analysis, entails an open-ended process, limited by the capacity of our
computer, but also by our programming skills—implementing the procedures so that
they can easily be adapted to a range of scenarios and executed efficiently, using as
little processing time as possible.

A sample has two versions. Prior to the conduct of the study, which starts with
identifying the members of the population that will become the subjects (units, or
elements) in the sample, the sample is a random entity. After their identification (the
draw of the sample), it is fixed. Any sample quantity therefore also has two versions.
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While the sample is random, the sample quantity is also random—there is uncertainty
about its value. When the sample is realised and the data collected, the quantity is
fixed. An inferential statement also has two versions: it is a protocol for evaluation,
described by mathematical equations and implemented (or implementable) on a
computer, and the actual statement, such as a number, an interval, or the selection
from a finite set of mutually exclusive and exhaustive options.

In the following sections we discuss the most common formats of inferential
statements.

1.3 Estimation

A typical study is conducted to learn (more) about one or several population quanti-
ties; we refer to such quantities as targets (of the study). We focus on a single target,
and assume it to be numeric. One obvious solution is the sample counterpart of this
quantity. It is an example of an estimator and estimate. Estimator is the version asso-
ciated with a random sample and estimate with the realised sample. The estimator is
a formula or a computer programme that implements it, and the estimate is a number,
such as 7.32, obtained by applying the estimator on the realised sample.

The purpose of estimation is to obtain a sample quantity that is as close as possible
to the target, a population quantity. The target is denoted by θ and an estimator by θ̂ .
When we consider several estimators of the same target (after all, there is meant to
be a contest for estimating θ ), we use subscripts or superscripts with θ̂ and we use
also the notation θ̃ .

The estimation error is defined as θ̂ − θ . When we do not care about the sign
of the error we can reduce our attention to the absolute (estimation) error | θ̂ − θ |.
With it, zero is the ideal; small is good and large is bad. This applies equally to any
increasing transformation g for which g(0) = 0. The squared error (θ̂ − θ)2 is such
a transformation. Note that with a transformation we have to adjust our scale for the
meaning of ‘small’ and ‘large’.

The mean squared error of an estimator θ̂ for the target θ is defined as the average
of the squared errors (θ̂ − θ)2 in a long sequence of replications of θ̂ . We write

MSE
(
θ̂; θ

)
= E

{(
θ̂ − θ

)2
}
.

An advantage of this assessment of an estimator is that it can be expressed in terms
of two familiar characteristics of the estimator: its sampling variance and bias:

MSE
(
θ̂; θ

)
= var

(
θ̂
)

+
{

B
(
θ̂; θ

)}2
,

where var denotes the sampling variance,
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var
(
θ̂
)

= E

[{
θ̂ − E

(
θ̂
)}2

]
,

and B is the bias,
B

(
θ̂; θ

)
= E

(
θ̂
)

− θ.

The bias represents a systematic component of the error and the sampling variance
the uncertainty (variation or dispersion) of the estimator. Note that the arguments of
MSE and bias include the target θ . An estimator could be used for more than one
target, and the bias (and MSE) for one may differ from the bias (and MSE) for the
other. In contrast, the variance does not depend on the target. The bias and variance
need not be defined, so MSE is not always suitable for assessing the quality of an
estimator or for comparing the quality of alternative estimators of the same target.
However, we need not be concerned with this for the time being; we lose next to no
generality by assuming that both bias and variance are finite, or by dismissing any
estimator with undefined bias or variance as outright unsuitable. The MSE is a very
popular criterion, but we will develop the view that this is partly due to the neglect
of some important aspects of the client’s perspective.

An estimator is called efficient for a target if its MSE is well defined and no other
estimator has a smaller MSE. Of two estimators of the same target, one is said to be
more efficient than the other if its MSE is smaller. We emphasise that we chose to
assess the quality of an estimator by MSE. This choice is a convention, supported by
convenience—its relatively easy evaluation and motivation. It entails the assumption
that positive estimation errors, θ̂ > θ , have as serious consequences for the client as
do negative errors, θ̂ < θ , of the same magnitude | θ̂ − θ |. Our client may find this
unreasonable, as he may find the assumption that twice as large an error is regarded
as four times more serious. We should not attempt to convince him that adhering to
the convention is advantageous if such a treatment of the estimation errors is not in
accord with his purpose and perspective. It may serve some of the analyst’s interests,
but these are narrow and secondary. On the contrary, we should stimulate the client’s
interest in this issue, because it is essential for taking into account his perspective in
the analysis, and thus serve his interests better.

The mean absolute error is defined as

MAE
(
θ̂; θ

)
= E

(∣∣∣ θ̂ − θ

∣∣∣
)
.

With MAE, twice as large an absolute error is twice as serious. We refer to MSE
and MAE as criteria (for the quality of estimators). They can also be interpreted as
expected losses (expectations of loss functions); simply, we interpret the relevant
transformation of | θ̂ − θ | as the loss. It is much more difficult to work with MAE,
but that should not discourage us from adopting it if it reflects the client’s perspective
well, better than an analytically more convenient alternative.

Sensitivity analysis, in effect, producing the statement that is best with MSE and
one that is best with MAE, and others that are superior with other assessments of



8 1 Introduction

the estimator (criteria for estimation) may compensate for the analyst’s inability to
agree with the client on the criterion. If the same (or similar) statements are obtained
with all these criteria, the choice among them is not important. Otherwise, elicitation
from the client is essential, or our conclusion has to be qualified by (conditioned on)
the criterion.

1.4 Assessing an Estimator

The root-MSE is defined as the square root of the MSE,
√

MSE(θ̂; θ), of estimator θ̂

for target θ . The standard error is defined as the square root of the sampling variance.
For estimators with no bias, B(θ̂; θ) = 0, MSE is equal to the sampling variance;
then the root-MSE and the standard error coincide.

Two estimators of the same target can be compared by their root-MSE; the estima-
tor with smaller root-MSE is preferred. However, MSE may, and often does, depend
on the value of the target θ or of another population summary ξ . Then one estimator
may be more efficient than the other for some values of θ and ξ , but not for others, so
there is no straightforward way of comparing the two estimators. Comparison based
on MSE(θ̂; θ̂ ), substituting the estimate θ̂ also for the target, is usually flawed. For
two estimators, θ̂1 and θ̂2 , comparing MSE(θ̂1; θ̂1) with MSE(θ̂2 ; θ̂2) is not of like
with like. The comparisons of MSE(θ̂1; θ̂2) with MSE(θ̂2 ; θ̂2) and of MSE(θ̂1; θ̂1)

with MSE(θ̂2 ; θ̂1) may be in discord, but even if they are in agreement they may be
in discord with the comparison based on the (unknown) value of θ . The absence of a
clear-cut answer is not a deficiency; it is an integral part of the overall uncertainty that
in general should be neither ignored nor resolved by improvisation or by adopting a
superficially agreeable convention.

An estimator of a target is said to be uniformly more efficient than another
estimator of the same target, if it is more efficient for every value of θ and other
population quantities. An estimator is said to be admissible for a target if there is
no other estimator that is uniformly more efficient for the same target. There is no
virtue in using an inadmissible estimator θ̂ , except when we cannot find an estimator
uniformly more efficient than θ̂ , despite knowing that such an estimator exists. The
MSE can be evaluated for a range of plausible values of θ and regarded (and studied)
as a function of θ and other population quantities.

The MSE of a typical estimator is not known and has to be estimated from a
single realised sample. For such an estimator we can adopt the same criteria (forms
of assessment) as for other estimators, although this can very quickly become both
a mouthful and a never-ending task, because the estimator itself has a MSE, which
itself may require estimation. Therefore, we might adopt the convention that we will
care only about the bias of the estimator of a MSE, and regard its unbiased estimation
as the ideal.

By estimating MSE (root-MSE or MAE), we are assessing the quality of an
estimator, the product of our labour. Thus, we are our own clients. In such a position,
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we have to resist any temptation to present an estimator in a better light than it
deserves. We propose an approach motivated by the attitude projected by any self-
respecting supermarket or another retail establishment. We regard overestimation
(positive bias) of MSE by � = E(̂MSE) − MSE > 0 as much less serious than
underestimation (negative bias) by −�. A parallel can be drawn with buying an item
in a supermarket. On its packaging we read that it should be used by a certain date,
and its good quality until then, with the appropriate disclaimers, is guaranteed. If we
consume the item after this date and its quality has not deteriorated, we do not owe
anything to the supermarket. However, if the quality has deteriorated before the date
of the warranty, we can return the item and will receive a refund or replacement (or
both), with apologies. Arguably, overstating the quality (durability) is treated rather
harshly in this context. In contrast, understating the quality has no consequences,
except perhaps that the producer (and the supermarket) could have made a stronger
claim, both on the packaging and in the marketing arena, and maybe could have
charged a higher price for a product with a quality rightly claimed to be higher.

Similarly, an analyst loses face if it later turns out that he underestimated the
MSE of an estimator. Unbiased estimation of MSE is universally adopted as the
standard, but the ‘supermarket’ viewpoint suggests that we should overestimate it.
More precisely, we should be concerned not about the bias, but about the sign of the
estimation error ̂MSE−MSE and, ideally, avoid negative estimation error altogether.
That is perhaps a tall order, but adhering to an objectionable convention in its stead
is equally problematic. We revisit this issue in Chap. 3.

1.5 Confidence Intervals

A confidence interval for a population quantity θ is defined as an interval (θ̂L , θ̂U)

in which both limits are sample quantities. The intent of a confidence interval is
to indicate where the target θ is likely to be. A confidence interval is qualified
by a probability, or percentage. A 95 % confidence interval is constructed with the
intent that in a large number of hypothetical replications θ , a fixed quantity, would
be contained in the interval (θ̂L , θ̂U), with random bounds, in at least 95 % of the
replicates;

P
{
θ ∈

(
θ̂L , θ̂U

)}
≥ 0.95.

A confidence interval is called proper, or is said to have the claimed coverage, if
this condition is satisfied. A typical reason for why a confidence interval is not proper
is that the assumptions adopted in its construction are not satisfied. A confidence
interval may be proper for some values of θ and other population quantities, but not
for others. The confidence interval (−∞,+∞) is proper but not useful, because it
conveys a vacuous statement.

A confidence interval is called one-sided if θ̂L = −∞ or θ̂U = +∞. Otherwise,
when its width θ̂U − θ̂L is finite, it is called two-sided. Two one-sided confidence

http://dx.doi.org/10.1007/978-3-642-40433-7_3
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intervals for θ can be meaningfully compared only when either θ̂L = −∞ or θ̂U =
+∞ for both of them; a confidence interval that is contained in the other is preferred,
so long as it is proper. Among alternative two-sided confidence intervals for a target
θ , the one that is narrower (has shorter length) is preferred, so long as it is proper.
With a higher standard, a confidence interval is said to be better than another if it is
proper and is contained in the latter. This standard defines a partial ordering—some
pairs of confidence intervals cannot be compared. A confidence interval is called
admissible if it is proper and none of its sub-intervals (except for itself) is proper.

A two-sided confidence interval for the mean of a population is often constructed
as (μ̂ − cσ̂ , μ̂ + cσ̂ ), where μ̂ is an unbiased estimator of the mean μ, σ̂ 2 an
unbiased estimator of the sampling variance of μ̂, and c a suitable constant set so as
to ensure that the interval has the proper coverage. Thus, a confidence interval can
be constructed from an unbiased estimator and an unbiased estimator of its sampling
variance.

Confidence intervals represent the uncertainty about the target in a simplistic way.
The price for simplicity is incorrectness. A confidence interval (θ̂L , θ̂U) is usually
interpreted, or the client acts upon its receipt, by ruling out the possibility that θ

might lie outside this interval. With a proper confidence interval, the probability that
this statement is correct is at least 0.95. But the consequences of θ lying outside
the interval, admittedly not a very likely event, may be disastrous. This is a distinct
weakness of the confidence interval in general. An estimate is associated with similar
incorrectness, if the analyst or his client treats it, and acts upon it, as if it were the
target.

1.6 Hypothesis Testing

The intent of hypothesis testing is to resolve the issue as to whether the value of a
population quantity θ is in one set, H0 , called the hypothesis, or another, H1, called
the alternative. The two sets are exclusive, although they need not be separated. For
example, H0 may be that θ = 0, and H1 that θ > 0. A hypothesis or an alternative
that contains a single value is called simple. We deal first with a test of a simple
hypothesis against a simple alternative.

The roles of the hypothesis and alternative are not symmetric. In essence, the
hypothesis is regarded as the default, and is rejected only when there is sufficient
(data-based) evidence against it. The possible outcomes of testing a hypothesis are
its rejection and failure to reject it. The conduit for the evidence is a sample quantity
called the test statistic. Its random version is selected by the analyst. It is then eval-
uated on the realised sample. Denote the statistic by t and its value by t (y), where
y = (y1, . . . , yn) is the vector of the values of the relevant variable on the sample.

Next we study the distribution of t assuming that the hypothesis is valid. If the
realised value t (y) is exceptional with respect to this distribution, then we regard it
as evidence against the hypothesis. We have several options for defining the term
‘exceptional’. First we specify the size of the test, a small probability, denoted by
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α. It is the intended probability of rejecting the hypothesis when the hypothesis is
valid. The convention is to set α to 0.05, although 0.01 and 0.10 are also used, though
rarely.

In the symmetric test of a hypothesis, we identify the critical values cL and cU
such that P0(t < cL) = P0(t > cU) = α/2; the subscript 0 indicates evaluation with
the assumption of the hypothesis. With a slight abuse of notation, we could write
more explicitly P(t < cL | H0). The abuse would arise because H0 is not an event
that is associated with a (positive) probability. The values in the interval (cL , cU) are
regarded as ‘not unexpected’, and those outside as exceptional, assuming H0 . We
reject the hypothesis, if the value t (y) is exceptional, when t (y) < cL or t (y) > cU .

Note that when we fail to reject the hypothesis, t (y) is not necessarily an excep-
tional value for the alternative. That is, let dL < dU be such that P1(t < dL) =
P1(t > dU) = α/2, where the subscript 1 indicates that the alternative is assumed.
Then t (y) may lie inside the interval (dL , dU). But t (y) may be an exceptional value
for both the hypothesis and the alternative. In brief, the roles of the hypothesis and
the alternative cannot be interchanged.

The set of values for which the hypothesis is rejected is called the critical region
of the test. In the setting introduced, this set is C = (−∞, cL) ∪ (cU ,+∞). A test is
called one-sided if the critical region is an interval, (−∞, cL) or (cU ,+∞), but not
their union. In principle, any subset of the support of t can form the critical region; it
does not have to be an interval or a union of two intervals, although examples when
it is neither are difficult to construct in commonly encountered settings.

The power of a test is defined as the probability, evaluated under the alternative,
that the hypothesis is (correctly) rejected; it is denoted by β. That is, β = P1(t ∈ C).
A desirable property of a test with a given size α is that β is large. Thus, a test is
called more powerful than another test of the same hypothesis against the same alter-
native, and with the same size α, if its power is greater. The Neyman-Pearson lemma
(Neyman and Pearson 1933) states that under certain assumptions the likelihood ratio
test is most powerful.

A test is said to have a complex hypothesis if the hypothesis comprises more than
one value. The critical region has to be constructed in such a way that its probability
does not exceed the size of the test for any value in the hypothesis. Denote the set of
values of θ in the hypothesis and alternative by �0 and �1, respectively. The same
procedure for testing the hypothesis is followed as for a simple alternative, but the
condition for the size of the test, Pθ (t ∈ C) ≤ α, has to be satisfied for every θ ∈ �0 .

With a complex alternative, the power of the test is a function defined on the set
�1, and a comparison of two tests (with the same H0 and the same H1) is no longer
straightforward. One test of size α is said to be uniformly more powerful than another
of the same size, if the power function of the first test is greater than for the second
for every value in the alternative �1.

We define a sample quantity t with the intent to use it as the test statistic in a hypoth-
esis test of prescribed size α. A hypothesis test is called proper if Pθ (t ∈ C) ≤ α for
every θ ∈ �0 . This probability may depend also on some other (unknown) popula-
tion quantities. We may fail to ensure that a hypothesis test is proper for a myriad
of reasons, including those listed in connection with improper confidence intervals.
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They can be summarised as failure of some of the assumptions. A hypothesis test is
called unbiased if Pθ (t ∈ C) ≥ α for every θ ∈ �1.

For a simple hypothesis, we can construct a hypothesis test for θ from a confidence
interval for θ . Simply, we reject the hypothesis if θ0 lies outside the confidence
interval. Thus, the pair of an (unbiased) estimator and estimated standard error can
be re-packaged into the format of a confidence interval and a hypothesis test by
simple operations. Therefore, we need confidence intervals and hypothesis tests only
for presenting the results in a format that would be well accepted by the client. But
this would still leave the client with the non-trivial task of translating the inferential
statement into a plan of action—a decision. Some hypothesis tests are constructed
without any reference to an estimator or a confidence interval, but nevertheless remain
an unfinished product for the client.

Considering the format of its statement, a hypothesis test may at first look well
suited for the problem of deciding between two courses of action, one corresponding
to the hypothesis and the other to the alternative. However, the asymmetric roles of
the hypothesis and the alternative are inappropriate for the task of decision making.
There is no obvious way of informing the process of hypothesis testing about the
consequences of the two kinds of bad decisions that can be made. The error of
rejecting the hypothesis when it is in fact valid is called the type I error. For a
proper test, its probability (assuming H0) does not exceed the size of the test, α.
For a complex hypothesis, this probability is a function of θ in �0 . The error of not
rejecting the hypothesis when the alternative is valid is called the type II error. Its
probability is equal to the complement of the power (function), 1 − β, or 1 − β(θ).

The incompatibility of hypothesis testing with decision making is illustrated on
the following example. Suppose the hypothesis is that a particular population quantity
θ is equal to zero, and the alternative is that θ �= 0. Suppose a suitable test statistic is
found, and its distribution under H0 is unimodal and symmetric. A symmetric critical
region is then reasonable. However, somebody with a stake in the outcome of the
test, who does not regard zero as a value with any exceptional status (e.g., different
from 0.00021 or 12.0035) would not select H0 because it is a bet against vast odds
of a continuum of alternative values. Arguably, the value of θ may be quite small,
but testing that hypothesis corresponds to a different procedure, for which we should
first specify the meaning of the term ‘small’. Even with this adaptation, we have the
disconcerting asymmetry that H1 is adopted when there is sufficient evidence for it,
whereas H0 is adopted not when it is supported by sufficient evidence, but merely
when we lack sufficient evidence against it. The default status of the hypothesis is
highly problematic.

1.7 Loss Function

We consider the problem of choosing between two courses of action, A and B. They
are complementary and exhaustive. We quantify the consequences of the two kinds
of error, choosing A when B is appropriate and choosing B when A is appropriate,
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Table 1.1 Example of a loss
function

Statement Action
A B

0 (A) 0 1
1 (B) 10 0

by a loss function. We associate every combination of a statement (based on incom-
plete information) and the optimal course of action (that could be established if the
complete information were available) with a nonnegative quantity.

When there are only two options for the statement, this function of two arguments
can be presented in a two-way table. An example is given in Table 1.1. There are two
possible statements, 0 and 1, and two actions, A and B. Statement 0 is appropriate
(correct) for action A and statement 1 for B. For these two combinations, the function
vanishes, indicating that no loss is incurred. If statement 0 is made, but action B is
appropriate, the loss is one unit. If statement 1 is made, but action A is appropriate, the
loss is ten units. We are ten times as averse to inappropriately choosing B (following
statement 1) as we are to inappropriately choosing A (following statement 0).

Declaring the loss for the correct decision as zero is a convention. The essence
of the setting would not be altered if we added the same positive constant to every
entry of the table. This constant can be interpreted as the running costs of the client’s
enterprise, and they are taken for granted. At issue is only the additional expense
associated with the incorrect decision. We can also multiply each entry of the table
by a positive constant. This corresponds to the change of currency in which the loss
is quantified.

Greater loss is worse—that is implied by the term ‘loss’. A well defined loss also
has the property of additivity. That is, the loss of 10 units in the combination (1, A)
in Table 1.1 is for all purposes equivalent to the harm or damage of ten instances of
the unit loss in the combination (0, B). In general, a loss of a units in one instance
followed by b units in another is equivalent to the loss of a + b units in a single
instance. Without additivity, averaging its values in a set of hypothetical replications
would make no sense. The version of this average with infinitely many replications
is the expected loss, E(L). The loss function L has two arguments, the decision
(the selected action), denoted by d, and the value of the parameter (vector) θ which
determines which action is appropriate; L(d, θ). When the loss depends on θ only
through the appropriate action, D, as it does in Table 1.1, we write L(d, D).

Suppose the conditional probability of statement 0, given that A is the appropriate
action, is P(0 | A) = 0.90, and P(1 | B) = 0.75. Then the probabilities of the two
kinds of error are P(1 | A) P(A) and P(0 | B) P(B), and the expected loss is

L(1, A) P(1 | A) P(A) + L(0, B) P(0 | B) P(B) = 10 × 0.10P(A) + 0.25P(B).

The marginal probabilities P(A) and P(B) are essential for evaluating the expected
loss. If we could rule out action A, P(A) = 0, it would be wise to choose B, because
no loss would be incurred when P(B) = 1, when B is bound to happen.
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The loss function may depend on some other quantities. For example, A may
be the appropriate course of action when a population quantity θ is smaller than a
given threshold T , and B when θ ≥ T . Then a natural way to proceed might be to
estimate θ , by θ̂ , and pursue action A if θ̂ < T and action B otherwise. When θ̂ and
θ imply different actions, that is, when T is located between θ and θ̂ (θ̂ < T < θ or
θ < T < θ̂ ), the loss function depends, in general, on both θ and θ̂ . So, L may be
an increasing function of | θ̂ − θ |, or of the difference on another scale:

L = LA

(
θ̂; θ

)
,

when θ̂ < T but θ > T , and L = LB(θ̂; θ), another increasing function of | θ̂ − θ |,
when θ̂ > T but θ < T . That is, we want to establish only the sign of θ − T ,
but when we get it wrong, the loss depends on both the magnitude and the sign of
the error θ̂ − θ .

1.8 Problems, Exercises and Suggested Reading

1. Implement the process of replication on a simple example, such as estimating
the mean of a random sample from a normal distribution. Summarise the results
for the various inferential formats and discuss how they agree with the statis-
tical theory. ‘Spice up’ this exercise by generating the samples from a t or χ2

distribution (with, say, 25 degrees of freedom), but pretend throughout that the
samples are from a normal distribution.

2. Try to evaluate MAE of the sample mean for a random sample from the normal
distribution with known variance σ 2 = 1. Describe the difficulties encountered.
(There is a bonus for the complete solution.)

3. Choose a part of the simulation study in Problem 1. and repeat it to compare alter-
native estimators in the setting of the analysis of variance (ANOVA), described
in Longford (2008).

4. Suppose σ̂ 2 is an unbiased estimator of the variance of a normal random sample.
Is σ̂ also unbiased? Let c be the 97.5-percentile of the standard normal distribu-
tion. In connection with your answer about the bias of σ̂ , is the coverage of the
confidence interval (μ̂ − cσ̂ , μ̂ + cσ̂ ) exactly 95 %? Follow up your analytical
answer by simulations.

5. Discuss how model selection can be interpreted as a decision, with consequences
which, at least in principle, could be carefully weighed. State what these conse-
quences are. For every model selection procedure you use, discuss whether and
how it takes such consequences into account.

6. How are finiteness of the variance and of the bias (or expectation) related?
7. Discuss (and assess) the behaviour of and the risks run by a person who tries

to avoid the payment for a ride on a city tram or bus. How might he alter his
behaviour by information about the (potential) fine, the frequency of inspection,
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and the (legal) powers of an inspector? What other factors might influence his
behaviour?

8. Discuss the motives for buying a ticket in a commercial lottery, when we know
that the total payout is always smaller than the receipts. Construct some plausible
loss functions for the two actions (to play and not to play) that an objector to
the lottery, an enthusiastic player and somebody ambivalent (e.g., an occasional
player) might have.

9. On a lighter note. Discuss the two options a pedestrian has when crossing a
busy road, together with the consequences of the two kinds of bad decision that
he or she could make. Discuss in the class what loss functions would reflect
your preferences and how they would affect your conduct (choice of an option).
How would you incorporate in the decision the information about how busy the
road is?

10. A short story about a decision without studying the consequences: Longford
(2007). See also Longford (2005).

11. Suggested reading about decision theory: Savage (1951); Raiffa and Schlaifer
(1961); Ferguson (1969); Berger (1985); Lindley (1985) and DeGroot (2004).
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Chapter 2
Estimating the Mean

This chapter deals with one of the elementary statistical problems, estimating the
mean of a random sample from a normal distribution. We assume that the variance
of this distribution is known. More general versions of this problem are addressed in
later chapters.

Let X1 , . . . , Xn be a random sample from a normal distribution with unknown
expectation μ and variance known to be equal to unity. We write Xi ∼ N (μ, 1),
i = 1, . . . , n, independently. Without a careful description of the task related to μ,
we would not contemplate any estimator other than the sample mean μ̂ = (X1 +
· · ·+ Xn)/n. It is unbiased and efficient for μ; its sampling variance is equal to 1/n.
However, if we are averse to positive estimation errors, μ̂ > μ, then an estimator
μ̂ − c, where c is a positive constant, may be more suitable.

2.1 Estimation with an Asymmetric Loss

Suppose we associate the estimation error μ̃ − μ of an estimator μ̃ of the target μ

with loss (μ̃ − μ)2 when μ̃ < μ, but for positive estimation error, when μ̃ > μ, the
loss is R(μ̃ − μ)2, where R is a constant greater than unity. This loss, as a function
of μ̃ and μ, is a piecewise quadratic loss function. In fact, the function depends on
μ̃ and μ only through the estimation error μ̃ − μ. Figure 2.1 displays examples of
piecewise quadratic loss functions for two values of the penalty ratio R, each with
three values of the target μ. In the left-hand panel, six functions L(μ̃, μ) are drawn,
but they correspond to only two distinct functions of the error μ̃−μ in the right-hand
panel.

We explore estimators μ̃ = μ̂−c, where μ̂ is the sample mean and c is a constant
that we would set. So, μ̃ ∼ N (μ − c, 1/n). The expected loss of μ̃ is

N. T. Longford, Statistical Decision Theory, 17
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Fig. 2.1 Piecewise quadratic loss functions, as functions of estimate and target (left-hand panel)
and of the estimation error (right-hand panel). The values of the target μ are indicated in the
left-hand panel

Q = R
√

n
∫ +∞

μ

(y − μ)2 φ
{√

n(y − μ + c)
}

dy

+ √
n

∫ μ
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n(y − μ + c)

}
dy, (2.1)

where φ is the density of the standard normal distribution, N (0, 1),

φ(y) = 1√
2π

exp
(− 1

2 y2
)
.

Denote by Φ the distribution function of N (0, 1). The transformation
z = √

n(y − μ + c) yields the equivalent expression

Q = R
∫ +∞

c
√

n

(
z√
n

− c

)2

φ(z) dz +
∫ c

√
n

−∞

(
z√
n

− c

)2

φ(z) dz.

Denote the two terms by Q+ and Q− . For R = 1, we would obtain

Q+ + Q− = MSE(μ̃;μ) = c2 + 1

n
,

and c = 0 would be the optimal choice. For R �= 1, a similar reduction does not take
place. We work out the details for Q− ; Q+ is dealt with similarly. By expanding the
square in the integrand, we obtain
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Q− = 1

n

∫ c
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It is easy to check that φ′(z) = −zφ(z), so −φ(z) is a primitive function for
zφ(z). The first integral is evaluated by parts, differentiating z and integrating zφ(z):

Q− = 1
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By similar steps we obtain the identity

Q+ = R

(
c2 + 1

n

) {
1 − Φ

(
c
√

n
)} − cR√

n
φ

(
c
√

n
)
. (2.2)

Hence the expected loss Q = Q+ + Q− is

Q =
(

c2 + 1

n

) {
R − (R − 1)Φ

(
c
√

n
)} − c(R − 1)√

n
φ

(
c
√

n
)
. (2.3)

2.2 Numerical Optimisation

It remains to find the constant c for which the expected loss Q in (2.3) is minimised.
This cannot be done by a closed-form expression. We apply the Newton-Raphson
algorithm. It is an iterative procedure which generates a provisional (approximate)
solution c(i+1) in iteration i+1 by adjusting the previous solution c(i). The adjustment
depends on the first- and second-order derivatives of Q with respect to c:

c(i+1) = c(i) − s
(
c(i)

)

H
(
c(i)

) , (2.4)

where s = ∂ Q/∂c and H = ∂2 Q/∂c2 are treated as functions of c. They are called
the score and the Hessian (functions), respectively. The iterations are stopped when
the absolute value of the adjustment c(i+1)−c(i) = −s/H , or of the score s, becomes
smaller than a prescribed small quantity, such as 10−8.

