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Preface

A fluid is a material substance in the form of a liquid, a gas, or a vapour. The most common
examples, to be found in both everyday life and in engineering applications, are water, air, and
steam, the latter being the vapour form of water. The flow (i.e. motion) of fluids is essential to
the functioning of a wide range of machinery, including the internal-combustion engine, the
gas turbine (which includes the turbojet, turbofan, turboshaft, and turboprop engines), wind
and hydraulic turbines, pumps, compressors, rapidly rotating discs (as in computer drives),
aircraft, spacecraft, road vehicles, and marine craft. This book is concerned primarily with
Newtonian fluids, such as water and air, for which the viscosity is independent of the flow. The
quantitative understanding of fluid flow, termed fluid dynamics, is based upon the application
of Newton’s laws of motion together with the law of mass conservation. To analyse the flow
of a gas or a vapour, for which the density changes in response to pressure changes (known
as compressible fluids), it is also necessary to take into account the laws of thermodynamics,
particularly the first law in the form of the steady-flow energy equation. The subject of fluid
mechanics encompasses both fluid statics and fluid dynamics. Fluid statics concerns the vari-
ation of pressure in a fluid at rest (as will be seen in Chapter 4, this limitation needs to be stated
more precisely), and is the basis for a simple model of the earth’s atmosphere.

This text is aimed primarily at students studying for a degree in mechanical engineering
or any other branch of engineering where fluid mechanics is a core subject. Aeronautical (or
aerospace), chemical, and civil engineering are all disciplines where fluid mechanics plays an
essential rdle. That is not to say that fluid flow is of no significance in other areas, such as
biomedical engineering. The human body involves the flow of several different fluids, some
quite ordinary such as air in the respiratory system and water-like urine in the renal system.
Other fluids, like blood in the circulatory system, and synovial fluid, which lubricates the joints,
have complex non-Newtonian properties, as do many synthetic liquids such as paint, slurries,
and pastes. A brief introduction to the rheology and flow characteristics of non-Newtonian
liquids is given in Chapters 2, 15, and 16.

As indicated in the title, this text is intended to introduce the student to the subject of
fluid mechanics. It covers those topics normally encountered in a three-year mechanical-
engineering-degree course or the first and second years of a four-year mechanical-engineering-
degree course, as well as some topics covered in greater detail in the final years. The first ten
chapters cover material suitable for a first-year course or module in fluid mechanics. Com-
pressible flow, flow through axial-flow turbomachinery blading, internal viscous fluid flow,
laminar boundary layers, and turbulent flow are covered in the remaining eight chapters. There
are many other textbooks which cover a similar range of material as this text but often from
a much more mathematical point of view. Mathematics is essential to the analysis of fluid
flow but can be kept to a level within the capability of the majority of students, as is the in-
tention here where the emphasis is on understanding the basic physics. The analysis of many
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flow situations rests upon a small number of basic equations which encapsulate the underly-
ing physics. Between these fundamental equations and the final results, which can be applied
directly to the solution of engineering problems, can be quite extensive mathematical manip-
ulation and it is all too easy to lose sight of the final aim. A basic understanding of vectors is
required but not of vector analysis. Tensor notation and analysis is also not required and the
use of calculus is kept to a minimum.

The approach to certain topics may be unfamiliar to some lecturers. A prime example is di-
mensional analysis, which we suggest is approached using the mathematically simple method
of sequential elimination of dimensions (Ipsen’s method). The author believes that this tech-
nique has clear pedagogical advantages over the more widely used Rayleigh’s exponent method,
which can easily leave the student with the mistaken (and potentially dangerous) idea that any
physical process can be represented by a simple power-law formula. The importance of dimen-
sions and dimensional analysis is stressed throughout the book. The author has also found that
the development of the linear momentum equation described in Chapter 9 is more straightfor-
ward to present to students than it is via Reynolds transport theorem. The approach adopted
here shows very clearly the relationship with the familiar F = ma form of Newton’s second
law of motion and avoids the need to introduce an entirely new concept which is ultimately
only a stepping stone to the end result. The treatment of compressible flow is also subtly dif-
ferent from most texts in that, for the most part, equations are developed in integral rather
than differential form. The analysis of turbomachinery is limited to flow through the blading
of axial-flow machines and relies heavily on Chapters 3, 10, and 11.

‘Why do we need a fluid mechanics textbook containing lots of equations and algebra, given
that computer software packages, such as FLUENT and PHOENICS, are now available which
can perform very accurate calculations for a wide range of flow situations?” To answer this
question we need first to consider what is meant by accurate in this context. The description of
any physical process or situation has to be in terms of equations. In the case of fluid mechanics,
the full set of governing equations is extremely complex (non-linear, partial differential equa-
tions called the Navier-Stokes equations) and to solve practical problems we deal either with
simplified, or approximate, equations. Typical assumptions are that all fluid properties remain
constant, that viscosity (the essential property which identifies any material as being a fluid)
plays no role, that the flow is steady (i.e. there are no changes with time at any given location
within the fluid), or that fluid and flow properties vary only in the direction of flow (so-called
one-dimensional flow). The derivation of the Navier-Stokes equations, and the accompanying
continuity equation, is the subject of Chapter 15. Exact analytical solution of these equations
is possible only for a handful of highly simplified, idealised situations, often far removed from
the real world of engineering. Although these solutions are certainly mathematically accur-
ate, due to the simplifications on which the equations are based they cannot be said to be an
accurate representation of physical reality. Even numerical solutions, however numerically ac-
curate, are often based upon simplified versions of the Navier-Stokes equations. In the case
of turbulent flow, the topic of Chapter 18, calculations of practical interest are based upon
approximate equations which attempt to model the correlations which arise when the Navier-
Stokes equations are time averaged. It is remarkable that valuable information about practical
engineering problems can be obtained from considerations of simplified equations, such as the
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one-dimensional equations, at minimal cost in terms of both time and money. What is essen-
tial, however, is a good physical understanding of basic fluid mechanics and a knowledge of
what any computer software should be based upon. It is the aim of this text to provide just that.

Already in this brief Preface the names Navier, Newton, Rayleigh, Reynolds, and Stokes
have appeared. In Appendix 1 we provide basic biographical information about each of the
scientists and engineers whose names appear in this book and indicate their contributions to
fluid mechanics.







The author gratefully acknowledges the influence of several outstanding teachers, both as a
student at Imperial College London and subsequently as a Research Associate at the Massachu-
setts Institute of Technology. My interest in, and enjoyment of, fluid mechanics was sparked
when I was an undergraduate by the inspiring teaching of Robert Taylor. Brian Spalding, my
PhD supervisor, and Brian Launder are not only internationally recognised for their research
contributions but were also excellent communicators and teachers from whom I benefitted
as a postgraduate student. As a research associate at MIT I attended lectures and seminars
by Ascher H. Shapiro, James A. Fay, Ronald F. Probstein, and Erik Mollo-Christensen, all in-
spiring teachers. Finally, my friend Fernando Tavares de Pinho has given freely of his time to
answer with insight many questions which have arisen in the course of writing this book.

Marcel Escudier
Cheshire, August 2016






Notation XXi
1 Introduction 1
1.1 What are fluids and what is fluid mechanics? 7
1.2 Fluid mechanics in nature 9
13 External flows 11
1.4 Internal flows 13
15  SUMMARY 16

2 Fluids and fluid properties 17
2.1 Fluids and solids 17
2.2 Fluid density p 20
2.3 Atoms, molecules, and moles 22
24 Perfect-gas law 22
2.5 Continuum hypothesis and molecular mean free path 24
26  Equation of state for liquids 28
2.7 Specific volume v, relative density o, and specific weight w 29
2.8 Dynamic viscosity (viscosity) u 30
2.9  Kinematic viscosity v 35
210 Non-Newtonian liquids 35
217 Bulk modulus of elasticity K and compressibility 37
2.12 Speed of sound ¢ 39
2.13  Vapour pressure py, boiling, and cavitation 40
2.14 Surface tension o and contact angle 6 42
215 SUMMARY 45
216  SELF-ASSESSMENT PROBLEMS 46



Q CONTENTS

3 Units of measurement, dimensions, and dimensional

analysis 47
3.1 Units of measurement 47
3.2 The International System of Units (SI) 49
3.3 Dimensions 50
34  Combining dimensions and combining units 57
3.5  The principle of dimensional consistency (or homogeneity) 53
3.6 Dimensional versus non-dimensional representation 55
3.7  Buckingham's T1 (pi) theorem 57
3.8  Sequential elimination of dimensions (Ipsen's method) 58
3.9 Rayleigh's exponent method 64
3.10 Inspection method 66
3.17T Role of units in dimensional analysis 66
3.12 Special non-dimensional groups 68
3.13  Non-dimensional groups as force ratios 74
3.14  Similarity and scaling 75
3.15 Scaling complications 79
3.16  Other Reynolds-number considerations 81
3.17 SUMMARY 82
3.18 SELF-ASSESSMENT PROBLEMS 83
4 Pressure variation in a fluid at rest (hydrostatics) 87
4.1 Pressure at a point: Pascal’s law 87
4.2 Pressure variation in a fluid at rest; the hydrostatic equation 89
4.3 Pressure variation in a constant-density fluid at rest 91
4.4 Basic pressure measurement 93
4.5  Mercury barometer 93
4.6  Piezometer tube 95
47 U-tube manometer 96
4.8  Effect of surface tension 100
4.9 Inclined-tube manometer 101
410 Multiple fluid layers 105
4117 Variable-density fluid; stability 107
412 Deep oceans 108
4.13 Earth's atmosphere 108



CONTENTS

4.14  Pressure variation in an accelerating fluid 116
415 SUMMARY 118
4716 SELF-ASSESSMENT PROBLEMS 119
Hydrostatic force exerted on a submerged surface 124
5.1 Resultant force on a body due to uniform surface pressure 124
5.2 Vertical component of the hydrostatic force acting on a submerged

surface 126
5.3 Archimedes' principle and buoyancy force on a submerged body 133
54 Hydrostatic force acting on a submerged vertical flat plate 137
5.5 Hydrostatic force acting on a submerged curved surface 143
5.6  Stability of a fully-submerged body 147
5.7  Stability of a freely floating body and metacentric height 148
58 SUMMARY 154
5.9  SELF-ASSESSMENT PROBLEMS 154
Kinematic description of fluids in motion
and approximations 161
6.1 Fluid particles 161
6.2 Steady-flow assumption 162
6.3 Pathlines, streamlines, streamsurfaces, and streamtubes 162
6.4 No-slip condition and the boundary layer 163
6.5  Single-phase flow 164
6.6  Isothermal, incompressible, and adiabatic flow 164
6.7 One-dimensional flow 165
6.8  One-dimensional continuity equation (mass-conservation equation) 166
6.9  Average flow velocity V 170
6.10 Flow of a constant-density fluid 171
611 SUMMARY 172
6.12  SELF-ASSESSMENT PROBLEMS 172
Bernoulli's equation 174
7.1 Net force on an elemental slice of fluid flowing through a streamtube 174
7.2 Acceleration of a fluid slice 176
7.3 Eulers equation 178




CONTENTS
7.4 Bernoulli's equation 178
7.5  Interpretations of Bernoulli's equation 180
7.6  Pressure loss versus pressure difference 184
7.7 SUMMARY 185
7.8 SELF-ASSESSMENT PROBLEMS 186
8 Engineering applications of Bernoulli’s equation 187
81  Wind-tunnel contraction 187
8.2  Venturi-tube flowmeter 188
83  Venturi-tube design and the coefficient of discharge Cp 190
8.4  Other Venturi-tube applications 193
8.5  Orifice-plate flowmeter 195
8.6  Other differential-pressure inline flowmeters 198
8.7  Formula One racing car 198
88  Pitot tube 201
89  Pitot-static tube 203
8.10 Liquid draining from a tank 204
8.11 Cavitation in liquid flows 209
812 SUMMARY 2N
8.13  SELF-ASSESSMENT PROBLEMS 212
9 Linear momentum equation and hydrodynamic forces 215
9.1 Problem under consideration 215
9.2 Basic linear momentum equation 217
9.3 Fluid-structure interaction force 221
9.4  Hydrodynamic reaction force 223
95 SUMMARY 226
9.6 SELF-ASSESSMENT PROBLEMS 226
10 Engineering applications of the linear momentum
equation 228
10.1  Force required to restrain a convergent nozzle 228
10.2  Rocket-engine thrust 231
10.3 Turbojet-engine thrust 234
104 Turbofan-engine thrust 239



CONTENTS
10.5  Flow through a sudden enlargement 241
10.6  Jet pump (or ejector or injector) 245
10.7  Reaction force on a pipe bend 252
10.8  Reaction force on a pipe junction 257
109  Flow through a linear cascade of guidevanes 259
10.10 Free jet impinging on an inclined flat surface 263
10.11  Pelton impulse hydraulic turbine 266
10.12 SUMMARY 269
10.13  SELF-ASSESSMENT PROBLEMS 270
11 Compressible fluid flow 275
111 Introductory remarks 275
112 Thermodynamics 275
11.3  Bernoulli's equation and other relations for compressible-gas flow 279
114 Subsonic flow and supersonic flow 281
115 Mach wave and Mach angle 281
116 Steady, one-dimensional, isentropic, perfect-gas flow through
a gradually convergent duct 283
11.7  Steady, one-dimensional, isentropic, perfect-gas flow through a
convergent-divergent nozzle 287
11.8  Normal shockwaves 296
11.9  Perfectly expanded, underexpanded, and overexpanded nozzle flow 307
11.10  SUMMARY 309
1117 SELF-ASSESSMENT PROBLEMS 309
12 Oblique shockwaves and expansion fans 311
121 Oblique shockwaves 311
12.2  Prandtl-Meyer expansion fan (centred expansion fan) 317
123 Supersonic aerofoils and shock-expansion theory 321
124 SUMMARY 327
12.5  SELF-ASSESSMENT PROBLEMS 328
13 Compressible pipe flow 330
13.1  Basic equations 330
13.2  Adiabatic pipe flow with wall friction: Fanno flow 332




CONTENTS
133  Isothermal pipe flow with wall friction 347
134 Frictionless pipe flow with heat addition or extraction: Rayleigh flow 353
13.5  SUMMARY 360
13.6  SELF-ASSESSMENT PROBLEMS 360
14 Flow through axial-flow-turbomachinery blading 362
141 Turbomachinery (general) 362
14.2  Dimensional analysis and basic non-dimensional parameters 363
143 Linear blade cascade: Geometry and notation 367
144 Incompressible flow through a linear cascade 369
145  Compressible flow through a linear cascade 372
14.6  Rotor-flow velocity triangles 377
14.7  Euler's turbomachinery equation for an axial-flow rotor 378
14.8  Compressible flow through an axial turbomachine stage 381
14.9  Degree of reaction A 385
1410 SUMMARY 388
1417  SELF-ASSESSMENT PROBLEMS 389
15 Basic equations of viscous-fluid flow 391
15.1  Equations of motion in Cartesian-coordinate form 397
15.2  Equations of motion in cylindrical-coordinate form 401
153 Boundary conditions 405
154 Non-dimensional form of the Navier-Stokes and continuity equations 405
155  Flow of a generalised Newtonian fluid 406
156 SUMMARY 409
16 Internal laminar flow 410
16.1  General remarks 410
16.2  Poiseuille flow of a Newtonian fluid, hydraulic diameter, and Poiseuille
number 412
16.3  Poiseuille flow through an axisymmetric cylindrical duct 416
16.4  Combined plane Couette and Poiseuille flow between infinite
parallel plates: Couette-Poiseuille flow 421
16.5  Taylor-Couette flow 427
16.6  Poiseuille flow of generalised Newtonian fluids between
infinite parallel plates 431



CONTENTS °

16.7  Viscometer equations 438
168  SUMMARY 442
16.9  SELF-ASSESSMENT PROBLEMS 443
17 Laminar boundary layers 445
17.1  Introductory remarks 445
17.2  Two-dimensional laminar boundary-layer equations 447
173 Flat-plate laminar boundary layer: Blasius’ solution 451
174 Wedge-flow laminar boundary layers: Falkner and Skan's equation 461
175 von Karmdn's momentum-integral equation 468
17.6  Profile methods of solution 473
177 Aerofoil lift in subsonic flow 484
178  SUMMARY 487
17.9  SELF-ASSESSMENT PROBLEMS 488
18 Turbulent flow 490
18.1  Transitional and turbulent flow 490
18.2  Reynolds decomposition, Reynolds averaging, and Reynolds stresses 491
183  Turbulent-kinetic-energy equation and Reynolds-stress equation 494
184  Turbulence scales 496
185  Turbulence modelling 498
18.6  Two-dimensional turbulent boundary layers and Couette flow 499
18.7  Plane turbulent Couette flow and the Law of the Wall 499
18.8  Fully-developed turbulent flow through a smooth circular pipe 506
189  Surface roughness 508
18.10  Fully-developed turbulent flow through a rough-surface circular pipe 509
1811 Minor losses in pipe systems 517
18.12 Momentum-integral equation 517
18.13  Flat-plate boundary layer 518
18.14 Boundary layers with streamwise pressure gradient 525
18.15 Bluff-body drag 526
18.16 SUMMARY 537

18.17  SELF-ASSESSMENT PROBLEMS 532



CONTENTS

Appendix 1 Principal contributors to fluid mechanics
Appendix 2 Physical properties of selected gases and liquids, and other data
Appendix 3 Areas, centroid locations, and second moments of area
for some common shapes
Appendix 4 Differential equations for compressible pipe flow
Appendix 5 Roughness heights
Bibliography
Index

535
545

553
556
562
563
567



Each Roman, Greek, and mathematical symbol is followed by its meaning, its SI unit, and its
dimension(s).

Lower-case Roman symbols

a acceleration

c blade chord length

c concentration

c soundspeed

c wetted perimeter

cr skin-friction coeflicient

o speed of light in vacuum

d diameter

e energy

Exx extensional strain rate in x-direction
f non-dimensional velocity

fx body force per unit mass acting in the x-direction
fo Darcy friction factor

fr Fanning friction factor

fr average Fanning friction factor

g acceleration due to gravity

£ acceleration due to gravity at sea level (z = z/ = 0)
h height

h spacing of parallel plates

h specific enthalpy

ho specific stagnation enthalpy

ho REL relative stagnation enthalpy
angle of incidence
number of independent dimensions
number of non-dimensional groups
radius of gyration
specific turbulent kinetic energy
time-averaged specific turbulent kinetic energy
B Boltzmann constant
length
Ix Kolmogorov length scale
Im mixing length

— A A A A

m/s

kg/m?

kJ/kg
kJ/kg
kJ/kg
° or rad

m?2/s?
m?2/s?
J/K

8

L2/T?
L2/T?
ML2/T?K
L

L

L
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=
e
=
&
=

~

~

~

I ) ﬁ»&-»&-*w**o*o*ol

1%
[=)

mass

wedge-flow exponent

added mass

mass flowrate

amount of substance

number of physical quantities

power-law exponent in power-law viscosity model

static pressure

gauge pressure

hydrostatic pressure

reference pressure

total pressure

vapour pressure

stagnation pressure

relative stagnation pressure

average static pressure

fluctuating component of static pressure
intermediate static pressure
non-dimensional static pressure

heat transfer rate

heat transfer rate per unit length

radial distance

arc length

cascade-blade spacing (or pitch)

distance along a streamline

specific entropy

specific stagnation entropy

elapsed time

temperature

non-dimensional time

non-dimensional time

specific internal energy

velocity component in x-direction
time-averaged value of velocity component u
fluctuating component of velocity component u
non-dimensional value of velocity component u
velocity component u normalised by u,
velocity of plastic plug

centreline velocity

friction velocity

specific volume

velocity component in y- or r-direction
time-averaged value of velocity component v

k]/kg
m/s
m/s
m/s

m/s
m/s
m/s
m®/kg
m/s
m/s
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v fluctuating component of velocity component v m/s L/T

vt velocity component v normalised by u; - -

VK Kolmogorov velocity scale m/s L/T

w specific weight N/m? M/L2T?
w velocity component in z- or 6-direction m/s L/T

w time-averaged value of velocity component w m/s L/T

w fluctuating component of velocity component w m/s L/T

w* velocity component w normalised by u, - -

X distance along or parallel to a surface/streamwise distance m L

X length m L

y distance normal to a surface m L

y* distance y normalised by u, and v - -

z blade height (or length) m L

z depth (i.e. distance measured vertically downwards) m L

4 height (i.e. distance measured vertically upwards) m L

4 geometric altitude m L

zg geopotential altitude m L

zc depth of centroid m L

zp depth of centre of pressure m L
Upper-case Roman symbols

A cross-sectional area m? L?

A surface area m? L?

A* choking (or sonic) area m? L2

Ag nozzle exit area m? L2

AT nozzle throat area m? L2

B barometric (or atmospheric) pressure or external pressure bar M/LT?
B log-law constant - -

Bi Bingham number - -

Cp coeflicient of discharge - -

Cp drag coefficient - -

Cr average friction factor - -

CL lift coefficient - -

Cp pressure coefficient - -

Cp specific heat at constant pressure m?/s?- K L%/T%6
Cy specific heat at constant volume m?/s?- K L%/T%0
D diameter m L

D drag (or drag force) N ML/T?
D mean diameter m L

Dy hydraulic diameter m L

Dr nozzle throat diameter m L

D drag force per unit length of surface N/m M/T?
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9]
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3

1/K

zzzZ
9]

Ny
Np

energy released

Young’s modulus

Euler number

force

non-dimensional stream function
buoyancy force

function in Thwaites’ method
Froude number

mass velocity

shear modulus (fluid)

modulus of rigidity (solid)

height or depth

horizontal component of force
boundary-layer shape factor
Hedstrom number

boundary-layer shape factor
second moment of area

second moment of area about an axis through the
area’s centroid

product of inertia

bulk modulus of elasticity
consistency index in power-law viscosity model
loss coefficient

turbomachine stagnation-pressure loss coefficient
Knudsen number

compressibility

length

lift (or lift force)

choking length

Mach number

molar mass

momentum

molecular weight

relative Mach number

momentum flowrate

momentum flowrate per unit width of duct
metacentric height

molecular number density

number of molecules

rotational speed

Avogadro number

turbomachine power-specific speed
turbomachine specific speed
piezometric pressure

ML2/T?
M/LT?

ML/T?
ML/T?
M/L*T
M/LT?

M/LT?

ML/T?

M/LT?
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power

Poiseuille number

Prandtl number

volumetric flowrate

volumetric flowrate per unit width
radius

reaction force

resultant force

specific gas constant

mean radius of the earth

hydraulic radius

inner radius of annulus

outer radius of annulus

molar gas constant (universal gas constant)
Reynolds number

Reynolds number based upon length x
Reynolds number based upon length 8
critical Reynolds number

Reynolds number based upon pipe diameter
Reynolds number based upon hydraulic diameter
Reynolds number based upon plastic viscosity
fluid-structure interaction force
Strouhal number

absolute temperature

skin-friction coefficient = 015/ Uxo
surface-tension force

thrust (or thrust force)

time interval

torque

stagnation (or total) temperature
relative stagnation temperature

Taylor number

free-stream velocity

scaling velocity

free-stream velocity

velocity

vertical component of force

buoyancy force

vertically downwards force

vertically upwards force

terminal velocity

average (bulk-mean) velocity

non-dimensional velocity
average velocity V normalised by u,

kJ/kmol - K
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ML?/T3
L3/T
L%/T

L
ML/T?
ML/T?
L2/T%6
L

L

L

L
L2/T?0
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FEsss

N~<NSTsSEES

volume

critical volume for validity of continuum hypothesis
displaced volume

submerged volume

y-direction velocity at edge of boundary layer
relative velocity

weight

width

work

rate of work input (power input)

Weber number

length

boundary-layer thickness

surface tension

depth of liquid

Lower-case Greek symbols (English word in parentheses)

o (alpha)

B (beta)

B

B

y (gamma)
14

yxy

S8 (delta)
s

s

SA

SF

Sh

SH

om

ép

8s

St

A%

sV

angle of attack

absolute flow angle

conical gap angle

non-dimensional constant in Blasius’ equation
constant in shock-structure analysis
oblique shock angle

relative-flow angle

wedge angle

ratio of specific heats

shear rate

shear rate corresponding to ty,
angle of deflection or deviation
boundary-layer thickness

radial gap width

element of area

element of force

infinitesimal height difference
element of horizontal force

element of mass

infinitesimal change or difference in pressure
infinitesimal change of distance
infinitesimal change in time
element of vertical force

element of volume

g

S

~

S

=78 28

8

Z 3
3

& ZB ZB BB

a=
o

577 8



SW
dx

8y

8z

87

8*

dsus

1

Ly

€ (epsilon)
€

¢ (epsilon)

v (nu)

vr

element of weight

element of streamwise or x-direction distance
element of distance normal to a surface or y-direction
distance

element of depth or z-direction distance
element of height

boundary-layer displacement thickness
thickness of viscous sublayer
boundary-layer displacement thickness
boundary-layer momentum-deficit thickness
turbulent kinetic energy dissipation rate
upwash or downwash angle

eccentricity

non-dimensional annular gap with
surface-roughness height

surface-roughness height normalised by u; and v
dynamic viscosity

boundary-layer similarity variable

angle

boundary-layer momentum-deficit thickness
contact angle

turning angle

angular velocity

angular acceleration

lapse rate

von Karman’s constant

wavenumber

time constant

pressure-gradient parameter

Pohlhausen’s pressure-gradient parameter
wavelength of turbulence

Poiseuille-flow pressure-gradient parameter
boundary-layer pressure-gradient parameter
dynamic viscosity

Mach angle

effective viscosity

viscosity of plastic plug

eddy viscosity

infinite-shear-rate viscosity

kinematic viscosity

Prandtl-Meyer function

kinematic eddy viscosity

B B Z

BB BBEZSS

o

° or rad
Pa-s
Pa-s
Pa-s
Pa-s
m?/s

m?/s
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ML/T?
L
L

| o o o N o ol o
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& (xi)
§

§

&p

p (rho)
o (sigma)
o

o

Oxx

T (tau)
T

K

Ts

Ts

Ty

Tay

¢ (phi)
®

¢

x (chi)
X

¥ (psi)
14

o (omega)

blade stagger angle
non-dimensional distance
turbomachine enthalpy-loss coefficient
non-dimensional radius of plastic plug
density

density ratio

relative density

surface tension

normal stress in x-direction
characteristic time

shear stress

Kolmogorov time scale

surface shear stress

average surface shear stress
yield stress

shear stress acting in y-direction
angle

blade camber angle
turbomachine flow coefficient
blade angle

boundary-layer scale factor
stream function

hydraulic machine pressure-change coefficient

angular velocity

Upper-case Greek symbols

I' (gamma)
I

I'ap

A (delta)
A

Ag

Ap

Ap()

AZ

Ap

O (theta)
6

A (lamda)
A

IT (pi)

I1

circulation

lapse rate

adiabatic lapse rate

finite change or difference
scaling length

shock thickness
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n wake parameter - -

X (sigma) summation - -

@ (phi) ratio 6*/8 - -

£2 (omega) angular velocity rad/s 1/T

Mathematical symbols

div vector operator of divergence 1/m 1/L

v del (or gradient) operator 1/m /T

v? Laplacian operator 1/m? 1/1?

Lower-case Roman subscripts

friction

radial direction
throat
x-direction
y-direction
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z-direction
Upper-case Roman subscripts

actual
back (pressure)
centroid or critical
exhaust
fluid or fuel or full scale
centre of gravity or gas
based on hydraulic diameter
o water
inlet or inner surface
laminar or liquid or lower surface
manometer
model
outer surface
centre of pressure
reference condition
isentropic or solid or submerged or surface
total or turbulent
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theoretical
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Numerical subscripts

0 stagnation or reference conditions
conditions upstream of a shockwave
2 conditions downstream of a shockwave
Superscripts
isothermal

* choking (or critical or sonic) condition



Introduction

Why do students of many branches of engineering need to study fluid mechanics? First and
foremost, the answer is ‘design’. It can be argued that the principal purpose of engineering is
engineering design, and it is frequently the case that considerations of fluid flow are crucial
to the engineering-design process. It would be inappropriate here to discuss in detail what is
meant by engineering design. Suffice to say, design is sometimes confused with styling, which
refers primarily to the external appearance of a device or machine, whereas engineering design
is concerned with its functioning and invariably involves calculations based upon the laws of
physics. In this introductory chapter we indicate the wide and diverse range of practical situ-
ations where fluid mechanics plays a central role, often together with such related subjects
as heat transfer, thermodynamics, and combustion. Although the emphasis in this book is
on applications of fluid mechanics in mechanical, aeronautical, and civil engineering, other
examples could be taken from biomedical, building, chemical, and environmental engineer-
ing. Within this book we also mention many of the natural phenomena for which fluids, and
the way they flow, play a fundamental role. Although the origins of fluid mechanics can be
traced to ancient Greek (Archimedes) and Roman (Frontinus) times, and important contri-
butions were made in the 15® (da Vinci), 16, 17 (Newton, Pascal), 18" (Bernoulli and
Euler), and 20" centuries (Prandtl, Taylor), most of the major developments in the subject
were made by engineers, mathematicians, and physicists in the 19 century (including Kelvin,
Mach, Navier, Rankine, Rayleigh, Reynolds, and Stokes). Many effects, functions, equations,
non-dimensional parameters (see Chapter 3), etc., are named after these pioneers and other
major contributors to fluid mechanics: brief biographies are included in Appendix A.
A thorough understanding of the contents of this book should enable the student to

o use the results of dimensional analysis (Chapter 3) to scale up the results of wind-tunnel
model tests!. A typical example is in the analysis of wind-tunnel data for the aerodynamic
behaviour of a Formula 1 racing car, as shown in Figure 1.1 (to illustrate the point, we
could just as well have chosen, e.g. a fighter aircraft or a bridge).

o specify the characteristics of a centrifugal pump, as illustrated in Figure 1.2, required to
handle large quantities of oil, based upon small-scale tests with water, again guided by
dimensional analysis

e calculate the flowspeed in a wind tunnel using a Pitot-static tube and a U-tube mano-
meter, as shown in Figure 1.3 (the size of the manometer relative to the Pitot tube is

1 Where the aerodynamic characteristics of an aircraft, a car, a locomotive, or any other vehicle are to be investig-
ated in a wind or water tunnel, it is usual for the vehicle to be fixed in position with the fluid flowing around it. This
change is known formally as a Galilean transformation. In a wind tunnel used to investigate vehicles in contact with
a road, the surface in contact with the vehicle usually moves at the same speed (and direction) as the working fluid.
Such an arrangement is referred to as a rolling road. Note too that the flow direction in all figures in this book is from
left to right, a convention adopted in the majority of fluid mechanics textbooks.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 1.2 Centrifugal-pump testing

much reduced in the diagram). This calculation involves both hydrostatics (Chapter 4)
and Bernoulli’s equation (Section 8.9).

o using the principles of hydrostatics (Section 8.5), calculate the resultant force exerted by
the water in a reservoir on the face of a dam, as shown by R in Figure 1.4

o use the principles of hydrostatics to design a floating boom to contain an oil slick, as shown
in Figure 1.5

o use Bernoulli’s equation (see Chapter 8) to calculate the lift force resulting from the airflow
over the surfaces of an aerofoil, as shown in Figure 1.6. A qualitative discussion of the
underlying physical phenomena which explain lift is given in Section 17.7.

e use Bernoulli’s equation to determine the flowrate at which internal boiling occurs at
room temperature as a consequence of reduced pressure (so-called cavitation, discussed in
Section 8.11) in the flow of a liquid through a constriction, such as a valve or, as illustrated
in Figure 1.7, a convergent-divergent nozzle

2 The inverted triangle is used to identify a free surface.
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Figure 1.5 Floating boom designed to contain an oil slick
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Figure 1.7 Cavitation in water flow through a convergent-divergent nozzle

o use the mass-conservation (Section 6.8) and momentum-conservation (Chapter 9 and
Section 10.4) equations to calculate the thrust developed by a turbofan engine, such as that
shown schematically in Figure 1.8, which is a simplified version of Figure 14.1

e use the continuity and momentum equations, together with Bernoulli’s equation, to cal-
culate the power output of a Pelton hydraulic turbine (Section 10.11), as shown in
Figure 1.9
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Figure 1.11 Viscous flow through a concentric annulus with centrebody rotation

e use the mass- and momentum-conservation equations, the steady-flow energy equation,
and the perfect-gas law to calculate the power output of a turbine (or compressor) stage
(Section 14.8), as shown in Figure 1.10

e use the mass- and momentum-conservation equations, together with Newton’s law of
viscosity, to calculate the flow of a viscous fluid through a concentric annulus with
centrebody rotation as shown in Figure 1.11 (Section 16.5)
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Figure 1.12 Supersonic flow with shock and expansion waves over a diamond-shaped aerofoil

e use the tabulated solution of the Blasius equation for a laminar boundary layer (Sec-
tion 17.3) to calculate the drag force on a thin flat plate immersed in a viscous fluid
flow

o use the Virginia Tech Compressible Aerodynamics Calculator (see Section 11.3) to calcu-
late the shock and expansion waves, the Mach number and pressure distributions, and
lift force (Section 12.3) of supersonic perfect-gas flow over a diamond-shaped aerofoil

The thickness of the shock waves in Figure 1.12 is greatly exaggerated (see Section 11.8).
The subscripted M’s indicate the Mach numbers in each region of the flow.

The foregoing is just a selection of the engineering applications of fluid mechanics con-
sidered in this textbook. As we emphasise in the remainder of this chapter, there are few
areas of life, whether man-made or natural, in which fluids and fluid mechanics do not play a
vital role.

1.1 What are fluids and what is fluid mechanics?

Without salt-free water to drink, we die within about ten days, and become brain dead within
about four minutes without the oxygen which makes up about 21% by volume of the air
we breathe (the rest is mainly nitrogen, 78%). Water is a liquid, air is a gas, and both are
what we call fluids. The total mass of air in the atmosphere which surrounds the earth (see
Section 4.13) is estimated to be about 5.3 x 10'8 kg (or 5.3 petatonnes®), and the total mass of

3 Peta- and exa- are two of the 20 approved prefixes of The International System of Units (SI) presented in
Section 3.2.
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water in all the oceans, lakes, rivers, etc., the so-called hydrosphere, is about 1.4 x 10! kg (or
1.4 exatonnes). Given their abundance, and their importance to our very existence, it is hardly
surprising that water and air are the two fluids encountered most commonly in fluid mech-
anics. There are, of course, many other familiar ‘everyday’ fluids: methane, ethane, hydrogen,
helium, oxygen, and nitrogen are all gases which behave much like air; similarly, natural (as
opposed to synthetic) fluids such as oil, petrol, mercury, honey, glycerine, and alcohol are all
relatively simple liquids much like water, but with different densities, viscosities, and other
properties (Chapter 2 is concerned with fluid properties and what makes fluids different from
solids). We call these simple fluids, with viscosities independent of their motion (though not
their temperature), Newtonian. Blood, synovial fluid (which lubricates our joints), custard,
mayonnaise, salad cream, ketchup, hair gel, toothpaste, drilling fluid, fracking (or fracturing)
fluids, freshly mixed cement slurry, and paint are all liquids but with viscous properties and
flow behaviour very different from those of water. These differences arise primarily because
such liquids have either a complex molecular structure or consist of a mixture of a simple li-
quid (such as water) and many tiny (often in the micron range) suspended particles. Because
of the complexity of their viscosities, these liquids are termed non-Newtonian. The study of
the viscous properties of non-Newtonian liquids is a subject in itself, called rheology. There is
a brief account of non-Newtonian liquids in Section 2.10. Simple models for such liquids and
their flow are discussed in Sections 15.5 and 16.6.

We know from everyday experience that liquids flow. Water flows from the mains supply
when we open the tap. Water flows from the sink or bath into the drainage system. Tea flows
from a teapot. Beer flows into our digestive system from a glass, bottle, or can, and then, usually
after a biological/chemical transformation and temporary storage, flows out again from our
urinary system. Blood flows through our arteries and veins, pumped by a natural or artificial
heart. Air flows into our lungs, and carbon dioxide flows out into the atmosphere. Liquid
or gaseous fuel flows into the engines of passenger vehicles, trains, aircraft, and ships, while
exhaust gases flow out, again into the atmosphere. Town gas, a mixture consisting primarily
of hydrogen, methane, and carbon dioxide, flows to our cookers and boilers, and products of
combustion flow out. Air flows around us as we walk, run, or ride our bicycles. It flows over
the bodywork of our cars, over the wings and fuselages of the aircraft in which we fly, and
through the blades of wind turbines, causing them to rotate and generate electrical power. Oil,
gas, brine, and drilling fluid flow from deep in the earth to the surface when we drill for oil
or gas. Water flows from rivers into reservoirs, lakes, and the sea and from reservoirs through
hydraulic turbines again to generate electrical power. It also flows into the boilers of power-
generating steam turbines where it is converted into steam, a vapour. It flows around the hull
of a ship or submarine. Lava, a non-Newtonian liquid, flows from an active volcano.

We should also be aware that some substances can exist in more than one state (or phase).
Water, for example, can exist as ice (a solid), water (a liquid), or steam. The latter exhibits some
of the characteristics of a gas, particularly at very high temperatures, and is termed a vapour.
Many gases, including air, can be liquefied by subjecting them to very high pressure and/or
low temperature.

Engineering fluid mechanics is concerned with analysing fluid flows, such as those men-
tioned above, in order to calculate the rates at which they flow, the changes in pressure as they
flow, and the stresses and forces they exert on the machines and surfaces through and over
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which they flow. The law of conservation of mass, Newton’s laws of motion, and the laws of
thermodynamics (principally the first law in the form of the steady-flow energy equation),
together with appropriate representation of fluid properties, form the basis of the analysis.
Before we go into further detail, it is useful to expand the catalogue of situations where fluid
mechanics plays an essential role.

1.2 Fluid mechanics in nature

The height of the atmosphere, that is the altitude beyond which we are in the vacuum of outer
space, is usually taken to be about 80 km. For many purposes, the atmosphere can be taken asa
series of stationary spherical layers of air with the temperature variation shown in Figure 1.13.

We consider this hydrostatic model of the atmosphere in some detail in Section 4.13. We
know, of course, that the atmosphere, especially the part of it we inhabit, is very often far from
static; meteorology is the branch of fluid mechanics devoted to the study of its motion. Any-
one who has seen time-lapse images of clouds knows that, in addition to being swept along
by winds, they are in constant motion due to thermals (finite packets of warm air moving up-
wards which allows gliders to rise to altitudes up to about 15 km), evaporation, condensation,
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and shearing (which gives rise to the clear-air turbulence often experienced by passenger air-
craft). We should also mention dust devils, tornadoes, and hurricanes which are examples of
the intense, often violent, swirling motion which can arise in the lower atmosphere due to
combined thermal and shearing effects.

While it is essential that the earth is surrounded by a layer of air, it is just as important for
humans (at least in our current state of evolution) that all the water in the hydrosphere is not
distributed uniformly over the planet’s surface. Were that the case, the water layer would be
about 2.7 km deep. Instead, this water actually covers about 71% of the earth’s surface, with
regions of the deepest ocean being about 10 km deep, almost equal in magnitude to the height
of Mount Everest. As with the atmosphere, much can be learned about the oceans, reservoirs,
lakes, etc., by considering them to be at rest. Chapters 4 and 5 are devoted to hydrostatics—
the study of fluids at rest—with a considerable fraction concerned with the forces exerted on
surfaces, such as the face of a dam, as shown in Figure 1.4. Oceanography is the branch of fluid
mechanics which deals with tides, currents, waves, stratification (water-density variations due
to salinity and temperature changes with depth), and other phenomena associated with water
motion in the oceans. Related topics involving fluid mechanics are erosion, sedimentation,
whirlpools, river flows, and also the flow in canals and sewers, although the latter are man-
made rather than natural systems. In principle, we could also include here the fluid mechanics
associated with the wave-like body motion which fish, eels, aquatic mammals, and sperm use
to swim.

Undeniably natural are the flows of lava from an active volcano and of hot water and
steam from a geyser. The flow of formation fluids (oil, methane, hydrogen sulphide, brine,
etc.), as well as drilling mud, from an oil well represents a mixture of man-made and nat-
ural phenomena. There would be no flow were it not for the man-made well, but the flow
of formation fluids through porous rock involves natural fluids flowing through naturally
occurring channels in a natural medium. Here again, however, in hydraulic fracturing (com-
monly referred to as ‘fracking’) we are dealing with a combination of man-made and natural
processes.

The study of flow in the circulatory, respiratory, urinary, and other biological systems is
termed biofluid mechanics. As with all natural systems, an additional difficulty is that the
geometry of the flow channels is not well defined and often not fixed. For example, arteries
and veins are flexible and so change in cross section as blood pressure increases and decreases
with every beat of the heart. To further complicate matters, blood is not a homogeneous li-
quid but consists mainly of red corpuscles, which are thin discs about 8 ym in diameter with
a thick rim, suspended in plasma. As a consequence of this composition, the effective viscos-
ity (see Section 2.10) of blood decreases with shearing (relative tangential movement) and is
slightly elastic (viscoelastic) in character, i.e. blood is a non-Newtonian fluid. At rest, blood
has an effective viscosity about 100 times that of water, although this factor decreases to about
five in the arteries. In any event, the saying ‘blood is thicker than water’ is entirely accurate.
Although synovia, the fluid which lubricates our joints, is a homogeneous liquid, it is again a
non-Newtonian fluid with shear-thinning, viscoelastic properties, in this instance because it
has a polymer-like molecular structure.
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1.3 External flows

As engineers, we are concerned primarily with fluids which flow either through or around
man-made devices, which we term internal and external flows, respectively. In either case,
viscosity (or to be more precise, dynamic viscosity) is the key fluid property which determines
the details of the flow. Wherever velocity gradients occur in a flowing fluid, the fluid property
viscosity leads to shear stresses and forces. A fundamental concept in fluid mechanics is the no-
slip condition according to which, in the immediate vicinity of a solid surface, a consequence
of viscosity is that the fluid is brought to rest (or, more generally, if the surface is itself moving,
to the same velocity as the surface so that the relative velocity is zero). In essence, the fluid
adheres to the surface. For an external flow, the major effects of viscosity are confined to a
relatively thin region close to the surface called the boundary layer, the subject of Chapter 17.
In the case of buildings, smoke stacks (or chimneys), bridges, wind turbines, windmills, oft-
shore structures such as drilling platforms, etc., the external flow (there may be quite separate
internal flows, such as exhaust gases) is provided by nature. The damage which sometimes
occurs to these and other structures when high windspeeds arise tells us that the wind can im-
pose massive forces on their surfaces. In certain circumstances, even at relatively low speed, a
steady wind can excite vibrations (flow-induced vibrations) which can be of sufficient amp-
litude to cause structural damage. Huge plate-glass windows have been known to pop out of
their frames due to wind-induced torsional oscillations of skyscrapers, as happened to the 241
m high John Hancock Tower opened in Boston in 1976. The best known example of wind-
induced vibration was the complete destruction in 1940 of the Tacoma Narrows Bridge in
Washington State, USA. Remarkably, in both instances, the vibration was initiated at wind-
speeds no greater than about 70 kph. In order to design structures which are safe, we need to
calculate both the steady and periodic forces due to the wind, either from fundamental the-
ory or, more likely, from a combination of theory and experimental data obtained from tests
carried out in a wind or water tunnel. The use of experimental data, generalised using di-
mensional analysis (Chapter 3), is termed empiricism. Environmental fluid mechanics also
concerns the dispersion of pollutants in the atmosphere and in the sea, rivers, lakes, etc.
Some of the most advanced theoretical and experimental work in fluid mechanics has been
associated with the development of aircraft, spacecraft, and missiles. There have been re-
markable advances in aviation since December 1903, when Orville Wright flew a powered,
heavier-than-air, machine some 260 m in 59 s. For example, we now take for granted passenger
aircraft such as the turbofan-powered Airbus A380-800 with a passenger-carrying capacity up
to about 850, a maximum take-off weight of 575,000 kg, a wingspan of 80 m, a cruising speed
of 945 km/h (just below soundspeed), and a range of 15,700 km. Although taken out of service
in 2003, just as impressive was the performance of the turbojet-powered (see Section 10.3)
British Aerospace Corporation/Aérospatiale supersonic transport aircraft, Concorde, which
routinely carried about 130 passengers at twice soundspeed (a flight speed of about 2130 km/h)
in the stratosphere (see Section 4.13). Although, as we see from Figure 1.10, the atmospheric
temperature at cruise altitude (about 18 km) is about -56.5 °C, the skin of Concorde reached
a temperature of about 120 °C, due to frictional heating, causing the length of the aircraft to
increase by about 0.3 m. Modern combat aircraft, such as the Lockheed Martin F-22 Raptor,
again turbofan powered, can fly at Mach numbers above two (about 2500 km/h). Although
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manned flights into space are now regarded as almost routine, in reality each flight repres-
ents an extraordinary engineering achievement. For example, the speed required to escape the
earth’s gravitational pull is about 11 km/s (i.e. 40,000 km/h or a Mach number above 30) and,
on re-entry into the earth’s atmosphere, the air surrounding the space shuttle becomes so hot
(6000 °C plus) that the craft is surrounded by a glowing plasma.

One of the ways we distinguish between different flight regimes is through the Mach num-
ber, which is the ratio of the flight speed of an aircraft to the speed of sound at the flight altitude
(discussed further in Section 3.12 and Chapter 11). As the Mach number increases, the fluid
mechanics becomes more complicated because an increasing number of physical phenomena
have to be taken into account. If the Mach number is considerably less than unity (0.3 is the
value usually taken), changes in fluid density are negligible and the flow is said to be incom-
pressible. For higher Mach numbers, compressibility effects (i.e. density changes) become
increasingly important but can be accounted for in a relatively straightforward way using the
perfect-gas law to relate temperature, pressure, and density (see Section 2.4), together with
the first law of thermodynamics (Chapter 11). Once the Mach number exceeds about five,
however, very high temperatures develop near surfaces, and the air properties change due to
chemical breakdown of the molecules and the subsequent reaction of free atoms. At this point,
physical chemistry also comes into play, but beyond the scope of this book.

The preceding paragraphs suggest an important aspect of the subject of fluid mechanics
which students often find difficult to understand: even at relatively low flowspeeds, there are
few problems we can solve completely, usually because the mathematics involved becomes
far too complicated, even if we understand all the physics involved and know the relevant
equations. To a degree, computers can take over at some stage in the analysis of a prob-
lem to provide a numerical rather than an analytical (i.e. algebraic) solution. Unfortunately,
even the largest and fastest computers available at the present and in the foreseeable future
are inadequate to solve most practical problems and we have no choice but to introduce ap-
proximations, assumptions, and simplifications. In fact, this ‘engineering’ approach represents
common sense. For example, if we are dealing with a low-speed gas flow where we know that
the fluid density remains practically constant, there is no point in making our task more dif-
ficult (and more expensive) than necessary by not introducing this simplification from the
outset. Of course, it is usually a matter of experience, or even hindsight, which tells us what
simplifications are justified. In this textbook, we approach problems using the simplest pos-
sible physics and mathematics, with the aim of deriving approximate solutions which provide
some insight into the interplay between fluid properties, flow geometry, and flowspeed. The
reader needs to bear in mind that our approach often represents only a start to, rather than a
complete treatment of, the solution of problems of fluid flow.

Even land vehicles have now reached speeds where air-density variations must be accounted
for. The land-speed record, held by the turbofan-powered car Thrust SSC since 1997, is 1228
km/h, which corresponds to a Mach number of 1.018, i.e. just supersonic (Mach numbers in
the range close to unity are termed transonic). A new turbofan-powered car, Bloodhound
SSC, is being developed with a target speed of about 1700 km/h (Mach 1.9). Somewhat slower
is the Japanese T'6hoku Shinkansen ‘Bullet Train’ which has a top speed of about 320 km/h
or 89 m/s, corresponding to a Mach number of 0.26, so that compressibility effects are largely
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insignificant. However, some racing cars can achieve speeds where compressibility effects can-
not be neglected: the highest speed reached at the California Speedway track in Fontana,
California, is about 400 km/h or 111 m/s, which corresponds to a Mach number of 0.33. Al-
though this figure is close to the 0.3 ‘cutoff’, it must be the case that on the bodywork of the
cars there would have been regions where the airspeed was considerably higher. It has to be
said that normal cars, buses, and lorries have considerably lower top speeds and the airflow
around them can safely be considered to be incompressible (i.e. to have constant density).

Although the speeds of even the fastest marine vehicles are much lower than for most land
vehicles, the fluid mechanics involved is complicated by wave motion which arises due to the
tendency for gravitational pull to overcome any disturbance to a water surface. We are all
familiar with the surface gravity waves which propagate radially outwards when we throw a
stone into a pond, whereas the forward movement of a ship creates a vee-shaped pattern of
surface waves. Although invisible to the eye, a submarine travelling deep below the surface
also generates gravity waves as it disturbs water layers of different densities which occur due to
variations with depth of salt content and temperature. The energy required to generate waves
has to be provided by the propulsion system of the ship or submarine and so corresponds to
an additional contribution to the drag force, so-called wave drag.

1.4 Internal flows

Most of the flow situations dealt with in this textbook are concerned with internal flows
through pipes, ducts, nozzles, engines, turbomachines, etc. In one sense, internal flows are
easier to deal with than external flows because the flow is confined within solid boundaries un-
like the flow over an aerofoil (Figure 1.6), for example, where the region of flow is practically
unlimited.

The most common man-made device through which flow occurs is a metal, plastic, or glass
pipe of circular cross section. Pipes of this kind allow oil and gas to flow to the earth’s surface
from reservoirs which may be many kilometres below, often deep below the seabed, and then
hundreds of kilometres across land, directly to refineries or to ports for transfer to ships. Oil
and gas pipelines, and also the pipes which convey water into the turbines of a hydroelectric
power plant, may be a metre or more in diameter. The enormous capital cost involved means
that careful consideration has to be given to the design of such pipelines including all the asso-
ciated valves, bends, contractions, expansions, pumps, monitoring equipment, etc. Smaller
diameter pipes connect the pumps, separators, boilers, distillation columns, burners, filters,
etc., of oil refineries and other chemical-processing plant. Such pipes allow gas and water to be
transported to the homes where we live and to the offices and factories where we work. Fluid
flow through a straight pipe is resisted by friction between the fluid and the internal surface of
the pipe, which arises due to the viscosity of the fluid (see Section 2.8) and has to be overcome
by a pressure difference created by a pump or compressor, or by gravitational effects. Friction
also causes the fluid temperature to rise, the fluid density to decrease, and the average fluid
velocity to increase. Much like the situation of an external flow, a boundary layer develops and
grows in thickness with downstream distance so that, in an internal flow, if the flow channel is
long enough, it is inevitable that eventually fluid across the entire cross section of the channel
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is affected by viscosity (see Chapter 16). Pipe flow of compressible fluids is considered in detail
in Chapter 13. Due to surface friction or external heating, in the case of a gas, the fluid velocity
in a pipe may even reach the speed of sound, causing an effect called choking (see Chapters 11
and 13), which limits the volume of gas which can be pumped through the pipe. Clearly, even
a flow which at first sight probably appears to be the simplest we can think of turns out to
be rather complicated. In fact, the situation is even more complicated than we have indicated
so far because it is only for low flowrates or small-diameter pipes or highly viscous fluids (all
of these influences are accounted for by a non-dimensional parameter termed the Reynolds
number, which we discuss further in Chapters 3 and 15 to 18) that the flow remains smooth
and steady (so-called laminar flow) and we are able to analyse it completely. The majority of
flows of engineering interest exhibit a high degree of random unsteadiness which we call tur-
bulence (see Chapter 18) and, even today, we are able to calculate turbulent pipe flow from
first principles only through the use of supercomputers. Fortunately, the principles of dimen-
sional analysis apply whether a flow is laminar or turbulent, and this enables us to generalise
experimental data for use in engineering-design calculations.

