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To our families, and all of the families whose
data we have analyzed.



Preface

Statistical genetics has played a pivotal role for more than a century in the discovery
of genes that cause disease in humans. Driven by advances in molecular genetics
and medicine and the continuing improvements in genotyping technology, statistical
models and methods have adapted over time to the challenges presented by new
study designs.

In this book we discuss the statistical models and methods that are used to
understand human genetics from an historical perspective. Starting with Mendel’s
first experiments to more recent genome-wide association studies, we describe how
genetic information can be incorporated into statistical models to discover disease
genes. While we cover most of the commonly used approaches in statistical genetics
(e.g., aggregation analysis, segregation, linkage analysis, etc.), the focus of the book
is on modern approaches to association analysis. Our treatment of earlier topics
is mainly to help the reader see the larger picture and understand the historical
development of methods. We provide numerous examples to illustrate key points
throughout the text, both of Mendelian and complex genetic disorders.

Most statisticians, biostatisticians and data analysts are aware of the key role
that their disciplines have played in finding disease genes, but have little direct
knowledge of how gene discovery via gene mapping works. This book arises from
teaching courses to graduate students, with varying levels of statistical preparation,
at the Harvard School of Public Health. Our intended audience for this book is
largely quantitatively oriented health scientists, including biostatisticians, statisti-
cians, epidemiologists, physicians and molecular geneticists, who want to learn
about statistical methods for genetic analysis, whether to better analyze genetic data,
or to pursue research in methodology. We assume familiarity with elementary prob-
ability, statistical inference and methods, specifically distributions for two or more
variables, conditional, marginal and joint distributions, Bayes rule, likelihood meth-
ods, hypothesis testing, estimation, correlation and the essential ideas of regression,
including linear, log-linear and logistic. However, the book emphasizes concepts
and examples, and the exercises include problems for students with a broad range
of skill levels. We assume no formal training in genetics, but familiarity with basic
concepts in molecular genetics is necessary and will be reviewed in the first chapter.

There are many excellent texts in statistical methods currently available to stu-
dents and we have used many of them in our teaching. This book shares much with
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viii Preface

the classic texts of Sham (1998) and Lange (2002), both of which were written with
a similar audience in mind. Our book is less focused on linkage and more focused on
association analysis than the text by Sham, and provides easier reading for students
with less mathematical training than the book by Lange. We also share much with
the newer texts by Thomas (2004) and Yang (2000), being less epidemiologically
oriented than Thomas, with more emphasis on human disease than Yang. The book
by Foulkes (2009) has a stronger emphasis on software implementation while our
focus is on statistical theory and methods.

Boston, Massachusetts Nan M. Laird
Bad Godesberg, Germany Christoph Lange
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Chapter 1
Introduction to Statistical Genetics
and Background in Molecular Genetics

An understanding of the basic ideas of inheritance has been evident throughout the
history of mankind, ever since the domestication of animals or the practice of farm-
ing began. The Babylonians and ancient Egyptians utilized cross pollination of crops
and selection of domesticated animals for breeding, but did not develop a formal
theory for the principles underlying the inheritance of traits. Later, ancient Greek
philosophers developed elementary theories to explain how inheritance worked in
humans, grappling unsuccessfully with the apparent paradox that inherited char-
acteristics can sometimes differ between offspring and parents. Some diseases in
humans, such as sickle cell anemia and hemophilia, have been recognized as inher-
ited disorders for centuries and, as the science of medicine developed, so too did the
recognition that many diseases are heritable. Yet, bipolar disorder, one of the oldest
known disorders in humans, was not widely regarded as heritable until the 1950s.

Although we can document an awareness of the basic concept of inheritance for
millennia, most of our current knowledge about inherited human diseases has been
acquired only in the last century. As the concept of inherited disease gradually devel-
oped, Genetics, the science of inherited variation and heritable biological material
in living organisms, became an integral part of the search for the origin of disease.
Today stories of gene discovery for many diseases dominate the news landscape.
Despite centuries of formal and informal observation of patterns of inheritance in
humans, the discipline of human genetics is relatively young. Humans are difficult
to study because, in contrast to plant and animal genetics, experimental crossings
are not possible, environmental factors are hard to control, and humans have small
families with many years required for a new generation to develop. Environmental
and genetic factors broadly overlap during childhood, making it difficult to sepa-
rate the relative contributions of the environment and genetics to the development
of disease. As a result, much of our understanding of basic genetic principles and
how genes affect variation in organisms comes from experimental studies in plants
(Mendel’s experiments with garden peas in the 1860s) and animals (Morgan’s exper-
iments in the 1920s with flies). Mendel’s laws were initially largely ignored, but
‘rediscovered’ by scientists in the 1900s and hotly debated by geneticists, biolo-
gists, statisticians and biometricians. Part of this debate centered on the apparent
conflict between Mendel’s work Experiments in Plant Hybridization (1865) and

N.M. Laird, C. Lange, The Fundamentals of Modern Statistical Genetics,
Statistics for Biology and Health, DOI 10.1007/978-1-4419-7338-2_1,
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2 1 Introduction

Darwin’s theories set forth in the Origin of the Species (1859), which was published
just prior to Mendel’s paper. Darwin used the notion of inherited traits as the basis
for natural selection, but he believed that traits in parents were ‘blended’ in the
offspring. Mendel’s work verified the inheritance of traits, but he deliberately used
discrete traits that were not blended in offspring. Developing models and theories for
how Mendel’s discrete inherited units could explain variation in continuous human
characteristics was a subject of much debate during these early years of statistical
genetics. In this text we use the term trait broadly to encompass both measured and
discrete characteristics, as well as disease outcomes.

1.1 Basic Concepts in Genetic Disease

Statistical Genetics is a branch of statistics that deals with the analysis of inherited
traits and genetic data. We use genetic data loosely here to refer to the biological
material that is inherited during reproduction via egg and sperm cells. In early days,
statistical genetics was largely dominated by statistics for experimental studies in
plants and animals. Galton’s statistical work in the 1880s on the inheritance of height
in humans is an important exception to this rule. Over the years, the methodolog-
ical focus of statistical genetics has changed to keep pace with the different kinds
of genetic data that technology has made available. Most recently, new technolo-
gies arising from the Human Genome Project and HapMap Project have generated
a surge of methodological development to address unsolved problems in human
genetics. The development of statistical models and methods to explain how genes
influence traits continues to be a common goal in plant, animal and human genetics.

When the discipline of statistical genetics was just beginning, we had little under-
standing of the basic biological underpinning of genetics and inheritance apart from
the fact that humans had ‘units’–later termed ‘genes’–that were inherited from their
parents and that ‘units’ could differ from person to person. Most important from the
statistical point of view, there was no standardized way to assay or characterize the
genetic information at the molecular level in an individual. The available data for
most statistical investigations consisted only of traits, also known as phenotypes.
We use the terms traits and phenotypes here to mean individual characteristics, not
observed at the molecular level, which are thought to have a heritable basis. For
example, a person’s blood type at the ABO locus is a phenotype which depends
upon their variants at the ABO gene. A person’s phenotype (here blood group) can
be obtained without knowledge of their gene variant. However, knowing a person’s
blood type will imply something about the information encoded in their ABO gene.
In these early years, statistical genetics was focused on methods for determining if
traits or diseases were inherited and measuring the degree of inheritance (studies of
familial aggregation), and to determine the underlying genetic model that explains
the relationship between the phenotype and the underlying disease (segregation
analysis). For these analyses, individuals with the disease, called probands, were
identified; information on relatives of the probands was used to form family or pedi-
gree structures. The term ascertain is used when referring to probands to indicate
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that the selection of individuals for study may depend on their phenotypes; depend-
ing upon study objectives, all available relatives of probands may be included in
the study regardless of phenotype. The phenotypes or traits of the relatives and their
familial relationships were exploited in a segregation analysis to infer the underlying
genetic model.

Advances in our understanding of the biology of genetics and in laboratory
technology have enabled us to now readily obtain data directly on gene variants,
called genetic markers, at specific locations in the genome. Having marker data
for samples of families has enabled gene mapping, which encompasses a variety
of methods used to find the chromosomal location of a disease-causing gene. An
early statistical approach to gene mapping was to use linkage analysis of pedigrees.
Linkage analysis uses marker data and the traits of a pedigree; by studying the pat-
terns of co-inheritance of the marker and the disease throughout the pedigree, we
can infer how far the disease gene is from the marker. Linkage analysis relies on
both Mendel’s laws discovered in his pea experiments and the concept of genetic
distance elucidated in Morgan’s fly experiments. Many variants underlying genetic
disorders have been discovered using the basic idea of linkage analysis, e.g., cystic
fibrosis, Huntington’s disease and rare variants underlying early onset Alzheimer’s
disease.

The genetic architecture of diseases in humans ranges from diseases that are
caused by just a single disease variant in a single gene to settings where multiple
variants in multiple genetic loci can contribute to the disease risk, often interacting
with environmental factors. Diseases or disorders which are initiated by variants in a
single gene are typically rare and severe conditions, e.g., Cystic Fibrosis, Duchenes’
Muscular Dystrophy and Sickle Cell Anemia. Such diseases are often referred to as
Mendelian disorders or diseases. Mendelian disorders and diseases follow simple
Mendelian patterns of inheritance in families and generally do not have any other
causes other than the genetic disease variant. Linkage analysis has been very suc-
cessful in finding genes for Mendelian disorders.

Most common diseases, e.g., asthma, obesity, Alzheimer’s disease, bipolar dis-
order, etc., fall into the category of multi-factorial diseases or complex genetic dis-
eases. Here, disease risk is thought to be influenced by a set of genes and environ-
mental factors which may interact with each other. Although this book is focused
on the concepts of gene mapping for complex diseases, the basic genetic principles
of inheritance of genetic material are the same for both Mendelian and complex
diseases. Linkage analysis has been less successful with finding genes for complex
disorders.

Today gene mapping involves scanning the entire human genome at hundreds
or thousands or even millions of genetic markers in the genomes of large sam-
ples in order to look for genetic variation associated with disease traits (Genome
Wide Association Studies (GWAS)). Such studies have led to new findings for many
complex diseases: cancer, diabetes, eye disease, obesity and others. These Genetic
Association studies are also a component of gene mapping; their current popularity
stems from the advances in genotyping and from information about the structure of
genetic variation captured in the HapMap Project. Genetic association analysis is
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distinct from virtually all other types of statistical genetics analyses in that it can be
carried out using samples of unrelated individuals rather than families or pedigrees.
Genetic association analysis using both unrelated samples, and using samples of
families, is the main focus of this book.

Population Genetics is concerned with the genetic variation within and between
populations, over time and space. This includes modeling variation in genes due
to many factors: selection of certain variants due to response to environmental
conditions, in- and out-migration, drift occurring in small populations, and muta-
tions, as well as understanding genetic differences in populations. There are some
key principles of population genetics, namely Hardy-Weinberg equilibrium, linkage
equilibrium and population substructure, which are important in association analysis
and will be covered in a short introductory chapter.

Genetic Epidemiology is a branch of epidemiology that deals with both genetic
and environmental contributions to disease. Genetic epidemiology uses methods
from statistical genetics and epidemiology to understand the interplay between
genes, environment and disease. Sometimes data on geographic, spatial, temporal
and/or racial, as well as familial, variation in disease rates can provide insight into
the genetic nature of disease.

We close this section with two examples of genetic diseases which illustrate some
of the ideas discussed in this section.

Sickle Cell Anemia. Sickle cell anemia is a Mendelian disorder that affects red
blood cells and is associated with severe morbidity, including pain, hemolytic ane-
mia and infections; without proper medical management, the death rate is high. This
disorder is a common textbook example of a genetic disease because it was the first
to be labeled a molecular disorder resulting from a genetic mutation. The disorder
was widely recognized as an inherited disorder for centuries by indigenous people
in sub-Saharan Africa because of the way it occurred in families, but reports did not
appear in the Western medical literature until the early twentieth century. By this
time, the shape of red blood cells could be seen under a microscope, and scientists
discovered that the red blood cells of those suffering from sickle cell disorder had
a sickle shape, rather than the normal round shape. This phenomenon was calling
‘sickling’ and individuals with red blood cells which could be made to sickle were
labeled ‘sicklemics’.

Segregation analyses of African and African-American pedigrees (see Sec-
tion 4.4) played an important early role in demonstrating that the disorder was
genetic and in understanding its inheritance mechanism. Segregation analyses of
African and African-American pedigrees done in the 1920s used the sickling trait,
ignoring the fact that not all sicklemics had sickle cell disorder. Some 25 years
later, segregation analyses using sickle cell disease as the trait correctly identified
the genetic nature of sickle cell disorder. About this time, laboratory studies showed
that sickling was due to a genetic variant which changed the molecular structure of
hemoglobin, enabling scientists to limit their search to the hemoglobin gene without
any linkage studies. A decade later, the specific variant in the hemoglobin gene on
chromosome 11 was located.
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A second reason for the popularity of the sickle cell example is that it illustrates
the phenomenon of selection. The variant causing the sickle trait protects individuals
against the malaria parasite Plasmodium falciparum, which is found largely in India
and Africa. This explains the high prevalence of the variant, and the disorder, in
those regions and gives rise to the concept of ‘heterozygote advantage’, which we
will discuss in subsequent chapters.

Alzheimer’s Disease. Alzheimer’s Disease (AD) is a complex disorder with a
strong genetic component; it is one of the first complex disorders where multiple
genes explaining some of the AD risk were found. It is a brain disorder with pro-
gressive destruction of brain cells leading to loss of memory and other cognitive
functions, social impairment and eventually death. It is the single largest cause of
dementia and there is no known cure. AD was first described in 1906; its hall-
mark characteristic is the presence of plaques and tangles in the brain at autopsy.
Alzheimer’s disease is typically a disease of old age, but in a small fraction of cases
it occurs as early as the late thirties or forties. Early-onset AD, particularly prior to
age 50, is more likely to have a family history consistent with Mendelian inheritance
and is often referred to as ‘familial’ AD. A large number of very rare variants in
three genes have been identified which cause early onset AD in a Mendelian fashion,
typically at ages earlier than 60. At present, over 200 of these rare variants in these
three genes have been reported in only about 500 families world-wide.

Far more common is late onset disease; here advancing age is the primary risk
factor, with a risk of nearly 50% in individuals over age 85. Aside from age, family
history is probably the strongest risk factor for late-onset Alzheimer’s disease. There
are also ‘environmental’ risk factors that appear to enhance the risk of the late onset
form of the disease including head injury and a variety of cardiovascular risk factors
such as high blood pressure and diabetes.

Many studies involving familial aggregation, segregation, linkage and associa-
tion have been used in the search for genes contributing to AD. Studies of familial
aggregation identified a genetic component to the disorder and provided the justifi-
cation for molecular studies. During the period around 1990, several linkage studies
using AD pedigrees showed evidence for linkage to different chromosomes-14, 19
and 21. In some cases, the linkage results were consistent only in selected families;
there was particular controversy and lack of replication for the linkage on chromo-
some 21, because several early AD families not included in the linkage analysis
showed no evidence of linkage to the region implicated on chromosome 21.

Ultimately, the recognition that multiple genes on different chromosomes were
involved, each with different variant rates and/or disease risks, enabled discovery
of four genes: three genes with rare disease variants which are largely responsible
for familial AD and one gene primarily responsible for late onset disease. The three
genes involved in familial AD show very predictable patterns of inheritance in large
pedigrees, making them ideal candidates for simple linkage analysis. Two genes for
familial AD, the Amyloid beta Precursor Protein (APP) gene on chromosome 21
and the Presenilin 1 (PSEN1) gene on chromosome 14, were found via successful
linkage analyses. A variant in the APP gene on chromosome 21 was found using
linkage with only one large family. A third familial AD gene, Presinlin 2 (PSEN2),
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was found after a linkage analysis of a small number of families with a common
ancestry identified a linked region on chromosome 1. Disease variants in that gene
were quickly identified using homologies with the disease variant on the PSEN1
gene on chromosome 14.

The story with the gene affecting primarily late onset AD, Apolipoprotein E
(APOE) on chromosome 19, is quite different. With disease onset at the end of the
life span, the disease status of many pedigree members is unknown, and there is no
clear pattern of inheritance among these late onset families. Connecting APOE gene
variants with AD involved newly developed statistical methods for linkage studies
of complex disease, biological clues, and serendipity, but most convincing was a
series of association studies involving both families, and cases and controls, showing
an association between late onset AD and genetic variants of APOE. This gene is
sometimes referred to as a susceptibility gene since having a particular variant in
this gene enhances risk of AD, but does not determine AD with certainty.

The hunt for additional AD genes continues actively; over 100 genes beyond
APOE have been reported to be associated with AD, but until recently none has
been consistently confirmed. However, recently two GWAS identified association
in the APOJ gene that replicates consistently across several studies.

1.2 Review of Molecular Genetics

This section and the next serve as the basic background material in biology needed
for the remainder of the book. Individuals with no prior exposure to the concepts
may find these sections difficult to absorb on first reading. It may be necessary to
reread these sections while covering later material.

The human genome refers to all of the basic biological material that is transmitted
from parents to offspring, determining their inherited characteristics. The heritable
material is stored on chromosomes in the nucleus of every cell. There are 23 pairs
of chromosomes in the human genome; 22 of the pairs are autosomal, consisting
of non-identical copies (i.e., the two copies may have different variants) of the
same chromosome while the 23rd pair contains the sex chromosomes (Fig. 1.1). The
two non-identical chromosomes in an autosomal pair are referred to as homologous
chromosomes. For the sex chromosomes, females have two non-identical copies of
the X chromosome, while males have one X and one Y. The centromere of a chro-
mosome is a region found near the middle of the chromosome; it plays an important
role in cell division and reproduction. It also is used to specify genetic locations as
it divides each chromosome into a short arm (p for petit) and a long arm (q, next
after p in the alphabet). The banded regions shown in Fig. 1.1 can be seen under a
microscope after staining; they are also used in specifying genetic locations.

Each chromosome is composed of long strands of DeoxyriboNucleic Acid (DNA).
DNA is the basic biological material of inheritance; it determines how proteins
are manufactured in the body. DNA is composed of complementary base pairs
(Fig. 1.2). There are four distinct bases (A, C, T, G) which compose DNA in pairs.
The pairing is obligatory: G and C are always paired, and A and T are always paired.
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Fig. 1.1 A Graphical representation of the human genome. Source: National center for biotechnol-
ogy information

Genes are largely contiguous stretches of DNA that are responsible for mak-
ing proteins; the beginning and end of a gene are signaled by specific, short DNA
sequences. Current estimates suggest that there are about 20,000–30,000 genes dis-
tributed throughout the genome. This estimate has varied wildly over the years,
mostly getting much smaller; older books quote 80,000 or even 100,000 genes. The
DNA sequence in a gene consists of coding and non-coding regions, or exons and
introns. DNA sequences that make up the exons code for specific proteins deter-
mined by the DNA sequence; DNA sequences lying in introns, or sequences lying
outside of genes, do not code for proteins, but are thought to play other important
roles in regulating the manufacture of proteins. Most of the three billion base pairs
in humans are in non-coding regions. Genes vary widely in size, some being as
small as a few thousand base pairs, and some containing millions of base pairs. The
number and size of both exons and introns also varies between genes. For instance,
the APOE gene has four exons and three introns in 3611 base pairs and the gene
coding for the human ABO blood type has seven exons and six introns in 5171 base
pairs.
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Fig. 1.2 A strand of DNA
showing complementary base
pairing. Source: Courtesy of
Jane Wang

The focus of gene mapping has historically been to find the location of one or
more of the protein coding regions which have variants affecting disease. However,
increased appreciation of the role that non-coding DNA plays in gene regulation
and expression, and the many recent association studies that implicate non-coding
regions as associated with disease suggest that complex disorders may be influenced
by genetic variants in non-coding regions as well.

A genetic locus refers to a particular location in a chromosome that is polymor-
phic. Polymorphic means that the data at that locus can have more than one possible
variant; a polymorphism refers to a polymorphic genetic locus. The different vari-
ants at a locus are called alleles. Historically the minor allele frequency at a locus
was required to have population frequency of at least 1% in order for a locus to be
considered polymorphic, but more recently the term is used loosely to indicate any
locus where two or more variants are found, regardless of frequency. When there are
only two possible variants, it is conventional to refer to them as ‘A’ and ‘a’. When
dealing with the autosomes, an individual with two copies of A, one on each of the
two chromosomes, is called homozygous A, or AA; an individual with one A and
one a is called heterozygous, or Aa, and aa is homozygous a. The terms homozygote
and heterozygote are also used to denote individuals who are homozygous A or a,
or who are heterozygous. The genotype of an individual refers to the pair of alleles
at a location, i.e., AA, Aa, or aa.

A Comment on Notation: Since Mendel’s paper, it has been conventional to use
the capital and lower case forms of a letter to describe the 2 versions of an allele,
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but this has limitations for more than two alleles. Other conventions which are used
include capital letters, A, B, C, etc., or numbers, 1, 2, 3, etc., for different alleles
at a single locus. Generally, with a number or letter designation, the choice of label
is arbitrary. In some cases a specific designation is given to a disease allele, e.g. S
in the Hemoglobin gene which causes sickle cell anemia. With SNPs (see below)
we sometimes use base pairs, e.g., G or A to describe alleles. We do not adopt a
single labeling convention in this book, but will use the most convenient notation in
a given discussion. In most cases, a particular convention will be obvious.

1.3 Types of Genetic Variants

A key feature in the success of gene mapping is having information on genetic
variation in humans. Genetic variation means that different copies of homologous
chromosomes can have different DNA sequences in specific regions; this definition
covers a multitude of possibilities for how DNA sequences differ. In the living cell,
DNA undergoes frequent chemical change, especially when it is being replicated.
Most of these changes are quickly repaired; those that are not repaired result in
mutations. All new genetic variation in humans arises as a result of these mutations.
Variation in DNA sequence from person to person also arises as a result of the
process of reproduction; this will be discussed in Section 2.3. Mutations can arise
de novo during the process of meiosis, meaning they are present in the offspring but
not in either parent, or they can be inherited from parents. Generally we reserve the
term mutation for the de novo occurrence; subsequently we refer to it as a variant,
or a disease variant if it causes increased disease risk. Gene mapping is concerned
with finding inherited disease variants.

We use the term genetic marker, or just marker, to describe genetic data, observed
at the molecular level, at a particular locus that allows us to distinguish genetic
differences in individuals. Variants that arise in the coding region of a gene can
cause the protein encoded by that gene to malfunction and cells that rely on this
protein cannot function properly. This can cause problems for the tissues or organs.
Such conditions related to gene mutations, or variants, are called genetic disorders
or diseases. Genetic variants which cause a genetic disorder are often referred to as
disease mutations. A disease susceptibility locus (DSL) indicates a gene, or specific
genetic locus, which has a variant associated with a disease. This nomenclature
has arisen as a convenient way to distinguish the underlying disease gene (usually
unknown) which one is searching for, from the marker data used in the search. The
term mutation is often used to refer to the event which creates a new variant at the
genetic locus and not to the variant itself; we will subsequently adopt that convention
here.

Single Nucleotide Polymorphisms (SNP). The simplest type of genetic marker is a
single nucleotide polymorphism (SNP). The double helix structure of DNA requires
that each chromosome has complementary base pairs at each location, as illustrated
for each of the two chromosomes in Fig. 1.3, which shows a SNP at a pair of non-
identical but homologous chromosomes. For simplicity, one chromosomal variant
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Fig. 1.3 Illustration of a single nucleotide polymorphism (SNP) on a pair autosomal chromosomes.
The third base pair of each chromosome shows variation; it can either be G-C or A-T. The labels
A and a are used to denote the two variants, or alleles. Source: Courtesy of Professor Lyle Palmer

is labeled ‘A’, and one is labeled ‘a’. The A allele should not be confused with
the A base in the DNA sequence; rather it is standard notation for an allele and
denotes nothing about the underlying biology. In distinguishing the A allele from
the a allele, there is a lot of redundant information; a single chromosome is made
up of one strand of base pairs. However, for each base in a pair, the other base
in the pair is determined by complementarity; thus it is necessary to ‘read’ only
one base. In order to unambiguously read a sequence of base pairs, we define a
5’ and a 3’ end according to the asymmetrical bonding of sugar and phosphate
residues that form the backbone structure of DNA. By convention, a chromosomal
sequence is read, left to right, from the 5’ strand, which is depicted as the top strand
in both chromosomes in Fig. 1.3. Thus the sequence for allele A at this location is
CCGATCTAGCGAT and the corresponding sequence for a is CCAATCTAGCGAT;
they differ only at the third base pair. The two alleles depicted in the figure differ at
the third base pair, where an A base is substituted for a G. As we discuss in the next
section, whether or not this difference is biologically meaningful depends on where
they occur in the DNA sequence and the nature of the letter change.

SNPs play a very important role in modern gene mapping; they occur com-
monly throughout the genome and the financial cost of genotyping multiple SNPs
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at different locations is relatively modest, making them very attractive markers for
large scale genetic studies. SNPs occur once in every 300 base pairs on average,
for approximately 10 million SNPs in the human genome. Most commonly, SNPs
are found in intronic or non-coding DNA sequences. SNPs which occur in these
non-coding regions have not thus far been shown to have direct genetic effects on
disease or traits, but within a coding region, they can be disastrous, as we discuss in
the next section.

Indels. Extra base pairs (between 1 and 1000 in number) can be inserted or
removed (deleted) in between two specific base pairs in a DNA sequence. Collec-
tively, such variants are called indels. They differ from SNPs in that a SNP is merely
a substitution and does not change the number of base pairs in the DNA sequence.

Variable Number of Tandem Repeats (VNTRs). A common type of variation in
DNA consists of specific DNA sequences that are repeated immediately adjacent to
each other a variable number of times. See Fig. 1.4. Microsattelites are an important
class of VNTRs which have a small (1–6) number of base pairs which are repeated.
When exactly two nucleotides are repeated, it is called a ‘dinucleotide repeat’; when
three are repeated, it is called a ‘trinucleotide repeat’. Because the number of repeat
base pair sequences can vary widely from one person to the next, microsattelites
are excellent markers for distinguishing one person from the next. As such, they are
widely used in forensic DNA and paternity testing. They also have been used as the
basis of most linkage mapping.

Structural Variants. Structural variants include many types of chromosomal
changes, including rearrangements, duplications, translocations, inversions, dele-
tion or insertions of genetic material. Many structural variations in chromosomes
involving very large segments can be seen under the microscope. These typically
arise de novo during the formation of egg and sperm cells and often give rise to sub-
stantial disease burden. As these are largely not inherited, they will not be covered
in this book. Duplications and deletions involving large segments of DNA that can
contain many different genes are usually defined as Copy Number Variants (CNVs)
because in such cases, individuals appear to have too many (more than 2) or too
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few (0 or 1) copies of the gene or chromosomal segment. The origin of most CNVs
present in individuals (de novo versus inherited) is generally unknown. Methods for
discovering and detecting CNVs in individuals are now being developed.

1.4 Effects of Genetic Variants on Disease

Many genetic variants have no known effects on disease or disorders in humans,
but all types of variants can interfere with normal biological functioning and cause
diseases of varying levels of severity. SNPs occurring outside a coding region are
thought not to play a role in disease, and even SNPs occurring in a coding region
may not have any biological effects because of some flexibility built into coding
sequences. As depicted in Fig. 1.5, amino acids are encoded by codons, which are
three base pair sequences. Most codons have a many-to-one relationship with an
amino acid, that is, several three base pair sequences can code for the same amino
acid. For example, if the third base in the TCT codon for serine is changed to any
one of the other three bases, e.g., TCA, serine will still be encoded. Such variants
are said to be silent or synonymous because they cause no change in their product,
but they can still be useful as genetic markers.

Sickle cell anemia is caused by a single base pair change in the hemoglobin
gene on chromosome 11. Figure 1.5 shows the coding sequence of the normal
hemoglobin gene (A) and the sickle hemoglobin gene (S). The two sequences differ
by a change of an A base in the normal Hemoglobin sequence which codes for
glutamine, to a T base. The sickle allele (called S for Sickle) changes the sequence
coding so that it codes for valine instead of glutamine. This is an example of a mis-
sense mutation as it changes the DNA sequence to code for a different amino acid.
Individuals with SS genotype develop sickle cell anemia; AS and AA individuals
are not affected by the disease. AS (and SS) individuals have a better resistance to
malaria because some of their hemoglobin is type S. SNPs can also cause nonsense

Fig. 1.5 A variant in the
hemoglobin gene causing
sickle cell anemia
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mutations, for example, by changing a coding sequence for an amino acid into a
stop sequence which can result in too little protein being produced.

Tandem repeats can also cause diseases and disorders. The non-coding region
on the human X chromosome contains a locus where the triplet CGG is repeated
(CGGCGGCGGCGG, etc.) in individuals from 5 to 100 times without causing a
harmful phenotype. These longer repeats tend to grow longer still from one gener-
ation to the next (to as many as 4000 repeats). This causes a constriction in the X
chromosome, which makes it quite fragile, and leads to Fragile X Syndrome. Males
who inherit such a chromosome show a number of harmful effects including mental
retardation. Females who inherit a single fragile X chromosome are only mildly
affected.

Huntington’s is another disease characterized by excessive short sequence
repeats in the coding region of the Huntingtin gene. The Huntington gene (HTT)
is located on the short arm of chromosome 4. It contains a sequence of three DNA
bases, CAG, repeated multiple times (i.e., ...CAGCAGCAG...) on its 5’ end. If the
number of repeats of CAG is less than 27, normal protein is produced, but with more
that 36 repeats, a form of protein is produced that increases the rate of neuron decay
in the brain and elsewhere, causing the onset of Huntington’s disease symptoms.

Deletion of a sequence of DNA which interrupts a coding sequence can also
have effects on disorders. For example a deletion of 32 base pairs in the cytokine
receptor-5 (CCR5) gene disables receptors on the surface of cells and disrupts the
ability of the HIV-1 virus to infect the cell. In this case, the deletion is beneficial to
humans exposed to the HIV-1 virus. Structural variants involving large segments of
DNA can cause substantial disease burden. For example, Down’s syndrome arises
as a result of errors in meiosis, causing an extra copy of chromosome 21. Although
characterized as a genetic disorder, it is not heritable. However, many structural
variants can be inherited, and can cause increased disease burden. At the present
time, some associations have been found between various complex disorders and
CNVs, although none can be considered definitive as yet. Many CNVs appear to be
benign, and it is not clear to what extent CNVs are heritable, or largely de novo.



Chapter 2
Principles of Inheritance: Mendel’s Laws
and Genetic Models

It is difficult to overstate the impact of Mendel’s research on the history of genetics;
indeed, his research in genetics has been credited as one of the great experimen-
tal advances in biology (Fisher, 1965). Prior to the publication of his results on
experimental hybridization in plants, the concept of inheritance of physical ‘units’
(later called genes) was accepted, and scientists had reported on many hybridization
experiments in both animals and plants. Yet no one had set forth principles of inher-
itance which could be used as a universal theory to explain how traits in offspring
can be predicted from traits in the parents. Mendel provided an explicit rule for
how the genotypes of the offspring can be predicted from the genotypes of their
parents, and he also established models for how genotypes were related to traits.
This is nothing short of astonishing in view of the fact that genes and genotypes
were not observed; rather their existence was inferred from the phenotypes that were
observed. Needless to say, the underlying biology of cell division and the process of
formation of sperm and egg cells was not then known; otherwise the derivation of
Mendel’s laws would be more straightforward.

Part of Mendel’s success was due to his implicit introduction of the concept of
a genetic model. A genetic model specifies a probability distribution for the trait,
conditional on the underlying genotype at the hypothesized disease locus. Mendel’s
genetic models were very simple forms for dichotomous traits that lead to determin-
istic outcomes. Genetic models underlie most analyses used in statistical genetics.
In order to formalize the process of localizing disease mutations and measuring their
effect sizes, we often translate the problem to the framework of statistical hypothesis
testing and estimation of parameters in the genetic model.

2.1 Mendel’s Experiments

Mendel’s work is known largely through a single research paper, ‘Experiments in
Plant Hybridization’ published in 1865. It reported on eight years of experimen-
tation with the garden pea. Mendel made several deliberate choices for his exper-
iments which were crucial in enabling one to infer the laws of inheritance in his
series of experiments, essentially examining very simple, now called Mendelian,
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forms of inheritance. In describing Mendel’s experiments we use the terms gene
and genotype to refer to the genetic locus underlying the traits, although the word
gene came into use only after Mendel; following Mendel, we refer to the two alleles
of a gene as A and a.

Mendel laid out several principles of good experimentation: using large enough
samples of crosses, avoiding unintended cross fertilization, choosing hybrids with
no reduction in fertility, etc. Here we focus only on those features of Mendel’s exper-
iments bearing on genetics. First is the importance of choosing simple, dichotomous
traits for study which are easily recognizable and reproducible. (Mendel studied
seven different dichotomous traits.) He called these ‘constant differentiating char-
acteristics’, meaning that two forms of the trait, e.g., green or yellow pods, could
be differentiated in plants, and that the same two forms appeared unchanged in off-
spring. Mendel excluded traits which produced ‘transitional or blended’ results in
offspring, or quantitative traits generally. Using dichotomous traits enabled him to
use simple genetic models to demonstrate laws of inheritance. It took many decades
for scientists to develop models which allowed them to apply Mendel’s laws to
continuous traits.

Second was the use of self-pollinating plants which could also be cross-
pollinated; both self-and cross-pollination were used in his experiments. See
Fig. 2.1. Cross-pollination was used to form the first generation hybrid plants (called

All lavender (hybrid)

Type of fertilization

Cross

Matings

Lavender White

Generation

P

Self

Self

Self:

:

:

SelfAll white

All white

All white

...and so on

All lavender

2/3 hybrid

2/3 hybrid1/3 pure-
breeding

3/4 lavender
(787 plants)

1/4 white

1/4 white3/4 lavender 

1/4 white3/4 lavender

1/3 pure-
breeding

All pure-
breeding

All pure-
breeding

All pure-
breeding

All pure-
breeding

F4

F3

F2

F1

All lavender All lavender

(277 plants)

Fig. 2.1 Representation of Mendel’s basic experimental design for the law of segregation. Source:
Mange and Mange (1999)
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F1 in Fig. 2.1); self-pollination was used to develop the parental pure forms (called
P in Fig. 2.1), and to infer the genotypes of subsequent crosses. Mendel started the
hybridization with the mating of ‘pure’ forms (inbred forms of plants which always
yielded the same form of the phenotype, e.g., plants always having either yellow
pods or green pods); underlying the experiments was the implicit assumption that
there were two genetic variants, say A and a, one for each of the two forms of each
trait. The use of pure parental forms assured that the experiments always started with
the mating of two homozygous parents, either AA or aa, so that the first generation
crosses between two pure forms (F1 hybrids) were always heterozygous Aa.

The result of crossing two different plants showed that only one of the two pos-
sible phenotypic forms (purple flowering plants in Fig. 2.1) was observed among
the F1 hybrids. This he termed the dominant form, and the form which disappeared
among the first generation hybrids was the recessive. Implicitly, Mendel started with
the simple genetic model for homozygotes:

P(recessive form of trait|aa) = 1

P(recessive form of trait|AA) = 0

P(dominant form of trait|AA) = 1

P(dominant form of trait|aa) = 0.

Today we usually refer to dominant alleles rather than dominant forms of traits,
but the general concept is the same. That is, the A allele is dominant because the
Aa genotype has the same phenotype as the AA genotype. Note that these models
are deterministic; given a genotype, the form of the trait is determined to be either
recessive or dominant with probability 1.

It had already been shown by others that the mating of pure forms led to hybrids
with only the dominant form of the trait, but Mendel’s contribution was to insist on
careful self breeding of successive generations in order to deduce their underlying
genotype. He found that the offspring of F1 hybrids, called F2, had both recessive
and dominant trait forms, in the ratio of 1:3, with the recessive form showing no
evidence of contamination by the dominant form. The reappearance of the recessive
form allowed him to conclude that the gene for the recessive form was present intact
in the F1 generation, although latent. From the results of the F1 and F2 generations
we can conclude that

P(dominant form|Aa) = 1

P(recessive form|Aa) = 0.

Subsequent self fertilization over several generations of F2 hybrids showed that
(1) those plants manifesting the recessive form in the F2 generation produced only
recessive forms among their offspring, and (2) self fertilization of dominant form
could be divided into 2 groups: 1/3 produced only dominant offspring as in pure
forms, but 2/3 again produced both recessive and dominant forms in the same ratio
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seen in the F2 generation of 1:3. These phenotypic ratios are idealized in Fig. 2.1.
This led Mendel to deduce the following about the genotypes: 1/4 of the F2 hybrids
were of the parental recessive form (aa), 1/4 = 3/4 × 1/3 were of the parental
dominant form (AA), and 1/2 = 3/4 × 2/3 were the same as the F1 generation.
From this it follows that the genotypes AA, Aa, aa are in the ratio 1:2:1 in the F2
generation. This allows us to infer Mendel’s first law:

Mendel’s First Law (Segregation): One allele of each parent is randomly and
independently selected, with probability 1

2 , for transmission to the offspring; the
alleles unite randomly to form the offspring’s genotype.

In summary, the phenotypic ratio for Aa × Aa matings is 3:1 (for dominant to
recessive forms) and genotypic ratios are 1:2:1. From Mendel’s law of segrega-
tion, one can extend the results to a crossing of arbitrary genotypes, as is shown
in Table 2.1. The law of segregation underlies the concept of Mendelian transmis-
sions of alleles from one generation to the next generation; it is a fundamental and
universal concept that forms the basis for many genetic analyses discussed in this
book.

Mendel’s second law concerns independent inheritance of different traits. We will
not examine these experiments in great detail; they are fundamentally not different
from the first set of experiments, although more complicated because of the large
number of possible outcomes that can be observed when many traits are examined.
In addition, as we discuss in the last section of this chapter, not all genes are trans-
mitted independently, so that Mendel’s second law is not always true. We now know
that genes underlying several of his traits are on the same chromosome and they are
not inherited independently. However, Mendel’s sample sizes were not sufficiently
large to pick up modest departures from independence.

To consider two traits, Mendel considered pure strains for each trait, say AABB
and aabb, meaning that one parent always had dominant forms in each trait, and the
other parent always had recessive forms for both traits. Experimental crossing gave
rise to hybrids with Aa and Bb, which showed only dominant forms for both traits.
However, the F2 hybrids raised from F1 seed showed four phenotypically different

Table 2.1 Distribution of offspring’s genotype conditional upon parental genotypes

Offspring’s genotype
Father’s
genotype

Mother’s
genotype dd dD DD

dd dd 1 0 0

dd dD 1
2

1
2 0

dd DD 0 1 0

dD dd 1
2

1
2 0

dD dD 1
4

1
2

1
4

dD DD 0 1
2

1
2

DD dd 0 1 0

DD dD 0 1
2

1
2

DD DD 0 0 1
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plants: those with both dominant forms, plants with one dominant and one recessive
form (2 kinds) and plants with two recessive forms, in the approximate ratio of
9:3:3:1 (see exercise 2 of Section 2.4). Subsequent self-pollination of the F2 gener-
ation allowed him to deduce 9 genetic forms among the F2 hybrids: AABB, AABb,
AAbb, AaBB, AaBb, Aabb aaBB, aaBb and aabb in the ratio 1:2:1:2:4:2:1:2:1.
These ratios exactly coincide with what one would expect if inheritance of the two
traits is independent, for then, with F2 hybrids,

P(AA and B B) = P(AA)P(B B)

= (1/4)2 = 1/16 = 1/(1 + 2 + 1 + 2 + 4 + 2 + 1 + 2 + 1),

P(AA and Bb) = P(AA)P(Bb) = (1/4)(1/2) = 1/8 = 2/16 etc.,

when describing the result of a double heterozygote mating.
Mendel’s Second Law (Independent Assortment): The alleles underlying two or

more different traits are transmitted to offspring independently of each other; the
transmission of each trait separately follows the first law of segregation.

Fisher (1936) noted that many of Mendel’s statistics were generally too close to
their expectations, thus χ2 statistics comparing observed numbers offspring with a
given phenotype to those expected assuming his laws of segregation were true, were
often too small, suggesting some data manipulation. This, and the lack of gener-
ality of his law of independent assortment (see exercise 3 of Section 2.4), has not
diminished the value of his contributions. The lack of independent transmission of
different genes is, in fact, fortuitous, as it provides the basis for mapping disease
genes by linkage analysis, as will be described in Section 2.3, and in Chapter 11.

2.2 A Framework for Genetic Models

A genetic model describes the relationship, usually probabilistic, between an indi-
vidual’s genotype and their phenotype or trait. In Genetic Epidemiology, phenotypes
will typically be affection status and we distinguish only between affected and unaf-
fected subjects in the statistical analysis. Such binary traits can be coded by Y , where
Y = 1 denotes affected and Y = 0 denotes unaffected. For other dichotomous traits
such as those that Mendel used, this labeling is arbitrary. For complex diseases, e.g.,
Asthma, Chronic obstructive pulmonary disease (COPD), Obesity, etc., affection
status is often defined by a set of intermediate phenotypes or endophenotypes which
are quantitative measurements that can be more reproducible assessments of the
disease features. They can also provide additional insight into the nature and sever-
ity of the disease. Standard intermediate phenotypes are body mass index (BMI)
as an assessment of obesity, forced expiratory volume in one second (FEV1) for
asthma, etc. In some cases, e.g., Alzheimer’s disease, the phenotype affection status
can be refined by selecting age-of-onset as the target phenotype in the statistical
analysis. In general, the selection of the target phenotype is a key question in the
planning of the study and the statistical analysis. The phenotype choice will depend
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on the disease, the possible study designs, statistical power considerations and the
necessary adjustments for confounding factors. We will use the variable Y as the
variable that describes the phenotype or trait of interest, whether dichotomous or
measured.

An individual’s genotype at a marker is given by the combination of their two
alleles at that locus; we use the notation G to denote an individual’s genotype. In
the majority of scenarios that we will consider, the marker locus will have only two
distinct alleles, e.g., alleles ‘A’ and ‘a’. In the literature such genetic loci are called
di-allelic or bi-allelic. Typically, the “small-letter” allele ‘a’ is assumed to be the
more frequent allele of the two and is referred to as the wild type or normal allele.
The less frequent allele is labeled with the capital-letter ‘A’ and referred to as the
minor allele. This differs from Mendel’s designation of the capital allele as repre-
senting the allele associated with the dominant form, because most of the genetic
loci we study do not have any known associated dominant or recessive phenotypes,
hence today the capital letter usually refers to the less common allele. Under the
assumption that the genetic locus is bi-allelic, each of the two chromosomes has to
carry either an ‘a’ or ‘A’ allele, and, consequently, only three different genotypes
are possible: the two homozygous genotypes, AA and aa, and the heterozygous
genotype Aa. Order does not matter, so Aa is the same as aA. Thus G can take
on only three values in a di-allelic system. With three alleles, there are 6 possible
genotypes, etc. Genotypes are inherently categorical but can always be recoded in
the form of numerical or indicator variables, as we will discuss at the end of this
section.

If the genetic locus is a Disease Susceptibility Locus (DSL), it is conventional to
use the D/d designation, as opposed to A/a or B/b; the D-allele is then sometimes
referred to as the Disease Variant or Disease Susceptibility Allele. In formulating
genetic models for disease outcomes, we assume the DSL has a direct effect on
the phenotype through some biological mechanism. Genetic models can either be
deterministic, i.e., the genotype determines the phenotype exactly (Mendelian Dis-
ease, or, in most cases, probabilistic, i.e., the genotype influences the probability
of disease. Conditional upon the individual’s genotype G, the probabilistic effect of
the locus on the phenotype Y is described by the penetrance function which is a set
of conditional probabilities, or density functions for continuous phenotypes, which
model the distribution of the phenotype/trait, i.e., P(Y |G). If the genetic locus under
consideration has no effect on the phenotype of interest, the penetrance probabilities
for all three genotypes will be equal regardless of the individual’s genotype, i.e.,
P(Y |G = dd) = P(Y |G = d D) = P(Y |G = DD).

The specification of penetrance probabilities will depend on the type of the dis-
ease phenotype. If the phenotype of interest is dichotomous, the penetrance func-
tion specifies simple probabilities between zero and one for each genotype, with
P(Y = 1|G) + P(Y = 0|G) = 1, for each G. When Y denotes disease status, the
penetrance probability for Y = 1 defines the probability of disease conditional on
the genotype of the individual. Mendel considered only two simple genetic models
for dichotomous traits: recessive and dominant. The dominant model is

P(Y = 1|DD) = P(Y = 1|Dd) = 1 and P(Y = 1|dd) = 0, (2.1)
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and the recessive is

P(Y = 1|DD) = 1 and P(Y = 1|Dd) = P(Y = 1|dd) = 0. (2.2)

Note that here D is the disease allele (the variant), and Y = 1 refers to disease,
so that the two models are different. If disease is recessive, it requires two variants,
but a dominant disease requires only one. However, if the dominant model holds for
the disease outcome, then the recessive model holds for the non-disease outcome,
Y = 0. This is why Mendel used the terms dominant and recessive to describe
possible trait outcomes.

Apart from rare genetic disorders, deterministic models are not very reasonable.
Variations of these basic models are constructed by considering stochastic versions
which lead to reduced penetrance and phenocopies. A model is said to be of reduced
penetrance if the probability of disease, P(Y = 1|G), is less than 1 for values
of G where it is one in the Mendelian models. That is, for the recessive model,
P(Y = 1|DD) = a for some 0 < a < 1, and similarly for the dominant model.
The Mendelian models are called fully penetrant in contrast to reduced penetrance
models, because the probability of disease is either zero or one. The idea behind
phenocopies is that the disease could also be caused by another genetic locus, or
possibly some non-genetic variable, so that P(Y = 1|G) is positive for those values
of G where it is zero in 2.1–2.2. For the dominant mode, for example, P(Y |dd) = b
for some 0 < b < 1. In other cases, the heterozygotes might be intermediate in
disease risk between the two homozygotes, suggesting that the number of mutations
influences disease risk. Figure 2.2 shows a possible choice for such a penetrance
function which allows for both phenocopies and reduced penetrance. Probands with
the genotype dd have a 10% chance of being affected. For probands with the geno-
type DD, the probability of being affected is 7 times higher.

One of the earliest non-Mendelian genes found was APOE for AD. Here there are
two mutations giving rise to 3 major alleles (other alleles in the gene are very rare):
E2, E3 and E4. The risk of late onset AD increases with an increasing number of
E4 alleles, but having an E2 allele appears protective. Generally P(Y = 1|G) is

Fig. 2.2 Penetrance function for a dichotomous trait
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a complex function of G, but never reaches 1 or 0 for any genotype at the APOE
locus.

One publication from the popular press (Pamela McDonald, The APOE Gene
Diet: A Breakthrough in Changing, Cholesterol, Weight, Heart and Alzheimer’s
Using the Body’s Own Genes) lists the risk for AD as a function of selected APOE
genotypes: 20% for 33, 50% for 24, 60% for 34 and 92% for 44. In reality, pen-
etrance functions for AD as a function of APOE genotype are difficult to quan-
tify because they also depend on sex and age. With six possible genotypes, large
prospective samples will be required to quantify risk as a function of age and sex
with much precision.

For quantitative traits, a natural choice for the penetrance function is a nor-
mal density, with a mean that depends upon the genotype while the variance does
not. Thus we assume the density function of Y is given by f (y|μG , σ

2), where
f (y|μG , σ

2) denotes the normal density with mean μG and variance σ 2; μG indi-
cates that the mean depends on the genotype G. For other types of traits, e.g., age-
of-onset, the penetrance probability can be selected to be trait-type specific den-
sity functions as are used in standard statistical models to describe the relationship
between traits and a covariate. Figures 2.3 and 2.4 show examples of penetrance
functions for a quantitative trait and for age-at-onset. Again, the notion that the
D-allele is the risk allele is echoed in both figures, where we assume larger values
of the quantitative trait are deleterious. In Fig. 2.3, the number of D-alleles is cor-
related with an increased likelihood for larger phenotypic values of Y . Figure 2.4
shows empirical survival curves for AD as a function of APOE genotype, estimated
from a large study of individuals free of AD at age 60. Even with this large study,
genotype groups have been combined because of sparse numbers at older ages and
the low number of subjects with the 4/4 genotype.

Apart from recessive and dominant models for dichotomous traits, thus far we
have specified only general probability models which allow the distribution of Y
to depend upon G in some unspecified way. The term Mode of Inheritance refers
to exactly how parameters of the distribution of Y depend on the number of dis-
ease alleles. Sometimes the term genetic model is used to describe only the mode
of inheritance, and not the entire distribution, but we use genetic model to refer
to the penetrance function specifying the entire distribution, and we generally use
the mode of inheritance to indicate how the parameters of the penetrance function

Fig. 2.3 Penetrance functions for a continuous trait
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Fig. 2.4 Empirical survival curves for AD as a function of APOE genotype in the NIMH Genetics
Initiative Alzheimer’s Disease (AD) Sample. The genotype variable x counts the number of ε4-
alleles at the locus

depend on the number of disease alleles. There are four modes of inheritance that
are commonly used: recessive, dominant, additive and codominant. When only one
copy of the disease allele is required to induce an effect on the disease phenotype,
Pr(Y = 1|d D) = Pr(Y = 1|DD), the mode of inheritance is called dominant.
However, if 2 copies of the disease allele are required to elevate the disease risk,
we speak of a recessive model or recessive mode of inheritance. Depending on the
‘scale’, with an additive mode of inheritance the penetrance probability of heterozy-
gous genotype is mid-way between the penetrance probabilities of both homozygous
genotypes, e.g., P(Y = 1|Dd) = 0.5 ∗ (P(Y = 1|DD) + P(Y = 1|dd)) on the
linear scale, or P(Y = 1|Dd) = √

P(Y = 1|DD) ∗ P(Y = 1|dd) on the log (mul-
tiplicative) scale. The codominant mode of inheritance makes no assumptions about
the relationship among the three penetrance functions, only that they are different.
The heterozygote advantage model specifies that heterozygotes have the lowest (or
highest for a heterozygote disadvantage model) risk of disease; it is occasionally
used, especially in plant breeding. We do not use it since it is a special case of the
more general codominant model.

Note that with dichotomous traits, P(Y = 1|G) can be equivalently expressed as
E(Y |G), and likewise for the continuous trait, μG = E(Y |G). Generalized Linear
Models (GLM) provide a convenient way to express the dependence of the trait mean
on G without specifying the entire distribution of Y . A generalized linear model is
similar to an ordinary linear regression model, except it allows the mean of Y to
depend on covariates, X , in a non-linear way as:

g(E(Y |X)) = β0 + X ′β1. (2.3)

The link function, g(·), depends on the type of trait. For affection status out-
comes, the logistic link:
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log[E(Y |X)/(1 − E(Y |X))] = β0 + X ′β1, (2.4)

or log(relative risk) link:

log[E(Y |X)] = β0 + X ′β1, (2.5)

models are commonly used in epidemiological work; in genetics, linear models in
the probabilities themselves are also commonly used.

Here X is a coding of the genotype that reflects the mode of inheritance; it can be
a vector or a scalar, depending on the genetic model. By proper choice of X and link
function g(·), all four modes of inheritance can be expressed by equation (2.3); β0
is an intercept parameter, specifying E(Y |G) when X = 0; β1 gives the additional
model parameters which specify how E(Y |G) depends on G. Often the right-hand
side of equation (2.3) is written as X ′β where β is a vector incorporating β0 and β1,
and X is a vector with the first element always one; here we keep the parameters
separate since a test of whether or not the gene affects the trait uses H0 : β1 = 0.
Acceptance implies no relation between the gene and the trait. The coding of the
genotype for each mode of inheritance is given in Table 2.2. From Table 2.2, we see
that β0 always specifies E(Y |dd) and for the recessive model, it specifies E(Y |Dd)
as well. For the recessive, dominant and additive models, β1 is a scalar and defines
the ‘effect size’ in the chosen scale; for the codominant model, β1 is a vector of
length two that gives the effect of the DD and Dd genotypes compared to dd.
Although more complex models can be constructed, these simple generalized linear
models suffice for most analyses that we consider in detail.