We derive the adjustment (2.4) to gain an understanding of the properties of this
algorithm and to formulate its assumptions. Obviously, the first- and second-order
derivatives of Q have to exist in the range of plausible values of c. This is satisfied for
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Q in (2.3). The Taylor expansion for the first-order derivative at the exact solution
c∗, centred around the current (provisional) solution c(i), is

s
(
c∗) .= s

(
c(i)

)
+

(
c∗ − c(i)

)
H

(
c(i)

)
. (2.5)

At the minimum of Q, s(c∗) = 0. Regarding (2.5) as an identity, setting aside the
fact that it is merely an approximation, and solving it for c∗, we obtain the updating
formula in (2.4). Hopefully this gets us closer to c∗. From the derivation, it is clear
that this algorithm converges fast when the approximation in (2.5) is precise, that is,
when the function s is close to linearity—when Q is close to a quadratic function, or
when a solution c(i) is already close to c∗. Problems arise when H is not a smooth
function and the values of 1/H are not changing at a sedate pace, or indeed when
H = 0. If iterations reach a region where H(c)

.= 0, the consecutive values c(i) may
become unstable. The Newton-Raphson iterations require an initial solution c(0). It
can be set by trial and error if we have only one problem to solve. For finding the
minimum of Q, c(0) = 0 is a suitable initial solution.

When it converges, the Newton-Raphson algorithm finds a root of the score func-
tion. The function s may have several roots and the one we find may not be a (global)
minimum of Q. However, if s is an increasing function, then the root is unique and
it is the only minimum of Q. Often a simple way of proving that s is increasing is
by checking that H is positive at the root (or throughout).

For the function in (2.3), we have
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. (2.6)

From this we conclude that 2 < H(c) < 2R for all R > 0 (not only for R > 1), so
Q has a unique minimum, and it is at the root of s. Since H(c) > 2, there are no
convergence problems.

By way of an example, suppose n = 50 and R = 20. We set the initial solution to
c(0) = 0; the corresponding value of Q is (R + 1)/(2n) = 0.21. The progression of
the provisional solutions is displayed in Table 2.1. The right-most column (Precision)
is defined as

− 1

2
log10

[(
c(i) − c(i−1)

)2 +
{

s
(

c(i)
)}2

]
(2.7)



2.2 Numerical Optimisation 21

Table 2.1 Iterations of the
Newton-Raphson algorithm
to minimise the expected loss
Q with penalty ratio R = 20
and size n = 50 of a random
sample from N (μ, 1);
piecewise quadratic loss

Iteration (i) c(i) Q(i) Precision

0 0.0000 0.2100
1 0.1021 0.2100 −0.33
2 0.1511 0.0820 0.27
3 0.1632 0.0674 1.04
4 0.1639 0.0668 2.36
5 0.1639 0.0668 4.93
6 0.1639 0.0668 10.08

(logarithm with base 10). It can be interpreted as the number of digits of precision.
The iterations are stopped when this quantity exceeds 8.0. The table indicates that
convergence is achieved after six iterations, although we could have stopped after
just four. However, the calculations, done in R, are instant, so the additional two
iterations represent no waste of our resources.

Thus, the estimator with the minimum expected loss when n = 50 and R = 20 is
μ̂ − 0.1639 and the corresponding expected loss is 0.0668. The expected loss with
the unbiased estimator is 0.2100, more than three times greater. It is easy to show
that when σ 2 �= 1, μ̂ − 0.1639σ is the estimator with the smallest expected loss.

2.3 Plausible Loss Functions

In practice, it is difficult to set the penalty ratio R to a single value without leaving
some doubt that R may be somewhat greater or smaller. We regard this as a source of
uncertainty associated with the elicitation process, the dialogue between the analyst
and the client, in which the background and details of the problem are discussed. We
address it by solving the problem for a range of values of R that were agreed to be
plausible. A range of penalty ratios (RL , RU), and any value within it, is said to be
plausible if the client would rule out any value of R outside this range. At the same
time, the plausible range should be set to as narrow an interval as possible.

Figure 2.2 presents the continuum of solutions c∗ and the corresponding expected
losses for sample sizes 10 ≤ n ≤ 200 and penalty ratios 5 ≤ R ≤ 100. Denote
these functions (curves) by cR(n) and Q R(n), respectively. The panels at the top
plot c∗ and Q as functions of n on the linear (original) scale, and the panels at the
bottom reproduce them on the log scale for n. The log scale is useful because at the
planning stage one is more likely to consider increasing or reducing the sample size
by a certain multiple, such as 1.25 or (25 %), and that corresponds to an increase or
reduction by a constant, log (1.25), on the log scale.

The diagram shows that the optimal shift c∗ is positive throughout, it increases
with R and decreases with n, steeply for small n. For small sample sizes, the functions
cR(n) and Q R(n) have steep gradients on R, so a lot is at stake. For large sample
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Fig. 2.2 The offset c∗ for which the estimator μ̂ − c∗ has minimum expected loss, as a function
of the sample size n and the penalty ratio R; piecewise quadratic loss. The corresponding expected
loss is plotted in the right-hand panels

sizes, the differences diminish. In fact, for any fixed R, cR(n) converges to zero as
n → +∞, but the convergence is rather slow.

Some of these conclusions can be confirmed directly from (2.6). Since H is
positive, s is an increasing function of c. But s(0) = −2(R − 1)φ(0)/

√
n < 0, so

c∗, the root of s, has to be positive. Further, s
√

n depends on c and
√
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n. If c1 is the root of s for n1 , then c2 = c1
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By definition, s{cR(n)} = 0. By substituting R′ > R for R and cR(n) for c on
the right-hand side, we obtain a negative quantity. Since s is increasing, cR′(n) has
to be greater than cR(n).

Each curve in Fig. 2.2 is drawn by connecting the values of cR(n) and Q R(n)

for a fine grid of values n. We set n = 10, 12, . . . , 200. A coarser grid may suffice,
but the saving in the computing involved is insubstantial. In fact, all the evaluations
for the diagram took only 0.19 sec. of CPU time on a Mac laptop. In R, a function
is declared, with arguments n, R, and some others that specify the convergence
criterion and control the output. One output has the format of Table 2.1, with the
details of the iterations, and the other gives only the ‘bottom line’: c∗, Q(c∗) and
the number of iterations. For the evaluations presented in Fig. 2.2, between five and
eight iterations were required. The function returns the results for one setting of n
and R, but its repeated application for a range of values of n and R requires minimum
programming effort, using the system-defined function apply.

When the second-order derivative is not available, or we want to avoid its evalua-
tion because it is too complex, the Newton (linearisation) method can be applied. In
this method, a pair of provisional solutions, (cA , cB), defines the following approx-
imation to the root of s:

cD = cA − cB − cA

s(cB) − s(cA)
s(cA).

This rule is applied iteratively. In the next iteration, the pair (cB , cD) is used in place
of (cA , cB). The iterations are stopped when the two provisional solutions are very
close to one another and the value of s for both of them is sufficiently close to zero.
A criterion similar to (2.7) can be formulated.

2.4 Other Classes of Loss Functions

In this section, we extend the repertoire of loss functions for which estimation with
minimum expected loss is tractable.

The piecewise linear loss for estimator θ̂ of θ is defined as θ − θ̂ when θ̂ < θ

and as R(θ̂ − θ) when θ̂ > θ . The penalty ratio R > 0 plays a role similar to its
namesake for piecewise quadratic loss, to reflect the aversion to positive estimation
errors (when R > 1). The expected loss of an estimator μ̃ = μ̂ − c of the mean of
the normal distribution with unit variance is

R
√

n
∫ +∞

μ

(y − μ)φ
{√

n(y − μ + c)
}

dy

+√
n

∫ μ

−∞
(μ − y)φ

{√
n(y − μ + c)

}
dy;

compare with (2.1). By steps similar to those used in deriving (2.3), we obtain
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Q = R√
n

[
−φ(z)

]+∞
c
√

n
− cR

{
1 − Φ

(
c
√

n
)} + c Φ

(
c
√

n
) − 1√

n

[
−φ(z)

]c
√

n

−∞

= (R + 1)

{
c Φ

(
c
√

n
) + φ

(
c
√

n
)

√
n

}
− cR.

Its derivatives with respect to c are

s = (R + 1)Φ
(
c
√

n
) − R

H = (R + 1)
√

n φ
(
c
√

n
)
,

simpler than for the piecewise quadratic loss. We have a closed-form solution for
minimising Q,

c∗ = 1√
n

Φ−1
(

R

R + 1

)
. (2.8)

The discussion of the properties of this solution is left for an exercise.
In principle, any loss function can be declared that is increasing in the absolute

estimation error Δ = | μ̃ − μ | and for which L(0) = 0. The latter condition is not
important, because we could adjust L as L − L(0); we only need L(0) to be well
defined. A reasonable condition is that L be continuous, although it does not have
to be differentiable throughout. Apart from additivity (Sect. 1.7), the key criterion of
usefulness of a loss function is that it reflects the client’s perspective. The following
example shows, however, that some loss functions lead to unreasonable answers.

The piecewise constant loss function is defined as the constant unity for negative
estimation error and R > 0 for positive estimation error. The expected loss for
estimating μ by μ̃ = μ̂ − c is

Q = R
√

n
∫ +∞

μ

φ
{√

n(y − μ + c)
}

dy + √
n

∫ μ

−∞
φ
{√

n(y − μ + c)
}

dy

= R − (R − 1)Φ
(
c
√

n
)
,

which has no minimum, but suggests the solution c∗ = +∞, that is, the ‘estimator’
μ̃ = −∞. Since P(μ̃ �= μ) = 1, we are certain to pay a penalty. We should therefore
avoid positive estimation error (with penalty R > 1), and that is achieved with a
sufficiently small estimate (large c). Thus, reducing our attention to the sign of the
estimation error is a bad strategy; its size also matters.

2.4.1 LINEX Loss

The LINEX loss for estimation error Δ = θ̂ − θ is defined as

La(Δ) = exp(aΔ) − aΔ − 1;

http://dx.doi.org/10.1007/978-3-642-40433-7 _1
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Fig. 2.3 Examples of LINEX loss functions

a �= 0 is a constant to be set. It is easy to check that La has all the attributes of a loss
function: La(0) = 0 and La(Δ) decreases for negative Δ and increases for positive
Δ. The function is drawn in Fig. 2.3 for a few coefficients a.

For x 
 0 (x positive and large), exp(x) 
 x +1, so when a and Δ have the same
sign and aΔ is large, (aΔ+1)/La(Δ)

.= 0 and La(Δ) behaves similarly to exp(aΔ).
In contrast, when a and Δ have opposite signs and −aΔ is large, exp(aΔ)/La(Δ)

.=
0, and La(Δ) � 1 − aΔ � La(−Δ). So, La is distinctly asymmetric, with greater
values for large positive errors when a > 0, and greater values for large negative
errors when a < 0.

The expected LINEX loss of μ̂ − c is

Qa = √
n

∫ +∞

−∞
La(y − μ) φ

{√
n (y − μ + c)

}
dy

=
∫ +∞

−∞
exp

(
az√

n
− ac

)
φ(z) dz −

∫ +∞

−∞

(
az√

n
− ac

)
φ(z) dz − 1.

The latter integral is equal to −ac because φ is symmetric and it integrates to unity.
The former integral can be related to the expectation of a lognormal distribution. If
X ∼ N (μ, σ 2), then E{exp(X)} = exp(μ + 1

2σ 2). To make the text self-contained,
we derive it from basic principles.

By consolidating the arguments of the exponentials and matching the result with
a normal density, N (a/

√
n, 1), we obtain
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∫ +∞

−∞
exp

(
az√

n
− ac

)
φ(z) dz

= 1√
2π

exp(−ac)
∫ +∞

−∞
exp

(
− z2

2
+ az√

n

)
dz

= 1√
2π

exp

(
a2

2n
− ac

) ∫ +∞

−∞
exp

{
−1

2

(
z − a√

n

)2
}

dz

= exp

(
a2

2n
− ac

)
.

Hence

Qa = exp

(
a2

2n
− ac

)
+ ac − 1.

The minimum of this function of c is found by exploring its derivative:

sa = a

{
1 − exp

(
a2

2n
− ac

)}
.

Further differentiation yields the Hessian

Ha = a2 exp

(
a2

2n
− ac

)
.

Since Ha > 0, Qa has a unique minimum, and it is at the root of sa . The root is
c∗ = a/(2n) and the minimum attained is Qa(c∗) = ac∗ = a2/(2n). The expected
loss with μ̂, which corresponds to c = 0, is exp{a2/(2n)} − 1. The difference of the
losses, exp{a2/(2n)}−a2/(2n)−1, is equal to the loss L1{a2/(2n)} = La{a/(2n)}.
The expected loss decreases with n to zero, but for small to moderate n it is substantial,
especially when |a| is large.

2.5 Comparing Two Means

In this section we address the problem of deciding which of two random samples
from normal distributions with the identical variances is greater. We assume that the
common variance, σ 2, is known. No generality is lost by assuming that σ 2 = 1,
because we can reformulate the problem for samples x1 and x2 as a problem for
σ−1x1 and σ−1x2 . Denote the expectations of the two samples by μ1 and μ2 and
set Δ = μ2 − μ1 . Let n1 and n2 be the sizes of the two samples and Δ̂ = μ̂2 − μ̂1
the difference of the sample means. Its distribution is N (Δ, mσ 2), where m =
1/n1 + 1/n2 ; 1/m can be interpreted as the effective sample size of the pair of the
samples.
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With hypothesis testing, we set the size of the test, α, by convention to 0.05,
although other choices (probabilities) are permitted, and choose the critical region,
denoted by C, such that under the (null) hypothesis that Δ = 0 the probability
that a new realisation of Δ̂ falls within C is equal to α. Common choices for C
are the complement of a symmetric interval, {−∞, σ

√
m Φ−1( 1

2α)} ∪ {σ√
m Φ−1

(1 − 1
2α), +∞}, and the one-sided intervals {σ√

m Φ−1(1 − α), +∞} and {−∞,

σ
√

m Φ−1(α)}. If Δ̂ ∈ C, we reject the null hypothesis. Otherwise, we have no
evidence against the null hypothesis. Interpreting the latter outcome as a confirmation
that Δ = 0, or that |Δ| is small, is not appropriate. Following it up by action that
would be apropriate if Δ = 0 but not otherwise, has no logical basis.

Suppose we have a research or business agenda the details of which depend on Δ.
If we knew that Δ < 0, action A would be appropriate. Otherwise we would pursue
action B. If we elect action A but Δ > 0, we incur loss μ2; if we elect action B but
Δ < 0, we lose Rμ2. Note that this loss function differs from the function of the
same name defined in Sect. 2.1, because no loss is incurred when the correct sign is
chosen, even if Δ̂, or another estimate, differs substantially from Δ. Because of the
symmetry of the problem, we lose no generality by assuming that R > 1, so that its
label, penalty ratio, is well motivated.

We intend to base the choice between A and B on Δ̂ − c, where c is a constant
to be set by the criterion of minimum expected loss. Since (Δ̂ − Δ)/

√
m has the

standard normal distribution,N (0, 1), we can represent Δ by a random variable Δ̂+δ,
where δ ∼ N (0, m). Note that we rely in this on the symmetry of N (0, m). Thus,
we have converted an unknown constant, Δ, into a random variable, to represent our
uncertainty about its value after its estimate Δ̂ has been realised; that is, we converted
it from a random variable to a constant. We will make these changes of status more
formal in Chap. 4 within a Bayesian perspective.

When Δ̂ − c < 0, and so we choose action A, the expected loss is

Q− = 1√
m

∫ +∞

0
x2 φ

(
x − Δ̂√

m

)
dx

=
∫ +∞

−a

(
Δ̂ + z

√
m

)2
φ(z) dz

= Δ̂2 {1 − Φ(−a)} − 2Δ̂
√

m
[
φ(z)

]+∞
−a

+ m
∫ +∞

−a
z2φ(z) dz ,

where a = Δ̂/
√

m. The latter integral is evaluated by parts,

∫ +∞

−a
z2φ(z) dz = Φ(a) − aφ(a),

exploiting the symmetry of the standard normal distribution, that is, φ(−a) = φ(a)

and 1 − Φ(−a) = Φ(a). Therefore,

http://dx.doi.org/10.1007/978-3-642-40433-7_4
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Q− = m
{(

1 + a2
)

Φ(a) + aφ(a)
}
.

By similar steps we obtain the expected loss when choosing action B:

Q+ = m R
[(

1 + a2
)

{1 − Φ(a)} − aφ(a)
]
.

For Δ̂ given, we select the action with the smaller expected loss. For small values
of Δ̂ action A and for large values action B is preferred. There is a critical value of
Δ̂ where we switch from the preference for one action to the other. This occurs at
the equilibrium, where Q− = Q+ . To prove that there is a unique equilibrium, we
show that Q− is increasing and Q+ is decreasing. The derivatives of these functions
of a are

∂ Q−
∂a

= 2m {aΦ(a) + φ(a)}
∂ Q+
∂a

= 2m R [a {1 − Φ(a)} − φ(a)] .

Both derivatives, as functions of a, are increasing because their respective derivatives,
2mΦ(a) and 2m R{1−Φ(a)}, are positive. Whereas ∂ Q−/∂a is positive, because its
limits at ±∞ are zero and +∞, ∂ Q+/∂a < 0, because its limits are −∞ and zero.
Therefore Q− is increasing and Q+ is decreasing throughout (−∞,+∞). So, our
best bet is to set the constant c at the equilibrium, where Q− = Q+ . This condition
is

ΔQ = (R + 1)
{(

1 + a2
)

Φ(a) + a φ(a)
}

− R(1 + a2) = 0 , (2.9)

with the factor m dropped. It is solved by the Newton-Raphson algorithm, using the
expression

∂ΔQ

∂a
= 2(R + 1) {a Φ(a) + φ(a)} − 2a R .

For the solution a∗, the optimal constant c is c∗ = a∗√m. The decision about the
sign of Δ is based on the sign of Δ̂−a∗√m. It is rather fortuitous that (2.9) involves
the sample sizes n1 and n2 only through m, and m only through a. Therefore, it is
practical to solve (2.9) for a range of values of R, and then convert the solution a∗

R
to cR = a∗

R

√
m.

For the piecewise linear loss, we find the equilibrium by evaluating the two parts
of the expected loss:

Q− = 1√
m

∫ +∞

0
x φ

(
x − Δ̂√

m

)
dx

= Δ̂ {1 − Φ(−a)} −
[
φ(z)

]+∞
−a

= √
m {aΦ(a) + φ(a)}
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Fig. 2.4 The optimal offsets cR with the quadratic (Q) and linear loss (L) for m = 1 (black) and
m = 1/5 (gray), as functions of the penalty ratio R, on the linear and log scales

and
Q+ = R

√
m {aΦ(a) + φ(a) − a}.

Hence the balance equation

ΔQ = (R − 1) {aΦ(a) + φ(a)} − Ra = 0,

which is solved by the Newton-Raphson algorithm, in which we use the identity
∂ΔQ/∂a = (R − 1)Φ(a) − R.

Figure 2.4 displays the solutions cR for the linear and quadratic loss functions
with penalty ratios R ∈ (1, 100) for m = 1 (e.g., n1 = n2 = 2, drawn in black) and
m = 0.2 (e.g., n1 = n2 = 10, gray). The function cR increases with R, approximately
linearly on the log scale (see the right-hand panel). Of course, c∗ is smaller for larger
samples, in proportion of

√
m. Piecewise linear and quadratic loss functions are,

strictly speaking, not comparable even when defined with the same penalty ratio R.
However, a client may not be certain as to which of these loss functions is appropriate,
so contemplating both of them is within the spirit of a wide range of plausible loss
functions.

2.6 Problems, Exercises and Suggested Reading

1. Compare by simulations the sampling variances of the mean, median, the average
of the two quartiles and the average of the minimum and maximum of a simple
random sample from a normal distribution. Repeat this exercise with the uniform
distribution on (0, 2θ) to estimate θ .
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2. Derive in detail the identity in (2.2).
3. Discuss methods for finding the root of s without using its derivative H . Com-

pare the programming effort, the results and the speed of convergence with the
Newton-Raphson algorithm on examples of your choice.

4. Discuss the properties of c∗ in (2.8). How is c∗ adjusted when the variance σ 2 is
different from unity? Compare the minimum value of Q with its value for c = 0.
Study their difference and ratio as n → +∞.

5. Plot the values of the optimal shift cR(n) as functions of R for a selection of
sample sizes n. Explore the function contour in R and apply it to the values
of cR(n).

6. Discuss the advantages of working with n and R on the multiplicative scale.
7. Construct a loss function of your own choice based on the properties you would

find desirable for a specific example or application. Search the literature for
examples of loss functions and discuss their properties. Plot these loss functions,
e.g., using the layout of Fig. 2.1.

8. Discuss how the loss function should be adapted for estimating a transformed
parameter. For example, we may have a particular loss function for estimating
the mean μ of a normal random sample (with known variance), but we wish
to know the value of exp(μ). Suggested reading about the lognormal distribu-
tion: Aitchison and Brown (1957) and Crow and Shimizu (1988). See Longford
(2009) for estimating the mean and median of the lognormal distribution in small
samples.

9. Show that loss functions form classes of equivalence. Two loss functions, L1
and L2 , fall into the same class if L1 = bL2 for some scalar b > 0. When is
a linear combination of two loss functions, aL1 + bL2 , also a loss function?
Construct such a loss function.

10. Discuss how the results of Sect. 2.5 can be applied to deciding whether the
expectation of a normally distributed sample (with a known variance) is positive
or negative.
Hint: Suppose in the comparison of two samples, one is so large that its expec-
tation is, in effect, known.

11. Explore estimation of μ in the context of Sect. 2.5 with piecewise constant loss.
12. The switch between the statuses of fixed and random for the parameter of interest

in Sect. 2.5 is associated with the fiducial argument. See Seidenfeld (1992) for
background.

13. Suggested reading about methods for optimisation: Lange (1999), Chaps. 5, 11,
13, and Press et al. (2007), Chap. 9.

14. Suggested reading about LINEX loss: Zellner (1986).
15. Suggested reading of historical interest: Friedman and Savage (1948); Wald

(1950); Le Cam (1955); Pratt et al. (1964) . Also, Pratt et al. (1995).
16. An unsolved problem. Why is c∗ approximately linearly related to log (R)?
17. Derive the integral of Φ and the integral of the result, and explain the appearance

of these functions in Sect. 2.4.

http://dx.doi.org/10.1007/978-3-642-40433-7_5
http://dx.doi.org/10.1007/978-3-642-40433-7_11
http://dx.doi.org/10.1007/978-3-642-40433-7_13
http://dx.doi.org/10.1007/978-3-642-40433-7_9
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Chapter 3
Estimating the Variance

This chapter deals with estimation of the variance of a normal distribution. We review
briefly how it is dealt with by the standard curriculum, identify its weaknesses, and
address them by tailoring the estimator more closely to the purpose for which it is
intended.

3.1 Unbiased and Efficient Estimation

Suppose we have a random sample X1 , . . . , Xn from a normal distribution N (μ,σ2).
We are interested in estimating the variance σ2. The commonly used estimator is

σ̂2 = 1

n − 1

n∑
i=1

(
Xi − μ̂

)2
, (3.1)

where μ̂ = (X1 + · · · + Xn)/n is the sample mean. The sampling distribution of σ̂2

is related to the χ2 distribution with n − 1 degrees of freedom as

(n − 1)
σ̂2

σ2 ∼ χ2
n−1.

We say that σ̂2 has a scaled χ2 distribution with n − 1 degrees of freedom. The
density of the χ2 distribution with k degrees of freedom is

fk(x) = 1

2 �2(k)

( 1
2 x

)k/2−1
exp

(− 1
2 x

)
, (3.2)

where Γ2 denotes the half-gamma function, Γ2(k) = Γ ( 1
2 k). We introduce it solely

for typographical reasons. The χ2
k distribution has expectation k and variance 2k.

Scaling refers to a scalar multiple, in our case, σ2/(n − 1).
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Using n instead of the divisor n − 1 in (3.1) is generally regarded as a mistake
because σ̂2 is unbiased for σ2. However, the efficient estimator of σ2 is σ̂2(n −
1)/(n + 1) — we should use the divisor n + 1 instead of n − 1. We prove this by
searching for the constant c for which cσ̂2 has minimum MSE. We have

MSE
(

cσ̂2;σ2
)

= σ4
{

2c2

n − 1
+ (c − 1)2

}
.

This quadratic function of c attains its unique minimum at c∗ = (n − 1)/(n + 1),
equal to 2σ4/(n + 1). The MSE of the unbiased estimator is 2σ4/(n − 1).

Variances and their estimators tend to be easy to handle analytically, but for
interpretation we sometimes prefer the standard deviation σ, because it is defined on
the same scale as the original observations Xi . However, σ̂, the obvious choice for
estimating σ, is neither unbiased nor efficient. The expectation of σ̂ is

E
(
σ̂
) = σ√

n − 1

∫ +∞

0

√
x

2 Γ2(n − 1)

( x

2

)(n−1)/2−1
exp

(
− x

2

)
dx

= σ√
2(n − 1)

1

Γ2(n − 1)

∫ +∞

0

( x

2

)n/2−1
exp

(
− x

2

)
dx

= σ
√

2√
n − 1

Γ2(n)

Γ2(n − 1)
. (3.3)

The last identity is obtained by relating the integrand to the χ2
n distribution. We avoid

references to a complex expression by writing E(σ̂) = Hnσ; Hn depends only on n.
It is well defined also for non-integer values of n greater than 1.0, so we can treat
it as a function of n. It is plotted in the left-hand panel of Fig. 3.1. The function
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increases throughout n ∈ (1,+∞) and converges to unity as n → +∞. The bias of
σ̂ is σ(Hn − 1). The variance of σ̂ is

var(σ̂) = E
(
σ̂2

)
− {

E
(
σ̂
)}2

= σ2
(

1 − H2
n

)
.

For a positive constant c, the estimator cσ̂ has MSE

MSE
(
cσ̂;σ) = σ2

{
c2

(
1 − H2

n

)
+ (1 − cHn)2

}

= σ2
(

1 − 2cHn + c2
)

.

Therefore the efficient estimator (in the class cσ̂) is Hnσ̂. The root-MSE of this
estimator is σ

√
1 − H2

n . The right-hand panel of Fig. 3.1 compares it to the root-
MSE of the naive estimator σ̂, which is σ

√
2(1 − Hn), and the root-MSE of the

unbiased estimator σ̂/Hn , which is σ
√

1/H2
n − 1, for σ2 = 1 and 5 ≤ n ≤ 30. The

root-MSE scale is better suited for a display, because the values are greater and are
on the same scale as the original observations. Arguably, the differences among the
alternative estimators are small, except perhaps for the smallest sample sizes, but the
improvement is obtained by very little additional computing. The unbiased estimator
is the least efficient of the three.

3.2 Loss Functions for Variance Estimators

Adopting the view that overestimation of σ2 is not as serious as underestimation
by the same quantity, we consider estimating σ2 with asymmetric loss functions.
We choose piecewise linear loss and explore the estimators σ̃2 = cσ̂2 with positive
constants c. We prefer the linear loss to the quadratic loss, because σ2 and σ̃2 already
entail a squaring when related to σ and σ̃, or to the observations X , for which we
might consider piecewise quadratic loss. As an aside, we mention that quadratic loss
for σ̃ does not coincide with linear loss for σ̃2, since

σ̃2 − σ2 = (σ̃ − σ) (σ̃ + σ)

differs from (σ̃ − σ)2 and cannot be matched by the quadratic loss for σ̃ with a
different factor c.