In industrial applications, pipes rarely stay straight or keep the same diameter for long (see
Section 18.11). Often more important than understanding the details of the flow within a pipe
or pipe system is the ability to calculate the hydrodynamic forces which arise when a pipe
changes direction and, perhaps, also diameter, as illustrated by the pipe bend in Figure 1.14
(see Section 10.7).

The calculation of hydrodynamic forces is one of the main topics of Chapter 10, which
brings together many of the concepts and principles introduced in previous chapters, par-
ticularly those in Chapters 6, 7, and 9.

Combustion chambers, furnaces, boilers, jet pumps, control valves, guidevanes, cyclone
separators, radiators, oil coolers, fuel-injection systems, carburettors, rocket engines, and the
coolant channels within the core of a nuclear reactor or the block of a petrol or diesel engine

flow
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Figure 1.14 Hydrodynamic reaction force exerted on a pipe bend
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are all examples involving internal fluid flow. As we show in Chapter 10, the flow characterist-
ics which underlie the design of many of these devices, including the rocket engine, jet pump,
and cascade of guidevanes, shown in Figures 1.15, 1.16, and 1.17, respectively, can be determ-
ined using the principles of fluid mechanics that we cover in this textbook. The analysis of
most of the other cases requires more advanced aspects of fluid mechanics and may also in-
volve considerations of heat transfer, thermodynamics, and chemistry, all of which are beyond
the scope of this book.

The turbojet and turbofan engines shown in Figures 10.3(a) and 1.8, respectively, are
examples of a class of devices called turbomachines, derived from the Latin word turbo,
which has the meanings ‘whirlwind’ and ‘spinning top’. Other examples of turbomachines are
pumps, fans, compressors, steam turbines, gas turbines, hydraulic turbines (see Figure 1.9),
turbochargers, and superchargers. A common feature of all turbomachines is a central rotating
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Figure 1.15 Thrust of a liquid-propellant rocket
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Figure 1.16 Performance of a jet pump
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Figure 1.17 Hydrodynamic forces on a cascade of guidevanes

shaft which carries blades (the rotor or impeller) to transfer momentum and work either to
or from the fluid which flows through them by causing changes in the direction of fluid flow.
Most turbomachines also incorporate stationary blades (called stators or nozzle rings) at-
tached to the casing to guide the flow to and from the rotor stages. As we show in Chapter 10,
we can learn a considerable amount about the performance of these complex machines simply
by considering the state of flow at inlet and outlet. The basic flow within a stator or rotor stage
can be analysed in much the same way as that through a stationary cascade of guidevanes; but,
to take the analysis further, as we do in Chapter 14, requires that we use more advanced aspects
of fluid mechanics, often together with considerations of thermodynamics.

9 1.5 SUMMARY

In this chapter, we have indicated the wide array of engineering devices, from the kitchen
tap (a valve) to supersonic aircraft, for which the basic design depends upon considerations
of the flow of gases and liquids. Much the same is true of most natural phenomena, from
our weather to ocean waves and the movement of sperm and other bodily fluids. This text-
book introduces a number of the concepts, principles, and procedures which underlie the
analysis of any problem involving fluid flow. In this Introduction, we have selected a num-
ber of examples for which, by the end of the book, the student should be in a position to
make practically useful engineering-design calculations. We emphasise that simply attend-
ing lectures or reading this book is not sufficient: it is absolutely essential for the student
to spend at least twice the amount of lecture time attempting to solve the self-assessment
problems which follow most chapters.



Fluids and fluid properties

Wet. Sticky. Viscous. Viscid. Gelatinous. Slippery. Greasy. Oily. Lubricious. Slimy. Oleaginous.
Oozy. Soapy. Thick. Thin. Runny. Syrupy. Treacly. Tacky. Claggy. Muddy. Gummy. Gooey.
Mucilaginous. Glutinous. These are among the many adjectives commonly used to describe
liquids, to convey something about how liquids feel, how they flow, or how they respond to
being stirred or mixed. The list of words available to describe gases is far more limited: viscous,
viscid, heavy, and dense. We could also include smelly in both lists, although in the case of li-
quids what is sensed is the vapour form. In contrast to these adjectives, which primarily give
us a qualitative tactile impression, in this chapter we introduce the properties used to quantify
the physical characteristics of liquids and gases: dynamic and kinematic viscosity, density,
specific volume, relative density, bulk modulus of elasticity and compressibility, speed of
sound (or soundspeed), vapour pressure, and surface tension, together with the perfect-gas
law and an equation of state for liquids. We discuss how and why fluids and solids are dif-
ferent both on a molecular and on a macroscopic scale. We show that central to the definition
of the physical properties of fluids, and the way in which we go on to analyse fluid flow, is the
continuum hypothesis, which allows us to define properties on a scale which is far smaller
than any scale of engineering interest but still far larger than the underlying molecular scale.

2.1 Fluids and solids

The state of any substance can be classified as solid or fluid, with the term fluid including
liquids, gases, and vapours. From an engineering viewpoint, the essential difference between
a fluid and a solid is the way in which the substance resists shear stress. In the case of a solid,
the shear stress is resisted by a static deformation, the magnitude of which (for a given shear
stress) depends upon a material property called the modulus of rigidity. For a fluid, no matter
how low the shear stress, the deformation increases without limit as long as the shear stress
is applied. The rate of deformation of a fluid is determined by a property called the dynamic
viscosity (or just the viscosity). A fluid for which the viscosity is zero is said to be inviscid,
whereas a fluid with non-zero viscosity is said to be viscous*. A fluid with vanishingly small
viscosity is also termed a perfect fluid, the only known example of which is liquid helium
cooled to 2.17 K, at which critical temperature a fraction of the liquid becomes an inviscid
superfluid.

We can begin to quantify the statements in the first sentences of the preceding paragraph as
follows. Suppose we have a solid rectangular block subjected to a shear (i.e. tangential) force F,

4 The term viscid is also used.
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Figure 2.1 (a) Shear force applied to an elastic solid (b) Shear stress applied to a fluid

as illustrated in Figure 2.1(a). Unless the magnitude of the force is so great that the material
fractures or deforms plastically (in a sense, behaving like a liquid), the solid resists the force F
by a static deformation which we can measure by the angle ¢ (the Greek letter phi). In the case
of an elastic solid, according to Hooke’s law, the deformation is proportional to the applied
force, so we can write

% -1 =Go 2.1)

where A is the surface area over which F is distributed, v (the Greek letter tau) is the shear
stress (i.e. the shear force per unit area), and the constant of proportionality G is called the
modulus of rigidity or shear modulus.

Consider now the situation illustrated in Figure 2.1(b), which shows a fluid between two
parallel plates separated by a short distance h, with the lower plate stationary and the upper
plate moving at velocity V. A fundamental concept of the flow of a viscous fluid, called the no-
slip condition (see Sections 6.4 and 15.3), is that fluid in contact with a solid surface adheres
to it and moves at the speed of the surface. Thus, the fluid in the immediate vicinity of the
upper surface moves forwards at velocity V, the fluid in contact with the lower surface is at
rest, and the fluid in-between moves as though in infinitesimally thin layers with velocity u,
which increases progressively with distance y from the lower surface, i.e.

u= % (2.2)
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If we imagine a line normal to the plate surfaces and marking the fluid at some instant of time,
at time ¢ later the line will have rotated through an angle ¢, as shown in Figure 2.1(b), so that

tan¢ = E. (2.3)
h
If the time ¢ is short, the angle ¢ will be small and negligibly different (measured in radians)
from tan ¢, so that

_wt
6= (24)

from which we see that if t doubles, ¢ also doubles; if ¢ triples, ¢ also triples; and so on. Rather
than think of progressive deformation in this way, it is far more convenient to think in terms
of the rate of change of deformation, which is given by

dp v

it~ h 29

From equation (2.2) and Figure 2.1(b) we can see that the quantity V/h is the gradient of the
velocity u with respect to distance y, i.e.

du _V

== = . 2.6

s (2.6)
Because gradients of velocity within a fluid occur due to the effects of shear stress, the rate
of deformation du/dy is referred to as the shear rate. For a fluid, the statement equivalent to

equation (2.1) can now be written as

d¢ _  du

T=pg = udy (2.7)

where the symbol p (the Greek letter mu) represents the fluid property known as dynamic
viscosity (usually just referred to as the viscosity). In some books, the symbol 7 (the Greek
letter eta) is used rather than u. Viscosity is the principal property which distinguishes a fluid
from a solid, and many of the adjectives listed at the beginning of this chapter are qualitative
descriptions of the viscous nature of fluids. For many simple fluids, including air and water,
w is a thermodynamic property which depends only upon temperature and pressure but not
on the shear rate. As mentioned in Chapter 1, such fluids are known as Newtonian. One of
Newton’s many contributions to scientific understanding was the recognition that the resist-
ance to relative motion between two ‘layers’ of a fluid is proportional to the velocity difference
between the layers, as represented by equation (2.7).

It is easy to find descriptive distinctions between the four states (solid, liquid, gas, vapour)
in which matter occurs. Solids are hard and not easily deformed. A liquid has no inherent
shape and is so easily deformed that under the influence of gravity it takes up the shape of any
container into which it is poured without a change in volume. A gas is even easier to deform
than a liquid and increases in volume without limit unless constrained by a closed container,
which it then fills completely. The volume of a fixed mass of gas is decreased by any increase
in pressure, whereas to decrease the volume of a liquid by a measurable amount requires very
high pressures (see Section 2.6). These and other differences between the gas, liquid, and solid
states can be explained on the basis of their molecular structures. Movement of the molecules
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of a solid is highly restricted because they are closely packed in a fixed lattice structure with
large intermolecular cohesive forces between them. The molecules of a liquid have freedom
of movement and are further apart (though the typical spacing is still only 1071 m or 0.1 nm)
so the intermolecular forces are smaller. In fact, the molecules are in a continual state of inter-
action with their neighbours and never move very far. Gas molecules, on the other hand, move
about randomly but in straight lines at high speed (about 1.2 to 1.5 times the speed of sound),
occasionally colliding with each other or the surfaces of a confining container. For both liquids
and gases the continual bombardment of any surface by molecules gives rise to a stress which
is normal to the surface and which we call pressure.

Since many substances can exist in any one of the three basic states, the differences in mo-
lecular structure are largely a matter of degree, and there is the possibility of transition between
these states. For example, the volume of a fixed mass of gas is easily decreased by increasing
its pressure, a process termed compression, while expansion is the opposite process. At very
high levels of compression the gas molecules are forced so close together that the gas becomes
indistinguishable from a liquid and is said to liquefy. Liquefaction can also be achieved by
cooling a gas to a temperature below its critical temperature. The free surface of any liquid is
always in contact with its gaseous state, called a vapour. At sufficiently high temperature many
solids melt and become liquid and, with further increase in temperature, increasing amounts
of vapour are produced until all the material is in the gaseous state. These different states are
identified thermodynamically as phases which represent forms of matter which are physically
and chemically stable.

2.2 Fluid density p

The density p (the Greek letter rho) of a fluid (or a solid), sometimes referred to as its mass
density, is the ratio of the mass m of a given volume of that substance to its volume , i.e.

m
P= (2.8)
In the SI system of units, which we use exclusively in this textbook and present in some detail in
Chapter 3, the unit of mass is the kilogram (symbol kg), that of volume is the cubic metre (m?),
and the unit of density is kilogram per cubic metre (kg/m?). As we indicated in Section 2.1,
we can decrease the volume of a fixed mass of gas by increasing its pressure. According to
equation (2.8), the consequence of compression is an increase in the gas density. The pressure
of the air flowing through the core of a jet engine, such as that illustrated in Figure 1.8, is
increased progressively as the air passes through the compressor stages and so the air density
also increases (there is an accompanying increase in temperature).

As may be evident, our definition of density in the previous paragraph is incomplete: the
idea that the density of air can vary with location as it flows through a compressor implies
that we regard density as having a value at a given point, as is the case for all fluid properties.
A more complete definition of density requires that the volume ¥, and hence the mass m, is
so small that there is no appreciable variation of density within it. At the extreme, we could
define a volume so small that at any instant of time it contained a single molecule but this
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Figure 2.2 Variation of the ratio mass: volume with volume

does not lead to a sensible definition of density, not least because the molecule would not
have a fixed location. However, by progressively increasing the volume above such a low value,
we eventually reach a situation where, although molecules are continuously moving into and
out of the volume at its boundary, the net number of molecules within the volume at any
instant is practically constant. The effect on the ratio m:V of progressively increasing U is
shown schematically in Figure 2.2. The horizontal scale is compressed to the right of the ver-
tical line, and expanded to its left. Once U exceeds the critical value V¢, we can define a density
as a thermodynamic property (i.e. a physical property which depends only upon temperature
and pressure) which is independent of volume and which can vary smoothly and continu-
ously throughout the entire body of fluid. We shall quantify the order of magnitude of V¢
in Section 2.5. The densities and other properties of pure water and dry air at a pressure of 1
atm are given in Tables A.3 and A .4, respectively’. For other fluids of engineering interest the
physical properties are given in Tables A.5 (liquids) and A.6 (gases), also at a pressure of 1 atm.

There are two principal ways in which the density of a fluid influences flow. The most im-
portant stems from Newton’s second law of motion, which tells us that the acceleration of a
given mass is proportional to the net force applied to it. We shall discuss in detail the applic-
ation of Newton’s second law to fluid flow in many of the chapters in this book. For the time
being it is sufficient to realise that to produce a change in the velocity of a high-density fluid,
such as a liquid, involves much larger forces (per unit volume) than is the case for a fluid of
low density, such as a gas. For example, the power required to propel a submerged submarine
would be about a thousand times greater than for an airship of the same size and speed flying
through the air. The second way in which density plays a role involves gravity and the associ-
ated decrease in atmospheric pressure with altitude or increase in pressure with liquid depth.
These and other hydrostatic effects are the subject of Chapters 4 and 5. Compressible flow,
in which there can be very large, and even discontinuous, changes in density, is the subject of
Chapters 11, 12, and 13.

5 Table A.1 lists some atomic and molecular weights, and Table A.2, some universal constants. The physical
properties of the 1976 Standard Atmosphere (see Section 4.13) are given in Table A.7. Tables A.1 to A.7 form
Appendix 2.
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2.3 Atoms, molecules, and moles

All matter is made up of a limited number of elementary substances, the chemical elements
(as of November 2011, 118 had been identified: 94 naturally occurring and 24 synthetic). So far
as this textbook is concerned, the basic building block for any chemical substance is the atom,
a tiny (typically with a radius less than 1 nm) particle which cannot be split without losing the
properties of the element. Each element has a relative atomic mass (atomic weight) based on a
scale in which the mass of the carbon-12 (}2C) atom, the most abundant (almost 99%) isotope
of carbon, is 12. Most substances consist of molecules in which atoms are bound together
by interatomic forces. In a way similar to that of atomic weight, the molecular weight M
(relative molecular mass, or molecular mass), with the units kg/kmol, of these compounds
is defined relative to the mass of 12C. The atomic weights and molecular weights of some
common substances are listed in Table A.1 in Appendix 2, together with the symbols used for
atoms or the molecular formulae for molecules.

Although molecular weight is defined as a ratio, and so is a non-dimensional quantity (see
Chapter 3) which has no units, it is useful to express molecular weights in terms of a unit called
the mole (symbol mol), 1 mol being the amount of a substance in grams numerically equal to
its molecular weight, or the kilomole (symbol kmol), which is the amount of substance in kilo-
grams. In the case of methane, for example, M = 16.04 kg/kmol. The number of molecules in 1
kmol of any substance is given by the Avogadro number, N4, a fundamental physical constant
the value of which is 6.022 x 10%® molecules/kmol. If we have N molecules of a substance with
molecular weight JU, the amount of that substance n = N/N,4 kmol, and the corresponding
mass is m = nM = NM/N, kg.

2.4 Perfect-gas law

At very high temperatures (above about 1000 °C) the molecular structure of a gas breaks down
(a process known as dissociation) and at very high pressures or low temperatures, as we have
already indicated in Section 2.1, gases can liquefy. Away from these extremes, most gases are
in good agreement with a thermal equation of state known as the perfect-gas® law

p = pRT, (2.9)

where p is the gas pressure in pascal (Pa = N/m?), T is the absolute temperature of the gas
in degrees kelvin (K = 273.15 + °C), and R is a constant of the gas called the specific gas
constant (with units m?/s? - K or kJ/kg - K). A gas which obeys the equation of state p = pRT
is a thermally perfect gas’. The unit m?/s® - K suggests a connection between R and a speed
which we shall show in Section 2.12 is that for the propagation of sound through the gas, i.e. the
speed of sound. The specific gas constant is related to the universal (or molar) gas constant
R as follows

6 The term perfect gas should not be confused with perfect fluid, which is an idealised fluid lacking both viscosity
and thermal conductivity.
7 Such a gas is sometimes termed an ideal gas rather than a perfect gas.
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R = MR, (2.10)

where JM (with the unit kilogram per kilomole) is the molecular weight of the gas. The uni-
versal gas constant is defined in terms of the Boltzmann constant kg and the Avogadro
number Ny as

R = kgNy. 2.11)

Boltzmann’s constant has the value 1.3807 x 10723 J/K, and the universal gas constant has the
value 8.31451 kJ/kmol - K (or 8314.51 J/kmol - K).

The specific gas constant R is equal to the difference between the specific heats at constant
pressure Cp and constant volume Cy, i.e.

R=Cp-_Cy. (2.12)

For a range of gases, values for the molecular weight M, the specific gas constant R, and the
ratio of the specific heats,

_Cp
Y=oy

are tabulated in Table A.6. A perfect gas for which Cp and Cy, and hence y, are con-

(2.13)

stant is called a calorically perfect gas. It is usual to refer to a calorically perfect and
thermally perfect gas obeying p = pRT simply as a perfect gas. The quantities in Table A.6
play an important role in compressible-flow theory (see Chapters 11, 12, and 13). Al-
though values for the corresponding gas density p at STP (20 °C, 1 atm) are also tabulated,
this is not essential, since the density of any of the gases listed can be calculated from
equation (2.9).

ILLUSTRATIVE EXAMPLE 2.1

Calculate the density of nitric oxide (NO) at 20 °C and 1 atm and also at 500 °C and 5 bar.

Solution

M = 30.01 kg/kmol (from Table A.6); p; = 1.01325 x 10° Pa; Ty = 293.15K; p, = 5 x 10° Pa;
T, =773.15K.
From equation (2.10)

R =R/M = 8314.51/30.01 = 277.1 m?/s>.K.

From equation (2.9)

o b 101325 x10° )
PL= R T 2770 x 29305~ 248ke/m
and
5
B XY =233k

P2= RT, = 2771 x 773.15
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Comments:

(a) It is generally unnecessary to carry so many significant figures (s.f.) in an engineering
calculation; 4 s.f. for R and 3 for other quantities are usually sufficient.

(b) As they should be, the values calculated here for R and p; for NO are precisely the same
as those in Table A.6.

(c) The first step in the solution was to restate the data given (in this case for temperature
and pressure) in standard SI units. The student should develop the habit of converting
given data to standard SI form in this way.

2.5 Continuum hypothesis and molecular mean free path

In Section 2.1 we discussed some of the qualitative differences between the molecular struc-
tures of liquids and gases. As we shall now see, these differences have a direct influence on the
size of the critical volume V¢ introduced in Section 2.4.

We consider first a gas with molecular weight J{ which obeys the perfect-gas law, to calcu-
late the average number of molecules contained in a cube (the choice of a cube is arbitrary, and
we could just as well have chosen another shape, such as a sphere) of gas of side length L m.
If the fluid density is p, from equation (2.8) the mass of the cube will be pL?, since the cube
volume V = L3. From equations (2.9) and (2.10) we have

o =pM/RT (2.14)
so that the mass of our cube is given by
m = pV = pMU/RT. (2.15)

From Section 2.3 we know that the molecular weight M is the mass in kg of 1 kmol of that
substance, so that our cube contains p¥U/RT kmol (the unit kmol is often written as kg mole).
Since the number of molecules in 1 kmol of any substance is given by the Avogadro number,
Ny, the value of which is 6.022 x 10?® molecules/kmol, we see that the average number of
molecules N in the cube must be given by

N = pUN4/RT. (2.16)
Equation (2.16) can be rearranged as
V=NRT/pN4 (2.17)

from which we can calculate the volume ), which contains N molecules of a gas at temperature
T (K) and pressure p (Pa).
In terms of the gas density p, equation (2.17) becomes

V = NM/pNj. (2.18)

Equation (2.16) shows that, since R is a universal constant, the same for all gases, the aver-
age number of molecules N in a volume UV of any gas depends only upon its pressure p and
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Table 2.1 Number N of gas molecules in a volume .

L ) N

(m®)
1 mm 1072 2.7 E+16
1 um 10718 2.7 E+7
100 nm 10721 2.7 E+4
50 nm 1.25 x 10722 3362
33.4 nm 3.73 x 10723 1000
20 nm 9 x 10724 215
10 nm 10-%4 27
3.34nm 3.73 x 10726 1

absolute temperature T. This equation can therefore be regarded as a quantitative form of
Avogadro’s law: equal volumes of two gases, at the same temperature and pressure, contain the
same number of molecules. Table 2.1 shows the results obtained for N using equation (2.16),
for 0 °C and 1 atm (standard temperature and pressure, or STP).

As we shall see in Section 4.13, the air density in the atmosphere decreases with altitude.
At the lower limit of the stratosphere (an altitude of about 20 km), according to Table A.7,
the temperature is about 217 K, and the pressure is 5475 Pa (the corresponding density is
0.0880 kg/m?), while at the outer limit of the mesosphere (about 80 km) the values are 196.7 K
and 0.886 Pa, respectively, so that, according to equation (2.17), a cube of air containing 1000
molecules would have a side length of 81.7 nm at an altitude of 20 km, and 0.797 ;um at 80 km,
both of which are negligibly small compared with the dimensions of any object likely to be
flying at such altitudes. Equation (2.18) also shows that the density of air would have to fall to
4.8 x 107 kg/m?> (which would correspond to an altitude of about 1600 km) for the cube size
to reach 1 mm.

We cannot give a precise value but would probably not want the number of molecules over
which to form an average to be any lower than 1000 and so conclude that for a gas at STP
the concept of fluid density begins to fail if the cube size V¢ is below about 30 nm (i.e. 0.3
wum or 3 x 10’m). To put this in perspective, the diameter of a human hair is typically about
100 pm, and the wavelength of visible light is about 589 nm. There are few, if any, practical
situations involving gas-flow channels with dimensions which come anywhere close to 30 nm.
Even devices known as microchannels typically have dimensions in the range 1 to 500 pm.
Gases for which the number of molecules in a 1 um cube fall below about 1000 are said to be
rarified and are normally encountered only in outer space.

Because the molecular structure of a liquid is generally more complex than that of a gas,
the number of molecules per unit volume, N, which is termed the molecular number density,
varies from liquid to liquid. For a cube of side length L of liquid with density p the mass is
again given by m = pL®. The number of kilomoles of liquid is then pL3/.M, and the number
of molecules is pL>N, /M. Table 2.2 shows values of N for several liquids, with L = 1 um
(V=10"%m?).
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Table 2.2 Number N of molecules in a liquid cube of
sidelengthL =1 um

Liquid N

Petrol, CsHjg 44 E+9
Carbon tetrachloride, CCly 6.3 E+9
Liquid oxygen, O, 7.7 E+9
Pure glycerol, C3HgO3 8.2 E+9
Ethyl alcohol, C;H5OH 1.0 E+10
Water, HO 3.35 E+10
Mercury, Hg 4.07 E+10

If we compare Table 2.2 with Table 2.1, we see that the molecular number density N for
liquids far exceeds that for gases. We conclude from the foregoing that, except in extreme cir-
cumstances, VUc will always be far smaller than any volume of engineering interest and can
be regarded as defining what we mean by a point in a fluid. Although we have specifically
discussed the property density, the same considerations apply to any physical property and
enable us to define point values of these properties, which vary smoothly and continuously
throughout a fluid. Although these ‘large-scale’ (or macroscopic) properties reflect the under-
lying molecular structure, it is generally the case that we can treat the majority of problems
of fluid flow without the need to consider molecular structure directly. The idea that both
fluid properties and flow properties can be treated in this way is known as the continuum
hypothesis.

If molecules in a fluid are considered to be hard spheres of effective diameter o in random
motion constantly colliding with each other elastically, kinetic theory leads an approximate
expression for the average distance A between successive collisions

_ 1
A= JinNvo? (2.19)

where Ny is the number of molecules per unit volume or the volume number density. The
quantity A is termed the molecular mean free path, and equation (2.19) is usually attributed
to James Clerk Maxwell. The equation for A can be written in terms of other quantities as
follows. The number of moles # in a mass of gas m of molecular mass (or molecular weight)
M is given by

n=m/M (2.20)
and so the number of molecules in the mass of gas Ny is

Ny = nNag = mNay/ M (2.21)

where Ny is the Avogadro number (see Section 2.3).
It follows that

Ny = Ny/U = mNA /MU = pNa/ M (2.22)
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and, from equation (2.19),
A = M/V2mpNao?. (2.23)

Since M and o are fixed for a given gas, and Ny is a universal constant, equation (2.23) leads
to the conclusion that A is inversely proportional to the gas density p. As we shall see in
Section 4.13, the density of the air in the earth’s atmosphere decreases with altitude (as can be
seen from Table A.7). Although at an altitude of 71 km p has fallen to about 0.01% of its value
at sea level, the corresponding value of A is still less than 1 mm.

If we introduce the perfect-gas equation (2.9), p = pRT, equation (2.23) may be written as

A = RT/V21pNyo? (2.24)

where we have made use of equation (2.10) to introduce the universal gas constant R. Since
the ratio R/Ny4 defines the Boltzmann constant kg, the equation for A may also be written as
1
ﬁn po
Table 2.3 includes values of the effective molecular diameter ¢ and molecular mean free path
A for some common gases at 0 °C and 1 atmosphere®.

(2.25)

Table 2.3 Effective molecular diameter o and molecular mean
free path A for some common gases at 0 °C and 1 atmosphere

Gas o A
(pm) (nm)
Air 366 69.1
Argon 342 62.6
Carbon dioxide 390 39.0
Carbon monoxide 371 58.6
Chlorine 440 27.4
Ethylene 423 34.3
Helium 258 173.6
Hydrogen 297 110.6
Methane 380 48.1
Neon 279 124.0
Nitrogen 375 58.8
Nitrous oxide 388 38.7
Oxygen 354 63.3
Sulphur dioxide 429 27.4

8 With the exception of those for air, the values for o and A have been taken from Kaye and Laby online. The
values for air are from the CRC Handbook of Chemistry and Physics. Many of the values from these two sources differ
by as much as 20%.




FLUIDS AND FLUID PROPERTIES

For the gases in the table, the arithmetic average value for A = 66.8 nm. A cube with this
side length 66.8 nm would have a volume of about 3 x 102> m? and so contain about 8000
molecules, another indication of the validity of the continuum hypothesis.

ILLUSTRATIVE EXAMPLE 2.2

Calculate the molecular mean free path for a gas with molecular weight 28.96 kg/kmol, density
1.28 kg/m?, and effective molecular diameter 366 pm.

Solution

M = 28.96 kg/kmol; p = 1.28 kg/m>; 0 = 3.66 x 10719 m; N4 = 6.022 x 10%® molecules/kmol.
We use equation (2.23) to find A

A= ./I/L/ﬁn,oNAaz

28.96
V2 X7 x 128 % 6.022 x 10% x (3.66 x 10710)?

=6.33x 10 m or 63.3 nm.

Comment:

The value for A calculated from equation (2.23) represents the result of kinetic theory for
a gas with the properties of dry air. This value differs by about 8% from the experimentally
determined value of 69.1 nm.

2.6 Equation of state for liquids

Although equation (2.12) for the ratio of specific heats y, has no generally valid equivalent
applicable to liquids, it is usually adequate to assume that p = constant, and Cp = Cy =
constant, so that
_Cr
Y= CV
An approximate equation, cited by Batchelor (2000), for the influence of extreme pressure
(typically in excess of 1000 bar) on the density of water is

P\ _ 1, (Plpo+C
ln(g)—nln( 5C ) (2.27)
where p is the static pressure measured in bar, p is the corresponding density, pp = 1 bar (i.e.
approximately equal to atmospheric pressure), po = 1000 kg/m?, C = 3000, and n = 7. For
p/po = 1000, approximately equal to the pressure at a water depth of 10 km, the equation

gives p/pp ~ 1.04, confirming that the effect of pressure on water density can be considered
practically negligible.

=1. (2.26)
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A more general equation for the influence of pressure on the density of a range of liquids is
the modified Tait equation

Lo pp (BP0t D
1+p0—Aln( =D (2.28)
where pg is a low pressure (usually the barometric pressure B or 1 bar), py is the liquid density
at pressure pg, and A and D are constants for the given liquid.

2.7 Specific volume v, relative density o, and specific
weight w

In thermodynamics it is often more convenient to work in terms of specific volume v than
density p. The word ‘specific’ here means ‘per unit mass, i.e.

v=l (2.29)

from which we see that the unit of v is m3/kg.
Relative density o (Greek letter sigma) is the ratio of the density of a fluid to that of a
standard reference fluid pgrgr, i.e.

L (2.30)

o =
PREF

Because it is defined as the ratio of two physical quantities with the same unit, relative density”
has a purely numerical value without unit and is again non-dimensional (see Chapter 3).

For liquids, the reference fluid is usually taken to be pure water at 4 °C and 1 atm when it
has a density prer = 1000 kg/m>. Water shows anomalous behaviour in that between 0 °C and
4 °C its density increases to a maximum of 999.972 kg/m? at 4 °C. Below 0 °C water solidifies
to become ice. The temperature for the reference fluid is sometimes taken as 20 °C at which
the density of water is 998.20 kg/m?.

For gases the reference fluid is usually pure air (although hydrogen is sometimes used),
which has a density of 1.204 kg/m?> at 20 °C and 1 atm. In practice, relative density is little used
for gases.

Specific weight w, which should not be confused with specific gravity (i.e. relative dens-
ity), is the weight per unit volume of a substance. Since density p is mass per unit volume, it
follows that

w=pg (2.31)

where g is the acceleration due to gravity and has the value 9.807 m/s?, usually rounded to
three significant figures as 9.81 m/s?. The units of w can be shown to be N/m? because, as we
shall see in Chapter 3, 1 newton (symbol N) = 1kg - m/s?.

9 Particularly in older texts, the term specific gravity is sometimes used instead of relative density.
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ILLUSTRATIVE EXAMPLE 2.3

Calculate the density and specific weight for liquid oxygen, which has a relative density of 1.46
at -252.7 °Cand 1 atm.

Solution
o = 1.46 = p/pRer; so, with pgr = 1000 kg/m3, for a liquid, p = oprer = 1.46 x 1000 = 1460
kg/m®.

w = pg = 1460 x 9.81 = 14 320 N/m°.

Comments:

(a) Inany problem where either relative density or specific weight is specified, the first step
should always be to calculate the fluid density in SI units.

(b) It is almost always advisable to work through any problem using algebraic symbols and
to substitute numerical values as late as possible.

2.8 Dynamic viscosity (viscosity) u

In Section 2.1, we introduced dynamic viscosity (symbol 1) as the property which provides
the link between the shear stress applied to a fluid and the resulting rate of deformation. For
the simple case of a fluid confined between two parallel plates, one fixed, the other moving,
we showed that the rate of deformation was equal to the velocity gradient within the fluid. In
most flows the spatial variation of velocity is more complicated than the linear variation shown
in Figure 2.1. In more general situations, such as that shown in Figure 2.3, the continuum
hypothesis allows us to relate the shear stress 7 at any point in a fluid to the velocity gradient
(often termed the shear rate) du/dy at that point according to

T = ;Lfil—;. (2.32)

adu
slope = shear rate, ——
p dy

y

Figure 2.3 Velocity versus normal distance to illustrate velocity gradient
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As we shall see in Chapters 15 to 18, the fluid velocity u is usually a function of more than one
spatial variable, and the ordinary derivative du/dy must be replaced by the partial derivative
du/dy. In even more general situations, u is only one component of the total velocity in a flow,
so that T also depends upon the derivatives of the other velocity components. The quantity
w has the units Pa-s (= N-s/m?) and is properly known as either the absolute coefficient
of viscosity or the dynamic viscosity but is usually referred to simply as the viscosity. The
reciprocal of u (i.e. 1/u) is called the fluidity.

The viscosity of a Newtonian liquid is commonly measured using an instrument such as
the concentric-cylinder viscometer!? illustrated schematically in Figure 2.4. The liquid is in-
troduced into the annular gap between an inner cylinder, which rotates at angular velocity £2
(unit rad/s), and an outer stationary cylinder. According to the no-slip condition mentioned
in Section 2.1 and discussed in more detail in Section 15.3, the fluid velocity at the surface of
the outer cylinder is zero while that at the surface of the inner cylinder V is £2R. By making
the width § of the annular gap between the two cylinders negligibly small in comparison with

Figure 2.4 Concentric-cylinder viscometer

10" An instrument designed to measure viscosity and other mechanical properties of a viscous liquid is called a
rheometer.
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the cylinder radius R, the effect of curvature becomes unimportant, and the flow geometry is
essentially the same as that of two parallel plates. The velocity gradient within the fluid is then

du _ QR
dy 8
and the shear stress is
_du _ WUS2R
T = 'udy =5

The total torque T exerted on the inner cylinder is given by T = t AR, where A is the surface
area of the inner cylinder. If the length of the cylinder is H, we have A = 2w RH and so

_ 2rRPH2 1

T 5

Since §, R, and H are known dimensions, 1 can be determined by measuring the torque T and
the rotational speed N (rps) from

_ _156T

= 233
72NR3H (2.33)

where we have used the relationship V = 2R = 27 R?N.
Further discussion of viscometers and rheometers is given in Section 16.7.

ILLUSTRATIVE EXAMPLE 2.4

A concentric-cylinder viscometer is used to measure the viscosity of an oil. The dimensions of
the viscometer are R=30 mm, H =75 mm, and § = 100 um. At a rotational speed of 300 rpm,
the measured torque is 0.1 N - m. Calculate the dynamic viscosity of the oil.

Solution

R=3x102m;H=75x102m;8§ =10%m; N = 5rps;and T = 0.1 Nm.
We have

-4
n= 156T  _ 15 x 107 x 0.1 = 1.50 Pa.s.

TINRH 72 x5 x (3 x 102)° x 7.5 x 1072

Values for the viscosities of a wide range of Newtonian fluids are given in Tables A.5 (liquids)
and A.6 (gases) at standard temperature and pressure. Values for pure water and dry air at
1 atm are tabulated in Tables A.3 and A.4, respectively. Some of the viscosities from Tables
A.3 to A.6 are plotted in Figure 2.5, which shows the strong dependence on temperature, par-
ticularly for liquids (note the logarithmic ordinate). The dependence on pressure is generally
negligible up to 10 bar for gases and 100 bar for liquids.

The temperature dependence for gases is well represented by Sutherland’s formula

KT3/ 2

=K (2.34)
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where T is the absolute temperature (in K), and K and C are constants characteristic of the
particular gas concerned. If u has the value pggpr at a specified reference temperature Trgr,
then at any other temperature T we have

312
_ TREF +C T
u= ( TC ) (TREF> I REF. (2.35)

A useful result, based upon the kinetic theory of gases (see Section 2.5), is

_[2
n= nprA’ (2.36)

where p is the dynamic viscosity of the gas, p is its density, ¢ is the speed of sound, y is the

ratio of specific heats, and A is the molecular mean free path!!. As we shall see in Section 11.8,
equation (2.36) leads to a criterion for the validity of the continuum hypothesis in the analysis
of shockwave structure.

If equation (2.36) is combined with equation (2.23) for A, we find

=M (2.37)
\/JTT]/ Nyo?

where o is the effective molecular diameter and Ny is the Avogadro number. According to
equation (2.37), u is independent of pressure, a prediction which is consistent with experi-
mental observations up to about 10 bar. As we shall show in Section 2.12, ¢ o« +/T so that
according to equation (2.37) u o /T, which is less satisfactory: according to Sutherland’s
formula y o< T*2/ (T + C). A more accurate prediction requires a more sophisticated analysis
which is beyond the scope of this book.

ILLUSTRATIVE EXAMPLE 2.5

For air, the constant C in Sutherland’s formula has the value 110.4 K, and a viscosity at 20 °C
of 1.8 x 107 Pa - s. Calculate the viscosity of air at 400 °C.

Solution

Trer = 20 + 273 = 293 K; fggr = 1.8 x 1075 Pa-s; C = 110.4K; T = 400 + 273 = 673 K.
From Sutherland’s formula

1.5
_(293+1104) (673)  _ -
B= (673+ 110.4> <293> 3.23 x 107 Pa.s.

Comment:

The value calculated for p at 400 °C in this example is within 1% of the value given in Table A.4
(3.32 x 107 Pa-s).

11 The factor 2/3 sometimes appears in equation (2.36), depending upon the assumptions made in its derivation.
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Figure 2.5 Dynamic viscosity of common fluids as a function of temperature

For liquids the temperature dependence of viscosity can be approximated by the formula

T
L = exp |:C <% - 1):| JLREF (2.38)

where urgr is the viscosity at a reference absolute temperature Trgr, typically 293 K, and Cisa
numerical constant for the particular liquid. The presence of the exponential function (i.e. exp)
reflects the strong temperature dependence for liquids evident in Figure 2.5. For example, for
water the viscosity just above the freezing point at a pressure of 1 bar, 0 °C, is 1.787 x 10~ Pa - s,
compared with 2.818 x 107 Pa-s just below the boiling point 100 °C, corresponding to a
decrease of 84% or a ratio of 6.3:1. The value of C in this case is 6.9.

ILLUSTRATIVE EXAMPLE 2.6

An engine oil has a viscosity of 1.0 Pa-s at 20 °C. If the constant C in the formula for the
viscosity of a liquid is 17 in this case, calculate the viscosity of the oil at 150 °C.
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Solution

C=17; Trgr = 20+ 273 =293 K; uper = 1.0Pa-s; T = 150 + 273 = 423 K.
From equation (2.38),

1L = exp [17 x (% - 1)} x 1.0 = 5.38 x 107 Pa.s.

2.9 Kinematic viscosity v
The kinematic viscosity of a fluid v (Greek letter nu), defined by

7
V== 2.39
o (2.39)

is frequently used instead of the dynamic viscosity u because, in many problems, u and the
density p occur only in the combination 1/p. An interesting consequence of combining p
and p in this way is that the kinematic viscosity of many gases is higher than that of many
liquids, a trend which becomes more pronounced as the temperature increases, because the
dynamic viscosities of liquids decrease whereas those for gases increase. The term kinematic
is associated with the units of v, which are m2/s, and so involves only metres and seconds,
like the terms displacement (m), velocity (m/s), and acceleration (m?/s), which are descriptive
terms not directly involving the dynamics (i.e. the mass, stresses, and forces) of a problem. If
equation (2.32) is rewritten as

d(pu)
dy

we see that the shear stress t is proportional to the gradient of fluid momentum pu, the

T=v (2.40)

constant of proportionality being v. Equation (2.39) has the form of a diffusion equation, and
v is sometimes referred to as the viscous diffusivity. The diffusive nature of viscosity is also
apparent from the units of v which are also those of thermal diffusivity, the property which
determines the rate at which thermal energy is transported at a molecular level (i.e. diffused)
because of a gradient in energy concentration.

2.10 Non-Newtonian liquids

Whether a fluid is termed Newtonian or non-Newtonian, the relationship (by definition)
between the applied shear stress 7 and the resulting shear rate y (y is the Greek letter gamma;
the dot above y indicates rate), is the same, i.e.

7 = uy (spoken as tau equals mu gamma dot). (2.41)

In Section 2.1 we identified Newtonian fluids as those for which the viscosity u can be re-
garded as a thermodynamic property which may depend upon temperature and pressure but
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is independent of any deformation of the fluid as it flows, i.e. u independent of the shear
rate. To be more precise, a Newtonian fluid must not only have a viscosity independent of
any fluid deformation but also not exhibit such properties as elasticity. Gases have a simpler
molecular structure than liquids and always exhibit Newtonian characteristics. However, as
we indicated in Chapter 1, the molecular structures of most synthetic liquids, as well as such
naturally occurring liquids as blood and synovial fluid, are complex and in consequence the
viscosities (sometimes the term apparent viscosities is used) of these liquids change not only
with temperature and pressure but also with the shear rate itself. As we shall illustrate, ; can
both increase and decrease with increases in the shear rate. Such liquids are correctly termed
non-Newtonian.

Blood, cement slurry, yoghurt, toothpaste, mud (either natural mud or synthetic drilling
fluid), salad cream, and many other non-Newtonian liquids of practical importance are shear
thinning, which means that their viscosities decrease with increase in the shear rate. The term
pseudoplastic is also used for shear-thinning liquids. Salad cream and tomato ketchup are of-
ten ‘reluctant’ to leave the bottle until it is shaken vigorously after which, because the viscosity
has decreased, the liquid flows easily, sometimes too easily with unfortunate consequences.
The shear-thinning character of these condiments is due to small amounts (typically less than
1%) of an additive, often xanthan gum. The shear-thinning effect is used in a more subtle
way in ballpoint pens. The viscosity of the ink is decreased locally when the ball rotates,
thereby allowing the ink to flow onto the paper. High viscosity is recovered and the ink flow
stops (or should) when the ball is again stationary so that a ballpoint pen doesn’t leak in the
pocket.

In the case of salad cream and ketchup, another effect called thixotropy is also present,
this being the term used to describe liquids which take time to adjust to the state of shear.
If it were not for this, once the shaking ceased, the liquid would instantaneously return
to its high-viscosity state and no longer flow. In addition to being shear thinning, many
water-soluble polymers have the effect of reducing the resistance to turbulent fluid mo-
tion even in concentrations so low (parts per million) that there is no measurable change
in the viscosity of the base solvent. This effect, called drag reduction, is still not fully un-
derstood but is associated with viscoelasticity, another property of some non-Newtonian
liquids.

Some non-Newtonian liquids are shear thickening (or dilatant), which is to say that the
viscosity increases with shear rate. Starch- or cornflower-based liquids, such as egg-free custard
made from powder (e.g. Bird’s Custard Powder), are shear thickening. The surface of a thick
paste of custard powder and milk appears to be almost solid if ‘stabbed” with the point of a
spoon, though the spoon will sink gradually into the paste under its own weight. If the spoon
is moved rapidly through the paste, the liquid surface appears to fracture then flow gradually
back together.

Other materials, such as certain gels, lubricating greases, ice cream, and margarine, appear
to be solid when subjected to low shear stress. Even unconfined, they maintain their shape
without deformation due to gravity but become fluid once the shear stress exceeds a certain
threshold level, called the yield stress ty.
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Figure 2.6 Variation of (a) shear stress and (b) dynamic viscosity with shear rate for Newtonian and
non-Newtonian liquids

Typical variations in shear stress and viscosity with shear rate are shown in Figure 2.6 for four

basic liquid types
e Newtonian: w constant independent of y
e shear thinning:  u decreases with increasing y
e shear thickening: u increases with increasing y
e yield stress: T < 1y, y = 0 (i.e. there is no flow and from a practical point

of view the material is solid)
T > 1y, ¥ > 0 (i.e. flow occurs, the material is liquid and
initially shear thinning)

An important subset of non-Newtonian liquids for which the viscosity is dependent upon the
shear rate but the fluid is inelastic and not time dependent is the so-called generalised Newto-
nian fluid. Models for a number of generalised Newtonian fluids are presented in Section 15.5,
and their flow between infinite parallel plates is analysed in Section 16.6.

Since the flow behaviour of non-Newtonian fluids is complicated and still not completely
understood, particularly for those which are elastic or thixotropic, it is fortunate for us that
all gases and many liquids of engineering interest are Newtonian in character at most tem-
peratures and pressures. We should not forget, however, that numerically there are more
non-Newtonian liquids (predominantly synthetic) than Newtonian. In terms of total volume,
however, the reverse is probably true, although even gases cease to be Newtonian at very high
temperatures or low pressures.

2.17 Bulk modulus of elasticity K and compressibility

We have seen already that viscosity is the property which relates the rate of change of shape
of a fluid to applied shear stress. The property which relates the change in volume to a change




FLUIDS AND FLUID PROPERTIES

in pressure is the bulk modulus of elasticity K, i.e. K is the property which characterises
the compressibility of a fluid. Although all fluids are compressible to some extent, gases are
far more so than liquids and we sometimes distinguish between them primarily on this basis.
However, as we discuss briefly in Section 7.5, in many practical gas-flow problems the variation
in density is sufficiently small that we can treat the gas as incompressible. In Chapters 11, 12,
and 13 we deal with gas flows where compressibility is the dominant influence.

The bulk modulus of elasticity is defined by the equation

)

VIV sV
where §? is the change in the fluid volume V due to a pressure change §p. From the definition,
it can be seen that the units of K are the same as those of pressure, i.e. Pa. Since an increase
in pressure (i.e. §p > 0) causes a decrease in volume (i.e. 5V < 0), a minus sign is introduced
into the defining equation to ensure that K is a positive quantity. In the limit of an infinitesimal

K= (2.42)

change in pressure, with a resulting infinitesimal change in volume, we can write

dp
T4

where dp/d? is the derivative (or gradient) of the p - VU curve during a compression (or expan-

K- (2.43)

sion) process. If we consider a fixed mass of fluid m, then m = p? so that, since there is no
change in mass during compression or expansion,

dm _qdp , dV _

dp = dp P dp =0 (2.44)
from which we have
dp _ pdp
and, finally,
dp
K=pg, (2.46)

This is a far more satisfactory definition of K than that involving the arbitrary volume ? be-
cause, just like density, the bulk modulus of elasticity is a thermodynamic property defined at
a point. The reciprocal of K (i.e. 1/K) is called the compressibility, with units Pa~!.

In general, compression and expansion are thermodynamic processes involving an increase
or decrease in pressure accompanied by a corresponding change in the temperature of the
fluid and other properties, such as specific entropy (see Section 11.2). To define completely
a property which quantifies the compressibility of a fluid, especially gases, we need to specity
either the temperature or the thermodynamic process itself. A process in which the temperat-
ure remains constant is called isothermal, and one in which there is no heat transfer is called
adiabatic. If there is neither heat transfer nor friction, the thermodynamic property known as
entropy remains constant, and the process is said to be isentropic.

Values of K for a range of commonly encountered liquids are listed in Table A.5. For a
perfect gas, the pressure-density relationship for an isentropic process can be shown to be (see
Section 11.2)
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pi” = constant (2.47)
where y is the ratio of the specific heats at constant pressure (Cp) and constant volume (Cy),
i.e. y = Cp/Cy (see Section 2.4). We then have

dp _vp
dp p
and the isentropic modulus of elasticity for a perfect gas is

where the subscript S denotes that the expansion or compression process is isentropic. The
isentropic compressibility is 1/yp.

2.12 Speed of sound ¢

Sound travels through a fluid in the form of small-amplitude pressure fluctuations or waves, a
process which can be regarded as isentropic. The speed at which such waves propagate through
a fluid is called the speed of sound (or soundspeed) ¢ and can be shown to be given by

d
2= 9% _Ks (2.49)
dolg P
In Section 2.5 the equation of state for a perfect gas was given as p = pRT and, in Section 2.11,
we showed that, for an isentropic process, Ks = yp. If we combine the three equations, we
have

c=+/YRT, (2.50)

i.e. since the ratio of specific heats y and the specific gas constant R are constant for a given
gas, the speed of sound c is proportional to the square root of its absolute temperature T. Thus,
the speed of sound is lower on a cold day than on a hot one: between early morning and early
afternoon the air temperature in the Black Rock Desert in Nevada might increase from 0 °C
(273 K) to 40 °C (313 K). The corresponding increase in the speed of sound is from 331 m/s
to 355 m/s, which partly explains why it was advantageous for the successful attempt of the
Project Thrust supersonic car to break through the sound barrier (i.e. to exceed the speed of
sound) to take place early in the day (the actual air temperature was reported to be between 5
and 8 °C).
Since R = R/ M, where R is the universal gas constant, we have

c=/yRT = —yjiT (2.51)

and we see that the speed of sound will be much higher for gases with low molecular weight
M, such as hydrogen (M = 2.02 kg/kmol, ¢ = 1332 m/s at 20 °C) and helium (4.00 kg/kmol,
1007 m/s), than for heavier gases, such as air (28.965 kg/kmol, 343 m/s), carbon dioxide (44.01
kg/kmol, 268 m/s), and the electrically insulating gas sulphur hexafluoride (146.06 kg/kmol,
133 m/s).
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ILLUSTRATIVE EXAMPLE 2.7

Calculate the speed of sound for air (y = 1.4, Mar = 29 kg/kmol), helium (y = 1.63, M =
4kg/kmol), and water (p = 998 kg/m?, Kg = 2.19 x 10° Pa) at 20 °C. The universal gas constant
R has the value 8314.5 J/kmol - K.

Solution

T =20+273 =293K.
For air: yair = 1.4, Mur = 29 kg/kmol, so Rajr = R/Myr = 8314.5/29 = 286.7]J/kg - K, and

c=+/1.4 x 286.7 x 293 = 342.9 m/s.

For helium: yy, = 1.63, My, = 4 kg/kmol, so Ry, = R/ My, = 8314.5/4 = 2079]/kg-K,
and

c=4/1.63 x 2,079 x 293 = 996.4 m/s.

For water: p = 998 kg/m?, Ks = 2.19 x 10° Pa, so that, from equation (2.49),

219 x10°
c_,/T—MSlm/s.

Comments:

(a) In the two calculations for gases we made use of the relation 1 ] = 1N -m, which is a
consequence of the mechanical equivalent of heat, and also the definition of the newton,
N =kg- m/s? (see Chapter 3).

(b) In the calculation for water we made use of the definition of the pascal, Pa = 1 N/m?.

(c) Only in the case of helium is the calculated value for ¢ significantly different from the
values in Table A.6 and, even for helium, the difference is only 1.1%.