Table 2.2 Coding the genotype (G) as X to specify the mode of inheritance

Recessive Dominant
X G X G

1 DD 1 DD or Dd
0 dd or Dd 0 dd

Additive Codominant

X G X1 X2 G

2 DD 1 0 DD
1 Dd 0 1 Dd
0 dd 0 0 dd

2.3 The Biology Underlying Mendelian Inheritance

Today Mendel’s Laws can be derived directly from our understanding of Meiotic cell
division or Meiosis, which is the cell division that produces gametes, either sperm or
ova; the union of a sperm and ova produces the fertilized egg cells (called zygotes).
Meiotic cell division is in contrast to the standard cell division, mitosis, that serves
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the purpose of cell growth, development, repair and replacement of worn-out cells.
While mitosis results in cells that are genetically identical (or clones), the purpose
of meiosis is to introduce further genetic diversity by creating gametes, either egg
cells or sperm cells, that are genetically different from the parent cells.

The nucleus of every cell contains two copies of each chromosome inherited
from the parents, one maternal copy and one paternal copy. Such cells are called
diploid because they have two copies of each chromosome (except for males who
have one X and one Y for the sex chromosomes). Meiosis consists of two rounds of
cell divisions, each following a meiotic division (Fig. 2.5) ending with four haploid
cells containing only one copy of each chromosome.

In the beginning of the first meiotic division, both parental copies of the chromo-
some are duplicated; Fig. 2.5 illustrates the first meiotic division for a single parent
in the top panel and the result of the second meiotic division in the bottom. Each
parental chromosome is first duplicated as illustrated after the first arrow in the top
panel. The duplicated chromosomes are called a pair of sister chromatids. The two
duplicated chromosomes undergo a separation process; during this process, the arms
of the chromosomes may overlap and segments of non-duplicate chromatids can
be exchanged between the duplicated chromosomes, as illustrated after the second
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arrow in Fig. 2.5. The exchange of material between two non-sister chromatids is
called a crossover event. After the third arrow in Fig. 2.5, we see four chromatids.
Two are identical to the one seen in the parent, but the other two are a mixture
of the two chromosomes in the parent. Notice an important feature of crossing
over: it allows each of the four gametes to be a mixture of the genetic material
inherited from two grandparents, either maternal or paternal. Thus meiosis is not
simply randomly choosing one of two parental chromosomes randomly but rather,
it allows for creation of additional genetic diversity by mixing of grand parental
information within a single chromosome. Each person inherits approximately 1/4
of their genetic material from each of their four grandparents.

In the second meiotic division, the chromatids are separated and the final cell
division forms two new cells around each chromosome, for a total of four haploid
gamete cells. By crossing over, each gamete cell contains a different chromosome,
however as a result of the first cell division, at each specific locus there are two
gametes with the same maternal allele and two gametes with the paternal allele. A
zygote requires one sperm and one ovum (egg cell); assuming that gametes unite
randomly to form zygotes, it is then clear that the transmission of each parental
allele occurs with probability 1/2 since the two alleles are represented equally in
the gamete cells.

Mendel’s law of independent assortment states that alleles at different genetic
loci are transmitted independently from one generation to the next. If they are on
different chromosomes, this is naturally the case since each pair of chromosomes
undergoes the process of meiosis independently. This creates a substantial amount
of genetic variation, even without crossing-over; with crossing-over, the possible
combinations are essentially infinite.

Crossovers are random events in the sense that they cannot be predicted with
certainty; however they do not occur uniformly or independently along the chro-
mosome. Rather, crossover rates can vary by sex, chromosomal region as well
as chromosome number, individual and temperature. Crossing over is relatively
rare at the centromere and at the ends of a chromosome. Interference can create
dependencies in the occurrence of successive crossovers. For example, the occur-
rence of a crossover in a region decreases the chance of a second crossover in
an adjacent region, nearly to zero if the regions are very close. Overall the entire
genome, the average number of crossovers is about 55 in males, and about 50%
greater in females. The average number of crossovers on a chromosome depends
upon its length. Thus despite the fact that crossovers do not occur uniformly, they
have served as a useful measure of distance for linkage mapping as described in
Chapter 5.

Crossovers are inherently unobservable, so we use the concept of recombination
to describe crossovers. If we obtain data at two or more loci on a parent and their
offspring, then we can infer something about crossovers occurring between the loci
provided the parent is heterozygous at the loci. Referring to Fig. 2.5, the parent
is heterozygous at three locations, with alleles Aa, Bb and Cc. The set of alleles
lying on the same chromosome is called the haplotype. Here the two haplotypes are
ABC and abc. Note that these haplotypes have been inherited from the two parents
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of the parent, i.e., the grandparents of the offspring whose gametes are displayed.
Suppose that the first gamete, abc, is inherited from the parent. There is no evidence
of crossing over here because one parental chromosome is identical abc, and the
other parental chromosome shares none of these alleles. In this case we say there
is no recombination between either the A to B locus, or the B to C locus (or A to
C either). Suppose the offspring inherits the second gamete, abC. In this case, the
offspring’s haplotype differs from either of the parent’s haplotypes, thus a crossover
must have occurred between the B and C locus, but not the A and B. Thus we say
no recombination has occurred between A and B, but a recombination occurred
between B and C.

There is not a one-to-one relationship between recombination events and crossing
over because recombination refers only to what can be observed between the two
specific loci, whereas crossing over refers to events that can occur anywhere in the
interval. If no crossover has occurred between two loci (as between the A and B loci
in Fig. 2.5) then we will not see a recombination. However, it is possible for two
crossovers to occur in an interval; in this case, we may see no recombinant between
two markers flanking the interval, i.e., there may be segments of grand-maternal
material at the ends of the interval, with grand-paternal material in the middle. The
formal definition of the recombination fraction θ is given by P(recombination occurs
between two loci).

Crossovers between two loci very close to one another are rare. In this case, the
probability of a recombination between the two loci is very small. For example in
Fig. 2.5, considering loci A and B, among the four gametes, we observe two ab
gametes and two AB gametes: thus among these gametes, the probability of A or
a (or B or b) is always 1

2 by Mendel’s law of segregation, but P(A allele and B
allele) = P(a allele and b allele) = 1

2 and P(A allele and b allele) = P(a allele
and B allele)= 0. This is contrary to what we would expect by Mendel’s law of
independent assortment, which would specify a probability of 1

4 for each of the four
possible gametes.

Between loci B and C, the situation is different because we observe a recombina-
tion. Again, among the four gametes, P(B) = P(b) and likewise for C and c, but now
P(b and c) = P(B and c) = P(b and C) = P(B and C) = 1

4 , which corresponds to
independent assortment. In general, the distribution of gametes over many meioses
will depend upon the number of crossovers between them. If the two loci are close,
θ is small, and the alleles at two loci tend to be inherited together, so that the law of
independent assortment does not hold.

The relationship between θ and the distribution of crossovers is given by
Mather’s law:

θ = (1 − P0)/2,

where P0 is the probability of zero crossovers. Mather’s law can be argued as fol-
lows. If there are no crossovers, P0 = 1, and there can be no recombination. With
probability (1 − P0), at least one crossover occurs. If at least one crossover occurs,
then the probability of a recombination is 1

2 , regardless of the number of crossovers.
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To see why, recall that crossovers cannot occur between sister chromatids, but only
between non-sister chromatids. It is easy to see from Fig. 2.5 that one crossover
will create two recombinant gametes and two non-recombinant gametes. With two
crossovers, the same two non-sister chromatids can be involved in both crossovers
(and the number of recombinant gametes is zero) or both sister chromatids of each
pair cross over once with their non-sister chromatids, in which case all four gametes
are recombinants. Since these two possibilities are equally likely, the average pro-
portion of recombinants is 1

2 . The last possibility, that one sister chromatid crosses
over twice with two different non-sister chromatids, gives 2 recombinant and 2 non-
recombinant gametes. It is straightforward to argue the probability of a recombinant
is also 1

2 for three crossovers, and so on.
If two loci are very far apart, there are likely many crossovers between them; P0

approaches one in the limit and the recombination fraction approaches 1
2 . The upper

limit of θ corresponds to what we might expect if two loci are on different chromo-
somes, since by the law of independent assortment, if the parent is heterozygous at
both loci, the four gametes will carry the four possible combinations, AB, Ab. aB,
and ab with equal probability.

2.4 Exercises

1. Verify lines 1–3 of Table 2.1 using Mendel’s first law.
2. Assume two genes with alleles A/a and B/b, controlling two different traits.

Assuming that Mendel’s second law holds (the alleles underlying the two dif-
ferent traits are inherited independently), and starting with the pure strains as in
Mendel’s experiments:

(a) Verify the 1:2:1:2:4:2:1:2:1 ratios for the 9 possible genotypes inferred in
the F2 generation.

(b) Verify the 9:3:3:1 ratio for 4 possible traits observed in the F2 generation.

3. In the early 1900s, scientists William Bateson and R. C. Punnett studied inher-
itance in two genes of Sweet Peas: one affecting flower color (P, purple, and p,
red) and the other affecting the shape of pollen grains (L, long, and l, round).
Capital letters denote dominant forms, as in Mendel’s paper. They crossed pure
lines PP · LL (purple, long) × pp · ll (red, round), and self-fertilized the F1
offspring Pp · Ll heterozygotes to obtain an F2 generation. The table below
shows the counts of each phenotype in the F2 plants.

Number of progeny

Phenotype (and genotype) Observed Expected from 9:3:3:1 ratio

purple, long (P/– · L/–) 4831 3911
purple, round (P/– · l/l) 390 1303
red, long (p/p · L/–) 393 1303
red, round (p/p · l/l) 1338 435

6952 6952
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(a) Verify the Expected column for testing goodness of fit to the 9:3:3:1 ratio.
(b) Show that the chi-square goodness of fit test exceeds significance.

Note: As a possible explanation for the lack of fit, Bateson and Punnett pro-
posed that the F1 had actually produced more P × L and p × l gametes than
would be produced by Mendelian independent assortment. Because these
genotypes were the gametic types in the original pure lines, the researchers
thought that physical coupling between the dominant alleles P and L and
between the recessive alleles p and l might have prevented their independent
assortment in the F1. However, they did not know what the nature of this
coupling could be.

(c) What is another possible explanation for lack of fit?

4. How many genotypes are possible with a 3-allele marker? With K alleles?
5. Early onset Alzheimer’s disease is very rare; for illustrative purpose, assume it

is 0.1% among adults aged 30-60. Rare variants in 3 genes, APP, PSEN1 and
PSEN2 have been identified as causing early onset AD in a dominant fashion,
with P(AD | any of the three variants) = 1. Early onset AD can also be caused
by head injury; many other non-genetic factors have been suggested. In a series
of 101 cases of early onset AD, only 7 (or approximately 7%) were found to
have these variants in APP, PSEN1 or PSEN2; that is, the attributable risk due
to the three rare variants is low. For simplicity, assume that the probability of
variants in these 3 genes is so rare that we can assume P(no variant in any
gene) ≈ 1. Let the disease allele D symbolize a variant in any one of the three
genes, d is no variant, and Y = 1 means AD present.
Estimate the probability of a phenocopy, P(Y = 1|dd) (also known as pheno-
copy rate) for these genes combined, using the data given and Bayes Rule.

6. Consider a recessive Mendelian disease, where in the population, P(an individ-
ual has 2 disease variants) = 0.000001.

(a) What is the probability that a randomly selected person is affected? Suppose
that the randomly selected person is affected. What does that imply about
the probability that their sibling is also affected (you can assume that having
either one or two parents with two variants is so rare that you can ignore
them)?

(b) Now answer both of these questions assuming the penetrance is only 1
2 , i.e.,

P(disease | 2 variants) = 1
2 , but the phenocopy rate is still zero.

7. Suppose we are dealing with a quantitative recessive trait, which is distributed
as N (μ, 1) when there are two variants, and N (0, 1) otherwise. Calculate the
probability that a randomly selected person with two variants has a trait higher
than a person with one or no variants, when μ = 0.5, and when μ = 2.

8. Suppose we observe a quantitative trait which seems to show variation in both
the mean and the variance as a function of genotype. Give one example of a
genetic model which allows for this.

9. One of the dichotomous traits that Mendel studied, length of plant stem, was
actually dichotomized from the measured length. He selected plants with a 6–7’
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long axis to have the dominant trait and plants with a 3/4′ to 1.5′ long axis to
have the recessive trait. Mendel commented that in fact, “. . .the longer of the
two parental stems is usually exceeded by the hybrid. . . Thus for instance, in
repeated experiments, stems of 1′ and 6′ in length yielded without exception
hybrids which varied in length between 6′ and 7.5′.” What would be an appro-
priate (non-deterministic) Gaussian penetrance function model for axis length
as a continuous trait? Mendel also noted that there is very little variation in
stem height within genotype class. What does that imply about your Gaussian
model?

10. Consider the Generalized Linear Model given in equation (2.3) Suppose you
wish to include covariates, such as sex or age. Suggest how you might do that
in the context of the GLM.

11. Verify the statement concerning two crossovers: If one paternal chromatid
crosses over twice with two different maternal chromatids, this gives 2 recom-
binant and 2 non-recombinant gametes.



Chapter 3
Some Basic Concepts from Population Genetics

The study of allele frequencies and how they vary over time and over geographic
regions has led to many discoveries concerning evolutionary history, migration,
gene flow, and the correlation between allele frequencies and disease rates across
populations. This chapter covers only a few concepts from population genetics,
emphasizing those most relevant to gene mapping: allele frequency estimation,
population substructure, Hardy-Weinberg Equilibrium (HWE) and Disequilibrium
(HWD), which are frequently used in the analysis of genetic data. Other concepts,
e.g., Linkage Disequilibrium and Linkage Equilibrium, will be introduced in later
chapters as the need arises.

3.1 Estimation of Allele Frequencies

Recall that each person has two copies of each autosomal chromosome, so at any
specific locus, each person has two alleles, one inherited from each parent. Consider
estimation of the population proportion of a particular allele, A, at a locus; for now,
we let all other alleles be denoted by ‘a’. The allele proportion in the population
is defined as the proportion of chromosomes carrying that allele, regardless of the
pairing within individuals. Suppose that we have a sample of size n from a pop-
ulation with a proportion, p, of A alleles. Then to estimate p, we simply count
the number of chromosomes carrying the A allele and divide by 2n, the number of
chromosomes. Box 3.1 illustrates this calculation.

Box 3.1 Calculation of Estimated Allele Frequencies from a Sample of
n Subjects

Genotype counts from the sample:

n AA = number out of n with genotype AA
n Aa = number out of n with genotype Aa
naa = number out of n with genotype aa

N.M. Laird, C. Lange, The Fundamentals of Modern Statistical Genetics,
Statistics for Biology and Health, DOI 10.1007/978-1-4419-7338-2_3,
C© Springer Science+Business Media, LLC 2011

31



32 3 Population Genetics

where n AA + n Aa + naa = n. The sample proportion of A alleles,

p̄ = (2n AA + n Aa)/2n, (3.1)

estimates the population proportion of A alleles. With a two allele system, the
proportion of a alleles is q̄ = 1 − p̄, as can be verified by exchanging a with
A in formula (3.1).

A comment on notation: It is typical in genetics to refer to p̄ as the ‘A allele
frequency’, even though it is a proportion, and frequency usually refers to a count.

Note that p̄ is an ordinary proportion, but the sample size is 2n, the number of
chromosomes. It is easily seen to be unbiased for the population frequency p pro-
vided we have a random sample with equal probability sampling, even if the sample
contains relatives. Equal probability sampling requires that everyone in the popu-
lation has the same probability of being included in the sample. In practice, what
we need is that the probability of selection into the sample does not depend upon
an individual’s genotype or any phenotype related to the genotype. For example to
estimate the 3 allele frequencies at the ABO blood group locus, we must genotype
sample individuals without regard to their blood group membership (A, B, AB or O).
However, the usual standard error for a proportion,

√
p̄(1 − p̄)/2n, may not hold

as this formula assumes independence of the 2n sampled chromosomes. We defer
discussion of this to Section 3.3 when we take up Hardy-Weinberg Equilibrium.
Extension to more than 2 alleles, say A, B, C, etc. is straightforward:

p̄A = (2n AA + n AB + n AC + ...)/2n, (3.2)

and similarly for p̄B , p̄C , etc. We leave as an exercise the estimation of allele fre-
quencies for loci on the X chromosome. Estimation of allele frequencies for the MN
blood group is illustrated in Box 3.2.

Box 3.2 Example – estimating allele frequencies for the MN Blood Group

An individual’s MN blood group is determined by a gene with two alleles,
M and N; they control the amount of M and N antigens on the surface of
blood cells. The data below come from two different samples of Eskimos in
Greenland. We use the data to estimate the M allele frequency.

Location MM MN NN Total p̄ q̄

South West Greenland 126 53 8 187 0.8155 0.1845
East Greenland 475 89 5 569 0.9130 0.0870
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For South West Greenland:

p̄ = (2 ∗ 126 + 53)/(2 ∗ 187) = 0.8165

q̄ = (2 ∗ 8 + 53)/(2 ∗ 187) = 0.1835 = 1 − 0.8165

East Greenland

p̄ = (2 ∗ 475 + 89)/(2 ∗ 569) = 0.9135

q̄ = (2 ∗ 5 + 89)/(2 ∗ 569) = 0.0870

Source: Fabricius-Hansen (1939), Ahrengot and Eldon (1952)

Allele Counting is sometimes used to refer to formula (3.1), and also more gen-
erally to a method of estimating allele frequencies when data on genotypes are not
available directly, but data are available on Mendelian phenotypes, such as ABO
blood types.

3.2 Population Substructure

We use the term population substructure loosely to refer to features of a popula-
tion which result in variation of expected allele frequencies across individuals in a
population. The estimate of allele frequency obtained by allele counting (formula
(3.1)) will still be an unbiased estimate of the population allele frequency in the
presence of population substructure, provided we have equal probability sampling
from the target population. However, the presence of population substructure can
mean that not all subjects have the same probability of being represented in the
sample, depending on how the sample is selected. If genotype frequencies differ
over subgroups and the sampling mechanism favors certain subgroups over others,
the sample estimate may be biased. Even if there is no bias, population substructure
will influence the variance of the estimate and affect the distribution of test statistics
that are computed based on allele frequencies. Problems associated with both bias
and variability in the test statistics, and methods for handling these problems will be
discussed in Chapter 8. Population substructure can also influence the distribution
of genotypes in the population. We now provide a brief overview of three common
types of population substructure.

3.2.1 Population Stratification

Population stratification is perhaps the simplest form of population substructure,
as it coincides with the intuitive notion that individuals in a population can be
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Table 3.1 Population Stratification. Distribution of albumin types among selected dog breeds and
mongrels. Source: Adapted from Christensen et al. (1985)

Genotypes
Frequency
of SBreed SS SF FF Total

Basset Hound 0 2 30 32 0.031
Beagle 3 14 52 69 0.145
Dachshund 2 8 26 36 0.167
Collie 2 21 18 41 0.305
Cocker Spaniel 7 24 20 51 0.373
Labrador Retriever 8 10 10 28 0.464
German Shepherd 36 47 23 106 0.561
Terrier, Tibetan 10 11 3 24 0.646
Newfoundland 35 33 3 71 0.725
Poodle 39 36 6 81 0.704
Boxer 54 14 1 69 0.884
Golden Retriever 53 3 1 57 0.956
Basenji 44 0 0 44 1.000
Other pure breeds 94 57 38 189 0.648
Mongrels 22 41 24 87 0.489

Total 399 321 255 975
Overall Gene Frequency ps = 0.574
Genotypic Frequencies 0.409 0.329 0.262

subdivided into mutually exclusive strata; within each strata the allele frequency
is the same for all individuals, but it varies between strata. Typically we assume that
the different strata represent different racial, ethnic and/or geographic subgroups.
Examples of population stratification are readily available from the plant and animal
breeding literature. For example, Table 3.1 shows the distribution of the slow allele
(S) at the albumin locus stratified by specific dog breed, pure breeds and mongrels.

3.2.2 Population Admixture

Population admixture refers to a situation where individuals in a population have a
mixture of different genetic ancestries due to the mixing of two or more populations
at a previous point in time. Most admixed populations are the result of a migration
of one or more population groups from specific regions into a different geographic
location with a previously settled population. If the allele frequencies differ in the
original ancestral populations, then the probability that an individual has a particular
allele depends upon the mixture of that individual’s ancestry. Population admixture
is a more realistic model for most modern population groups than is stratification.
A good example of an admixed population is the Gila Indian River Community, as
illustrated in Table 3.2.

Native Americans in the Pima and Papago tribes have different degrees of Amer-
ican Indian and European Hispanic ancestry. Of interest here is the distribution of
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Table 3.2 An Admixed Population: Native Americans of the Pima and Papago Tribes

Indian Heritage Gm3;5;13;14% % Diabetes*

0 65.8% 18.5%
4 42.1% 28.6%
8 1.6% 39.2%
∗ Age adjusted
Adapted from Knowler et al. (1988)

the Gm3;5,15,14 allele which lies on a locus of the human immunoglobulin G gene.
Table 3.2 shows allele frequencies and also the percentage with diabetes for the
adults in the population, stratified by the number of great grandparents with Indian
heritage. For those with the highest degree of Indian ancestry, the allele frequency
is almost zero, whereas it is almost 70% for those with no great grandparents with
Indian Heritage. Such a marker with strong differences among population subtypes
is called an Ancestry Informative Marker (AIM).

Note that the percentage of the population with diabetes shows a strong inverse
correlation with allele frequency. It is not uncommon to see variation in disease rates
across population strata of ancestry; when allele frequencies and disease rates are
correlated, as they are here, spurious associations between disease and marker can
occur if ancestry is not taken into account. This will be discussed in some detail in
Chapter 8.

3.2.3 Population Inbreeding

Population inbreeding occurs when there is a preference for mating among rela-
tives in a population or because geographic isolation of subgroups restricts mating
choices. In either case, there is the possibility that an offspring will inherit two
copies of the same ancestral allele. The inbreeding coefficient, denoted by F , is the
probability that a random individual in the population inherits two copies of the
same allele from a common ancestor. In large, randomly mating populations the
chances that any two mating parents have a common ancestor allele is low, hence F
is negligible and often considered to be zero. Inbred populations have non-negligible
inbreeding coefficients. At the extreme, self-breeding populations of plants have
inbreeding coefficients of one. To see why, consider a self-fertilizing plant with
two alleles. All offspring from this self-fertilizing plant have a probability of 1/2
of inheriting two copies of the same allele. In the next generation, this probability
increases to 3/4, and eventually one of the allele frequencies goes to 1 in these
plants. In real populations, it is difficult to estimate F exactly, as other phenomena
may mimic the effect of inbreeding. Inbred populations have higher than expected
frequencies of rare recessive disorders, because inbreeding tends to increase the
number of homozygotes in the population. These issues are discussed in subsequent
sections of this chapter.
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3.3 Hardy-Weinberg Equilibrium

In this section, we introduce the concept of Hardy-Weinberg Equilibrium (HWE).
If the conditions for HWE are met, the genotype distribution is defined by the allele
frequency. In many statistical applications, the presence of HWE simplifies the sta-
tistical theory and methods substantially and is, consequently, often assumed. We
provide here a derivation of the HWE-genotype distribution and discuss tests for
HWE as well as the effects of population substructure on HWE. We will consider the
Hardy-Weinberg principle for autosomal loci. For extensions to the X chromosome,
see Lange (2002).

In 1908, Godfrey Hardy and Wilhelm Weinberg independently derived a formula
relating allele frequency in parents to genotype frequency in offspring. There are
many assumptions required for the formula to hold: random mating, no inbreeding,
infinite population size, discrete generations, equal allele frequencies in males and
females, and no mutation, migration, or selection (meaning that certain alleles do
not confer a selective advantage or disadvantage in reproduction). Even though
none of these assumptions is likely to hold exactly in any population, the Hardy-
Weinberg principle often provides a good approximation for population genotype
frequencies.

Let p be the frequency of the A allele in a population satisfying the assumptions
given above. Then it is easy to show that the genotype frequencies in the offspring
after one round of random mating are given by:

P(AA genotype) = p2

P(Aa genotype) = 2pq

P(aa genotype) = q2

⎫
⎪⎬

⎪⎭
(3.3)

A population is said to be in Hardy-Weinberg Equilibrium (HWE) if the genotypes
in the entire population satisfy (3.3). Since (2p2 + 2pq)/2 = p, the frequency
of A allele among the offspring chromosomes is also p. Thus, with HWE, allele
frequencies will not change from generation to generation.

The proof of the HWE formula uses straightforward algebra and Mendel’s laws.
The simplest proof uses the distribution of alleles in gametes. Recall that gametes
are sex cells that have only one of each autosomal chromosome; in the formation
of gametes, each of the two parental alleles is equally likely to appear in a gamete,
hence the allele frequency among gametes is the same as the allele frequency among
chromosomes. The various population assumptions made for HWE imply that the
formation of a zygote (a fertilized egg cell) is equivalent to the random union of
two gametes, one from mother and one from father. Thus with random mating, the
probabilities of the number of A alleles in the offspring generation are given by the
binomial formula with probability equal to the A allele frequency and the number
of trials equal to 2. As a consequence, the number of A alleles in an offspring is
distributed as B(2, p). Further, the number of A alleles in a random sample of size
n from the population is B(2n, p). Thus an important consequence of HWE is that
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the formula for var( p̄) from a sample of size n is given by the simple binomial
formula, p̄q̄/(2n). Box 3.3 summarizes the basis for inference about p̄ when HWE
holds.

Box 3.3 Inference About allele frequencies in a sample from a population
in Hardy-Weinberg equilibrium

Let i index the individuals in a random sample of n independent individuals
from a population with allele frequency p; let Xi (i = 1, . . . , n) denote the
number of A alleles for the i th person in the sample and let X+ denote the
summation of Xi over all n individuals. Then we may rewrite p̄ as

p̄ =
n∑

i=1

Xi/2n = X+/2n.

Since each Xi is distributed as B(2, p), E(Xi ) = 2p, var(Xi ) = 2pq and
with a sample of independent individuals, X+ is B(2n, p). It follows that:

E( p̄) = E(X+)/2n = p,

and

var( p̄) = var(X+)/(2n)2 = pq/2n.

In large samples, p̄ is approximately N (p, p̄q̄/2n); large sample tests and
confidence intervals use this normal approximation. In particular, with large
samples, to test H0 : p = p0 at the α-level, we reject if the magnitude of

Z = √
2n( p̄ − p0)/

√
p0(1 − p0)

is greater than the (1 − α)/2 - percentile (Z(1−α)/2) of a standard normal
distribution. An approximate 100(1 − α)% confidence interval for the true
frequency is given by

p̄ ± (Z(1−α)/2))
√

p̄(1 − p̄)/2n.

The approximations are reasonably good for n p̄ ≥ 5 and n(1 − p̄) ≥ 5 for
levels of α close to 0.05. With smaller samples and smaller levels of α, exact
inference for p is based on the fact that X+ is B(2n, p). See Rosner (1994)
(Section 7.11) for example, for information on exact Binomial inference.

Note that there is no assumption made about the genotype distribution in the
parental population, only that the allele frequency is p. The parental population
need not follow HWE, that is, the genotypes in the parental population do not fol-
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low equation (3.3). However, HWE can be achieved in the offspring in only one
generation of random mating, provided the other conditions hold. HWE can also be
proved by explicitly considering an arbitrary genotype distribution in the parents,
still with allele frequency p, and showing that formula (3.3) holds for the offspring
distribution.

3.3.1 Testing for HWE

Tests of HWE are useful in a variety of settings; the basic idea is to compare the
observed genotypes in a sample with those which are expected if HWE holds.
We estimate the allele frequency from the observed counts using formula (3.1)
then the expected genotype counts using equation (3.3) where p̄ is substituted for
p. With large samples, we can compute the standard Pearson χ2 goodness-of-fit
test with 1 degree of freedom. Box 3.4 illustrates the calculation of the HWE
test.

Box 3.4 The Pearson goodness of fit test for HWE

H0 : HWE holds in the population.
HA : HWE does not hold.
Given a sample of size n from the population:

Genotype
AA Aa aa

Observed n AA n Aa naa n
expected n p2 2 n pq nq2 n

p = (2n AA + n Aa) /(2n)
G O Fχ2 =∑(O − E)2/E is distributed
as χ2 with one degree of freedom under H0,
where summation is over all 3 genotypes

Example: CCR-5 Deletion. CCR-5 is a chemokind receptor which is involved
in the human immune system. It enables the HIV virus to infect the CD4(+) T
cells in ‘normal’ individuals and is necessary for AIDS to develop. A deletion of
32 base pairs causes the coding of incorrect amino acids, leading to a disruption
of the normal functioning of the receptors. Because the mutation protects against
HIV, we might expect to see an excess of two deletions in a sample of AIDS-free
individuals. The data in Table 3.3 come from a study of 212 men who are free of
AIDS, after many years of exposure to the HIV virus. The chi-square test is not
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Table 3.3 Testing for HWE at CCR-5 locus in a sample of men at risk of HIV infection

Genotype

CCR5 Deletion ++ +− −− N

Observed 175 33 4 212
Expected 173 37 2 212

p̄ deletion = 0.097
G O Fχ2 = 2.46 p-value = 0.11

+ : Normal or wild type allele; − : Deletion

significant but the sample is small, especially the number of rare homozygotes; the
pattern of observed genotypes is consistent with the idea that AIDS free individuals
show an excess of two deletions.

Pearson’s chi-square test is a large sample test, and the usual recommendation
for its validity is that the expected value in each cell is greater than 5. An exact test
which is valid for small samples is based on the idea that the number of heterozy-
gotes will be either too big or too small if HWE fails. We can compute an exact
test of HWE based on the number of observed heterozygotes, conditioning on the
number of minor alleles that are observed (or on p̄) and using the resulting hyper-
geometric distribution. For the data set in the CCR-5 deletion, the exact p-value is
the same as the asymptotic one.

3.3.2 Some Causes of the Failure of HWE

Rejecting a test of HWE provides some evidence that HWE does not hold in the
population. The failure of HWE is referred to as Hardy-Weinberg Disequilibrium
(HWD). There are numerous reasons why HWE might fail, among them population
substructure, selection, and genotyping errors. In general, the rejection of the test
does not indicate a reason for failure, but there are some predictable patterns. As
mentioned earlier in this chapter, selection of the sample with regard to a pheno-
type associated with the genotype will likely distort the genotype distribution in the
sample. If a minor allele homozygous genotype infers greater risk of a disorder,
then a sample of subjects with the disorder should have more rare homozygous
genotypes, and correspondingly fewer heterozygotes than expected. In addition, the
variability of the sample proportion will not follow the binomial formula. The effect
of genotyping errors on HWE will be discussed in the chapter on genome wide
association studies.

Exactly what happens to the genotype probabilities and/or var( p̄) depends on
many features of the population, but the method of sampling and/or genotyping can
also affect whether or not HWE will hold in the sample. We will now show that with
population stratification and inbreeding, heterozygotes tend to be underrepresented
relative to HWE, and that var( p̄) is inflated. We build on the notation in Box 3.3 to
derive some general formulas. Let X be defined as the number of A alleles (as in
Box 3.3), except we drop the i subscript for simplicity. By definition,
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P(X = 0) = paa

P(X = 1) = pAa

P(X = 2) = pAA. (3.4)

It follows by definition that

E(X) = 2pAA + pAa = 2p

and

var(X) = 4pAA + pAa − 4p2. (3.5)

If we substitute formulas 3.3 for genotype frequencies under HWE into formu-
las (3.4) and (3.5), we find E(X) = 2p and var(X) = 2pq, as expected. We now use
the general formulas (3.4) and (3.5) to show what happens when we have population
stratification and inbreeding. Calculations for admixture are similar and will not be
shown here.

Population Stratification: Assume a population with K strata, with allele frequen-
cies pk , and strata frequencies sk , for k = 1, . . . , k. Table 3.4 gives the genotype
frequencies assuming HWE holds in each strata.

By definition, the allele frequency in the total population is

p =
K∑

k=1

sk pk,

and

P(X = 1) = 2
K∑

k=1

sk pkqk = 2
K∑

k=1

sk pk(1 − pk) = 2p − 2E(p2
k )+ 2p2 − 2p2

= 2pq − 2var(pk). (3.6)

Table 3.4 Genotype frequencies by strata in a stratified population

Genotype Frequencies*

Strata s p AA Aa aa

1 s1 p1 p2
1 2p1q1 q2

1
2 s2 p2 p2

2 2p2q2 q2
2

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

K sK pK p2
K 2pK qK q2

K
*Assuming HWE holds within each strata
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In a similar matter, using formula (3.5), we find that

var(X) = 2pq + 2var(pk).

Thus with a stratified population, var(X) is inflated relative to the binomial variance,
and the frequency of heterozygotes P(X = 1) is reduced relative to a population in
HWE. When var(pk) = 0, the allele frequencies do not vary over strata, and there
is no variance inflation.

Population Inbreeding: With inbreeding, there is a positive probability that an
individual inherits the exact same A (or a) allele from both parents, meaning the
parents have a common ancestor. Since the inbreeding coefficient, F , is defined as
the probability that a randomly sampled individual will inherit the same copy from
both parents, with inbreeding, we have

P(AA) = P(X = 2) = Fp + (1 − F)p2

P(Aa) = P(X = 1) = 2pq(1 − F)

P(aa) = P(X = 0) = Fq + (1 − F)q2. (3.7)

Note that E(X) = 2p, but there is a deficit of heterozygotes relative to HWE
because (1 − F) is less than one, and further,

Var(X) = 4[Fp + (1 − F)p2] + 2pq(1 − F)− 4p2 = 2pq(1 + F),

is inflated relative to the variance of a HWE population. This deficit of heterozy-
gotes (Loss of Heterozygocity (LOH)) due to population substructure (stratification,
admixture and/or inbreeding) is known as the Wahlund effect. For statistical tests
or models that assume HWE in their variance calculations, the Wahlund effect can
lead to bias and incorrect inference.

3.3.3 Measuring the Departure from HWE

We have seen that the observed number of heterozygotes tends to be too small by a
factor of (1 − F) with inbreeding. Under the simple inbreeding model for P(Aa)
given in formula (3.7), an estimate of the inbreeding coefficient is given by

F̂ = 1 − O/E,

where O is the observed number of heterozygotes, and E is the expected number of
heterozygotes calculated for the test of HWE. With inbreeding, F̂ should be positive
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since we expect to observe fewer O than E . For the simple model of population
stratification given above, F̂ also can be shown to estimate the correlation between
maternal and paternal alleles induced by population stratification (See exercise 12
of Section 3.4). Box 3.5 illustrates the calculation of the coefficient of inbreeding
for two samples from Table 3.1.

Box 3.5 Estimation of the Inbreeding Coefficient

The coefficient of inbreeding can be estimated from observed genotype fre-
quencies in a sample to describe the degree of inbreeding and/or population
stratification and admixture in a population. We consider two samples from
Table 3.1:

Bassett Hound O = 2 E = 32 ∗ 2(0.98)(.02) F̂ = 0.51

Tibetan Terriers O = 10 E = 24 ∗ 2(0.64)(.36) F̂ = 0.096

Note that the F allele has disappeared from the Basenji breed, at least in the
sample reported in Table 3.1.

3.4 Exercises

1. The allele frequency at a locus on the X chromosome is defined as the pro-
portion of the X chromosome alleles carrying the A variant. Given a random
population sample, tell how to estimate the A allele frequency at a locus on the
X chromosome. Assuming HWE holds, what is the variance of the estimated A
allele frequency and how would you estimate the variance?

2. Assume you observe that the proportion of a population affected with sickle
cell anemia is 0.01. Assuming an autosomal recessive disease model and HWE,
estimate the frequency of the sickle cell mutation at the hemoglobin locus in this
population.

3. Construct a chi-square test using the data on MN Blood Group Frequencies
from Greenland to test the null hypothesis that the genotype distributions are
the same in the two regions.

4. Assume a rare recessive Mendelian disease caused by a mutation with minor
allele frequency p in a population of size N . How many cases of the disease do
you expect when HWE holds? How many do you expect when the inbreeding
coefficient in the population is F and the genotype frequencies are given by
formulas (3.7)? Evaluate these expectations when p = 0.0001, N = 106 and
F = 0.2.

5. Assume the genotypes AA, Aa and aa have frequencies u, v and w in a ran-
domly mating population. By considering all possible outcomes of all possible
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mating types, show that the offspring genotypes follow HWE with the same
allele frequencies in both generations.

6. Test HWE for the MN blood group locus separately in the Southwest and the
East Greenland samples.

7. Assume that HWE holds at the MN blood group locus for both the Southwest
and the East Greenland samples. Use a large sample test to test the null hypoth-
esis that the allele frequencies in the two populations are equal; defend your
choice of test.
Hint: Consider testing the difference in two binomial proportions given two
independent samples.

8. Of the different dog breeds given in Table 3.1, calculate F for the Mongrels,
the ‘Other pure breeds’, and the Basenji. Comment on the different values. Why
might you expect F for Basenji to be one? Why is F for the ‘Other pure breeds’
combined higher than F for Mongrels?

9. Show that the Pearson Goodness of Fit chi-square test for HWE has only one
degree of freedom by showing that:

(a) the three (O − E) residuals sum to zero and
(b) the two homozygote residuals are equal.

10. Verify that Var(X) = 2pq + 2Var(pk) for a stratified population.
11. Use equations (3.4–3.5) to derive an estimate for Var( p̄) that does not assume

HWE.
12. Show that when random mating fails, Var(X) = 2pq(1 + p), where p is the

correlation between maternal and paternal alleles.



Chapter 4
Aggregation, Heritability and Segregation
Analysis: Modeling Genetic Inheritance
Without Genetic Data

Aggregation and heritability analyses are designed to show that diseases, or
phenotypes more generally, have a genetic basis by investigating patterns of pheno-
typic correlation between relatives; segregation analysis is used to find support for
a specific genetic model underlying the inheritance patterns observed in families.
They all involve modeling phenotypic data on families, or pedigrees, without using
any genetic data. As such, all were developed during the time when genotyping was
expensive, labor intensive, and not widely available. Today, the general concepts
used in aggregation and heritability analysis are widely accepted as useful measures
of the degree to which traits are inherited; most researchers would not undertake
genetic analysis without evidence of aggregation or heritability of the trait. Using
segregation analysis to determine the model of inheritance at the disease locus was
essential in planning parametric linkage analyses, as described in Chapter 6, but
the current popularity of non-parametric linkage analysis and association analysis
has put segregation analysis somewhat on the sideline. Although this chapter can be
skipped if the reader’s primary interest is association, our coverage of these methods
is brief and the concepts are useful to anyone with an interest in statistical genetics.
In particular, the approach used to construct a likelihood for pedigree data given in
Section 4.1 serves as a basis for other analyses in linkage and association discussed
in later chapters.

In general, we will refer to a disease gene when the trait or phenotype of interest
is dichotomous, e.g., affection status, as a Disease Susceptibility Locus or DSL. For
phenotypes and traits that are measured on a quantitative scale, the corresponding
genetic locus is typically called quantitative trait locus or QTL. For either trait/gene
type, statistical models can be used to estimate the genetic effect sizes of the loci
and understand their mode of inheritance, even without having genotypic data avail-
able. We can assess the evidence for the presence of a disease gene purely based on
phenotypic data from related individuals, using the concepts underlying Mendel’s
Laws and the statistical models for the penetrance functions.

Aggregation Analysis (for dichotomous traits): By estimating the correlation or
similarity of a phenotype among family members, one can assess whether a phe-
notype aggregates in families. While a positive result of an aggregation analysis
confirms the plausibility of a disease gene, it cannot rule out common environmental
effects within families as the origin for the observed correlations. With dichotomous
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traits, family samples are ordinarily ascertained by at least one affected individ-
ual (the proband), i.e., probands are selected by choosing those individuals with
Y = 1. As a result, the distribution of phenotypes in the sample does not reflect
the population and it is not possible to unbiasedly estimate correlations directly
from the sample. We will introduce a measure closely related to the correlation,
the recurrence risk ratio, and illustrate its properties by examining how it depends
on the underlying disease model parameters, i.e., the penetrance probabilities, the
mode of inheritance and the allele frequencies, as well as the degree of relatedness.
To become more familiar with the statistical models and their ‘mechanics’, we use
simple algebra to derive the recurrence risk ratio as a function of the population
attributable fraction, which is a commonly used measure of effect size for dichoto-
mous traits.

Heritability Analysis (for quantitative traits): Similar in character to aggregation
analysis, the goal of heritability analysis is to estimate the overall genetic effect of
the quantitative trait. This effect is defined as the proportion of the total variability
in the phenotype explained by variation in all loci underlying the qualitative trait.
This proportion is typically referred to as heritability. Samples drawn from a popu-
lation without regard to their phenotype are referred to as not ascertained. In these
samples, the heritability can be estimated by examining the phenotypic correlations
between relative pairs in pedigrees. This concept will be illustrated with examples.

The last step in the analysis sequence is typically Segregation Analysis. By
examining the inheritance patterns of the disease phenotype and the transmission
of disease from one generation to the next generation within one family, a formal
statistical model is fit to the observed pedigree data, generally using maximum like-
lihood theory. The likelihood function depends on the Mendelian transmission prob-
abilities and the unknown disease parameters, e.g., minor allele frequencies of the
disease susceptibility loci, the penetrance probabilities and the mode of inheritance.
Various likelihood models, e.g., different mode of inheritance, number of disease
loci, are estimated and compared. In the case of nested models, likelihood-ratio
tests are used to compare the model fit. For non-nested models, standard model
comparison/selection criteria such as AIC or BIC are used (Burnham and Anderson
2004). Besides the formal statistical test for the presence of a disease gene or QTL,
the importance of segregation analysis stems from the parameter estimates for the
disease that we acquire by fitting the likelihood models. A segregation analysis pro-
vides estimates for the number of possible loci, their penetrance probabilities and
their allele frequencies. Estimates for these parameters will be required later on for
parametric linkage analysis of genetic data.

4.1 Preliminaries

Underlying all of the methods discussed in this chapter is the need to describe the
joint distribution of phenotypes and genotypes of individuals in a family, taking into
account a disease model and their sharing of the disease alleles. In this section, we
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describe the general approach, and apply it in the following sections. For simplic-
ity, we will assume a nuclear family with two parents and two offspring (siblings),
but the general approach extends readily to more complex pedigrees. Let D and
d denote the disease and non-disease (sometimes called wild type) alleles, respec-
tively, and let p denote the frequency of the D allele in the population. We denote
an individual’s genotype by the number of disease alleles, i.e., each individual’s
genotype can take on the values 0, 1, or 2, depending on the number of disease
alleles, dd, d D, or DD. Let X1, X2, P1 and P2 denote the genotypes of the two
siblings (X j ) and the two parents (Pi ), for i, j = 1, 2. Following convention, the
capital letters denote random variables, and the lower case denotes the values that
the random variables take on.

It is conventional to specify allele frequencies and use them to calculate geno-
type frequencies assuming Hardy-Weinberg Equilibrium holds in the population.
Assuming HWE allows us to show that for any individual in the population, parent
or child, the probability of having 0, 1, or 2 alleles is B(2, p), or equivalently, each
allele inherited from a parent is independent with P(D allele) = p. As discussed in
Chapter 3, this is a rather restrictive assumption, but modest departures are unlikely
to have much effect in the likelihood calculations we discuss. Assuming HWE also
implies random mating, so that the parental genotypes are independent, i.e.,

P(P1 = g1, P2 = g2) = f (g1, g2) = f (g1) f (g2),

where f (.) denotes a probability density function, either joint or marginal, i.e.,

f (gi ) = P(Pi = gi ),

and gi is the genotype of the i th parent. Assuming only two alleles at the DSL, we
can let the range of both x j and gi be 0, 1, 2, denoting the number of D alleles
that each individual in the family has. Further, the genotypes of the offspring are
independent conditional on the parental genotypes, and each follows Mendel’s first
law. Thus we have the joint distribution of genotypes in the family is given by

f (x1, x2, g1, g2) = f (x1|P1, P2 = g1, g2) f (x2|P1, P2 = g1, g2) f (g1) f (g2),

(4.1)
where the conditional density functions for X1 and X2 are completely known and
given by Mendel’s first law (Table 2.1). Note that although X1 and X2 are con-
ditionally independent given parents, marginally they are not, i.e., f (x1, x2) does
not factor when we sum equation (4.1) over g1 and g2. As we show, the lack of
unconditional genotypic independence induces correlations among the phenotypes
of siblings.

In this chapter, we assume that no genotype data are observed; rather we work
with the joint distribution of phenotypes in a family summing over the unobserved
genotypes. For simplicity, we make the assumption of phenotypic independence.
Phenotypic independence implies that the phenotypes of individuals in the pedi-
gree are independent of each other, given their genotypes. This is a reasonable
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assumption for Mendelian disorders or monogenic disorders, with a single DSL and
limited environmental effects. For complex disorders with multiple DSLs and envi-
ronmental factors, it is desirable to use more complex models, which take into con-
sideration shared environmental factors. We also make the commonly used assump-
tion that, conditional on an individual’s genotype, their phenotype does not depend
on the genotype of any other family member. Letting Y j denote the phenotypes for
the two offspring, j = 1, 2, we thus have, for example

f (y1, y2|x1, x2, g1, g2) = f (y1|x1) f (y2|x2). (4.2)

Finally then, the probability density for the offspring phenotypes and genotypes,
and the parental genotypes is:

f (y1, y2, x1, x2, g1, g2) = f (y1|x1) f (y2|x2) f (x1|g1, g2) f (x2|g1, g2) f (g1) f (g2).

(4.3)

In order to obtain the density of just the observed offspring phenotypes, f (y1, y2),
we sum equation (4.3) over all possible genotype values of both offspring and par-
ents; see for example equation (4.5).

4.2 Aggregation Analysis

Aggregation analysis is based on the principle that the genetic material within a
family is inherited following Mendel’s laws. Consequently, two related individu-
als are likely to share more genetic material at any given locus than two unrelated
individuals from the general population. For example, letting a mother’s two alleles
be A1 and A2, when we consider two full siblings, the probability that they share
the same maternal allele is P(both sibs inherit A1) + P(both sibs inherit A2) =
( 1

2 ∗ 1
2 ) + ( 1

2 ∗ 1
2 ) = 1

2 . The same holds for the sharing probability of the paternal
allele, i.e., two siblings share the paternal allele with probability 1/2, hence the
probability of two sibs sharing both parental alleles is 1/4. Similar calculations
can be done for more distant relative pairs (See Appendix A). If the phenotype
of interest has a genetic component, the relative of an affected subject will have a
higher predisposition to disease than an unrelated subject in the general population,
because of the shared genetic material among relatives.

The strength of the genetic aggregation among relatives is generally measured
by the recurrence risk ratio. It is defined as a probability ratio which compares
the probability of a study subject being affected given that a relative is affected to
the general risk in the population. The general risk in the population is commonly
referred to as the population prevalence of the disease, and denoted by K . For the
relative of an affected individual, the recurrence risk ratio is thus:

λR = P(Y2 = 1|Y1 = 1)/K , (4.4)
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where R denotes the relative type, and the variables Y1 and Y2 are the affection
status of the two relatives, where Y = 1 denotes affected and Y = 0 denotes
unaffected and

K = P(Y1 = 1) = P(Y2 = 1).

Note that we are assuming a very simple model which implies that P(Y = 1) =
K regardless of age, relative order (i.e., parent versus child) and any non-genetic
effects. These assumptions are not unreasonable for Mendelian disorders present
at birth, but for more complex disorders, this analysis is only approximate. As an
exercise (exercise 2 of Section 4.5) you are asked to derive the connection between
the recurrence risk ratio and the covariance between the two relatives’ phenotypes,
i.e., cov(Y1,Y2).

For any given disease, in this simple case the recurrence risk ratio depends only
on the degree of relatedness of the two relatives, the underlying genetic model and
p. For example, we expect that first degree relatives (siblings, parent-offspring pairs)
will have a larger recurrence risk ratio than will second or third degree relatives, or
mother/father pairs, who will share no genetic material in the absence of inbreeding.
Of course monozygotic (MZ) twins should have the highest recurrence risk ratio
since they share all of their genetic material, while dizygotic (DZ) twins should have
recurrence risk ratios similar to siblings. Table 4.1 illustrates recurrence risk ratio
estimated from a sample of families with members affected with schizophrenia. As
expected, the risk ratio is highest for relative pairs sharing the most alleles.

To study the dependence of the recurrence risk ratio on the disease model, the
recurrence risk ratio has to be expressed as a function of the penetrance probabili-
ties and the allele frequency at the DSL. In order to keep the algebraic derivations
simple, we will focus here only on the sibling recurrence risk ratio, i.e., disease
sharing among a pair of siblings, and assume only one DSL. As in Chapter 2, the
set of penetrance probabilities is denoted by f0, f1 and f2. These penetrance proba-
bilities determine the probability of offspring disease status, given their genotypes,
X1 = x1 and X2 = x2:

f j = P(Y j = 1|X j = x j ) for x j = 0, 1, 2.

The recurrence risk ratio can be re-written by including the unknown genotype data
of the siblings and the parents in the joint probability, summing over all unknown
genotype configurations and then using Bayes rule to re-express the conditional
probability P(Y2 = 1|Y1 = 1) in terms of the joint probability P(Y1 = 1,

Table 4.1 Observed recurrence risk ratios from a sample of families with schizophrenia. Source:
Risch (1990a)

Risk Ratio λO λS λM λD λH λN λG λC
Observed 10.0 8.6 52.1 14.2 3.5 3.1 3.3 1.8

Definitions of subscripts: O = offspring; ; S = sibling; M = MZ twins; D = DZ twins;
H = half-sibs; N = niece/nephew; G = grandchild; C = first cousins.



50 4 Modeling Genetic Inheritance

Y2 = 1) and the marginal probability P(Y1 = 1). The recurrence risk ratio can
thus be written as

λS = P(Y1 = 1,Y2 = 1)/P(Y1 = 1)2.

By definition, the numerator can be expressed as:

∑

x1,x2,g1,g2=0,1,2

P(Y1 = 1,Y2 = 1, x1, x2, g1, g2)

=
∑

g1,g2=0,1,2

f (g1) f (g2)

⎡

⎣
∑

x1=0,1,2

fx1 f (x1|g1, g2)
∑

x2=0,1,2

fx2 f (x2|g1, g2)

⎤

⎦ (4.5)

where f (gi ) is given by HWE for i = 1, 2 and gi = 0, 1, 2; f (xi ), i = 1, 2 are the
penetrance functions for the two siblings, and f (xi |g1, g2 ) is defined by Mendels’
law. The denominator can be expressed as:

K 2 =
⎡

⎣
∑

x=0,1,2

P(Y = 1|x) f (x)

⎤

⎦

2

=
[

f0(1 − p)2 + f12p(1 − p)+ f2 p2
]2
.

(4.6)

For simple Mendelian models, fx will be zero for x = 0 and possibly x = 1 as well,
hence many terms drop out of the summation. Thus given values for the penetrance
functions and the allele frequency, the recurrence risk ratio is easily computed.

Table 4.2 illustrates how these formulas are used in the calculation of the joint
probabilities of a pair of relative genotypes. From Table 4.2 we see that the P(pair
of offspring genotypes) is given by

P(OG) =
∑

all mating types

P(MT )P(OG|MT ).

Thus, for example P(DD, Dd) = 1
2 (4p3(1 − p)+ 1

4 (4p2(1 − p)).