We solve the problem of estimating σ2 generally, by finding the function cn(R)

for the factor c in cσ̂2 for penalty ratios R > 0 and sample sizes n. We derive first
an identity that links the densities of χ2. The χ2 densities are related by the identity
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y fk(y) = 1

Γ2(k)

( 1
2 y

)k/2
exp

(− 1
2 y

)

= k fk+2(y), (3.4)

derived directly from (3.2) using the reduction 2 Γ2(k+2)/Γ2(k) = k. The density of
cσ̂2 is b fn−1(by), where b = (n−1)/(cσ2), so the expected loss due to overstatement,
σ̃2 > σ2, is

Q+ = n − 1

cσ2

∫ +∞

σ2

(
y − σ2

)
fn−1

{
y(n − 1)

cσ2

}
dy

= σ2
∫ +∞

(n−1)/c

(
cz

n − 1
− 1

)
fn−1(z) dz

= σ2
[

c

{
1 − Fn+1

(
n − 1

c

)}
− 1 + Fn−1

(
n − 1

c

)]
.

Similar operations yield the expected loss due to understatement, σ̃2 < σ2,

Q− = (n − 1)R

cσ2

∫ σ2

0

(
σ2 − y

)
fn−1

{
y(n − 1)

cσ2

}
dy

= Rσ2
{

Fn−1

(
n − 1

c

)
− c Fn+1

(
n − 1

c

)}
,

so the expected loss is

Q = Q+ + Q− = σ2
[

c − 1 + (R + 1)

{
Fn−1

(
n − 1

c

)
− c Fn+1

(
n − 1

c

)}]
.

We search for the root of its derivative,

∂Q

∂c
= σ2

{
1 − (R + 1) Fn+1

(
n − 1

c

)}

− (n − 1)(R + 1)σ2

c

{
1

c
fn−1

(
n − 1

c

)
− fn+1

(
n − 1

c

)}
.

The expression with the densities fn−1 and fn+1 in braces vanishes owing to (3.4).
Therefore the optimal factor c is

cn(R) = n − 1

F−1
n+1

(
1

R+1

) .

The expected loss Q involves the variance σ2 only as a factor, so cn(R) depends only
on the sample size n and the penalty ratio R.
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Fig. 3.2 The inflation factor cn(R) for estimating σ2 with minimum piecewise linear expected loss,
as a function of R and n, and the corresponding minimum expected loss Qn(R)

The left-hand panel of Fig. 3.2 displays the solutions cn(R) for R ∈ (5, 1000)

and a selection of sample sizes n indicated at the right-hand margin. The right-hand
panel plots the corresponding expected loss as a function of R for the same values
of n and σ2 = 1. The factor cn(R) increases with R from (n − 1)/(n + 1), steeply
for small R, and decreases with n, also steeply for small n. The minimum expected
loss Qn(R) has similar features. The curves are much closer to linearity when the
penalty ratio R is plotted on the log scale. Showing this is left for an exercise.

For estimating the standard deviation σ, we consider the estimators σ̃ = dσ̂,
d > 0, and the piecewise quadratic loss. The distribution function of σ̃ is

P(σ̃ < x) = P

{
(n − 1)σ̂2

σ2 < vx2
}

= Fn−1

(
vx2

)
,

where v = (n − 1)/(d2σ2). The density of σ̃ is 2vx fn−1(vx2). The expected loss
due to overstatement, σ̃ > σ, is

Q+ =
∫ +∞

σ
2vx(x − σ)2 fn−1

(
vx2

)
dx

= σ2
∫ +∞

(n−1)/d2

(
d
√

z√
n − 1

− 1

)2

fn−1(z) dz,

after applying the transformation z = vx2. We expand the square in the integrand
and express each term as a scalar multiple of a density, which is then easy to integrate.
In addition to (3.4), we use the identity
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√
z fk(z) = 1√

2 Γ2(k)

( 1
2 z

)k/2−1/2
exp

(− 1
2 z

)

=
√

2 Γ2(k + 1)

Γ2(k)
fk+1(z) = √

k Hk+1 fk+1(z), (3.5)

with the constant Hn introduced after (3.3), where a similar identity was used. The
expected loss due to overstatement is

Q+ = σ2
∫ +∞

(n−1)/d2

{
d2 fn+1(z) − 2d Hn fn(z) + fn−1(z)

}
dz

= σ2
(

d2 − 2d Hn + 1
)

−σ2
{

d2 Fn+1

(
n − 1

d2

)
− 2d Hn Fn

(
n − 1

d2

)
+ Fn−1

(
n − 1

d2

)}
.

For Q− we have a similar expression,

Q− = Rσ2
∫ (n−1)/d2

0

(
d
√

z√
n − 1

− 1

)2

fn−1(z) dz

= Rσ2
{

d2 Fn+1

(
n − 1

d2

)
− 2d Hn Fn

(
n − 1

d2

)
+ Fn−1

(
n − 1

d2

)}
,

and so the expected loss is

Q = σ2
[
d2 − 2d Hn + 1 + (R − 1)

×
{

d2 Fn+1

(
n − 1

d2

)
− 2d Hn Fn

(
n − 1

d2

)
+ Fn−1

(
n − 1

d2

)}]
.

The minimum of this function of d is found by the Newton-Raphson algorithm. The
derivative of Q is

s = 2σ2
[

d − Hn + (R − 1)

{
d Fn+1

(
n − 1

d2

)
− Hn Fn

(
n − 1

d2

)}]
,

after the terms involving densities f cancel out owing to (3.4) and (3.5). The root of
s, denoted by dn(R), does not depend on σ2. Figure 3.3 summarises this function for
the same sets of values of n and R and with the same layout as Fig. 3.2. Figure 3.4
offers a more direct comparison of the optimal inflation factors c and d. Intuition
suggests that c should be close to d2. However, the ratio c/d2 is for all R smaller
than 1.0, by a wide margin for small n. The minimum loss for estimating σ with
piecewise quadratic loss is much greater than the minimum loss for estimating σ2

with piecewise linear loss. This does not mean that estimation of one quantity should
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Fig. 3.3 The optimal factor dn(R) for estimating σ with piecewise quadratic loss and the corre-
sponding minimum loss Qn(R)
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Fig. 3.4 Comparison of the inflation factors cn(R) and dn(R) from Figs. 3.2 and 3.3

be preferred over the other, merely that the perspectives and priorities implied by the
two estimation problems should not be confused.

3.3 Variance Versus a Constant

This section addresses the problem of comparing the variance of a normal random
sample with a constant. We review how this problem is treated by hypothesis testing,
and then find a solution with utilities. Throughout, we assume that there is a positive
critical valueσ2

0 of the varianceσ2; one course of action is appropriate whenσ2 < σ2
0 ,

and another when σ2 > σ2
0 .
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Suppose we have a random sample X1 , . . . , Xn from N (μ,σ2). The parameters
μ and σ2 are not known. We choose r̂ = (n − 1)σ̂2/σ2

0 as the test statistic. This
statistic has χ2

n−1 distribution if σ2 = σ2
0 . For a test of size 0.05, we set the critical

region to (CU ,+∞), where CU is the 95th percentile ofχ2
n−1 distribution. In general,

P(r̂σ2
0/σ2 > CU) = 0.05. Therefore, if σ2 < σ2

0 , P(r̂ > CU) < 0.05. Thus, the test
is proper. The power of the test when σ2 > σ2

0 is P(r̂ > CU) > 0.05, so the test is
unbiased.

3.3.1 Decision with Utilities

Suppose small variance, σ2 < σ2
0 , corresponds to a preferred state of affairs, but the

penalty for an unjustified claim that the variance is small, is harsh. To set the problem
so that it resembles the scenario of testing a hypothesis, we assume a piecewise
constant loss. Suppose the decision will be based on the sign of ρσ̂2 − σ2

0 , with
a suitable positive constant (factor) ρ > 0. If the claim of small variance is made
falsely, when ρσ̂2 < σ2

0 < σ2, we incur loss R. If the claim is not made, but should
have been made, when σ2 < σ2

0 < ρσ̂2, the loss is one unit. When ρσ̂2 and σ2

are both greater or both smaller than σ2
0 , no loss is incurred because the appropriate

course of action is selected, even when ρσ̂2 	= σ2
0 .

Earlier we established that (n−1)σ̂2/σ2 hasχ2
n−1 distribution. Let U be a variable

with this distribution. We represent σ2 by the random variable

(n − 1)σ̂2

U
,

which has the scaled inverse gamma distribution with density

(n − 1)σ̂2

u2 fn−1

{
(n − 1)σ̂2

u

}
.

We have converted an unknown constant, σ2, into a random variable, to represent our
uncertainty about its value, and the sample quantity σ̂2, originally a random variable,
is now regarded as a constant. We made a similar conversion in Sect. 2.5 (page 29).

When ρσ̂2 < σ2
0 , the expected loss is

Q+ = R
∫ +∞

σ2
0

(n − 1)σ̂2

u2 fn−1

{
(n − 1)σ̂2

u

}
du ;

otherwise it is

Q− =
∫ σ2

0

0

(n − 1)σ̂2

u2 fn−1

{
(n − 1)σ̂2

u

}
du.

http://dx.doi.org/10.1007/978-3-642-40433-7_2
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After the transformation that simplifies the argument of fn−1 , these expected losses
become

Q+ = R
∫ τ

0
fn−1(z) dz = RFn−1(τ )

Q− =
∫ +∞

τ
fn−1(z) dz = 1 − Fn−1(τ ), (3.6)

where τ = (n − 1)σ̂2/σ2
0 . For very small ρ, Q+ applies. As we increase ρ, we reach

a point at which the expected loss switches from Q+ to Q− . The value of the ratio
ρ = σ2

0/σ̂2 for which Q+ = Q− is the equilibrium, and is denoted by ρR . If we
set ρ to ρR , then we switch from one decision to the other at τ , where Q+ = Q− .
Since Q+ is an increasing function of the ratio σ̂2/σ2

0 , and Q− a decreasing function,
max(Q+ , Q−) would be greater for any other choice of ρ. When ρR σ̂

2 = σ2
0 , the

choice between the two courses of action is immaterial, because the expected losses
are identical. When ρR σ̂

2 < σ2
0 we claim that the variance is small, and refrain from

the claim otherwise. The expected losses in (3.6) are equal when

τ = F−1
n−1

(
1

R + 1

)
,

that is, for the 1/(R + 1)-quantile of the χ2
n−1 distribution. The corresponding factor

ρ is ρR = (n − 1)/τ , so our estimator of σ2 is

ρR σ̂
2 = (n − 1)σ̂2

F−1
n−1

(
1

R+1

) .

With the piecewise constant loss, we would get the same solution, that is, σ̂
√
ρR ,

if we had to decide whether to make the claim based on σ̂ instead of on σ̂2. Of course,
with piecewise linear and quadratic loss functions we obtain different solutions. This
is undesirable; the scale on which we operate should make no difference. It does make
some if we fail to transform the loss function in accordance with the transformation
of the target.

3.3.2 Multiplicative Loss

The decision rule we adopted can be formulated as comparing σ̂2/σ2
0 against a

constant. This motivates the loss function defined as

L+ = R

(
σ2

σ2
0

− 1

)
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L− = σ2
0

σ2 − 1, (3.7)

when we incorrectly decide that σ2 < σ2
0 and σ2 > σ2

0 , respectively. We base the
decision on ρσ̂2, and seek the equilibrium value of ρ or of ρσ̂2/σ2

0 , for which the
balance function Q+ − Q− = E(L+) − E(L−) vanishes.

The two parts of the expected loss are obtained by integrating the loss functions
in (3.7):

Q+ = R
∫ +∞

σ2
0

(
u

σ2
0

− 1

)
(n − 1)σ̂2

u2 fn−1

{
(n − 1)σ̂2

u

}
du

= R
∫ τ

0

(
τ

z
− 1

)
fn−1(z) dz

= Rτ

n − 3
Fn−3(τ ) − RFn−1(τ )

Q− =
∫ σ2

0

0

(
σ2

0

u
− 1

)
(n − 1)σ̂2

u2 fn−1

{
(n − 1)σ̂2

u

}
du

=
∫ +∞

τ

( z

τ
− 1

)
fn−1(z) dz

= n − 1

τ
{1 − Fn+1(τ )} − 1 + Fn−1(τ ), (3.8)

where τ = (n − 1)σ̂2/σ2
0 , as defined after (3.6). The concluding identities for Q+

and Q− in (3.8) are obtained by applying (3.4) with k = n − 3 and k = n − 1,
respectively. The expected losses Q+ and Q− depend on the variances σ̂2 and σ2

0
only through τ . The derivative of the balance function �Q = Q+ − Q− is

∂�Q

∂τ
= R

n − 3
Fn−3(τ ) + n − 1

τ2
{1 − Fn+1(τ )} ,

after all the terms involving densities f cancel out, owing to (3.4). The derivative is
positive, so �Q has a unique root. From the solution τR we obtain the equilibrium
ratio ρR = τR/(n − 1) and the estimator σ̂2τR/(n − 1).

Figure 3.5 presents the solutions for R ∈ (1, 1000) and a selection of sample sizes
n on the linear and log scales for R. For fixed R, the equilibrium ratio decreases with
n and converges to 1.0 as n → +∞. For fixed sample size n, ρR(n) increases with
R. In brief, when we are averse to false declarations of small variance, we inflate
the estimate σ̂2, to a greater extent with small samples (a lot of uncertainty) and
large penalty ratios (greater aversion), steeply at first, and then progressively more
gradually. On the log scale, the functions ρR(n) are close to linearity, especially for
R 
 1. The multiplicative scale is much better suited for R.
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Fig. 3.5 The equilibrium ratios for comparing a variance to a constant with multiplicative loss

3.4 Estimating the Variance Ratio

Suppose we have two independent random samples of respective sizes n1 and n2 from
distinct normal distributions and we want to estimate the ratio of their variances r =
σ2

1/σ2
2 . The established estimator of r is the ratio of the usual unbiased estimators,

r̂ = σ̂2
1/σ̂2

2 . It is neither unbiased nor efficient; its principal attraction is the reference
to the F distribution. The scaled version of the ratio, r̂σ2

2/σ2
1 , has F distribution with

k1 = n1 − 1 and k2 = n2 − 1 degrees of freedom. The F distribution has the density

g(y; k1, k2) = Γ2(k1 + k2)

Γ2(k1) Γ2(k2)

(
k1

k2

)k1/2

yk1/2−1
(

1 + k1 y

k2

)−(k1+k2)/2

. (3.9)

Denote by G the corresponding distribution function. The expectation of the distri-
bution is k2/(k2 − 2) when k2 > 2; otherwise the expectation is not defined. The
variance of the distribution, defined for k2 > 4, is

2k2
2(k1 + k2 − 2)

k1(k2 − 2)2(k2 − 4)
.

For k2 > 2, the estimator r̂(k2 − 2)/k2 is unbiased, and the estimator cr̂ attains
minimum MSE for

c∗ = k1(k2 − 2)(k2 − 4)

k2(k1k2 − 2k1 + 2k2 − 2)
, (3.10)

assuming that k2 > 4.
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We evaluate the expected loss of estimators cr̂ with respect to the piecewise linear
loss; the loss is R(r̂ − r) when r̂ > r and it is r − r̂ when r̂ < r . The density of cr̂ is

1

cr
g
( y

cr
; k1, k2

)

and the expected loss is

Q = 1

cr

{
R

∫ +∞

r
(y − r) g

( y

cr
; k1, k2

)
dy +

∫ r

0
(r − y) g

( y

cr
; k1, k2

)
dy

}

= r

{
R

∫ +∞

1/c
(cz − 1) g(z; k1, k2) dz +

∫ 1/c

0
(1 − cz) g(z; k1, k2) dz

}
.

To avoid any numerical integration, we use the identity

x g(x; k1, k2) = k1

k1 + 2
g(h2 x; k1 + 2, k2 − 2) , (3.11)

where

h2 = k1(k2 − 2)

k2(k1 + 2)
.

The identity is proved directly from the definition of g in (3.9). With this result, we
have

Q = k1cr R

k1 + 2

∫ +∞

1/c
g(h2z; k1 + 2, k2 − 2) dz

− k1cr

k1 + 2

∫ 1/c

0
g(h2z; k1 + 2, k2 − 2) dz − r

{
R − (R + 1) G

(
1

c
; k1, k2

)}

= k2 cr

k2 − 2

{
R − (R + 1) G

(
h2

c
; k1 + 2, k2 − 2

)}

− r

{
R − (R + 1) G

(
1

c
; k1, k2

)}
.

We find the minimum of this function of c as the root of its derivative,

∂Q

∂c
= k2 r

k2 − 2

{
R − (R + 1) G

(
h2

c
; k1 + 2, k2 − 2

)}

− r(R + 1)

c

{
1

c
f

(
1

c
; k1, k2

)
− k1

k1 + 2
f

(
h2

c
; k1 + 2, k2 − 2

)}
.

The expression in the concluding line vanishes owing to (3.11). Hence, the (unique)
root of the derivative is
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c∗ = h2

G−1
(

R
R+1 ; k1 + 2, k2 − 2

) .

This is the sole minimum of Q, because

∂2 Q

∂c2 = h2 k2 r(R + 1)

c2(k2 − 2)
g

(
h2

c
; k1 + 2, k2 − 2

)
= r(R + 1)

c3 g

(
1

c
; k1, k2

)

is positive. The minimum attained is

Q∗ = r(R + 1) G

{
1

h2
G−1

(
R

R + 1
; k1 + 2, k2 − 2

)
; k1, k2

}
− r R. (3.12)

We do not have a simple comparison of Q(c∗) with the expected loss Q(1). The
derivative ∂Q/∂c is a decreasing function of R; therefore the optimum factor c∗ is
an increasing function of R.

Instead of the variance ratio r we may estimate the ratio of the standard deviations√
r . We explore the estimators d

√
r̂ for d > 0. The expected (piecewise linear) loss

is

Q = √
r

{
R

∫ +∞

1/d2

(
d
√

z − 1
)
g(z) dz +

∫ 1/d2

0

(
1 − d

√
z
)
g(z) dz

}
.

We use the following identity, similar to (3.11):

√
xg (x; k1, k2) = κ(k1, k2) g(h1x; k1 + 1, k2 − 1) , (3.13)

where

h1 = k1

k1 + 1

k2 − 1

k2

κ(k1, k2) = Γ2(k1 + 1) Γ2(k2 − 1)

Γ2(k1) Γ2(k2)

k2 − 1

k1 + 1

√
k1√
k2

.

The identity in (3.13) is proved directly from (3.9). With it, we have

Q = √
r

d κ(k1, k2)

h1

{
R − (R + 1) G

(
h1

d2 ; k1 + 1, k2 − 1

)}

−√
r

{
R − (R + 1) G

(
1

d2 ; k1, k2

)}
,

an expression similar to its counterpart for cr̂ in (3.12). The derivatives of this
expected loss with respect to d are
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∂Q

∂d
=

√
r κ(k1, k2)

h1

{
R − (R + 1) G

(
h1

d2 ; k1 − 1, k2 + 1

)}

∂2 Q

∂d2 = 2
√

r (R + 1)κ(k1, k2)

d3 g

(
h1

d2 ; k1 − 1, k2 + 1

)
,

so Q has a unique minimum at

d∗ =
√√√√ h1

G−1
(

R
R+1 ; k1 − 1, k2 + 1

) .

Note that d∗2 and c∗ differ only in the degrees of freedom in the argument of the
quantile G−1 and in the constant in the numerator. Of course, the minimum expected
loss estimators of r and

√
r differ, because the piecewise linear loss functions in the

two cases represent different losses.

3.5 Problems, Exercises and Suggested Reading

1. Explore why piecewise constant loss function for estimating a variance makes
no sense. Generalise your conclusion to other targets of estimation.

2. The relative MSE of one estimator, θ̂1, against another, θ̂2 , when both of them
have the same target θ, is defined as MSE(θ̂1; θ)/MSE(θ̂2 ; θ). The relative root-
MSE is defined similarly. Reproduce the right-hand panel of Fig. 3.1 with the
relative root-MSEs of the efficient and unbiased estimators of σ related to the
root-MSE of the naive estimator. Explain why this plot has a much better reso-
lution.

3. Prove the identities in (3.11) and (3.13). Find some other classes of distributions
for which similar identities apply.

4. Verify the expressions for the expectation and variance of the F distribution and
that the estimators listed in the text are unbiased and efficient in the class {cr̂}.
Show that c∗ in (3.10) is smaller than unity. (In fact, it is smaller than 1−4/k2 .)
Confirm your (analytical) conclusion by a suitable graph.

5. Find the unbiased and efficient estimators of
√

r in the class d
√

r̂ and compare
the coefficients d (or d2) with their counterparts for estimating r . Compare
graphically the optimal factors c∗ and d∗2.

6. Find the estimator of the variance ratio with the piecewise quadratic loss.
7. Derive the loss function for σ that matches piecewise linear loss for σ2.
8. Explore the connection of the piecewise linear loss with estimating quantiles.

Suggested reading on quantile regression: Koenker (2005).
9. Explore the analytical difficulties with piecewise absolute, linear and quadratic

loss functions specified for estimating log(σ2) or log(1+σ2) or comparing them
to a constant.
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10. Plot the densities of χ2 distributions, suitably scaled, and compare them with
the normal distribution that has the same mean and variance. Decide from which
number of degrees of freedom onwards the χ2 is indistinguishable from the
normal. A more ambitious exercise: do the same with the densities of the F
distribution. Suggested reading for background on distributions derived from
the normal, which include F and χ2: Simon (2004).

11. A commonly adopted standard for inference is to estimate a parameter efficiently
and to estimate the MSE (sampling variance if the estimator is unbiased) of
this estimator without bias. (Why not estimate the root-MSE or standard error
without bias?) Do you agree with this wholeheartedly? See Longford (2013) for
an alternative view.

12. Reading of historical interest: Markowitz (1968) and Stuart (1969).
13. Hypotheses about variances are often formulated in the context of variance com-

ponent models (McCulloch et al., 2006). An application that provided a powerful
stimulus for their development in animal breeding is Henderson (1984a). For a
review of criteria for variance estimation, see Henderson (1984b).

14. Monographs on decision theory: French and Insua (2004), Liese and Miescke
(2008) and Rapoport (2010, Part I); their precursor is Le Cam (1986).

References

French, S., & Insua, D. R. (2004). Statistical decision theory. New York: Oxford University Press.
Henderson, C. R. (1984a). Applications of linear models in animal breeding. Guelph: University

of Guelph.
Henderson, C. R. (1984b). ANOVA, MIVQUE, REML, and ML algorithms for estimation of vari-

ances and covariances. In H. A. David & H. T. David (Eds.), Statistics: An appraisal (pp.
257–280). Iowa State University.

Koenker, R. (2005). Quantile regression. Cambridge: Cambridge University Press.
Le Cam, L. (1986). Asymptotic methods in statistical decision theory. New York: Springer-Verlag.
Liese, F., & Miescke, K. J. (2008). Statistical decision theory. Estimation, testing and selection.

Springer-Verlag, New York.
Longford, N. T. (2013). Assessment of precision with aversity to overstatement. South African

Statistical Journal, 47, 49–59.
Markowitz, E. (1968). Minimum mean-square-error of estimation of the standard deviation of the

normal distribution. The American Statistician, 22, 26.
McCulloch, C. E., Searle, S. R., & Casella, G. (2006). Variance components (2nd ed.). New York:

Wiley.
Rapoport, A. (2010). Decision theory and decision behaviour. Dordrecht: Kluwer.
Simon, M. K. (2004). Probability distributions involving Gaussian random variables. New York:

Springer-Verlag.
Stuart, A. (1969). Reduced mean-square-error estimation of σ p in normal samples. The American

Statistician, 23, 27–28.



Chapter 4
The Bayesian Paradigm

The Bayesian paradigm is founded on a probabilistic way of updating the prior
information about the inferential targets (population quantities) by the information
contained in the collected data. A model is posited for the collected data, in essentially
the same way as in the frequentist perspective, and prior information is expressed as
a joint distribution for the model parameters. This distribution is independent of the
data. The first-stage outcome of a Bayesian analysis is the posterior distribution of
the model parameters, which then requires further processing.

4.1 The Bayes Theorem

Suppose outcomes x = (x1, . . . , xn) have been generated as a random draw from a
distribution with joint density f (y | θ), where θ is a vector of parameters and y is
the n-variate argument of f . The value of θ is known to belong to a set Θ , called the
parameter space. The collection of these distributions, { f (y | θ);θ ∈ Θ}, is referred
to as the model. The task is to make an inferential statement about the vector θ, one of
its subvectors, or a transformation ζ(θ). We write the model density f as conditional
on θ, because θ is treated as a random vector. The information about θ that is available
independently of the observed sample is summarised by a prior distribution, with
density π(θ). The posterior distribution of θ is defined as its conditional distribution
given the outcomes x. Its density is denoted by g(θ | x).

The Bayes theorem for absolutely continuous densities f and π states that

g(θ | x) = f (x | θ)π(θ)∫
. . .

∫
f (x | ξ)π(ξ) dξ

. (4.1)

It can be interpreted as switching the roles of x and θ from the model, in which we
specify the range of behaviours of potential samples x given θ, to the posterior, in
which we update our (prior) information about θ by the recorded data x.
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For discrete data, we replace the density f by a probability function. The prior
distribution is in most cases absolutely continuous. When it is discrete, its proba-
bilities are substituted for π and the integral(s) in the denominator are replaced by
summation(s).

The posterior density g(θ | x) is the sole outcome of the analysis thus far and any
inferential statements are based on it. The posterior expectation

θ̂ = E (θ | x) =
∫

. . .

∫
ξ g(ξ | x) dξ

can be adopted as an estimate of θ, and the posterior variance (matrix)

var (θ | x) =
∫

. . .

∫ (
ξ − θ̂

) (
ξ − θ̂

)�
g(ξ | x) dξ

can be regarded as a measure of uncertainty about θ. For univariate θ, small posterior
variance is desirable and the tails of the posterior distribution are studied to understand
how plausible certain extreme values of θ are.

Evaluation of the integral in (4.1) would cause a problem in many settings, but it
can be sidestepped by replacing it with the constant C for which C f (x | θ)π(θ) is a
proper density, that is, for which its integral is equal to unity. The constant can often
be guessed by matching the product f (x | θ)π(θ) to a known density.

Example

Suppose x = (x1 , . . . , xn)� is a (realised) random sample from N (μ, 1). Denote its
sample mean by x̄ . Suppose the prior distribution for μ is also normal, N (δ, 1/n0),
where δ and n0 > 0 are given. In this setting, the model and prior densities are

f (x |μ) = 1

(2π)n/2 exp

{
−1

2

n∑
i=1

(xi − μ)2

}

π(μ) =
√

n0√
2π

exp

{
−n0(μ− δ)2

2

}
,

respectively. Their product, the numerator in (4.1), is

f (x |μ)π(μ) =
√

n0

(2π)n/2 + 1/2 exp

[
−1

2

{
n0(μ− δ)2 +

n∑
i=1

(xi − μ)2

}]

=
√

n0 + n√
2π

exp

{
− (n0 + n)

2

(
μ− δ̃

)2
}
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×
√

n0√
(2π)n(n0 + n)

exp

{
(n0 + n)δ̃2 − n0δ

2 − ∑n
i=1 x2

i

2

}
, (4.2)

where

δ̃ = n0δ + nx̄

n0 + n
. (4.3)

The second line in (4.2) is the density of N {δ̃, 1/(n0 + n)} and the concluding line
does not depend on μ. It has to be equal to the reciprocal of the denominator in the
Bayes theorem, (4.1); otherwise g(μ | x) would not be a density. Hence the posterior
distribution of μ is N {δ̃, 1/(n0 + n)}.

It is very convenient that the posterior distribution of μ is normal, just like the
observations xi , i = 1, . . . , n, their summary x̄ and the prior π. A prior for which the
posterior belongs to the same class of distributions is said to be conjugate for the data
distribution (the model). Conjugate priors are preferred in Bayesian analysis because
they lead to posteriors that are easy to handle. We note that this is rarely relevant to
the client’s perspective, although the analyst may plead that posterior distributions
are intractable for some classes of priors.

