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Preface

A fluid is a material substance in the form of a liquid, a gas, or a vapour. The most common
examples, to be found in both everyday life and in engineering applications, are water, air, and
steam, the latter being the vapour form of water. The flow (i.e. motion) of fluids is essential to
the functioning of a wide range of machinery, including the internal-combustion engine, the
gas turbine (which includes the turbojet, turbofan, turboshaft, and turboprop engines), wind
and hydraulic turbines, pumps, compressors, rapidly rotating discs (as in computer drives),
aircraft, spacecraft, road vehicles, and marine craft. This book is concerned primarily with
Newtonian fluids, such as water and air, for which the viscosity is independent of the flow. The
quantitative understanding of fluid flow, termed fluid dynamics, is based upon the application
of Newton’s laws of motion together with the law of mass conservation. To analyse the flow
of a gas or a vapour, for which the density changes in response to pressure changes (known
as compressible fluids), it is also necessary to take into account the laws of thermodynamics,
particularly the first law in the form of the steady-flow energy equation. The subject of fluid
mechanics encompasses both fluid statics and fluid dynamics. Fluid statics concerns the vari-
ation of pressure in a fluid at rest (as will be seen in Chapter 4, this limitation needs to be stated
more precisely), and is the basis for a simple model of the earth’s atmosphere.
This text is aimed primarily at students studying for a degree in mechanical engineering

or any other branch of engineering where fluid mechanics is a core subject. Aeronautical (or
aerospace), chemical, and civil engineering are all disciplines where fluid mechanics plays an
essential rôle. That is not to say that fluid flow is of no significance in other areas, such as
biomedical engineering. The human body involves the flow of several different fluids, some
quite ordinary such as air in the respiratory system and water-like urine in the renal system.
Other fluids, like blood in the circulatory system, and synovial fluid, which lubricates the joints,
have complex non-Newtonian properties, as do many synthetic liquids such as paint, slurries,
and pastes. A brief introduction to the rheology and flow characteristics of non-Newtonian
liquids is given in Chapters 2, 15, and 16.
As indicated in the title, this text is intended to introduce the student to the subject of

fluid mechanics. It covers those topics normally encountered in a three-year mechanical-
engineering-degree course or the first and second years of a four-yearmechanical-engineering-
degree course, as well as some topics covered in greater detail in the final years. The first ten
chapters cover material suitable for a first-year course or module in fluid mechanics. Com-
pressible flow, flow through axial-flow turbomachinery blading, internal viscous fluid flow,
laminar boundary layers, and turbulent flow are covered in the remaining eight chapters. There
are many other textbooks which cover a similar range of material as this text but often from
a much more mathematical point of view. Mathematics is essential to the analysis of fluid
flow but can be kept to a level within the capability of the majority of students, as is the in-
tention here where the emphasis is on understanding the basic physics. The analysis of many
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flow situations rests upon a small number of basic equations which encapsulate the underly-
ing physics. Between these fundamental equations and the final results, which can be applied
directly to the solution of engineering problems, can be quite extensive mathematical manip-
ulation and it is all too easy to lose sight of the final aim. A basic understanding of vectors is
required but not of vector analysis. Tensor notation and analysis is also not required and the
use of calculus is kept to a minimum.
The approach to certain topics may be unfamiliar to some lecturers. A prime example is di-

mensional analysis, which we suggest is approached using the mathematically simple method
of sequential elimination of dimensions (Ipsen’s method). The author believes that this tech-
nique has clear pedagogical advantages over themore widely used Rayleigh’s exponentmethod,
which can easily leave the student with the mistaken (and potentially dangerous) idea that any
physical process can be represented by a simple power-law formula. The importance of dimen-
sions and dimensional analysis is stressed throughout the book. The author has also found that
the development of the linear momentum equation described in Chapter 9 is more straightfor-
ward to present to students than it is via Reynolds transport theorem. The approach adopted
here shows very clearly the relationship with the familiar F = ma form of Newton’s second
law of motion and avoids the need to introduce an entirely new concept which is ultimately
only a stepping stone to the end result. The treatment of compressible flow is also subtly dif-
ferent from most texts in that, for the most part, equations are developed in integral rather
than differential form. The analysis of turbomachinery is limited to flow through the blading
of axial-flow machines and relies heavily on Chapters 3, 10, and 11.
‘Why do we need a fluid mechanics textbook containing lots of equations and algebra, given

that computer software packages, such as FLUENT and PHOENICS, are now available which
can perform very accurate calculations for a wide range of flow situations?’ To answer this
question we need first to consider what is meant by accurate in this context. The description of
any physical process or situation has to be in terms of equations. In the case of fluidmechanics,
the full set of governing equations is extremely complex (non-linear, partial differential equa-
tions called the Navier-Stokes equations) and to solve practical problems we deal either with
simplified, or approximate, equations. Typical assumptions are that all fluid properties remain
constant, that viscosity (the essential property which identifies any material as being a fluid)
plays no role, that the flow is steady (i.e. there are no changes with time at any given location
within the fluid), or that fluid and flow properties vary only in the direction of flow (so-called
one-dimensional flow). The derivation of the Navier-Stokes equations, and the accompanying
continuity equation, is the subject of Chapter 15. Exact analytical solution of these equations
is possible only for a handful of highly simplified, idealised situations, often far removed from
the real world of engineering. Although these solutions are certainly mathematically accur-
ate, due to the simplifications on which the equations are based they cannot be said to be an
accurate representation of physical reality. Even numerical solutions, however numerically ac-
curate, are often based upon simplified versions of the Navier-Stokes equations. In the case
of turbulent flow, the topic of Chapter 18, calculations of practical interest are based upon
approximate equations which attempt to model the correlations which arise when the Navier-
Stokes equations are time averaged. It is remarkable that valuable information about practical
engineering problems can be obtained from considerations of simplified equations, such as the



PREFACE ix

one-dimensional equations, at minimal cost in terms of both time and money. What is essen-
tial, however, is a good physical understanding of basic fluid mechanics and a knowledge of
what any computer software should be based upon. It is the aim of this text to provide just that.
Already in this brief Preface the names Navier, Newton, Rayleigh, Reynolds, and Stokes

have appeared. In Appendix 1 we provide basic biographical information about each of the
scientists and engineers whose names appear in this book and indicate their contributions to
fluid mechanics.





Acknowledgements

The author gratefully acknowledges the influence of several outstanding teachers, both as a
student at Imperial College London and subsequently as a Research Associate at theMassachu-
setts Institute of Technology. My interest in, and enjoyment of, fluid mechanics was sparked
when I was an undergraduate by the inspiring teaching of Robert Taylor. Brian Spalding, my
PhD supervisor, and Brian Launder are not only internationally recognised for their research
contributions but were also excellent communicators and teachers from whom I benefitted
as a postgraduate student. As a research associate at MIT I attended lectures and seminars
by Ascher H. Shapiro, James A. Fay, Ronald F. Probstein, and Erik Mollo-Christensen, all in-
spiring teachers. Finally, my friend Fernando Tavares de Pinho has given freely of his time to
answer with insight many questions which have arisen in the course of writing this book.

Marcel Escudier
Cheshire, August 2016





Contents

Notation xxi

1 Introduction 1

1.1 What are fluids and what is fluid mechanics? 7

1.2 Fluid mechanics in nature 9

1.3 External flows 11

1.4 Internal flows 13

1.5 SUMMARY 16

2 Fluids and fluid properties 17

2.1 Fluids and solids 17

2.2 Fluid density ρ 20

2.3 Atoms, molecules, and moles 22

2.4 Perfect-gas law 22

2.5 Continuum hypothesis and molecular mean free path 24

2.6 Equation of state for liquids 28

2.7 Specific volume v, relative density σ , and specific weight w 29

2.8 Dynamic viscosity (viscosity) μ 30

2.9 Kinematic viscosity ν 35

2.10 Non-Newtonian liquids 35

2.11 Bulk modulus of elasticity K and compressibility 37

2.12 Speed of sound c 39

2.13 Vapour pressure pV , boiling, and cavitation 40

2.14 Surface tension σ and contact angle θ 42

2.15 SUMMARY 45

2.16 SELF-ASSESSMENT PROBLEMS 46



xiv CONTENTS

3 Units of measurement, dimensions, and dimensional
analysis 47

3.1 Units of measurement 47

3.2 The International System of Units (SI) 49

3.3 Dimensions 50

3.4 Combining dimensions and combining units 51

3.5 The principle of dimensional consistency (or homogeneity) 53

3.6 Dimensional versus non-dimensional representation 55

3.7 Buckingham’s� (pi) theorem 57

3.8 Sequential elimination of dimensions (Ipsen’s method) 58

3.9 Rayleigh’s exponent method 64

3.10 Inspection method 66

3.11 Role of units in dimensional analysis 66

3.12 Special non-dimensional groups 68

3.13 Non-dimensional groups as force ratios 74

3.14 Similarity and scaling 75

3.15 Scaling complications 79

3.16 Other Reynolds-number considerations 81

3.17 SUMMARY 82

3.18 SELF-ASSESSMENT PROBLEMS 83

4 Pressure variation in a fluid at rest (hydrostatics) 87

4.1 Pressure at a point: Pascal’s law 87

4.2 Pressure variation in a fluid at rest; the hydrostatic equation 89

4.3 Pressure variation in a constant-density fluid at rest 91

4.4 Basic pressure measurement 93

4.5 Mercury barometer 93

4.6 Piezometer tube 95

4.7 U-tube manometer 96

4.8 Effect of surface tension 100

4.9 Inclined-tube manometer 101

4.10 Multiple fluid layers 105

4.11 Variable-density fluid; stability 107

4.12 Deep oceans 108

4.13 Earth’s atmosphere 108



CONTENTS xv

4.14 Pressure variation in an accelerating fluid 116

4.15 SUMMARY 118

4.16 SELF-ASSESSMENT PROBLEMS 119

5 Hydrostatic force exerted on a submerged surface 124

5.1 Resultant force on a body due to uniform surface pressure 124

5.2 Vertical component of the hydrostatic force acting on a submerged
surface 126

5.3 Archimedes’ principle and buoyancy force on a submerged body 133

5.4 Hydrostatic force acting on a submerged vertical flat plate 137

5.5 Hydrostatic force acting on a submerged curved surface 143

5.6 Stability of a fully-submerged body 147

5.7 Stability of a freely floating body and metacentric height 148

5.8 SUMMARY 154

5.9 SELF-ASSESSMENT PROBLEMS 154

6 Kinematic description of fluids in motion
and approximations 161

6.1 Fluid particles 161

6.2 Steady-flow assumption 162

6.3 Pathlines, streamlines, streamsurfaces, and streamtubes 162

6.4 No-slip condition and the boundary layer 163

6.5 Single-phase flow 164

6.6 Isothermal, incompressible, and adiabatic flow 164

6.7 One-dimensional flow 165

6.8 One-dimensional continuity equation (mass-conservation equation) 166

6.9 Average flow velocity V 170

6.10 Flow of a constant-density fluid 171

6.11 SUMMARY 172

6.12 SELF-ASSESSMENT PROBLEMS 172

7 Bernoulli’s equation 174

7.1 Net force on an elemental slice of fluid flowing through a streamtube 174

7.2 Acceleration of a fluid slice 176

7.3 Euler’s equation 178



xvi CONTENTS

7.4 Bernoulli’s equation 178

7.5 Interpretations of Bernoulli’s equation 180

7.6 Pressure loss versus pressure difference 184

7.7 SUMMARY 185

7.8 SELF-ASSESSMENT PROBLEMS 186

8 Engineering applications of Bernoulli’s equation 187

8.1 Wind-tunnel contraction 187

8.2 Venturi-tube flowmeter 188

8.3 Venturi-tube design and the coefficient of discharge CD 190

8.4 Other Venturi-tube applications 193

8.5 Orifice-plate flowmeter 195

8.6 Other differential-pressure inline flowmeters 198

8.7 Formula One racing car 198

8.8 Pitot tube 201

8.9 Pitot-static tube 203

8.10 Liquid draining from a tank 204

8.11 Cavitation in liquid flows 209

8.12 SUMMARY 211

8.13 SELF-ASSESSMENT PROBLEMS 212

9 Linear momentum equation and hydrodynamic forces 215

9.1 Problem under consideration 215

9.2 Basic linear momentum equation 217

9.3 Fluid-structure interaction force 221

9.4 Hydrodynamic reaction force 223

9.5 SUMMARY 226

9.6 SELF-ASSESSMENT PROBLEMS 226

10 Engineering applications of the linear momentum
equation 228

10.1 Force required to restrain a convergent nozzle 228

10.2 Rocket-engine thrust 231

10.3 Turbojet-engine thrust 234

10.4 Turbofan-engine thrust 239



CONTENTS xvii

10.5 Flow through a sudden enlargement 241

10.6 Jet pump (or ejector or injector) 245

10.7 Reaction force on a pipe bend 252

10.8 Reaction force on a pipe junction 257

10.9 Flow through a linear cascade of guidevanes 259

10.10 Free jet impinging on an inclined flat surface 263

10.11 Pelton impulse hydraulic turbine 266

10.12 SUMMARY 269

10.13 SELF-ASSESSMENT PROBLEMS 270

11 Compressible fluid flow 275

11.1 Introductory remarks 275

11.2 Thermodynamics 275

11.3 Bernoulli’s equation and other relations for compressible-gas flow 279

11.4 Subsonic flow and supersonic flow 281

11.5 Mach wave and Mach angle 281

11.6 Steady, one-dimensional, isentropic, perfect-gas flow through
a gradually convergent duct 283

11.7 Steady, one-dimensional, isentropic, perfect-gas flow through a
convergent-divergent nozzle 287

11.8 Normal shockwaves 296

11.9 Perfectly expanded, underexpanded, and overexpanded nozzle flow 307

11.10 SUMMARY 309

11.11 SELF-ASSESSMENT PROBLEMS 309

12 Oblique shockwaves and expansion fans 311

12.1 Oblique shockwaves 311

12.2 Prandtl-Meyer expansion fan (centred expansion fan) 317

12.3 Supersonic aerofoils and shock-expansion theory 321

12.4 SUMMARY 327

12.5 SELF-ASSESSMENT PROBLEMS 328

13 Compressible pipe flow 330

13.1 Basic equations 330

13.2 Adiabatic pipe flow with wall friction: Fanno flow 332



xviii CONTENTS

13.3 Isothermal pipe flow with wall friction 347

13.4 Frictionless pipe flow with heat addition or extraction: Rayleigh flow 353

13.5 SUMMARY 360

13.6 SELF-ASSESSMENT PROBLEMS 360

14 Flow through axial-flow-turbomachinery blading 362

14.1 Turbomachinery (general) 362

14.2 Dimensional analysis and basic non-dimensional parameters 363

14.3 Linear blade cascade: Geometry and notation 367

14.4 Incompressible flow through a linear cascade 369

14.5 Compressible flow through a linear cascade 372

14.6 Rotor-flow velocity triangles 377

14.7 Euler’s turbomachinery equation for an axial-flow rotor 378

14.8 Compressible flow through an axial turbomachine stage 381

14.9 Degree of reaction Λ 385

14.10 SUMMARY 388

14.11 SELF-ASSESSMENT PROBLEMS 389

15 Basic equations of viscous-fluid flow 391

15.1 Equations of motion in Cartesian-coordinate form 391

15.2 Equations of motion in cylindrical-coordinate form 401

15.3 Boundary conditions 405

15.4 Non-dimensional form of the Navier-Stokes and continuity equations 405

15.5 Flow of a generalised Newtonian fluid 406

15.6 SUMMARY 409

16 Internal laminar flow 410

16.1 General remarks 410

16.2 Poiseuille flow of a Newtonian fluid, hydraulic diameter, and Poiseuille
number 412

16.3 Poiseuille flow through an axisymmetric cylindrical duct 416

16.4 Combined plane Couette and Poiseuille flow between infinite
parallel plates: Couette-Poiseuille flow 421

16.5 Taylor-Couette flow 427

16.6 Poiseuille flow of generalised Newtonian fluids between
infinite parallel plates 431



CONTENTS xix

16.7 Viscometer equations 438

16.8 SUMMARY 442

16.9 SELF-ASSESSMENT PROBLEMS 443

17 Laminar boundary layers 445

17.1 Introductory remarks 445

17.2 Two-dimensional laminar boundary-layer equations 447

17.3 Flat-plate laminar boundary layer: Blasius’ solution 451

17.4 Wedge-flow laminar boundary layers: Falkner and Skan’s equation 461

17.5 von Kármán’s momentum-integral equation 468

17.6 Profile methods of solution 473

17.7 Aerofoil lift in subsonic flow 484

17.8 SUMMARY 487

17.9 SELF-ASSESSMENT PROBLEMS 488

18 Turbulent flow 490

18.1 Transitional and turbulent flow 490

18.2 Reynolds decomposition, Reynolds averaging, and Reynolds stresses 491

18.3 Turbulent-kinetic-energy equation and Reynolds-stress equation 494

18.4 Turbulence scales 496

18.5 Turbulence modelling 498

18.6 Two-dimensional turbulent boundary layers and Couette flow 499

18.7 Plane turbulent Couette flow and the Law of the Wall 499

18.8 Fully-developed turbulent flow through a smooth circular pipe 506

18.9 Surface roughness 508

18.10 Fully-developed turbulent flow through a rough-surface circular pipe 509

18.11 Minor losses in pipe systems 511

18.12 Momentum-integral equation 517

18.13 Flat-plate boundary layer 518

18.14 Boundary layers with streamwise pressure gradient 525

18.15 Bluff-body drag 526

18.16 SUMMARY 531

18.17 SELF-ASSESSMENT PROBLEMS 532



xx CONTENTS

Appendix 1 Principal contributors to fluid mechanics 535

Appendix 2 Physical properties of selected gases and liquids, and other data 545

Appendix 3 Areas, centroid locations, and second moments of area

for some common shapes 553

Appendix 4 Differential equations for compressible pipe flow 556

Appendix 5 Roughness heights 562

Bibliography 563

Index 567



Notation

Each Roman, Greek, and mathematical symbol is followed by its meaning, its SI unit, and its
dimension(s).

Lower-case Roman symbols

a acceleration m/s2 L/T2

c blade chord length m L
c concentration kg/m3 M/L3

c soundspeed m/s L/T
c wetted perimeter m L
cf skin-friction coefficient – –
c0 speed of light in vacuum m/s L/T
d diameter m L
e energy J ML2/T2

ėxx extensional strain rate in x-direction 1/s 1/T
f non-dimensional velocity – –
fx body force per unit mass acting in the x-direction m/s2 L/T2

fD Darcy friction factor – –
fF Fanning friction factor – –
fF average Fanning friction factor – –
g acceleration due to gravity m/s2 L/T2

g0 acceleration due to gravity at sea level (z = z′ = 0) m/s2 L/T2

h height m L
h spacing of parallel plates m L
h specific enthalpy kJ/kg L2/T2

h0 specific stagnation enthalpy kJ/kg L2/T2

h0,REL relative stagnation enthalpy kJ/kg L2/T2

i angle of incidence ◦ or rad –
j number of independent dimensions – –
k number of non-dimensional groups – –
k radius of gyration m L
k specific turbulent kinetic energy m2/s2 L2/T2

k time-averaged specific turbulent kinetic energy m2/s2 L2/T2

kB Boltzmann constant J/K ML2/T2K
l length m L
lK Kolmogorov length scale m L
lM mixing length m L
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m mass kg M
m wedge-flow exponent – –
mA added mass kg M
ṁ mass flowrate kg/s M/T
n amount of substance kmol M
n number of physical quantities – –
n power-law exponent in power-law viscosity model – –
p static pressure Pa M/LT2

pG gauge pressure Pa M/LT2

pH hydrostatic pressure Pa M/LT2

pREF reference pressure Pa M/LT2

pT total pressure Pa M/LT2

pV vapour pressure Pa M/LT2

p0 stagnation pressure Pa M/LT2

p0,REL relative stagnation pressure Pa M/LT2

p average static pressure Pa M/LT2

p′ fluctuating component of static pressure Pa M/LT2

p′ intermediate static pressure Pa M/LT2

p∗ non-dimensional static pressure – –
q̇ heat transfer rate W ML2/T3

q̇′ heat transfer rate per unit length W/L ML/T3

r radial distance m L
s arc length m L
s cascade-blade spacing (or pitch) m L
s distance along a streamline m L
s specific entropy m2/s2 · K L2/T2θ

s0 specific stagnation entropy m2/s2 · K L2/T2θ

t elapsed time s T
t temperature ◦C θ

t̃ non-dimensional time – –
t∗ non-dimensional time – –
u specific internal energy kJ/kg L2/T2

u velocity component in x-direction m/s L/T
u time-averaged value of velocity component u m/s L/T
u′ fluctuating component of velocity component u m/s L/T
u∗ non-dimensional value of velocity component u – –
u+ velocity component u normalised by uτ – –
uP velocity of plastic plug m/s L/T
u0 centreline velocity m/s L/T
uτ friction velocity m/s L/T
v specific volume m3/kg L3/M
v velocity component in y- or r-direction m/s L/T
v time-averaged value of velocity component v m/s L/T
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v ′ fluctuating component of velocity component v m/s L/T
v+ velocity component v normalised by uτ – –
vK Kolmogorov velocity scale m/s L/T
w specific weight N/m3 M/L2T2

w velocity component in z- or θ-direction m/s L/T
w time-averaged value of velocity component w m/s L/T
w′ fluctuating component of velocity component w m/s L/T
w+ velocity component w normalised by uτ – –
x distance along or parallel to a surface/streamwise distance m L
X length m L
y distance normal to a surface m L
y+ distance y normalised by uτ and ν – –
z blade height (or length) m L
z depth (i.e. distance measured vertically downwards) m L
z′ height (i.e. distance measured vertically upwards) m L
z′ geometric altitude m L
z′G geopotential altitude m L
zC depth of centroid m L
zP depth of centre of pressure m L

Upper-case Roman symbols

A cross-sectional area m2 L2

A surface area m2 L2

A∗ choking (or sonic) area m2 L2

AE nozzle exit area m2 L2

AT nozzle throat area m2 L2

B barometric (or atmospheric) pressure or external pressure bar M/LT2

B log-law constant – –
Bi Bingham number – –
CD coefficient of discharge – –
CD drag coefficient – –
CF average friction factor – –
CL lift coefficient – –
CP pressure coefficient – –
CP specific heat at constant pressure m2/s2 · K L2/T2θ

CV specific heat at constant volume m2/s2 · K L2/T2θ

D diameter m L
D drag (or drag force) N ML/T2

D mean diameter m L
DH hydraulic diameter m L
DT nozzle throat diameter m L
D′ drag force per unit length of surface N/m M/T2
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E energy released J ML2/T2

E Young’s modulus Pa M/LT2

Eu Euler number – –
F force N ML/T2

F non-dimensional stream function – –
FB buoyancy force N ML/T2

Fθ function in Thwaites’ method – –
Fr Froude number – –
G mass velocity kg/m2 · s M/L2T
G shear modulus (fluid) Pa M/LT2

G modulus of rigidity (solid) Pa M/LT2

H height or depth m L
H horizontal component of force N ML/T2

H boundary-layer shape factor – –
He Hedstrom number – –
H12 boundary-layer shape factor – –
I second moment of area m4 L4

IC second moment of area about an axis through the m4 L4

area’s centroid
Ixy product of inertia m4 L4

K bulk modulus of elasticity Pa M/LT2

K consistency index in power-law viscosity model Pa · sn M/LT2–n

K loss coefficient – –
K turbomachine stagnation-pressure loss coefficient – –
Kn Knudsen number – –
1/K compressibility 1/Pa LT2/M
L length m L
L lift (or lift force) N ML/T2

L∗ choking length m L
M Mach number – –
M molar mass kg/kmol –
M momentum kg ·m/s ML/T
M molecular weight kg/kmol –
MREL relative Mach number – –
Ṁ momentum flowrate kg ·m/s2 ML/T2

Ṁ′ momentum flowrate per unit width of duct kg/s2 M/T2

MG metacentric height m L
N molecular number density 1/m3 1/L3

N number of molecules – –
N rotational speed rps 1/T
NA Avogadro number 1/kmol 1/M
NP turbomachine power-specific speed – –
NS turbomachine specific speed – –
P piezometric pressure Pa M/LT2
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P power W ML2/T3

Po Poiseuille number – –
Pr Prandtl number – –
Q̇ volumetric flowrate m3/s L3/T
Q̇′ volumetric flowrate per unit width m2/s L2/T
R radius m L
R reaction force N ML/T2

R resultant force N ML/T2

R specific gas constant m2/s2·K L2/T2θ

RE mean radius of the earth m L
RH hydraulic radius m L
RI inner radius of annulus m L
RO outer radius of annulus m L
R molar gas constant (universal gas constant) kJ/kmol ·K L2/T2θ

Re Reynolds number – –
Rex Reynolds number based upon length x – –
Reδ Reynolds number based upon length δ – –
ReC critical Reynolds number – –
ReD Reynolds number based upon pipe diameter – –
ReH Reynolds number based upon hydraulic diameter – –
Rep Reynolds number based upon plastic viscosity
S fluid-structure interaction force N ML/T2

St Strouhal number – –
T absolute temperature K θ

T skin-friction coefficient = θτS/μU∞ – –
T surface-tension force N ML/T2

T thrust (or thrust force) N ML/T2

T time interval s T
T torque N ·m ML2/T2

T0 stagnation (or total) temperature K θ

T0,REL relative stagnation temperature K θ

Ta Taylor number – –
U free-stream velocity m/s L/T
U0 scaling velocity m/s L/T
U∞ free-stream velocity m/s L/T
V velocity m/s L/T
V vertical component of force N ML/T2

VB buoyancy force N ML/T2

VD vertically downwards force N ML/T2

VU vertically upwards force N ML/T2

V∞ terminal velocity m/s L/T
V average (bulk-mean) velocity m/s L/T
∼
V non-dimensional velocity – –
V+ average velocity V normalised by uτ – –
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V volume m3 L3

VC critical volume for validity of continuum hypothesis m3 L3

VD displaced volume m3 L3

VS submerged volume m3 L3

V∞ y-direction velocity at edge of boundary layer m/s L/T
W relative velocity m/s L/T
W weight N ML/T2

W width m L
W work J ML2/T2

Ẇ rate of work input (power input) W ML2/T3

We Weber number – –
X length m L
Y boundary-layer thickness m L
Y surface tension N/m M/T2

Z depth of liquid m L

Lower-case Greek symbols (English word in parentheses)

α (alpha) angle of attack ◦ or rad –
α absolute flow angle ◦ or rad –
α conical gap angle ◦ or rad –
α non-dimensional constant in Blasius’ equation – –
α′ constant in shock-structure analysis m2/s L2/T
β (beta) oblique shock angle ◦ or rad –
β relative-flow angle ◦ or rad –
β wedge angle ◦ or rad –
γ (gamma) ratio of specific heats – –
γ̇ shear rate 1/s 1/T
γ̇xy shear rate corresponding to τxy 1/s 1/T
δ (delta) angle of deflection or deviation ◦ or rad –
δ boundary-layer thickness m L
δ radial gap width m L
δA element of area m2 L2

δF element of force N ML/T2

δh infinitesimal height difference m L
δH element of horizontal force N ML/T2

δm element of mass kg M
δp infinitesimal change or difference in pressure Pa M/LT2

δs infinitesimal change of distance m L
δt infinitesimal change in time s T
δV element of vertical force N ML/T2

δV element of volume m3 L3
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δW element of weight N ML/T2

δx element of streamwise or x-direction distance m L
δy element of distance normal to a surface or y-direction m L

distance
δz element of depth or z-direction distance m L
δz′ element of height m L
δ∗ boundary-layer displacement thickness m L
δSUB thickness of viscous sublayer m L
δ1 boundary-layer displacement thickness m L
δ2 boundary-layer momentum-deficit thickness m L
ε (epsilon) turbulent kinetic energy dissipation rate m2/s3 L2/T3

ε upwash or downwash angle ◦ or rad –
ε (epsilon) eccentricity m L
ε non-dimensional annular gap with – –
ε surface-roughness height m L
ε+ surface-roughness height normalised by uτ and ν – –
η (eta) dynamic viscosity Pa · s M/LT
η boundary-layer similarity variable – –
θ (theta) angle ◦ or rad –
θ boundary-layer momentum-deficit thickness m L
θ contact angle ◦ –
θ turning angle ◦ –
θ̇ angular velocity rad/s 1/T
θ̈ angular acceleration rad/s2 1/T2

κ (kappa) lapse rate K/m θ /L
κ von Kármán’s constant – –
κ wavenumber 1/m 1/L
λ (lamda) time constant s T
λ pressure-gradient parameter – –
λ Pohlhausen’s pressure-gradient parameter – –
λ wavelength of turbulence m L
λP Poiseuille-flow pressure-gradient parameter – –
λθ boundary-layer pressure-gradient parameter – –
μ (mu) dynamic viscosity Pa · s M/LT
μ Mach angle ◦ or rad –
μEFF effective viscosity Pa · s M/LT
μP viscosity of plastic plug Pa · s M/LT
μT eddy viscosity Pa · s M/LT
μ∞ infinite-shear-rate viscosity Pa · s M/LT
ν (nu) kinematic viscosity m2/s L2/T
ν Prandtl-Meyer function ◦ –
νT kinematic eddy viscosity m2/s L2/T
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ξ (xi) blade stagger angle ◦ or rad –
ξ non-dimensional distance – –
ξ turbomachine enthalpy-loss coefficient – –
ξP non-dimensional radius of plastic plug – –
ρ (rho) density kg/m3 M/L3

σ (sigma) density ratio – –
σ relative density – –
σ surface tension N/m M/T2

σxx normal stress in x-direction Pa M/LT2

τ (tau) characteristic time s T
τ shear stress Pa M/LT2

τK Kolmogorov time scale s T
τS surface shear stress Pa M/LT2

τS average surface shear stress Pa M/LT2

τY yield stress Pa M/LT2

τxy shear stress acting in y-direction Pa M/LT2

φ (phi) angle ◦ or rad –
φ blade camber angle ◦ or rad –
φ turbomachine flow coefficient – –
χ (chi) blade angle ◦ or rad –
χ boundary-layer scale factor – –
ψ (psi) stream function 1/s 1/T
ψ hydraulic machine pressure-change coefficient – –
ω (omega) angular velocity rad/s 1/T

Upper-case Greek symbols

Γ (gamma) circulation m2/s L2/T
Γ lapse rate ◦C/km θ /L
ΓAD adiabatic lapse rate ◦C/km θ /L
� (delta) finite change or difference – –
� scaling length m L
�S shock thickness m L
�p finite pressure difference Pa M/LT2

�p0 reduction in stagnation pressure Pa M/LT2

�Z finite depth difference m L
�ρ density difference kg/m3 M/L3

Θ (theta) dilation 1/s 1/T
Θ̃ ratio θ /δ, where θ = boundary-layer – –

momentum-deficit thickness
Λ (lamda) degree of reaction – –
Λ molecular mean free path m L
� (pi) non-dimensional group – –
Π shock strength – –
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Π wake parameter – –
Σ (sigma) summation – –
Φ̃ (phi) ratio δ∗/δ – –
Ω (omega) angular velocity rad/s 1/T

Mathematical symbols

div vector operator of divergence 1/m 1/L
∇ del (or gradient) operator 1/m 1/T
∇2 Laplacian operator 1/m2 1/L2

Lower-case Roman subscripts

f friction
r radial direction
t throat
x x-direction
y y-direction
z z-direction

Upper-case Roman subscripts

A actual
B back (pressure)
C centroid or critical
E exhaust
F fluid or fuel or full scale
G centre of gravity or gas
H based on hydraulic diameter
H2O water
I inlet or inner surface
L laminar or liquid or lower surface
M manometer
M model
O outer surface
P centre of pressure
REF reference condition
S isentropic or solid or submerged or surface
T total or turbulent
TH theoretical
U upper surface

Lower-case Greek subscript

θ θ-direction
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Numerical subscripts

0 stagnation or reference conditions
1 conditions upstream of a shockwave
2 conditions downstream of a shockwave

Superscripts

T isothermal
∗ choking (or critical or sonic) condition



1 Introduction

Why do students of many branches of engineering need to study fluid mechanics? First and
foremost, the answer is ‘design’. It can be argued that the principal purpose of engineering is
engineering design, and it is frequently the case that considerations of fluid flow are crucial
to the engineering-design process. It would be inappropriate here to discuss in detail what is
meant by engineering design. Suffice to say, design is sometimes confused with styling, which
refers primarily to the external appearance of a device or machine, whereas engineering design
is concerned with its functioning and invariably involves calculations based upon the laws of
physics. In this introductory chapter we indicate the wide and diverse range of practical situ-
ations where fluid mechanics plays a central role, often together with such related subjects
as heat transfer, thermodynamics, and combustion. Although the emphasis in this book is
on applications of fluid mechanics in mechanical, aeronautical, and civil engineering, other
examples could be taken from biomedical, building, chemical, and environmental engineer-
ing. Within this book we also mention many of the natural phenomena for which fluids, and
the way they flow, play a fundamental role. Although the origins of fluid mechanics can be
traced to ancient Greek (Archimedes) and Roman (Frontinus) times, and important contri-
butions were made in the 15th (da Vinci), 16th, 17th (Newton, Pascal), 18th (Bernoulli and
Euler), and 20th centuries (Prandtl, Taylor), most of the major developments in the subject
were made by engineers, mathematicians, and physicists in the 19th century (including Kelvin,
Mach, Navier, Rankine, Rayleigh, Reynolds, and Stokes). Many effects, functions, equations,
non-dimensional parameters (see Chapter 3), etc., are named after these pioneers and other
major contributors to fluid mechanics: brief biographies are included in Appendix A.
A thorough understanding of the contents of this book should enable the student to

• use the results of dimensional analysis (Chapter 3) to scale up the results of wind-tunnel
model tests1. A typical example is in the analysis of wind-tunnel data for the aerodynamic
behaviour of a Formula 1 racing car, as shown in Figure 1.1 (to illustrate the point, we
could just as well have chosen, e.g. a fighter aircraft or a bridge).

• specify the characteristics of a centrifugal pump, as illustrated in Figure 1.2, required to
handle large quantities of oil, based upon small-scale tests with water, again guided by
dimensional analysis

• calculate the flowspeed in a wind tunnel using a Pitot-static tube and a U-tube mano-
meter, as shown in Figure 1.3 (the size of the manometer relative to the Pitot tube is

1 Where the aerodynamic characteristics of an aircraft, a car, a locomotive, or any other vehicle are to be investig-
ated in a wind or water tunnel, it is usual for the vehicle to be fixed in position with the fluid flowing around it. This
change is known formally as a Galilean transformation. In a wind tunnel used to investigate vehicles in contact with
a road, the surface in contact with the vehicle usually moves at the same speed (and direction) as the working fluid.
Such an arrangement is referred to as a rolling road. Note too that the flow direction in all figures in this book is from
left to right, a convention adopted in the majority of fluid mechanics textbooks.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 1.1 Wind-tunnel test of a racing car

volute casing

discharge

inlet

impeller

Figure 1.2 Centrifugal-pump testing

much reduced in the diagram). This calculation involves both hydrostatics (Chapter 4)
and Bernoulli’s equation (Section 8.9).

• using the principles of hydrostatics (Section 8.5), calculate the resultant force exerted by
the water in a reservoir on the face of a dam, as shown by R in Figure 1.42

• use the principles of hydrostatics to design a floating boom to contain an oil slick, as shown
in Figure 1.5

• use Bernoulli’s equation (see Chapter 8) to calculate the lift force resulting from the airflow
over the surfaces of an aerofoil, as shown in Figure 1.6. A qualitative discussion of the
underlying physical phenomena which explain lift is given in Section 17.7.

• use Bernoulli’s equation to determine the flowrate at which internal boiling occurs at
room temperature as a consequence of reduced pressure (so-called cavitation, discussed in
Section 8.11) in the flow of a liquid through a constriction, such as a valve or, as illustrated
in Figure 1.7, a convergent-divergent nozzle

2 The inverted triangle is used to identify a free surface.
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Figure 1.7 Cavitation in water flow through a convergent-divergent nozzle

• use the mass-conservation (Section 6.8) and momentum-conservation (Chapter 9 and
Section 10.4) equations to calculate the thrust developed by a turbofan engine, such as that
shown schematically in Figure 1.8, which is a simplified version of Figure 14.1

• use the continuity and momentum equations, together with Bernoulli’s equation, to cal-
culate the power output of a Pelton hydraulic turbine (Section 10.11), as shown in
Figure 1.9
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Figure 1.10 Turbine stage

Figure 1.11 Viscous flow through a concentric annulus with centrebody rotation

• use the mass- and momentum-conservation equations, the steady-flow energy equation,
and the perfect-gas law to calculate the power output of a turbine (or compressor) stage
(Section 14.8), as shown in Figure 1.10

• use the mass- and momentum-conservation equations, together with Newton’s law of
viscosity, to calculate the flow of a viscous fluid through a concentric annulus with
centrebody rotation as shown in Figure 1.11 (Section 16.5)
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Figure 1.12 Supersonic flow with shock and expansion waves over a diamond-shaped aerofoil

• use the tabulated solution of the Blasius equation for a laminar boundary layer (Sec-
tion 17.3) to calculate the drag force on a thin flat plate immersed in a viscous fluid
flow

• use the Virginia Tech Compressible Aerodynamics Calculator (see Section 11.3) to calcu-
late the shock and expansion waves, the Mach number and pressure distributions, and
lift force (Section 12.3) of supersonic perfect-gas flow over a diamond-shaped aerofoil

The thickness of the shock waves in Figure 1.12 is greatly exaggerated (see Section 11.8).
The subscriptedM’s indicate the Mach numbers in each region of the flow.
The foregoing is just a selection of the engineering applications of fluid mechanics con-

sidered in this textbook. As we emphasise in the remainder of this chapter, there are few
areas of life, whether man-made or natural, in which fluids and fluid mechanics do not play a
vital role.

1.1 What are fluids and what is fluid mechanics?

Without salt-free water to drink, we die within about ten days, and become brain dead within
about four minutes without the oxygen which makes up about 21% by volume of the air
we breathe (the rest is mainly nitrogen, 78%). Water is a liquid, air is a gas, and both are
what we call fluids. The total mass of air in the atmosphere which surrounds the earth (see
Section 4.13) is estimated to be about 5.3 × 1018 kg (or 5.3 petatonnes3), and the total mass of

3 Peta- and exa- are two of the 20 approved prefixes of The International System of Units (SI) presented in
Section 3.2.
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water in all the oceans, lakes, rivers, etc., the so-called hydrosphere, is about 1.4 × 1021 kg (or
1.4 exatonnes). Given their abundance, and their importance to our very existence, it is hardly
surprising that water and air are the two fluids encountered most commonly in fluid mech-
anics. There are, of course, many other familiar ‘everyday’ fluids: methane, ethane, hydrogen,
helium, oxygen, and nitrogen are all gases which behave much like air; similarly, natural (as
opposed to synthetic) fluids such as oil, petrol, mercury, honey, glycerine, and alcohol are all
relatively simple liquids much like water, but with different densities, viscosities, and other
properties (Chapter 2 is concerned with fluid properties and what makes fluids different from
solids). We call these simple fluids, with viscosities independent of their motion (though not
their temperature), Newtonian. Blood, synovial fluid (which lubricates our joints), custard,
mayonnaise, salad cream, ketchup, hair gel, toothpaste, drilling fluid, fracking (or fracturing)
fluids, freshly mixed cement slurry, and paint are all liquids but with viscous properties and
flow behaviour very different from those of water. These differences arise primarily because
such liquids have either a complex molecular structure or consist of a mixture of a simple li-
quid (such as water) and many tiny (often in the micron range) suspended particles. Because
of the complexity of their viscosities, these liquids are termed non-Newtonian. The study of
the viscous properties of non-Newtonian liquids is a subject in itself, called rheology. There is
a brief account of non-Newtonian liquids in Section 2.10. Simple models for such liquids and
their flow are discussed in Sections 15.5 and 16.6.
We know from everyday experience that liquids flow. Water flows from the mains supply

when we open the tap. Water flows from the sink or bath into the drainage system. Tea flows
from a teapot. Beer flows into our digestive system from a glass, bottle, or can, and then, usually
after a biological/chemical transformation and temporary storage, flows out again from our
urinary system. Blood flows through our arteries and veins, pumped by a natural or artificial
heart. Air flows into our lungs, and carbon dioxide flows out into the atmosphere. Liquid
or gaseous fuel flows into the engines of passenger vehicles, trains, aircraft, and ships, while
exhaust gases flow out, again into the atmosphere. Town gas, a mixture consisting primarily
of hydrogen, methane, and carbon dioxide, flows to our cookers and boilers, and products of
combustion flow out. Air flows around us as we walk, run, or ride our bicycles. It flows over
the bodywork of our cars, over the wings and fuselages of the aircraft in which we fly, and
through the blades of wind turbines, causing them to rotate and generate electrical power. Oil,
gas, brine, and drilling fluid flow from deep in the earth to the surface when we drill for oil
or gas. Water flows from rivers into reservoirs, lakes, and the sea and from reservoirs through
hydraulic turbines again to generate electrical power. It also flows into the boilers of power-
generating steam turbines where it is converted into steam, a vapour. It flows around the hull
of a ship or submarine. Lava, a non-Newtonian liquid, flows from an active volcano.
We should also be aware that some substances can exist in more than one state (or phase).