2.13 Vapour pressure py, boiling, and cavitation

It is a common observation that water, in a container open to the atmosphere, evaporates.
What we mean by this is that the liquid molecules just below the liquid surface have sufhi-
cient momentum to overcome intermolecular cohesive forces (see Section 2.1) and escape in
vapour form into the atmosphere. If the same liquid is placed in a closed container, and the
space above the liquid surface evacuated (i.e. any air is pumped out and the pressure reduced),
the rate of evaporation of the liquid rises until an equilibrium is reached when as many mo-
lecules leave the surface to create vapour (in the case of water, the vapour is called steam) as
return to the liquid. Under these equilibrium conditions, the vapour is said to be saturated,
and the pressure is the property termed the saturated vapour pressure py, usually referred
to simply as the vapour pressure. The corresponding temperature is called the saturation
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Figure 2.7 Variation of saturated vapour pressure with temperature for water

temperature. The tendency of a liquid to evaporate (or vaporise) is termed volatility. Since
molecular activity increases with temperature, the vapour pressure also increases with temper-
ature. The variation of vapour pressure with temperature for water is given in Table A.3 and
shown in graphical form in Figure 2.7.

If the pressure within a body of liquid equals the vapour pressure corresponding to the liquid
temperature, vapour bubbles are produced within the liquid until all the liquid has become
vapour. This is the process we call boiling. In a closed container, the production of vapour
at a given temperature increases the pressure until equilibrium conditions are reached, cor-
responding to a point on the py(T) curve (Figure 2.7). As we shall see in Chapters 7 and 8,
for a subsonic flow, the pressure in a fluid stream decreases if the fluid velocity increases, for
example, in flowing through a valve or nozzle. If the pressure within a liquid stream falls be-
low the vapour pressure corresponding to the liquid temperature, internal boiling will initiate
an undesirable phenomenon called cavitation (see Section 8.11). Since the vapour pressure
increases with temperature, the danger of cavitation also increases in, for example, poorly
designed domestic-heating systems.

ILLUSTRATIVE EXAMPLE 2.8

The atmospheric pressure at the summit of Mount Everest (height 8848 m) is 31 kPa. At what
temperature does water boil at this altitude? What pressure would be required for the boiling
point to be raised to 100 °C?

Solution

p1 = 31kPa = 3.1 x 10* Pa; so, from Table A.3, T; = 70 °C.
T, = 100 °C; so, from Table A.3, p, = 1.013 x 10° Pa= 1 atm = 1.013 bar.
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Comment:

The temperature 100 °C corresponds to what we normally think of as the boiling point of
water at normal ambient conditions. Due to the low pressure at high altitude, the boiling point
is reduced by 30 °C. The pressure has to be increased to 1 atm (slightly higher than 1 bar) for
the boiling point to return to 100 °C. A pressure cooker is used to ensure food normally boiled
at 100 °C is properly cooked at high altitude.

2.14 Surface tension ¢ and contact angle ¢

The discussion in Section 2.3 was limited to situations in which molecules of fluid in the in-
terior of a fluid interacted with molecules of the same fluid in the same thermodynamic state.
As we have just seen, at the surface of a liquid in contact with either a gas or its own vapour,
we need to take into account the fact that molecules constantly cross the surface. Interface
is a more general term for the surface which separates two fluids, such as a liquid and a gas
or two immiscible liquids, such as water and mercury or oil and water. For liquid in a tube,
the curved interface is also called a meniscus. Although the chemistry and physics are com-
plex, for most practical purposes such an interface can be treated as a skin or membrane in
tension and this leads to the identification of the fluid property called surface tension, o,
defined by'?

o = interfacial (tensile) force per unit length. (2.52)

From the definition it can be seen that o must have the units N/m.

Figure 2.8 shows a curved line drawn in the free surface of a liquid. The arrows which are
everywhere tangential to the surface and normal to the curve, but pointing away from it, rep-
resent the force due to surface tension. For an infinitesimal element of surface of length §s, the
force is o' 8s. Surface tension for a pure liquid decreases almost linearly with increasing tem-
perature and also depends upon whether the liquid is in contact with its own vapour or with
air (or some other gas). An important, but difficult to quantify, influence on surface temper-
ature is contamination of the liquid, due either to unwanted impurities or detergents which
markedly decrease 0. The values of surface tension listed in Tables A.3 (water) and A.5 are for
pure liquids.

The shape of small liquid drops and of small soap bubbles can be explained using the concept
of surface tension. Figure 2.9(a) shows a section through a segment of a spherical drop of liquid
of radius R. Consider the circular surface segment of radius r which subtends the angle ¢ at the
centre of the drop. If the external pressure is barometric, B, and the internal pressure is py, such
that the pressure difference between the inside of the surface and the outside is Ap = pr - B,
then for the segment to be in static equilibrium requires

2mro sing - nrzAp =0.

12 The symbol Y is sometimes used.
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Figure 2.9 Forces acting on (a) a liquid droplet and (b) a soap bubble

From the geometry of the situation, sin¢g = 7/R so that the static-equilibrium equation
reduces to
_2
Ap = (2.53)

from which we see that the internal pressure increases as the drop size decreases. It is because
the internal pressure becomes so large for very small drops (called droplets), that their shape
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is negligibly affected by gravity and they become spherical in shape, as we assumed at the
outset. As R increases, gravity causes a drop to distort and become increasingly non-spherical.
A suspended drop develops a tear shape and eventually breaks free.

In the case of a liquid bubble surrounded by a gas, the equivalent to the equation for a
droplet is Ap = 40/R. The increase in Ap by a factor of 2 is a consequence of the fact that
the surface of a bubble has a finite thickness (typically a few hundred nm) and therefore
an inner and an outer surface, each of which exerts a surface-tension force. Because the gas
which fills a bubble generally has a much lower density than the liquid which forms its surface,
bubbles can reach much larger sizes than drops before gravitational effects have a significant
influence.

ILLUSTRATIVE EXAMPLE 2.9

The surface tension for petrol is 2.16 x 1072 N/m. Calculate the pressure in the interior of a
petrol droplet, 2 um in diameter, created by a fuel-injection nozzle if the external pressure is
2.5 bar.

Solution

The surface tension o = 2.16 x 1072 N/m; R = 10° m; pg = 2.5 x 10° Pa.
From equation (2.46)

-2
Ap=pi-ps =22 = % = 4.32 x 10" Pa or 0.432 bar
so that the internal pressure p; is given by

pr=pEg+Ap =25 x 10° +4.32 x 10* = 2.93 x 10° Pa or 2.93 bar.

We started this chapter with the word ‘wet’. Liquids are said to be wet because surface ten-
sion causes them to adhere to solid surfaces. Whether or not a solid surface is wetted by a
liquid depends upon the extent to which there is an attraction between the liquid molecules
and the surface molecules. The degree of attraction is measured by the angle, called the con-
tact angle 6, at which the liquid meets the surface, a quantity which depends on the same
factors as surface tension and, in addition, upon the nature of the surface and the surround-
ing fluid (normally a gas). For 8 < 90° the liquid is said to be wetting and, for 6 > 90°,
non-wetting.

Water on a clean, grease-free glass surface has a contact angle practically equal to zero while
for mercury the value is about 130°. The combined effects of surface tension and contact angle
thus determine the shape of a liquid drop on a horizontal surface, as shown in Figure 2.10. As
we shall show in Section 4.8, a wetting liquid is drawn upwards into a vertical small-diameter
tube due to surface tension, whereas the surface of a non-wetting liquid is depressed. This effect
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Figure 2.10 Drops of (a) a wetting and (b) a non-wetting liquid on a horizontal surface

is known as capillarity. For a liquid in a container or large-diameter tube, surface tension is
also responsible for the curvature of the meniscus where the liquid contacts the solid surface.

@ 215

In this chapter we have shown that the differences between solids, liquids, and gases have
to be explained at the level of the molecular structure. The continuum hypothesis allows
us to characterise any fluid and ultimately analyse its response to pressure difference Ap
and shear stress v through macroscopic physical properties, dependent only upon absolute
temperature T and pressure p, which can be defined at any point in a fluid. The most im-
portant of these physical properties are density p and viscosity jt, while some problems are
also influenced by compressibility, vapour pressure py, and surface tension o. We showed
that the bulk modulus of elasticity K; is a measure of fluid compressibility and determines
the speed at which sound propagates through a fluid. We also introduced the perfect-gas

SUMMARY

law and derived an equation for the soundspeed c.
The student should be able to

state what is meant by the continuum hypothesis
calculate the number of molecules in a given volume of any fluid
calculate the molecular mean free path for any gas
define density as
p =m/V
define dynamic viscosity as
w=rtly

where y is the shear rate

calculate the soundspeed from ¢? = Kg/p and for a perfect gas ¢ = /y RT/M
state what is meant by saturated vapour pressure py

define surface tension as

o = interfacial (tensile) force per unit length

use the tables in Appendix 2 to look up values for fluid properties and use them in
calculations
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e 2.16 SELF-ASSESSMENT PROBLEMS

2.1

2.2

23

2.4

2.5

2.6

2.7

2.8

2.9

2.10

Calculate the sizes of cubes which contain one billion (i.e. 10°) molecules of the fol-
lowing substances at STP: a perfect gas, water, Freon 12, and mercury. The Avogadro
number N4 has the value 6.02214 x 10%® molecules/kmol, and the universal gas
constant R has the value 8314.5 J/kmol - K.

(Answers: 3.42 um; 0.31 pum; 3.42 4m; 0.53 pwm; 3.42 pm)

Calculate the molecular mean free path for oxygen at 0 °C and 1 atm. The Boltzmann
constant kg has the value 1.380658 x 10723 J/K.
(Answer: 66.8 nm)

Calculate the relative density and specific weight of air at 500 °C, 1 bar, and of
methanol at 20 °C, 1 bar.
(Answers: 0.379; 4.48 N/m?>; 0.792; 7760 N/m?)

Calculate the specific gas constant, the density, and the speed of sound for sulphur
hexafluoride (SF¢) at 100 °C and 3 bar. Take the molecular weight of SFs as 146
kg/kmol and the ratio of its specific heats as 1.085.

(Answers: 56.9 m?/s* - K; 14.1 kg/m3; 152 m/s)

Calculate the density of water at a depth of 5000 m, where the pressure is 5000 bar,
given that the relationship between density p and pressure p (in bar) for water is

P\ _ 1, [Plpo+C
ln<%> = nln<—1+C )
where py = 1 bar, pg = 1000 kg/m3, C =3000,andn=7.
(Answer: 1150 kg/m?)

A concentric-cylinder viscometer has the dimensions R = 25 mm, H = 80 mm, and
8 = 150 um. If the fluid in the annular gap is ethylene glycol at STP, calculate the
shear stress and the torque exerted on the inner cylinder if the rotation speed of the
inner cylinder is 12 rpm.

(Answers: 41.7 Pa; 0.013N - m)

The viscosity of a non-Newtonian liquid is 0.5 Pa- s for a shear rate y of 10 s™1. At
very high shear rates the viscosity falls to a constant value of 0.2 Pa - s. Calculate the
yield stress Ty, assuming that the shear stress T obeys the equation v = ty + Cy,
where C is a constant.

(Answer: 3 Pa)

Calculate the soundspeed for petrol at STP.
(Answer: 1187 m/s)

An experiment is being designed in which water has to boil at the normal body
temperature of 37 °C. What pressure is required?
(Answer: 6.44 kPa)

The mass of liquid used to create a soap bubble 100 mm in diameter is 100 pg. The
surface tension of the liquid is 0.03 N/m, its density is 1000 kg/m?, and its molecular
weight is 18 kg/kmol. Calculate the pressure difference between the inside and the
outside of the bubble and the thickness of the soap film. Is the continuum hypothesis
satisfied?

(Answers: 2.4 Pa; 3.2 nm; just)



Units of measurement, dimensions,
and dimensional analysis

This chapter is about the dimensions and units of physical quantities and how they can give
us insight into physical problems, simplify the representation of the solutions to problems, and
provide a partial check on the correctness of any resulting formulae. Although the illustrative
examples are limited primarily to fluid flow, it is important to realise that the principles in-
troduced here apply to many branches of physics and engineering. At first sight dimensional
analysis may appear abstract and mystifying, perhaps because it involves no difficult mathem-
atics and quite elementary physical ideas, yet leads to far-reaching consequences. It involves
little more than simple algebra and the basic principle that each term in any equation involving
a combination of physical quantities must have the same overall dimensions.

We start by discussing the units of measurement and the dimensions which are essential
to the specification of any physical quantity. We then introduce those units, according to
The International System of Units (abbreviated as SI), and the corresponding dimensions
for physical quantities that are involved in the description of fluid flow. We show how units
can be multiplied and divided (but not added or subtracted), the same applying to dimensions,
and introduce the underlying principle of dimensional homogeneity: the overall dimensions
of each term in any formula or relationship involving physical quantities have to be the same.
We then demonstrate how this principle leads to a systematic procedure which allows the
quantities which describe any physical problem to be combined so producing a smaller num-
ber of terms which we call non-dimensional groups. Some of these groups are particularly
significant, appear repeatedly, and are given names, such as the Reynolds and Mach numbers,
after the scientists who made important contributions to understanding the flows where these
groups arise. The chapter concludes with the topics of dynamic similarity and scaling which
allow us, for example, to predict the aerodynamic performance of a full-scale racing car from
a reduced-scale wind-tunnel test of a geometrically similar model.

3.1 Units of measurement

The measure or value of any physical quantity, such as acceleration, force, pressure, density,
or viscosity, is practically meaningless unless its units are also stated. With few exceptions, all
physical quantities have units and dimensions—the two always go together. One of the excep-
tions to this general rule is the plane angle, which can be thought of as the ratio of two lengths.
The quantity 7 (= 3.141592654.... .... ), for example, which plays an important role in plane
geometry and, in turn, many branches of engineering and physics, is defined as the ratio of the
circumference of a circle to its diameter. More generally, the angle 6 (in radians) subtended
by the arc of any circle is defined as the arc length s divided by the circle radius R, i.e. 6 = s/R.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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The ratio of any two quantities with the same units (or dimensions) has neither units nor
dimensions (in dimensional analysis, the dimension of any non-dimensional quantity is 1).

In ancient times, basic units of length were often based upon the size of parts of the human
anatomy, such as the hand, forearm (cubit), and foot, and extended by multiplying factors to
suit particular applications, e.g. yard (3 feet), chain (22 yards), furlong (10 chains), and mile (8
furlongs). Over the centuries a wide array of units evolved, particularly for length, mass, and
weight, and for closely associated quantities such as area and volume: inch, metre, pound, hun-
dredweight, ton, gram, kilogram, poundal, slug, hectare, pint, gallon, peck, bushel, etc. With
the addition of second, minute, hour, and other units of time, together with units of temperat-
ure (degree Celsius or centigrade, Fahrenheit, and kelvin), these units are sufficient to express
the magnitude of all the physical quantities we shall consider in this book, and indeed all we
are likely to encounter in much of engineering, with the exception of electrical quantities. As
is the case with monetary units, especially pre-Euro, the preference for one system of units
over another is largely a matter of history and familiarity. The inch, foot, yard, pound, hun-
dredweight, ton, etc., are part of the Imperial System of Units, superseded in the UK by The
International System of Units, which is now used, especially in engineering, throughout most
of the world, with the exception of the United States of America.

The units of most of the quantities we encounter in engineering and science cannot be
expressed in terms of length, or mass, or time, alone. Instead, they have to be expressed as
combinations of these basic units or in terms of new units (derived units) defined in terms
of the basic units. In the absence of a simple and well-defined system of units, the conver-
sion between units can become complicated and prone to error, sometimes with catastrophic
results. The most spectacular (and expensive) example of the latter occurred in 1999, when
controllers at the Jet Propulsion Laboratory in California fired the thrusters of the Mars Cli-
mate Orbiter to adjust its orbit. Unfortunately, the onboard software of the thrusters specified
the thrust of the rockets in pounds force (lbg), whereas the control software on the ground
assumed it was in newtons (N). Since 1 by = 4.45 N, the controllers applied an excessively
large thrust causing the Orbiter (fortunately unmanned) to disintegrate in the atmosphere of
planet Mars.

ILLUSTRATIVE EXAMPLE 3.1

What tractive force F lby is required to accelerate a car of mass m tons from rest to a speed V
miles per hour in a time of t minutes?

Solution

We recognise that this problem requires the use of Newton’s second law of motion in the
familiar form F = ma, where the acceleration a = V/t (assuming constant acceleration) so that
F = mV/t. With m in tons, V in mph, and t in minutes, the units of F will be ton - mile/h - min.
It is quite clearly not very useful to have a force expressed in such peculiar units so we need
to introduce appropriate conversion factors in the hope of producing a more familiar and
practical unit of force. We have 1 (long) ton = 2240 pounds mass (Iby), 1 mile = 5280 ft,
1 h =3600s,and 1 min = 60 s. The result is then
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580V . 1 _ 5476 mV lbm ft

F=2240m <3600 X 60t t §2

which is not much of an improvement.

Since the weight in 1b¢ of a mass m is given by m - g, where g is the gravitational acceleration
(approximately 32.2 ft/s?), it becomes apparent that 1 lby, x 32.2 ft/ s> must be equivalent to 1
Ibg, so that

5476 mV _ 1.702mV
F 322¢ r by

If this example doesn’t convince the reader that a more coherent system of units would be
preferable, it’s unlikely that anything will.

3.2 The International System of Units (SI)

The units of measurement now preferred for practically all engineering and science applica-
tions are those of the International System of Units (Le Systéme International d’Unités or,
simply, SI). There are seven base units: the kilogram (symbol kg) for mass, metre (m) for
length, second (s) for time, kelvin (K) for absolute thermodynamic temperature, mole (mol)
for amount of substance, ampere (A) for electric current, and candela (cd) for luminous
intensity. There are numerous derived units which are products of powers of base units. Ex-
amples are area (m?), volume (m?), velocity (m/s), and density (kg/m?). A small proportion of
these derived units have special names and symbols. So far as fluid mechanics and thermody-
namics'® are concerned, these include newton (N = m - kg - s72) for force, pascal (Pa = N/ m?)
for pressure or stress, joule (J] = N-m) for energy or work, watt (W = J/s) for power, and
hertz for frequency (Hz = 1/s). Other derived units, such as pascal second (Pa - s) for dynamic
viscosity and joule per kilogram kelvin (J/(kg-K)) for specific heat capacity, are combina-
tions of the derived units. Although obviously named after great scientists and engineers,
the names of these derived units are never capitalised when written out in full, whereas the

symbols always are.

To avoid very large or very small numbers with many zeros, the SI system also specifies
twenty prefixes for the decimal multiples and submultiples of SI units in the range 10724 (yocto,
symbol y) to 10%* (yotta, Y). For the most part, successive prefixes differ by the factor 103,
those normally encountered in engineering applications being pico (p, 107!2), nano (n, 107),
micro (, 107°), milli (m, 1073), kilo (k, 10%), mega (M, 10°), giga (G, 10°), and tera (T, 10'2).
Examples of the use of these prefixes are pm (picometre), GW (gigawatt), and THz (terahertz).
Prefixes which may also be encountered include centi (c, 1072), deci (d, 1071), deca (da, 101),
and hecto (h, 10%) but these are not common or recommended in engineering practice.

Full details of the SI system of units are to be found at http://physics.nist.gov/Pubs/
SP330/sp330.pdf (2008).

13 Some aspects of fluid mechanics, such as compressible fluid flow (Chapters 11-13), also require consideration
of thermodynamics, and the two subjects, together with heat transfer, are often treated as a single subject called
thermofluids.
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3.3 Dimensions

While there is an almost unlimited choice of units of measurement, the same is not true of
dimensions which are far more fundamental in character. For present purposes, the dimen-
sions of any physical quantity can be expressed in terms of the dimensions mass (symbol M),
length (L), time (T), and temperature (6). Other choices are possible, such as incorporat-
ing a dimension for force instead of mass, but M, L, T, and 6 corresponding with four of
the basic SI units is a logical choice. Since it may be difficult to remember the dimensions
of such quantities as dynamic viscosity 1 (M/LT) and power P (ML2/T?), it is worth remem-
bering that there is a one-to-one correspondence between the basic SI units (i.e. kg, m, s, and
K) and the dimensions M, L, T, and 6, so the units of any quantity expressed in terms of basic
rather than derived units can always be used to work out its dimensions, as we demonstrate in
lustrative Example 3.2.

It is conventional to use square brackets around any quantity to denote that only its dimen-
sions are involved. Thus [P] = ML?/T? is an equation indicating that the dimensions of power
P are ML?/T°.

ILLUSTRATIVE EXAMPLE 3.2

Convert the derived units for pressure (p), dynamic viscosity (u), and power (P) to basic SI
units and hence find the dimensions of these three quantities.

Solution

The derived SI unit for pressure p is the pascal

kg.m k
Pa = Ez = gz : 12 = gz
m 2 m?> ms

and the dimensions of pressure must be

- M
(p] e

Similarly, for dynamic viscosity u, for which the derived SI unit is Pa - s,

k k
Pas = _g2 -8
m.s m.s
and so
_M
[l = IT"

Finally, for power P, the derived SI unit is the watt (W)

m _ kg.m?

J_ Nam _ kg.m'

W:
S S 22 s $3
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and
_ ML?
=5

as we stated above.

[P]

One quantity which often causes difficulties for students working out dimensional problems
is rotational speed N, for which the non-SI unit rpm (revolutions per minute) is commonly
used. Since one complete revolution corresponds to 27 rad and there are 60 s in a minute, it
can be seen that the corresponding angular velocity w in rad/s is given by w = 27 N/60. Since
2, 7, and 60 are pure numbers, and so non-dimensional, the dimension of N must be the same
as that of w, i.e. [w] = [N] = 1/T. It is a common mistake to assume that angular velocity is
no different dimensionally from linear velocity. To emphasise the point, recall that the linear
velocity V of a point on the circumference of a wheel of radius R rotating at angular velocity @
is given by V = wR, from which we have

“|Y]-L1_1

[w] = [R] =TI T
The symbols, their meaning, units, and dimensions of all the physical quantities we shall
encounter in this book, and, to a large extent, in engineering fluid mechanics generally, are

tabulated in the Notation section at the beginning of the book. To assist the reader, the English
word form of each of the Greek symbols has also been included in the table.

3.4 Combining dimensions and combining units

If two or more physical quantities are combined, either by multiplication or division, then the
dimensions of the resulting quantity are obtained from the dimensions of the original
quantity by the same arithmetic process. For example, if m is mass and a is acceleration, then
[mal] = [mllal = M x L/T?2 = ML/T2. If we refer to the Notation, we see that ML/T? is in
fact the dimension of force F. Since F = ma is a common form of Newton’s second law of

motion, this outcome is just what we should have expected. As with normal arithmetic, we
can cancel dimensions (as we did in Section 3.3 to obtain the dimensions of ), multiply
powers of them together by adding indices, and divide by subtracting indices. It should be
self-evident that dimensions, just like units, can be neither added nor subtracted: it makes
no sense, for example, to add L and T or m and s. We note that it is generally less confusing
and so ‘safer’ to combine groups of units or dimensions by multiplication rather than
division. For example, if a is acceleration and V is velocity, we find the dimensions of a/V as
follows

afl_lad _L T_1
Vi vl 12 L T

where instead of dividing L/T? by L/T we have multiplied L/T? by T/L.
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Since there is a one-to-one correspondence between units and dimensions, it follows that all
of the principles outlined in the previous paragraph apply equally to the manipulation of units.
An important point with regard to combinations of SI units is that it is essential to separate
individual units when combined by multiplication by a dot, as we do here, or by a space. In this
way we avoid confusion between ms meaning millisecond and m-s (or m s) for metre second.
For units in the denominator we can use either a solidus (i.e. a slash /) or negative indices; for
example, m/s? can also be written as m - s~2.

If the combination of dimensions or units for a physical quantity is unity, that quantity is

said to be non-dimensional'4.

ILLUSTRATIVE EXAMPLE 3.3

Show that if p is pressure, p is density, and V is velocity, the quantity p/pV? is non-
dimensional.

Solution

The first step is to write down the dimensions of p, p and V as follows

- M -M - L
[p] = I [p] = 5 and  [VI=F,

from which we have
pl_M L T _

[pvz}_LTZXMX D
so demonstrating that the quantity p/p V? is non-dimensional.

If instead of working in terms of dimensions we use units, we arrive at the same conclusion:
the unit of pressure is the pascal, or in base units kg/m - s?, those of density are kg/m?, and
those of velocity m/s, so that the units of p/p V? are (kg/mv - s?) - (m?/kg) - (s*/m?) = 1, which
again demonstrates that p/p V> must be non-dimensional.

ILLUSTRATIVE EXAMPLE 3.4

Calculate the value of p/pV? if p = 7 bar, p = 2 kg/m?, and V = 10 m/s. Carry out the
calculation using first SI units then Imperial units.

Solution

In consistent SI units, we have p = 7 x 10° Pa, p = 2kg/m?, and V = 10 m/s.
Thus,

P _7x10°
oV? 2 x 107

=3.5 x 10°.

14 Ag an alternative to ‘non-dimensional’ the term ‘dimensionless’ is in common use.
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The only conversion needed was for the units of pressure since bar (= 10° Pa), though in
common use, is not an SI unit but is accepted for use with SIL.
We now repeat the exercise for p in psi (i.e. Ib¢/in?), p in Iby/ft>, and V in ft/s.

7bar =7 x 101.2 psi 2 kg/m’ = 0.125Ib,/ft® and 10 m/s = 32.81 ft/s
so that

P__ 1012 x 144 X322 _ 3,49, 103,

pV? 0.125 x 32.812

Comment:

(1) The factor 144 had to be introduced to convert psi to Ibg/ft?.

(2) The factor 32.2 Iby-ft/lb.s® was needed to convert Ib¢ to Ibp-ft/s2.

(3) The final result using Imperial units is not precisely 3.5 x 103, as it should be, but 3.49 x
103 as a consequence of the accumulation of small errors in each of the conversions from
SI to Imperial units.

3.5 The principle of dimensional consistency
(or homogeneity)

Each additive term in any physical equation must have the same overall dimensions. This

statement of the principle of dimensional consistency is the basis of dimensional analysis.
It follows that each additive term in any physical equation must have the same overall units. It

is, of course, essential that consistent, ideally base SI, units are used for each term in such an
equation. We state again, that although this book is concerned with fluids and fluid flow, it
should be apparent that any statement about dimensions or units applies in any branch of
engineering or physics.

ILLUSTRATIVE EXAMPLE 3.5

Show that each of the following equations is dimensionally consistent

(a) e=mck; (b) v=u+at; (c) s =ut+ %atz; (d) p=B+pgz; (e) T=2m.,/(llg);

TRYAp
8uL

(f) D=6xuVR+27pV2R% (g) Q=

Solution

(a) We recognise e = mcj as a result of Einstein’s theory of relativity. In this equation,
known as Einstein’s mass-energy relation, e is the energy released by matter if its rest
mass reduces by an amount m, and ¢y is the speed of light in a vacuum!®

2
2
[e] = 1\%—12‘ and [mc%] =M x (%) ,

15 Note that in this instance m represents mass reduction, not mass.




UNITS OF MEASUREMENT, DIMENSIONS, AND DIMENSIONAL ANALYSIS

(b)

(d)

(e)

()

and we are relieved to find that Einstein’s relation is dimensionally consistent. Note that
the units and dimensions of the change or difference in any quantity are the same as
those of the quantity itself.
v = u+at is a simple kinematic equation relating the velocity (v) of an object accelerating
at constant acceleration (a) for a time (¢) from an initial velocity (u). The dimensions of
the three terms in this equation are
L L L

v]l== ul = = and at]= = xT= 2

[v] T [u] lat] T T
which demonstrates that the equation is dimensionally consistent because each additive
term has the overall dimensions of velocity, L/T.

s = ut+ %at2 is a kinematic equation corresponding to v = u + at for the distance s

travelled by the object during the time ¢. In this case,

- - L - 12| L oT2_
[s1=L [ut]—TXT—L and [zat]—lesz L

again demonstrating that the equation is dimensionally consistent. Note that the
numerical factor 1/2 is non-dimensional and highlights an important general principle:
no consideration of dimensions can tell us anything about the correctness (or absence)

of a purely numerical factor in an equation since it will always have the dimension unity.

For a simple pendulum of length , the period of small-amplitude swing T is given by
T = 2m/(l/g), g again being the acceleration due to gravity

/ / 2
2 l:lxlx L><T—:T
g L

which corresponds with the dimension of the period T (i.e. a time).

We note that the first four examples have nothing to do with fluid mechanics,
thereby illustrating the observation made at the start of this section that dimensional
considerations apply to any branch of engineering or physics.

As we shall see in Section 4.3, the equation p = B + pgz gives the pressure p at depth z
below the surface of a liquid of constant and uniform density p with barometric pressure
B at the surface (i.e. at z = 0), g being the acceleration due to gravity, also assumed to be
constant. We have

L -M

M
zZl== X = xL=—
[oge] L3 12 LT?

which corresponds with the dimensions of p and B, both of which are pressures, and
again we find that the equation is dimensionally consistent.
The drag force (or just drag) D exerted on a sphere of radius R moving at a low constant
velocity V through a fluid of uniform and constant density p and dynamic viscosity p is
given by Oseen’s formula

D=6mwuVR+ %ansz.
The formula is approximate and its validity depends upon the value of a non-
dimensional parameter termed the Reynolds number (Re) being small (typically « 1).
The Reynolds number, which is commonly regarded as the most important non-
dimensional parameter in fluid mechanics, will be discussed later in this chapter
(Section 3.12). The dimensions of each term in the equation are as follows
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- ML - M L ;_ML
[D]—T2 [6r W VR] lxleTxTxL =
9_ vap2|_ M_L2_.2_ML

and [4anRj|_1X1XL3XT2XL_T2'

Note that the first term on the right-hand side of Oseen’s formula is linear in V and R
while the second is quadratic. It is also the case that the first term includes p but not p
while the second includes p but not p, but the equation is still dimensionally consistent
as all three terms have the overall dimensions ML/T?.

(g) The final example involves the Hagen-Poiseuille formula for the pressure drop Ap
along a circular tube of radius R and length L for the flow of a fluid of density p and
dynamic viscosity  with volumetric flowrate Q

TRYAp
8uL

=

While there are restrictions on the applicability of this formula, these are not relevant to
our consideration of dimensions. Since the formula concerns the volumetric flow rate
Q, which has the units m?/s, rather than mass flow rate with units kg/s, we have

o L2 TRAp | e M LT 1
[Q]—T and [ Sl :|—1><L XLTZXIXMXL_T'

Note that the dimensions of pressure difference Ap are the same as those of pressure.

L3

3.6 Dimensional versus non-dimensional representation

We have seen already that certain combinations of quantities have no overall dimensions, i.e.
they are non-dimensional. In fact, if any two quantities have the same overall dimensions, their
quotient (i.e. ratio) is non-dimensional. As an example, if we divide through Oseen’s formula
in Illustrative Example 3.5 (f) by 67 £ VR, we have

D 1+§’O—VR.

6w VR - 8 (3.1)

Since the first term on the right-hand side is now unity, it is immediately obvious that equation
(3.1) is non-dimensional. We have already mentioned the Reynolds number and the com-
bination pVR/u is precisely that. From equation (3.1) we see that as the Reynolds number
approaches zero, Oseen’s formula reduces to

D _
6mruVR ! (3.2)

which is known as Stokes’ formula. The advantage of the non-dimensional version of Oseen’s
formula is that its five dimensional ‘constituents’ can be combined into two non-dimensional
groups so that the formula can be represented graphically by a single curve of D/6w VR
versus p VR/ .
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We cannot emphasise too strongly that it is always advantageous to convert a dimensional
equation or formula to non-dimensional form. As a second illustration, we use the equation
of Illustrative example 3.5(c)

s=ut+ %atz. (3.3)

We can easily calculate the distance s for any values of the initial velocity u, the acceleration a,
and the time . Should we wish to, we could plot s versus ¢ for different combinations of u and
a. Even for such a simple formula, this is a tedious exercise because for every value of u there is
an infinite choice of values for a and to cover even a limited range for u and a we would need
to plot a large number of curves. Figure 3.1 shows s plotted versus ¢ for just five values of a
with = 1 m/s.

Suppose we now divide each of the terms in equation (3.3) by u? and multiply each by a.
Then we have

2
sa _at 1 (at
u2_u+2(u> (3.4)
and we observe that instead of three entirely different terms, our equation now has only two,
sa/u? and at/u, both of which are non-dimensional

2
[ﬂ}:LxLxT—:l and [a—t]—LxTxI:I.

u? T2 12 ul T2 L

a=1m/s?
12 a=0
a = 0.25 m/s?

| m/s? a =-0.25 m/s?
a=-1m/s

Figure 3.1 Curves of s versus t for s = ut +at?/2 with u = 1 m/s and a = 0, +:0.25 m/s?, and 4-1.0 m/s2
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Figure 3.2 Curve of sa/u® versus at/u corresponding to s = ut + at?/2

Just as in the example of Oseen’s formula, the advantage of our non-dimensional equation
over the dimensional version is that all combinations of the physical variables (in this case
s, 4, a, and t) can be represented by a single curve of sa/u? plotted versus at/u (Figure 3.2). It
should be obvious that it takes far less effort to generate one curve rather than five (or more).
The benefits of non-dimensionalising a more complicated equation are even greater, as are
the advantages of plotting experimental data in non-dimensional form. A major benefit of
non-dimensional representation is that information is presented in a very compact form. In
the case of experimental data, far fewer experiments need be performed. Arguably even more
important, in situations where we have experimental results but limited or no theoretical guid-
ance, a non-dimensional plot is more likely to reveal any underlying relationship between the
variables than a dimensional representation.

3.7 Buckingham'’s I (pi) theorem

In the second example of the previous section, we reduced a problem involving four indi-
vidual dimensional quantities (s, , 4, and t) to one involving just two non-dimensional groups
of quantities (sa/u* and at/u). In any problem of dimensional analysis, as this mathemat-
ical process is called, in the absence of an equation or formula, it is convenient to know in
advance how many non-dimensional groups will result from the set of physical quantities
thought to describe a physical process. This information is provided by Buckingham’s IT (pi)
theorem

If a physical process involves n dimensional quantities (or variables) which can be described
in terms of j independent dimensions, then this process can be represented by k non-
dimensional combinations of the dimensional quantities, where

k=n-j. (3.5)
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Although throughout this book we place little emphasis on memorising formulae,
equation (3.5) is one of the few that the student should commit to memory.

Since we are limiting ourselves to problems involving physical quantities with dimen-
sions M, L, T, and 6, j can only take on the values 1, 2, 3, or 4. It is immediately obvious
that the number of non-dimensional quantities k (often called non-dimensional groups or
non-dimensional numbers) is always less than the number of dimensional variables #n. For
example, in the case of the formula s = ut + at?/2, we see that there are four variables (s, u, a,
and t) and two independent dimensions (L and T) son = 4,j = 2, and k = n - j = 2, which
confirms what we found previously in Section 3.6.

Although called Buckingham’s IT theorem, the symbol IT, which is the capital version of the
Greek letter pi, has nothing to do with the familiar numerical constant 7 = 3.1415927 ... but
is simply the symbol chosen by Buckingham to represent a non-dimensional combination of
dimensional quantities. In our example, we can write

m, =34 and I, = at

u? u

In a more general case, the n-dimensional variables would reduce to k = n - j combinations
of those variables, ITy, 15, I13,... ... ... gor Iy = f (T, M3, ..c ... ... I1y), which means
that the non-dimensional group I1; is a function of (i.e. depends upon) Iy, I13,... ... ... Iy.

3.8 Sequential elimination of dimensions (Ipsen’s method)

Although with experience it is often possible to identify the non-dimensional groupings (i.e.
the IT’s) in any problem by inspection, it is usually preferable to use a systematic approach
(see Section 3.10). Although not the most common procedure in use (which is the expo-
nent method, presented in Section 3.9), the method of sequential elimination of dimensions
(also known as Ipsen’s step-by-step method) presented here is an essentially foolproof ‘recipe’
which requires only elementary mathematics.

We illustrate the method by reference once again to the sphere drag part of Illustrative Ex-
ample 3.5(f) but pretend now that we know (or postulate) only that D depends upon V, R, p,
and u but we do not know the formula D = 6 £ VR + 97p V?R%/4. We start by writing

D =f(V)R>10aM)’ (3.6)

which simply means that D is a function of (i.e. depends upon or is determined by) V,R, p,
and w. The quantity D is called the dependent variable, while V,R,p, and p are the
independent variables (i.e. the variables under our control).

In this case, then, we have five physical variables, so n = 5. It is vital in any problem of
dimensional analysis not to forget the dependent variable, in this case D, when counting the
number of physical variables.

The dimensions of the physical variables are

p]=ML - L

_ _M -M
= T [RI=L [p]—L and [u] =
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so we have just three dimensions (i.e. M, L, and T), and j = 3. From Buckingham’s theorem,
k =n-j=2,s0 we expect to find two non-dimensional groups (i.e. two IT’).

Our aim is to eliminate the three dimensions M, L, and T systematically by multiplying or
dividing each of the variables by any one of the others (or a power of any one of them). It
is important to realise that, although we can start the elimination process with any variable,
the end result will always be correct, although not the same. Suppose we choose to elimin-
ate M first using the variable p (we could just as well have chosen p to eliminate M). Then
we have

D|_ML L®_1* %
D= = = &2 and —
[ p } ™ M 72 [ P
and we can rewrite our original equation (3.6) as

D “

Eg V,R, = 3.7

A ( p) (3.7)

in which we have written f; (. . .) to indicate that the dependence of D/p on V, R, and p/p is not
the same as the dependence of D on V, R, p, and u. At this stage we have already reduced the
number of variables from four to three (i.e. D/p, V, R, and /p), and the number of dimensions
from three to two (i.e. L and T), so that k is still equal to 2, as it should be.

We now choose R to eliminate the dimension L from D/p, V, and 1/ p, as follows

D _L' 1_1 Vi_L, 1_1 K21 1
[pR‘*_TZXL‘*_Tz} [R}_TXL_T and [pRZ}_TXLZ_T

and we can write our equation as

D =f2<Z “) (3.8)

pR AR pR2

ie. we now have just three variables (D/pR* V/R, and u/pR*) and one remaining
dimension (T).
Finally, we choose V/R to eliminate the dimension T, as follows

2
o (RY|_[. D J_1 p. w Rk 1 g
[pR“(V)}_[pVZRZ}_TzXT boand [pRz‘V] pVR =TT 71

so that our two non-dimensional groups are D/pV?R? and j1/p VR, i.e. we can write

__D - _H
H1 = pV2R2 and Hz = /)VR
and the end result is
M, =F(Il,)  or pVQRZ =F (p"‘,R) . (3.9)
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Note that dimensional analysis tells us only that D/p V*R? depends upon u/p VR, assuming
our original assumption that D = f(V, R, p, ) was itself correct, but can give us no further
information as to the form of the dependence (or, in the case of a single non-dimensional
group, its value; this is the situation in Illustrative Example 3.6). The final result here is not at
first sight consistent with the non-dimensional form of Oseen’s equation

_D _,,.3pP¥R
—1+8 . (3.1)

However, if we divide through this equation by p VR/u we find

D [ 3
_ D __+ /3 3.10
6mpV?R?  PVR 8 (310

which is entirely consistent with the result of dimensional analysis. The two constants 6
and 3/8 arise from a solution of the governing Navier-Stokes equations (see Chapter 15) and
cannot be determined from dimensional analysis. We should also recognise that, if instead

of using p to eliminate M we had chosen pu, the final result of dimensional analysis would

have been
D _p, (pVR> (3.11)
g H
which is easily shown to be consistent with
D M D PVR
——=F|—=x|or—===FKh{|{—|. 3.12
OV2R? (pVR> V2R 2( n ) (3.12)

We should also consider the possibility that other physical variables might influence the drag
on the sphere. For example, if the fluid is a gas, we should include a variable that accounts for
compressibility. As we saw in Chapter 2, such a variable is the speed of sound ¢ (an alternative
would be the isentropic bulk modulus, Ks, or its inverse, the isentropic compressibility). Our
starting point for dimensional analysis would then be

D=f(V,R, p,i,¢) (3.13)

and the end result

D - p (ﬂ, ‘—/> : (3.14)
o V2R e

Adding one more physical variable has led to an additional non-dimensional group because
we changed 7 from 5 to 6, and k increased from 2 to 3 because j remained equal to 3.

We should be aware that this example applies generally to any problem concerning the fluid-
dynamic drag on a body of any shape immersed in a fluid flow, provided we replace the sphere
radius R by a characteristic dimension [ of the body.

Later in this chapter we shall see that D/pV?R?, pVR/p,andV/c have special places in fluid
mechanics: the first is a drag coefficient, the second is called the Reynolds number, and the
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third is the Mach number. Other physical quantities which play a role in flow problems include
the acceleration due to gravity (g) and surface tension (o), and these also lead to ‘named’
non-dimensional groups: the Froude number V/\/Q and the Weber number, szl/o (see
Section 3.12).

If, as is frequently the case, we are unable to fully analyse a problem from basic principles,
then a non-dimensional representation of experimental data is of great value in guiding us how
best to establish a correlation, not least because it always reduces, sometimes significantly, the
number of variables we need to deal with independently.

ILLUSTRATIVE EXAMPLE 3.6

In 1945 the first test of an atomic bomb took place in New Mexico, the so-called Trinity
Test. Photographic images were released in 1947 showing the expansion of the fireball with
time ¢ (0.1 to 62 ms) after the instant of initiation. If it is assumed that the fireball radius R
depends upon t, the atmospheric density p (taken as constant), and the energy released!® in
the explosion E, show that

2
£t = constant.

PR

Solution:

Step 1: The functional dependence in terms of the dimensional physical variables may be
written as

R=f(t,p,E)
so that the number of independent physical variables n = 4.

Step 2: The dimensions of each of the physical variables are

RI=L =T [l =2, and 7= 2L

and the number of dimensions j = 3.
Step 3: According to Buckingham’s IT theorem,

k=n-j=1

and we expect the four dimensional quantities will combine together to produce a
single non-dimensional group, IT;, such that IT; = constant.
Step 4: We select p to eliminate the dimension M from E

E|_ML2 L’ _ L
P 7 M 72

16 The energy released in an explosion is known as the yield.
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so that

R=f <%,t>.

Step 5: Use t to eliminate T from E/p

2 5
[%]:%xﬁ:ﬁ

so that

R=f2<E7f2>.

Step 6: Use R to eliminate the remaining dimension L from E?/p

E_tz —Lst—l
RS | L5

so that finally
2
E—ts = constant
PR
or

1/5
R=C (E) 25
P

where C is a non-dimensional constant. A graph of the fireball radius R versus the
time from initiation of the explosion ¢, in logarithmic coordinates, thus has a slope
of 2/5 and an intercept on the R —axis of In C + In (E/p) /5.

From a more detailed analysis, the British scientist Sir Geoffrey (G. I.) Taylor was able to de-
termine the value of C and so calculate the energy released in the Trinity explosion. He also
showed that the values of R and ¢ determined from the 1947 pictures followed closely the
trend predicted by dimensional analysis. Taylor’s estimate for E was 71.5 T] or 16.8 kilotonnes
of TNT, while the figure stated in an official US Army report published shortly after the test
was 15-20 kt of TNT.

ILLUSTRATIVE EXAMPLE 3.7

A common method for mixing large batches of liquid-food products, plastics, cement, and
other viscous liquids is with a rotating-paddle mixer. The power P required to rotate the paddle
depends upon its rotational speed w, its radius R, the density of the liquid p, and its dynamic
viscosity!” 1. Derive a non-dimensional form to represent this dependence.

17 In practice most synthetic liquids are non-Newtonian in character so that u varies with @ and other flow
variables. Some consideration of non-Newtonian liquids is given in Sections 2.10 and 15.5.



Solution:

Step 1:

Step 2:

Step 3:

Step 4:
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Figure E3.7

The functional dependence in terms of the dimensional physical variables may be
written as

P=f(o,R, p, 1)

so that the number of physical variables n = 5.
The dimensions of each of these physical variables are

_ ML? -1 - -M - M
[P] = 3 [a)]—T [Rl=L [,0]—L3 and [M]_LT

and the number of dimensions j = 3.
According to Buckingham’s IT theorem,

k=n-j=2

and we expect the five dimensional quantities will combine together to produce two
non-dimensional groups, I1; and I, such that IT; = F (I,).
To find IT and IT,, we select p to eliminate the dimension M from P and u

Pl_ML2 13 _1° wl_M _L_ 12
[P]_T3XM_T3 and p_LTXM_T

so that
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Step 5: Use R to eliminate L from P/p and p/p
P L 1 _ 1 Iz L2 1
“—|==%x-—-—==and | = |=% X =5 =
|:,0R5] T3 L5 T3 |:,0R2:| T L2
so that
P M
—_— = w, —— | .
pR® % ( pRz)

Step 6: Use w to eliminate the remaining dimension T from P/pR> and 1/ pR?

P _ 1 3 _ M _ 1 _
|:pR5a)3:|_FXT =1 and |:pR2w:|_T xT=1

==

so that finally we have two non-dimensional groups

P

Il =—-— and II,=
! PR W3 ? pR*w
and
p 1
I, = F(I1 or ——=F .
1 = F(I,) R (pR2w>

Once again this is a perfectly valid result but only one of several possibilities determined
by the sequence in which each of the dimensions (here, M, L, and T) was eliminated and
which physical quantities were chosen to carry out the elimination procedure. Alternative
non-dimensional groups can be formed by multiplying or dividing the groups, or powers
or roots of the groups, which are the ‘natural outcome’ of dimensional analysis. Some of
the other non-dimensional groups we might have obtained in the present example are

pR*w/p, Pp*R/p?, Plpw?R%, and P,/ (p3/wp).

3.9 Rayleigh’s exponent method

The exponent (or indicial) method of dimensional analysis is attributed to the Eng-
lish physicist Lord Rayleigh and also associated with the American physicist Percy
Williams Bridgman. This method is based on the rather sophisticated idea that
any mathematical function can be expressed as an infinite power series, each term of which,

according to the principle of dimensional consistency (see Section 3.5), must have the same
overall dimensions.
We can illustrate the exponent method using the aerodynamic-drag example. Since we have

D=f(V,L,p,n) (3.6)
it must be that

D=kVloud + KVl o u +. (3.15)
where kK, k',... ... are numerical constants and a,b,¢,d,d’,b’,c,d,..... are the exponents

(i.e. constants or powers). Dimensional analysis can be used to determine the values of the
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exponents but not the numerical constants. According to the principle of dimensional consist-
ency, all terms in the series must have the same dimensions as the dependent variable D, i.e.

(D] = [kV“lbpcud] (3.16)
and
ML e (MY (M)

The key point is to recognise that, since this is a dimensional equation, we require that each
dimension balances separately. For example, in the case of L,

L' = L9 x LV x 173 x 79 = potb-3ed (3.18)
which in turn means that the exponents must balance, i.e.
l=a+b-3c-d. (3.19)

Similarly, from considerations of M,

l=c+d (3.20)
and, for T,
2=-a-d. (3.21)

As an observation, we note that the number of unknown exponents (i.e. a, b, ¢, and d) is the
same (i.e. four) as the number of independent physical quantities (i.e. V,/, p, and p) while
the number of equations equals the number of dimensions (i.e. M, L, and T). With only three
equations we cannot determine all four unknowns; the best we can do is to write three of the
unknown exponents in terms of the fourth. For the latter, we can choose any one of the four
exponents. If we choose d, from equation (3.20) we have

c=1-d, (3.22)
from equation (3.21),

a=2-4d, (3.23)
from equation (3.19),

b=1-a+3c+d=2-d (3.24)

and we have now found g, b, and c in terms of d.
We return to the infinite series, equation (3.15), which can now be written as

D= kv¥ap-dpl-d dy (3.25)
d
_ 22 ( M
= kp V2l (le) o (3.26)

In the final version of our infinite series, we have separated the independent variables into
those having (known) pure-number exponents and those involving the unknown exponent d.
If we now divide through by p V22, we have
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d
D _ (-~
7 =k (le) P (3.27)

or

D __p(
e F (le) (3.28)

which means that the non-dimensional group D/ (,0 V2 lz) is a function of w/ (p VI) which, as it
must be, is also non-dimensional. In fact, the inverse of u/ (p V1), i.e. p Vl/ ., is the special non-
dimensional group, the Reynolds number, which arises in the majority of viscous fluid-flow
problems (see Section 3.12).

It is crucially important for the reader to realise that the final result in the form of equation
(3.27) is not simply

d
D _ (-~
Fop =k <le) (3.29)

even though, if it were, this would be a very simple and convenient formula to use once k and d
were known, e.g. from experiment or a complete analysis of the flow problem. Unfortunately,
the exponent method is sometimes presented with the vitally important “+ ...............
omitted from equation (3.27), and the unwary reader forgets, or is never told, that he or she is
dealing with only one term of an infinite series.

Of course, if carried out correctly, both the exponent method and the sequential-elimination
process produce the same result. The exponent method is probably the most commonly
used but, in the author’s opinion, Ipsen’s sequential-elimination process (Section 3.8)
is more straightforward and less likely to lead the inexperienced user into difficulty or
misunderstanding.

3.10 Inspection method

In many instances, with experience, it becomes quite straightforward to write down the appro-
priate non-dimensional groups for any given problem, essentially from memory or inspection.
For example, if the flow velocity V and fluid viscosity  are involved in a problem, there is a
very good chance that the non-dimensional group p VI/p will be one of the non-dimensional
groups (obviously, the fluid density p and a length [ are also required). Since an approach of
this kind is more ad hoc than systematic, it is not to be recommended for the inexperienced.

3.11 Role of units in dimensional analysis

Since there is a one-to-one correspondence between the basic SI units, m, kg, s, and K here,
and the primary dimensions M, L, T, and 0, it should be clear that, in principle, any prob-
lem in dimensional analysis can be worked through using basic units rather than dimensions,
although this is not recommended. However, it is important to realise that the units of any
quantity can be used to determine its dimensions. This is particularly useful in cases for
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quantities where the dimensions may be difficult to remember, such as viscosity and power.
The units of practically all physical properties of engineering significance can be found in
thermodynamic tables, such as those by Rogers and Mayhew (1994), or any of the mechanical-
engineering handbooks which many university departments make available to students. As
mentioned in Section 3.3, the Notation section at the beginning of this book lists all the phys-
ical properties and other quantities which appear in this book, together with their units and
dimensions.

ILLUSTRATIVE EXAMPLE 3.8

The power P required to drive a centrifugal pump depends upon the volumetric flowrate Q
it delivers, the pressure difference Ap imposed between the outlet and inlet of the pump, the
density of the liquid p and its viscosity u, the rotational speed of the pump w, and the impeller
radius R. Put the preceding sentence into the form of a non-dimensional equation.