Table 4.2 Calculation of parent-offspring genotype distribution for a pair of siblings

Mating type (MT) P(MT ) Offspring genotypes (OG) P(OG|MT )

DD x DD p4 (DD,DD) 1

DD x Dd 4p3(1 − p) (DD,DD) (DD,Dd) (Dd,Dd) 1
4 , 1

2 , 1
4

DD x dd 2p2(1 − p)2 (Dd,Dd) 1

Dd x Dd 4p2(1 − p)2 (DD,DD) (DD,Dd) (DD,dd) 1
16 , 1

4 , 1
8

(Dd,Dd) (Dd,dd) (dd,dd) 1
4 , 1

4 , 1
16

Dd x dd 4p(1 − p)3 (Dd,Dd) (Dd,dd) (dd,dd) 1
4 , 1

2 , 1
4

dd x dd (1 − p)4 (dd,dd) 1
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4.2.1 Estimating Recurrence Risk Ratios

Table 4.1 illustrates estimates of recurrence risk ratios derived from data on families
where schizophrenia is segregating. Recurrence risk ratios such as those shown in
Table 4.1 can be estimated from pedigrees or using a standard case-control study
of familial risk. A sample of unrelated cases and unrelated controls are obtained,
and disease history is evaluated for all relatives, most commonly first degree rela-
tives. Where possible, actual clinical diagnoses are obtained for relatives. To obtain
recurrence risk ratios for MZ or DZ twins generally requires data from twin reg-
istries. Analyzing the cases and controls separately we can obtain estimates of the
sibling risk quite simply as the proportion of affected siblings among all siblings
of case probands, and likewise for the control probands. We denote these propor-
tions as scase and scontrol. Then scase/K estimates λS for siblings. In the absence
of knowledge of K for the population, we can use scase/scontrol to approximate
λS when disease is rare (so that scontrol is approximately K ), however, Javaras
et al. (2010) have shown how K can be estimated from the data in the sample. The
analysis we have described is very simple and intuitive but does not allow for adjust-
ing for variable age at onset or environmental factors. For discussion on estimating
recurrence risk ratios, see Guo (1998) or Laird et al. (2000a).

Several studies of familial aggregation were used to justify genetic studies of
Alzheimer’s disease. The recurrence risk ratio in first degree relatives has variously
been reported to be between 1.05 and 2–4, but it depends considerably on age-at-
onset, with some studies showing almost no increased risk to relatives at very late
age of onset.

4.2.2 Further Simplifications

To derive simpler expressions for λR that are a function only of allele frequency, we
consider recessive, dominant and additive models, which have the property that it
is only necessary to define f0 and f2, as then f1 is automatically determined. For
a recessive model, f1 = f0, for a dominant model, f1 = f2 and for the additive
model, f1 = ( f0 + f2)/2. A measure that is commonly used to obtain standardized
genetic effect sizes that can be compared across genetic models is the attributable
fraction (AF). The attributable fraction assesses the genetic effect relative to the
disease prevalence and is defined by

AF = (K − f0)/K = 1 − P(Y = 1|no risk alleles)/P(Y = 1),

Thus the AF defines the proportion of disease caused by having at least one disease
allele. For diseases which have no genetic basis, this proportion will be zero, while
for Mendelian disorders which arise solely as a result of mutations at the DSL (thus
f0 = 0), this proportion will be one. The attributable fraction and the prevalence
are generally more intuitive parameters and easier to specify than the penetrance
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functions. If we keep the prevalence (K ) and the attributable fraction (AF) fixed
we can replace f0 and f2 (and also f1) in the expression for λS , allowing us to
re-express λS as a function of AF and p only (see exercise 4 of Section 4.5). As a
result, for the three models, we have

Recessive mode of inheritance:

λS = 1 − (3p + 1)(p − 1)

4p2
AF2,

Dominant mode of inheritance:

λS = 4p(p − 2)2 + AF2
(
4 − 11p + 10p2 − 3p3

)

4p (2 (1 − AF(1 − p))− p)2
,

Additive model:

λS = 4p + AF2(1 − p)

4p
[
1 − AF(1 − p)

]2 .

In general, under all genetic models, the recurrence risk ratio will increase with
increasing values for the attributable fraction AF and with decreasing values for the
disease allele frequencies p. Intuitively, if the disease allele is very common, then
unrelated individuals may share the disease allele with high frequency, but with a
rare disease allele, only relatives are likely to share.

The sibling recurrence risk ratio varies qualitatively in its dependence on the
disease allele frequency under the different genetic models. To illustrate, we assume
a monogenetic disease with no phenocopies, i.e., f0 = 0, which means that there is
only one DSL, and no environmental causes of disease. The absence of phenocopies
implies that the attributable fraction AF reaches its maximum value of 1. Since the
additive model is not plausible for most monogenetic diseases with high penetrance
probability, we will restrict the considerations here to the dominant and recessive
model. The sibling recurrence risk ratios under the recessive and dominant mode of
inheritance are given by (see exercise 5 of Section 4.5):

λS = 1
4 + 1

2p + 1
4p2 ,

λS = 1
4 − 3

2p + 5
4p2 + 1

p3 .

When the disease allele frequency is low, the effect of allele frequency on λS is
dominated by the term with the highest power of p in the denominator. Thus under
a dominant model, the ratio increases at a rate of 1/p3 when the disease allele fre-
quencies become small. Under the recessive model, the ratio increases with 1/p2.
This illustrates that the recurrence risk ratio will be a powerful tool to confirm the
existence of DSLs for monogenetic diseases with very small minor allele frequen-
cies, and small disease prevalence. This will work best under a dominant mode of
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inheritance. This dependence of the recurrence risk on the mode of inheritance and
the disease prevalence is also reflected in Fig. 4.1. Here the sibling recurrence risk
ratio is displayed as a function of K for a variety of diseases. Figure 4.1 also shows
the limitation of the recurrence risk ratio as a tool for inference about existence
of disease genes. While all monogenetic diseases have high recurrence risk ratios,
regardless of their mode of inheritance, the risk ratio for the complex diseases are

Fig. 4.1 Recurrence risk ratios for Mendelian and non-Mendelian diseases. Relation between dis-
ease incidence and relative incidence in sibs of affected individuals for a number of diseases. The
lines indicate the expected relationships for simple dominant, simple recessive and Edwards (1963)
approximation to multifactorial inheritance (Newcombe 1964)
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relatively small which will make it difficult to distinguish genetic effects from envi-
ronmental correlation between the two siblings.

4.3 Heritability Analysis

We assume here that the trait of interest is measured on a quantitative scale, i.e.,
height, weight, blood pressure, etc. Using quantitative phenotypic data on relatives,
heritability analysis assesses the overall genetic component of a quantitative trait,
relative to the total observed phenotypic variation of the trait. In the model for the
recurrence risk ratio (dichotomous traits), we assumed the presence of one disease
gene. Under a recessive or dominant genetic model, Fig. 4.1 suggests that this is a
plausible assumption for many rare diseases that exhibit Mendelian inheritance pat-
terns. However, for common diseases and more generally, quantitative phenotypes,
the single disease locus assumption is generally considered to be less plausible and
the inheritance patterns of disease within pedigrees support the hypothesis of multi-
ple genes acting jointly. Thus quantitative traits are typically modeled as a function
of multiple QTLs. Additionally, environmental variables can easily be incorporated
as in linear regression models, but we omit this complexity here. A quantitative
phenotype Y can thus be modeled quite generally by

Y = μ+
∑

m=1,..,M

{am Xm + dm I [Xm = 1]} + ε, (4.7)

where M is the unknown number of QTLs, Xm denotes the number of disease alleles
at the i th disease locus, and I [Xm = 1] is an indicator function which is 1 if Xm = 1
and 0 otherwise. The parameter μ is the phenotypic mean for individuals who have
no disease alleles at any loci (Xm = 0 for all i); am and dm are parameters which
partition the genetic effect at the mth QTL into its additive and codominant compo-
nents. The additive effect is simply the increase in Y expected from increasing the
number of disease alleles by 1. The codominant component is here understood as
the departure of the model from the additive mode of inheritance. This formulation
of the mode of inheritance includes all previously discussed genetic models. For
example, if dm = 0, the additive mode of inheritance is obtained at the i th QTL.
For a dominant or recessive mode of inheritance, the parameter dm is set to −am or
am , respectively. For monotone penetrance functions, (−am < dm < am), for am

positive, and the reverse for am negative.
The random variable ε incorporates unspecified environmental/non-genetic influ-

ences on an individual’s trait into the model. Typically, ε is assumed to be normally
distributed with mean 0 and variance σ 2. We also often make the assumption of
phenotypic independence, i.e., cor(Yk,Yl) = 0, conditional on the genotypes of the
subjects k and l at all M QTLs, although with normally distributed phenotypes, it
is easy to introduce phenotypic correlation. As in previous sections, the Xms are
treated as independent, unobserved random variables, whose distribution is defined
by HWE using the allele frequency pm at each QTL.
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In order to assess the overall genetic contribution to the variation in the phe-
notype, the variance of the phenotype is partitioned into a genetic part and a non-
genetic part.

Var(Y ) = Var(G)+ Var(ε)+ 2Cov(G, ε)

where Var(G) = Var(
∑

m=1,..,M (am Xm + dm I [Xm = 1])). In a heritability anal-
ysis, one typically assumes that the covariance between the genetic effects and the
environment is zero, i.e., Cov(G, ε) = 0. While this assumption is not true in gen-
eral, it is a reasonable hypothesis in heritability analysis, when the goal is to assess
the genetic contributions to the overall variation of the phenotype. In terms of the
proportion of explained phenotypic variation, the genetic main effects are typically
much larger than gene-environmental interactions, i.e., Cov(G, ε) is small compared
to Var(G). The broad-sense heritability of a trait is defined as the proportion of the
overall phenotypic variation in the trait that is attributable to genetic components,
e.g.,

Var(G)/Var(Y ).

Based on statistical models used in animal and plant genetics that predict the sub-
ject’s phenotype conditional on the parental phenotypes, the genetic variance can
be partitioned into the Additive Genetic Variance VA and the Dominant Genetic
Variance VG (Falconer and Mackay (1996)):

Var(G) = VA + VD

VA =
∑

m

2pm(1 − pm)(am + dm(1 − 2pm))
2

VD =
∑

m

(2pm(1 − pm)dm)
2 (4.8)

where pm denotes the minor allele frequency of the mth marker. It can be shown that
the additive genetic variance is a function of the average effect of the parents’ genes
on the offspring’s phenotype (the ‘breeding value’ in animal and plant genetics) and
that the additive genetic variance can be estimated based on the parental pheno-
types ( Falconer and Mackay (1996)). With the exception of situations in which the
mode of inheritance is assumed to be heterozygous advantage (i.e., dm is outside the
range (−am, am)), the dominant genetic variance is relatively small compared to the
additive genetic variance and it is often reasonable to assume that the total genetic
variance Var(G) is approximately equal to the additive genetic variance.

This leads to the definition of the narrow sense heritability (h2)which is based on
the additive variance. The narrow sense heritability (h2) is defined as the proportion
of the phenotypic variance that is explained by just the additive genetic effects,

h2 = VA/Var(Y ).
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As indicated above, the advantage of the narrow sense heritability is that it can
be directly estimated from the phenotypic data on relatives. We illustrate this feature
in Box 4.1 by using trios, i.e., nuclear families with one offspring and both parents,
to estimate the narrow-sense heritability.

Box 4.1 Estimation of h2 Using Parent-Child Trios

Assuming that we have phenotypic data on both parents, we define the mid-
parental value of the trait, YP as the average phenotypic value of the two
parents; we let YO denote the phenotype of the offspring. We correspond-
ingly let X P denote the average of the two parental genotypes, and X O be
the genotype of the offspring. We assume that the genotype probabilities for
each parent are independently distributed as B(2, p); the probabilities for each
child’s genotype, conditional on the parents, are given by Mendel’s law. In the
first step, we derive the covariance between the offspring phenotype and the
mid-parental phenotype, assuming for simplicity M = 1 and d = 0. In the
following derivations, we provide the results of each intermediate step. The
algebraic derivation of each step is a homework assignment. It is straightfor-
ward to see that for any member of the trio,

E(YO) = E(YP ) = E(aX O) = μ+ 2ap,

and

VA = var(aX O) = 2a2 p(1 − p).

By properties of the covariance function, we have

Cov(YO ,YP ) = a2cov(X O , X P ) = a2[E(X O X P )− 4p2].

Tedious algebra using Mendel’s laws shows that cov(X O , X P ) = p(1 − p)
and thus

Cov(YO ,YP ) = a2 p(1 − p) = VA/2.

This implies that the phenotypic covariance between the offspring and the
mid-parental value is half the genetic variance VA. Since this covariance and
the phenotypic variance can be estimated based on the corresponding empiri-
cal estimators, Cov(YO ,YP ) and Var(YO), an estimator for the narrow-sense
heritability is given by

h2 = 2Cov(YO ,YP )/Var(Y ) = 2ρ,

where ρ is the correlation between YO and YP .
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Table 4.3 Familial correlations for body mass index derived from four large family studies. Source
Coon et al. (2007)

Relationship Framingham Canada fitness Quebec family Norway
heart study survey survey study

Spouses 0.19 0.12 0.10 0.12
Parent-Offspring 0.23 0.20 0.26 0.24
Uncle/Aunt-

Nephew/Niece 0.08 −0.11 0.14 0.00
Grandparent-

Grandchild NA 0.05 NA 0.07
Dizygotic Twins NA NA 0.34 0.20
Monozygotic Twins NA NA 0.88 0.58

For other relative pairs, similar estimators for the narrow heritability h2 can be
derived using the sample variances and covariances. A detailed discussion of other
relative pairs and the corresponding estimators is provided by Falconer and Mackay
(1996). It is important to note that the heritability estimate depends on the allele
frequency of the disease allele and the strength of the environmental component ε.
Since both quantities can be population-specific, the heritability h2 can vary among
populations and change even within one population over time, as allele frequen-
cies vary and environmental influences alter. Heritability does not depend upon
the degree of relationship between pairs of relatives, although correlation between
relative pairs does. Phenotypes that show high genetic heritability in humans are
variables such as height, weight, cardiac QT interval and gene expression profiles.
Table 4.3 illustrates variability in correlations across populations for body-mass
index (BMI). While there are certainly differences between the four populations,
their relative differences are small, suggesting a common genetic component for
this trait in these populations.

4.4 Segregation Analysis

The idea of segregation analysis is to test and to compare different statistical models
formally, using phenotypic data on related individuals, with the goal of identifying
the genetic model that describes the data ‘best’. Genetic model is here understood
to incorporate the number of DSLs (or QTLs) and mode of inheritance. Likelihood
models are constructed that explain the phenotype or trait as a function of the unob-
served disease genes or QTLs, and the ascertainment condition. The models contain
as unknown parameters the penetrance probabilities (or functions) of the disease
genes and the frequencies of their disease alleles. Using maximum likelihood esti-
mation, different models are fit to the data and formally compared by likelihood
ratio tests or by model selection criteria such as AIC, BIC, etc. The model with the
‘best’ fit is then used to provide insight into the number of the underlying disease
loci/QTLs and their mode of inheritance. As before, the genotype data are unknown,
and must be summed over to form a likelihood. As a consequence, maximum
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likelihood estimation can be computational intensive. One of the important features
of segregation analysis is that it provides estimates for the unknown penetrance
probabilities and allele frequencies. Since these parameter estimates are required for
parametric linkage analysis, segregation analysis often played an important role in
the process of mapping disease genes using parametric linkage analysis. A detailed
discussion of segregation analysis is beyond the scope of this book; we focus here
on special simple cases that illustrate the general principle. In our discussion we will
focus on Mendelian diseases.

4.4.1 Segregation Analysis for Dominant Mendelian Diseases

Mendelian Diseases are often rare diseases that are caused by one or a small number
of mutations. Their inheritance and features can best be studied by examining the
transmission paths of the disease through multi-generational pedigrees. See Box 4.2
for an explanation of symbols used in drawing pedigrees. In general, one assumes
that the frequency of the disease susceptibility allele is small for a rare disease.
As a consequence, with a dominant disease, the frequency of the rare homozygous
genotype P(DD) is so small that its appearance in affected individuals is consid-
ered to be negligible, i.e., all affected individuals are Dd. To keep the consider-
ation simple, we will assume that the gene causing the disease is fully penetrant
(P(Y = 1|d D) = Pr(Y = 1|DD) = 1) and that there are no phenocopies, i.e.,
Pr(Y = 1|dd) = 0, thus the genetic model is completely known.

Box 4.2 Conventions for Drawing Disease Pedigrees

Males are denoted by squares
Females are denoted by circles
Affected probands are shaded
Left-shaded individuals are carriers, i.e., they carry the D allele, but are not
affected themselves
Parents are connected by horizontal lines
Offspring are connected to parents via vertical lines
Double horizontal line represents a consanguineous mating (inbreeding)

Figure 4.2 shows an example for a pedigree with an autosomal dominant disease.
The following features that can be observed in Fig. 4.2 are typical patterns of fully
penetrant dominant diseases:

1. All affected individuals will have at least one affected parent. Since one copy
of the disease allele is sufficient to trigger the disease, the parent who passes on
the disease allele to the offspring also has to be affected. The disease appears in
every generation.
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Fig. 4.2 Autosomal dominant inheritance. Source: Adapted from Thomas (2004)

2. Offspring of two unaffected parents are also unaffected. Given the full-
penetrance of the disease susceptibly allele D and the absence of phenocopies,
being unaffected implies that a subject cannot be a carrier of the disease suscep-
tibly allele D and, consequently, cannot pass on the disease to its offspring.

3. Males and females are affected equally, and both transmit the disease to the off-
spring. Since the disease locus is based on one of the autosomal chromosomes,
gender cannot affect the inheritance of the disease.

Given these characteristics and assuming no phenocopies and a fully penetrant
DSL, it is easy to test statistically for the presence of a dominant effect, by com-
paring the likelihood for a dominant Mendelian disease to the likelihood of a more
general model. For some of the mating types (e.g., dd × dd), the affection status
of the offspring can be predicted with 100% certainty; such mating-types will not
be informative for the analysis. Mating types for which the phenotypic outcome in
the offspring cannot be predicted with certainty are referred to as segregating mat-
ing types versus non-segregating mating types where the outcome in the offspring
is deterministic for a given mating type. The mating of 2 unaffected parents will
always result in an unaffected offspring and the mating type of 2 affected parents is
very rare. These 2 mating types will therefore be ignored in the analysis.

The only common mating type for which the phenotypic status of the offspring
cannot be inferred based on the parental affection status is the mating between an
affected parent and an unaffected parent. Assuming that the disease allele frequency
is rare, the only common genotype combination for this mating type that is consis-
tent with the parental affection status is the mating between an affected heterozy-
gous parent (Dd) with an unaffected homozygous parent (dd). Thus we assume
the parental genotypes are known. If the dominant model is true, then probability
of being affected for an offspring of this mating type is 50%. For the segregating
mating type Dd × dd, we can construct the likelihood of the observed data, by
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identifying all mating types (Dd × dd) in the nuclear families of each pedigree in
the sample. Let n denote the total number of offspring combined over all (DD×Dd)
mating types and n A denote the number that are affected. Since we condition on
known parental genotypes, the genotypes and thus phenotypes (assuming pheno-
typic independence) of offspring are independent, and the log-likelihood function
of the data is

n A log pA + (n − n A) log(1 − pA),

where the parameter pA denotes the probability of being affected given that the
parental genotypes are Dd × dd. Under the null-hypothesis of a dominant model,
the probability pA will be 0.5. Under the alternative hypothesis, we can estimate
pA by

p̂A = n A/n.

A likelihood ratio test of the null hypothesis, here dominant Mendelian inheritance
versus an arbitrary transmission probability, is constructed by taking twice the natu-
ral logarithm of the ratio of the two likelihoods, one calculated under the alternative
and the other under the null hypothesis. In this case, the likelihood ratio test com-
paring the dominant model to the unrestricted model is given by

2(n A log p̂A + (n − n A) log(1 − p̂A)− n A log(1/2)− (n − n A) log(1/2)),

which is chi-square distributed with one degree of freedom under H0: dominant
mode of inheritance.

The Sickling Trait: The approach to testing for a simple Mendelian dominant mode
of inheritance can be illustrated by an application to the autosomal dominant sick-
ling trait discussed in Chapter 1. Recall that the sickling trait simply means that an
individual’s red blood cells can be made to sickle; these individuals do not neces-
sarily have sickle cell disorder. Figure 4.3 shows a pedigree with the sickling trait
segregating, i.e., some family members have the sickle cell trait (S) while others
do not (N ). Assuming that the DSL is very rare implies no DD individuals in the
sample. This allows us to infer the genotype of each family member in this pedigree
based on the phenotype absence or presence of sickling cells. Family members who
express the sickle cell trait must have the heterozygous genotype. Normal probands
without sickling cells have the common homozygous genotype. In the pedigree in
Fig. 4.3, we observe 4 informative matings between a sickle-cell carrier and nor-
mal subjects. There are 23 offspring originating from these 4 matings; 11 subjects
express the sickle cell trait, while 12 subjects are normal. When we compute the
likelihood ratio test that is discussed above, we obtain a p-value of 0.42%, providing
no evidence for rejecting the null-hypothesis of a fully penetrant dominant disease
model.
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Fig. 4.3 Sickle cell pedigree. Source Taliaferro and Huck (1923)
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4.4.2 Segregation Analysis for Recessive Mendelian Diseases

The analysis of a recessive Mendelian trait is much more difficult than the dominant,
because even with the rare disease assumption, no phenocopies and full penetrance,
it is not always possible to identify an unaffected individual’s genotype. This inher-
itance mechanism is illustrated in Fig. 4.4.

Under a recessive model, assuming the absence of phenocopies, two copies of
the disease allele are required in order for the subject to be affected. However an
unaffected individual can either be Dd or dd. Under a recessive model, the most
common segregating mating type is Dd × Dd. Based on Mendelian transmission,
it is easy to see that 25% of the offspring of such mating-types will be affected
and 75% will be unaffected. However, the parental mating type Dd × Dd cannot

Fig. 4.4 Recessive autosomal inheritance. Source: Adapted from Thomas (2004)
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be inferred based on the parental phenotypes. The phenotypes of this mating type
are two unaffected parents; this is also consistent with the dd × dd and d D × dd
mating type. Another possibility is to include the ascertainment condition into the
likelihood computation. The inclusion of the ascertainment condition, i.e., at least
one affected offspring, into the likelihood function requires specifying both the
penetrance probabilities and the disease allele frequency. Even assuming known
Mendelian penetrance functions, we must specify allele frequency and sum over
possible mating types. Thus, the computation of the likelihood ratio test for the
recessive model is considerably more complicated.

However, in some cases, the heterozygous genotypes can be actually observed,
e.g., subjects with one copy of the disease allele develop a milder or different form
of the disease, the previous analysis can still be applied. One example for this is
Thalassemia, an inherited blood disorder, similar to sickle cell, which results in a
reduced rate of synthesis in one of the globin chains that make up hemoglobin.
There are two forms of the disease, a mild form and a severe form. Figure 4.5 (see
exercise 14 in Section 4.5) contains a set of pedigrees with both forms of the disease.
In this pedigree, cross hatch indicates a deceased person whose affection status is
unknown, males are indicated by the Mars symbol and females are indicated by the
Venus symbol. The other arrows in the pedigree denote probands. Individuals with
the severe form of the disease are denoted by black circles, while the mild form is
indicated by half-solid circles. This enables identification of the genotypes of all
individuals in the pedigree in this special case. Exercise 14 of Section 4.5 discusses
a test of the recessive model for this blood disorder.

4.4.3 Summary

As these segregation analyses show, even in the simplest Mendelian recessive
model, a segregation analysis is not straightforward. When we relax the assump-
tions on full penetrance and phenocopies, and a single DSL, not only are there
more unknown parameters to estimate, but the inability to condition on a known
or inferred parental genotype makes computation of the likelihoods very complex
because of the need to sum over parental and offspring genotypes. In a traditional
linkage analysis, one would first carry out a segregation analysis, estimating the
parameters of the best fitting model, and use them in the linkage analysis. Non-
parametric versions which do not require the specification of a genetic model, avoid
the necessity for a segregation analysis, and are more popular for complex diseases.

4.5 Exercises

1. Using formula (4.5) and Table 4.2 in the text, give the probability of a family
having two affected sibs, assuming an autosomal recessive mode of inheritance,
with disease allele frequency p, and HWE. Use this to calculate the sibling
recurrence risk ratio.
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Hint: most of the mating types will have a zero probability of an affected off-
spring and can be ignored.

2. Assuming the dichotomous disease model, with Y1 and Y2 being two relatives
with relatedness R, show that

(a) Cov(Y1,Y2) = P(Y1 = Y2 = 1)− K 2.
(b) express λR as a function of the covariance and K .

3. Why might we expect the recurrence risk ratio in DZ twins to be the same as it
is in siblings? In Table 4.1, the observed recurrence risk ratio for DZ twins is
bigger than that for siblings. Any possible explanation for that?

4. Verify the expression given in the text for λS as a function of allele frequency
and Attributable Fraction (AF) for the recessive mode of inheritance.

5. Verify the expression given in the text for λS when AF = 1.
6. Verify the first three equations in Box 4.1.
7. Assuming only one disease gene (M = 1), no phenotypic correlations and no

dominance, show that heritability (h2) can be estimated by the correlation of
MZ twins. Hint: X1 = X2 for MZ twins.

8. If a trait measured in monozygotic twins has a correlation of 0.8, then what is
the heritability (h2) of the trait? Hint: use the result of question 7.

9. Assuming the model used in Box 4.1, give the estimated heritabilities for
BMI from the four studies in Table 4.3. Do the non-zero correlations observed
between spouses support the assumptions of our model?

10. From the results of homework 7 and 9, estimate the heritabilities from the Nor-
way and Quebec data in Table 4.3 based on MZ twins. Are the heritabilities
consistent with those estimated from parent/offspring pairs?

11. Based on your knowledge of Mendelian inheritance of traits, answer the fol-
lowing questions:

(a) If a child has an autosomal dominant trait, what can you say about the
parents?

(b) Can autosomal dominant traits skip generations?
(c) If two parents have an autosomal recessive trait, what can you say about their

children?
(d) Can autosomal recessive traits skip generations?
(e) If only one of the two parents has an autosomal recessive trait, what can you

say about their children?

12. The above answers to question 11 about inheritance can be used to help
analyze pedigrees. For each pedigree below, tell if the trait can be autoso-
mal dominant or autosomal recessive (a pedigree can be consistent with both
modes of inheritance, or neither). If the pedigree cannot fit a mode of inheri-
tance, tell why. In your answer, refer to specific individuals in the pedigree by
number.
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Pedigree A:

1 2

4 73 5 6 8

9 1110 141312

1615 17

Pedigree B:

65 83
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11 13 14
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9 10

1 2

Pedigree C:
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117 98 10

Pedigree D:

4 53 87 9
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13 1514
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1 2

Pedigree E: 
1 2

4 5 63

9 13

7

8 10 1411

15 16

12

1917 2018

Pedigree F 
21

4 63 75

8 9 10 1211

13. Refer to pedigree D in question 4.12. Use segregation analysis to test if the
disease is consistent with an autosomal dominant disorder. To do so,

(a) Identify all mating types between an affected and an unaffected parent. How
many are there?

(b) Count all of the offspring from these matings. How many are affected?
(c) Use either a Pearson goodness-of-fit chi-square or a likelihood ratio test to

formally test H0 model of inheritance is autosomal dominant (fully pene-
trant) versus an unrestricted model.

Note, the sample size is really too small here. In practice you would want to
combine with other pedigrees.

14. Refer to the pedigrees in Fig. 4.5 showing the segregation of mild and severe
forms of thalassemia. Because the genotypes of every subject can be identified
by their phenotype, all segregating mating types can be used to test if the severe
form of thalassemia is an autosomal recessive, fully penetrant disorder.

(a) Note that for the severe form, only 5 pedigrees are segregating. Which are
they?

(b) What is the mating type of the parents of all of the affected offspring in every
pedigree? Why do you think there is no DD × Dd mating type?

(c) Estimate the proportion affected from the 5 segregating mating types. What
if you omitted the one segregating mating type that has no affected off-
spring? Would your estimate be unbiased? Explain.

(d) Use these four families to test if thalassemia severe form is an autosomal
recessive disorder (likelihood ratio or goodness-of-fit).
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THE SEGREGATION
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Fig. 4.5 Thalassemia pedigrees, Source: Neel and Valentine (1947)



Chapter 5
The General Concepts of Gene Mapping:
Linkage, Association, Linkage Disequilibrium
and Marker Maps

5.1 Introduction

In the absence of genetic data at the molecular level, the results of heritability,
aggregation and/or segregation analysis provided the first hints about the presence
of genetic effects and, consequently, the existence of a disease gene. Without infor-
mation on the etiology of the disease or gene functionality, the next natural question
is: ‘Where is the disease locus located in the genome?’ Although disease genes have
now been located for most very rare Mendelian disorders, the search for the genomic
location of disease genes for complex disorders has proven to be a difficult task.

This chapter provides an overview of basic gene mapping techniques. Gene map-
ping refers quite generally to the concept of localizing areas of the genome that
harbor disease genes or loci, positioning genes at specific locations on the genome,
but our focus here is on linkage and association mapping which are two commonly
used statistical methods for finding disease genes. We begin with an overview of
the concepts of linkage and association mapping, leaving the technical details of the
statistical analysis to later chapters. We then formally define Linkage and Linkage
Disequilibrium (LD) as well as measures of LD, followed by considerations of map
distance and types of marker maps. Finally, we give a brief overview of the Human
Genome and HapMap projects which have provided genetic information on markers
used to facilitate mapping.

In the best case scenario, a gene mapping approach will be able to identify dis-
ease genes (DSLs) that are in the proximity of the genetic markers selected for
analysis. Study subjects have to be ascertained so that the non-random relationship
between the proband’s phenotype and its genetic information at the DSL extends
to the neighboring genomic area where known markers are available. The mapping
technique should be designed so that the area which surrounds the DSL and in which
the DSL is ‘visible’ contains at least one genotyped genetic marker which will allow
detection of the DSL by a suitable statistical analysis method.

With the exception of a few specialized methods, the minimal genomic distance
required to permit a mapping technique to detect the presence of a nearby disease
gene depends upon the relatedness or the similarity of the study subjects. For study
subjects that are first or second degree relatives, the genetic signal is detectable

N.M. Laird, C. Lange, The Fundamentals of Modern Statistical Genetics,
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with markers even relatively far away from the disease gene and hence only a small
number of genetic marker loci may be needed to cover all the area of interest. This
is the basis of linkage analysis. The other extreme is to recruit ‘unrelated’ study
subjects. In this case, the genetic signal can be observed with marker data only in
very close proximity to the disease gene. While this requires a much larger number
of genetic markers to cover the same genomic region, the advantage of this approach
will be a more precise estimate of the genetic location of the DSL or the disease
gene. This is the basis of association mapping.

The range of detection of genetic effects is determined by recombination events.
If the marker locus and the DSL are so far apart that recombination events must
have happened with 50% probability in each family member, the genetic signal will
not be visible at the marker locus. Besides physical distance, the other factor that
influences the likelihood of recombination events between individuals in one given
pedigree is their degree of relatedness. These factors can intuitively be understood
by looking at Fig. 5.1, which illustrates the concept of Linkage and its relationship
to Linkage Disequilibrium (LD).

Figure 5.1 shows the inheritance of chromosomes over many generations and
the changes in the chromosomes due to crossovers. Note that the top three rows
of the figure depict three generations of individuals who are closely related, i.e.,
grandparent, parents and grandchildren. The last row shows individuals who are
cryptically related in the sense that they share a common ancestor. The concept of
linkage is illustrated in the first three rows. In the first generation, the two chromo-
somes of a single grandparent are illustrated, one white chromosome that carries a
common allele at the DSL and one black chromosome, with a cross denoting the

Fig. 5.1 Linkage, association, and linkage disequilibrium
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location where a disease variant is located. The second line illustrates the chromo-
somes that were created during meiotic cell division, when the chromosomes of that
parent were copied and transmitted to the next generation. Due to the presence of
crossovers during meiosis, parts of the two chromosomes will be exchanged and the
resulting chromosomes transmitted to the second generation consist of mixtures of
the two (black and white) parental chromosomes.

If we assume for simplicity, that the disease has a dominant Mendelian inheri-
tance, i.e., one copy of the ‘cross’-allele will cause the disease and that there are no
phenocopies, the grandparent and all offspring in both subsequent generations that
carry a ‘cross’-allele from the black chromosome will be affected; those without
the ‘cross’-allele will not be. In this case, the DSL is said to be ‘segregating in the
family’. A linkage gene mapping approach can now be constructed by assessing
recombination events between a known genetic marker and the DSL. The ‘cross’
allele is inferred from the disease phenotypes. Suppose we observe a marker at the
top end of the chromosome. The figure shows no crossovers and thus no recom-
binations between the top of the chromosome and the ‘cross’ for all three affected
individuals in the second generation (parents). In the third generation, we see cross-
ing over (depending on the exact location of the marker) in only three out of seven
affected individuals. In general, if the marker locus is close enough to the disease
locus, we expect to see little or no crossing over or recombination between the two
markers, i.e., the recombination fraction θ will be close to its minimum of zero.
Now consider a marker at the bottom end of the chromosome. Three of the four
offspring in the second generation are recombinants, suggesting that the probability
of recombination, θ is large. If the marker locus is far away from the disease locus,
the transmission of the alleles originally on the black chromosome at the marker
locus will not be correlated with the inheritance of the disease and we should see
the recombination fraction reach its upper limit of 50%.

Disease-mapping approaches that use the joint transmission of affection status
and alleles at the marker locus to localize the disease gene are called Linkage Anal-
ysis. The term linkage refers to the failure of Mendel’s second Law of independent
assortment; or more specifically, the situation where the recombination parameter
θ < 1

2 between two loci. Two loci are said to be unlinked if θ = 1
2 , and corre-

spondingly, Mendel’s second law of independent assortment holds. Formally, to test
for linkage, the null hypothesis is H0 : θ = 1

2 (or equivalently, no linkage) and the
alternative hypothesis is H0 : θ < 1

2 (or equivalently, linkage is present).
With a large number of offspring in a segregating family, it is possible to obtain

statistically significant results in only one family, as illustrated in Fig. 5.2. This fig-
ure shows the reconstructed transmissions in a pedigree used to demonstrate linkage
of early onset AD to the APP gene. Seven genetic markers, including one in the APP
gene which is not the DSL, were genotyped in 13 offspring of two brothers with
early onset AD. The absence of any recombination between the four markers shown
in Fig. 5.2 in the genetic material transmitted from the two brothers to their six
affected offspring suggests that all of the four loci and the DSL are closely linked,
but it does not permit pinpointing the location of the DSL (now known to be in
the APP gene). However, the two recombinations between the two markers D21S1
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Fig. 5.2 Pedigree in which early-onset AD is apparently inherited as an autosomal dominant dis-
order. Females are denoted by circles and males by squares; a slash indicates deceased individuals
with no genotype data. Triangles used in the last generation preserve anonymity. In generation 2,
the spouses of the affected brothers are sisters. Samples were available from the 13 individuals
whose chromosomes are illustrated, from a further 19 children and spouses of these individuals
and from 7 more distantly related unaffected individuals. Beneath the pedigree are ideograms of
the pair of chromosomes for each individual of the third generation, at four loci on the long arm
of the chromosome. The linkage data suggest that the black portions of the chromosomes were
inherited from the affected fathers. Source: Goate et al. (1991)

and D21S17 (whose locations were known) and the DSL in two of the unaffected
offspring strongly implicates the region between D21S1 and D21S17 as the site of
the DSL. This illustrates that it can be easy to detect linkage, but difficult to be
precise about the location of the DSL.

Linkage analysis relies on looking at transmissions of genetic material from par-
ent to offspring over 1–2 generations. In this time frame, only a few recombinations
can occur between linked loci. And only a few markers are needed to cover a large
region. This is one of the key advantages of linkage analysis and one of the reasons
for its popularity during the ‘early’ days of gene mapping, when it was only pos-
sible to genotype a handful of marker loci across the human genome. At that time,
genotyping more than 20–40 marker loci per chromosome would have been very
costly and practically not feasible for most genotyping laboratories. At the height of
its popularity, linkage scans of the entire genome used only 400–800 markers.

In samples of unrelated subjects, the ‘genetic signal’ of the disease gene/DSL has
a much shorter range in which it can be detected at marker loci, if the genetic variant
is old, i.e., it occurred for the first time many, many generations ago. Figure 5.1 can
also be used to illustrate this property as well. Two ‘unrelated’, affected subjects
whose disease is triggered by the same genetic variant may have had a common
ancestor many generations ago in whom the disease mutation initially occurred,
making them cryptically related. In Fig. 5.1, the white and black chromosome in
the first line can now be considered as the pair of chromosomes from the common
ancestor in whom the disease variant (cross allele) occurred for the first time. The
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Fig. 5.3 Distinguishing linkage from association. Source: Courtesy of Professor Lyle Palmer

last line in Fig. 5.1 shows a population of ‘unrelated’ study subjects whose dis-
ease chromosomes originated from the common ancestor with the original disease
mutation. Due to the numerous recombination events that took place during the
meiotic cell divisions between the generations (middle part of Fig. 5.1), the origi-
nal chromosomes of the common ancestor have been divided many times and the
majority of its parts have been replaced by other copies of the same chromosomal
segment. As a consequence, the black areas around the original disease mutation
that have remained unchanged are much smaller now, naturally reducing the range
in which the genetic signal can be detected. The genetic marker loci have now to be
very close to the disease mutation in order to identify the disease gene. However,
any markers in the black regions surrounding the ‘cross’ allele at the bottom of the
Fig. 5.1 have the important property that they share the same ancestral allele. That
is, each diseased person shares the ancestral disease allele at the ‘cross’ location,
and they also have the same allele at any marker in the black area surrounding the
‘cross’ allele. In other words, two particular alleles, one from each locus, tend to
appear together on the same haplotype in a population. This concept is illustrated
in Fig. 5.3 which shows three markers with alleles A,a and C,c and D,d, and a DSL
with disease allele B transmitted in three different families. All of the three markers
are linked to the disease locus because the same alleles are being transmitted within
families at all four locations. However, only the ‘C’ allele is transmitted with the
‘B’ allele in every family. Thus the A and D loci are linked, but only the ‘B’ and ‘C’
alleles will be associated with each other at the population level.

Constructing a Mapping Approach using Unrelated Individuals: Since genetic
data on other family members is not available in this context, it is not possible to
assess whether the disease locus and a marker locus are physically linked, i.e., the
transmissions of alleles at the two genetic loci occur together, or independently. A
different mapping concept has to be employed here. Rather than examining recom-
binations, one relies on the concept of indirect association. The genotype at the DSL
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and the phenotype of the study subjects will be associated, possibly following one
of the genetic models discussed in Chapter 2. The genetic association will also be
visible between the marker and the phenotype if a particular allele at the genetic
marker tends to appear together on the same gamete with the disease allele at the
disease locus. This latter concept, the association of alleles at two loci, is referred
to as linkage disequilibrium (LD). The term allelic association is also sometimes
used to denote the association of alleles at two loci. The absence of association
between two genetic loci is referred to as linkage equilibrium (LE). If the marker
locus and the DSL are in LE, the phenotype will not be associated with the geno-
type at the marker locus and, consequently, the ‘genetic signal’ is not detectible
at the marker locus. An observed association between a genetic marker locus and
the phenotype of interest suggests the existence of a DSL which is in LD with the
marker. This is the basis of association mapping. As depicted in Fig. 5.3, in linkage
analysis we are only concerned with alleles at two loci being transmitted together
from parents to offspring; the particular allele at the marker which is transmitted
with the disease variant is irrelevant, and in general will be different for different
families. In association mapping, our interest is in the specific alleles associated
with disease; except for selected family designs, information on the transmission of
alleles from parents to offspring is not used in an association analysis. If the alleles
at marker and the disease locus are in LD, an association between phenotype and
marker locus can be observed. The marker locus can be used to test for association,
but the particular allele associated with the disease may not have any meaningful
biological interpretations.

5.2 Genetic Markers and Marker Maps

Regardless of which approach we will select for our analysis, linkage or association,
we cannot be successful without marker loci that are sufficiently close to the disease
gene. Sets of genetic markers that cover the entire human genome are therefore
required. In the very early years of gene mapping, marker loci were usually pheno-
types such as blood groups which followed simple Mendelian inheritance patterns.
However, advances in technology led to the development of tools to obtain direct
information on DNA sequences at the molecular level which could be positioned
on a map of the genome. Today the term maker locus is generally taken to refer
to data on DNA at a specific location in the genome. The creation of marker maps
showing the location of genetic markers was non-trivial. Even until the 1980s, it
was only possible to genotype a small number of genetic locations and to identify
their locations on the human genome, i.e., to place a marker locus on a particular
chromosome, or, even more challenging, to identify its position on the chromosome.
The difficulties of mapping a marker locus to a specific location on the human
genome originate directly from the genotyping process itself, in which enzymes
break down the double-helix structure of each chromosome into much smaller
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parts which are then selectively amplified in order to make the genetic information
accessible.

However, one side effect of this process is that, while the genetic information
contained in a small DNA fragment can be identified (so that genotypes can be
constructed), the knowledge about its location in the human genome is lost during
the genotyping process itself, and must be recovered by a mapping process. As we
discuss in the next chapter, the principles of linkage analysis were utilized to identify
which markers were in close proximity/linkage with each other and to place them
in the proper order on the chromosome. Only with the completion of the human
genome project, which provided the sequence for the entire genome, was it finally
possible to position markers more precisely to their exact location on a map of the
chromosome without having to rely on linkage analysis.

Gene mapping requires a notion of distance between two genetic loci, as well as
a map which can show the location of known genetic loci. The two most commonly
used measures of distance and their associated maps are genetic (or linkage) and
physical. A linkage map shows the relative positions of genetic loci on a chro-
mosome as determined by the recombination fraction between them. The unit of
distance in a linkage map is based on Morgans or centimorgans (cM), which mea-
sures the expected number of crossovers between two loci per gamete. Although
originally proposed by Morgan as a measure of distance, the recombination fraction
itself is not a particularly useful measure of distance because its maximum is only
1
2 . Further, it has little information about the number of crossovers between two loci
unless it is the distance is very small and there is likely only zero or one crossover.

Haldane devised a map function to transform θ into a distance measure by using
the assumption that the number of crossovers follows a Poisson distribution with
mean 2L. Recall that there are four gametes produced from two pair of sister chro-
matids. One crossover between two non-sister chromatids produces two gametes
with a crossover, and two without, hence distance, say L, measured in expected
number of crossovers per gamete is

L = E(# crossovers)/2

or

E(# crossovers) = 2L .

Thus, letting X denote the number of crossovers,

P(X = k) = e−2L(2L)k

k!
for k=0, 1, . . .. Hence

P(X = 0) = e−2L .

However, we saw in Chapter 2 that

θ = (1 − P0)/2,
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where P0 was defined as P(X = 0). Substituting e−2L for P0 and solving for L, we
find that Haldane’s measure of distance is given by

L = −[ln(1 − 2θ)]/2.
Here L is measured in Morgans, so if θ = 0.01, then L = 0.0101M or approximately
1 centimorgan (cM). Note that L is approximately equal to θ , when θ is small. For
small values of θ , Morgan suggested simply using θ to measure distance in Morgans,
i.e., L = θM, so that distance in centimorgans is L = 100θcM. Despite the fact the
distribution of the number of crossovers in not well captured by a Poisson, because
of interference and a varying probability of crossover over the genome, the Haldane
map has many good features. For example, a measure of distance should be zero
when θ is zero, but essentially infinite when θ is 1

2 . In addition, the distance from A
to C should be the sum of the distances from A to B and B to C if marker order is
A, B, C (See exercise 10 of Section 5.7). Many mapping functions with different
properties have been suggested for transforming the recombination fraction into
Morgans or centimorgans (e.g., Morgan, Haldane, Kosambi, etc.). Most of them
give very similar distances in cM for small values of θ (say < 0.1), but differ for
larger values. A very important feature of linkage maps is that they are all monotone
in θ . Thus as θ increases, so does the distance in cM. This point has relevance for
distinctions between linkage mapping and mapping based on LD.

A physical map gives the locations of identifiable landmarks on DNA (e.g.,
chromosomal bands, restriction-enzyme cutting sites, genes, etc.). For the human
genome, the lowest-resolution physical map (apart from the long and short arms
of the chromosomes themselves) is the banding patterns on the 24 different chro-
mosomes; the highest-resolution map is the complete nucleotide sequence of the
chromosomes. When loci are close, we usually measure their distance in base
pairs. There are approximately 1,000,000 base pairs (bp) in one centimorgan, cM.
Table 5.1 shows the estimated lengths of the chromosomes in both cM and Kb.
There is generally good agreement with the rule of 1 cM = 106 bp. Note that the
expected number of crossovers ranges from about 3 on chromosome 1 to 1

2 on
chromosome 21.

Table 5.1 Approximate lengths of human chromosomes measured in cM and in Mb. Source: Yang
(2000)

Chromosome # 1 2 3 4 5 6 7 8

Length (Mb) 236 255 214 203 194 183 171 155
Length (cM) 293 277 233 212 198 201 184 166

Chromosome # 9 10 11 12 13 14 15 16
Length (Mb) 145 144 144 143 114 109 106 98
Length (cM) 167 182 156 169 118 129 110 131

Chromosome # 17 18 19 20 21 22 X Y
Length (Mb) 92 85 67 72 50 56 164 59
Length (cM) 129 124 110 97 60 58 198 –

Total (with Y)
Length (Mb) 3200
Length (cM) 3702
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5.3 Testing for Linkage or Association: Basic Concepts

Linkage analysis operates on the principle of recombination. Formally, we test the
null hypothesis H0 : θ = 1

2 where θ equals 1
2 implies no linkage. Linkage predated

association mapping because relatively few markers are required to cover long dis-
tances and the types of markers which are especially suited for linkage analysis
(microsatellite) were available much earlier than SNPs, which are well suited to
association analysis. For example, the entire distance of chromosome 21 is small
enough that any two loci, are linked; using the Haldane map, loci 50 cM apart have
a recombination fraction of about 0.316 < 1

2 . Thus with sufficient sample size,
in principle one should be able to detect linkage to a disease locus anywhere on
chromosome 21 with only 1 marker, although clearly, the closer θ is to zero, the
higher the power to detect linkage, and the region of uncertainty about the exact
location will be very large with only one marker.

Early linkage studies typically tested only a few markers, and evidence for link-
age was assessed at each locus separately, as we describe in the following chapter
on linkage. As the number of possible markers increased, the concept of multi-point
linkage analysis and whole genome linkage scans became popular. In a multi-point
linkage analysis, several markers which are linked to each other are analyzed jointly
to assess evidence for linkage in the region. This enables one to ‘test’ each locus
in the entire region, even those not typed, as a possible DSL for linkage to the
hypothesized DSL. By analyzing markers jointly, one infers linkage at unmeasured
loci between the markers to better locate the DSL. A whole genome linkage scan is
designed to locate a hypothetical DSL anywhere in the entire genome. A standard
whole genome linkage scan requires only 400–800 markers, placed 5 to 10 cM apart.
As will be discussed in Section 6.3, by using multiple linked markers all across the
genome, it is possible to construct a statistic from these markers that tests globally
for linkage between a DSL and any locus on the entire genome. This is a powerful
concept, especially because the α-value of the test does not depend greatly on the
number of the markers. This feature is a result of being able to characterize the joint
distribution of the estimated recombination fractions between loci under the null
hypothesis and an important advantage of linkage studies over association studies.
Since LD extends only for a short genomic distance, a genome scan covering a
region requires many more markers and thus association tests than is required for
a linkage scan. This means that the burden of multiple testing is much higher for
association studies than for linkage studies. A general consequence of this property
is that linkage studies require smaller sample sizes than association studies.

The use of only a few markers is both a strength and weakness of linkage studies
because linkage studies tend to have low resolution, i.e., they do not give very pre-
cise information about where the DSL lies. To see why, consider a recombination
parameter of 5% between a disease locus and a marker; this is a relatively small
recombination parameter corresponding to a distance of about 5cM, and with a large
enough sample it is easy to reject the null hypothesis that θ = 1

2 . It is much more
difficult to find a locus where θ equals zero, which is what we need to pinpoint the
location of the DSL. A recombination parameter of 5% translates to about 5,000
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Kb. Sequencing 5,000 Kb of DNA to find a variant correlated with disease status
is currently expensive and time consuming enterprize. Thus the genetic distance
(θ = 0.05) is small, but the physical distance is large. In a typical linkage study,
3–4 markers spanning 20 million base pairs might show evidence of linkage to the
DSL. When a large linkage region like this is identified, a typical strategy is to then
to cover the entire linked region with SNPs and use association analysis for ‘fine
mapping’.

In contrast to linkage, the underlying principle of association mapping is LD.
Association analysis used in genetic mapping does not differ substantially from any
other statistical analysis of association. The goal is to demonstrate a relationship
between two variables, in this case, a marker at a genetic locus and a phenotype
or trait of interest. In many cases, the basic statistical designs, case-control, case-
cohort and population based studies are the same and the methods of analysis are
the same, e.g., chi-square tests, ANOVA, and regression analysis (linear, logistic
or proportional hazards regression). The main distinguishing feature of a genetic
association analysis is that the association works indirectly using LD between the
marker and the DSL. If there is LD between the marker and the DSL, we can expect
to see a relationship between the marker and the disease. If the marker and the DSL
are independent, then we should see no association between the marker and the
disease. Thus with an association analysis, the null hypothesis can be framed as H0:
‘no LD between the marker and the DSL’. Figure 5.4 illustrates this concept of ‘guilt
by association’.

As we show in the next section, the relationship between disease phenotype and
the DSL is stronger than the relationship between the disease phenotype and the
marker, depending upon the degree of LD. Since we typically will not know the
LD pattern between the unknown DSL and the marker, estimates of ‘effect’ of the
marker are distorted versions of the effect of the DSL on the trait, and the focus of
a genetic association study is generally on testing and not estimation.

Martin et al. (2000) genotyped sixty SNPs in a 1.5-Mb region surrounding
APOE, in 220 cases with Alzheimer’s Disease and 220 controls without Alzheimer’s

Fig. 5.4 Indirect association: Guilt by association
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Fig. 5.5 Plot of minus log of P value for testing allelic association between each marker with AD,
for SNPs immediately surrounding APOE (<100 kb.) Source: Martin et al. (2000)

Disease. Standard tests were conducted to look for association of SNP alleles with
AD, in cases and controls. Some evidence of association (p<0.05) was identified for
7 of 13 SNPs, including the APOE-4 polymorphism, spanning 40 kb on either side
of APOE. Figure 5.5 shows a graph of minus log of p-value for testing allelic asso-
ciation between each marker with AD, for SNPs immediately surrounding APOE
(< 100 kb). Although there are several SNPs close to APOE with a signal, it is clear
that magnitude of the p-value depends on several factors besides physical distance
to the DSL.

5.4 A Formal Definition of Linkage Disequilibrium and Related
Measures Used to Describe Linkage Disequilibrium

Here we define LD more formally and discuss some measures that are commonly
used to quantify LD. We begin with a definition of linkage equilibrium (LE), which
characterizes loci on non-homologous chromosomes, or on the same chromosome,
but unlinked.

Let the alleles at two markers be denoted A,a and B,b. Let the allele frequencies at
each marker be pA, pa, pB, pb and let pAB, pAb, pa B, pab denote the frequencies
of the four possible haplotypes. Thus pAB denotes the frequency of a randomly
selected haplotype from the population with alleles A and B observed at the two
loci, etc. LE implies that the haplotype frequencies are given by the product of the
corresponding allele frequencies. The resulting frequencies are given in Table 5.2.
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Table 5.2 Population allele frequencies between two loci under linkage equilibrium

B Locus

A Locus B b Total

A pAB = pA pB pAb = pA pb pA
a paB = pa pB pab = pa pb pa

Column Total pB pb

With LE, the frequency of the haplotype is the product of the allele frequencies at
the corresponding loci. Thus LE corresponds to our usual notion of independence in
a 2 × 2 table. The haplotype frequency is just the joint probability of A and B being
observed on the same haplotype, etc., and the allele frequencies are the marginal
frequencies.

When LE fails, the number of alleles at two loci is not the product of the individ-
ual allele frequencies. The LD coefficient, is usually denoted by D in the literature;
it measures the departure from independence. (We will occasionally use the notation
δ to distinguish it from the disease allele D.) It is defined as

D = pAB − pA pB

Note that D = 0 corresponds to independence in the 2 × 2 table. Since the labeling
of alleles is arbitrary, we could just as easily define D in terms of Ab or ab, etc.
With only two alleles, any definition gives the same absolute value. This is the same
principle as having only 1 degree of freedom in a 2 × 2 table with fixed margins.
Table 5.3 uses this expression to define all of the cell probabilities of the 2 × 2 table
in terms of D, and the allele frequencies, pA, pa , pB , pb.