The posterior distribution N {δ̃, 1/(n0 + n)} coincides with the (frequentist sam-
pling) distribution of the sample mean based on n0 + n observations, n0 of which
are additional to the realised data. The additional observations, which we might call
prior data, are a random sample from N (δ, 1), independent of the n realised (genuine)
observations.

The claim, often made in the literature, that Bayesian analysis is essential for
incorporating prior information is poorly founded in this example, because the prior
information could be represented in a frequentist analysis by a set of fictitious (prior)
observations. Admittedly, these observations are not real, but the nature of the prior
distribution is not much different. Both have to be obtained from the client by elic-
itation. The idea of prior (hypothetical) observations may appeal to the client much
better than the often less familiar concept of a (prior) distribution.

As an estimator, the posterior expectation in (4.3) can be interpreted as a compro-
mise between two alternatives: the data-based estimator x̄ and the prior estimator δ,
with respective variances 1/n0 and 1/n. Selecting either of them is patently inferior
to their convex linear combination (composition).

For a loss function L , the posterior expected loss is defined as the expected loss
with respect to the posterior distribution:

QD =
∫

. . .

∫
L(D,θ) g(θ | x) dθ,

where D is the contemplated action. In practice, we evaluate QA and QB for the
alternative courses of action A and B, and choose the one with smaller value of Q.

In many instances, including the example of estimating the normal mean, the
posterior density depends on the data only through one or a few summaries. Such a
set of summaries is called a set of sufficient statistics (for one or a set of parameters).
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For example, x̄ is a sufficient statistic for μ. In some problems in which there is a
single sufficient statistic, such as t (x) = x̄ for μ, we can anticipate that the solution
will have the form of preferring A when t (x) < T and preferring B otherwise. The
value of T may depend on the sample size and other quantities that characterise the
data collection or generation process. We can solve such problems in advance of data
collection by finding the threshold value T . When the data is collected, in a dataset
x, the decision is made immediately by evaluating the statistic t (x) and comparing it
with T . Apart from not holding up the client in his business, having a decision rule
in advance of the study is invaluable for design, for planning how the study should
be organised. This is dealt with in detail in Chap. 8.

The established way of conducting a Bayesian analysis centers on deriving the
posterior distribution of the relevant parameter for the collected data and the elicited
or otherwise declared prior information. In the final step, the expected losses of the
alternative courses of action are compared. We regard the prior information to be as
important as the recorded data and ascribe to it comparable status and importance.
In this approach, we discard default synthetic choices, such as non-informative pri-
ors, which are suitable in classroom exercises in which the expert is distant and
unreachable. Elicitation of the prior is a complex and often time-consuming process
of discussing the background to the client’s problem and the analyst’s mode of oper-
ation, and in a technically (computationally) oriented curriculum it naturally does
not figure prominently. In practice, it is often a key ingredient of a salient analysis.

A cautious and responsible expert is unlikely to provide a single prior distribution.
He may be concerned that a prior similar to the one put forward may equally well
have been selected, but it would lead to a different conclusion. A more constructive
method of elicitation of the prior concludes with a plausible set of prior distributions
or their parameters. Such a set may be constructed by gradual reduction from a
much larger set until the expert is no longer willing to concede any further reduction,
being concerned that a prior might be inappropriately ruled out. When the expert
is not available for elicitation the analyst will retain greater integrity by declaring a
(wide) set of plausible priors that reflect his understanding of the (distant) expert’s
perspective, or what he anticipates the expert might declare, and may contact the
expert with the plausible results (decisions) after concluding the analysis. In brief,
requiring a single prior is an unnecessary straitjacket.

Further, we invert the process of generating the posterior for each prior. We split the
set of priors into subsets that correspond to the preference for each course of action.
The priors for which the values of the expected posterior loss for the two actions
coincide are called equilibrium. If all the plausible priors belong to one subset of
priors, we have an unequivocal conclusion, the choice of the action that would be
preferred with any plausible prior. Otherwise we face an impasse (no clear decision),
which can be resolved by reviewing the set of plausible priors and reducing it. In
this approach, the set of plausible priors is declared in advance. As an alternative,
the expert may be presented with the description of the two subsets, or of the set of
equilibrium priors that divide them, and asked whether one of the subsets could be
ruled out entirely.

http://dx.doi.org/10.1007/978-3-642-40433-7_8
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We do not insist on declaring a single loss function either. Instead, we work with a
set of plausible loss functions and, in effect, solve the problem for every one of these
functions. In most settings, it suffices to solve the problem for the (extreme) plausible
loss functions that delimit their range. Of course, the more inclusive (liberal) we are
in specifying the prior information (sets of loss functions and prior distributions), the
more likely we are to conclude the analysis with an impasse, so detailed elicitation
may be invaluable.

4.2 Comparing Two Normal Random Samples

We address the problem of deciding whether the expectation of one normal random
sample is greater than the expectation of another. This is one of the basic problems
in statistics that is commonly resolved by hypothesis testing; see Sect. 2.5. Here we
define several classes of loss functions and find which sign of the difference of the
means is associated with smaller expected loss.

Suppose we have independent random samples from normal distributions
N (μ1 ,σ2) and N (μ2 ,σ2), with respective sizes n1 and n2 . Let m = 1/n1 + 1/n2 .
The two samples have identical variances, equal toσ2, which we assume to be known.
No generality is lost by assuming that σ2 = 1, because instead of observations x we
could work with x/σ. Denote by Δ̂ the difference of the sample means; Δ̂ = x̄1 − x̄2 .
In the frequentist perspective, it is unbiased for Δ = μ1 − μ2 and its sampling vari-
ance is mσ2. For Δ we have the prior N (δ, qσ2); δ and q > 0 are given, although
later we deal with the problem when we only have ranges (intervals) of plausible
values for them.

As in Chap. 2, we define the piecewise quadratic loss function as L− = Δ2 when
we choose the negative sign but Δ > 0, and as L+ = RΔ2 when we choose the
positive sign but Δ < 0. The choice of the sign is based on the sign of the balance
function,

Q− − Q+ = E
{

L−
(
Δ̂;Δ

) ; δ, q
} − E

{
L+

(
Δ̂;Δ

) ; δ, q
}
.

With Δ̂ realised, this is a function of δ and q. A prior distribution is called equilibrium
if its parameter pair (δ, q) is a root of the balance function. For such a prior, the
choice of the sign is immaterial. Below we evaluate the expected losses Q− and
Q+ , and although we fail to find a closed-form expression for the equilibria (δ, q),
we show that there is a unique equilibrium for each q. The equilibrium function
δ0(q), which assigns to every q the corresponding equilibrium value of δ, has the
following property. For a prior located below the function δ0(q) the negative sign
and for one above δ0(q) the positive sign is associated with smaller expected loss.

The posterior distribution of Δ is N (Δ̃, S2), where

http://dx.doi.org/10.1007/978-3-642-40433-7_2
http://dx.doi.org/10.1007/978-3-642-40433-7_2
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Δ̃ = mδ + qΔ̂

m + q

S2 = mq

m + q
σ2,

derived similarly to (4.2). Denote z̃ = Δ̃/S. If we choose the negative sign the
posterior expection of the piecewise quadratic loss is

Q− =
∫ +∞

0

Δ2

S
φ

(
Δ − Δ̃

S

)
dΔ

=
∫ +∞

−z̃

(
Δ̃ + Sz

)2
φ(z) dz

= Δ̃2 {1 − Φ(−z̃)} + 2SΔ̃φ(z̃) − S2 z̃ φ(z̃) + S2 {1 − Φ(−z̃)}
=

(
Δ̃2 + S2

)
Φ(z̃) + S2 z̃φ(z̃),

obtained by operations similar to those applied in Sect. 2.1. If we choose the positive
sign, we have

Q+ = R
(
Δ̃2 + S2

)
{1 − Φ(z̃)} − RS2 z̃φ(z̃), (4.4)

so the balance function, ΔQ = Q− − Q+ , is

ΔQ = S2
[
(R + 1)

{(
1 + z̃2

)
Φ(z̃) + z̃φ(z̃)

}
− R

(
1 + z̃2

)]
. (4.5)

We search for the root of the scaled balance function f (z̃) = ΔQ/S2, which
depends only on z̃. The derivative of this function is

∂ f

∂ z̃
= 2(R + 1) {z̃Φ(z̃) + φ(z̃)} − 2Rz̃.

Further differentiation yields the identity

∂2 f

∂ z̃2 = 2(R + 1)Φ(z̃) − 2R.

This is an increasing function of z̃, with a sole root at z̃ = Φ−1{R/(R + 1)}. The
first-order derivative attains its minimum at this value of z̃, and the minimum is equal
to 2(R + 1)φ(z̃). Since this is positive, ∂ f/∂ z̃ is positive throughout, and so f is
an increasing function of z̃. It is easy to check that f has limits ±∞ as z̃ → ±∞.
Therefore, f has a unique minimum, and it is at the root of ∂ f/∂ z̃. For fixed q, z̃ is a
linear function of δ, and so there is a unique equilibrium prior (δ, q) for each q > 0.
Thus, the equilibria can be described by a function δ0(q).

http://dx.doi.org/10.1007/978-3-642-40433-7_2
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In a practical problem, we proceed by the following steps. Having obtained the
difference of the sample means, Δ̂, we find the root of the balance function (4.5),
denoted by z∗, and solve the equation

z∗ = Δ̃

S
= mδ + qΔ̂

σ
√

mq(m + q)

for δ as a function of q. The solution is

δ0(q) = z∗σ
√

mq(m + q) − qΔ̂

m
. (4.6)

If we have already elicited a (single) prior from the expert, then we relate its parame-
ters (δ, q) to the equilibrium function. If (δ, q) lies underneath δ0(q), the negative
sign is preferred; if it lies above, positive sign is preferred. If a set of plausible prior
parameter vectors (δ, q) is declared, and the entire set lies on one side of the equi-
librium function δ0 , below or above it, we have the same (common) conclusion for
every one of them. See the left-hand panel of Fig. 4.1 for an illustration. If the func-
tion intersects the plausible set an unequivocal decision cannot be made, because for
some priors one sign and for others the other sign would be preferred; see the right-
hand panel. One resolution of the problem is to continue the elicitation and attempt to
reduce the set of plausible priors. However, if the integrity of the process is breached
and a plausible set smaller than what is warranted is declared, the unequivocality of
the decision, although desired and convenient, may not be justified.

The piecewise linear loss function is defined as Δ when we choose the negative
sign but Δ > 0, and as −RΔ when we choose the positive sign but Δ < 0. The
balance function ΔQ(z̃) = Q− − Q+ for this loss function is

1 2 3 4

0.
0

0.
5

1.
0

q

δ δ0

+

−

1 2 3 4

0.
0

0.
5

1.
0

q

δ δ0

+

−

Fig. 4.1 Examples of an equilibrium function and a set of plausible priors. The set of priors is
represented by the shaded rectangle in each panel. Left-hand panel unequivocal decision (negative
sign); right-hand panel no clear (equivocal) decision
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ΔQ(z̃) = S
[
Rz̃ − (R − 1) {z̃Φ(z̃) + φ(z̃)}] , (4.7)

derived similarly to (4.5). Its derivative is S{(R − 1)Φ(z̃) + R}. For the piecewise
constant loss, equal to one unit when we incorrectly choose the negative sign and to
R when we incorrectly choose the positive sign, the balance function is ΔQ(z̃) =
(R + 1)Φ(z̃) − R, so its root is z∗ = Φ−1{R/(R + 1)}.

The parameter q is the prior version of m = 1/n1 +1/n2 . When the data contain
much more information than the prior and q � m,

√
q(m + q)

.= q + 1
2 m and (4.6)

can be approximated as

δ0(q)
.= z∗σ

(
q + 1

2 m
)

√
m

− qΔ̂

m
;

δ0(q) is close to a linear function (see Fig. 4.1) and its properties are easy to describe.
For example, when extended to negative values of q, the equilibrium functions for
different values of σ2 converge to a point near q0 = − 1

2 m.

Example

Suppose in a study to compare two medical treatments we obtained Δ̂ = 0.75 with
samples of sizes n1 = 20 and n2 = 25, so that m = 0.09. Suppose the plausible range
of values of q is (0.25, 0.75). The assumption thatσ2 is known is rarely realistic. Here
we compensate for it by evaluating the equilibrium functions for σ2 ∈ (0.6, 1.5).
For piecewise quadratic and linear loss functions, we evaluate δ0(q) by the Newton-
Raphson algorithm. For the piecewise absolute loss, the solution has a closed form.

The equilibrium functions are drawn in Fig. 4.2 for the three classes of loss func-
tions (rows) and penalty ratios R = 25 and 100 (columns). In each panel, the function
δ0(q) is drawn for the values of σ2 indicated at the right-hand margin. As anticipated,
the equilibrium functions are very close to linearity, and are increasing in σ2.

For R = 25 with the piecewise quadratic and linear loss functions, the equilib-
rium functions attain negative values. Thus, the positive sign is preferred even with
some negative prior expectations δ; the recorded data contains ample information
to decisively contradict prior information, especially when q is large (close to 0.75)
and σ2 small (close to 0.6).

If we are uncertain about the value of σ2 we define a plausible range for it, such as
(0.6, 1.5). We choose the positive sign only when it would be chosen for all plausible
values of σ2, that is, if it would be chosen even for their maximum, σ2 = 1.5. We
choose the negative sign only if it would be chosen even for the smallest plausible
value of σ2, equal to 0.6. In all other scenarios, when the positive sign would be
chosen for some plausible values of σ2, say, for σ2 ∈ (0.6,σ2

†), but not for others,

σ2 ∈ (σ2
† , 1.5), we reach an impasse, no clear choice, unless we can narrow down the

plausible range of σ2. The region bounded by the equilibrium functions for σ2 = 0.6
and σ2 = 1.5 can be regarded as a gray zone, in which the choice of the sign is
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Fig. 4.2 Equilibrium functions for comparing two samples with normal distributions for quadratic,
linear and absolute loss functions and penalty ratios R = 25 and 100; sample sizes n1 = 20 and
n2 = 25 and estimate Δ̂ = 0.75
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problematic. This is the price for incomplete information. We address this problem
in the next section.

For R = 100 with all three loss functions and values ofσ2 (the right-hand panels of
Figure 4.2), the equilibrium functions are greater than their counterparts for R = 25.
With higher penalty ratio R we are more averse to choosing the positive sign, and
stronger evidence that Δ > 0 is required from the prior for the positive sign to be
preferred. We can define a gray zone for the uncertainty about R similarly to how
we propose to handle the uncertainty about σ2. With the plausible range of R set to
(25, 100), the positive sign is preferred if all the plausible priors (δ, q) lie above the
equilibrium function for R = 100 (and the largest plausible value of σ2), and the
negative sign is preferred if all the plausible priors lie under the equilibrium function
for R = 25 (and the smallest plausible value of σ2). This highlights that we can
operate with uncertainty about both σ2 and R, at the price of a wider gray zone
in which impasse, no clear preference, is concluded. We should therefore strive to
reduce the gray zone to avoid inconclusive results, but only as much as the integrity of
the parties involved allows. Unsupported confidence in the declared prior information
would deflate the credibility of the analysis.

4.3 Decision with Estimated σ2

Suppose in the setting of the previous section we also have a prior for σ2, with
inverse gamma distribution with shape ν and scale s, and it is independent of the
prior N (δ, qσ2) for Δ. The inverse gamma distribution has the density

f
(
σ2 | ν, s

)
= 1

Γ (ν)
sν

(
1

σ2

)ν+1

exp
(
− s

σ2

)
.

This distribution is derived by the reciprocal transformation of the gamma distribu-
tion. We show below that as a prior it is conjugate for σ2 — the posterior distribution
of σ2 is also inverse gamma. Its expectation is s/(ν − 1), defined when ν > 1, and
variance s2/(ν − 1)2/(ν − 2), when ν > 2.

The joint posterior density of Δ and σ2 is

C

2πσ2√mq
exp

[
− 1

2σ2

{(
Δ − Δ̂

)2

m
+ (Δ − δ)2

q

}]

× sν

Γ2(k) Γ (ν)

(
k

2

)k/2 (
1

σ2

)k/2+ν+1

σ̂k−2 exp

{
− 1

2σ2

(
kσ̂2 + 2s

)}
,

where k = n1 +n2 −1; recall that Γ2(x) = Γ ( 1
2 x). We consolidate all the arguments

of the exponentials into exp{− 1
2 G(Δ)/σ2}, where
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G(Δ) = u
(
Δ − Δ̃

)2 + 1

m + q

(
δ − Δ̂

)2 + kσ̂2 + 2s (4.8)

and u = (m +q)/(mq). The remainder of the expression is the factor 1/σ2(k/2+ν+2)

and another factor, denoted by C ′, which depends on neither Δ nor σ2. The first
term in (4.8) does not involve σ̂2, ν or s; it can be interpreted as an estimator of σ2

informed solely by the prior for Δ. It is associated with a single degree of freedom.
From the remainder of G(Δ), we can define the estimator

σ̃2 = 1

h

{
1

m + q

(
δ − Δ̂

)2 + kσ̂2 + 2s

}
,

where h = k + 2ν + 1 = n1 + n2 + 2ν − 1, which involves the prior information
about σ2. The data-related k degrees of freedom in σ̂2 are supplemented by 2ν from
the prior (2s) and one from (δ − Δ̂)2. The ratio σ2

π = s/ν can be interpreted as a
prior estimate of the variance σ2.

The joint posterior density of Δ and σ2 is

g
(
Δ,σ2

)
= C ′

(
1

σ2

)k/2+ν+2

exp

{
−G(Δ)

2σ2

}
.

Inferences related exclusively to Δ or σ2 are based on the corresponding marginal
posterior distributions. By extracting from g(Δ,σ2) the density of N (Δ̃,σ2/u), we
obtain the marginal posterior distribution of σ2:

∫ +∞

−∞
g
(
Δ,σ2

)
dΔ = D

(
1

σ2

)h/2+1

exp

{
−hσ̃2

2σ2

}
,

where D is the constant for which the right-hand side is a density. Thus, the posterior
distribution of σ2 is inverse gamma, with shape 1

2 h and scale 1
2 hσ̃2.

The marginal posterior of Δ is derived by integrating the joint posterior density
over σ2; ∫ +∞

0
g
(
Δ,σ2

)
dσ2 = C ′′ {G(Δ)}−(k/2+ν+1), (4.9)

obtained by matching the density g(Δ,σ2), as a function of σ2, with Δ fixed, to
the density of an inverse gamma distribution. Denote by ψh the density of the t
distribution with h degrees of freedom,

ψh(x) = Γ2(h + 1)

Γ2(h)

1√
hπ

(
1

1 + x2/h

)h/2+1/2

, (4.10)

and by Ψh its distribution function. The distribution is symmetric, ψh(x) = ψh(−x)

for all x , so its expectation is zero when it is defined (for h > 1). The variance of the
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t distribution is h/(h −2) for h > 2; for h ≤ 2 it is not defined. Let γh = √
1 − 2/h;

this is the reciprocal of the standard deviation.
The function in (4.9) is the density of a scaled non-central t distribution with

h = k + 2ν+ 1 degrees of freedom. That is, the variable ξ = √
u(Δ− Δ̃)/σ̃ has the

central t distribution with h degrees of freedom. To evaluate the balance function for
Δ with the piecewise quadratic loss function, we apply the identity

∂

∂t

ψh−2(tγh)

γh
= −tψh(t). (4.11)

It is derived directly from the definition of ψ in (4.10). As h → + ∞, ψh converges
pointwise to the density of the standard normal distribution. By taking the limit
h → +∞ in (4.11), we also obtain the corresponding identity for the standard
normal, ∂φ/∂x = −xφ(x), used in Chap. 2. Let St = σ̃/

√
u and t̃ = Δ̃/St . These

terms are the counterparts of S and z̃ used in Sect. 4.2. Note that δ is involved in St ,
whereas in S it is not.

The balance function for Δ with the quadratic loss function is

Λ
(
t̃
) =

∫ +∞

0
Δ2ψh

(
Δ − Δ̃

St

)
dΔ − R

∫ 0

−∞
Δ2ψh

(
Δ − Δ̃

St

)
dΔ

=
∫ +∞

−t̃

(
Δ̃ + Stt

)2
ψh(t) dt − R

∫ −t̃

−∞
(
Δ̃ + Stt

)2
ψh(t) dt

= Δ̃2 {
(R + 1)Ψh

(−t̃
) − R

}

− 2StΔ̃

γh

{[
ψh−2(tγh)

]+∞
−t̃

+ R
[
ψh−2(tγh)

]−t̃

−∞

}

− S2
t

γh

{[
tψh−2(tγh)

]+∞
−t̃

+ R
[
tψh−2(tγh)

]−t̃

−∞

}

+ S2
t

γh

{∫ +∞

−t̃
ψh−2(tγh) dt − R

∫ −t̃

−∞
ψh−2(tγh) dt

}

= S2
t

[
(R + 1)

{
t̃2Ψh(t̃) + 1

γ2
h

Ψh−2(t̃γh) + t̃

γh
ψh−2(t̃γh)

}
− R

(
t̃2 + 1

γ2
h

)]
,

obtained by the same steps as its normality counterpart in (4.5). We find the root of
Λ by the Newton-Raphson algorithm, for which we use the following expression:

∂Λ

∂ t̃
= 2S2

t

[
(R + 1)

{
t̃ Ψh

(
t̃
) + ψh−2

(
t̃γh

)

γh

}
− Rt̃

]
.

The second-order derivative is

http://dx.doi.org/10.1007/978-3-642-40433-7_2
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∂2Λ

∂ t̃2
= 2S2

t

{
(R + 1)Ψh(t̃) − R

}
.

Proving that Λ has a single (unique) root, by adapting the corresponding proof for
normally distributed outcomes, is left for an exercise.

The balance function for the piecewise linear loss is

Λ
(
t̃
) = St

[
Rt̃ − (R − 1)

{
t̃Ψh

(
t̃
) + 1

γh
ψh−2

(
t̃γh

)}]

with
∂Λ

∂ t̃
= St

{
R − (R − 1) Ψh

(
t̃
)}

.

For piecewise constant loss the root of the balance function,

Λ
(
t̃
) = (R + 1)Ψh

(
t̃
) − R,

is t∗ = Ψ −1
h {R/(R + 1)}.

The equilibrium function is constructed by first finding the root t∗ of the balance
function and then solving the equation

t∗ = Δ̃

St

for the prior parameters δ, q, s and ν. The latter task, with four unknowns, is too
complex. We simplify it by solving it for fixed σ2

π = s/ν2 and ν2 = 2ν, in the
plausible ranges of their values. We prefer to use these two parameters because
elicitation of their values is easier with reference to their interpretation as a prior
estimate of σ2 and the associated number of degrees of freedom.

The equilibrium functions for the setting of the example in the previous section
(see Fig. 4.2) are displayed in Fig. 4.3. Additionally, we assume that σ̂2 = 1.22,
ν ∈ (8, 12), σ2

π = (0.875, 1.3) and q ∈ (0.25, 0.75). The values of the equilibrium
function are monotone in ν and σ2

π , so it suffices to evaluate the function for the
end points of the intervals of their plausible values. The four lines in each panel
correspond to these configurations of ν and σ2

π . They are not exactly linear, but
their curvature is only slight. The space delimited by the lines, a thin wedge in
each panel, is the gray zone, in which the decision is equivocal, where an impasse
is reached.

The expressions for the balance of the losses resemble their counterparts in
Sect. 4.2, but do not allow as simple a discussion as when σ2 is known, because
St is more complex than S. Also, the balance equation for the piecewise quadratic
loss involves two distribution functions, t with h and h − 2 degrees of freedom,
instead of a single normal distribution.
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Fig. 4.3 Equilibrium functions for quadratic, linear and absolute loss functions and penalty ratios
R = 25 and 100, with estimated variance σ2
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4.4 Problems, Exercises and Suggested Reading

1. Find the conjugate prior distributions for the parameters of the exponential,
Poisson, binomial and beta distributions. Apply the Bayes theorem in these
settings.

2. Interpret the prior distributions in the previous example as representing prior
observations.

3. Find a set of sufficient statistics for the parameters of a beta distribution. Do the
same for the gamma distribution.

4. Show on examples in the text that as the number of observations increases and
the prior distribution is held fixed, the influence of the prior on the posterior
diminishes.

5. Discuss how the methods in Sect. 4.2 can be adapted to comparing the expectation
of a normal random sample with a constant.

6. Discuss the advantage of estimating the normal-sample variance σ2 for infer-
ences about the mean μ, as compared to a sensitivity analysis with a range of
plausible values of σ2. How would you assess the value of prior information for
deciding about the sign of Δ in the setting of Sect. 4.3?

7. A project: Work out the details for estimating the ratio of two variances from
independent normally distributed random samples. Define suitable (conjugate)
priors for the variances. Formulate the problem of deciding whether the ratio is
greater or smaller than 1.0 in such a way that its solution would be tractable.
Assistance: Longford and Andrade Bejarano (2013).

8. A project: Discuss how you would adapt the methods in this chapter to several
samples. That is, suppose we have K samples, and would like to choose the one
with the highest (or lowest) expectation.

9. A project: Work out the details for comparing the expectations of the elements
of a bivariate normal distribution. Assume first that the (2×2) variance matrix is
known, and then search for weaker (and more realistic) assumptions for which
the problem is still manageable, in the frequentist or Bayesian paradigm.

10. A project: Work out the details for comparing the expectations of two scaled
t distributions (with known scales). Formulate a guideline for when the results
with t distributions are indistinguishable from the results of the analysis with
the assumptions of normality.

11. For more details about the analysis in Sect. 4.3, see Longford (2012).
12. Suggested reading on Bayesian analysis: Berry (1996), Gelman et al. (2003),

and Lee (2004), Carlin and Louis (2008) and Albert (2009). About Bayesian
decision theory: Smith (1988) and Robert (2007).

13. Suggested reading about elicitation: O’Hagan (1998), Garthwaite and O’Hagan
(2000), Garthwaite et al. (2005).
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Chapter 5
Data from Other Distributions

In this chapter we look beyond the normal (and t) distributions and adapt the methods
of the previous chapters for some other common discrete and continuous distribu-
tions. Although the development is presented in the Bayesian perspective, it can be
adapted for the frequentist by replacing the prior distribution with prior data.

5.1 Binary Outcomes

For a random sample of large size from a binary distribution with a probability
distant from zero and unity, we can refer to the normal approximation and apply the
methods presented in Chaps. 2 and 4. With small samples and extreme probabilities,
the conventional approaches are easily shown wanting. For example, the sampling
variance of the sample proportion p̂ is usually estimated naively, by p̂(1 − p̂)/n.
When p̂ = 0, it is outright misleading, because it indicates absence of any uncertainty.
The source of the problem is the nonlinear transformation of p to p(1 − p); p̂2 may
be a poor estimator of p2 even when p̂ is efficient for p. For very small or very large
p, p(1 − p) is close to a linear function of p, namely, to p or 1 − p, so the error
committed in estimating p reappears when estimating var( p̂).

In this section, we focus on the problem of choosing between two courses of
action, A and B; A is appropriate when p is small, say, smaller than p0 , and B when
p > p0 . For example, a manufacturer or another professional would derive some
kudos (custom, good reputation or profit) from the claim that an item it produces is
faulty with a probability smaller than the established standard of p0 . At first sight,
this might be an obvious application of hypothesis testing, especially if we resolve
the problems with estimating var( p̂), highlighted earlier. We would like to tailor
the solution for a particular client, such as a manufacturer’s representative who is
familiar with the production process and the market for its product, and can describe
and maybe quantify the consequences of making a claim that would later turn out to
be false, and of not making the claim even though making it would be appropriate.

N. T. Longford, Statistical Decision Theory, 65
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-40433-7_5,
© The Author(s) 2013
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In the outlined setting, a false claim would be punished more harshly in terms of
reduced sales, lost reputation, and the like, than excessive modesty (disadvantage in
new markets in particular). Clients may have different perspectives and priorities,
one keener to gamble with the reputation and another more cautious with any public
statement, and in advertising—one solution does not fit everybody.