Water, for example, can exist as ice (a solid), water (a liquid), or steam. The latter exhibits some
of the characteristics of a gas, particularly at very high temperatures, and is termed a vapour.
Many gases, including air, can be liquefied by subjecting them to very high pressure and/or
low temperature.
Engineering fluid mechanics is concerned with analysing fluid flows, such as those men-

tioned above, in order to calculate the rates at which they flow, the changes in pressure as they
flow, and the stresses and forces they exert on the machines and surfaces through and over
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which they flow. The law of conservation of mass, Newton’s laws of motion, and the laws of
thermodynamics (principally the first law in the form of the steady-flow energy equation),
together with appropriate representation of fluid properties, form the basis of the analysis.
Before we go into further detail, it is useful to expand the catalogue of situations where fluid
mechanics plays an essential role.

1.2 Fluid mechanics in nature

The height of the atmosphere, that is the altitude beyond which we are in the vacuum of outer
space, is usually taken to be about 80 km. For many purposes, the atmosphere can be taken as a
series of stationary spherical layers of air with the temperature variation shown in Figure 1.13.
We consider this hydrostatic model of the atmosphere in some detail in Section 4.13. We

know, of course, that the atmosphere, especially the part of it we inhabit, is very often far from
static;meteorology is the branch of fluid mechanics devoted to the study of its motion. Any-
one who has seen time-lapse images of clouds knows that, in addition to being swept along
by winds, they are in constant motion due to thermals (finite packets of warm air moving up-
wards which allows gliders to rise to altitudes up to about 15 km), evaporation, condensation,
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and shearing (which gives rise to the clear-air turbulence often experienced by passenger air-
craft). We should also mention dust devils, tornadoes, and hurricanes which are examples of
the intense, often violent, swirling motion which can arise in the lower atmosphere due to
combined thermal and shearing effects.
While it is essential that the earth is surrounded by a layer of air, it is just as important for

humans (at least in our current state of evolution) that all the water in the hydrosphere is not
distributed uniformly over the planet’s surface. Were that the case, the water layer would be
about 2.7 km deep. Instead, this water actually covers about 71% of the earth’s surface, with
regions of the deepest ocean being about 10 km deep, almost equal in magnitude to the height
of Mount Everest. As with the atmosphere, much can be learned about the oceans, reservoirs,
lakes, etc., by considering them to be at rest. Chapters 4 and 5 are devoted to hydrostatics—
the study of fluids at rest—with a considerable fraction concerned with the forces exerted on
surfaces, such as the face of a dam, as shown in Figure 1.4.Oceanography is the branch of fluid
mechanics which deals with tides, currents, waves, stratification (water-density variations due
to salinity and temperature changes with depth), and other phenomena associated with water
motion in the oceans. Related topics involving fluid mechanics are erosion, sedimentation,
whirlpools, river flows, and also the flow in canals and sewers, although the latter are man-
made rather than natural systems. In principle, we could also include here the fluid mechanics
associated with the wave-like body motion which fish, eels, aquatic mammals, and sperm use
to swim.
Undeniably natural are the flows of lava from an active volcano and of hot water and

steam from a geyser. The flow of formation fluids (oil, methane, hydrogen sulphide, brine,
etc.), as well as drilling mud, from an oil well represents a mixture of man-made and nat-
ural phenomena. There would be no flow were it not for the man-made well, but the flow
of formation fluids through porous rock involves natural fluids flowing through naturally
occurring channels in a natural medium. Here again, however, in hydraulic fracturing (com-
monly referred to as ‘fracking’) we are dealing with a combination of man-made and natural
processes.
The study of flow in the circulatory, respiratory, urinary, and other biological systems is

termed biofluid mechanics. As with all natural systems, an additional difficulty is that the
geometry of the flow channels is not well defined and often not fixed. For example, arteries
and veins are flexible and so change in cross section as blood pressure increases and decreases
with every beat of the heart. To further complicate matters, blood is not a homogeneous li-
quid but consists mainly of red corpuscles, which are thin discs about 8 μm in diameter with
a thick rim, suspended in plasma. As a consequence of this composition, the effective viscos-
ity (see Section 2.10) of blood decreases with shearing (relative tangential movement) and is
slightly elastic (viscoelastic) in character, i.e. blood is a non-Newtonian fluid. At rest, blood
has an effective viscosity about 100 times that of water, although this factor decreases to about
five in the arteries. In any event, the saying ‘blood is thicker than water’ is entirely accurate.
Although synovia, the fluid which lubricates our joints, is a homogeneous liquid, it is again a
non-Newtonian fluid with shear-thinning, viscoelastic properties, in this instance because it
has a polymer-like molecular structure.
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1.3 External flows

As engineers, we are concerned primarily with fluids which flow either through or around
man-made devices, which we term internal and external flows, respectively. In either case,
viscosity (or to be more precise, dynamic viscosity) is the key fluid property which determines
the details of the flow. Wherever velocity gradients occur in a flowing fluid, the fluid property
viscosity leads to shear stresses and forces. A fundamental concept in fluidmechanics is the no-
slip condition according to which, in the immediate vicinity of a solid surface, a consequence
of viscosity is that the fluid is brought to rest (or, more generally, if the surface is itself moving,
to the same velocity as the surface so that the relative velocity is zero). In essence, the fluid
adheres to the surface. For an external flow, the major effects of viscosity are confined to a
relatively thin region close to the surface called the boundary layer, the subject of Chapter 17.
In the case of buildings, smoke stacks (or chimneys), bridges, wind turbines, windmills, off-

shore structures such as drilling platforms, etc., the external flow (there may be quite separate
internal flows, such as exhaust gases) is provided by nature. The damage which sometimes
occurs to these and other structures when high windspeeds arise tells us that the wind can im-
pose massive forces on their surfaces. In certain circumstances, even at relatively low speed, a
steady wind can excite vibrations (flow-induced vibrations) which can be of sufficient amp-
litude to cause structural damage. Huge plate-glass windows have been known to pop out of
their frames due to wind-induced torsional oscillations of skyscrapers, as happened to the 241
m high John Hancock Tower opened in Boston in 1976. The best known example of wind-
induced vibration was the complete destruction in 1940 of the Tacoma Narrows Bridge in
Washington State, USA. Remarkably, in both instances, the vibration was initiated at wind-
speeds no greater than about 70 kph. In order to design structures which are safe, we need to
calculate both the steady and periodic forces due to the wind, either from fundamental the-
ory or, more likely, from a combination of theory and experimental data obtained from tests
carried out in a wind or water tunnel. The use of experimental data, generalised using di-
mensional analysis (Chapter 3), is termed empiricism. Environmental fluid mechanics also
concerns the dispersion of pollutants in the atmosphere and in the sea, rivers, lakes, etc.
Some of the most advanced theoretical and experimental work in fluid mechanics has been

associated with the development of aircraft, spacecraft, and missiles. There have been re-
markable advances in aviation since December 1903, when Orville Wright flew a powered,
heavier-than-air, machine some 260m in 59 s. For example, we now take for granted passenger
aircraft such as the turbofan-powered Airbus A380-800 with a passenger-carrying capacity up
to about 850, a maximum take-off weight of 575,000 kg, a wingspan of 80 m, a cruising speed
of 945 km/h (just below soundspeed), and a range of 15,700 km. Although taken out of service
in 2003, just as impressive was the performance of the turbojet-powered (see Section 10.3)
British Aerospace Corporation/Aérospatiale supersonic transport aircraft, Concorde, which
routinely carried about 130 passengers at twice soundspeed (a flight speed of about 2130 km/h)
in the stratosphere (see Section 4.13). Although, as we see from Figure 1.10, the atmospheric
temperature at cruise altitude (about 18 km) is about –56.5 ◦C, the skin of Concorde reached
a temperature of about 120 ◦C, due to frictional heating, causing the length of the aircraft to
increase by about 0.3 m. Modern combat aircraft, such as the Lockheed Martin F-22 Raptor,
again turbofan powered, can fly at Mach numbers above two (about 2500 km/h). Although
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manned flights into space are now regarded as almost routine, in reality each flight repres-
ents an extraordinary engineering achievement. For example, the speed required to escape the
earth’s gravitational pull is about 11 km/s (i.e. 40,000 km/h or a Mach number above 30) and,
on re-entry into the earth’s atmosphere, the air surrounding the space shuttle becomes so hot
(6000 ◦C plus) that the craft is surrounded by a glowing plasma.
One of the ways we distinguish between different flight regimes is through the Mach num-

ber, which is the ratio of the flight speed of an aircraft to the speed of sound at the flight altitude
(discussed further in Section 3.12 and Chapter 11). As the Mach number increases, the fluid
mechanics becomes more complicated because an increasing number of physical phenomena
have to be taken into account. If the Mach number is considerably less than unity (0.3 is the
value usually taken), changes in fluid density are negligible and the flow is said to be incom-
pressible. For higher Mach numbers, compressibility effects (i.e. density changes) become
increasingly important but can be accounted for in a relatively straightforward way using the
perfect-gas law to relate temperature, pressure, and density (see Section 2.4), together with
the first law of thermodynamics (Chapter 11). Once the Mach number exceeds about five,
however, very high temperatures develop near surfaces, and the air properties change due to
chemical breakdown of the molecules and the subsequent reaction of free atoms. At this point,
physical chemistry also comes into play, but beyond the scope of this book.
The preceding paragraphs suggest an important aspect of the subject of fluid mechanics

which students often find difficult to understand: even at relatively low flowspeeds, there are
few problems we can solve completely, usually because the mathematics involved becomes
far too complicated, even if we understand all the physics involved and know the relevant
equations. To a degree, computers can take over at some stage in the analysis of a prob-
lem to provide a numerical rather than an analytical (i.e. algebraic) solution. Unfortunately,
even the largest and fastest computers available at the present and in the foreseeable future
are inadequate to solve most practical problems and we have no choice but to introduce ap-
proximations, assumptions, and simplifications. In fact, this ‘engineering’ approach represents
common sense. For example, if we are dealing with a low-speed gas flow where we know that
the fluid density remains practically constant, there is no point in making our task more dif-
ficult (and more expensive) than necessary by not introducing this simplification from the
outset. Of course, it is usually a matter of experience, or even hindsight, which tells us what
simplifications are justified. In this textbook, we approach problems using the simplest pos-
sible physics and mathematics, with the aim of deriving approximate solutions which provide
some insight into the interplay between fluid properties, flow geometry, and flowspeed. The
reader needs to bear in mind that our approach often represents only a start to, rather than a
complete treatment of, the solution of problems of fluid flow.
Even land vehicles have now reached speeds where air-density variations must be accounted

for. The land-speed record, held by the turbofan-powered car Thrust SSC since 1997, is 1228
km/h, which corresponds to a Mach number of 1.018, i.e. just supersonic (Mach numbers in
the range close to unity are termed transonic). A new turbofan-powered car, Bloodhound
SSC, is being developed with a target speed of about 1700 km/h (Mach 1.9). Somewhat slower
is the Japanese Tōhoku Shinkansen ‘Bullet Train’ which has a top speed of about 320 km/h
or 89 m/s, corresponding to a Mach number of 0.26, so that compressibility effects are largely
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insignificant. However, some racing cars can achieve speeds where compressibility effects can-
not be neglected: the highest speed reached at the California Speedway track in Fontana,
California, is about 400 km/h or 111 m/s, which corresponds to a Mach number of 0.33. Al-
though this figure is close to the 0.3 ‘cutoff ’, it must be the case that on the bodywork of the
cars there would have been regions where the airspeed was considerably higher. It has to be
said that normal cars, buses, and lorries have considerably lower top speeds and the airflow
around them can safely be considered to be incompressible (i.e. to have constant density).
Although the speeds of even the fastest marine vehicles are much lower than for most land

vehicles, the fluid mechanics involved is complicated by wave motion which arises due to the
tendency for gravitational pull to overcome any disturbance to a water surface. We are all
familiar with the surface gravity waves which propagate radially outwards when we throw a
stone into a pond, whereas the forward movement of a ship creates a vee-shaped pattern of
surface waves. Although invisible to the eye, a submarine travelling deep below the surface
also generates gravity waves as it disturbs water layers of different densities which occur due to
variations with depth of salt content and temperature. The energy required to generate waves
has to be provided by the propulsion system of the ship or submarine and so corresponds to
an additional contribution to the drag force, so-called wave drag.

1.4 Internal flows

Most of the flow situations dealt with in this textbook are concerned with internal flows
through pipes, ducts, nozzles, engines, turbomachines, etc. In one sense, internal flows are
easier to deal with than external flows because the flow is confined within solid boundaries un-
like the flow over an aerofoil (Figure 1.6), for example, where the region of flow is practically
unlimited.
The most common man-made device through which flow occurs is a metal, plastic, or glass

pipe of circular cross section. Pipes of this kind allow oil and gas to flow to the earth’s surface
from reservoirs which may be many kilometres below, often deep below the seabed, and then
hundreds of kilometres across land, directly to refineries or to ports for transfer to ships. Oil
and gas pipelines, and also the pipes which convey water into the turbines of a hydroelectric
power plant, may be a metre or more in diameter. The enormous capital cost involved means
that careful consideration has to be given to the design of such pipelines including all the asso-
ciated valves, bends, contractions, expansions, pumps, monitoring equipment, etc. Smaller
diameter pipes connect the pumps, separators, boilers, distillation columns, burners, filters,
etc., of oil refineries and other chemical-processing plant. Such pipes allow gas and water to be
transported to the homes where we live and to the offices and factories where we work. Fluid
flow through a straight pipe is resisted by friction between the fluid and the internal surface of
the pipe, which arises due to the viscosity of the fluid (see Section 2.8) and has to be overcome
by a pressure difference created by a pump or compressor, or by gravitational effects. Friction
also causes the fluid temperature to rise, the fluid density to decrease, and the average fluid
velocity to increase. Much like the situation of an external flow, a boundary layer develops and
grows in thickness with downstream distance so that, in an internal flow, if the flow channel is
long enough, it is inevitable that eventually fluid across the entire cross section of the channel
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is affected by viscosity (see Chapter 16). Pipe flow of compressible fluids is considered in detail
in Chapter 13. Due to surface friction or external heating, in the case of a gas, the fluid velocity
in a pipe may even reach the speed of sound, causing an effect called choking (see Chapters 11
and 13), which limits the volume of gas which can be pumped through the pipe. Clearly, even
a flow which at first sight probably appears to be the simplest we can think of turns out to
be rather complicated. In fact, the situation is even more complicated than we have indicated
so far because it is only for low flowrates or small-diameter pipes or highly viscous fluids (all
of these influences are accounted for by a non-dimensional parameter termed the Reynolds
number, which we discuss further in Chapters 3 and 15 to 18) that the flow remains smooth
and steady (so-called laminar flow) and we are able to analyse it completely. The majority of
flows of engineering interest exhibit a high degree of random unsteadiness which we call tur-
bulence (see Chapter 18) and, even today, we are able to calculate turbulent pipe flow from
first principles only through the use of supercomputers. Fortunately, the principles of dimen-
sional analysis apply whether a flow is laminar or turbulent, and this enables us to generalise
experimental data for use in engineering-design calculations.
In industrial applications, pipes rarely stay straight or keep the same diameter for long (see

Section 18.11). Often more important than understanding the details of the flow within a pipe
or pipe system is the ability to calculate the hydrodynamic forces which arise when a pipe
changes direction and, perhaps, also diameter, as illustrated by the pipe bend in Figure 1.14
(see Section 10.7).
The calculation of hydrodynamic forces is one of the main topics of Chapter 10, which

brings together many of the concepts and principles introduced in previous chapters, par-
ticularly those in Chapters 6, 7, and 9.
Combustion chambers, furnaces, boilers, jet pumps, control valves, guidevanes, cyclone

separators, radiators, oil coolers, fuel-injection systems, carburettors, rocket engines, and the
coolant channels within the core of a nuclear reactor or the block of a petrol or diesel engine

flow
inlet

flow
outlet

reaction
force

Figure 1.14 Hydrodynamic reaction force exerted on a pipe bend
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are all examples involving internal fluid flow. As we show in Chapter 10, the flow characterist-
ics which underlie the design of many of these devices, including the rocket engine, jet pump,
and cascade of guidevanes, shown in Figures 1.15, 1.16, and 1.17, respectively, can be determ-
ined using the principles of fluid mechanics that we cover in this textbook. The analysis of
most of the other cases requires more advanced aspects of fluid mechanics and may also in-
volve considerations of heat transfer, thermodynamics, and chemistry, all of which are beyond
the scope of this book.
The turbojet and turbofan engines shown in Figures 10.3(a) and 1.8, respectively, are

examples of a class of devices called turbomachines, derived from the Latin word turbo,
which has the meanings ‘whirlwind’ and ‘spinning top’. Other examples of turbomachines are
pumps, fans, compressors, steam turbines, gas turbines, hydraulic turbines (see Figure 1.9),
turbochargers, and superchargers. A common feature of all turbomachines is a central rotating

oxidiser

feed
fuel

feed

injector

plate

combustion

chamber

divergent

exhaust

nozzle

exhaust

plume

Figure 1.15 Thrust of a liquid-propellant rocket
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Figure 1.16 Performance of a jet pump
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approach flow lift force

outlet flow

drag force

Figure 1.17 Hydrodynamic forces on a cascade of guidevanes

shaft which carries blades (the rotor or impeller) to transfer momentum and work either to
or from the fluid which flows through them by causing changes in the direction of fluid flow.
Most turbomachines also incorporate stationary blades (called stators or nozzle rings) at-
tached to the casing to guide the flow to and from the rotor stages. As we show in Chapter 10,
we can learn a considerable amount about the performance of these complex machines simply
by considering the state of flow at inlet and outlet. The basic flow within a stator or rotor stage
can be analysed inmuch the same way as that through a stationary cascade of guidevanes; but,
to take the analysis further, as we do in Chapter 14, requires that we use more advanced aspects
of fluid mechanics, often together with considerations of thermodynamics.

1.5 SUMMARY

In this chapter, we have indicated the wide array of engineering devices, from the kitchen
tap (a valve) to supersonic aircraft, for which the basic design depends upon considerations
of the flow of gases and liquids. Much the same is true of most natural phenomena, from
our weather to ocean waves and the movement of sperm and other bodily fluids. This text-
book introduces a number of the concepts, principles, and procedures which underlie the
analysis of any problem involving fluid flow. In this Introduction, we have selected a num-
ber of examples for which, by the end of the book, the student should be in a position to
make practically useful engineering-design calculations. We emphasise that simply attend-
ing lectures or reading this book is not sufficient: it is absolutely essential for the student
to spend at least twice the amount of lecture time attempting to solve the self-assessment
problems which follow most chapters.



2 Fluids and fluid properties

Wet. Sticky. Viscous. Viscid. Gelatinous. Slippery. Greasy. Oily. Lubricious. Slimy. Oleaginous.
Oozy. Soapy. Thick. Thin. Runny. Syrupy. Treacly. Tacky. Claggy. Muddy. Gummy. Gooey.
Mucilaginous. Glutinous. These are among the many adjectives commonly used to describe
liquids, to convey something about how liquids feel, how they flow, or how they respond to
being stirred or mixed. The list of words available to describe gases is far more limited: viscous,
viscid, heavy, and dense. We could also include smelly in both lists, although in the case of li-
quids what is sensed is the vapour form. In contrast to these adjectives, which primarily give
us a qualitative tactile impression, in this chapter we introduce the properties used to quantify
the physical characteristics of liquids and gases: dynamic and kinematic viscosity, density,
specific volume, relative density, bulk modulus of elasticity and compressibility, speed of
sound (or soundspeed), vapour pressure, and surface tension, together with the perfect-gas
law and an equation of state for liquids. We discuss how and why fluids and solids are dif-
ferent both on a molecular and on a macroscopic scale. We show that central to the definition
of the physical properties of fluids, and the way in which we go on to analyse fluid flow, is the
continuum hypothesis, which allows us to define properties on a scale which is far smaller
than any scale of engineering interest but still far larger than the underlying molecular scale.

2.1 Fluids and solids

The state of any substance can be classified as solid or fluid, with the term fluid including
liquids, gases, and vapours. From an engineering viewpoint, the essential difference between
a fluid and a solid is the way in which the substance resists shear stress. In the case of a solid,
the shear stress is resisted by a static deformation, the magnitude of which (for a given shear
stress) depends upon a material property called themodulus of rigidity. For a fluid, no matter
how low the shear stress, the deformation increases without limit as long as the shear stress
is applied. The rate of deformation of a fluid is determined by a property called the dynamic
viscosity (or just the viscosity). A fluid for which the viscosity is zero is said to be inviscid,
whereas a fluid with non-zero viscosity is said to be viscous4. A fluid with vanishingly small
viscosity is also termed a perfect fluid, the only known example of which is liquid helium
cooled to 2.17 K, at which critical temperature a fraction of the liquid becomes an inviscid
superfluid.
We can begin to quantify the statements in the first sentences of the preceding paragraph as

follows. Suppose we have a solid rectangular block subjected to a shear (i.e. tangential) force F,

4 The term viscid is also used.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 2.1 (a) Shear force applied to an elastic solid (b) Shear stress applied to a fluid

as illustrated in Figure 2.1(a). Unless the magnitude of the force is so great that the material
fractures or deforms plastically (in a sense, behaving like a liquid), the solid resists the force F
by a static deformation which we can measure by the angle φ (the Greek letter phi). In the case
of an elastic solid, according to Hooke’s law, the deformation is proportional to the applied
force, so we can write

F
A = τ = Gφ (2.1)

where A is the surface area over which F is distributed, τ (the Greek letter tau) is the shear
stress (i.e. the shear force per unit area), and the constant of proportionality G is called the
modulus of rigidity or shear modulus.
Consider now the situation illustrated in Figure 2.1(b), which shows a fluid between two

parallel plates separated by a short distance h, with the lower plate stationary and the upper
plate moving at velocity V . A fundamental concept of the flow of a viscous fluid, called the no-
slip condition (see Sections 6.4 and 15.3), is that fluid in contact with a solid surface adheres
to it and moves at the speed of the surface. Thus, the fluid in the immediate vicinity of the
upper surface moves forwards at velocity V , the fluid in contact with the lower surface is at
rest, and the fluid in-between moves as though in infinitesimally thin layers with velocity u,
which increases progressively with distance y from the lower surface, i.e.

u =
Vy
h
. (2.2)
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If we imagine a line normal to the plate surfaces and marking the fluid at some instant of time,
at time t later the line will have rotated through an angle φ, as shown in Figure 2.1(b), so that

tanφ = Vt
h
. (2.3)

If the time t is short, the angle φ will be small and negligibly different (measured in radians)
from tanφ, so that

φ = Vt
h
, (2.4)

from which we see that if t doubles, φ also doubles; if t triples, φ also triples; and so on. Rather
than think of progressive deformation in this way, it is far more convenient to think in terms
of the rate of change of deformation, which is given by

dφ
dt

= V
h
. (2.5)

From equation (2.2) and Figure 2.1(b) we can see that the quantity V/h is the gradient of the
velocity u with respect to distance y, i.e.

du
dy

= V
h
. (2.6)

Because gradients of velocity within a fluid occur due to the effects of shear stress, the rate
of deformation du/dy is referred to as the shear rate. For a fluid, the statement equivalent to
equation (2.1) can now be written as

τ = μdφ
dt

= μdu
dy

(2.7)

where the symbol μ (the Greek letter mu) represents the fluid property known as dynamic
viscosity (usually just referred to as the viscosity). In some books, the symbol η (the Greek
letter eta) is used rather than μ. Viscosity is the principal property which distinguishes a fluid
from a solid, and many of the adjectives listed at the beginning of this chapter are qualitative
descriptions of the viscous nature of fluids. For many simple fluids, including air and water,
μ is a thermodynamic property which depends only upon temperature and pressure but not
on the shear rate. As mentioned in Chapter 1, such fluids are known as Newtonian. One of
Newton’s many contributions to scientific understanding was the recognition that the resist-
ance to relative motion between two ‘layers’ of a fluid is proportional to the velocity difference
between the layers, as represented by equation (2.7).
It is easy to find descriptive distinctions between the four states (solid, liquid, gas, vapour)

in which matter occurs. Solids are hard and not easily deformed. A liquid has no inherent
shape and is so easily deformed that under the influence of gravity it takes up the shape of any
container into which it is poured without a change in volume. A gas is even easier to deform
than a liquid and increases in volume without limit unless constrained by a closed container,
which it then fills completely. The volume of a fixed mass of gas is decreased by any increase
in pressure, whereas to decrease the volume of a liquid by a measurable amount requires very
high pressures (see Section 2.6). These and other differences between the gas, liquid, and solid
states can be explained on the basis of their molecular structures. Movement of the molecules
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of a solid is highly restricted because they are closely packed in a fixed lattice structure with
large intermolecular cohesive forces between them. The molecules of a liquid have freedom
of movement and are further apart (though the typical spacing is still only 10–10 m or 0.1 nm)
so the intermolecular forces are smaller. In fact, the molecules are in a continual state of inter-
action with their neighbours and never move very far. Gas molecules, on the other hand, move
about randomly but in straight lines at high speed (about 1.2 to 1.5 times the speed of sound),
occasionally colliding with each other or the surfaces of a confining container. For both liquids
and gases the continual bombardment of any surface by molecules gives rise to a stress which
is normal to the surface and which we call pressure.
Since many substances can exist in any one of the three basic states, the differences in mo-

lecular structure are largely a matter of degree, and there is the possibility of transition between
these states. For example, the volume of a fixed mass of gas is easily decreased by increasing
its pressure, a process termed compression, while expansion is the opposite process. At very
high levels of compression the gas molecules are forced so close together that the gas becomes
indistinguishable from a liquid and is said to liquefy. Liquefaction can also be achieved by
cooling a gas to a temperature below its critical temperature. The free surface of any liquid is
always in contact with its gaseous state, called a vapour. At sufficiently high temperature many
solids melt and become liquid and, with further increase in temperature, increasing amounts
of vapour are produced until all the material is in the gaseous state. These different states are
identified thermodynamically as phases which represent forms of matter which are physically
and chemically stable.

2.2 Fluid density ρ

The density ρ (the Greek letter rho) of a fluid (or a solid), sometimes referred to as its mass
density, is the ratio of the massm of a given volume of that substance to its volume V, i.e.

ρ = m
V
. (2.8)

In the SI system of units, which we use exclusively in this textbook and present in some detail in
Chapter 3, the unit of mass is the kilogram (symbol kg), that of volume is the cubic metre (m3),
and the unit of density is kilogram per cubic metre (kg/m3). As we indicated in Section 2.1,
we can decrease the volume of a fixed mass of gas by increasing its pressure. According to
equation (2.8), the consequence of compression is an increase in the gas density. The pressure
of the air flowing through the core of a jet engine, such as that illustrated in Figure 1.8, is
increased progressively as the air passes through the compressor stages and so the air density
also increases (there is an accompanying increase in temperature).
As may be evident, our definition of density in the previous paragraph is incomplete: the

idea that the density of air can vary with location as it flows through a compressor implies
that we regard density as having a value at a given point, as is the case for all fluid properties.
A more complete definition of density requires that the volume V, and hence the mass m, is
so small that there is no appreciable variation of density within it. At the extreme, we could
define a volume so small that at any instant of time it contained a single molecule but this
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Figure 2.2 Variation of the ratio mass: volume with volume

does not lead to a sensible definition of density, not least because the molecule would not
have a fixed location. However, by progressively increasing the volume above such a low value,
we eventually reach a situation where, although molecules are continuously moving into and
out of the volume at its boundary, the net number of molecules within the volume at any
instant is practically constant. The effect on the ratio m:V of progressively increasing V is
shown schematically in Figure 2.2. The horizontal scale is compressed to the right of the ver-
tical line, and expanded to its left. OnceV exceeds the critical valueVC, we can define a density
as a thermodynamic property (i.e. a physical property which depends only upon temperature
and pressure) which is independent of volume and which can vary smoothly and continu-
ously throughout the entire body of fluid. We shall quantify the order of magnitude of VC
in Section 2.5. The densities and other properties of pure water and dry air at a pressure of 1
atm are given in Tables A.3 and A.4, respectively5. For other fluids of engineering interest the
physical properties are given in Tables A.5 (liquids) and A.6 (gases), also at a pressure of 1 atm.
There are two principal ways in which the density of a fluid influences flow. The most im-

portant stems from Newton’s second law of motion, which tells us that the acceleration of a
given mass is proportional to the net force applied to it. We shall discuss in detail the applic-
ation of Newton’s second law to fluid flow in many of the chapters in this book. For the time
being it is sufficient to realise that to produce a change in the velocity of a high-density fluid,
such as a liquid, involves much larger forces (per unit volume) than is the case for a fluid of
low density, such as a gas. For example, the power required to propel a submerged submarine
would be about a thousand times greater than for an airship of the same size and speed flying
through the air. The second way in which density plays a role involves gravity and the associ-
ated decrease in atmospheric pressure with altitude or increase in pressure with liquid depth.
These and other hydrostatic effects are the subject of Chapters 4 and 5. Compressible flow,
in which there can be very large, and even discontinuous, changes in density, is the subject of
Chapters 11, 12, and 13.

5 Table A.1 lists some atomic and molecular weights, and Table A.2, some universal constants. The physical
properties of the 1976 Standard Atmosphere (see Section 4.13) are given in Table A.7. Tables A.1 to A.7 form
Appendix 2.
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2.3 Atoms, molecules, andmoles

All matter is made up of a limited number of elementary substances, the chemical elements
(as of November 2011, 118 had been identified: 94 naturally occurring and 24 synthetic). So far
as this textbook is concerned, the basic building block for any chemical substance is the atom,
a tiny (typically with a radius less than 1 nm) particle which cannot be split without losing the
properties of the element. Each element has a relative atomicmass (atomic weight) based on a
scale in which the mass of the carbon-12 (12C) atom, the most abundant (almost 99%) isotope
of carbon, is 12. Most substances consist of molecules in which atoms are bound together
by interatomic forces. In a way similar to that of atomic weight, the molecular weight M
(relative molecular mass, or molecular mass), with the units kg/kmol, of these compounds
is defined relative to the mass of 12C. The atomic weights and molecular weights of some
common substances are listed in Table A.1 in Appendix 2, together with the symbols used for
atoms or the molecular formulae for molecules.
Although molecular weight is defined as a ratio, and so is a non-dimensional quantity (see

Chapter 3) which has no units, it is useful to express molecular weights in terms of a unit called
themole (symbol mol), 1 mol being the amount of a substance in grams numerically equal to
its molecular weight, or the kilomole (symbol kmol), which is the amount of substance in kilo-
grams. In the case of methane, for example,M = 16.04 kg/kmol. The number of molecules in 1
kmol of any substance is given by theAvogadro number,NA, a fundamental physical constant
the value of which is 6.022× 1026 molecules/kmol. If we have N molecules of a substance with
molecular weight M, the amount of that substance n = N/NA kmol, and the corresponding
mass ism = nM = NM/NA kg.

2.4 Perfect-gas law

At very high temperatures (above about 1000 ◦C) the molecular structure of a gas breaks down
(a process known as dissociation) and at very high pressures or low temperatures, as we have
already indicated in Section 2.1, gases can liquefy. Away from these extremes, most gases are
in good agreement with a thermal equation of state known as the perfect-gas6 law

p = ρRT, (2.9)

where p is the gas pressure in pascal (Pa = N/m2), T is the absolute temperature of the gas
in degrees kelvin (K = 273.15 + ◦C), and R is a constant of the gas called the specific gas
constant (with units m2/s2 ·K or kJ/kg ·K). A gas which obeys the equation of state p = ρRT
is a thermally perfect gas7. The unit m2/s2 ·K suggests a connection between R and a speed
which we shall show in Section 2.12 is that for the propagation of sound through the gas, i.e. the
speed of sound. The specific gas constant is related to the universal (or molar) gas constant
R as follows

6 The term perfect gas should not be confused with perfect fluid, which is an idealised fluid lacking both viscosity
and thermal conductivity.

7 Such a gas is sometimes termed an ideal gas rather than a perfect gas.



PERFECT-GAS LAW 23

R = MR, (2.10)

where M (with the unit kilogram per kilomole) is the molecular weight of the gas. The uni-
versal gas constant is defined in terms of the Boltzmann constant kB and the Avogadro
number NA as

R = kBNA. (2.11)

Boltzmann’s constant has the value 1.3807 × 10–23 J/K, and the universal gas constant has the
value 8.31451 kJ/kmol ·K (or 8314.51 J/kmol ·K).
The specific gas constant R is equal to the difference between the specific heats at constant

pressure CP and constant volume CV , i.e.

R = CP – CV . (2.12)

For a range of gases, values for the molecular weight M, the specific gas constant R, and the
ratio of the specific heats,

γ = CP
CV

(2.13)

are tabulated in Table A.6. A perfect gas for which CP and CV , and hence γ , are con-
stant is called a calorically perfect gas. It is usual to refer to a calorically perfect and
thermally perfect gas obeying p = ρRT simply as a perfect gas. The quantities in Table A.6
play an important role in compressible-flow theory (see Chapters 11, 12, and 13). Al-
though values for the corresponding gas density ρ at STP (20 ◦C, 1 atm) are also tabulated,
this is not essential, since the density of any of the gases listed can be calculated from
equation (2.9).

ILLUSTRATIVE EXAMPLE 2.1

Calculate the density of nitric oxide (NO) at 20 ◦C and 1 atm and also at 500 ◦C and 5 bar.

Solution

M = 30.01 kg/kmol (from Table A.6); p1 = 1.01325 × 105 Pa; T1 = 293.15 K; p2 = 5 × 105 Pa;
T2 = 773.15 K.
From equation (2.10)

R = R/M = 8314.51/30.01 = 277.1m2/s2.K.

From equation (2.9)

ρ1 =
p1
RT1

= 1.01325 × 105
277.1 × 293.15 = 1.248 kg/m3

and

ρ2 =
p2
RT2

= 5 × 105
277.1 × 773.15 = 2.334 kg/m3.
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Comments:

(a) It is generally unnecessary to carry so many significant figures (s.f.) in an engineering
calculation; 4 s.f. forR and 3 for other quantities are usually sufficient.

(b) As they should be, the values calculated here for R and ρ1 for NO are precisely the same
as those in Table A.6.

(c) The first step in the solution was to restate the data given (in this case for temperature
and pressure) in standard SI units. The student should develop the habit of converting
given data to standard SI form in this way.

2.5 Continuum hypothesis andmolecular mean free path

In Section 2.1 we discussed some of the qualitative differences between the molecular struc-
tures of liquids and gases. As we shall now see, these differences have a direct influence on the
size of the critical volume VC introduced in Section 2.4.
We consider first a gas with molecular weightM which obeys the perfect-gas law, to calcu-

late the average number of molecules contained in a cube (the choice of a cube is arbitrary, and
we could just as well have chosen another shape, such as a sphere) of gas of side length L m.
If the fluid density is ρ, from equation (2.8) the mass of the cube will be ρL3, since the cube
volume V = L3. From equations (2.9) and (2.10) we have

ρ = pM/RT (2.14)

so that the mass of our cube is given by

m = ρV = pMV/RT. (2.15)

From Section 2.3 we know that the molecular weight M is the mass in kg of 1 kmol of that
substance, so that our cube contains pV/RT kmol (the unit kmol is often written as kg mole).
Since the number of molecules in 1 kmol of any substance is given by the Avogadro number,
NA, the value of which is 6.022 × 1026 molecules/kmol, we see that the average number of
molecules N in the cube must be given by

N = pVNA/RT. (2.16)

Equation (2.16) can be rearranged as

V = NRT/pNA (2.17)

fromwhich we can calculate the volumeV, which containsN molecules of a gas at temperature
T (K) and pressure p (Pa).
In terms of the gas density ρ, equation (2.17) becomes

V = NM/ρNA. (2.18)

Equation (2.16) shows that, since R is a universal constant, the same for all gases, the aver-
age number of molecules N in a volume V of any gas depends only upon its pressure p and
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Table 2.1 Number N of gas molecules in a volume V.

L V N

(m3)

1 mm 10–9 2.7 E+16

1 μm 10–18 2.7 E+7

100 nm 10–21 2.7 E+4

50 nm 1.25 × 10–22 3362

33.4 nm 3.73 × 10–23 1000

20 nm 9 × 10–24 215

10 nm 10–24 27

3.34 nm 3.73 × 10–26 1

absolute temperature T. This equation can therefore be regarded as a quantitative form of
Avogadro’s law: equal volumes of two gases, at the same temperature and pressure, contain the
same number of molecules. Table 2.1 shows the results obtained for N using equation (2.16),
for 0 ◦C and 1 atm (standard temperature and pressure, or STP).
As we shall see in Section 4.13, the air density in the atmosphere decreases with altitude.

At the lower limit of the stratosphere (an altitude of about 20 km), according to Table A.7,
the temperature is about 217 K, and the pressure is 5475 Pa (the corresponding density is
0.0880 kg/m3), while at the outer limit of the mesosphere (about 80 km) the values are 196.7 K
and 0.886 Pa, respectively, so that, according to equation (2.17), a cube of air containing 1000
molecules would have a side length of 81.7 nm at an altitude of 20 km, and 0.797 μm at 80 km,
both of which are negligibly small compared with the dimensions of any object likely to be
flying at such altitudes. Equation (2.18) also shows that the density of air would have to fall to
4.8× 10–14 kg/m3 (which would correspond to an altitude of about 1600 km) for the cube size
to reach 1 mm.
We cannot give a precise value but would probably not want the number of molecules over

which to form an average to be any lower than 1000 and so conclude that for a gas at STP
the concept of fluid density begins to fail if the cube size VC is below about 30 nm (i.e. 0.3
μm or 3 × 107m). To put this in perspective, the diameter of a human hair is typically about
100 μm, and the wavelength of visible light is about 589 nm. There are few, if any, practical
situations involving gas-flow channels with dimensions which come anywhere close to 30 nm.
Even devices known as microchannels typically have dimensions in the range 1 to 500 μm.
Gases for which the number of molecules in a 1 μm cube fall below about 1000 are said to be
rarified and are normally encountered only in outer space.
Because the molecular structure of a liquid is generally more complex than that of a gas,

the number of molecules per unit volume, N, which is termed themolecular number density,
varies from liquid to liquid. For a cube of side length L of liquid with density ρ the mass is
again given by m = ρL3. The number of kilomoles of liquid is then ρL3/M, and the number
of molecules is ρL3NA/M. Table 2.2 shows values of N for several liquids, with L = 1 μm
(V= 10–18 m3).
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Table 2.2 Number N of molecules in a liquid cube of
side length L = 1 μm

Liquid N

Petrol, C8H18 4.4 E+9
Carbon tetrachloride, CCl4 6.3 E+9
Liquid oxygen, O2 7.7 E+9
Pure glycerol, C3H8O3 8.2 E+9
Ethyl alcohol, C2H5OH 1.0 E+10
Water, H2O 3.35 E+10
Mercury, Hg 4.07 E+10

If we compare Table 2.2 with Table 2.1, we see that the molecular number density N for
liquids far exceeds that for gases. We conclude from the foregoing that, except in extreme cir-
cumstances, VC will always be far smaller than any volume of engineering interest and can
be regarded as defining what we mean by a point in a fluid. Although we have specifically
discussed the property density, the same considerations apply to any physical property and
enable us to define point values of these properties, which vary smoothly and continuously
throughout a fluid. Although these ‘large-scale’ (ormacroscopic) properties reflect the under-
lying molecular structure, it is generally the case that we can treat the majority of problems
of fluid flow without the need to consider molecular structure directly. The idea that both
fluid properties and flow properties can be treated in this way is known as the continuum
hypothesis.
If molecules in a fluid are considered to be hard spheres of effective diameter σ in random

motion constantly colliding with each other elastically, kinetic theory leads an approximate
expression for the average distanceΛ between successive collisions

Λ = 1√
2πNVσ

2 (2.19)

where NV is the number of molecules per unit volume or the volume number density. The
quantity Λ is termed themolecular mean free path, and equation (2.19) is usually attributed
to James Clerk Maxwell. The equation for Λ can be written in terms of other quantities as
follows. The number of moles n in a mass of gas m of molecular mass (or molecular weight)
M is given by

n = m/M (2.20)

and so the number of molecules in the mass of gas NM is

NM = nNA = mNA/M (2.21)

where NA is the Avogadro number (see Section 2.3).
It follows that

NV = NM/V = mNA/MV = ρNA/M (2.22)
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and, from equation (2.19),

Λ = M/
√
2πρNAσ

2. (2.23)

SinceM and σ are fixed for a given gas, and NA is a universal constant, equation (2.23) leads
to the conclusion that Λ is inversely proportional to the gas density ρ. As we shall see in
Section 4.13, the density of the air in the earth’s atmosphere decreases with altitude (as can be
seen from Table A.7). Although at an altitude of 71 km ρ has fallen to about 0.01% of its value
at sea level, the corresponding value ofΛ is still less than 1 mm.
If we introduce the perfect-gas equation (2.9), p = ρRT, equation (2.23) may be written as

Λ = RT/
√
2πpNAσ

2 (2.24)

where we have made use of equation (2.10) to introduce the universal gas constant R. Since
the ratioR/NA defines the Boltzmann constant kB, the equation forΛmay also be written as

Λ = kBT√
2πpσ 2

. (2.25)

Table 2.3 includes values of the effective molecular diameter σ and molecular mean free path
Λ for some common gases at 0 ◦C and 1 atmosphere8.