A substantial difficulty with using D to measure the lack of independence in the
2 × 2 table shown in Table 5.3 is that D is highly sensitive to the marginal values.
Each of the four haplotype frequencies defined in Table 5.3 must be ≥ 0, hence in
order to keep pAB and pab positive when D is negative, we must have

D ≥ − min(pA pB, pa pb),

and when D is positive, we have

D ≤ min(pA pb, pa pB).

Table 5.3 Cross classification of haplotype frequencies when independence does not hold

B Locus

A Locus B b Row Total

A pAB = pA pB + D pAb = pA pb − D pA
a paB = pa pB − D pab = pa pb + D pa

Column Total pB pb
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Thus we can define minimum and maximum values for D as:

Dmin = − min(pA pB, pa pb),

and

Dmax = min(pA pb, pa pB).

If one of the allele frequencies is low, the corresponding haplotype frequency will
also be low, as will D. Thus a value of D close to zero may simply reflect low
marginal frequencies, and not ‘independence’, as a value of D = 0 would suggest.

There have been many proposals for alternative measures of LD which are less
sensitive to the marginal frequencies. We will primarily use r , the correlation coef-
ficient, because of its important role in association testing, but we also discuss D′,
because of its prominent role in statistical genetics. The basic idea behind D′ to
normalize D by the maximum value (or minimum) to give a fixed range between 0
and 1, regardless of the margins. For D positive, D′ is defined as

D′ = D/Dmax,

and for D negative, we take

D′ = D/Dmin.

Thus D′ ranges from 0 (at LE) to a maximum of 1, which happens if any cell equals
zero.

Despite this improvement in interpretability over D, a high value of D′ does not
mean that one locus can predict the other with high accuracy. For this, we need the
correlation between the two, r , or its square, r2. The correlation coefficient between
the two loci is constructed by assigning a numeric value to each allele at each locus,
typically 0 and 1, and then computing the ordinary correlation coefficient. Using
this approach, we have that

r = (pAB − pA pB)/
√

pA pB pa pb = D/
√

pA pB pa pb.

Like D′, r2 is zero if and only if D equals zero, but now r2 = 1 only if a pair of
diagonal cells equals zero, i.e., either pAB = pab = 0 or pAb = pa B = 0. In this
case, pA = pB and pa = pb. An r2 of 1 implies perfect predictability; if we know
the allele at locus one, we can predict perfectly the allele at locus 2, and vice-versa.
This will be important in choosing markers for association studies. Table 5.4 shows
a comparison of the measures of LD on a fictitious sample of 100 chromosomes.
Note that Dmax can be calculated by adding ±2 from each of the cells of the table
to give counts of 45, 25, 0, 30. This maintains the margins, but maximizes the value
of D > 0 over all tables that have these margins.

We now provide a simple derivation to show how LD between a marker and
a DSL will induce association between the phenotype and the marker. Consider
a case-control study with equal numbers of cases and controls. Let P(A|case)
and P(A|control) be the frequency of the disease allele A among the cases and
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Table 5.4 Measures of linkage disequilibrium

B Locus

A Locus B b Row Total

A 43 27 70
a 2 28 30

Column Total 45 55 100

D = (43 − 70 ∗ 45/100)/100 = 0.115

Dmax = min(70 ∗ 55, 30 ∗ 45)/10, 000 = 0.135

D′ = 0.115/0.135 = 0.8581

r = 0.115/
√

0.7 ∗ 0.3 ∗ 0.55 ∗ 0.45 = .5044

controls, respectively, and let a denote the non-disease alleles. As we will discuss
in some detail in Chapter 6, a test of association between the DSL and the disease
can be framed as no difference in allele frequency among cases and controls, or
H0 : �A = 0, where

�A = P(A|case) − P(A|control).

Suppose we do not observe the disease locus, but instead a marker with alleles B
and b. Then defining �B as

�B = P(B|case) − P(B|control),

and assuming that p(disease) does not depend on marker genotype given the geno-
type at the DSL, we have (Pritchard and Przeworski, 2001)

�B = �A(P(B|A) − P(B|a)). (5.1)

Note that in the absence of LD, the alleles at the DSL and the marker are
independent,

P(B|A) = P(B|a)= P(B)

hence �B = 0. Thus there will be no association between disease and a marker
allele, unless the marker allele is associated with the disease allele.

It is straightforward to show that

P(B|A) − P(B|a) = √
pB pb r (5.2)

where r is the allelic correlation between the two loci, and pB and pb denote allele
frequencies at the marker. Hence we have

�B = �A
√

pB pb r

which implies that

�2
B < �2

A.
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Although the deviation from the null is smaller when using the marker rather than
the DSL, the effect on power of the test will depend on allele frequencies at the two
loci as well as the effect size. From equation (5.1), and the illustration in Fig. 5.5,
if there is no LD (r = 0) between the DSL and the marker, then we do not expect
to find any association between the disease phenotype and the marker. However,
LD is a short range concept. Unlike linkage, we do not expect LD to persist for
long distances between two loci. We will make this concept more precise in the
next section, but suffice it to say here that a typical candidate gene study might
require at least 20 markers, fine mapping a linkage region might require thousands
of markers and a whole genome association study 500 K to a million. Rejection of
the null hypothesis of no association suggests that the DSL is ‘physically close’
to the marker. A natural question about association mapping is how close does the
marker need to be? This requires a consideration of the origin and maintenance of
LD in populations.

What are the Similarities and Differences Between Linkage, LD and HWD?: As
the name would imply, linkage disequilibrium is somewhat related to the concept
of linkage, and it is also somewhat related to Hardy-Weinberg disequilibrium, but
all three terms measure distinctly different concepts. Linkage is a physical concept,
describing the physical distance between two loci in terms of recombination events.
The minimum value is zero, implying that no recombination ever occurs between
the loci; the maximum value is 1

2 which can be interpreted as the two loci being on
non-homologous chromosomes. The recombination fraction does not depend upon
an individual’s ethnic origin. In contrast, LD is a population concept; it concerns the
population probability that alleles at two different loci appear together on the same
parental haplotype. In this regard, LD is similar to HWD which concerns the popula-
tion probability that two alleles at the same locus appear together in an individual’s
genotype. Like HWD, LD can arise in a population for many reasons, including
mutation and close linkage, as well as population substructure. The reason for the
term LD has to do with how LD arises, and how it is maintained in a population as
was illustrated in Fig. 5.1.

5.5 The Origin and Extent of LD in the Human Genome

LD can arise in a population for many reasons, including mutation, close linkage as
discussed in Section 5.1 of this chapter, and population substructure considerations,
as discussed in Chapter 3. LD arising due to mutation and close linkage is useful
for association mapping. The reason for the term LD has to do with how LD arises,
and how it is maintained in a population. As shown in Fig. 5.1, the LD around the
mutation was maintained only in a small neighborhood of the locus because linkage
over many generations caused the initial association to dissipate. Denoting the LD
between a marker and the mutation in Fig. 5.1 by D0 at the first generation, and Dt

after t generations, an approximate formula relating Dt to D0 and θ is given by
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Dt = D0(1 − θ)t . (5.3)

(See exercise 12 of Section 5.7). In the extreme, when θ = 0, the LD does not
dissipate over time. When θ is 1

2 , LD dissipates rapidly relative to small values of θ .
Formula (5.3) makes all of the same assumptions that are required for HWE, i.e.,

random mating, no selection, no mutation, in or out migration and constant allele
frequencies. However in practice, LD is affected by many features of the population,
including selection, changing allele frequencies and migration and formula (5.3) is
not accurate for small values of θ or large values of t. Empirical studies of the
relationship between LD and distance show that LD does not decline smoothly with
genetic distance. In addition, for association mapping, we are interested in LD in
a relative small region which is best measured in base pairs. See Fig. 5.6 which
shows the estimated correlation versus physical distance for pairs of markers in
five regions of the chromosome, for three different samples. Many estimates, some
derived from population genetics models, have been given for how far the range
of useful LD (meaning the signal from DSL to marker is still strong enough for
detection) extends in terms of base pairs; they range between 50 and 300 Kb. See
Kruglyak (2008) for a review. However, as numerous empirical studies have shown,
the relationship between distance and LD is not a smooth one.

Although many more markers are used in association mapping than are used in
linkage, methods for association analysis which can test for a DSL at every location
between two markers are limited by the unpredictable nature of LD from marker
to marker. Knowing LD between two loci A and C implies nothing about the LD
between A and B and B and C, where B is a marker in between A and C. This
situation can be partially alleviated by using external information on LD between a
set of typed markers and a set of untyped SNPs whose frequencies are also known
(see the HapMap project below) to ‘impute’ marker values at the untyped locations.
These ‘imputed’ SNPs can also be tested for association to improve LD coverage
in a region (Howie et al. 2009). In order for imputation algorithm to work, one has
to assume that the LD-structures in the reference population and the study popula-
tion are very similar. In any event, in large scale association studies, markers are
usually tested separately, leading to issues with multiple comparisons. This will be
discussed in Chapter 10.

5.6 The Human Genome and HapMap Projects

The Human Genome and the HapMap projects have been instrumental in providing
information on where genes are located in the genome and in providing sets of
markers to use in gene mapping studies. The Human Genome Project was a 13 year,
multi-national project completed in 2003; the primary objective of the project was
to identify all of the genes in the human genome and identify the sequence of all
3 billion DNA base pairs (without identifying the different variants at each base
pair). As part of the project, many new technologies were developed for probing
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Fig. 5.6 LD (Measured as correlation) versus distance in base pairs Source: Pritchard and Prze-
worski (2001)

the genome. Both genetic maps and physical maps were constructed to aid in gene
mapping via linkage and association analysis, including 3,000 microsatellite mark-
ers spaced one cM apart used for the linkage maps, and 52,000 Sequence Tag Sites
(a short sequence of DNA (200–500 bp) which identifies a unique location in the
genome) used for the physical map.



84 5 Gene Mapping

The International HapMap Project was a multinational project begun just as the
Human Genome project was ending. One objective of the HapMap project was to
provide data that can be used to estimate LD between pairs of loci. Because patterns
of LD are specific to populations, the DNA samples used for the initial phases of the
HapMap project came from four main populations: 30 parent-offspring trios from
the Yoruba people in Ibadan, Nigeria, 30 CEPH trios (largely Western European
background), 45 unrelated Japanese from Tokyo and 45 unrelated Han Chinese from
Beijing. Additional samples from other populations have been added.

SNPs were selected to create the HapMap for several reasons: there are vast
numbers of SNPs; they are located everywhere throughout the genome; and they
are relatively easy to genotype. Data on around 10,000,000 SNPs are now available
through the HapMap. The basic data produced by the Project are the genotypes
of the SNPs of the 270 individual samples and the frequencies of SNP alleles and
genotypes in each population. These data are freely available to researchers, as are
standard measures of LD, such as D, D′ and r2. In addition, the HapMap describes
the common patterns of genetic variation in humans, including the chromosome
regions with sets of SNPs in high LD, the haplotypes in those regions, and pro-
vides the technology for choosing SNPs in a gene mapping study. It also notes the
chromosomal regions where associations among SNPs are weak, suggesting recom-
bination hotspots, areas where a large number of recombinations have led to weak
LD between loci on either side of the hotspots.

Figure 5.7 (end of Section 5.7) output from Haploview illustrating the LD struc-
ture for 22 SNPs in the APOE gene. The number in a box indicates the D′ for
the two SNPs which connect the boxes. The shading, from light to dark, indicates
the magnitude of D′, darkest having the highest D′’s. The blocks around sets of
SNPs represents sets of adjacent SNPs having relatively high LD. Note that physical
proximity tends to go with higher D′, but not always. There are not a large number
of SNPs in high LD in this display.

5.7 Exercises

1. Briefly explain the concept of recombination (what is a recombinant chromo-
some?) and define the recombination fraction. What is the relationship between
the recombination fraction and linkage?

2. In Fig. 5.2, explain why the two unaffected offspring with recombinations in
the region serve to implicate APP as having the DSL. Why are the remaining
unaffected offspring uninformative about recombination?

3. Suppose a population of 2000 chromosomes; 1000 carry an A allele at a marker
and 1000 carry a. Now suppose a disease mutation (+) arises on one chromo-
some bearing an A allele, and all the rest of the chromosomes have - at that
location.

(a) What are the marginal frequencies at the marker and DSL?
(b) Fill in the 2 × 2 table of marker and disease mutation haplotypes.
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(c) What are D and D′ for this table?
(d) What is the correlation between the marker and DSL?
(e) Repeat the questions above, now assuming only 100 chromosomes, one

mutation on the same haplotype as an A allele, and a 50/50 split of A and a
alleles.

(f) What is the predicted value of D after 10 rounds of random mating if θ =
0.4? if θ = 0.01?

4. Two polymorphisms (a 23 bp insertion and a 12 bp insertion) near the bovine
prion gene are associated with resistance to a neurovegetative disease in cattle
(BSE). Data on the presence or absence of variants at these two loci for 350
healthy Holstein cattle are given below:
Both insertions present (++ haplotype): 45%
Only the 23 bp insertion present (+− haplotypes): 0%
Only the 12 bp insertion present (−+ haplotype): 5%
Neither insertion present (−− haplotypes): 50%
Is there evidence for LD? Compute D, Dmax or Dmin, D′ and r2. Given that
the ++ haplotype is associated with disease resistance, what might you expect
to see in affected cattle?

5. Show that the maximum value of the correlation (+1) between two biallelic loci
is reached when the marginal allele frequencies at locus are the same P(A) =
P(B), and the two off-diagonal cells of the 2 × 2 table are zero. What are the
corresponding requirements for an r of −1?

6. Show that the maximum value of D′ is 1 when any cell of the 2 × 2 table is
zero.

7. What is a ‘rule-of-thumb’ for relating centimorgans to base pairs? What does
300Kb correspond to in cM?

8. If 2 loci are 2 centimorgans apart, what is their recombination fraction?
9. Suppose the difference in disease allele frequencies in cases and controls is

0.05. Assume we have a nearby marker with minor allele frequency 0.2 and let
the correlation between the two loci be 0.8. What is the difference in marker
allele frequencies between cases and controls?

10. Using the Haldane map, show that distance is additive, i.e., given three loci
A,B and C, the distance from A to B plus the distance from B to C equals
the distance from A to C. Hint: assume recombinations between two loci are
independent and first calculate P(recombination between A and C) in terms of
P(recombination between A and B) and P(recombination between B and C).

11. Verify Equation (5.1).
12. Verify Equation (5.3).
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Fig. 5.7 The local LD structure in the APOE gene. The numbers in the squares are the D′ values
between SNPs that correspond to the squares. Source: Coon et al. (2007)



Chapter 6
Basic Concepts of Linkage Analysis

The goal of linkage analysis in human disease gene mapping is to assess whether
an observed genetic marker locus is physically linked to the disease locus. This is
equivalent to testing the null-hypothesis that the recombination fraction between
the marker locus and the disease locus, θ , equals 1

2 . In this case, we say the marker
locus and the disease locus are unlinked. It is also possible to estimate θ , which
can be used to provide an approximate idea of the location of the DSL relative
to observed markers. In this chapter, we discuss the basic concepts of parametric
linkage analysis. We explain how linkage between two genetic loci can be utilized
to construct long-range mapping approaches that require only a small number of
marker loci per chromosome to cover the entire human genome sufficiently. Using
fully parameterized statistical models, parametric linkage describes the phenotype
as a function of the genetic marker locus and its relative distance to the disease
locus, i.e., the recombination fraction (Ott (1999)). The simplest case of paramet-
ric linkage analysis uses the method of direct counting, where θ can be estimated
by directly counting recombinant and non-recombinant offspring haplotypes (Ott
(1979)). Using the method of direct-counting, we outline the principles of paramet-
ric linkage analysis. Advanced topics such as non-parametric linkage analysis and
multi-point analysis (Kruglyak et al. (1996)) are discussed in Appendix A. While
the advanced topics that are included in Appendix A are necessary for a thorough
grounding in linkage analysis, they are not required for an introduction to associa-
tion analysis.

The basic approach of a parametric linkage analysis is to construct a likelihood
model that describes the phenotype distribution as a function of the unobserved
DSL and model the joint transmissions of alleles at the unobserved disease locus
and at the observed marker locus as a function of the recombination parameter θ .
The likelihood function depends upon the model for the penetrance probabilities,
including the mode of inheritance. In simple Mendelian disorders, the penetrance
functions are specified as zero or one, and the only unknown parameter is θ . Using
standard maximum likelihood theory, the likelihood can be evaluated under the null
(θ = 1

2 ) and θ is estimated under the alternative hypothesis via maximum likeli-
hood; a maximum likelihood ratio test for θ = 1

2 is constructed by comparing the
maximized log-likelihood to the log-likelihood under the null. The validity of the

N.M. Laird, C. Lange, The Fundamentals of Modern Statistical Genetics,
Statistics for Biology and Health, DOI 10.1007/978-1-4419-7338-2_6,
C© Springer Science+Business Media, LLC 2011

87



88 6 Linkage Analysis: A Brief Introduction

results of the parametric linkage analysis will depend on the validity of the specified
model (Clerget-Darpoux et al. (1986); Elston (1998)).

6.1 Basic Approach to Assessing Linkage Between Two Loci

Here we will illustrate the key concepts of parametric linkage analysis using the
direct-counting method as an example. In what follows, we first assume that the
two alleles at both loci can be directly observed, as it is the case where two SNPs
are being mapped to a chromosome. Of course, this assumption is overly simplistic
for most diseases, but it allows us here to focus on the key concepts of parametric
linkage analysis, i.e., the modeling of the allele transmissions at two loci between
two generations in a pedigree.

In any parametric approach, the first step is to understand how the allele trans-
missions at two genetic loci depend on the recombination fraction θ . This can be
done by looking at the production of gametes during the meiotic cell division. In
Fig. 6.1, this is illustrated for a parent who has heterozygous genotypes at the two
genetic loci, commonly known as a double heterozygote. The alleles at the two loci
are Aa and Bb. In this figure, one parental chromosome carries the A-allele at the
first genetic locus and the B-allele at the second genetic locus. The second parental
chromosome contains an a-allele at the first locus and a b-allele at the second locus.
The combination of alleles that reside on the same chromosome is typically referred
to as a haplotype. A pair of haplotypes in an individual is a diplotype. In this exam-
ple, we observe the haplotypes AB and ab in the parental generation.

For the derivation of the direct counting method, we assume that it is possible
to observe the haplotypes in the parental generation and in the offspring generation
directly. This assumption will enable us to identify recombination events directly.

Fig. 6.1 The gamete
transmission probabilities
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In general, however, it will not be the case in most applications, unless data are
available on several generations. Usually, only genotype data, and not haplotype
data, are available, and it is not possible to assign the alleles to their original chro-
mosomes when loci are heterozygous. For example for a heterozygous genotype
Aa, it is usually not possible to determine whether the A allele is located on the
chromosome inherited from their father, or from their mother. When we observe
two or more heterozygote markers, phase is used to describe the information about
chromosomal origin of the alleles. Thus we say for Fig. 6.1, the phase of the dou-
ble heterozygote individual is AB/ab. The other possible phase consistent with the
genotypes is Ab/aB. Phase does not imply knowledge of which parental chromo-
some the two alleles are on, only which alleles go together on the same chromosome.

Remark on notation: We will use Aa,Bb to denote genotype data on a pair of
markers, and AB/ab to denote the pair of (phased) haplotypes or the diplotype.

During the production of gametes in the meiotic cell division, the chromosomes
are copied and segments of both chromosomes are exchanged during crossover
events. If there is no recombination event between the 2 genetic loci, which happens
with probability (1 − θ), then either a gamete with the haplotype AB or a gamete
with haplotype ab will be transmitted to the offspring, each with probability 1

2 . The
conditional transmission probability that either haplotype, AB or ab, is transmitted
to the offspring is then given by (1 − θ)/2. Using the analogous considerations
for the event of a recombination between the 2 loci, one can show that either the
haplotype Ab or aB is transmitted to the offspring with probability θ/2. So, for
the given parent, the probabilities for the joint-transmission of alleles at both loci
depend on the recombination fraction and their observed distribution can be used to
estimate the recombination fraction. Note that if θ = 1

2 , the transmission probability
of all four possible gametes is 1

4 .
Using analogous considerations, we can now calculate the gamete transmission

probabilities for all possible configurations of parental diplotypes, which are listed
in Table 6.1. A look at the diplotypes reveals that the majority of the haplotype
transmission probabilities do not involve the recombination fraction parameter θ .
The haplotype transmission probabilities are a function of the recombination frac-
tion only when the parent is heterozygous for both genetic loci, i.e., the parent is
doubly heterozygous. Otherwise, the haplotype transmission probabilities are just
defined by the Mendelian transmission probabilities.

In terms of being able to detect linkage between the two loci, this implies that
only those parental mating-types that contain at least one parent who is doubly-
heterozygous at the marker locus and the disease locus can provide information
about the unknown recombination fraction between the two loci. This applies to
the direct-counting method that we describe here as well as to any other parametric
linkage analysis method. Since the only gamete transmission probabilities which
depend on the recombination fraction are those of doubly heterozygous parents, the
recombination fraction is estimated by counting the number of recombinant and
non-recombinant transmissions from those parents to their offspring.
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Table 6.1 Transmitted haplotypes for different parental diplotypes: Transmission probabilities
conditional on the parental diplotypes

Parental diplotypes Transmitted haplotypes

ab aB Ab AB

ab|ab 1 0 0 0

ab|aB 1
2

1
2 0 0

aB|aB 0 1 0 0

ab|Ab 1
2 0 1

2 0

ab|AB 1−θ
2

θ
2

θ
2

1−θ
2

aB|Ab θ
2

1−θ
2

1−θ
2

θ
2

aB|AB 0 1
2 0 1

2

Ab|Ab 0 0 1 0

Ab|AB 0 0 1
2

1
2

AB|AB 0 0 0 1

6.2 The Direct Counting Method

We now illustrate a simple method for linkage analysis, the direct counting method.
The method consists of 3-steps. In the first step, we identify all parent-offspring
pairs with a doubly-heterozygous parent and their child. The same child is included
in two pairs if he/she has two doubly heterozygous parents, because transmissions
of the two parents are independent by Mendel’s first law. Thus the effective sample
size is transmissions, not offspring. Based on the observed haplotypes in the parent,
one needs to infer which haplotypes are transmitted as non-recombinants and which
ones as recombinants. Denoting the number of heterozygote parent-offspring pairs
that yield a recombinant transmission by r , and those yielding non-recombinant
transmissions by s, the total number of informative meiosis is defined by n = r + s.
Because all transmissions from parents to offspring are independent, the likelihood
is proportional to the Binomial probability of the observed data:

Pr(r|n) =
(

n

r

)

θr (1 − θ)n−r .

The estimate for θ can then be obtained by θ̂=r/n and the null-hypothesis of no
linkage can by tested by χ2 test on one degree of freedom, which is given by:

χ1
2 = (r − s)2

n
.

This test is often referred to as a McNemar test in the non-statistical literature,
although in fact, it is simply a Pearson χ2 test of the null hypothesis that the binomial
parameter equals 1/2.
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Example: Figure 6.2 illustrates one pedigree which has data on two genetic loci;
each loci has three alleles, A,B,C and 1,2,3. This pedigree and marker set up is
typical of those used to create the first human linkage map showing the location
of hundreds of microsatellite markers as well as other genetic landmarks. Such
pedigrees had two parents, four grandparents and a large number of offspring. The
grandparents were used primarily to determine the phase of the parents. Multiple
offspring are desirable because transmissions to multiple offspring are independent,
thus the effective sample size increases with more offspring, without requiring addi-
tional genotyping costs for new parents and grandparents. Multiallelic markers are
also useful since they can increase the chance of observing heterozygotes and deter-
mining phase. In Fig. 6.2, all four grandparents are double homozygotes, allowing
one to infer phase in the parents. The circled offspring are recombinants, therefore
r = 2 and n = 5.

While the McNemar-test can be used here to test the null-hypothesis, likelihood-
ratio tests are more commonly used in parametric linkage analysis, because they
extend to handle more complicated situations. The likelihood ratio test can here be
constructed by taking the natural log of the likelihood ratio,

LR(θ) = θr (1 − θ)n−r

( 1
2 )

n
, (6.1)

comparing the likelihood evaluated under the null hypothesis [θ = 1
2 ] to the

maximized likelihood under alternative hypothesis (evaluated at θ̂ = r
n ). Since the

recombination fraction is naturally restricted to the range of 0 to 1
2 , we set θ̂ = 1

2 ,
if r

n > 1
2 . Under H0, P( r

n ≤ 1
2 ) is exactly 1

2 for n odd, and approaches 1
2 for all

n when n is large. Thus the asymptotic distribution of the log-likelihood ratio test

Fig. 6.2 Direct counting method. Source: Courtesy of Professor Peter Kraft
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is χ2
1 with probability 1

2 (for r
n < 1

2 ), otherwise it equals 0 (for θ̂ = 1
2 ). This

distribution is also known as χ2 with 1
2 degrees of freedom (Self and Liang 1987).

However, linkage analysis evolved far earlier than the theory of likelihood
ratio tests, and as we discuss below, in general cases, it can be quite diffi-
cult to estimate θ by maximum likelihood. Instead one typically evaluates the
LOD-score by

LOD-score = log10(LR(θ)), (6.2)

which is the logarithm of the likelihood ratio using base 10 and not the standard base
e, as it is usually the case for likelihood ratio tests. The LOD score is a measure of
support for an arbitrary value of θ in the range (0, 1

2 ), which is maximized when
θ is the maximum likelihood estimate. One reason for choosing base 10 instead
of e in the logarithm is that it facilities interpretation. A lod-score of 1 says the
P(data|θ) is 10 times P(data|θ = 1

2 ), and for a lod-score of 2, the ratio is 100,
etc. Another important feature of the LOD-score method is that if data are avail-
able on several different families, the lod-score can be evaluated as a function of
θ for each family separately, and these can be added over families to obtain the
total evidence for each value of θ (See exercise 3 of Section 6.4). This was useful
when families were collected by separate investigators at different times prior to the
availability of modern computing methods; then only lod-scores for different val-
ues of θ needed to be shared to combine the total evidence. Calculating lod-scores
separately for each family is also useful in the presence of genetic heterogene-
ity, i.e., different mutations may be responsible for the same disorder in different
families.

Figure 6.3 illustrates these features of the LOD-score method. The figure shows
the lod-scores as a function of the recombination fraction θ . The brown, blue, red
and green curves show the lod-scores for 4 different families. The overall lod-score
is then obtained by summing the lod-scores of all 4 families which is shown as the
black line.

We now consider testing for linkage between a marker and a DSL, where, for
simplicity, we assume that the observed trait follows an autosomal dominant pattern
of inheritance, i.e., P(disease|DD or Dd) = 1 and P(disease|dd) = 0. Consider the
pedigree diagrammed in Fig. 6.4. Note that the disease phenotypes are observed, but
the disease genotypes given in the figure are inferred from inheritance patterns and
assumptions on the prevalence functions. Because both grandfather and father are
affected, and the mother is homozygous at both the disease and marker loci, we can
infer that the phase of the father is DM/dm. This enables us to count recombinants
r = 1, and non-recombinants s = 4, and thus θ̂ = 1

5 ; the lod score is easily
computed using equations (6.1) and (6.2).

However, many complications can arise. If the grandmother’s marker data is
missing, we have no way of determining phase in the father. A likelihood can still be
constructed for this case, by calculating r and s for each of the two possible phases,
and summing over the phases. With traditional linkage analysis, the markers are
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Fig. 6.3 Combining LOD scores on four different families. Source: Courtesy of Professor Peter
Kraft

Fig. 6.4 Autosomal dominant disease pedigree with a diallelic marker. Source: Adapted
from Thomas (2004)
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sufficiently far apart so that they are in linkage equilibrium, hence both phases have
probability 1

2 . Thus the likelihood ratio is given by

L R(θ) =
1
2θ(1 − θ)4 + 1

2θ
4(1 − θ)

( 1
2 )

5
.

The simple method of estimating θ using r
n and testing θ = 1

2 using McNemar’s
Test is no longer applicable. In contrast, maximum likelihood estimation and the
lod-score method for testing generalizes easily in this and other more complex cases.

6.3 The Interpretation of LOD Scores

When we analyze only one marker, it is possible to obtain traditional maximum like-
lihood and/or score tests for testing H0: no linkage between the DSL and the marker.
These tests can be used for testing at any desired α-level. However, the standard α
levels of 0.05 or 0.01 are almost never used in testing for linkage. Instead, it has been
customary to reject the null hypothesis if the maximum LOD score at the marker
exceeds 3.0, which corresponds to an approximate α-level of 0.0001(exercise 2 of
Section 6.4) (Kruglyak and Lander (1995), Altmueller et al. (2001)).

There are several arguments that can be given for this approach, most based on
the idea that there is a DSL somewhere, as linkage has historically been done only
for traits with clear signals from segregation analysis. The issue then is whether or
not the marker is close enough to the DSL so that θ is less than 1

2 . With Mendelian
disorders, the X-chromosome pattern of inheritance can be detected, so that we can
limit our search to the 22 autosomes unless a pedigree analysis suggests an X-linked
disorder. A Bayesian argument (Sham (1998)) assigns a prior distribution for θ by
first assuming that P(θ = 1

2 ) = 21
22 and with probability 1

11 , θ is Uniform(0, 1
2 ).

Some simple assumptions on n and r allow one to show that the posterior probability
that θ < 1

2 is approximately 0.90 when the LOD score is 3, and 0.95 when the LOD
score is 3.3.

The original derivation of LOD = 3 was given by Morton (1955), who saw link-
age analysis as part of an ongoing process. Because LOD scores can be combined
over data sets, we think of continuously sampling families and updating the LOD
score until significance is reached, or we declare that H0 is true. Morton used the
theory of sequential testing (Wald (1947)) to fix the two types of errors (acceptance
of the alternative when H0 is true (α) and accepting H0 when H0 is false (β) at
α = 0.001 and β = 0.01). Then setting the prior probability of the alternative to
0.05, rejection of H0 occurs when the LOD score is greater than 3.0. A problematic
feature of Morton’s approach is the need to specify a value of θ under the alternative
for calculation of the LOD score. He considered several values of θ between 0.05
and 0.3, since values of above 0.3 were considered to be of little practical value. Due
to the problem of needing to select a value of θ under the alternative, the criterion
evolved to simply max LOD greater than 3.
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Both the sequential approach and the Bayes approach were derived with a single
marker (2-point analysis) in mind. As the availability of markers increased, the focus
of testing shifted to a genome wide testing approach, with H0: no marker is linked
to a DSL. For a set of sparse markers, i.e., markers sufficiently far apart that data
at different loci are essentially independent, we can use the Bonferroni approach to
multiple testing (see Chapter 10). In this case we set the individual α-level of each
marker test to be 0.05/M , where M is the total number of markers, and 0.05 is the
global α-level. With decreasing distance between the markers, the recombination
events between 2 adjacent markers become less and less likely, causing the lod-
score to become a smooth, continuous function for which a Bonferroni correction
for multiple testing would be much too conservative.

With a dense (inter-marker θ < .05) set of multiple markers, we can take a dif-
ferent approach. If the global null is true, i.e., H0: no marker is linked to a DSL, then
the distribution of the max LOD can be derived as a Stationary Gaussian Markov
Process with an exponential decay in correlation as distance between any two loci
increases. The distribution of such a process is known, and in particular, we can
characterize the number of times the process crosses a boundary by a Poisson dis-
tribution, whose parameters depend upon the chosen boundary and the total length
of the interval (Lander and Green (1987)). Taking into account the length of the
genome in Morgans and setting the critical value for the maximum LOD score to be
3.3 leads to an overall genome wide rejection level of approximately 0.05. Because
we assume dense spacing for the markers, this criterion does not depend a great deal
on the actual number of markers. The reason that we can obtain a desired p-value
for a whole genome linkage scan is that with a dense marker set, we know the
approximate distribution of LOD score under the null; it is driven by the Markov
nature of recombinations.

6.4 Exercises

1. The pedigrees below show data on multiplex disease families with data at
one multiallelic marker (alleles are a,b,c,d,e). Assume that the disease fol-
lows an autosomal dominant model. Assume for this part that the disease is
fully penetrant (P(disease|MM or Mm) = 1) and there are no phenocopies
(P(disease|mm) = 0), where M and m are the alleles at the disease locus.

(a) Which families are phase known (the parental generation phase can be deter-
mined)?

(b) Explain why non-diseased parents are not informative for linkage.
(c) For pedigrees 1 and 3, determine the number of recombinants and non-

recombinants. Find the ML of θ based on these 2 pedigrees.
(d) For pedigree 4, what is the LOD score for θ = 0? What would it be if the last

offspring were bc rather than bb?
(e) Write out the likelihood for pedigree 2 as a function of θ and find the ML of

θ . What is the LOD at the ML? Now assume that the phase of the affected
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mother is known to be Md/mc. What is the ML of θ and the LOD at 0, and
LOD at θ = 1

2 . Comment on the effect of not knowing phase.
(f) Suppose we assume incomplete penetrance, so that P(disease| Mm,MM) = f ,

0 < f < 1, and P(disease|mm) = 0. Consider pedigree 4. Can we assume
the disease genotype is known for the unaffected grandmother? What can be
inferred about the disease genotypes of the two parents in the middle of the
pedigree? What unknown parameters, in addition to θ and f , do we need to
specify in order to give an expression for the likelihood?

1)
2)

4)

3)

aa bc

ac dd

ac cd

ac ad cc cd

ad cd cd cd cd cd

dd

dd

dd de de dd dd

ad

bc cc

bc bb

bb bb bc bc bb

2. Recall that the standard likelihood ratio test is given by

LRT = 2loge L R(θ̂).

and thus

max LOD = (1/2)(log10 e)LRT.

Using this connection between a standard likelihood ratio test and the maximized
LOD score, show that a maximized LOD score of 3 corresponds approximately
to an α-value of 0.0001.

3. Show that for a given value of θ , we can combine information for independent
pedigrees by simply summing the LOD scores evaluated at θ . Hint, if the pedi-
grees are independent, then the likelihood of all the pedigrees is obtained by
multiplying the likelihood of each separate pedigree.
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The remaining questions use the material in Appendix A.
4. Refer to Table A.2.

(a) Verify the sharing probabilities of 0 and 2 for a pair of siblings. Show your
work.

(b) Explain the allele sharing probabilities for monozygotic twins. What are they
for dizygotic twins?

(c) Verify the allele sharing probabilities for grandparent-grandchild pairs. Show
your work.

(d) What are the allele sharing probabilities for first cousins? Show your work.

5. For the NPL allele sharing test discussed in Appendix A.2, verify that
var(ai ) = 1

2 .
6. Determine the number of alleles shared IBS and IBD by the sibs below.

7. Three data sets of ASP families are given. Assume that in each study the
same marker has been genotyped and identity by descent can be calculated for
everyone.

Study IBD=0 IBD=1 IBD=2

A 14 45 41
B 8 51 41
C 10 45 51

(a) For each study, compute the MLS score.
(b) For each study, compute the NPL-score and the p-value.
(c) Combine the data from the three studies and compute the scores and p-values

based on both tests.

8. Verify that P(IBD = 2 at locus2|IBD = 2 at locus1) = ψ2 under H0 θ = 1
2 .



Chapter 7
The Basics of Genetic Association Analysis

A genetic association analysis is not fundamentally different from any other
statistical association analysis. The objective is to establish an association between
two variables: a disease trait and a genetic marker. The disease trait can be dichoto-
mous, a measured variable, such as lung function or a quantitative measure of obe-
sity, or time-to-onset of a disease or disorder. The genetic marker can be a known or
suspected disease-causing mutation, or a marker without any known effects on DNA
coding. In the latter case, the association is created by LD between the marker and
the disease allele, as discussed in Chapter 5. Another distinctive feature of genetic
association analysis is that two quite different study designs can be used; one which
uses only unrelated subjects and the other which uses families that have at least
two members with genetic marker data. Family designs have distinct advantages
and disadvantages, and are an important class of studies. This chapter deals with
study designs that use unrelated subjects; Chapter 9 considers designs for associa-
tion analysis which use data on families.

In experimental plant and animal genetics, design issues focus on selection and
manipulation of the genotypes, but in large-scale studies with humans, it is diffi-
cult to select subjects for study on the basis of their genotypes. However human
subjects are rarely selected for study randomly, and with dichotomous outcomes,
most designs ascertain subjects for study on the basis of disease outcome, using
either case-control or case-cohort designs. In the case-control design we select dis-
eased cases and non-diseased controls, generally drawn from ‘similar populations’
in terms of age, sex, ethnicity, etc. In the case-cohort design, we draw both cases and
controls from a pre-existing cohort of subjects being followed for development of
disease and/or risk factors. These are both standard epidemiologic designs for study-
ing the relationship between general risk factors and disease, with well appreciated
advantages and limitations which we do not review here. The relative pros/cons
of these study designs generally apply in genetic association as well, with a few
exceptions. For example, possible recall bias in collection of the exposures in a
case-control study can be eliminated or mediated in genetic studies provided same
protocol for genotyping is followed for both cases and controls. This includes collec-
tion and processing of DNA samples, and using randomization of cases and controls
to batches in the genotyping process to protect against systematic genotyping errors.

N.M. Laird, C. Lange, The Fundamentals of Modern Statistical Genetics,
Statistics for Biology and Health, DOI 10.1007/978-1-4419-7338-2_7,
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With measured outcomes, it is also often infeasible to take ‘random samples’
from the population of interest, and convenience samples are selected. If the method
of selection is related to the disease of interest, we may have selection bias, and/or
an outcome variable with limited range. For example, suppose we use a cohort of
subjects selected to be healthy, or employed. If the outcome of interest, obesity or
FEV1 say, influences health or employment status, then the sample may be predom-
inantly in the lower (or upper) tail of the continuous outcome, giving lower power
to detect the effects of genes which influence unhealthy outcomes. Similarly, if dis-
eased patients are used to study outcomes which measure the severity or symptoms
of the disease, it will not be appropriate to extrapolate the results to non-diseased
subjects. Population based cohorts involving samples of subjects from a defined
geographic population regardless of health status, can be better suited, if inefficient,
for this purpose. Selecting individuals from both tails of a continuous outcome dis-
tribution can be highly efficient (Lange et al. 2002) but can require screening large
populations.

Like all non-randomized designs, these association designs are vulnerable to con-
founding if there are uncontrolled ‘environmental’ variables related both to disease
and to the marker. While we may have no reason to believe that allele frequen-
cies are associated with age and sex and other factors influencing disease, popula-
tion substructure can cause spurious associations with disease and genetic markers.
With population substructure, the genotype distribution varies among members of
a population and cases and controls may not be balanced with regard to population
substructure. This can cause inflated χ2 statistics due to variance inflation. When the
risk of disease outcome also varies with population substructure, the comparison of
the two groups will be biased. We will return to these problems of bias and variance
inflation in Chapter 8; in the remainder of this chapter we shall assume that no
adjustment for population substructure is necessary.

Although the disease outcome can be measured in any scale, an individual’s
genotype is almost always categorical. In this chapter we shall confine attention to
SNPs and their 3-category genotypes, but extensions to markers with more than two
alleles are straightforward. How we elect to code a genotype for analysis is a key
decision which arises no matter what the disease outcome. With only two alleles,
there are numerous possibilities; there are pros and cons of using two degree of free-
dom (DF) tests, which compare all three genotypes, or single DF tests which make
some assumption (generally monotonicity) about the relationship between disease
and genotype. In some cases, prior evidence, either from biological considerations,
or other association studies, may suggest a particular mode of inheritance, but in
testing SNPs for common disorders this will rarely be the case. The two DF tests
have their proponents, but single DF tests can provide higher statistical power and
the simplicity of their interpretation makes them more popular. The choices for the
single DF tests are those based on the recessive, the dominant, and the additive
modes of inheritance. Readers may wish to review the discussion of genetic models
and modes of inheritance in Chapter 2. The most popular assumption is an addi-
tive mode, which assumes that the risk associated with the heterozygote genotype
is intermediate between the two possible homozygotes. The closer the assumed
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genetic model is to the ‘truth’, the more powerful the test, but of course, the genetic
model is rarely known in practice. In addition, an important, often overlooked fact
is that the relationship between disease and disease genotype will be distorted when
we test markers for disease association if the markers are not in perfect LD with
the DSL. The impact on estimation and sample size calculation of testing a marker
rather than a DSL will be discussed in Section 6.9. In the next sections we will focus
on testing and estimation for dichotomous outcomes in order to fix ideas. Extensions
of the association tests to the more general case that includes covariate adjust-
ments and non-binary phenotypes will be considered in the context of regression
models.

7.1 Testing Association with Dichotomous Disease Traits:
Codominant, Recessive and Dominant Models

Because each person has two alleles, there are three possible marker genotypes,
AA, Aa, and aa. The basic data can be arrayed as in Table 7.1. Here we denote
the observed genotype counts by r0, r1, and r2 for the cases, and s0, s1 and s2
for the controls, with the subscript denoting the number of A alleles associated
with the genotype and the total number of cases and controls are given by r and
s, respectively.

Table 7.1 Table of observed genotype counts for cases and controls

aa Aa AA Total

Cases r0 r1 r2 r
Controls s0 s1 s2 s
Total n0 n1 n2 n

The Codominant Test: To test the null hypothesis of no effect of the marker on
disease against a codominant alternative:

H0 : P(Y = 1|AA) = P(Y = 1|Aa) = P(Y = 1|aa)
HA: At least one inequality holds.

The standard two DF Pearson χ2 test of independence for a 2 × 3 table is (Pearson
(1909, 1910)):

χ2 =
∑

(O − E)2/E,

where O is the observed count in the cell, E is the expected count under inde-
pendence, and summation is over all six cells of the table. The expected count
is computed as the product of the corresponding row and column totals, divided
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by n. The test statistic has a χ2 distribution with two degrees of freedom. This test
is sometimes referred to as the codominant test, or the genotype test, or the test
of homogeneity, because it does not make any assumption about the relationship
between the genotype and disease. Under the null hypothesis all three genotypes
are assumed to have equal disease rates; under the alternative, each genotype may
have a different disease rate. The term codominant implies that all three genotypes
can have different associated phenotypic risks. When we wish to assume noth-
ing about the relationship between genotype and disease, this is the proper test,
but single DF tests are generally more popular because either they correspond to
simple Mendelian genetic disease models (recessive or dominant) or because they
reflect a belief that there should be a monotone trend between number of alleles
and disease state. In the absence of a monotone trend, the heterozygous geno-
type has either protective or deleterious effects that are stronger than the effects
of the two homozygous genotypes. Such disease models are referred to as het-
erozygote ‘advantage’ or ‘disadvantage’ (also known as over-dominance) in the
literature.

A feature of the codominant test is that it can reject H0 when the data support
either a heterozygote ‘advantage’ or ‘disadvantage’ alternative. The concept of het-
erozygote advantage is a well known phenomenon in plant and animal genetics, but
in humans most examples occur in the setting of two distinct endpoints. For exam-
ple, the AA genotype at the hemoglobin A gene is the homozygous wild type. For
malaria resistance, it is helpful have at least one S variant, i.e., to be heterozygous
AS or homozygous SS (see Chapter 1). However the SS genotype predisposes to
sickle cell anemia. Thus the ‘fittest’ individuals are homozygous AS. When testing
the effects of a genotype on a single endpoint, concluding that the heterozygote risk
is significantly larger/smaller than the risk associated with the two homozygotes
may not be plausible in many settings; one alternative is to not reject the test if
over dominance is observed, even if the p-value is less than the specified α-level.
We return to the issue of testing codominance while excluding the heterozygous
advantage/disadvantage when we discuss permutation tests.

Tests for Recessive and Dominant Modes of Inheritance: To test recessive or
dominant models of association is straightforward; we simply create the 2 × 2
table by combining the two appropriate columns representing either recessive or
dominant genotypes. For example, for the dominant model, we have the counts
shown in Table 7.2 and the null hypothesis is H0: disease status does not depend
on the presence of an A allele in the genotype. A standard χ2 test with one degree
of freedom can be applied to test the null hypothesis. A similar test can be con-
structed for the recessive model by combining the first and second columns of
Table 7.1.

All of the tests discussed in this section, and in the next section as well, are
valid under the general null hypothesis: H0 : P(Y = 1|AA) = P(Y = 1|Aa) =
P(Y = 1|aa), but are designed to have optimal power under the mode of inheritance
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Table 7.2 Data array for testing a dominant model

Genotype

aa Aa or AA Total

Cases r0 r1 + r2 r
Controls s0 s1 + s2 s
Total n0 n1 + n2 n

specified under the alternative. Thus the dominant test will have optimal power to
detect HA : P(Y = 1|at least one A allele) �= P(Y = 1|aa), but little power to
detect the alternative for the recessive mode of inheritance: HA : P(Y = 1|AA) �=
P(Y = 1|at least one a allele).

7.2 The Additive Genetic Model: The Alleles Test
and the Trend Test

There are two tests commonly used for testing the additive mode of inheritance:
the alleles test and the trend test, also known as the Armitage trend test, or the
Cochran-Armitage trend test (Armitage 1955). Both tests have the same null hypoth-
esis, H0 : pcases = pcontrols, where pcases denotes the frequency of A alleles among
diseased and pcontrols denotes the frequency of A alleles among non-diseased in the
population. Both tests also use the same basic statistic, namely the difference in the
observed frequencies of the A allele between cases and controls, p̄cases − p̄controls,
see definitions in Box 6.1. The tests differ in how the variance of the estimated allele
frequencies is calculated; the alleles test requires that HWE holds under H0, but the
trend test does not.

Despite the drawback of assuming HWE, the alleles test remains very popular
for genetic association studies. To implement the test, we simply construct a sin-
gle degree of freedom χ2 test for independence in the 2 × 2 table of alleles (see
Table 7.3), which cross classifies chromosomes, not subjects, according to allele.
As such, the test has wide intuitive appeal and is seemingly model free. The alleles
test makes the assumption that Hardy-Weinberg holds under H0, and the α-level
of the test is not maintained if HWE does not hold. We recommend the use of
the Armitage test instead of the alleles test, as the latter has all of the attractive
features of the alleles test, but does not require HWE for validity. We illustrate the
construction of the alleles test in Box 7.1 and show that it corresponds to a test of
H0 : pcases = pcontrols.

Box 7.1 Calculation of the Alleles Test from a Sample of Size n Subjects

The 2 × 2 table underlying the alleles test can be obtained from Table 7.1 by
counting the number of A and a alleles among the cases and the controls:
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Table 7.3 Data array for the alleles test

a A Total p̄

Cases ra = 2r0 + r1 rA = 2r2 + r1 2r rA/2r
Controls sa = 2s0 + s1 sA = 2s2 + s1 2s sA/2s
Total na = 2n0 + n1 n A = 2n2 + n1 2n n A/2n

The total number of observations in the table is chromosomes. The alleles test
is the one DF χ2 test of independence in this 2 × 2 table; it is an appropriate
test if observations on chromosomes are independent, or equivalently, HWE
holds. It can also be derived as a test of the difference in allelic frequencies:
H0 : pcases = pcontrols. Under H0, p̄cases − p̄controls has mean 0 and, assuming
HWE, estimated variance

ˆvar( p̄cases − p̄controls) = p̄(1 − p̄)

(
1

2r
+ 1

2s

)

= p̄(1 − p̄)
2n

4rs
.

Hence

ZL = 2
√

rs( p̄cases − p̄controls)/
√

2n p̄(1 − p̄)

is approximately N(0,1) and Z2
L is equal to the 1 degree of freedom χ2 test of

independence for the alleles table.

The trend test is also a test of the additive mode of inheritance. It was originally
introduced as a trend test in proportions:

p(Y = 1|X) = β0 + β1 X, (7.1)

where X codes for the additive mode of inheritance and Y codes for cases and
controls, i.e., Y = 1 for cases and Y = 0 for controls. We can use ordinary linear
regression to estimate β1 and test H0 : β1 = 0, so that the computations are simple
(Rosner 1994, for example).

An alternative method of motivating the trend test is to treat X as a scaled (0, 1,
2) random variable giving the number of A alleles and compare the means of X in
the two groups; this is the approach we use here, as it corresponds to our sampling
design and it is easiest to see the connection with the alleles test. By definition,
sample means of X in the two groups and overall are

X̄cases = 2r2 + r1

r
= 2 p̄cases (7.2)

X̄controls = 2s2 + s1

s
= 2 p̄controls (7.3)

and

X̄ = 2 p̄. (7.4)
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Thus testing pcase = pcontrol is equivalent to testing that the means of X are equal
in the two groups: H0 : E(X |case) = E(X |control). Further, under H0,

var(X̄cases − X̄controls) = var(X)

(
1

r
+ 1

s

)

.

Var(X) can be estimated straightforwardly from the sample variance of the data,
without assuming HWE, by

V̂ar(X) = 4n2 + n1 − n X̄2

n
,

and thus

V̂ar(X̄cases − X̄controls) = 4n2 + n1 − n X̄2

rs
.

As a result, we have that the trend test is given by

ZT = (X̄cases − X̄controls)/

√

4n2 + n1 − n X̄2

rs
.

Using equations (7.2), (7.3), and (7.4), we can re-express ZT in terms of allele
frequencies rather than means of X ; the result is given in equation (7.6) of Box 7.2.

To compare the two tests, we write

ZT
2 = ZL

2 2 p̄(1 − p̄)

[4n2 + n1 − n X̄2]/n
. (7.5)

Notice that the ratio on the right hand side of equation (7.5) is equal to the ratio
of the estimated var(X) under H0, with and without assuming HWE; the numerator
in the ratio estimates the variance assuming HWE holds, and the term in the denom-
inator is the estimated variance without the HWE assumption. We might expect ZL

to be anti-conservative in general, since it assumes the two alleles of an individual
are independent. However, the variance ratio is not always bigger than 1; it depends
upon how the sample deviates from HWE. In general we expect it to be bigger than
one when there is population substructure, but other factors such as genotyping error
can influence deviation from HWE.

Box 7.2 Summary The Trend Test

To test H0 : pcases = pcontrols without assuming HWE,

ZT = 2
√

rs( p̄cases − p̄controls)/

√

4n2 + n1 − 4n p̄2 (7.6)
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is approximately N(0,1) under H0, where p̄cases, p̄controls, and p̄ are defined
in Box 7.1 and equation 7.4. ZT

2 is approximately χ2 with one degree of
freedom.
Note: The usual expression for the trend test is a bit different from the one
given here (Sasieni 1997), but is exactly equivalent; we use this expression
to emphasize the connection to the alleles test. The trend test is very similar
to the multiple strata test of trend, also called the Mantel-Haenszel Extension
Test (Rosner 1994, section 10.10.4), for the case where there is only one strata.
The difference is a multiplicative factor of (n−1)/n. This accounts for a slight
difference in formulas sometimes seen in the literature.

The linear model (Searle 1971) originally used to derive the trend test is not
attractive for proportions from case-control or case-cohort samples. As discussed in
Chapter 2, a general model for a mode of inheritance assumes

g[E(Y |X)] = β0 + β1 X (7.7)

where g(.) is a link function, typically log or logistic for binary data. However, for
purposes of constructing a score test for β1, any choice of link function gives the
same test. Intuitively, this is because the variance of the score test is constructed by
assuming the null is true, and in model 7.7, g[p(Y = 1|X)] is constant under the
null regardless of choice of g(.). We leave as an exercise for the reader to derive the
Armitage test of trend by using a score test with logistic model: i.e., assuming

logit[p(Y = 1|X)] = β0 + β1 X.