Solution

As always, the first step is to write down the functional dependence

p =f(Qa Ap,w, R, p, H)-

To illustrate the point being made in this section, we now write down the units of each of the
eight quantities involved

P(W); Q(m3/s); Ap(Pa); w(1l/s); R(m); p(m3/s);and,u(Pa.s);

from which we can state or derive the dimensions of each quantity, where necessary first
converting the derived units (W, Pa, and N) into basic units

w=J)_Nm_ kgm m _ kgm? pa= N _ kgm ; _ kg
S S §2 s $ m? 2 m? ms?
k: k
and Pas = —gz.s = —g;
m.s m.s
so that
Pl = ML 101 = L pap = Mool = LRI =15 [p) = M and [] =
T3 b ) Tz’ ’ 3’ LT

We now use the sequential elimination method to perform the dimensional analysis, starting
with the density p to eliminate the dimension M

Pl_ML2_ L _ L5 |Ap M L3 12 W M L3 _ 12
=== x 3T === X 7 ==; and — == X =
[p] T "M ¥ [ L2 M2 P

and at this stage we can write

——f1< ,a),R%).
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We now use R to eliminate the dimension L

Pl 1 _ 1, |Ap|_L2 1 _ 1, (K |_L2 1 _1
pR| T3 L T |[prRY] T2 12 T | pR? T 12 T

Ql_L2 1 _1

and |:R3]_ T XL3_T

so that
P _,.({Q A
05 =h <—3,—2,w,—2).
PR R’ pR PR

Finally, we use w to eliminate the dimension T (noting that [w] = 1/T)

_P CQ_%_JL)

PR’ wR>’ pszz’ pwR? ’

In this case the seven physical quantities have produced four non-dimensional groups, as we
would expect from Buckingham’s IT theorem since with n = 7 and j = 3, we have k = 4.

For a fluid with relatively low viscosity, such as water, viscosity plays only a minor role in
determining pump performance except at very low speeds. In practice this means that vis-
cosity is of little importance if pR?>w/p > 1. pR?>w/ i, of course, is the inverse of our fourth
non-dimensional group and is a rotational form of the Reynolds number we have mentioned
previously.

3.12 Special non-dimensional groups

In engineering fluid mechanics we have to take account of the influence on flow of those fluid
properties relevant to the specific problem under consideration. These properties may include
the fluid density p, either the fluid dynamic viscosity u or the fluid kinematic viscosity v
(defined by v = u/p), surface tension o, and soundspeed c. The latter quantity is included
to take account of the compressibility of the fluid (i.e. the increase or decrease in density
produced by an increase or decrease in pressure). We could also have included here the ac-
celeration due to gravity g, which in most instances plays no role, although there are obvious
exceptions, for example, in determining the vertical variation of pressure in a body of fluid
at rest (see Section 4.2) or in problems where there is a free surface or an interface between
two immiscible liquids. If we are concerned with flow through a machine or object (internal
flow, see Chapter 16) or around a body surrounded with fluid (external flow), it is necessary
to select a velocity V and a length [ that characterises the object’s scale (or size). In the case of a
pipe or duct'® through which there is flow, this length is likely to be its diameter or radius (or
more generally its hydraulic diameter or radius'?) although the pipe length L may also be of
importance as may be the average height of any surface roughness ¢ (see Section 18.9). For an

18 The term duct is used to mean any pipe, tube, channel, nozzle, etc., through which there is fluid flow.
19 The concept of hydraulic diameter and radius is explained in Section 16.2.
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external flow, the characteristic length may be the diameter or radius of an object, for example
in the case of a smoke stack, or the wing span in the case of an aircraft. In a given problem,
it is most unlikely that all of the fluid properties, lengths, etc., play a significant role and it is
usual to include in any analysis only those likely to do so. For example, liquids are practically
incompressible so the soundspeed would only be included if the fluid concerned was a gas in
which the occurrence of major pressure variations was likely. Collectively, the quantities which
influence a flow are termed the independent variables.

The dependent variables (i.e. the quantities which are determined by the independent vari-
ables) might be D, the drag force for external flow around an object, f the frequency of the
periodic disturbances which sometimes occur in the wake of the object, and Ap a pressure
difference, as discussed further below. This being the case, we may write

D (or f or Ap) = F(V for }, p, i1, 0,6, 1) (3.30)

where V is a characteristic velocity of the flow. In the case of an external flow, V is usually the
velocity of the approach flow relative to the object. In the case of a boundary layer, the free-
stream velocity Uy is used. For an internal flow, an average velocity V across the flow cross
section is the usual choice. So far as turbomachinery, such as a pump, compressor, or turbine,
is concerned, w is the rotational speed (in rad/s).

If we apply the method of sequential elimination of dimensions to equation (3.30), we
arrive at

A I
ﬁ (or{—/lorp—\f)2> = F (%wﬁ%%) (331)
Additional quantities, such as the lengths L and ¢, could easily be added on the right-hand side
of equation (3.30). So far as dimensional analysis is concerned, this would merely add L/l and
g/l to the list of non-dimensional groups in equation (3.31).
Although perfectly valid as they are, each of the non-dimensional groups in equation (3.31)
(with the exception of flI/V) is usually modified as follows

2
D Ap pVI VI Vg Y (3.32)

%szA %sz Boe \/Q ¢

We now consider each of these special non-dimensional groups.

3.12.1 Drag coefficient Cp

The first group in the list above defines the drag coeflicient

Ccp=—2L (3.33)

%pVZA

As explained in Section 7.5, the quantity pV?/2 is termed the dynamic pressure and arises
from considerations of energy conservation along a streamline: it represents the kinetic en-
ergy per unit volume of fluid. Since the factor 1/2 is non-dimensional, its inclusion in the
definition of Cp does not affect its ‘dimensionality’. The quantity A, which has replaced 2, is
a characteristic (or representative) area for the problem considered. In many instances, this is




UNITS OF MEASUREMENT, DIMENSIONS, AND DIMENSIONAL ANALYSIS

taken as the frontal area or silhouette area of the object on which the drag force is being exerted
or the planform area in the case of a wing. The drag coeflicient can be regarded as the ratio of
the drag force D to the force the dynamic pressure p V?/2 would exert on an area A.

Further consideration of the drag coefficient for various objects is discussed in Section 18.15.

3.12.2 Lift coefficient C;

If L is the lift force exerted by fluid flow on an object, such as an aerofoil, then, in a similar way
to a drag coeflicient, we can define a lift coefficient

c = —L (3.34)

%,oVZA
Lift coefficients for many standard aerofoil sections have been compiled by Abbot and von
Doenhoft (1959).

3.12.3 Euler number Eu, cavitation number Ca, pressure coefficient Cp

The Euler number is defined as

_Ap

Eu = .
pV?

(3.35)
There are several variants on the non-dimensional combination of the quantities Ap and pV?,
largely dependent upon how the pressure difference Ap arises. For example, if Ap = prer - pv,
where prer is a reference pressure, such as the prevailing barometric (or atmospheric) pres-
sure, and py is the vapour pressure of a liquid, Ap/pV? may be used as a measure of the
propensity for cavitation to occur (see Section 8.11 for a discussion of cavitation) and is then
also referred to as a cavitation number, Ca.

For flow around an object, Ap is usually taken as the difference between the local static
pressure p, e.g. at a point on the surface of an aerofoil, and a reference pressure, such as the
undisturbed static pressure upstream of the object, poo. Here again, it is also conventional to
introduce the factor 1/2 so that

A
Cp= 2

(3.36)

which is known as the pressure coefficient.
For internal flows, the dynamic pressure pV?/2 is used to ‘normalise’ (i.e. make non-
dimensional) the pressure drop in a duct Ap, and we have the friction factor

Ap
fov

¢ = (3.37)

where V is the flow velocity averaged over the duct cross section. The factor 1/2 is often moved
to the left-hand side so that the friction factor is defined as ¢/2 = Ap/p V2,

Pressure reduction in a simple, straight duct is a consequence of wall shear stress ts (the
subscript S, for surface, is often replaced by W, for wall). More generally, in a pipe system,
pressure losses also occur for a number of other reasons, such as increases, particularly sudden
increases, or decreases, in cross-sectional area (see Sections 10.5 and 18.11).
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3.12.4 Fanning friction factor fr, Darcy friction factor fp, and skin-friction
coefficient ¢f

Friction factors for duct flow based directly upon the surface shear stress s are also commonly
encountered, for example the Fanning friction factor, fr = 275/pV?, and the Darcy friction
factor, fp = 87s/pV? (see Chapters 16 and 18).

It is easily shown that fr and ¢ for fully developed duct flow through a cylindrical duct of
length L and hydraulic diameter Dy (see Section 16.2) are related by

¢ = é_f{ e, (3.38)

For external flows, a boundary-layer friction factor (or skin-friction coefficient) is
defined by

g_ o
2 pUZ

(3.39)

which is similar to the definition of the Darcy friction factor for duct flow except for the 1/2-
factor being on the left-hand side (see Chapters 17 and 18).

At first sight, all these related but slightly different definitions may seem confusing. They
have been introduced independently by different people over many decades and retained in
their areas of applicability. It is obviously vital for the user of any formula involving one of
these non-dimensional groups to be aware of which definition is relevant.

3.12.5 Reynolds number Re and Poiseuille number Po

In Chapter 2, we identified viscosity p as the material property of a fluid which distinguishes
it from a solid. It is hardly surprising, therefore, that the non-dimensional group which incor-
porates viscosity, the Reynolds*® number, plays a role in the majority of flow problems. The
Reynolds number is defined by

pVl

I
where [ is a characteristic (or representative) length and V is a characteristic velocity. De-
pending upon the problem, I may be a diameter, a radius, a wing span, a height, etc. While the
choice is relatively unimportant, if it is stated, for example, that ‘the critical Reynolds number
is 2100’ it is crucial that it is known what length and velocity have been used to define the
Reynolds number.

If the Reynolds number for an external flow is very small compared with unity, fluid iner-
tia is of minor importance and there is a balance between viscous and pressure forces. Such
flows are referred to as creeping flows, an example of which is Stokes’ flow (see Section 3.6). If
the Reynolds number is very large, much of the flow represents a balance between inertia and

Re = (3.40)

20 Reynolds number is sometimes written as Reynold’s number, even though this is completely incorrect since the
surname of the man it is named after is Reynolds not Reynold. In fact, if it were named after someone called Reynold,
it would still be incorrect to write Reynold’s as it is conventional to adopt forms such as Mach number (not Mach’s
number), etc.
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pressure forces, with viscous effects being negligible. In the latter case, viscosity still dominates
flow in the region immediately adjacent to any solid surface, known as the boundary layer (see
Chapters 17 and 18), where the fluid velocity progressively approaches that of the surface (i.e.
zero if the surface is at rest). The Reynolds number plays an important role in characterising
a viscous flow as either laminar (see Chapters 16 and 17) or turbulent (Chapter 18). For cyl-
indrical pipe flows, the Reynolds number is based upon either the internal diameter or radius
while, for duct flows in general, the hydraulic diameter Dy is often chosen as the length scale.

Much of Chapter 16 is concerned with fully-developed laminar flows through cylindrical
ducts where, as for Stokes’ flow, fluid inertia plays no role. The important flow parameter is
the Poiseuille?! number defined as

_ 215Dy
uv

Po (3.41)

from which it is easily shown that Po = fr Rey although, as pointed out in Section 16.2, the
Reynolds number (here based upon Dg) has been introduced artificially.

3.12.6 Mach number M, Cauchy number Ca, and Knudsen number Kn

The Mach number?? is a non-dimensional number named in honour of Ernst Mach, at the
suggestion of the Swiss scientist Jakob Ackeret, and defined as the ratio of a flowspeed (or the
speed of an object moving through a stationary fluid), V, to the soundspeed of the fluid ¢

M=V (3.42)

It should be noted that ¢ is not a constant for any given fluid but depends primarily upon
its temperature (in the case of a gas, ¢ ~ +/ T, where T is the absolute temperature). Provided
the Mach number is less than about 0.3, a flow can be considered as practically incompressible,
which is why many gas flows can be treated (with the appropriate values for p and 1) in exactly
the same way as a liquid flow. For higher values of M, compressibility becomes increasingly im-
portant. Up to about M = 0.75, the effects of density changes can be accounted for by applying
a compressibility correction to the results of incompressible theory. For values of M close to
unity, the flow is termed transonic, typically with some regions remaining subsonic (M < 1)
while others are supersonic (M > 1) and shockwaves begin to appear. In supersonic flow,
abrupt decreases in velocity, stagnation pressure, and Mach number occur across shockwaves,
with corresponding increases in temperature, pressure, and density. These changes become
increasingly strong as the upstream Mach number becomes increasingly greater than unity.
Flows for which M > 3 are termed hypersonic.

A more general non-dimensional number which can be used to characterise compressible
flow is the Cauchy number defined as

_pV?

Ca T

(3.43)

21 The pronunciation of Poiseuille is ‘pwazoy’.
22 The symbol Ma is frequently used for the Mach number.
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where K is the isentropic bulk modulus of the fluid. It can be shown that, for an isentropic flow
process, Ca = M?. Compressible fluid flow is the subject of Chapters 11, 12, and 13.

In Section 2.5 we showed how the validity of the continuum hypothesis is related to the
molecular mean free path A. The continuum hypothesis breaks down for flows where the
characteristic length scale L has a magnitude approaching A, such that A/L = O (1) or greater.
This Knudsen regime includes flows involving a particle moving through the lower atmo-
sphere or a satellite in the exosphere, and flow through the channels of microfluidic devices.
For a gas with molecular weight M and effective molecular diameter o, according to equation
(2.23), we have

A = M/V2mpNao?, (2.23)
where N, is the Avogadro number.

The Knudsen number Kn is defined as

Kn = % (3.44)

From equation (2.23), gas flows with Kn > 1 will thus arise where the gas density p is very
low, as in the outer regions of the atmosphere (see Section 4.13), and are referred to as rarefied

flows.
The Knudsen number Kn is related to the Mach M and Reynolds numbers Re as follows
_A_3 [mr w _3 [ty M
Kn=T =3\ 2 L7 2\ 2 ke (3.45)

where M = V/c,and Re = pVL/u, V being a typical velocity for the flow. Equation (3.45) is
based upon equation (2.36) for

-2 /2
m=3 ny’OCA' (2.36)

3.12.7 Weber number We

The Weber number, defined by

We = , (3.46)

represents the ratio of inertia forces to surface-tension forces. Surface-tension eftects in fluid
flow are only important if the Weber number is of order unity or smaller. This can be the case
for small droplets or bubbles, capillary flows, and flows of very shallow water. For We > 1, or
if there is no free surface, surface-tension effects are negligible or non-existent.

3.12.8 Froude number

It can be shown that the speed of propagation of small-amplitude waves on the surface of a
liquid layer of depth h is \/gh. For a free-surface flow with flow velocity V, the Froude number
is defined as the ratio of V to \/gh
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Fr=—Y_ (3.47)

JVeh
Such a flow with Fr < 1 is said to be subcritical (i.e. the flowspeed is below the wavespeed
so that small disturbances move faster than the flow) while a flow with Fr > 1 is termed
supercritical. From this it becomes apparent that the Froude number is rather like the Mach
number, which distinguishes between subsonic (M < 1) and supersonic (M > 1) flow.
Where there are two fluids of different densities, such as at the interface between two
immiscible liquids, a so-called densimetric Froude number can be defined as

Fr=—VY (3.48)

V&h|Aplip
where | Ap| is the magnitude of the density difference and p is the average density. The densi-
metric Froude number also arises in the analysis of buoyant jets, also known as plumes, when
the appropriate length scale is the initial diameter.

3.12.9 Strouhal number St

The Strouhal number, defined as

St = f—vlv (3.49)

is used to characterise the periodic (i.e. fixed-frequency) disturbances (so-called aolian tones)
which arise in the wake of an object such as a circular cylinder immersed in a steady flow. If
the cylinder diameter is d, and the crossflow velocity is V, the frequency f is given by St =
fd/V = 0.2 in the Reynolds-number range, 400 < pVd/u < 3 x 10°. Self-excited flow
oscillations of this type can feed energy into the structure, leading, in turn, to (flow-induced)
structural vibrations which can reach dangerously high levels if the frequency is close to a
natural frequency of the structure. The collapse of the Takoma Narrows suspension bridge
in Washington State, USA, in 1940 was a consequence of this effect, as was the vibration of
the 241 m-high John Hancock Tower opened in Boston in 1976, which led to large plate-glass
windows falling from their frames. Remarkably, in both instances the vibration was initiated
at windspeeds no greater than about 70 kph. The helical strakes which are wound around tall
chimneys are designed to suppress such periodic flow behaviour.

3.13 Non-dimensional groups as force ratios

It is useful to find a physical interpretation of non-dimensional groups, as ratios of quantities
with the same overall dimensions. As we have just seen, the quantity pV?2/2 (or just pV?),
which represents the kinetic energy per unit volume of fluid and also its dynamic pressure,
occurs in the numerators of several of the dependent non-dimensional groups. The quantity
p V22, where [ is a characteristic length of the flow problem under consideration (I could
just as well be replaced by A, a characteristic area), is often referred to as an inertia force
(it is easily shown that it has the dimensions ML/T?, the same as those of force). The drag
coefficient Cp can then be regarded as the ratio of the drag force to the fluid inertia force,
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while the Euler number Eu, the pressure coeflicient Cp, and the friction factor cf/2 are the
ratio of a pressure force (ApA) to the inertia force. In a similar way, the Fanning and Darcy
friction factors represent the ratio of a friction force to the inertia force.

We turn now to the independent non-dimensional groups, starting with the Reynolds
number which can be written as

_ oVl _pVE
S ow o opvle

Re (3.50)

The shear stress at a point in a fluid is proportional to the velocity gradient at that point,
according to T = u du/dy so that T ~ pV/I (where u is the local velocity, and y is the normal
distance from a boundary) and the denominator of Re, u VI ~ t[2, which is the product of a
shear stress and an area (/?) and again has the dimensions of force. The Reynolds number can
therefore be viewed as the ratio of inertia force to shear force.

We have already seen that the Mach number is the square root of the Cauchy number, the
latter defined as Ca = pV?/K, K being the isentropic bulk modulus of the fluid. The pressure
difference Ap required to change the volume UV of a fluid by an amount A% is given by Ap =
—K A/ (the negative sign is introduced because a decrease in volume requires a positive
pressure difference) so that Ca ~ pV2I2/ Apl?, i.e. the ratio of inertia force to compressive (or
pressure) force.

In the case of the Weber number, pV?I appears in the numerator and it is immediately
apparent that this number represents the ratio of inertia force to surface-tension force, the
latter being proportional to o’l.

The Froude number can be written as /o VI/ /0gl?, where the numerator can be seen to be
the square root of the inertia force, and the denominator is the square root of the gravity force.

Not all non-dimensional groups can be interpreted as the ratio of a force to inertia force,
for example the Strouhal number. Other non-dimensional groups, which arise in areas such
as heat transfer, can be identified as ratios of such physical phenomena as viscous and thermal
diffusion (e.g. the Prandtl number).

3.14 Similarity and scaling

There would be little point in carrying out experimental studies on scaled-down (or even
scaled-up) models if we did not known how the results could be translated (i.e. scaled) to full
size. Fortunately, this is just the information provided by dimensional analysis. We require
two things

e geometric similarity, which means that the model and full size (or prototype) differ only
in size (or scale) but not in shape. The ratio of full scale to model scale is termed the scale
factor.

o dynamic similarity, which requires that each independent non-dimensional group has the
same value for the model (M) and full scale (F), i.e. ITopr = 15, I35 = I3, etc.

We have seen already that a major simplification resulting from dimensional analysis is that
the number of separate variables we need to deal with is always reduced by the number of
independent dimensions involved (usually three).
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Although it was not stated at the time, an implicit assumption in dimensional analysis is that
we are considering geometrically similar situations. For example, if we write

D=f(V,Lp,p) (3.51)

for the drag force D exerted on a car of length I, we intuitively realise that, if we carry out
experiments on a model car, it should be a scaled-down replica of the full-size version in all
relevant respects. If the model is 1/5 the length of the full size, then the wheels of the model
should be 1/5™ the diameter of those of the full size, the width 1/5%, etc. Certain aspects of
the design of a car, such as the car’s interior, play no role in determining its drag and so are
not relevant in dimensional analysis. Other features, such as gaps between the doors and body
panels, or the trim, or the windscreen wipers, may have a minor influence on drag but would
normally be too difficult or expensive to reproduce accurately on a model.

The requirement of dynamic similarity in scaling model tests is the same as what is required
to duplicate the results of any experiment, i.e. to ensure that each of the independent non-
dimensional groups has the same value for the model and the full scale and, in consequence, so
do the dependent non-dimensional groups. As we have already seen, the power of dimensional
analysis is that the number of independent non-dimensional quantities is always less, often
significantly so, than the number of dimensional quantities.

In our aerodynamic-drag example, we have

D=f(V,Lp,pn) (3.52)

which tells us that if we carry out an experiment on a model (or full-size) car to measure the
drag D for given values of V, p, u, and ] and repeat the experiment, for exactly the same values
of the dimensional independent variables V, p, i, and I, we shall obtain, within experimental
uncertainty, the same value for the dependent variable D.

In the non-dimensional representation, the equation for D transforms to

D pVl
-2 __f(£Z 3.53
p V2 < m ) (3:53)

which tells us that, for every value of the non-dimensional group of independent variables
pVl/p (i.e. the Reynolds number), there will be a corresponding value of the dependent
non-dimensional group D/p V22 (i.e. the drag coefficient, although, as mentioned above, the
denominator is conventionally replaced by pV2A/2, where A is the car’s silhouette area). The
beauty of this result is that it is only the values of the two non-dimensional groups p VI/u and
D/pV?I2 which matter, not the values of their ‘constituents’. In other words, we can quite freely
change the values of V, p, i, and I, for example by changing the fluid (e.g. using water instead
of air), but, if p VI/u stays the same, then so will D/p V22,

As a final point, here, we note that if we have geometric and dynamic similarity, then we
shall also have kinematic similarity. What this means is that within the flowfields for the
model and full scale, the ratio of velocities at corresponding points will be the same as the ratio
of the reference velocities Vs and Vr, where the subscripts M and F indicate model and full
scale, respectively. The velocities will also have the same vector directions at corresponding
points in the two cases.
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ILLUSTRATIVE EXAMPLE 3.9

A sports car designed for a top speed of 356 kph is being developed for the 24 Heures du Mans
endurance race. The prevailing atmospheric conditions are assumed to correspond to an air
density of 1.2 kg/m® and a dynamic viscosity of 1.8 x 107 Pa- s (i.e. the values for pure air at
normal temperature and pressure, 20 °C and 1 atm). Calculate the wind-tunnel speed for tests
to be carried out on a quarter-scale model car in a pressurised and cooled wind tunnel in which
the air density is 4.7 kg/m? and the dynamic viscosity 1.7 x 107 Pa - s (i.e. the property values
at 0 °C and 3.7 bar). If the model test gives a drag force of 1334 N, what is the corresponding
drag for the full-size car and the tractive power required, assuming dynamic similarity between
the wind-tunnel and full-scale situations?

working section

Vv download

drag force D

O ©

Figure E3.9

Solution

We would normally start by carrying out the basic dimensional analysis for this problem.
However, in this case, we know the result already

D pVl
=F(E=).
p V2 < [z )

Dynamic similarity requires that each of the two non-dimensional groups has the same value
for the model and for the full-scale car, i.e.

Dy _ _Dr
pmVitht — prVEIE

drag coefficient Cp =

and

pmVuly _ prVEIE
UM ug

Reynolds number Re =

where, as earlier, the subscripts M and F refer to the model and full scale, respectively.
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It is always advisable in problems of this kind to tabulate the known and unknown quant-
ities using consistent SI units. For the top speed we have Vg = 356 kph which converts to
Vi = 98.9 m/s; then

Model Full scale
Speed V (m/s) ? 98.9
Length [ (m) Ip/4 Ip
Air density p (kg/m3) 4.7 1.2

Air viscosity u (Pa - s) 1.7 x 107> 1.8 x 107
Drag force D (N) 1334 ?
Power P (W) ? ?

Note that we have no absolute information about the size of either the model or the full-scale
car, only the ratio between them which, in this instance, is sufficient.
From the Reynolds-number equality, we have

-5
=12 L7x107 X 4% 98.9 = 95410,

L7 7 1.8x107°

From the drag-coefficient equality, we have

P Vi \’ )
rr YFE ZE
Dg Py X(V ) X(l > X Dy

F
1.2 89.9 2
R . 2
=47 X (—95. > X 4% x 1334 = 5859 N or 5.86 Kn

and the corresponding tractive power required is
Pp = DpVp = 5859 x 98.9 = 5.79 x 10° W or 579 kW (or 777 hp).

The power required to overcome the drag of the model car Py can also be calculated as
Py = Dy V= 1334 x 95.4 = 1.27 x 10°W.

The question we should ask now is ‘does power also obey the principle of dynamic similarity?’
This is easily answered as follows. Using p, V, and /, we find that a non-dimensional group for
the power is P/pV>? and we should expect this group to have the same value for model and

full scale.
For the model we have
Py 1.27 x 10° _ 0.50

oVl 47 x 9543 x (Ip/4)? B
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where we have again used the ratio 1:4 for the length scales, and, for the full scale,

Pr_ 579x10° _ 0.50

orViE  12x989 x B B

so the two non-dimensional groups have the same value, as they should.

3.15 Scaling complications

The scaling situation we are usually confronted with is that of a model test on a scale much
smaller than full size, and this can easily lead to conflicting or impossible requirements for the
model tests. We illustrate the difficulty which can arise, and suggest ways in which the cor-
responding conflict can be resolved by reconsidering the problem of aerodynamic drag. The
observant reader will have noticed that in the sports-car example (Illustrative Example 3.9)
for the wind tunnel the air density was given as 4.7 kg/m> and the dynamic viscosity as
1.7 x 107> Pa-s. These property values, which correspond to a pressure of about 3.7 bar and
a temperature of 0 °C, would be attainable only in a specially designed and expensive pressur-
ised, cryogenic wind tunnel. In some circumstances, strict adherence to the requirements of
dynamic similarity is possible only through such extreme measures and it may be necessary to
accept a compromise solution.

We should, of course, ask the question ‘What would be the consequences of performing the
model test in a wind tunnel operating at the same temperature and pressure as would be the
case for the full-scale car, so that pp; and up would have the same values as their full-scale
counterparts, i.e. 1.2 kg/m? and 1.8 x 107 Pa- s, respectively?” Since we took the speed of the
full-scale car as 356 kph or 98.9 m/s, Reynolds-number equality led to

PE _ MM _ IF
VM=—X—"7xX
MZ oM " wE T Iy
=1x1x4x989=3956m/s = 1424 kph.

It should be apparent immediately that for a model test such an airspeed is unrealistically high
and would again require a rather special (and again expensive) wind tunnel. There is, however,
a more fundamental problem: since the speed of sound at 20 °C is 342 m/s, an airspeed of 395.6
m/s corresponds to a Mach number M = 1.15. At this Mach number, the flow approaching the
model is just supersonic (i.e. M > 1), and changes in the airflow as it passed over the model
would produce corresponding changes in pressure, density, and temperature and introduce
compressibility effects, such as shockwaves, which would drastically affect aerodynamic beha-
viour, including drag. In fact, there would be regions in the flow where M is much greater than
1.15, as well as others where it would be much lower. For the full-scale car, for which M = 0.29,
compressibility effects would be (just about) negligible.

Clearly, something has gone wrong, and the foregoing is a reminder that when we carry out
dimensional analysis (or any other theoretical analysis) it is assumed that the physical quant-
ities we have included account for all the physical effects of importance to the problem under
consideration. Compressibility would be expected to influence the aerodynamic behaviour of
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rockets, missiles, most jet aircraft, and even cars designed to challenge the world land-speed
record (currently 1228 kph but the Bloodhound SSC project is aiming for 1600 kph), but not
a car with a top speed of ‘only’ 356 kph.

In Chapter 2 we showed the isentropic bulk modulus K is the appropriate property to
characterise the compressibility of a fluid. However, it is more usual to use the soundspeed
¢ to characterise compressible fluid flow. If we include c in the list of physical quantities that
determine aerodynamic drag, we can write

D=f(V,p,u,1¢) (3.54)

and the end (i.e. non-dimensional) result is

p\gﬂ - R (%Vl %) or  Cp=F(Re,M). (3.55)
Note that we did not need to go through the entire dimensional analysis again: since we added
one more variable, ¢, and no new dimensions, Buckingham’s IT theorem tells us to look for one
additional non-dimensional group to involve c. The conventional choice is the Mach number,
M = V/c, though in principle a second Reynolds number, based upon ¢ rather than V (i.e.
pcl/p), would be just as good.

Dynamic similarity now requires not only the Reynolds number Re to have the same value
for the model and the full-scale car, but also the Mach number M if the drag coefficient Cp is
to be the same. As we saw in our example at normal temperature and pressure (i.e. 20 °C
and 1 atm), Reynolds-number equality was not consistent with Mach-number equality, so
that dynamic similarity was not achievable. We can see that this will always be a problem if
Reynolds-number equality is enforced with the same fluid properties for both model and full
scale, because

pmVuly _ prFlp

3.56
mm MUFE ( )
leads to

Vumlvy = Vel or Vy = l—F.VF. (3.57)

Im
Apart from any other considerations, this result reveals as completely erroneous the common
layman’s assumption that, to replicate the aerodynamic behaviour of a car or aircraft, its speed
should be reduced in proportion to its size. In fact, as we see, exactly the opposite is true!

The situation is much more satisfactory for the example with high pressure (3.7 bar) and
reduced temperature (0 °C) for the model. The dynamic viscosity of air is weakly dependent
upon its absolute temperature (i ~ +/T) and practically independent of pressure. Essentially,
the scale difference has been compensated for by increasing the density, whereas the sound-
speed, also proportional to +/T for a perfect gas, is only slightly reduced (from 343 m/s to 331
m/s) and we find

My = 95.4/331 = 0.29 and Mf = 98.9/343 = 0.29.

Thus, the conditions for dynamic similarity are now completely satisfied, although the Mach
number appears to be low enough for compressibility effects to be regarded as negligible
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(normally, an airflow can be considered incompressible if M < 0.3). In fact, the situation
is not quite so straightforward because there will almost certainly be zones on the car’s surface
where the Mach number could reach significantly higher values, and compressibility effects
would no longer be completely negligible (e.g. for M = 0.5 the density is reduced by about
11%). The more the full-scale Mach number exceeds 0.3 and approaches unity, the more im-
portant is equality of the model and full-scale Mach numbers to account for compressibility
effects.

In discussing the wind-tunnel evaluation of the aerodynamic behaviour of a sports car, we
have made no mention of two vital aspects (both of which are outside the scope of dimensional
analysis). The first is blockage, associated with the fact that the flow around an object in a
wind tunnel is affected by the proximity of the tunnel’s walls. To some degree, this effect can
be accounted for and is minimised if the tunnel cross section is far greater than that of the
model. The second aspect is ground effect, associated with the fact that the airflow around a
car moving over a stationary road is significantly different from the situation where both car
and road are stationary. Modern wind tunnels used to evaluate the aerodynamics of cars use a
‘rolling road’ to account for ground effect.

3.16 Other Reynolds-number considerations

In general, the Reynolds number is influenced by changes in both density and dynamic vis-
cosity. It is often more convenient, therefore, to define the Reynolds number in terms of the
kinematic viscosity v = u/p, i.e.

VI _ v
w v
We can now regard the influence of increased pressure (see Section 3.15) as a reduction in the
kinematic viscosity. A reduction in v can also be achieved by changing the model fluid from
air to a liquid such as water. At first sight it may seem surprising that the effective viscosity of
water is less than that of air. However, the density of water may be taken as 1000 kg/m?® and its
dynamic viscosity at 20 °C as 1072 Pa - s, so that its kinematic viscosity is 107® m?/s, which is
a factor of 15 lower than the value for air, i.e. 1.5 x 10> m?/s. For Reynolds-number equality

we now have

Vmlv _ _ VElr
10°  15x107

Re = (3.58)

1l
151M.Vp

or Vum =

that is to say, if, as in the sports-car example, [p/ly; = 4, we require Vi = 0.27 Vg, or Vi =
26.7 m/s. Although a speed of 26.7 m/s is much too high for most water channels (10 m/s
would already be considered a very high speed for a water channel) and would almost certainly
introduce the new problem of cavitation (see Section 8.12), it is clear that the low kinematic
viscosity of water will allow relatively high Reynolds numbers to be achieved at modest speeds.

We have already indicated that, if the Mach number is less than about 0.3, fluid** compress-
ibility is of negligible significance and Mach-number equality is not vital. It is natural to ask if
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we can make a similar statement for the Reynolds number. If we calculate the Reynolds num-
ber for our sports car, assuming a length [ = 5 m, we find Re = 3.3 x 10, obviously a very
large number. In fact, for most situations of practical engineering significance (we are exclud-
ing here the emerging fields of microtechnology and nanotechnology, where length scales are
typically 107 and 10~ m, respectively), the Reynolds numbers turn out to be quite large. It
is also the case that above a critical Reynolds number, which is different for every body shape
(for external flow) or channel cross section (for internal flow) but typically of the order of 10,
the flow becomes unsteady and increasingly random (the term chaotic is also used). Such a
state of quasi-random flow is said to be turbulent, in contrast to that at much lower Reynolds
numbers, where the flow is smooth-flowing and said to be laminar (the intermediate state is
termed transitional) (see Chapters 16 and 18). In many instances, the drag coefficient in tur-
bulent flow becomes almost constant (i.e. independent of Reynolds number, see Section 18.15)
and so can be determined from model tests run at Reynolds numbers lower than full scale but
still sufficiently high for the flow to be fully turbulent.

9 3.17 SUMMARY

In this chapter we have explained the crucial role of units and dimensions in the analysis
of any problem involving physical quantities. The underlying principle of dimensional ho-
mogeneity has been introduced, i.e. the individual terms in any equation or function which
connects physical quantities must have the same overall dimensions (and units). The major
advantage of collecting the physical quantities, which are included in either a theoretical
analysis or an experiment, into non-dimensional groups has been shown to be a reduction
in the number of quantities which need to be considered separately. Buckingham’s IT the-
orem was introduced as a method for determining the number of non-dimensional groups
(the IT’s) corresponding with a set of dimensional quantities and their dimensions. The
sequential elimination of dimensions was shown to be a systematic and simple procedure
for identifying these groups.

The scale up from a model to a geometrically similar full-size version requires dynamic
similarity, which means that each of the non-dimensional groups describing the model-
scale conditions is equal to that for its full-scale counterpart. The definitions and names
of the non-dimensional groups most frequently encountered in fluid mechanics have been
introduced and their physical significance explained. The chapter concluded by pointing
out that the requirements for dynamic similarity may be too costly, technically difficult, or
physically impossible to achieve in practice, and a compromise solution has to be accepted.

The student should be able to

e write down the units and dimensions of any of the physical quantities listed in
Table A.6

e convert any physical equation into non-dimensional form

e apply Buckingham’s IT theorem to determine the number of non-dimensional
groups corresponding with a set of dimensional quantities and their dimensions

23 Practically speaking, liquids can normally be regarded as incompressible, so that the term fluid here really means
a gas or vapour.
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3.3

3.4

3.5

SELF-ASSESSMENT PROBLEMS

use a systematic procedure, such as the sequential elimination of dimensions, to
convert a functional dependence into an equivalent non-dimensional form

recognise the more common non-dimensional groups which arise in fluid mech-
anics, such as Reynolds number, Mach number, and drag coefficient

determine full-size physical quantities from the results of a dynamically similar
model test

recognise and resolve scaling contradictions

SELF-ASSESSMENT PROBLEMS

Determine the dimensions of the following combinations of physical quantities,
where p represents pressure, p is density, V is velocity, g is acceleration due to gravity,
tis time, h and [ represent lengths, and v is kinematic viscosity

plpV, gtIV, \/gll, Vilv, pV?, pigh, and pVI.

Find the values of the exponents a,b, and ¢, which make each of the following
combinations of physical quantities non-dimensional

p  pVD Do ¢
V@ and -
p n pv

In addition to the symbols in problem 3.1, D represents diameter, x is dynamic
viscosity, and o is surface tension.
(Answers: 2; 15 1)

A disc of weight W and radius R slides with velocity V over a smooth, flat, horizontal
surface. Lubricant with dynamic viscosity u is pumped into the gap between the disc
and the surface at a volumetric flowrate Q. It can be shown that the drag force D
acting on the disc is given by

y

2p4 3

D:nv(” R.W> .
3Q

Show that this equation is dimensionally correct.

A spherical drop of liquid of diameter D and density p oscillates under the influence
of its surface tension o. Show that the frequency of oscillation is given by

=k -2,
f oD

where k is a numerical (i.e. non-dimensional) constant.

(a) The wave resistance R of a ship depends upon its length L, the water depth d,
the water density p, the acceleration due to gravity g, and the ship speed V. Derive a
non-dimensional form for the preceding sentence.

(b) A test carried out in a towing tank on a one-twentieth-scale model ship of length
1.5 m gave a value for the wave resistance of 160 N at a model speed of 4 m/s. The wa-
ter density in the towing tank was 1000 kg/m? while that for the full-size ship would
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3.6

3.7

3.8

3.9

3.10

be 1050 kg/m?. Assuming dynamic similarity between the model and full scale, cal-
culate the depth of water in the towing tank to correspond to a depth of 20 m for the
full-scale ship and the corresponding wave resistance.

(Answers: 1 m; 1.34 MN)

The power P developed at the shaft of a wind turbine is a function of the windspeed
V, the air density p, the rotation speed N, and the turbine blade rotor diameter D.
Show that

P _p(V
D F ( ND) ) (3.59)

Tests were performed on a model turbine giving values of P/pN>D® and the cor-
responding values of V/ND. It is required to design a wind turbine to generate a
specified power output for a given air density, windspeed, and rotation speed. How
would you plot and use the experimental results for this purpose?

(a) The shaft power P developed by a hydraulic turbine depends upon the volumetric
flowrate of water through the turbine Q, the water density p, the pressure differ-
ence across (i.e. between inlet and outlet) the turbine Ap, the impeller rotation speed
N, and the impeller diameter D. Derive a non-dimensional form of this statement,
ensuring that P, Q, and Ap appear in independent non-dimensional groups.

(b) The volumetric flowrate of water through a Kaplan hydraulic turbine is 5 m?/s,
and the head difference 40 m (head difference / is a measure of pressure difference
such that Ap = pgh, where g is the acceleration due to gravity). If the turbine rotation
speed is 250 rpm, assuming conditions of dynamic similarity, calculate the flowrate
and head difference for a geometrically similar, quarter-scale model turbine running
at 400 rpm with a fluid of relative density 0.8. Also calculate the ratio of the power
outputs for the two machines.

(Answers: 0.125 m3/s; 5.12 m; 313)

A rotating-paddle mixer with a paddle diameter of 1 m is to be designed for use with
a liquid of relative density 2 and kinematic viscosity 1 m?/s. The power required by a
model mixer with a paddle diameter of 100 mm operating at a rotational speed of 50
rpm in a fluid of density 1200 kg/m® and dynamic viscosity 100 Pa s is 500 W. As-
suming geometric and dynamic similarity between the model and full-scale mixers,
calculate the power and speed for the full-scale mixer.

(Answers: 144 kW; 6 rpm)

(a) The velocity V with which a shell can be fired from a gun barrel depends upon
the shell diameter D, the shell mass m, the air density p, the soundspeed ¢, and the
explosive energy of the shell E. Derive a non-dimensional version of this statement.

(b) In a laboratory test, a shell-shaped projectile of diameter 10 mm and mass 0.05
kg is fired at a speed of 500 m/s through a heavy gas with a density of 2 kg/m?
and a soundspeed of 100 m/s. The explosive energy required is 10 kJ. Calculate the
shell speed, shell mass, and explosive energy for a geometrically similar shell of dia-
meter 100 mm fired into air with a density of 1.2 kg/m> and a soundspeed 340 m/s,
assuming conditions of dynamic similarity.

(Answers: 1700 m/s; 30 kg; 69.4 MJ)

(a) The drag force D on a supersonic aircraft may be assumed to depend on its wing-
span S, its speed V, the air density p, and the compressibility of the air K. Derive
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3.12

SELF-ASSESSMENT PROBLEMS

a non-dimensional form of this statement. Note that compressibility has the same
units as the inverse of pressure.

(b) A fighter aircraft is designed to fly at a speed of 2500 km/h at an altitude where
the air density is 0.287 kg/m> and the compressibility is 4 x 107> Pa~!. A 1/20%- scale
model of the aircraft is to be tested in a pressurised and cooled wind tunnel. If the air
in the tunnel has a density of 4 kg/m® and compressibility 2.5 x 107 Pa~!, calculate
the airspeed for dynamic similarity. If the model has a wingspan of 0.5 m and the
drag force on the model is 1000 N, calculate the drag force on the full-size aircraft at
design conditions and the required propulsive power.

(Answers: 744 m/s; 2.5 x10* N; 17.4 MW)

(a) The drag force D exerted on a sphere moving through a fluid depends upon the
sphere’s radius R, the speed V of the sphere relative to the fluid, the fluid density p,
and the dynamic viscosity of the fluid u. Derive a non-dimensional form of this
sentence.

(b) Measurements of the drag force on a series of spheres, each moving through a
different fluid, yield the following results

R(mm) V(m/s) p(kg/m®) wu(Pa-s) D (N)

5 0.1 1260 1.3 0.123
30 0.01 920 0.059 334 x 107%
2.5 0.5 935 0.12 2.83 x 1073
1 1 1000 81073 6.3 x 1074
7.5 10 12 1.8x 107>  425x 1073
50 120 0.07 8 x 107° 1.588

Use the results of part (a) to convert these results to non-dimensional form. Plot the
logarithm of one of the non-dimensional groups against the logarithm of the other
and comment on the results.

At very low Reynolds numbers the drag force D exerted on a sphere of radius R
moving through a fluid of dynamic viscosity u at constant velocity V is given by
Stokes’ law

D = 6 uRV.

Show that a small sphere of density ps dropping under the influence of gravity
through a fluid of density o ps, where o is a non-dimensional constant less than unity,
reaches a terminal velocity Vo given by

psR%g
“w

where g is the acceleration due to gravity.

Voozé(l—cr)
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If the sphere has zero initial velocity, the equation governing the initial phase of
motion, during which the sphere is accelerating, may be approximated as

mg—D—VB:(m+mA)dd—‘t/

where ¢ is the elapsed time, m is the mass of the sphere, Vg = ppg is the buoyancy
force acting on the sphere, and m, is the added mass given by m = opsV/2. Added
mass accounts for the fact that an object accelerating through a fluid also accelerates
some of the surrounding fluid. In the case of a sphere, the added mass is equal to half
the mass of the displaced fluid. Show that a non-dimensional form of the equation
for V'is

vV _1v

dt

where the non-dimensional velocity V=Vl Voo, the non-dimensional time t=t/ T,
and the characteristic time 7 = (2 + 0) Voo/ [(1 - 0) g]-

Integrate the equation for V and show that

V=V {1 _ o (2r0) Vool [(1-0)¢] ] )



Pressure variation in a fluid at rest
(hydrostatics)

This chapter and the next are concerned with hydrostatics®*: the study of fluids at rest. The
word hydrostatics is derived from the Greek word hudor meaning water but the term applies
to all fluids, gases and liquids alike. Shear stresses cannot arise in a body of fluid at rest because
there is no relative motion (except at the molecular level) between fluid particles, and the only
internal forces that can arise are due to changes in pressure with vertical location which result
from gravitational pull. In this chapter we derive the mathematical statement of this principle,
which is called the hydrostatic equation. The solution of many practical engineering prob-
lems involves the application of the hydrostatic equation. In the second part of this chapter
we shall apply it first to the measurement of pressure using liquid-filled tubes (manometry)
and then to analyses of pressure variations in the earth’s atmosphere and in very deep water, in
both instances accounting for compressibility. We conclude the chapter by extending consid-
eration to a body of fluid which, in spite of the chapter heading, is not in fact at rest but is in
steady motion, or even being accelerated, but where there is no relative motion between fluid
particles.

4.1 Pressure at a point: Pascal’s law

Any fluid in contact with a surface exerts a normal stress on that surface, i.e. a force per unit
area normal (i.e. perpendicular) to the surface. This stress is what we call pressure, symbol p,
unit Pa (i.e. N/m?). For a gas, the lowest possible absolute pressure is zero, which defines what
we mean by a vacuum. As we pointed out in Section 2.13, the situation for a liquid is more
complex. If its absolute pressure is reduced to the value of the vapour pressure, vapour is
produced and the liquid boils. Under no circumstance can absolute pressure become negative,
i.e. tensile. Some pressure gauges measure pressure relative to atmospheric pressure B, i.e. p—B,
the so-called gauge pressure. Confusion may arise if the absolute pressure is sub-atmospheric
(i.e. p < B) as the gauge pressure is then negative. In older books, particularly those where
Imperial units were used, gauge pressure is indicated by adding the letter ‘g’ to its units, as in
psig indicating pounds per square inch gauge.

An important underlying principle of hydrostatics, called Pascal’s law, is that the pressure
atany point in a body of fluid at rest is the same in all directions. To prove this law we consider
a triangular wedge of fluid of infinitesimal®® cross section, as shown in Figure 4.1.

24 Instead of hydrostatics, the termed aerostatics is sometimes used when the fluid is a gas, especially air.
25 The term ‘infinitesimal’ here implies that the dimensions of the wedge are so small that the pressure acting
on any face of the wedge can be assumed to be uniform across that particular face, but may well vary from (cont’d)
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Figure 4.1 Equilibrium of an infinitesimal wedge of fluid

We assume there is no variation of pressure normal to the triangular face shown. The wedge
has thickness / (into the page), a vertical face of height §z, a horizontal face of length éx, and a
sloping face of length §s. The fluid density within the wedge is p and the corresponding weight
of the wedge is § W. At the outset we assume that the pressures acting normal to the three faces
of the wedge, p, pz, and p, as shown in the figure, are all different. Since the fluid is at rest, the
net force acting on the wedge in any direction must be zero.

For the horizontal direction we have

px6zl-pdslsinf =0
and, from the geometry of the wedge, 8z = 8s sin 6, so that

pxbzl-pdzl=0
or, after cancelling out / §z,

pi=p. (4.1)
For the vertical direction we have

p8xl-pdsicosd -SW =0

and, again from the geometry of the wedge, §x = §s cos 0. Since the volume of the wedge § is
given by §z §x 1/2, its weight is given by W = p §V g = p 8z 8x1g/2 so that

pzéxl-péxl- %péz&xlgz 0
or
pz=p+ %6zg. (4.2)

Equation (4.2) must hold no matter how small the wedge so that, as §z is reduced to zero, the
term including 6z must also reduce to zero, and we find

(footnote 25 cont’d) face to face. The concept of an infinitesimal element is commonly employed in all branches of ap-
plied mechanics (fluid mechanics, heat transfer, solid mechanics, etc.). Although the continuum hypothesis imposes
a lower limit on the size of such an element, as we saw in Section 2.5, in practice we rarely come close to it.
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pz =p- (4.3)
Taken together, equations (4.1) and (4.3) allow us to conclude that

Px =Pz =D (4.4)

i.e. the pressure at a point in a fluid at rest is the same in all directions: we have proved
Pascal’s law.

4.2 Pressure variation in a fluid at rest; the hydrostatic
equation

For a fluid at rest, the pressure is constant over any horizontal surface within the fluid but
increases with depth. These statements of everyday experience are easily proved, as we do in
this section, but have far-reaching implications.

Consider first a horizontal cylinder of arbitrary length I and infinitesimal cross-sectional
area 8A, as shown in Figure 4.2. If the pressure is assumed to change from the value p at one
end of the cylinder to p + Ap at the other, then the net horizontal force acting on the fluid
cylinder is

pSA-(p+ Ap)SA =-ApsA.

This net force must equal zero unless the fluid cylinder is being accelerated to the right,
which would require Ap <0, or to the left (Ap>0). Thus, for a fluid at rest, Ap must
be zero, and we conclude that pressure is constant along any horizontal line within the fluid

and, in consequence, over any horizontal surface. What this means in practice is that, if we can

connect any two points in a single body of fluid at rest without ‘leaving’ the fluid, the pressure
at the two points will be the same. This conclusion has important consequences for pressure
measurement, as we shall see in Sections 4.7 and 4.9. It also explains why the free surface of a
liquid at rest must be horizontal.

We consider now the forces acting on a vertical cylinder of fluid of infinitesimal length §z
and infinitesimal cross-sectional area § A, as shown in Figure 4.3. For convenience the distance
z is measured vertically downwards so that, if measured relative to a surface at z = 0, it rep-
resents depth. The pressure changes from p at the top of the cylinder to p + §p at its base. The
essential difference compared with the horizontal cylinder considered above is that the force

lg

cross section 5A

p—> [ p+Ap
| |
[ / |

Figure 4.2 Horizontal fluid cylinder of infinitesimal cross section
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cross section 5A

5z l

p+dp

Figure 4.3 Infinitesimal vertical fluid cylinder

balance must now include the weight of the fluid cylinder § W acting vertically downwards
(the circular symbol in Figure 4.3, with alternating black and white quadrants, represents the
centre of gravity of the cylinder through which § W acts).

The net downward vertical force acting on the fluid cylinder is

pSA+SW - (p+3p)SA=0
so that, after cancellation of the term p §A and rearrangement, we have

W
dp = SA
i.e. the pressure increases by the amount 8p due to the weight of fluid per unit area in a layer
of depth éz. The cylinder weight is given by W = p §U g, where §? is the cylinder volume.
Since 8V = 8z 8A, we have §p = p 8z g, or 8p/8z = pg. If we now reduce §z to zero, the finite-
difference ratio 6p/6z must approach dp/dz, which we term the pressure gradient, and we have
the first-order, ordinary differential equation

dp B
—=rg (4.5)
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which is known as the hydrostatic equation?. Since both the fluid density p and the accel-
eration due to gravity g are always positive, we conclude that dp/dz is always positive so that
the pressure in a body of fluid at rest can only increase with vertical depth z. We could just
as well say that pressure decreases with altitude (or elevation) -z, altitude being the distance
measured vertically upwards, usually from mean sea level. For convenience we use the symbol
Z/, with Z = 0 at sea level, rather than regard altitude as a negative depth, as we have done
hitherto?. The hydrostatic equation can now be written as

dp B
7 - pg (4.6)

the minus sign appearing because dz = -dz’.

4.3 Pressure variation in a constant-density fluid at rest

In most applications it is sufficient to regard the gravitational acceleration g as a constant,
invariant with altitude or depth, the value 9.81 m/s* normally being adopted for medium lat-
itudes”®. In many engineering calculations, particularly where the fluid is a liquid, sufficient
accuracy is achieved if the fluid density p is also assumed to be a constant (values are listed in
Table A.5 for some common liquids and in Table A.6 for several gases). In these circumstances,
equation (4.5) can be integrated to give

p=pgz+C (4.7)

where C is a constant of integration to be determined from a boundary, or reference, con-
dition which provides a value for p at a known depth or altitude. It is frequently convenient
to take the pressure at the origin for z (i.e. z = 0) as the reference, which is very often the
barometric (or atmospheric) pressure B (standard value 1.01325 bar or 1 atm), so that C = B
and

p=B+pgz. (4.8)

The combination pgz is referred to as the hydrostatic pressure, py. More generally, equation
(4.8) suggests that any pressure difference Ap can be expressed in terms of the vertical height h
of a column of liquid of density pr, such that Ap = prgh. The height h is then referred to as the
head. Although in principle any liquid can be chosen as the reference liquid (for the density
pL), the usual choices are water, mercury, or an oil.