Table 2.3 Effective molecular diameter σ and molecular mean
free pathΛ for some common gases at 0 ◦C and 1 atmosphere

Gas σ Λ

(pm) (nm)

Air 366 69.1
Argon 342 62.6
Carbon dioxide 390 39.0
Carbon monoxide 371 58.6
Chlorine 440 27.4
Ethylene 423 34.3
Helium 258 173.6
Hydrogen 297 110.6
Methane 380 48.1
Neon 279 124.0
Nitrogen 375 58.8
Nitrous oxide 388 38.7
Oxygen 354 63.3
Sulphur dioxide 429 27.4

8 With the exception of those for air, the values for σ and Λ have been taken from Kaye and Laby online. The
values for air are from the CRC Handbook of Chemistry and Physics. Many of the values from these two sources differ
by as much as 20%.
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For the gases in the table, the arithmetic average value for Λ = 66.8 nm. A cube with this
side length 66.8 nm would have a volume of about 3 × 10–22 m3 and so contain about 8000
molecules, another indication of the validity of the continuum hypothesis.

ILLUSTRATIVE EXAMPLE 2.2

Calculate the molecular mean free path for a gas with molecular weight 28.96 kg/kmol, density
1.28 kg/m3, and effective molecular diameter 366 pm.

Solution

M = 28.96 kg/kmol; ρ = 1.28 kg/m3; σ = 3.66× 10–10 m; NA = 6.022× 1026 molecules/kmol.
We use equation (2.23) to findΛ

Λ = M/
√
2πρNAσ

2

= 28.96√
2×π × 1.28× 6.022× 1026 × (3.66× 10–10

)2
= 6.33× 10–8 m or 63.3 nm.

Comment:

The value for Λ calculated from equation (2.23) represents the result of kinetic theory for
a gas with the properties of dry air. This value differs by about 8% from the experimentally
determined value of 69.1 nm.

2.6 Equation of state for liquids

Although equation (2.12) for the ratio of specific heats γ , has no generally valid equivalent
applicable to liquids, it is usually adequate to assume that ρ = constant, and CP = CV =
constant, so that

γ = CP
CV

= 1. (2.26)

An approximate equation, cited by Batchelor (2000), for the influence of extreme pressure
(typically in excess of 1000 bar) on the density of water is

ln
(
ρ

ρ0

)
= 1
n ln
(
p/p0 + C
1 + C

)
(2.27)

where p is the static pressure measured in bar, ρ is the corresponding density, p0 = 1 bar (i.e.
approximately equal to atmospheric pressure), ρ0 = 1000 kg/m3, C = 3000, and n = 7. For
p/p0 = 1000, approximately equal to the pressure at a water depth of 10 km, the equation
gives ρ/ρ0 ≈ 1.04, confirming that the effect of pressure on water density can be considered
practically negligible.
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A more general equation for the influence of pressure on the density of a range of liquids is
the modified Tait equation

1 + ρ
ρ0

= A ln
(
p/p0 + D
1 + D

)
(2.28)

where p0 is a low pressure (usually the barometric pressure B or 1 bar), ρ0 is the liquid density
at pressure p0, and A and D are constants for the given liquid.

2.7 Specific volume v, relative density σ , and specific
weightw

In thermodynamics it is often more convenient to work in terms of specific volume v than
density ρ. The word ‘specific’ here means ‘per unit mass’, i.e.

v = V
m (2.29)

from which we see that the unit of v is m3/kg.
Relative density σ (Greek letter sigma) is the ratio of the density of a fluid to that of a

standard reference fluid ρREF , i.e.

σ = ρ

ρREF
(2.30)

Because it is defined as the ratio of two physical quantities with the same unit, relative density9

has a purely numerical value without unit and is again non-dimensional (see Chapter 3).
For liquids, the reference fluid is usually taken to be pure water at 4 ◦C and 1 atm when it

has a density ρREF = 1000 kg/m3. Water shows anomalous behaviour in that between 0 ◦C and
4 ◦C its density increases to a maximum of 999.972 kg/m3 at 4 ◦C. Below 0 ◦C water solidifies
to become ice. The temperature for the reference fluid is sometimes taken as 20 ◦C at which
the density of water is 998.20 kg/m3.
For gases the reference fluid is usually pure air (although hydrogen is sometimes used),

which has a density of 1.204 kg/m3 at 20 ◦C and 1 atm. In practice, relative density is little used
for gases.
Specific weight w, which should not be confused with specific gravity (i.e. relative dens-

ity), is the weight per unit volume of a substance. Since density ρ is mass per unit volume, it
follows that

w = ρg (2.31)

where g is the acceleration due to gravity and has the value 9.807 m/s2, usually rounded to
three significant figures as 9.81 m/s2. The units of w can be shown to be N/m3 because, as we
shall see in Chapter 3, 1 newton (symbol N) = 1 kg ·m/s2.

9 Particularly in older texts, the term specific gravity is sometimes used instead of relative density.
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ILLUSTRATIVE EXAMPLE 2.3

Calculate the density and specific weight for liquid oxygen, which has a relative density of 1.46
at –252.7 ◦C and 1 atm.

Solution

σ = 1.46 = ρ/ρREF ; so, with ρEF = 1000 kg/m3, for a liquid, ρ = σρREF = 1.46 × 1000 = 1460
kg/m3.

w = ρg = 1460 × 9.81 = 14 320N/m3.

Comments:

(a) In any problem where either relative density or specific weight is specified, the first step
should always be to calculate the fluid density in SI units.

(b) It is almost always advisable to work through any problem using algebraic symbols and
to substitute numerical values as late as possible.

2.8 Dynamic viscosity (viscosity) μ

In Section 2.1, we introduced dynamic viscosity (symbol μ) as the property which provides
the link between the shear stress applied to a fluid and the resulting rate of deformation. For
the simple case of a fluid confined between two parallel plates, one fixed, the other moving,
we showed that the rate of deformation was equal to the velocity gradient within the fluid. In
most flows the spatial variation of velocity is more complicated than the linear variation shown
in Figure 2.1. In more general situations, such as that shown in Figure 2.3, the continuum
hypothesis allows us to relate the shear stress τ at any point in a fluid to the velocity gradient
(often termed the shear rate) du/dy at that point according to

τ = μdu
dy

. (2.32)

y

u

slope = shear rate, du
dy

Figure 2.3 Velocity versus normal distance to illustrate velocity gradient
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Aswe shall see in Chapters 15 to 18, the fluid velocity u is usually a function ofmore than one
spatial variable, and the ordinary derivative du/dy must be replaced by the partial derivative
∂u/∂y. In even more general situations, u is only one component of the total velocity in a flow,
so that τ also depends upon the derivatives of the other velocity components. The quantity
μ has the units Pa · s (= N · s/m2) and is properly known as either the absolute coefficient
of viscosity or the dynamic viscosity but is usually referred to simply as the viscosity. The
reciprocal of μ (i.e. 1/μ) is called the fluidity.
The viscosity of a Newtonian liquid is commonly measured using an instrument such as

the concentric-cylinder viscometer10 illustrated schematically in Figure 2.4. The liquid is in-
troduced into the annular gap between an inner cylinder, which rotates at angular velocity Ω
(unit rad/s), and an outer stationary cylinder. According to the no-slip condition mentioned
in Section 2.1 and discussed in more detail in Section 15.3, the fluid velocity at the surface of
the outer cylinder is zero while that at the surface of the inner cylinder V is ΩR. By making
the width δ of the annular gap between the two cylinders negligibly small in comparison with

N

liquid

δ

τ

δ

H

R

N

Figure 2.4 Concentric-cylinder viscometer

10 An instrument designed to measure viscosity and other mechanical properties of a viscous liquid is called a
rheometer.
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the cylinder radius R, the effect of curvature becomes unimportant, and the flow geometry is
essentially the same as that of two parallel plates. The velocity gradient within the fluid is then

du
dy

= ΩR
δ

and the shear stress is

τ = μdu
dy

= μΩR
δ

.

The total torque T exerted on the inner cylinder is given by T = τAR, where A is the surface
area of the inner cylinder. If the length of the cylinder is H, we have A = 2πRH and so

T = 2πR3HΩμ
δ

.

Since δ, R, andH are known dimensions, μ can be determined by measuring the torque T and
the rotational speed N (rps) from

μ = 15δT
π2NR3H

(2.33)

where we have used the relationship V = ΩR = 2πR2N.
Further discussion of viscometers and rheometers is given in Section 16.7.

ILLUSTRATIVE EXAMPLE 2.4

A concentric-cylinder viscometer is used to measure the viscosity of an oil. The dimensions of
the viscometer are R= 30 mm,H = 75 mm, and δ = 100 μm. At a rotational speed of 300 rpm,
the measured torque is 0.1N ·m. Calculate the dynamic viscosity of the oil.

Solution

R = 3 × 10–2 m; H = 7.5 × 10–2 m; δ = 10–4 m; N = 5 rps; and T = 0.1Nm.
We have

μ = 15δT
π2NR3H

= 15 × 10–4 × 0.1
π2 × 5 × (3 × 10–2

)3 × 7.5 × 10–2
= 1.50 Pa.s.

Values for the viscosities of a wide range of Newtonian fluids are given in Tables A.5 (liquids)
and A.6 (gases) at standard temperature and pressure. Values for pure water and dry air at
1 atm are tabulated in Tables A.3 and A.4, respectively. Some of the viscosities from Tables
A.3 to A.6 are plotted in Figure 2.5, which shows the strong dependence on temperature, par-
ticularly for liquids (note the logarithmic ordinate). The dependence on pressure is generally
negligible up to 10 bar for gases and 100 bar for liquids.
The temperature dependence for gases is well represented by Sutherland’s formula

μ = KT3/2

T + C (2.34)
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where T is the absolute temperature (in K), and K and C are constants characteristic of the
particular gas concerned. If μ has the value μREF at a specified reference temperature TREF ,
then at any other temperature T we have

μ =
(
TREF + C
T + C

)(
T

TREF

)3/2
μREF . (2.35)

A useful result, based upon the kinetic theory of gases (see Section 2.5), is

μ =
√

2
πγ
ρcΛ, (2.36)

where μ is the dynamic viscosity of the gas, ρ is its density, c is the speed of sound, γ is the
ratio of specific heats, andΛ is the molecular mean free path11. As we shall see in Section 11.8,
equation (2.36) leads to a criterion for the validity of the continuum hypothesis in the analysis
of shockwave structure.
If equation (2.36) is combined with equation (2.23) forΛ, we find

μ = Mc√
π3γNAσ

2
(2.37)

where σ is the effective molecular diameter and NA is the Avogadro number. According to
equation (2.37), μ is independent of pressure, a prediction which is consistent with experi-
mental observations up to about 10 bar. As we shall show in Section 2.12, c ∝ √

T so that
according to equation (2.37) μ ∝ √

T, which is less satisfactory: according to Sutherland’s
formula μ ∝ T3/2/ (T + C). A more accurate prediction requires a more sophisticated analysis
which is beyond the scope of this book.

ILLUSTRATIVE EXAMPLE 2.5

For air, the constant C in Sutherland’s formula has the value 110.4 K, and a viscosity at 20 ◦C
of 1.8 × 10–5 Pa · s. Calculate the viscosity of air at 400 ◦C.

Solution

TREF = 20 + 273 = 293K; μREF = 1.8 × 10–5 Pa · s; C = 110.4 K; T = 400 + 273 = 673K.
From Sutherland’s formula

μ =
(
293 + 110.4
673 + 110.4

)(
673
293

)1.5
= 3.23 × 10–5 Pa.s.

Comment:

The value calculated forμ at 400 ◦C in this example is within 1% of the value given in Table A.4
(3.32 × 10–5 Pa · s).

11 The factor 2/3 sometimes appears in equation (2.36), depending upon the assumptions made in its derivation.
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Figure 2.5 Dynamic viscosity of common fluids as a function of temperature

For liquids the temperature dependence of viscosity can be approximated by the formula

μ = exp
[
C
(
TREF
T – 1

)]
μREF (2.38)

whereμREF is the viscosity at a reference absolute temperature TREF , typically 293 K, and C is a
numerical constant for the particular liquid. The presence of the exponential function (i.e. exp)
reflects the strong temperature dependence for liquids evident in Figure 2.5. For example, for
water the viscosity just above the freezing point at a pressure of 1 bar, 0 ◦C, is 1.787×10–3 Pa · s,
compared with 2.818 × 10–4 Pa · s just below the boiling point 100 ◦C, corresponding to a
decrease of 84% or a ratio of 6.3:1. The value of C in this case is 6.9.

ILLUSTRATIVE EXAMPLE 2.6

An engine oil has a viscosity of 1.0 Pa · s at 20 ◦C. If the constant C in the formula for the
viscosity of a liquid is 17 in this case, calculate the viscosity of the oil at 150 ◦C.
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Solution

C = 17; TREF = 20 + 273 = 293K; μREF = 1.0 Pa · s; T = 150 + 273 = 423K.
From equation (2.38),

μ = exp
[
17 ×

(
293
423 – 1

)]
× 1.0 = 5.38 × 10–3 Pa.s.

2.9 Kinematic viscosity ν

The kinematic viscosity of a fluid ν (Greek letter nu), defined by

ν = μ
ρ

(2.39)

is frequently used instead of the dynamic viscosity μ because, in many problems, μ and the
density ρ occur only in the combination μ/ρ. An interesting consequence of combining μ
and ρ in this way is that the kinematic viscosity of many gases is higher than that of many
liquids, a trend which becomes more pronounced as the temperature increases, because the
dynamic viscosities of liquids decrease whereas those for gases increase. The term kinematic
is associated with the units of ν, which are m2/s, and so involves only metres and seconds,
like the terms displacement (m), velocity (m/s), and acceleration (m2/s), which are descriptive
terms not directly involving the dynamics (i.e. the mass, stresses, and forces) of a problem. If
equation (2.32) is rewritten as

τ = ν d (ρu)
dy

(2.40)

we see that the shear stress τ is proportional to the gradient of fluid momentum ρu, the
constant of proportionality being ν. Equation (2.39) has the form of a diffusion equation, and
ν is sometimes referred to as the viscous diffusivity. The diffusive nature of viscosity is also
apparent from the units of ν which are also those of thermal diffusivity, the property which
determines the rate at which thermal energy is transported at a molecular level (i.e. diffused)
because of a gradient in energy concentration.

2.10 Non-Newtonian liquids

Whether a fluid is termed Newtonian or non-Newtonian, the relationship (by definition)
between the applied shear stress τ and the resulting shear rate γ̇ (γ is the Greek letter gamma;
the dot above γ indicates rate), is the same, i.e.

τ = μγ̇ (spoken as tau equalsmu gamma dot). (2.41)

In Section 2.1 we identified Newtonian fluids as those for which the viscosity μ can be re-
garded as a thermodynamic property which may depend upon temperature and pressure but
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is independent of any deformation of the fluid as it flows, i.e. μ independent of the shear
rate. To be more precise, a Newtonian fluid must not only have a viscosity independent of
any fluid deformation but also not exhibit such properties as elasticity. Gases have a simpler
molecular structure than liquids and always exhibit Newtonian characteristics. However, as
we indicated in Chapter 1, the molecular structures of most synthetic liquids, as well as such
naturally occurring liquids as blood and synovial fluid, are complex and in consequence the
viscosities (sometimes the term apparent viscosities is used) of these liquids change not only
with temperature and pressure but also with the shear rate itself. As we shall illustrate, μ can
both increase and decrease with increases in the shear rate. Such liquids are correctly termed
non-Newtonian.
Blood, cement slurry, yoghurt, toothpaste, mud (either natural mud or synthetic drilling

fluid), salad cream, and many other non-Newtonian liquids of practical importance are shear
thinning, which means that their viscosities decrease with increase in the shear rate. The term
pseudoplastic is also used for shear-thinning liquids. Salad cream and tomato ketchup are of-
ten ‘reluctant’ to leave the bottle until it is shaken vigorously after which, because the viscosity
has decreased, the liquid flows easily, sometimes too easily with unfortunate consequences.
The shear-thinning character of these condiments is due to small amounts (typically less than
1%) of an additive, often xanthan gum. The shear-thinning effect is used in a more subtle
way in ballpoint pens. The viscosity of the ink is decreased locally when the ball rotates,
thereby allowing the ink to flow onto the paper. High viscosity is recovered and the ink flow
stops (or should) when the ball is again stationary so that a ballpoint pen doesn’t leak in the
pocket.
In the case of salad cream and ketchup, another effect called thixotropy is also present,

this being the term used to describe liquids which take time to adjust to the state of shear.
If it were not for this, once the shaking ceased, the liquid would instantaneously return
to its high-viscosity state and no longer flow. In addition to being shear thinning, many
water-soluble polymers have the effect of reducing the resistance to turbulent fluid mo-
tion even in concentrations so low (parts per million) that there is no measurable change
in the viscosity of the base solvent. This effect, called drag reduction, is still not fully un-
derstood but is associated with viscoelasticity, another property of some non-Newtonian
liquids.
Some non-Newtonian liquids are shear thickening (or dilatant), which is to say that the

viscosity increases with shear rate. Starch- or cornflower-based liquids, such as egg-free custard
made from powder (e.g. Bird’s Custard Powder), are shear thickening. The surface of a thick
paste of custard powder and milk appears to be almost solid if ‘stabbed’ with the point of a
spoon, though the spoon will sink gradually into the paste under its own weight. If the spoon
is moved rapidly through the paste, the liquid surface appears to fracture then flow gradually
back together.
Other materials, such as certain gels, lubricating greases, ice cream, and margarine, appear

to be solid when subjected to low shear stress. Even unconfined, they maintain their shape
without deformation due to gravity but become fluid once the shear stress exceeds a certain
threshold level, called the yield stress τY .
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Figure 2.6 Variation of (a) shear stress and (b) dynamic viscosity with shear rate for Newtonian and
non-Newtonian liquids

Typical variations in shear stress and viscosity with shear rate are shown in Figure 2.6 for four
basic liquid types

• Newtonian: μ constant independent of γ̇
• shear thinning: μ decreases with increasing γ̇
• shear thickening: μ increases with increasing γ̇
• yield stress: τ < τY , γ̇ = 0 (i.e. there is no flow and from a practical point

of view the material is solid)
τ > τY , γ̇ > 0 (i.e. flow occurs, the material is liquid and
initially shear thinning)

An important subset of non-Newtonian liquids for which the viscosity is dependent upon the
shear rate but the fluid is inelastic and not time dependent is the so-called generalised Newto-
nian fluid. Models for a number of generalised Newtonian fluids are presented in Section 15.5,
and their flow between infinite parallel plates is analysed in Section 16.6.
Since the flow behaviour of non-Newtonian fluids is complicated and still not completely

understood, particularly for those which are elastic or thixotropic, it is fortunate for us that
all gases and many liquids of engineering interest are Newtonian in character at most tem-
peratures and pressures. We should not forget, however, that numerically there are more
non-Newtonian liquids (predominantly synthetic) than Newtonian. In terms of total volume,
however, the reverse is probably true, although even gases cease to be Newtonian at very high
temperatures or low pressures.

2.11 Bulk modulus of elasticity K and compressibility

We have seen already that viscosity is the property which relates the rate of change of shape
of a fluid to applied shear stress. The property which relates the change in volume to a change
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in pressure is the bulk modulus of elasticity K , i.e. K is the property which characterises
the compressibility of a fluid. Although all fluids are compressible to some extent, gases are
far more so than liquids and we sometimes distinguish between them primarily on this basis.
However, as we discuss briefly in Section 7.5, inmany practical gas-flow problems the variation
in density is sufficiently small that we can treat the gas as incompressible. In Chapters 11, 12,
and 13 we deal with gas flows where compressibility is the dominant influence.
The bulk modulus of elasticity is defined by the equation

K = –
δp
δV/V = –V

δp
δV

(2.42)

where δV is the change in the fluid volume V due to a pressure change δp. From the definition,
it can be seen that the units of K are the same as those of pressure, i.e. Pa. Since an increase
in pressure (i.e. δp > 0) causes a decrease in volume (i.e. δV < 0), a minus sign is introduced
into the defining equation to ensure thatK is a positive quantity. In the limit of an infinitesimal
change in pressure, with a resulting infinitesimal change in volume, we can write

K = –V
dp
dV

(2.43)

where dp/dV is the derivative (or gradient) of the p–V curve during a compression (or expan-
sion) process. If we consider a fixed mass of fluid m, then m = ρV so that, since there is no
change in mass during compression or expansion,

dm
dp

= V
dρ
dp

+ ρ dV
dp

= 0 (2.44)

from which we have

dp
dV

= –ρ
V
dp
dρ

(2.45)

and, finally,

K = ρ
dp
dρ

. (2.46)

This is a far more satisfactory definition of K than that involving the arbitrary volume V be-
cause, just like density, the bulk modulus of elasticity is a thermodynamic property defined at
a point. The reciprocal of K (i.e. 1/K) is called the compressibility, with units Pa–1.
In general, compression and expansion are thermodynamic processes involving an increase

or decrease in pressure accompanied by a corresponding change in the temperature of the
fluid and other properties, such as specific entropy (see Section 11.2). To define completely
a property which quantifies the compressibility of a fluid, especially gases, we need to specify
either the temperature or the thermodynamic process itself. A process in which the temperat-
ure remains constant is called isothermal, and one in which there is no heat transfer is called
adiabatic. If there is neither heat transfer nor friction, the thermodynamic property known as
entropy remains constant, and the process is said to be isentropic.
Values of K for a range of commonly encountered liquids are listed in Table A.5. For a

perfect gas, the pressure–density relationship for an isentropic process can be shown to be (see
Section 11.2)
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p
ργ

= constant (2.47)

where γ is the ratio of the specific heats at constant pressure (CP) and constant volume (CV ),
i.e. γ = CP/CV (see Section 2.4). We then have

dp
dρ

=
γ p
ρ

and the isentropic modulus of elasticity for a perfect gas is

KS = γ p, (2.48)

where the subscript S denotes that the expansion or compression process is isentropic. The
isentropic compressibility is 1/γ p.

2.12 Speed of sound c

Sound travels through a fluid in the form of small-amplitude pressure fluctuations or waves, a
process which can be regarded as isentropic. The speed at which such waves propagate through
a fluid is called the speed of sound (or soundspeed) c and can be shown to be given by

c2 =
dp
dρ

∣∣∣∣
S
= KS
ρ
. (2.49)

In Section 2.5 the equation of state for a perfect gas was given as p = ρRT and, in Section 2.11,
we showed that, for an isentropic process, KS = γ p. If we combine the three equations, we
have

c =
√
γRT, (2.50)

i.e. since the ratio of specific heats γ and the specific gas constant R are constant for a given
gas, the speed of sound c is proportional to the square root of its absolute temperature T. Thus,
the speed of sound is lower on a cold day than on a hot one: between early morning and early
afternoon the air temperature in the Black Rock Desert in Nevada might increase from 0 ◦C
(273 K) to 40 ◦C (313 K). The corresponding increase in the speed of sound is from 331 m/s
to 355 m/s, which partly explains why it was advantageous for the successful attempt of the
Project Thrust supersonic car to break through the sound barrier (i.e. to exceed the speed of
sound) to take place early in the day (the actual air temperature was reported to be between 5
and 8 ◦C).
Since R = R/M, whereR is the universal gas constant, we have

c =
√
γRT =

√
γRT
M

(2.51)

and we see that the speed of sound will be much higher for gases with low molecular weight
M, such as hydrogen (M = 2.02 kg/kmol, c = 1332 m/s at 20 ◦C) and helium (4.00 kg/kmol,
1007 m/s), than for heavier gases, such as air (28.965 kg/kmol, 343 m/s), carbon dioxide (44.01
kg/kmol, 268 m/s), and the electrically insulating gas sulphur hexafluoride (146.06 kg/kmol,
133 m/s).
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ILLUSTRATIVE EXAMPLE 2.7

Calculate the speed of sound for air (γ = 1.4, MAIR = 29 kg/kmol), helium (γ = 1.63, M =
4 kg/kmol), and water (ρ = 998 kg/m3,KS = 2.19×109 Pa) at 20 ◦C. The universal gas constant
R has the value 8314.5 J/kmol ·K.

Solution

T = 20 + 273 = 293K.
For air: γAIR = 1.4,MAIR = 29 kg/kmol, so RAIR = R/MAIR = 8314.5/29 = 286.7 J/kg ·K, and

c =
√
1.4 × 286.7 × 293 = 342.9m/s.

For helium: γHe = 1.63, MHe = 4 kg/kmol, so RHe = R/MHe = 8314.5/4 = 2079 J/kg ·K,
and

c =
√
1.63 × 2, 079 × 293 = 996.4m/s.

For water: ρ = 998 kg/m3, KS = 2.19 × 109 Pa, so that, from equation (2.49),

c =

√
2.19 × 109

998 = 1481m/s.

Comments:

(a) In the two calculations for gases we made use of the relation 1 J = 1N ·m, which is a
consequence of the mechanical equivalent of heat, and also the definition of the newton,
N = kg ·m/s2 (see Chapter 3).

(b) In the calculation for water we made use of the definition of the pascal, Pa = 1 N/m2.
(c) Only in the case of helium is the calculated value for c significantly different from the

values in Table A.6 and, even for helium, the difference is only 1.1%.

2.13 Vapour pressure pV, boiling, and cavitation

It is a common observation that water, in a container open to the atmosphere, evaporates.
What we mean by this is that the liquid molecules just below the liquid surface have suffi-
cient momentum to overcome intermolecular cohesive forces (see Section 2.1) and escape in
vapour form into the atmosphere. If the same liquid is placed in a closed container, and the
space above the liquid surface evacuated (i.e. any air is pumped out and the pressure reduced),
the rate of evaporation of the liquid rises until an equilibrium is reached when as many mo-
lecules leave the surface to create vapour (in the case of water, the vapour is called steam) as
return to the liquid. Under these equilibrium conditions, the vapour is said to be saturated,
and the pressure is the property termed the saturated vapour pressure pV , usually referred
to simply as the vapour pressure. The corresponding temperature is called the saturation
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Figure 2.7 Variation of saturated vapour pressure with temperature for water

temperature. The tendency of a liquid to evaporate (or vaporise) is termed volatility. Since
molecular activity increases with temperature, the vapour pressure also increases with temper-
ature. The variation of vapour pressure with temperature for water is given in Table A.3 and
shown in graphical form in Figure 2.7.
If the pressure within a body of liquid equals the vapour pressure corresponding to the liquid

temperature, vapour bubbles are produced within the liquid until all the liquid has become
vapour. This is the process we call boiling. In a closed container, the production of vapour
at a given temperature increases the pressure until equilibrium conditions are reached, cor-
responding to a point on the pV (T) curve (Figure 2.7). As we shall see in Chapters 7 and 8,
for a subsonic flow, the pressure in a fluid stream decreases if the fluid velocity increases, for
example, in flowing through a valve or nozzle. If the pressure within a liquid stream falls be-
low the vapour pressure corresponding to the liquid temperature, internal boiling will initiate
an undesirable phenomenon called cavitation (see Section 8.11). Since the vapour pressure
increases with temperature, the danger of cavitation also increases in, for example, poorly
designed domestic-heating systems.

ILLUSTRATIVE EXAMPLE 2.8

The atmospheric pressure at the summit of Mount Everest (height 8848 m) is 31 kPa. At what
temperature does water boil at this altitude? What pressure would be required for the boiling
point to be raised to 100 ◦C?

Solution

p1 = 31 kPa = 3.1 × 104 Pa; so, from Table A.3, T1 = 70 ◦C.
T2 = 100 ◦C; so, from Table A.3, p2 = 1.013 × 105 Pa = 1 atm = 1.013 bar.
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Comment:

The temperature 100 ◦C corresponds to what we normally think of as the boiling point of
water at normal ambient conditions. Due to the low pressure at high altitude, the boiling point
is reduced by 30 ◦C. The pressure has to be increased to 1 atm (slightly higher than 1 bar) for
the boiling point to return to 100 ◦C. A pressure cooker is used to ensure food normally boiled
at 100 ◦C is properly cooked at high altitude.

2.14 Surface tension σ and contact angle θ

The discussion in Section 2.3 was limited to situations in which molecules of fluid in the in-
terior of a fluid interacted with molecules of the same fluid in the same thermodynamic state.
As we have just seen, at the surface of a liquid in contact with either a gas or its own vapour,
we need to take into account the fact that molecules constantly cross the surface. Interface
is a more general term for the surface which separates two fluids, such as a liquid and a gas
or two immiscible liquids, such as water and mercury or oil and water. For liquid in a tube,
the curved interface is also called a meniscus. Although the chemistry and physics are com-
plex, for most practical purposes such an interface can be treated as a skin or membrane in
tension and this leads to the identification of the fluid property called surface tension, σ ,
defined by12

σ = interfacial (tensile) force per unit length. (2.52)

From the definition it can be seen that σ must have the units N/m.
Figure 2.8 shows a curved line drawn in the free surface of a liquid. The arrows which are

everywhere tangential to the surface and normal to the curve, but pointing away from it, rep-
resent the force due to surface tension. For an infinitesimal element of surface of length δs, the
force is σδs. Surface tension for a pure liquid decreases almost linearly with increasing tem-
perature and also depends upon whether the liquid is in contact with its own vapour or with
air (or some other gas). An important, but difficult to quantify, influence on surface temper-
ature is contamination of the liquid, due either to unwanted impurities or detergents which
markedly decrease σ . The values of surface tension listed in Tables A.3 (water) and A.5 are for
pure liquids.
The shape of small liquid drops and of small soap bubbles can be explained using the concept

of surface tension. Figure 2.9(a) shows a section through a segment of a spherical drop of liquid
of radius R. Consider the circular surface segment of radius r which subtends the angle φ at the
centre of the drop. If the external pressure is barometric, B, and the internal pressure is pI , such
that the pressure difference between the inside of the surface and the outside is �p = pI – B,
then for the segment to be in static equilibrium requires

2πrσ sinφ – πr2�p = 0.

12 The symbol Y is sometimes used.
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Figure 2.9 Forces acting on (a) a liquid droplet and (b) a soap bubble

From the geometry of the situation, sinφ = r/R so that the static-equilibrium equation
reduces to

�p = 2σ
R (2.53)

from which we see that the internal pressure increases as the drop size decreases. It is because
the internal pressure becomes so large for very small drops (called droplets), that their shape
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is negligibly affected by gravity and they become spherical in shape, as we assumed at the
outset. As R increases, gravity causes a drop to distort and become increasingly non-spherical.
A suspended drop develops a tear shape and eventually breaks free.
In the case of a liquid bubble surrounded by a gas, the equivalent to the equation for a

droplet is �p = 4σ /R. The increase in �p by a factor of 2 is a consequence of the fact that
the surface of a bubble has a finite thickness (typically a few hundred nm) and therefore
an inner and an outer surface, each of which exerts a surface-tension force. Because the gas
which fills a bubble generally has a much lower density than the liquid which forms its surface,
bubbles can reach much larger sizes than drops before gravitational effects have a significant
influence.

ILLUSTRATIVE EXAMPLE 2.9

The surface tension for petrol is 2.16 × 10–2 N/m. Calculate the pressure in the interior of a
petrol droplet, 2μm in diameter, created by a fuel-injection nozzle if the external pressure is
2.5 bar.

Solution

The surface tension σ = 2.16 × 10–2 N/m; R = 10–6 m; pE = 2.5 × 105 Pa.
From equation (2.46)

�p = pI – pE = 2σ
R = 2 × 2.16 × 10–2

10–6
= 4.32 × 104 Pa or 0.432 bar

so that the internal pressure pI is given by

pI = pE +�p = 2.5 × 105 + 4.32 × 104 = 2.93 × 105 Pa or 2.93 bar.

We started this chapter with the word ‘wet’. Liquids are said to be wet because surface ten-
sion causes them to adhere to solid surfaces. Whether or not a solid surface is wetted by a
liquid depends upon the extent to which there is an attraction between the liquid molecules
and the surface molecules. The degree of attraction is measured by the angle, called the con-
tact angle θ , at which the liquid meets the surface, a quantity which depends on the same
factors as surface tension and, in addition, upon the nature of the surface and the surround-
ing fluid (normally a gas). For θ < 90◦ the liquid is said to be wetting and, for θ > 90◦,
non-wetting.
Water on a clean, grease-free glass surface has a contact angle practically equal to zero while

for mercury the value is about 130◦. The combined effects of surface tension and contact angle
thus determine the shape of a liquid drop on a horizontal surface, as shown in Figure 2.10. As
we shall show in Section 4.8, a wetting liquid is drawn upwards into a vertical small-diameter
tube due to surface tension, whereas the surface of a non-wetting liquid is depressed. This effect
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Figure 2.10 Drops of (a) a wetting and (b) a non-wetting liquid on a horizontal surface

is known as capillarity. For a liquid in a container or large-diameter tube, surface tension is
also responsible for the curvature of the meniscus where the liquid contacts the solid surface.

2.15 SUMMARY

In this chapter we have shown that the differences between solids, liquids, and gases have
to be explained at the level of the molecular structure. The continuum hypothesis allows
us to characterise any fluid and ultimately analyse its response to pressure difference �p
and shear stress τ through macroscopic physical properties, dependent only upon absolute
temperature T and pressure p, which can be defined at any point in a fluid. The most im-
portant of these physical properties are density ρ and viscosityμ, while some problems are
also influenced by compressibility, vapour pressure pV , and surface tension σ . We showed
that the bulk modulus of elasticity Ks is a measure of fluid compressibility and determines
the speed at which sound propagates through a fluid. We also introduced the perfect-gas
law and derived an equation for the soundspeed c.

The student should be able to

• state what is meant by the continuum hypothesis
• calculate the number of molecules in a given volume of any fluid
• calculate the molecular mean free path for any gas
• define density as

ρ ≡ m/V

• define dynamic viscosity as

μ ≡ τ /γ̇
where γ̇ is the shear rate

• calculate the soundspeed from c2 = KS/ρ and for a perfect gas c =
√
γRT/M

• state what is meant by saturated vapour pressure pV
• define surface tension as

σ = interfacial (tensile) force per unit length

• use the tables in Appendix 2 to look up values for fluid properties and use them in
calculations
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2.16 SELF-ASSESSMENT PROBLEMS

2.1 Calculate the sizes of cubes which contain one billion (i.e. 109) molecules of the fol-
lowing substances at STP: a perfect gas, water, Freon 12, and mercury. The Avogadro
number NA has the value 6.02214 × 1026 molecules/kmol, and the universal gas
constantR has the value 8314.5 J/kmol ·K.
(Answers: 3.42 μm; 0.31 μm; 3.42 μm; 0.53 μm; 3.42 μm)

2.2 Calculate the molecular mean free path for oxygen at 0 ◦C and 1 atm. The Boltzmann
constant kB has the value 1.380658 × 10–23 J/K.
(Answer: 66.8 nm)

2.3 Calculate the relative density and specific weight of air at 500 ◦C, 1 bar, and of
methanol at 20 ◦C, 1 bar.
(Answers: 0.379; 4.48 N/m3; 0.792; 7760 N/m3)

2.4 Calculate the specific gas constant, the density, and the speed of sound for sulphur
hexafluoride (SF6) at 100 ◦C and 3 bar. Take the molecular weight of SF6 as 146
kg/kmol and the ratio of its specific heats as 1.085.
(Answers: 56.9m2/s2 ·K; 14.1 kg/m3; 152 m/s)

2.5 Calculate the density of water at a depth of 5000 m, where the pressure is 5000 bar,
given that the relationship between density ρ and pressure p (in bar) for water is

ln
(
ρ

ρ0

)
= 1
n ln

(
p/p0 + C
1 + C

)

where p0 = 1 bar, ρ0 = 1000 kg/m3, C = 3000, and n = 7.
(Answer: 1150 kg/m3)

2.6 A concentric-cylinder viscometer has the dimensions R = 25 mm, H = 80 mm, and
δ = 150μm. If the fluid in the annular gap is ethylene glycol at STP, calculate the
shear stress and the torque exerted on the inner cylinder if the rotation speed of the
inner cylinder is 12 rpm.
(Answers: 41.7 Pa; 0.013N ·m)

2.7 The viscosity of a non-Newtonian liquid is 0.5 Pa · s for a shear rate γ̇ of 10 s–1. At
very high shear rates the viscosity falls to a constant value of 0.2 Pa · s. Calculate the
yield stress τY , assuming that the shear stress τ obeys the equation τ = τY + Cγ̇ ,
where C is a constant.
(Answer: 3 Pa)

2.8 Calculate the soundspeed for petrol at STP.
(Answer: 1187 m/s)

2.9 An experiment is being designed in which water has to boil at the normal body
temperature of 37 ◦C. What pressure is required?
(Answer: 6.44 kPa)

2.10 The mass of liquid used to create a soap bubble 100 mm in diameter is 100 μg. The
surface tension of the liquid is 0.03 N/m, its density is 1000 kg/m3, and its molecular
weight is 18 kg/kmol. Calculate the pressure difference between the inside and the
outside of the bubble and the thickness of the soap film. Is the continuum hypothesis
satisfied?
(Answers: 2.4 Pa; 3.2 nm; just)



3 Units of measurement, dimensions,
and dimensional analysis

This chapter is about the dimensions and units of physical quantities and how they can give
us insight into physical problems, simplify the representation of the solutions to problems, and
provide a partial check on the correctness of any resulting formulae. Although the illustrative
examples are limited primarily to fluid flow, it is important to realise that the principles in-
troduced here apply to many branches of physics and engineering. At first sight dimensional
analysismay appear abstract and mystifying, perhaps because it involves no difficult mathem-
atics and quite elementary physical ideas, yet leads to far-reaching consequences. It involves
little more than simple algebra and the basic principle that each term in any equation involving
a combination of physical quantities must have the same overall dimensions.
We start by discussing the units of measurement and the dimensions which are essential

to the specification of any physical quantity. We then introduce those units, according to
The International System of Units (abbreviated as SI), and the corresponding dimensions
for physical quantities that are involved in the description of fluid flow. We show how units
can be multiplied and divided (but not added or subtracted), the same applying to dimensions,
and introduce the underlying principle of dimensional homogeneity: the overall dimensions
of each term in any formula or relationship involving physical quantities have to be the same.
We then demonstrate how this principle leads to a systematic procedure which allows the
quantities which describe any physical problem to be combined so producing a smaller num-
ber of terms which we call non-dimensional groups. Some of these groups are particularly
significant, appear repeatedly, and are given names, such as the Reynolds and Mach numbers,
after the scientists who made important contributions to understanding the flows where these
groups arise. The chapter concludes with the topics of dynamic similarity and scaling which
allow us, for example, to predict the aerodynamic performance of a full-scale racing car from
a reduced-scale wind-tunnel test of a geometrically similar model.

3.1 Units of measurement

The measure or value of any physical quantity, such as acceleration, force, pressure, density,
or viscosity, is practically meaningless unless its units are also stated. With few exceptions, all
physical quantities have units and dimensions—the two always go together. One of the excep-
tions to this general rule is the plane angle, which can be thought of as the ratio of two lengths.
The quantity π (= 3.141592654 . . . . . . .), for example, which plays an important role in plane
geometry and, in turn, many branches of engineering and physics, is defined as the ratio of the
circumference of a circle to its diameter. More generally, the angle θ (in radians) subtended
by the arc of any circle is defined as the arc length s divided by the circle radius R, i.e. θ = s/R.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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The ratio of any two quantities with the same units (or dimensions) has neither units nor
dimensions (in dimensional analysis, the dimension of any non-dimensional quantity is 1).
In ancient times, basic units of length were often based upon the size of parts of the human

anatomy, such as the hand, forearm (cubit), and foot, and extended by multiplying factors to
suit particular applications, e.g. yard (3 feet), chain (22 yards), furlong (10 chains), and mile (8
furlongs). Over the centuries a wide array of units evolved, particularly for length, mass, and
weight, and for closely associated quantities such as area and volume: inch, metre, pound, hun-
dredweight, ton, gram, kilogram, poundal, slug, hectare, pint, gallon, peck, bushel, etc. With
the addition of second, minute, hour, and other units of time, together with units of temperat-
ure (degree Celsius or centigrade, Fahrenheit, and kelvin), these units are sufficient to express
the magnitude of all the physical quantities we shall consider in this book, and indeed all we
are likely to encounter in much of engineering, with the exception of electrical quantities. As
is the case with monetary units, especially pre-Euro, the preference for one system of units
over another is largely a matter of history and familiarity. The inch, foot, yard, pound, hun-
dredweight, ton, etc., are part of the Imperial System of Units, superseded in the UK by The
International System of Units, which is now used, especially in engineering, throughout most
of the world, with the exception of the United States of America.
The units of most of the quantities we encounter in engineering and science cannot be

expressed in terms of length, or mass, or time, alone. Instead, they have to be expressed as
combinations of these basic units or in terms of new units (derived units) defined in terms
of the basic units. In the absence of a simple and well-defined system of units, the conver-
sion between units can become complicated and prone to error, sometimes with catastrophic
results. The most spectacular (and expensive) example of the latter occurred in 1999, when
controllers at the Jet Propulsion Laboratory in California fired the thrusters of the Mars Cli-
mate Orbiter to adjust its orbit. Unfortunately, the onboard software of the thrusters specified
the thrust of the rockets in pounds force (lbf), whereas the control software on the ground
assumed it was in newtons (N). Since 1 lbf ∼= 4.45 N, the controllers applied an excessively
large thrust causing the Orbiter (fortunately unmanned) to disintegrate in the atmosphere of
planet Mars.

ILLUSTRATIVE EXAMPLE 3.1

What tractive force F lbf is required to accelerate a car of mass m tons from rest to a speed V
miles per hour in a time of t minutes?