7.3 Small Sample and Permutation Tests

All of the tests discussed in 7.2 assume large samples in order to use asymptotic
normality or χ2 distributions under H0. For some of these tests, it is also possible
to obtain small-sample or exact tests based on the hypergeometric distribution. The
hypergeometric distribution gives the probability of the cell counts in a two-way
contingency table of counts, assuming that the row and column margins are fixed
at their observed values and under the null hypothesis that the row and column
variables are independent. The table probabilities given by the hypergeometric can
be obtained by simple counting arguments, allowing the computation of exact tests
for the tests we have discussed in previous sections. Alternatively, with case-control
sampling, p-values for any of these tests and many others can also be obtained by
simple permutation of case and control status (Manly 2007). The general idea of
a permutation test is as follows. Under the null, we make the general assumption
that there is no relationship between genotype and case-control status, hence we can



7.4 Which Mode of Inheritance Should We Assume for Testing? 107

draw ‘Monte Carlo samples’ by randomly assigning each subject a case or control
status, while keeping the total number of cases and controls fixed. This fixes the
row margins of the 2 × 3 table, and the genotype margins will also remain fixed,
because each individual’s genotype does not change, just their case/control status. A
large number of Monte Carlo samples, say 10,000–100,000, are drawn. The desired
test is computed for each Monte Carlo sample, giving the test statistic distribution
under the null. For a χ2 test, or for ZT

2 or ZL
2, we then find the (1 − α)100th

percentile of this Monte Carlo derived distribution, and reject if the observed test
statistic is greater than this percentile. Note that this method of assessing signifi-
cance works for any test because it does not rely on any variance assumptions or
HWE. Thus it can be used to give a p-value for the alleles test that does not rely
on HWE.

The permutation test has the advantage of extending easily to more complicated
situations. For example, we might like to test all three models, recessive, dominant
and an additive test, and reject on the basis of the smallest p-value. Such a strategy
clearly has inflated type one error rate, but the permutation approach affords a simple
modification which preserves the α-level. The general permutation strategy is the
same, but now we simulate the distribution of the maximum χ2, computed over
the three tests. All three tests are computed for each Monte Carlo sample, and the
maximum is recorded. The last step of rejecting if the observed maximum χ2 is
greater than the (1 − α)100th percentile is the same. This test is referred to as the
MAX test.

Another use of the permutation test is to derive an appropriate rejection region
for the codominant test where we do not reject the test if the pattern of odds-ratios
suggests heterozygote advantage/disadvantage. In this case, we would compute the
usual codominant test for each Monte-Carlo sample, but discard the result, if the
data supports an over-dominance model.

7.4 Which Mode of Inheritance Should We Assume for Testing?

As will be discussed in Section 7.9, we can estimate power for any test under any
assumed model. Since the true model is generally not known, a natural question to
ask is: Which test is best under a wide range of possible models? Of course the
power of a test will always be best if we choose the test for the true model, but
some general principles do apply. First, the dominant test and trend test are highly
correlated, and give similar results in most cases, regardless of underlying model,
especially when the minor allele frequency is low. Second, the recessive test has
low power unless the true model is recessive. Third, the codominant test performs
almost as well as the test which uses the true model for analysis, and is only slightly
out-performed by the MAX test. In practice, the tests of choice are generally the
codominant or the trend test. If one is interested in recessive models, the codominant
or recessive test should be used, since the additive and dominant tests have little
power for a recessive model.



108 7 Genetic Association Analysis

7.5 Estimating Effect Sizes and Confidence Intervals

Although tests of association between phenotypes and potential disease loci are
not invalidated by testing markers correlated with the disease loci, estimates and
confidence intervals will be most meaningful if we are testing a suspected dis-
ease locus mutation; effect estimates for a marker not known to directly influence
disease may be distorted by LD between the marker and the disease. We will
return to this problem in Section 7.10; for now, we assume that the marker is the
true DSL.

The most popular measures of effect for dichotomous outcomes are the risk ratio
and the odds ratio. The general risk ratio for an exposed and unexposed group is
defined as

γ = P(disease|exposed)

P(disease|unexposed)
(7.8)

In genetics, unexposed will ordinarily be the major allele homozygotes (aa). In
the case of a codominant analysis, there are two possible relative risks to estimate
among the three groups; typically one compares risk in the minor allele homozy-
gotes (AA) and the heterozygotes (Aa) groups to the major allele homozygotes (aa).
For the recessive model, the exposed group is the AA genotype and unexposed is
the Aa and aa genotypes combined; for the dominant, the exposed is the AA and Aa
genotypes combined, and the unexposed is the aa genotype.

With case-cohort and case-control sampling, the relative risks cannot be esti-
mated. An estimable measure which approximates the risk ratio with rare disease is
the odds ratio, defined as

� = P(disease|exposed)/P(no disease|exposed)

P(disease|unexposed)/P(no disease|unexposed)
. (7.9)

The odds ratio measure has the advantage that it can be validly estimated if sub-
jects are selected on the basis of disease, genotype or randomly sampled (See Sec-
tion 7.9). The relative risk measure requires either random samples or samples ascer-
tained based on their genotype. Fortunately, the odds ratio closely approximates the
relative risk when the disease prevalence is low, since in this case, the ratio of the
two P(‘no disease’) terms in 7.9 is close to one and γ ≈ �. Standard methods for
estimating odds ratios (see Box 7.3) can be used with the codominant, recessive
or dominant models. The allelic odds ratio, calculated from the counts of alleles in
Table 7.3, is sometimes used to approximate a relative risk under an additive model.
However the relationship of disease risk to this odds ratio is unclear, as it compares
odds of disease among chromosomes with an A allele to odds of disease among
chromosomes with the a allele. A better approach to estimating disease risk for the
additive model is to use logistic regression, as we discuss in the next section. We
present the calculation of odds ratios and corresponding confidence intervals for
comparing two groups in Box 7.4.
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In Section 7.7 we will show how to use different choices for a link function in a
generalized linear model and how to code the genotype to estimate odds ratios and
relative risks.

Box 7.3 Calculation of Odds Ratios and Confidence Intervals
Let the data array be

E U

Number of cases a b
Number of controls c d

Here E and U indicate Exposed and Unexposesd, which are defined by the
appropriate partition of the individuals in the sample according to genotype,
or a combination of genotypes; counts are counts of individuals, not alleles.
Then the odds ratio, say OR, is given by

O R = (a/c)/(b/d) = ad/bc.

In large samples, log(OR) is approximately normally distributed, with mean
given by the log(OR) in the population, and estimated variance

var[log(O R)] ≈ 1

a
+ 1

b
+ 1

c
+ 1

d
.

A (1−α)100th confidence interval for the population OR is found by comput-
ing the corresponding CI for the log(OR) and exponentiating the endpoints:

explog(O R)±SE(z(1−α/2)),

where z(1−α/2) is the (1 − α/2)100th percentile of the standard normal and
SE is the square root of var[log(OR)].

7.6 Examples of Testing Association with Diallelic Markers

The first example we present comes from a study of TNFα-308 and acne in a Turkish
Population (Baz et al. 2008). Acne is a complex, chronic inflammatory disease;
although susceptibility to acne is thought to be inherited, there are limited data
supporting specific mutations. Tumor necrosis factor-alpha (TNF-α) is one of the
pro-inflammatory cytokines implicated in acne pathogenesis. The polymorphism
at position 308, which involves substituting guanine (G) for adenine (A), has been
linked to increased susceptibility to several chronic inflammatory diseases. Baz et al.
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Table 7.4 Distribution of TNFα genotypes in acne patients and control subjects

Genotype

GG GA AA

Acne patients [n (%)] 66(58.4) 43(38.1) 4(3.5)
Control subjects [n (%)] 99(86.8) 15(13.2) 0
OR 1 4.30 −a

a Odds ratio is relative to baseline GG group, and cannot be calculated
for the AA genotype due to the presence of the 0 cell; technically the
OR is infinitely large

(2008) carried out a case control study of 113 subjects with acne and 114 healthy
control subjects; the data are shown in Table 7.4. The analysis presented here has
been adapted from that in Baz et al. (2008)

The chi-square test for codominance is 24.1 with 2 DF. This is highly significant
with p < 6 × 10−6, but the expected cell counts for the first column are both small,
approximately 2. The exact test is preferable, although as a practical matter it is not
likely to have much effect on the statistical significance of the observed data unless
the α - level of the test is very small. Testing the recessive model is not desirable due
to the low numbers of AA genotypes, and testing the dominant model will give very
similar results to the codominant model (see exercise 2 of Section 7.11). Because
the marker is a suspected DSL, it is reasonable to estimate odds ratios here. Note
that there is an increasing trend in the estimated ORs suggesting that the A allele is
more common among those with acne. The OR involving AA cannot be estimated
because of the 0 observed for the control subjects. Assuming a dominant model, and
constructing the 2 × 2 table for the dominant model (Table 7.2), the OR is given by

O RD = (47)(99)/(15)(66) = 4.7.

The second example comes from a study of the D3 Dopamine Receptor and
Schizophrenia. Schizophrenia is a debilitating mental illness with high heritabil-
ity. The Dopamine Receptors as a group have long been implicated in causing the
symptoms of schizophrenia, in part because of their important role in the central
nervous system. Shaikh et al. (1996) examined a Ser-9-Gly polymorphism in the
dopamine D3 receptor gene for association with schizophrenia in 133 patients and
109 controls. The data and the analysis are given in Table 7.5.

All the tests except the recessive indicate a statistically significant association
p < 0.05) of the dopamine D3 receptor gene polymorphism Ser-9-Gly with
schizophrenia. We illustrate the calculation of the two odds ratios for the codominant
model, using the major alleles homozygotes (22) as baseline. Thus

O R11/22 = (7 × 33)/(20 × 57) = 0.203

O R12/22 = (69 × 33)/(56 × 57) = 0.713

The trend in the odds ratios suggests decreasing risk as the number of ‘1’ alleles
increases (O R22/22 = 1).
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Table 7.5 Distribution of the dopamine D3 receptor genotype in schizophrenia cases and controls

No.(%)of alleles No.(%)of genotypes

1 allele 2 allele 11 12 22
Cases 83(0.31) 183(0.69) 7(0.05) 69(0.52) 57(0.43)
Controls 96(0.44) 122(0.56) 20(0.18) 56(0.52) 33(0.30)

Alleles test: χ2 = 8.46, p = 0.004.
Codominant test: = χ2 = 11.75, DF = 2, p = 0.003.
Recessive Test: χ2 = 3.85, DF = 1, p = 0.05.
Trend Test: χ2 = 9.49, DF = 1, p = 0.002.
Hardy-Weinberg tests by group:
Controls χ2 = 0.19, ns,Cases χ2 = 5.81, p = 0.02.

Note that the heterozygotes are over-represented among the cases relative to
HWE expectations (O = 69, E = 133×2×0.31×0.69 = 56.9); this is statistically
significant at the 0.05 level (p = 0.02). This is counter to what we might expect
with population stratification and/or inbreeding (Chapter 3). A potential explanation
could be genotyping errors. In any event, this explains why the trend test is bigger
than the alleles test, since the variance of the allele frequency is decreased when the
proportion of heterozygotes is increased relative to HWE.

7.7 The Regression Approach: Extensions to Covariate
Adjustment and to Other Phenotypes

The simple analyses presented in the preceding sections will be adequate in most
situations when the outcome is dichotomous and environmental factors have a neg-
ligible effect on disease risk, or have been carefully controlled so that they can
be ignored in the analysis. While this assumption is plausible for some diseases,
covariates such age, gender, smoking-behavior, etc., cannot be ignored in the anal-
ysis of many complex diseases. As we will see in the next chapter, the inclusion of
covariates in the genetic association analysis is also one of the most effective ways
to guard population-based designs against the confounding effects of population
admixture and stratification.

In any of these situations, a regression approach using generalized linear models
(GLM) is a natural extension; this approach also has the added benefit of allowing
for other phenotypes, as noted in Chapter 2. For some complex diseases, the anal-
ysis of intermediate phenotypes or endophenotypes that define affection status or
the severity of the disease can be a valuable alternative that can provide additional
insight into the disease pathway/genetic composition of the disease. We now outline
the basic concepts of the regression approach below.

Let Yi denote the phenotype of the i th individual and let Xi denote a coding
for the genotype. The regression model for a generalized linear model was given
in equations (7.7) and (2.3). As discussed in Section 2.2, the phenotype can be a
dichotomous disease indicator, a count or a measured outcome. The typical link
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functions for dichotomous outcomes are the logit and log-link. Estimation of the
parameters of a genetic model using the logit link will result in the use of odds
ratios to describe the genetic effect, and the use of a log-linear model results in
estimated relative risks. The linear link has also been used to characterize genetic
models, especially when deriving tests, but is rarely used to estimate effects with
dichotomous phenotypes.

The definition of Xi depends on how we specify the genetic model; but in gen-
eral, the coding is a way of transforming an individual’s genotype into a quantitative
variable amenable for a regression analysis. For a codominant model, Xi is a vector
of two dummy variables specifying two of the three genotypes; in combination with
logit or log-linear link functions it provides odds ratios and relative risk estimates
for the heterozygous and homozygous minor allele genotype relative to the major
allele homozygotes. The additive coding used with the log-link results in multiplica-
tive risk models; when used with the logit link it provides an approximation to the
multiplicative risk when the disease prevalence is low. These genotype codings are
summarized in Table 7.6, where the aa genotype is the major allele homozygous
genotype. The interpretation of β1 also depends on the coding, although β0 will
always be the prevalence in the aa group.

The two link functions that are most commonly used are the linear for measured
outcomes, i.e.,

E(Yi |Xi ) = β0 + β1 Xi

and the logistic for dichotomous outcomes:

g[E(Yi |Xi )] = log

[
E(Yi |Xi )

1 − E(Yi |Xi )

]

.

Standard likelihood ratio tests for logistic or linear regression (the latter assuming
normality for the outcomes) can be used to test H0 : β1 = 0, or no relationship
between the mean of Y and X . In the case where Y is dichotomous, the likelihood
ratio tests will be approximately equivalent to the chi-square tests discussed in Sec-
tions 7.1 and 7.2 for the appropriate models – codominant, recessive and dominant
and the estimated β coefficients will be equal to the log of the corresponding odds
ratios. For the additive model, the trend test will be approximately the same test
as the likelihood ratio test from logistic regression with additive coding for Xi .
Because the regression procedures operate on variables defined for individuals, not
chromosomes, there is no underlying assumption about HWE.

The estimated β1 coefficient from fitting the logit model with additive coding for
Xi estimates the log relative risk for the multiplicative model under the rare disease

Table 7.6 Coding the genotypes

Genotype Codominanta Additive Recessive Dominant

AA X′ = (01) X = 2 X = 1 X = 1
Aa X′ = (10) X = 1 X = 0 X = 1
aa X′ = (00) X = 0 X = 0 X = 0
a Each column indicates the value of X for a given genotype
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assumption. That is, denoting a relative risk model

log E(Yi |Xi ) = α0 + α1 Xi ,

and denoting the logit model by

log

[
E(Yi |Xi )

1 − E(Yi |Xi )

]

= β0 + β1 Xi ,

then under the rare disease assumption

β̂1 ≈ α̂1.

With measured outcomes, using the linear link function corresponds to a standard
one-way ANOVA model with three groups for the codominant model or a stan-
dard regression model for the recessive, dominant or additive models. The effect
measures for the linear models are differences in means by genotype groups. For
example, for the recessive model, β1 is the mean phenotype in the AA genotype
group minus the mean phenotype in the combined Aa and aa genotype groups. For
the additive model, β1 gives the population increase in mean phenotype as one A
allele is added to the genotype. Standard linear regression methods can be used for
testing, estimation and computation of confidence intervals.

An added advantage of the regression approach is that it is straightforward to
adjust for covariates. Letting Ui denote a vector of covariates, such as race, age,
sex, etc., we can incorporate covariates into the regression by using

g[E(Yi |Xi ,Ui )] = β0 + β1 Xi + ζUi ,

where ζ is a vector of coefficients for the covariates. With a linear model, covariate
adjustment is done for two primary reasons: either we wish to avoid confounding
the relationship between genotype and phenotype, or we want to increase the pre-
cision of the analysis by reducing the residual variance. Setting aside the issue of
confounding until Chapter 8, the use of covariates with measured outcomes can
be very useful to reduce variability if there are predictors which are highly corre-
lated with outcome. We recommend covariate adjustment with measured outcomes
if covariates provide good variance reduction. However, this is a property of the
linear model. With the logistic model, one cannot expect to gain precision from
including covariates in the model. Nonetheless, sex, age, race and/or ethnicity are
frequently controlled for in a genetic analysis by using regression, stratification,
and/or design. In general, the selection of the phenotype and the corresponding
covariates is a non-trivial process that requires some thought and is addressed best
during the design phase of the study. For example, for the analysis of the non-binary
variables, we have ignored any possible ascertainment conditions which will not be
realistic in most studies, except for population-based studies without any phenotypic
ascertainment conditions, e.g., Framingham Heart Study. The Framingham Heart
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Study was initiated in the 1950s as a population based sample of over 5,000 adult
residents in Framingham, MA, to study the development of factors influencing heart
disease. Although subjects were initially free of heart disease, they were followed
bi-annually for many years, and during the course of the study, their offspring and
spouses and children of their offspring were also recruited into the study.

When intermediate phenotypes or endophenotypes that are correlated with affec-
tion status are analyzed in case-control studies, the phenotypic distribution of the
intermediate phenotype will reflect the ascertainment conditions as well. In such
situations, the ascertainment condition should be incorporated into the association
analysis (Slatkin 1999; Chen et al. 2005; Huang and Lin 2007).

7.8 Association Analysis with Complex Traits: An Association
Between INSIG2 and BMI

One of the first genome wide association studies led to the discovery of an associa-
tion between a SNP in the region of the INSIG2 gene and body-mass index (Herbert
et al. 2006). It was originally detected in the family sample of the Framingham
Heart Study and, then, subsequently replicated in studies with different designs and
phenotype definition, i.e., obesity as a dichotomous trait defining subjects as obese if
their BMI was greater than 30. However, while several replication attempts resulted
in clear confirmations of the detected association, an equal number of replications
failed to confirm the signal. Here, we revisit some of these findings and examine
how the differences can be caused by different phenotype choices, i.e., quantitative
trait analysis versus dichotomous trait analysis.

For many complex diseases, such as obesity or asthma, we have to select the
target phenotype for the analysis. This can often be the affection status definition
which is typically derived based on other intermediate phenotypes. For example,
obesity defined based on a cut point, usually 30, of Body Mass Index (Weight in
kg)2/(height in cm), or asthma based on lung-volume measurements such as FEV1.
Instead of using affection status, one could test the intermediate phenotypes directly
for association with the genotyped SNPs. The appealing property of quantitative
traits in this context is that, by definition, they contain more information than do
dichotomous traits, and can result in potentially more statistical power in the analy-
sis. However, they come at the disadvantage, in that they often depend on other phys-
ical characteristics, e.g., BMI depends on gender and age, FEV1 depends height,
age and gender. In the analysis, such factors should be included as covariates in the
analysis.

In this section we review the analysis results for the reported association between
a SNP in the INSIG2 gene region and BMI (Herbert et al. 2006; Lyon et al. 2007). In
this analysis, obesity was analyzed first as a quantitative trait and then as a dichoto-
mous trait, defining ‘obese’ as study subjects with an BMI of 30 or greater. Probands
whose BMI is lower than 30 are classified as ‘unaffected’. Since the original associa-
tion was reported under a recessive model, both the quantitative trait analysis and the
dichotomous analysis were conducted under a recessive mode of inheritance as well.
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The SNP was tested in the unrelated subjects from the Framingham Heart Study
(1491 study subjects), a sample from Iceland (5187 study subjects) and the German
cohort study, KORA (4082 study subjects). All 3 studies are cohort studies with no
ascertainment for BMI or obesity. Consequently one might expect that, given that
such a design is not enriched for ‘obese’ cases, the quantitative trait analysis should
be more powerful than a case/control analysis with relatively few cases. However,
the quantitative trait analysis many have low power if the SNP acts on the extremes
of the distribution. Since all study subjects in the Framingham Heart Study were
examined 6 times, with each exam being about 6 years apart from each other, the
SNP was tested for association with BMI at all 6 exams.

The results for affection status are given in Table 7.7. Here, the SNP was tested
for association with logistic regression analysis that is adjusted for the covariates
age and gender. In the quantitative trait analysis, a linear regression model was used
that described BMI as a function of the marker score, age and gender. These results
are reported in Table 7.8. Comparing the quantitative trait analysis with the dichoto-
mous trait analysis, we can see that the association analysis results for the Iceland
study and the German Kora Study are consistent with regard to statistical signifi-
cance at p = 0.05 across analysis approach. While the association between the SNP
in the INSIG2 region and obesity/BMI is clearly replicated in the Iceland study, the
replication fails for both phenotypes, BMI and obesity, in the German Kora Study.
For the Framingham Heart Study, the results vary. While the reported association
with obesity supports the original finding for the first 3 exams, the quantitative trait
analyses do not. This illustrates one major issue with the phenotype selection in
association analysis. The results can depend highly on the choice of the target phe-
notype. The quantitative trait analysis here, which might have been expected to be
more powerful, does not replicate the finding as well as the dichotomous analysis.
Other analyses (Heid et al. 2009) of this SNP and obesity indicate that it is better
associated with more obese subjects (BMI > 37.5), and in case-control or family
studies specifically designed to include obese subjects. Furthermore, it is interesting
to observe that the replication of the finding for the dichotomous trait seems to
depend on the exam, i.e., the age of the subject. The feature that genetic association
can be age-dependent has previously been observed (Lasky-Su et al. 2008a, Shi
et al. 2009a,b) and highlights one potential reason for non-replications of genetic

Table 7.7 Association studies of rs7566605 CC genotype and obesity as a dichotomous trait
(BMI> 30)

Cohort Odds Ratio 95% CI p-value

FHS 1 1.26 0.78–2.01 0.06
FHS 2 1.52 0.95–2.43 0.08
FHS 3 1.81 1.22–2.70 0.003
FHS 4 1.18 0.80–1.74 0.39
FHS 5 1.14 0.79–1.65 0.48
FHS 6 1.12 0.79–1.59 0.51
Iceland 1.29 1.06–1.57 0.006
KORA S3 0.90 0.70–1.16 0.44
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Table 7.8 Association tests of body mass index as a continuous trait under a recessive model for
SNP rs7566605. BMI was log transformed and the model included adjustments for age and gender

Cohort p-value

FHS1 0.270
FHS2 0.395
FHS3 0.096
FHS4 0.442
FHS5 0.514
FHS6 0.565
Iceland 0.020
KORA S3 0.81

association findings. Study heterogeneity can be introduced by many factors, includ-
ing different ages at the phenotype assessment. In the design of genetic association
studies that are aimed to replicate previously reported findings, it is important to
consider characteristics of subjects in the original population, as well as phenotypes
and study design.

7.9 Sample Size and Power Considerations
for Case-Control Design

There are numerous computer packages (PBAT, PLINK, QUANTO) which allow
one to calculate the power of a given test for a fixed sample size, or the sample size
necessary to achieve a certain power. We recommend using one of these packages
when planning a study. Our purpose here is to discuss parameters to consider when
designing a study, and to provide a simple formula which can be used to compare
the effects of differing assumptions. This section is organized as follows. First we
present notation and a formula for power (or sample size) that can be used for most
of the tests we have discussed in previous sections. Then we explain how the genetic
parameters can be specified under case control sampling in order to use the formula.

In this section, we will assume that the marker is the DSL; in the next section we
discuss what happens with both estimation and power and sample size calculations
when the genetic marker is not the DSL. For this reason, in this section we will use
the notation D and d to designate the two alleles, with D being the presumed DSL.

Notation Box

Let i index the number of copies of D (0, 1 or 2).
fi = p(disease | i copies of the disease mutation)
pD = frequency of the D allele
gi = genotype frequency (not assuming HWE)
K = disease prevalence in population
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=
∑

gi fi , summation over i
Q = 1–K

Relative Risk Models: γi = fi/ f0 ↔ fi = γi f0

Multiplicative: γ2 = γ1
2

Dominant: γ2 = γ1
Recessive: γ1 = 1
Additive: γ1 = 1+γ2

2

Recall that the underlying genetic model specifies allele (or genotype frequen-
cies) and penetrance functions, fi , as defined in the notation box. Since penetrance
functions are ordinarily difficult to specify, it is customary to specify effect sizes and
overall disease prevalence instead. Although risk ratios cannot be estimated in case-
control designs except under the rare disease assumption, for purposes of calculating
power or sample size, any measure of effect size can be used. We use the relative
risk because of its popularity and simplicity. The most commonly used risk ratio
models are shown in the Notation Box, along with the notation for this section. The
advantage of using one of the relative risk models is that, apart from the codominant
model, only one parameter needs to be specified for each mode of inheritance, in
addition to overall disease prevalence and allele frequency. The baseline penetrance,
f0 can be determined using the constraint imposed on the penetrance functions by
the genotype frequencies and the overall prevalence.

Many of the tests that we have discussed (recessive, dominant, and the alleles
test) can be framed as a comparison of two binomial proportions; this fact makes it
easy to derive simple power formulas for these tests (see Box 7.4). To use these for-
mulas in our setting, we need to translate assumptions about effect sizes, population
prevalence, allele frequency and mode of inheritance into the case-control sampling
framework.

Box 7.4 Power Formulas for a Case-Control Sample: Testing the Differ-
ence in the Proportion Exposed Among Cases and Controls

The approach to calculating power for the recessive, dominant or alleles test is
to note that the corresponding χ2 tests are equivalent to two sided Z-statistics,
where we compare the proportions ‘exposed’ in the case and control groups.
How we define ‘exposed’ depends upon the mode of inheritance being tested,
but in any event, it will be determined by genotype. As before, let r , s and
n denote the number of subjects in the two groups and overall, let q̄case and
q̄control denote the proportions ‘exposed’ in each group. The null hypothesis
is H0 : qcase = qcontrol, where qcase and qcontrol are the proportions exposed
among the diseased and non-diseased in the population. To derive power and
sample size formulas, we use a large sample normal approximation to the
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Binomial for the observed proportions exposed in the two groups, and make
two simplifying assumptions: (1) the variance of the test statistic is approxi-
mately the same under H0 and HA, and (2) (qcases −qcontrols) is positive hence
we can neglect the probability of rejecting the test statistic because it falls
in the lower tail rejection region. With these simplifications, power can be
calculated approximately as:

Power ≈ 1 −�

(

z(1−α/2) − �

σ0

)

, (7.10)

where σ0 =
√

q(1−q)n
rs , q = rqcase+sqcontrol

n , and � = qcases − qcontrols.
� is the standard normal cumulative distribution function and zt is the t-th
quantile of the standard normal distribution. From this approximation, it is
easy to derive sample size formulas for a fixed power, say (1 − β), assuming
an equal number of cases and controls:

r = s = 2(z(1−β) + z(1−α/2))2q(1 − q)

�2
(7.11)

To use the power or sample size formulas given in Box 7.4, it is necessary to say
how the two probabilities, qcase and qcontrol, are defined in terms of the test and the
genetic model, under case-control sampling. Table 7.9 gives a general expression for
the genotype probabilities under case control sampling as a function of population
genotype frequencies, disease prevalence and penetrance functions. This table is
derived very simply by using Bayes rule and the definitions in the Notation Box.
Thus P(DD genotype|case) = f2g2/K , etc. Note that the row margins sum to one,
since the probabilities are p(genotype|case-control status).

While Table 7.9 is very general, to be useful, we need to re-express the genotype
probabilities and the penetrance functions in terms of parameters that we are able
to specify, i.e., allele frequency, pD , relative risks and K. Although it is not wise to
assume HWE in constructing a test statistics, in power or sample size calculations,
we usually make that simplifying assumption in power calculations in the absence
of knowledge as to how the population might deviate from HWE. The penetrance
functions (apart from f0) are re-expressed in terms of the relative risks. Further, if
we specify population prevalence (K), the baseline penetrance function ( f0) can be
calculated as a function of the relative risks, and the allele frequency. In practice,
investigators can usually approximate prevalence (K), and specify a range of relative
risks and allele frequencies that they are interested in.

Table 7.9 Genotype probabilities under case-control sampling

dd Dd DD

Cases f0g0/K f1g1/K f2g2/K
Controls (1 − f0)g0/Q (1 − f1)g1/Q (1 − f2)g2/Q



7.9 Sample Size and Power Considerations for Case-Control Design 119

Remark: Note that if we calculate the odds ratio� for any two columns, K, Q and
the genotype frequencies cancel, so for comparing say, DD to dd, � is a function of
only the fi , i = 1 . . . 3, and

�2 = f2(1 − f0)/ f0(1 − f2) ≈ γ2

when (1 − f0)/(1 − f2) is close to 1 (rare disease assumption).
We are now in a position to calculate power for any two group comparison and for

any assumed mode of inheritance, including the alleles test. The general approach
is as follows. The first step is to define qcase and qcontrol in terms of the mode of
inheritance we want to test. To test a recessive model, qcase is the proportion of DD
individuals among the cases and correspondingly for qcontrol. For the dominant test,
qcase is the proportion of individuals with at least one D allele. The alleles test is
also a two-group comparison, but involving chromosomes rather than people; it is
slightly more complicated as we explain below.

As an example, the genetic model for a recessive test specifies γ1 = 1, hence
assuming a recessive model,

qcases = f2g2/K = γ2 f0 p2
D/K (7.12)

qcontrols = (1 − f2)g2/Q = (1 − γ2 f0)pD
2/Q, (7.13)

� = pD
2(γ2 f0/K − (1 − γ2 f0)/Q) (7.14)

and K can be written as,

K = γ2 f0 pD
2 + f0(1 − pD

2).

This allows us to express baseline penetrance as a function of K , γ2 and allele
frequency:

f0 = K

γ2 pD
2 + (1 − pD

2)
.

Given pD , γ2, and K , we calculate f0 and obtain values for � and σ0 and compute
power for a given α and sample size.

However, we can also calculate the power of the recessive test when in fact, the
dominant mode of inheritance is correct. That is, we test for the recessive mode, but
then assume that the true mode is dominant. In this case, we still use equations (7.12)
to define the two proportions and δ, but now in calculating f0, we assume γ1 = γ2.
This gives

f0
∗ = K

γ2(1 − (1 − pD)2)+ (1 − pD)2
.

Note that f0
∗ is smaller than f0 for a fixed K , pD and γ2. This results in a smaller

�∗ (see exercise 7 of Section 7.11), and a lower overall power than if the true model
is recessive.
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The power of the alleles test can also be derived using this simple formula,
assuming HWE holds, since it can be expressed as a test of the difference in the
D allele frequencies for the two groups, where the total sample size in each group
is now 2r cases and 2s controls. The probabilities for the alleles test underlying
the cells in Box 7.1 can be derived from the genotype table by constructing the
corresponding alleles table; the two proportions tested are the D allele frequencies
in each group. For an assumed mode of inheritance that matches the additive model,
we can use either

f1 = ( f0 + f2)/2

for the additive model, or

f1 = √ f2 f0

for the multiplicative model. As above, power can also be calculated assuming the
true mode of inheritance is recessive or dominant.

As noted in Section 7.2, the preferred test for the additive model is the trend
test because it does not require HWE. Formulas for calculating power and sample
size can be given for the trend test which follow the derivation given in Section 7.2
(Slager and Schaid 2001).

7.10 Power and Effect Estimation: Testing a Marker
in LD with the DSL

Until now, we have assumed that the marker tested is the true DSL. When we relax
that assumption, the estimated effect sizes as well as power calculations will be
affected. We first show that the marker can be used for testing f0 = f1 = f2,
where as before, fi = P(disease| i disease alleles). Let f ′

j denote the corresponding
P(disease| j marker alleles), and Pji denote P(j disease alleles | i marker alleles). We
use the assumption that disease depends on the DSL, and that there is LD between
the DSL and the marker, but that, conditional on the genotype at the disease locus,
the disease probabilities do not depend on the marker genotypes. In other words,
only the DSL is causal, the marker does not directly contribute to disease risk. In
that case the marker ‘penetrance’ functions are simply:

f ′
j =

∑

i=0,1,2

fi Pi j .

Note that under H0 : f0 = f1 = f2 it follows directly that f ′
0 = f ′

1 = f ′
2. The

reverse is generally true as well except that f ′
0 = f ′

1 = f ′
2 if the marker and the

DSL are independent, i.e., Pji does not depend on i . In the case of independence,
f ′

j reduces to K for each j . Thus a marker must be in LD with the DSL or it has
no power to test for association between the disease and the DSL. Letting A and a
denote the two marker alleles, and g′

j denote probability of a marker genotype with
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the number of A alleles equal to j , we can write the table of marker genotypes under
case-control sampling as:

Table 7.10 Genotype probabilities for the marker under case-control sampling when the marker is
not the DSL

dd Dd DD

Cases f ′
0g′

0/K f ′
1g′

1/K f ′
2g′

2/K
Controls (1 − f ′

0)g
′
0/Q (1 − f ′

1)g
′
1/Q (1 − f ′

2)g
′
2/Q

Note that expressions for K and Q are unchanged and the probability of the
marker genotype with j alleles, g j , requires specifying the marker allele frequency
as well as LD between the marker and the DSL.

Effect on Estimation: In terms of estimation of odds ratios or relative risks, we
have for the DD/dd comparison,

� ′
2 = f ′

2(1 − f ′
0)/ f ′

0(1 − f2)
′ ≈ γ ′

2,

again making the rare disease assumption. Since each f ′
j is a weighted combination

of the fi , if we make a monotonicity assumption ( f0 ≤ f1 ≤ f2), it is easy to see
that f ′

0 ≥ f0 and f ′
2 ≤ f2, which in turn implies

γ ′
2 ≤ γ2.

In words, the ‘extreme’ penetrance functions are shrunk toward their average
( f2 + f0)/2 so that γ2 estimated from data on markers, will be less than γ2 estimated
from data at the DSL (making the rare disease assumption so that the odds ratio
approximates the relative risk). Similar relationships can be derived for recessive
and dominant relative risks. When there is not perfect LD between the marker and
the DSL, the true genetic model will be distorted when computing risk ratios at the
marker. The relationship between γ ′

1 and γ1 is not so clear; it will depend upon the
mode of inheritance and on the pattern of LD (Lin et al. 2007). In some cases, the
pattern of LD can create an apparent heterozygote advantage, or disadvantage, in
testing the marker, when such a pattern is not a feature of the true disease model.

Effect on Power: While the expressions in Table 7.10 can be used to compute
power when testing markers instead of the DSL, a much simpler derivation can be
given for the alleles test which provides a simple approximation in other cases. We
saw in Chapter 5 that the difference in marker allele frequencies can be expressed as

�A = �Dρ
√

pA(1 − pA)/pD(1 − pD) (7.15)

where

�D = (pD|cases - pD|controls)

�A = (pA|cases - pA|controls),

pD and pA are the disease and marker allele frequency in cases and controls com-
bined, and ρ is the correlation between the marker and the DSL.
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Using the results of Box 7.4 for calculating a sample size for the alleles test
assuming we test the DSL, we have

nDSL = 2(z(1−β) + z(1−α/2))2 pD(1 − pD)/	D
2,

and assuming we test the marker,

nmarker = 2(z(1−β) + z(1−α/2))2 pA(1 − pA)/	A
2.

Using (7.15), we can rewrite nmarker in terms of nDSL and ρ2 as

nmarker ≈ nDSL/ρ
2.

In other words, to adjust for testing a marker in LD with the true disease locus,
calculate sample size for the true DSL and adjust it by dividing by ρ2 (Pritchard
and Przeworski 2001) Because ρ2 is less than or equal to 1, and considerably so for
ρ < 0.8, testing a marker rather than the DSL can substantially inflate the required
sample size.

7.11 Exercises

1. The data below come from the study by Knowler et al. (1988), discussed in
Chapter 3, on the association between IDDM type 2 and a haplotype from the
GM system human immunoglobulin G. These data include all individuals in a
sample of 4,920 Native Americans of the Pima and Papago tribes. In this exam-
ple, think of the GM haplotype as just an allele at a suspected DSL.

GM haplotype # subjects #(%) with IDDM

Present 293 23 (7.9)
Absent 4627 1343 (29.0)

(a) What mode of inheritance can you test using these data?
(b) Test for statistical significance of the association between the GM haplotype

and IDDM and draw conclusions.

2. Refer to Table 7.4.

(a) Test for both the additive model (using the Alleles Test) and the Dominant
model, and compare results.

(b) Give the 95% Confidence Interval for the dominant odds ratio reported in the
text.

(c) Test for the Recessive model using Fisher’s Exact Test.

3. A case/control study has been conducted and a SNP genotyped. Compute the
odds-ratios for the table below and the corresponding confidence intervals. Com-
pute tests for all 3 modes of inheritance (large sample) discussed in the chapter.
Discuss the results in terms of plausibility of a model.
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X=0 X=1 X=2

Cases 500 350 120
Controls 521 270 130

4. Previous studies have shown a relationship between SNP6983269 at 8q24 and
the risk of colon cancer. The SNP frequency is estimated at 0.55 (the more com-
mon allele confers excess risk), and an additive model for risk, with γ1 = 1.3,
fits the data. Assume the risk of colon cancer in the population is approximately
4%. Use this information to plan a confirmation case-control study which will
have power of 80%.

(a) Assuming r2 = 1 between the SNP and the DSL, what sample size is needed?
(b) One actual follow-up study used 560 cases and 750 controls. What would the

estimated power be? How much did the extra 190 controls help in terms of
power, over an equal number of cases and controls? Why might investigators
choose to use a few more cases or controls than needed for power?

(c) The SNP is in a ‘gene desert’, i.e., there are no nearby genes. Assume that r2

is 0.8 and then 0.5, and recalculate the required sample size.

5. Derive the trend test as a score test under a logit model for P(Y = 1|X), where
X uses the additive coding.

6. In the exercises below, assume r = number of cases and number of controls, and
compute all variances assuming H0 is true (pcases = pcontrols). For part c, it will
be easiest to use the numerator of the ratio in equation (7.5) for the alleles test,
and the denominator for the trend test.

(a) Derive the variance of ( p̄cases − p̄controls), assuming Hardy-Weinberg Equilib-
rium.

(b) Derive the variance of ( p̄cases − p̄controls) assuming inbreeding with genotype
distribution given by equation (3.7) in Chapter 3. Hint, recall that p̄ = X̄/2,
so that var( p̄) = var(X̄)/4.

(c) Show that the expected value of the estimated variances under HWE (approx-
imately in large sample) are 2np(1 − p) for both the alleles test and the trend
test.

(d) Repeat part c, now assuming the inbreeding model, and show the (approxi-
mate) expected value for the alleles test does not change, but that for the trend
test is 2np(1 − p)(1 + F).

(e) Comment on the appropriateness of the two tests under the inbreeding model.

7. When testing a recessive model when a dominant model is true, show that f0
∗ is

less than f0 and thus 	 is less than 	∗ and thus the power is less than when we
test the true model (assume K, pD and γ2 are fixed).

8. Assume a monotone model ( f0 ≤ f1 ≤ f2) for the effect of a SNP on a disease.
Find values of Pji = P(j disease alleles | i marker alleles) such that the marker-
disease relationship displays the heterozygote advantage/disadvantage model.
Note that we do not use LD directly, since LD is defined for haplotypes, but
Pji depends upon genotypes.
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9. In a genetic association study for late-onset Alzheimer’s Disease in a Japanese
population (Takei et al. 2009), a number of SNPs have been genotyped in the
APOE region. The SNPs are listed here in physical order; the distance between
the first and last SNP is approximately 55Kb. SNPs rs446037 through rs429358
lie in the APOE gene. SNPs rs429358 and rs7412 (not genotyped, but adjacent to
rs429358) together make up alleles ε2, ε3, and ε4 of the APOE gene. The results
are shown in Table 7.11.

(a) Compute the trend test for all genotyped SNPs in Table 7.11.
(b) Compute the odds-ratios for the heterozygous genotype and the rare homozy-

gous genotype, both relative to the common allele homozygous genotype.

Table 7.11 Genotyped SNPs in the APOE region

Genotypes

Cases Controls

SNP ID MAF MM Mm mm MM Mm mm

rs419010 0.493 112 278 150 206 348 150
rs394221 0.487 149 269 91 153 325 180
rs4803766 0.434 136 273 130 265 328 107
rs395908 0.280 228 240 70 414 261 26
rs519113 0.273 237 226 73 423 258 23
rs412776 0.257 245 230 65 440 237 19
rs3865427 0.209 299 198 43 481 206 14
rs3852860 0.321 191 268 77 359 292 36
rs3852861 0.318 196 261 80 375 294 39
rs6857 0.180 316 184 26 504 183 11
rs157580 0.467 192 262 85 162 351 187
rs157581 0.329 194 251 90 363 281 47
rs157582 0.292 212 240 80 417 250 36
rs157583 0.043 465 57 7 659 34 0
rs1160983 0.048 511 30 0 616 82 3
rs157587 0.043 467 58 6 668 36 0
rs283817 0.044 468 61 7 673 35 0
rs573199 0.038 472 52 7 675 28 0
rs1160985 0.266 323 192 28 346 300 57
rs760136 0.265 323 191 27 338 294 57
rs741780 0.269 314 193 26 340 306 57
rs394819 0.043 473 58 7 672 35 0
rs405697 0.496 98 276 167 216 348 137
rs10119 0.229 249 225 66 509 189 13
rs446037 0.044 468 60 7 674 34 1
rs434132 0.043 474 59 7 675 34 0
rs7259620 0.264 319 189 27 349 301 56
rs449647 0.049 457 70 2 658 44 1
rs769446 0.036 522 22 0 647 60 4
rs440446 0.426 125 270 129 261 319 81
rs429358 0.167 298 202 47 590 124 1
rs7256200 0.128 348 164 27 608 101 0
rs483082 0.208 274 213 51 504 172 12
rs584007 0.439 129 279 130 248 358 95
rs4420638 0.203 297 199 41 565 135 1



Chapter 8
Population Substructure in Association Studies

Genetic association studies using population-based designs have distinct features
that make them an attractive approach for gene mapping. Similar to epidemiolog-
ical studies, they typically use unrelated individuals. As a consequence, the study
recruitment is relatively easy and the statistical analysis is straight-forward to imple-
ment using standard statistical analysis techniques. This provides population-based
designs with an advantage over other designs. Since epidemiological studies have a
long tradition in biomedical research and are available for many complex diseases
that are expected to have a genetic component, existing epidemiological studies can
be converted into genetic association studies without much effort if the DNA of the
study subjects is available, e.g., blood samples, etc. The study subjects have to be
genotyped at the genetic marker loci, but often no additional phenotyping or, even,
recruitment of subjects is required.

In the setting where there is no epidemiological sample readily available that
can be converted into a genetic association study for the phenotype of interest, a
new study has to be designed, subjects have to be recruited and data has to be
collected. Under these circumstances, the use of unrelated study subjects usually
facilitates the recruitment process in terms of both the achievable sample size and
the recruitment time. The genetic effects of single loci that contribute to complex
phenotypes and/or diseases are thought to be relatively small compared to the total
phenotypic variability. Consequently, studies with large sample sizes are required
to have sufficient statistical power to detect the underlying genetic effects. This is
especially true for scenarios in which multiple genetic loci are tested for association
and the test results have to be adjusted for multiple comparisons.

Given their advantages in terms of study design, recruitment, and sample col-
lection, population-based association studies have become extremely popular in the
field of complex disease mapping. However, their popularity has also exposed and
magnified their major weakness, i.e., inconsistent association findings between dif-
ferent studies. Many of the early association findings could not be replicated in other
studies and concerns about the limitations and flaws of association mapping were
articulated.

Both the advantages and the disadvantages of association mapping in unrelated
study subjects originated from the same feature of the mapping technique. As a
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consequence of the recruitment of unrelated individuals, an observed genetic associ-
ation can be indicative of a true genetic effect or, as it is the case in any epidemiolog-
ical study, can be due to confounding, in this case, most likely population admixture
or population stratification. While many complex phenotypes and diseases are well
understood in terms of the knowledge about the non-genetic environmental fac-
tors that influence them, the genetic composition of the study population is usually
unknown in terms of potential substructure, i.e., mixtures or distinct, genetic groups
that are contained in the sample. As we have seen in Chapter 3, the presence of popu-
lation substructure can lead to the number of heterozygous genotypes being reduced
relative to their expected number under Hardy-Weinberg Equilibrium and the vari-
ance of the genotype distribution being inflated, if the study contains subgroups
that have different allele frequencies at the locus (Wahlund Effect). If population-
substructure and its effect on the genotype distribution remain unaccounted for, the
variance of the association tests can be underestimated and, as a consequence, the
number of false-positive findings can be notably higher than would be expected
based on the specified significance level.

In the presence of population sub-structure, in which the data set consists of sev-
eral sub-populations, different disease prevalences in each strata or, in the case of a
quantitative trait, different phenotypic means in combination with varying allele fre-
quencies can lead to confounding of the disease-gene relationship. Commonly used
association tests may show positive results in the absence of any true association,
and conversely, true effects can be obscured.

The harmful effects of population substructure on genetic association tests were
understood early on and, consequently, there has been a concerted effort in the
field to develop statistical approaches whose goal is to make genetic association
analysis of population-based samples robust against unknown confounding due to
population admixture and stratification. The presence of substructure impacts both
numerator of the test statistic and its variance. As a consequence commonly used
genetic association test statistics can be become biased and/or the variance can be
inflated, both causing the failure to maintain the specified significance level. While
tests for Hardy-Weinberg can be used for detecting population substructure, they
generally have poor power, and do not offer a solution for adjusting for substructure.
In the following sections we will discuss three general approaches for dealing with
population substructure; all of them based on the availability of an additional set of
markers which are assumed to have no functional relationship to the trait, and which
are genotyped on the entire sample.

• The first method, genomic control (Devlin and Roeder 1999), addresses the
effects that population-admixture has on the variance of the test statistic. Rather
than relying on the theoretical variance, which may or may not be correct, the
approach simply estimates empirically the variance in the χ2 statistics computed
at the null markers. A variance inflation factor is estimated by comparing the
empirical variance to the variance of the χ2 distribution. This inflation factor
is used to adjust the variance at the marker loci of interest. Because genomic
control makes the assumption that the population substructure at the marker loci
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of interest is the same as for the non-functional markers, the selection of the
non-functional markers is critical for the validity of the approach.

• An alternative way to control for population substructure uses a model and data
on the additional markers to infer the latent population structure and to incorpo-
rate this model into the analysis. Such approaches will be effective if the popu-
lation sub-structure has effect on both the numerator of the test statistic and its
variance. In order to work correctly, the model based approach requires either
strong population admixture, e.g., data from a few distinct ethnicities, or a large
number of null, carefully selected, ancestry informative markers (Pritchard et al.
2000). Due to the underlying model assumptions, these approaches only work
well if the model is estimated correctly.

• Finally, by including null markers or linear combinations of null markers
as covariates in the analysis (using linear or logistic regression), regression
approaches can control for population substructure when both allele frequencies
and disease prevalences vary across sub-strata. These markers, or linear combi-
nations thereof, effectively serve as surrogates for the underlying strata (Chen
et al. 2003; Zhu et al. 2002; Zhang et al. 2003; Price et al. 2006).

With each method of adjustment, it is always possible to construct scenarios in
which each of a proposed method fails to adjust for the confounding correctly and
provides biased test results. The topic of population admixture and stratification
in population-based genetic association studies cannot be considered solved. Good
epidemiological study design is still the most important and efficient way to avoid
confounding in population-based designs. This is particularly true in settings where
only the cases are ascertained and genotyped, and the controls are drawn from a pre-
viously genotyped sample used for a different case-control study. As we will show,
no amount of adjustment can correct for poor designs where population subgroups
for cases and controls do not overlap.

We remark that when dealing with case-control studies, population stratification
is sometimes defined to mean that cases and controls are drawn from different sub-
populations. We will continue to use the definitions given in Chapter 3, but the two
definitions are practically equivalent when disease rates vary across strata.

8.1 The Impact of Population-Admixture and Stratification
on Genetic Association Tests

To understand the effects that population substructure can have on the association
analysis in population-based studies, we first revisit the definition of the association
test statistics for designs of unrelated cases and controls. In Chapter 7, we saw
that both the trend test and the alleles test can be written as tests with identical
numerators, but different denominators, i.e., variances. Using the same notation as
in Chapter 7, and assuming for simplicity that the number of cases and controls is
equal, i.e., r = s = n/2, the numerator of both test statistics can be characterized as
proportional to
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T = r(X̄cases − X̄controls)

To assess the effects of population substructure, we assume the simplest form of
population admixture and stratification, i.e., the study population consists of two
distinct, but unobserved, subgroups with different allele frequencies, p1 and p2 and
different disease prevalences. Note that we assume the null hypothesis is true, so
that the allele frequencies are the same for cases and controls within subpopulation,
but the case-control sampling is done without regard to strata, here treated as unob-
served. We let c denote the proportion of cases falling into the first subpopulation,
and d denote the proportion of controls falling into the first subpopulation. If c = d,
the design is balanced with respect to the strata, but this is unlikely to be the case if
disease rates vary across strata.

We begin by looking at bias. Note that

X̄cases = cX̄1cases + (1 − c)X̄2cases

where X̄kcase denotes the mean for X among cases in the kth strata, and similarly for

X̄controls = d X̄1controls + (1 − d)X̄2controls.

It follows that

E(X̄cases − X̄controls) = 2(p1 − p2)(c − d).

Letting Kk denote P(disease in strata k) and K denote P(disease) overall, simple
algebra shows that under case-control sampling

E(c − d) = S1S2(K1 − K2)/K (1 − K ),

where Sk denotes the proportion of subjects in strata k. We see that even when the
distribution of alleles is the same among cases and controls within strata, so that
the null hypothesis is true, the numerator of the test statistic has a non-zero expec-
tation unless p1 = p2 and/or K1 = K2. The absence of variation in disease rates
or the allele frequencies over strata is sufficient to eliminate this bias. This effect is
referred to in the statistical literature as the Simpson Paradox and confounding in the
epidemiological literature. This result generalizes easily when there is an arbitrary
number of strata to give:

E(X̄cases − X̄controls) = 2 Cov (pk, Kk)/K (1 − K ), (8.1)

where pk denotes allele frequency in the kth strata, and Kk denotes the P(disease)
in the kth strata (See exercise 4 of Section 8.5).

Of course, if we can identify population subgroups we can do a stratified analysis.
For this reason, genetic analyses should stratify by race or ethnicity, although self-
reported indicators of race of ethnicity are unlikely to completely capture genetic
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differences. Many researchers (e.g., Wacholder et al. 2000) argue that, controlling
for race or ethnicity, any remaining biases are likely to be small, and in any event,
will likely be swamped by the extraneous variability induced by admixture or strat-
ification (Devlin et al. 2001).

Formula (8.1) indicates that with a large number of strata there is likely to be low
bias unless there is a systematic monotone relationship between disease rates and
allele frequencies. Although presumably rare, strong covariances have been docu-
mented in several settings (Knowler et al. 1988; Campbell et al. 2005), and are more
likely with a small number of strata, or admixtures of a small number of populations.

We now consider variance inflation caused by population stratification. Recall
from Chapter 3, the effect of stratification on the variance of an individual’s number
of alleles, X , is to inflate it to

Var(X) = 2p(1 − p)(1 + F) (8.2)

where p is the overall allele frequency, and F is the Wahlund effect. In our setting,
where we assume two strata with HWE holding in each strata, F = S1S2(p1 −
p2)

2/p(1 − p), where Si is the overall proportion of the sample in strata i , and
p is the allele frequency in the overall population. In this simple case, p1 = p2
implies F = 0 when HWE holds within strata. More generally, F can be interpreted
as the stratification factor, the inbreeding factor, or as the correlation between the
two alleles transmitted by the parent. Note that F > 0 even if c = d, so that
inflated variance persists even if the numerator is unbiased. The trend test assumes
that individuals in the sample are independent when computing var(T ), but with
stratification, the covariance between two individuals drawn from the same subpop-
ulation is 4Fp(1 − p) (Devlin and Roeder 1999).