Equation (4.7) can also be written in terms of elevation z’ as

p+pgd =C. (4.9)

26 The term buoyancy equation is occasionally used instead of hydrostatic equation.

27 The reader should be aware that the use of the symbol z to represent vertical depth is inconsistent with the
Cartesian coordinate system adopted in later chapters in which x, y, and z are orthogonal coordinates, with y usually
representing upward vertical distance. The use of z for depth in this chapter follows common practice.

28 As discussed in Subsection 4.13.1, the reduction in g with altitude in the earth’s atmosphere becomes significant
and has to be accounted for.
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The combination of terms p + pgz’ is known as the piezometric pressure, and p/pg + 2’ as the
piezometric head. The prefix piezo stems from the Greek word for press.

As we discussed in Section 2.11, gases are far more compressible than liquids. Nevertheless,
the constant-density assumption is often acceptable, for example, if pressure changes are due
to relatively small altitude (ca 100 m) or velocity changes (see Chapters 7 and 8). For liquids,
the equations derived above are perfectly adequate even for depths well in excess of 1000 m
(see Section 4.12).

ILLUSTRATIVE EXAMPLE 4.1

As shown schematically in Figure E4.1, a boiler is supplied with water from an open tank loc-
ated 8 m above it (the arrangement is similar to the central-heating system still found in older
houses where the water tank, called a cistern, is installed in the loft). Calculate the pressure
of the water in the boiler and also the reading of the pressure gauge (i.e. the gauge pressure)
attached to the boiler. Take the atmospheric pressure to be 1.02 bar.

Solution

H=8m;B =102 x 10° Pa; g = 9.81 m/s%; p = 10° kg/m°.

cistern

boiler

pressure gauge

|
-

Figure E4.1



MERCURY BAROMETER

The boiler pressure p is given by
p=B+pgH
=1.02 x 10° +10% x 9.81 x 8
= 1.80 x 10° Pa or 1.80 bar.

The gauge pressure pg is

pc=p-B=pgH =1.80-1.02
= 0.78 bar.

Comment:

Due to bends in the pipework connecting the water tank to the boiler, the length of piping
may be considerably greater than the vertical height H. As we saw in Section 4.2, in a fluid at
rest, the pressure is the same at any given horizontal location. In consequence only the vertical
height difference is significant in determining the pressure difference p — B: the two locations
at which p and B are determined do not need to be vertically in line.

4.4 Basic pressure measurement

In Section 4.4 we found that, for a static body of fluid of constant and uniform density p,
the pressure increases linearly with depth z according to p = pgz + C, where C is a constant
(equation (4.7)). If we apply this equation to a vertical tube containing a column of liquid
of density ppr and height k, as shown in Figure 4.4, with the origin for z taken as the upper
meniscus, we have

C=p; and py=pugh+C
or

P2 - p1 = pugh. (4.10)

This important equation provides the basis for manometry, which is the measurement of pres-
sure or pressure difference using liquid-filled tubes called manometers. The choice of liquid
is influenced by the magnitude of the pressure difference to be measured (e.g. a high-density
liquid such as mercury is used if the difference is large), immiscibility with other fluids, and
low volatility. Common choices are water, a light oil, and mercury.

4.5 Mercury barometer

If the upper end of the tube shown in Figure 4.4 is sealed and the space above the liquid evacu-
ated, such that the pressure p; is as close to zero as practically possible, we have a device called
a barometer, which can be used to measure the absolute pressure p,. Unfortunately, this prin-
ciple has a major flaw: as we discussed in Section 2.13, at room temperature many common
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N

z
h
density py; g

P2

le

Figure 4.4 A vertical tube containing a column of liquid

liquids tend to boil at pressures which are very low but still well above absolute zero, making
them unsuitable for use as a barometer liquid. In the case of water, for example, the pressure
at which boiling begins, called the saturated vapour pressure py, is about 1.013 bar at 100 °C
and still as high as 23 mbar at 20 °C. The universal use of mercury as the barometer liquid is
attributed to the Italian scientist Evangelista Torricelli, who must have realised that its vapour
pressure is negligibly small for all practical purposes. As we now know, the vapour pressure
for mercuryis 1.1 x 107> Pa or about 1078 bar.

The basic arrangement of the classical mercury barometer is shown in Figure 4.5. The pres-
sure above the mercury column in the vertical tube has been reduced to the saturated vapour

-«

density py

Figure 4.5 Basic mercury barometer
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pressure of mercury while the free surface of the mercury pool is exposed to the prevailing
atmospheric pressure B so that, from equation (4.10),

B= pv + ,OMgh (4.11)

Although we have just pointed out that for mercury the value of the vapour pressure py is
negligible compared with B, for completeness we have included it in equation (4.11) and Fig-
ure 4.5. Note too that we have made use of the fact that the pressure at the point O (denoting
the origin from which /4 is measured) within the barometer tube, on the same horizontal level
as the free surface of the mercury pool, must be precisely the same as the atmospheric pres-
sure. The density of mercury at 20 °C is 13,546 kg/m? so that for the Standard Atmosphere,
for which B = 1.01325 bar, with g = 9.80665 m/s?, equation (4.11) gives h = 0.76275 m, or
30.0 in of mercury. As we pointed out in Section 4.3, any pressure difference can be converted
into an equivalent height of a liquid (in this case, since one pressure is effectively zero, the
pressure itself can be expressed as the height of a mercury column). The principal application
of a barometer is to measure the small deviations from 1.01325 bar which are an important
guide to forthcoming changes in the weather.

4.6 Piezometer tube

The piezometer tube, shown in Figure 4.6, is the second direct application of a column of
liquid in a vertical tube being used for the measurement of pressure. In this case, the upper
end of the tube is open to the atmosphere at absolute pressure B (or any reference pressure)

rl

tube

density p

\/

pipe

Figure 4.6 Piezometer tube
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while the lower end is attached to a vessel or pipe containing a pressurised (i.e. p > B) liquid
which rises up the tube to a height h. Once again, equation (4.8) is applicable and leads to

p =B+ pgh, (4.12)

p being the density of the liquid in the pipe and the tube. From the measured height & we have
pgh = p - B = pg, the gauge pressure. Note that the liquid depth within the vessel or pipe may
represent a significant contribution to the overall height & and hence the gauge pressure pg.

4.7 U-tube manometer

As is probably apparent to the reader, the piezometer tube is not a practical device for pressure
measurement: there is the ever-present danger of liquid being blown into the environment if
the tube is too short, but to cope with high pressures the vertical tube becomes excessively
long—for water an absolute pressure of 2 bar (i.e. approximately 1 bar greater than atmo-
spheric pressure) would require & = 10.2 m. One solution to this problem might appear to be
to place a high-density liquid, such as mercury, in the vertical tube. In the case of water at 2 bar,
for example, the corresponding height of a mercury column is only 0.75 m. Unfortunately, this
idea is also impractical for a more fundamental reason: the interface between a heavy fluid on
top of a light fluid is unstable. The mercury would simply run down into the main pipe or
pressure vessel and create a major clean-up problem. Mercury is a poisonous substance and its
use is best avoided wherever possible.

The U-tube arrangement shown in Figure 4.7 uses the heavy-liquid (density pys) idea but
avoids the stability problem since the lighter liquid (density pr) is above the heavier one. The
analysis of this and other manometer problems depends upon the two fundamental results we
obtained in Sections 4.2 and 4.3

(a) in afluid at rest, the pressure is the same for all points on the same horizontal level; and
(b) fora fluid of constant density pay, the pressure increase due to a vertical height difference
his ppgh.

The first of these two statements tells us that, in the fluid of density pr, the pressure at points
® and @ must be the same and, in the manometer liquid of density pas, the pressure at points
@ and @ must also be the same. Although we have no real interest in the intermediate pressure
at the interface between the two liquids (point ®), it is convenient to give it a symbol, such as
P/, to use in our analysis.

For the right-hand side of the manometer, we have

P =B+ pugH
and, for the left-hand side,
P =p+ prgh.

Note that in both cases we have evaluated the intermediate pressure p’ by working our
way down the manometer, in the direction of increasing pressure, adding together the ap-
propriate pressure and pressure difference for each fluid. This is a convenient and foolproof




U-TUBE MANOMETER

[sy]

(5) X

fluid M
density 7y,

pipe

density pp

T,
|:

Figure 4.7 U-tube manometer

‘bookkeeping’ approach to solving manometer problems which is easily extendable to any
number of fluid layers. Since the right-hand side of each of the above expressions is equal
to p’, we can equate the two and write

B+pmgH=p+prgh or p-B=(omH-prh)g (4.13)

which gives us the unknown pressure p, once again in the form of a gauge pressure p - B. In
fact the pressure imposed on the free surface of the manometer liquid (point ®) need not be
the barometric pressure B but could be any known reference pressure.

ILLUSTRATIVE EXAMPLE 4.2

The U-tube manometer shown in Figure E4.2 is used to measure the pressure difference
p1 - p2 = Ap between two pipes on the same horizontal level. Show that

Ap = (pm - pr) gH

where pjs is the density of the manometer liquid, pr is the density of the fluid in the pipes,
g is the acceleration due to gravity, and H is the height difference between the levels of the
manometer liquid in the two arms of the U-tube.
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Figure E4.2

Solution

In the figure the fluid pressures in the two pipes have been indicated by p; and p,, where
p1 = p2 + Ap, the height of the pipes above the manometer liquid interface on the right-hand
side as h, and the pressure in the manometer liquid on the horizontal level of the left-hand
interface as p’.

For the left-hand side of the manometer we have

P =p1+prg(h+H)
and, for the right-hand side,
P’ =p2+ prgh + pmgH.
If we equate these two expressions for p’, we have
p1+ prg (h+ H) = pa + prgh + pugH
which we can rearrange, after substituting p, + Ap for py, as
P2+ Ap+ prgh + prgH = pa + prgh + pugH.

Each of the terms p, and prgh appears on both sides of the equation, so they cancel out, and
we have, finally,

Ap = (pm - pr) gH.

Comment:

Neither the actual fluid pressures nor the height of the pipes appears in the final result,
which can be derived directly from the final equation of Section 4.7 by setting p - B = Ap,
and h = H.
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The use of a U-tube manometer or a differential pressure transducer” to measure the pres-
sure difference between two points at different heights, as shown in Figure 4.8, again relies
upon the hydrostatic equation. Considering first the U-tube, we have

P =p1+prg <Zl + %h) = py + Prg (Zz - %h) + pmgh (4.14)
from which
p1-p2 = (oM - pF) gh + prgz12 (4.15)

where z15 = 25 - 73.
For the pressure transducer we have

Ap = p1 + prgzs - (p2 + PEgZa) = P1 - P2 — PEGZ12 (4.16)
@ P2
4 4
Zy2
P4 PF Za
A0
T =
Z3 PF
I
| [Ap] L
Yy ¢ _zero (datum)

level

Figure 4.8 U-tube manometer or pressure transducer used to measure pressure difference between
locations at different heights

29 A differential pressure transducer is an electronic device used to measure pressure difference rather than ab-
solute pressure. Absolute pressure can be measured if one side of a differential pressure transducer is subjected to a
known, reference pressure.
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or

P1 - p2 = Ap + prgzin. (4.17)

For the U-tube manometer, equation (4.14) is based upon the recognition that the pressure
p’ at location @ has to be the same as that at location @. Equation (4.16) is arrived at using
the hydrostatic equation to determine the pressure on either side of the pressure transducer,
which is a vertical distance z3 below location @, and z4 below location @. The distance z1;
is the vertical distance between locations @ and @. The result of Illustrative Example 4.2 is
recovered if z;; = 0.

4.8 Effect of surface tension

Although until now we have neglected the effect of surface tension (see Section 2.14), for li-
quids in small-diameter tubes this property leads to an additional pressure difference which
needs to be accounted for. We consider the situation shown in Figure 4.9. The lower end of an
open vertical tube of diameter D is immersed in a liquid with surface tension o and contact
angle 6, measured through the liquid. We shall assume that the fluid above the liquid surface
(a gas) has a much lower density than that of the liquid so that pressure differences in the
surrounding fluid can be ignored. The vertically upward surface-tension force F acting on the
periphery of the liquid surface is given by F = w Do cos 6. and, for static equilibrium, this force
must exactly balance the weight of the liquid column of height 4, i.e.

2
Do cosf = %h,og

density p — g

density p

/

!
B . 180°
SR

(a) (b)

Figure 4.9 Effect of surface tension for liquid in a vertical tube with (a) § < 90° and (b) 6 > 90°
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so that

40 cosb

For pure water in contact with air the surface tension at 20 °C is 7.28 x 1072 N/m with a
contact angle which is practically zero, so that for a tube 1 mm in diameter we find h=29.7
mm, which is clearly far from negligible. Even for a 10 mm tube we have 4 = 3 mm. For
mercury the surface tension is 0.472 N/m, the contact angle 130°, and the corresponding h
values are -9.1 mm and 0.91 mm, respectively. Note that what these contact angles tell us is
that, for water in a vertical tube, surface tension produces a force pulling vertically upwards
whereas for mercury the resultant force is vertically downward (due to axisymmetry there can
be no radial component of force).

Although the value of o for mercury is about seven times that for water, its effect on the
liquid level is much smaller, first because the density of mercury is about 13.6 times that of
water, and second because the vertical component of the surface-tension force is reduced by
the contact angle (cos 130° = -0.643 compared with cos0° = 1).

Based upon the foregoing, it is clearly straightforward to account for the effect of surface
tension on the liquid level in a manometer. However, this is usually unnecessary because we
almost always measure changes in the liquid levels produced by changes in the applied pressure
difference so that the surface-tension effect cancels out.

49 Inclined-tube manometer

A common form of manometer for teaching-laboratory use is shown in Figure 4.9. In this case,
instead of a vertical U, one side of the manometer tube (cross-sectional area a) is inclined at
an angle ¢ to the horizontal. This inclined tube is attached to the pipe on the right-hand side,
in which there is fluid of density pr at a pressure p, to be determined. The left-hand side of
the manometer tube is vertical and attached at its top to a reservoir of cross-sectional area
A (> a) in which the surface of the manometer fluid, density py, is subjected to a reference
pressure prer. The analysis of the inclined-tube manometer is very similar to that of the U-tube
manometer (Section 4.7). We measure all liquid levels from a horizontal reference level, as
shown in the figure, defined such that the surface of the liquid in the reservoir is at the same
level @ as the interface @ in the inclined tube when the pressure in the pipe is po, so that

PREF = po + prgHo, (4.19)

Hy being the vertical height of the pipe centre ® above the reference level. It is evident from
equation (4.19) that, unless prgHy is negligible compared with prgr, po may be considerably
different from the reference pressure prgr. An increase in the pipe pressure from py to p causes
the interface to move down the inclined tube by an amount L (i.e. from @ to @), and the level
in the reservoir to rise above the reference level by an amount §h. Since the volume of liquid
which enters the reservoir must be the same as that which moves along the inclined tube, we
have §h A = La, so that §h = La/A, which shows that §h <« L since a < A.
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Figure 4.10 Inclined-tube manometer

As we have stressed throughout this chapter, in manometry it is the vertical height which is sig-
nificant. From Figure 4.10 we see that the interface has moved a vertical distance H = L sin ¢ so
that in measuring L rather than H we have effectively applied an amplification factor of 1/ sin ¢.
A typical value for the inclination angle ¢ is 15°, which corresponds to an amplification factor
of 3.86.

For the situation shown in the figure, we again make use of the fact that in a single fluid at
rest the pressure must be the same at all positions on the same horizontal level, in this case, the
intermediate pressure p’ at locations @ and @. On the left-hand side, again working vertically
downwards from the liquid surface in the reservoir to location @, we have

P’ = prer + pmg(8h + H)
and on the right-hand side the corresponding result is
P =p+prg(Ho+H).
If we equate the two results, after some rearrangement, we have
P - prer = pmg (8h + H) - prg (Ho + H). (4.20)

This equation reveals that, for a given pressure difference p - prgr, the smaller we make 8, i.e.
the smaller we make a/A, the larger will be H and so L. This is an important point because it is
generally easier to measure a long length than it is a short length. If we substitute 8h = La/A,
and H = Lsin ¢, in the equation for p - prer, we find

P — PREF = pMg& <Lsin¢ + %) - prg (Lsin¢ + Hp)
or, after some rearrangement,

. La
P - prer = (pm - pr) gL sin ¢ + pMj - prgHo. (4.21)
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A number of simplifications of the final equation for p - prgr are possible, depending upon the
values of the density of the manometer liquid pyy, the density of the fluid in the pipe pF, the
area ratio a/A, and the inclination angle ¢. The ratio of the second term to the first in equation
(4.21) can be regarded as a constant for the manometer equal to pp a/[(pm - pr) Asin @]. If,
as is often the case, pys far exceeds pr, for example mercury and a gas, or mercury and water,
and the ratio a/A is also small compared with unity, the second term then becomes negligible,
and the manometer equation reduces to

P - Prer ~ pmgL sin ¢ — prgHo, (4.22)

The final term may also be negligible, or it may be that we are interested only in changes in the
pressure p compared with py, in which case we can substitute for prgr from equation (4.19) to
obtain

P —po ~ pmgLsin ¢.

ILLUSTRATIVE EXAMPLE 4.3

(a) Theinclined manometer shown in Figure E4.3 is used to measure the difference between
the pressure p in a horizontal pipe and the constant reference pressure pr in the mano-
meter reservoir. The reference level is defined by the free surface of the manometer
liquid in the reservoir being at the same height as the interface between the pipe and
manometer fluids in the inclined tube. The pipe axis is a vertical distance H above the
reference level. Derive a relationship between p, pr, H, g, L, ¢, pm, p» a, and A, where g is
the acceleration due to gravity, L is the manometer reading (the distance moved from
the reference level by the interface in the inclined tube), pj is the density of the mano-
meter liquid, p is the density of the fluid in the pipe, a is the cross-sectional area of
the inclined tube, ¢ is the angle of inclination of the tube measured from the hori-
zontal, and A is the cross-sectional area of the reservoir. Surface-tension effects can be
neglected.

(b) For a particular manometer, pr = 0.5 bar, H =0.5 m, ¢ = 20°, pps = 13,600 kg/m>, p = 800
kg/m?, the internal diameter of the inclined tube is 5 mm, and that of the reser-
voir 200 mm. Calculate the manometer reading L if the reservoir and pipe pressures
are equal. Calculate the pressure difference p — pr if L = 0. Calculate the satura-
tion vapour pressure of the liquid in the pipe if cavitation occurs within the pipe
for L = -0.9 m.

Solution

(a) In the figure, the pressure at the level of the interface p’ is the same in both arms of the

manometer.
On the left-hand side,

p =pr+ppg (8 + Lsin ¢)

where § is the vertical height of the surface of the manometer liquid above the reference level.
Also, Lsin ¢ is the vertical change in height due to movement of the manometer liquid in the
sloping tube.
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Figure E4.3

On the right-hand side,
p =p+pg(H+Lsing).
We can eliminate p’ to give
p-pr=pmg (6 +Lsin ¢) - pg(H = Lsin ¢)
= (pm = p) gLsin ¢ + pugd - pgH.

Since the volume of manometer liquid which moves into the reservoir must equal the volume
of liquid which moves down the inclined tube, we have

§A =al

so that

. L
p-pr=(pm-p)gLsin ¢ + ('OA:T - pH> g (E4.3)

(b) We have pr = 5 x 10* Pa; H = 0.5 m; ¢ = 20°; p = 800 kg/m>; ppr = 1.36 x 10* kg/m?;
d=5x%x103m;D=02m;g=9.81 m/s
If the reservoir and pipe pressures are equal, p = pr, and equation (E4.3) reduces to

L
(P - p) Lsin ¢ + 222 — pH = 0

from which we find
L= pH
(oM = p)sin ¢ + pyalA
800 x 0.5
(1.36 x 10* - 800) sin 20° + 1.36 x 10* x (5/200)*
= 0.091 m or 91 mm.




MULTIPLE FLUID LAYERS

For L = 0, from equation (E4.3) the pressure difference is given by

p-pr=-pHg
= -800 x 0.5 x 9.81
= -3924 Pa.

For L = -0.9 m, from equation (E4.3) the pressure difference is given by
p-pr=-(1.36 x 10* - 800) x 9.81 x 0.9 x sin20°

2
- |:1.36 % 10% x 0.9 x (%) +3800 x 0.5} % 9.81

= —4.265 x 10* Pa
thus
p=5x10* - 4.265 x 10* Pa = 7.35 x 10° Pa.

Since this is the pressure at which we are told cavitation occurs, we conclude that the vapour
pressure of the liquid in the pipe is 7350 Pa.

410 Multiple fluid layers

If there are several layers of immiscible fluid, of thickness Z; and density p1, Z,
P2 (> p1), Z3, p3 (> p2), etc., the pressure increases across each layer simply add together to
give the total increase in pressure with depth. Using the notation of Figure 4.11, we have

Figure 4.11 Pressure increase through a series of fluid layers
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p1 =B+ pigZy
P2 =B+ p1gZi + p2gZ>
P3 =B+ p18Z1 + 02825 + p3823
B being the pressure acting on the surface of the top layer. The linear increase in pressure p

with depth z corresponding to p = pgz + C, C being a constant, is shown schematically in each
layer.

ILLUSTRATIVE EXAMPLE 4.4

As shown in Figure E4.4, a vertical cylinder of inside diameter 50 mm is sealed at the bottom
and filled to a depth of 500 mm with mercury. If the barometric pressure B is 1.1 bar and the
mercury supports a close-fitting frictionless piston of mass 5 kg, calculate the absolute and
gauge pressures at the bottom of the cylinder.

B
| l
g9
mg p
Hl <
p
1
<>
Figure E4.4

Solution

D=0.05m;B =11 x 10° Pa;m = 5kg; H=0.5m; p = 13.6 x 10° kg/m°.

The statement in the problem that the piston is close-fitting implies that there is no flow of
fluid (leakage) past the piston. We denote the cross-sectional area of the piston and cylinder
by A (= wD?/4), and the absolute pressure at the bottom of the cylinder by p. The solution to
this problem requires that we recognise that the force acting on the bottom of the cylinder pA
is made up of three components: the vertically downward pressure force on the top face of the
piston BA, the weight of the piston mg, and the force due to the pressure difference from top
to bottom of the mercury pgH. Thus, we have

pA = BA +mg + pgHA
so that

mg

p=B+ A

+ pgH.
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The effective pressure difference App due to the weight of the piston is mg/A. If the density of
the piston material is pp, and the piston height is Zp, then m = ppAZp, so that App = ppgZp,
i.e. a hydrostatic or ‘pgz’ term, just as for a fluid.

If we now substitute the numerical values into the equation for p, we have

5% 9.81
7 % 0.05%/4
=2.02 x 10° Pa = 2.02 bar

p=11x10"+ +13.6 x 10° x 9.81 x 0.5

and the gauge pressure pg = p — B = 0.92 bar.

4.11 Variable-density fluid; stability

Since we put no restriction on the density p in the derivation of the hydrostatic equation (4.5)
in Section 4.2, this equation must apply whether p is constant or varies in some known way
with depth z, i.e. p = p (2). It may be that the density variation with z is known, in which case
the hydrostatic equation can be integrated immediately. The more usual, and more complic-
ated, situation is that the density is related to the fluid pressure (and possibly also the fluid
temperature), and finding the density variation with depth is itself part of the solution of any
problem.

We consider first the situation where the density is a specified function of depth. For ex-
ample, we might assume that close to the bed of a reservoir increasing amounts of silt cause
the effective fluid density p to increase linearly with depth, i.e.

0 =po+a(z-z) = py+az* (4.23)

where py is the density of silt-free water, o is a constant which depends upon the silt concen-
tration, and zj is the depth below which p increases. For convenience we introduce z* = z - z.
If equation (4.23) is substituted in the hydrostatic equation, we have

dp

7 = Pg= (0o +az*)g (4.24)

which can be written as
dp = pogdz* + agz" dz*.

If we integrate between the levels zf, and z5, we have, finally,

p2-p1 = pog (3 - 2F) + Sag (87 - 217) (4.25)

i.e. the pressure increase is made up of two parts, the first due to the pure-water density po,
and the second a quadratic (i.e. z*2) term due to the silt.

Fresh water has a lower density (normally taken as 1000 kg/m?) than salt water (density ap-
proximately 1000 + 7c kg/m?, where c is the percentage salt concentration by weight), so if one
meets the other, as in an estuary, the lighter fresh water tends to form a layer above the heavier
salt water. This phenomenon of layering according to progressively increasing density with
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depth, which can occur in both liquids and gases, is called stratification and can be of major
practical significance. For example, under certain atmospheric and topographical conditions,
as may occur in a natural basin or valley, a lid’ of low-density warm air can settle above heavy
cooler air and lead to the build-up of high levels of pollutant at ground level. In some instances
the two fluids may be miscible, as is the case for gases or salt and fresh water. In others, such
as oil and water, there is no mixing, and a well-defined interface forms between the two. The
interface is stable if the density of the fluid above it is less than that of the fluid below it, and
unstable if the density is higher above the interface than below. Oil spilled onto water spreads
out under the influence of gravity to form a thin stable layer called a slick. The stability of a
stratified body of liquid where the density variation is continuous can be determined as fol-
lows. If there is a density decrease with upward vertical distance 7/, i.e. dp/dz’ < 0, a fluid
particle of density p moved vertically upwards by an infinitesimal amount 8z’ would find itself
surrounded by fluid of lower density

dp
dz’
and so gravity would cause the (higher-density) particle to fall back to its original position.

This situation is dynamically stable, whereas if dp/dz’ > 0 it is unstable. The stability of a large
body of a gas, in particular the earth’s atmosphere, is considered in Section 4.13.

o+ 687

4.12 Deep oceans

The Mariana Trench in the western Pacific Ocean is the deepest part of the world’s oceans,
with a depth of about 10.9 km. The corresponding pressure at that depth, calculated from
the constant-density equation B + pgz for a liquid of density 1000 kg/m?, would be 1070 bar.
An ideal gas subjected to such a large pressure (at constant temperature) would decrease to
1/1070% of its volume at 1 bar, with a corresponding increase in density. How realistic, then,
is our assumption of constant density for water and other liquids? As stated in Section 2.5, a
good approximation for the observed behaviour of liquids is the modified Tait equation

% ~1-Aln (%) (2.21)
where, for water at 25 °C, A = 0.137, B = 1 bar, and C = 2996 bar.

For a pressure of 1070 bar equation (2.25) gives a density 4.4% higher than that for 1 bar. We
conclude that for water, at least, the increase in density with pressure is likely to be negligible
in most practical circumstances. If a more accurate p (z) relation is required than that which
results from the assumption of constant density, we could integrate the hydrostatic equation
(4.5) numerically with the density evaluated using equation (2.21).

4.13 Earth’s atmosphere

The earth’s atmosphere is a relatively thin region of gas held to the earth’s surface by gravita-
tional attraction. Although we rarely think of air as being heavy, it’s a remarkable fact that the
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total mass of the atmosphere is estimated to be about 5.3 x 10'® kg, about 80% of it contained
within the lower atmosphere, an 11 km thick layer called the troposphere. The troposphere is
the first of seven layers which make up the International Standard Atmosphere 1976 (ISA)*°,
which extends from sea level to 86.0 km. Within each layer the temperature is assumed to be
constant or to vary linearly with altitude z’. The ISA attempts to represent average atmospheric
conditions in temperate latitudes. At sea level, the pressure (the standard atmospheric pres-
sure) is taken as 101,325 Pa (1 atm), and the temperature as (Tp) 15.15 °C (or 288.15 K). It
should be understood that the ISA is a simplified model of the actual atmosphere, which is
dynamic rather than static in character and also moist with water vapour rather than dry.

4.13.1 Geopotential altitude

For most practical purposes the acceleration due to gravity g can be regarded as a constant
but over the altitude range of the atmosphere (0 to 86 km in the ISA and up to 10,000 km if
the exosphere is to be included) this approximation is increasingly unacceptable. According
to Newton’s gravitational law, the g (z’) dependence follows an inverse square equation

2
g- go( Rg ) (4.26)

Rg+7

where R is the mean radius of the earth and gy is the acceleration due to gravity at sea level
(2 = 0). The usual values assumed are Rg = 6371 km, and gy = 9.80665 m/s? (usually rounded
to 9.81 m/s?)*!. Substitution for g in the hydrostatic equation (4.6) then leads to

2
d ) . (4.27)

P o=
dz =-Pr8 pgo (
Since equation (4.27) is awkward to integrate analytically unless p is constant (an unrealistic

RE+Z/

approximation within the atmosphere), it is usual in meteorology to present the properties of
the atmosphere in terms of the geopotential altitude z(; such that the hydrostatic equation
becomes

dp
% =-pgo (4.28)

which avoids the difficulty. Division of equation (4.27) by equation (4.28) leads to

deg_g _( Re Y

dz £ Rp+7
which can be integrated to give the relationship between the geometric altitude z’ and the
geopotential altitude z;;

RgZ

_— . 4.29
RE +7 ( )

Zg =

30 The ISA is one of a number of models for the earth’s atmosphere. Others include the International Civil
Aviation Organization (ICAO) Standard Atmosphere and the U.S. Standard Atmosphere.

31 The standard acceleration due to gravity is specified as 9.80665 m/s? in ISO 80000-3:2006 Quantities and units—
Part 3: Space and time.
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From equation (4.29) with 2’ = 86 km, we find z; = 84.852 km (= 0.0133 Rg) which corres-
ponds with the outer surface of the final layer of the Standard Atmosphere, known as the
mesosphere (further details are given below). Since z6/Rg ~ 0.0133 the Standard Atmo-
sphere can be considered as a thin layer. Equation (4.29) accounts for the reduction in g with
increasing altitude.

4.13.2 Structure of the earth’s atmosphere

According to the ISA, in the troposphere the temperature T (in °C) decreases with z;;
according to the relation

T=Ty-Tz (4.30)

where the lapse rate I', defined as the negative of the temperature gradient® -dT/dz, is
6.5 °C/km. As we shall see in the Subsection 4.13.3, this lapse rate suggests that the tropo-
sphere is in stable equilibrium. In fact, due to natural convection caused by surface heating,
the troposphere is highly unstable resulting in a great deal of mixing which manifests itself in
the weather we experience, from a gentle breeze to tropical storms and hurricanes. The second
layer, the tropopause (z;; = 11.0 to 20.0 km), is isothermal at a temperature of -56.5 °C. The
pressure at an altitude of about 19 km, known as Armstrong’s limit, is so low (about 0.064
kPa) that water boils at the normal temperature of the human body (37 °C).

In contrast to the troposphere, the stratosphere (20.0 to 47.0 km) is very stable with a pro-
gressively increasing temperature. In the lower stratosphere (20.0 to 32.0 km) the lapse rate
is -1 °C/km leading to a temperature increase from -56.5 to —44.5 °C. For subsonic civil air-
craft the typical cruising altitude is about 10 km, while for supersonic and combat aircraft it
is more like 20 to 30 km. The low temperature at these altitudes is responsible for condens-
ing the water vapour in an aircraft-engine exhaust to produce the white vapour trails, called
contrails (a contraction of condensation trails), often visible in a clear blue sky. Most atmo-
spheric ozone resides in the lower stratosphere in the so-called ozone layer. The temperature
continues to increase in the upper stratosphere (32.0 to 47.0 km) with a lapse rate of -2.8 °C
to a temperature of -2.5 °C. The stratopause, which is between 47.0 and 51.0 km, is again
isothermal at a temperature of -2.5 °C.

The temperature decreases within the mesosphere (51.0 to 84.852 km), initially at a rate of
2.8 °C/km to -58.5 °C at an altitude of 71.8 km and then at 2.0 °C/km to -86.3 °C at 86.0
km, the altitude which can be taken as the upper limit of the ISA. Four further layers can be
defined: the mesopause, which is again isothermal and extends from the top of the mesosphere

to the thermosphere (approximately 85 to 600 km), followed by the exosphere or outer ther-
mosphere (approximately 600 to 10,000 km), while the ionosphere (approximately 60 to 300

32 Unless otherwise stated, the term altitude refers to the geopotential altitude.

33 Since the lapse rate is defined as I' = -dT/dz, a positive lapse rate, as in the troposphere, corresponds to
decreasing temperature and vice versa when the lapse rate is negative. We note too that the symbol y is frequently
used to represent the lapse rate but, to avoid confusion with the ratio of specific heats for which y is the usual symbol,
we have chosen to use I".
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km) starts in the mesosphere and ends in the thermosphere. Solar radiation leads to temper-
atures in excess of 1000 °C in the outer thermosphere. The Karman line at an altitude of 100
km defines the lower boundary of outer space.

As we have just outlined, the basic specification for the earth’s atmosphere is in terms of static
temperature, T (z;). To find the variation of static pressure p and density p with altitude z{; we
need to integrate the hydrostatic equation (4.28) for each layer and, in addition to T (z;), this
requires the introduction of an equation of state, which connects p, p, and T. From Section 2.4
we have the ideal-gas law

p=pRT (2.9)

where R is the specific gas constant, with the value for air taken as 287.1 m?/s*K.

We illustrate the general problem of determining p (z;;) and p (z;;) given T (z;;) by con-
sidering the tropopause, in which the temperature remains constant with altitude (i.e. the
tropopause is isothermal). Since the temperature T here is constant, it is convenient to use
equation (2.9) to eliminate the variable density from the hydrostatic equation to give

dp _ Pgo

which can be rearranged as

1 /
=dp = ——d
» p =
After integration we have
/
_ 8%
Inp = T T C

where C is a constant of integration which we can determine from the condition at the upper
limit of the troposphere (2. = 11 km)®*, where the pressure is pr (0.226 bar), so that

§ozr T
C=lnpr+
hence,
_ 8% G 802
Inp=- “RT +Inpr+ RT
or
P %0 (%6 - 21) (4.32)
T exp | - RT . .

Equation (4.32) shows that the air pressure in the tropopause decreases exponentially with
altitude difference.

A similar analysis for the troposphere, in which the temperature decreases linearly with
altitude, i.e. dT/dz;, = -TI", leads to the relation

4 To avoid double subscripts, the geopotential altitude of the outer limit of the stratosphere is represented by z7;.
and that of the outer limit of the stratopause by zj.
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/T'R
rz.\*
p=B8 (1 - G) (4.33)
To

where T is the temperature at sea level (z; = 0), taken as 288.15 K. Since I" = 6.5 x 1073 °C/m
for the troposphere, the exponent go/y R = 5.26.

ILLUSTRATIVE EXAMPLE 4.5

The temperature in the lower mesosphere (51 < z; < 71 km) decreases linearly with altitude
z’ with lapse rate I". If the gas which makes up the mesosphere can be treated as a perfect gas
with gas constant R, show that the pressure varies according to

p T g/T'R
£

where the subscript P denotes the ‘top” of the stratopause (i.e. z = 51 km).

If the values of pp and Tp are 66.9 Pa and 270.7 K, respectively, and the lapse rate I" for the
lower mesosphere is 2.8 °C/km, calculate the temperature, pressure, and density at an altitude
of 60 km. The gas constant R can be taken as 287 m?/s* K.

Solution

The specified temperature variation with z; is

ar
=-I
dzg,

and the pressure follows the hydrostatic equation

dp
5 = ~P&o-
dzg
These two equations can be combined to eliminate z; to give

4 _ r%
dr I~
The density p can be eliminated using the perfect-gas law p = pRT to give

dp _ P&
dT  I'RT
which can be rearranged as
dp _ & dr
p TRT"

This equation can be integrated to give

The constant of integration C can be determined from pp and Tp using

linZ%lnTp+C
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so that, after substituting for C in the equation for p, we have

lnp:%lnT+lnpp—%lnTp

which can be rearranged as

Inp-Inpp = %(lnT—lnTp)

so, finally,

p T go/T'R
I)—P = (T—P> .

We note that go/I"R is a non-dimensional constant.
For the numerical part of the problem we have pp = 66.9 Pa, Tp = 270.7 K, R = 287 m?/s? - K,
g0 =981 m/s?, zp =51 x 10* m, I = 2.8 x 1072 °C/m, and z; = 6 x 10* m. We shall need
the value of go/I'R so we calculate this first: 9.81/ (2.8 x 107 x 287) = 12.2.
From dT/dz;; = -I" we have T = -I'zg + Cso that Tp = -I'zp + Cand we have T - Tp =
I (z;; - zp). From the last equation we find that the temperature at 2’ = 60 km is

T =270.7 - 2.8 x 107 (6 x 10* - 5.1 x 10%)

=2455K or -27.5°C.

The corresponding pressure is given by

p T g/T'R
(5

12.2
_ (2455
270.7
= 0.3036

s0 p = 20.3 Pa, and the density is found from p = p/RT = 20.3/ (287 x 245.5) = 2.88 x 107*
kg/m?>.

The properties (temperature, pressure, and density) of the International Standard Atmo-
sphere as functions of geopotential altitude z;, are listed in Table A.7 and illustrated in
Figure 4.12.

As can be seen, both the pressure and the density decrease almost exponentially with alti-
tude, each falling to near zero at about z; = 40 km. If this value is taken as the height of the
atmosphere, an average density 5 = B/gozG can be calculated as 0.26 kg/m?, i.e. only about
20% of the sea-level value at 15 °C and 1 bar.

4.13.3 Adiabatic lapse rate and atmospheric stability

In Section 4.11 we showed how the stability of a body of liquid depends upon the density
gradient dp/dz’. To determine the stability of a region of the atmosphere where the lapse rate
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density, p (kg/mq) pressure, p (bar)
0 0.2 0.4 0.6 0.8 1.0 1.2
T T T T T T T T T T 1T
upper mesosphere (71 — 85 km) I" = 2.0°C/km

lower mesosphere (51 — 71 km) I = 2.8°C/km

T

geopotential altitude, zg (km)

stratopause (47 —51 km) I'=0

40 |~ upper stratosphere (32 — 47 km) I = —2.8°C/km

3011 lower stratosphere (20 — 32 km) I = —1°C/km

ozone layer

20

tropopause (11 —20 km) I'=0

101 P
troposphere (0 — 11 km) I" = 6.5°C/km
p
0 ! ! ! ! !
—60 -40 -20 0 20

temperature, T (°C)

Figure 4.12 Temperature, density, and pressure variation for the International Standard Atmosphere

is I', assumed constant, we first need to find the corresponding density variation with altitude.
We start with the pressure variation, given by the hydrostatic equation

d
i = -pgo. (4.28)

Assuming the air in the atmosphere is dry and follows the perfect-gas law p = pRT, then

dp dp dT dp
£ _RTEL 4 pREL —RTEP R =-
dzg; dzg, TP dzg; dzg; P rgo
from which
dp &0

We cannot simply conclude that if dp/dz;, < 0 the atmospheric layer is stable, because now
when a fluid particle is moved vertically its density changes to match the pressure at its new
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location. It is reasonable to assume that there is no heat transfer (adiabatic) to the particle as
it moves. If the process is also reversible, then it is isentropic so that, from Section 2.11, the
pressure and density are related as follows

i}, = constant. (2.38)
0

The hydrostatic equation (4.28) combined with equation (2.38) and the perfect-gas law,
leads to

dp __p* __ P

dzg  vp YRT
or

dp _ P8
— = . (4.35)
dz; YR

If the vertical distance moved by the particle is +5z(;, then from equation (4.34) its density

changes from p to

_ P&

RT& - (4.36)

From equation (4.33) the density of the surrounding air at altitude z;; + 8z; is

p+ % <F - ‘%) 8z (4.37)

For stability, gravity must cause the particle to return to its original position, which equations
(4.36) and (4.37) show will be the case if

P80 0
o - IgQTSZG>’0+T<F g)zSG

After simplification, this inequality leads to

‘if’( J:1>>F (4.38)

as the condition for stability within the atmosphere. From the perfect-gas equation it can be
shown that the lapse rate for an isentropic atmosphere, where p/p? = constant, is

M= ( ;1> (4.39)

The quantity I'4p is termed the adiabatic lapse rate, and the criterion for stability is thus
I'ap > T.

With gy = 9.81 m/s?, y = 1.402, and R = 287 m?/s- K, we have I'yp = 9.800 °C/km. The
lapse rates for the Standard Atmosphere are 6.5 °C/km (troposphere), 0 °C/km (tropopause),
-1.0 °C/km (lower stratosphere), —2.8 °C/km (upper stratosphere), 0 °C/km (stratopause),
+2.8 °C/km (lower mesosphere), +2.0 °C/km (upper mesosphere), and 0 °C/km (mesopause).
We thus conclude that all segments of the Standard Atmosphere are stable.
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4.14 Pressure variation in an accelerating fluid

Until now we have restricted consideration to the vertical variation of pressure in fluids at
rest. To be more precise, the crucial restriction is that there is no relative tangential movement
between fluid particles and hence the shear stress is identically zero throughout the body of
fluid. It should be self-evident that there is no relative moment between fluid particles within
a fluid in a container moving at constant velocity, provided sufficient time has elapsed for any
motion created at the start of the process to have died out. In such circumstances everything
we have said in this chapter so far still holds. In a fluid subjected to constant acceleration
there may still be no relative movement between fluid particles but the situation is more
complex.

We consider a horizontal cylinder of fluid of infinitesimal length §x and infinitesimal cross
section A, as shown in Figure 4.13, with a constant component of acceleration a, in the
horizontal direction. If we apply Newton’s second law of motion (i.e. net force = mass x
acceleration) to the fluid cylinder, we have

pSA - (p + (Sp) 8A = pSAdxay

wherein we have substituted §A §x for the volume 8% of the elemental cylinder, and péV =
p38A Sx for its mass. The equation simplifies to §p = —pdx ay or, in the limit as §x approaches
zero,

% = —Pdy. (4.40)
The negative sign in equation (4.40) should come as no surprise: if the pressure gradient 9p/dx
is positive (i.e. the pressure increases from left to right), the cylinder will accelerate to the
left and not to the right as the acceleration vector in Figure 4.13 would suggest. For the first
time in this book we have used the symbol d/dx to denote a partial derivative rather than a
total derivative d/dx. The partial derivative is appropriate here because the hydrostatic pres-
sure p can now vary both in the horizontal (i.e. x-) direction as well as the vertical (i.e. z-)
direction. If we also subject the fluid to a vertically downward component of acceleration a;,
the hydrostatic equation (4.5) must be replaced by

ap
Lo p(a+g). (4.41)

cross section 5A

p—>| — 3 |<—p+5p

OX

Figure 4.13 Accelerating horizontal cylinder of fluid
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z

Figure 4.14 Isobars in an accelerating body of fluid

The spatial variation (i.e. with x and z) of the hydrostatic pressure requires the solution of both
equations (4.40) and (4.41). Provided the acceleration components a, and g, are constant, both
equations are easily integrated and we find

p=-paxx+Ci(z) and p=-p (az—g)z+C2(x).

Ci (z) and C; (z) are now functions of integration rather than the constants of integration we
have for ordinary differential equations. Since the two equations for p must be simultaneously
valid, the final result is

p - Prer = p (g2 - a2z - axx) (4.42)

where prgr is a reference pressure (i.e. p = prer at x = 0, and z = 0).

Since the terms within the brackets in equation (4.42) are constant, we see that lines for
which (g - az) Z - ayx = constant represent lines of constant pressure (called isobars). The
slope of the isobars, as shown in Figure 4.14, is given by

tang = 92 - OB _ _4x (4.43)

dx OA  g-ay

ILLUSTRATIVE EXAMPLE 4.6

A high-performance sports car is driven around a corner of radius 64 m at a constant speed of
180 kph. What angle does the free surface of the petrol in a fuel tank make with the horizontal?
Calculate the pressure difference between the free surface and a point a perpendicular distance
200 mm from the free surface. Take the density of petrol as 800 kg/m?, and the acceleration
due to gravity as 9.81 m/s?.
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Solution

Since the car speed V' = 180 kph = 50 m/s, the centripetal (i.e. radially inward) acceleration
a, for aradius R = 64 mis a, = V?/R = 50%/64 = 39.1 m/s? (i.e. a lateral acceleration of
almost 4g).

In this example, the vertical acceleration is zero, so the slope of the free surface is given by
equation (4.16) as tan6 = a,/g = 3.98 from which # = 75.9°. From Figure E4.6, we see that,
for point P, 200 mm (= ») from the free surface, x = -nsin6 and z = ncosé so that the
pressure at P is given by

p-B=pgn <% sinf +c059>

=800 x 9.81 x 0.2(3.98 x sin 75.9° + cos 75.9°)
= 6441 Pa or 0.064 bar.

9 415 SUMMARY

We started this chapter by establishing the three fundamental principles for the variation
of pressure p throughout a body of fluid at rest: (a) the pressure at a point is the same in all
directions (Pascal’s law), (b) the pressure is the same at all points on the same horizontal

level, and (c) the pressure increases with depth z according to the hydrostatic equation
dp/dz = pg.If the fluid density p is constant, the increase in pressure over a depth increase
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h is pgh, a result which can be used to analyse the response of simple barometers and
manometers to applied pressure changes and differences. In situations where very large
changes in pressure occur, such as throughout the earth’s atmosphere and in very deep
water, the assumption of constant density may no longer be adequate, and an equation
of state is required to relate pressure and density, together with an assumption about the
fluid temperature. The hydrostatic equation is still valid but more difficult to integrate, as
illustrated by consideration of the earth’s atmosphere. The vertical density gradient in a
body of fluid determines whether it is stable or unstable.
The student should

e be able to calculate the pressure variation with vertical depth for a fluid of constant
density, including the situation of a series of fluid layers

e be able to analyse the response of a simple barometer to changes in the external
(barometric) pressure

e be able to analyse the response of a U-tube or inclined-tube manometer to changes
in the applied pressure difference

e be able to calculate the pressure variation with vertical depth or height for a
variable-density fluid where there is a simple relationship between pressure and
fluid density

e be able to determine the stability of a body of fluid given the vertical density
distribution

e understand the concept of geopotential altitude

e be familiar with the series of layers which make up a model of the earth’s atmo-
sphere and be able to calculate the density and pressure distribution for a specified
lapse rate

0 4.16 SELF-ASSESSMENT PROBLEMS

4.1 If the atmosphere is assumed to have a height of 100 km and a constant density,
calculate the density if the pressure at ground level is 1 bar.
(Answer: 0.102 kg/m?)

4.2 According to kinetic theory, the molecular mean free path A for a gas of molecular
weight M, effective molecular diameter o, and density p is given by

A= ./n/«/iﬂpNAO'Z

where Njy = 6.022 x 10%6 molecules/kmol is the Avogadro number. The Knudsen
number Kn = A/L, where L is a characteristic length of an object moving through
the gas. Calculate the density of air if Kn = 1 for values of L of 1 um, 1 mm, and 1
m and, with reference to Table A.7, identify the corresponding regions of the earth’s
atmosphere. The value of o for air is 366 pm.

(Answers: 0.808 kg/m?> (lower troposphere), 8.08 x 10~* kg/m? (stratopause), 8.08 x
1077 kg/ m? (lower thermosphere)).

4.3 A tube, closed at the bottom, open at the top, of length 20 m, and inclined at an angle
of 20° to the horizontal, is half full of water and half full of oil of relative density 0.8.
Calculate the hydrostatic pressure at the bottom of the tube.

(Answer: 0.604 bar)
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4.4 A vertical U-tube manometer contains two liquids, one of density p; and the other

4.5

4.6

4.7

4.8

of lower density po. Show that the difference in height between the free surfaces of
the two liquids when no pressure difference is applied is hg (1 - po/p1), where hy is
the height of the lighter liquid above its interface with the heavier liquid.

Figure P4.5 shows a U-tube of cross-sectional area A, which is sealed on the left-
hand side, open on the right-hand side, and contains a liquid of density p. The
density of the gas above the liquid on the left-hand side is negligible. The solid cyl-
inder of mass m on the right-hand side is completely supported by the liquid (i.e.
the cylinder is a perfect fit in the tube with no leakage or friction). Derive an ex-
pression for the absolute pressure of the gas if the external pressure acting on the
cylinder is B.

Bl
cylinder

gas
liquid

Figure P4.5

Figure P4.6 shows an inverted U-tube manometer used to measure the pressure p of
a gas in a pipe. The U-tube contains two liquids, of densities p; and p, as shown.
Show that

p-B=(pH-p2L)g

where B is the external pressure and g is the acceleration due to gravity. The gas
density may be assumed to be negligible.

The pressure measured at the summit of a mountain is 0.31 bar. Calculate the height
of the mountain, assuming the temperature decreases linearly with altitude at a rate
of 6.5 °C/km. Take the pressure at sea level as 1.015 bar and the temperature as 15 °C.
What would be the error in calculating the height, assuming the air density remained
constant at its sea-level value?

(Answers: 8947 m, -34.6%)

(a) Figure P4.8 shows a manometer consisting of two vertical arms of cross-sectional
area a connected to form a U-tube. The open reservoirs at the top of each arm are
identical and of cross-sectional area A 3> a. The liquid in the right arm is water with
density pyw, and that in the left arm is an oil with density po which is less than py.
The manometer is used to measure the difference between the pressure p;, which
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P4

Figure P4.6

lp1 lpz
£ oil 'j/ water

Figure P4.8

acts on the oil surface, and p,, which acts on the water surface. Show first that when
p1 and p, are equal, the difference in height between the oil and water surfaces is

2
H, 1-—
°< pw)

where Ho is the height of the oil column measured above the oil/water interface.
Show further that a pressure difference p, — p; moves the interface an amount h
given by
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4.9

h= P2 =p1
pwg (1+alA) - pog (1 - alA)’

(b) If the oil has a density of 800 kg/m?® and the U-tube has an internal diameter
of 5 mm, calculate the reservoir diameter required if the manometer reading for a
pressure difference of 200 Pa is to be 100 mm. What would the manometer read for
a pressure difference of 200 Pa if the reservoirs had the same internal diameter as the
manometer tube?

(Answers: 107.8 mm, 10 mm)

(a) An inclined manometer, as shown in Figure P4.9, is used to measure the pressure
pr in a pipe containing fluid of density pr. The measuring leg of the manometer has
an internal cross-sectional area a and is inclined at angle ¢ to the horizontal. The
other side of the manometer is connected to a pipe containing a fluid of density pg
at constant reference pressure pg. The interface between the reference fluid and the
manometer liquid, which has a density py, is maintained within a reservoir of cross-
sectional area A. When the pressures pr and pg are equal, the manometer reading L
is zero, and the liquid level in the reservoir § is also zero.
(i) If Hp is the height of the pipe on the right-hand side above the zero line
(i.e. L=0) and Hp is the height of the pipe on the left-hand side above the zero
line, show that

Hr _ pr
Hp  pr’

(ii) Derive an equation relating the rise in level § of the fluid in the reservoir with
the manometer reading L.
(iii) Show that when pr > pp the pressure difference pr - pr is given by

Pr-Pr = (oM — pr)gLsin @ + (ppr - pr) gL alA.