A binomial trial with n attempts is defined as a sequence of n independent attempts,
each with a binary outcome (no and yes, 0 and 1, or failure and success) with the
same probability of failure p. Suppose such a trial yielded k failures in n attempts. Is
the underlying probability of a failure smaller than p0 ? We add to this statement of
the problem two items of prior (background) information. First, refraining from the
claim when it could have been made (the false negative statement) incurs unit loss,
whereas the false affirmative statement is associated with loss R > 1. Next, a beta
distribution is declared as the prior for p. The class of beta distributions is given by
the densities

f (x;α,β) = Γ (α+ β)

Γ (α) Γ (β)
xα−1(1 − x)β−1

for x ∈ (0, 1), with parametersα > 0 and β > 0. The distributions have expectations
pπ = α/(α+ β) and variances pπ (1 − pπ)/(α+ β + 1).

The posterior density of the probability p is equal to the product of the data
probability and the prior density, standardised to be a density:

Cpk(1−p)n−k pα−1(1−p)β−1 = Γ (n + α+ β)

Γ (k + α) Γ (n − k + β)
pk+α−1(1−p)n−k+β−1,

where C is the standardising constant, obtained by matching the rest of the expression
to a beta distribution. The prior parametersα andβ can be interpreted as the respective
prior numbers of failures and successes in α+β attempts, additional to the k failures
and n − k successes observed in n attempts. This description or interpretation of the
prior is invaluable for elicitation of the parameters α and β, because a client may
be more comfortable with relating his prior information to outcomes of hypothetical
trials (of the same nature as the realised trial) than to density functions.

Denote by B(y;α,β) the distribution function of the beta distribution with
parameters α and β. The (posterior) expected loss with the piecewise constant loss
function has the components

LA = R Γ (n + α+ β)

Γ (k + α) Γ (n − k + β)

∫ 1

p0

pk+α−1(1 − p)n−k+β−1 dp

= R {1 − B(p0 ; k + α, n − k + β)}
LB = Γ (n + α+ β)

Γ (k + α) Γ (n − k + β)

∫ p0

0
pk+α−1(1 − p)n−k+β−1 dp

= B(p0 ; k + α, n − k + β) ,
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when we choose action A (make the claim) or action B (refrain from the claim),
respectively. For a given beta prior, specified byα andβ, penalty ratio R and outcome
k (out of n attempts), we choose the action with the smaller expected loss. If the study
is to take place, with the number of attempts n set, we can declare in advance the rule
for selecting the action based on the number of successes k. The equilibrium, when
LA = LB and the choice of the action is immaterial, corresponds to the equation

B (p0 ; k + α, n − k + β) = R

R + 1
. (5.1)

We can solve this equation in a number of ways. For a given outcome, prior and
penalty ratio R, we can find the equilibrium threshold p∗

0 for which we would be
indifferent as to whether to claim that p < p∗

0 or not. By solving it for R, with the
other factors fixed, we establish how harsh a penalty for the claim should make us
indifferent to the choice. For fixed outcome k, p0 and R, we can find the equilibrium
priors, for which the choice is immaterial.

Suppose an experiment with a binomial outcome concluded with two failures in
125 attempts. We would like to establish whether the rate of faults is lower than
2 %. We set the penalty ratio to 10, but will study the results for R ∈ (5, 20). The
balance equation in (5.1) is solved numerically. We solve it on a grid of plausible
values of α, finding the corresponding equilibrium βR(α). For α = 0, we find, in
effect, how many additional successes we need for the claim that p < p0 to make
sense. Of course, the solution may be negative, indicating that we could have made
the claim even if we had fewer than 123 successes with the two failures. Therefore,
the equilibrium function may be well defined only for α > α0 , or βR(α) is positive
even for α = 0.

It is more practical to solve the balance equation (5.1) by the Newton method,
because we do not have a convenient expression for the derivative of the beta density
with respect to its parameters α and β. The solution is presented in the left-hand
panel of Fig. 5.1 in the form of the equilibrium functions βR(α) for R = 5, 10
and 20. The right-hand panel contains the plot of the equilibrium prior probability
pπ = α/{α+ βR(α)} against the equilibrium prior sample size nπ = α+ βR(α).

For a selected value of R, we make the claim if the prior lies below the equilib-
rium function in the (n, p) parametrisation (above in the (α,β) parametrisation), and
refrain from making the claim otherwise. It is easier to work with βR(α), which has
very little curvature, even though the equilibrium functions in the (n, p) parametri-
sation, nR(p) and pR(n), may appeal to a client better. For example, the elicitation
may start with the discussion of the prior sample size as the worth of the information
expressed in terms of the number of attempts, and then proceed to the number of
successes (possibly fractional) in these ‘prior’ attempts.

We can interpret the result in Fig. 5.1 as follows. In order to make a justified claim,
we require an ‘optimistic’ prior that supports the claim. About β5(0)

.= 36 successes
and no failures have to be added to the realised attempts (2 out of 125) for the claim to
make sense with R = 5, and β20(0) = 114 successes have to be added with R = 20.
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Fig. 5.1 The equilibrium priors for a binomial trial with the result of two failures in 125 attempts.
The threshold is p0 = 0.02; the penalty ratios R = 5, 10 and 20 are marked at the right-hand end
of each curve

The slope of the functions βR is about 60. Thus, every additional prior failure would
have to be accompanied with about 60 successes.

If we are uncertain about R, as when the plausible range of the penalty ratios
is (RL , RU) = (5, 20), then the strip delimited by the equilibrium functions β5(α)

and β20(α) is a gray zone. With any prior (α,β) in this zone, we reach an impasse
because the decision to claim or not is equivocal; for some plausible values of R
one action and for the complement of values the other action is preferred. When
RL = RU , the gray zone degenerates to the equilibrium function (curve) but, when
convenient, we can still refer to it as a (very narrow) gray zone.

Uncertainty about the prior is treated similarly. We represent the plausible priors
by a set in the space (α,β) or (n, p). If this set has an overlap with the gray zone (or
is intersected by the equilibrium function), then we reach an impasse, because for
some plausible priors one action and for the complement the other action is preferred.
Thus, it pays to have less uncertainty in the input to the analysis—the elicitation is a
worthwhile activity, but its integrity is imperative. That is, if the client is not willing
to rule out any prior or penalty ratio outside the plausible set, or has second thoughts
about it, then the clearcut conclusion of the analysis may be poorly founded.

For piecewise linear loss we have the expected losses

LA = R
∫ 1

p0

(p − p0) f (p; k + α, n − k + β) dp

LB =
∫ p0

0
(p0 − p) f (p; k + α, n − k + β) dp .
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We make use of efficient algorithms for evaluating the distribution function of the
beta by using the identity

p f (p;α,β) = α

α+ β
f (p;α+ 1,β) (5.2)

for any beta density f and p ∈ (0, 1). With it, we obtain the balance equation

k + α

n + α+ β
B(p0 ; k + α+ 1, n − k + β) − p0 B(p0 ; k + α, n − k + β)

= R

R − 1

(
k + α

n + α+ β
− p0

)
. (5.3)

The equation is solved by the Newton method.
The expected piecewise quadratic loss involves integration of a function of the

form p2 f (p). By reusing the identity in (5.2), we obtain

p2 f (p;α,β) = c0 c1 f (p;α+ 2,β) , (5.4)

where ch = (α+ h)/(α+ β + h), h = 0, 1. Therefore, the expected loss when we
refrain from the claim is

LB =
∫ p0

0
(p − p0)

2 f (p; k + α, n − k + β) dp

= c0 c1 B(p0 ; k + α+ 2, n − k + β) − 2c0 p0 B(p0 ; k + α+ 1, n − k + β)

+ p2
0 B(p0 ; k + α, n − k + β) .

The expected loss when we make the claim is

LA = R
∫ 1

p0

(p − p0)
2 f (p; k + α, n − k + β) dp

= R
{

c0c1 − 2c0 p0 + p2
0 − c0c1 B(p0 ; k + α+ 2, n − k + β)

+ 2c0 p0 B(p0 ; k + α+ 1, n − k + β) − p2
0 B(p0 ; k + α, n − k + β)

}
.

Hence the balance equation

c0c1 B(p0 ; k + α+ 2, n − k + β) − 2c0 p0 B(p0 ; k + α+ 1, n − k + β)

+ p2
0 B(p0 ; k + α, n − k + β) = R

R + 1

(
c0c1 − 2c0 p0 + p2

0

)
,

which can be solved by the Newton method.
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Fig. 5.2 The equilibrium priors for a binomial trial with the result of two failures in 125 attempts;
loss functions with linear and quadratic kernel. The threshold is p0 = 0.02 and the penalty ratios
R = 2, 5, 10 and 50 are marked at the right-hand end of each curve

The equilibrium functions β(L)
R (α) and β

(Q)
R (α) for the piecewise linear and

quadratic loss (kernel) are plotted in Fig. 5.2 for a selection of penalty ratios R.
Although the two sets of functions are drawn in the same diagram, we note that the
kernels correspond to essentially different loss structures and their expected losses
are not comparable, not even with the same penalty ratio R.

The functions β(L)
R and β(Q)

R have very little curvature and are all increasing. The

functions p(L)
R (n) = α/(α + β

(L)
R ) and p(Q)

R (n) = α/(α + β
(Q)
R ) have steep slopes

for small n, but for large n seem to settle down to asymptotes. In fact, this asymptote
is p = 0.02, because for large n we have almost no uncertainty, the prior distribution
is almost irrelevant, and the decision is straightforward. For R = 2, p(L)

2 (n) decreases

within the plotting range, unlike p(Q)
2 (n), even though the corresponding functions

β(L)
2 (n) and β(Q)

2 (n) differ only slightly. However, the latter functions attain small
values for small α, so the ratio α/(α+ β) is rather unstable for them.

5.2 Poisson Counts

The Poisson distribution is commonly adopted as a model for count data. The dis-
tribution can be derived as the limit of the binomial when the number of attempts
n diverges to +∞ and the probability of failure (or success) p converges to zero in
such a way that np has a finite positive limit, say, λ. The Poisson distribution is given
by the probabilities

P(X = k) = e−λλk

k!
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for k = 0, 1, . . . . The parameter λ > 0 is the expectation of X ; the variance of X
is also equal to λ. We assume that a study yields a random sample k1 , . . . , kn from
a Poisson distribution with unknown value of λ. A sufficient statistic for λ is the
sample mean x̄ = (k1 + · · · + kn)/n.

The conjugate prior distribution for the Poisson is the gamma. We use the para-
metrisation for gamma distribution in terms of the rate ν and shape s. The density of
the gamma distribution is

g(λ; ν, s) = 1

�(s)
νsλs−1 exp(−λν) .

Its expectation is s/ν and variance s/ν2. Denote by G the distribution function of
gamma. The posterior distribution of λwith this prior is also gamma, with the density

p (λ | x̄; ν, s) = Cλnx̄+s−1 exp{−λ(n + ν)} ,

after gathering all the factors that do not involveλ in the constant term C . By matching
the right-hand side with the appropriate gamma distribution, we establish that

C = (n + ν)nx̄+s

�(nx̄ + s)
,

so the posterior distribution of λ is gamma with rate n + ν and shape nx̄ + s. We can
interpret ν as the number of prior observations and s as the total of their values. As
an alternative, we can use s̄ = s/ν, as the prior version of x̄ .

Suppose we want to make a claim that λ < λ0 . As in the previous section, we
assume that an unjustified claim (made when λ > λ0) is associated with greater loss
than the failure to make a claim when it would be justified, when λ < λ0 . Suppose
first that the respective losses are R > 1 and unity, using a piecewise constant loss
function. Then the equilibrium equation is

∫ λ0

0
g (λ; ν + n, s + nx̄) dλ = R

∫ +∞

λ0

g (λ; ν + n, s + nx̄) dλ ,

that is,

G (λ0 ; ν + n, s + nx̄) = R

R + 1
.

Compare this expression with (5.1) in the previous section.
For the linear and quadratic kernel loss, we require identities that avoid the direct

integration of functions xg(x; ν, s) and x2g(x; ν, s), as we have done by (5.2) and
(5.4). By absorbing x or x2 in the expression for the density, we obtain
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xg(x; ν, s) = s

ν
g(x; ν, s + 1)

x2g(x; ν, s) = s(s + 1)

ν2 g(x; ν, s + 2) . (5.5)

The derivation of these identities is left for an exercise. Note that integration of
both sides of these identities leads to the expressions for the expectation and the
expectation of the square of the distribution, and hence the variance. The balance
equation for the linear kernel loss is

∫ λ0

0
(λ0 − λ) g(λ; ν + n, s + nx̄) dλ = R

∫ +∞

λ0

(λ− λ0) g(λ; ν + n, s + nx̄) dλ ,

which, by exploiting the first identity in (5.5), reduces to

s + nx̄

ν + n
G(λ0 ; ν + n, s + nx̄ + 1) − λ0 G(λ0 ; ν + n, s + nx̄)

= R

R − 1

(
s + nx̄

ν + n
− λ0

)
.

Solving this equation is a task similar to its binomial counterpart in (5.3).
The balance equation for the quadratic kernel loss,

∫ λ0

0
(λ0 − λ)2g(λ; ν + n, s + nx̄) dλ = R

∫ +∞

λ0

(λ− λ0)
2g(λ; ν + n, s + nx̄) dλ ,

is equivalent to

λ2
0 G(λ0 ; ν + n, s + nx̄) − 2λ0d0 G(λ0 ; ν + n, s + nx̄ + 1)

+ d0d1 G(λ0 ; ν + n, s + nx̄ + 2) = R

R + 1

(
λ2

0 − 2d0λ0 + d0d1

)
,

where dh = (s + nx̄ + h)/(ν + n), h = 0, 1. The equation is solved by the
Newton method. The implementation for the binomial outcomes can be adapted
for the Poisson with only minor changes.

Example

Table 5.1 displays the numbers of failures in 20 one-hour spells of uninterrupted
(large-scale) production of an elementary item in the test of a manufacturing process
after its fine-tuning. There were 4–14 failures, 7, 8 and 9 of them on three occasions
each, and 172 failures in total.

The engineers want to decide whether the rate of faults is now below ten per hour,
which is the established industrial standard. The fine-tuning is costly because of lost
production, but failure to satisfy the standard would hurt the company in the long
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Table 5.1 The numbers of failures in one-hour spells of an uninterrupted manufacturing process

Failures 4 5 6 7 8 9 10 11 12 14
Instances 1 1 2 3 3 3 2 3 1 1

term. Should the manufacturing process be fine-tuned further, or is its quality now
satisfactory?

The engineers assessed the prior by the gamma distribution with rate ν = 7.5
and shape s = 75 but, after a review prompted by concerns that this prior plays
an important role in the analysis, agreed on the plausible range 6 ≤ ν ≤ 10 and
6 ≤ s/ν ≤ 11. Elicitation from the management concluded with the choice of the
linear kernel loss with the plausible range of penalty ratios 20–50; the penalty for
production of poor quality is certainly quite harsh, but the uncertainty about it is also
considerable.

The data is summarised by its sample size n = 20 and sample mean x̄ = 8.6. The
analysis is presented in Fig. 5.3. In the left-hand panel, the equilibrium functions for
the three kernels are plotted on the scale ν versus s/ν, together with the plausible
prior rectangle for (ν, s/ν). The equilibrium functions are drawn for RL = 20,
R = 35 and RU = 50.

We focus on the linear kernel loss (black curves); the curves for the absolute
and quadratic kernel are drawn only for completeness. We can reduce our attention
to the equilibrium function s(L)

50 (ν), because most of the rectangle lies under the
gray zone formed by the plausible equilibrium functions, and a desirable outcome
of the analysis would be if the entire rectangle was underneath all of them, that is,
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Fig. 5.3 The equilibrium priors for a sample of n = 20 Poisson counts with average outcome
x̄ = 8.6 against the standard λ0 = 10.0. Absolute, linear and quadratic kernel loss with penalty
ratio R = 20, 35 and 50. The shaded areas in the two panels represent the plausible priors
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under s(L)
50 (ν). The impasse due to this intersection could be resolved by reducing the

plausible rectangle. In the particular exercise, this was regarded as out of the question
because it would undermine the integrity of the management. Another solution is to
continue with the trials. As n is increased, but if x̄ remains unchanged at 8.6 < λ0 ,
the equilibrium functions would increase because the stronger information about
λ < λ0 can be countered only by more pessimistic priors. However, it is by no
means obvious how x̄ would be changed by further trials. In the actual study, further
ten observations, were made, with a total of 46 faults, and the preference for the
claim that the quality of the production is sufficient became well supported.

5.3 Continuous Distributions: Transformations and Mixtures

The calculus presented in the previous sections and in Chaps. 2 and 4 is difficult to
adapt to most recognised classes of continuous distributions. The parameters of some
distributions are not directly the targets of inference. For example, a parameter of
the beta or gamma distribution is rarely a suitable object for a decision or for another
form of inference. The expectations of these distributions are nonlinear functions of
their parameters. These classes of distributions are not closed with respect to linear
transformations. For example, a shift (adding a constant) would be readily recognised
on a beta or gamma distribution by its changed support, e.g., from (0, 1) to (s, 1+s).

Monotone transformations and finite mixtures are two general approaches for
extending the methods for normal and t to wider classes of distributions. We do not
have to dwell on the extension by transformations, because it is usually more practical
to work on the scale on which normality applies. With a nonlinear transformation
we lose the convenient link of the parameters with the moments of the distribution.
Recall, as an example, that the expectation and variance of the lognormal distribution,
the exponential of N (μ,σ2), are exp(μ+ 1

2σ
2) and exp(2μ+σ2){exp(σ2)−1}. These

are rather complex functions of the log-scale mean μ and variance σ2, as are their
inverses. Also, we are more comfortable working with symmetric distributions.

Another way of extending the methods presented thus far is by considering mix-
tures of distributions. A finite mixture of distributions with densities f1, . . . , fK and
probabilities π1 , . . . ,πK that add up to unity is defined by the density

f (x) = π1 f1(x) + · · · + πK fK (x) , (5.6)

that is, as a composition (a linear convex combination) of the component densities
fk McLachlan and Peel 2000. Mixtures are easy to work with because the principal
operations of expectation and differentiation with mixture densities (or probabilities)
are no more difficult than the same operations with the component densities.

A draw from a finite mixture can be generated in the following two stages. First
we draw the component k from the multinomial distribution K with probabilities
π1, . . . ,πK . Then, if the draw is k, we draw from the distribution (component) with

http://dx.doi.org/10.1007/978-3-642-40433-7_2
http://dx.doi.org/10.1007/978-3-642-40433-7_4
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density fk . This random variable is denoted by XK . More general mixtures are
defined by a mixing distribution M with support in a set S and a set of distributions
H = {Hs} with index s ∈ S. When the mixing distribution is defined on the integers
0, 1, . . ., H is a sequence of distributions.

Finite mixtures are fitted by the EM algorithm (Dempster et al. 1977). The
EM algorithm is a general approach to maximum likelihood estimation suitable
when direct maximisation (e.g., by the Fisher scoring algorithm) is very difficult or
not feasible. That is the case with finite mixtures, for which the likelihood is a product
of densities of the form (5.6). To implement the EM algorithm, we declare first what
we regard as the missing data. A purposeful way of doing this is by supplementing
(augmenting) the recorded data so that the hypothetical complete (augmented) dataset
would be easy to analyse. For mixtures, the identity of the component to which each
observation belongs is the obvious choice.

The EM algorithm proceeds by iterations. Each iteration comprises step E, in
which the contribution to the log-likelihood that involves the missing data is esti-
mated, and step M, in which the method intended for the complete data is applied. For
finite mixtures, the E step entails evaluation of the conditional probabilities of each
observational unit i = 1, . . . , n belonging to the mixture components k = 1, . . . , K ,
given the current estimates;

r̂ik = π̂k f̂k(xi )

π̂1 f̂1(xi ) + · · · + π̂K f̂K (xi )
,

where the circumflex ˆused on the right-hand side indicates (provisional) estimation
by the preceding M step. In the M step, the procedure that would have been appro-
priate with the complete data is applied, with the missing items replaced by their
conditional expectations evaluated in the preceding E step. For finite mixtures, this
is the weighted version of the complete-data procedure for each component k, with
the weights set to r̂ik. See Longford and D’Urso (2011) for details and an application
in which one component is intended specifically for outliers.

The expectation of a mixture is equal to the combination of the expectations μk

of the basis distributions, μ̄ = π1μ1 + · · · + πK μK , but for the variance we have a
more complex expression,

var(X) =
K∑

k=1

πkσ
2
k +

K∑
k=1

πk (μk − μ̄)2 , (5.7)

where σ2
k is the variance of component k. Of course, this expression is valid only

when every variance σ2
k is finite. We can approximate any distribution by a finite

mixture of normals, although some other classes of distributions, the uniform and
the degenerate in particular, also have this property of being dense in the space of
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all distributions. The following identity summarises how easy it is to evaluate the
expected loss with mixtures of distributions.

Q =
∫

L(θ̂, θ)

K∑
k=1

πk fk(θ) dθ =
K∑

k=1

πk

∫
L(θ̂, θ) fk(θ) dθ =

K∑
k=1

πk Q(k),

(5.8)
where Q(k) is the expected loss with mixture component k.

Further, the derivative of Q is equal to the πk-linear combination of the derivatives
of Q(k), so minimisation of the expected loss by the Newton-Raphson algorithm is
not any more complex than the corresponding task for a component distribution.

A linear combination of loss functions for the same target θ, L(θ̂, θ) = ζ1L1(θ̂, θ)

+· · ·+ζH L H (θ̂, θ), with positive coefficients ζh , is also a loss function. An identity
similar to (5.8) applies for such a composite loss function L . Thus, the variety of the
loss functions that can be handled is expanded substantially. Note, however, that the
number of terms to be evaluated also expands, to H × K , so combinations with many
terms for the loss (H ) or the density (K ) raise the complexity of the evaluations.

5.4 Problems, Exercises and Suggested Reading

1. Review the properties of the Poisson distribution, including its no-memory
property and closure with respect to convolution. Prove that the binomial distri-
bution converges in probability to the Poisson as n → +∞ if the probabilities
p = pn are such that npn has a finite positive limit.

2. Prove the expressions for the expectation and variance of a finite mixture.
3. Implement a process for sampling from a finite mixture distribution on the

computer. Verify empirically the expressions for the expectation and variance of
a finite mixture.

4. Implement the EM algorithm for a mixture of a small number of normal dis-
tributions. Adapt it to fitting a mixture of uniform distributions and relate the
fit to a histogram. Generate a dataset from a mixture of normal distributions,
with at least 1,000 observations. Assess how well the components are recovered
by the fit when you set their number correctly, incorrectly, and when you use a
data-based criterion for setting it.

5. Suggested reading about the lognormal distribution: Longford (2009a) and the
references therein. Discuss the difficulties with inferences about the mean of a
lognormal distribution with an asymmetric loss.

6. Explore by simulations the Poisson mixture of Poisson distributions. That is,
a draw is made from a Poisson distribution and its value is the parameter for
an independent draw from another Poisson distribution. Compare this mixture
distribution with the distribution defined as the sum of independent and iden-
tically distributed Poisson variables, the number of which itself has a Poisson
distribution.
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7. A project: Description of mixtures of Poisson distributions. When is a mixture
of two Poissons bimodal? Could a mixture of two (or more) Poissons have a
Poisson distribution? Let X and Y be independent variables, both with a Pois-
son distribution. Study the properties of the interweaved Poisson, defined as a
mixture of 2X and 2Y − 1. Study the problem of deciding which of the Poisson
distributions, the even (X ) or the odd (Y ) has a greater expectation.

8. Suggested reading about the problem of estimating a probability based on a
binomial trial with no successes in n attempts: Winkler et al. (2002), Longford
(2009b, 2010).

9. Find out about the Pareto class of distributions from Arnold (1983), Embrechts
and Schmidli (1994) or other references. Formulate problems in terms of decid-
ing between two courses of action depending on the value of the parameter of
the distribution.

10. Discuss the relevance of decision theory to modelling extreme events, such as
maximum level of a river, incidents of high pollution, failures of safety in pub-
lic transport, natural disasters (earthquakes and volcanic activity) and related
planning (investment). Suggested reading: Coles (2001).
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Chapter 6
Classification

Classification is a term used for the process of assigning an observed unit to one
of a small number of labelled groups (classes), such as ‘ordinary’ and ‘unusual
or ‘positive’, ‘neutral’ and ‘negative’. The groups are exclusive and exhaustive—a
single group is appropriate for every unit. Common applications of classification arise
in medical screening, educational tests and licencing examinations, fraud detection
and when searching for units with exceptional attributes. The groups may be well
defined a priori, or their definition is based on the analysis of a collection of observed
units. The term ‘misclassification’ is used for assigning a unit to an inappropriate
group, a group to which the unit does not belong. We deal with the setting of two
groups of units, called positives and negatives, in which there are two kinds of
inappropriate assignments; the corresponding (misclassified) units are called false
positives and false negatives. Our task is to minimise the expected loss associated
with such misclassification.

6.1 Introduction

As an example, we consider the process of screening for the precursors of a serious
medical condition, such as a chronic debilitating disease that manifests itself at an
old age. Subjects are screened in middle age, when some effective though expensive
and inconvenient measures can be taken to reduce the severity and slow down the
progression of the condition in the future. After the onset of the condition, there is no
effective treatment, merely a passive management of the disease. There are obvious
advantages to identifying future cases of the disease, but treating many candidates
(strongly preferring to err on the side of false positiveness) would overwhelm the
healthcare system.

We assume that a single variable Y is observed on a sequence of unrelated units
(subjects). This variable, called the marker, is related to the classification of the units
as positives and negatives. Say, positives tend to have large and negatives small values
of Y . We want to set a threshold T so that every unit with Y > T would be classified as
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positive, and every other unit as negative. As the introduction indicates, errors of the
two kinds (declaring false positives and false negatives) have unequal consequences.
In our example, a false positive is associated with unnecessary anguish, making
inappropriate plans for the future, administration of treatments and procedures that
are inappropriate or unnecessary, and the like. A false negative is associated with
much more grave consequences—a medical condition that could have been treated,
but by the time its symptoms become transparent it is too late.

As a contrasting example, suppose we are looking for suitable candidates for a set
of identical jobs; there are many applicants for the few vacancies, we are certain that
many of them are suitable, but our interviewing process and selection are imperfect
and we do not reliably classify the applicants as suitable and unsuitable. In this case,
the employer wants suitable workers in the first instance, so he prefers to commit
errors of failing to identify positives—a false positive has more severe consequences
than a false negative. Of course, the labels ‘positive’ and ‘negative’ can be switched,
so it is not an essential feature of the example that one or the other kind of error has
more severe consequences; the key feature is how much more severe they are for one
than for the other kind of error.

6.2 Normally Distributed Marker

We are dealing with two variables, a marker Y and a (correct) classification U , defined
in a population of units. In a typical example from medical screening, the value of Y
can be established for any person willing to undergo a routine examination, whereas
the value of U is revealed only with the passing of time. We assume first that Y has
normal conditional distributions within the groups U = 1 (positives) and U = 0
(negatives), N (μ1 ,σ2

1) and N (μ0 ,σ2
0), respectively. We want to set a threshold T ,

so that every unit with Y > T would be declared as positive, and every other as
negative.

This problem has a long history in statistics, with a seminal contribution made by
Youden (1950) who proposed to choose T for which the quantity

P(U = 1 | Y > T ) + P(U = 0 | Y < T ),

called the Youden index, is maximised. These probabilities, called respectively sen-
sitivity and specificity, refer to appropriate decisions, but the index can also be
expressed in terms of conditional probabilities of the two kinds of misclassification,
and the condition to minimise their total. As an adaptation, their weighted total could
be minimised. Weights are attached to the probabilities to reflect the uneven gravity
of the two kinds of error.

Instead of the established approach, we prefer to work with the conditional prob-
abilities P(Y > T | U = 0) and P(Y < T | U = 1), that is, to condition on the
(future) disease status U . The two probababilities correspond to the two kinds of
error. Suppose a false positive, for which Y > T but U = 0, is associated with loss
L+(Y ; T ) = (Y − T )2 and a false negative, for which Y < T but U = 1, with loss
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L−(Y ; T ) = R(Y − T )2. For appropriate assignments, when Y > T and U = 1,
and when Y < T and U = 0, no loss is incurred. The loss function is L = L− + L+ ,
but at least one of the contributions vanishes, so L = L+ or L = L− for every unit;
also L = max(L+ , L−). Let p1 = P(U = 1) be the prevalence of positives, and
denote the prevalence of negatives by p0 = 1 − p1 .