Solution

We recognise that this problem requires the use of Newton’s second law of motion in the
familiar form F = ma, where the acceleration a = V/t (assuming constant acceleration) so that
F = mV/t. Withm in tons, V in mph, and t in minutes, the units of F will be ton ·mile/h ·min.
It is quite clearly not very useful to have a force expressed in such peculiar units so we need
to introduce appropriate conversion factors in the hope of producing a more familiar and
practical unit of force. We have 1 (long) ton = 2240 pounds mass (lbm), 1 mile = 5280 ft,
1 h = 3600 s, and 1 min = 60 s. The result is then
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F = 2240m × 5280 V
3600 × 1

60 t =
54.76mV

t
lbm.ft
s2

which is not much of an improvement.
Since the weight in lbf of a massm is given bym · g, where g is the gravitational acceleration

(approximately 32.2 ft/s2), it becomes apparent that 1 lbm × 32.2 ft/s2 must be equivalent to 1
lbf, so that

F = 54.76mV
32.2 t = 1.702mV

t lbf .

If this example doesn’t convince the reader that a more coherent system of units would be
preferable, it’s unlikely that anything will.

3.2 The International System of Units (SI)

The units of measurement now preferred for practically all engineering and science applica-
tions are those of the International System of Units (Le Système International d’Unités or,
simply, SI). There are seven base units: the kilogram (symbol kg) for mass, metre (m) for
length, second (s) for time, kelvin (K) for absolute thermodynamic temperature, mole (mol)
for amount of substance, ampere (A) for electric current, and candela (cd) for luminous
intensity. There are numerous derived units which are products of powers of base units. Ex-
amples are area (m2), volume (m3), velocity (m/s), and density (kg/m3). A small proportion of
these derived units have special names and symbols. So far as fluid mechanics and thermody-
namics13 are concerned, these include newton (N ≡ m · kg · s–2) for force, pascal (Pa ≡ N/m2)
for pressure or stress, joule (J ≡ N ·m) for energy or work, watt (W ≡ J/s) for power, and
hertz for frequency (Hz ≡ 1/s). Other derived units, such as pascal second (Pa · s) for dynamic
viscosity and joule per kilogram kelvin (J/(kg ·K)) for specific heat capacity, are combina-
tions of the derived units. Although obviously named after great scientists and engineers,
the names of these derived units are never capitalised when written out in full, whereas the
symbols always are.
To avoid very large or very small numbers with many zeros, the SI system also specifies

twenty prefixes for the decimalmultiples and submultiples of SI units in the range 10–24 (yocto,
symbol y) to 1024 (yotta, Y). For the most part, successive prefixes differ by the factor 10±3,
those normally encountered in engineering applications being pico (p, 10–12), nano (n, 10–9),
micro (μ, 10–6),milli (m, 10–3), kilo (k, 103),mega (M, 106), giga (G, 109), and tera (T, 1012).
Examples of the use of these prefixes are pm (picometre), GW (gigawatt), and THz (terahertz).
Prefixes which may also be encountered include centi (c, 10–2), deci (d, 10–1), deca (da, 101),
and hecto (h, 102) but these are not common or recommended in engineering practice.
Full details of the SI system of units are to be found at http://physics.nist.gov/Pubs/

SP330/sp330.pdf (2008).

13 Some aspects of fluid mechanics, such as compressible fluid flow (Chapters 11–13), also require consideration
of thermodynamics, and the two subjects, together with heat transfer, are often treated as a single subject called
thermofluids.
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3.3 Dimensions

While there is an almost unlimited choice of units of measurement, the same is not true of
dimensions which are far more fundamental in character. For present purposes, the dimen-
sions of any physical quantity can be expressed in terms of the dimensionsmass (symbol M),
length (L), time (T), and temperature (θ). Other choices are possible, such as incorporat-
ing a dimension for force instead of mass, but M, L, T, and θ corresponding with four of
the basic SI units is a logical choice. Since it may be difficult to remember the dimensions
of such quantities as dynamic viscosity μ (M/LT) and power P (ML2/T3), it is worth remem-
bering that there is a one-to-one correspondence between the basic SI units (i.e. kg, m, s, and
K) and the dimensions M, L, T, and θ, so the units of any quantity expressed in terms of basic
rather than derived units can always be used to work out its dimensions, as we demonstrate in
Illustrative Example 3.2.
It is conventional to use square brackets around any quantity to denote that only its dimen-

sions are involved. Thus [P] = ML2/T3 is an equation indicating that the dimensions of power
P are ML2/T3.

ILLUSTRATIVE EXAMPLE 3.2

Convert the derived units for pressure (p), dynamic viscosity (μ), and power (P) to basic SI
units and hence find the dimensions of these three quantities.

Solution

The derived SI unit for pressure p is the pascal

Pa = N
m2 =

kg.m
s2

. 1
m2 =

kg
m.s2

and the dimensions of pressure must be

[p] = M
LT2 .

Similarly, for dynamic viscosity μ, for which the derived SI unit is Pa · s,

Pa.s =
kg
m.s2

.s =
kg
m.s

and so

[μ] = M
LT.

Finally, for power P, the derived SI unit is the watt (W)

W = J
s = N.m

s =
kg.m
s2

.ms =
kg.m2

s3



COMBINING DIMENSIONS AND COMBINING UNITS 51

and

[P] = ML2
T3 ,

as we stated above.

One quantity which often causes difficulties for students working out dimensional problems
is rotational speed N, for which the non-SI unit rpm (revolutions per minute) is commonly
used. Since one complete revolution corresponds to 2π rad and there are 60 s in a minute, it
can be seen that the corresponding angular velocity ω in rad/s is given by ω = 2πN/60. Since
2, π , and 60 are pure numbers, and so non-dimensional, the dimension ofN must be the same
as that of ω, i.e. [ω] = [N] = 1/T. It is a common mistake to assume that angular velocity is
no different dimensionally from linear velocity. To emphasise the point, recall that the linear
velocity V of a point on the circumference of a wheel of radius R rotating at angular velocity ω
is given by V = ωR, from which we have

[ω] =
[
V
R

]
= L
T . 1L = 1

T .

The symbols, their meaning, units, and dimensions of all the physical quantities we shall
encounter in this book, and, to a large extent, in engineering fluid mechanics generally, are
tabulated in theNotation section at the beginning of the book. To assist the reader, the English
word form of each of the Greek symbols has also been included in the table.

3.4 Combining dimensions and combining units

If two or more physical quantities are combined, either by multiplication or division, then the
dimensions of the resulting quantity are obtained from the dimensions of the original
quantity by the same arithmetic process. For example, if m is mass and a is acceleration, then
[ma] = [m][a] = M × L/T2 = ML/T2. If we refer to the Notation, we see that ML/T2 is in
fact the dimension of force F. Since F = ma is a common form of Newton’s second law of
motion, this outcome is just what we should have expected. As with normal arithmetic, we
can cancel dimensions (as we did in Section 3.3 to obtain the dimensions of ω), multiply
powers of them together by adding indices, and divide by subtracting indices. It should be
self-evident that dimensions, just like units, can be neither added nor subtracted: it makes
no sense, for example, to add L and T or m and s. We note that it is generally less confusing
and so ‘safer’ to combine groups of units or dimensions by multiplication rather than
division. For example, if a is acceleration and V is velocity, we find the dimensions of a/V as
follows[

a
V

]
= [a]
[V] =

L
T2 × T

L = 1
T

where instead of dividing L/T2 by L/T we have multiplied L/T2 by T/L.
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Since there is a one-to-one correspondence between units and dimensions, it follows that all
of the principles outlined in the previous paragraph apply equally to the manipulation of units.
An important point with regard to combinations of SI units is that it is essential to separate
individual units when combined bymultiplication by a dot, as we do here, or by a space. In this
way we avoid confusion between ms meaning millisecond and m·s (or m s) for metre second.
For units in the denominator we can use either a solidus (i.e. a slash /) or negative indices; for
example, m/s2 can also be written as m · s–2.
If the combination of dimensions or units for a physical quantity is unity, that quantity is

said to be non-dimensional14.

ILLUSTRATIVE EXAMPLE 3.3

Show that if p is pressure, ρ is density, and V is velocity, the quantity p/ρV2 is non-
dimensional.

Solution

The first step is to write down the dimensions of p, ρ and V as follows

[p] = M
LT2 [ρ] = M

L3
and [V] = L

T,

from which we have[
p
ρV2

]
= M
LT2 × L3

M × T2

L = 1

so demonstrating that the quantity p/ρV2 is non-dimensional.
If instead of working in terms of dimensions we use units, we arrive at the same conclusion:

the unit of pressure is the pascal, or in base units kg/m · s2, those of density are kg/m3, and
those of velocity m/s, so that the units of p/ρV2 are (kg/mv · s2) · (m3/kg) · (s2/m2) = 1, which
again demonstrates that p/ρV2 must be non-dimensional.

ILLUSTRATIVE EXAMPLE 3.4

Calculate the value of p/ρV2 if p = 7 bar, ρ = 2 kg/m3, and V = 10 m/s. Carry out the
calculation using first SI units then Imperial units.

Solution

In consistent SI units, we have p = 7 × 105 Pa, ρ = 2 kg/m3, and V = 10 m/s.
Thus,

p
ρV2 = 7 × 105

2 × 102
= 3.5 × 103.

14 As an alternative to ‘non-dimensional’ the term ‘dimensionless’ is in common use.
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The only conversion needed was for the units of pressure since bar (= 105 Pa), though in
common use, is not an SI unit but is accepted for use with SI.
We now repeat the exercise for p in psi (i.e. lbf/in2), ρ in lbm/ft3, and V in ft/s.

7 bar = 7 × 101.2 psi 2 kg/m3 = 0.125 lbm/ft3 and 10 m/s = 32.81 ft/s

so that

p
ρV2 = 101.2 × 144 × 32.2

0.125 × 32.812
= 3.49 × 103.

Comment:

(1) The factor 144 had to be introduced to convert psi to lbf/ft2.
(2) The factor 32.2 lbm·ft/lbf.s2 was needed to convert lbf to lbm·ft/s2.
(3) The final result using Imperial units is not precisely 3.5× 103, as it should be, but 3.49×

103 as a consequence of the accumulation of small errors in each of the conversions from
SI to Imperial units.

3.5 The principle of dimensional consistency
(or homogeneity)

Each additive term in any physical equation must have the same overall dimensions. This
statement of the principle of dimensional consistency is the basis of dimensional analysis.
It follows that each additive term in any physical equation must have the same overall units. It
is, of course, essential that consistent, ideally base SI, units are used for each term in such an
equation. We state again, that although this book is concerned with fluids and fluid flow, it
should be apparent that any statement about dimensions or units applies in any branch of
engineering or physics.

ILLUSTRATIVE EXAMPLE 3.5

Show that each of the following equations is dimensionally consistent

(a) e = mc20; (b) v = u + at; (c) s = ut + 1
2at

2; (d) p = B + ρgz; (e) T = 2π
√
(l/g) ;

(
f
)
D = 6πμVR + 9

4πρV
2R2;

(
g
)
Q̇ =
πR4�p
8μL .

Solution

(a) We recognise e = mc20 as a result of Einstein’s theory of relativity. In this equation,
known as Einstein’s mass-energy relation, e is the energy released by matter if its rest
mass reduces by an amountm, and c0 is the speed of light in a vacuum15

[e] = ML2

T2 and
[
mc20
]
= M ×

(
L
T

)2
,

15 Note that in this instancem represents mass reduction, not mass.
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and we are relieved to find that Einstein’s relation is dimensionally consistent. Note that
the units and dimensions of the change or difference in any quantity are the same as
those of the quantity itself.

(b) v = u+at is a simple kinematic equation relating the velocity (v) of an object accelerating
at constant acceleration (a) for a time (t) from an initial velocity (u). The dimensions of
the three terms in this equation are

[v] = L
T [u] = L

T and [at] = L
T2 × T = L

T

which demonstrates that the equation is dimensionally consistent because each additive
term has the overall dimensions of velocity, L/T.

(c) s = ut + 1
2at

2 is a kinematic equation corresponding to v = u + at for the distance s
travelled by the object during the time t. In this case,

[s] = L [ut] = L
T × T = L and

[
1
2at

2
]
= 1 × L

T2 × T2 = L

again demonstrating that the equation is dimensionally consistent. Note that the
numerical factor 1/2 is non-dimensional and highlights an important general principle:
no consideration of dimensions can tell us anything about the correctness (or absence)
of a purely numerical factor in an equation since it will always have the dimension unity.

(d) For a simple pendulum of length l, the period of small-amplitude swing T is given by
T = 2π

√
(l/g), g again being the acceleration due to gravity

2π
√

l
g = 1 × 1 ×

√
L × T2

L = T

which corresponds with the dimension of the period T (i.e. a time).
We note that the first four examples have nothing to do with fluid mechanics,

thereby illustrating the observation made at the start of this section that dimensional
considerations apply to any branch of engineering or physics.

(e) As we shall see in Section 4.3, the equation p = B + ρgz gives the pressure p at depth z
below the surface of a liquid of constant and uniform density ρ with barometric pressure
B at the surface (i.e. at z = 0), g being the acceleration due to gravity, also assumed to be
constant. We have

[ρgz] = M
L3

× L
T2 × L = M

LT2

which corresponds with the dimensions of p and B, both of which are pressures, and
again we find that the equation is dimensionally consistent.

(f) The drag force (or just drag)D exerted on a sphere of radius Rmoving at a low constant
velocity V through a fluid of uniform and constant density ρ and dynamic viscosity μ is
given byOseen’s formula

D = 6πμVR + 9
4πρV

2R2.

The formula is approximate and its validity depends upon the value of a non-
dimensional parameter termed the Reynolds number (Re) being small (typically � 1).
The Reynolds number, which is commonly regarded as the most important non-
dimensional parameter in fluid mechanics, will be discussed later in this chapter
(Section 3.12). The dimensions of each term in the equation are as follows
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[D] = ML
T2 [6πμVR] = 1 × 1 × M

LT × L
T × L = ML

T2

and
[
9
4πρV

2R2
]
= 1 × 1 × M

L3
× L2

T2 × L2 = ML
T2 .

Note that the first term on the right-hand side of Oseen’s formula is linear in V and R
while the second is quadratic. It is also the case that the first term includes μ but not ρ
while the second includes ρ but not μ, but the equation is still dimensionally consistent
as all three terms have the overall dimensions ML/T2.

(g) The final example involves the Hagen-Poiseuille formula for the pressure drop �p
along a circular tube of radius R and length L for the flow of a fluid of density ρ and
dynamic viscosity μ with volumetric flowrate Q̇

Q̇ =
πR4�p
8μL .

While there are restrictions on the applicability of this formula, these are not relevant to
our consideration of dimensions. Since the formula concerns the volumetric flow rate
Q̇, which has the units m3/s, rather than mass flow rate with units kg/s, we have

[Q̇] = L3
T and

[
πR4�p
8μL

]
= 1 × L4 × M

LT2 × 1 × LT
M × 1

L = L3
T .

Note that the dimensions of pressure difference�p are the same as those of pressure.

3.6 Dimensional versus non-dimensional representation

We have seen already that certain combinations of quantities have no overall dimensions, i.e.
they are non-dimensional. In fact, if any two quantities have the same overall dimensions, their
quotient (i.e. ratio) is non-dimensional. As an example, if we divide through Oseen’s formula
in Illustrative Example 3.5 (f) by 6πμVR, we have

D
6πμVR = 1 + 3

8
ρVR
μ

. (3.1)

Since the first term on the right-hand side is now unity, it is immediately obvious that equation
(3.1) is non-dimensional. We have already mentioned the Reynolds number and the com-
bination ρVR/μ is precisely that. From equation (3.1) we see that as the Reynolds number
approaches zero, Oseen’s formula reduces to

D
6πμVR = 1 (3.2)

which is known as Stokes’ formula. The advantage of the non-dimensional version of Oseen’s
formula is that its five dimensional ‘constituents’ can be combined into two non-dimensional
groups so that the formula can be represented graphically by a single curve of D/6πμVR
versus ρVR/μ.
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We cannot emphasise too strongly that it is always advantageous to convert a dimensional
equation or formula to non-dimensional form. As a second illustration, we use the equation
of Illustrative example 3.5(c)

s = ut + 1
2at

2. (3.3)

We can easily calculate the distance s for any values of the initial velocity u, the acceleration a,
and the time t. Should we wish to, we could plot s versus t for different combinations of u and
a. Even for such a simple formula, this is a tedious exercise because for every value of u there is
an infinite choice of values for a and to cover even a limited range for u and a we would need
to plot a large number of curves. Figure 3.1 shows s plotted versus t for just five values of a
with u = 1 m/s.
Suppose we now divide each of the terms in equation (3.3) by u2 and multiply each by a.

Then we have

sa
u2

= at
u + 1

2

(
at
u

)2
(3.4)

and we observe that instead of three entirely different terms, our equation now has only two,
sa/u2 and at/u, both of which are non-dimensional[

sa
u2

]
= L × L

T2 × T2

L2
= 1 and

[
at
u

]
= L
T2 × T × T

L = 1.

12

s(
m

)
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a = 0.25 m/s2
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t (s) 
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Figure 3.1 Curves of s versus t for s = ut +at2/2 with u = 1m/s and a = 0, ±0.25m/s2, and ±1.0 m/s2
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Figure 3.2 Curve of sa/u2 versus at/u corresponding to s = ut + at2/2

Just as in the example of Oseen’s formula, the advantage of our non-dimensional equation
over the dimensional version is that all combinations of the physical variables (in this case
s, u, a, and t) can be represented by a single curve of sa/u2 plotted versus at/u (Figure 3.2). It
should be obvious that it takes far less effort to generate one curve rather than five (or more).
The benefits of non-dimensionalising a more complicated equation are even greater, as are
the advantages of plotting experimental data in non-dimensional form. A major benefit of
non-dimensional representation is that information is presented in a very compact form. In
the case of experimental data, far fewer experiments need be performed. Arguably even more
important, in situations where we have experimental results but limited or no theoretical guid-
ance, a non-dimensional plot is more likely to reveal any underlying relationship between the
variables than a dimensional representation.

3.7 Buckingham’s � (pi) theorem

In the second example of the previous section, we reduced a problem involving four indi-
vidual dimensional quantities (s, u, a, and t) to one involving just two non-dimensional groups
of quantities (sa/u2 and at/u). In any problem of dimensional analysis, as this mathemat-
ical process is called, in the absence of an equation or formula, it is convenient to know in
advance how many non-dimensional groups will result from the set of physical quantities
thought to describe a physical process. This information is provided by Buckingham’s� (pi)
theorem
If a physical process involves n dimensional quantities (or variables) which can be described

in terms of j independent dimensions, then this process can be represented by k non-
dimensional combinations of the dimensional quantities, where

k = n – j. (3.5)
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Although throughout this book we place little emphasis on memorising formulae,
equation (3.5) is one of the few that the student should commit to memory.
Since we are limiting ourselves to problems involving physical quantities with dimen-

sions M, L, T, and θ , j can only take on the values 1, 2, 3, or 4. It is immediately obvious
that the number of non-dimensional quantities k (often called non-dimensional groups or
non-dimensional numbers) is always less than the number of dimensional variables n. For
example, in the case of the formula s = ut + at2/2, we see that there are four variables (s, u, a,
and t) and two independent dimensions (L and T) so n = 4, j = 2, and k = n – j = 2, which
confirms what we found previously in Section 3.6.
Although called Buckingham’s� theorem, the symbol�, which is the capital version of the

Greek letter pi, has nothing to do with the familiar numerical constant π = 3.1415927 . . . but
is simply the symbol chosen by Buckingham to represent a non-dimensional combination of
dimensional quantities. In our example, we can write

�1 = sa
u2

and �2 = at
u .

In a more general case, the n-dimensional variables would reduce to k = n – j combinations
of those variables,�1,�2,�3, . . . . . . . . . �k or�1 = f (�2,�3, . . . . . . . . .�k), which means
that the non-dimensional group�1 is a function of (i.e. depends upon)�2,�3, . . . . . . . . . �k.

3.8 Sequential elimination of dimensions (Ipsen’s method)

Although with experience it is often possible to identify the non-dimensional groupings (i.e.
the �’s) in any problem by inspection, it is usually preferable to use a systematic approach
(see Section 3.10). Although not the most common procedure in use (which is the expo-
nent method, presented in Section 3.9), the method of sequential elimination of dimensions
(also known as Ipsen’s step-by-stepmethod) presented here is an essentially foolproof ‘recipe’
which requires only elementary mathematics.
We illustrate the method by reference once again to the sphere drag part of Illustrative Ex-

ample 3.5(f) but pretend now that we know (or postulate) only that D depends upon V ,R, ρ,
and μ but we do not know the formula D = 6πμVR + 9πρV2R2/4. We start by writing

D = f (V ,R, ρ,μ), (3.6)

which simply means that D is a function of (i.e. depends upon or is determined by) V ,R, ρ,
and μ. The quantity D is called the dependent variable, while V ,R, ρ, and μ are the
independent variables (i.e. the variables under our control).
In this case, then, we have five physical variables, so n = 5. It is vital in any problem of

dimensional analysis not to forget the dependent variable, in this case D, when counting the
number of physical variables.
The dimensions of the physical variables are

[D] = ML
T2 [V] = L

T [R] = L [ρ] = M
L3

and [μ] = M
LT
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so we have just three dimensions (i.e. M, L, and T), and j = 3. From Buckingham’s theorem,
k = n – j = 2, so we expect to find two non-dimensional groups (i.e. two�’s).
Our aim is to eliminate the three dimensions M, L, and T systematically by multiplying or

dividing each of the variables by any one of the others (or a power of any one of them). It
is important to realise that, although we can start the elimination process with any variable,
the end result will always be correct, although not the same. Suppose we choose to elimin-
ate M first using the variable ρ (we could just as well have chosen μ to eliminate M). Then
we have[

D
ρ

]
= ML

T2 × L3
M = L4

T2 and
[
μ

ρ

]
= M
LT × L3

M = L2
T

and we can rewrite our original equation (3.6) as

D
ρ

= f1
(
V ,R, μ

ρ

)
(3.7)

in which we have written f1(. . .) to indicate that the dependence ofD/ρ onV ,R, andμ/ρ is not
the same as the dependence of D on V ,R, ρ, and μ. At this stage we have already reduced the
number of variables from four to three (i.e.D/ρ,V ,R, andμ/ρ), and the number of dimensions
from three to two (i.e. L and T), so that k is still equal to 2, as it should be.
We now choose R to eliminate the dimension L from D/ρ,V , and μ/ρ, as follows[

D
ρR4

= L4
T2 × 1

L4
= 1
T2

] [
V
R

]
= L
T × 1

L = 1
T and

[
μ

ρR2

]
= L2

T × 1
L2

= 1
T

and we can write our equation as

D
ρR4

= f2
(
V
R , μ
ρR2

)
(3.8)

i.e. we now have just three variables (D/ρR4,V/R, and μ/ρR2) and one remaining
dimension (T).
Finally, we choose V/R to eliminate the dimension T, as follows[

D
ρR4

(
R
V

)2]
=
[

D
ρV2R2

]
= 1
T2 × T2 = 1 and

[
μ

ρR2
. RV

]
= μ

ρVR = 1
T × T = 1

so that our two non-dimensional groups are D/ρV2R2 and μ/ρVR, i.e. we can write

�1 = D
ρV2R2

and �2 =
μ

ρVR

and the end result is

�1 = F (�2) or D
ρV2R2

= F
(
μ

ρVR

)
. (3.9)
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Note that dimensional analysis tells us only that D/ρV2R2 depends upon μ/ρVR, assuming
our original assumption that D = f (V ,R, ρ,μ) was itself correct, but can give us no further
information as to the form of the dependence (or, in the case of a single non-dimensional
group, its value; this is the situation in Illustrative Example 3.6). The final result here is not at
first sight consistent with the non-dimensional form of Oseen’s equation

D
6πμVR = 1 + 3

8
ρVR
μ

. (3.1)

However, if we divide through this equation by ρVR/μ we find

D
6πρV2R2

= μ

ρVR + 3
8 (3.10)

which is entirely consistent with the result of dimensional analysis. The two constants 6π
and 3/8 arise from a solution of the governing Navier-Stokes equations (see Chapter 15) and
cannot be determined from dimensional analysis. We should also recognise that, if instead
of using ρ to eliminate M we had chosen μ, the final result of dimensional analysis would
have been

D
ρμ2

= F1
(
ρVR
μ

)
(3.11)

which is easily shown to be consistent with

D
ρV2R2

= F
(
μ

ρVR

)
or D
ρV2R2

= F2
(
ρVR
μ

)
. (3.12)

We should also consider the possibility that other physical variablesmight influence the drag
on the sphere. For example, if the fluid is a gas, we should include a variable that accounts for
compressibility. As we saw in Chapter 2, such a variable is the speed of sound c (an alternative
would be the isentropic bulkmodulus,KS, or its inverse, the isentropic compressibility). Our
starting point for dimensional analysis would then be

D = f (V ,R, ρ,μ, c) (3.13)

and the end result

D
ρV2R2

= F3
(
ρVR
μ

, Vc

)
. (3.14)

Adding one more physical variable has led to an additional non-dimensional group because
we changed n from 5 to 6, and k increased from 2 to 3 because j remained equal to 3.
We should be aware that this example applies generally to any problem concerning the fluid-

dynamic drag on a body of any shape immersed in a fluid flow, provided we replace the sphere
radius R by a characteristic dimension l of the body.
Later in this chapter we shall see that D/ρV2R2, ρVR/μ, andV/c have special places in fluid

mechanics: the first is a drag coefficient, the second is called the Reynolds number, and the
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third is theMach number. Other physical quantities which play a role in flow problems include
the acceleration due to gravity (g) and surface tension (σ ), and these also lead to ‘named’
non-dimensional groups: the Froude number V/

√
gl and the Weber number, ρV2l/σ (see

Section 3.12).
If, as is frequently the case, we are unable to fully analyse a problem from basic principles,

then a non-dimensional representation of experimental data is of great value in guiding us how
best to establish a correlation, not least because it always reduces, sometimes significantly, the
number of variables we need to deal with independently.

ILLUSTRATIVE EXAMPLE 3.6

In 1945 the first test of an atomic bomb took place in New Mexico, the so-called Trinity
Test. Photographic images were released in 1947 showing the expansion of the fireball with
time t (0.1 to 62 ms) after the instant of initiation. If it is assumed that the fireball radius R
depends upon t, the atmospheric density ρ (taken as constant), and the energy released16 in
the explosion E, show that

Et2
ρR5

= constant.

Solution:

Step 1: The functional dependence in terms of the dimensional physical variables may be
written as

R = f (t, ρ,E)

so that the number of independent physical variables n = 4.
Step 2: The dimensions of each of the physical variables are

[R] = L, [t] = T, [ρ] = M
L3

, and [E] = ML2
T2

and the number of dimensions j = 3.
Step 3: According to Buckingham’s� theorem,

k = n – j = 1

and we expect the four dimensional quantities will combine together to produce a
single non-dimensional group,�1, such that�1 = constant.

Step 4: We select ρ to eliminate the dimension M from E[
E
ρ

]
= ML2

T2 × L3
M = L5

T2

16 The energy released in an explosion is known as the yield.
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so that

R = f1
(
E
ρ
, t
)
.

Step 5: Use t to eliminate T from E/ρ[
Et2
ρ

]
= L5

T2 × T2 = L5

so that

R = f2
(
Et2
ρ

)
.

Step 6: Use R to eliminate the remaining dimension L from Et2/ρ[
Et2
ρR5

]
= L5 × 1

L5
= 1

so that finally

Et2
ρR5

= constant

or

R = C
(
E
ρ

)1/5
t2/5

where C is a non-dimensional constant. A graph of the fireball radius R versus the
time from initiation of the explosion t, in logarithmic coordinates, thus has a slope
of 2/5 and an intercept on the R –axis of ln C + ln (E/ρ) /5.

From a more detailed analysis, the British scientist Sir Geoffrey (G. I.) Taylor was able to de-
termine the value of C and so calculate the energy released in the Trinity explosion. He also
showed that the values of R and t determined from the 1947 pictures followed closely the
trend predicted by dimensional analysis. Taylor’s estimate for E was 71.5 TJ or 16.8 kilotonnes
of TNT, while the figure stated in an official US Army report published shortly after the test
was 15–20 kt of TNT.

ILLUSTRATIVE EXAMPLE 3.7

A common method for mixing large batches of liquid-food products, plastics, cement, and
other viscous liquids is with a rotating-paddlemixer. The power P required to rotate the paddle
depends upon its rotational speed ω, its radius R, the density of the liquid ρ, and its dynamic
viscosity17 μ. Derive a non-dimensional form to represent this dependence.

17 In practice most synthetic liquids are non-Newtonian in character so that μ varies with ω and other flow
variables. Some consideration of non-Newtonian liquids is given in Sections 2.10 and 15.5.
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ω

Figure E3.7

Solution:

Step 1: The functional dependence in terms of the dimensional physical variables may be
written as

P = f (ω,R, ρ,μ)

so that the number of physical variables n = 5.
Step 2: The dimensions of each of these physical variables are

[P] = ML2

T3 [ω] = 1
T [R] = L [ρ] = M

L3
and [μ] = M

LT

and the number of dimensions j = 3.
Step 3: According to Buckingham’s� theorem,

k = n – j = 2

and we expect the five dimensional quantities will combine together to produce two
non-dimensional groups,�1 and�2, such that�1 = F (�2).

Step 4: To find� and�2, we select ρ to eliminate the dimension M from P and μ[
P
ρ

]
= ML2

T3 × L3
M = L5

T3 and
[
μ

ρ

]
= M
LT × L3

M = L2
T

so that

P
ρ

= f1
(
ω,R, μ

ρ

)
.
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Step 5: Use R to eliminate L from P/ρ and μ/ρ[
P
ρR5

]
= L5

T3 × 1
L5

= 1
T3 and

[
μ

ρR2

]
= L2

T × 1
L2

= 1
L

so that

P
ρR5

= f2
(
ω, μ
ρR2

)
.

Step 6: Use ω to eliminate the remaining dimension T from P/ρR5 and μ/ρR2[
P

ρR5ω3

]
= 1
T3 × T3 = 1 and

[
μ

ρR2ω

]
= 1
T × T = 1

so that finally we have two non-dimensional groups

�1 = P
ρR5ω3

and �2 =
μ

ρR2ω

and

�1 = F(�2) or P
ρR5ω3

= F
(
μ

ρR2ω

)
.

Once again this is a perfectly valid result but only one of several possibilities determined
by the sequence in which each of the dimensions (here, M, L, and T) was eliminated and
which physical quantities were chosen to carry out the elimination procedure. Alternative
non-dimensional groups can be formed by multiplying or dividing the groups, or powers
or roots of the groups, which are the ‘natural outcome’ of dimensional analysis. Some of
the other non-dimensional groups we might have obtained in the present example are
ρR2ω/μ,Pρ2R/μ3,P/μω2R3, and P

√(
ρ3/ωμ5

)
.

3.9 Rayleigh’s exponent method

The exponent (or indicial) method of dimensional analysis is attributed to the Eng-
lish physicist Lord Rayleigh and also associated with the American physicist Percy
Williams Bridgman. This method is based on the rather sophisticated idea that
any mathematical function can be expressed as an infinite power series, each term of which,
according to the principle of dimensional consistency (see Section 3.5), must have the same
overall dimensions.
We can illustrate the exponent method using the aerodynamic-drag example. Since we have

D = f (V , l, ρ,μ) (3.6)

it must be that

D = kValbρcμd + k′Va′
lb

′
ρc

′
μd

′
+ . . . . . . . . . . . . (3.15)

where k, k′, . . . . . . are numerical constants and a, b, c, d, a′, b′, c′, d′, . . . .. are the exponents
(i.e. constants or powers). Dimensional analysis can be used to determine the values of the
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exponents but not the numerical constants. According to the principle of dimensional consist-
ency, all terms in the series must have the same dimensions as the dependent variable D, i.e.

[D] =
[
kValbρcμd

]
(3.16)

and

ML
T2 = 1 ×

(
L
T

)a
× Lb ×

(
M
L3

)c
×
(
M
LT

)d
. (3.17)

The key point is to recognise that, since this is a dimensional equation, we require that each
dimension balances separately. For example, in the case of L,

L1 = La × Lb × L–3c × L–d = La+b–3c–d (3.18)

which in turn means that the exponents must balance, i.e.

1 = a + b – 3c – d. (3.19)

Similarly, from considerations of M,

1 = c + d (3.20)

and, for T,

–2 = –a – d. (3.21)

As an observation, we note that the number of unknown exponents (i.e. a, b, c, and d) is the
same (i.e. four) as the number of independent physical quantities (i.e. V , l, ρ, and μ) while
the number of equations equals the number of dimensions (i.e. M, L, and T). With only three
equations we cannot determine all four unknowns; the best we can do is to write three of the
unknown exponents in terms of the fourth. For the latter, we can choose any one of the four
exponents. If we choose d, from equation (3.20) we have

c = 1 – d, (3.22)

from equation (3.21),

a = 2 – d, (3.23)

from equation (3.19),

b = 1 – a + 3c + d = 2 – d (3.24)

and we have now found a, b, and c in terms of d.
We return to the infinite series, equation (3.15), which can now be written as

D = kV2–dl2–dρ1–dμd + . . . .. (3.25)

= kρV2l2
(
μ

ρVl

)d
+ . . . . . . . . . . . . . . . . . . . (3.26)

In the final version of our infinite series, we have separated the independent variables into
those having (known) pure-number exponents and those involving the unknown exponent d.
If we now divide through by ρV2l2, we have
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D
ρV2l2

= k
(
μ

ρVl

)d
+ . . . . . . . . . . . . . . . . . . . (3.27)

or

D
ρV2l2

= F
(
μ

ρVl

)
(3.28)

which means that the non-dimensional group D/
(
ρV2l2

)
is a function of μ/ (ρVl) which, as it

must be, is also non-dimensional. In fact, the inverse ofμ/ (ρVl), i.e. ρVl/μ, is the special non-
dimensional group, the Reynolds number, which arises in the majority of viscous fluid-flow
problems (see Section 3.12).
It is crucially important for the reader to realise that the final result in the form of equation

(3.27) is not simply

D
V2ρl2

= k
(
μ

ρVl

)d
(3.29)

even though, if it were, this would be a very simple and convenient formula to use once k and d
were known, e.g. from experiment or a complete analysis of the flow problem. Unfortunately,
the exponent method is sometimes presented with the vitally important ‘+ . . . . . . . . . . . . . . .’
omitted from equation (3.27), and the unwary reader forgets, or is never told, that he or she is
dealing with only one term of an infinite series.
Of course, if carried out correctly, both the exponent method and the sequential-elimination

process produce the same result. The exponent method is probably the most commonly
used but, in the author’s opinion, Ipsen’s sequential-elimination process (Section 3.8)
is more straightforward and less likely to lead the inexperienced user into difficulty or
misunderstanding.

3.10 Inspection method

In many instances, with experience, it becomes quite straightforward to write down the appro-
priate non-dimensional groups for any given problem, essentially frommemory or inspection.
For example, if the flow velocity V and fluid viscosity μ are involved in a problem, there is a
very good chance that the non-dimensional group ρVl/μ will be one of the non-dimensional
groups (obviously, the fluid density ρ and a length l are also required). Since an approach of
this kind is more ad hoc than systematic, it is not to be recommended for the inexperienced.

3.11 Role of units in dimensional analysis

Since there is a one-to-one correspondence between the basic SI units, m, kg, s, and K here,
and the primary dimensions M, L, T, and θ , it should be clear that, in principle, any prob-
lem in dimensional analysis can be worked through using basic units rather than dimensions,
although this is not recommended. However, it is important to realise that the units of any
quantity can be used to determine its dimensions. This is particularly useful in cases for
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quantities where the dimensions may be difficult to remember, such as viscosity and power.
The units of practically all physical properties of engineering significance can be found in
thermodynamic tables, such as those by Rogers andMayhew (1994), or any of the mechanical-
engineering handbooks which many university departments make available to students. As
mentioned in Section 3.3, the Notation section at the beginning of this book lists all the phys-
ical properties and other quantities which appear in this book, together with their units and
dimensions.

ILLUSTRATIVE EXAMPLE 3.8

The power P required to drive a centrifugal pump depends upon the volumetric flowrate Q̇
it delivers, the pressure difference �p imposed between the outlet and inlet of the pump, the
density of the liquid ρ and its viscosity μ, the rotational speed of the pump ω, and the impeller
radius R. Put the preceding sentence into the form of a non-dimensional equation.

Solution

As always, the first step is to write down the functional dependence

P = f (Q̇,�p,ω,R, ρ,μ).

To illustrate the point being made in this section, we now write down the units of each of the
eight quantities involved

P (W) ; Q̇
(
m3/s
)
; �p (Pa) ; ω (1/s) ; R (m) ; ρ

(
m3/s
)
; and μ (Pa.s) ;

from which we can state or derive the dimensions of each quantity, where necessary first
converting the derived units (W, Pa, and N) into basic units

W = J
s = N.m

s =
kg.m
s2

.ms =
kg.m2

s3
; Pa = N

m2 =
kg.m
s2

. 1
m2 =

kg
m.s2

and Pa.s =
kg
m.s2

.s =
kg
m.s ;

so that

[P] = ML2
T3 ; [Q̇] = L3

T ; [�p] = M
LT2 ; [ω] =

1
T; [R] = L; [ρ] = M

L3
; and [μ] = M

LT.

We now use the sequential elimination method to perform the dimensional analysis, starting
with the density ρ to eliminate the dimension M[

P
ρ

]
= ML2

T3 × L3
M = L5

T3 ;
[
�p
ρ

]
= M
LT2 × L3

M = L2
T2 ; and

[
μ

ρ

]
= M
LT × L3

M = L2
T

and at this stage we can write

P
ρ

= f1
(
Q̇,
�p
ρ

,ω,R, μ
ρ

)
.
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We now use R to eliminate the dimension L[
P
ρR5

]
= L5
T3 × 1

L5
= 1
T3 ;

[
�p
ρR2

]
= L2
T2 × 1

L2
= 1
T2 ;

[
μ

ρR2

]
= L2

T × 1
L2

= 1
T

and
[
Q̇
R3

]
= L3

T × 1
L3

= 1
T

so that

P
ρR5

= f2
(
Q̇
R3

,
�p
ρR2

,ω, μ
ρR2

)
.

Finally, we use ω to eliminate the dimension T (noting that [ω] = 1/T)

P
ρR5ω3

= F
(

Q̇
ωR3

,
�p
ρR2ω2

, μ
ρωR2

)
.

In this case the seven physical quantities have produced four non-dimensional groups, as we
would expect from Buckingham’s� theorem since with n = 7 and j = 3, we have k = 4.
For a fluid with relatively low viscosity, such as water, viscosity plays only a minor role in

determining pump performance except at very low speeds. In practice this means that vis-
cosity is of little importance if ρR2ω/μ � 1. ρR2ω/μ, of course, is the inverse of our fourth
non-dimensional group and is a rotational form of the Reynolds number we have mentioned
previously.

3.12 Special non-dimensional groups

In engineering fluid mechanics we have to take account of the influence on flow of those fluid
properties relevant to the specific problem under consideration. These properties may include
the fluid density ρ, either the fluid dynamic viscosity μ or the fluid kinematic viscosity ν
(defined by ν = μ/ρ), surface tension σ , and soundspeed c. The latter quantity is included
to take account of the compressibility of the fluid (i.e. the increase or decrease in density
produced by an increase or decrease in pressure). We could also have included here the ac-
celeration due to gravity g, which in most instances plays no role, although there are obvious
exceptions, for example, in determining the vertical variation of pressure in a body of fluid
at rest (see Section 4.2) or in problems where there is a free surface or an interface between
two immiscible liquids. If we are concerned with flow through a machine or object (internal
flow, see Chapter 16) or around a body surrounded with fluid (external flow), it is necessary
to select a velocity V and a length l that characterises the object’s scale (or size). In the case of a
pipe or duct18 through which there is flow, this length is likely to be its diameter or radius (or
more generally its hydraulic diameter or radius19) although the pipe length L may also be of
importance as may be the average height of any surface roughness ε (see Section 18.9). For an

18 The term duct is used to mean any pipe, tube, channel, nozzle, etc., through which there is fluid flow.
19 The concept of hydraulic diameter and radius is explained in Section 16.2.
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external flow, the characteristic length may be the diameter or radius of an object, for example
in the case of a smoke stack, or the wing span in the case of an aircraft. In a given problem,
it is most unlikely that all of the fluid properties, lengths, etc., play a significant role and it is
usual to include in any analysis only those likely to do so. For example, liquids are practically
incompressible so the soundspeed would only be included if the fluid concerned was a gas in
which the occurrence of major pressure variations was likely. Collectively, the quantities which
influence a flow are termed the independent variables.
The dependent variables (i.e. the quantities which are determined by the independent vari-

ables) might be D, the drag force for external flow around an object, f the frequency of the
periodic disturbances which sometimes occur in the wake of the object, and �p a pressure
difference, as discussed further below. This being the case, we may write

D
(
or f or�p

)
= F
(
V {or ω} , ρ,μ, σ , c, g, l

)
(3.30)

where V is a characteristic velocity of the flow. In the case of an external flow, V is usually the
velocity of the approach flow relative to the object. In the case of a boundary layer, the free-
stream velocity U∞ is used. For an internal flow, an average velocity V̄ across the flow cross
section is the usual choice. So far as turbomachinery, such as a pump, compressor, or turbine,
is concerned, ω is the rotational speed (in rad/s).
If we apply the method of sequential elimination of dimensions to equation (3.30), we

arrive at

D
ρV2l2

(
or

fl
V or

�p
ρV2

)
= F1
(
μ

ρVl
, σ
ρV2l

,
gl
V2 ,

c
V

)
. (3.31)

Additional quantities, such as the lengths L and ε, could easily be added on the right-hand side
of equation (3.30). So far as dimensional analysis is concerned, this would merely add L/l and
ε/l to the list of non-dimensional groups in equation (3.31).
Although perfectly valid as they are, each of the non-dimensional groups in equation (3.31)

(with the exception of fl/V) is usually modified as follows

D
1
2ρV

2A
,
�p
1
2ρV

2
, ρVl
μ

, ρV
2l
σ

, V√
gl
, and V

c . (3.32)

We now consider each of these special non-dimensional groups.