(b) In a particular application of the manometer, the angle of inclination ¢ is 20°,
the inside diameter d of the measuring leg is 5 mm and that of the reservoir D is

Figure P4.9
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100 mm, and the manometer fluid is mercury with a relative density of 13.6. The
reference fluid is a silicon oil which has a relative density of 0.8 and is maintained at
an absolute pressure pr of 5 bar.
(i) Calculate the pressure pr of a gas with density pr of 10 kg/m? if the manometer
reading L is 350 mm.
(ii) Calculate the value of pr — pr from the simplified equation

pr—Pr = pmgLsin .

(iii) What is the percentage error in the result for pr — pr in (ii) compared with the
full equation derived in part (a)(iii)?

(Answers: 5.16 bar, 0.62% too low)

(a) A combat aircraft is flying in a nose-down attitude as shown in Figure P4.10. If the

aircraft is accelerating at a rate a, show that the isobars in the fuel tanks are inclined
to the horizontal at an angle 6 given by

tang = —acosa
g-asina
where « is the pitch angle of the aircraft.

(b) If the aircraft in part (a) accelerates at 3g, g being the acceleration due to gravity,
and the pitch angle is 30°, calculate the inclination of the isobars.

(c) Calculate the inclination of the isobars if the aircraft climbs with a nose-up
attitude of 30° and acceleration 3g.

— e

e

Figure P4.10
(Answers: —79.1°, 46.1°)




Hydrostatic force exerted
on a submerged surface

This chapter is concerned with hydrostatic force, which is the force exerted on a submerged
body due to the hydrostatic pressure distributed over its surface (or surfaces). We start by
showing that uniform pressure acting on the entire surface of a solid object results in a zero
net force. The remainder of the chapter is concerned with the force exerted on a submerged
surface due to the linear increase in pressure with vertical depth in a stationary body of fluid of
constant density. We show that the vertical component of the net hydrostatic force on a sub-
merged surface is equal to the weight of the fluid which occupies (or could occupy) the volume
directly above the surface. It is also shown that the difference between the vertical components
of hydrostatic force acting on the lower and the upper surfaces of a submerged body is the
buoyancy force of Archimedes’ principle. We then analyse the horizontal component of the
hydrostatic force acting on a submerged surface. This component is less straightforward to
calculate than the vertical component but is shown to equal the hydrostatic force acting on an
equivalent flat vertical surface. The chapter concludes by considering the stability of a body
either fully submerged or floating in a fluid.

5.1 Resultant force on a body due to uniform
surface pressure

Figure 5.1(a) shows a body of arbitrary shape which is subjected to a uniform external pressure
Bacting on its surface. An imaginary cylinder of infinitesimal cross section §A is shown passing
through the body and intersecting its surface at points X and Y where the surface areas are
8A; and SA,, respectively. Since the body is of arbitrary shape, these surface elements will
be at arbitrary orientations to the line XY. Although the argument here applies to any three-
dimensional shape, it may be easier for the reader to imagine the body has a two-dimensional
shape, i.e. we are looking at a cross section which would be the same for any plane parallel to
the page.

If, as shown in Figure 5.1(b), the angles between the line XY and the surface normals at X
and Y are 6; and 0, respectively, then

§A =68A1cosB =8A;cosbs, (5.1)

i.e. the area A corresponds to the projection of both A; and A, onto a plane perpendicular
to the axis of the elemental cylinder. The external pressure B results in forces BSA; and BSA;

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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cross section 6A

(@)

0>
B 0
0, ! cross section 5A B
by
5A, I 6A,
(b)

Figure 5.1 (a) Body of arbitrary shape surrounded by uniform pressure B (b) Infinitesimal cylinder
within body

acting normal to §A; and §A;, respectively. The net force due to B acting along the line XY
is thus

(BSA1)cosO; — (B§Az)cos O, = B(8A1 cosBy — 6A; cosbs)

which must be zero because of the area relationship, equation (5.1).
Since we can use the above argument for every part of the body surface, we conclude
that a body of arbitrary shape subjected to a uniform external pressure experiences zero net>’

force.

This conclusion has an important consequence for the calculation of not only hydrostatic
forces but also hydrodynamic forces (see Chapters 9 and 10): in situations where the pressure
acting on a surface varies from point to point, we can add or subtract a uniform pressure
everywhere without affecting the net hydrostatic or hydrodynamic force balance. In particular,
in problems for a liquid of constant density pr, where the variation of the pressure p with depth
z below the liquid surface is given by (see Section 4.3)

p =B+ prgz, (5.2)

we can subtract the uniform barometric pressure B from p and calculate hydrostatic forces
using the gauge pressure pg = prgz.

35 The word net here means overall.
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Figure 5.2 Horizontal (H) and vertical (V) components of the hydrostatic force acting on a thin
surface submerged in a liquid: (a) liquid above surface, (b) surface, (c) liquid below surface

5.2 Vertical component of the hydrostatic force acting
on a submerged surface

Just as do solids, fluids obey Newton’s laws of motion. From Newton’s third law of action
and reaction, we can state, for a body of liquid at rest, the net force exerted by the liquid on
any submerged solid surface must be equal in magnitude and opposite in direction to the force
exerted by the surface on the liquid. Since we need to consider the hydrostatic forces on objects
or structures which may have liquid above, below, or both, the submerged surface in Figure 5.2
is shown as an infinitesimally thin, weightless sheet with an upper and a lower surface.

The first condition which must be satisfied for the liquid directly above the sheet to be in
static equilibrium is that there must be a vertically upward force V exerted on it by the upper
surface of the sheet equal in magnitude to the weight W of the liquid above it, i.e.
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where pr is the liquid density, g is the acceleration due to gravity, and ¥ is the volume of
liquid directly above the sheet. The vertical component of the hydrostatic force exerted by the
liquid on the upper surface of the sheet must be of equal magnitude to the force exerted on the
liquid (i.e. V = prUg) but act vertically downwards, as indicated in Figure 5.2(b). Finally, for
the lower surface of the sheet, the hydrostatic force must again be of magnitude | V| but act

vertically upwards.

Each of the foregoing results could have been obtained by calculating the force due to the
gauge pressure pg distributed over the upper and lower surfaces of the sheet. In the case of
the upper surface, the vertical component of the force is obtained by integrating the vertical
component of the force on every element of the surface 84, i.e.

8V = pGoA cosb = prgzdA cosf

where z is the depth below the liquid surface of the surface element §A, and 0 is the angle
between the vertical and the normal to the surface element. Since §A cos# is the area of an
element of the sheet projected onto a horizontal plane, z6A cos 6 represents the volume 5 of
the vertical cylinder of liquid directly above the surface element §A. The force V is thus

V= /@ prgdV = prgl (5.4)

as before. If the surface has a simple shape (e.g. flat or cylindrical), there is a good chance the
volume V can be calculated from well-known formulae for the volumes of rectangles, cylinders,
etc. However, as we shall show in Section 5.5, if the shape is more complex, we have to evaluate
the integral using the mathematical description of the shape.

So far we have considered only the magnitude of V but not its line of action. The location
of the latter is important because, for a system of forces acting on a body to be in static equi-
librium (i.e. for a stationary body to remain at rest), we require that the forces exert no net
moment on the body. As a consequence of this condition, for the liquid directly above the
sheet the line of action of V must pass vertically through the centroid of the liquid volume.

We note that to calculate both the magnitude of V and the location of its line of action, we
are concerned primarily with the geometry (i.e. the shape and size) of the volume .

ILLUSTRATIVE EXAMPLE 5.1

Calculate the magnitude of the hydrostatic force exerted on the upper surface of the kite-
shaped plate shown in Figure E5.1, and the location of its line of action if the plate is submerged
horizontally at a depth Z below the surface of a liquid of density pr.

Solution

Since the plate is horizontal, the entire hydrostatic force acting on its surface must be vertical
and act downwards through the centroid of the plate surface. The force V is equal to the weight
of liquid directly above the plate, i.e.

V = prgAZ.
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Figure E5.1

The surface area of the plate A is given by the sum of the areas of the triangle to the left of YY
and that of the semicircle to its right

A=3R + 17R?
so that V is given by
- 1 2
V= (3 + in) PFSZR".

We can show that this result is consistent with what we obtain by considering the gauge
pressure pg acting on the plate. Since the plate is horizontal, pg is constant

PG = prgZ
and V is given by
V = pGA = prgZA,

exactly as before.

The symmetry of the plate about XX tells us that the line of action of V must pass through
a point P somewhere along the line XX. The location of P is given by its distance ¢ from the
line YY, which can be calculated by equating the moment of V about YY (or any line parallel
to YY) to the combined moments of the hydrostatic forces acting on the triangular section of
the kite to the left of YY and on the semicircular section to the right of YY

0rgZ 3R*a - prgZ %nsz = prgZ <3 + %n) R%c.

The locations of the lines of action of the hydrostatic forces acting on the two sections cor-
respond with their centroids, which we can find from Appendix 3, which includes the areas,
centroid locations, and other information for a number of basic shapes as
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a=R and b:ﬁ
3

so that, after dividing through by the common factor pgZR?, the moment equation becomes

3R—ln£:<3+ln>c

27 3w 2
from which
= 7R
3(3+m/2)

Since the plate in this example is horizontal, the only difficulty in the problem stemmed
from the shape of the plate. In the following example, the surface shape is made up of two
rectangles, and the difficulty arises because they are sloping rather than horizontal. As we
have already remarked, later in this chapter we shall deal with a situation where the surface
shape is sufficiently complex that the volume of liquid directly above it must be obtained by
integration.

ILLUSTRATIVE EXAMPLE 5.2

A dam has the cross section shown in Figure E5.2, with tan6 = 4. The water depth is H, and
the length of the dam along its top is L. Calculate the vertical component of the hydrostatic
force acting on the face of the dam, and the horizontal distance of its line of action from the
point O.

Solution
The vertical component of the force acting on the face of the dam V is equal to the weight of
water W vertically above the face. This weight is given by

W = prlg

where  is the volume of water directly above the two sloping surfaces, pr is the water density,
and g is the acceleration due to gravity. As shown in part (b) of the diagram, it is convenient to
split V into three smaller volumes, for each of which the volume and centroid location can be
found from Appendix 3, as follows

Volume 1: Cross section is a right-angle triangle with

height = % H, base length = % H (since tan6 = 4),
centroid 1_18 H from vertical face of triangle,
Mlpg2pgp_ Lpp
volume V; = 26 H3 HL 18H L.
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Figure E5.2

Volume 2: Cross section is a rectangle with
height = % H, width= % H, centroid % H from either vertical face,
152 — 22
volume UV, = 3H 3 HL= 5 H*L.

Volume 3: Cross section is a right-angle triangle with
height = 1 H, baselength = % H, centroid % H from vertical face of triangle,

Higr-1 gL

3
_11
volume V3 = 53H 3 is

From the above,

‘U:‘U1+‘U2+‘U3=(%+%+1_18)H2L=%H2L
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hence,
V=W =pplg = %PFHng'

To find the horizontal distance X of the line of action of V from O, we equate the moment of
V about O to the combined moments of the vertical forces V1, V3, and V3 due to the weight of
the three liquid volumes V1, V,, and Vs, i.e. V1 = Wy, V, = W), and V3 = W3, as follows

r=(1+L 1 1
Vi = (3 + 18)HV1+ cHV2 + gHV;

= (LZ 421,11 3
_(1818+96+189>’0FHLg

7
Tos L8

As we pointed out earlier in this section, the thin sheet depicted in Figure 5.2 has both an
upper and a lower surface. For this weightless sheet to be in equilibrium, the net force in any
direction must be zero. The hydrostatic force on the downwards-facing surface must therefore
be equal in magnitude and opposite in direction to the hydrostatic force on the upwards-facing
surface, and this must also apply to the vertical and horizontal components of the hydrostatic

i

p(2)

Figure 5.3 Surface with liquid below but not above
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force. While this conclusion may seem to be obvious for a submerged sheet, it may be less
apparent if there is liquid beneath the sheet but not above.

The shape of the surface shown in Figure 5.3 is the same as that in Figure 5.2 but the
vertical sides now prevent contact between the liquid and the upper surface of the sheet.
Since the hydrostatic pressure is constant along any horizontal line within a liquid at rest, the
pressure distribution over the downwards-facing surface is completely unaffected by the fact
that there is no liquid above the sheet. The hydrostatic force must also be unaffected since it
represents the integrated effect of the pressure distributed over a surface. We conclude that the
magnitude of the vertical component of the hydrostatic force exerted on a surface submerged
in a liquid is equal to the weight of the liquid which occupies the volume directly above the
surface or the weight of the liquid which could occupy this volume.

ILLUSTRATIVE EXAMPLE 5.3

Figure E5.3 shows the cross section of an axisymmetric container. The upper and lower sec-
tions are both cylindrical with radii r and R, respectively, and separated by a conical section
which slants at an angle 6 to the horizontal. If the container is filled with a liquid of density
pr to a height h above the top of the conical section, calculate the magnitude of the hydro-
static force exerted by the liquid on the conical section. State the direction of this force and the
location of its line of action.

Solution

Since the container is symmetric about its vertical axis, the radial (i.e. horizontal) component
of force arising from the pressure acting on any element of the interior surface is counteracted
by a force of equal magnitude but opposite in direction arising on an identical element on
the diametrically opposite side of the container. Due to the axisymmetry, therefore, the net
hydrostatic force on the conical section of the container must be vertical, and its line of action
coincident with the axis of symmetry. From the geometry of the conical section, it must also
be that the hydrostatic force is directed vertically upwards.

The magnitude of the hydrostatic force is given by prUg, where V is the volume of liquid
which could occupy the space directly above the conical surface up to the level of the free
surface of the liquid, as indicated in Figure E5.3 by the broken lines. From the figure, we see
that we can calculate V by calculating first the volume of a cylinder of radius R and height
h + (R - r)tan 6 and then subtracting the volume of the small cylindrical section at the top, of
height h and radius r, together with the volume of the interior of the conical section which
is a frustum of a cone with upper radius r, lower radius R, and height (R - r)tan 6. Thus,
we have

V=nR? [h + (R - r)tan 9] -nrth - %H(Ra - r3)tan9

and, finally, for the hydrostatic force V, we have

V = prgn(R-7) [(R+r)h+ %tan@ {2R2—r(R+r)}:|_
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Figure E5.3

5.3 Archimedes’ principle and buoyancy force
on a submerged body

Although Archimedes’ principle is often stated simply as ‘the magnitude of the buoyancy force
exerted on a submerged body is equal to the weight of fluid displaced by the body, it is easily
proved using the concepts already presented in this chapter. A body of arbitrary shape sub-
merged in a liquid, as shown in Figure 5.4, can be thought of as having an upper surface and

a lower surface. From Section 5.2, the vertical component of the hydrostatic force exerted on
the upper surface, Vy, will be a downward force equal in magnitude to the weight, Wy of the
liquid in the volume Vy directly above the upper surface, i.e.

Vu = Wy = prug. (5.5)

Similarly, the vertical component of the hydrostatic force exerted on the lower surface, Vr, will
be an upward force equal in magnitude to the weight, W, of the liquid which could occupy
the entire volume (i.e. including the body itself), U, directly above the lower surface, i.e.

Vi = Wr = pr1g. (5.6)
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Vi

Figure 5.4 Hydrostatic forces on a completely submerged body: (a) submerged body, (b) liquid
above body, (c) liquid below body

The magnitude of the net vertical force acting on the body, Vg, must equal the difference
between Vi and Vy, i.e.

Vp=VL-Vy = pr(V - Vy)g (5.7)

As is evident from the figure, the difference (VU - Vy) = Vs, the volume of the submerged
object, so that finally

Vg = prUsg. (5.8)

The subscript B has been introduced as a reminder that Vg is usually called the buoyancy
force. Equation (5.8) is the mathematical representation of Archimedes’ principle, which was
stated in words at the start of this section.
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Throughout much of this chapter we have used the word ‘liquid’ rather than ‘fluid’ because
hydrostatic problems usually concern liquids rather than gases. In practice, any result in this
chapter which does not involve the depth below a free surface applies to a surface or body
immersed in any fluid of uniform density. Equation (5.8), for example, can be used to calculate
the buoyancy force exerted by the surrounding atmosphere on a lighter-than-air balloon or
airship.

Since V;. > Vv, it should be clear that the buoyancy force Vy always acts vertically upwards.
This conclusion can also be seen to result from the increase in hydrostatic pressure with depth,
equation (5.2) (see Section 4.2), since the forces acting on the surface of a body submerged in
a fluid at rest are a consequence of the pressure distributed over it. It should also be apparent
that the line of action of Vp must pass through the centroid of the displaced volume Us. If the
submerged body is of uniform density ps, the location of its centre of gravity corresponds with
its centroid, but the two will not in general correspond if there is a density variation within the
interior of the submerged body, for example, as would be the case for a submarine. If a body
is submerged only partially rather than completely, Archimedes’ principle is still valid but the
volume Vs must be replaced by that part of the volume of the body which is below the surface
of the liquid (i.e. the volume of liquid displaced, Up = m/pp, m being the mass of the body).
The centroid of the submerged volume is termed the centre of buoyancy. Whether or not a

body floats or sinks in a fluid is determined by the average density of the body, ps = m/Vs. If
ps > pr, the body will become fully submerged and sink unless constrained. If ps < pF, the
body will float with part of its volume, VUp, below the surface and the rest above.

ILLUSTRATIVE EXAMPLE 5.4

A balloon in the form of a thin rigid sphere of diameter D = 1 m is filled with helium of
density py. = 0.17 kg/m?. Calculate the force required to prevent the balloon from rising if
the surrounding air density at ground level par = 1.2 kg/m?, and the balloon material has
negligible mass. What payload could the balloon lift to an altitude of 8500 km where the air
density is 0.5 kg/m3?

Solution

The volume of the balloon Vs is given by 7 D*/6 = 0.52 m>. The corresponding buoyancy force
at ground level Vp is thus

VB = parUsg = 1.2 x 0.52 x 9.81 = 6.12N.

The weight of the filled balloon W is
W = ppeVUsg = 0.17 x 0.52 x 9.81 = 0.87 N.

From Figure E5.4 we can see that static equilibrium at ground level requires
Vp-W-F=0

so that the force F required to prevent the balloon from rising is

F=Vp-W=525N.
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Figure E5.4

If the balloon is released with a payload P < F, it will rise to an altitude where static
equilibrium requires

Vp-W-P=0.

Since the balloon is rigid, both its volume Vs and its weight W remain the same as at ground
level. However, the buoyancy force Vp decreases with altitude in direct proportion to the
ambient density. For par = 0.5 kg/m3, we have

VB = parUsg = 0.5 x 0.52 x 9.81 = 2.55N
and the payload for static equilibrium is given by

P=Vp-W=255-0.87=168N.

Although the pressure does not appear in equation (5.8), it is worth reminding ourselves
that the buoyancy force is a direct consequence of the decrease in pressure with altitude (or in-
crease with depth). What is quite remarkable is that, although in the atmosphere the pressure
differences which arise from the vertical pressure gradient are usually very small, the result-
ing force can be quite substantial. For example, for a balloon of diameter 1 m the pressure
difference Ap from top to bottom is only 0.012% of 1 bar, i.e.

Ap = pairDg =12 x 1 x9.81 =11.8Pa

but, as we found, the lift force at ground level is 6.12 N, which is roughly equal to the weight of
a pint (just over half a litre) of beer. The term lift force was used quite deliberately: just as for
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a balloon, the lift force on an aerofoil arises because the average pressure acting on its lower
surface is higher than that on its upper surface. As we shall show in Section 8.7 and discuss in
more detail in Section 17.7, in the case of an aerofoil, the pressure difference is a consequence
of its forward motion through the air, a much more complicated situation than the hydrostatic
pressure difference due to gravity.

Before we leave the topic of balloons, it is interesting to calculate the force required to sub-
merge the helium-filled balloon of Illustrative Example E5.4 in water. Because the density of
water pp,0 is so much greater than that of air, the buoyancy force V3 is also much greater, as
we can see that

VB = pr,0Usg = 10° x 0.52 x 9.81 = 5.1 x 10° N

and this is effectively the force which must be overcome in order to submerge the balloon since
the weight (unchanged at 0.87 N) is obviously negligible compared with V. To put this result
in perspective, the reader might like to compare this value with the weight of a small car, such
as a BMW 320i, which is about 1.4 x 10* N.

5.4 Hydrostatic force acting on a submerged vertical flat plate

Figure 5.5 shows the front and side views of a flat plate of area A submerged vertically in a
liquid of density pr. On the right-hand side of the figure is a graph showing the proportional
increase in hydrostatic pressure py with depth z,i.e. py = prgz. Since this pressure acts normal
(i.e. perpendicular) to the plate at every point, the direction of the net hydrostatic force H
exerted by the liquid on the plate must also be horizontal.

To calculate the magnitude of H we split the area A into a series of infinitesimal horizontal
strips, such as the strip of area §A at depth z shown in Figure 5.5. Since py is constant along a
horizontal line (see Section 4.2), the infinitesimal hydrostatic force §H exerted on the strip is
given by

O0H = pydA = prgzdA

and the net force H is obtained by summing all such elemental forces over the area A, i.e.

H= ZA 0H = ZA POFgZOA.

In the limit as A approaches zero, the summation is replaced by an integration so that,
assuming pr and g are constant with respect to the depth z, we have

H= ,opg/ zdA. (5.9)
A

The integral [, zdA, called the first moment of area, turns out to be rather special because it
is directly related to the location z¢ of the centroid of the area A as follows

f 2dA = 2eA. (5.10)
A
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Figure 5.5 Flat plate, submerged vertically

If the submerged plate has uniform thickness and density, it is easily shown that z¢ corres-
ponds to the location of its centre of gravity. We can make use of the general equation for z¢
to write

H = prgzcA = pcA (5.11)

where pc is the hydrostatic pressure at the centroid of A. For many shapes, the area A and the
location of the centroid z¢ are either well known (e.g. for a rectangle or a circle) or tabulated
as in Appendix 3. More complicated shapes can often be treated as combinations of simpler
ones, much like the kite shape of Illustrative Example 5.1. For shapes where this approach is
not possible, the area A and the integral [, zdA have to be evaluated from first principles, as
we show in Illustrative Example 5.5.

Although equation (5.11) shows that the hydrostatic force H acting on the area A is given
by the product of the pressure pc at the centroid of A and the area itself, as we shall now show,
the line of action of H is always below the centroid. The line of action of H would be at a depth
zc if the hydrostatic pressure p acting on the plate was uniform but, as we know from the
hydrostatic equation (5.2), p increases linearly with depth so that the average pressure above C
is less than that below C.

To find the line of action of H means finding the depth zp below the surface at which H
acts on the plate, and the horizontal distance xp from a vertical reference line in the plane of
the plate. We start with zp by taking moments about a line in the liquid surface parallel to the
plate.
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For the elemental force §H the moment is
8Hz = pydAz = ppgz*sA

and the net moment of all such elements is given by

f ngZZdA = Hzp = prgzcAzp (5.12)
A

wherein we have equated the net moment due to all the elemental forces §H to the moment of
the net force H acting at the depth zp. If we cancel out the common factor prg, we find

~ [,7*dA

ZoA (5.13)

zp
Since the centroid is at depth z¢, we can write
z=zc+y

where, as shown in Figure 5.5, y is the vertical depth of the elemental strip below the centroid.
The integral can now be written as follows

/zszz /(z%;+22cy+y2)dA
A A

= z2tA +chf ydA +/ y2dA.
A A

The integral [, ydA can be shown to be identically zero as follows

/sz:/(zc+y)dA:ch+/ydA
A A A

but, as we saw earlier, zc is defined by the equation [, zdA = zcA, so that [, ydA = 0, and we
are left with

/ Z2dA = Z%A +f ysz. (5.14)
A A

As was the case for [, ydA, the integral [, y* dA is again special and is encountered in many
problems of mechanical, aeronautical, structural, etc., engineering, for example in the stress
analysis of beams, and the dynamics of rotating objects. It is given the symbol I¢ and called the
second’®® moment of the area A and is closely related to the moment of inertia about an axis
in the plane of the area and passing through its centroid

Ic= / y2dA. (5.15)
A

Appendix 3 includes the areas, centroid locations, and second moments of area for a number
of basic shapes.

36 Tt is called the second moment because the integral involves z2.
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As a final step, after substituting from equation (5.14), we can write equation (5.13) as

2dA dA
fAZ‘Z — + fA y2 _ Ic (516)

Zp = Z zZc+ ——.
P A CT T ZcA CTZcA

Equation (5.16) confirms what we argued earlier: P is always below C because y?, and so I, is
always positive.

We now turn our attention to calculating xp, which, as we shall see, is a little more difficult
than finding zp. It might seem that we could proceed in a similar way as for zp by starting
with a vertical strip of infinitesimal width éx. The difficulty that arises immediately is that the
hydrostatic pressure pg is not constant along the strip, as it was for the horizontal strip, but
varies with depth z. Instead of an elemental strip, therefore, we consider an elemental rectangle
of width 8x and depth 8z at a location (x, z) on the plate surface. The hydrostatic force on this
element is pyéx 8z, and the moment about a vertical line in the plane of the plate is pyx5x §z.
The net moment is then

// praxdxdz = Hxp
A

where the double integral sign indicates that we must integrate over the surface area A in both
the x- and z-directions. We now substitute prgz for py so that

Hxp = ppg// xzdxdz.
A

From equation (5.11) we have H = ppgzcA so that

~ [[, xzdx dz

X,
P zZcA

Once again we substitute z = z¢ + y so that

[ xdxdy  [[,xydxdy
Xp = + .

1 ZcA (5.17)

If we specify that the vertical line, from which x is measured, passes through the centroid of
the plate, then [, xy dx dy can be identified as the product of inertia of the plate, another tab-
ulated quantity for a range of ‘standard’ shapes. The symbol Iy, is often used for this quantity,
ie.

I :// xydxdy. (5.18)
A

We also recognise that the first term on the right-hand side of equation (5.17) is identically
zero because x is measured from the centroid, i.e.

// xdxdy =0 (5.19)
A

so that

Ly
ZcA )

Xp = (5.20)



HYDROSTATIC FORCE ACTING ON A SUBMERGED VERTICAL FLAT PLATE

For convenience, we bring together the key results of this subsection

H = prgzcA = pcA, (5.11)
zp =2zc + Zi_CA’ (5.16)
and
Ly
Xp = ZoA” (5.20)

As a final point here, we note that if the plate is symmetrical about a vertical line through the
centroid, then I, = 0 and so xp = 0, i.e. the line of action of H is directly below the centroid.

ILLUSTRATIVE EXAMPLE 5.5

A circular disc of radius R is immersed vertically in a liquid of density pf, with its centre a
depth Z below the surface. Calculate the hydrostatic force H which the liquid exerts on one
face of the disc, and the depth zp at which it acts.

Figure E5.5

Solution

We shall solve the problem in two ways. The first illustrates how we can use the information
in Appendix 3.
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The surface area of the disc is given by A = 7 R?, and the centroid is coincident with the centre
so that the depth of the centroid zc = Z. The hydrostatic pressure at the centroid pc is thus
given by pc = prgZ, and the hydrostatic force H exerted by the liquid on the disc is given by

H = pcA = ppgZ mR%,
From equation (5.16), the depth zp at which H acts is given by

Ic
TR*Z
From Appendix 3 the second moment of area about a horizontal axis in the plane of the disc
and passing through the centroid is

zp =2+

_ 7R*
Ic = 4
so that
RZ
=7+ .
zZp + 47

For our second approach to this problem, we suppose that we do not know the area of the
disc, the location of its centroid, or its second moment of area. As shown in Figure E5.5, we
identify a horizontal strip on the surface of the disc at depth z and of infinitesimal width §z. It
is convenient here to work in cylindrical coordinates, using the notation shown in the figure,
so that we have

z=/7-Rcos0.

If we differentiate with respect to 6, we have dz/df = Rsin so that §z = Rsin6 80, and the
area of the elemental strip 5A is given by

8A =2Rsin6 8z = 2R* sin® 6 86).

The hydrostatic pressure py at depth z is given by
PH = prgz = prg (Z - RcosH)

so that the elemental hydrostatic force acting on the strip §H is
8H = prg (Z - Rcos0) 2R* sin” 0 86.

We note that pr, g, Z, and R are all constant, and the only variable quantity is 6 so that the
hydrostatic force H can be calculated from

g
H = 2ppgR? / (Z - Rcos0)sin® 6 do
0

b/ by
= 20rgR? (Z/ sin? @ df - Rf cos @ sin” 6 d9> .
0 0

The second integral is identically zero while the first has the value /2, both results being
obtainable from tables of standard integrals, so that



HYDROSTATIC FORCE ACTING ON A SUBMERGED CURVED SURFACE @

H = ngZJTRZ,

which is the same result as before but required a lot more effort to obtain.
To find the depth zp at which H acts from first principles, we take moments about a line in
the surface through O, which is parallel to the plane of the disc and vertically above C

z=Z+R
Hzp = / zdH
z=Z-R

T
= 2ngR2/ (Z - Rcos0)?sin 6 do.
0

Since H = prgZm R?, we can rewrite the last equation as follows

T 2
TZp _ _ Rcosé .2
7 —/0 (1 7 ) sin“ 0 do

2
1. 1_(R
et (2)

once again the same result as before.

5.5 Hydrostatic force acting on a submerged curved surface

In this section we show how the results obtained so far can be used to calculate the magnitude,
direction, and line of action of the horizontal and vertical components, H and V, of the result-
ant hydrostatic force R acting on a submerged surface of any specified shape. To illustrate the
general approach, we use the example of a dam with the cross section®” shown in Figure 5.6.
The cross section is taken to be symmetrical and two dimensional, i.e. there is no curvature
in any horizontal plane, so that the lines of action of H and V must both lie in the vertical
plane of symmetry. The span of the dam is S, and the particular shape shown (i.e. the curve
representing the surface in contact with water) is given by
Cx?

y= (5.21)

where C is a constant, y is the upward vertical distance from the foot of the dam O, x is the
corresponding horizontal distance, and D represents the vertical height of the dam. In the
analysis below it is convenient to introduce z, the depth below the water surface,ie.z = Z -y,
where Z is the total water depth. Also shown in Figure 5.6 is the line of action of H at depth
zp, and the line of action of V a horizontal distance x¢ from O.

37 The cross section shown is similar to that of the Hoover dam on the border of the states of Nevada and Arizona,
USA. Water from the Colorado River flows into Lake Mead on the upstream (Arizona) side of the dam. The water
depth is about 180 m, and the installed Francis hydraulic turbines generate up to about 2000 MW of electrical power.
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Figure 5.6 Components of hydrostatic force acting on the face of a dam

Figure 5.7 Components of hydrostatic force on an elemental strip of the dam surface

5.5.1 Horizontal component of R

We consider an elemental horizontal strip of the surface of the dam a depth z below the water
surface, as shown in Figure 5.7. The hydrostatic pressure py acting on the strip is given by

PH = PFgZ.
The strip is assumed to be so narrow that it may be considered to be flat. The elemental

horizontal force §H acting on the strip is given by

8H = pydA sinf
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where §A sin 0 is the area of the strip projected onto a vertical plane parallel to any horizontal
line in the face of the dam, and 6 is the angle between a tangent to the strip and the horizontal.
We can see from Figure 5.7 that §A sin€ = 8y S so that

O0H = prgzSéy

and the horizontal component of R is thus given by

z
H= ngS/ zdy (5.22)
0

z
= prgS / (Z-y)dy,
0
and, with y(x) given by equation (5.21), we have
H= % orgSZ2.

The final result reveals that, so far as the horizontal component of R is concerned, the
cross-sectional shape of the dam is irrelevant, and all that matters is the width S and water
depth Z: the magnitude of H is identical to the hydrostatic force exerted on a submerged
vertical rectangle of area SZ. This area represents the area of the shape obtained by projecting
the face of the dam onto a vertical plane. What we have is a general result: the magnitude of the
horizontal component of the hydrostatic force acting on a curved surface submerged in a fluid

of uniform density is equal to the hydrostatic force exerted on the projection of that surface

onto a vertical plane.

If the shape of the dam had not been symmetrical, it would have been necessary to resolve
H into two orthogonal components in a horizontal plane, F; and F,, say, and then combine
them using

H=./F +F. (5.23)

5.5.2 Line of action of H

We refer again to the example of the dam in Figure 5.6. As always, we calculate the depth of
the line of action of H by taking moments about any convenient line. In this case we select a
horizontal line through the point O at the foot of the dam and parallel to the face of the dam.
The moment of the elemental force §H about O is given by §H y, with §H = prgzS6y. The
net moment of all such elemental forces is then fyy:oz ydH which must equal the moment of H
itself. If zp is the depth of the line of action of H, we have

y=Z

H(Z-zp) = / ydH (5.24)
y=0

z
= ngS/ zydy
0

Z
prgs / W2 -y)dy = LorgsZ’.
0

From Subsection 5.5.1, we have H = ppgSZz/Z so that zp = 2Z/3.
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We see that only the water depth Z is important and the cross-sectional shape of the dam is of
no consequence.

5.5.3 Vertical component of R

In Section 5.2 we showed that the magnitude of the vertical component V of the hydrostatic
force exerted on a submerged surface is equal to the weight of the fluid which occupies the
volume  directly above the surface, i.e.

V = prg?. (5.4)

To determine V, therefore, we need to know ?, either from tables or by calculation from first
principles. In this instance we adopt the latter approach. We consider a vertical slice of the
fluid directly above the elemental strip of the curved surface of the dam, with thickness 8x (see
Figure 5.7), depth z, and length (span) S. The volume of the elemental slice is given by

SV = z86x

so that the entire volume U is

X
‘U=S/ zdx
0

where the symbol X denotes the horizontal distance between the point O and the point in the
cross section where the water surface meets the curved face of the dam (see Figure 5.6). We
now have

X
V= ppgS/ zdx (5.25)
0

X
= prgS / (Z - y)dx
0

and at this stage we need to connect y and x by introducing the shape of the curved surface
(equation (5.21)), i.e.

C 2
-5
The final result is found to be
V= %ppgSZX

wherein we have also made use of the relationship from equation (5.21), Z = CX?/D.

5.5.4 Line of action of V

As we did for H, we need to find the location of the line of action of V, i.e. the horizontal
distance x¢ from O. Once again we take moments about a line through O as follows:

x=X X
Vxc = / xdV = ,opgS/ x(Z-y)dx (5.26)
x=0 0
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wherein we have substituted (Z - y)Sdx for d¥. The final result, after substituting y = Cx?/D,
Z = CX?/D,and V = 2pggsZX/3, is

xXc = %xc.

As we pointed out in Section 5.2, x¢ corresponds with the x-location (with respect to O) of the
centroid of the volume of liquid ¥V directly above the curved surface.

5.5.5 Resultant hydrostatic force R
The resultant hydrostatic force R is calculated as the vector sum of H and V, i.e.
R=,/(H*+V?) (5.27)

and the angle between R and the horizontal is given by § = tan™! (V/H).

5.6 Stability of a fully-submerged body

To introduce the concept of stability, we consider first the behaviour of a simple pendulum
which consists of a bob of weight W at the end of a weightless rod, of length /, supported by a
pivotat O, and free to swing in a vertical plane. The situation is shown in Figure 5.8. In position
(a), where the centre of gravity G of the bob is vertically below O, the force W is balanced by
the reaction at O, the moment of W about O is zero, and the pendulum is at rest in a state of
static equilibrium. If given an angular displacement 6 to position (b) and then released, the
bob will move towards and oscillate about position (a). In practice, the oscillation is damped
by friction at O and the resistance to motion due to the fluid surrounding the pendulum so
that the pendulum eventually comes to rest in position (a). In the absence of damping, for
small displacements 6 a simple pendulum oscillates in a simple-harmonic motion with period
T = 2m,/l/g, where g is the acceleration due to gravity. It can be seen from Figure 5.8(b) that
the motion of the pendulum is driven by the moment Wisin 6, which always acts to decrease 6.
An object which returns to a position of static equilibrium when displaced from that position
is said to be in a state of stable equilibrium.

The position of the pendulum depicted in Figure 5.8(c) is also one of static equilibrium.
However, this position is unstable because the moment Wisinf is now such that the re-
sponse of the pendulum to the slightest displacement, as shown in Figure 5.8(d), is for the
displacement 6 to increase. The pendulum eventually moves to a position of static and stable
equilibrium, in this case again position (a).

The close analogy between the stability of a body freely floating completely submerged in a
fluid is illustrated by Figure 5.9, in which G represents the centre of gravity of the body, B is the
centre of buoyancy (see Section 5.3), [ is the distance between G and B, and Vp is the buoyancy
force. The condition for static equilibrium now is that G is directly below or directly above B.
An angular displacement 6 gives rise to a moment Vp/sin 6 and it is evident that position (b)
is stable while position (d) is unstable. The analogy with the simple pendulum is not perfect
because, when displaced, the body tends to roll about a horizontal axis close to G rather than
a fixed pivot.
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Figure 5.8 Stability of a simple pendulum: (a) G vertically below O, (b) OG displaced by angle 6, (c) G
vertically above O, (d) OG displaced by angle 0

5.7 Stability of a freely floating body and metacentric height

For a completely submerged body, the centre of buoyancy coincides with the centroid of the
body (which is also its centre of gravity if the density of the body is uniform throughout) and
this is always in the same place relative to the body. For a freely floating, partially submerged
body, the buoyancy force Vg must still equal the body’s weight W so the volume of displaced li-
quid remains constant (equal to W/prg). However, as illustrated in Figure 5.10, as the position
of the body changes, for example due to a rolling motion, so does the shape of the submerged
volume. In consequence, the centroid of the submerged volume, which defines the centre of
buoyancy, is not fixed but dependent upon the body position and this, in turn, has a critical
influence on the stability of the floating body. For this reason, analysing the stability of a body
which is floating partially submerged is more complicated than for one which is completely
submerged.
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Figure 5.9 Stability of a freely floating, fully-submerged body

The upper half of Figure 5.10 shows a body of uniform density ps and weight W with its
centre of gravity G below the centre of buoyancy B of the submerged volume. When displaced
through an angle 6 from the vertical, the magnitude of the submerged volume UV must remain
the same (V = W/ppg) but its centroid will move a horizontal distance X relative to G to a new
location B’. In this case the couple Wx exerted by W and the buoyancy force Vg (= W) acts to
restore the body to its original position: situation (a) is therefore stable. From the diagram, we
can see that x = MG sin 6, MG being the distance between G and the point M where the line
of action of Vp intersects the extended line through BG. The point M is called the metacentre,
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Figure 5.10 Stability of a freely floating, partially submerged body

and the length MG the metacentric height. If M is above G, MG is taken as positive. For small
angular displacements, MG is independent of 6, i.e. the location of M is fixed.

The lower half of Figure 5.10 shows a body of the same shape, weight, and orientation as
that in Figures 5(a) and 5(b). The centre of buoyancy of the submerged volume B must be
in the same location as before but we now consider the situation where, due to a different
internal distribution of mass within the body ps is no longer uniform, and G is now above B.
In the case of a ship, for example, the location of the centre of gravity depends upon the way
in which the cargo is distributed. As can be seen in Figure 5.10(d), the couple Wx now acts to
increase the angular displacement 0, and situation (c) is unstable. Because the metacentre M
is now below G, it is considered negative: the magnitude and sign of MG play a critical role in
determining the stability of a floating body. If MG > 0, the body floats in stable equilibrium,
and the larger MG the more stable the situation; the opposite applies if MG < 0.

The foregoing explains the general principles regarding the stability of a floating object.
We now consider the particular case of a ship with the symmetrical cross section shown in
Figure 5.11(a) (it is assumed that the sides of the ship are parallel). The length of the hull
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Figure 5.11 Stability of a ship: (a) G vertically below B, (b) hull inclined at angle 6 to vertical

is S, and the width at the water line is 2L, while the depths below the surface of the centres
of buoyancy B and gravity G are z¢ and zg, respectively. The point O lies on the line of
symmetry at the level of the water line. Figure 11(b) shows the situation if the ship is given
an angular displacement 6. The centre of buoyancy B’ for the ship in the displaced posi-
tion is obtained by calculating the centroid of the submerged volume defined by the shape
®@®®@. The metacentre M is defined by the intersection of the vertical through B’ and the
line of symmetry OG. The centroid of the shaded triangular volume to the right of O is a dis-
tance 2L/3 from O. The buoyancy force §Vp corresponding to this volume can be taken as
8Vg = SL? tan Oprgl2 ~ ngSLZO/Z, where we have used the approximation sin 6 = 6 since 0
is a small angle (note that & must be measured in radians for this approximation to be valid).
Due to the symmetry about OG, the reduction in the buoyancy force on the left-hand side is
also 8 Vp = prgSL*6/2.

To determine the location of B’ (the centroid of the volume below the water line) we take
moments about O, again approximating sin 6 by 6:

VEOMO = V5OBH - 25V %L.
We can now substitute Vg = W and, from Figure 5.11, OB = z¢, and OM = zg - MG, so that

W (zg - MG )0 = Wzl - §ngSL39

38 For a stability analysis we need consider only a small displacement. The angle 8 shown in Figure 5.11(b) is
greatly exaggerated.
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which, after cancellation of 6, can be rearranged to give

2ppL>S
MG = % ~(zc - 26). (5.28)
We have established already that a body is in stable equilibrium if MG > 0, which will always
be the case if G is below B (i.e. zg > z¢), but even if G is above B (i.e. zg < z¢) stability is still
seen to be possible if

2pFL3Sg
3w -

zZc-26 < (5.29)

ILLUSTRATIVE EXAMPLE 5.6

As shown in Figure E5.6, a solid rectangular bar of uniform relative density o (<1) has height
Z,width 2L, and length S. Show that the bar floats in water with its centre of gravity a distance
zc below the surface given by

(e 2)2

Show that the metacentre M is a distance MG above the centre of gravity G given by

MG =-L 1 _ggz
30sZ 2

For given values of L and Z, what is the minimum value of o for stability?

Figure E5.6
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Solution

The weight of the bar W is given by
W = ps2LZSg

and the buoyancy force Vp is
VB = pr2L2zcSg

where the density of the bar ps = ospF, and pF is the water density.
The condition for static equilibrium must be satisfied if the bar is floating freely, i.e.

W-Vp=0 or ospr2LZSg = pr4LzcSg

from which z¢ = 05Z/2. We can see from the geometry of Figure E5.6 that Z/2 + zg = 2z¢ so
that we get the following result after substituting for zc:

z2G = <Us—%> Z.

From the ship example, we have

_ ZpFL3Sg
MG = =W

If we substitute for W, z¢, and zg we have

-(z¢c - zG) . (5.28)

MG=-L 1 _6yz
30¢Z 2

Again from the ship example, we know that stability to an angular displacement requires

MG > 0 so that from the equation for MG we have

L 1
3057 2(1 03)Z >0

which can be rearranged as

,/%05(1 -03) < %

Comment:

The final result shows that a bar of square cross section (i.e. L/Z = 1/2) will float upright if

/3 1
503(1—05) < 5

or
60s(l-05) <1

which leads to o5 > 0.79 or o5 < 0.21, i.e. a square Styrofoam bar (o5 < 0.2) will float upright
but a square bar of wood (o5 = 0.6) will not. The reader should think about the angular
orientation adopted for stability by a square bar with 0.79 > og > 0.21.
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More generally, a rectangular bar will be stable for any value of o (in the range 0 to 1) if

2L 3 _
- > \/; =1.2250

i.e. a bar which has a rectangular cross section wider than it is deep is more stable than one
which has a greater depth than width.

@ 5.8 SUMMARY

In this chapter we have shown how to calculate the force which arises due to the hydrostatic
pressure distributed over a surface or an object submerged in a fluid. For convenience we
resolved the net force exerted on a surface into a vertical and a horizontal component. The
vertical component was shown to be equal in magnitude to the weight of fluid which would
occupy the volume directly above the surface and to act vertically downwards through the
centroid of this volume. The buoyancy force exerted on a submerged or floating object was
shown to equal the weight of the fluid displaced by the object and to act vertically upwards
through the centroid of the displaced fluid. The relative positions of the centroid and the
centre of gravity of the object were shown to determine the position of its metacentre and
hence its stability.

We showed that, for a flat surface immersed vertically in a fluid, the magnitude of the
net hydrostatic force is equal to the product of the area of the surface and the pressure
at its centroid. Because the hydrostatic pressure increases with depth, the line of action
of this force always lies below the centroid. For a curved surface, the magnitude of the
horizontal component of the hydrostatic force was shown to equal the hydrostatic force on
the projection of the curved surface onto a vertical plane.

The student should be able to

e calculate, both from first principles and from tabulated information for the prop-
erties of standard shapes, the magnitude and location of the line of action, and also
specify the direction, of:
¢ the vertical component of the hydrostatic force exerted on a submerged surface
® the horizontal component of the hydrostatic force exerted on a submerged

surface
¢ the buoyancy force exerted on a submerged or floating object

The student should also be able to

e analyse the stability of floating objects

e 5.9 SELF-ASSESSMENT PROBLEMS

5.1 The centroid of a vertical surface of area 0.5 m? completely submerged in an oil of
relative density 0.85 is 5 m below the surface of the oil. Calculate the hydrostatic
force acting on the surface. Explain why this force always acts some distance below
the centroid.

(Answer: 20.8 kN)



5.2

5.3

5.4

SELF-ASSESSMENT PROBLEMS

An aperture in the vertical wall of a water tank is closed by a circular plate 600 mm
in diameter. The plate is held in position by four stops, one at each end of the ho-
rizontal diameter, and one at each lower end of the two diameters at 60° to the
horizontal. Determine the stop reactions when the water surface is 450 mm above
the plate centre.

(Answers: 504.0 N, 120.1 N)

(a) The spread of an oil slick of depth Z and density pg is to be stopped by a floating
boom, as shown in Figure P5.3. The boom, which is designed to float upright as
shown in the figure, has a square cross section of side t and weight per unit length w.
Show that the maximum slick depth Zj4x which can be contained by the boom is
given by

2
ZMAX = |:—1 - wipsgt ] t
1 - polps

where ps is the density of the sea water beneath the slick and g is the acceleration due
to gravity.

floating boom
water

Figure P5.3

(b) Calculate the horizontal force per unit length acting on the water side of the
boom if ¢ is 500 mm, w is 2300 N/m, and the relative density of sea water is 1.025.
Also calculate the depth below the top surface of the boom at which the horizontal
force acts.

Would the horizontal force on the oil side of the boom be greater or smaller than
that on the water side? Give a brief explanation for your answer.
(Answers: 1052 N/m, 0.348 m)

(a) A square plate of side length L is submerged in water at an angle 6 to the vertical
with its centroid a depth Z below the surface and two sides parallel to the surface.
Show that the net hydrostatic force on one face of the plate acts at a depth Zp given by

4-2
" 3ZLcos@
where z, = Z+ Lcos0/2,and z; = Z - Lcos6/2.

Zp
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5.5

5.6

(b) The gate shown (side view) in Figure P5.4 is hinged at O, 3 m above the bed
of a reservoir which contains water of depth 10 m. If the gate is a square of side

length 5 m, calculate the force R applied vertically downwards at its centroid which
is necessary to prevent the gate from opening. Neglect the weight of the gate, and any
effects of leakage under or around the gate. There is no water on the right-hand side
of the gate.

I<

3
! L ®

N/

Figure P5.4

(Answer: 2.76 MN)

(a) A dam has the cross section shown in Figure P5.5 with tan ¢ = 4. Show that the
resultant hydrostatic force R acting on the dam is given by

R= @ ngzS
where Z is the total water depth, as shown, p is the water density, g is the ac-
celeration due to gravity, and S is the width of the dam. Show also that the
horizontal distance from O of the line of action of the vertical component of R is
given by 7Z/36.
(b) Calculate the horizontal and vertical components of the hydrostatic force of a
dam with the cross section shown in Figure P5.5 if the width is 600 m and the water
depth is 30 m. What angle does the resultant force make with the vertical and at what
depth does the horizontal component of the hydrostatic force act?
(Answers: 2.65 GN, 1.77 GN, 56.3°, 20 m)

(a) As shown in Figure P5.6, the water in a tank of depth D and width W is pre-
vented from escaping by a gate of circular cross section hinged at O. If the radius
of the gate is D/2, show that the net hydrostatic force F acting on the gate surface is
given by

=1 2 (22,4 Lo
F—4,0gWD\/<4 7T+167l’)
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Figure P5.5

where p is the water density and g is the acceleration due to gravity. There is no water
to the left of the gate. Show also that the vertical component of F acts at a horizontal
distance

D
1
6(1—§n>

from the tank wall.

Figure P5.6

(b) If the depth D is 10 m, and the width W is 5 m, calculate the force which the gate
exerts on the tank wall. The weight of the gate can be neglected.
(Answer: 1.29 MN)
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5.7

5.8

(a) Due to increasing salt concentration and the presence of silt, the density p of
water in a reservoir increases with depth z below the water surface according to

p=po+Cz

where py is the density at the surface (z = 0) and C is a constant. Show from first
principles that the hydrostatic pressure p at depth z is given by

p= <p0 + %Cz) &z

and that the hydrostatic force Hexerted on a vertical rectangular wall of width S due
to water of depth D is given by

_1lem2 1
H= 28Dg<,00+ 3CD).

Also calculate the depth below the water surface at which H acts.

(b) If the reservoir depth is 50 m and the water density increases from 1000 kg/m?
at the surface to 1100 kg/m? at the bottom, calculate the hydrostatic force on a hori-
zontal circular plate of diameter 10 m at the bottom of the reservoir. Also calculate
the horizontal component of the hydrostatic force exerted on a wall 10 m wide which
is inclined at 60° to the horizontal.

(Answers: 40.4 MN, 126.7 MN)

(a) Figure P5.8 shows a flat plate which is immersed vertically in water to a depth D.
The shape of the plate is given by

_Dz—z2
Y= 79D

where y is the half width of the plate a vertical distance z below the surface. From
first principles show the following:

(i) The surface area of the plate A = 2D?/3.

(if) The hydrostatic force acting on one side of the plate H = 3pgAD/8.
(iii) The hydrostatic force acts at a distance 8D/15 below the surface.

_—__T<_N____
<
o}

=

Figure P5.8



5.9

5.10

SELF-ASSESSMENT PROBLEMS

(b) A container of length 5 m and maximum width 2 m has the cross section shown in
Figure P5.8. Calculate the maximum load which the container can carry (including
its own weight) without sinking. Calculate the corresponding hydrostatic pressure
acting at the centroid of one end of the container.