The expected loss, a function of the threshold T , is

Q(T ) = p0

σ0

∫ +∞

T
(y −T )2 φ

(
y − μ0

σ0

)
dy + p1 R

σ1

∫ T

−∞
(y −T )2 φ

(
y − μ1

σ1

)
dy.

We encountered similar expressions in Chap. 2, e.g., in Eqs. (2.1) and (2.2), so we
leave for an exercise (or revision) the derivation of the expression

Q(T ) = p0σ
2
0

[(
1 + Z2

0

)
{1 − Φ(Z0)} − Z0 φ(Z0)

]

+ p1 Rσ2
1

[(
1 + Z2

1

)
{1 − Φ(Z1)} − Z1φ(Z1)

]
,

where Z0 = (T − μ0)/σ0 and Z1 = (μ1 − T )/σ1 . The minimum of Q is found by
the Newton-Raphson algorithm; the derivatives required for it are

∂Q

∂T
= 2p0 σ0 [Z0 {1 − Φ(Z0)} − φ(Z0)]

− 2p1 Rσ1 [Z1 {1 − Φ(Z1)} − φ(Z1)]

∂2 Q

∂T 2 = 2p0 {1 − Φ(Z0)} + 2p1 R {1 − Φ(Z1)} .

The second-order derivative is positive and Q diverges to +∞ for very large and
very small (negative) T . Therefore, Q has its unique minimum at the root of ∂Q/∂T .
Obvious initial values for the Newton-Raphson iterations are T (0) = 1

2 (μ0 + μ1) or
the mean, median or p0-quantile of the observations Y .

An alternative to the piecewise quadratic loss function is the piecewise linear. It
is defined as Y − T for false positives and as R(T − Y ) for false negatives. The
expected loss and its derivatives are

Q(T ) = p0

σ0

∫ +∞

T
(y − T )φ

(
y − μ0

σ0

)
dy + p1 R

σ1

∫ T

−∞
(T − y)φ

(
y − μ1

σ1

)
dy

= −p0 σ0
[
Z0 {1 − Φ(Z0)} − φ(Z0)

] − p1 Rσ1
[
Z1 {1 − Φ(Z1)} − φ(Z1)

]
∂Q

∂T
= −p0 {1 − Φ(Z0)} + p1 R {1 − Φ(Z1)}

∂2 Q

∂T 2 = p0

σ0
φ(Z0) + p1 R

σ1
φ(Z1).

For the piecewise constant loss, defined as unity for false positives and R for false
negatives, the corresponding identities are

http://dx.doi.org/10.1007/978-3-642-40433-7_2
http://dx.doi.org/10.1007/978-3-642-40433-7_2
http://dx.doi.org/10.1007/978-3-642-40433-7_2
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Q(T ) = p0 {1 − Φ(Z0)} + p1 R {1 − Φ(Z1)}
∂Q

∂T
= − p0

σ0
φ(Z0) + p1 R

σ1
φ(Z1)

∂2 Q

∂T 2 = p0

σ2
0

Z0 φ(Z0) + p1 R

σ2
1

Z1φ(Z1).

With either of the three sets of loss functions, we lose no generality by assuming
that μ0 = 0 and σ2

0 = 1, because a linear transformation of the marker Y does not
alter the nature of the problem. Further, the optimal threshold depends on p1 and R
only through the penalised odds ratio ρ = p1 R/p0 . Thus, we can describe the entire
set of solutions as a function of μ∗

1 = (μ1 − μ0)/σ0 , σ∗
1 = σ1/σ0 and ρ. Owing

to symmetry of the normal distribution, we can reduce our attention to μ∗
1 > 0.

Further, we can disregard settings with rare positives (small p1) and small R (small
values of ρ) and rare negatives (small p0) and large R (large values of ρ), because
they represent unrealistic situations. Settings with small μ∗

1 and large σ∗
1 are also

unrealistic because classification in them is full of errors; the marker is ineffective.
Figure 6.1 presents continua of solutions for the three kernels, a set of variances

indicated at the margins and values of ρ set to 2.0 (curves drawn in black) and ρ = 0.5
(gray). For the linear and quadratic kernels, greater standardised meanμ∗

1 and smaller
relative variance σ2∗

1 are associated with higher threshold T . The threshold is higher
and the expected loss is lower for greater ρ. For the quadratic kernel, the threshold
converges to the value T∞

.= 0.611 as μ∗
1 → +∞ for all values of σ2∗

1 and ρ. The
expected loss as a function of T converges to L∞

.= 0.169 as μ∗
1 → +∞.

For the absolute kernel and ρ = 0.5, the threshold functions intersect at around
μ1 = 2.4 and the expected losses at around μ∗

1 = 1.05. As functions of σ2∗
1 , they are

increasing up to that point, and they decrease for μ∗
1 > 1.05.

The dependence of T on the values ofμ∗
1, σ2∗

1 and ρ can be explored with the aid of
the implicit function theorem (IFT). For the quadratic kernel, let F = 1

2 p−1
0 ∂Q/∂T ,

as a function of T , μ∗
1, σ2∗

1 and ρ. According to IFT,

∂T

∂μ∗
1

= − ∂F

∂μ∗
1
/
∂F

∂T
,

if any two of these derivatives exist, and ∂F/∂T �= 0. By simple operations we
obtain for the piecewise quadratic loss the identities

∂F

∂T
= 1 − Φ(T ) + ρ {1 − Φ(Z1)}

∂F

∂μ∗
1

= −ρ {1 − Φ(Z1)}
∂F

∂σ∗
1

= ρφ(Z1)

∂F

∂ρ
= −σ∗

1 [Z1 {1 − Φ(Z1)} − φ(Z1)] .
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Fig. 6.1 Classification thresholds for the three kernels as functions of the standardised mean dif-
ference μ∗

1 for variances σ2∗
1 (indicated at the margins) and ρ = 2.0 (black) and ρ = 0.5 (gray)

Hence
∂T

∂μ∗
1

= ρ {1 − Φ(Z1)}
1 − Φ(T ) + ρ {1 − Φ(Z1)} ,
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and since this is positive throughout, T is an increasing function of μ∗
1. Similarly, we

conclude that T is a decreasing function of σ∗
1 . For large Z1 , 1 − Φ(Z1) and φ(Z1)

are very small, so F depends very weakly on both μ∗
1 and σ∗

1 .
To show that ∂F/∂ρ < 0, we study the function

g(z) = z {1 − Φ(z)} − φ(z),

related to the brackets, [ ], in the expression for ∂F/∂ρ. Its derivative is 1 − Φ(z),
so g is an increasing function. The limits of g(z) as z → −∞ and +∞ are −∞ and
0, respectively. Therefore g(z) < 0 throughout, and so T is an increasing function
of ρ.

It is rather ironic that the behaviour of T is most difficult to study analytically for
the absolute kernel. In the example in Fig. 6.1, the functions T (σ∗

1) are not monotone
and they intersect for ρ = 0.5, but not for ρ = 2.0 (top left-hand panel), and for
ρ = 2.0 and σ2∗

1 = 1.3 the function T (μ∗
1) has a steep gradient for small values

of μ∗
1 .

6.3 Markers with Other Distributions

In this section, we solve the problem of setting the threshold T for a few common
alternatives to the normal distribution of the marker.

6.3.1 Markers with t Distribution

We assume that the conditional distributions of the marker Y , given the group U = 0
or 1, are scaled t ; that is, (Y − μu)/σu has t distribution with ku degrees of freedom
within group u = 0, 1. The derivations of the expressions for the expected loss as
a function of the threshold T follow the outline for the normal distribution. Denote
by ψk the density of the central t distribution with k degrees of freedom, and by Ψk

the corresponding distribution function. For integrating the linear and quadratic loss
with respect to the t density, we apply the identity

∫
xψk(x) dx = − 1

γk
ψk−2(γk x),

where γk = √
1 − 2/k and k > 2; see (4.11). By letting k → +∞ we obtain the

counterpart of this identity for the normal distribution,
∫

xφ(x) dx = −φ(x).
The false negatives contribute to the expected piecewise quadratic loss

Q = Q+ + Q− by

http://dx.doi.org/10.1007/978-3-642-40433-7_4


6.3 Markers with Other Distributions 85

Q+ = p0

σ0

∫ +∞

T
(y − T )2 ψk0

(
y − μ0

σ0

)
dy

= p0σ
2
0

∫ +∞

Z0

(z − Z0)
2 ψk0(z) dz

= p0σ
2
0 G2(k0 , Z0),

where Z0 = (T − μ0)/σ0 and

G2(k, Z) = Z2{1 − Ψk(Z)} − Z

γk
ψk−2(γk Z) + 1

γ2
k

{1 − Ψk−2(γk Z)}.

By similar steps we obtain the contribution made by the false positives,

Q− = p1 Rσ2
1 G2(k1, Z1),

where Z1 = (μ1 − T )/σ1. The derivatives of the expected loss Q are

∂Q

∂T
= 2 {p0 σ0 G1(k0 , Z0) − p1 Rσ1G1(k1 , Z1)},

where

G1(k, Z) = Z {1 − Ψk(Z)} − 1

γk
ψk−2(γk Z).

and
∂2 Q

∂T 2 = 2 {p0 G0(k0 , Z0) + p1 RG0(k1 , Z1)},

with G0(k, Z) = 1 − Ψk(Z).
For the piecewise linear loss, the following identities apply:

Q = −p0σ0 G1(k0 , Z0) − p1 Rσ1G1(k1 , Z1)

∂Q

∂T
= −p0 G0(k0 , Z0) + p1 RG0(k1 , Z1)

∂2 Q

∂T 2 = p0

σ0
ψk0(Z0) + p1 R

σ1
ψk1(Z1),

and for the piecewise constant loss, we have

Q = p0 G0(k0 , Z0) + p1 RG0(k1 , Z1)

∂Q

∂T
= − p0

σ0
ψk0(Z0) + p1 R

σ1
ψk1(Z1)

∂2 Q

∂T 2 = p0 Z0

σ2
0

ψk0+2

(
Z0

γk0+2

)
+ p1 Z1

σ2
1

ψk1+2

(
Z1

γk1+2

)
.
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For k0 and k1 diverging to infinity, these expressions converge to the corresponding
expressions for the normally distributed marker.

6.3.2 Beta Distributed Markers

Some markers are defined on a scale with limits at either extreme, such as (0,1) or
(0, 100). For such variables the beta distribution, or its linear transformation, is the
first choice one would contemplate. The beta distributions are given by the densities

ξ(x;α,β) = �(α+ β)

�(α) �(β)
xα−1(1 − x)β−1,

where α > 0 and β > 0 are parameters and x ∈ (0, 1). Their expectations are
λ = α/(α + β) and variances λ(1 − λ)/(α + β + 1). The essential element of the
calculus for the integrals involving beta densities is the identity

xξ(x;α,β) = λξ(x;α+ 1,β). (6.1)

Suppose the parameters associated with the two groups are (αu ,βu), u = 0, 1,
and denoteλu = αu/(αu +βu) and τu = λu (αu +1)/(αu +βu +1). The contribution
Q+ of the false negatives to the expected loss is

Q+ = p0

∫ 1

T
(y − T )2 ξ(y;α0 ,β0) dy

= p0τ0

∫ 1

T
ξ(y;α0 + 2,β0) dy − 2p0Tλ0

∫ 1

T
ξ(y;α0 + 1,β0) dy

+ p0T 2
∫ 1

T
ξ(y;α0 ,β0) dy

= p0

{
λ0(1 − λ0)

α0 + β0 + 1
+ (T − λ0)

2
}

− p0 H2(T ;λ0 , τ0 ,α0 ,β0),

where

H2(T ;λ, τ ,α,β) = τ B(T ;α+ 2,β) − 2TλB(T ;α+ 1,β) + T 2 B(T ;α,β),

and B is the beta distribution function. The first term in the concluding expression
for Q+ is the p0-multiple of the mean squared deviation of the marker around the
threshold. By similar steps we obtain the complementary expression

Q− = p1 RH2(T ;λ1, τ1,α1,β1).

For piecewise linear loss,
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Q+ = p0 (λ0 − T ) − p0 H1 (T ;λ0 ,α0 ,β0)

Q− = −p1 RH1 (T ;λ0 ,α0 ,β0) ,

where
H1(T ;λ,α,β) = λB(T ;α+ 1,β) − T B(T ;α,β).

For piecewise constant loss,

Q = Q− + Q+ = p0 {1 − B(T ;α0 ,β0)} + p1 RB(T ;α1,β1).

Except for the piecewise constant loss, the expressions for the first- and second-order
derivatives of the expected loss Q are easy to derive, but they are lengthy and it is
more practical to approximate the derivatives numerically.

6.3.3 Gamma Distributed Markers

For the class of gamma distributions, given by the densities

g(x; ν, s) = 1

�(s)
νs xs−1 exp(−xν),

we have the identity

xg(x; ν, s) = s

ν
g(x; ν, s + 1),

similar to (6.1). Denote by G the distribution function of gamma and by νh and sh the
parameters of the conditional gamma distributions of the marker Y given the class
U = h, h = 0, 1.

For piecewise quadratic loss,

Q(T ) = p0

{
s0

ν2
0

+
(

T − s0

ν0

)2
}

− p0G2 (T ; ν0 , s0) + p1 RG2 (T ; ν1, s1) ,

where

G2(T ; ν, s) = s(s + 1)

ν2 G(T ; ν, s + 2) − 2sT

ν
G(T ; ν, s + 1) + T 2G(T ; ν, s).

For piecewise linear loss,

Q(T ) = p0

(
s0

ν0
− T

)
− p0G1(T ; ν0 , s0) − p1G1(T ; ν1, s1),
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where
G1(T ; ν, s) = s

ν
G(T ; ν, s + 1) − T G(T ; ν, s).

For piecewise constant loss,

Q(T ) = p0 {1 − G(T ; ν0 , s0)} + p1 RG(T ; ν1, s1).

Except for the piecewise linear loss, tedious analytical evaluation of the derivative
∂Q/∂T is best replaced by its numerical approximation {Q(T + h) − Q(T )}/h for
suitable small h.

6.4 Looking for Contaminants

In the following application, we use the qualifiers ordinary and exceptional instead of
negative and positive, to avoid confusion with the actual values of the marker. Suppose
the marker is distributed according to N (0, 1) for ordinary units, and exceptional
units have either positive or negative values distant from zero. In an example, their
distribution is a 1

2 − 1
2 mixture of N (−3, 2) and N (4, 3). The probability of a unit

being ordinary is p0 , and the probabilities of the two components for the exceptional
units are p1L and p1U ; in our example, p1L = p1U = 0.025. The densities, scaled by
their probabilities, are drawn in Fig. 6.2, together with the values of the marker for a
set of 250 units which we wish to classify. The observed values are marked at the top
of the diagram (the exceptional units have longer ticks), and those misclassified with
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Fig. 6.2 Example with ordinary and exceptional units, with the setting μ0 = 0, σ2
0 = 1, μ1L = −3,

σ2
1L = 2, μ1U = 4, σ2

1U = 3, p0 = 0.95, p1L = p1U = 0.025. The interval (cL, cU), marked by
vertical dashes, is (−2.5, 2.75)
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respect to the thresholds indicated by the vertical dashes have a black disk attached.
The areas under the densities that correspond to misclassification are highlighted by
shading. With real data, we would not know which unit is ordinary and which is
exceptional.

Our task is to define an interval (cL , cU) such that a unit with value of the marker
in it would be classified as ordinary, and a unit outside the interval as exceptional.
Losses are incurred when the marker of an exceptional unit falls into this interval
and when the marker of an ordinary unit is outside. Thus, the expected loss with
the piecewise constant loss function with penalty ratio R (affecting units incorrectly
declared as ordinary) is

Q = p0

{
1 − 1

σ0

∫ cU

cL

φ

(
x − μ0

σ0

)
dx

}

+ R
p1L

σ1L

∫ cU

cL

φ

(
x − μ1L

σ1L

)
dx + R

p1U

σ1U

∫ cU

cL

φ

(
x − μ1U

σ1U

)
dx ;

the distributions involved are N (μ0 ,σ2
0) for the ordinary units, N (μ1L ,σ2

1L) for the
‘negative’ exceptions and N (μ1U ,σ2

1U) for the ‘positive’ exceptions. We assume
that σ2

1L and σ2
1U are both greater than σ2

0 .
Standard operations lead to the expression for the expected loss in terms of the

normal distribution function Φ:

Q(cL , cU; R) = p0 {1 − Φ(dU0) + Φ(dL0)}
+ R

[
p1L {Φ(dU1L) − Φ(dL1L)} + p1U {Φ(dU1U) − Φ(dL1U)}] ,

where dL1U = (cL − μ1U)/σ1U, and similarly for the other quantities d. The ar-
guments cL and cU appear in distinct sets of terms, so the expected loss can be
minimised for them separately. We have

∂Q

∂cL
= f (cL ; R)

∂Q

∂cU
= − f (cU ; R),

where

f (c; R) = p0

σ0
φ

(
c − μ0

σ0

)
− p1L R

σ1L
φ

(
c − μ1L

σ1L

)
− p1U R

σ1U
φ

(
c − μ1U

σ1U

)
. (6.2)

Thus, minimisation of L coincides with the problem of finding the roots of f (c, R)

for c. Although the function f depends also on the probabilities p, means μ and
variances σ2, we emphasise only the dependence on R, because that is often the
focus of a sensitivity analysis. For example, instead of a single value of R a plausible
range of values, (RL , RU), is declared. The nature of the problem is not altered if we
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standardise the marker so that its conditional mean and variance among the ordinary
units are zero and unity, respectively. Further, the dependence on the probabilities
can be reduced to the dependence on the ratios ρL = p1L/p0 and ρU = p1U/p0 ,
with the obvious simplification when p1L = p1U . Also, only the ratios σ1L/σ0 and
σ1U/σ0 matter.

As c → ±∞, f (c; R) converges to zero for every R. For c in the vicinity of
±∞, f (c, R) is negative, because the dominant contribution to f in (6.2) is from
the density with the largest variance, which we assume to be either σ2

1L or σ2
1U .

Therefore f (c; R) has at least two roots when it is positive for some c. For sufficiently
large values of RρU and RρL , f (c; R) is negative throughout. In that case, every
unit is classified as exceptional, because the penalty for declaring a false negative is
prohibitive. The roots of f are found by the Newton-Raphson algorithm. The distinct
roots are found by different settings of the initial solution, close to either of the means
μ1L and μ1U .

Example

The continuum of the optimal thresholds for the setting of the example in Fig. 6.2 is
presented in Fig. 6.3 for the penalty ratios R in the range (1.0, 349.1), on the linear
and log scales. With increasing R the range of values of the marker that correspond
to the classification ‘ordinary’ is shrinking until around R† = 349.1, where the two
threshold functions meet. At that point, cL(R†) = cU(R†)

.= 0.20. For R > R† ,
∂ f/∂c is negative throughout and has no root. Every unit is then classified as a
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Fig. 6.3 The optimal thresholds for R ∈ (1, 349) for the setting of Fig. 6.2. The (simulated) data
is indicated by the horizontal segments, gray coloured and extended for the exceptional units. The
words ‘Ordinary’ and ‘Exceptional’ indicate assignment of the units, not their status U
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contaminant. The observations are indicated by horizontal segments drawn in the
range R ∈ (40, 60); the segments for the exceptional units are extended and drawn
in gray colour. Note that some observations are off the vertical scale.

Suppose the plausible range of R is (40, 60). Then every horizontal segment that
intersects the function cL or cU in this range has a different classification at R = 40
and R = 60—its classification is equivocal. There are 11 such units (out of 250),
all of them ordinary; their segments intersect cL in five and cU in six instances. One
exceptional unit and 26 ordinary units (16 + 10) are misclassified for all R ∈ (40, 60).

The functions cL(R) and cU(R) are evaluated by the Newton-Raphson algorithm
applied for R = 1, 2, . . . , 349. In most cases, fewer than seven iterations, and never
more than twelve, are required to achieve convergence to eight decimal places. The
convergence is slowest for R close to R† . Of course, the algorithm fails to converge for
R > R† . The evaluations (about 700 applications of the Newton-Raphson algorithm
with a total of about 4200 iterations) take about 0.75 s of CPU time.

In practice, the distributions for the two groups are estimated. The problem should
then be solved for several sets of plausible values of the parameters of the two
distributions. We can regard the interval (c(1)

L , c(2)
L ) of thresholds that correspond to

the limits for R as a gray zone. This gray zone can be widened by incorporating the
uncertainty about the distributional parameters. Whilst we want the gray zone to be
as narrow as possible, we should be honest in its construction and incorporate in it,
within reason, all sources of uncertainty.

Extensions to more than two components, and to mixture distributions for the
ordinary units are obvious; much of the discussion in Sect. 5.3 carries over to this
setting directly. Finite mixtures can be used not only to represent subsets of the units,
but simply as approximations to the distribution of the units when their distribution
does not belong to any class that we can readily recognise.

Some parallels can be drawn with the search for outliers among a set of residuals,
although we would be hard-pressed to define a suitable distribution for the exceptions,
and would have difficulty also with specifying the frequency of the exceptional units.
The purpose of the analysis, or its agenda, to seek valuable units with outstanding
attributes, as opposed to searching for units that spoil the good fit of a model, plays
a key role in how we proceed.

6.5 Problems, Exercises and Suggested Reading

1. Define the analogues of the functions G0 , G1 and G2 introduced in Sect. 6.3.1
for the normally distributed outcomes and rewrite the results for the normal
outcomes in terms of these functions.

2. Compare graphically the expected losses with normally and t-distributed markers
and devise some rules of thumb for the numbers of degrees of freedom k1 and k2
for which the normal approximation is adequate. Do the same with the optimal
thresholds T .

http://dx.doi.org/10.1007/978-3-642-40433-7_5
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3. Discuss the difficulties with classification using a marker with discrete dis-
tributions (e.g., Poisson) within the classes. For the Poisson, consider an
approximation by a continuous distribution (find which one would fit well) and
apply a method of classification in Sects. 6.1 or 6.3.

4. Rework the analysis for contaminants with t distributed markers.
5. Study (by graphics) the densities of beta distributions and devise some realistic

scenarios for searching for contaminants with beta distributed markers.
6. Work out the details for classification into three categories, such as negative,

positive and near-zero. Give careful consideration to the specification of the loss
function(s).

7. Suggested reading: Longford (2013a,b). For the literature on screening based on
the Youden index and its adaptations, see Molanes-López and Letón (2011) and
references therein.

8. Look up the literature on the false discovery rate (FDR), starting with Benjamini
and Hochberg (1995), and discuss how their concern carries over to the decision-
theoretical setting of this chapter.

9. Search the literature for examples of classification of human subjects according to
attributes such as poverty/prosperity, literacy, scholastic aptitude, homelessness,
physical disability, employment, and the like. Describe the markers used and
the rules based on them for classification and discuss ways of improving the
classification.

10. Suppose the distribution of a variable Y is a mixture of K normals. Instead of
Y we observe Z = Y + ε, where ε ∼ N (0,σ2

e ) independently of Y . Find the
conditional distribution of Y given Z . Relate the result to the information lost
and expected loss inflated when the marker Y , with distinct normal distributions
within the groups (classes), is observed subject to measurement error.

11. A project: Consider the problem of setting off a specified set of emergency
measures (raising an alarm) to combat the epidemic of a disease or to deal
with the threat of environmental contamination. The courses of action are to
do nothing and to set off the alarm. How should the rules for the latter be set?
Consider carefully the errors of the two kinds, with their effects both in the short
and long term, what useful (historical) data may be available, who are the experts
to be consulted, and how the elicitation should be conducted with them.

12. A project: Suppose screening for a particular disease is conducted in two stages.
Some subjects are declared as definitely negative in stage I. The others attend
another round of screening and only those who are found positive again are
treated as cases. Simulate such a scenario on the computer. Consider carefully
the distributions, loss functions and probabilities of positives and negatives in
the two stages. How should the unit costs of screening at the two stages be taken
into account?

13. An unsolved problem: How should the methods of this chapter be adapted to
penalising, in addition to false positives and false negatives, for classifying too
few or too many units as exceptional? The number of exceptional units is not
known, but some prior information about it may be available.
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14. Suggested reading: Literature on the analysis of microarray experiments, starting
with Speed (2003); see also Zhang and Liu (2011). Literature on fraud detection:
Bolton and Hand (2002). Literature on medical testing: Pepe (2003).
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Chapter 7
Small-Area Estimation

Small-area estimation (SAe) is concerned with inferences about the districts (subdo-
mains) or another division of a country (the domain) when the subsample sizes for
some subdomains are not large enough for reliable inferences about them to be based
solely on the subsamples. A national survey could be designed with a sufficiently
large subsample for every district of the country. However, such a survey would in
some settings be prohibitively expensive. Also, SAe is sometimes conducted on data
already collected in surveys that were not originally designed for that purpose.

Estimators of a district-level summary of a variable, such as the average household
income, that are based only on the recorded values of the variable (household income)
for the district, are called direct. In most applications, there is an obvious direct
estimator; it is (approximately) unbiased, and among the unbiased estimators it is
(nearly) efficient. Of course, the absence of bias is of dubious value when the sampling
variance is large.

The key concept in SAe that facilitates improvement on direct estimation is bor-
rowing strength (Efron and Morris 1972, 1973; Robbins 1955), or exploiting the
similarity of the districts. The direct estimator for district d, denoted by θ̂d , has a
natural competitor, the national version of the estimator, denoted by θ̂. It is potent
for a district with a small sample size, but hardly worth considering for districts with
large subsamples, for which improvement on the direct estimator is of little interest.

An analyst’s first instinct may be to choose one of the contending estimators, θ̂d

or θ̂, as is the custom in model selection. This and related ideas have been abandoned
in SAe a long time ago in favour of combining the estimators. A composition of
estimators ξ̂ = (ξ̂1, . . . , ξ̂K )� is defined as their linear combination ξ̃ = b�ξ̂, with
weights in b that add up to unity; b�1 = 1; 1 is the vector of unities. In a simple
version of SAe, we compose θ̂d and θ̂ as

θ̃d = (1 − bd)θ̂d + bd θ̂, (7.1)

with the coefficients bd , specific to district d, set so as to optimise the criterion
of our choice. This criterion has almost exclusively been small mean squared error
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SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-40433-7_7,
© The Author(s) 2013



96 7 Small-Area Estimation

(MSE), or its variant that makes the problem easier to handle, even though there are
applications which have a well recognised purpose, for which the losses are distinctly
asymmetric functions of the estimation error θ̃d − θd . Such an example is presented
in Sect. 7.3.

The next section gives more background to SAe and outlines two established
approaches. The following section discusses their common weaknesses with refer-
ence to an analysis conducted for (government) administrative decision making. We
show that the established approach is poorly suited for this purpose because of the
asymmetry of the losses associated with the two kinds of inappropriate decision.
In the conclusion, we discuss how the practice of government statistics should be
altered to respond to some new challenges.

7.1 Composition and Empirical Bayes Models

With MSE as the criterion for the estimators in (7.1), we aim to minimise the function

mse(bd) = MSE
{
θ̃d(bd); θd

}
= (1−bd)2vd +2bd(1−bd)cd +b2

dv+(θd − θ)2 ,

where vd = var(θ̂d), cd = cov(θ̂d , θ̂) and v = var(θ̂). The solution is

b∗
d = vd − cd

vd − 2cd + v + (θd − θ)2 . (7.2)

The term (θd − θ)2 is problematic when θd is not estimated with any appreciable
precision, but that is exactly when we would like to improve on the direct estimator
θ̃d(0) = θ̂d most. The problem is resolved by replacing (θd − θ)2 with its average
over the districts, the district-level variance

σ2
B = vard (θd) = 1

D

D∑
d=1

(θd − θ)2 . (7.3)

It is estimated by moment matching; see Appendix. When the sample size for district
d is much smaller than the overall (national) sample size n, then vd � v and vd � cd .
In that case, the error caused by dropping v and cd from the expression for b∗

d in (7.2)
is negligible. Hence the approximation

b∗
d

.= vd

vd + σ2
B

, (7.4)

in which the replacement of (θd − θ)2 by σ2
B should be the main concern, except for

one or two districts for which nd is a substantial fraction of n, for which v and cd

cannot be ignored.
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We obtain the fraction in (7.4), seemingly without any approximation, by appeal-
ing to the model

yid = θ + δd + εid (7.5)

for (normally distributed) outcomes y for units i in districts d, where δd and εid are
two independent random samples from centred normal distributions with respective
variances σ2

B and σ2
W . Suppose θ and the variances σ2

B and σ2
W are known. Then the

conditional distribution of δd = θd − θ given the outcomes yd = (y1d , . . . , ynd d)�
is

N
(

σ2
B

σ2
W + nd σ

2
B

(yd − θ1nd )
�1nd ,

σ2
B σ

2
W

σ2
W + nd σ

2
B

)
. (7.6)

The conditional expectation coincides with the approximation (1−b∗
d)θ̂d +b∗

dθ using

(7.4) when θ̂d is the sample mean for district d. For data with distribution other than
normal, generalised mixed linear models (McCullagh and Nelder 1989) have to be
applied. They entail some computational complexity.