3.12.1 Drag coefficient CD

The first group in the list above defines the drag coefficient

CD = D
1
2ρV

2A
. (3.33)

As explained in Section 7.5, the quantity ρV2/2 is termed the dynamic pressure and arises
from considerations of energy conservation along a streamline: it represents the kinetic en-
ergy per unit volume of fluid. Since the factor 1/2 is non-dimensional, its inclusion in the
definition of CD does not affect its ‘dimensionality’. The quantity A, which has replaced l2, is
a characteristic (or representative) area for the problem considered. In many instances, this is
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taken as the frontal area or silhouette area of the object on which the drag force is being exerted
or the planform area in the case of a wing. The drag coefficient can be regarded as the ratio of
the drag force D to the force the dynamic pressure ρV2/2 would exert on an area A.
Further consideration of the drag coefficient for various objects is discussed in Section 18.15.

3.12.2 Lift coefficient CL

If L is the lift force exerted by fluid flow on an object, such as an aerofoil, then, in a similar way
to a drag coefficient, we can define a lift coefficient

CL = L
1
2ρV

2A
. (3.34)

Lift coefficients for many standard aerofoil sections have been compiled by Abbot and von
Doenhoff (1959).

3.12.3 Euler number Eu, cavitation number Ca, pressure coefficient CP

The Euler number is defined as

Eu =
�p
ρV2 . (3.35)

There are several variants on the non-dimensional combination of the quantities�p and ρV2,
largely dependent upon how the pressure difference�p arises. For example, if�p = pREF – pV ,
where pREF is a reference pressure, such as the prevailing barometric (or atmospheric) pres-
sure, and pV is the vapour pressure of a liquid, �p/ρV2 may be used as a measure of the
propensity for cavitation to occur (see Section 8.11 for a discussion of cavitation) and is then
also referred to as a cavitation number, Ca.
For flow around an object, �p is usually taken as the difference between the local static

pressure p, e.g. at a point on the surface of an aerofoil, and a reference pressure, such as the
undisturbed static pressure upstream of the object, p∞. Here again, it is also conventional to
introduce the factor 1/2 so that

CP =
�p
1
2ρV

2
(3.36)

which is known as the pressure coefficient.
For internal flows, the dynamic pressure ρV̄2/2 is used to ‘normalise’ (i.e. make non-

dimensional) the pressure drop in a duct�p, and we have the friction factor

cf =
�p
1
2ρV̄

2
(3.37)

where V̄ is the flow velocity averaged over the duct cross section. The factor 1/2 is often moved
to the left-hand side so that the friction factor is defined as cf /2 = �p/ρV2.
Pressure reduction in a simple, straight duct is a consequence of wall shear stress τS (the

subscript S, for surface, is often replaced by W, for wall). More generally, in a pipe system,
pressure losses also occur for a number of other reasons, such as increases, particularly sudden
increases, or decreases, in cross-sectional area (see Sections 10.5 and 18.11).
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3.12.4 Fanning friction factor fF, Darcy friction factor fD, and skin-friction
coefficient cf

Friction factors for duct flow based directly upon the surface shear stress τS are also commonly
encountered, for example the Fanning friction factor, fF ≡ 2τS/ρV̄2, and the Darcy friction
factor, fD = 8τS/ρV̄2 (see Chapters 16 and 18).
It is easily shown that fF and cf for fully developed duct flow through a cylindrical duct of

length L and hydraulic diameter DH (see Section 16.2) are related by

cf = 4L
DH

fF . (3.38)

For external flows, a boundary-layer friction factor (or skin-friction coefficient) is
defined by

cf
2 = τS
ρU2∞

(3.39)

which is similar to the definition of the Darcy friction factor for duct flow except for the 1/2-
factor being on the left-hand side (see Chapters 17 and 18).
At first sight, all these related but slightly different definitions may seem confusing. They

have been introduced independently by different people over many decades and retained in
their areas of applicability. It is obviously vital for the user of any formula involving one of
these non-dimensional groups to be aware of which definition is relevant.

3.12.5 Reynolds number Re and Poiseuille number Po

In Chapter 2, we identified viscosity μ as the material property of a fluid which distinguishes
it from a solid. It is hardly surprising, therefore, that the non-dimensional group which incor-
porates viscosity, the Reynolds20 number, plays a role in the majority of flow problems. The
Reynolds number is defined by

Re = ρVl
μ

(3.40)

where l is a characteristic (or representative) length and V is a characteristic velocity. De-
pending upon the problem, lmay be a diameter, a radius, a wing span, a height, etc. While the
choice is relatively unimportant, if it is stated, for example, that ‘the critical Reynolds number
is 2100’ it is crucial that it is known what length and velocity have been used to define the
Reynolds number.
If the Reynolds number for an external flow is very small compared with unity, fluid iner-

tia is of minor importance and there is a balance between viscous and pressure forces. Such
flows are referred to as creeping flows, an example of which is Stokes’ flow (see Section 3.6). If
the Reynolds number is very large, much of the flow represents a balance between inertia and

20 Reynolds number is sometimes written as Reynold’s number, even though this is completely incorrect since the
surname of the man it is named after is Reynolds not Reynold. In fact, if it were named after someone called Reynold,
it would still be incorrect to write Reynold’s as it is conventional to adopt forms such as Mach number (not Mach’s
number), etc.
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pressure forces, with viscous effects being negligible. In the latter case, viscosity still dominates
flow in the region immediately adjacent to any solid surface, known as the boundary layer (see
Chapters 17 and 18), where the fluid velocity progressively approaches that of the surface (i.e.
zero if the surface is at rest). The Reynolds number plays an important role in characterising
a viscous flow as either laminar (see Chapters 16 and 17) or turbulent (Chapter 18). For cyl-
indrical pipe flows, the Reynolds number is based upon either the internal diameter or radius
while, for duct flows in general, the hydraulic diameterDH is often chosen as the length scale.
Much of Chapter 16 is concerned with fully-developed laminar flows through cylindrical

ducts where, as for Stokes’ flow, fluid inertia plays no role. The important flow parameter is
the Poiseuille21 number defined as

Po = 2τSDH
μV̄

(3.41)

from which it is easily shown that Po = fF ReH although, as pointed out in Section 16.2, the
Reynolds number (here based upon DH) has been introduced artificially.

3.12.6 Mach numberM, Cauchy number Ca, and Knudsen number Kn

The Mach number22 is a non-dimensional number named in honour of Ernst Mach, at the
suggestion of the Swiss scientist Jakob Ackeret, and defined as the ratio of a flowspeed (or the
speed of an object moving through a stationary fluid), V , to the soundspeed of the fluid c

M = V
c . (3.42)

It should be noted that c is not a constant for any given fluid but depends primarily upon
its temperature (in the case of a gas, c ∼ √

T, where T is the absolute temperature). Provided
theMach number is less than about 0.3, a flow can be considered as practically incompressible,
which is whymany gas flows can be treated (with the appropriate values for ρ andμ) in exactly
the sameway as a liquid flow. For higher values ofM, compressibility becomes increasingly im-
portant. Up to aboutM = 0.75, the effects of density changes can be accounted for by applying
a compressibility correction to the results of incompressible theory. For values of M close to
unity, the flow is termed transonic, typically with some regions remaining subsonic (M < 1)
while others are supersonic (M > 1) and shockwaves begin to appear. In supersonic flow,
abrupt decreases in velocity, stagnation pressure, and Mach number occur across shockwaves,
with corresponding increases in temperature, pressure, and density. These changes become
increasingly strong as the upstream Mach number becomes increasingly greater than unity.
Flows for whichM > 3 are termed hypersonic.
A more general non-dimensional number which can be used to characterise compressible

flow is the Cauchy number defined as

Ca = ρV
2

K (3.43)

21 The pronunciation of Poiseuille is ‘pwazoy’.
22 The symbolMa is frequently used for the Mach number.
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where K is the isentropic bulk modulus of the fluid. It can be shown that, for an isentropic flow
process, Ca = M2. Compressible fluid flow is the subject of Chapters 11, 12, and 13.
In Section 2.5 we showed how the validity of the continuum hypothesis is related to the

molecular mean free path Λ. The continuum hypothesis breaks down for flows where the
characteristic length scale L has a magnitude approachingΛ, such thatΛ/L = O (1) or greater.
This Knudsen regime includes flows involving a particle moving through the lower atmo-
sphere or a satellite in the exosphere, and flow through the channels of microfluidic devices.
For a gas with molecular weightM and effective molecular diameter σ , according to equation
(2.23), we have

Λ = M/
√
2πρNAσ

2, (2.23)

where NA is the Avogadro number.
The Knudsen number Kn is defined as

Kn = ΛL . (3.44)

From equation (2.23), gas flows with Kn > 1 will thus arise where the gas density ρ is very
low, as in the outer regions of the atmosphere (see Section 4.13), and are referred to as rarefied
flows.
The Knudsen number Kn is related to the MachM and Reynolds numbers Re as follows

Kn = ΛL = 3
2

√
πγ

2
μ

ρcL = 3
2

√
πγ

2
M
Re (3.45)

where M = V/c, and Re = ρVL/μ, V being a typical velocity for the flow. Equation (3.45) is
based upon equation (2.36) for μ

μ = 2
3

√
2
πγ
ρcΛ. (2.36)

3.12.7 Weber numberWe

The Weber number, defined by

We = ρV
2l
σ

, (3.46)

represents the ratio of inertia forces to surface-tension forces. Surface-tension effects in fluid
flow are only important if the Weber number is of order unity or smaller. This can be the case
for small droplets or bubbles, capillary flows, and flows of very shallow water. ForWe � 1, or
if there is no free surface, surface-tension effects are negligible or non-existent.

3.12.8 Froude number

It can be shown that the speed of propagation of small-amplitude waves on the surface of a
liquid layer of depth h is

√
gh. For a free-surface flow with flow velocityV , the Froude number

is defined as the ratio of V to
√
gh
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Fr = V√
gh

. (3.47)

Such a flow with Fr < 1 is said to be subcritical (i.e. the flowspeed is below the wavespeed
so that small disturbances move faster than the flow) while a flow with Fr > 1 is termed
supercritical. From this it becomes apparent that the Froude number is rather like the Mach
number, which distinguishes between subsonic (M < 1) and supersonic (M > 1) flow.
Where there are two fluids of different densities, such as at the interface between two

immiscible liquids, a so-called densimetric Froude number can be defined as

Fr = V√
gh|�ρ|/ρ̄

(3.48)

where |�ρ| is the magnitude of the density difference and ρ̄ is the average density. The densi-
metric Froude number also arises in the analysis of buoyant jets, also known as plumes, when
the appropriate length scale is the initial diameter.

3.12.9 Strouhal number St

The Strouhal number, defined as

St =
fl
V (3.49)

is used to characterise the periodic (i.e. fixed-frequency) disturbances (so-called æolian tones)
which arise in the wake of an object such as a circular cylinder immersed in a steady flow. If
the cylinder diameter is d, and the crossflow velocity is V , the frequency f is given by St =
fd/V ≈ 0.2 in the Reynolds-number range, 400 < ρVd/μ < 3 × 105. Self-excited flow
oscillations of this type can feed energy into the structure, leading, in turn, to (flow-induced)
structural vibrations which can reach dangerously high levels if the frequency is close to a
natural frequency of the structure. The collapse of the Takoma Narrows suspension bridge
in Washington State, USA, in 1940 was a consequence of this effect, as was the vibration of
the 241 m-high John Hancock Tower opened in Boston in 1976, which led to large plate-glass
windows falling from their frames. Remarkably, in both instances the vibration was initiated
at windspeeds no greater than about 70 kph. The helical strakes which are wound around tall
chimneys are designed to suppress such periodic flow behaviour.

3.13 Non-dimensional groups as force ratios

It is useful to find a physical interpretation of non-dimensional groups, as ratios of quantities
with the same overall dimensions. As we have just seen, the quantity ρV2/2 (or just ρV2),
which represents the kinetic energy per unit volume of fluid and also its dynamic pressure,
occurs in the numerators of several of the dependent non-dimensional groups. The quantity
ρV2l2, where l is a characteristic length of the flow problem under consideration (l2 could
just as well be replaced by A, a characteristic area), is often referred to as an inertia force
(it is easily shown that it has the dimensions ML/T2, the same as those of force). The drag
coefficient CD can then be regarded as the ratio of the drag force to the fluid inertia force,
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while the Euler number Eu, the pressure coefficient CP, and the friction factor cf /2 are the
ratio of a pressure force (�pA) to the inertia force. In a similar way, the Fanning and Darcy
friction factors represent the ratio of a friction force to the inertia force.
We turn now to the independent non-dimensional groups, starting with the Reynolds

number which can be written as

Re = ρVl
μ

= ρV
2l2

μVl
. (3.50)

The shear stress at a point in a fluid is proportional to the velocity gradient at that point,
according to τ = μ du/dy so that τ ∼ μV/l (where u is the local velocity, and y is the normal
distance from a boundary) and the denominator of Re,μVl ∼ τ l2, which is the product of a
shear stress and an area (l2) and again has the dimensions of force. The Reynolds number can
therefore be viewed as the ratio of inertia force to shear force.
We have already seen that the Mach number is the square root of the Cauchy number, the

latter defined as Ca = ρV2/K, K being the isentropic bulk modulus of the fluid. The pressure
difference �p required to change the volume V of a fluid by an amount �V is given by �p =
–K�V/V (the negative sign is introduced because a decrease in volume requires a positive
pressure difference) so that Ca ∼ ρV2l2/�pl2, i.e. the ratio of inertia force to compressive (or
pressure) force.
In the case of the Weber number, ρV2l appears in the numerator and it is immediately

apparent that this number represents the ratio of inertia force to surface-tension force, the
latter being proportional to σ l.
The Froude number can be written as √

ρVl/
√
ρgl3, where the numerator can be seen to be

the square root of the inertia force, and the denominator is the square root of the gravity force.
Not all non-dimensional groups can be interpreted as the ratio of a force to inertia force,

for example the Strouhal number. Other non-dimensional groups, which arise in areas such
as heat transfer, can be identified as ratios of such physical phenomena as viscous and thermal
diffusion (e.g. the Prandtl number).

3.14 Similarity and scaling

There would be little point in carrying out experimental studies on scaled-down (or even
scaled-up) models if we did not known how the results could be translated (i.e. scaled) to full
size. Fortunately, this is just the information provided by dimensional analysis. We require
two things

• geometric similarity, which means that the model and full size (or prototype) differ only
in size (or scale) but not in shape. The ratio of full scale to model scale is termed the scale
factor.

• dynamic similarity, which requires that each independent non-dimensional group has the
same value for the model (M) and full scale (F), i.e.�2M = �2F ,�3M = �3F , etc.

We have seen already that a major simplification resulting from dimensional analysis is that
the number of separate variables we need to deal with is always reduced by the number of
independent dimensions involved (usually three).
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Although it was not stated at the time, an implicit assumption in dimensional analysis is that
we are considering geometrically similar situations. For example, if we write

D = f (V , l, ρ,μ) (3.51)

for the drag force D exerted on a car of length l, we intuitively realise that, if we carry out
experiments on a model car, it should be a scaled-down replica of the full-size version in all
relevant respects. If the model is 1/5th the length of the full size, then the wheels of the model
should be 1/5th the diameter of those of the full size, the width 1/5th, etc. Certain aspects of
the design of a car, such as the car’s interior, play no role in determining its drag and so are
not relevant in dimensional analysis. Other features, such as gaps between the doors and body
panels, or the trim, or the windscreen wipers, may have a minor influence on drag but would
normally be too difficult or expensive to reproduce accurately on a model.
The requirement of dynamic similarity in scaling model tests is the same as what is required

to duplicate the results of any experiment, i.e. to ensure that each of the independent non-
dimensional groups has the same value for the model and the full scale and, in consequence, so
do the dependent non-dimensional groups. As we have already seen, the power of dimensional
analysis is that the number of independent non-dimensional quantities is always less, often
significantly so, than the number of dimensional quantities.
In our aerodynamic-drag example, we have

D = f (V , l, ρ,μ) (3.52)

which tells us that if we carry out an experiment on a model (or full-size) car to measure the
drag D for given values of V , ρ,μ, and l and repeat the experiment, for exactly the same values
of the dimensional independent variables V , ρ,μ, and l, we shall obtain, within experimental
uncertainty, the same value for the dependent variable D.
In the non-dimensional representation, the equation for D transforms to

D
ρV2l2

= F
(
ρVl
μ

)
(3.53)

which tells us that, for every value of the non-dimensional group of independent variables
ρVl/μ (i.e. the Reynolds number), there will be a corresponding value of the dependent
non-dimensional group D/ρV2l2 (i.e. the drag coefficient, although, as mentioned above, the
denominator is conventionally replaced by ρV2A/2, where A is the car’s silhouette area). The
beauty of this result is that it is only the values of the two non-dimensional groups ρVl/μ and
D/ρV2l2 which matter, not the values of their ‘constituents’. In other words, we can quite freely
change the values of V , ρ,μ, and l, for example by changing the fluid (e.g. using water instead
of air), but, if ρVl/μ stays the same, then so will D/ρV2l2.
As a final point, here, we note that if we have geometric and dynamic similarity, then we

shall also have kinematic similarity. What this means is that within the flowfields for the
model and full scale, the ratio of velocities at corresponding points will be the same as the ratio
of the reference velocities VM and VF , where the subscripts M and F indicate model and full
scale, respectively. The velocities will also have the same vector directions at corresponding
points in the two cases.
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ILLUSTRATIVE EXAMPLE 3.9

A sports car designed for a top speed of 356 kph is being developed for the 24Heures duMans
endurance race. The prevailing atmospheric conditions are assumed to correspond to an air
density of 1.2 kg/m3 and a dynamic viscosity of 1.8 × 10–5 Pa · s (i.e. the values for pure air at
normal temperature and pressure, 20 ◦C and 1 atm). Calculate the wind-tunnel speed for tests
to be carried out on a quarter-scale model car in a pressurised and cooled wind tunnel in which
the air density is 4.7 kg/m3 and the dynamic viscosity 1.7× 10–5 Pa · s (i.e. the property values
at 0 ◦C and 3.7 bar). If the model test gives a drag force of 1334 N, what is the corresponding
drag for the full-size car and the tractive power required, assuming dynamic similarity between
the wind-tunnel and full-scale situations?

working section

download

drag force D

V

Figure E3.9

Solution

We would normally start by carrying out the basic dimensional analysis for this problem.
However, in this case, we know the result already

D
ρV2l2

= F
(
ρVl
μ

)
.

Dynamic similarity requires that each of the two non-dimensional groups has the same value
for the model and for the full-scale car, i.e.

drag coefficient CD = DM
ρMV2

Ml2M
= DF
ρFV2

Fl2F

and

Reynolds number Re = ρMVMlM
μM

= ρFVFlF
μF

,

where, as earlier, the subscriptsM and F refer to the model and full scale, respectively.
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It is always advisable in problems of this kind to tabulate the known and unknown quant-
ities using consistent SI units. For the top speed we have VF = 356 kph which converts to
VF = 98.9 m/s; then

Model Full scale

Speed V (m/s) ? 98.9

Length l (m) lF/4 lF

Air density ρ (kg/m3) 4.7 1.2

Air viscosity μ (Pa · s) 1.7 × 10–5 1.8 × 10–5

Drag force D (N) 1334 ?

Power P (W) ? ?

Note that we have no absolute information about the size of either the model or the full-scale
car, only the ratio between them which, in this instance, is sufficient.
From the Reynolds-number equality, we have

VM = ρF
ρM

× μM
μF

× lF
lM

× VF

= 1.2
1.7 × 1.7 × 10–5

1.8 × 10–5
× 4 × 98.9 = 95.4ms .

From the drag-coefficient equality, we have

DF = ρF
ρM

×
(
VF
VM

)2
×
(
lF
lM

)2
× DM

= 1.2
4.7 ×

(
89.9
95.4

)2
× 42 × 1334 = 5859 N or 5.86 Kn

and the corresponding tractive power required is

PF = DFVF = 5859 × 98.9 = 5.79 × 105 W or 579 kW (or 777 hp).

The power required to overcome the drag of the model car PM can also be calculated as

PM = DMVM = 1334 × 95.4 = 1.27 × 105W.

The question we should ask now is ‘does power also obey the principle of dynamic similarity?’
This is easily answered as follows. Using ρ,V , and l, we find that a non-dimensional group for
the power is P/ρV3l2 and we should expect this group to have the same value for model and
full scale.
For the model we have

PM
ρMV3

Ml2M
= 1.27 × 105

4.7 × 95.43 × (lF/4)2
= 0.50

l2F
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where we have again used the ratio 1:4 for the length scales, and, for the full scale,

PF
ρFV3

Fl2F
= 5.79 × 105

1.2 × 98.93 × l2F
= 0.50

l2F

so the two non-dimensional groups have the same value, as they should.

3.15 Scaling complications

The scaling situation we are usually confronted with is that of a model test on a scale much
smaller than full size, and this can easily lead to conflicting or impossible requirements for the
model tests. We illustrate the difficulty which can arise, and suggest ways in which the cor-
responding conflict can be resolved by reconsidering the problem of aerodynamic drag. The
observant reader will have noticed that in the sports-car example (Illustrative Example 3.9)
for the wind tunnel the air density was given as 4.7 kg/m3 and the dynamic viscosity as
1.7 × 10–5 Pa · s. These property values, which correspond to a pressure of about 3.7 bar and
a temperature of 0 ◦C, would be attainable only in a specially designed and expensive pressur-
ised, cryogenic wind tunnel. In some circumstances, strict adherence to the requirements of
dynamic similarity is possible only through such extreme measures and it may be necessary to
accept a compromise solution.
We should, of course, ask the question ‘What would be the consequences of performing the

model test in a wind tunnel operating at the same temperature and pressure as would be the
case for the full-scale car, so that ρM and μM would have the same values as their full-scale
counterparts, i.e. 1.2 kg/m3 and 1.8 × 10–5 Pa · s, respectively?’ Since we took the speed of the
full-scale car as 356 kph or 98.9 m/s, Reynolds-number equality led to

VM = ρF
ρM

× μM
μF

× lF
lM

× VF

= 1 × 1 × 4 × 98.9 = 395.6m/s = 1424 kph.

It should be apparent immediately that for a model test such an airspeed is unrealistically high
and would again require a rather special (and again expensive) wind tunnel. There is, however,
a more fundamental problem: since the speed of sound at 20 ◦C is 342m/s, an airspeed of 395.6
m/s corresponds to a Mach numberM = 1.15. At this Mach number, the flow approaching the
model is just supersonic (i.e. M > 1), and changes in the airflow as it passed over the model
would produce corresponding changes in pressure, density, and temperature and introduce
compressibility effects, such as shockwaves, which would drastically affect aerodynamic beha-
viour, including drag. In fact, there would be regions in the flow whereM is much greater than
1.15, as well as others where it would be much lower. For the full-scale car, for whichM = 0.29,
compressibility effects would be (just about) negligible.
Clearly, something has gone wrong, and the foregoing is a reminder that when we carry out

dimensional analysis (or any other theoretical analysis) it is assumed that the physical quant-
ities we have included account for all the physical effects of importance to the problem under
consideration. Compressibility would be expected to influence the aerodynamic behaviour of
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rockets, missiles, most jet aircraft, and even cars designed to challenge the world land-speed
record (currently 1228 kph but the Bloodhound SSC project is aiming for 1600 kph), but not
a car with a top speed of ‘only’ 356 kph.
In Chapter 2 we showed the isentropic bulk modulus K is the appropriate property to

characterise the compressibility of a fluid. However, it is more usual to use the soundspeed
c to characterise compressible fluid flow. If we include c in the list of physical quantities that
determine aerodynamic drag, we can write

D = f (V , ρ,μ, l, c) (3.54)

and the end (i.e. non-dimensional) result is

D
ρV2l2

= F1
(
ρVl
μ

, Vc

)
or CD = F1 (Re,M) . (3.55)

Note that we did not need to go through the entire dimensional analysis again: since we added
one more variable, c, and no new dimensions, Buckingham’s� theorem tells us to look for one
additional non-dimensional group to involve c. The conventional choice is the Mach number,
M ≡ V/c, though in principle a second Reynolds number, based upon c rather than V (i.e.
ρcl/μ), would be just as good.
Dynamic similarity now requires not only the Reynolds number Re to have the same value

for the model and the full-scale car, but also the Mach number M if the drag coefficient CD is
to be the same. As we saw in our example at normal temperature and pressure (i.e. 20 ◦C
and 1 atm), Reynolds-number equality was not consistent with Mach-number equality, so
that dynamic similarity was not achievable. We can see that this will always be a problem if
Reynolds-number equality is enforced with the same fluid properties for both model and full
scale, because

ρMVMlM
μM

= ρFFlF
μF

(3.56)

leads to

VMlM = VFlF or VM = lF
lM

.VF . (3.57)

Apart from any other considerations, this result reveals as completely erroneous the common
layman’s assumption that, to replicate the aerodynamic behaviour of a car or aircraft, its speed
should be reduced in proportion to its size. In fact, as we see, exactly the opposite is true!
The situation is much more satisfactory for the example with high pressure (3.7 bar) and

reduced temperature (0 ◦C) for the model. The dynamic viscosity of air is weakly dependent
upon its absolute temperature (μ ∼ √

T) and practically independent of pressure. Essentially,
the scale difference has been compensated for by increasing the density, whereas the sound-
speed, also proportional to

√
T for a perfect gas, is only slightly reduced (from 343 m/s to 331

m/s) and we find

MM = 95.4/331 = 0.29 andMF = 98.9/343 = 0.29.

Thus, the conditions for dynamic similarity are now completely satisfied, although the Mach
number appears to be low enough for compressibility effects to be regarded as negligible
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(normally, an airflow can be considered incompressible if M < 0.3). In fact, the situation
is not quite so straightforward because there will almost certainly be zones on the car’s surface
where the Mach number could reach significantly higher values, and compressibility effects
would no longer be completely negligible (e.g. for M = 0.5 the density is reduced by about
11%). The more the full-scale Mach number exceeds 0.3 and approaches unity, the more im-
portant is equality of the model and full-scale Mach numbers to account for compressibility
effects.
In discussing the wind-tunnel evaluation of the aerodynamic behaviour of a sports car, we

have made nomention of two vital aspects (both of which are outside the scope of dimensional
analysis). The first is blockage, associated with the fact that the flow around an object in a
wind tunnel is affected by the proximity of the tunnel’s walls. To some degree, this effect can
be accounted for and is minimised if the tunnel cross section is far greater than that of the
model. The second aspect is ground effect, associated with the fact that the airflow around a
car moving over a stationary road is significantly different from the situation where both car
and road are stationary. Modern wind tunnels used to evaluate the aerodynamics of cars use a
‘rolling road’ to account for ground effect.

3.16 Other Reynolds-number considerations

In general, the Reynolds number is influenced by changes in both density and dynamic vis-
cosity. It is often more convenient, therefore, to define the Reynolds number in terms of the
kinematic viscosity ν ≡ μ/ρ, i.e.

Re = ρVl
μ

= Vl
ν
. (3.58)

We can now regard the influence of increased pressure (see Section 3.15) as a reduction in the
kinematic viscosity. A reduction in ν can also be achieved by changing the model fluid from
air to a liquid such as water. At first sight it may seem surprising that the effective viscosity of
water is less than that of air. However, the density of water may be taken as 1000 kg/m3 and its
dynamic viscosity at 20 ◦C as 10–3 Pa · s, so that its kinematic viscosity is 10–6 m2/s, which is
a factor of 15 lower than the value for air, i.e. 1.5 × 10–5 m2/s. For Reynolds-number equality
we now have

VMlM
10–6

= VFlF
1.5 × 10–5

or VM = 1
15

lF
lM

.VF

that is to say, if, as in the sports-car example, lF/lM = 4, we require VM = 0.27 VF , or VM =
26.7 m/s. Although a speed of 26.7 m/s is much too high for most water channels (10 m/s
would already be considered a very high speed for a water channel) and would almost certainly
introduce the new problem of cavitation (see Section 8.12), it is clear that the low kinematic
viscosity of water will allow relatively high Reynolds numbers to be achieved at modest speeds.
We have already indicated that, if the Mach number is less than about 0.3, fluid23 compress-

ibility is of negligible significance and Mach-number equality is not vital. It is natural to ask if
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we can make a similar statement for the Reynolds number. If we calculate the Reynolds num-
ber for our sports car, assuming a length lF = 5 m, we find Re = 3.3 × 107, obviously a very
large number. In fact, for most situations of practical engineering significance (we are exclud-
ing here the emerging fields ofmicrotechnology and nanotechnology, where length scales are
typically 10–6 and 10–9 m, respectively), the Reynolds numbers turn out to be quite large. It
is also the case that above a critical Reynolds number, which is different for every body shape
(for external flow) or channel cross section (for internal flow) but typically of the order of 103,
the flow becomes unsteady and increasingly random (the term chaotic is also used). Such a
state of quasi-random flow is said to be turbulent, in contrast to that at much lower Reynolds
numbers, where the flow is smooth-flowing and said to be laminar (the intermediate state is
termed transitional) (see Chapters 16 and 18). In many instances, the drag coefficient in tur-
bulent flow becomes almost constant (i.e. independent of Reynolds number, see Section 18.15)
and so can be determined from model tests run at Reynolds numbers lower than full scale but
still sufficiently high for the flow to be fully turbulent.

3.17 SUMMARY

In this chapter we have explained the crucial role of units and dimensions in the analysis
of any problem involving physical quantities. The underlying principle of dimensional ho-
mogeneity has been introduced, i.e. the individual terms in any equation or function which
connects physical quantities must have the same overall dimensions (and units). Themajor
advantage of collecting the physical quantities, which are included in either a theoretical
analysis or an experiment, into non-dimensional groups has been shown to be a reduction
in the number of quantities which need to be considered separately. Buckingham’s� the-
orem was introduced as a method for determining the number of non-dimensional groups
(the �’s) corresponding with a set of dimensional quantities and their dimensions. The
sequential elimination of dimensions was shown to be a systematic and simple procedure
for identifying these groups.

The scale up from a model to a geometrically similar full-size version requires dynamic
similarity, which means that each of the non-dimensional groups describing the model-
scale conditions is equal to that for its full-scale counterpart. The definitions and names
of the non-dimensional groups most frequently encountered in fluid mechanics have been
introduced and their physical significance explained. The chapter concluded by pointing
out that the requirements for dynamic similarity may be too costly, technically difficult, or
physically impossible to achieve in practice, and a compromise solution has to be accepted.

The student should be able to

• write down the units and dimensions of any of the physical quantities listed in
Table A.6

• convert any physical equation into non-dimensional form
• apply Buckingham’s � theorem to determine the number of non-dimensional
groups corresponding with a set of dimensional quantities and their dimensions

23 Practically speaking, liquids can normally be regarded as incompressible, so that the term fluid here really means
a gas or vapour.
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• use a systematic procedure, such as the sequential elimination of dimensions, to
convert a functional dependence into an equivalent non-dimensional form

• recognise the more common non-dimensional groups which arise in fluid mech-
anics, such as Reynolds number, Mach number, and drag coefficient

• determine full-size physical quantities from the results of a dynamically similar
model test

• recognise and resolve scaling contradictions

3.18 SELF-ASSESSMENT PROBLEMS

3.1 Determine the dimensions of the following combinations of physical quantities,
where p represents pressure, ρ is density,V is velocity, g is acceleration due to gravity,
t is time, h and l represent lengths, and ν is kinematic viscosity

p/ρV , gt/V ,
√
g/l, Vl/ν, ρV2, p/gh, and ρVl.

3.2 Find the values of the exponents a, b, and c, which make each of the following
combinations of physical quantities non-dimensional

p
ρVa ,

ρVD
μb

, and Dσ c
ρν2

.

In addition to the symbols in problem 3.1, D represents diameter, μ is dynamic
viscosity, and σ is surface tension.
(Answers: 2; 1; 1)

3.3 A disc of weightW and radius R slides with velocityV over a smooth, flat, horizontal
surface. Lubricant with dynamic viscosity μ is pumped into the gap between the disc
and the surface at a volumetric flowrate Q̇. It can be shown that the drag force D
acting on the disc is given by

D = πV
(
μ2R4W
3Q̇

)1/3
.

Show that this equation is dimensionally correct.

3.4 A spherical drop of liquid of diameter D and density ρ oscillates under the influence
of its surface tension σ . Show that the frequency of oscillation is given by

f = k

√
σ

ρD3 ,

where k is a numerical (i.e. non-dimensional) constant.

3.5 (a) The wave resistance R of a ship depends upon its length L, the water depth d,
the water density ρ, the acceleration due to gravity g, and the ship speed V . Derive a
non-dimensional form for the preceding sentence.

(b) A test carried out in a towing tank on a one-twentieth-scale model ship of length
1.5 m gave a value for the wave resistance of 160 N at a model speed of 4 m/s. The wa-
ter density in the towing tank was 1000 kg/m3 while that for the full-size ship would
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be 1050 kg/m3. Assuming dynamic similarity between the model and full scale, cal-
culate the depth of water in the towing tank to correspond to a depth of 20 m for the
full-scale ship and the corresponding wave resistance.
(Answers: 1 m; 1.34 MN)

3.6 The power P developed at the shaft of a wind turbine is a function of the windspeed
V , the air density ρ, the rotation speed N, and the turbine blade rotor diameter D.
Show that

P
ρN3D5 = F

(
V
ND

)
. (3.59)

Tests were performed on a model turbine giving values of P/ρN3D5 and the cor-
responding values of V/ND. It is required to design a wind turbine to generate a
specified power output for a given air density, windspeed, and rotation speed. How
would you plot and use the experimental results for this purpose?

3.7 (a) The shaft power P developed by a hydraulic turbine depends upon the volumetric
flowrate of water through the turbine Q̇, the water density ρ, the pressure differ-
ence across (i.e. between inlet and outlet) the turbine�p, the impeller rotation speed
N, and the impeller diameter D. Derive a non-dimensional form of this statement,
ensuring that P, Q̇, and�p appear in independent non-dimensional groups.

(b) The volumetric flowrate of water through a Kaplan hydraulic turbine is 5 m3/s,
and the head difference 40 m (head difference h is a measure of pressure difference
such that�p = ρgh, where g is the acceleration due to gravity). If the turbine rotation
speed is 250 rpm, assuming conditions of dynamic similarity, calculate the flowrate
and head difference for a geometrically similar, quarter-scale model turbine running
at 400 rpm with a fluid of relative density 0.8. Also calculate the ratio of the power
outputs for the two machines.
(Answers: 0.125 m3/s; 5.12 m; 313)

3.8 A rotating-paddle mixer with a paddle diameter of 1 m is to be designed for use with
a liquid of relative density 2 and kinematic viscosity 1 m2/s. The power required by a
model mixer with a paddle diameter of 100 mm operating at a rotational speed of 50
rpm in a fluid of density 1200 kg/m3 and dynamic viscosity 100 Pa · s is 500 W. As-
suming geometric and dynamic similarity between the model and full-scale mixers,
calculate the power and speed for the full-scale mixer.
(Answers: 144 kW; 6 rpm)

3.9 (a) The velocity V with which a shell can be fired from a gun barrel depends upon
the shell diameter D, the shell mass m, the air density ρ, the soundspeed c, and the
explosive energy of the shell E. Derive a non-dimensional version of this statement.

(b) In a laboratory test, a shell-shaped projectile of diameter 10 mm and mass 0.05
kg is fired at a speed of 500 m/s through a heavy gas with a density of 2 kg/m3

and a soundspeed of 100 m/s. The explosive energy required is 10 kJ. Calculate the
shell speed, shell mass, and explosive energy for a geometrically similar shell of dia-
meter 100 mm fired into air with a density of 1.2 kg/m3 and a soundspeed 340 m/s,
assuming conditions of dynamic similarity.
(Answers: 1700 m/s; 30 kg; 69.4 MJ)

3.10 (a) The drag force D on a supersonic aircraft may be assumed to depend on its wing-
span S, its speed V , the air density ρ, and the compressibility of the air K. Derive
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a non-dimensional form of this statement. Note that compressibility has the same
units as the inverse of pressure.

(b) A fighter aircraft is designed to fly at a speed of 2500 km/h at an altitude where
the air density is 0.287 kg/m3 and the compressibility is 4×10–5 Pa–1. A 1/20th- scale
model of the aircraft is to be tested in a pressurised and cooled wind tunnel. If the air
in the tunnel has a density of 4 kg/m3 and compressibility 2.5 × 10–6 Pa–1, calculate
the airspeed for dynamic similarity. If the model has a wingspan of 0.5 m and the
drag force on the model is 1000 N, calculate the drag force on the full-size aircraft at
design conditions and the required propulsive power.
(Answers: 744 m/s; 2.5 ×104 N; 17.4 MW)

3.11 (a) The drag force D exerted on a sphere moving through a fluid depends upon the
sphere’s radius R, the speed V of the sphere relative to the fluid, the fluid density ρ,
and the dynamic viscosity of the fluid μ. Derive a non-dimensional form of this
sentence.

(b) Measurements of the drag force on a series of spheres, each moving through a
different fluid, yield the following results

R (mm) V (m/s) ρ (kg/m3) μ (Pa · s) D (N)

5 0.1 1260 1.3 0.123

30 0.01 920 0.059 3.34 × 10–4

2.5 0.5 935 0.12 2.83 × 10–3

1 1 1000 810–3 6.3 × 10–4

7.5 10 1.2 1.8 × 10–5 4.25 × 10–3

50 120 0.07 8 × 10–6 1.588

Use the results of part (a) to convert these results to non-dimensional form. Plot the
logarithm of one of the non-dimensional groups against the logarithm of the other
and comment on the results.

3.12 At very low Reynolds numbers the drag force D exerted on a sphere of radius R
moving through a fluid of dynamic viscosity μ at constant velocity V is given by
Stokes’ law

D = 6πμRV .

Show that a small sphere of density ρS dropping under the influence of gravity
through a fluid of density σρS, where σ is a non-dimensional constant less than unity,
reaches a terminal velocity V∞ given by

V∞ = 2
9 (1 – σ )

ρSR2g
μ

where g is the acceleration due to gravity.
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If the sphere has zero initial velocity, the equation governing the initial phase of
motion, during which the sphere is accelerating, may be approximated as

mg – D – VB = (m +mA) dVdt

where t is the elapsed time, m is the mass of the sphere, VB = ρFVg is the buoyancy
force acting on the sphere, andmA is the added mass given bymA = σρSV/2. Added
mass accounts for the fact that an object accelerating through a fluid also accelerates
some of the surrounding fluid. In the case of a sphere, the added mass is equal to half
the mass of the displaced fluid. Show that a non-dimensional form of the equation
for V is

d
∼
V
d

∼
t
= 1–

∼
V

where the non-dimensional velocity
∼
V = V/V∞, the non-dimensional time

∼
t = t/τ ,

and the characteristic time τ = (2 + σ )V∞/
[
(1 – σ ) g

]
.

Integrate the equation for
∼
V and show that

V = V∞
{
1 – e–(2+σ )V∞/[(1–σ )g]

}
.



4 Pressure variation in a fluid at rest
(hydrostatics)

This chapter and the next are concerned with hydrostatics24: the study of fluids at rest. The
word hydrostatics is derived from the Greek word hudor meaning water but the term applies
to all fluids, gases and liquids alike. Shear stresses cannot arise in a body of fluid at rest because
there is no relative motion (except at the molecular level) between fluid particles, and the only
internal forces that can arise are due to changes in pressure with vertical location which result
from gravitational pull. In this chapter we derive the mathematical statement of this principle,
which is called the hydrostatic equation. The solution of many practical engineering prob-
lems involves the application of the hydrostatic equation. In the second part of this chapter
we shall apply it first to the measurement of pressure using liquid-filled tubes (manometry)
and then to analyses of pressure variations in the earth’s atmosphere and in very deep water, in
both instances accounting for compressibility. We conclude the chapter by extending consid-
eration to a body of fluid which, in spite of the chapter heading, is not in fact at rest but is in
steady motion, or even being accelerated, but where there is no relative motion between fluid
particles.

4.1 Pressure at a point: Pascal’s law

Any fluid in contact with a surface exerts a normal stress on that surface, i.e. a force per unit
area normal (i.e. perpendicular) to the surface. This stress is what we call pressure, symbol p,
unit Pa (i.e. N/m2). For a gas, the lowest possible absolute pressure is zero, which defines what
we mean by a vacuum. As we pointed out in Section 2.13, the situation for a liquid is more
complex. If its absolute pressure is reduced to the value of the vapour pressure, vapour is
produced and the liquid boils. Under no circumstance can absolute pressure become negative,
i.e. tensile. Some pressure gauges measure pressure relative to atmospheric pressure B, i.e. p–B,
the so-called gauge pressure. Confusion may arise if the absolute pressure is sub-atmospheric
(i.e. p<B) as the gauge pressure is then negative. In older books, particularly those where
Imperial units were used, gauge pressure is indicated by adding the letter ‘g’ to its units, as in
psig indicating pounds per square inch gauge.
An important underlying principle of hydrostatics, called Pascal’s law, is that the pressure

at any point in a body of fluid at rest is the same in all directions. To prove this law we consider
a triangular wedge of fluid of infinitesimal25 cross section, as shown in Figure 4.1.