(Answers: 130.8 kN, 0.0736 bar)

(a) A rigid spherical balloon of diameter D is filled with a light gas of density rps,
where pg is the density of the atmospheric air at ground level. Show that the net
upward force F experienced by the balloon at ground level is given by

F=xD*(1-7) (p1 - pr)

where p is the atmospheric pressure and the subscripts H and L refer to the highest
and lowest points on the balloon’s surface, respectively. The weight and volume of
the balloon’s ‘skin’ may be neglected.

(b) A rigid balloon of diameter 3 m is filled with helium with a density of 0.2 kg/m?.
Calculate the value of pr — pg at the altitude where the balloon just floats without
rising or falling. Calculate the maximum mass the balloon could lift to an altitude at
which the air density is 0.45 kg/m?.

(Answers: 5.89 Pa, 3.53 kg)

(a) Figure P5.10 shows the cross section of a vertical rectangular barrier separating
pure water of density p on the right-hand side from a layer of pure water of depth
Z on the left-hand side above a layer of silt of depth Z,. The silt may be treated as a
liquid of density p,. Determine the depth Z of the water on the right-hand side if the
net force on the barrier is to be zero. Is Z greater or smaller than Z; + Z,, and why?

\V4
/ \V/
A
water Z,
Z water
A
A
silt Z,
\2 v
Figure P5.10

(b) If the depth of the water on the left-hand side is 1.5 m and that of the silt 0.5 m,
calculate the total hydrostatic force exerted on that side of the barrier. Take the relat-
ive density of silt as 1.5 and the length of the wall as 2 m. Calculate the water depth
on the right-hand side for zero net force on the barrier, and the net overall moment
exerted on the barrier.

(Answers: 40.5 kN, 2.03 m, 1031 N - m anticlockwise)
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5.11

Figure P5.11 shows the cross section of a yacht floating in sea water of density p.
Excluding the keel, the weight of the yacht is W, and its centre of gravity a height H
above the water line. The submerged section of the hull is triangular in cross section,
with apex angle 2o and height h. The weight of the keel is W, and its centre of
gravity is a depth Zx below the water line. Show that

h2 _ W+ WK
"~ pgltana

where L is the length of the yacht. The volume of the keel may be regarded as
negligible. Show also that the metacentre is at a depth below the surface given by

%h (1 - 2tan® Ol).

Finally, show that for the yacht to float stably, the minimum weight of the keel is
given by the equation

(Wg + W)3/2 (1 - 2tan? a)

3,/ pgltan«

-WH =0.

WkZ -

Figure P5.11



Kinematic description of fluids
in motion and approximations

We start this brief chapter by introducing the concepts of fluid particles, pathlines, and
streamlines, together with some of the other terms and ideas needed to describe fluid motion.
We also point out some of the principal simplifications which can be made when analysing
fluid flow to prevent the mathematics involved from becoming too demanding. With some
minor exceptions, we restrict consideration to the steady flow of a single-phase fluid. As
we pointed out in Section 2.11, all fluids are to some degree compressible, and the pressure
variations which arise in high-speed gas flows are such that the consequential density vari-
ations have to be taken into account. So far as liquid flows are concerned, it is almost always
adequate to treat them as incompressible (see Section 4.12). We introduce the concept of one-
dimensional internal flow, whereby it is assumed that, over any cross section through which
there is fluid flow, all flow and fluid properties are uniform. Application of the principle of
conservation of mass is shown to result in a simple but important relationship between fluid
density, flow velocity, and the cross-sectional area of the flow channel. The term kinematic in
the chapter title indicates that at this stage we are concerned only with the description of flow
velocity, not with the stresses and forces which cause fluid motion.

6.1 Fluid particles

In Section 2.5 we found that the average number of molecules contained in a cube of water
of side length 0.1 um (i.e. 107 m) is about thirty million while for a cube of air of the same
volume, at a temperature of 20°C and pressure of 1 bar, the number is about thirty thousand.
Such large numbers of molecules allows us to define average values for density, viscosity, and
other fluid properties which are independent of the volume size (the continuum hypothesis).
The flow of fluids through channels with submicron dimensions is becoming increasingly im-
portant (the study of such flows is termed microfluidics) but, in most situations of practical
importance, 0.1 um is several orders of magnitude smaller than any significant dimension of
a flow channel. In normal circumstances, any changes in flow or fluid properties, such as pres-
sure, velocity, density, or viscosity, would also be negligibly small from one side of the fluid
volume to the other. The continuum hypothesis allows us to define a fluid particle as a tiny
volume of fluid, which has fluid and flow properties independent of its size. A convenient way
to think of a fluid particle is as a point-sized volume of fluid which has the temperature, pres-
sure, velocity, etc., of its immediate surroundings. If we could mark and follow the movement
of a number of fluid particles distributed throughout a flow, we would be able to form a visual
impression of the flow. Although we cannot easily mark individual fluid particles in a real flow,
there are a number of experimental flow-visualisation techniques which allow us to form such

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.



KINEMATIC DESCRIPTION OF FLUIDS IN MOTION AND APPROXIMATIONS

an impression. For example, small amounts of dye or neutrally buoyant solid or liquid (for gas
flows) particles can be introduced into a flow. In high-speed gas flows, the motion can be visu-
alised using optical techniques (interferometry, shadowgraphy, and Schlieren technique) to
detect the changes in refractive index which accompany density changes. The same techniques
can also be used to visualise the flow of certain liquids for which the refractive index is sensitive
to shearing of the liquid; the citrus oil limonene is an example.

6.2 Steady-flow assumption

With one or two exceptions, in this book we shall restrict consideration to steady flows,
that is, to flows for which the velocity and pressure at any point in a flow do not change
with time. In general there will be spatial variations in these quantities, often accompan-
ied by changes in fluid properties, throughout the flowfield. Whenever a flow is created
by the movement of an object, such as a car, a ship, or an aircraft, moving through an
otherwise stationary fluid, it is possible to transform the resulting fluid motion into a
steady flow relative to the moving object. This Galilean transformation, as it is called, in

which the object is brought to rest and its velocity subtracted from that of the surroundings, is
restricted to objects moving at constant velocity. For example, the airflow over the wings and
fuselage of an aircraft would not appear to be steady when seen by an observer on the ground,
but could be regarded as steady relative to the aircraft if it were flying at constant velocity.

6.3 Pathlines, streamlines, streamsurfaces, and streamtubes

The actual path followed by any fluid particle in a flow is called a pathline. A streamline
is a line in a flow along which the flow direction at every point at any instant is tangential.
In a steady flow, pathlines and streamlines are identical. An important consequence of the
definition is that streamlines can never cross, since the flow at any point can have only one
direction. A surface made up of streamlines is called a streamsurface. If the cross section of a
streamsurface is a closed loop, the surface defines a streamtube, as shown in Figure 6.1. Since
there can be no flow across a streamline, the same applies to a streamsurface, and a streamtube
can therefore be thought of as representing the interior wall of a duct such as a tube or pipe
through which there is flow.

Figure 6.2 shows the cross section of a stationary aerofoil with fluid flowing steadily over
it from left to right. Each of the lines with arrowheads on them represents a streamline. Five
of the streamlines shown pass over the upper (suction) surface of the aerofoil, and three over
the lower (pressure) surface. The streamline which approaches the aerofoil and intercepts its
surface at point P on its leading edge is said to be the dividing streamline. For a solid aero-
foil, the velocity at P must be zero and such a point is called a stagnation point, the word
stagnation meaning that the fluid concerned is at rest (i.e. it is stagnant). The location of P
depends slightly upon the angle of attack « between the aerofoil and the approach flow. The
surface pressure on the suction surface decreases with distance from P up to about one-third
chord distance and then begins to increase. This increase in pressure opposes forward move-
ment of the boundary-layer fluid (see below) and, once o exceeds a critical value (for the



NO-SLIP CONDITION AND THE BOUNDARY LAYER

Figure 6.1 Definition of a streamtube

external flow

Figure 6.2 Flow over a stationary aerofoil

particular aerofoil), can lead to separation of the boundary layer from the surface (at point S
in Figure 6.2) and loss of lift (stall). A more detailed account of subsonic flow over an aerofoil
and how lift is generated is given in Section 17.7

6.4 No-slip condition and the boundary layer

Although it is obvious that fluid cannot pass through a solid surface, and so the component of
fluid velocity normal to any solid surface at rest must be zero, it is primarily a matter of exper-
imental observation that the component of fluid velocity tangential to the surface is also zero.
According to this no-slip condition, in the immediate vicinity of a solid surface a consequence
of viscosity is that the fluid is brought to rest (or, more generally, if the surface is itself moving,
to the same velocity as the surface so that the relative velocity is zero). In essence, the fluid
adheres to the surface. In an external flow over a streamlined body such as an aerofoil, the
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change from zero to non-zero tangential velocity takes place across a thin layer of fluid called
the viscous boundary layer. In an internal flow through a tube, as the flow develops from the
inlet, velocity changes initially occur across a boundary layer but ultimately the entire cross
section is influenced by viscosity and the flow becomes fully developed (i.e. unchanging with
streamwise location). Chapter 16 is concerned primarily with the analysis of fully-developed
internal flows, while boundary layers are the subject of Chapter 17. Further consideration is
given to both types of flow in Chapter 18.

Since we stated in Chapter 2 that viscosity is the essential property that distinguishes a
fluid from a solid, it may seem paradoxical that many flow problems can be analysed neg-
lecting viscous effects entirely. This is the situation, for example, in an external flow beyond
the near-wall viscous boundary layer. Such flows are said to be inviscid (the terms frictionless
or loss free are also used) and the theory which has been developed to analyse them is termed
potential-flow theory, a topic not included in this book. It is often the case that, in the absence
of shockwaves, viscous effects can be neglected in both internal and external compressible-gas
flows (see Chapter 11). An important consequence is that, in a frictionless flow, no mechanical
energy is converted to heat (i.e. there is zero dissipation).

6.5 Single-phase flow

In Section 2.1 we saw that substances can exist in four different forms or phases (solid, li-
quid, vapour, or gas), often depending upon the temperature and pressure to which they
are subjected. Many industrial processes, particularly in the chemical industry, involve flows,
called multiphase flows, in which two or more phases are present simultaneously. Examples
include

e liquids containing bubbles of vapour or gas, as would occur in boiling and cavitation, a
phenomenon we explain in Section 8.11

e liquids containing droplets of another liquid with which it is immiscible, such as oil and
water

e liquids containing solid particles, such as blood, the composition of which is about
54% plasma, an aqueous liquid, and 46% blood cells (corpuscles). Another example is
lubricating oil contaminated with metal cuttings produced in machining operations.

e gases containing liquid droplets, such as the mixing of hot gas with atomised liquid fuel
sprayed into a combustion chamber

e gases containing solid particles such as pollutants

Analysis of the flow of any liquid or gas where the second phase significantly alters the fluid
properties is beyond the scope of this book, which is restricted to consideration of flow of
single-phase fluids

6.6 Isothermal, incompressible, and adiabatic flow

A major simplification we can make in many flow situations is that the fluid properties
which affect the flow (i.e. density, viscosity, and surface tension) are constant and uni-
form throughout the flowfield. Since all fluid properties depend to some extent on the fluid
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temperature, this essentially restricts consideration to constant-temperature (i.e. isothermal)
flows. Flows for which density changes due to pressure variations are negligible are termed
incompressible. Except for the analysis of isothermal compressible flow in Section 13.3 and
Rayleigh flow in Section 13.4, we limit consideration to adiabatic flows, which means that
there is no heat transfer to or from the fluid.

6.7 One-dimensional flow

There are many flows in which we can identify a main flow direction. The justification for this
statement is evident from most of the figures in Chapter 1: the discharge from a centrifugal
pump (Figure 1.2); flow through a convergent-divergent nozzle (Figure 1.7), a turbofan engine
(Figure 1.8), a pipe bend (Figure 1.14), a rocket engine (Figure 1.15), a jet pump (Figure 1.16),
and a cascade of guidevanes (Figure 1.17). All of these are examples of internal flow. The flow
around a supersonic aerofoil, flow induced by a propeller, and the flow of water vapour emitted
from a cooling tower, visible or invisible, as illustrated in Figure 6.3, are examples of external
flows where the principal flow directions are readily identified.

Although most of the internal-flow examples in Chapter 1 are extremely complex when
considered in detail, we can often make significant progress in their analysis by consideration
of changes in the spatial-average (taken across a cross section) conditions between inlet and
outlet while ignoring the interior details of the flow. There are many duct flows for which
practically useful calculations can be made assuming that over any cross section of the duct
the fluid velocity V, pressure p, and all fluid properties, such as density p and viscosity u,
are uniform and we account only for variations from location to location, i.e. V, p, p, u, etc.,
vary only with distance along the duct s. We shall make extensive use of this one-dimensional
approximation in many of the following chapters. For the flow of a gas, in the absence of
heat transfer, a decrease in pressure is inevitably accompanied by a decrease in density. As we
have already indicated in Section 3.12, provided the Mach number does not exceed a value
of about 0.3, the change in gas density is usually negligible (e.g. for air it is less than 5%) and
the flow may be considered to be incompressible. For higher Mach numbers, compressibility
effects, such as shockwaves and choking, where the Mach number reaches and is limited to
unity, become important. Compressible-gas flows are the subject of Chapters 11 to 13, includ-
ing internal one-dimensional flows with area change, frictionless pipe flow with wall heating
(Rayleigh flow), and adiabatic pipe flow with wall friction (Fanno flow), and external flows
with shockwaves and expansion waves. In Chapter 14 we analyse the compressibility effects
which arise in the blading of gas compressors and gas turbines.

The fact that the flow of real fluids is affected by viscosity and the associated no-slip condi-
tion means that the uniform-velocity assumption is certainly invalid in the immediate vicinity
of the inner surface of a duct and may well be of limited validity in interior regions of a flow.
The uniform pressure assumption is quite different in character and is usually regarded as valid
wherever streamline curvature is small but is inappropriate in situations where the streamlines
are strongly curved.

As we shall show in Section 6.8, for steady flow of a constant-density fluid the streamwise-
velocity variation V (s) results directly from the shape of the streamtube through which flow
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(a)

(©)

Figure 6.3 Principal flow directions for various external flow situations: (a) double-wedge supersonic
aerofoil with shockwaves (S) and expansion fans (F); (b) plume from chimney stack or cooling tower;
(c) flow induced by a propeller

occurs. In Chapter 7 we shall show that these velocity changes are accompanied by pressure
variations p (s) and in Chapter 9 we shall derive a form of the momentum equation (essentially
Newton’s second law of motion) which will enable us to calculate the hydrodynamic forces
which a moving fluid exerts on the surfaces with which it is in contact (Chapter 10).

External flows, which are usually more difficult to deal with than internal flows, will be
discussed to a limited extent in Chapters 12, 16, 17, and 18.

6.8 One-dimensional continuity equation (mass-conservation
equation)

We assume that the cross-sectional area A of the streamtube shown in Figure 6.4 varies in
some specified way with distance s along the streamtube. As already stated, we also assume
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stream tube

Figure 6.4 Area and velocity variation along a streamtube

that the flow through the streamtube is steady and adopt the one-dimensional assumption
that all fluid and flow properties are uniform across any given cross section but can vary from
location to location. Our aim now is to find the variation in the flow velocity V with location s
as a consequence of the area variation A (s).

The basis for our analysis is the principle of conservation of mass, according to which matter
(in this case, the flowing fluid) is neither created nor destroyed. For a steady flow this principle
requires that the same mass of fluid flows across every cross section in a given time.

We start by considering an infinitesimal slice of fluid of thickness §s at some location s along
the streamtube, as shown in Figure 6.5. This slice has volume

SV = Aés
and mass
ém = pdV = pAds

where p is the density of the fluid within the slice (note that at this stage we do not need to
assume that the density remains constant along the streamtube).

N fixed line

Figure 6.5 Fluid slice moving through a streamtube
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If the velocity of the fluid particles within the slice is V, then the slice will move a distance
equal to its thickness ds in time §t given by

_ 5
8t—V.

If we use this equation to substitute for s in the expressions for 0 and §m above, we have

8V =AVSt and é&m = pAVSt
or

3V _ dm _
5t = AV and 5t = pAV.

We observe that §m/§t represents the mass of fluid which crosses a section of the streamtube
(in this case the section which instantaneously coincides with the elemental slice) per unit
time. This quantity is constant for a steady flow and is called the mass flowrate 1, i.e.

m = pAV = constant. (6.1)

Equation (6.1) is referred to as either the mass-conservation equation or the continuity equa-
tion. The historical origin of the latter name is unclear, with some fluid dynamicists suggesting
it reflects the continuum nature of a fluid, while others feel it refers to the continuous nature
of fluid flow.

The quantity §V/5t represents the volume of fluid which crosses a section of the streamtube
per unit time and is termed the volumetric (or volume) flowrate Q, ie.

Q= Av. (6.2)

We pointed out in Section 6.3 that a streamtube can be thought of as representing the interior
wall of a duct such as a tube or pipe through which there is flow. In fact, equations (6.1) and
(6.2) are important results, one or other of which is used in every one-dimensional, steady-
flow analysis, including situations where the fluid density changes as a consequence of pressure
changes, heating, or cooling.

ILLUSTRATIVE EXAMPLE 6.1

As shown in Figure E6.1, water flows through a nozzle of circular cross section which contracts
from an inlet area A; of 0.05 m? to an outlet area A, of 0.01 m2. If the mass flowrate 71 is 110
kg/s, calculate the volumetric flowrate O and the water velocity at inlet, V1, and at outlet, V5.

Solution

i =110 kg/s; A; = 0.05 m?; A, = 0.01 m% p = 1000 kg/m”.
From the mass-conservation equation, we have m = pQ so that

S _ 110 _ 3
Q—p 1000 0.11m"/s.
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Figure E6.1

From Q = AV, we have Q = A; V; = A, V; so that

~Q o011 _
Vi= AL - 005 2.2 m/s
and
_Q o011 _
V, = A, 001 11 m/s.

ILLUSTRATIVE EXAMPLE 6.2

A cryogenic wind tunnel is being designed to develop the aerodynamic performance of a For-
mula 1 car. The wind tunnel will operate with an air density p of 8 kg/m? at an airspeed V, of
90 m/s in the working section (see Figure E6.2). The working section is to have a rectangular
cross section 1 m high and 2 m wide and will be just downstream of a contraction from a
plenum chamber®® with a cross-sectional area A of 10 m2. Calculate the air mass flowrate
through the wind tunnel and the airspeed V; in the plenum chamber.

Solution

V2 =90 m/s; p = 8 kg/m>; A} = 10 m?*; Ay = 2 m?.
From the mass-conservation equation, #m = pA,V,, we have

=8 x 2 x 90 = 1440 kg/s.
Also Q = A, V1 = AV, so that

Vi A 10

39" A brief outline of wind-tunnel design is given in Section 8.1.
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ILLUSTRATIVE EXAMPLE 6.3

Helium flows through a nozzle of circular cross section with an outlet diameter D of 50 mm.
Calculate the maximum mass flowrate ri1 for which the flow can be considered incompressible,
i.e. for which the outlet Mach number M is less than 0.3.

Solution

D = 0.05 m; from Table A.6 in Appendix 2, for helium at STP, density p = 0.166 kg/m3, and
soundspeed ¢ = 1007 m/s.

We require M < 0.3, and M = V/c, so the flow velocity V < 0.3 x 1007 = 302.1 m/s.

The nozzle outlet area A = 7 D?*/4 = 1.99 x 107 m?, and 7 = pAV, so that

M < 0.166 x 1.99 x 107* x 302.1 = 0.01 kg/s.

6.9 Average flow velocity V

In any real flow through a duct, the fluid velocity varies from zero at the interior duct surface
(the no-slip condition) to a maximum usually somewhere close to the duct axis. No matter
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Figure 6.6 Parabolic velocity distribution for fully-developed flow of a viscous fluid through a
circular pipe

how complex the velocity variation (also called the velocity distribution or profile), it is often
convenient to define a spatial-average® flow velocity V using equation (6.1) or (6.2), i.e.

v_m _Q
The quantity V is also referred to as the mean velocity or bulk-mean velocity.

It is convenient and appropriate when applying the one-dimensional approximation to
identify the velocity V with the average velocity V, but it has to be appreciated that other
quantities, such as the momentum flowrate ##V and the kinetic-energy flowrate mV°/2, do
not accurately represent the average values of these quantities for a real flow. For example, for
the flow of a viscous liquid through a long circular pipe at low flowrates, the velocity variation
across the pipe is parabolic (Poiseuille flow, discussed in detail in Section 16.3), as depicted
in Figure 6.6, and we find V = Vjax/2, where Vjax is the centreline velocity. The true mo-
mentum flowrate for Poiseuille flow is given by 471V/3, and the true kinetic-energy flowrate
by V. In both cases the correct values are considerably higher than would be the case for a
flow with uniform velocity. Fortunately, the velocity distributions for many internal flows of
engineering interest are much flatter (i.e. closer to uniform velocity) than the parabolic profile,
and the one-dimensional approximation leads to results of acceptable accuracy.

6.10 Flow of a constant-density fluid

Equations (6.1) and (6.2) are related as follows
m = pAV = pQ = constant,

V being the spatial-average fluid velocity. If the fluid density p is constant and uniform
throughout the flow, then we have

Q = AV = constant (6.4)

40" For unsteady flows, especially turbulent flows (see Chapter 18), it is usual to introduce flow properties averaged
with respect to time (temporal averages).
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which shows that, for steady duct flow of an incompressible fluid, if the cross-sectional area of
the duct A(s) decreases with distance along the duct s, the fluid velocity V(s) must increase. If
A increases, V decreases. There is evidence that Leonardo da Vinci was aware of the continuity
equation for a constant-density fluid and it may even have been known some 1400 years earlier
to the Roman Sextus Julius Frontinus. As we shall see in Chapter 11, the situation can be very
different for the flow of a compressible fluid.

This chapter has been limited to consideration of the kinematic description of fluid flow;
in other words, we took no account of the forces and stresses which cause the flow. In
Chapter 7 we derive Bernoulli’s equation, which for steady flow of an incompressible, in-
viscid fluid allows us to relate pressure and velocity changes along a streamline. Engineering
applications of Bernoulli’s equation, particularly to the measurement of flowrate, are discussed
in Chapter 8. Chapter 9 is concerned with the application of Newton’s second law of mo-
tion to one-dimensional internal flow of an incompressible fluid, which leads to the linear
momentum equation and allows us to calculate the hydrodynamic forces (Chapter 10) which
arise from fluid flow through ducts with changes in area and/or direction.

9 6.11 SUMMARY

In this chapter we have introduced some of the terminology and simplifications which
enable us to begin to describe and analyse practical fluid-flow problems. The principle
of conservation of mass applied to steady one-dimensional flow through a streamtube of
varying cross-sectional area resulted in the continuity equation. This important equation
relates mass flowrate 71, volumetric flowrate Q, average fluid velocity V, fluid density p,
and cross-sectional area A

# = pQ = pAV = constant.

For a constant-density fluid this result shows that fluid velocity increases if the cross-
sectional area decreases, and vice versa.
The student should be able to

o explain what is meant by the following terms: fluid particle, steady flow, streamline,
streamsurface, streamtube, no-slip condition, boundary layer, single-phase flow,
incompressible, isothermal, adiabatic, one-dimensional flow, average velocity,
mass flowrate, volumetric flowrate

e apply the continuity equation to one-dimensional duct flow

0 6.12 SELF-ASSESSMENT PROBLEMS

6.1 Liquid medication of density 990 kg/m? is injected from a hypodermic syringe with
an internal barrel diameter of 10 mm through a needle with an internal diameter
of 0.3 mm. If it takes 30 s to inject 2 ml of liquid, calculate the mass flowrate and
the average liquid velocities within the syringe and the needle. Assume the plunger
moves at constant speed.

(Answers: 6.6 x 107° kg/s, 8.5 x 107 m/s, 0.94 m/s)



6.2

6.3

6.4

SELF-ASSESSMENT PROBLEMS

Two pipes, one of internal diameter (I.D.) 0.5 m and the other of I.D. 1 m, are con-
nected as shown in Figure P6.2 to a pipe of LD. 1.2 m. Oil with a density of 880 kg/m?
flows through the pipe system at a total flowrate of 15,000 t/h. If the liquid velocity
in each of the two smaller-diameter pipes is the same, calculate this velocity, the cor-
responding volumetric and mass flowrates in the two pipes, and also the velocity in
the large outlet pipe.

®

Figure P6.2
(Answers: 4.82 m/s, 0.95 m>/s, 3.79 m3/s, 3000 t/h, 12,000 t/h, 4.19 m/s)

Hot gas with a density of 0.4 kg/m? is exhausted from a rocket engine through a
nozzle of exit diameter 1 m. If the mass flowrate through the nozzle is 370 kg/s, cal-
culate the exhaust-gas velocity and the volumetric flowrate. If the soundspeed for the
gas is 550 m/s, calculate the Mach number of the exhaust-gas flow. Can the exhaust
flow be considered incompressible?

(Answers: 1178 m/s, 925 m>/s, 2.14, no)

A water jet 50 mm in diameter impinges on a cone as shown in Figure P6.4. If the
water velocity has the same magnitude at all points in the flow, calculate the thickness
of the liquid layer at a location where the cone diameter is 0.5 m. If the mass flowrate
of the water is 16 kg/s, calculate the flowspeed.

7

Figure P6.4

(Answers: 1.2 mm, 8.15 m/s)




Bernoulli's equation

In this chapter we apply Newton’s second law of motion to derive Euler’s equation, which is
a differential equation connecting the pressure, velocity, and height above a datum of a fluid
particle moving steadily along a streamline in an inviscid fluid. By integrating Euler’s equation
for an incompressible fluid, we obtain Bernoulli’s equation, which, in spite of the underlying
restrictions, is arguably the most important and practically useful equation of fluid mechanics.
It is shown that each of the terms in Bernoulli’s equation can be interpreted as being a pressure,
a form of energy, or the height of a fluid column.

7.1 Net force on an elemental slice of fluid flowing
through a streamtube

In Chapter 6 we derived the one-dimensional continuity equation for steady flow through a
streamtube

m=pQ=pAV (6.1)

where 71 is the mass flowrate through the streamtube, Q is the volumetric flowrate, p is the
fluid density, V is the magnitude of the fluid velocity, and A is the cross-sectional area of the
streamtube. To go further we need to introduce another of the basic laws of classical mechan-
ics, the principle of conservation of momentum, usually referred to as Newton’s second law
(of motion). Probably the most familiar form of Newton’s second law is

F=ma (7.1)

which states that a net force of magnitude F exerted on a mass m results in an acceleration of
the mass of magnitude a in the direction of F. As the words magnitude and direction suggest,
F and a are both vector quantities.

We shall apply Newton’s second law to the fluid slice of infinitesimal length 8s shown in
Figure 7.1. The net force 6 F which acts on the slice in the streamwise s-direction is made up of
four components, as follows

e apressure force pA on the face at location s

e apressure force - (p + 3p) (A + 5A) on the opposite face at location s + &s
e apressure force (p + 5p/2)3A on the curved face

o the component of the weight of the slice in the s-direction = -6 W cos 6

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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1
p+5p

Figure 7.1 Elemental fluid slice moving through a streamtube

so that
OF = pA - (p+8p) (A+68A)+ (p+ %(Sp) §A - SWcosf.

In writing the equation for §F we have assumed that the pressure p is uniform across the cross
section of the streamtube, consistent with the one-dimensional assumption, but varies with
distance s along it. The terms in the equation have been taken as positive in the direction of
increasing s, which is also the flow direction. Although Figure 7.1 shows A increasing with s,
this in no way restricts the analysis, which is valid whether A increases or decreases. The angle
between the velocity vector at any location along the streamtube and the vertical is denoted
by 6. The third term on the right-hand side of the equation for §F represents the compon-
ent of force in the s-direction due to the pressure acting on the section of the surface of the
streamtube, which coincides instantaneously with the moving slice. The average pressure act-
ing on this strip of surface must have a value somewhere between p and p + §p and has been
taken as the simple average p + §p/2, though, as we shall see shortly, the factor 1/2 is unimport-
ant. Just as for the horizontal component of the elemental force due to the hydrostatic pressure
acting on a curved surface (see Section 5.5), the net force in the s-direction due to the pressure
p + 8p/2 acting on the strip of streamtube surface is (p + 8p/2) x projected area, where the
projected area here is §A.

If we now multiply out and simplify by cancellation the terms on the right-hand side of the
equation for §F, we have

SF = -8p (A + %SA) — §W cosé.

Since our elemental slice is infinitesimally thin, it is permissible to neglect the area change §A
in comparison with the area A itself (which is why the factor 1/2 is unimportant), so that

O0F = -6pA - 6W cos 6.
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The weight 8 W of the infinitesimal slice is given by
W =émg=péVg=pAdsg

where §m is the mass of the slice, § is its volume, and g is the acceleration due to gravity. If
we substitute for § W in the equation for §F, we have

O0F = -6pA - pAdsgcost
or
8F = -8pA - pAsZg (7.2)

wherein we have made use of the fact that the vertical height change 82/, corresponding to the
distance along the streamtube §s, is given by z' = §s cos @ (see Figure 7.1). Just as in Chapter 4,

we use the symbol z’ to denote altitude, and z to denote depth, so that §z = -§2'.

7.2 Acceleration of a fluid slice

Since we have restricted our attention to steady flow, it may seem a contradiction that we are
now discussing acceleration of the fluid. However, as stated in Section 6.2, where this restric-
tion was introduced, steady flow of a fluid implies that the fluid velocity in a flowfield is always
the same at any fixed point but can vary from point to point. As shown in Figure 7.2, what this
means is that the velocity V of each fluid particle can change as it moves through the flowfield
and so the particle experiences acceleration.

If the acceleration of a particle with instantaneous velocity V at time ¢ is a, by definition we
have

oo dV _dvds

dt  ds dt

wherein we have made use of the rule of differential calculus for differentiation of a function
of a function. In this case V is a function of s, which itself is a function of t. By definition the
particle velocity along a streamline is given by

_ds
V_dt’

Figure 7.2 Velocity variation for steady flow along a streamline
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so the acceleration of a fluid particle can be written as

_yav
a—VdS.

ILLUSTRATIVE EXAMPLE 7.1

A liquid flows at a constant volumetric flowrate Q through a duct which decreases in area A
such that A/Ag = so/s, where s is the distance along the duct and Ay is the area at s = s9. Derive
an expression for the fluid acceleration at any location along the duct. If sy = 1 m, Ag = 0.1 m?,
and Q = 0.2 m?/s, calculate the fluid velocity and acceleration at s = 5 m.

Solution
We have Q = AV so that
_Q_p_s
V= A B Q A()S()
from which
v _ Q
ds  Aoso’

Then, from a = V (dV/ds), we have

. 2
(. Q
a—<m> S.

For the numerical part of the problem we have sp = 1 m, Ap = 0.1 m?2,Q=02m3/s,ands =5
m. Ats = 5m,

A=toso _OLXT_ 05 p2
s 5
Therefore,
_Q_ 02 _
V= A= 002" 10 m/s
and
N 2
() (02 _ 2
a_<A050 s= 01 x1 X 5 =20m/s".
Comment:

Although the flow velocity here, 10 m/s, is quite modest, the particle acceleration produced by
the area reduction is about 2g.
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7.3 Euler’s equation

We are now in a position to apply Newton’s second law to the infinitesimal fluid slice since we
now have expressions for both the net force acting on the slice in the s-direction and for the
acceleration of the fluid particles which constitute the slice. We start with the basic form of the
second law

0F = dma.
From Section 7.1 we have §m = pAds and, from Section 7.2, a = V(dV/ds), so that

av
ds

We can now substitute for §F from equation (7.2) which, after dividing through by the area A,
leads to

SF = pASs VAL (7.3)

av
ds’

We now divide through by §s and rearrange to find

-8p - pdZg = pds VE-

3p vav
s +pg 85 +'0 ds =0

which, in the limit §s — 0, gives

dp . dz . dV _

& TS VG
Equation (7.4) is a first-order ordinary differential equation which connects the variation of
pressure, velocity, and density along a streamline for the steady flow of an inviscid fluid and is
known as Euler’s equation. To be more precise, equation (7.4) is a restricted form of a much
more general set of equations derived by Euler for the flow of an inviscid fluid.

As is the mass-conservation equation (6.1), Euler’s equation is valid whether or not the fluid
density is constant. We note too that equation (7.4) is independent of area and so applies to
both internal and external flows. For a fluid at rest (i.e. V = 0), equation (7.4) reduces to the
hydrostatic equation (4.5)

dp _dp
Td T dz %

(7.4)

7.4 Bernoulli’s equation

If the fluid density is taken as constant, then equation (7.4) is easily integrated and we have
p+pgZ + %Vz = constant (7.5)

which is known as Bernoulli’s equation (or theorem) after Daniel Bernoulli, who included
a form of it in his treatise Hydrodynamica (1738). It was not until 1755 that Bernoulli’s
close friend Leonhard Euler gave a complete derivation of equation (7.5). The constant of
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integration on the right-hand side is called the Bernoulli constant, although it is not an ab-
solute constant but one that can vary from streamline to streamline in a given flow and is
different for every flow. In a one-dimensional flow, however, the Bernoulli constant is uniform
throughout the flowfield.

As we pointed out in Section 4.3, the combination of terms p + pgz’ which appears in
Bernoulli’s equation is termed the piezometric pressure, P.

Since we shall make extensive use of Bernoulli’s equation in this and Chapters 8, 9, and 10,
it is important to be aware of the assumptions on which its validity depends

o steady flow
e constant-density fluid
e inviscid fluid

For many flows, including compressible flow, which we discuss in some detail in Chapters 11,
12, and 13, the potential-energy (gravity) term in Euler’s equation is generally negligible, and
equation (7.4) then reduces to

or, in integral form,
Ly2, [ _
2V +/ 5 = constant. (7.7)

To evaluate the integral requires that the relationship between pressure and density be known
(see Section 11.3).

ILLUSTRATIVE EXAMPLE 7.2

(a) Calculate the Bernoulli constant for water flowing through a pipe at zero altitude at a speed
of 10 m/s if the water pressure is 1 bar. (b) If the elevation of the pipe falls by 20 m and the
flowspeed decreases to 2 m/s, what is the new fluid pressure? The flow geometry is shown in
Figure E7.2.

Solution
21 =0; V] = 10 m/s; p; = 10° Pa; 25 = ~20 m; V5 = 2 m/s; p = 10° kg/m?; g = 9.81 m/s2.
(a) The terms in Bernoulli’s equation are as follows

p1=10°Pa, pgz; = 0, and 1/2p Vi = 1/2 x 10> x 10% = 5 x 10* Pa

so the Bernoulli constant = 10° + 0 + 5 x 10* = 1.5 x 10° Pa or 1.5 bar.
(b) Wehave z5 = -20 m, and V5 = 2 m/s, so that

08z, =10> x 9.81 x (-20) =—1.96 x 10° Paand 1/2 pV3 = 1/2 x 10> x 2% =2 x 10° Pa.

If the flow is steady, of constant density, and frictionless, the Bernoulli constant remains
unchanged, so that

P2+ (-1.96 x 10°) + 2 x 10% = 1.5 x 10° and p, = 3.44 x 10° Pa or 3.44 bar.
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Vy
—1>
P1 /

O

Figure E7.2

Comment:

It was important to take ) as negative because the elevation z} of the pipe at location @ was
less than z] at location @.

7.5 Interpretations of Bernoulli’s equation

The first term of Bernoulli’s equation, p, is the pressure which would be sensed by an observer
moving with the fluid (the stick man on the left in Figure 7.3) and is called the static pressure.
As we discuss further in Section 15.1 this pressure is also called the mechanical pressure and is
usually taken to be equal to the thermodynamic pressure. From the principle of dimensional
homogeneity, which we discussed in Section 3.5, if one term in equation (7.4) is a pressure,
then each of the other terms, including the constant of integration (i.e. the Bernoulli constant),
must have the units and dimensions of pressure. In fact, it is common practice to refer to each
of these terms individually, and certain combinations of them, as pressures

® pgz=-pgz = rostatic pressure .
gz = -pgz = hydrostatic p (7.8)
° + pgz = P = piezometric pressure .
p+pgZ =P =pi icp (7.9)
° p+ % pV? = py = stagnation pressure (7.10)
® =~ pV* = dynamic pressure .
; V2 = dynamic p (7.11)

* p+pgd + %sz = pr = total pressure. (7.12)
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Figure 7.3 Static and total pressures

The terms hydrostatic pressure and piezometric pressure were introduced in Section 4.3,
where we considered fluids at rest. The dynamic pressure pV?/2 is a new term which arises
when a fluid is in motion. For a constant-density flow, the sum of the static and dynamic
pressures is called the stagnation pressure. Stagnation conditions at any point in a flow are
the conditions that would be attained if the flow there were brought to rest. A point where a
flow is actually brought to rest, such as the point P (in reality a line) on the dividing streamline
for flow around an aerofoil, as shown in Figure 6.1, is called a stagnation point. For flows
where changes in the hydrostatic pressure —pgz’ are negligible compared with changes in the
static and dynamic pressures, the stagnation pressure is essentially constant along a streamline.
This condition obviously applies if the streamline lies in a horizontal plane, and is an excellent
approximation for all gas flows. For high-speed gas flows where compressibility effects are
significant, pV?/2 is still called the dynamic pressure but, as will be seen in Section 11.3, is no
longer simply the difference between the stagnation and static pressures as it depends upon
both the static pressure and also the Mach number. The total pressure is identically equal
to the Bernoulli constant and so constant along any streamline in steady inviscid flow. With
reference to Figure 7.3, the ‘stick man’ on the left who is moving along the streamline at the
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same velocity as the fluid in his immediate vicinity would sense the local static pressure p
whereas the stationary stick man on the right and on the same streamline would sense the
local total pressure pr.

ILLUSTRATIVE EXAMPLE 7.3

The difference between the stagnation pressure po and the static pressure p of air of density
p = 4.4 kg/m> and soundspeed ¢ = 323 m/s is found to be 172 kPa. Calculate the gas velocity
and determine whether the flow can be considered incompressible.

Solution

p =4.4kg/m? c =323 m/s; pg - p = 1.72 x 10° Pa.
Assuming the flow to be incompressible, we have

po-p=3pV?
so that
2 _
V- / (Po P)
P
and so

V =2 x 1.72 x 105/4.4 = 279.6 m/s.

The Mach number M = V/c = 279.6/323 = 0.87, i.e. significantly greater than 0.3 so that
compressibility effects cannot be regarded as negligible, and our calculation of the gas velocity
must be in error. It can be shown, using the concepts presented in Chapter 11, that the error is
about 8% and it depends upon the situation as to whether or not this is acceptable.

The dynamic pressure p V2/2 can be thought of as a pressure which characterises the motion of
afluid, and its value at a particular location in a flow, usually the undisturbed flow upstream of
an object, such as the uniform flow approaching the aerofoil of Figure 6.2, is frequently chosen
to make other pressures, pressure differences, surface shear stress, etc., non-dimensional. The
term normalise is often used to mean make non-dimensional. Several such non-dimensional
quantities were introduced in Section 3.12, including

PREF — PV

= cavitation number, (7.13)

PrEr being a reference pressure, typically the barometric pressure, and py the saturated vapour
pressure for a flowing liquid (see Sections 2.13 and 8.11), and

= = friction factor (7.14)
1 y2
7P
where 7 is the surface shear stress (see Chapters 16, 17, and 18).
The dynamic pressure is also used together with an appropriate area A to non-
dimensionalise forces such as the drag and lift forces D and L exerted on an object by a fluid

flowing past it
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Cp = D _ drag coeflicient (7.15)
% P V24

CL = L = lift coefficient. (7.16)
% pV2A

Either the projected frontal area (i.e. the area corresponding to a silhouette) or (for a wing) the
planform area is frequently chosen for A.
To the above we can add

A
Cp =

= pressure coefficient (7.17)
where Ap is a pressure loss or pressure difference with respect to a reference pressure such as
the static pressure at the same location as that for V (often equal to the barometric pressure B).
The inclusion of the factor 1/2 in these definitions is conventional, and a consequence of
its ‘natural’ occurrence in Bernoulli’s equation. Its inclusion is not essential (without it all
quantities are still non-dimensional) and it is sometimes omitted, as is the case for the Euler
number

Eu = %. (7.18)
7.5.1 Energy

The dynamic pressure p V?/2 represents the kinetic energy per unit volume of a flowing fluid.
We can see that this is so by considering a mass m of volume ¥ moving at speed V. The kinetic
energy of the mass is mV?/2, and its kinetic energy per unit volume is therefore mV2/(2?) or
pV?/2 since the density p = m/V. Again on the basis of the principle of dimensional homo-
geneity, it must be the case that each of the terms in Bernoulli’s equation can also be regarded
as representing a form of energy

e p = pressure energy per unit volume
e pgz' = potential energy per unit volume
e pr = total energy per unit volume

and it follows that Bernoulli’s equation itself can be thought of as an equation for the conser-
vation of mechanical energy. In fact, Bernoulli’s equation can be derived directly from the first
law of thermodynamics, which is the basis for a general energy-conservation equation which
we discuss in some detail in Chapter 11.

7.5.2 Head
If we divide through Bernoulli’s equation by pg we find

Py V2_pT

pro g V2 _PT 7.19
pg "2 T 2g T pg (7.19)
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Once again the principle of dimensional homogeneity leads to the conclusion that, since 2’
represents altitude or height, each term in equation (7.19) corresponds to a height or, as it is
usually called (see Section 4.3), a head

« L. static head (7.20)
rg

. ¥ = dynamic head (7.21)
2g 4 ’

o T _ total head. (7.22)
rg

The head in each case corresponds to the vertical height of a column of fluid with the same
density p as that of the flowing fluid.

7.6 Pressure loss versus pressure difference

It is important to understand the distinction between pressure difference (or pressure change)
and pressure loss. At points @ and @ on the streamline shown in Figure 7.3 the pressures,
velocities, and heights are related by Bernoulli’s equation as follows

P+ pgzl + %pr = P2+ 082 + %szz = pr (7.23)

or
(b1 + pgt) - (p2 + pgzb) = 3p(V3 - V3). (7.24)

Equation (7.24) shows that a change in velocity between points @ and @ results in a change in
the piezometric pressure (p + pgz’) and this is precisely the pressure difference that would be
measured by a manometer or differential pressure transducer, as illustrated in the figure. If the
velocities at points @ and @ were the same, both the manometer and the pressure transducer
would indicate zero because the only change in pressure would be the hydrostatic pressure dif-
ference due to the height difference z, - z| whereas the difference in the piezometric pressures
is zero.

The difference in pressure associated with a velocity change becomes clearer if the hydro-
static pressure difference pg (2} - 2} ) is negligible since we then have

pr-p2= %/0 (V22 - sz) (7.25)

From equation (7.25) we see that an increase in velocity results in a decrease in static pressure
and vice versa. If we couple this statement with the constant-density form of the continuity
equation (6.4), then, for one-dimensional, steady flow of an inviscid, constant-density fluid
through a streamtube, we can conclude that

o if Ay < Aj,then Vy, > Vyandp, < p;
o if Ay > Aj,then V, < Viandp, > p;

It should be clear that, irrespective of whether the static and piezometric pressures increase or
decrease, according to our assumptions the total pressure pr will remain constant. In practice
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the effect of fluid friction at a surface, due to viscosity, is for the total pressure to decrease in the
absence of work or thermal-energy input to the fluid. This is what is meant by a pressure loss.
According to the energy interpretation of Bernoulli’s equation (Subsection 7.5.1), such a re-
duction in total pressure corresponds to a loss in mechanical energy. A more detailed analysis
reveals that, for flow of a viscous fluid, mechanical energy is dissipated resulting in an increase
in the internal energy of the fluid and hence an increase in fluid temperature. This frictional
heating is usually negligible but can become a major factor at very high gas velocities as, for
example, encountered in supersonic flight or re-entry of spacecraft into the earth’s atmosphere.

9 7.7 SUMMARY

In this chapter we used Newton’s second law of motion to derive Euler’s equation for
the flow of an inviscid fluid along a streamline. For a fluid of constant density p Euler’s
equation can be integrated to yield Bernoulli’s equation

p+pgZ + %sz =pr

which shows that the sum of the static pressure p, the hydrostatic pressure pgz’, and the dy-
namic pressure pV?2/2 is equal to the total pressure pr. Each of the terms on the left-hand
side of Bernoulli’s equation can be regarded as representing different forms of mechan-
ical energy and also equivalent to the hydrostatic pressure due to a vertical column of
liquid. The dynamic pressure can be thought of as measuring the intensity or strength
of a flow and is frequently combined with other fluid and flow properties to produce
non-dimensional (or dimensionless) numbers which characterise various aspects of fluid
motion.
The student should be able to

e state Bernoulli’s equation in the forms
p+pgZ + %sz = constant = pr
and
pi+pga + 30Vi = pr + pgzs + V3

e state the assumptions made in the derivation of Bernoulli’s equation and the lim-
itations on its applicability, i.e. to conditions along a streamline in the steady flow
of an inviscid, constant-density fluid

o define the terms
® Bernoulli constant
® dynamic pressure and dynamic head
® total pressure and total head
® stagnation pressure

in addition to the relevant terms introduced in Chapter 4

® hydrostatic pressure and hydrostatic head
® piezometric pressure and piezometric head
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Q-

7.1

7.2

7.3

7.4

interpret Bernoulli’s equation in terms of pressure, mechanical energy, and head
distinguish between pressure difference (or pressure change) and pressure loss

SELF-ASSESSMENT PROBLEMS

Water from a reservoir flows to the nozzles of a Pelton turbine through a pipe 2
m in diameter. The vertical height between the reservoir and the turbine is 400 m.
Assuming steady, one-dimensional, frictionless flow, calculate the flow velocity in the
pipe and at the nozzle outlet if the nozzle diameter is 200 mm. The static pressure at
outlet is the same as that at the surface.

(Answers: 0.0886 m/s; 88.6 m/s)

The mass flowrate of methane gas through a pipeline 0.5 m in diameter is 10 kg/s.
Calculate the gas velocity if the density of methane is taken as 0.66 kg/m?>. If the
pipeline contracts linearly to a diameter of 0.35 m over a distance of 0.5 m, calculate
the gas velocity and acceleration at the end of the contraction, the stagnation pressure
if the upstream static pressure is 1 bar, and the drop in static pressure across the
contraction. Assume steady, one-dimensional, incompressible, frictionless flow.
(Answers: 77.17 m/s; 157.5 m/s; 4.25 x 10* m/s?; 1.0197 bar; 6219 Pa)

Calculate the Bernoulli constant and the stagnation pressure at a location in a
pipeline where the water velocity is 25 m/s, the static pressure is 8 bar, and the el-
evation is 65 m. Also calculate the pressure head, the dynamic head, the total head,
and the piezometric head. If the cross-sectional area of the pipeline is 1 m?, what is
the kinetic-energy flowrate?

(Answers: 17.5 bar; 11.125 bar; 81.55 m; 31.86 m; 178.4 m; 146.6 m; 7.81 MW)

The exhaust gas from a turbojet engine has a density of 0.18 kg/m? and a sound-
speed of 600 m/s. If the exhaust-gas flowrate is 600 kg/s, and the exhaust has a
cross-sectional area of 4 m?, calculate the velocity of the gas and the Mach number.
Calculate the stagnation pressure of the air entering the engine if its static pressure is
0.5 bar, its density is 0.7 kg/m?, and the inlet area is 5 m?. The mass flowrates of air
and exhaust gas can be assumed to be the same.

(Answers: 833.3 m/s; 1.39; 0.603 bar)



Engineering applications
of Bernoulli's equation

Bernoulli’s equation is so valuable in analysing a wide range of fluid-flow problems that we
now devote an entire chapter to illustrate how it is applied in practice, frequently together
with the continuity equation. The basic design of a wind-tunnel contraction provides valu-
able insight into the interplay between pressure and kinetic energy. Instrumentation for flow
measurement provides several application examples, including the Pitot-static tube for velocity
measurement, and the Venturi-tube and orifice-plate meters for the measurement of total fluid
flowrate. We show how Bernoulli’s equation gives some insight into aerofoil lift and into the
aerodynamics of modern racing cars. Liquid draining from a tank under the influence of grav-
ity provides another example of the application of Bernoulli’s equation. Another important
application is the determination of the conditions for the onset of cavitation in a liquid flow.

8.1 Wind-tunnel contraction

A feature of most subsonic wind tunnels is a contraction, which is a smooth reduction in the
cross section between the settling chamber (also called the plenum chamber) and the work-
ing section, as illustrated in Figure 8.1. The contraction is one of several flow-conditioning
components designed to produce a flow of uniform velocity, low swirl, and low levels of fluctu-
ation (known as turbulence, see Chapter 18). Swirl is minimised by installing a honeycomb (a
composite structure consisting of an array of parallel cells of hexagonal cross section manufac-
tured from thin aluminium sheets) and turbulence reduced using a sequence of fine wire-mesh
screens. A diffuser is usually installed downstream of the working section to gradually increase
the static pressure. Wind tunnels where the fan which produces the flow is upstream of the set-
tling chamber, as in Figure 8.1, are called blower tunnels. Since the tunnel shown is not part
of a closed loop, the configuration is referred to as open-return.

This section is concerned with applying Bernoulli’s equation together with the continuity
equation to demonstrate how a contraction produces a uniform flow.

We assume the flow is steady and incompressible with an upstream velocity V; and static
pressure p;, and corresponding values V, and p, downstream. According to the continuity,

AV =AV, (8.1)

where A; and A, are the upstream and downstream cross-sectional areas, respectively.
What this equation shows is that the flow velocity increases as the flow passes through the
contraction such that at exit we have

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 8.1 Typical open-return wind-tunnel configuration

We now apply Bernoulli’s in the form

p1+%pV12:p2+%,0V22=p0 (7.10)

where py is the constant stagnation pressure (assuming there is no appreciable change in el-
evation between locations @ and @ so that, in this case, no change in the total pressure pr
implies no change in the stagnation pressure pg). Substitution for V> then leads to

2
A
pr+3pVi=pa+ip (A_D Vi = po.

This result shows that the contraction increases the kinetic energy of the flow by the factor
(A1/A5)%. Since we are assuming a frictionless flow, the mechanical energy of the flow must
be conserved (as we pointed out in Section 7.5, Bernoulli’s equation can be thought of as an
energy-conservation equation). We can interpret this to mean that there has been a transform-
ation of pressure energy into kinetic energy. We can draw another important conclusion: since
the upstream static pressure p; must be practically uniform because of the low flow speed, and
a large fraction of that pressure has been transformed into kinetic energy, the downstream flow
speed V, must be practically uniform, which is precisely what is needed for the flow in the test
section of a wind tunnel.