Given these expressions, var(T) is given by

Var(T ) = 4r p(1 − p)[1 − F + 2r F(c − d)2]. (8.3)

To assess the impact of population admixture on the test statistic, we compute the
ratio of its true variance given by equation (8.3), to the expectation of the variance
computed in Chapter 6, assuming no substructure. For the alleles test, this latter
variance is approximately 4r p(1 − p) in large samples, and for the trend test, this
is approximately 4r p(1 − p)(1 + F). (See exercise 5 of Section 6.4) Thus the two
variance inflation ratios are given by:

λL = [1 − F + 2r F(c − d)2]

and

λT = [1 − F + 2r F(c − d)2]/(1 + F),

where the subscript L denotes the alleles test ratio and the subscript T denotes the
trend test ratio. Figures 8.1 and 8.2 illustrate λL and λT as a function of F , n = 2r ,
and (c − d).
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Fig. 8.1 The inflation factors,
λL and λT , for F = 0.01 and
δ = |c − d| (The upper
surface corresponds to the
inflation factor λT ; it is not
visible here since the two
inflation factors are so close.)

Fig. 8.2 The inflation factors,
λL and λT , for F = 0.10 and
δ = |c − d| (The upper
surface corresponds to the
inflation factor λT .)
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These ratios have interesting properties that are important to keep in mind in
constructing a robust test statistic:

1. If the cases and controls in the dataset are sampled with equal proportions from
both subpopulations (c = d), but p1 	= p2, then λL is (1 − F). Since F can
be assumed to be positive in the absence of HWE within strata, the variance of
Alleles test will be slightly greater than its true variance. Consequently, although
slightly too conservative, the Alleles test will be robust against stratification in
this case. For the trend test, the ratio here is (1 − F)/(1 + F) which also implies
that the trend test will also be robust against population stratification in this
scenario.

However, if sampling proportions from the subpopulations are different, this
assessment changes fundamentally. Figures 8.1 and 8.2 show the inflation fac-
tors for both the trend test and the alleles test as a function of the difference in
sampling proportions in the 2 sub-populations and the sample size n. The upper
surface reflects the inflation factor for the alleles test and the lower surface the
inflation factor for the trend test. The impact of different sampling proportions
from the sub-populations on the inflation factor can be immense. Even with small
F (0.01), the true variance of both test statistics can be inflated by several mag-
nitudes when n is large and the difference in c and d is large as well, leading
to substantially increased rates of the type-1 error in the test statistic. Similar
results can be obtained in cases in which the sample consists of more than 2
subpopulations (Devlin and Roeder 1999; Pritchard et al. 2000).

In applications to genetic association studies, it is not realistic to assume that
the sample consists of equal proportions from the different, unknown subpopula-
tions, even with the best designs. Consequently, potential bias due to population
admixture is an issue in virtually any genetic association study. In this context
differences between test statistics, trend test or alleles test, are small. The differ-
ences between the inflation factors for the two test statistics are too negligibly
small to favor one test statistic over the other. Regardless of the test statistic
choice, adjustment for population admixture will be one of the most important
aspects of the genetic association analysis.

2. Apart from F , the inflation factors of the 2 test statistics do not depend on the
overall allele frequency p which is an important property for the construction of
an universally applicable adjustment factor. Although F can vary across loci,
under relatively mild conditions, F should be approximately constant across
SNPs Devlin and Roeder (1999). As a consequence, one single inflation factor
can be used to adjust the variance of the test statistic for all genetic markers,
regardless of their allele frequencies.

3. The two inflation factors increase with the sample size of the study. Since the
inflation factors are a linear function of the sample size, the problem of popula-
tion admixture does not ‘go away’ with increasing the sample size, in contrast, it
becomes even more severe. This is an important aspect to keep in mind, in partic-
ular with respect to genome wide association studies in which several thousand
probands are used in the analysis to identify SNPs with relatively small genetic
effect sizes.
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8.2 Genomic Control Approaches

Since the inflation factors λT and λL do not depend on the allele frequency of the
marker locus being tested, the inflation factor, if known, can be used to adjust the
test statistic at any genetic locus across the genome. The idea of genomic control
is to estimate the inflation factor by assessing the degree of population admixture
that is present in the study by genotyping a set of null loci, i.e., a set of genetic loci
that are assumed not associated with the phenotype. Under the assumption that the
distribution of the selected test statistic at null loci reflects the distribution of the
test statistic under the null hypothesis in the data set of interest, an estimator for the
inflation factor can be constructed. Since we have to assess an empirical distribution
of variances where outliers can have strong effects, a statistical approach that is
robust against such effects has to be used. Instead of estimating the average variance
at the null loci, the median of all test statistics at the loci is calculated and compared
to its theoretical value. Thereby an estimate for the inflation factor is obtained. The
observed test statistics at the marker loci of interest are then scaled by the inflation
factor λ. Thereby, the effects of population admixture on the theoretical variance
of the test statistic are compensated for. The scaled test statistics at the marker
loci of interest should then have an asymptotic χ2-distribution. The details of the
approach are outlined in Box 8.1 and are applicable to any of the χ2 tests discussed
in Chapter 7, including the codominant test. Similarly, the genomic control approach
can be extended to other phenotypes than affection status.

Box 8.1 Genomic Control Procedure

Let χ2
1 , . . . , χ

2
L be the χ2-statistics at the null markers. The same type of test

statistic is selected and applied to all null loci and the marker loci are tested
formally for association. The inflation factor λ for the variance can then be
estimated by

λ̂ = 0.4549

median(χ2
1 , . . . , χ

2
L)
.

The value of 0.4549 corresponds to the median for the χ2-distribution with 1
df. The test statistic, e.g., χ2

T or χ2
L , for the marker locus of interest is then

adjusted by

χ2
GC = λ̂ χ2

L ∼ χ2
1

for the alleles test, and similarly for the trend test χ2
T . For a codominant test

we use the median value of a χ2
2 distribution in the numerator of λ̂.

In practice, genomic control has proven to be an effective and powerful approach
to address the issue of potential confounding due to population-admixture in
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genetic association studies. In numerous applications, genomic control has been
successfully applied and provided association results that could be robustly repli-
cated by other studies. As with any statistical approach for population-based designs
in this context, it is possible to construct scenarios in which genomic control fails to
adequately adjust for population admixture, e.g., local population admixture, selec-
tion, etc. However, even in the days of genome wide association studies, genomic
control is still one of the most frequently used adjustment approaches and can gen-
erally be recommended.

8.3 Modeling the Effects of Population Admixture
and Stratification

An alternative, more model-based approach to compensate for the effect of popula-
tion substructure is either to infer directly the population substructure based on a set
of null markers (Pritchard et al. 2000) or to estimate its effect on the odds of disease
(Epstein et al. 2007).

The first approach aims to identify the sub-populations in the study and, for each
study subject, identify their membership in a particular subpopulation. Based on the
subgroups identified, a stratified analysis is conducted. The approach requires ances-
try informative markers (i.e., so called AIMs) that allow one to distinguish between
the different subpopulations. It works particularly well if the sample consists of
sub-populations that are genetically very different and this difference is captured
by the AIMs. One disadvantage of such approaches is, however, that, while such
marker sets exist to distinguish between different ethnicities, they are not common
knowledge for most study populations likely to be present in large samples from
out-bred populations. In such cases, the approach will not be able to identify sub-
populations reliably. If proper attention is given to handling population admixture
and stratification during the study design, study subjects who are genetically very
different and subpopulations which are not apriori identified should be rare.

8.4 Regression-Based and Principal Component Approaches

A straightforward way to adjust for the effects of population-admixture and stratifi-
cation is to identify markers that are informative about different strata or subgroups,
and then to adjust the association analysis accordingly by including them as covari-
ates in a logistic regression, or linear regression depending on the analyzed trait.
Such approaches have been shown to work well in practice and are very flexible in
terms of the statistical modeling of complex traits. The key disadvantage here, once
again, is that the informative markers/null-markers need to be known and available
for genotyping.

This changed fundamentally with the arrival of genome wide association stud-
ies. Having thousands of SNPs available across the entire human genome, allows



134 8 Population Substructure

identification of the informative markers for each study based on its own data. Such
study-specific adjustments are highly desirable for the reasons discussed above.

In the absence of population substructure, one would expect that the genotypes
between probands are not correlated. If, however, correlation is observed between
the genotypes of probands this suggests that the study subjects may be cryptically
related, i.e., they share a recent common ancestor, and that population substructure is
present. Of course, with several thousand markers and a sample size of at least a few
hundreds, it is not possible to examine the correlations on a proband-by-proband or
marker-by-marker basis. The key idea is to construct the variance-covariance matrix
of all probands and apply principal component analysis (Chen et al. 2003; Zhang
et al. 2003; Zhu et al. 2002; Price et al. 2006).

By identifying the major axes of variation in the genetic markers and plotting the
coordinates of the study subjects with respect to the principal components, we can
examine whether the genotypes of the study subjects are correlated for the strongest
components of variation in the data set. Since the principal components are a linear
combination of the original genotypes, study subjects should be uncorrelated in such
a plot in the absence of population substructure. However, if there are clusters in the
principal component plots, this implies that the genotypes of the probands within a
cluster are correlated and there is population substructure. Figure 8.3 contains a plot
the first two principal components for a sample of 1000 children from the IMAGE
study, a European Attention Deficit and Hyperactivity Disorder Study. Figure 8.3
clearly shows significant degree of population substructure. Note the clustering of
cases in the lower tail of eigenvalue 1. Clusters of cases with no corresponding
cluster of controls cannot be matched on population substructure.

Fig. 8.3 Eigenvalue decomposition of the IMAGE sample, a study on attention deficit and hyper-
activity disorder in 1,000 children sample from Belgium, Israel, France, Germany and Switzerland.
Source: Courtesy of Dr. Jessica Lasky-Su
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It is straightforward to adjust the analysis for such effects, either by including
the significant eigenvectors of the principal component analysis in the association
analysis as covariates, or by matching cases and controls based on their eigenvalue
decomposition. Cases and controls that cannot be matched are removed from the
analysis. The entire algorithm for principal component adjustment is outlined for
the genotype adjustment in Box 8.2. With whole genome SNP coverage the vast
majority of the markers should not be correlated with the phenotype under the null
hypothesis, hence principal component analysis can be used to identify correlation
between the phenotype data and the genetic data that is attributable to population-
stratification. Including the corresponding eigenvectors in the analysis will remove
such effect from the data analysis.

Box 8.2 Principal Component Adjustment of Association Studies

Notation:

• M ... Number of SNPs
• N ... Number of subjects
• X = (zi j ) an M × N matrix of standardized genotypes coded for the addi-

tive model for the i th SNP in the j th proband, i.e.,

zi j = (Xi j − X̄i.
)
/
√

p̂i (1 − p̂i )

where p̂i estimates the population frequency of the i th SNP.

The algorithm:

• Step 1: Compute the Variance-Covariance matrix for the probands as C =
(X T X)/(N − 1).

• Step 2: Compute the eigenvalue decomposition of the covariance matrix.
• Step 3: Select the top K eigenvalues that are statistically significant.
• Step 4: Include the significant eigenvectors in the linear regression of the

phenotype on marker, or use the significant eigenvectors to match cases and
controls, and do a matched pair analysis.

Together with the genomic control approach, the principal component
approaches have became one of the standard ways to adjust for population substruc-
ture in population-based designs when thousands of markers are available. While
they were less popular in the area of candidate gene studies, when only limited
number of genetic markers were available for each study subject, they have become
the most frequently used adjustment tool in genome wide association studies.

Although attractive in that it can theoretically handle any number of markers,
it is numerically most stable to select up to 10,000 markers not in LD and with
allele frequencies above about 10%. As is the case for genomic control, it is also
here possible to construct scenarios in which principal component adjustment will
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fail to remove the effects of population admixture appropriately. However, in gen-
eral, when applied carefully, they have been demonstrated to be an efficient way to
control for population admixture in population-based design.

8.5 Exercises

In exercise 1 of Section 7.11, we found an association between a haplotype
(GM3:5,15,14) from the human immunoglobulin G gene and IDDM in a population
of Native Americans from the Pima and Papago Indian Tribes. Recall, however,
from Chapter 3, that this population is admixed, as individuals have different propor-
tions of allele frequencies depending on the number of native American ancestors.
The table below gives counts of individuals with and without the GM haplotype
(GM+ and GM-) and those with IDDM in parentheses for 3 of the strata:

Strata n # GM+ (# IDDM) # GM- (# IDDM)

0 32 21(3) 11(2)
4 344 145(7) 199(7)
8 4264 69(12) 4195(1303)

Note that these data give different overall percentages from Table 3.2 because of age
adjustment.

1. Using the data in the table above, compute the bias in the test statistics using
formula (8.1). Does this suggest population stratification? Will it affect the bias,
or variance, or both for the test of association?

2. Compare the relative risks computed within strata with the one computed from
the data in exercise 1 of Section 7.11 and comment.

For these next four exercises, assume the situation described in this chapter,
where we have two subpopulations with allele frequencies p1 and p2. The pro-
portion of cases in strata 1 is c, and the proportion of controls in strata 1 is d,
Kk is disease risk, and Sk is the proportion in the k-th strata. Within strata, the
allele frequencies are the same for cases and controls. In the sample, we assume
an equal number of cases and controls overall (r = s).

3. Verify the expression given in the text for E(c–d) when there are only 2 strata.
4. Verify equation (8.1), where now we assume more than 2 strata with allele fre-

quencies pk and disease risk Kk .
5. Suppose you can identify the subpopulations; suggest at least one way to obtain

an adjusted difference between cases and controls, or to obtain an unbiased test
for the difference in mean X in cases and controls. You can consider both design
and analysis strategies.

6. Show that (under H0) the covariance between Xl and Xm for any two individuals
l and m drawn from the same subpopulation is 4Fp(1 − p), where F and p are
defined for equation (8.2) in the text.
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7. In a candidate gene study, 20 null markers have been genotyped. Their χ2 statis-
tics are listed below:
5.112124234 0.827057943 3.158134984 3.395351358 0.056900096 0.878446231
4.955161751 0.127185994 1.115390624 1.471334371 0.042577497 0.833171588
0.389633293 0.088260639 0.008057015 0.206122142 0.052385560 0.020823177
1.445823813 0.195321095
The table for the marker of interest is given by:

X= 0 X=1 X=2

Cases 400 150 52
Controls 321 120 40

(a) Is there evidence for admixture in the data?
(b) What is the genomic control adjustment factor?
(c) Is the marker of interest associated with affection status? Use both the alleles

test and the trend test, adjusted for Genomic Control.



Chapter 9
Association Analysis in Family Designs

The use of family data has a long history in genetics, for association as well as
linkage and segregation. Perhaps the simplest and most intuitively obvious example
involving association analysis is a study comparing the genotypes in cases with the
genotypes in their unaffected siblings. By using an unaffected sibling as a control,
we eliminate issues of confounding by population substructure which are caused by
comparing affected cases with unaffected controls whose genetic backgrounds are
not comparable to the cases. With family controls, rejecting the null hypothesis of no
association implies more than just ‘no association’. Finding a significant difference
in genotype frequencies between cases and their unaffected siblings implies that
the marker is both linked and associated with a disease locus underlying the trait
(Appendix C).

The most popular family study design involves parents and their affected off-
spring, commonly called trios. As we discuss in Section 9.2, trio designs tend to
be more powerful than discordant sib pair designs in most situations. A drawback
is that they require three genotypes, compared to two for a case-control study or
a discordant sib pair design. It can be difficult to obtain parental genotype data
for diseases with late onset, e.g., Alzheimer’s disease. Other family configurations
which are commonly used in practice are discordant sibships, involving at least one
affected and at least one unaffected offspring, trios with multiple affected siblings,
and multi-generational pedigrees.

This chapter is organized as follows. In Section 9.1 we discuss the trio design, its
analysis using the Transmission Disequilibrium Test (TDT). We discuss the prop-
erties of the TDT, including different specifications of the null hypothesis involv-
ing association and linkage. In Section 9.2 we consider analyses for more general
family designs with missing parents and other types of phenotypes, and compare
the power of different designs under various scenarios. Finally we present some
examples involving missing parents, multiple alleles and quantitative traits.

9.1 The Trio Design and the TDT

The basic idea of a trio design is diagrammed in Fig. 9.1, where the marker is
assumed to be on an autosomal chromosome.

N.M. Laird, C. Lange, The Fundamentals of Modern Statistical Genetics,
Statistics for Biology and Health, DOI 10.1007/978-1-4419-7338-2_9,
C© Springer Science+Business Media, LLC 2011
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Fig. 9.1 Allele transmissions
in trios

The genotypes of the parents are known, and the offspring is affected. If there is
no association between the marker and the disease locus influencing disease status,
Mendel’s law of segregation holds, we can use it to give the distribution of the
offspring’s genotype. In the case of Fig. 9.1, Mendel’s law specifies that the proba-
bility of an AA genotype is the same as the probability of an Aa genotype. However
Mendel’s law does not hold for allele transmissions if individuals are selected for a
trait which is associated with the marker genotype. Thus to form a test of association
between disease and the marker we compare the genotypes actually observed in the
affected offspring to those expected when Mendel’s law holds.

This idea can be formalized by considering all transmissions of a particular allele,
say A, from an Aa parent to its affected offspring. Parents who are homozygous, AA
or aa, contribute no information to the test, since the allele that will be transmitted
is defined with absolute certainty by the parental genotype, e.g., an AA parent will
always transmit an ‘A’ allele to its offspring. These parents are non-informative.

Each parent has a pair of alleles, one which is transmitted to the affected off-
spring, and one which is not. Table 9.1 summarizes the numbers of transmitted and
non-transmitted alleles from each possible parental genotype. That is there arew AA
parents, all of whom transmitted A; likewise aa parents transmitted an a. The two
off-diagonals of the table are the heterozygous parents, Aa. Of these, x transmitted
an A and y transmitted an a. Note that the table total is w + x + y + z = 2n,
where n is the number of offspring, and 2n is the number of parents, However
the homozygous parents do not contribute information to the test because they can
only transmit one type of allele. If Mendel’s Law of segregation holds, then for a
heterozygote parent the probability of transmitting A is the same as the probability
of transmitting a, and so that the counts in two off diagonal cells are equal in expec-
tation, i.e., E(x) = E(y) given the parent’s genotype. Note that in the absence
of association, transmissions from two parents to their offspring are independent.
Thus, conditioning on the total number of heterozygote parents, x+y, the count x is
binomial with sample size x + y and probability 1

2 . A large sample two-sided test
of no association can be carried out with the statistic

Table 9.1 Cross-classification of transmitted and not-transmitted alleles in parent-offspring pairs

Parental allele
not transmitted

A a

Transmitted A w x
Parental allele a y z
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χ2 = 4

(

x − x + y

2

)2

/(x + y) = (x − y)2

x + y

Exact tests based on the binomial distribution can be carried out in small samples; a
rule of thumb for the appropriateness of the large sample χ2-distribution is (x+y) >
10, but this may not be adequate when values of α much less than 0.05 are used.

Example: Spielman et al. (1993) reported on a study of 94 families with two
or more Insulin Dependent Diabetes Mellitus (IDDM) children. Previous popula-
tion studies had shown an association between allele 1 at a marker near the insulin
gene on chromosome 11 and IDDM. All other alleles at the marker other than the 1
allele are denoted by X. There were 78 transmissions of allele 1 to offspring from
heterozygote parents, and 46 transmissions of allele X, giving a χ2-value of 8.26,
which is highly significant for a χ2-distribution with 1 degree of freedom.

When the TDT was first introduced, it was considered a test of linkage in the pres-
ence of association. At the time, some linkage studies of markers in the insulin gene
region and IDDM were unable to show linkage anywhere in the region, while some
case-control studies detected evidence for association. The TDT was introduced as
a novel test of linkage in the presence of association. Today, however, the TDT is
commonly used as a test of association. In fact, it is a test for both linkage and
association, in the sense that both linkage and association must be present in order
for the test to reject. Said another way, if either linkage or association is absent, the
test has no power to reject.

Intuition: Suppose that the marker and the DSL are associated in the parental
population. This association could be due to population substructure, confounding
by extraneous variables, or LD and tight linkage. If there is no linkage between the
marker and the DSL, then recombination will occur between the marker and the
DSL with probability 50/50, and any association present in the parental generation
is not consistently present in the offspring. On the other hand, if there is linkage
between the marker and the DSL, but no LD between the marker and the DSL, then
any observed pattern of association between the marker and the DSL will differ in
every family and their offspring, and collectively among the offspring, there will be
no systematic association. In Appendix C we give a simple proof that the transmis-
sion rate from heterozygote parents to offspring differs only if the marker and the
DSL are linked and there is allelic association between the two loci, i.e., there is LD
between the marker and the DSL. The proof requires only the existence of a DSL on
an autosomal marker conferring greater disease risk for one of its alleles. Without
these conditions, the expected transmission ratio is 50/50 for the two marker alleles
and the null distribution of the TDT holds.

The implication of these results is that the test is robust to population substructure
in the sense that false positives cannot occur with probability beyond the stated α-
level, if association between the DSL and the marker is due to spurious population
substructure alone; linkage must also be present. In fact we can formalize this to
there being three possible null hypotheses, appropriate in different settings:

• H0: No linkage in the presence of association (follow up of case-control
association studies showing association)
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• H0: No linkage and no association (for candidate gene studies without prior link-
age signal or for genome wide association studies)

• H0: No association in the presence of linkage (follow up of linkage signals)

There is only one testable alternative hypothesis:

HA : The marker is both linked and associated with a DSL affecting the trait.

Mendel’s law can be used to find the expected transmission conditional on par-
ents for any of the above three null hypotheses. The importance of distinguishing
between different null hypotheses has to do with how we calculate the joint distri-
bution of transmissions when H0 is true, and we have more than one offspring, or
we deal with transmissions in pedigrees. While sometimes one sees H0 expressed as
‘No association or no linkage’, this formulation has the awkwardness that the null
distribution may not be uniquely defined. To see why, suppose a family has multiple
affected offspring, or we are dealing with pedigrees with multiple nuclear families,
each of which has affected offspring. In this case, are transmissions from the parents
to offspring independent? The answer is yes if under H0, θ = 1

2 , i.e., there is no
linkage as in the first two null hypotheses described above. In this case, multiple
offspring will have independent transmissions, and transmissions from grandparents
to parents will be independent of transmissions from parents to offspring, provided
we condition on the parent’s genotypes at each stage. In the event that we are testing
markers for association in an area of known linkage to a DSL, transmissions of
multiple offspring are no longer independent, but depend upon disease status and
the unknown θ . In this case the variance of the test statistic must take correlated
transmissions into account. We note that the null distribution does not depend on
whether or not L D = 0, only on whether or not θ = 1

2 , so no adjustment to the test
is necessary for the first two null hypotheses.

A natural question is what is the power of the TDT test relative to a case-control
study with the same number of cases? Because the TDT carries the requirement
of three genotypes per case, relative power can be important in determining fea-
sibility. Intuitively, we might expect that the power of the TDT is lower than a
case-control study with an equal number of cases because homozygous parents are
not informative. We will defer a discussion of power considerations until after we
have discussed other family designs.

9.2 Family Based Association Tests: FBAT

In this section we deal with a general method of testing for association and linkage
using family designs (Laird et al. 2000b). As originally proposed, the TDT was lim-
ited to dealing with affected offspring only, whose parental genotypes were known.
In addition, the test assumed no linkage (so that multiple affected offspring in a
family can be accommodated), a bi-allelic marker and an underlying additive genetic
model (because transmission of each parental allele is considered separately). There
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have been many methods suggested for adapting the TDT to handle other genetic
models, missing parents, multi-allelic markers, and other more general cases. See
for example Clayton (1999); Schaid (1998); Spielman et al. (1993); and Martin et al.
(2000). In this section we first characterize the properties of the TDT which ensure
its robustness, both to the underlying model and to population substructure. We then
discuss a general approach for constructing a test statistic for family data, and use
this approach to compare the power of different family designs with the case-control
design.

To maintain the robustness to population substructure of the TDT test when we
extend the test to other situations, we follow the three principles underlying the
TDT:

1. In computing the null distribution of the test we condition on the parental geno-
types. Conditioning on parental genotypes ensures robustness to population sub-
structure. No assumption is made concerning the distribution of the parental
genotypes. In the case where we have missing parents, we condition on a con-
figuration of the family genotypes which is invariant to assumptions on missing
parents.

2. The TDT uses only affected offspring; letting Y denote the offspring phenotype,
implicity the distribution of the test under the null conditions on Y = 1, where
Y = 1 means affected, for all offspring in the study. When we generalize the test
to handle arbitrary phenotypes, e.g., counts or measured outcomes, we continue
to condition the distribution of the offspring genotype under the null on the trait
of the offspring; this ensures robustness to the choice of model for constructing
the test statistic.

3. The random variables in the calculation are the genotypes transmitted to an off-
spring. The null distribution used to evaluate the test statistic is the distribution of
offspring genotypes, conditional on parental genotypes and offspring traits. This
ensures the validity of the test since, under H0, the null distribution depends only
on the parental genotypes. The null distribution will also depend upon θ if θ 	= 1

2
and multiple offspring are included. In the case of missing parents we condition
on the family configuration of the genotypes, as described later in this section.

An advantage of this general approach is that it allows straightforward exten-
sion to different family structures, different genetic models, multi-allelic markers,
multiple markers, haplotypes, all types of traits, multiple traits, markers on the
X-chromosome, etc.

The FBAT test is based on a score statistic. Many commonly used statistical
tests are based on score statistics, such as the t-test, the Pearson χ2 test, the trend
test, the Mantel-Haenszel Test, etc. To derive a score test, we specify a likelihood
function for the observed data under a general alternative by making assumptions
about the distribution of the trait and the genetic model (link function and mode
of inheritance). In Appendix B, we present the derivation of the FBAT statistic and
show that our assumptions about the genetic model and the distribution of the trait
do not bias the α-level of the statistic. In addition, we show why the general FBAT
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approach is robust to population substructure, and how to retain this property when
parents are missing.

Assuming parental genotypes are known, and that there may be multiple off-
spring in the family, the expression for the general FBAT score statistic is given by

U =
∑

i=1,...,n,
j=1,...,ni

Ti j (Xi j − E(Xi j |Pi )), (9.1)

where i indexes families, j indexes offspring in the i th family, Xi j denotes the
coded genotype, Ti j denotes the coded trait of the j th offspring in the i th family, Pi

denotes the parental genotypes, and ni is the number of offspring in the i th family.
The general approach can be extended to pedigrees, but here we assume pedigrees
are broken into nuclear families. As noted in Chapters 2 and 5, Xi j can be coded
to represent different genetic models; it can also be coded to accommodate multiple
alleles. Ti j is a coding function for the trait of interest. Typically, Ti j is a phenotypic
residual, i.e., Ti j = (Yi j −μ), where Yi j denotes the phenotype of the offspring and
μ is an offset. Choice of μ depends upon how the sample is ascertained, as will be
discussed in Section 9.3. Substituting (Yi j −μ) for Ti j , we see that our score statistic
is similar to a covariance between the coded trait and the coded genotype:

U =
∑

i=1,...,n,
j=1,...,ni

(Yi j − μ)(Xi j − E(Xi j |Pi )).

This might be expected, given that many tests of association are based on covari-
ance statistics. Rather than centering on sample means, we center the trait to reflect
ascertainment of the sample. We center the genotype by its expectation under the
null hypothesis, E(Xi j |Pi ), in order to maintain robustness to population substruc-
ture. Under any of the null hypotheses given at the beginning of this section, the
distribution of Xi j given Pi does not depend on the trait so that Mendel’s first law
can be used to calculate E(Xi j |Pi ). Thus by construction, U has expectation zero
under any null hypothesis.

To obtain the FBAT test, we normalize U by its standard deviation, again com-
puted under the conditional distribution of offspring genotype given Pi , giving a Z
or a chi-squared statistic as

Z = U/
√

var(U ), or equivalently, χ2 = Z2 = U 2/var(U ), (9.2)

where computation of var(U ) depends upon whether or not linkage is present when
there are multiple siblings in a family. If we assume θ = 1

2 under H0, then transmis-
sions to siblings are independent and

var(U ) =
∑

i=1,...,n,
j=1,...,ni

Ti j
2 var(Xi j |Pi ). (9.3)
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When testing the null hypothesis of no association in the presence of linkage with
multiple offspring in a family, E(Xi |Pi ) is again given by Mendel’s Law, but trans-
missions are correlated within a family. An empirical variance can be computed to
estimate var(U ):

var(U ) =
∑

i=1,...,n

Ui
2, (9.4)

where

Ui =
∑

j=1,...,ni

Ti j ((Xi j − E(Xi j |Pi )). (9.5)

This variance is only approximate, and is valid only when the null hypothesis is true.
If there are multiple nuclear families in a pedigree, the summation in (9.5) is over
all offspring in all families in the i th pedigree.

With multi-allelic markers, or for the codominant test, a multi-allelic version of
the FBAT statistic is obtained by taking X to be a vector; each element of X codes
for a specific allele or genotype. Then U will be a vector, var(U |P) a variance-
covariance matrix, and the test statistic is the quadratic form U T var(U |P)−1U ,
which is distributed as χ2 with degrees of freedom equal to the rank of var(U |P).
Here P denotes the collection of all parental genotypes. If there are multiple traits
which we wish to test simultaneously for association with a marker, then Ti j is a
vector, and thus so are U and var(U |P), hence the test statistic is again given by the
quadratic form U T var(U |P)−1U .

It is possible to adjust for covariates when defining the offset for the trait. The
approach is similar to that used with regression approach for samples of independent
individuals. Such adjustments may increase the precision of the test with measured
responses, but adjustment is not necessary to avoid confounding provided the covari-
ates are conditionally independent of the marker X given the parental genotype P .
Intuitively, the marker should not be linked or in LD with any locus influencing the
covariate, although the covariate may be correlated with the parental mating type.
With quantitative traits, the use of highly predictive covariates can substantially
increase the power of the FBAT-test (Lu and Cantor 2007).

9.2.1 Missing Parents

Missing parental genotype information is a common problem, especially for later-
onset diseases. There have been several approaches suggested for handling missing
parents, including estimating a model for the parental genotype distribution and
using likelihood ratio or score tests which average over the estimated distribution of
the parental genotypes for families with missing parents (Clayton 1999; Weinberg
1999). These approaches have the advantage that additional family members are not
required; data from only a single affected individual can be included. However, they
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are not guaranteed to retain robustness to population substructure, since approaches
which model the distribution of parental genotypes make simplifying assumptions
concerning the distribution of the parental genotypes (no population substructure or
Hardy-Weinberg equilibrium) (Dudbridge 2008). Approaches which retain robust-
ness to population stratification when the genotype of one or more parents is missing
make use of the genotypes of other individuals, typically siblings, to calculate a
conditional distribution for the offspring genotype that is valid regardless of the
unknown parental genotype (Martin et al. 2001; Knapp 1999b). For example, the
S-TDT (Spielman and Ewens 1998) was designed to handle discordant sibships; it
can be viewed as an extension of the Mantel-Haenszel Test for matched binary data
(Laird et al. 1998). The RC-TDT (Knapp 1999a) computes a test very similar to the
original TDT that conditions on being able to reconstruct the parents. It combines
directly data from families with and without complete parental information.

The FBAT approach falls into the category of conditional tests; the general idea is
to consider all of the observed genotypes in the family. If both parents are observed,
then the distribution of the offspring is computed conditional on the genotypes of
both parents, just using Mendel’s Laws. When one or more parents are missing,
the FBAT approach conditions on the sufficient statistic Si for the missing parental
genotypes in the i th family. In some cases, this will be equivalent to permuting
the genotypes among the offspring. Sufficient statistic is a technical term which
means that when we condition the distribution of the offspring genotypes on Si ,
this resulting distribution does not depend upon the missing parental genotypes, or
any assumptions about the distribution of the missing parents. This feature ensures
the validity of the FBAT tests, regardless of the true missing parental genotypes
(Rabinowitz and Laird 2000). Informally we can think of the sufficient statistic as
the information in all of the family’s observed genotypes that is needed to infer the
missing parents. The idea is similar to conditioning on being able to reconstruct the
missing parental genotypes as in the RC-TDT, but can easily be extended to more
general pedigrees as well as more general genetic models, traits, haplotypes, etc.
For example, to extend the conditioning approach to general pedigrees, one condi-
tions on all the founders when founder genotypes are present, and on the sufficient
statistic for the founders when their genotypes are missing. Construction of Si for
a family is tedious but straightforward; details are given in Rabinowitz and Laird
(2000) and examples will be given in the next section.

When we condition the distribution of the offspring on Si , the genotypes of
offspring will be correlated even in the absence of linkage and there is additional
loss of information about association. At a minimum, we must observe at least two
offspring with different genotypes in order for the family to contribute informa-
tion about the association. The more offspring we have, the more information can
be recovered about the missing parents. With missing parents, the equations (9.1),
(9.2), (9.3), (9.4), and (9.5) defining the statistic remain exactly the same, except that
E(Xi j |Pi ) is replaced by E(Xi j |Si ) in equations (9.1) and (9.5), and equation (9.3)
is replaced by

var(U ) =
∑

i=1,...,n,
j, j ′=1,...,ni

Ti j
2 [var(Xi j |Si )+ 2Ti j Ti j ′cov(Xi j , Xi j ′ |Si )

]
. (9.6)
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The joint distributions f (Xi1, . . . , Xni |Si ) necessary to compute the FBAT statis-
tic are simple to enumerate (Rabinowitz and Laird (2000)) and examples will be
given in the next section. Tests based on this approach can be implemented in the
FBAT www.biostat.harvard.edu/∼fbat /or PBAT www.biostat.harvard.edu/∼clange
software packages.

9.2.2 Comparative Power for Family-Based
and Case-Control Designs

Family-based tests, being conditional tests, are robust both to model assumptions
and to population substructure, but the price of such robustness is some cost in
terms of power. There are some cases, and some designs, however, where the power
is essentially equivalent to that of the case-control with an equal number of cases.
In this section we present the results of simulations to compare power for vari-
ous designs. Our comparisons are indexed by the number of cases required by
each design. Thus the trio design requires three genotypes per family, the sib pair
and case-control designs with equal numbers of cases and controls require two.
Figures 9.2 and 9.3 compare the power of four different designs: case-control, trios,
discordant sib pairs, and discordant sib trios (one discordant sib pair and one addi-
tional sibling), for different disease prevalences and two genetic models as a func-
tion of allele frequency. The achieved power levels are assessed under a common

Fig. 9.2 Power comparisons between case-control and family-based designs: Case of a common
disease (disease prevalence of 10%). Based on 100,000 replicates, the power is estimated for 1500
families or 1500 cases and controls under an additive mode of inheritance and an odds-ratio of 1.4
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Fig. 9.3 Power comparisons between case-control and family-based designs: Case of a rare disease
(disease prevalence of 0.1%). Based on 100,000 replicates, the power is estimated for 1500 families
or 1500 cases and controls under an additive mode of inheritance and an odds-ratio of 1.4

disease model (disease prevalence: 10%, Fig. 9.2) and a rare disease model (disease
prevalence: 0.1%, Fig. 9.3).

For a common disease, the case-control design achieves the highest power levels
among all designs considered. It is followed by the trio design whose power level
is considerably lower so that the difference is of practical relevance. Family-based
design with missing parents has lower power than the trio designs. For a rare disease,
the trio design is slightly more powerful than the case-control design. Again, the
family-based designs with missing parents have much lower power.

In terms of practical recommendations for study design, several factors have to be
taken into account, among which power levels are only one component. Robustness
properties against confounding (or selection of good controls) play also an impor-
tant role, as well as phenotype selection and ascertainment conditions. For studies,
such as genome wide association studies, whose goal it is to identify new genetic
variants underlying disease, genotyping cost, as well as genotyping errors are major
considerations.

9.3 Applications

Here we present some examples of how to use the FBAT approach in practice. We
do this partly to compare with other approaches, and partly to illustrate the sim-
plicity of the calculations in many cases. We drop the subscript i j except when
necessary for clarity. We show how to use the trait offset and covariates with either
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dichotomous or quantitative outcomes, how to handle the calculations arising when
parental genotype data are missing, and how to test different genetic models.

9.3.1 Using FBAT to Obtain the TDT

The TDT uses only affected offspring (Y = 1) and assumes that transmissions to
multiple offspring are independent. The formulas simplify considerably in this case,
as T = (Y − μ) is constant for all i and j and drops out of the test statistic, i.e.,
(Y − μ) cancels from numerator and denominator of the test, so that the offset μ
is irrelevant. If there are additional offspring in the data set with Y = 0 or whose
phenotype is unknown, the test can be calculated for the affected only by taking
μ = 0 so that T = 1 for affected and T = 0 for unaffected as well as those
with phenotype unknown. Whenever T = 0 for an individual, this person does not
contribute to either U and var(U ). In these cases, U (from equation (9.1)) can be
written as

U =
∑

(X − E(X |P))

and assuming no linkage between the marker and the DSL,

var(U ) =
∑

var(X |P),

where the summation is over all affected offspring in all families. The following
features are easy to show (exercise 4 of Section 9.4) when we use the additive coding
(X counts the number of A alleles that an offspring has):

1. Both (X − E(X |P)) and var(X |P) are zero when both parents are homozygotes;
2. If only one parent is a heterozygote, (X − E(X |P)) = ± 1

2 , depending upon
which allele is transmitted by the heterozygote parent, and var(X) = 1

4 ;
3. If both parents are heterozygotes, (X − E(X |P)) is either 0 or ± 1 depending on

the transmissions of the parents, and var(X |P) = 1
2 .

From this, it is then easily seen that the FBAT χ2 is identical to the TDT. Notice that
var(X) is proportional to the number of heterozygote parents, 0, 1 or 2 with constant
of proportionality 1

4 .
If we have families with multiple affected offspring, and we want to test for asso-

ciation in the presence of linkage, the test is easily modified by using the empirical
variance. If a family has more than one offspring, then the family’s contribution to
var(U ) =∑ var(X |P), is replaced by

U 2
i =

∑(
Xi j − E(Xi j |P)

)2
,

where summation is over all affected offspring in the i th family. Contributions from
offspring with no affected siblings remain the same. In general we expect that empir-
ical variance will be bigger than the variance which treats siblings as independent,
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because the transmissions to affected siblings are positively correlated. In practice
there is usually little difference unless we have rather complex pedigree structures.

9.3.2 Deriving a TDT for a Recessive Mode of Inheritance

To derive a TDT type statistic which tests against a recessive mode of inheritance,
we simply recode X using the recessive coding.

The form of the test itself is exactly the same, except the possible values of
E(X |P) and var(X |P) differ according to strata of parental mating type. Here, only
those transmissions from a heterozygous parent coupling with another heterozygous
parent or with a homozygous AA parent provide information about association.

9.3.3 Informative Families

It is well known that the TDT requires at least one heterozygote parent per fam-
ily. Otherwise, the family cannot be used, since there is no randomness in what
the parents can transmit. We call such families non-informative families, because
(X − E(X |P)) = 0 and var(X |P) = 0. In the more general case, informative
transmissions depend on the genetic model, the family configuration, the coding
of the trait, as well as the genotypes of the parents. As shown in Table 9.2, only
two parental mating types are informative when we use the recessive model. If one
parent is heterozygous and the other is homozygous for the non-disease allele, that

Table 9.2 Computations for the recessive model

Recessive Coding: X = 1 if offspring is AA
X = 0 otherwise

Parents are [Aa,Aa]:

X p(x) X p(x) (X − E(X |P)) (X − E(X |P))2 p(x)

0 3/4 0 −1/4 3/64
1 1/4 1/4 3/4 9/64

E(X |P) = 1/4 var(X |P) = 3/16

Parents are [AA,Aa]:

X p(x) X p(x) (X − E(X |P)) (X − E(X |P))2 p(x)

0 1/2 0 −1/2 1/8
1 1/2 1/2 1/2 1/8

E(X |P) = 1/2 var(X |P) = 1/4

Parents are [Aa,aa]:

X p(x) X p(x) (X − E(X |P)) (X − E(X |P))2 p(x)

0 1 0 0 0

E(X |P) = 0 var(X |P) = 0
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mating type cannot lead to a child with the recessive genotype, i.e., X is always zero
for that mating type, and hence the observed X must be zero. Thus more generally,
informativeness of a family depends on the parental mating type, not just a sin-
gle parent’s genotype. As we saw previously, informativeness of a family can also
depend upon how we define the trait. If we code affected and unaffected offspring
as T = 1 and T = 0, then families with only unaffected children to not contribute
to the test statistic: they are non-informative.

Definition: An informative family contributes information to the statistic for testing
the trait T provided var(T (X − E(X |P)) > 0. If there is more than one offspring
in the family, the family is informative if

var
(∑

T (X − E(X |P)
)
> 0

where the sum is over all offspring in the family.

9.3.4 Codominant Mode of Inheritance

To construct a test of the codominant mode of inheritance, we code X as a vector
of three dummy variables, X1 = 1 if AA and zero otherwise, X2 = 1 if Aa and
zero otherwise and X3 = 1 if aa and zero otherwise. We test whether transmissions
from heterozygous parents to offspring with specific genotypes differ from their
expectation under the null. Calculation of E(X1, X2, X3|P) is straightforward. For
example, with two heterozygous parents, it is easily seen to be (1/4,1/2,1/4). The
diagonal of the variance-covariance matrix is (3/16, 1/4, 3/16) and the covariance of
any pair is −E(Xk |P)E(Xl |P) for k < l = 1, 2, 3 (See exercise 6 of Section 9.4).
With the codominant model, the amount of information differs for each possible
genotype. For example, if parents are Aa,aa, then offspring can only be Aa or aa,
hence var(X1|P = Aa, aa) = 0 but var(X2|P = Aa, aa) > 0. Because X is now
a vector, the FBAT test statistic takes the quadratic form U T var(U |S)−1U , which
is distributed as χ2 with two degrees of freedom. There are only two degrees of
freedom because X1 + X2 + X3 = 1 for all offspring.

9.3.5 Multiallelic Test

Suppose there are K alleles. Each allele can be tested separately, with a single degree
of freedom FBAT test using any mode of inheritance. We can also construct a global
test of the null hypothesis no allele is associated with the DSL. Here, we take X to
be a K -vector, with each Xk coding for the kth allele, k = 1, . . . , K . For example,
for the additive model, X1 counts the number of 1 alleles, X2 counts the number
of 2 alleles, etc. The test statistic is again a quadratic form, and the calculation of
each E(Xk |P) and var(Xk |P) is the same as for the univariate case. We leave as
an exercise the calculation of cov(Xl , Xk) for l < k. In this case the number of
degrees of freedom is K -1 for the additive model because the Xk have to sum to
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two (everyone has exactly 2 alleles) We can also use recessive or dominant codings
for these multiallelic tests. In principle it is possible to use different coding models
for each Xk . As with the codominant model, the amount of information that a family
contributes may differ for different alleles. The use of this test will be illustrated at
the end of this chapter.

9.3.6 Using Unaffected Offspring

If an allele is being over (or under) transmitted to affected offspring, it will be
under (or over) transmitted to include unaffected offspring (Y = 0). The TDT is
commonly used in the case of a rare disease; with a rare disease the distribution of
alleles among the unaffected is very similar to the distribution of the alleles in the
population at large. Unaffected offspring contribute little information about associa-
tion because the parents of unaffected offspring likely have no disease alleles. With
more common disorders, using unaffected offspring can offer more power relative
to tests which use affected only. When using both affected and unaffected offspring
in the test statistic, the general formula for U still holds, setting T = Y − μ, where
μ is a number between zero and one. Since T can take on only two values, (1 − μ)

and −μ, U can be written as

U = (1 − μ)U+ − μU−,

where U+ is the summation of (X − E(X |P)) over the affected offspring, and U−
is the summation of (X − E(X |P)) over the unaffected offspring. Thus U contrasts
transmissions to affected with transmissions to unaffecteds. μ acts like a weight:
μ = 1/2 weights transmissions to unaffected and affected equally, μ = 0 means we
use only the affected offspring and μ = 1 means we use only unaffected offspring.

A central issue is how should we choose μ? In the derivation of FBAT as a score
test in Appendix B, μ is E(Y |H0) (or P(Y = 1|H0)) for dichotomous phenotypes.
With rare Mendelian disorders, E(Y |H0) is approximately zero, so only affected
individuals should be used (μ = 0). With more common disorders, we expect there
are many mutations as well as environmental factors making small contributions
to disease, hence E(Y |H0) is approximately the prevalence in the population that
we have drawn our sample from. If we know the disease prevalence in the popu-
lation which we have sampled from, we can set μ equal to the prevalence in that
population. However, even with common disorders, selection of subjects into the
sample almost always depends upon disease status except with population based
samples, so that prevalence cannot be unbiasedly estimated from the sample data.
Often some prior information is available about prevalence which can be used for μ.
Sometimes samples are only weakly ascertained according to Y and in that case, the
sample prevalence may be an adequate offset. For example, in a study of nicotine
dependence in Chinese men (Xu et al. 2006), selected families into the sample if at
least one offspring had nicotine dependence. All other offspring in the family were
genotyped for the study regardless of phenotype, and there were many families with
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Fig. 9.4 The effect of offset choice on power: Including an unaffected offspring. Left Panel: Disease
prevalence K = 0.05, allele frequency of the disease gene p = 0.05, attributable fraction of the
disease due to carrying at least one disease gene AF=0.3, significance level α=10−4 and sample
size 100; Right Panel: Disease prevalence K=0.3, allele frequency of the disease gene p=0.143,
attributable fraction of the disease due to carrying at least one disease gene AF=0.25, significance
level α=0.01 and sample size 100. Source: Lange and Laird (2002)

a large number of offspring. In this case using the sample prevalence worked well,
since the sample prevalence was only modestly biased upward.

Figure 9.4 illustrates the point that using affected and unaffected siblings in the
FBAT test with offset μ can increase power relative to the TDT. These power curves
were generated by drawing samples with two offspring per family, one of which is
always affected. The second is genotyped regardless of affection status. As we can
see, there is little to be gained by including the unaffected siblings when the popu-
lation prevalence is low, and much can be lost if μ is too far from the prevalence.
With a higher disease prevalence, the inclusion of unaffected offspring can offer a
substantial power boost, for any choice of μ close to the prevalence. In general, the
offset that yields the highest power for this type of sampling is a value slightly above
the prevalence.

9.3.7 Missing Parental Information

In this section we consider examples which feature missing parental genotypes. We
will illustrate the calculations of the FBAT statistic, as well as other tests designed
to handle missing parental genotypes. For simplicity, we first consider the case
where both parents are missing. In this case, the simplest approach is to compute
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a distribution for Xi by conditioning on the total genotype information in the off-
spring, ignoring the phenotype. Let n AA denote the number of offspring with the AA
genotype, n Aa denote the number of offspring with the Aa genotype, and naa denote
the number of offspring with the aa genotype, where n AA + n Aa + naa = n, and n
is the total number of offspring in the family. Under the null hypothesis, the distri-
bution of offspring genotypes can be characterized as a permutation distribution. It
is similar to a multinomial distribution, but for sampling without replacement. That
is, P(G = AA) = n AA/n, P(G = Aa) = n Aa/n, and P(G = aa) = naa/n,
where G denotes the genotype of any offspring in the family. To obtain a sample of
n genotypes from this distribution, we sample without replacement, so for each sam-
ple, the genotype counts are the same (naa, n Aa, n AA). This distribution conditions
only on the set (naa, n Aa, n AA) being fixed; it preserves the information about the
missing parents, but makes no assumptions about missing parents. It can be used to
compute E(X |(naa, n Aa, n AA)) and var(X |(naa, n Aa, n AA)) where X is the coded
G. However, the joint distribution of the genotypes are subject to (naa, n Aa, n AA)

being fixed at their observed values, so that the genotypes of siblings are corre-
lated. We can sample from this distribution to construct a permutation test, where
genotypes are permuted among the offspring within a family. However, the calcula-
tions are simple enough to compute the necessary means, variances and covariances
directly. Calculations are illustrated in Table 9.3 for the case where naa = 0 and
n AA = n Aa = 1. Note that when there are only two offspring, the genotype of
one completely determines the genotype of the other so that the two offspring’s
genotypes are perfectly correlated. With bi-allelic data, when n AA > 0, n Aa > 0,
and naa = 0 the FBAT distribution conditional on Si and the RC-TDT distribution
are both the same as the permutation distribution (Knapp 1999a; Rabinowitz and
Laird 2000).

If the genotypes of all of the offspring take the same value, then all but
one of (naa, n Aa, n AA) will be zero, and there is nothing to permute, i.e.,
var(X |naa, n Aa, n AA) = 0. In this case, the family is not informative. This is the
case regardless of the number of offspring with observed genotypes, and regard-
less of their phenotypes. Note also that if all of the traits of the offspring are the

Table 9.3 Computing the distribution of offspring genotypes, conditional on the sufficient statistic
for missing parental genotype

Observed Data: no parents, two offspring: (AA, Aa)
Permutation Distribution:a

• P(G1 = AA,G2 = Aa|S) = 1
2 and P(G1 = Aa,G2 = AA|S) = 1

2

• E(X |S) = 2 1
2 + 1 1

2 = 1.5 (additive model)

• var(X |S) = (2 − 1.5)2 1
2 + (1 − 1.5)2 1

2 = 1
4

• cov(X1, X2|S) = − 1
4

aG1 and G2 denote the two sibling’s genotypes, and X denotes a single sibling’s coded genotype.
Note that the distribution of G1 is the same as the distribution of G2
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same (each Ti j is the same for all j in the i th family), then the family is also non-
informative because

U = T
∑

(X − E(X |(naa, n Aa, n AA)) = 0,

where summation is over the offspring in the family. This is a consequence of fixing
the set of observed genotypes, (naa, n Aa, n AA).

One popular method of analysis for discordant sibships (S-TDT) uses a version
of the Mantel-Haenszel test for paired binary data, officially called the Mantel-
Extension test (Spielman and Ewens 1998; Laird et al. 1998). Extension refers to
the fact that there are more than two categories of exposure (X =0, 1, 2 for additive
model)), but the basic idea is the same as the ordinary Mantel-Haenszel test: the
data from each family are used to form a 2×3 contingency table, whose margins are
treated as fixed. The cell counts are counts of offspring with a specific phenotype-
genotype combination. The distribution of cell counts is based on the multivariate
hypergeometric under the null, and the statistic is formed as a linear combination
of the cell counts. The distributions of the multivariate hypergeometric and the per-
mutation distribution described above are the same when the trait is binary. The
Mantel-Haenszel statistic is based on computing exact means and variances within
each family from the multivariate hypergeometric.

The permutation approach is always valid, however we can do better in some set-
tings. Both the RC-TDT and the FBAT test differ slightly from the S-TDT because
they use more information, and thus show a modest power advantage. For example,
if n AA > 0 and naa > 0, then we know that the two parents must be Aa,Aa.
While it might be natural to simply compute the distribution of the offspring by
assuming (under no linkage) that the genotype of each offspring is independent and
follows Mendel’s laws with parental mating type (Aa,Aa), this does not take into
account that the parental genotypes were reconstructed and not observed. In this
case, both FBAT and RC-TDT condition the distribution of offspring genotypes on
observing n AA > 0 and naa > 0 (not on (naa, n Aa, n AA)). If there are only two
siblings, this is equivalent to simply permuting the two offspring genotypes (and the
S-TDT). However if there are at least three siblings, the distribution allows for the
AB genotype to be assigned to offspring, provided at least one AA and at least one
aa genotype are also assigned. If the parents cannot be reconstructed exactly, the
FBAT differs slightly from RC-TDT when there are multiple alleles (Horvath et al.
2001).

In some cases, observing one parent can give additional information. For exam-
ple, if the observed offspring are AA and Aa, then the parental genotypes cannot
be reconstructed and the permutation distribution must be used; both [AA,Aa] and
[Aa,Aa] are possible mating types and it is not possible to distinguish between them
based on the observed data. However, if one parent’s genotype is observed to be
AA, then we know that the other must be Aa. However, being able to reconstruct
the other parent is not helpful unless there are at least three offspring in the family;
otherwise the distribution remains a permutation. With no parents, only the three



156 9 Association Analysis in Family Designs

outcomes (AA, Aa, Aa) permuted among the three offspring are allowed. However,
when we observe an AA parent, we can also have the three outcomes (AA, AA,
Aa) permuted among the three offspring with equal probability. With neither parent
observed it is straightforward to show that E(X) = 2 1

3 + 1 2
3 = 4

3 when X codes
for the additive model, but conditioning only on one AA parent and at least one AA
and Aa offspring, we find that E(X) = 4

3
1
2 + 5

3
1
2 = 3

2 because the AA genotype has
a higher probability.