24 Instead of hydrostatics, the termed aerostatics is sometimes used when the fluid is a gas, especially air.
25 The term ‘infinitesimal’ here implies that the dimensions of the wedge are so small that the pressure acting

on any face of the wedge can be assumed to be uniform across that particular face, but may well vary from (cont’d)
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px
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p
g

δz δs

δx θ

δW

Figure 4.1 Equilibrium of an infinitesimal wedge of fluid

We assume there is no variation of pressure normal to the triangular face shown. The wedge
has thickness l (into the page), a vertical face of height δz, a horizontal face of length δx, and a
sloping face of length δs. The fluid density within the wedge is ρ and the corresponding weight
of the wedge is δW. At the outset we assume that the pressures acting normal to the three faces
of the wedge, px, pz, and p, as shown in the figure, are all different. Since the fluid is at rest, the
net force acting on the wedge in any direction must be zero.
For the horizontal direction we have

pxδz l – p δs l sin θ = 0

and, from the geometry of the wedge, δz = δs sin θ , so that

pxδz l – p δz l = 0

or, after cancelling out l δz,

px = p. (4.1)

For the vertical direction we have

pzδx l – p δs l cos θ – δW = 0

and, again from the geometry of the wedge, δx = δs cos θ . Since the volume of the wedge δV is
given by δz δx l/2, its weight is given by δW = ρ δV g = ρ δz δx l g/2 so that

pz δx l – p δx l – 1
2ρ δz δx l g = 0

or

pZ = p + 1
2δz g. (4.2)

Equation (4.2) must hold no matter how small the wedge so that, as δz is reduced to zero, the
term including δz must also reduce to zero, and we find

(footnote 25 cont’d) face to face. The concept of an infinitesimal element is commonly employed in all branches of ap-
plied mechanics (fluid mechanics, heat transfer, solid mechanics, etc.). Although the continuum hypothesis imposes
a lower limit on the size of such an element, as we saw in Section 2.5, in practice we rarely come close to it.
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pz = p. (4.3)

Taken together, equations (4.1) and (4.3) allow us to conclude that

px = pz = p, (4.4)

i.e. the pressure at a point in a fluid at rest is the same in all directions: we have proved
Pascal’s law.

4.2 Pressure variation in a fluid at rest; the hydrostatic
equation

For a fluid at rest, the pressure is constant over any horizontal surface within the fluid but
increases with depth. These statements of everyday experience are easily proved, as we do in
this section, but have far-reaching implications.
Consider first a horizontal cylinder of arbitrary length l and infinitesimal cross-sectional

area δA, as shown in Figure 4.2. If the pressure is assumed to change from the value p at one
end of the cylinder to p + �p at the other, then the net horizontal force acting on the fluid
cylinder is

p δA –
(
p +�p

)
δA = –�p δA.

This net force must equal zero unless the fluid cylinder is being accelerated to the right,
which would require �p< 0, or to the left (�p> 0). Thus, for a fluid at rest, �p must
be zero, and we conclude that pressure is constant along any horizontal line within the fluid
and, in consequence, over any horizontal surface.What this means in practice is that, if we can
connect any two points in a single body of fluid at rest without ‘leaving’ the fluid, the pressure
at the two points will be the same. This conclusion has important consequences for pressure
measurement, as we shall see in Sections 4.7 and 4.9. It also explains why the free surface of a
liquid at rest must be horizontal.
We consider now the forces acting on a vertical cylinder of fluid of infinitesimal length δz

and infinitesimal cross-sectional area δA, as shown in Figure 4.3. For convenience the distance
z is measured vertically downwards so that, if measured relative to a surface at z = 0, it rep-
resents depth. The pressure changes from p at the top of the cylinder to p + δp at its base. The
essential difference compared with the horizontal cylinder considered above is that the force

g

l

cross section δA

p p + ∆p

Figure 4.2 Horizontal fluid cylinder of infinitesimal cross section
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cross section δA

z

p

p + δp

g
δz

δW

Figure 4.3 Infinitesimal vertical fluid cylinder

balance must now include the weight of the fluid cylinder δW acting vertically downwards
(the circular symbol in Figure 4.3, with alternating black and white quadrants, represents the
centre of gravity of the cylinder through which δW acts).
The net downward vertical force acting on the fluid cylinder is

p δA + δW –
(
p + δp

)
δA = 0

so that, after cancellation of the term p δA and rearrangement, we have

δp = δW
δA

i.e. the pressure increases by the amount δp due to the weight of fluid per unit area in a layer
of depth δz. The cylinder weight is given by δW = ρ δV g, where δV is the cylinder volume.
Since δV = δz δA, we have δp = ρ δz g, or δp/δz = ρg. If we now reduce δz to zero, the finite-
difference ratio δp/δzmust approach dp/dz, which we term the pressure gradient, and we have
the first-order, ordinary differential equation

dp
dz

= ρg (4.5)
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which is known as the hydrostatic equation26. Since both the fluid density ρ and the accel-
eration due to gravity g are always positive, we conclude that dp/dz is always positive so that
the pressure in a body of fluid at rest can only increase with vertical depth z. We could just
as well say that pressure decreases with altitude (or elevation) –z, altitude being the distance
measured vertically upwards, usually frommean sea level. For convenience we use the symbol
z′, with z′ = 0 at sea level, rather than regard altitude as a negative depth, as we have done
hitherto27. The hydrostatic equation can now be written as

dp
dz′ = –ρg (4.6)

the minus sign appearing because dz = –dz′.

4.3 Pressure variation in a constant-density fluid at rest

In most applications it is sufficient to regard the gravitational acceleration g as a constant,
invariant with altitude or depth, the value 9.81 m/s2 normally being adopted for medium lat-
itudes28. In many engineering calculations, particularly where the fluid is a liquid, sufficient
accuracy is achieved if the fluid density ρ is also assumed to be a constant (values are listed in
Table A.5 for some common liquids and in Table A.6 for several gases). In these circumstances,
equation (4.5) can be integrated to give

p = ρgz + C (4.7)

where C is a constant of integration to be determined from a boundary, or reference, con-
dition which provides a value for p at a known depth or altitude. It is frequently convenient
to take the pressure at the origin for z (i.e. z = 0) as the reference, which is very often the
barometric (or atmospheric) pressure B (standard value 1.01325 bar or 1 atm), so that C = B
and

p = B + ρgz. (4.8)

The combination ρgz is referred to as the hydrostatic pressure, pH . More generally, equation
(4.8) suggests that any pressure difference�p can be expressed in terms of the vertical height h
of a column of liquid of density ρL such that�p = ρLgh. The height h is then referred to as the
head. Although in principle any liquid can be chosen as the reference liquid (for the density
ρL), the usual choices are water, mercury, or an oil.
Equation (4.7) can also be written in terms of elevation z′ as

p + ρgz′ = C. (4.9)

26 The term buoyancy equation is occasionally used instead of hydrostatic equation.
27 The reader should be aware that the use of the symbol z to represent vertical depth is inconsistent with the

Cartesian coordinate system adopted in later chapters in which x, y, and z are orthogonal coordinates, with y usually
representing upward vertical distance. The use of z for depth in this chapter follows common practice.

28 As discussed in Subsection 4.13.1, the reduction in g with altitude in the earth’s atmosphere becomes significant
and has to be accounted for.
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The combination of terms p + ρgz′ is known as the piezometric pressure, and p/ρg + z′ as the
piezometric head. The prefix piezo stems from the Greek word for press.
As we discussed in Section 2.11, gases are far more compressible than liquids. Nevertheless,

the constant-density assumption is often acceptable, for example, if pressure changes are due
to relatively small altitude (ca 100 m) or velocity changes (see Chapters 7 and 8). For liquids,
the equations derived above are perfectly adequate even for depths well in excess of 1000 m
(see Section 4.12).

ILLUSTRATIVE EXAMPLE 4.1

As shown schematically in Figure E4.1, a boiler is supplied with water from an open tank loc-
ated 8 m above it (the arrangement is similar to the central-heating system still found in older
houses where the water tank, called a cistern, is installed in the loft). Calculate the pressure
of the water in the boiler and also the reading of the pressure gauge (i.e. the gauge pressure)
attached to the boiler. Take the atmospheric pressure to be 1.02 bar.

Solution

H = 8 m; B = 1.02 × 105 Pa; g = 9.81 m/s2; ρ = 103 kg/m3.

cistern

g

boiler

p

pressure gauge

B

H

Figure E4.1
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The boiler pressure p is given by

p = B + ρgH

= 1.02 × 105 + 103 × 9.81 × 8

= 1.80 × 105 Pa or 1.80 bar.

The gauge pressure pG is

pG = p – B = ρgH = 1.80 – 1.02

= 0.78 bar.

Comment:

Due to bends in the pipework connecting the water tank to the boiler, the length of piping
may be considerably greater than the vertical height H. As we saw in Section 4.2, in a fluid at
rest, the pressure is the same at any given horizontal location. In consequence only the vertical
height difference is significant in determining the pressure difference p – B: the two locations
at which p and B are determined do not need to be vertically in line.

4.4 Basic pressure measurement

In Section 4.4 we found that, for a static body of fluid of constant and uniform density ρ,
the pressure increases linearly with depth z according to p = ρgz + C, where C is a constant
(equation (4.7)). If we apply this equation to a vertical tube containing a column of liquid
of density ρM and height h, as shown in Figure 4.4, with the origin for z taken as the upper
meniscus, we have

C = p1 and p2 = ρMgh + C

or

p2 – p1 = ρMgh. (4.10)

This important equation provides the basis formanometry, which is themeasurement of pres-
sure or pressure difference using liquid-filled tubes called manometers. The choice of liquid
is influenced by the magnitude of the pressure difference to be measured (e.g. a high-density
liquid such as mercury is used if the difference is large), immiscibility with other fluids, and
low volatility. Common choices are water, a light oil, and mercury.

4.5 Mercury barometer

If the upper end of the tube shown in Figure 4.4 is sealed and the space above the liquid evacu-
ated, such that the pressure p1 is as close to zero as practically possible, we have a device called
a barometer, which can be used to measure the absolute pressure p2. Unfortunately, this prin-
ciple has a major flaw: as we discussed in Section 2.13, at room temperature many common
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z

p
1

p2

density ρM

h

g

Figure 4.4 A vertical tube containing a column of liquid

liquids tend to boil at pressures which are very low but still well above absolute zero, making
them unsuitable for use as a barometer liquid. In the case of water, for example, the pressure
at which boiling begins, called the saturated vapour pressure pV , is about 1.013 bar at 100 ◦C
and still as high as 23 mbar at 20 ◦C. The universal use of mercury as the barometer liquid is
attributed to the Italian scientist Evangelista Torricelli, who must have realised that its vapour
pressure is negligibly small for all practical purposes. As we now know, the vapour pressure
for mercury is 1.1 × 10–3 Pa or about 10–8 bar.
The basic arrangement of the classical mercury barometer is shown in Figure 4.5. The pres-

sure above the mercury column in the vertical tube has been reduced to the saturated vapour

B

0

density ρM

pV

h

g

Figure 4.5 Basic mercury barometer
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pressure of mercury while the free surface of the mercury pool is exposed to the prevailing
atmospheric pressure B so that, from equation (4.10),

B = pV + ρMgh. (4.11)

Although we have just pointed out that for mercury the value of the vapour pressure pV is
negligible compared with B, for completeness we have included it in equation (4.11) and Fig-
ure 4.5. Note too that we have made use of the fact that the pressure at the point O (denoting
the origin from which h is measured) within the barometer tube, on the same horizontal level
as the free surface of the mercury pool, must be precisely the same as the atmospheric pres-
sure. The density of mercury at 20 ◦C is 13,546 kg/m3 so that for the Standard Atmosphere,
for which B = 1.01325 bar, with g = 9.80665 m/s2, equation (4.11) gives h = 0.76275 m, or
30.0 in of mercury. As we pointed out in Section 4.3, any pressure difference can be converted
into an equivalent height of a liquid (in this case, since one pressure is effectively zero, the
pressure itself can be expressed as the height of a mercury column). The principal application
of a barometer is to measure the small deviations from 1.01325 bar which are an important
guide to forthcoming changes in the weather.

4.6 Piezometer tube

The piezometer tube, shown in Figure 4.6, is the second direct application of a column of
liquid in a vertical tube being used for the measurement of pressure. In this case, the upper
end of the tube is open to the atmosphere at absolute pressure B (or any reference pressure)

tube

pipe

h

p

B

g

density ρ

Figure 4.6 Piezometer tube
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while the lower end is attached to a vessel or pipe containing a pressurised (i.e. p > B) liquid
which rises up the tube to a height h. Once again, equation (4.8) is applicable and leads to

p = B + ρgh, (4.12)

ρ being the density of the liquid in the pipe and the tube. From the measured height h we have
ρgh = p – B = pG, the gauge pressure. Note that the liquid depth within the vessel or pipe may
represent a significant contribution to the overall height h and hence the gauge pressure pG.

4.7 U-tube manometer

As is probably apparent to the reader, the piezometer tube is not a practical device for pressure
measurement: there is the ever-present danger of liquid being blown into the environment if
the tube is too short, but to cope with high pressures the vertical tube becomes excessively
long—for water an absolute pressure of 2 bar (i.e. approximately 1 bar greater than atmo-
spheric pressure) would require h = 10.2 m. One solution to this problem might appear to be
to place a high-density liquid, such as mercury, in the vertical tube. In the case of water at 2 bar,
for example, the corresponding height of a mercury column is only 0.75 m. Unfortunately, this
idea is also impractical for a more fundamental reason: the interface between a heavy fluid on
top of a light fluid is unstable. The mercury would simply run down into the main pipe or
pressure vessel and create a major clean-up problem. Mercury is a poisonous substance and its
use is best avoided wherever possible.
The U-tube arrangement shown in Figure 4.7 uses the heavy-liquid (density ρM) idea but

avoids the stability problem since the lighter liquid (density ρF) is above the heavier one. The
analysis of this and other manometer problems depends upon the two fundamental results we
obtained in Sections 4.2 and 4.3

(a) in a fluid at rest, the pressure is the same for all points on the same horizontal level; and
(b) for a fluid of constant density ρM , the pressure increase due to a vertical height difference

h is ρMgh.

The first of these two statements tells us that, in the fluid of density ρF , the pressure at points
① and ② must be the same and, in the manometer liquid of density ρM , the pressure at points
③ and ④ must also be the same. Although we have no real interest in the intermediate pressure
at the interface between the two liquids (point ③), it is convenient to give it a symbol, such as
p′, to use in our analysis.
For the right-hand side of the manometer, we have

p′ = B + ρMgH

and, for the left-hand side,

p′ = p + ρFgh.

Note that in both cases we have evaluated the intermediate pressure p′ by working our
way down the manometer, in the direction of increasing pressure, adding together the ap-
propriate pressure and pressure difference for each fluid. This is a convenient and foolproof
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Figure 4.7 U-tube manometer

‘bookkeeping’ approach to solving manometer problems which is easily extendable to any
number of fluid layers. Since the right-hand side of each of the above expressions is equal
to p′, we can equate the two and write

B + ρMgH = p + ρFgh or p – B = (ρMH – ρFh) g (4.13)

which gives us the unknown pressure p, once again in the form of a gauge pressure p – B. In
fact the pressure imposed on the free surface of the manometer liquid (point ⑤) need not be
the barometric pressure B but could be any known reference pressure.

ILLUSTRATIVE EXAMPLE 4.2

The U-tube manometer shown in Figure E4.2 is used to measure the pressure difference
p1 – p2 =�p between two pipes on the same horizontal level. Show that

�p = (ρM – ρF) gH

where ρM is the density of the manometer liquid, ρF is the density of the fluid in the pipes,
g is the acceleration due to gravity, and H is the height difference between the levels of the
manometer liquid in the two arms of the U-tube.
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Figure E4.2

Solution

In the figure the fluid pressures in the two pipes have been indicated by p1 and p2, where
p1 = p2 +�p, the height of the pipes above the manometer liquid interface on the right-hand
side as h, and the pressure in the manometer liquid on the horizontal level of the left-hand
interface as p′.
For the left-hand side of the manometer we have

p′ = p1 + ρFg (h +H)

and, for the right-hand side,

p′ = p2 + ρFgh + ρMgH.

If we equate these two expressions for p′, we have

p1 + ρFg (h +H) = p2 + ρFgh + ρMgH

which we can rearrange, after substituting p2 +�p for p1, as

p2 +�p + ρFgh + ρFgH = p2 + ρFgh + ρMgH.

Each of the terms p2 and ρFgh appears on both sides of the equation, so they cancel out, and
we have, finally,

�p = (ρM – ρF) gH.

Comment:

Neither the actual fluid pressures nor the height of the pipes appears in the final result,
which can be derived directly from the final equation of Section 4.7 by setting p – B = �p,
and h = H.
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The use of a U-tube manometer or a differential pressure transducer29 to measure the pres-
sure difference between two points at different heights, as shown in Figure 4.8, again relies
upon the hydrostatic equation. Considering first the U-tube, we have

p′ = p1 + ρFg
(
z1 + 1

2h
)
= p2 + ρFg

(
z2 – 1

2h
)
+ ρMgh (4.14)

from which

p1 – p2 = (ρM – ρF) gh + ρFgz12 (4.15)

where z12 = z2 – z1.
For the pressure transducer we have

�p = p1 + ρFgz3 –
(
p2 + ρFgz4

)
= p1 – p2 – ρFgz12 (4.16)

zero (datum)

level

1
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5

p'p'

h

z1

z12

z2

z4

p2

∆p

p1
ρF

ρF

ρM

z3

Figure 4.8 U-tube manometer or pressure transducer used to measure pressure difference between
locations at different heights

29 A differential pressure transducer is an electronic device used to measure pressure difference rather than ab-
solute pressure. Absolute pressure can be measured if one side of a differential pressure transducer is subjected to a
known, reference pressure.
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or

p1 – p2 = �p + ρFgz12. (4.17)

For the U-tube manometer, equation (4.14) is based upon the recognition that the pressure
p′ at location ③ has to be the same as that at location ④. Equation (4.16) is arrived at using
the hydrostatic equation to determine the pressure on either side of the pressure transducer,
which is a vertical distance z3 below location ①, and z4 below location ②. The distance z12
is the vertical distance between locations ① and ②. The result of Illustrative Example 4.2 is
recovered if z12 = 0.

4.8 Effect of surface tension

Although until now we have neglected the effect of surface tension (see Section 2.14), for li-
quids in small-diameter tubes this property leads to an additional pressure difference which
needs to be accounted for. We consider the situation shown in Figure 4.9. The lower end of an
open vertical tube of diameter D is immersed in a liquid with surface tension σ and contact
angle θ , measured through the liquid. We shall assume that the fluid above the liquid surface
(a gas) has a much lower density than that of the liquid so that pressure differences in the
surrounding fluid can be ignored. The vertically upward surface-tension force F acting on the
periphery of the liquid surface is given by F = πDσ cos θ . and, for static equilibrium, this force
must exactly balance the weight of the liquid column of height h, i.e.

πDσ cos θ = πD
2

4 hρg

F

D

(a)

density ρ
h

g

(b)

density ρ

D

h

130°

g

F

Figure 4.9 Effect of surface tension for liquid in a vertical tube with (a) θ < 90◦ and (b) θ > 90◦
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so that

h = 4σ cos θ
ρgD . (4.18)

For pure water in contact with air the surface tension at 20 ◦C is 7.28 × 10–2 N/m with a
contact angle which is practically zero, so that for a tube 1 mm in diameter we find h= 29.7
mm, which is clearly far from negligible. Even for a 10 mm tube we have h = 3 mm. For
mercury the surface tension is 0.472 N/m, the contact angle 130◦, and the corresponding h
values are –9.1 mm and 0.91 mm, respectively. Note that what these contact angles tell us is
that, for water in a vertical tube, surface tension produces a force pulling vertically upwards
whereas for mercury the resultant force is vertically downward (due to axisymmetry there can
be no radial component of force).
Although the value of σ for mercury is about seven times that for water, its effect on the

liquid level is much smaller, first because the density of mercury is about 13.6 times that of
water, and second because the vertical component of the surface-tension force is reduced by
the contact angle (cos 130◦ = –0.643 compared with cos 0◦ = 1).
Based upon the foregoing, it is clearly straightforward to account for the effect of surface

tension on the liquid level in a manometer. However, this is usually unnecessary because we
almost alwaysmeasure changes in the liquid levels produced by changes in the applied pressure
difference so that the surface-tension effect cancels out.

4.9 Inclined-tube manometer

A common form of manometer for teaching-laboratory use is shown in Figure 4.9. In this case,
instead of a vertical U, one side of the manometer tube (cross-sectional area a) is inclined at
an angle φ to the horizontal. This inclined tube is attached to the pipe on the right-hand side,
in which there is fluid of density ρF at a pressure p, to be determined. The left-hand side of
the manometer tube is vertical and attached at its top to a reservoir of cross-sectional area
A (� a) in which the surface of the manometer fluid, density ρM , is subjected to a reference
pressure pREF . The analysis of the inclined-tubemanometer is very similar to that of the U-tube
manometer (Section 4.7). We measure all liquid levels from a horizontal reference level, as
shown in the figure, defined such that the surface of the liquid in the reservoir is at the same
level ① as the interface ④ in the inclined tube when the pressure in the pipe is p0, so that

pREF = p0 + ρFgH0, (4.19)

H0 being the vertical height of the pipe centre ⑤ above the reference level. It is evident from
equation (4.19) that, unless ρFgH0 is negligible compared with pREF , p0 may be considerably
different from the reference pressure pREF . An increase in the pipe pressure from p0 to p causes
the interface to move down the inclined tube by an amount L (i.e. from ④ to ③), and the level
in the reservoir to rise above the reference level by an amount δh. Since the volume of liquid
which enters the reservoir must be the same as that which moves along the inclined tube, we
have δhA = La, so that δh = La/A, which shows that δh � L since a � A.
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Figure 4.10 Inclined-tube manometer

As we have stressed throughout this chapter, in manometry it is the vertical height which is sig-
nificant. From Figure 4.10 we see that the interface has moved a vertical distanceH = L sinφ so
that inmeasuring L rather thanH we have effectively applied an amplification factor of 1/ sinφ.
A typical value for the inclination angle φ is 15◦, which corresponds to an amplification factor
of 3.86.
For the situation shown in the figure, we again make use of the fact that in a single fluid at

rest the pressure must be the same at all positions on the same horizontal level, in this case, the
intermediate pressure p′ at locations ② and ③. On the left-hand side, again working vertically
downwards from the liquid surface in the reservoir to location ②, we have

p′ = pREF + ρMg(δh +H)

and on the right-hand side the corresponding result is

p′ = p + ρFg (H0 +H) .

If we equate the two results, after some rearrangement, we have

p – pREF = ρMg (δh +H) – ρFg (H0 +H) . (4.20)

This equation reveals that, for a given pressure difference p – pREF , the smaller we make δh, i.e.
the smaller we make a/A, the larger will beH and so L. This is an important point because it is
generally easier to measure a long length than it is a short length. If we substitute δh = La/A,
and H = L sinφ, in the equation for p – pREF , we find

p – pREF = ρMg
(
L sinφ + La

A

)
– ρFg (L sinφ +H0)

or, after some rearrangement,

p – pREF = (ρM – ρF) gL sinφ +
ρMgLa

A – ρFgH0. (4.21)
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A number of simplifications of the final equation for p–pREF are possible, depending upon the
values of the density of the manometer liquid ρM , the density of the fluid in the pipe ρF , the
area ratio a/A, and the inclination angle φ. The ratio of the second term to the first in equation
(4.21) can be regarded as a constant for the manometer equal to ρM a/[(ρM – ρF)A sin φ]. If,
as is often the case, ρM far exceeds ρF , for example mercury and a gas, or mercury and water,
and the ratio a/A is also small compared with unity, the second term then becomes negligible,
and the manometer equation reduces to

p – pREF ≈ ρMgL sin φ – ρFgH0. (4.22)

The final termmay also be negligible, or it may be that we are interested only in changes in the
pressure p compared with p0, in which case we can substitute for pREF from equation (4.19) to
obtain

p – p0 ≈ ρMgL sin φ.

ILLUSTRATIVE EXAMPLE 4.3

(a) The inclinedmanometer shown in Figure E4.3 is used tomeasure the difference between
the pressure p in a horizontal pipe and the constant reference pressure pR in the mano-
meter reservoir. The reference level is defined by the free surface of the manometer
liquid in the reservoir being at the same height as the interface between the pipe and
manometer fluids in the inclined tube. The pipe axis is a vertical distance H above the
reference level. Derive a relationship between p, pR,H, g, L,φ, ρM , ρ, a, and A, where g is
the acceleration due to gravity, L is the manometer reading (the distance moved from
the reference level by the interface in the inclined tube), ρM is the density of the mano-
meter liquid, ρ is the density of the fluid in the pipe, a is the cross-sectional area of
the inclined tube, φ is the angle of inclination of the tube measured from the hori-
zontal, and A is the cross-sectional area of the reservoir. Surface-tension effects can be
neglected.

(b) For a particularmanometer, pR = 0.5 bar,H = 0.5m, φ = 20◦, ρM = 13, 600 kg/m3, ρ = 800
kg/m3, the internal diameter of the inclined tube is 5 mm, and that of the reser-
voir 200 mm. Calculate the manometer reading L if the reservoir and pipe pressures
are equal. Calculate the pressure difference p – pR if L = 0. Calculate the satura-
tion vapour pressure of the liquid in the pipe if cavitation occurs within the pipe
for L = –0.9 m.

Solution

(a) In the figure, the pressure at the level of the interface p′ is the same in both arms of the
manometer.
On the left-hand side,

p′ = pR + ρMg (δ + L sin φ)

where δ is the vertical height of the surface of the manometer liquid above the reference level.
Also, L sin φ is the vertical change in height due to movement of the manometer liquid in the
sloping tube.
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Figure E4.3

On the right-hand side,

p′ = p + ρg (H + L sinφ) .

We can eliminate p′ to give

p – pR = ρMg (δ + L sin φ) – ρg (H = L sin φ)
= (ρM – ρ) gL sin φ + ρMgδ – ρgH.

Since the volume of manometer liquid which moves into the reservoir must equal the volume
of liquid which moves down the inclined tube, we have

δ A = aL

so that

p – pR = (ρM – ρ) gL sin φ +
(
ρMaL
A – ρH

)
g. (E4.3)

(b) We have pR = 5 × 104 Pa; H = 0.5 m; φ = 20◦; ρ = 800 kg/m3; ρM = 1.36 × 104 kg/m3;
d = 5 × 10–3 m; D = 0.2 m; g = 9.81 m/s2

If the reservoir and pipe pressures are equal, p = pR, and equation (E4.3) reduces to

(ρM – ρ) L sin φ +
ρMaL
A – ρH = 0

from which we find

L = ρH
(ρM – ρ) sin φ + ρMa/A

= 800 × 0.5(
1.36 × 104 – 800

)
sin 20o + 1.36 × 104 × (5/200)2

= 0.091m or 91mm.
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For L = 0, from equation (E4.3) the pressure difference is given by

p – pR = –ρHg

= –800 × 0.5 × 9.81

= –3924 Pa.

For L = –0.9 m, from equation (E4.3) the pressure difference is given by

p – pR = –
(
1.36 × 104 – 800

)× 9.81 × 0.9 × sin 20o

–

[
1.36 × 104 × 0.9 ×

(
5
200

)2
+ 800 × 0.5

]
× 9.81

= –4.265 × 104 Pa

thus

p = 5 × 104 – 4.265 × 104 Pa = 7.35 × 103 Pa.

Since this is the pressure at which we are told cavitation occurs, we conclude that the vapour
pressure of the liquid in the pipe is 7350 Pa.

4.10 Multiple fluid layers

If there are several layers of immiscible fluid, of thickness Z1 and density ρ1, Z2,
ρ2 (> ρ1) , Z3, ρ3 (> ρ2), etc., the pressure increases across each layer simply add together to
give the total increase in pressure with depth. Using the notation of Figure 4.11, we have

p
2

Z1

Z2

Z3

p
3

p
1

ρ
1

ρ
2

ρ
3

g

B

Figure 4.11 Pressure increase through a series of fluid layers
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p1 = B + ρ1gZ1
p2 = B + ρ1gZ1 + ρ2gZ2
p3 = B + ρ1gZ1 + ρ2gZ2 + ρ3gZ3

B being the pressure acting on the surface of the top layer. The linear increase in pressure p
with depth z corresponding to p = ρgz +C, C being a constant, is shown schematically in each
layer.

ILLUSTRATIVE EXAMPLE 4.4

As shown in Figure E4.4, a vertical cylinder of inside diameter 50 mm is sealed at the bottom
and filled to a depth of 500 mm with mercury. If the barometric pressure B is 1.1 bar and the
mercury supports a close-fitting frictionless piston of mass 5 kg, calculate the absolute and
gauge pressures at the bottom of the cylinder.

B

ρ
g

mg

p

H

D

Figure E4.4
Solution

D = 0.05 m; B = 1.1 × 105 Pa;m = 5 kg; H = 0.5 m; ρ = 13.6 × 103 kg/m3.
The statement in the problem that the piston is close-fitting implies that there is no flow of
fluid (leakage) past the piston. We denote the cross-sectional area of the piston and cylinder
by A

(
= πD2/4

)
, and the absolute pressure at the bottom of the cylinder by p. The solution to

this problem requires that we recognise that the force acting on the bottom of the cylinder pA
is made up of three components: the vertically downward pressure force on the top face of the
piston BA, the weight of the piston mg, and the force due to the pressure difference from top
to bottom of the mercury ρgH. Thus, we have

pA = BA +mg + ρgHA

so that

p = B +
mg
A + ρgH.
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The effective pressure difference�pP due to the weight of the piston ismg/A. If the density of
the piston material is ρP, and the piston height is ZP, then m = ρPAZP, so that �pP = ρPgZP,
i.e. a hydrostatic or ‘ρgz′ term, just as for a fluid.
If we now substitute the numerical values into the equation for p, we have

p = 1.1 × 105 + 5 × 9.81
π × 0.052/4

+ 13.6 × 103 × 9.81 × 0.5

= 2.02 × 105 Pa = 2.02 bar

and the gauge pressure pG = p – B = 0.92 bar.

4.11 Variable-density fluid; stability

Since we put no restriction on the density ρ in the derivation of the hydrostatic equation (4.5)
in Section 4.2, this equation must apply whether ρ is constant or varies in some known way
with depth z, i.e. ρ = ρ (z). It may be that the density variation with z is known, in which case
the hydrostatic equation can be integrated immediately. The more usual, and more complic-
ated, situation is that the density is related to the fluid pressure (and possibly also the fluid
temperature), and finding the density variation with depth is itself part of the solution of any
problem.
We consider first the situation where the density is a specified function of depth. For ex-

ample, we might assume that close to the bed of a reservoir increasing amounts of silt cause
the effective fluid density ρ to increase linearly with depth, i.e.

ρ = ρ0 + α (z – z0) = ρ0 + αz∗ (4.23)

where ρ0 is the density of silt-free water, α is a constant which depends upon the silt concen-
tration, and z0 is the depth below which ρ increases. For convenience we introduce z∗ = z– z0.
If equation (4.23) is substituted in the hydrostatic equation, we have

dp
dz∗ = ρg =

(
ρ0 + αz∗

)
g (4.24)

which can be written as

dp = ρ0gdz∗ + αgz∗ dz∗.

If we integrate between the levels z∗1 , and z∗2 , we have, finally,

p2 – p1 = ρ0g
(
z∗2 – z∗1

)
+ 1
2αg
(
z∗22 – z∗21

)
(4.25)

i.e. the pressure increase is made up of two parts, the first due to the pure-water density ρ0,
and the second a quadratic (i.e. z∗2) term due to the silt.
Fresh water has a lower density (normally taken as 1000 kg/m3) than salt water (density ap-

proximately 1000+ 7c kg/m3, where c is the percentage salt concentration by weight), so if one
meets the other, as in an estuary, the lighter fresh water tends to form a layer above the heavier
salt water. This phenomenon of layering according to progressively increasing density with
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depth, which can occur in both liquids and gases, is called stratification and can be of major
practical significance. For example, under certain atmospheric and topographical conditions,
as may occur in a natural basin or valley, a ‘lid’ of low-density warm air can settle above heavy
cooler air and lead to the build-up of high levels of pollutant at ground level. In some instances
the two fluids may be miscible, as is the case for gases or salt and fresh water. In others, such
as oil and water, there is no mixing, and a well-defined interface forms between the two. The
interface is stable if the density of the fluid above it is less than that of the fluid below it, and
unstable if the density is higher above the interface than below. Oil spilled onto water spreads
out under the influence of gravity to form a thin stable layer called a slick. The stability of a
stratified body of liquid where the density variation is continuous can be determined as fol-
lows. If there is a density decrease with upward vertical distance z′, i.e. dρ/dz′ < 0, a fluid
particle of density ρ moved vertically upwards by an infinitesimal amount δz′ would find itself
surrounded by fluid of lower density

ρ + δz′ dρ
dz′

and so gravity would cause the (higher-density) particle to fall back to its original position.
This situation is dynamically stable, whereas if dρ/dz′ > 0 it is unstable. The stability of a large
body of a gas, in particular the earth’s atmosphere, is considered in Section 4.13.

4.12 Deep oceans

The Mariana Trench in the western Pacific Ocean is the deepest part of the world’s oceans,
with a depth of about 10.9 km. The corresponding pressure at that depth, calculated from
the constant-density equation B + ρgz for a liquid of density 1000 kg/m3, would be 1070 bar.
An ideal gas subjected to such a large pressure (at constant temperature) would decrease to
1/1070th of its volume at 1 bar, with a corresponding increase in density. How realistic, then,
is our assumption of constant density for water and other liquids? As stated in Section 2.5, a
good approximation for the observed behaviour of liquids is the modified Tait equation

ρ0
ρ

= 1 – A ln
(
p + C
B + C

)
(2.21)

where, for water at 25 ◦C, A = 0.137, B = 1 bar, and C = 2996 bar.
For a pressure of 1070 bar equation (2.25) gives a density 4.4% higher than that for 1 bar.We

conclude that for water, at least, the increase in density with pressure is likely to be negligible
in most practical circumstances. If a more accurate p (z) relation is required than that which
results from the assumption of constant density, we could integrate the hydrostatic equation
(4.5) numerically with the density evaluated using equation (2.21).

4.13 Earth’s atmosphere

The earth’s atmosphere is a relatively thin region of gas held to the earth’s surface by gravita-
tional attraction. Although we rarely think of air as being heavy, it’s a remarkable fact that the



EARTH’S ATMOSPHERE 109

total mass of the atmosphere is estimated to be about 5.3 × 1018 kg, about 80% of it contained
within the lower atmosphere, an 11 km thick layer called the troposphere. The troposphere is
the first of seven layers whichmake up the International StandardAtmosphere 1976 (ISA)30,
which extends from sea level to 86.0 km. Within each layer the temperature is assumed to be
constant or to vary linearly with altitude z′. The ISA attempts to represent average atmospheric
conditions in temperate latitudes. At sea level, the pressure (the standard atmospheric pres-
sure) is taken as 101,325 Pa (1 atm), and the temperature as (T0) 15.15 ◦C (or 288.15 K). It
should be understood that the ISA is a simplified model of the actual atmosphere, which is
dynamic rather than static in character and also moist with water vapour rather than dry.

4.13.1 Geopotential altitude

For most practical purposes the acceleration due to gravity g can be regarded as a constant
but over the altitude range of the atmosphere (0 to 86 km in the ISA and up to 10,000 km if
the exosphere is to be included) this approximation is increasingly unacceptable. According
to Newton’s gravitational law, the g

(
z′
)
dependence follows an inverse square equation

g = g0
(

RE
RE + z′

)2
, (4.26)

where RE is the mean radius of the earth and g0 is the acceleration due to gravity at sea level
(z′ = 0). The usual values assumed are RE = 6371 km, and g0 = 9.80665 m/s2 (usually rounded
to 9.81 m/s2)31. Substitution for g in the hydrostatic equation (4.6) then leads to

dp
dz′ = –ρg = –ρg0

(
RE

RE + z′
)2

. (4.27)

Since equation (4.27) is awkward to integrate analytically unless ρ is constant (an unrealistic
approximation within the atmosphere), it is usual in meteorology to present the properties of
the atmosphere in terms of the geopotential altitude z′G such that the hydrostatic equation
becomes

dp
dz′G

= –ρg0 (4.28)

which avoids the difficulty. Division of equation (4.27) by equation (4.28) leads to

dz′G
dz′ =

g
g0

=
(

RE
RE + z′

)2
which can be integrated to give the relationship between the geometric altitude z′ and the
geopotential altitude z′G

z′G = REz′
RE + z′ . (4.29)

30 The ISA is one of a number of models for the earth’s atmosphere. Others include the International Civil
Aviation Organization (ICAO) Standard Atmosphere and the U.S. Standard Atmosphere.

31 The standard acceleration due to gravity is specified as 9.80665m/s2 in ISO 80000-3:2006 Quantities and units—
Part 3: Space and time.
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From equation (4.29) with z′ = 86 km, we find z′G = 84.852 km (≈ 0.0133 RE) which corres-
ponds with the outer surface of the final layer of the Standard Atmosphere, known as the
mesosphere (further details are given below). Since z′

G/RE ≈ 0.0133 the Standard Atmo-
sphere can be considered as a thin layer. Equation (4.29) accounts for the reduction in g with
increasing altitude32.

4.13.2 Structure of the earth’s atmosphere

According to the ISA, in the troposphere the temperature T (in ◦C) decreases with z′G
according to the relation

T = T0 – Γ z′G (4.30)

where the lapse rate Γ , defined as the negative of the temperature gradient33 –dT/dz′G, is
6.5 ◦C/km. As we shall see in the Subsection 4.13.3, this lapse rate suggests that the tropo-
sphere is in stable equilibrium. In fact, due to natural convection caused by surface heating,
the troposphere is highly unstable resulting in a great deal of mixing which manifests itself in
the weather we experience, from a gentle breeze to tropical storms and hurricanes. The second
layer, the tropopause (z′G = 11.0 to 20.0 km), is isothermal at a temperature of –56.5 ◦C. The
pressure at an altitude of about 19 km, known as Armstrong’s limit, is so low (about 0.064
kPa) that water boils at the normal temperature of the human body (37 ◦C).
In contrast to the troposphere, the stratosphere (20.0 to 47.0 km) is very stable with a pro-

gressively increasing temperature. In the lower stratosphere (20.0 to 32.0 km) the lapse rate
is –1 ◦C/km leading to a temperature increase from –56.5 to –44.5 ◦C. For subsonic civil air-
craft the typical cruising altitude is about 10 km, while for supersonic and combat aircraft it
is more like 20 to 30 km. The low temperature at these altitudes is responsible for condens-
ing the water vapour in an aircraft-engine exhaust to produce the white vapour trails, called
contrails (a contraction of condensation trails), often visible in a clear blue sky. Most atmo-
spheric ozone resides in the lower stratosphere in the so-called ozone layer. The temperature
continues to increase in the upper stratosphere (32.0 to 47.0 km) with a lapse rate of –2.8 ◦C
to a temperature of –2.5 ◦C. The stratopause, which is between 47.0 and 51.0 km, is again
isothermal at a temperature of –2.5 ◦C.
The temperature decreases within themesosphere (51.0 to 84.852 km), initially at a rate of

2.8 ◦C/km to –58.5 ◦C at an altitude of 71.8 km and then at 2.0 ◦C/km to –86.3 ◦C at 86.0
km, the altitude which can be taken as the upper limit of the ISA. Four further layers can be
defined: themesopause, which is again isothermal and extends from the top of themesosphere
to the thermosphere (approximately 85 to 600 km), followed by the exosphere or outer ther-
mosphere (approximately 600 to 10,000 km), while the ionosphere (approximately 60 to 300

32 Unless otherwise stated, the term altitude refers to the geopotential altitude.
33 Since the lapse rate is defined as Γ = –dT/dz′

G, a positive lapse rate, as in the troposphere, corresponds to
decreasing temperature and vice versa when the lapse rate is negative. We note too that the symbol γ is frequently
used to represent the lapse rate but, to avoid confusion with the ratio of specific heats for which γ is the usual symbol,
we have chosen to use Γ .
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km) starts in the mesosphere and ends in the thermosphere. Solar radiation leads to temper-
atures in excess of 1000 ◦C in the outer thermosphere. The Kármán line at an altitude of 100
km defines the lower boundary of outer space.
As we have just outlined, the basic specification for the earth’s atmosphere is in terms of static

temperature, T
(
z′G
)
. To find the variation of static pressure p and density ρ with altitude z′G we

need to integrate the hydrostatic equation (4.28) for each layer and, in addition to T
(
z′G
)
, this

requires the introduction of an equation of state, which connects ρ, p, and T. From Section 2.4
we have the ideal-gas law

p = ρRT (2.9)

where R is the specific gas constant, with the value for air taken as 287.1 m2/s2K.
We illustrate the general problem of determining p

(
z′G
)
and ρ

(
z′
G
)
given T

(
z′G
)
by con-

sidering the tropopause, in which the temperature remains constant with altitude (i.e. the
tropopause is isothermal). Since the temperature T here is constant, it is convenient to use
equation (2.9) to eliminate the variable density from the hydrostatic equation to give

dp
dz′G

= –ρg0 = –
pg0
RT (4.31)

which can be rearranged as

1
pdp = –

g0
RT dz′G.