8.2 Venturi-tube flowmeter

The Venturi tube, developed by Clemens Herschel and named after Giovanni Battista Ven-
turi, is one of a number of differential-pressure, inline flowmeters, designed on the basis of
Bernoulli’s equation (7.10), which are commonly used to measure the total volumetric rate Q
at which a low-viscosity*! gas or liquid flows through a pipe. A typical Venturi tube, which is
a convergent-divergent nozzle, is illustrated in Figure 8.2. The essential features are a gradual
conical contraction from the initial pipe diameter to a cylindrical throat section followed by an

41" As we saw in Chapter 3 the Reynolds number is the essential flow parameter involving viscosity. When we say
‘low-viscosity fluid, we really mean ‘high Reynolds number flow’ and this, in turn, normally means turbulent flow, as
will be seen in Chapter 15.
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Figure 8.2 Venturi-tube flowmeter

even more gradual area increase, usually back to the original pipe diameter*?. The convergent
section, between the inlet and throat, sometimes called a confuser, accelerates the fluid flowing
through it, thereby reducing the fluid pressure. As we shall now show, the flowrate is derived
from a measurement of the piezometric pressure drop across this upstream section of the Ven-
turi tube. The absolute pressure is of significance only insofar as it influences the density of a
gas or the tendency for a liquid to cavitate (see Section 8.11).

If we assume that the flow through the confuser is one dimensional, frictionless, and incom-
pressible with density pr, we can apply Bernoulli’s equation between the sections marked @
and @ in Figure 8.2, as follows

p1+ prgZ; + %PFVIZ = P2 + PEgZs + %PPVZZ

which we can rearrange as

(p1 + prg21) - (p2 + prgz2) = %pF(VZZ - VD).

If the Venturi tube is installed with its axis horizontal, such that z; = z}, the terms on the
left-hand side reduce to the static-pressure difference, Ap = p; - p». More generally, however,
a manometer or differential-pressure transducer connected between sections @ and @ will
measure the piezometric pressure difference AP given by

AP = Ap + prpgAZ' = prgAH (8.2)
where Az’ = z| -2} is the height difference between @ and @, such that Az’ > 0ifz} < z|,and

AH is the piezometric head difference. In the event that either the static-pressure difference

42 Further details are given in Section 8.3.
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Ap = p1 - p> or the individual static pressures p; and p, are measured directly, the piezometric
pressure difference AP is determined by adding prgAz’ to Ap, i.e. the absolute height of the
Venturi tube is of no significance, only the height difference Az'.

We now rewrite Bernoulli’s equation in the convenient form

AP=2pp(V3-Vi). (8.3)

From the continuity equation for a constant-density flow, Q = AV, the velocities V7 and V,
can be written in terms of the volumetric flowrate Q and the cross-sectional areas at sections
® and @, A; and Ay, as

Substitution for V; and V; in equation (8.3) then gives

1 [ 1 1
AP=SprQ | =5 - =
e (3 1)

so that, after rearrangement, we have

- 2AP ,
< 2\//01: [1-(A2/A1)?] &4

from which Q can be calculated. The corresponding expression for the mass flowrate, i1 =
PrQ, is

. / 2prAP
m = A2 —[1 - (AZ/AI)Z] . (8.5)

Since AP/pf = gAH, equation (8.4) can be written in terms of the piezometric head difference
AH as

- 2¢gAH
Q= Az\/ [1-(42/A)?] ®0

8.3 Venturi-tube design and the coefficient of discharge Cp

Equations (8.4), (8.5), and (8.6) are all based directly on Bernoulli’s equation and the continu-
ity equation for one-dimensional, incompressible flow. The constant-density assumption is
practically always valid for single-phase liquid flows and, as we showed in Chapter 7, remains
very accurate for gas flows with Mach numbers up to about 0.3. Any error associated with the
constant-density assumption is further minimised by the fact that the fluid density pr appears
in the expression for the mass flowrate 71 within the square root.

The influence of the one-dimensional flow assumption on the accuracy of equations (8.4)
and (8.5) is far less straightforward to quantify. The radial distribution of the fluid velocity
upstream of the Venturi is likely to be far from uniform because any real fluid is affected by
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viscosity. As we shall see in Chapter 16, if the flow is laminar the velocity distribution will be
parabolic; in Section 18.8, the velocity distribution is shown to be ‘flatter’ if the flow is tur-
bulent, which is likely to be the case in most practical situations*’. To compensate for the
non-uniformity in the velocity distribution, it is usual to calibrate Venturi tubes against a
standard of known, high accuracy to determine a performance factor called the coeflicient
of discharge, Cp, which is defined as the ratio of the actual (i.e. true) flowrate Q4 to the
theoretical flowrate Qry based upon Bernoulli’s equation for the measured AP, i.e.

_ QA\/'OF [1 - (42/A1)’]
Cp===2——55— (8.7)
O A2 2AP
The coefficient of discharge can be regarded as a direct measure of the validity of the theory
given in Section 8.2. It is quite remarkable, therefore, that values of Cp for a low-viscosity liquid
such as water flowing through a well-designed Venturi tube can be as high as 0.995, suggest-
ing that this very simple theory is almost perfect in this application. Calibration is normally
carried out over a wide range of flowrates, and the results presented in the form of a graph or
table of Cp versus the pipe-flow Reynolds number ppV1D1/uE, where Dy is the upstream pipe

diameter, V; = 4Qu/n D7 is the upstream flowspeed, and pr is the dynamic viscosity of the
fluid.

The section of a Venturi tube downstream of the throat, which is known as a diffuser, has a
negligible influence on the characteristics of the Venturi tube and is designed to minimise the
stagnation pressure loss between inlet and outlet.

Optimum values for the convergence angle of the confuser and the divergence angle of the
diffuser are about 21° and 7° to 8°, respectively, while the throat-to-pipe diameter ratio is
between 0.3 and 0.75. A key installation requirement is a run of straight undisturbed pipe
(i.e. free of bends, valves, area changes, etc.) upstream of the Venturi at least 40 diameters
in length and including a honeycomb flow conditioner to remove swirl. Detailed design in-
formation, including installation requirements, is given in various international and national
standards, including the British Standard EN ISO 5167 and ASME MFC-3M*. As we dis-
cussed in Section 7.6, stagnation-pressure loss represents a loss (or, more correctly, conversion
to heat) of mechanical energy. If the reduction in stagnation pressure is Ap and the flowrate
Q, the power required to maintain the flow against this pressure difference is QApg. The en-
gineer who designs a pipework system which includes a Venturi-tube flowmeter has to trade
off the long-term operating costs associated with this (and other) power requirements against
the capital cost of the Venturi tube and the cost of correct installation.

ILLUSTRATIVE EXAMPLE 8.1

A Venturi tube installed in a horizontal pipe 80 mm in diameter has a throat diameter of
50 mm (see Figure E8.1). The flowing fluid is compressed air with a density of 5 kg/m? and a
dynamic viscosity of 1.8 x 107 Pa-s. In a calibration test at a mass flowrate of 1.5 kg/s, the
static pressure upstream of the Venturi tube was 4.20 bar, the throat pressure 3.69 bar, and

43 See also comments on the installation requirements in the final paragraph of this section.
44 Most standards are published in several parts and periodically updated.
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the pressure at the Venturi-tube exit 4.19 bar. Calculate the coefficient of discharge, the pipe
Reynolds number, the pressure-loss coefficient for the Venturi tube, and the rate of energy
dissipation by the fluid flowing through the Venturi tube.

P1 P2 P3
. —)V1 . - - > v2 s 5 - - > VS
Aq Ay Az

® ® ®

Figure E8.1

Solution

Dy =0.08 m; D, = 0.05m; D3 = 0.08 m; pp = 5 kg/m>; up = 1.8 x 107 Pa-s; g = 1.5 kg/s;
p1 = 4.20 x 10° Pa; py = 3.69 x 10° Pa; p3 = 4.19 x 10° Pa.

The coefficient of discharge Cp = #a/try, where ity is the theoretical mass flowrate
according to equation (8.5)*

20r (p1 - p2)
[1-(A2/A1)%]

7 % 0.052 [2 x5 x (420 -3.69) x 10°
4 [1-(0.05/0.08)*]

1.523 kg/s

so that
Cp = 1.5/1.523 = 0.985.

Since the pipe Reynolds number Re is found from Re = ppV1D/iF, we need to calculate the
average (or mean) flow velocity V; from the continuity equation (6.3), i.e.

V=24 LS —597mJs
PFA1 5 x 7 x 0.08%/4
and so
5 x 59.7 x 0.08
Re=——"""—"———,

1.8 x 107°

The pressure-loss coefficient was defined in Section 7.5 as

A
Cp = P

%PP v?

In this case we take Ap = p; — p3 = 10° Pa, i.e. the pressure difference between two sections
where the areas are the same, and V = V| so that

4> In an examination, equation (8.5) would either be given or have to be derived from Bernoulli’s equation rather
than remembered.
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103

=— 10  -0.112
0.5 x 5 x 59.72

Cp

Finally, the rate of energy dissipation is given by

maAAp _ 1.5 x 10°

P =
OF 5

= 300.

Comment:

While the closeness of the value of Cp (i.e. 0.985) to unity indicates a well-designed upstream
section, the Cp value is rather high and this is reflected in the energy dissipation rate which
would result in a small rise in fluid temperature (about 0.05 °C in this case).

8.4 Other Venturi-tube applications

The pressure reduction produced at the throat of a Venturi tube leads to its use as a suction
device in a number of practical applications, including gas-fired water-heater control systems,
carburettors, and firehose foam injectors. A typical application is illustrated in Illustrative
Example 8.2.

ILLUSTRATIVE EXAMPLE 8.2

The convergent-divergent nozzle arrangement shown in Figure E8.2 is used to inject liquid
from a reservoir into a gas stream. If the stagnation pressure of the gas is pp, show that the
minimum volumetric flowrate Qg of gas through the nozzle which will produce a liquid flow
is given by

Qe = A\/z (po - B+ prgH) /pG

where A is the cross-sectional area of the nozzle throat, pg is the gas density, oy is the liquid
density, B is the barometric pressure which acts on the liquid surface, g is the acceleration due
to gravity, and H is the vertical height of the injection-tube tip above the liquid surface. Any
effect of the injection tube on the gas flow can be neglected, the gas flow can be considered to
be loss free, and the gas density neglected relative to that of the liquid.

If the relationship between the mass flowrate of liquid 77, and the frictional pressure drop Apy
between the injector-tube tip and the inlet to the injector tube is

my = CApf

where C = 1.33 x 10° m -5, calculate the volumetric flowrate of gas required to produce a
liquid mass flowrate of 8 x 1073 kg/s. The gas density is 1.2 kg/m?, and the stagnation pressure
of the gas stream is 1.1 bar. The tip of the injector tube is 100 mm above the liquid surface, and
the liquid density is 800 kg/m?>. The throat area of the nozzle is 107> m?, and the barometric
pressure is 1.01 bar.
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gas flow

liquid

Figure E8.2

Solution

According to Bernoulli’s equation, as the gas flowrate Qg through the nozzle is progressively
increased, the static pressure p; at the throat drops such that

po-pt= %pcV2

where the velocity V of the gas at the nozzle throat is obtained from the continuity equation,
ie. V = Qg/A. The two equations can be combined to give

N
po-pi =306 (f) :
Once the static pressure falls below the barometric pressure B, the injection tube behaves much

like a piezometer tube, and the liquid will rise within the tube to a height h above the level of
the liquid surface, as given by the hydrostatic equation

pt + prgh = B.

At a certain gas flowrate, the liquid rises to the top of the injection tube such that & = H. The
corresponding value of p; is then given by

pe=B-pigH
and the corresponding gas flowrate by
N
po-B+prgH = %pc (%) .

After rearrangement, this equation gives

Qc = Ay2 (po - B+ pgH) I

which corresponds with the value of Qg, which must be exceeded to produce a flow of liquid
into the gas stream.
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Higher gas flowrates than this minimum will result in a liquid mass flowrate 717, according to
I/;’IL = CApf

where Apy is the frictional pressure drop over the total length of the injection tube correspond-
ing to iy, the liquid density and viscosity, and the tube diameter, all of which are accounted
for by the dimensional constant C. The overall pressure drop for the injection tube is the sum
of Apy and the hydrostatic pressure difference prgH, i.e.

B-ps = Apf + pLgH.
For the numerical part of the problem we have

C=133x10"°m.s; /n =8 x 10 kg/s; pg = 1.2kg/m%; po = 1.1 x 10° Pa; H = 0.1 m;
oL = 800kg/m’; A =102 m% B =1.01 x 10° Pa.

To produce a liquid flowrate 7iz;, = 8 x 107> kg/s requires

My, 8 x 1073
A R —
PF=C T 133x10°

= 6015 Pa
so that
B -p; = 6015 + 800 = 6815 Pa.

Since we have B = 1.01 x 10° Pa, we find p; = 9.42 x 10* Pa. The relationship between py, p;,
and Qg is still valid, i.e.

N
1 G
Po=pt=3p6 (7) -
Since the stagnation pressure py is given as 1 bar, we have

.\ 2

2 (pp —

<—QG> _2po=p) 2 %5800 _ gggq 2y
A 0G 1.2

From this, the gas flowrate Qg is
Qg = 1073 x V9666 = 0.0983 m?/s.

The corresponding gas velocity in the throat is 0.0983/10~> = 98.3 m/s, which is well below the
level at which compressibility effects become significant.

8.5 Orifice-plate flowmeter

A relatively simple, and therefore inexpensive, alternative to the Venturi-tube flowmeter is the
orifice-plate flowmeter. An orifice plate is a thin disk with a hole (the orifice) in it which has an
open area significantly smaller than that of the pipe cross section. As is the case for the Venturi
tube, orifice-plate flowmeters can be used with both gases and liquids, and even a vapour such
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Figure 8.3 Orifice-plate flowmeter

as steam. In principle, the orifice can be of any shape and located anywhere in the disk but is
usually circular, concentric with the pipe bore, in the diameter range 0.75D; > D, > 0.2D;
(minimum value of D; is 12.5 mm), with a sharp bevelled edge. In a typical installation, as
shown in Figure 8.3, the orifice plate is clamped between two flanges, and the pressure drop
which results from the acceleration of the fluid passing through the orifice is measured between
pressure tappings*® located at distances D; upstream and D;/2 downstream of the plate. A full
specification for the design and installation of orifice-plate flowmeters is given in ISO 5167.

The basic analysis of flow through an orifice is identical to that for a Venturi tube, with
the same final result for the theoretical volumetric flowrate Qry in terms of the pressure dif-
ference p; - p, the fluid density pr, the cross-sectional area of the pipe A;, and that of the
orifice A, i.e.

2(p1-p2) 8.8)

g =A _—
Quit =4 p[1 - (A2/A)?]

It turns out from calibration that the value of the coefficient of discharge,

Cp = Qa
Qa being the actual volumetric flowrate, is typically about 0.6. Such a low value, compared with
a Venturi-tube flowmeter, suggests that Bernoulli’s equation is a poor basis on which to analyse
flow through an orifice plate. Reference to Figure 8.3 reveals that the fault is not so much with

Bernoulli’s equation but with the way it has been applied. In effect, the fluid passing through
an orifice creates its own Venturi tube with a contraction starting at about location @ and a

46 A pressure tapping is a small hole drilled into a surface such that the pressure of the fluid on the side exposed to
the flow is communicated to a pressure sensor connected to the hole on the other side.
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throat at location @, the latter a distance of about D;/2 downstream of the plate. This fluid
throat is called the vena contracta, which means contracted vein, and if its cross-sectional
area Ay replaced A in equation (8.8), the result would be a coefficient of discharge practically
equal to unity. Unfortunately, the diameter Dy is not defined by the geometry of the orifice
plate nor is it easily measured. In practice, orifice plates are widely used with coefficients of
discharge either based on a standard or determined from calibration tests. A low value for Cp
does not mean that an orifice flowmeter is inherently inaccurate: the accuracy is determined by
that of Cp. As with the Venturi tube, for a given orifice plate, Cp depends upon the Reynolds
number.

Immediately upstream and downstream of the orifice plate the central stream of high-
velocity fluid is surrounded by recirculating eddies of fluid within which the fluid velocity
is relatively low (for this reason, sometimes called a deadwater zone) and the pressure roughly
constant. Location @ corresponds with the position of minimum static pressure (at the vena
contracta) so that the measured pressure difference p; - p; is as high as possible, thereby im-
proving the accuracy of the flowrate measurement. The loss of stagnation pressure, i.e. the
irrecoverable pressure loss, is much higher (for the same flowrate, fluid, and pipe diameter)
for an orifice plate than for a Venturi tube. This is partly due to the contraction region but
primarily the result of the rather violent way in which the flow recovers downstream of the
orifice without the aid of a diffuser. As with the Venturi tube, there is an economic trade-
off between the low capital cost of an orifice plate and the operating cost associated with the
irrecoverable pressure loss.

ILLUSTRATIVE EXAMPLE 8.3

An orifice-plate flowmeter with an orifice diameter of 350 mm and a coefficient of discharge
of 0.6 is used to monitor the flowrate of water in a pipe of 500 mm diameter. Calculate the
volumetric flowrate if the pressure difference across the orifice plate is 1.26 bar and estimate
the diameter of the vena contracta.

Solution

Using the symbols of Figure 8.3, D, = 035 m; D; = 0.5m; Cp = 0.6; Ap = p1 - p2 =
1.26 x 10° Pa; and pf = 1000 kg/m3 (water).

We have A; = 7D}/4 = 0.196 m%; A, = wD3/4 = 0.0962 m?; and A,/A; = (0.35/0.5)% = 0.49.
From equation (8.6),

2 x 1.26 x 10°

SR = 1.75m’)
10° (1 - 0.49%) e

Qry = 0.0962

and so
Qa = CpQryr = 1.05m7/s.

As mentioned in the penultimate paragraph before this example, if the area A, in equation
(8.6) is replaced by that of the vena contracta Ay, we have
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2 (p1 - p2)

Qu=A
ATV pr[1- (AviAr ]

wherein we have taken Cp = 1. This equation can be rearranged to give an explicit expression
for Ay, as follows
1 _ 1, 2e-p)
2o et T &
Ay Aj PrQy
Substitution of the values for A;, pr, Qa, and p1 - p2 leads to

1 1 2 x 1.26 x 10°

AL 0196 10° x 1.052

from which Ay = nD%//4 = 0.0627 m? and so Dy = 0.283 m or 283 mm, i.e. the diameter of
the vena contracta is about 19% smaller than that of the orifice (350 mm).

8.6 Other differential-pressure inline flowmeters

The Venturi tube and the orifice plate are both examples of flowmeters designed on the basis
of Bernoulli’s equation where flowrate is determined from the measured static-pressure dif-
ference across an area reduction. Both devices are manufactured to high tolerances according
to internationally agreed design specifications. There are numerous other differential-pressure
inline flowmeters, such as flow nozzles, flow tubes, and the Dall tube, which is essentially a
combination of a Venturi tube and an orifice plate. Which device is chosen and the material
from which it is manufactured (bronze, mild steel, and stainless steel are common choices),
depends upon the application, including such considerations as contamination of the flowing
fluid by solid particles which increases wear, corrosivity, tolerable pressure loss, and required
accuracy.

8.7 Formula One racing car

The modern Formula One, or Grand Prix, racing car is a complex package of mechanical
and electronic components designed to a formula (hence the name) defined by the sport’s
governing body, the Federation Internationale de ’Automobile (FIA), which prescribes a
wide range of design parameters, including critical dimensions (length, width, wheelbase, tyre
radius and width, etc.), weight, allowable fuel load, volumetric engine capacity, etc. Aerody-
namic performance has long been a critical aspect of the design of high-performance racing
cars, including Formula One, GP2, Indy Car, and LMP2. Computational Fluid Dynamics
(CFD) and extensive wind-tunnel testing of large-scale models is an essential aspect of racing-
car development. An essential feature of wind tunnels used to investigate the aerodynamic
characteristics of cars is a rolling road to properly simulate the aerodynamic interaction
between a car and the road surface over which it travels. Cryogenic wind tunnels, which
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Figure 8.4 |dealised Formula One car

operate at reduced temperature, are sometimes employed to achieve Reynolds numbers close
to those which correspond to typical racing speeds (i.e. up to about 360 kph).

Figure 8.4 shows an idealised picture of a Formula One car. Multi-element front and rear
aerofoils, designed to produce download (i.e. negative lift) on the front and rear wheels and
thereby improve traction in corners, are the most obvious aspects of design motivated solely by
aerodynamic considerations. Considerable download is also generated by the underside (floor)
of the car which is designed to reduce the pressure of air flowing under the car. Just as for the
wings and other lifting surfaces of aircraft, devices which generate aerodynamic download
inevitably result in drag (known as induced drag) which adds to the drag associated with the
exposed tyres, bodywork, radiators, oil coolers, engine inlet, and the driver. The complexity
of the aerodynamic problem is made even worse by the interaction between these individual
components and, in actual racing, other cars, particularly when one car is travelling in the wake
of another car a short distance in front. It is the intense trailing vortices, often visible in humid
or damp conditions swirling away from the endplates on either side of the rear wing, which are
responsible for the asymmetric loss of download experienced by the following car. The same
phenomenon affects one aircraft following another and can lead to catastrophic consequences
for small aircraft following much larger aircraft.

On the basis of the material covered so far, we can make crude estimates of some aspects
of the aerodynamic performance of a Formula One car. A more complete analysis would be
immensely complicated, carried out on a powerful computer, and require knowledge of closely
guarded design data.

We assume the following values which have been extracted or estimated from published
information

maximum speed 330 kph V =91.7m/s
tractive power 900 hp P=672kW
projected frontal area Afp = 1.5m?
air density p = 1.2kg/m?
area reduction for flow beneath car 1.15:1

mass of car including fuel and driver ~ m = 800kg
projected plan area Ap = 7m?
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At maximum speed V we assume that the tractive power P is used to overcome the
aerodynamic drag force D, so that

P=DV
and we can therefore calculate the aerodynamic drag force to be

_ P _672x10° _
D= = =51 =7328N.

In the above estimate we have neglected the rolling resistance.
We can now calculate the overall drag coefficient Cp from

3
Cp=— D _ 7.328 x 10 — 0.968.

Lpv2ag S 05x1.2x91.72x 1.5

This value of Cp is about three times the value for a well-designed passenger car for which low
drag is desirable in order to reduce fuel consumption and aerodynamic noise. Neither of these
requirements is of paramount importance to the designer of a Formula One car, and the high
value of Cp is to a large extent a direct consequence of the induced drag associated with the
high levels of download. Drag coefficients for various shapes of practical significance are listed
in Section 18.15.

If we assume the airflow under the car is loss free, we can apply Bernoulli’s equation to
estimate the reduction in pressure below the ambient level B, i.e.

B+3pV?=py+2pV3

where p; is the pressure beneath the car and V; the corresponding airspeed. There are many
things that can be criticised about this simple approach. For example, the area beneath the
car is far from constant, especially towards the rear where a diffuser brings the flow back to
ambient pressure. Also, the flow is likely to be three dimensional rather than one dimensional.
Nevertheless, Bernoulli’s equation incorporates much of the essential physics of many real
flows and is unlikely to provide answers which are orders of magnitude different from reality.

For an area ratio of 1.15:1, the continuity equation (6.1) leads to V, = 1.15V = 115 m/s
and so

B-py=05x 12 x (115* - 100?) = 7225 Pa.

If we now assume that this pressure difference is applied to the projected plan area Ap, the
corresponding download is 50.6 kN compared with the weight of the car mg = 7.85 kN. The
outcome of this calculation is critically dependent upon both the plan area and the cross-
sectional area change. The overall download (including the wings) is certainly well in excess
of the weight of the car and our crude calculation suggests that the contribution due to the
underflow may be substantial.

We conclude this section by estimating the retardation due to aerodynamic drag. If all tract-
ive force (whether due to the power unit or the brakes) is lost, according to Newton’s second
law of motion at maximum speed, we have a deceleration given by

ma = -D.
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Our estimate for the drag force D at maximum speed was 7328 N, which leads to

=D _7328 _ 2
—a= =800 =9.16m/s* or 0.933g,

i.e. a deceleration about 7% less than 1g, solely due to aerodynamic drag, a value well in excess
of the braking capability of the majority of passenger cars.

8.8 Pitot tube

The simple L-shaped tube shown in Figure 8.5(a) is called a Pitot tube after the French en-
gineer who devised it in the 18" century. When immersed in a liquid flow to a depth Z as
shown, the liquid enters the tube and rises to a level H above the free surface. If the liquid flow
is steady, once the equilibrium situation is reached the liquid velocity within the tube falls to
zero, and the point P at its tip becomes a stagnation point at which the static pressure is equal
to the stagnation pressure py. If the undisturbed liquid velocity upstream of the tip is V, and
the corresponding static pressure is p, then from Bernoulli’s equation we have

P0=P+%0LV2 or po-p= %,OLV2

where py. is the liquid density. From the hydrostatic equation (4.8) for a constant-density fluid,
we have

po=B+pig(H+Z) and p=B+pgZ

where B is the static pressure (the barometric pressure) acting on the liquid surface. The
validity of these two equations should be evident from Figure 8.5(a). If we eliminate B, we have

po-p=prgH

B H 1_ | v H
h
v l l liquid surface . 5
! R
v ov—> — _¢_
0 — p

(a)

(b)

Figure 8.5 Pitot tube: (a) free-surface flow; (b) pipe flow
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so that
%,OLVZ =pigH or V=,/2¢H. (8.9)

The more usual arrangement for the measurement of the velocity of a flowing gas or liquid
using a Pitot tube is in combination with a probe to measure the static pressure p in the vicinity
of the Pitot tube tip.

As shown in Figure 8.5(b) for liquid flow in a pipe the static pressure can be measured with
an appropriately positioned piezometer tube (see Section 4.6). If the pipe radius is R and the
Pitot tube is aligned with the pipe axis, as shown, then

po=B+prg(H+R) and p=B+pg(h+R).

As before, from Bernoulli’s equation we have

po-p= 3oLV
so that now
%/)LVZ = prg (H - h) = pLgAH (8.10)

where AH = H - h is the vertical height difference between the liquid levels in the Pitot and
piezometer tubes. The velocity on the pipe centreline is then

V = /2gAH.

For the flow through a pipe of an incompressible gas of density pg, it would be necessary to
measure the pressure difference py - p using a device such as a manometer or differential-
pressure transducer and the velocity would then be determined from

V=,/2(p0—p)/pg. (8.11)

There is an important difference between the application of Bernoulli’s equation to the ana-
lysis of flow through differential-pressure inline flowmeters and to the analysis of the response
of a Pitot tube immersed in a flowing fluid. For the flowmeters, the analysis in the early sec-
tions of this chapter dealt with all the fluid flowing through the pipe and so made use not
only of Bernoulli’s equation but also the continuity equation, with any departures from one-
dimensional flow being accounted for by the coefficient of discharge. In the case of a Pitot tube,
there is no dependence in the analysis of the one-dimensional assumption and it requires only
that we know the difference between the stagnation and static pressures at the measurement
location. It is often the case in pipe flow that there is negligible variation in the static pres-
sure with radial distance from the centreline so that the flow velocity at any radius* can be
determined using a Pitot tube at that radius.

47 The variation of velocity with distance from a surface is termed the velocity profile or distribution (see
Chapters 16, 17, and 18).
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ILLUSTRATIVE EXAMPLE 8.4

The output from a differential-pressure transducer, with one side connected to a Pitot tube
immersed in a gas flow and the other side to a static-pressure tapping in the near vicinity of
the Pitot tube, is 3.9 kPa. If the gas density is 0.8 kg/m? and its soundspeed 330 m/s, calculate
the gas velocity and the corresponding Mach number to verify that the flow can be assumed
incompressible. If the pressure transducer were to be replaced by a U-tube manometer, would
kerosene (density 800 kg/m?) or mercury be the more suitable manometer liquid?

Solution

po - p = 3900 Pa; p; = 0.8 kg/m?; ¢ = 330 m/s; ppr = 800 or 13.6 x 103 kg/m?.
We start with equation (8.11) derived above (in an examination the derivation would probably
be part of the problem), so that

V =1/2(po - p)/pc = v/2 x 3900/0.8 = 98.7 m/s.

The corresponding Mach number M = V/c = 98.7/330 = 0.299, so the assumption of
incompressible flow is only just valid (i.e. M is below 0.3).

From Section 4.7, for a U-tube manometer we have Ap = (om - pr) gAH, where AH is the
difference in the levels of the manometer liquid in the two arms of the U-tube. For mercury
we thus find AH = 3900/[(13.6 x 10° - 0.8) x 9.81] = 0.292 m or 29.2 mm, and for kerosene
AH =3900/[(800 - 0.8) x 9.81] = 0.497 m or 497 mm. On the basis of height difference, either
liquid would be acceptable for the measurement although the inaccuracy of measuring 497
mm would be much less than for 29.2 mm. It is more likely that safety concerns might rule out
both liquids: kerosene is inflammable, and mercury poisonous. In fact, in this instance, water
would be preferable.

8.9 Pitot-static tube

The Pitot-static tube illustrated in Figure 8.6 consists of an inner tube to sense the stagnation
pressure of a flow and a concentric outer tube, of outer diameter D, closed and rounded at its
upstream end but perforated by a series of small holes to sense the static pressure p of the flow.
The static-pressure holes should be located sufficiently far downstream of the probe tip for any
disturbance to the flow created by the probe to have died out: a distance of 6D is typical. Any
bend in the two tubes should be a similar distance downstream of the static-pressure holes. To
ensure an accurate measurement, the tube assembly must be aligned with the flow to within
about 5°.

If the density of the flowing fluid is pF, assumed constant, and the undisturbed flow velocity
is V, then from Bernoulli’s equation we have

Z(Po-P)'

po=p+ %pp V2 so that, as before, equation (8.11) V = o

In a typical application, as shown in Figure 8.5, the pressure difference po - p is measured using
a differential-pressure transducer or a U-tube manometer. In the latter case, if the density of
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Figure 8.6 Pitot-static tube

the manometer liquid is par and the vertical height difference of the liquid in the two arms of
the manometer is AH, then we have

po-p=(pm-pr)gAH = %psz

from which

Ve 2(pm - pr)§AH
PF '

As we shall see in Chapter 11, it is relatively straightforward to allow for the effects of
compressibility on the behaviour of a Pitot tube.

8.10 Liquid draining from a tank

Figure 8.7 shows a cylindrical container of cross-sectional area Ag open to atmospheric pres-
sure B and containing a liquid of density pr. Under the influence of gravity, the liquid drains
out of the tank through an orifice in the tank wall of cross-sectional area Ag. In practice, the
orifice could be simply a hole, a nozzle such as a Venturi tube, or a control valve.

To determine the volumetric flowrate Q with which the liquid flows out of the tank, we
start by writing Bernoulli’s equation for a streamline connecting the liquid surface and the jet
emerging from the orifice

pr=B+prgh+ %/%Vg =B+ %PLV(Z)
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Figure 8.7 Liquid draining from a tank

where pr is the total pressure of the liquid, B is the barometric pressure, h is the vertical height
of the liquid surface above the orifice*3, Vg is the surface velocity, and Vo is the velocity of the
liquid passing through the orifice. An unusual feature of this problem is that the static pressure
of the liquid is equal to the ambient pressure B both at the liquid surface and at the location of
the orifice.

The continuity equation in this case is as follows

Q =AsVs =ApVo.

In a typical situation, the surface area Ag is far greater than the orifice area Ap so that (from
the continuity equation) Vo >> Vs and we may neglect the term py V§/2 in comparison with
oL V(z)/2 in Bernoulli’s equation, which then simplifies to

Vo =2gh or Vo=./2gh

which is called Torricelli’s formula.
The theoretical volumetric flowrate Qg can now be written as

Qrr = AoVo = Aoy/2gh
and the actual flowrate Q4 as

Qa = CpAoy/2gh (8.12)

where we have introduced Cp, the coefficient of discharge (see Section 8.3) for flow through
the orifice.

It is now straightforward to calculate the time ¢ required for the liquid level to fall to an
intermediate value h from an initial value kg at t = 0. We make use of the kinematic relation

48 Tt is assumed that the orifice diameter is small compared with & so that the vertical pressure variation across the
orifice is negligible.
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dh

dt

i.e. the downward velocity of the liquid surface must equal the rate of change of the liquid
level h. We can combine this result with the continuity equation and equation (8.12) for the
actual volumetric flowrate Q4 as follows

Vg =-

Q4 = AsVs = —As = CpAopy/2gh

which can be rearranged to yield a first-order ordinary differential equation for 4 as a function
of time ¢, i.e.
L - D 2\/2g
N dt As
Since the right-hand side is a constant, this equation is easily integrated to give the desired
relationship between liquid level & and the time ¢

2 (V= /o) =—(CDI/:—2\/E>t (8.13)

wherein the constant of integration has been determined from the initial condition h = hg at
t=0.

As a final step, we can combine equations (8.12) and (8.13) to give an equation for the flowrate
Q4 as a function of time ¢

Q4 = CpAoy/2gho | 1 - CD ‘/ zi

This equation shows that the flowrate decreases linearly with time from the initial value
CpAo+/2gho. The observant reader will have noticed that the problem we have just dealt with
involves an unsteady flow (i.e. the flowrate Q4 varies with time) but has been analysed on the
basis of steady-flow forms of Bernoulli’s equation and the continuity equation. As we pointed
out in Section 6.2, a steady flow is one in which the velocity and pressure at any given point in
the flow do not change with time but there will usually be changes from one point to the next.
In other words, even in a steady flow, a fluid particle moving along a streamline will experi-
ence acceleration and deceleration. The question to be answered in the draining-tank problem
is whether the acceleration at a fixed point has a significant influence on the flow.

It is straightforward to estimate the fluid acceleration at the upper surface and at the orifice.
For the upper surface we have

g
vi- G- anfevam | 1- (@f2

so that the corresponding acceleration is given by

avs _ g (Ao
da CD(AS) &
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At the orifice, the flow velocity is given by

_ QA _ / Ao g
VO = % = CD 2gh0 1- CDA_S 2_110

and the acceleration is
Vo _ _
dt DA
Estimating the acceleration of a fluid particle at any point along a streamline is far more
difficult. For a steady flow we can write

av av
av _ yav
dt ds
where V is the flow velocity a distance s along the streamline. Although calculating V (s) is bey-
ond the scope of this book, we can at least make an order of magnitude estimate. We know that
between the surface and the orifice the flow velocity increases from Vg to Vg over a distance
comparable with hg so that we have, very roughly,
2
av Yo 2
— ~ — =2gCp.
dt = hy P
If we compare this result with that for dVp/dt, we see that the latter is smaller by a factor
Ao/2As which is likely to be far less than unity since Ap < Ag and we conclude that treat-
ing this unsteady flow as though it was steady is probably valid. Such flows are termed quasi
steady.
As the following example illustrates, the foregoing analysis can be extended without great
difficulty to the situation where the tank is closed at the top and a pressure pg is applied to the
liquid surface.

ILLUSTRATIVE EXAMPLE 8.5

Gas at a pressure ps is used to force a liquid of density p; out of a container, as shown in
Figure E8.5. The liquid leaves the container through a Venturi tube of exit area A. Show that
the mass flowrate i1 of the liquid is given by

m = A\/ZPL (ps - B+ prgh)

where h is the vertical height of the liquid surface above the Venturi-tube axis. The flow,
including that through the Venturi tube, may be assumed to be steady, frictionless, and
one dimensional, and the liquid pressure at exit from the Venturi tube equal to that of the
surrounding atmosphere B. The downward velocity of the liquid surface may be neglected
compared with that of the liquid jet.

If the liquid has a density of 800 kg/m> and its surface is 3 m above the Venturi tube, the
applied pressure is 2 bar, the nozzle exit area is 0.01 m?, and the atmospheric pressure is 1.01
bar, calculate the liquid mass flowrate. Calculate also the jet velocity and the downward velocity
of the liquid surface if the cross-sectional area of the tank is 1 m?.
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gas pg

area A

Figure E8.5
Solution

Since the flow can be treated as steady, frictionless, and one dimensional, we can apply
Bernoulli’s equation between the liquid surface and the Venturi-tube exit, as follows

pr=ps+prgh+ %PLVSZ =B+ %pLV]2

where pr is the total pressure, which is constant along a streamline, Vg is the downward
velocity of the liquid surface, and Vj is the jet velocity.

We can rearrange the equation as follows

VIZ - Vg = 2(Ps+pLgh—B) /pL.
Since Vs <« Vj, we have

V= \/2 (ps + prgh - B) Ipr.

We now introduce the continuity equation, applied to the liquid jet, r1 = p AV} and substitute
for V; to obtain

m= A\/ZpL (PS -B+ pLg]’l).
For the numerical part of the problem we have
ps =2 x 10° Pa; B =1.01 x 10° Pa; p = 800kg/m>; h = 3m; A = 0.01 m?; Ag = 1 m?.

It is a matter of straightforward substitution to find 71 = 140 kg/s.
From the continuity equation, Vs = r1/(prAs), and V;

= m/(pLA), so that
_ 140 _ _ 140
Vs =001 = 0175 m/s and Vj= 300 < 001 — 17 m/s.

We shall return to this problem at the end of Section 8.11.
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8.11 Cavitation in liquid flows

From Bernoulli’s equation we can see that in a flowing fluid it is possible to develop very low
pressure in regions of high flow velocity. If this pressure falls below the saturated vapour
pressure for a liquid, tiny vapour bubbles begin to form, a process known as cavitation or
flow-induced boiling. For a given temperature, the saturated vapour pressure is the pressure
at which a liquid boils and is in equilibrium with its own vapour, i.e. it is the pressure which
exists in pure vapour in contact with the liquid at a given temperature. The variation of the
saturated vapour pressure with temperature for water, shown in Figure 2.7 and tabulated in
Table A.3 in Appendix 2, is based upon the saturation table for water and steam (the vapour
form of water). As we should expect, the saturated vapour pressure at 100 °C is 1.01 bar, i.e.
at normal atmospheric pressure water boils at 100 °C. If the pressure is reduced to 0.1 bar,
water boils at 45.8 °C and, at a pressure of 20 bar, the boiling point is raised to 212.4 °C. An
application which takes advantage of the influence of pressure to raise the boiling point of
water is the domestic pressure cooker.

Vapour bubbles formed due to the pressure reduction in a flowing liquid initially grow, are
swept downstream, and then collapse implosively upon reaching a zone of sufficiently high
pressure. Cavitation in pumps and hydraulic turbines is undesirable, first because it leads to
a decrease in efficiency, and second because repeated impacts on blading and other compon-
ents, due to the collapse of vapour bubbles, can be so intense as to cause serious wear (surface
pitting). Much the same is true for ships’ propellers where cavitation can occur at the tips.
Further cavitation examples are provided by liquid flow through nozzles, valves, and pipes,
where there are no moving parts but the liquid pressure is reduced by a sudden reduction
in cross-sectional area. The examples given so far are for isothermal flows whereas in boilers
and heating systems cavitation may result from a combination of increased temperature and
reduced pressure. Cavitation is often detectable from the sound created by the implosive col-
lapse of the vapour bubbles. In small-scale devices this is a harsh crackling sound whereas in
very large structures, such as the spillway tunnels which carry water away from a dam, it can
sound like rocks impacting the tunnel wall.

For a flow of a fluid of density pr with velocity V, the non-dimensional parameter used to
characterise cavitation is the cavitation number Ca, defined as

_ PREF — Pv

Ca 5
oLVel2

where prer is a reference pressure (often taken as the atmospheric or barometric pressure) and
pv is the saturated vapour pressure. Cavitation within a given device occurs if the cavitation
number falls below a critical value dependent upon the flow geometry.

ILLUSTRATIVE EXAMPLE 8.6

Figure E8.6 shows water being drawn vertically upwards from a level 2/ = 0 at the bottom of
awell to a level ' = H at the inlet to a suction pump. Find the greatest depth of well H from
which water can be pumped if the water surface is at atmospheric pressure B, the saturated
vapour pressure of the water is py, and the water density is py.
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Calculate the water depth if the atmospheric pressure is 1.01 bar and the saturated vapour
pressure is 1.23 kPa (corresponding to a water temperature of 10 °C).

pump

discharge
( Y —>
pump inlet —T
well — |

Figure E8.6

Solution

We apply Bernoulli’s equation to the flow in the suction pipe, between the pump inlet (z/ = H)
and the level of the water surface in the well (z = 0)

pr=pr+prgH + %PLVIZ =B+ %IOLVIZ-

Note that we have assumed that the water velocity V7 is the same at entry to the suction pipe
and the inlet to the pump. The terms involving V7 cancel out and we have

B-
H=-_P
oLE

from which it is clear that H is greatest when the inlet pressure py is as low as possible, i.e. when
pr = pv, so that

B-py
Hyax = p .

For the numerical part of the problem, we have

B =101 x 10° Pa; py = 1.23 x 10° Pa; py = 10> kg/m’; g = 9.81 m/s*.
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Thus,

_ 1.01 x10°-1.23 x 10°

H
MAx 10° x 9.81

=10.2m.

ILLUSTRATIVE EXAMPLE 8.7

If the vapour pressure for the liquid in Tllustrative Example 8.5 is 7 x 10* Pa, what is the smallest
throat diameter of the Venturi tube if the liquid is not to cavitate?

Solution

If we take the throat velocity at V; and the corresponding pressure as p;, then we can apply
Bernoulli’s equation between the throat and the Venturi-tube exit as

po=pi+3oLVi =B+ 3LV}

where py is the stagnation pressure on the horizontal streamline coinciding with the nozzle
centreline. We have B = 1.01 x 10° Pa, and p; = 800 kg/m?, and we calculated previously that
V) = 17.5 m/s, so that py = 2.54 x 10° Pa. Cavitation occurs when the lowest pressure in the
Venturi tube p; falls to the value of the vapour pressure py, so that

po=pv+ %/OLVtZ

or

~2(po-pv)  [2(254x10°-7x 10%)
Vi= \/ T 500 =19.2m/s.

If the throat area is A, from the continuity equation,
m = pLAsVy

so that A; = m/pLV; = 7.3 x 1072 m2. Since A; = 7w D?/4, where Dy is the throat diameter, we
have finally D; = 0.096 m or 96 mm.

9 8.12 SUMMARY

In this chapter we have shown how Bernoulli’s equation can be applied to practical fluid-
flow problems. In the case of internal flows, such as that through a Venturi tube, we also
needed the continuity equation to relate changes in cross-sectional area to changes in
flow velocity. For liquid flows it was shown that for sufficiently high flowspeeds the static
pressure could fall below the saturated vapour pressure and lead to cavitation.

The student should be able to

o identify flow problems where the application of Bernoulli’s equation is appropriate
e identify problems where the continuity equation is also needed for their solution
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apply Bernoulli’s equation to analyse such internal flow problems as the flow
through a Venturi tube or an orifice plate

understand the concept of a coefficient of discharge as a correction factor

apply Bernoulli’s equation to analyse the response of a Pitot-static tube to a fluid
flow

understand the significance of the saturated vapour pressure to liquid flow and its
relevance to cavitation

e 8.13 SELF-ASSESSMENT PROBLEMS

8.1

8.2

8.3

(a) A fluid of density p flows through a horizontal duct which contracts from a cross
section of area A; to a minimum (throat) area A,. Assume one-dimensional, incom-
pressible, frictionless flow to show that the theoretical mass flowrate through the duct
is given by

. 2pA
m =A1A2 > P2
A7 - A3

where Ap is the static-pressure difference between sections 1 and 2. How would the
equation be modified using a coefficient of discharge to determine the actual mass
flowrate?

(b) Water flows through a horizontal duct which changes from a circular pipe of dia-
meter 100 mm to an annulus of outer diameter 100 mm and inner diameter 90 mm.
Calibration tests show that the coeflicient of discharge for this arrangement is 0.94.
Calculate the pressure drop across the area change for a mass flowrate of 20 kg/s.
Also calculate the velocity and static pressure in the annular section if the upstream
stagnation pressure is 7 bar.

(Answers: 0.98 bar, 13.4 m/s, 5.99 bar)

(a) A pure liquid of density p; and saturated vapour pressure py flows vertic-
ally upwards through a Venturi tube which contracts from a diameter D; to a
throat diameter D,. If the static pressure ahead of the Venturi tube is p;, show
that the maximum volumetric flowrate which can be measured before the onset of
cavitation is

P1-pLgS - pv
801 (D1 - D2)

where S is the distance from the throat to the location where p; is measured. Assume
frictionless flow.

Qcav = 7DiD3

(b) If the liquid in the above situation is pure water at 90 °C, for which the vapour
pressure is 7 x 10* Pa, calculate the mass flowrate corresponding to the onset of
cavitation if the upstream static pressure is 2 bar, Dy is 100 mm, D, is 50 mm, and S
is 5 m. Calculate the pressure differences for the same flowrate if the Venturi tube is
operated (i) in a horizontal water line and (ii) in a vertical water line with downflow.
(Answers: 25.8 kg/s, 0.81 bar, 0.32 bar)

(a) A liquid of density pr and vapour pressure py flows through a convergent-
divergent nozzle which discharges to an ambient pressure B. If the exit area Ag of
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the nozzle is a factor r times the throat area, show that cavitation first occurs at a
flowrate Qcay, given by

| 2(B-pv)
Qcav = Ag L (P-1)

Assume one-dimensional, frictionless, incompressible flow.

(b) If the throat diameter is 60 mm and the exit diameter 90 mm, calculate the
flowrate at which cavitation first occurs for a liquid of density 800 g/m> and a va-
pour pressure of 5 x 10* Pa if the barometric pressure is 1 bar. Also calculate the
stagnation pressure for the flow.

(Answers: 0.0353 m?/s, 1.123 bar)

(a) A Pitot-static tube in combination with an inclined-tube manometer is used to
measure the speed V of an incompressible fluid of density p, as shown in Figure P8.4.
If the cross-sectional area of the inclined tube is a and that of the reservoir is A, show
that

I

where py is the density of the manometer liquid, 6 is the inclination angle of the
manometer tube, g is the acceleration due to gravity, and L is the change in level of
the manometer reading (i.e. the level change measured along the tube).

reservoir

zero level

Pu

Figure P8.4

(b) A Pitot-static tube is used to measure the flowspeed of a gas of density 1.2 kg/m>.
The manometer liquid is water. The internal diameter of the manometer tube is 5
mm and that of the reservoir is 100 mm; the inclination angle is 15°. Calculate the
flowspeed and dynamic pressure if the manometer reading L is 436 mm.

(Answers: 43.1 m/s, 1.115 kPa)
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8.5

8.6

(a) A jet of liquid of density pr, surrounded by air, flows vertically downwards from
a nozzle of cross-sectional area Ay. If the stagnation pressure of the jet at exit from
the nozzle is py, and B is the surrounding air pressure, show that the cross-sectional
area of the jet A changes with vertical distance below the nozzle exit z according to

AN ? _ 1, L&

A] Po - B
where g is the acceleration due to gravity. Assume the flow is one dimensional and
frictionless and regard the air density as negligible.

(b) If the nozzle area Ay is 5 x 107 m? and the stagnation pressure py is 2 bar,
determine the jet velocity a distance 1000 m below the nozzle if the liquid is aviation
fuel of density 700 kg/m® and the ambient pressure is 0.5 bar.

(Answer: 141.6 m/s)

(a) The arrangement shown in Figure P8.6 is used to inject liquid detergent of density
pw from a pool into the water, also of density pw, flowing through a fire hose in
order to create foam. The cross-sectional area of the contraction at section 1 is At
and the cross-sectional area of the outlet nozzle is Ag. The stagnation pressure of
the water flow is pg, the ambient pressure to which the nozzle discharges is B, and
the contraction height above the surface of the detergent pool is H. Show that the
stagnation pressure at which detergent just rises to the top of the vertical tube is
given by

- PweH(AT/AR)

po- 1 - (Ar/Ag)?

where g is the acceleration due to gravity. Assume one-dimensional, incompressible,
frictionless flow for the water flow, and hydrostatic conditions for the detergent.

5 .
Po

R T .
—/ | K |~
J @~ B
H
AVA 4 detergent pool
Figure P8.6

(b) If the outlet nozzle has a diameter of 70 mm and the internal diameter of the
contraction is 60 mm, calculate the stagnation pressure for a water mass flowrate of
55 kg/s if the ambient pressure is 1.02 bar. Calculate also the static pressure at the
location of the contraction. What is the maximum vertical height difference between
the contraction and the surface of the detergent pool if the detergent is to rise to the
top of the vertical tube? If the vapour pressure of water is taken as 2.3 kPa, calculate
the water mass flowrate at which cavitation occurs.

(Answers: 2.04 bar, 0.15 bar, 8.9 m, 58.9 kg/s)



Linear momentum equation
and hydrodynamic forces

This brief but important chapter is concerned with fluid flow through a duct which changes in
direction (typically a bend) and/or cross-sectional area. Force must be exerted on the fluid to
produce the changes in fluid momentum which are a consequence of such geometric changes.
What is of interest from an engineering point of view is the external reaction force which has
to be applied to a duct to counteract the force exerted by the fluid on its interior surface. We
use Newton’s second law of motion to derive the linear momentum?® equation for a flowing
fluid. We then identify the separate contributions to the net force acting on the fluid due to
the fluid pressure at inlet and outlet to the duct, and the force exerted on the fluid by the duct’s
interior surface. We exclude from the analysis any body forces, including the weight of the
fluid. The analysis is completed by applying the principle of static equilibrium to equate the
internal and external forces acting on the duct. Emphasis is given to the vector nature of force
and momentum flowrate.

9.1 Problem under consideration

We consider the flow of a fluid through a duct, such as that illustrated in Figure 9.1, which
may be curved or straight and have a cross section which changes in shape and cross-sectional
area A with streamwise distance s. The term duct is used to mean any passage or channel
through which there is fluid flow and includes, for example, pipes, bends, nozzles, Venturi
tubes, engine intakes and exhausts, and rocket engines. We retain the assumption of steady,
one-dimensional flow, but allow the interaction between the flowing fluid and the duct walls
to involve not only the static pressure p(s) but also the surface shear stress ts(s) due to the
fluid viscosity, i.e. we no longer assume that the flow is frictionless. The restriction to constant
density is also dropped for the basic analysis.

As indicated in Figure 9.1, we apply our analysis to a segment of the duct with an inlet
(section @) and an outlet (section @). In many practical examples, sections @ and @ will cor-
respond to an actual inlet or outlet, for example the intake to a jet engine or a nozzle exit. As we
shall illustrate in Chapter 10, in other situations, such as flow through a complex duct system,
an essential aspect of the analysis is to identify an appropriate duct segment for consideration.
The volume between the inlet and outlet defined by the wetted interior surface of the duct
segment is referred to as a control volume.

49 We are concerned here with linear momentum because, for the flows under consideration, the effects of rota-
tion of the fluid about an axis can be neglected. In Chapter 14, where we consider the flow within the blading of a
turbomachine, the effects of rotation are important and it is essential then to consider the torque acting on the fluid
and its angular momentum.
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Figure 9.1 Fluid flow through a duct

As we saw in Chapter 6, changes in the cross-sectional area of a duct result in changes in the
velocity of fluid flowing through it. We shall show in Section 9.2 that, because a fluid stream
has mass (or, more precisely, density), if its velocity and/or direction changes then so must a
quantity we call the momentum flowrate, symbol M, and this requires that a force is applied
to the flow.

The forces acting on the fluid within the control volume are shown in Figure 9.2(a). The
net force F arises from the pressures at inlet and outlet, p; a