On the one hand, we have the comfort of a respectable model in (7.5); on the other,
we have with (7.1) the freedom from distributional assumptions and no constraints
on how the estimator θ̂d is defined, so long as it is unbiased and we know (or can
reliably estimate) its sampling variance vd . The estimator derived from the model in
(7.5) has some commonality with Bayes methods. If σ2

B were known and regarded
as the prior variance of the D (unknown) quantities θd , the estimator θ̃d would be
the posterior expectation of θd . As σ2

B is estimated, we refer to θ̃d obtained from
(7.6) as an empirical Bayes estimator. The estimator derived through (7.2) or (7.4)
is a composite estimator. Thus far they coincide, although they are associated with
different assumptions. The composition can be interpreted as a shrinkage, pulling
the unbiased (but incompletely informed) estimator θ̂d toward the biased but stable
alternative θ̂. More shrinkage is applied when θ̂d is estimated with less precision.

It is obvious that θ̃d is particularly effective when σ2
B is small in relation to σ2

W ,
when the districts are similar. In the extreme case, when σ2

B = 0, θd is estimated

with very high precision by θ̃d = θ̂ for all districts d. In contrast, when σ2
B is very

large, b∗
d

.= 0 for all d and θ̃d differs from θ̂d only slightly, because θ̂ may be a very
poor estimator of θd .

The differences among the districts may be greatly reduced, and their similarity
enhanced, by adjustment for suitable covariates. That is, the variance σ2

B = vard(δd)

may be much smaller in a regression model

yd = Xdβ + δd 1nd + εd , (7.7)

with suitable covariates X. This advantage over (7.5) is matched by the multivariate
version of the composition. Let θd be a K × 1 vector of some population quantities
related to district d, and suppose θd , the quantity of interest, is its first element. So,
θd = u�θd , where u = (1, 0, . . . , 0)� identifies the first element. Let θ be the



98 7 Small-Area Estimation

national counterpart of θd . Further, let θ̂d be a vector of direct estimators of the
elements in θd and θ̂ an unbiased estimator of θ. The multivariate composition of
θ̂d is defined as

θ̃d = (u − bd)� θ̂d + b�
d θ̂,

with suitable vectors bd . In fact, they are set so as to minimise the MSE of the
(multivariate) composite estimator θ̃d . The solution is the multivariate analogue of
(7.2), b∗

d = Q−1
d Pdu, where

Qd = Vd − Cd − C�
d + V + BdB�

d

Pd = Vd − Cd (7.8)

and Bd = θd − θ, Vd = var(θ̂d), Cd = cov(θ̂d , θ̂d) and V = var(θ̂).
All the derivations, for both empirical Bayes and composite estimators are wedded

to the criterion of minimum MSE. There is only one deviation, which corresponds
to the averaging that introduces σ2

B by (7.3), or its multivariate version �B , for
composite estimation. By considering the averaged MSE, it resolves the conflict
between the assumption of randomness of δd in the model and the sampling-design
view that θd is fixed. The random terms δd are meant to vary across replications.
However, in our context they correspond to well identified (labelled) districts that
have patently fixed targets θd . As a consequence, the standard error derived from the
variance in (7.6), or its version for (7.7), is correct only for districts with δd = ±σB . If
| δd | > σB , the estimate of the standard error based on (7.6) is too small (optimistic);
if | δd | < σB , it is too pessimistic. To see this, consider an ‘average’ district, for which
θd

.= θ. For it, θ̃d is a composition of two unbiased estimators, so it is also unbiased.
For a district with an exceptional value of θd , but the same variance vd , we obtain
the composition with the same coefficients, and therefore the same variance, but it
is burdened also with the bias Bd . For details, and a proposal that addresses this
problem, see Longford (2007). For more background to SAe, refer to Rao (2003)
and Longford (2005).

7.2 Estimation for a Policy

Concerned about illiteracy, the Ministry of Education in a developing country allo-
cates some funds for a programme to combat it. Illiteracy is endemic in the country,
and its eradication is not a realistic goal for the time being. The country, compris-
ing D = 72 districts, has 38 million adults for whom the binary variable indicating
literacy is well defined by a simple questionnaire. The Ministry decides to fund a
programme in every district d in which the rate of illiteracy exceeds 25 %. A district
with an illiteracy rate of θd > T = 0.25 and population size (number of adults) Nd

is planned to receive a grant of U Nd(θd − T ), where U is a monetary value, the unit
cost of the programme pro-rated for an illiterate individual in excess of the critical
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rate T . The national rate of illiteracy is estimated as 16.15 %, so the programme is
aimed at a minority of the districts or, more precisely, at the districts with overall
population much smaller than half of the country. The illiteracy rate in each district
will be estimated from a national survey with sample size 17,500. The survey has a
stratified simple random sampling design, with stratification at the district level and
within-district sample sizes approximately proportional to the district’s population
sizes Nd .

The estimates θ̂d based on the survey lead to incorrect action when θ̂d > T > θd

and when θ̂d < T < θd , referred to as false positive and false negative cases,
respectively. The illiteracy rates θd may be estimated with much greater precision
later, so the Ministry may be held to account for the erroneous assessments based
on θ̂d . For illustration, we consider the piecewise absolute, linear and quadratic loss
functions defined for each district d as follows:

1. L+(θ̂d , θd) = 1 when θ̂d > T > θd and L−(θ̂d , θd) = R when θ̂d < T < θd ;
2. L+(θ̂d , θd) = θ̂d − θd when θ̂d > T > θd and L−(θ̂d , θd) = R(θd − θ̂d) when
θ̂d < T < θd ;

3. L+(θ̂d , θd) = (θ̂d − θd)2 when θ̂d > T > θd and L−(θ̂d , θd) = R(θ̂d − θd)2

when θ̂d < T < θd ;

in all other cases, L+(θ̂d , θd) = 0 or L−(θ̂d , θd) = 0. Thus, the loss function is

L(θ̂d , θd) = Iθ̂d>T >θd
L+(θ̂d , θd) + R Iθ̂d<T <θd

L−(θ̂d , θd),

where I is the indicator function; Ia = 1 if the statement a is logically true, and
Ia = 0 otherwise. From the context, it is obvious that R � 1.

Suppose we have an estimator θ̂d ∼ N (γd , ν2
d ); θ̂d may be biased for θd (γd �=

θd ). Let z̃d = (γd − T )/νd and z̃†
d = (γd − θd)/νd . For the piecewise constant loss

function, we have the expected losses

Q+ = 1

νd

∫ +∞

T
φ

(
y − γd

νd

)
dy = �(z̃d)

Q− = R

νd

∫ T

−∞
φ

(
y − γd

νd

)
dy = R {1 − �(z̃d)}

when θd < T and θd > T , respectively. For the piecewise linear loss function, we
have

Q+ = 1

νd

∫ +∞

T
(y − θd)φ

(
y − γd

νd

)
dy = νd

{
z†

d �(z̃d) + φ(z̃d)
}

Q− = R

νd

∫ T

−∞
(θd − y)φ

(
y − γd

νd

)
dy = Rνd

[
−z†

d {1 − �(z̃d)} + φ(z̃d)
]

when θd < T and θd > T , respectively. For the piecewise quadratic loss function,
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Q+ = ν2
d

{(
1 + z†2

d

)
�(z̃d) +

(
2z†

d − z̃d

)
φ(z̃d)

}

Q− = Rν2
d

[(
1 + z†2

d

)
{1 − �(z̃d)} −

(
2z†

d − z̃d

)
φ(z̃d)

]

when θd < T and θd > T , respectively. The expected losses Q+ and Q− involve
the targets θd through z̃d , so finding which of them is smaller is difficult. Instead,
we apply a scheme that is derived intuitively and has no solid theoretical foundation.
However, we show by simulations that it is far superior to the established estimators
which aim to minimise the MSE.

We seek the estimator that satisfies the following two conditions:

1. equilibrium at T —for a district with rate θd = T , the choice between the two
courses of action should be immaterial in expectation. That is,

E
{

L+
(
θ̂d , T

)}
= E

{
L−

(
θ̂d , T

)}
;

2. minimum averaged MSE,

min Ed

{
MSE

(
θ̂d ; θd

)}
,

where the expectation (averaging) is taken over the D quantities θd . In the
model-based approach, it corresponds to averaging over the distribution of δd or
δd .

Under the equilibrium condition, z̃d and z̃†
d coincide and the balance equation

Q+ = Q− reduces for the respective piecewise constant, linear and quadratic losses
to equations familiar from the earlier chapters:

�(z̃d) = R

R + 1
(R − 1) {z̃d �(z̃d) + φ(z̃d)} − Rz̃d = 0

(R + 1)
{(

1 + z̃2
d

)
�(z̃d) + z̃d φ(z̃d)

}
− R

(
1 + z̃2

d

)
= 0.

We solve the appropriate equation for each district d, obtaining the equilibrium value
z̃∗

d , and then search in the class of compositions

θ̃d = (1 − bd)θ̂d + bd Fd

for estimators that satisfy the two conditions. Here θ̂d is the direct estimator.
Assuming that θ̂d is unbiased for θd ,

MSE
(
θ̃d ; θd

)
= (1 − bd)2vd + bd (Fd − θd)2 . (7.9)

To avoid any dependence on the target θd , we replace the term (Fd − θd)2 by its
average over the districts, σ2

B + (Fd − θ)2, to obtain the averaged MSE,
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aMSE
(
θ̃d ; θd

)
= (1 − bd)2vd + bd

{
σ2

B + (Fd − θ)2
}

,

where σ2
B = Ed{(θd − θ)2}. This variance also has to be estimated, but this can

be done with reasonable precision when there are many districts and a substantial
fraction of them have non-trivial subsample sizes.

The equilibrium condition implies that for a district with θd = T ,

z̃∗ = γd − θd

νd
= bd(Fd − T )

| 1 − bd |√vd
,

and hence

Fd = T + | 1 − bd |
bd

z̃∗√vd . (7.10)

With this constraint,

θ̃d = (1 − bd) θ̂d + bd T + z̃∗| 1 − bd |√vd

and

aMSE
(
θ̃d ; θd

)
= (1 − bd)2

(
1 + z̃∗ 2

d

)
vd + b2

d

{
σ2

B + (T − θ)2
}

+ 2bd | 1 − b∗
d | (T − θ)z̃∗√vd .

This function of bd attains its minimum or maximum when

b∗
d = vd

(
1 + z̃∗ 2

d

) − sign(1 − b∗
d)(T − θ)z̃∗

d
√

vd

vd + σ2
B + {

z̃∗
d
√

vd − sign(1 − b∗
d)(T − θ)

}2 ;

the sign function is equal to +1 for positive arguments, −1 for negatives and sign(0)
= 0. The aMSE has an odd number of extremes because it diverges to +∞ when
bd → ±∞. But the form of b∗

d indicates that it can have at most two extremes;
therefore its minimum is unique. Without the equilibrium condition, the MSE in
(7.9) attains its minimum in the range (0,1). With the condition, this is no longer the
case. For example, b∗

d is negative when

√
vd <

z∗
d

1 + z∗ 2
d

(T − θ).

Neither is b∗
d increasing in vd , anticipating that more information about the district

would be associated with less shrinkage. No shrinkage is applied when θd is known,
when vd = 0, but also when

√
vd = (T − θ)z̃∗

d/(1 + z̃∗ 2
d ).

When b∗
d = 0, Fd in (7.10) is not defined. However, the product b∗

d Fd , and
therefore the estimator θ̃d , are well defined by its limit as b∗

d → 0, equal to z̃∗
d
√

vd

and θ̂d + z̃∗
d
√

vd , respectively.



102 7 Small-Area Estimation

7.3 Application

In this section, we describe the assessment of the estimators θ̃d by a simulation study.
We construct an artificial country, with its division into districts, and replicate the
processes of sampling and estimation, using the alternative estimators θ̂d (direct), θ̃d

(minimum aMSE) and θ̃∗
d , based on the linear loss with a range of penalty ratios R.

The population sizes of the districts are Nd , and their total, the national population
size is N .

We estimate D quantities, one per district, and so we have to be prepared for
the conclusion that one estimator is better for some districts and another better for
some others. However, the loss function we adopt offers a simple comparison by the
(weighted) total of the district-level expected losses.

The studied country has an adult population of 37.85 million. The districts vary a
great deal in their population sizes. The least populous districts have just over 50,000
adults, and three (city) districts have over 1.5 million adults each. Two other districts
have population of adults in excess of 1.5 million each. The rates of illiteracy tend
to be lower in the most populous districts, but they are low also in some of the least
populous districts, in which a large percentage of the population lives in a single
mid-size town.

The (adult) population sizes and rates of illiteracy in the districts are displayed in
Fig. 7.1. The sizes of the discs are proportional to the district’s sample sizes. Note the
relatively large difference between the national rate θ = (N1θ1 +· · ·+ ND θD)/N =
16.15 % and the mean of the district-level rates, θ̄ = (θ1 + · · · + θD)/D = 18.0 %.
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Fig. 7.1 The rates of illiteracy in the districts of the studied country. The size of the disc is propor-
tional to the subsample size of the district in a national survey with a stratified sampling design. The
horizontal lines mark the threshold, T = 25.0 %, the average of the district-level rates, θ̄ = 18.0 %,
and the national rate, θ = 16.15 %
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The rates of illiteracy are in the range 0.6 – 29.6 %. Twenty-four districts have rates
above the threshold T = 25 %; their total population is 11.63 million (30.7 %). We
refer to them as the deserving districts.

We generated the data on which Fig. 7.1 is based by a random process, informed
by the state of affairs in a particular country. In practice, the population sizes may be
known, or estimated with reasonable precision, but the illiteracy rates would not be;
otherwise there would be no rationale for a survey. The district-level sample sizes
are in the range 22–870. They are set not exactly proportionally to the population
sizes, to reflect other aims of the survey, nonresponse, the resources available, and
various difficulties and constraints in the conduct of the survey.

We assume the piecewise linear loss function with plausible penalty ratios in the
range (15, 40); implementing the policy where it is not intended is regarded as a
much less serious error than failing to implement it where it should be. At present,
we are not concerned about the waste of Ministry’s resources on districts that are not
deserving, because these expenditures are not considered as yet. The consequences
considered are the Ministry’s loss of face and credibility when the rates of illiteracy
are estimated much more precisely, or revealed in the future, and the failure of
the programme to deal with endemic illiteracy. Section 7.3.1 addresses the issue of
limited resources.

Table 7.1 summarises the results of a single replication of the processes of sam-
pling and estimation, using the linear loss functions with R = 15 and R = 40. The
pairs of columns give the numbers of districts and their total population with errors
of the two kinds for the four estimators. The first two pairs are in no way flattering
the estimators based on (linear) loss functions — these estimators involve more dis-
tricts, 14 for R = 15 and 16 for R = 40, and only slightly less population, 3.57 and
3.73 million, than the direct and composite estimators (11 and 12 districts, with 3.62
and 3.80 million, respectively). However, by the criterion that we regard as principal,
the linear loss with R = 15 or R = 40, the direct and composite estimators perform
very poorly. The estimators based on the linear loss have losses 0.34 and 0.54 for
R = 15 and R = 40, respectively, whereas the corresponding losses with the direct

Table 7.1 The losses in a replication of sampling and estimation for the linear loss function with
R = 15 and R = 40, summarised separately for the deserving (false negative, F−) and not deserving
(false positive, F+) districts. For F−, separate values of the loss are given for R = 15 and R = 40

Estimator (R) Districts Population Loss
F− F+ F− F+ F− F+

MinLoss (15) 2 12 0.183 3.389 0.168 0.170
MinLoss (40) 2 14 0.183 3.548 0.328 0.213

Direct

(
15
40

)
5 6 1.767 1.859 1.141 0.055

3.042

Composite

(
15
40

)
8 4 2.232 1.573 1.412 0.028

3.765
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Table 7.2 The average losses in 1,000 replications of sampling and estimation for the linear loss
function with R = 15, 25 and 40, for the deserving (F–) and not deserving (F+) districts. The aver-
ages are for the numbers of districts (Districts), the adult population of these districts (Population),
and the losses (Loss)

Districts Population Loss
Estimator (R) F− F+ F− F+ F− F+

MinLoss (15) 1.59 10.32 0.525 2.793 0.233 0.146
MinLoss (25) 1.16 11.38 0.382 3.084 0.271 0.171
MinLoss (40) 0.96 12.01 0.284 3.304 0.309 0.191
Direct (15) 6.43 3.75 2.401 1.068 1.333 0.043
Composite (15) 9.59 2.13 3.239 0.768 1.828 0.023

estimator are 1.20 and 3.10 and with the composite estimator 1.44 and 3.79. For the
direct and composite estimators, the losses for false negatives (F−) are in proportion
15 : 40 for the respective penalty ratios R = 15 and 40, whereas the losses with false
positives are not changed.

The direct and composite estimators incur most of their losses in the deserving
districts (false negatives), and these losses are severe owing to the high penalty ratio.
In contrast, the decision-theory based estimators reduce their exposure to such errors
to minimum, at the price of more errors on false positives. However, the latter errors
are much less costly.

Table 7.2 presents the averages over 1,000 replications for the summaries listed
in Table 7.1. For the direct and composite estimators, the expected loss is listed only
for R = 15; the respective values for R = 25 and 40 are obtained by multiplying it
by 1.67 and 2.67. The table confirms our conclusion from a single replication. While
we may argue over the details of the loss function, or its plausible range, it is difficult
to defend the established concensus that the composite estimator is suitable for all
purposes. In fact, in our simulations it is inferior even to the direct estimator, by a
nontrivial margin.

The advantage of the estimators tailored to the purpose is so great that we can
afford a wide range of plausible penalty ratios R, and still incur much smaller ex-
pected losses than with the direct or composite estimators. Figure 7.2 displays the
expected losses and the frequencies of incorrect decisions for the districts. Each
district is associated with five vertical bars. Three of them, each topped by a black
disc, correspond to the decisions based on the linear loss with R = 15, 25, and 40,
from left to right. Two other bars are for the decisions based on the direct estimator
(left) and the composite estimator (right). The horizontal ticks on these bars mark
the expected loss with R = 15 (lowest), 25 and 40 (at the top).

The top panel shows that the losses due to false positive assessments (in 48
districts) are very small compared to the losses due to false negatives (24 districts).
Simply, the direct and composite estimators are caught out by the specific purpose
intended for their use. The bottom panel shows that the decisions based on minimum
expected loss are not particularly effective for another criterion. If we merely count
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Fig. 7.2 The empirical expected losses and the frequencies of incorrect decisions for the districts.
The districts are in the ascending order of (adult) population size within the groups of not deserving
and deserving districts, separated by the vertical dashes. The horizontal ticks mark the expected
losses for the direct (left) and composite estimators (right) at R = 15, 25 and 40. The expected
losses for the decision-theory based estimators are marked by black discs at the top of the segment,
ordered by R from left to right

the errors committed in the decisions, there is a clear division. Many false positives
are generated, especially for the least populous districts, but the consequences of
these errors are negligible when compared to the false negatives. There the direct
and composite estimators are in a distinct disadvantage that is decisive for the overall
comparison.

7.3.1 Limited Budget

Thus far, we were concerned solely with the consequences of incorrect decisions in
terms of misdirecting the programme to non-deserving districts, and failing to apply
it in deserving districts. Another important factor is the programme’s budget. It may
be insufficient even if all the deserving districts were correctly identified. When the
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classification of the districts is subject to uncertainty, the minimum-expected-loss
solution appears to be generous, if not profligate, preferring to err on the side of false
positives.

Denote by Ad the award that district d should receive. It is Ad = 0 for non-
deserving districts and Ad = U Nd(θd −T ) for deserving districts. If these quantities
are known and A1 + · · · + AD exceeds the Ministry’s budget, F , then at least some
of the deserving districts have to be short-changed. The award could be cut by the
same percentage for every district, the threshold T could be raised, the award could
be withheld completely from some of the (deserving) districts, or the shortfall could
be shared equally by all the deserving districts. Denote by Gd the actual award to
districts d. The shortfall is Sd = Ad − Gd ; we assume that it is nonnegative for all
districts.

We define a penalty function, such as
∑

d(Ad − Gd)2, and minimise it subject
to the constraint that G1 + · · · + Gd ≤ F . Such an approach can be applied to the
estimated awards without any changes, although we could not refer to any optimality
properties of the resulting allocation, because they may not carry over from the setting
with certainty, when all θd are known. In any case, we cannot claim any optimality
properties for the allocation based on our procedure because it does not minimise
the expected loss, merely performs much better than the allocation based on some
established alternatives.

If the Ministry has a single budget from which both the survey and the programme
are to be funded, then it does not have to commit itself to a given design, but can
decide how much to spend on the survey. Higher spending on the survey results in
greater sample sizes and more information about θd for every district, although this
is accompanied by reduced funds for the awards to the selected districts. There is no
analytical solution to this problem, but the alternative scenarios are easy to simulate.
See Longford (2011, 2012b) for examples discussed in detail. One important input
into such a simulation entails relating the losses due to false positives and negatives
to the losses due to imperfect implementation of the programme (under-funding).
This is a difficult accounting exercise. It can be foregone by presenting the client
with a range of options (sample sizes of the surveys and expected losses generated
on a mock-up of the country).

7.4 Conclusion

The study presented in this chapter demonstrates that separating the tasks of (statis-
tical) estimation and (administrative) implementation based on the estimates is a bad
strategy. When the estimation is competent (e.g., efficient, or at least nearly so), and
the administration of the programme would be competent if the uncertainty about the
estimates could be ignored, the combination of the two processes is suboptimal. We
propose to integrate the two processes and address the distribution of the funds to the
districts as the ultimate statistical problem. In principle, if two clients are interested
in the same set of inferential targets (population quantities), but intend to use them
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for different purposes, or with different perspectives, we should not hesitate to give
them two different answers. Consistency, giving the same answers to both clients, is
a superficial quality that is unlikely to serve the interests of both of them.

The separation of the tasks of (government) policy formulation and implementa-
tion on the one hand and survey design and analysis on the other is a result of the
desire to have independent statistical advice informing policy makers, that is, non-
interference and objectivity. The development in this chapter indicates that that leads
to a suboptimal practice, because the analysis has to be informed by the purpose for
which the estimates will used.

7.5 Appendix: Estimating σ2
B

Suppose we have district-level direct (unbiased) estimators θ̂d with respective vari-
ances vd ; their national counterparts are θ̂ and v. The covariance of θ̂d and θ̂ is
denoted by cd . We form the statistic

SB = 1

D

D∑
d=1

(
θ̂d − θ̂

)2
,

derive its expectation, and define an estimator of σ2
B by matching the expectation of

SB with its realised value. The expectation of SB is

E (SB) = 1

D

D∑
d=1

{
vd − 2cd + v + (θd − θ)2

}

= 1

D

D∑
d=1

(vd − 2cd) + v + σ2
B. (7.11)

Hence the estimator

σ̂2
B = SB − 1

D

D∑
d=1

(vd − 2cd) − v.

It can be interpreted as the naive estimator SB adjusted for the uncertainty about θd

and θ. When θ̂ = (w1θ̂1 +· · ·+ wD θ̂D)/w+ for suitable (positive) constants wd and
w+ = w1 +· · ·+wD , as in standard estimators of the population mean or total, then
cd = wd vd/w+ .

In (7.11) we assumed that θ is the mean of θd . However, θ is their population-
weighted mean. The ‘unweighted’ mean θ̄ differs from it substantially in our example,
by nearly 2 %. In practice, θ is used because it is estimated with greater precision, as
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the influence of least populous districts, whose θ̂d is estimated with least precision,
is reduced. We use θ̄ throughout.

7.6 Problems, Exercises and Suggested Reading

1. Derive the expressions in (7.2) and (7.8).
2. Study the properties of the estimator in (7.2) when we use a coefficient bd other

than the optimal. How much less efficient are θ̃d(b∗
d + a) and θ̃d(b∗

d − a) than
θ̃d(b∗

d) for a small constant a? What strategy in estimating b∗
d does this suggest?

3. Derive from Tables 7.1 and 7.2 the (average) losses with misspecified penalty
ratio R. That is, suppose a particular value R was used in making the relevant
decisions, but you would like to assess the result with a different penalty ratio
R′. In particular, if we use the decisions based on R = 40, but evaluate them
with R′ = 15, do we still incur much lower losses in expectation than with the
direct and composite estimators?

4. Summarise the advice regarding the conduct of the analysis of variance that is
implied by small-area estimation. As an example, consider the setting with a
small and a large group (and some other groups), and discuss estimation of their
expectations.

5. Discuss the difficulties that would be encountered in the direct minimisation of
the expected loss for a small area.

6. Suggested reading: Fay and Herriot (1979)—a seminal paper that marks the be-
ginning of modern SAe; Ghosh and Rao (1994)—a review of model-based SAe;
Shen and Louis (1998)—a discussion of purpose-specific estimation for small
areas; Longford (2004) and Molina et al. (2007)—estimation of unemployment
rates in the UK Labour Force Survey; Longford (2012a)—the issue of limited
budget.

7. In small-area estimation we combine alternative estimators. Why not do the same
instead of model selection? See Longford (2005, 2012b).

8. A project: Implement the estimators discussed in Shen and Louis (1998) and
reproduce by simulations their conclusion that different estimators are superior
for different inferential goals (θd , its ranks, and the distribution of the values
of θd ). Other relevant goals may be considered, the dispersion of θd and their
extremes in particular.

9. A project: Find an application of small-area estimation in your or a neighbouring
country, together with the purpose for which it is used. Define plausible ranges
of the losses emanating from the estimation errors (or inappropriate decisions)
and address the problem of minimising their total in expectation first informally,
and then by the method of Sect. 7.2.

10. Further applications of small-area estimation: disease mapping (Lawson 2008);
social sciences (Congdon 2010); data in space and time (Longford 2010; Cressie
and Wikle 2011).
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Chapter 8
Study Design

The previous chapters were almost exclusively concerned with data analysis. We
frequently analyse datasets that were collected without our input as to how the obser-
vational units or experimental subjects should be selected, how many of them, which
measurement instruments and protocols should be applied, how the recorded infor-
mation should be coded, and other details. Many analyses are secondary, related to
issues other than the original (and the principal) motive for the study.

The subject of this chapter is design—the plan for data collection that would ensure
or promote the goal of drawing inferences of prescribed quality with the available
resources. It entails a balancing act between collecting sufficient information and
being frugal with all the resources involved (funding, time, involvement of human
subjects and environment in general).

To proceed systematically, we have to establish the cost of the study as a function
of the factors that can be manipulated in the design (sample size in particular),
and the value of the inference as a function of the sampling variation (the cost of
uncertainty), expected loss, probability of an unequivocal conclusion, and the like.
As an alternative, we can present the client who plans to conduct the study with these
two functions, and let him choose the design settings, without formulating the criteria
for selection. Everybody with good reason would like to have least uncertainty at the
lowest cost of experimentation. We regard the cost of analysis, as well as the cost
of design (planning), as negligible—analysts’ time, effort and their equipment are
usually much cheaper than the experiments they are designing.

We focus on the simplest problem of comparing two samples, on which the prin-
ciples can be elaborated with least distraction. For other problems, a number of
limitations have to be reckoned with, foremost the need to reconcile several pur-
poses of the study and external constraints (imperatives) that are specific to the study
and cannot be treated by a general approach. First we review the established approach
based on hypothesis testing.