After integration we have

ln p = –
g0z′G
RT + C

where C is a constant of integration which we can determine from the condition at the upper
limit of the troposphere (z′

T = 11 km)34, where the pressure is pT (0.226 bar), so that

C = ln pT +
g0z′T
RT

hence,

ln p = –
g0z′G
RT + ln pT +

g0z′T
RT

or

p
pT

= exp

{
–
g0
(
z′G – z′T

)
RT

}
. (4.32)

Equation (4.32) shows that the air pressure in the tropopause decreases exponentially with
altitude difference.
A similar analysis for the troposphere, in which the temperature decreases linearly with

altitude, i.e. dT/dz′G = –Γ , leads to the relation

34 To avoid double subscripts, the geopotential altitude of the outer limit of the stratosphere is represented by z′
T

and that of the outer limit of the stratopause by z′
P .
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p = B

(
1 –
Γ z′G
T0

)g0/Γ R
(4.33)

where T0 is the temperature at sea level (z′G = 0), taken as 288.15 K. Since Γ = 6.5×10–3 ◦C/m
for the troposphere, the exponent g0/γR = 5.26.

ILLUSTRATIVE EXAMPLE 4.5

The temperature in the lower mesosphere (51 < z′G < 71 km) decreases linearly with altitude
z′ with lapse rate Γ . If the gas which makes up the mesosphere can be treated as a perfect gas
with gas constant R, show that the pressure varies according to

p
pP

=
(

T
TP

)g0/Γ R
where the subscript P denotes the ‘top’ of the stratopause (i.e. z′P = 51 km).
If the values of pP and TP are 66.9 Pa and 270.7 K, respectively, and the lapse rate Γ for the
lower mesosphere is 2.8 ◦C/km, calculate the temperature, pressure, and density at an altitude
of 60 km. The gas constant R can be taken as 287 m2/s2 K.

Solution

The specified temperature variation with z′G is

dT
dz′G

= –Γ

and the pressure follows the hydrostatic equation

dp
dz′G

= –ρg0.

These two equations can be combined to eliminate z′
G to give

dp
dT

=
ρg0
Γ

.

The density ρ can be eliminated using the perfect-gas law p = ρRT to give

dp
dT

=
pg0
Γ RT

which can be rearranged as

dp
p =

g0
Γ R

dT
T .

This equation can be integrated to give

ln p =
g0
Γ R lnT + C.

The constant of integration C can be determined from pP and TP using

ln pP =
g0
Γ R lnTP + C
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so that, after substituting for C in the equation for p, we have

ln p =
g0
Γ R lnT + ln pP –

g0
Γ R lnTP

which can be rearranged as

ln p – ln pP =
g0
Γ R (lnT – lnTP)

so, finally,

p
pP

=
(

T
TP

)g0/Γ R
.

We note that g0/Γ R is a non-dimensional constant.
For the numerical part of the problem we have pP = 66.9 Pa, TP = 270.7 K, R = 287 m2/s2 ·K,
g0 = 9.81 m/s2, z′P = 5.1 × 104 m, Γ = 2.8 × 10–3 ◦C/m, and z′G = 6 × 104 m. We shall need
the value of g0/Γ R so we calculate this first: 9.81/

(
2.8 × 10–3 × 287

)
= 12.2.

From dT/dz′G = –Γ we have T = –Γ z′G + C so that TP = –Γ z′P + C and we have T – TP =
–Γ
(
z′G – z′P

)
. From the last equation we find that the temperature at z′ = 60 km is

T = 270.7 – 2.8 × 10–3
(
6 × 104 – 5.1 × 104

)
= 245.5 K or – 27.5 ◦C.

The corresponding pressure is given by

p
pP

=
(

T
TP

)g0/Γ R

=
(
245.5
270.7

)12.2
= 0.3036

so p = 20.3 Pa, and the density is found from ρ = p/RT = 20.3/ (287 × 245.5) = 2.88 × 10–4

kg/m3.

The properties (temperature, pressure, and density) of the International Standard Atmo-
sphere as functions of geopotential altitude z′G are listed in Table A.7 and illustrated in
Figure 4.12.
As can be seen, both the pressure and the density decrease almost exponentially with alti-

tude, each falling to near zero at about z′G = 40 km. If this value is taken as the height of the
atmosphere, an average density ρ̄ = B/g0z′G can be calculated as 0.26 kg/m3, i.e. only about
20% of the sea-level value at 15 ◦C and 1 bar.

4.13.3 Adiabatic lapse rate and atmospheric stability

In Section 4.11 we showed how the stability of a body of liquid depends upon the density
gradient dρ/dz′. To determine the stability of a region of the atmosphere where the lapse rate
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Figure 4.12 Temperature, density, and pressure variation for the International Standard Atmosphere

is Γ , assumed constant, we first need to find the corresponding density variation with altitude.
We start with the pressure variation, given by the hydrostatic equation

dp
dz′G

= –ρg0. (4.28)

Assuming the air in the atmosphere is dry and follows the perfect-gas law p = ρRT, then

dp
dz′G

= RT dρ
dz′G

+ ρR dT
dz′G

= RT dρ
dz′G

– ρRΓ = –ρg0

from which

T dρ
dz′G

= ρ
(
Γ –

g0
R

)
. (4.34)

We cannot simply conclude that if dρ/dz′
G < 0 the atmospheric layer is stable, because now

when a fluid particle is moved vertically its density changes to match the pressure at its new
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location. It is reasonable to assume that there is no heat transfer (adiabatic) to the particle as
it moves. If the process is also reversible, then it is isentropic so that, from Section 2.11, the
pressure and density are related as follows

p
ργ

= constant. (2.38)

The hydrostatic equation (4.28) combined with equation (2.38) and the perfect-gas law,
leads to

dρ
dz′G

= – ρ
2

γ p = –
ρg0
γRT

or

T dρ
dz′G

= –
ρg0
γR . (4.35)

If the vertical distance moved by the particle is +δz′G, then from equation (4.34) its density
changes from ρ to

ρ –
ρg0
γRT δz

′
G. (4.36)

From equation (4.33) the density of the surrounding air at altitude z′G + δz′G is

ρ + ρT

(
Γ –

g0
R

)
δz′G. (4.37)

For stability, gravity must cause the particle to return to its original position, which equations
(4.36) and (4.37) show will be the case if

ρ –
ρg0
γRT δz

′
G > ρ +

ρ

T

(
Γ –

g0
R

)
δz′G.

After simplification, this inequality leads to

go
R

(
γ – 1
γ

)
> Γ (4.38)

as the condition for stability within the atmosphere. From the perfect-gas equation it can be
shown that the lapse rate for an isentropic atmosphere, where p/ργ = constant, is

ΓAD =
go
R

(
γ – 1
γ

)
. (4.39)

The quantity ΓAD is termed the adiabatic lapse rate, and the criterion for stability is thus
ΓAD > Γ .
With g0 = 9.81 m/s2, γ = 1.402, and R = 287 m2/s ·K, we have ΓAD = 9.800 ◦C/km. The

lapse rates for the Standard Atmosphere are 6.5 ◦C/km (troposphere), 0 ◦C/km (tropopause),
–1.0 ◦C/km (lower stratosphere), –2.8 ◦C/km (upper stratosphere), 0 ◦C/km (stratopause),
+2.8 ◦C/km (lower mesosphere), +2.0 ◦C/km (upper mesosphere), and 0 ◦C/km (mesopause).
We thus conclude that all segments of the Standard Atmosphere are stable.
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4.14 Pressure variation in an accelerating fluid

Until now we have restricted consideration to the vertical variation of pressure in fluids at
rest. To be more precise, the crucial restriction is that there is no relative tangential movement
between fluid particles and hence the shear stress is identically zero throughout the body of
fluid. It should be self-evident that there is no relative moment between fluid particles within
a fluid in a container moving at constant velocity, provided sufficient time has elapsed for any
motion created at the start of the process to have died out. In such circumstances everything
we have said in this chapter so far still holds. In a fluid subjected to constant acceleration
there may still be no relative movement between fluid particles but the situation is more
complex.
We consider a horizontal cylinder of fluid of infinitesimal length δx and infinitesimal cross

section δA, as shown in Figure 4.13, with a constant component of acceleration ax in the
horizontal direction. If we apply Newton’s second law of motion (i.e. net force = mass ×
acceleration) to the fluid cylinder, we have

pδA –
(
p + δp

)
δA = ρδA δx ax

wherein we have substituted δA δx for the volume δV of the elemental cylinder, and ρδV =
ρδA δx for its mass. The equation simplifies to δp = –ρδx ax or, in the limit as δx approaches
zero,

∂p
∂x = –ρax. (4.40)

The negative sign in equation (4.40) should come as no surprise: if the pressure gradient ∂p/∂x
is positive (i.e. the pressure increases from left to right), the cylinder will accelerate to the
left and not to the right as the acceleration vector in Figure 4.13 would suggest. For the first
time in this book we have used the symbol ∂/∂x to denote a partial derivative rather than a
total derivative d/dx. The partial derivative is appropriate here because the hydrostatic pres-
sure p can now vary both in the horizontal (i.e. x-) direction as well as the vertical (i.e. z-)
direction. If we also subject the fluid to a vertically downward component of acceleration az,
the hydrostatic equation (4.5) must be replaced by

∂p
∂z = ρ

(
–az + g

)
. (4.41)

cross section δA

g

p ax p + δp

δx

Figure 4.13 Accelerating horizontal cylinder of fluid
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Figure 4.14 Isobars in an accelerating body of fluid

The spatial variation (i.e. with x and z) of the hydrostatic pressure requires the solution of both
equations (4.40) and (4.41). Provided the acceleration components ax and az are constant, both
equations are easily integrated and we find

p = –ρaxx + C1 (z) and p = –ρ
(
az – g

)
z + C2 (x) .

C1 (z) and C1 (z) are now functions of integration rather than the constants of integration we
have for ordinary differential equations. Since the two equations for pmust be simultaneously
valid, the final result is

p – pREF = ρ
(
gz – azz – axx

)
(4.42)

where pREF is a reference pressure (i.e. p = pREF at x = 0, and z = 0).
Since the terms within the brackets in equation (4.42) are constant, we see that lines for

which
(
g – az

)
z – axx = constant represent lines of constant pressure (called isobars). The

slope of the isobars, as shown in Figure 4.14, is given by

tan θ = dz
dx

= OB
OA = ax

g – aZ
. (4.43)

ILLUSTRATIVE EXAMPLE 4.6

A high-performance sports car is driven around a corner of radius 64 m at a constant speed of
180 kph.What angle does the free surface of the petrol in a fuel tank make with the horizontal?
Calculate the pressure difference between the free surface and a point a perpendicular distance
200 mm from the free surface. Take the density of petrol as 800 kg/m3, and the acceleration
due to gravity as 9.81 m/s2.
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Figure E4.6

Solution

Since the car speed V = 180 kph = 50 m/s, the centripetal (i.e. radially inward) acceleration
ar for a radius R = 64 m is ar = V2/R = 502/64 = 39.1 m/s2 (i.e. a lateral acceleration of
almost 4g).
In this example, the vertical acceleration is zero, so the slope of the free surface is given by
equation (4.16) as tan θ = ar/g = 3.98 from which θ = 75.9◦. From Figure E4.6, we see that,
for point P, 200 mm (= n) from the free surface, x = –n sin θ and z = n cos θ so that the
pressure at P is given by

p – B = ρgn
(
ax
g sin θ + cos θ

)
= 800 × 9.81 × 0.2(3.98 × sin 75.9o + cos 75.9o)

= 6441 Pa or 0.064 bar.

4.15 SUMMARY

We started this chapter by establishing the three fundamental principles for the variation
of pressure p throughout a body of fluid at rest: (a) the pressure at a point is the same in all
directions (Pascal’s law), (b) the pressure is the same at all points on the same horizontal
level, and (c) the pressure increases with depth z according to the hydrostatic equation
dp/dz = ρg. If the fluid density ρ is constant, the increase in pressure over a depth increase
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h is ρgh, a result which can be used to analyse the response of simple barometers and
manometers to applied pressure changes and differences. In situations where very large
changes in pressure occur, such as throughout the earth’s atmosphere and in very deep
water, the assumption of constant density may no longer be adequate, and an equation
of state is required to relate pressure and density, together with an assumption about the
fluid temperature. The hydrostatic equation is still valid but more difficult to integrate, as
illustrated by consideration of the earth’s atmosphere. The vertical density gradient in a
body of fluid determines whether it is stable or unstable.

The student should

• be able to calculate the pressure variation with vertical depth for a fluid of constant
density, including the situation of a series of fluid layers

• be able to analyse the response of a simple barometer to changes in the external
(barometric) pressure

• be able to analyse the response of a U-tube or inclined-tube manometer to changes
in the applied pressure difference

• be able to calculate the pressure variation with vertical depth or height for a
variable-density fluid where there is a simple relationship between pressure and
fluid density

• be able to determine the stability of a body of fluid given the vertical density
distribution

• understand the concept of geopotential altitude
• be familiar with the series of layers which make up a model of the earth’s atmo-
sphere and be able to calculate the density and pressure distribution for a specified
lapse rate

4.16 SELF-ASSESSMENT PROBLEMS

4.1 If the atmosphere is assumed to have a height of 100 km and a constant density,
calculate the density if the pressure at ground level is 1 bar.
(Answer: 0.102 kg/m3)

4.2 According to kinetic theory, the molecular mean free path Λ for a gas of molecular
weightM, effective molecular diameter σ , and density ρ is given by

Λ = M/
√
2πρNAσ

2

where NA = 6.022 × 1026 molecules/kmol is the Avogadro number. The Knudsen
number Kn = Λ/L, where L is a characteristic length of an object moving through
the gas. Calculate the density of air if Kn = 1 for values of L of 1 μm, 1 mm, and 1
m and, with reference to Table A.7, identify the corresponding regions of the earth’s
atmosphere. The value of σ for air is 366 pm.
(Answers: 0.808 kg/m3 (lower troposphere), 8.08× 10–4 kg/m3 (stratopause), 8.08×
10–7 kg/m3 (lower thermosphere)).

4.3 A tube, closed at the bottom, open at the top, of length 20 m, and inclined at an angle
of 20◦ to the horizontal, is half full of water and half full of oil of relative density 0.8.
Calculate the hydrostatic pressure at the bottom of the tube.
(Answer: 0.604 bar)
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4.4 A vertical U-tube manometer contains two liquids, one of density ρ1 and the other
of lower density ρ0. Show that the difference in height between the free surfaces of
the two liquids when no pressure difference is applied is h0 (1 – ρ0/ρ1), where h0 is
the height of the lighter liquid above its interface with the heavier liquid.

4.5 Figure P4.5 shows a U-tube of cross-sectional area A, which is sealed on the left-
hand side, open on the right-hand side, and contains a liquid of density ρ. The
density of the gas above the liquid on the left-hand side is negligible. The solid cyl-
inder of mass m on the right-hand side is completely supported by the liquid (i.e.
the cylinder is a perfect fit in the tube with no leakage or friction). Derive an ex-
pression for the absolute pressure of the gas if the external pressure acting on the
cylinder is B.

gas

cylinder

B

p

liquid

Figure P4.5

4.6 Figure P4.6 shows an inverted U-tube manometer used to measure the pressure p of
a gas in a pipe. The U-tube contains two liquids, of densities ρ1 and ρ2, as shown.
Show that

p – B = (ρ1H – ρ2L) g

where B is the external pressure and g is the acceleration due to gravity. The gas
density may be assumed to be negligible.

4.7 The pressure measured at the summit of a mountain is 0.31 bar. Calculate the height
of the mountain, assuming the temperature decreases linearly with altitude at a rate
of 6.5 ◦C/km. Take the pressure at sea level as 1.015 bar and the temperature as 15 ◦C.
What would be the error in calculating the height, assuming the air density remained
constant at its sea-level value?
(Answers: 8947 m, -34.6%)

4.8 (a) Figure P4.8 shows a manometer consisting of two vertical arms of cross-sectional
area a connected to form a U-tube. The open reservoirs at the top of each arm are
identical and of cross-sectional area A � a. The liquid in the right arm is water with
density ρW , and that in the left arm is an oil with density ρO which is less than ρW .
The manometer is used to measure the difference between the pressure p1, which
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Ho

p1 p2

oil water

Figure P4.8

acts on the oil surface, and p2, which acts on the water surface. Show first that when
p1 and p2 are equal, the difference in height between the oil and water surfaces is

HO

(
1 – ρO
ρW

)

where HO is the height of the oil column measured above the oil/water interface.
Show further that a pressure difference p2 – p1 moves the interface an amount h
given by
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h =
p2 – p1

ρWg (1 + a/A) – ρOg (1 – a/A)
.

(b) If the oil has a density of 800 kg/m3 and the U-tube has an internal diameter
of 5 mm, calculate the reservoir diameter required if the manometer reading for a
pressure difference of 200 Pa is to be 100 mm. What would the manometer read for
a pressure difference of 200 Pa if the reservoirs had the same internal diameter as the
manometer tube?
(Answers: 107.8 mm, 10 mm)

4.9 (a) An inclined manometer, as shown in Figure P4.9, is used to measure the pressure
pF in a pipe containing fluid of density ρF . The measuring leg of the manometer has
an internal cross-sectional area a and is inclined at angle φ to the horizontal. The
other side of the manometer is connected to a pipe containing a fluid of density ρR
at constant reference pressure pR. The interface between the reference fluid and the
manometer liquid, which has a density ρM , is maintained within a reservoir of cross-
sectional area A. When the pressures pF and pR are equal, the manometer reading L
is zero, and the liquid level in the reservoir δ is also zero.
(i) If HF is the height of the pipe on the right-hand side above the zero line

(i.e. L= 0) and HR is the height of the pipe on the left-hand side above the zero
line, show that

HR
HF

= ρF
ρR

.

(ii) Derive an equation relating the rise in level δ of the fluid in the reservoir with
the manometer reading L.

(iii) Show that when pF > pR the pressure difference pF – pR is given by

pF – pR = (ρM – ρF) gL sinφ + (ρM – ρR) gL a/A.

(b) In a particular application of the manometer, the angle of inclination φ is 20◦,
the inside diameter d of the measuring leg is 5 mm and that of the reservoir D is

zero level

reservoir

measuring leg

pF

ϕ

pR

HF

HR

L

Figure P4.9
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100 mm, and the manometer fluid is mercury with a relative density of 13.6. The
reference fluid is a silicon oil which has a relative density of 0.8 and is maintained at
an absolute pressure pR of 5 bar.
(i) Calculate the pressure pF of a gas with density ρF of 10 kg/m3 if the manometer

reading L is 350 mm.
(ii) Calculate the value of pF – pR from the simplified equation

pF – pR = ρMgL sinφ.

(iii) What is the percentage error in the result for pF – pR in (ii) compared with the
full equation derived in part (a)(iii)?

(Answers: 5.16 bar, 0.62% too low)

4.10 (a) A combat aircraft is flying in a nose-down attitude as shown in Figure P4.10. If the
aircraft is accelerating at a rate a, show that the isobars in the fuel tanks are inclined
to the horizontal at an angle θ given by

tan θ = a cosα
g – a sinα

where α is the pitch angle of the aircraft.

(b) If the aircraft in part (a) accelerates at 3g, g being the acceleration due to gravity,
and the pitch angle is 30◦, calculate the inclination of the isobars.

(c) Calculate the inclination of the isobars if the aircraft climbs with a nose-up
attitude of 30◦ and acceleration 3g.

α

a
g

Figure P4.10

(Answers: –79.1◦, 46.1◦)



5 Hydrostatic force exerted
on a submerged surface

This chapter is concerned with hydrostatic force, which is the force exerted on a submerged
body due to the hydrostatic pressure distributed over its surface (or surfaces). We start by
showing that uniform pressure acting on the entire surface of a solid object results in a zero
net force. The remainder of the chapter is concerned with the force exerted on a submerged
surface due to the linear increase in pressure with vertical depth in a stationary body of fluid of
constant density. We show that the vertical component of the net hydrostatic force on a sub-
merged surface is equal to the weight of the fluid which occupies (or could occupy) the volume
directly above the surface. It is also shown that the difference between the vertical components
of hydrostatic force acting on the lower and the upper surfaces of a submerged body is the
buoyancy force of Archimedes’ principle. We then analyse the horizontal component of the
hydrostatic force acting on a submerged surface. This component is less straightforward to
calculate than the vertical component but is shown to equal the hydrostatic force acting on an
equivalent flat vertical surface. The chapter concludes by considering the stability of a body
either fully submerged or floating in a fluid.

5.1 Resultant force on a body due to uniform
surface pressure

Figure 5.1(a) shows a body of arbitrary shape which is subjected to a uniform external pressure
B acting on its surface. An imaginary cylinder of infinitesimal cross section δA is shown passing
through the body and intersecting its surface at points X and Y where the surface areas are
δA1 and δA2, respectively. Since the body is of arbitrary shape, these surface elements will
be at arbitrary orientations to the line XY . Although the argument here applies to any three-
dimensional shape, it may be easier for the reader to imagine the body has a two-dimensional
shape, i.e. we are looking at a cross section which would be the same for any plane parallel to
the page.
If, as shown in Figure 5.1(b), the angles between the line XY and the surface normals at X

and Y are θ1 and θ2, respectively, then

δA = δA1 cos θ1 = δA2 cos θ2, (5.1)

i.e. the area δA corresponds to the projection of both δA1 and δA2 onto a plane perpendicular
to the axis of the elemental cylinder. The external pressure B results in forces BδA1 and BδA2

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 5.1 (a) Body of arbitrary shape surrounded by uniform pressure B (b) Infinitesimal cylinder
within body

acting normal to δA1 and δA2, respectively. The net force due to B acting along the line XY
is thus

(BδA1)cos θ1 – (BδA2)cos θ2 = B (δA1 cos θ1 – δA2 cos θ2)

which must be zero because of the area relationship, equation (5.1).
Since we can use the above argument for every part of the body surface, we conclude

that a body of arbitrary shape subjected to a uniform external pressure experiences zero net35

force.
This conclusion has an important consequence for the calculation of not only hydrostatic

forces but also hydrodynamic forces (see Chapters 9 and 10): in situations where the pressure
acting on a surface varies from point to point, we can add or subtract a uniform pressure
everywhere without affecting the net hydrostatic or hydrodynamic force balance. In particular,
in problems for a liquid of constant density ρF , where the variation of the pressure pwith depth
z below the liquid surface is given by (see Section 4.3)

p = B + ρFgz, (5.2)

we can subtract the uniform barometric pressure B from p and calculate hydrostatic forces
using the gauge pressure pG = ρFgz.

35 The word net here means overall.
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Figure 5.2 Horizontal (H) and vertical (V) components of the hydrostatic force acting on a thin
surface submerged in a liquid: (a) liquid above surface, (b) surface, (c) liquid below surface

5.2 Vertical component of the hydrostatic force acting
on a submerged surface

Just as do solids, fluids obey Newton’s laws of motion. From Newton’s third law of action
and reaction, we can state, for a body of liquid at rest, the net force exerted by the liquid on
any submerged solid surface must be equal in magnitude and opposite in direction to the force
exerted by the surface on the liquid. Since we need to consider the hydrostatic forces on objects
or structures which may have liquid above, below, or both, the submerged surface in Figure 5.2
is shown as an infinitesimally thin, weightless sheet with an upper and a lower surface.
The first condition which must be satisfied for the liquid directly above the sheet to be in

static equilibrium is that there must be a vertically upward force V exerted on it by the upper
surface of the sheet equal in magnitude to the weightW of the liquid above it, i.e.

W = V = ρFVg (5.3)
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where ρF is the liquid density, g is the acceleration due to gravity, and V is the volume of
liquid directly above the sheet. The vertical component of the hydrostatic force exerted by the
liquid on the upper surface of the sheet must be of equal magnitude to the force exerted on the
liquid (i.e. V = ρFVg) but act vertically downwards, as indicated in Figure 5.2(b). Finally, for
the lower surface of the sheet, the hydrostatic force must again be of magnitude |V| but act
vertically upwards.
Each of the foregoing results could have been obtained by calculating the force due to the

gauge pressure pG distributed over the upper and lower surfaces of the sheet. In the case of
the upper surface, the vertical component of the force is obtained by integrating the vertical
component of the force on every element of the surface δA, i.e.

δV = pGδA cos θ = ρFgzδA cos θ

where z is the depth below the liquid surface of the surface element δA, and θ is the angle
between the vertical and the normal to the surface element. Since δA cos θ is the area of an
element of the sheet projected onto a horizontal plane, zδA cos θ represents the volume δV of
the vertical cylinder of liquid directly above the surface element δA. The force V is thus

V =
∫
V
ρFgdV = ρFgV (5.4)

as before. If the surface has a simple shape (e.g. flat or cylindrical), there is a good chance the
volumeV can be calculated fromwell-known formulae for the volumes of rectangles, cylinders,
etc. However, as we shall show in Section 5.5, if the shape is more complex, we have to evaluate
the integral using the mathematical description of the shape.
So far we have considered only the magnitude of V but not its line of action. The location

of the latter is important because, for a system of forces acting on a body to be in static equi-
librium (i.e. for a stationary body to remain at rest), we require that the forces exert no net
moment on the body. As a consequence of this condition, for the liquid directly above the
sheet the line of action of V must pass vertically through the centroid of the liquid volume.
We note that to calculate both the magnitude of V and the location of its line of action, we

are concerned primarily with the geometry (i.e. the shape and size) of the volume V.

ILLUSTRATIVE EXAMPLE 5.1

Calculate the magnitude of the hydrostatic force exerted on the upper surface of the kite-
shaped plate shown in Figure E5.1, and the location of its line of action if the plate is submerged
horizontally at a depth Z below the surface of a liquid of density ρF .

Solution

Since the plate is horizontal, the entire hydrostatic force acting on its surface must be vertical
and act downwards through the centroid of the plate surface. The forceV is equal to the weight
of liquid directly above the plate, i.e.

V = ρFgAZ.



128 HYDROSTATIC FORCE EXERTED ON A SUBMERGED SURFACE
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Figure E5.1

The surface area of the plate A is given by the sum of the areas of the triangle to the left of YY
and that of the semicircle to its right

A = 3R2 + 1
2πR

2

so that V is given by

V =
(
3 + 1

2π
)
ρFgZR2.

We can show that this result is consistent with what we obtain by considering the gauge
pressure pG acting on the plate. Since the plate is horizontal, pG is constant

pG = ρFgZ

and V is given by

V = pGA = ρFgZA,

exactly as before.
The symmetry of the plate about XX tells us that the line of action of V must pass through

a point P somewhere along the line XX. The location of P is given by its distance c from the
line YY, which can be calculated by equating the moment of V about YY (or any line parallel
to YY) to the combined moments of the hydrostatic forces acting on the triangular section of
the kite to the left of YY and on the semicircular section to the right of YY

ρFgZ 3R2a – ρFgZ 1
2πR

2b = ρFgZ
(
3 + 1

2π
)
R2c.

The locations of the lines of action of the hydrostatic forces acting on the two sections cor-
respond with their centroids, which we can find from Appendix 3, which includes the areas,
centroid locations, and other information for a number of basic shapes as
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a = R and b = 4R
3π

so that, after dividing through by the common factor ρgZR2, the moment equation becomes

3R – 1
2π

4R
3π =

(
3 + 1

2π
)
c

from which

c = 7R
3 (3 + π /2)

.

Since the plate in this example is horizontal, the only difficulty in the problem stemmed
from the shape of the plate. In the following example, the surface shape is made up of two
rectangles, and the difficulty arises because they are sloping rather than horizontal. As we
have already remarked, later in this chapter we shall deal with a situation where the surface
shape is sufficiently complex that the volume of liquid directly above it must be obtained by
integration.

ILLUSTRATIVE EXAMPLE 5.2

A dam has the cross section shown in Figure E5.2, with tan θ = 4. The water depth is H, and
the length of the dam along its top is L. Calculate the vertical component of the hydrostatic
force acting on the face of the dam, and the horizontal distance of its line of action from the
point O.

Solution

The vertical component of the force acting on the face of the dam V is equal to the weight of
waterW vertically above the face. This weight is given by

W = ρFVg

where V is the volume of water directly above the two sloping surfaces, ρF is the water density,
and g is the acceleration due to gravity. As shown in part (b) of the diagram, it is convenient to
split V into three smaller volumes, for each of which the volume and centroid location can be
found from Appendix 3, as follows

Volume 1: Cross section is a right-angle triangle with

height = 2
3 H, base length = 1

6 H (since tan θ = 4) ,

centroid 1
18 H from vertical face of triangle,

volume V1 = 1
2
1
6 H 2

3 H L = 1
18H

2 L.
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Volume 2: Cross section is a rectangle with

height = 2
3 H, width = 1

3 H, centroid 1
6 H from either vertical face,

volume V2 = 1
3H

2
3 H L = 2

9 H2 L.

Volume 3: Cross section is a right-angle triangle with

height = 1
3 H, base length = 1

3 H, centroid 1
9 H from vertical face of triangle,

volume V3 = 1
2
1
3H

1
3 H L = 1

18 H2 L.

From the above,

V = V1 + V2 + V3 =
(

1
18 + 2

9 + 1
18

)
H2L = 1

3H
2 L
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hence,

V = W = ρFVg = 1
3ρFH

2Lg.

To find the horizontal distance x̄ of the line of action of V from O, we equate the moment of
V about O to the combined moments of the vertical forces V1,V2, and V3 due to the weight of
the three liquid volumes V1, V2, and V3, i.e. V1 = W1, V2 = W2, and V3 = W3, as follows

Vx̄ =
(
1
3 + 1

18

)
HV1 + 1

6HV2 + 1
9HV3

=
(

1
18

7
18 + 2

9
1
6 + 1

18
1
9

)
ρFH3Lg

= 7
108ρFH

3Lg

from which, if we substitute ρFH2Lg/3, for V , we have

x̄ =
7
108ρFH

3Lg

1
3ρFH

2Lg
= 7
36H.

As we pointed out earlier in this section, the thin sheet depicted in Figure 5.2 has both an
upper and a lower surface. For this weightless sheet to be in equilibrium, the net force in any
direction must be zero. The hydrostatic force on the downwards-facing surface must therefore
be equal inmagnitude and opposite in direction to the hydrostatic force on the upwards-facing
surface, and this must also apply to the vertical and horizontal components of the hydrostatic

H

z

p(z)

V

Figure 5.3 Surface with liquid below but not above
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force. While this conclusion may seem to be obvious for a submerged sheet, it may be less
apparent if there is liquid beneath the sheet but not above.
The shape of the surface shown in Figure 5.3 is the same as that in Figure 5.2 but the

vertical sides now prevent contact between the liquid and the upper surface of the sheet.
Since the hydrostatic pressure is constant along any horizontal line within a liquid at rest, the
pressure distribution over the downwards-facing surface is completely unaffected by the fact
that there is no liquid above the sheet. The hydrostatic force must also be unaffected since it
represents the integrated effect of the pressure distributed over a surface. We conclude that the
magnitude of the vertical component of the hydrostatic force exerted on a surface submerged
in a liquid is equal to the weight of the liquid which occupies the volume directly above the
surface or the weight of the liquid which could occupy this volume.

ILLUSTRATIVE EXAMPLE 5.3

Figure E5.3 shows the cross section of an axisymmetric container. The upper and lower sec-
tions are both cylindrical with radii r and R, respectively, and separated by a conical section
which slants at an angle θ to the horizontal. If the container is filled with a liquid of density
ρF to a height h above the top of the conical section, calculate the magnitude of the hydro-
static force exerted by the liquid on the conical section. State the direction of this force and the
location of its line of action.

Solution

Since the container is symmetric about its vertical axis, the radial (i.e. horizontal) component
of force arising from the pressure acting on any element of the interior surface is counteracted
by a force of equal magnitude but opposite in direction arising on an identical element on
the diametrically opposite side of the container. Due to the axisymmetry, therefore, the net
hydrostatic force on the conical section of the container must be vertical, and its line of action
coincident with the axis of symmetry. From the geometry of the conical section, it must also
be that the hydrostatic force is directed vertically upwards.
The magnitude of the hydrostatic force is given by ρFVg, where V is the volume of liquid

which could occupy the space directly above the conical surface up to the level of the free
surface of the liquid, as indicated in Figure E5.3 by the broken lines. From the figure, we see
that we can calculate V by calculating first the volume of a cylinder of radius R and height
h + (R – r)tan θ and then subtracting the volume of the small cylindrical section at the top, of
height h and radius r, together with the volume of the interior of the conical section which
is a frustum of a cone with upper radius r, lower radius R, and height (R – r)tan θ . Thus,
we have

V = πR2 [h + (R – r)tan θ
]
– πr2h – 1

3π
(
R3 – r3

)
tan θ

and, finally, for the hydrostatic force V , we have

V = ρFgπ(R – r)
[
(R + r) h + 1

3 tan θ
{
2R2 – r (R + r)

}]
.
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Figure E5.3

5.3 Archimedes’ principle and buoyancy force
on a submerged body

Although Archimedes’ principle is often stated simply as ‘the magnitude of the buoyancy force
exerted on a submerged body is equal to the weight of fluid displaced by the body’, it is easily
proved using the concepts already presented in this chapter. A body of arbitrary shape sub-
merged in a liquid, as shown in Figure 5.4, can be thought of as having an upper surface and
a lower surface. From Section 5.2, the vertical component of the hydrostatic force exerted on
the upper surface, VU , will be a downward force equal in magnitude to the weight,WU of the
liquid in the volume VU directly above the upper surface, i.e.

VU = WU = ρFVUg. (5.5)

Similarly, the vertical component of the hydrostatic force exerted on the lower surface, VL, will
be an upward force equal in magnitude to the weight, WL, of the liquid which could occupy
the entire volume (i.e. including the body itself), VL, directly above the lower surface, i.e.

VL = WL = ρFVLg. (5.6)
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Figure 5.4 Hydrostatic forces on a completely submerged body: (a) submerged body, (b) liquid
above body, (c) liquid below body

The magnitude of the net vertical force acting on the body, VB, must equal the difference
between VL and VU , i.e.

VB = VL – VU = ρF(VL – VU)g (5.7)

As is evident from the figure, the difference (VL – VU) = VS, the volume of the submerged
object, so that finally

VB = ρFVSg. (5.8)

The subscript B has been introduced as a reminder that VB is usually called the buoyancy
force. Equation (5.8) is the mathematical representation of Archimedes’ principle, which was
stated in words at the start of this section.
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Throughout much of this chapter we have used the word ‘liquid’ rather than ‘fluid’ because
hydrostatic problems usually concern liquids rather than gases. In practice, any result in this
chapter which does not involve the depth below a free surface applies to a surface or body
immersed in any fluid of uniform density. Equation (5.8), for example, can be used to calculate
the buoyancy force exerted by the surrounding atmosphere on a lighter-than-air balloon or
airship.
SinceVL > VU , it should be clear that the buoyancy forceVB always acts vertically upwards.

This conclusion can also be seen to result from the increase in hydrostatic pressure with depth,
equation (5.2) (see Section 4.2), since the forces acting on the surface of a body submerged in
a fluid at rest are a consequence of the pressure distributed over it. It should also be apparent
that the line of action of VB must pass through the centroid of the displaced volume VS. If the
submerged body is of uniform density ρS, the location of its centre of gravity corresponds with
its centroid, but the two will not in general correspond if there is a density variation within the
interior of the submerged body, for example, as would be the case for a submarine. If a body
is submerged only partially rather than completely, Archimedes’ principle is still valid but the
volume VS must be replaced by that part of the volume of the body which is below the surface
of the liquid (i.e. the volume of liquid displaced, VD = m/ρF ,m being the mass of the body).
The centroid of the submerged volume is termed the centre of buoyancy. Whether or not a
body floats or sinks in a fluid is determined by the average density of the body, ρS = m/VS. If
ρS > ρF , the body will become fully submerged and sink unless constrained. If ρS < ρF , the
body will float with part of its volume, VD, below the surface and the rest above.

ILLUSTRATIVE EXAMPLE 5.4

A balloon in the form of a thin rigid sphere of diameter D = 1 m is filled with helium of
density ρHe = 0.17 kg/m3. Calculate the force required to prevent the balloon from rising if
the surrounding air density at ground level ρAIR = 1.2 kg/m3, and the balloon material has
negligible mass. What payload could the balloon lift to an altitude of 8500 km where the air
density is 0.5 kg/m3?

Solution

The volume of the balloonVS is given by πD3/6 = 0.52 m3. The corresponding buoyancy force
at ground level VB is thus

VB = ρAIRVSg = 1.2 × 0.52 × 9.81 = 6.12N.

The weight of the filled balloonW is

W = ρHeVSg = 0.17 × 0.52 × 9.81 = 0.87N.

From Figure E5.4 we can see that static equilibrium at ground level requires

VB –W – F = 0

so that the force F required to prevent the balloon from rising is

F = VB –W = 5.25N.
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If the balloon is released with a payload P < F, it will rise to an altitude where static
equilibrium requires

VB –W – P = 0.

Since the balloon is rigid, both its volume VS and its weight W remain the same as at ground
level. However, the buoyancy force VB decreases with altitude in direct proportion to the
ambient density. For ρAIR = 0.5 kg/m3, we have

VB = ρAIRVSg = 0.5 × 0.52 × 9.81 = 2.55N

and the payload for static equilibrium is given by

P = VB –W = 2.55 – 0.87 = 1.68N.

Although the pressure does not appear in equation (5.8), it is worth reminding ourselves
that the buoyancy force is a direct consequence of the decrease in pressure with altitude (or in-
crease with depth). What is quite remarkable is that, although in the atmosphere the pressure
differences which arise from the vertical pressure gradient are usually very small, the result-
ing force can be quite substantial. For example, for a balloon of diameter 1 m the pressure
difference�p from top to bottom is only 0.012% of 1 bar, i.e.

�p = ρAIRDg = 1.2 × 1 × 9.81 = 11.8 Pa

but, as we found, the lift force at ground level is 6.12 N, which is roughly equal to the weight of
a pint (just over half a litre) of beer. The term lift force was used quite deliberately: just as for
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a balloon, the lift force on an aerofoil arises because the average pressure acting on its lower
surface is higher than that on its upper surface. As we shall show in Section 8.7 and discuss in
more detail in Section 17.7, in the case of an aerofoil, the pressure difference is a consequence
of its forward motion through the air, a much more complicated situation than the hydrostatic
pressure difference due to gravity.
Before we leave the topic of balloons, it is interesting to calculate the force required to sub-

merge the helium-filled balloon of Illustrative Example E5.4 in water. Because the density of
water ρH2O is so much greater than that of air, the buoyancy force VB is also much greater, as
we can see that

VB = ρH2OVSg = 103 × 0.52 × 9.81 = 5.1 × 103 N

and this is effectively the force which must be overcome in order to submerge the balloon since
the weight (unchanged at 0.87 N) is obviously negligible compared with VB. To put this result
in perspective, the reader might like to compare this value with the weight of a small car, such
as a BMW 320i, which is about 1.4 × 104 N.

5.4 Hydrostatic force acting on a submerged vertical flat plate

Figure 5.5 shows the front and side views of a flat plate of area A submerged vertically in a
liquid of density ρF . On the right-hand side of the figure is a graph showing the proportional
increase in hydrostatic pressure pH with depth z, i.e. pH = ρFgz. Since this pressure acts normal
(i.e. perpendicular) to the plate at every point, the direction of the net hydrostatic force H
exerted by the liquid on the plate must also be horizontal.
To calculate the magnitude of H we split the area A into a series of infinitesimal horizontal

strips, such as the strip of area δA at depth z shown in Figure 5.5. Since pH is constant along a
horizontal line (see Section 4.2), the infinitesimal hydrostatic force δH exerted on the strip is
given by

δH = pHδA = ρFgzδA

and the net force H is obtained by summing all such elemental forces over the area A, i.e.

H =
∑

A
δH =

∑
A
ρFgzδA.