9.3.8 Quantitative Traits

The application of the FBAT approach to quantitative traits is quite straightforward.
Here Y is the measured trait, and μ still should be selected to approximate E(Y |H0).
With measured traits, we can have samples of families which are not selected for
traits of interest, e.g., cohort studies or population samples from health surveys. In
this case, the sample mean provides an unbiased estimate of E(Y |H0) and a good
choice for μ. Using μ = Ȳ for the offset with trios yields the quantitative TDT
proposed by Rabinowitz (1997); additionally using the empirical variance instead of
formula (9.3) gives the test proposed by Monks and Kaplan (2000). With measured
traits, we often have covariates which are highly correlated with the measured traits.
In this case, we can use ordinary regression of Y on the covariates to developed
a prediction equation, and use the residuals from this regression as the trait in the
FBAT-analysis. For example, letting Zi j denote a vector of covariates, such as race,
age, sex, etc., for the i j-th offspring, we can incorporate covariates into the FBAT
test by using fitting a regression model, say

E(Yi j |Zi j ) = β0 + ζ Zi j ,

where ζ is a vector of coefficients for the covariates. We then take μ for the i j th
person to be Ŷi j , where

Ŷi j = β̂0 + ζ̂ Zi j ,

is the predicted Yi j from the estimated regression model.
A quite different approach has been suggested for testing for association with

family samples with quantitative traits (Allison 1997; Abecasis et al. (2000). We
denote this approach here here as a prospective regression approach, because the
trait is treated as the random variable, and the genotypes are regarded as fixed
covariates. It is based on the following linear model for the quantitative trait:

E(Y |X) = μ+ β(X − E(X |P)). (9.7)

If there are no siblings, and provided that subjects are not ascertained on the basis
of their trait, we can use ordinary least squares to obtain an estimate of β and to
test H0 : β = 0 (Allison 1997). The estimate of β is unbiased even in the pres-
ence of population substructure provided the linear model for Y is correct. To see
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why, population substructure can be modeled as an unobserved variable, which is
correlated with both P and potentially Y . However, X given P is determined by
only P regardless of population substructure. Omitting any correlate of P does not
bias the estimated coefficient provided that the linear model is correct (Abecasis
et al. 2000) and the covariate is independent of X, conditional on P. A test of
H0 : β = 0 can be constructed using the standard OLS residual sum of squares.
However, such tests may be biased if the linear model in 9.7 is not correct. For
example, the model assumes that under H0, E(Y |X) = μ, but there is no a priori
reason to expect that this is so; in particular, it may depend upon the parental mating
type. A better alternative is to allow β0 to depend upon strata defined by parental
genotypes (Gauderman 2003; Ewens et al. 2008). Note that Abecasis et al. (2000)
used a slightly different linear regression model which includes the additional term
γ E(X |P). Because E(X |P) and (X − E(X |P)) are uncorrelated in expectation,
the properties of β̂ are unchanged by exclusion of this term. This general approach
has the advantage of allowing unbiased estimates of genetic effects under the linear
model, but the validity of the test depends on the linear model being true. In any
event, the power of the regression approach and the FBAT-approach are similar.

Example 1 The first example is a subsample from the National Institute of Mental
Health (NIMH) Genetics Initiative Alzheimer’s Disease (AD) Sample. Families are
sampled on the basis of one or more cases of late onset AD (age at onset greater than
or equal to 60). None of the families in this data set have parental genotype informa-
tion; virtually all families consist of discordant sibships. There are 901 individuals
contained in 319 nuclear families. Here, affection status is the trait of interest and
the marker of interest is the human erythropoietin gene (APOE), which has three
major alleles: ε2, ε3, and ε4. A multiallelic FBAT test for association between any
allele and risk of AD gives χ2

2 = 30.5 on two degrees of freedom, with a p-value
< 10−6, evidence for association of the APOE gene and AD which is consistent
with many other studies.

The result of testing each allele separately using the additive model is given
in Table 9.4. Allele 4 is associated with higher incidence of AD, alleles 2 and 3
with lower. Notice that the number of informative families (given in column fam#)

Table 9.4 Testing the APOE alleles for association with AD: Multiallelic Tables

Marker Allele a afreq fam# b U var(U ) Z p

No offset
apoe 2 0.04 15 −7.79 4.269 −3.489 0.000484
apoe 3 0.54 85 −22.70 36.836 −3.674 0.000238
apoe 4 0.42 83 30.51 37.131 4.843 0.000001

Offset = 0.1
apoe 2 0.04 16 −6.99 3.950 −3.511 0.000447
apoe 3 0.54 87 −21.97 34.967 −3.715 0.000203
apoe 4 0.42 85 28.95 35.170 4.881 0.000001

a Allele Label
b Number of informative families
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depends strongly on allele frequency; many families will not have the rare allele
and will not be informative for that allele. Since AD is fairly common among indi-
viduals over age 60 with a prevalence of approximately 10% in this population, the
last three lines of the table report the same values when using the offset 0.1. The
number of informative families increases slightly, but overall, there is little change
in the statistic or the p-value. With no parental information, the unaffected offspring
are largely used to reconstruct the parental genotypes (with discordant sib pairs, the
genotypes are perfectly correlated), so that using an offset typically results very little
extra information compared to setting μ = 0.

Example 2 In Chapter 6 we presented the results of several cohort studies which
were used to test for an association between Body Mass Index (BMI) and a SNP
near the Insig2 gene. Here we look at this same association using a sample of chil-
dren with mild to moderate asthma and their parents from the Childhood Asthma
Management Program (CAMP). The original CAMP study was a randomized trial
designed to compare three treatments for childhood asthma; patients were drawn
from eight clinical centers. In our analysis we use only white ethnicity (self report)
and two of the three treatment groups, leaving 295 trios. BMI as measured at base-
line was used as a measured trait in the analysis here. First, an ordinary linear
regression was used to fit a model for BMI as a function of age, sex and clinic.
The trait T was taken to be the residual from this regression analysis. Using the
recessive coding for the minor (C) allele, we find that the FBAT Z-statistic is 2.20
with p = 0.026; the positive sign indicates that individuals with the CC genotype
have a higher BMI than those with GC or GG, consistent with other studies.

With measured traits, it is also possible to do a population based analysis by
ignoring parents, and simply regressing the trait (here BMI) on the coded genotype
X , and covariates, here age, sex and clinic. The estimated regression coefficient for
BMI is 0.4 with a standard error of 0.54 (Z = 0.74, p > 0.05). Although the
sign of the coefficient is the same as the sign of the FBAT statistic, the effect is not
significant. Usually we assume that the effect of population substructure is to inflate
significance levels, but in some cases, population substructure can obscure effects.

9.4 Exercises

1. Verify the χ2 TDT of 8.26 using the data on IDDM given in Section 9.1.
2. What is the alternative hypothesis for a TDT test (or any FBAT test), and how

does that compare with the alternative of a test of association from a case-
control or cohort study? Why is this important from a practical perspective?

3. The TDT is a conditional test. What are the random variables used in computing
the null distribution of the test, and what variables are being conditioned on?

4. Verify that the TDT is a special case of FBAT when only affected offspring are
used (the offset is zero, Y takes on the value one for everyone in the sample, we
use the additive coding for X and assume no linkage).
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5. In Table 9.2, the calculations of E(X |P) and var(X |P) are shown for the reces-
sive mode of inheritance. Show these same calculations for the dominant mode
of inheritance. What are the informative parental mating types for the dominant
mode?

6. Compute the 3 × 3 variance-covariance matrix for the codominant mode of
inheritance assuming doubly-heterozygote parents.

7. Suppose both parents are missing, and three offspring are observed to have
genotypes AA and aa. Assume H0: no linkage and no association. Conditional
on the sufficient statistic S, the offspring genotypes all have the same distribu-
tion.

(a) Assuming additive coding, verify that for any offspring, the mean is
E(X |S) = 1 and var(X |S) = 1.

(b) Compute Var(X1 + X2 + X3|S) and compare to Var(X1 + X2 + X3|P), i.e.,
to variance when both parents are observed.

8. For Table 9.3, verify that cov(X1, X2|S) = − 1
4 and that the family is not infor-

mative if both offspring are affected (Y = 1 for both offspring).
9. Extending the TDT to the X-chromosome. Recall that females have two homol-

ogous copies of the X-chromosome, but males have only one (for this exercise,
we ignore the pseudo-X regions of the Y chromosome). Consider all possible
trios with one male offspring or one female offspring. Explain how you can
adapt the TDT test to cover this situation, i.e., what parents and which children
would be included in Table 9.1?

10. For this exercise, you will use a computer package (either FBAT or PBAT)
to conduct several FBAT tests using simulated data. There are two data files,
xbat.ped and xbat.phe, available on the Springer website. A third file, Simulated
Data Information.doc, gives information on how the data are simulated.

(a) First analyze the quantitative trait QTL1 for all snps. Don’t forget to use an
offset and defend your choice of offset. Verify that you only find evidence
of association for SNPs in LD with the true DSL.

(b) Secondly, analyze only the affected (Y=1) for the AFF1 trait, created by
cutting QTL1 at the median. What do you find?

(c) Now use both affected and unaffected using the appropriate offset. What do
you find?

(d) What if you use only the affected from AFF2?



Chapter 10
Advanced Topics

In this chapter we review specialized and advanced topics that are beyond the scope
that can be covered in detail in an introductory text book. However, the topics are
important research areas and the interested reader is encouraged to follow-up our
brief introduction with the specialized literature.

10.1 The Multiple Testing Problem in Association Studies

In this section we consider testing a relationship between multiple genetic loci and
disease phenotypes, when multiple SNPs have been genotyped; this arises in the
context of a candidate gene or genomic region study, or in the GWAS setting, across
the entire human genome. We assume that the nature and the locations of the DSLs
are unknown. For any association study with multiple genotyped loci, but particu-
larly for GWAS studies, the multiple testing problem is one of the major statistical
hurdles that has to be addressed in the analysis of the study. In a typical GWAS
analysis more than 500,000 markers are tested for genetic association, creating a
substantial multiple testing problem. There are three broad categories of approaches
to the multiple testing problem: (1) testing each marker separately and adjusting the
significance levels of each test, (2) using permutation or re-sampling techniques,
and (3) for small number of SNPs in a defined region, using haplotypes or simulta-
neous test strategies. The best approach will depend upon many factors, primarily
the unknown nature of the true DSLs, but convenience and feasibility play a big role
in what approaches are commonly used. Methods for efficient selection of SNPs
will be discussed in Section 4.

10.1.1 Methods Based on P-Value Adjustment

Multiple testing is a common statistical problem, and many approaches have been
suggested to handle the inflation of the error rate. An easy and popular approach
to handling multiple SNP testing is to test each SNP separately and then adjust the
significance-level of each test so as to preserve the overall error rate. The Bonferroni

N.M. Laird, C. Lange, The Fundamentals of Modern Statistical Genetics,
Statistics for Biology and Health, DOI 10.1007/978-1-4419-7338-2_10,
C© Springer Science+Business Media, LLC 2011

161



162 10 Advanced Topics

method is perhaps the most widely used approach. The idea can be formalized as fol-
lows: Let M denote the number of markers for testing, and for each m = 1, . . . ,M ,
we can define the null hypothesis H (m)

0 : No association between the mth SNP and
the disease phenotype. In the single test setting, we set our significance level, α′, to
satisfy

α′ = P(reject null hypothesis H (m)
0 | H (m)

0 is true). (10.1)

But in testing multiple SNPs, our interest is in the experiment-wise α-level, or fam-
ily wise error rate (FWER), defined as

α = P(rejecting at least one H (m)
0 | H (m)

0 is true for all m). (10.2)

We denote α as the FWER. A simple method of choosing individual significance-
levels to fix the FWER, say, at the desired level is to set the individual significance
level α′ = α/M . This is known as Bonferroni adjustment or Bonferroni-correction;
it follows from Boole’s inequality:

P(at least one rejection|H (m)
0 is true ∀ m) (10.3)

≤
M∑

m=1

P(H (m)
0 is rejected|H (m)

0 is true ∀ m).

When the significance levels of the individual tests are all equal to α′, the above
reduces to

α ≤ Mα′. (10.4)

Thus the FWER can be kept less than α if we test each individual test with signifi-
cance level α/M . Notice that the Bonferroni adjustment method makes no assump-
tion about the independence of the events. In fact, if the association tests are cor-
related, as we might expect them to be if there is much LD between the markers,
then the Bonferroni method is very conservative, and the degree of conservatism
increases as M increases. In the extreme, where rejection of one test implies rejec-
tion of all the rest, then the true FWER is α/M .

Holm (1979) has suggested a modification to the multiple-testing procedure that
is uniformly more powerful than the Bonferroni procedure. The idea is as follows.
Order the p-values, and compare the smallest to α/M . If that test rejects, test the
next smallest against the level α/(M − 1). Continue in this way until a test accepts,
then declare all of the smaller p-values significant, and the rest not significant. It
is clear that the Holm procedure is more powerful than the Bonferroni procedure
because whenever the Bonferroni procedure rejects, the Holm procedure will also,
but the reverse is not true. For a very large number of SNPs, M − j is approximately
equal to M for small to modest j , so that the Holm procedure will not be very
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different from the Bonferroni, but with small or modest number of markers M , it
can substantially increase the overall power.

For application in situations where some prior information may be available,
notice that equation (10.3) implies that we can assign each individual test different
rejection levels, say αm . To fix the overall α at a desired level, we then require that
the sum of the individual αm levels does not exceed α. Thus some tests can use
rejection levels higher than α/M , and others lower, as long as (10.3) is retained.
This gives rise to the weighted Bonferroni approach, whereby prior information
may be used to prioritize SNPs. In the context of multiple SNPs in a gene, it may
be desirable to assign higher weight (or relatively bigger α-levels) to SNPs in cod-
ing regions, than those which are not. This argument extends to GWAS as well. In
GWAS, one might up-weight regions with prior information about potential DSLs,
e.g., linkage studies, candidate gene studies, while regions without any known genes
might be down-weighted. Various weighted Bonferroni approaches have been sug-
gested for genome wide association scans. See, for example, Genovese et al. (2006);
Roeder et al. (2007); Ionita-Laza et al. (2007). All of the multiple testing procedures
can be applied either in the population based, or family setting.

A less conservative FWER testing procedure was suggested by Simes (1986).
This test is also based on ordered p-values, but uses as a rejection criterion: reject
Hi

0 if the inequality

p(i) ≤ i

M
α

holds. The method is simple to apply and less conservative than the Bonferroni. The
type-1 error is preserved at α provided the tests are independent.

As an alternative to the FWER approach, one can also use the False Discovery
Rate (FDR) to adjust for the multiple statistical tests. Rather than to control for the
type-1 error, FDR limits the expected number of null-hypotheses that are rejected
incorrectly. Fundamentally, FWER evaluates the error rate by assuming all null
hypotheses are true, while the FDR evaluates the error rate based solely on fixing
the number of erroneous rejections, regardless of the number of true hypotheses.
In comparison to the FWER, the FDR approach is less conservative and therefore,
by definition, more powerful. Assuming that we compute M independent statistical
tests, the test results can be divided as diagrammed in Table 10.1.

It follows that M = U + V + S + T . Then the false discovery rate is given by

E

(
V

V + S

)

. (10.5)

Table 10.1 Number of errors committed when testing M null hypotheses

Declared Declared Total
non-significant significant Total

true null hypotheses U V M0
non-true null hypotheses T S M − M0

M − R R M
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One way to control the false discovery rate is to use a modified Simes-procedure.
For a pre-specified false discovery rate of α, we search for the largest i such that the
inequality

p(i) ≤ i

M
α.

We then reject the null-hypothesis for all tests that correspond to the p-values p(1)
to p(i), while the false discovery rate will be maintain at α. Similar to FWER which
was originally also derived only for a set of independent test statistics, the FDR
approach has been extended to incorporate correlation between the test statistics
(Benjamini and Yekutieli 2001). An alternative, Bayesian interpretation of the FDR
approach is discussed in Storey (2002, 2003).

Although all of these approaches provide meaningful increases in statistical
power, the standard Bonferroni-correction remains the most commonly-used adjust-
ment principle in genetic association studies. Given the many false-positive findings
in the history of genetic association studies, one rather errs in being too conservative
when controlling the FWER than to maximize the statistical power in order to avoid
false-negative findings.

10.1.2 Permutation and Monte Carlo Tests

The terms permutation, randomization or re-randomization tests are often used
interchangeably, and can be thought of as special case of general resampling tests.
Monte Carlo refers to approximate permutation tests when the number of permu-
tations of the data is too large to systematically evaluate them all. The idea behind
these procedures is to use the observed data to simulate the distribution of the test
statistics under the null. Often the justification for these test procedures is that they
do not require parametric assumptions about the data. In our setting, it is often
infeasible to compute a parametric distribution for the test statistic. To take a simple
example, consider how we might evaluate the significance of the minimum observed
p-value, or if all test statistics have the same distribution under global null, the
maximum test statistic. The approach is quite straightforward in the case-control
setting. Let χ2

m denote the χ2 statistic for testing the mth marker, and denote the
ordered statistics by

χ2
(1) ≤ χ2

(2) ≤ · · · ≤ χ2
(M). (10.6)

Then to evaluate the appropriate p-value for the maximum χ2, we note that if there
is no association between any SNP and case-control status, the joint distribution of
p-values can be computed as follows.

• Randomly assign each person in the study a case-control status, ensuring only
that the total number of cases and controls is fixed.

• Calculate χ2
(M) from this simulated sample.
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• Repeat this procedure a large number of times. Then the randomization p-value
for the observed χ2

(M) is the proportion of simulated χ2
(M)’s which exceed the

observed.

The advantage of the randomization procedure is that it is intuitive and it extends
readily to calculating more complex p-values, such as the p-value of χ2

(M)+χ2
(M−1),

etc. It is not restricted to case-control designs or even dichotomous outcomes. In the
case of measured outcomes, the traits can be randomly assigned to marker scores.
The only requirement is that the trait which is randomized has the same distribu-
tion for each person under the null. In the setting where there are important covari-
ates which predict disease traits, and may be related to genetic status as well, this
assumption is questionable. Likewise, we may need to adjust samples for population
substructure. Thus for some traits it may be necessary to use covariate adjustments
and randomly assign adjusted traits (residuals).

Resampling tests generally outperform its competitors in terms of power Roeder
et al. (2005), however major limitation of these tests is computational efficiency. If
the sample is sufficiently small, all possible permutations can be enumerated, and
one can get an exact p-value. Generally, however, Monte Carlo simulations will be
required. Depending upon sample size and data complexity, tens of thousands of
simulations will be required for p-values to stabilize. For only a modest number of
SNPs and moderate sample sizes this will not be a problem, but computations can
be numerically intensive for large scale studies (Sheskin 2004).

The applicability of randomization tests to family designs depends on the design.
If we have only affected offspring, then reshuffling outcomes changes nothing. With
discordant sib pairs, the assignment of affection status can be interchanged ran-
domly with each pair, and inference proceeds as above. Likewise, with trios and
measured outcomes, the traits can be randomly assigned to offspring. Concerns
about covariate effects are less of a concern, provided the covariate is independent
of the genotype at the gene, conditional on the parental genotype (Chapter 9).

10.2 Other Methods for the Analysis of Multiple SNPs,
Including Haplotypes

In this section we consider the use of haplotypes and simultaneous testing that can
be used with a relatively modest number of SNPs.

The HapMap project was motivated by the remarkable observation that, although
the LD patterns between markers that are several mega-bases apart seem to be very
random and ‘erratic’ markers that are relatively close to each other (10–100 kilo-
bases) exhibit a very discrete LD-structure. For the most part, such markers are in
high LD with each other and recombination events seem to mainly occur only at
certain, so-called recombination hot-spots. Figure 10.1 illustrates this observation.
We observe that the haplotype diversity, i.e., the number of possible combinations
of marker alleles that resides on the same block of the chromosome, is very limited.
For a relatively limited portion of the chromosome, the haplotype diversity is small
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Fig. 10.1 Haplotype block structure for a region at 5.q.31. (a) Common haplotype patterns in each
block of low diversity. Dashed lines indicate locations where more than 2% of chromosomes are
observed to transition from one common haplotype to a different one. (b) Percentage of observed
chromosomes that match one of the common haplotype patterns exactly. (c) Percentage of each of
the common patterns among untransmitted chromosomes. Source: Daly et al. (2001)

compared to the possible number of distinct haplotypes, i.e., 2M , where M is the
number of SNPs across the region. Due to the reduced haplotype diversity, it is
theoretically possible to distinguish the haplotypes uniquely based on only a subset
of the markers that are included in the haplotype. Such SNP sets are referred to as
haplotype-tagging SNPs or Tag-SNPs. For many genomic regions, the number of
SNPs that is required to capture the local LD-structure perfectly is large, especially
when the number of rare haplotypes in the region is high. One therefore typically
defines cutoff criteria for the LD-resolution that the set of Tag-SNPs should achieve.
For example, one could select Tag-SNPs that allow the unique identification of all
haplotypes with a frequency of at least 5% or, alternatively, Tag-SNPs that have at
least an r2 of 80% with all SNPs that will not genotyped in the region.

Using LD information from reference populations, e.g., HAPMAP, several algo-
rithms have been developed to identify the smallest possible sub-set of Tag-SNPs
for a particular region in order to reduce the genotyping cost of the study. We refer
the reader to De Bakker et al. (2006) and Wang et al. (2006) for a review and com-
parison of different tagging approaches. With the recent drop in genotyping costs
and the arrival of genome wide SNPs chip for which such LD-consideration have
been taken into account during the design of the SNP-chip when the SNPs for the
chip were selected, the topic of Tag-SNPs selection is of less current interest.

In the context of association analysis, the observation of reduced haplotype diver-
sity is remarkable in several aspects. Instead of genotyping and testing a large num-
ber of SNPs in a region, an alternative strategy is to test haplotypes. In order to infer
the haplotypes, only the subset of markers that defines the haplotypes uniquely has
to be genotyped, not all markers that are in the haplotype region. Although a much
smaller number of SNPs is genotyped with this strategy, all genetic variation in
the region is covered. Since, for most regions of the human genome, the number of
observed haplotypes with frequencies of above 5% is much smaller than the number
of SNPs in the haplotype block, haplotype analysis can be more efficient than a
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single SNP analysis in terms of the multiple testing problem. In genetic association
analysis, individual SNPs or haplotypes constructed from these SNPs can be used
to test for association with the phenotype of interest. In a haplotype analysis, the
haplotype takes the role of the ‘allele’ that defines the genotype in the association
test. One can then test either each haplotype separately and adjust the results for
the number of tested haplotypes, or test all haplotypes jointly with a multivariate
test in which the variance-covariance structure between the haplotypes has to be
estimated. The degrees of freedom for such an overall haplotype test are given by
the rank of the variance-covariance matrix for the haplotypes. As for single marker
tests, the power of a haplotype association tests will be limited for small haplotype
frequencies and, consequently, the exclusion of haplotypes with frequencies of less
than 5% is often recommended.

Motivated by such advantages, haplotype analysis has become a standard anal-
ysis tool for genetic association studies. However, in practice, the analysis faces a
major limitation: the haplotypes usually cannot be determined directly. Rather the
genotypes of the markers are observed, but not the phase of the haplotype, i.e., the
alleles that reside on the same chromosome. The phase of the haplotype has to be
inferred based on the genotype data in order to implement an association analysis.
A variety of approaches have been developed to address this problem. The key idea
of such analysis strategies is to treat the unobserved phase of the haplotype as a
missing data problem. Applying missing data techniques such as the EM-algorithm
(Dempster et al. (1977); Slatkin and Excoffier 1996) to the marker data, the distri-
bution of the phased haplotypes can be computed for a given set of genotypes in
a study subject. Since the phase of the haplotype cannot be inferred with certainty,
the additional variability has to be accounted for in the association analysis. Con-
sequently, the haplotype uncertainty will reduce the statistical power of the genetic
association test, partly diminishing the theoretical advantages of haplotype analysis.

For population-based studies, a general framework for haplotype testing, termed
haplo-score has been proposed (Schaid 2001). A score-test is constructed based on
a generalized linear model (equation (2.3)) which allows for binary, count or quan-
titative traits. The trait is modeled as a function of the possibly unknown haplotype;
reducing the problem to one of ordinary generalized linear regression with missing
covariates (Ibrahim 1990).

The approach provides either an overall test, testing all haplotypes simulta-
neously, or a haplotype-specific association test between the phenotype and the
selected haplotype. For family-based designs, the FBAT-approach can be general-
ized to accommodate haplotype analysis as well (Horvath et al. 2004), provided
that we assume that the SNPs are sufficiently close so that no recombination has
occurred. The key ingredient necessary to construct family-based tests based on
Mendelian transmissions from the parental generation to the offspring, requires the
knowledge of the phase of the haplotype. Since it will not always be possible to
reconstruct the phase of the haplotype, the extension of the FBAT-approach to hap-
lotypes conditions on the sufficient statistic for the phase in the parental genotypes
family, thereby allowing the analysis of haplotypes in family-based designs in full
generality. Under the assumption of no recombination, having parents makes it easy
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to reconstruct phase, and family-based haplotype analyses are quite efficient, but
become infeasible with missing parents and large numbers of SNPs (Rakovski et al.
2007).

Haplotype analysis has been replaced more and more by single marker tests or
simultaneous tests which do not require a reconstruction of the phase. This is partly
due to the fact the typical density of SNPs, as they are genotyped in association
studies these days, has increased so much that they provide sufficient coverage of
the common, ungenotyped variants in the region. Another contributing factor is that
it is still unclear if haplotype testing is more powerful than SNP testing (Roeder
et al. 2005; Rakovski et al. 2007). Clearly, power will be influenced by the nature
of the DSL; if the DSL is a genotyped SNP, then SNP testing will be preferred; if
it is a combination of SNPs lying on a haplotype, then haplotype testing should be
more powerful. Other cases are less clear, and will depend upon the number of SNPs
available and the pattern of LD across the region.

Another approach is simultaneous testing. The idea behind simultaneous test-
ing is to use a multivariate test which tests all M null hypotheses simultaneously.
The approach we describe here is sometimes also called the ‘multi-marker’ test,
the ‘regression’ test, or ‘locus’ scoring test, the latter term used to distinguish it
from tests using haplotypes. An advantage of the simultaneous method is that the
haplotype-block structure does not have to be known; the correlation between the
markers is estimated directly and the validity of the test does not depend on the
correct specification of the haplotype-block structure.

Perhaps the most well known multivariate test is Hotelling’s T 2, designed to
test whether or not the means of M normally distributed variables are equal in two
groups; it is simply an extension of the simple t-test in the univariate setting. To
motivate the multimarker test we first give a quick review of Hotelling’s T 2. Suppose
we have M traits for a sample of N subjects classified into two groups. For simplicity,
we consider equal allocation with n subjects per group. Our null hypothesis is H0 :
�1 = �2 = · · · = �M = 0, where �m is the difference in means of the mth trait
between the two groups. Hotelling’s T 2 statistic is given by

T 2 = nD′S−1D/2

where D is a vector whose mth element is the difference in the sample means of the
mth variable in the two groups, and S is the sample variance covariance matrix of the
M variables pooled over the two groups. A multiplicative factor can be applied to
T 2 to give an F-distribution under the null. In large samples it is distributed approx-
imately as a χ2 with degrees of freedom equal to the rank of S, even without the
normality assumption.

In the setting of a case-control study, the two groups being compared on the M
SNPs are cases (Y=1) and controls (Y=0). Let X (m)i denote the number of minor
alleles for the mth SNP in each subject, for i = 1, . . . ,M . Using a typical logistic
regression model to relate the SNP data to disease, we can write:

logit(P(Yi = 1)) = β0 + β1 X (1)i + β2 X (2)i + · · · + βM X (M)i ,
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or equivalently,

logit(P(Yi = 1)) = β0 + β ′Xi

where β is a vector of the M regression coefficients and Xi is a vector of the M geno-
type scores for the i th individual. In this framework, we can test H0 : β = 0 using
a likelihood ratio or a score test. The numerator of the score test takes a particularly
simple form:

U = X̄cases − X̄controls,

i.e., each element of U is the numerator of the Alleles Test for the corresponding
SNP. Under the null hypothesis that the distribution of the SNPs are the same for
both groups, the variance of U can be estimated by the sample variance-covariance
matrix of the X ′

i s, say S.
As with Hotelling’s T 2, in large samples nU′S−1U/2 is approximately χ2 when

H0 is true, with the degrees of freedom depending upon the rank of S. If the SNPs
are highly correlated, the rank may be less than M; in this case it is necessary to use
a generalized inverse for S. The derivation in Clayton et al. (2004) shows that the
score test approach is easily generalized to give a similar test when Yi is measured
and we assume a linear rather than a logistic model.

The multi-marker test also generalizes to the family design in a straightforward
way. Letting Xi j denote the vector of M marker scores for the j th subject in the i th
family, the natural generalization for either a dichotomous or a measured trait is

U =
∑

i, j

(Ti j − μ)(Xi j − E(Xi j )|Si )

where the expectation of each element of Xi j is calculated conditional on the suf-
ficient statistics for parental genotypes only at the specific marker, and Ti j and μ
are the trait and the offset, respectively. Computing each diagonal term of var(U)
conditional on the sufficient statistics for parental genotype is straightforward, but
computing the covariance terms is more difficult because they depend on the joint
distribution of two SNPs. When SNPs are in LD, this requires knowledge of the
pairwise haplotype distributions. Rakovski et al. (2007) use an empirical variance-
covariance matrix, similar to that used for adjusting the variance when testing candi-
date genes under a linkage peak, which does not require knowledge of the haplotype
distribution.

Such multi-marker tests are often conducted in gene-based settings, i.e., all typed
markers in a gene are tested for association with the phenotype of interest. While
such an approach has the advantage that it is computationally simple, it becomes less
appealing as the number of markers becomes large. Approaches that apply principal
component analysis or canonical correlation analysis to the markers in the selected
region have also been suggested to reduce the dimensionality of the multivariate
score tests (Kwee et al. 2008; Gauderman et al. 2007).
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10.3 Gene–Environment/Gene–Drug Interaction

These are numerous, well documented, Mendelian disorders where environmental
conditions are known to influence the effect of the gene on disease, for example,
PKU and diet. Ottman (1990) gives several examples where the biology of the inter-
action is understood. Gene-environment interactions are thought to play an espe-
cially important role as effect modifiers for many complex diseases. For example,
gene-smoking interactions are believed to influence the disease risk for Lung Can-
cer, Asthma and Chronic Obstructive Pulmonary Disease (COPD). The spectrum
of gene-environment interaction variables is large and can include variables that
reflect a more general assessment of the environment that have no direct biolog-
ical link with the disease phenotype. For example, the International Multicenter
ADHD Genetics (IMAGE) project recruited 960 children with ADHD and their
parents for a study of candidate genes for ADHD. Since Socio-Economic Status
(SES) is an important predictor for ADHD and for ADHD symptom scores, possi-
ble interactions between the candidate genes and SES were of interest. Figure 10.2
illustrates a potential gene-environment interaction between Socio-Economic Sta-
tus (SES) and a SNP in the BDNFa44 gene on Hyperactive-Impulsive Symptoms.
While for the common homozygous and heterozygous genotype there is no effect
of SES on symptom scores, SES has a strong effect on symptom scores for the rare
homozygous genotype (Lasky-Su et al. 2007).

A special case of gene-environment interactions are gene-drug interactions.
Today, many clinical trials collect DNA samples from the patients enrolled in the
trial, to determine if the response to treatment can depend upon the genetic profile
of the patient. Gene-drug interactions may enable the identification of subgroups of
patients which, based on their genotypes, may respond more or less favorably to
treatment. In the same way, genotypes could potentially identify patients with more
or less severe side-effects to the treatment than in the general population. There are

Fig. 10.2 Gene-environment interaction for attention deficit hyperactivity disorder. Source: Cour-
tesy of Dr. Jessica Lasky-Su
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major ongoing efforts to use genotype profiles to improve the safety and efficacy of
a drug (Giacomini et al. 2007).

While gene-environment interactions can be studied in the context of link-
age analysis and, even, in aggregation and segregation analyses, the recent focus
of gene-environment interaction analysis has been in association studies. With
population-based studies, using the regression approach to the analysis of asso-
ciation allows the gene-environment interaction to be integrated into the associa-
tion analysis straight-forwardly by including an additional term in the regression
model, e.g.,

g(E(Y )) = β0 + β1 × X + β2 × E + β3 × X × E, (10.7)

where Y denotes the phenotype of interest, X the coded marker score and E the
environmental exposure variable. The function g is the link-function that is selected
based on the trait type of the phenotype. The parameter β1 corresponds to the genetic
main effect, β2 is the environmental main effect and β3 the gene-environment inter-
action. Under the null-hypothesis that β3 = 0, the effects of the gene and the
environment are additive on the scale specified by the link-function g (e.g., linear
or log-linear). We remark that equation (10.7) is strictly speaking only valid if X
models the true disease variant at the locus. Valid tests can still be constructed when
X codes for a SNP in LD with the true DSL, but as in the case of main effects, it
should not be used for estimation unless X codes for the true DSL.

As with any statistical interaction analysis, it is important to note that this
approach tests only for a statistical interaction, but not for a necessarily biological
interaction which is here understood to mean the environmental variable directly
alters the biological action of the gene. While a biological interaction implies the
presence of a statistical interaction, the opposite is not necessarily true (Cordell
2002).

Furthermore, the definition of a statistical interaction is scale dependent. To illus-
trate this concept, we assume that a dichotomous phenotype is given and that the
genotype variable X and the environmental variable E are also dichotomous. Let
RX,E denote the relative genetic risk given X and E , i.e., RX=x,E=e = P(Y =
1 |X = x, E = e )/P(Y = 1 |X = 0, E = 0 ). Under the null-hypothesis, the rela-
tive risk on a linear scale, i.e., g(E(Y )) = E(Y ), is given by

RX=1,E=1 = RX=1,E=0 + RX=0,E=1 − 1 (10.8)

and on a log-linear or multiplicative scale, i.e., g(E(Y )) = log(E(Y )) is given by

log(RX=1,E=1) = log(RX=1,E=0)+ log(RX=0,E=1). (10.9)

Departure from the additive model on each scale implies a statistical interaction.
It is easy to see that presence of a statistical interaction on the linear scale can be
consistent with no interaction in the multiplicative scale and vice versa.

While gene-environment interactions in population-based designs can be ana-
lyzed in a relatively straight-forward manner by including the interaction into the
corresponding regression model, family designs present additional difficulties. One
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might think of extending the FBAT statistic by using as a trait Y × E , giving the
numerator of the FBAT statistic as

(Y × E − offset)(X − E(X |P )), (10.10)

where P denotes the parental genotypes. However, such an approach will not gen-
erally be valid. The reason is the conditioning on the parental information in com-
bination with the assumption of Mendelian transmission from the parents to the
offspring. In the presence of a main genetic effect (β1 	= 0), the transmission of
the alleles from the parents to the offspring will also depend on the phenotype Y
even under H0. Under these circumstances, it difficult to estimate the transmission
probabilities without making model assumptions that would give up the robustness
properties of the FBAT approach. Several ways around this have been suggested.
One way is to construct an overall test statistic that tests the joint-null hypothesis of
no main effect (β1 = 0) and no interaction (β3 = 0). It is relatively easy to extend
the general FBAT approach to handle this, e.g., FBAT-GEE (Lunetta et al. 2000;
Lange et al. 2003a). However, this has the drawback that if the null-hypothesis is
rejected, one cannot conclusively infer the presence of an interaction; rejection can
be driven by a main effect alone.

For simple cases, e.g., affected offspring in nuclear families, by assuming a log-
linear model for the relative risk, one can show that E(X |Y = 1, P, E) is inde-
pendent of E , provided X and E are conditionally independent given the sufficient
statistics for parental genotype, P (Umbach and Weinberg 2000). Hoffmann et al.
(2009) extended this result to conditioning on the sufficient statistics for parental
genotypes. In this case, a simple interaction test statistic is given by

�(Z − E(Z |Y = 1, S))(X − E(X |Y = 1, S)), (10.11)

where summation is over all affected offspring. Both expectations in equa-
tion (10.11) and the conditional variance of X can be evaluated empirically, thereby
circumventing the need to specify a genetic main effect model or to estimate envi-
ronmental effects (Lake and Laird 2004; Hoffmann et al. 2009).

While this maintains the robustness of family-based association tests, it is not
feasible for quantitative phenotypes and complex exposure variables. For such
application, extensions using causal inference methodology have been suggested
(Vansteelandt et al. 2008). In general, the development of statistical approaches for
the gene-environment analysis in family-based designs is active field of research
and many questions, e.g., optimal designs, still need to be addressed.

Compositional Epistasis and Compositional Gene-Environment Interactions: In
the previous section, it was noted that interaction was scale dependent; inter-
action could be present on one scale but absent on another. For the model in
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(equation 10.7), if g(E(Y )) = E(Y ) and β3 is non-zero then one would say that
a statistical interaction is present on the additive scale; if g(E(Y )) = log(E(Y ))
and β3 is non-zero then one would say that a statistical interaction is present on
the log-linear or multiplicative scale. Similar concepts apply also when considering
gene-gene interactions. It was also noted in the previous section that a statistical
interaction need not necessarily imply an interaction in a biological sense.

A more biologically oriented form of interaction between two genes was
described by Bateson (1909) as ‘epistasis’ in which the effect of one genetic factor
would be masked unless another genetic factor was also present. Currently ‘epista-
sis’ is often used synonymously with ‘gene-gene interaction’ and thus some authors
have proposed using the term ‘compositional epistasis’ (Phillips 2008) to refer to
epistasis in Bateson’s sense of the term. Suppose that two genetic factors, X1 and
X2, are binary indicators for genotypes at loci A and B respectively so that X1 = 1
denotes a high risk variant at locus A and X2 = 1 denotes a high risk variant at locus
B. If Y is a dichotomous trait then compositional epistasis (epistasis in the sense of
masking) would be present if for some individuals, their outcome under different
values of X1 and X2 would be that given in Table 10.2 so that for individuals with
the low risk variant (X1 = 0) at locus A, X2 has no effect on the outcome.

Such examples of compositional epistasis do not in general correspond to inter-
action terms in a statistical model. There are, however, relations between a statistical
model such as (equation 10.7), with X and E replaced by X1 and X2, and compo-
sitional epistasis that can sometimes be used to empirically test for compositional
epistasis. If there is no confounding of the effects of X1 and X2 on the outcome Y so
that the probabilities of the outcome conditional on X1 and X2 reflect the true causal
effects of these genes then if g(E(Y )) = E(Y ) and β3 > 2β0 it can be shown that
there must be some individuals in the population who have a response pattern like
that given in Table 10.2, i.e., compositional epistasis must be present (VanderWeele
2010). Under some additional assumptions, weaker tests can be used. If it can be
assumed that for at least one of the two genetic factors, X1 or X2, its effect is never
preventive for any individual (i.e., a change from 0 to 1 would never change the
outcome from 1 to 0 for any individual) then g(E(Y )) = E(Y ) and β3 > β0
will imply individuals with a response pattern like Table 10.2. If for both of the
genetic factors, X1 and X2, their effects are never preventive for any individual then
g(E(Y )) = E(Y ) and β3 > 0 will imply individuals with a response pattern like
Table 10.2.

If a log-linear model with g(E(Y )) = log(E(Y )) is used then β3 > log(3)
will imply compositional epistasis (i.e., individuals with response pattern as in
Table 10.2) provided that both main effects β1 and β2 are non-negative. If for at

Table 10.2 Example of compositional epistasis: The outcome Y for a particular individual under
different combinations of X1 and X2

X2 = 0 X2 = 1

X1 = 0 0 0
X1 = 1 0 1
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least one of the two genetic factors, X1 or X2, its effect is never preventive for
any individual then β3 > log(2) will imply compositional epistasis provided that
both main effects β1 and β2 are non-negative. If for both factors, X1 and X2, their
effects are never preventive for any individual then β3 > 0 will again imply com-
positional epistasis. Similar results hold if the genetic factors have more than two
levels (VanderWeele 2010). These tests for linear or log-linear models could also be
applied to cases of gene-environment interaction in order to test for ‘compositional
gene-environment interaction.’

Note, however, that these tests for compositional epistasis, although somewhat
more biologically motivated, still do not necessarily imply physical molecular inter-
action between various proteins, which Phillips (2008) referred to as ‘functional
epistasis’.

10.4 Exercises

1. Show that the presence of a statistical interaction on the additive scale is consis-
tent with no statistical interaction on the multiplicative scale and vice versa.

2. Compute the Bonferroni correction for the SNPs listed in Table 7.11 and decide
which SNPs achieve overall-significance

3. Using the FDR, for which of the SNPs listed in Table 7.11 do you reject the
null-hypothesis?



Chapter 11
Genome Wide Association Studies

11.1 Introduction

The key requirement for genetic association, linkage disequilibrium (LD), is a short
distance property that extends only for a limited physical distance across the human
genome. As we showed in Chapter 7, if there is low LD between the genotyped
marker and the DSL, there will be low power to detect association between the
disease and the DSL. In the early years of association testing, the strategy was
mainly used to test specific regions, e.g., genes which were selected on the basis
of function relative to the biology of the disease, or on the basis of linkage analysis.
By restricting testing to a small enough region, markers can be selected for testing
which should be in LD with the DSL anywhere in the region. In particular, SNPs
in the coding region of a gene are often chosen as markers. With Genome Wide
Association Studies (GWAS) the idea is instead to cover the entire genome with
a sufficiently dense set of SNPs that all untyped polymorphsims (including DSLs)
are in reasonably high LD with a tested SNP. For this reason, GWAS studies are
sometimes called ‘unbiased’ because every region of the genome is searched, not
just those meeting determined selection criteria.

Whether testing one or several genes, or the entire genome, the selection of the
SNPs that are genotyped in a genetic association study is a crucial decision that
defines the likelihood for the success of the study. In principle, the SNPs that will
be genotyped in a GWAS, should be selected so that they are sufficiently correlated,
i.e., in strong linkage disequilibrium, with the SNPs that will not genotyped in the
same region. Thereby, the presence of a DSL in the region, independently of whether
the DSL was genotyped or not, can be detected with an association test.

In the early 2000s, when genetic association studies became one of the most pop-
ular mapping tools, the local LD structure was unknown for most parts of the human
genome and researchers had to assess the local LD structure in the genomic region
of interest prior to the actual association study. For each study, it was necessary
to genotype a small subset of subjects at a large number of SNPs in the genomic
region in order to study the LD patterns and to define the suitable set of tag SNPs
for genotyping. This was a labor-intensive process with a high degree of redundancy
as the same genomic area was often studied by more than just one group.
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This led to the HapMap project (International HapMap Consortium, The 2003,
2005, 2007), a concerted effort to centralize this work and to provide the scientific
community with a comprehensive LD-catalog for the entire human genome across
for four different ethnicities (Section 5.1). Several genome-centers and companies
across the world genotyped millions of SNPs in the four different HapMap popula-
tions. The observed LD patterns were cataloged and made accessible to the scientific
community via the Internet. This large-scale effort went side-by-side with major
improvements in the genotyping technology. The genotyping expenses dropped to
a fraction of the original costs, and SNP-chips were developed which made it pos-
sible to genotype several hundred thousand SNPs across the human genome. For
the current SNP-chip generation, the LD-information of the HapMap project has
been incorporated so that the chips provide adequate coverage of the entire human
genome for most ethnicities, i.e., SNPs that are not included on the SNP-chip are
in strong LD with at least one genotyped SNP (r2 > 0.7 or 0.8). Recent trends
in the SNP-chip development show a trend to more gene-centric approaches, i.e.,
saturating known genes with densely spaced SNPs.

With the arrival of SNP-chips, it became possible to search for disease loci across
the entire human genome, using the concept of indirect association. A study in
which hundreds of thousands of SNPs are genotyped across the genome and tested
for association with the phenotype of interest is referred to as a Genome Wide Asso-
ciation Study. For numerous complex diseases, they have led to the discovery of
novel associations between genetic loci and disease phenotypes that can be repro-
duced and replicated robustly in other populations and studies (Manolio et al. 2008,
Fig. 11.1). While this technological development offers great scientific potential to
understand the genetic architecture of complex diseases, it creates substantial statis-
tical challenges. We will discuss two of the main challenges in the next two sections:
the development of statistical filters to ensure sufficient genotyping quality and the
handling of the multiple testing problem.

11.2 Quality–Control for the Genotype Data

As in any statistical analysis, the quality of the data is one of the deciding fac-
tors that defines the validity of the findings and the conclusion. Quality control
and plausibility checks of the data are compulsory parts of any statistical analysis.
While selection and assessment of disease outcomes are crucial in genetic associa-
tion studies, the issues are largely generic to any epidemiology study and here we
focus on genotyping quality. The process of genotyping is technically complex and
the genotyping quality generally depends on multiple factors that are not always
under the control of the investigators. Such factors include the quality of the DNA
in the sample, depending in turn on the type of sample (blood vs. buccal swab),
the handling and storage of the sample, and the genotyping platform, etc. After
the genotyping process is completed and all platform specific error checks have
been performed, additional statistical quality control steps are needed to ensure the
validity of the data.
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In population-based studies, genotyping error that occurs completely at random
for each genotype, i.e., independently of the study subject’s disease status or geno-
type, will result in reduced statistical power in the analysis, but generally does not
bias the α-level of the test (Fardo et al. 2009a; Gordon and Ott 2001). However,
in the case of family-based designs, the same completely at random genotyping
errors can lead to an increase of the overall α-level, leading to false-positive results
(Mitchell et al. 2003, Gordon et al. 2000, 2001). The situation is worse in the case
of non-random genotyping errors, e.g., errors whose probability distribution depend
on the true genotype or phenotype. Errors depending on phenotype can occur when
the cases and controls are genotyped in different groups, e.g., different laboratories,
different genotyping technicians, etc. Most of such error sources can be avoided
by a careful planning of the study, using balanced designs with respect to the most
important factors that influence genotyping quality.

In the very early days of genotyping, genotype determinations (also known
as genotype calls) were made separately for each person by eye, based on
electrophoresis gel data. Today, the genotyping process has been highly automated.
Calling Algorithms (Rabbee and Speed 2006; Teo et al. 2007) are computerized sta-
tistical algorithms used to make genotype calls based on intensity data of the sample
for the two alleles of each SNP (see Fig. 11.2). During the genotyping process, each
person’s DNA segment is greatly amplified, so that the two alleles can be identified
by their intensity. A person with genotype AA should have zero intensity for the a
allele, and vice versa for the aa genotype.

There are now various genotyping platforms which are able to provide repro-
ducible and high quality data with relatively low genotyping errors or missing

(a) SNP with good genotyping quality (b) SNP with poor genotyping quality

Fig. 11.2 Intensity plots for 2 SNPs: For the SNP on the left, the clustering genotype calling
algorithm works well. The clusters which correspond to the three different genotypes separate well
and can be clearly identified. The genotyping quality for the second SNP (b) is much poorer. Here
the cluster overlap makes it impossible to identify the genotype for a relatively high number of
study subjects. Source: Courtesy of Dr. Jessica Lasky-Su and Dr. Ross Lazarus
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genotypes. For GWAS studies, we require genotyping platforms that can process
and call hundreds of thousands of genotypes in thousands of individuals. Because
of the large amount of data processing, individual genotype calls cannot be inspected
manually for accuracy. Even if the average genotype error per SNPs is small, e.g.,
1%, given the large number of SNPs that are genotyped in a GWAS, most GWAS
will contain SNPs and study subjects with substantial amount of genotyping error.
Including such SNPs and subjects in the analysis can lead to reduced overall statis-
tical power, or systematic bias (highly inflated alpha levels in some cases).

As a result, substantial additional error checking is routinely done after the geno-
typing process is complete, before proceeding with the data analysis (Laurie et al.
2010; Laird and Lange 2009). This error checking protocol takes the form of apply-
ing a series of quality-control filters. Such QC-protocols can often contain filters
that are specific to the genotyping platforms used, e.g., quality scores, and are not
discussed in this book. Some of quality control filters are based on statistical con-
cepts that we have already discussed in this book and that are universally applicable
to any genotype data, such as candidate gene studies as well as a GWAS. Some are
only possible with marker sets covering the whole genome. The following statistical
QC-filters are commonly implemented in quality-control protocols and ensure that
genotyping quality is sufficient for the statistical analysis.

Filter 1 Filtering for minor allele frequency and for missing rate For most SNP
chips, the genotyping quality depends upon the minor allele frequencies. SNP-
chips determine the genotypes based on the intensities for each allele and
divide the observed data points into three clusters which correspond to the
three possible genotypes. Figure 11.2 illustrates this concept. Establishing the
genotype clusters becomes very difficult and error-prone for small minor allele
frequencies, since the cluster for the rare homozygous genotype is difficult to
identify. In applications, it is standard practice to exclude SNPs with a minor
allele frequency of less than 5% from the main analysis. Given ever-improving
genotyping technology, this cut-off is likely to become smaller over the next
couple of years, but is unlikely to disappear. Similar to this, an excess of miss-
ing genotypes either for a specific SNP or for a study subject can indicate a
problem with the genotyping process and is indicative of an increased rate of
genotyping error. Currently, subjects for which more than 2% of the SNPs are
missing are considered as problematic. Such subjects are then also excluded
from the analysis.

Filter 2 Filtering for SNPs whose genotype frequencies are in violation of the
Hardy–Weinberg assumption.
In a GWA for a complex disease/phenotype, the genetic effect sizes of the
true DSLs are believed to be small and, unless samples from different ethnic-
ities have been included in the sample, this will also be true for the effects of
population-admixture and stratification at a single SNP level. It is therefore
plausible to assume that the most likely reason for a SNP’s departure from
Hardy-Weinberg equilibrium is caused by genotyping error. In applications,
it is standard procedure to test all SNPs for departures from Hardy-Weinberg
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equilibrium and remove those SNPs whose p-values for the Hardy-Weinberg
test are smaller than 10−5. Fardo et al. (2009a) give a practical example for
the effectiveness of the Hardy-Weinberg filter. A SNP that was genotyped as
part of a GWAS for Alzheimer’s disease tested highly significant for depar-
ture from Hardy-Weinberg equilibrium and was removed from the subsequent
analysis. This SNP was then re-genotyped by sequencing. The genotypes for
the same SNP obtained from sequencing do not show a departure from Hardy-
Weinberg equilibrium anymore, suggesting that the first genotypes were con-
taminated with strong genotyping error. The data are shown in Table 11.1.

Filter 3 In family samples, filtering for Mendelian errors/Mendelian Inconsistencies
In family-based samples with observed parental genotypes, Mendelian errors,
i.e., transmission patterns that are not possible under Mendel’s law, can be
used as another measure of the genotyping quality. The Mendelian errors
in the sample are identified and then both SNPs and study families whose
Mendelian Errors exceed a certain threshold are excluded from the analysis.
A typical cutoff here is 5 errors, but often this parameter is sample-dependent
and varies across studies. We note that finding Mendelian errors does not
remove all genotyping errors; only an offspring genotype inconsistent with the
parental genotypes will be detected. Genotyping errors can also be consistent
with Mendelian transmissions.

Filter 4 Filtering for subjects with excessive transmission patterns For family-based
association studies, proband-specific tests can be constructed that compare
the transmission rates at a genome wide level within a single proband (Fardo
et al. 2009b). Since the null-hypothesis of no genetic association will be true
for most SNPs, the transmission probability at the heterozygous genotype
should be the same for both alleles. However, in the presence of genotyping
error, it can be shown that the common allele tends to be transmitted more
often than the rare allele. Thus transmission rates differ from 50/50. Based on
this observation, a within-proband TDT/FBAT can be constructed that detects
genotyping error and has a χ2-distribution under the null-hypothesis of no
genotyping error. This test can be utilized to identify subjects with particular
poor genotyping quality.