N. T. Longford, Statistical Decision Theory, 111
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8.1 Sample Size Calculation for Hypothesis Testing

Suppose we plan to compare two normally distributed samples, both with known
variance σ 2, and intend to test the hypothesis that the two expectations, μ1 and μ2 ,
are identical. We set the size of the test to α (usually to 0.05), and would like to
achieve power β (usually 0.80 or 0.90) when the difference Δμ = μ2 − μ1 is equal
to a given value Δ. We consider the one-sided hypothesis, with the alternative formed
by the positive values of Δμ.

Suppose the within-group sample sizes n1 and n2 have to be such that n2 = rn1.
Denote m = 1/n1 + 1/n2 . The test statistic z = (μ̂2 − μ̂1)/

√
m/σ has the

distribution N (Δμ/
√

m/σ, 1). The critical region is the interval (cU ,+∞) for the
constant cU for which

P0 (z > cU) = α;

that is, for cU = Φ−1(1−α), or when μ̂2 − μ̂1 >
√

mσΦ−1(1−α). The subscript 0
indicates that the evaluation is under the assumption of the null hypothesis Δμ = 0.
The condition for sufficient power at Δμ = Δ is that PΔ(z > cU) ≥ β. The two
conditions, for the size and power of the test, yield the inequality

m ≤ Δ2

σ 2
{
Φ−1(1 − α) + Φ−1(β)

}2 , (8.1)

which is easily solved for the minimum n1 and n2 , or their total n = n1(1 + r),
obtaining n1 = (1 + r)/(rm∗) and n2 = (1 + r)/m∗, where m∗ is the largest value
of m that satisfies (8.1). The sample sizes n1 and n2 are then rounded upwards. When
some dropout from the study is anticipated, they are inflated so that the sample sizes
would be sufficient even after dropout.

While α and β are set by convention, σ 2 has to be guessed and there is usually no
obvious protocol for setting the value of Δ. There is plenty of scope for manipulating
the process of setting σ 2 and Δ to satisfy a constraint that we may be unwilling to
discuss openly or admit that it has an impact on the design, such as limited budget and
ability to recruit sufficiently many qualifying subjects. But our principal objections
to hypothesis testing are the inflexible management of the rates of error of the two
kinds and the intent to act later as if the null hypothesis were valid when it was not
rejected.

8.2 Sample Size for Decision Making

We intend to base our inference on the methods introduced in Chaps. 2 and 4, in
which we choose the decision that entails smaller expected loss. Apart from the
inappropriate decision, we associate costs with experimentation (data collection),
and impasse when a range of priors and loss functions is declared.

http://dx.doi.org/10.1007/978-3-642-40433-7_2
http://dx.doi.org/10.1007/978-3-642-40433-7_4
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In a general setting, we could simulate the outcomes of a study for a range of
sample sizes (designs) and assess the losses empirically. This is relatively simple to
implement, but the computing may take a long time and has to be carefully organ-
ised. We choose a computationally more complex but faster method in which we
rely on the approximate linearity of the equilibrium function δ0(q) in (4.6). Recall
that this function describes the priors (δ, q) for which the decision is immaterial
in expectation—when the expected losses are identical. Since δ0(q) is a function
specific to the value of the sample contrast Δ̂ = μ̂2 − μ̂1 , we write δ0(q, Δ̂). We
assume that a set of plausible priors (δ, q) is given, and that they form a rectangle,
(qL , qU) × (δL , δU).

With δ0(q, Δ̂) a linear function of q,

δ0(q, Δ̂)
.= σ z∗

R

(√
m

2
+ q√

m

)
− q

m
Δ̂, (8.2)

ignoring the error of approximation (see Sect. 4.2), we can easily establish whether
a particular value of Δ̂ leads to an impasse or not. It suffices to evaluate the balance
function at the four vertices of the plausible rectangle. If it has the same sign at all
four points, the decision is unequivocal; otherwise we have an impasse. The intercept
in (8.2), s = 1

2σ z∗
R

√
m, does not depend on Δ̂, so all the equilibrium lines fan out

from this single point s at q = 0. When s is within the range (δL , δU), it suffices
to check the vertices (qL , δL) and (qL , δU), denoted by LL and LU, respectively.
If the balance function has different signs at LL and LU, we have an impasse. This
happens for Δ̂ in an interval (Δ̂U, Δ̂L), the limits of which are easily established by
solving the equations δ0(qL , Δ̂) = δS for S = L and U. See the left-hand panel of
Fig. 8.1 for an illustration; the dashed equilibrium lines correspond to impasse. The
solutions are

Δ̂S = mσ z∗
R

(√
m

2qL
+ 1√

m

)
− mδS

qL
.

In this case Δ̂L − Δ̂U = m(δU − δL)/qL depends on neither R nor σ . Note that
Δ̂L > Δ̂U .

When the common intercept s is greater than δU, then Δ̂U is the solution of the
equation δ0(qU , Δ̂) = δU and Δ̂L the solution of δ0(qL , Δ̂) = δL ; see the right-hand
panel of Fig. 8.1. When s < δL , the vertices LU and UL are in the respective roles
of LL and UU. In these scenarios, Δ̂L − Δ̂U depends on both σ and R.

The expectation of the piecewise quadratic loss at an equilibrium prior is

Q∗ = S2
{(

1 + z∗
R

2
)

Φ
(
z∗

R

) + z∗
R φ

(
z∗

R

)}
, (8.3)

where S2 = mqσ 2/(m +q). For other (plausible) priors, the expected loss is smaller.
The expectation of the piecewise linear loss at an equilibrium prior is

Q∗ = S
{
z∗

R Φ
(
z∗

R

) + φ
(
z∗

R

)}
,

http://dx.doi.org/10.1007/978-3-642-40433-7_4
http://dx.doi.org/10.1007/978-3-642-40433-7_4
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Fig. 8.1 Equilibrium lines that lead to an unequivocal decision (solid lines) and to an impasse
(dashes). Scenarios with the common intercept s = 1

2 z∗
Rσ

√
m ∈ (δL , δU) in the left-hand and

s > δU in the right-hand panel. The symbol ST marks the vertex (qS , δT) for S, T = L or U

and for the piecewise absolute loss we have the identity Q∗ = Φ(z∗
R).

We adopt Q∗ as a criterion for design—we should aim to reduce it below a set
threshold or find a means of trading its (low) value for (larger) sample sizes, and
the cost of experimentation in general. Another factor to take into account is the
probability of impasse; it is reduced with greater sample size, but also by narrowing
down the set of plausible priors.

The probability of impasse, related to a plausible prior distribution, is evaluated by
integrating the prior distribution of Δ̂, N {δ, (m + q)σ 2}, over the impasse interval
(Δ̂U , Δ̂L). We could evaluate these probabilities on a fine grid of values that cover
the plausible range, and find their maximum. When 1

2 (Δ̂L + Δ̂U) ∈ (δL , δU), the
maximum is attained for δ = 1

2 (Δ̂L + Δ̂U) and q = qL . When 1
2 (Δ̂L + Δ̂U) /∈

(δL , δU), we evaluate the probability of impasse on a grid of plausible values of q
with δ set to either δL or δU , whichever is closer to the interval (Δ̂U , Δ̂L), or is
contained in it.

Example

Suppose elicitation concludes with the plausible priors described by the rectangle
(0.75, 1.5) × (0, 5) for (q, δ) and plausible penalty ratio (10, 20) with piecewise
quadratic loss. We assume that σ 2 = 10 and that r = n2/n1 = 1.5.

We assemble first all the items required for determining Δ̂L and Δ̂U as functions
of Δ̂. First, m = 1/n1 + 1/n2 = (1 + r)/(n1r). For n1 = 20, m = 0.0833. Next,
z∗

10 = 0.716 and z∗
20 = 0.926. The linear approximation to

√
q(m + q) is quite

precise for all plausible values of q; for q = qL ,
√

q(m + q) = 0.7906, whereas the
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Table 8.1 Sample size calculation for comparing two random samples with sample sizes n1 and
1.5n1, plausible range of penalty ratios (10, 20), σ 2 = 10 and normal prior distributions for δ with
plausible expectation in (0, 5) and q ∈ (0.75, 1.5); piecewise quadratic loss

n1 (n2 = 1.5n1)
10 20 30 40 50 60 70 80 90 100

R = 10
Intercept (s) 0.46 0.33 0.27 0.23 0.21 0.19 0.17 0.16 0.15 0.15
ΔU −0.08 0.13 0.18 0.20 0.20 0.20 0.20 0.19 0.19 0.18
ΔL 1.03 0.69 0.55 0.47 0.42 0.38 0.35 0.33 0.31 0.30
% impasse 14.56 7.67 5.20 3.94 3.17 2.65 2.28 2.00 1.78 1.60
Q∗ 2.06 1.09 0.74 0.56 0.45 0.37 0.32 0.28 0.25 0.23
Total cost 5.61 4.11 3.76 3.73 3.83 3.99 4.20 4.42 4.66 4.92
R = 20
Intercept (s) 0.60 0.42 0.35 0.30 0.27 0.24 0.23 0.21 0.20 0.19
ΔU 0.22 0.34 0.35 0.34 0.32 0.31 0.30 0.29 0.28 0.27
ΔL 1.33 0.89 0.72 0.61 0.55 0.50 0.46 0.43 0.40 0.38
% impasse 14.56 7.67 5.20 3.94 3.17 2.65 2.28 2.00 1.78 1.60
Q∗ 2.65 1.40 0.95 0.72 0.58 0.48 0.42 0.36 0.32 0.29
Total cost 6.20 4.42 3.97 3.89 3.96 4.10 4.29 4.50 4.74 4.98

linear approximation yields q + 1
2 m = 0.7917. Since the factor S is an increasing

function of q, we substitute in the expected loss in (8.3) its value with q = qU .
Table 8.1 presents the results for sample sizes n1 = 10, 20, . . . , 100 and penalty

ratios R = 10 and 20. The common intercept is listed in the first line to indicate
that the scenario A in Fig. 8.1 applies throughout. The ranges of impasse, Δ̂L − Δ̂U ,
therefore do not depend on R and are constant within sample sizes n1 (columns).
The percentage of impasse decreases with n1 , with a steep gradient for small n1. It
is constant within values of n1 because 1

2 (Δ̂L + Δ̂U) is a plausible value of δ.
We can decide about the sample size n1 based on the (conservatively assessed)

expected loss in tandem with the prior-related percentage of impasse. A more pro-
found approach takes into account the cost of experimentation and quantifies on the
same scale the value of small Q∗ and the threat of impasse. By way of an example,
suppose impasse is associated 12 units of loss, expressed in the same units as used
for the expected loss Q∗, and the cost of the experiment is 1.5 + 0.012n1(1 + r),
that is, 1.5 units for the general setup and 0.012 for each unit used. For instance, for
R = 10 and n1 = 10, the overall cost is 1.5 + 12 × 0.1456 + 2.06 + 0.30

.= 5.61.
The corresponding values for the other settings (R, n1) are given in the bottom line
of each block of Table 8.1. The minimum total cost is attained for n1 around 40, that
is, for n = n1 + n2

.= 100.
We do not have to be satisfied with this proposal, especially if it is based on a value

of σ 2 for which we have pretended certainty. It may also be prudent to re-calculate
the total cost with alternative values of the factors applied in Table 8.1. We should
not rush into a decision based on the settings which we have pretended to be ideal.
For example, by calculating the quantities in Table 8.1 for σ 2 = 12 we find that the
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lowest total cost is still attained for n1
.= 40, although a more detailed evaluation

would find that it has increased by a unit, from 37 to 38 for R = 10 and from 40 to
41 for R = 20.

By a similar approach we can explore how much we could save by having a
narrower range of plausible prior parameters, for the prior mean δ in particular.
Suppose the plausible range of δ is (2, 4) and the range of q is unchanged. Then the
total cost is minimised for n1 = 27 with R = 10 and 30 with R = 20. The total cost
and its components are drawn in Fig. 8.2 as functions of the sample size n1 . The total
costs based on σ 2 = 10 and σ 2 = 12, both drawn by gray colour, with a thinner line
for σ 2 = 12, are very close to each other; the total cost with the narrow prior (and
σ 2 = 10) is much lower. Note that the expected loss (due to bad decision) is very
small (not distinguishable in the diagram for the wide and narrow range of plausible
priors) in relation to the cost of the impasse. Of course, the cost of experimentation
is the same function of n1 for the two sets of plausible priors.

The total cost as a function of n1 is very flat at its minimum, so we do not have
to insist on the exact number of units; the consequences of a small deviation in the
design in either direction are trivial. The sample size required for R = 20 is only
slightly greater than for R = 10. However, the assumptions about the prior make a
lot of difference, and should therefore be made with care and integrity. The minima
of the functions for the three settings are marked by vertical ticks on the function
and at zero height.

Since all the calculations in Table 8.1 are in scenario A (Fig. 8.1), reducing the
upper bound qU is not important, but increasing qL might appear useful. However,
with a greater value of q, we should revise (and reduce) the value of σ 2. If we do so,
then the increase of qL conveys no advantage.
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Fig. 8.2 The total cost of experimentation as a function of the sample size with a wide range of
plausible priors, δ ∈ (0, 5), drawn in gray colour, thinner for the version based on σ 2 = 12, and a
narrow range for δ, (2, 4), drawn in black. The other parameters are the same as in Table 8.1
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The procedure for piecewise linear or constant loss differs only by setting z∗
R to

the solution of the balance equation (4.7) instead of (4.5). For the piecewise constant
loss, we have z∗

R = Φ−1{R/(R + 1)}.
With a set design, we can simulate the planned study for a range of plausible

values of Δμ to get a feel for the likely results. We may assess the robustness of our
procedure by using settings that deviate from those used in sample size calculation.
For example, dropout in a study in which human subjects are used is often a well-
founded concern. Thus, instead of the sample size of n = 100, we set it to 125,
anticipating 20 % dropout. The subjects are randomised to groups in proportion 2:3
(50+75), but then the simulated dropout in the respective groups is 25 and 16 %. The
number of subjects lost is not constant in replications, but binomial with parameters
(50, 0.25) and (75, 0.16), The respective standard deviations are 3.1 and 3.2.

Such a simulation is useful for introspection, to reassess whether the range of
loss functions and the criterion for the design have been defined appropriately. Also,
some insight can be gained into what may happen when something goes wrong. Of
course, we have to rely on our own imagination to think of the various contingencies
in advance. Invaluable in this enterprise is the collection of accounts from similar
experiments conducted in the past, and the associated ‘detective’ work in general.
Such a practice could be promoted by recording the details not only of successes
but also of failures in the study design and execution, and by enhancing the research
ethos in which failures cause no embarrassment, so long as they are well recorded,
lessons from them learned and, perhaps, the failures not repeated.

In a simulation, we record only the decision: A or B (unequivocal) or impasse.
Figure 8.3 summarises sets of 10,000 replications of such decisions based on values
of δ in the range (−1, 1) for R = 10 and R = 20. The shaded part represents impasse.
The cross-hairs at (0, 0) are added to make the two panels easier to compare. One
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Fig. 8.3 The probabilities of the decisions A, B and of impasse (shaded area) for plausible priors
q ∈ (0.75, 1.5) and δ ∈ (0.5)

http://dx.doi.org/10.1007/978-3-642-40433-7_4
http://dx.doi.org/10.1007/978-3-642-40433-7_4
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might be concerned that the probability of impasse is rather large for some values
of δ. (The width of the gray area should be measured vertically.) For example, it
exceeds 50 % around δ = 0 for R = 10 and for δ ∈ (0, 0.1) for R = 20. The design
can accommodate this concern, or second thought, by raising the cost of impasse.

At the design stage, we can vaccilate about the costs and losses and rerun the
sample size calculations many times, but ultimately we have to settle for plausible
ranges of all the parameters on which the sample sizes are based. To produce Fig. 8.3
takes about 3 min of CPU time, but a coarser version of the diagram, using 21 values
of δ instead of 41 and 2,000 replications instead of 10,000, can be produced in about
one tenth of the time. Thus, repeating the simulations with a range of settings is
feasible, and is very useful for studies with expensive data collection. Once the data
collection stage of the study has commenced, the settings are fixed and we are fully
committed to them. Regret may be avoided by constructive pessimism and exhaustive
exploration of plausible scenarios at the planning stage.

8.3 Problems, Exercises and Suggested Reading

1. Derive the optimal sample sizes for testing a two-sided (symmetric) hypothesis
of equal expectation of two normal samples with equal variance. Explore how
this method can be extended to samples from other distributions, such as the
Poisson and beta, in which the expectation and variance are related.

2. Check the results of sample size calculations in Sect. 8.1 by simulations. That is,
generate a large number of replicate datasets with the calculated sample sizes and
check that the planned test has the specified power. This exercise can be made
more realistic by adding some twists that occur in practice, such as nonresponse
and some (moderate) heteroscedasticity.
A more ambitious task (project): Repeat this exercise with the sample size cal-
culation method in Sect. 8.2, evaluating the minimum-expected loss decisions.
Set the sample size by one criterion, but assess the simulation results by another.

3. Describe the difficulties that would arise in sample size calculation in Sect. 8.2
if the set of plausible prior parameters was not a rectangle; e.g., if it were the
inside of an ellipse or a general polyhedron. Why would convexity of this set be
important?

4. The loss function has a single role in the sample size calculation—to set z∗
R .

Therefore, a given value of z corresponds to different values of R for the piece-
wise quadratic, linear and constant loss functions. Compile a function in R that
matches the penalty ratio R for the quadratic loss with the penalty ratio in linear
(and constant) loss so that they correspond to the same value of z∗.

5. Consider the problem of designing a study in which two or more comparisons
of sample means are planned. Compare the problem of setting the sample sizes
for hypothesis testing (adequate power for a given test size) and for making
decisions. Address this problem first for independent contrasts (e.g., comparing
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group 1 with 2 and group 3 with 4), and then for dependent contrasts (e.g.,
comparing group 1 with 2 and 1 with 3).

6. Describe the difficulties with sample size calculation (for both methods in
Sects. 8.1 and 8.2) when the variance σ 2 is not known and will be estimated.
Discuss the compromise made in the calculation for hypothesis testing, and
whether (and how) it can be adapted in the calculation with loss functions.

7. Suggested reading: Lenth (2001) and Julious (2009). Unsurpassed classics on
study design: Kish (1965) and (1987).

8. A project: Adapt the method of sample size calculation to binomial (or Poisson
distributed) outcomes.

9. A project: Collect information about the costs of the the incorrect decision in
an experiment that you regard as useful to conduct. Record all the elements of
the cost, together with the uncertainties involved. Consult a suitable authority.
Record also the expenses on the experiment and the losses due to an impasse.

10. Suggested reading about design for small-area estimation: Longford (2006) and
(2013).

References

Julious, S. A. (2009). Sample sizes for clinical trials. London, UK: Chapman and Hall/CRC.
Kish, L. (1965). Survey sampling. New York: Wiley.
Kish, L. (1987). Statistical design for research. New York: Wiley.
Lenth, R. (2001). Some practical guidelines for effective sample size determination. The American

Statistician, 55, 187–193.
Longford, N. T. (2006). Sample size calculation for small-area estimation. Survey Methodology,

32, 87–96.
Longford, N. T. (2013). Sample size calculation for comparing two normal random samples using

equilibrium priors. Communications in Statistics - Simulation and Computation 42 (to appear).



Index

Symbols
F distribution, 43
χ2 distribution, 33
t distribution, 59, 65, 84
R, 21, 118
apply (R function), 23
contour (R function), 30

A
Action, 2, 27, 51, 67, 99

course of, 2, 39, 65, 92
Additivity, 13, 24
Analysis of variance (ANOVA), 14
Aversion, 23, 42, 58

B
Balance, 61

equation, 29, 67, 100, 116
function, 42, 53, 113

Bayes
estimator, empirical, 97
model, empirical, 96
theorem, 49

Bayesian
analysis, 49
paradigm, 49

Beta
distribution, 63, 66, 86
prior, 67

Bias, 6, 35, 95
Binomial distribution, 117
Borrowing strength, 95

C
Complementary, 2
Composite

estimator, 97
loss function, 76

Composition, 51, 74, 95
Confidence interval, 1, 9

admissible, 10
proper, 9

Contaminant, 88
Convolution, 76
Coverage, 9
Criterion for estimation, 8
Critical

rate, 98
region, 11, 12, 27, 40, 112
value, 11, 28, 39

D
Decision, 2, 28, 40, 52, 68, 80, 96, 112
Direct estimator, 95
Distribution, 10, 65

F , 43
χ2, 33
t , 59, 84
basis, 75
beta, 63, 66, 86
binomial, 117
component, 76
conditional, 49, 80, 97
conjugate, 51, 71
continuous, 74
discrete, 91
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Distribution (cont.)
function, 18
gamma, 40, 87
joint, 49
mixing, 74
mixture, 91
multinomial, 74
normal, 17
poisson, 70
posterior, 49, 71
prior, 49, 65, 114
sampling, 33
symmetric, 74

Domain, 95
Dropout, 112

E
Elicitation, 8, 21, 51, 66, 92, 114
EM algorithm, 75
Equilibrium, 28, 41, 52, 67, 100

condition, 100
function, 53, 67, 113
line, 113
prior, 52, 67, 113
threshold, 67

Equivocal, 61, 68, 91
Estimate, 1, 6, 18, 75, 99
Estimation, 6, 17, 33

direct, 95
error, 6, 17, 96
maximum likelihood, 75
small-area, 119

Estimator, 6, 33, 95
admissible, 8
composite, 97
direct, 95
efficient, 35
empirical Bayes, 97
naive, 35
unbiased, 35, 95

Exceptional unit, 88
Exclusive, 2
Expert, 52

F
False negative, 79
False positive, 79
Fisher scoring algorithm, 75
Frequentist, 4, 49, 65

G
Gamma

density, 40, 71
distribution, 40, 58, 71, 74, 87

inverse, 58
function

half, 33
Gray zone, 58, 68, 91

H
Hessian, 19
Hypothesis, 10, 112

null, 27, 112
rejection of, 1
test, 1, 10, 27, 39, 53, 65, 112

proper, 11
unbiased, 12

I
Impasse, 52, 56, 68, 112
Implicit function theorem, 82
Information

complete, 3
incomplete, 2, 58
prior, 49, 66, 92

K
Kernel

absolute, 73, 82
linear, 70
loss, 70
quadratic, 70

L
Likelihood ratio test, 11
LINEX loss, 24
Log scale, 21
Lognormal distribution, 25, 74
Loss

asymmetric, 17, 35, 96
constant, 24, 56, 66, 81, 114
expected, 7, 17, 36, 79, 111

posterior, 51, 66
function, 13, 35, 51, 81, 99, 112

plausible, 21, 53
linear, 23, 35, 55, 81, 113
LINEX, 24
quadratic, 17, 35, 53, 81, 113
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M
Marker, 79
Maximum likelihood estimation, 75
Mean absolute error (MAE), 7
Mean squared error (MSE), 6, 34, 96

averaged (aMSE), 100
Misclassification, 79
Mixture, 74, 88, 91

finite, 74, 91
Model, 49, 70, 91

empirical Bayes, 96
mixed linear, 97
parameter, 49
regression, 97
selection, 14, 95

Moment matching, 96

N
Newton method, 23, 67
Newton-Raphson algorithm, 19, 38, 56, 76, 81
Neyman-Pearson lemma, 11
Normal distribution, 1, 14, 17, 33, 50, 65, 80,

97, 112

O
Odds ratio (penalised), 82
Ordinary unit, 88

P
Parameter, 13, 30, 40, 49, 66, 86, 116

prior, 52, 66, 116
space, 49

Parametrisation, 67
Penalty ratio, 17, 35, 56, 67, 89, 102, 114
Plausible

decision, 52
equilibrium, 73
loss function, 15, 21, 53
penalty ratio, 103
prior, 52, 68, 113
range, 21, 68, 89, 114
rectangle, 73
scenario, 5
set, 68
value, 8, 19, 50, 67, 89

Poisson distribution, 70
Population, 4, 99

mean, 4, 107
quantity, 5, 49, 97
size, 98
summary, 4

Posterior
density, 50, 66
distribution, 49, 71
expectation, 97
expected loss, 66

Power (of a test), 11, 40, 112, 118
Prior, 112

conjugate, 51, 71
data, 51, 65
density, 50, 66
distribution, 49, 65
equilibrium, 52, 67, 113
estimator, 51
information, 49, 66, 92
non-informative, 52
plausible, 52, 68, 113
variance, 97

Priority, 39, 66

R
Rejection (of hypothesis), 1
Replication, 5, 98, 117
Root-MSE, 8, 35

S
Sample, 4, 26, 49, 65, 111

contrast, 113
mean, 4, 17, 33, 51, 97
normal, 14, 53, 112
proportion, 65
quantity, 5, 40
random, 6, 17, 33, 65, 97
realised, 6
size, 21, 35, 67, 71, 95, 111
summary, 4

Score, 19
Sensitivity, 80

analysis, 5
Shrinkage, 97
Sign

function, 101
of the error, 6, 24

Significance, 1
Simulation, 5
Small-area estimation, 119
Specificity, 80
Statement, 1

realised, 5
replicate, 5

Subdomain, 95
Subsample, 95
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Sufficient
evidence, 12
information, 111
statistic, 51, 71

Support, 4, 74

T
Target, 5, 17, 41, 49, 74, 98
Taylor expansion, 20
Test

size, 1
statistic, 10

Threshold, 14, 52, 67, 79, 102

U
Unbiased, 17, 33, 53, 95
Uncertainty, 2, 21, 40, 50, 65, 91, 106, 111
Unequivocal, 52, 111

decision, 55, 113
Utility, 39

V
Variable, 4
Variance, 14, 17, 33, 53, 66, 82, 112

district-level, 96
estimated, 62
estimation, 33
posterior, 50
prior, 51, 97
sampling, 6, 17, 53, 65, 95


	Preface
	Contents
	1 Introduction
	1.1 The Role of Statistics
	1.2 Preliminaries
	1.3 Estimation
	1.4 Assessing an Estimator
	1.5 Confidence Intervals
	1.6 Hypothesis Testing
	1.7 Loss Function
	1.8 Problems, Exercises and Suggested Reading
	References

	2 Estimating the Mean
	2.1 Estimation with an Asymmetric Loss
	2.2 Numerical Optimisation
	2.3 Plausible Loss Functions
	2.4 Other Classes of Loss Functions
	2.4.1 LINEX Loss

	2.5 Comparing Two Means
	2.6 Problems, Exercises and Suggested Reading
	References

	3 Estimating the Variance
	3.1 Unbiased and Efficient Estimation
	3.2 Loss Functions for Variance Estimators
	3.3 Variance Versus a Constant
	3.3.1 Decision with Utilities
	3.3.2 Multiplicative Loss

	3.4 Estimating the Variance Ratio
	3.5 Problems, Exercises and Suggested Reading
	References

	4 The Bayesian Paradigm
	4.1 The Bayes Theorem
	4.2 Comparing Two Normal Random Samples
	4.3 Decision with Estimated σ2
	4.4 Problems, Exercises and Suggested Reading
	References

	5 Data from Other Distributions
	5.1 Binary Outcomes
	5.2 Poisson Counts
	5.3 Continuous Distributions: Transformations and Mixtures
	5.4 Problems, Exercises and Suggested Reading
	References

	6 Classification
	6.1 Introduction
	6.2 Normally Distributed Marker
	6.3 Markers with Other Distributions
	6.3.1 Markers with t Distribution
	6.3.2 Beta Distributed Markers
	6.3.3 Gamma Distributed Markers

	6.4 Looking for Contaminants
	6.5 Problems, Exercises and Suggested Reading
	References

	7 Small-Area Estimation
	7.1 Composition and Empirical Bayes Models
	7.2 Estimation for a Policy
	7.3 Application
	7.3.1 Limited Budget

	7.4 Conclusion
	7.5 Appendix: Estimating σ2B
	7.6 Problems, Exercises and Suggested Reading
	References

	8 Study Design
	8.1 Sample Size Calculation for Hypothesis Testing
	8.2 Sample Size for Decision Making
	8.3 Problems, Exercises and Suggested Reading
	References

	Index