Table 11.1 Genotyping error detected by departure from Hardy-Weinberg equilibrium. The
genotyping results that were obtained from an Affymetrix 5.0 SNP-chip are denoted here as
‘Observed genotypes.’ The genotypes obtained from sequencing are referred to as ‘True genotype’

Observed genotypes

True genotype aa Aa AA Total

aa 48 6 0 54
Aa 175 198 1 374
AA 0 2 1009 1011

Total 223 206 1010 1439
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Filter 5 Relatedness checks of study subjects
Using genome wide data one can assess, for any pair of study subjects, how
many alleles the two study subjects have in common and compare it with
reference data sets on related individuals, e.g., siblings, offspring-parent pairs,
etc. This enables identification of closely-related individuals. The general rule-
of-thumb is then to remove one of the study subjects in order to ensure the
assumption that all study subjects are unrelated (Purcell et al. 2007), as cryptic
relatedness can invalidate the usual variance formulas for commonly used test
statistics.

After the QC-filtering process is completed, the quality of the genotype data
can be assessed by overall criteria. Simple association tests are usually computed,
e.g., logistic or linear regression with or without principal component adjustments
for population admixture. Since the majority of the SNPs will be under the null-
hypothesis of no genetic association, one expects to see a p-value distribution as it
would be expected under the null-hypothesis. Q-Q plots can then be used to assess
the validity of this assumption (Fig. 11.3). If such plots exhibit any systematic pat-
terns that one would not expect to be observe under the null-hypothesis, this sug-
gest that the data still contain a substantial/detectible amount of genotyping error.
In such situation it is recommended to repeat the data filtering process with more
stringent filter criteria. A compromise has to be reached then between rescuing as
much genetic data as possible for the analysis and achieving acceptable genotyping
error rates in the analyzed data. If, as in Fig. 11.3, only a handful of SNPs appear to
be outliers, one option is to redo the genotyping of these SNPs on a more accurate
platform.

(a) (b)

Fig. 11.3 Q-Q plots for two genetic association studies. Source: Courtesy of Dr. Jessica Lasky-Su
and Dr. Ross Lazarus (a) QQ-plot with only a few points deviating from the diagonal, suggesting
good genotyping quality. (b) QQ-plot with many points deviating from the diagonal, suggesting
poor genotyping quality
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11.3 Multi-Stage Designs

So far we have assumed that, prior to the analysis of a GWAS, all study subjects
have been genotyped at a genome wide level, using one of the available SNP chips,
and that each marker is tested for genetic association, using genotype data on all
study subjects. A SNP is then declared as genome wide significant if the p-value
for the corresponding association test is significant after adjusting for multiple com-
parisons, based on one of the procedures outlined in Chapter 10, e.g., Bonferroni,
FDR correction, or permutation testing. Such designs and analysis plans are often
referred to as one-stage designs or single-stage designs.

Although SNP chips are now commonly used research tools, genotyping based
on genome wide SNP chips is still a relatively expensive procedure. This is espe-
cially true compared to targeted genotyping of a much smaller numbers of SNPs.
In order to minimize the genotyping expenses, multi-stage designs have been pro-
posed. The first step of a multi-stage design with K steps is to divide the study
sample into K independent subsets and assign each subset to one of the K stages.
Then the first subset of study subjects is genotyped on genome wide SNP chips
and the most promising SNPs in terms of p-values for the genetic association tests
are selected to be genotyped in the second stage of the design, i.e., SNPs whose
p-values are smaller than the cut-off value α1 for the first stage. Since the cut-off
value for the first stage, α1, is typically in the range of 0.01 to 0.10, the number of
SNPs that have to genotyped in the second stage of the study is much smaller. In
the kth stage, the SNPs that were identified in the previous stage of the design are
genotyped in the kth subset of the study sample and SNPs whose p-values for the
association test are smaller than the cut-off value, αk , are pushed through to the next
stage. This process is continued until the final stage of multi-stage design is reached.
In the final stage, SNPs whose p-values for the association test are smaller than αK

are declared as genome wide significant. Since only the study subjects in the first
stage are genotyped at a genome wide level, the genotyping cost for a multi-stage
design are usually lower than for a single-stage design with the same number of
study subjects (Thomas et al. 2009; Skol et al. 2006). However, many details, such
as size of the subsets and choice of αk, k = 1, . . . , K need to be considered.

While assuming the total sample size is constant, one-stage designs are obvi-
ously more powerful than a multi-stage design because more data are available
about each SNP. The multi-stage design has the advantage that the most expensive
genotyping, the genome wide SNP-chips, are only applied to a subset of the study.
Multi-stage designs therefore tend to be more cost-efficient than one-stage designs.
However, given that the SNP-chip prices are falling more rapidly than the prices for
the selective ‘genotyping’ that is used in the subsequent stages, the cost advantage
of multi-stage designs may soon become irrelevant.

Another aspect that can favor multi-stage designs is that the genotyping and the
analysis of each stage is spread over a larger time-window. In situations where the
study subjects still need to be recruited and are not available at the beginning of
the study, or, where there are funding constraints in terms of the annual budget,
multi-stage designs can be excellent choices that are worth consideration.
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So far our discussion of multi-stage design has focused on the issues related to
the study design. We turn now to the analysis of multi-stage designs. The standard
analysis approach for multi-stage designs is to compute the association test statistics
within each subset of subjects for all markers genotyped at the kth stage. Similar to
one-stage designs, one has to control for the FWER α. The ‘typical’ FWER α-level
for a one-stage GWAS is 10−7, using a Bonferroni correction for an overall α-level
of 5% and 500,000 tested SNPs.

One way to define genome wide significance in a multi-stage design to declare
significance for all SNPs whose association p-values are smaller than the pre-
specified cut-off levels αk, k = 1, .., K in each stage of the design (Satagopan and
Elston (2003), Satagopan et al. (2004a,b), Thomas et al. (2004); Wang et al. 2006).
To see how the cut-off values αk, k = 1, .., K have to be specified in order to main-
tain the overall type-1 error of α, let’s look at the special case of a 2-stage design
in which M SNPs are genotyped in the first stage. Under the null-hypothesis of no
genetic association for any of the M markers, the cut-off level α1 can be thought
of as the probability that, for any given marker, the association test rejects the null
hypothesis in the first stage, given that the null hypothesis is true. The equivalent
statement is true for the cutoff-level α2 of the second stage. Setting the family wise
error rate for the GWAS to α and assuming that there is no LD between the markers,
we can write

1 − α = P(H0 is not rejected for any of the M SNPs at stage 2)

=
M∑

i=0

P

(
for i SNPs : H0 is rejected in stage 1,

but not rejected in stage 2

)

=
M∑

i=0

P(for i SNPs : H0 is rejected in stage 1)×

×P(for i SNPs : H0 is not rejected in stage 2)

=
M∑

i=0

[(
M

i

)

αi
1(1 − α1)

m−i
]

× (1 − α2)
i

=
M∑

i=0

[(
M

i

)

(α1(1 − α2))
i (1 − α1)

m−i
]

= [α1(1 − α2)+ (1 − α1)]
M = (1 − α1α2)

M (11.1)

Using a second order Taylor-expansion, the expression (1 − α)
1
M can be approx-

imated by 1 − α
M . Applying the approximation to equation (11.1), we obtain the

following relationship between the overall significance level α and the two cut-off
values α1 and α2:

α

M
= α1 × α2. (11.2)
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For multi-stage designs with K stages, one can show that α
M = ∏K

k=1 αi , again
assuming SNPs are independent. Equation (11.2) requires that the cut-off levels
α1 and α2, which can also be interpreted as the individual significance levels of
each stage, have to multiply to the overall α-level of the GWA that is corrected by
Bonferroni-correction for the number of SNPs that have been genotyped in the first
stage, i.e., α

M . The individual cut-off values for each stage should be specified so
that the overall power of the design will be maximized. Thus, for example, when
the same number of study subjects are available in each stage of the design, one
can show that the most powerful way to define the cut-off values α1 and α2 will be
α1 = α2 = √

α/M . Additional insight into multi-stage designs can be obtained by
solving equation (11.2) for α2,

α2 = α

M × α1
. (11.3)

Note that the one-stage design uses α/M as the marker cutpoint for genome wide
significance, and that under H0, the expected number of SNPs genotyped in stage
two is M1 = α1 × M . Hence equation (11.3) implies that α2 = α/M1, or the
standard Bonferoni correction for m1 tests. Since this can be seen as an independent
validation of the SNPs that have been selected in the first stage of study, the last
stage of a multi-stage design is sometimes referred to as ‘replication’ or ‘replication
stage’ and it raises the question of the most powerful analysis strategy for multi-
stage designs. Thus one strategy would be to analyze in stages according to the
multi-stage design and declare SNPs as genome wide significant whose p-value for
the final stage is smaller then the cut-off value αK .

A second possibility is to consider a joint-analysis for the SNPs that are geno-
typed in all stages of the study. This has the advantage that all data are used in
the final stage, but the stages are no longer independent. In the joint analysis,
the association tests of all stages are combined, e.g., using Fisher’s method or the
Liptak-method (Lipták 1959; Rice 1990), and adjusted for multiple comparisons
for all markers that were genotyped at the genome wide level in the first stage, M .
Assuming that the Z-score for mth marker in the k stage of the design is given by
Zmk and the corresponding p-value by pmk , Fisher’s method for combing p-values
can be used, i.e., the combined test statistic for the mth marker is given by

Z2
m = −2

K∑

k=1

loge(pmk), (11.4)

where Z2
m has a χ2-distribution with 2K degrees of freedom. Alternatively, in the

Liptak-approach, the combined test statistic for the m th marker is constructed as
the weighted sum of the Z-scores for each stage, i.e.,

Zm =
(

1
√∑

k nk

∑

k

√
nk Zmk

)

∼ N (0, 1), (11.5)
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where nk denotes the sample size that is available at the kth stage. This method
of combining test statistics as weighted Z-scores is often referred to as the Liptak
method (Lipták 1959).

In the the joint analysis, the p-values of the combined test statistics have to be
smaller than the overall type-1 error that is adjusted for all SNPs that were geno-
typed in the first stage of the study. In other words, we use the same Bonferroni-
correction that we would use for a one-stage design, α/M (Skol et al. 2006).

To address the question whether a staged or ‘replication’ analysis is more pow-
erful than a joint analysis, extensive power studies have been conducted. There
results suggest that, unless there is substantial heterogeneity between the stages of
the study, the joint-analysis is always more powerful (Skol et al. 2006).

11.4 Testing Strategies for Family-Based Studies

In family-based association studies, the information about the genetic association
between a marker locus and a phenotype can be decomposed into two statistically
independent component. This feature of the data allows the construction of staged
testing strategies for GWAS that maximize the power of family-based studies, while
maintaining their original robustness against population sub-structure (Van Steen
et al. 2005; Zheng et al. 2007; Feng et al. 2007). Such testing strategies in family-
based studies are similar to a 2-stage design, but have the distinct difference that
they apply the 2-steps of the testing strategy to the 2 independent components of the
same data set.

The first component, the so called ‘between’-family component, contains infor-
mation about the SNP-trait association at a population level, which is assessed based
on the proband’s phenotype, Y , and the parental genotypes, P (Lange et al. 2003a,b;
Van Steen et al. 2005; Laird and Lange 2006). For example, when a quantitative
trait is analyzed, the offspring phenotype and parental genotypes can be used to
construct estimates for the genetic effect size. The second component, the so-called
‘within’-family component of the data characterizes the SNP-trait association at
the family level, i.e., the allele transmissions from the parents to their offspring
(Rabinowitz and Laird 2000; Laird et al. 2000b; Spielman and Ewens 1998). The
within-family component corresponds to the FBAT/TDT statistic that we discussed
previously. Family-based association tests such as the TDT or FBAT are conditional
tests that treat the offspring genotype, X , as random, conditioning upon the offspring
phenotype, Y , and the parental genotypes P . It is important to note that, when
parental information is missing and additional siblings have been genotyped, the
approach can easily be adopted by conditioning on the sufficient statistic S instead
of the parental genotypes P . The evidence for SNP-trait association is evaluated
by comparing the observed offspring genotype with the expected offspring geno-
type, which is computed by conditioning upon the parental genotypes, assuming
Mendelian transmissions. Since the offspring genotype is the only random com-
ponent of the FBAT/TDT statistic, the implication is that other information in the
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FBAT/TDT statistic (i.e., the offspring phenotype and parental genotypes) can be
used to assess the evidence for association without biasing the significance level of
the FBAT/TDT statistic.

Based on the two information sources about association in family-based designs,
the density of the joint distribution for X , Y , and P can then be partitioned into two
statistically independent components (Laird and Lange 2006),

p(X,Y, P) = p(X |Y, P )× p(Y, P) (11.6)

The density p(Y, P) is the basis of the first step of the testing strategy, often
referred to as the screening test, and the density p(X |Y, P ) is the basis of the
family-based association FBAT/TDT that is applied in the second step, the testing
step. The likelihood decomposition (11.6) implies that the two steps, the screen-
ing step and the testing step, of the testing strategy are independent. The ‘evi-
dence of association’ (i.e., the genetic effect size estimate) for each marker from
the screening step can be utilized to prioritize SNPs in the second stage without
having to adjust the overall significance level for the estimation of the genetic effect
size in the first stage. There are various ways in which the information from the
screening-step step can inform the application of the FBAT/TDT statistic in the
second step. One approach selects a very small number of SNPs based on screen-
ing step, typically less than 100, and just test those SNPs for association in the
testing step. Since less than 100 SNPs are tested for association and the testing
step is independent of the screening step, the adjustment for multiple comparison
is much less stringent compared to an analysis that tests all genotype SNPs, e.g.,
500,000 and more. Consequently, the power gains over analysis approaches that
test all genotyped SNPs can be substantial. This concept is outlined in Fig. 11.4.
The algorithm has been used for family-based GWAS for obesity, Alzheimer’s dis-
ease and Attention Deficit and Hyperactivity Disorder and led to the discovery of
novel genetic associations (Herbert et al. 2006; Bertram et al. 2008; Lasky-Su et al.
2008b).

Since the original approach, several extensions and power improvements have
been suggested, for measured, time-to-onset and dichotomous phenotypes (Won
et al. 2009; Lasky-Su et al. 2010; Ionita-Laza et al. 2007, 2008).

11.5 Replication, Non-replications and Meta-analysis

As in any association study, the most important step after the discovery of a novel
association between a SNP and a trait is to validate or replicate the association in an
independent studies (Chanock et al. 2007; Pearson and Manolio 2008). The same
SNP is genotyped in independent studies in which the same or a related phenotype
is available and tested for association. There is general agreement in the field to
consider a replication attempt in another study a success if all of the following
conditions are met:
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Fig. 11.4 Two-stage testing strategy for family-based association studies

• The association test for the replication sample is significant at a nominal
α-level of 5%: The association test for exactly the same marker/SNP and a phe-
notype that is comparable to the phenotype originally used for the discovery of
the association has to be significant at a nominal 5% level. Since the study design
can vary in terms of the phenotype (quantitative vs dichotomous, population-
based vs family-based, etc.) the association test that is used in the replication
study does not have to be necessarily the same the test statistic with which the
association was originally discovered.

• The association test for the replication sample has to be based on the same
mode of inheritance: To ensure the consistency and the robustness of the finding,
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the association test statistic that is used for the replication sample should be based
on the same genetic model as the model that is applied in the original report of
the association.

• The association signal has to have the same direction: The direction of the
genetic effect has to be consistent with the direction of the initial finding. For
example, if, in the report of the original association, the minor allele was associ-
ated with an increase in disease risk, the replication study has to show the same
pattern.

• Sufficient Sample Size for the Replication Sample: The sample size in the
replication sample should be sufficiently large that it provides adequate statistical
power to detect the initial association finding, i.e., at least 80–90% power. Since
studies whose sample sizes are too small cannot reliably confirm true genetic
association, their inclusion in replication attempts can lead to false negative find-
ings and the dismissal of true findings.

While these criteria for the definition of a successful replication are relatively strict,
they are designed to minimize the risk of a false positive findings. It is important to
note that non-replications do not necessarily have to mean that the initial association
finding is a false-positive. Beside of the possibility of a false positive result, there
are numerous reasons for replication failures. The marker that was tested originally
to identify the association is unlikely to be the true DSL, but is more likely to be in
LD with it. Although the findings of the HapMap project suggest that the local LD-
structure is relatively stable across similar populations, such findings are based on
healthy subjects. In affected study subjects, the local LD pattern between the identi-
fied SNP and the true DSL does not necessarily have to follow the those of healthy
individuals. It has been shown that relatively small changes in the LD-structure can
lead to the so-called ‘flip-flop’ effect, i.e., the direction of the association is reversed
(Lin et al. 2007; Clarke and Cardon 2009). The flip-flop effect will still lead to
a significant replication test statistic, but the observed effect size direction in the
replication sample will be in the opposite direction of the original finding. Another
source for failing to replicate a true positive findings can be genetic effects which
vary according to covariates (e.g., age) or phenotype definition. For example, for
the phenotype Body Mass Index (BMI) age-dependent genetic effects have been
reported for a number of genes, e.g., INSIG2, FTO and ROBO1 (Lasky-Su et al.
2008a). While some associations with BMI can be easily be detected during child-
hood and up to an age of 20 years, such genetic effects can become less detectible
for older age. Table 7.7 also indicates that variation in phenotype definition may lead
to non-replication. A reason for replication failures can also be that the replication
study varies from the original study in terms of important predictor variables for the
analyzed phenotype. Such confounding factors can be body characteristics such as
age, but also environmental factors, as well as study design (Heid et al. 2009).

Another reason, of course, for a non-replication can also be that the replication
study was underpowered or that replication simply failed just by chance. Unless the
power is extremely high, an association test remains a statistical experiment that
can result in false negative findings as well. For all these reason, it is obvious that
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numerous replication studies are needed to either conclusively confirm an identi-
fied association or to reject it. It is common practice to replicate GWAS findings in
several independent studies of different design type to ensure the robustness of the
finding and in studies with different ethnicities to generalize the finding as much as
possible.

The results of the replication studies are likely to vary, so they are often combined
in a meta-analysis to reach an overall conclusion. Since the genetic effect is likely
to be the strongest in the study that identified it, it has become standard practice to
exclude the original study from the meta-analysis. In the genetics literature, there
are currently two approaches that are favored for the meta-analysis. One way is to
combine the p-values of the individual studies, using Fisher’s methods of combining
p-values. It is important to note that one-sided p-values that take the original effect
size direction into account should be used here in order to fulfill the conditions for
a successful replication. Since this approach does not take the potentially different
sample sizes of the replication studies into account, an alternative way to conduct the
meta analysis is to use Z-scores that are weighted by the sample size of each study
(equation (11.5)). Based on the overall results of the meta-analysis, the identified
association is then either confirmed or rejected. It is also recommended to test for
heterogeneity between the replication studies. Approaches that have been developed
for the meta-analysis of clinical trials can be utilized for this (DerSimonian and
Laird 1986; Emerson et al. 1996; Heid et al. 2009).

While meta-analysis is an important tool to combine replication studies that
have been motivated by the findings of a single GWAS, it is also used to com-
bine the results of multiple GWAS for the same phenotype. For many complex dis-
eases/phenotypes, multiple GWAS studies may be available and can be combined
to maximize the statistical power to identify novel associations. The major issue
that one faces with the meta-analysis of several GWAS studies is that the different
studies are not necessarily genotyped on the same SNP-chip. Since the overlap of
SNPs between the different GWA chips is marginal, especially for SNP chips from
different companies, not all SNPs will have been genotyped in all GWA studies.
This problem can be addressed by imputing the un-genotyped SNPs based on the
genotyped SNPs in the same area and LD information from the HapMap, assum-
ing that the LD patterns in HapMap are transferrable to the GWA of interest. Sev-
eral approaches have been proposed and successfully implemented (Lin and Huang
2007; Marchini et al. 2007; Browning and Browning 2009).

11.6 Exercises

1. For Table 11.1, compute the HW tests for both genotyping platforms.
2. For a multi-stage design, show that when the same number of study subjects are

available in each stage of the design, the most powerful way to define the cut-off
values α1 and α2 will be α1 = α2 = √

α/M (Section 11.3 on page 184).
3. For a multi-stage GWAS design with K stages, show that α

M =∏K
k=1 αi .



Chapter 12
Looking Toward the Future

While genome wide association studies have led to the identification of robust
associations for many complex disease phenotypes, they are typically not able to
explain the amount of phenotypic variability that has been attributed to genetic fac-
tors by heritability studies such as those discussed in Chapter 4. For example for
the phenotype height, heritability studies suggest that about 70% of the phenotypic
variability is attributable to genetic factors. However, so far, GWAS for height have
identified variants that explain a substantially smaller proportion of the genetic vari-
ance of this highly heritable trait (Weedon et al. (2008); Yang et al. (2010)). There
are numerous reasons for this ‘missing heritability’, perhaps the most obvious being
that the SNPs analyzed are likely only proxies for the real DSLs, and the fact that
low frequency SNPs are difficult to detect.

Another important consideration is that as noted in Chapter 4, heritability is
highly dependent on the underlying distribution of the phenotype in the popu-
lation. Due to the large sample size requirements in GWAS, most variants have
been identified using joint-analyses across several studies of different designs and
varying ascertainment conditions. For example, healthy controls that were selected
for cancer studies have been used in GWAS for height and BMI. While no direct
ascertainment conditions were imposed for the phenotype of interest, e.g., height
or weight, the phenotypic distribution for those traits in the sample will be affected
by the ascertainment condition on affection status and differ from the phenotypic
distribution in an unselected population. If such samples are then combined with
population or cohort studies without any ascertainment conditions or with other
control samples that have been collected for different diseases, the phenotypic het-
erogeneity will impact the ability to detect DSLs and bias the effect size estimation.
If the majority of samples of a combined GWA analysis for BMI are healthy controls
that have been recruited for other diseases, the BMI distribution can shifted toward
lower BMI values and DSLs that contribute to extreme obesity are unlikely to be
detected or, at least, effect size will be underestimated.

Several other aspects of the design and analysis of association studies contribute
to the problem of the missing heritability. The statistical models used to describe
the phenotypes in GWAS are often very basic, e.g., an association test for BMI
may include as covariates gender, age, but other factors, such as smoking, diet or
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shared environment can be more difficult to incorporate. In addition, SNPs with
allele frequencies greater than 5% (i.e., those which can be identified in a GWAS)
do not capture all the genetic variation in the human genome. An important part of
the ‘missing heritability’ may be attributable to rare variants, i.e., SNPs with allele
frequencies of less than 5%, and copy number variants, i.e., repeats or deletion of
entire genes or chromosomal regions. Common SNPs are only poor proxies for rare
variants or copy number variants.

While there have been some initial successes for association with copy-number
variations and rare variants, standard analysis approaches are only now being devel-
oped. In copy-number variation analysis, the hypothesis is that duplicates or dele-
tions of a large genomic region, potentially involving multiple genes, modifies the
disease risk. The challenge at this point is that duplication and deletions are mostly
identified based on intensity data from SNP-chips. As we have seen in the chapter
on GWAS, calling SNP genotypes based on intensity data can already be difficult.
For copy-number variations this problem can be worsened by the unknown number
of clusters. For genotype calling, there are only three clusters, one for each geno-
type. If this information is not known for copy number variations, this will add to
the difficulty of this analysis. Alternatively, rather than trying to call copy number
variations, it has been suggested to use the intensity data directly as covariates in
the association analysis. Initial simulation studies show promising result, but it is
to early that recommend one approach over the other (Ionita-Laza et al. 2008; Korn
et al. 2008).

Motivated by the ‘missing heritability’ discussion and the trend toward general
availability of sequence data in genetic association studies, the analysis of rare vari-
ants, e.g., SNPs with minor allele frequency <5%, has moved into the focus of
methodology research. So far, the analysis has been conducted by adapting genetic
association methodology to such data based on grouping variants (Li and Leal
(2008), Madsen and Browning (2009)).

Standard approaches for population-based designs are clearly underpowered for
rare variants. Another problematic issue for the rare variant analysis in population-
based designs will be the identification of suitable controls and the adjustment for
population admixture and stratification. Since rare variants are genetically younger
(in terms of time since the mutation occurred originally) than common variants, the
number of rare variants that probands share will increase with their relatedness. The
robustness against population admixture and stratification will therefore be an even
more important issue in the analysis of rare variants than in the standard genetic
association study. Since approaches for controlling for population substructure, such
as genomic control or principal component analysis, are variance-based methods,
and will likely encounter difficulty in the rare variant analysis. Family designs, with
their robustness against population substructure may offer advantages here.



Appendix A
Basic Concepts of Linkage Analysis (Continued
from Chapter 6)

A.1 General Issues with Parametric Linkage Analysis

While the direct counting-method described in the linkage chapter illustrates the
key concepts of parametric linkage analysis, i.e., the use of doubly heterozygous
parents to test and estimate the recombination fraction, it makes various simplifying
assumptions that will not be realistic in most applications. The first one is that we are
actually able to observe or infer the haplotypes in the parents and in the offspring.
When only marker genotype data and disease traits are available, we will not always
be able to reconstruct the haplotypes with certainty, even in multigenerational pedi-
grees due to missing or non-informative parental or grandparental genotypes. This
is usually addressed in the construction of the likelihood function by introducing
the unobserved haplotypes as unknown variables, and summing over the possible
unobserved phases. With linkage analysis, an underlying assumption is that two
loci, either observed markers or DSL, may be linked, but they are far enough apart
so that there is no LD between them. The absence of LD implies that the probability
of each phase (or each possible pair of haplotypes) is 1

2 . Knowing the probability
of phase allows us to sum over all possible combinations of haplotype-genotype
configurations; this can be a computationally intensive problem when dealing with
complex pedigrees. Since only a small number of these configurations are possible
given the observed marker data, sophisticated algorithms have been developed to
reduce the computational burden of this summation (Elston and Stewart 1971) and
make it feasible in applications.

Another simplification required to extend the direct counting method to disease
loci is to assume that the phenotype can be used to infer the genotype at the DSL; this
requires a fully penetrant disease without any phenocopies. Even in this case, as was
the case with segregation analysis, inferring genotypes from observed phenotypes
requires additional assumptions, such as rare disease allele frequencies. When we
cannot assume simple Mendelian penetrance functions, then the parameters of the
genetic model must be specified along with allele frequencies at the DSL. Hence
the term parametric linkage analysis. In the general parametric likelihood-approach
one uses a formal genetic model to relate the genotype at the DSL to the trait, and
integrates over the possible genotypes at the DSL; it is straightforward to include
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penetrance probabilities in the likelihood model if the parameters are known. Using
the likelihood function to estimate these parameters during linkage analysis turns
out to be too computationally intensive to be feasible in real applications. Typically
one uses estimates for these parameters in the likelihood function that were obtained
by a prior segregation analysis. While it is theoretically possible to estimate the
nuisance parameters together with the recombination fraction during the likelihood
maximization, treating the penetrance probabilities as unknown in the model makes
the numerical optimization of the likelihood function much more complex and is
often avoided for that reason. In parametric linkage analysis, it is standard practice
to use instead the estimates for the penetrance probabilities obtained from a segre-
gation analysis in the same or a different study (Chapter 4).

Another problem which arises in linkage analysis, especially with late onset dis-
eases is missing parental and/or grandparental data. In this case, assumptions need
to be made about allele frequencies of the markers in order to assign probabilities to
the unobserved haplotypes (using HWE) of the parents. Allele frequencies for the
markers are estimated and treated as known in the likelihood.

The example in Table A.1 illustrates this issue. Table A.1 shows two-point
LOD scores for data collected on seven markers in the vicinity of the APP gene
on chromsome 21, including a polymorphism in the APP gene, APP(EcoR1) (the
eighth marker, APP(Bcl1) was genotyped later). The pedigree structure was shown
in Fig. 5.2. Two-point analysis means that each LOD-score is calculated using only
the data on phenotype (here assuming a dominant model, consistent with segrega-
tion analysis), and one marker. Genotype data were not available for any parent or
grandparent, requiring the specification of marker allele frequencies. The results for
the first seven markers were used to exclude all but the APP gene as the possible
location of the DSL (see Fig. 5.2) because of inferred recombinations between the
DSL and other markers. Sequencing the APP gene revealed the presence of a base
pair substitution (C to A) at exon 17 in APP(Bcl1), that was present in affected
individuals. In this case, previous studies of other early onset AD families had
found recombinants between the DSL and the APP mutation, suggesting genetic
heterogeneity. This motivated a study of linkage in only one large family. Indeed,
this rare mutation explains very few cases of AD, early onset or otherwise.

Table A.1 Two-point linkage analyses (lod scores) between Alzheimer’s disease and polymorphic
DNA markers on the long arm of chromosome 21 Goate et al. (1991)

Recombination fraction(θ)

Locus 0.00 0.01 0.05 0.10 0.20
D21S16 1.36 1.35 1.28 1.18 0.92
D21S13 2.21 2.17 2.06 1.89 1.44
D21S1 2.65 2.61 2.45 2.22 1.67
APP(EcoR1) 2.93 2.88 2.82 2.36 1.72
D21S17 0.45 0.51 0.61 0.63 0.54
D21S156 −6.31 −4.29 −2.73 −1.76 −0.77
D21S167 −8.02 −3.44 −1.88 −1.17 −0.49
APP(Bcl1) 3.37 3.31 3.07 2.76 2.09
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As can be seen from the examples, assuming a simple Mendelian model and
having data on three or more generations is very helpful simplifying the likelihood
and in resolving phase, but the computational complexities can be vastly increased
if haplotypes cannot be inferred or if genotype data are missing for the previous
generations. In addition, there can be considerable sensitivity of the results to mis-
specification of the genetic model.

A.2 Non-parametric Linkage Analysis

In contrast to the parametric approach, non-parametric linkage analysis does not
depend on any statistical model specification for a functional relationship between
the phenotype and and the disease locus. Thus the recombination fraction θ , the
mode of inheritance, or the penetrance probabilities do not have to be specified.
While the parametric approach is optimal in terms of statistical power, the correct
specification of the statistical model for the likelihood function is required for its
validity (and optimal power), and differing assumptions can have a strong influence
on the results of a parametric linkage analysis. The idea of non-parametric linkage
analysis is to avoid the need for any model building specifications and to obtain
analysis results that are less susceptible to model assumptions.

Non-parametric linkage analysis is based on a simple and intuitive principle: If a
marker locus is in linkage with a disease locus, affected relatives should share more
genetic information in the area of the DSL (i.e., marker alleles) than expected just by
chance. This is because we assume them to be sharing at least one allele at the DSL.
Under the null-hypothesis of no linkage between the marker and underlying DSL,
the amount of genetic information that the two affected relatives share at the marker
locus is determined by Mendel’s law because their affection status is irrelevant.
The key concept of non-parametric linkage analysis is to construct a test, either a
score or a likelihood-ratio, that compares the observed genetic ‘similarity’ at the
marker among two affected relatives with the genetic similarity that is expected
under Mendel’s Law of random transmissions.

To construct such linkage test, we have to formalize the idea of genetic similar-
ity by defining the amount of genetic material that offspring or related individuals
within one pedigree share at a specific marker. There are two ways commonly used
to define genetic similarity:

1. Two alleles at the same genetic marker locus are called identical by state (IBS)
if their DNA sequence is physically identical, i.e., both alleles are A or a, for
example.

2. Two alleles at the same genetic marker locus are called identical by descent
(IBD) if they are copies of the identical allele carried by a recent common ances-
tor. If the case of siblings, this means that the allele shared IBD is from the same
parental chromosome, assuming no inbreeding.

Both definitions are illustrated in Fig. A.1 for a pair of siblings. Since we can
observe only two alleles in a person at any genetic locus, two individuals can share
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Fig. A.1 Illustration of allele sharing identical by state (IBS) and identical by descent (IBD)

only 0, 1 or 2 alleles by definition. It is clear that identical by descent always implies
identical by state, since it is the much stronger genetic concept. The simple examples
in Fig. A.1 also show it is always possible to observe IBS, but it will not always
be possible to determine IBD status uniquely when the original chromosomes of
the alleles cannot be identified with absolute certainty. Further, as we will discuss,
excess sharing of marker alleles IBD among diseased relatives implies linkage with
the disease locus (see Figs. A.3 and A.4), while this is not necessarily the case for
allele sharing IBS. Note also that the frequency of IBS can depend strongly on allele
frequency, but not IBD. In addition, as we will show, the joint distribution of IBD at
two markers can be easily determined as a function of the recombination parameter
between them, but this does not hold for IBS.

In order to derive a non-parametric test for linkage, the first step is to derive the
distribution of IBD under the null hypothesis of no linkage. Under the null hypoth-
esis of no linkage of a marker to the DSL, Mendel’s laws apply to transmissions of
marker alleles to offspring regardless of affection status. In Section 4.2, we showed
that the probability of sharing 2 alleles for siblings is 1

4 . It can likewise be shown
that the probability of sharing 0 is also 1

4 , and for sharing 1 it is 1
2 (See exercise 4

of Section 6.4). In a similar way, we can calculate the sharing probabilities for more
distant relatives (Table A.2).

The probabilities in Table A.2 hold when there is no selection of individuals with
regard to disease traits. They also hold if we select diseased relatives, but the DSL is
not linked with the marker (θ = 1

2 ). What happens under the alternative hypothesis
(θ < 1

2 )? Under the alternative, the IBD allele sharing at the marker locus should
depart from what is expected under the null, in the direction of increased sharing.
In some circumstances (for example parents are ab,cd or ab,bc), it is possible to
count the number of offspring pairs sharing 0,1, or 2 alleles IBD at the marker. In
order to derive the basic non-parametric tests, we assume for now that we observe
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Table A.2 Distribution of IBD for different pedigree relationships

Probability of Sharing Two Alleles IBD

Type of relative pair p0 p1 p2

Monozygotic Twins 0 0 1
Full Sibs 1/4 1/2 1/4
Parent-Offspring 0 1 0
First Cousins 3/4 1/4 0
Double First Cousins 13/16 1/8 1/16
Grandparent-Grandchild 1/2 1/2 0

n affected sib pairs with perfect marker information, i.e., IBD can be inferred. The
number of sib-pairs who share 0 alleles is denoted by n0, the number of sib-pairs
who share 1 allele by n1 and the number of sib-pairs who share 2 alleles by n2, with
the probability of sharing k alleles IBD given by pk, k = 1, 2, 3. Then the likelihood
function of the data is multinomial, and given by:

L(p0, p1, p2) = p0
n0 p1

n1 p2
n2 .

The maximum likelihood estimates for the sharing probabilities are given by

p̂0 = n0

n
, p̂1 = n1

n
, p̂2 = n2

n
.

The calculation of the likelihood ratio test, and the maximized LOD score are given
in Fig. A.2. In analogy to the parametric approach the logarithm taken with base 10
gives the maximized lod-score (MLS).

Fig. A.2 MLS computation for n affected sib-pairs
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However, similar to the parametric approach, use of the likelihood ratio test also
has its caveats in this setting. The problem is caused by the maximum likelihood
estimates for the sharing probabilities. It can be shown that the parameter estimates
have to be restricted to a range (the so-called Holmans triangle, Holmans 1993)
that corresponds to plausible disease models under the alternative hypothesis. For
example, given the construction of the sharing approach, one always has to expect
an excess of sharing rather than a lack of sharing for a linked marker under the
alternative hypothesis. When the maximization of the likelihood is restricted with
respect of the sharing probabilities to the range that is defined by the plausible dis-
ease models, the asymptotic distribution of the likelihood ratio test will be a mixture
of χ2

1 and χ2
2 and estimation of the parameters is only possible using numerical

optimization routines.
These issues can be circumvented by the construction of a one-sided, non-

parametric score test (NPL). The idea is to compare the observed number of shared
alleles with the expected number of shared alleles. Defining the number of alleles
that are shared IBD by the i th affected sib-pair as ai , for i = 1, . . . n, it follows that

E(ai |H0) = 0
1

4
+ 1

2
+ 2

1

4
= 1

Var(ai |H0) = 1

2
(exercise 5 of Section 6.4).

Note that the concept of IBD does not depend upon the particular genotype of the
parent, so its distribution is the same for every pair of siblings.

The score test for the entire sample is then defined by

Z =
⎛

⎝
∑

i=1,...n

ai − n

⎞

⎠ /
√

n/2 = (n2 − n0)/
√

n/2,

where ai are the number of pairs sharing i alleles IBD. The advantage of the score
test is that, by adding up the contributions of each family and obtaining n2 − n0
in the numerator of the score test, the same restrictions required for the Holmans
triangle can therefore be easily enforced in the NPL score by using a one-sided test
statistic, requiring n2 > n0.

The only simplistic assumption that we used for the derivation of the non-
parametric approaches was that the IBD status could always be inferred. In practice,
of course, this will not be the case. To avoid losing these families in the analysis,
one has options. Instead of IBD, we can compare the observed number of alleles
shared IBS with its expected number which will be computed here based on the
Mendelian transmission and the allele frequencies. An advantage of this case is that
no knowledge of parental genotypes is necessary. However, allele frequencies have
to be known and can vary between populations; this is a clear disadvantage for the
use of the IBS concept. Alternatively, one can compute the MLS or the NPL score
based on the ‘observed’ likelihood in which the IBD is missing for some individuals,
and we sum over likelihood functions for all genotype data that is consistent with
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Fig. A.3 At the disease locus: Derivation of the IBD probabilities pk for two affected siblings
under the alternative hypothesis

the observed phenotypic and genetic data. If parental genotypes are observed, the
likelihood calculations are simple and allele frequencies are not required. However,
without parental genotypes, allele frequencies must be supplied as in the case of
using IBD (Risch 1990b).

For a fully penetrant recessive disease, we can also estimate the sharing proba-
bilities directly at the DSL and at a marker locus that has a recombination fraction
θ with the DSL. The calculations for the sharing probabilities at the DSL are shown
in Fig. A.3 for a hypothetical sibpair; to calculate the IBD probabilities at a nearby
marker, we need to specify θ between the DSL and the marker.

Figure A.4 shows the decay in expected sharing probabilities at nearby loci as
a function of θ . At the DSL, affected offspring will share 2 alleles identical by
descent with 100% probability and then, with an increasing recombination fraction
θ , the probability of sharing 2 alleles IBD drops slowly until it has reached 25%, its
value under the alternative hypothesis. While this departure from the sharing proba-
bilities during the null-hypothesis can certainly not be expected to be that strong in
scenarios with more realistic assumption about the penetrance probabilities, it still
will be present and the example highlights the basic idea of non-parametric linkage
analysis. The calculations underlying Fig. A.4 are based on the Markov nature of
recombinations, as we now discuss.

A.3 Multipoint Linkage Analysis

Figure A.4 shows the predicted IBD sharing probabilities as we move away from the
probabilities observed at a marker (in this case, the DSL). The basis for these calcu-
lations is the fact IBD sharing will remain constant for a pair of offspring, from one



200 Appendix A. Linkage Analysis

Fig. A.4 At a marker locus: IBD probabilities pk for two affected siblings under the alternative
hypothesis

locus to the next, unless a recombination occurs in the formation of gametes between
the two loci. Consider the parent in Fig. 6.1, and IBD sharing for this single parent
at the A locus. Suppose the two offspring inherit A and a from this parent, then their
IBD status is 0 at the A locus. If there is no recombination in the transmission for
either offspring, with probability (1 − θ)2, or if there is a recombination for both
offspring (θ2), the IBD status will remain zero at locus B. Conversely, if there is a
recombination in one offspring but not the other (2θ(1 − θ)), IBD status will be 1 at
the B locus. It follows that the probability sharing IBD from this parent moves from
0 at locus A to 1 at locus B with probability (2θ(1 − θ)). Since recombinations for
different parents are independent, by looking at all possible IBD values at locus A
and considering all possible transmissions from both parents to both offspring, we
can (exercise 8 of Section 6.4) derive the transition probabilities given in Table A.3,
where

ψ = θ2 + (1 − θ)2.

When there are three markers, we need only compute P(IBD at marker 3| IBD at
marker 2) since recombinations are independent from one locus to the next unless
distances between markers are very small. Thus IBD status only depends upon the
most recently observed marker.

One use of the transition probabilities is to compute the marker sharing probabil-
ities under the alternative, given a set of assumed sharing probabilities at the DSL.
This will enable sample size and/or power calculations for different assumptions on
θ and the disease model.

Table A.3 IBD transition probabilities: P(IBD at locus 2|IBD at locus 1)

IBD at Locus 1

IBD at Locus 2 0 1 2

0 ψ2 ψ(1 − ψ) (1 − ψ)2

1 2ψ(1 − ψ) 1 − 2ψ(1 − ψ) 2ψ(1 − ψ)

2 (1 − ψ)2 ψ(1 − ψ) ψ2
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The use of transition probabilities also leads us directly to the concept of multi-
point analysis. With multipoint analysis, the data on all markers are used to calculate
sharing for each pair at every marker, and at every point in between. A genetic
map which gives θ between every successive pair of markers is necessary to imple-
ment a multipoint analysis. There are two main advantages of multipoint analysis.
First, if we have incomplete information at a marker (say the data for a family was
not observed at a marker, or the parents were both homozygotes so that nothing
could be inferred about sharing), the transition probabilities allow us to predict their
sharing based on the data from neighboring markers, and the known recombination
fraction between the two loci. Secondly, we can predict sharing, and thus calculate
a maximized LOD score for each point on the chromosome, not just at observed
loci. Thus with a set of markers spanning the entire linkage map, we can test the
null hypothesis H0: no linkage of the DSL to any loci in the genome. The test is
based on the maximized LOD score (maximizing over the entire genome), using
simulation or theory based on Gaussian Markov processes to calculate p-values.

Computation of the maximized LOD score, whether parametric or non-
parametric, is in practice complicated by the failure to observe IBD status (or phase
in the parametric setting) for each individual, and by the need to use data on flanking
markers on both sides of a given location. The Lander-Green algorithm is widely
used for computing multi-point likelihoods with a large number of markers but
pedigrees of small size, e.g., nuclear families (Lander and Green 1987).



Appendix B
A Class of Score Tests for Family Designs

The simple TDT test is a score test, based on the likelihood of the offspring geno-
types, conditioned on the offspring trait and the parental genotypes (Schaid and
Sommer 1996). Here we develop this approach in a general setting. For the i th
family, let Yi denote the vector of offspring traits, Xi denote the vector of offspring
genotypes and f (Yi , |Xi , Pi , γ ) denote the probability density of the traits, con-
ditioned on the offspring genotype, the parental genotype, and unknown parame-
ters, γ . In genetic terminology, f (•) is the penetrance function and specifies the
genetic disease model. Because the distribution of Xi is completely determined by
Pi , f (Yi , |Xi , Pi , γ ) is generally assumed not to depend directly on the parental
genotypes when offspring genotypes are in the model and henceforth we omit them.
In addition, we ordinarily assume each offspring’s phenotype depends only on their
own genotype, and not the genotype of another sibling. In general, f (Yi , |Xi , γ )

does not factor into separate contributions for each offspring when there is correla-
tion due to shared environmental or unobserved genetic factors. However, assuming
phenotypic independence leads to a particularly simple form for the test statistic.
While we may improve power by modeling the phenotypic correlation, as we show
below, assuming independence does not invalidate the a-level of the test. Hence-
forth, we assume that

f (Yi , |Xi , γ ) =
∏

f (Yi j |Xi j , γ ) (B.1)

where the product is over all j in the i th family.
The vector γ will ordinarily contain both association parameters, say β, and

nuisance parameters, say α, which will describe other aspects of the trait distri-
bution. For example, if the trait is normal, we typically assume that the geno-
type affects the mean, but not the variance. In particular, we parameterize so
that f (Yi j , |Xi j , γ ) = f (Yi j |Xi j , β, α), and under the null, β = 0, so that
f (Yi j |Xi j , β = 0, α) = f (Y |α), i.e., the distribution of the trait does not depend
on the marker genotypes of the offspring under the null. Further, let f (Xi j |Pi ) be
the probability density of the offspring genotype conditioned on parental genotype.
Note that the latter is completely known and determined by Mendel’s laws (in the
case of a single offspring or where θ = 1

2 is included in H0), whereas the penetrance
function reflects our alternative hypothesis, and is hypothesized rather than known.

203
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The conditional likelihood for the offspring genotype (Xi j ) given parental geno-
types (Pi ) and the offspring trait (Yi j ) is given by:

f (Xi j |Yi j , γ ) = f (Yi j |Xi j , γ ) f (Xi j |Pi )
∑

j=1,...,ni
f (Yi j |Xi j , γ ) f (Xi j |Pi )

, (B.2)

where summation is over all values of all Xi j compatible with Pi . To construct the
total data log-likelihood we take the log of each f (Xi j |Yi j , γ ) and over all i and j
to obtain

L =
∑

j=1,...ni ,i=1,...,n

ln f (Xi j |Yi j , γ ).

To obtain the score statistic we simply take the derivative of L with respect to β,
and evaluate at β = 0. Now we assume that f (Yi j |Xi j ) takes an exponential family
form with a GLM for the mean of Yi j as given in equation (7.7). Thus the score is
simply expressed as

U =
∑

j=1,...ni ,i=1,...,n

[(Yi j − E(Yi j )][Xi j − E(Xi j |Pi )], (B.3)

where E(Yi j ) is calculated under H0 : β = 0. Assuming θ = 1
2 under H0, the

variance of U is computed quite simply as

var(U ) =
∑

i=1,...,n,
j=1,...,ni

Ti j
2var(Xi j |Pi )

where both E(Xi j |Pi ) and var(Xi j |Pi ) are computed using Mendel’s Law.

Properties of the Score Test

Note that under H0, f (Yi j |Xi j , γ ) does not depend on Xi j under the null, and hence
cancels out of the likelihood in equation (B.2). The same is true whether or not
we assume phenotypic independence as in equation (B.1). All we require is that
f (Yi , |Xi , Pi , γ ) evaluated at β = 0 does not depend upon Xi . Because we condi-
tion on the traits, the distribution of the score test depends only on the distribution
of Xi j under the null and thus under H0 the test retains robustness to assumptions
concerning f (Yi , |Xi , Pi , γ ). The important feature of conditioning on Pi is that
any nuisance parameters which govern the distribution of the parental genotypes,
such as allele frequencies and random mating assumptions, and Hardy-Weinberg
Equilibrium are not needed. The distribution depends upon the joint distribution of
the Xi j given Pi . E(Xi j |Pi ) is given by Mendel’s first law, but the variance of U
needs to be adjusted if linkage is present and we have multiple offspring per family,
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as discussed in Section 9.2. A complication arises in the case of nuisance parameters
α. Under H0, f (Yi j |α) drops out of the conditional likelihood, so that α cannot be
estimated by ML. Notice that for the general FBAT statistic, we only need to specify
E(Yi j ) under H0. If the data are sampled randomly from the population, this can be
estimated by the sample mean of the trait. But for dichotomous traits, this is more
of a problem. See Section 9.3.

Missing Parents

In the case of missing parents, we replace f (Xi |Pi ) by f (Xi |Si ), where Xi is the
vector of offspring genotypes in family i and Si is the sufficient statistic for parental
genotypes; Si = Pi if no parental genotypes are missing. The sufficient statistic, Si ,
has the property that

f (Xi , Pi ,�) = f (Xi |Si ) f (Si |Pi ,�),

where � contains all of the parameters and assumptions governing the distribution
of Pi , e.g., allele frequencies, random mating, HWE, etc. Note that f (Xi |Pi ) does
not depend upon�, only on Mendel’s laws. By replacing f (Xi |Pi ) in the likelihood
with f (Xi |Si ) we see that the score statistic remains the same except we replace
E(Xi j |Pi ) with E(Xi j |Si ) and var(U ) with

var(U ) =
∑

i=1,...,n

∑

j=1,...,ni , j ′< j

Ti j
2var(Xi j |Si )+ 2Ti j Ti j ′cov(Xi j , Xi j ′ |Si ).

In general, additional siblings are required to obtain non-degenerate distributions
for f (Xi |Si ). The derivation of these distributions for autosomal markers are given
in Rabinowitz and Laird (2000), and implemented in the FBAT and PBAT soft-
ware packages. The X-chromosome is a straightforward extension and has been
integrated into both packages.
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The TDT Tests for Both Linkage
and Association (LD)

In this appendix we show why the TDT is a test for both linkage and association. The
proof does not require HWE, or any formal genetic model; the proof is similar to that
of originally given by Ott (1989). We assume only the existence of a disease allele,
D, with the property that f (D) 	= f (d), where f (D) is the probability of disease in
offspring with a D allele and f (d) is the probability of disease given any other allele
at the DSL. The function f (D) depends on many factors, including the mode of
inheritance, and assumptions about the distribution of disease genotypes among the
parents. It is not necessary to assume anything about these quantities here, just that
D is an allele (or collection of alleles) at a locus which directly influences risk of
disease differently from allele d and that the marker lies on autosomal chromosomes.
Further we assume that the marker has no direct effect on disease, conditional on
disease allele status. The argument can be extended to handle the X-chromosome.

Let θ denote the recombination fraction between the marker and the DSL, with
θ = 1

2 meaning no linkage, and θ = 0 meaning the two loci are the same. Let δ
denote the LD between the two loci, with δ = 0 implying no LD and let τ denote
the transmission probability, i.e.,

τ = P(Aa parent transmits A|Y=1, θ, δ),

where Y = 1 denotes an affected offspring. Thus (1 − τ) is the corresponding
probability that the a is transmitted. We will show that τ = 1

2 , and thus H0 for the
TDT is satisfied, if either θ = 1

2 , or δ = 0, or both. As a result, τ 	= 1
2 unless both

θ < 1
2 and δ 	= 0.

Consider the diagram in Table C.1 which shows the three possible unphased
genotypes involving the marker and the DSL for individuals who are Aa at the
marker. The bottom row of the table shows the possible phases for the double het-
erozygote.

It is clear that the parents who are homozygous at the disease allele are not infor-
mative under the alternative. The same disease allele is transmitted with both A and
a, thus disease status of the offspring is unaffected by transmission at the marker,
hence

207
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Table C.1 Passive unphased genotypes and corresponding possible haplotypes for an Aa parent

Possible parental unphased genotypes

Aa Aa Aa
DD Dd dd

Possible Pairs of Parental Haplotypes
A
D

∣
∣
∣
∣
a
D

A
D

∣
∣
∣
∣
a
d

A
d

∣
∣
∣
∣
a
D

A
d

∣
∣
∣
∣
a
d

τ = P(Aa parent transmits A | Y = 1, θ, δ,DD or dd at DSL)

= P(Aa parent transmits a | Y = 1, θ, δ,DD or dd at DSL)

= 1

2
.

This is the same as for a conventional linkage study where double heterozygous
parents are required to show linkage. Our objective here is to determine conditions
on θ and δ such that

τ = P(parent transmits A | Y = 1,DH, θ, δ) 	= 1

2

or equivalently,

P(parent transmits A, Y = 1 | DH, θ, δ)

	= P(parent transmits a,Y = 1 | DH, θ, δ),

where DH means the parent is a heterozygote at both loci.
Let π be the p(phase=AD/ad). Conditioning on being a double heterozygote

parent, it is straightforward to see that δ = 0 implies π = 1
2 . disease allele will

depend upon phase, and in general, the probability of phase depends on haplotype
frequencies at the two loci, δ, plus assumptions about random mating, etc. For a pair
of haplotypes we consider both possible phases and find:

P(parent transmits A ,Y = 1| DH) = f (d)+ θ Z + π Z(1 − 2θ)

and

P(parent transmits a ,Y = 1| DH) = f (D)− θ Z − π Z(1 − 2θ),

where Z = f (D) − f (d). Suppose θ = 1
2 , then both of the above transmission

probabilities are [ f (D) + f (d)]/2. Likewise, if δ = 0, then π = 1/2, and both
transmission-probabilities again equal [ f (D) + f (d)]/2. Thus τ = 1

2 if θ = 1
2 or

δ = 0 or both, and τ 	= 1
2 only if both linkage and LD are present. In fact, we can

show that

P (parent transmits A | Y = 1,DH parent) = 1

2
+
(

π − 1

2

)

(1 − 2θ)�
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where � = [ f (D) − f (d)]/[ f (D) + f (d)]. In practice, for non-negligible δ and
θ ≈ 0, we have

P (parent transmits A | Y = 1,DH parent) = 1

2
+
(

π − 1

2

)

�.
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