In the limit as δA approaches zero, the summation is replaced by an integration so that,
assuming ρF and g are constant with respect to the depth z, we have

H = ρFg
∫
A
zdA. (5.9)

The integral
∫
A zdA, called the first moment of area, turns out to be rather special because it

is directly related to the location zC of the centroid of the area A as follows∫
A
zdA = zCA. (5.10)
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Figure 5.5 Flat plate, submerged vertically

If the submerged plate has uniform thickness and density, it is easily shown that zC corres-
ponds to the location of its centre of gravity. We can make use of the general equation for zC
to write

H = ρFgzCA = pCA (5.11)

where pC is the hydrostatic pressure at the centroid of A. For many shapes, the area A and the
location of the centroid zC are either well known (e.g. for a rectangle or a circle) or tabulated
as in Appendix 3. More complicated shapes can often be treated as combinations of simpler
ones, much like the kite shape of Illustrative Example 5.1. For shapes where this approach is
not possible, the area A and the integral

∫
A zdA have to be evaluated from first principles, as

we show in Illustrative Example 5.5.
Although equation (5.11) shows that the hydrostatic force H acting on the area A is given

by the product of the pressure pC at the centroid of A and the area itself, as we shall now show,
the line of action ofH is always below the centroid. The line of action ofH would be at a depth
zC if the hydrostatic pressure p acting on the plate was uniform but, as we know from the
hydrostatic equation (5.2), p increases linearly with depth so that the average pressure above C
is less than that below C.
To find the line of action of H means finding the depth zP below the surface at which H

acts on the plate, and the horizontal distance xP from a vertical reference line in the plane of
the plate. We start with zP by taking moments about a line in the liquid surface parallel to the
plate.
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For the elemental force δH the moment is

δH z = pHδA z = ρFgz2δA

and the net moment of all such elements is given by∫
A
ρFgz2dA = HzP = ρFgzCAzP (5.12)

wherein we have equated the net moment due to all the elemental forces δH to the moment of
the net force H acting at the depth zP. If we cancel out the common factor ρFg, we find

zP =
∫
A z2 dA
zCA

. (5.13)

Since the centroid is at depth zC, we can write

z = zC + y

where, as shown in Figure 5.5, y is the vertical depth of the elemental strip below the centroid.
The integral can now be written as follows∫

A
z2dA =

∫
A
(z2C + 2zCy + y2)dA

= z2CA + 2zC
∫
A
ydA +

∫
A
y2dA.

The integral
∫
A ydA can be shown to be identically zero as follows∫

A
zdA =

∫
A

(
zC + y

)
dA = zCA +

∫
A
ydA

but, as we saw earlier, zC is defined by the equation
∫
A zdA = zCA, so that

∫
A ydA = 0, and we

are left with∫
A
z2dA = z2CA +

∫
A
y2dA. (5.14)

As was the case for
∫
A ydA, the integral

∫
A y2 dA is again special and is encountered in many

problems of mechanical, aeronautical, structural, etc., engineering, for example in the stress
analysis of beams, and the dynamics of rotating objects. It is given the symbol IC and called the
second36 moment of the area A and is closely related to the moment of inertia about an axis
in the plane of the area and passing through its centroid

IC =
∫
A
y2dA. (5.15)

Appendix 3 includes the areas, centroid locations, and second moments of area for a number
of basic shapes.

36 It is called the second moment because the integral involves z2.
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As a final step, after substituting from equation (5.14), we can write equation (5.13) as

zP =
∫
A z2dA
zCA

= zC +
∫
A y2dA
zCA

= zC + IC
zCA

. (5.16)

Equation (5.16) confirms what we argued earlier: P is always below C because y2, and so IC, is
always positive.
We now turn our attention to calculating xP, which, as we shall see, is a little more difficult

than finding zP. It might seem that we could proceed in a similar way as for zP by starting
with a vertical strip of infinitesimal width δx. The difficulty that arises immediately is that the
hydrostatic pressure pH is not constant along the strip, as it was for the horizontal strip, but
varies with depth z. Instead of an elemental strip, therefore, we consider an elemental rectangle
of width δx and depth δz at a location (x, z) on the plate surface. The hydrostatic force on this
element is pHδx δz, and the moment about a vertical line in the plane of the plate is pHxδx δz.
The net moment is then∫ ∫

A
pHx dx dz = H xP

where the double integral sign indicates that we must integrate over the surface area A in both
the x- and z-directions. We now substitute ρFgz for pH so that

HxP = ρFg
∫ ∫

A
xz dx dz.

From equation (5.11) we have H = ρFgzCA so that

xP =
∫∫

A xz dx dz
zCA

.

Once again we substitute z = zC + y so that

xP =
∫∫

A x dx dy
A +

∫∫
A xy dx dy
zCA

. (5.17)

If we specify that the vertical line, from which x is measured, passes through the centroid of
the plate, then

∫∫
A xy dx dy can be identified as the product of inertia of the plate, another tab-

ulated quantity for a range of ‘standard’ shapes. The symbol Ixy is often used for this quantity,
i.e.

Ixy =
∫ ∫

A
xy dx dy. (5.18)

We also recognise that the first term on the right-hand side of equation (5.17) is identically
zero because x is measured from the centroid, i.e.∫ ∫

A
x dx dy = 0 (5.19)

so that

xP =
Ixy
zCA

. (5.20)
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For convenience, we bring together the key results of this subsection

H = ρFgzCA = pCA, (5.11)

zP = zC + IC
zCA

, (5.16)

and

xP =
Ixy
zCA

. (5.20)

As a final point here, we note that if the plate is symmetrical about a vertical line through the
centroid, then Ixy ≡ 0 and so xP = 0, i.e. the line of action of H is directly below the centroid.

ILLUSTRATIVE EXAMPLE 5.5

A circular disc of radius R is immersed vertically in a liquid of density ρF , with its centre a
depth Z below the surface. Calculate the hydrostatic force H which the liquid exerts on one
face of the disc, and the depth zP at which it acts.

00

C

δH

δz

δA

H

R

z

Z zP

g

θ

P

Figure E5.5

Solution

We shall solve the problem in two ways. The first illustrates how we can use the information
in Appendix 3.
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The surface area of the disc is given by A = πR2, and the centroid is coincident with the centre
so that the depth of the centroid zC = Z. The hydrostatic pressure at the centroid pC is thus
given by pC = ρFgZ, and the hydrostatic force H exerted by the liquid on the disc is given by

H = pCA = ρFgZ πR2.

From equation (5.16), the depth zP at which H acts is given by

zP = Z + IC
πR2Z

.

From Appendix 3 the second moment of area about a horizontal axis in the plane of the disc
and passing through the centroid is

IC = πR
4

4

so that

zP = Z + R2
4Z .

For our second approach to this problem, we suppose that we do not know the area of the
disc, the location of its centroid, or its second moment of area. As shown in Figure E5.5, we
identify a horizontal strip on the surface of the disc at depth z and of infinitesimal width δz. It
is convenient here to work in cylindrical coordinates, using the notation shown in the figure,
so that we have

z = Z – R cos θ .

If we differentiate with respect to θ , we have dz/dθ = R sin θ so that δz = R sin θ δθ , and the
area of the elemental strip δA is given by

δA = 2R sin θ δz = 2R2 sin2 θ δθ .

The hydrostatic pressure pH at depth z is given by

pH = ρFgz = ρFg (Z – R cos θ)

so that the elemental hydrostatic force acting on the strip δH is

δH = ρFg (Z – R cos θ) 2R2 sin2 θ δθ .

We note that ρF , g,Z, and R are all constant, and the only variable quantity is θ so that the
hydrostatic force H can be calculated from

H = 2ρFgR2
∫ π
0

(Z – R cos θ)sin2 θ dθ

= 2ρFgR2
(
Z
∫ π
0

sin2 θ dθ – R
∫ π
0

cos θ sin2 θ dθ
)
.

The second integral is identically zero while the first has the value π /2, both results being
obtainable from tables of standard integrals, so that
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H = ρFgZπR2,

which is the same result as before but required a lot more effort to obtain.
To find the depth zP at which H acts from first principles, we take moments about a line in

the surface through O, which is parallel to the plane of the disc and vertically above C

HzP =
∫ z=Z+R

z=Z–R
zdH

= 2ρFgR2
∫ π
0

(Z – R cos θ)2 sin2 θ dθ .

Since H = ρFgZπR2, we can rewrite the last equation as follows

πzP
2Z =

∫ π
0

(
1 – R cos θ

Z

)2
sin2 θ dθ

= 1
2π + 1

8π
(
R
Z

)2
or

zP = Z + R2
4Z ,

once again the same result as before.

5.5 Hydrostatic force acting on a submerged curved surface

In this section we show how the results obtained so far can be used to calculate the magnitude,
direction, and line of action of the horizontal and vertical components,H and V , of the result-
ant hydrostatic force R acting on a submerged surface of any specified shape. To illustrate the
general approach, we use the example of a dam with the cross section37 shown in Figure 5.6.
The cross section is taken to be symmetrical and two dimensional, i.e. there is no curvature
in any horizontal plane, so that the lines of action of H and V must both lie in the vertical
plane of symmetry. The span of the dam is S, and the particular shape shown (i.e. the curve
representing the surface in contact with water) is given by

y = Cx2
D (5.21)

where C is a constant, y is the upward vertical distance from the foot of the dam O, x is the
corresponding horizontal distance, and D represents the vertical height of the dam. In the
analysis below it is convenient to introduce z, the depth below the water surface, i.e. z = Z – y,
where Z is the total water depth. Also shown in Figure 5.6 is the line of action of H at depth
zP, and the line of action of V a horizontal distance xC from O.

37 The cross section shown is similar to that of theHoover dam on the border of the states of Nevada and Arizona,
USA. Water from the Colorado River flows into Lake Mead on the upstream (Arizona) side of the dam. The water
depth is about 180 m, and the installed Francis hydraulic turbines generate up to about 2000 MW of electrical power.
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Figure 5.6 Components of hydrostatic force acting on the face of a dam
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Figure 5.7 Components of hydrostatic force on an elemental strip of the dam surface

5.5.1 Horizontal component of R

We consider an elemental horizontal strip of the surface of the dam a depth z below the water
surface, as shown in Figure 5.7. The hydrostatic pressure pH acting on the strip is given by
pH = ρFgz.
The strip is assumed to be so narrow that it may be considered to be flat. The elemental
horizontal force δH acting on the strip is given by

δH = pHδA sin θ
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where δA sin θ is the area of the strip projected onto a vertical plane parallel to any horizontal
line in the face of the dam, and θ is the angle between a tangent to the strip and the horizontal.
We can see from Figure 5.7 that δA sin θ = δy S so that

δH = ρFgzSδy

and the horizontal component of R is thus given by

H = ρFgS
∫ Z

0
zdy (5.22)

= ρFgS
∫ Z

0

(
Z – y

)
dy,

and, with y(x) given by equation (5.21), we have

H = 1
2ρFgSZ

2.

The final result reveals that, so far as the horizontal component of R is concerned, the
cross-sectional shape of the dam is irrelevant, and all that matters is the width S and water
depth Z: the magnitude of H is identical to the hydrostatic force exerted on a submerged
vertical rectangle of area SZ. This area represents the area of the shape obtained by projecting
the face of the dam onto a vertical plane.What we have is a general result: the magnitude of the
horizontal component of the hydrostatic force acting on a curved surface submerged in a fluid
of uniform density is equal to the hydrostatic force exerted on the projection of that surface
onto a vertical plane.
If the shape of the dam had not been symmetrical, it would have been necessary to resolve

H into two orthogonal components in a horizontal plane, F1 and F2, say, and then combine
them using

H =
√
F21 + F22. (5.23)

5.5.2 Line of action of H

We refer again to the example of the dam in Figure 5.6. As always, we calculate the depth of
the line of action of H by taking moments about any convenient line. In this case we select a
horizontal line through the point O at the foot of the dam and parallel to the face of the dam.
The moment of the elemental force δH about O is given by δH y, with δH = ρFgzSδy. The
net moment of all such elemental forces is then

∫ y=Z
y=0 ydH which must equal the moment of H

itself. If zP is the depth of the line of action of H, we have

H (Z – zP) =
∫ y=Z

y=0
ydH (5.24)

= ρFgS
∫ Z

0
zydy

ρFgS
∫ Z

0
y
(
Z – y

)
dy = 1

6ρFgSZ
3.

From Subsection 5.5.1, we have H = ρFgSZ2/2 so that zP = 2Z/3.
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We see that only the water depth Z is important and the cross-sectional shape of the dam is of
no consequence.

5.5.3 Vertical component of R

In Section 5.2 we showed that the magnitude of the vertical component V of the hydrostatic
force exerted on a submerged surface is equal to the weight of the fluid which occupies the
volume V directly above the surface, i.e.

V = ρFgV. (5.4)

To determine V , therefore, we need to know V, either from tables or by calculation from first
principles. In this instance we adopt the latter approach. We consider a vertical slice of the
fluid directly above the elemental strip of the curved surface of the dam, with thickness δx (see
Figure 5.7), depth z, and length (span) S. The volume of the elemental slice is given by

δV = zSδx

so that the entire volume V is

V = S
∫ X

0
zdx

where the symbol X denotes the horizontal distance between the point O and the point in the
cross section where the water surface meets the curved face of the dam (see Figure 5.6). We
now have

V = ρFgS
∫ X

0
zdx (5.25)

= ρFgS
∫ X

0
(Z – y)dx

and at this stage we need to connect y and x by introducing the shape of the curved surface
(equation (5.21)), i.e.

y = Cx2
D .

The final result is found to be

V = 2
3ρFgSZX

wherein we have also made use of the relationship from equation (5.21), Z = CX2/D.

5.5.4 Line of action of V

As we did for H, we need to find the location of the line of action of V , i.e. the horizontal
distance xC from O. Once again we take moments about a line through O as follows:

VxC =
∫ x=X

x=0
xdV = ρFgS

∫ X

0
x
(
Z – y

)
dx (5.26)
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wherein we have substituted
(
Z – y

)
Sdx for dV. The final result, after substituting y = Cx2/D,

Z = CX2/D, and V = 2ρFgsZX/3, is

xC = 3
8xC.

As we pointed out in Section 5.2, xC corresponds with the x-location (with respect to O) of the
centroid of the volume of liquid V directly above the curved surface.

5.5.5 Resultant hydrostatic force R

The resultant hydrostatic force R is calculated as the vector sum of H and V , i.e.

R =
√(

H2 + V2
)

(5.27)

and the angle between R and the horizontal is given by θ = tan–1 (V/H).

5.6 Stability of a fully-submerged body

To introduce the concept of stability, we consider first the behaviour of a simple pendulum
which consists of a bob of weightW at the end of a weightless rod, of length l, supported by a
pivot at O, and free to swing in a vertical plane. The situation is shown in Figure 5.8. In position
(a), where the centre of gravity G of the bob is vertically below O, the force W is balanced by
the reaction at O, the moment of W about O is zero, and the pendulum is at rest in a state of
static equilibrium. If given an angular displacement θ to position (b) and then released, the
bob will move towards and oscillate about position (a). In practice, the oscillation is damped
by friction at O and the resistance to motion due to the fluid surrounding the pendulum so
that the pendulum eventually comes to rest in position (a). In the absence of damping, for
small displacements θ a simple pendulum oscillates in a simple-harmonic motion with period
T = 2π

√
l/g, where g is the acceleration due to gravity. It can be seen from Figure 5.8(b) that

themotion of the pendulum is driven by themomentWl sin θ , which always acts to decrease θ .
An object which returns to a position of static equilibrium when displaced from that position
is said to be in a state of stable equilibrium.
The position of the pendulum depicted in Figure 5.8(c) is also one of static equilibrium.

However, this position is unstable because the moment Wl sin θ is now such that the re-
sponse of the pendulum to the slightest displacement, as shown in Figure 5.8(d), is for the
displacement θ to increase. The pendulum eventually moves to a position of static and stable
equilibrium, in this case again position (a).
The close analogy between the stability of a body freely floating completely submerged in a

fluid is illustrated by Figure 5.9, in which G represents the centre of gravity of the body, B is the
centre of buoyancy (see Section 5.3), l is the distance between G and B, and VB is the buoyancy
force. The condition for static equilibrium now is that G is directly below or directly above B.
An angular displacement θ gives rise to a moment VBl sin θ and it is evident that position (b)
is stable while position (d) is unstable. The analogy with the simple pendulum is not perfect
because, when displaced, the body tends to roll about a horizontal axis close to G rather than
a fixed pivot.
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Figure 5.8 Stability of a simple pendulum: (a) G vertically below O, (b) OG displaced by angle θ , (c) G
vertically above O, (d) OG displaced by angle θ

5.7 Stability of a freely floating body andmetacentric height

For a completely submerged body, the centre of buoyancy coincides with the centroid of the
body (which is also its centre of gravity if the density of the body is uniform throughout) and
this is always in the same place relative to the body. For a freely floating, partially submerged
body, the buoyancy forceVB must still equal the body’s weightW so the volume of displaced li-
quid remains constant (equal toW/ρFg). However, as illustrated in Figure 5.10, as the position
of the body changes, for example due to a rolling motion, so does the shape of the submerged
volume. In consequence, the centroid of the submerged volume, which defines the centre of
buoyancy, is not fixed but dependent upon the body position and this, in turn, has a critical
influence on the stability of the floating body. For this reason, analysing the stability of a body
which is floating partially submerged is more complicated than for one which is completely
submerged.
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Figure 5.9 Stability of a freely floating, fully-submerged body

The upper half of Figure 5.10 shows a body of uniform density ρS and weight W with its
centre of gravity G below the centre of buoyancy B of the submerged volume. When displaced
through an angle θ from the vertical, the magnitude of the submerged volume Vmust remain
the same (V = W/ρFg) but its centroid will move a horizontal distance x̄ relative to G to a new
location B’. In this case the coupleWx̄ exerted byW and the buoyancy force VB (= W) acts to
restore the body to its original position: situation (a) is therefore stable. From the diagram, we
can see that x̄ = MG sin θ , MG being the distance between G and the point M where the line
of action of VB intersects the extended line through BG. The point M is called themetacentre,
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Figure 5.10 Stability of a freely floating, partially submerged body

and the length MG themetacentric height. If M is above G, MG is taken as positive. For small
angular displacements, MG is independent of θ , i.e. the location of M is fixed.
The lower half of Figure 5.10 shows a body of the same shape, weight, and orientation as

that in Figures 5(a) and 5(b). The centre of buoyancy of the submerged volume B must be
in the same location as before but we now consider the situation where, due to a different
internal distribution of mass within the body ρS is no longer uniform, and G is now above B.
In the case of a ship, for example, the location of the centre of gravity depends upon the way
in which the cargo is distributed. As can be seen in Figure 5.10(d), the coupleWx̄ now acts to
increase the angular displacement θ , and situation (c) is unstable. Because the metacentre M
is now below G, it is considered negative: the magnitude and sign of MG play a critical role in
determining the stability of a floating body. If MG > 0, the body floats in stable equilibrium,
and the larger MG the more stable the situation; the opposite applies if MG < 0.
The foregoing explains the general principles regarding the stability of a floating object.

We now consider the particular case of a ship with the symmetrical cross section shown in
Figure 5.11(a) (it is assumed that the sides of the ship are parallel). The length of the hull
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Figure 5.11 Stability of a ship: (a) G vertically below B, (b) hull inclined at angle θ to vertical

is S, and the width at the water line is 2L, while the depths below the surface of the centres
of buoyancy B and gravity G are zC and zG, respectively. The point O lies on the line of
symmetry at the level of the water line. Figure 11(b) shows the situation if the ship is given
an angular displacement θ38. The centre of buoyancy B′ for the ship in the displaced posi-
tion is obtained by calculating the centroid of the submerged volume defined by the shape
①②③①. The metacentre M is defined by the intersection of the vertical through B′ and the
line of symmetry OG. The centroid of the shaded triangular volume to the right of O is a dis-
tance 2L/3 from O. The buoyancy force δVB corresponding to this volume can be taken as
δVB = SL2 tan θρFg/2 ≈ ρFgSL2θ /2, where we have used the approximation sin θ = θ since θ
is a small angle (note that θ must be measured in radians for this approximation to be valid).
Due to the symmetry about OG, the reduction in the buoyancy force on the left-hand side is
also δVB = ρFgSL2θ /2.
To determine the location of B′ (the centroid of the volume below the water line) we take

moments about O, again approximating sin θ by θ :

VBOMθ = VBOBθ – 2δVB
2
3L.

We can now substitute VB = W and, from Figure 5.11, OB = zC, and OM = zG – MG, so that

W (zG – MG )θ = WzCθ – 2
3ρFgSL

3θ

38 For a stability analysis we need consider only a small displacement. The angle θ shown in Figure 5.11(b) is
greatly exaggerated.
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which, after cancellation of θ , can be rearranged to give

MG =
2ρFL3Sg
3W – (zC – zG) . (5.28)

We have established already that a body is in stable equilibrium if MG > 0, which will always
be the case if G is below B (i.e. zG > zC), but even if G is above B (i.e. zG < zC) stability is still
seen to be possible if

zC – zG <
2ρFL3Sg
3W . (5.29)

ILLUSTRATIVE EXAMPLE 5.6

As shown in Figure E5.6, a solid rectangular bar of uniform relative density σS (<1) has height
Z, width 2L, and length S. Show that the bar floats in water with its centre of gravity a distance
zG below the surface given by

zG =
(
σS – 1

2

)
Z.

Show that the metacentre M is a distance MG above the centre of gravity G given by

MG = L2
3σSZ

– 1
2 (1 – σS)Z.

For given values of L and Z, what is the minimum value of σ for stability?

G
zG

zC

zC

VB

W

Z

Z
2

2L

B

Figure E5.6
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Solution

The weight of the barW is given by

W = ρS2LZSg

and the buoyancy force VB is

VB = ρF2L2zCSg

where the density of the bar ρS = σSρF , and ρF is the water density.
The condition for static equilibrium must be satisfied if the bar is floating freely, i.e.

W – VB = 0 or σSρF2LZSg = ρF4LzCSg

from which zC = σSZ/2. We can see from the geometry of Figure E5.6 that Z/2 + zG = 2zC so
that we get the following result after substituting for zC:

zG =
(
σS – 1

2

)
Z.

From the ship example, we have

MG =
2ρFL3Sg
3W – (zC – zG) . (5.28)

If we substitute forW, zC, and zG we have

MG = L2
3σSZ

– 1
2 (1 – σS)Z.

Again from the ship example, we know that stability to an angular displacement requires
MG > 0 so that from the equation for MG we have

L2
3σSZ

– 1
2 (1 – σS)Z > 0

which can be rearranged as√
3
2σS (1 – σS) <

L
Z .

Comment:

The final result shows that a bar of square cross section (i.e. L/Z = 1/2) will float upright if√
3
2σS (1 – σS) <

1
2

or

6σS (1 – σS) < 1

which leads to σS > 0.79 or σS < 0.21, i.e. a square Styrofoam bar (σS < 0.2) will float upright
but a square bar of wood (σS ≈ 0.6) will not. The reader should think about the angular
orientation adopted for stability by a square bar with 0.79 > σS > 0.21.
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More generally, a rectangular bar will be stable for any value of σS (in the range 0 to 1) if

2L
Z >

√
3
2 = 1.2250

i.e. a bar which has a rectangular cross section wider than it is deep is more stable than one
which has a greater depth than width.

5.8 SUMMARY

In this chapter we have shown how to calculate the force which arises due to the hydrostatic
pressure distributed over a surface or an object submerged in a fluid. For convenience we
resolved the net force exerted on a surface into a vertical and a horizontal component. The
vertical component was shown to be equal in magnitude to the weight of fluid which would
occupy the volume directly above the surface and to act vertically downwards through the
centroid of this volume. The buoyancy force exerted on a submerged or floating object was
shown to equal the weight of the fluid displaced by the object and to act vertically upwards
through the centroid of the displaced fluid. The relative positions of the centroid and the
centre of gravity of the object were shown to determine the position of its metacentre and
hence its stability.

We showed that, for a flat surface immersed vertically in a fluid, the magnitude of the
net hydrostatic force is equal to the product of the area of the surface and the pressure
at its centroid. Because the hydrostatic pressure increases with depth, the line of action
of this force always lies below the centroid. For a curved surface, the magnitude of the
horizontal component of the hydrostatic force was shown to equal the hydrostatic force on
the projection of the curved surface onto a vertical plane.

The student should be able to

• calculate, both from first principles and from tabulated information for the prop-
erties of standard shapes, the magnitude and location of the line of action, and also
specify the direction, of:
• the vertical component of the hydrostatic force exerted on a submerged surface
• the horizontal component of the hydrostatic force exerted on a submerged

surface
• the buoyancy force exerted on a submerged or floating object

The student should also be able to

• analyse the stability of floating objects

5.9 SELF-ASSESSMENT PROBLEMS

5.1 The centroid of a vertical surface of area 0.5 m2 completely submerged in an oil of
relative density 0.85 is 5 m below the surface of the oil. Calculate the hydrostatic
force acting on the surface. Explain why this force always acts some distance below
the centroid.
(Answer: 20.8 kN)
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5.2 An aperture in the vertical wall of a water tank is closed by a circular plate 600 mm
in diameter. The plate is held in position by four stops, one at each end of the ho-
rizontal diameter, and one at each lower end of the two diameters at 60◦ to the
horizontal. Determine the stop reactions when the water surface is 450 mm above
the plate centre.
(Answers: 504.0 N, 120.1 N)

5.3 (a) The spread of an oil slick of depth Z and density ρO is to be stopped by a floating
boom, as shown in Figure P5.3. The boom, which is designed to float upright as
shown in the figure, has a square cross section of side t and weight per unit length w.
Show that the maximum slick depth ZMAX which can be contained by the boom is
given by

ZMAX =
[
1 – w/ρSgt2

1 – ρO/ρS

]
t

where ρS is the density of the sea water beneath the slick and g is the acceleration due
to gravity.

oil slick
floating boom

t

water

interface

F

Z

Figure P5.3

(b) Calculate the horizontal force per unit length acting on the water side of the
boom if t is 500 mm, w is 2300 N/m, and the relative density of sea water is 1.025.
Also calculate the depth below the top surface of the boom at which the horizontal
force acts.

Would the horizontal force on the oil side of the boom be greater or smaller than
that on the water side? Give a brief explanation for your answer.
(Answers: 1052 N/m, 0.348 m)

5.4 (a) A square plate of side length L is submerged in water at an angle θ to the vertical
with its centroid a depth Z below the surface and two sides parallel to the surface.
Show that the net hydrostatic force on one face of the plate acts at a depth ZP given by

ZP =
z32 – z31

3ZL cos θ

where z2 = Z + L cos θ /2, and z1 = Z – L cos θ /2.
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(b) The gate shown (side view) in Figure P5.4 is hinged at O, 3 m above the bed
of a reservoir which contains water of depth 10 m. If the gate is a square of side

length 5 m, calculate the force
⇀

R applied vertically downwards at its centroid which
is necessary to prevent the gate from opening. Neglect the weight of the gate, and any
effects of leakage under or around the gate. There is no water on the right-hand side
of the gate.

10

3
5

R0

Figure P5.4

(Answer: 2.76 MN)

5.5 (a) A dam has the cross section shown in Figure P5.5 with tanφ = 4. Show that the
resultant hydrostatic force R acting on the dam is given by

R =
√
13
6 ρgZ

2S

where Z is the total water depth, as shown, ρ is the water density, g is the ac-
celeration due to gravity, and S is the width of the dam. Show also that the
horizontal distance from O of the line of action of the vertical component of R is
given by 7Z/36.
(b) Calculate the horizontal and vertical components of the hydrostatic force of a
dam with the cross section shown in Figure P5.5 if the width is 600 m and the water
depth is 30 m.What angle does the resultant force make with the vertical and at what
depth does the horizontal component of the hydrostatic force act?
(Answers: 2.65 GN, 1.77 GN, 56.3◦, 20 m)

5.6 (a) As shown in Figure P5.6, the water in a tank of depth D and width W is pre-
vented from escaping by a gate of circular cross section hinged at O. If the radius
of the gate is D/2, show that the net hydrostatic force F acting on the gate surface is
given by

F = 1
4ρgWD2

√(
25
4 – π + 1

16π
2
)
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Figure P5.5

where ρ is the water density and g is the acceleration due to gravity. There is no water
to the left of the gate. Show also that the vertical component of F acts at a horizontal
distance

X = D
6
(
1 – 1

8π
)

from the tank wall.

0

D
2

D

Figure P5.6

(b) If the depth D is 10 m, and the widthW is 5 m, calculate the force which the gate
exerts on the tank wall. The weight of the gate can be neglected.
(Answer: 1.29 MN)
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5.7 (a) Due to increasing salt concentration and the presence of silt, the density ρ of
water in a reservoir increases with depth z below the water surface according to

ρ = ρ0 + Cz

where ρ0 is the density at the surface (z = 0) and C is a constant. Show from first
principles that the hydrostatic pressure p at depth z is given by

p =
(
ρ0 + 1

2Cz
)
gz

and that the hydrostatic force Hexerted on a vertical rectangular wall of width S due
to water of depth D is given by

H = 1
2SD

2g
(
ρ0 + 1

3CD
)
.

Also calculate the depth below the water surface at which H acts.
(b) If the reservoir depth is 50 m and the water density increases from 1000 kg/m3

at the surface to 1100 kg/m3 at the bottom, calculate the hydrostatic force on a hori-
zontal circular plate of diameter 10 m at the bottom of the reservoir. Also calculate
the horizontal component of the hydrostatic force exerted on a wall 10 mwide which
is inclined at 60◦ to the horizontal.
(Answers: 40.4 MN, 126.7 MN)

5.8 (a) Figure P5.8 shows a flat plate which is immersed vertically in water to a depth D.
The shape of the plate is given by

y = D2 – z2
2D

where y is the half width of the plate a vertical distance z below the surface. From
first principles show the following:
(i) The surface area of the plate A = 2D2/3.
(ii) The hydrostatic force acting on one side of the plate H = 3ρgAD/8.
(iii) The hydrostatic force acts at a distance 8D/15 below the surface.

D
y

z

Figure P5.8
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(b) A container of length 5m andmaximumwidth 2mhas the cross section shown in
Figure P5.8. Calculate the maximum load which the container can carry (including
its own weight) without sinking. Calculate the corresponding hydrostatic pressure
acting at the centroid of one end of the container.
(Answers: 130.8 kN, 0.0736 bar)

5.9 (a) A rigid spherical balloon of diameter D is filled with a light gas of density rρS,
where ρS is the density of the atmospheric air at ground level. Show that the net
upward force F experienced by the balloon at ground level is given by

F = 1
6πD

2 (1 – r)
(
pL – pH

)
where p is the atmospheric pressure and the subscripts H and L refer to the highest
and lowest points on the balloon’s surface, respectively. The weight and volume of
the balloon’s ‘skin’ may be neglected.

(b) A rigid balloon of diameter 3 m is filled with helium with a density of 0.2 kg/m3.
Calculate the value of pL – pH at the altitude where the balloon just floats without
rising or falling. Calculate the maximum mass the balloon could lift to an altitude at
which the air density is 0.45 kg/m3.
(Answers: 5.89 Pa, 3.53 kg)

5.10 (a) Figure P5.10 shows the cross section of a vertical rectangular barrier separating
pure water of density ρ on the right-hand side from a layer of pure water of depth
Z1 on the left-hand side above a layer of silt of depth Z2. The silt may be treated as a
liquid of density ρ2. Determine the depth Z of the water on the right-hand side if the
net force on the barrier is to be zero. Is Z greater or smaller than Z1 + Z2, and why?

Z

Z1

Z2

water

water

silt

Figure P5.10

(b) If the depth of the water on the left-hand side is 1.5 m and that of the silt 0.5 m,
calculate the total hydrostatic force exerted on that side of the barrier. Take the relat-
ive density of silt as 1.5 and the length of the wall as 2 m. Calculate the water depth
on the right-hand side for zero net force on the barrier, and the net overall moment
exerted on the barrier.
(Answers: 40.5 kN, 2.03 m, 1031 N ·m anticlockwise)
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5.11 Figure P5.11 shows the cross section of a yacht floating in sea water of density ρ.
Excluding the keel, the weight of the yacht isW, and its centre of gravity a height H
above the water line. The submerged section of the hull is triangular in cross section,
with apex angle 2α and height h. The weight of the keel is WK , and its centre of
gravity is a depth ZK below the water line. Show that

h2 = W +WK
ρgL tanα

where L is the length of the yacht. The volume of the keel may be regarded as
negligible. Show also that the metacentre is at a depth below the surface given by

1
3h
(
1 – 2 tan2 α

)
.

Finally, show that for the yacht to float stably, the minimum weight of the keel is
given by the equation

WKZK –
(WK +W)3/2

(
1 – 2 tan2 α

)
3
√
ρgL tanα

–WH = 0.

H

h

W

α

WK

ZK

Figure P5.11



6 Kinematic description of fluids
in motion and approximations

We start this brief chapter by introducing the concepts of fluid particles, pathlines, and
streamlines, together with some of the other terms and ideas needed to describe fluid motion.
We also point out some of the principal simplifications which can be made when analysing
fluid flow to prevent the mathematics involved from becoming too demanding. With some
minor exceptions, we restrict consideration to the steady flow of a single-phase fluid. As
we pointed out in Section 2.11, all fluids are to some degree compressible, and the pressure
variations which arise in high-speed gas flows are such that the consequential density vari-
ations have to be taken into account. So far as liquid flows are concerned, it is almost always
adequate to treat them as incompressible (see Section 4.12). We introduce the concept of one-
dimensional internal flow, whereby it is assumed that, over any cross section through which
there is fluid flow, all flow and fluid properties are uniform. Application of the principle of
conservation of mass is shown to result in a simple but important relationship between fluid
density, flow velocity, and the cross-sectional area of the flow channel. The term kinematic in
the chapter title indicates that at this stage we are concerned only with the description of flow
velocity, not with the stresses and forces which cause fluid motion.

6.1 Fluid particles

In Section 2.5 we found that the average number of molecules contained in a cube of water
of side length 0.1 μm (i.e. 10–7 m) is about thirty million while for a cube of air of the same
volume, at a temperature of 20◦C and pressure of 1 bar, the number is about thirty thousand.
Such large numbers of molecules allows us to define average values for density, viscosity, and
other fluid properties which are independent of the volume size (the continuum hypothesis).
The flow of fluids through channels with submicron dimensions is becoming increasingly im-
portant (the study of such flows is termed microfluidics) but, in most situations of practical
importance, 0.1 μm is several orders of magnitude smaller than any significant dimension of
a flow channel. In normal circumstances, any changes in flow or fluid properties, such as pres-
sure, velocity, density, or viscosity, would also be negligibly small from one side of the fluid
volume to the other. The continuum hypothesis allows us to define a fluid particle as a tiny
volume of fluid, which has fluid and flow properties independent of its size. A convenient way
to think of a fluid particle is as a point-sized volume of fluid which has the temperature, pres-
sure, velocity, etc., of its immediate surroundings. If we could mark and follow the movement
of a number of fluid particles distributed throughout a flow, we would be able to form a visual
impression of the flow. Although we cannot easily mark individual fluid particles in a real flow,
there are a number of experimental flow-visualisation techniques which allow us to form such
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an impression. For example, small amounts of dye or neutrally buoyant solid or liquid (for gas
flows) particles can be introduced into a flow. In high-speed gas flows, the motion can be visu-
alised using optical techniques (interferometry, shadowgraphy, and Schlieren technique) to
detect the changes in refractive index which accompany density changes. The same techniques
can also be used to visualise the flow of certain liquids for which the refractive index is sensitive
to shearing of the liquid; the citrus oil limonene is an example.

6.2 Steady-flow assumption

With one or two exceptions, in this book we shall restrict consideration to steady flows,
that is, to flows for which the velocity and pressure at any point in a flow do not change
with time. In general there will be spatial variations in these quantities, often accompan-
ied by changes in fluid properties, throughout the flowfield. Whenever a flow is created
by the movement of an object, such as a car, a ship, or an aircraft, moving through an
otherwise stationary fluid, it is possible to transform the resulting fluid motion into a
steady flow relative to the moving object. This Galilean transformation, as it is called, in
which the object is brought to rest and its velocity subtracted from that of the surroundings, is
restricted to objects moving at constant velocity. For example, the airflow over the wings and
fuselage of an aircraft would not appear to be steady when seen by an observer on the ground,
but could be regarded as steady relative to the aircraft if it were flying at constant velocity.

6.3 Pathlines, streamlines, streamsurfaces, and streamtubes

The actual path followed by any fluid particle in a flow is called a pathline. A streamline
is a line in a flow along which the flow direction at every point at any instant is tangential.
In a steady flow, pathlines and streamlines are identical. An important consequence of the
definition is that streamlines can never cross, since the flow at any point can have only one
direction. A surface made up of streamlines is called a streamsurface. If the cross section of a
streamsurface is a closed loop, the surface defines a streamtube, as shown in Figure 6.1. Since
there can be no flow across a streamline, the same applies to a streamsurface, and a streamtube
can therefore be thought of as representing the interior wall of a duct such as a tube or pipe
through which there is flow.
Figure 6.2 shows the cross section of a stationary aerofoil with fluid flowing steadily over

it from left to right. Each of the lines with arrowheads on them represents a streamline. Five
of the streamlines shown pass over the upper (suction) surface of the aerofoil, and three over
the lower (pressure) surface. The streamline which approaches the aerofoil and intercepts its
surface at point P on its leading edge is said to be the dividing streamline. For a solid aero-
foil, the velocity at P must be zero and such a point is called a stagnation point, the word
stagnation meaning that the fluid concerned is at rest (i.e. it is stagnant). The location of P
depends slightly upon the angle of attack α between the aerofoil and the approach flow. The
surface pressure on the suction surface decreases with distance from P up to about one-third
chord distance and then begins to increase. This increase in pressure opposes forward move-
ment of the boundary-layer fluid (see below) and, once α exceeds a critical value (for the
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Figure 6.2 Flow over a stationary aerofoil

particular aerofoil), can lead to separation of the boundary layer from the surface (at point S
in Figure 6.2) and loss of lift (stall). A more detailed account of subsonic flow over an aerofoil
and how lift is generated is given in Section 17.7

6.4 No-slip condition and the boundary layer

Although it is obvious that fluid cannot pass through a solid surface, and so the component of
fluid velocity normal to any solid surface at rest must be zero, it is primarily a matter of exper-
imental observation that the component of fluid velocity tangential to the surface is also zero.
According to this no-slip condition, in the immediate vicinity of a solid surface a consequence
of viscosity is that the fluid is brought to rest (or, more generally, if the surface is itself moving,
to the same velocity as the surface so that the relative velocity is zero). In essence, the fluid
adheres to the surface. In an external flow over a streamlined body such as an aerofoil, the
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change from zero to non-zero tangential velocity takes place across a thin layer of fluid called
the viscous boundary layer. In an internal flow through a tube, as the flow develops from the
inlet, velocity changes initially occur across a boundary layer but ultimately the entire cross
section is influenced by viscosity and the flow becomes fully developed (i.e. unchanging with
streamwise location). Chapter 16 is concerned primarily with the analysis of fully-developed
internal flows, while boundary layers are the subject of Chapter 17. Further consideration is
given to both types of flow in Chapter 18.
Since we stated in Chapter 2 that viscosity is the essential property that distinguishes a

fluid from a solid, it may seem paradoxical that many flow problems can be analysed neg-
lecting viscous effects entirely. This is the situation, for example, in an external flow beyond
the near-wall viscous boundary layer. Such flows are said to be inviscid (the terms frictionless
or loss free are also used) and the theory which has been developed to analyse them is termed
potential-flow theory, a topic not included in this book. It is often the case that, in the absence
of shockwaves, viscous effects can be neglected in both internal and external compressible-gas
flows (see Chapter 11). An important consequence is that, in a frictionless flow, no mechanical
energy is converted to heat (i.e. there is zero dissipation).

6.5 Single-phase flow

In Section 2.1 we saw that substances can exist in four different forms or phases (solid, li-
quid, vapour, or gas), often depending upon the temperature and pressure to which they
are subjected. Many industrial processes, particularly in the chemical industry, involve flows,
called multiphase flows, in which two or more phases are present simultaneously. Examples
include

• liquids containing bubbles of vapour or gas, as would occur in boiling and cavitation, a
phenomenon we explain in Section 8.11

• liquids containing droplets of another liquid with which it is immiscible, such as oil and
water

• liquids containing solid particles, such as blood, the composition of which is about
54% plasma, an aqueous liquid, and 46% blood cells (corpuscles). Another example is
lubricating oil contaminated with metal cuttings produced in machining operations.

• gases containing liquid droplets, such as the mixing of hot gas with atomised liquid fuel
sprayed into a combustion chamber

• gases containing solid particles such as pollutants

Analysis of the flow of any liquid or gas where the second phase significantly alters the fluid
properties is beyond the scope of this book, which is restricted to consideration of flow of
single-phase fluids

6.6 Isothermal, incompressible, and adiabatic flow

A major simplification we can make in many flow situations is that the fluid properties
which affect the flow (i.e. density, viscosity, and surface tension) are constant and uni-
form throughout the flowfield. Since all fluid properties depend to some extent on the fluid
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temperature, this essentially restricts consideration to constant-temperature (i.e. isothermal)
flows. Flows for which density changes due to pressure variations are negligible are termed
incompressible. Except for the analysis of isothermal compressible flow in Section 13.3 and
Rayleigh flow in Section 13.4, we limit consideration to adiabatic flows, which means that
there is no heat transfer to or from the fluid.

6.7 One-dimensional flow

There are many flows in which we can identify a main flow direction. The justification for this
statement is evident from most of the figures in Chapter 1: the discharge from a centrifugal
pump (Figure 1.2); flow through a convergent-divergent nozzle (Figure 1.7), a turbofan engine
(Figure 1.8), a pipe bend (Figure 1.14), a rocket engine (Figure 1.15), a jet pump (Figure 1.16),
and a cascade of guidevanes (Figure 1.17). All of these are examples of internal flow. The flow
around a supersonic aerofoil, flow induced by a propeller, and the flow of water vapour emitted
from a cooling tower, visible or invisible, as illustrated in Figure 6.3, are examples of external
flows where the principal flow directions are readily identified.
Although most of the internal-flow examples in Chapter 1 are extremely complex when

considered in detail, we can often make significant progress in their analysis by consideration
of changes in the spatial-average (taken across a cross section) conditions between inlet and
outlet while ignoring the interior details of the flow. There are many duct flows for which
practically useful calculations can be made assuming that over any cross section of the duct
the fluid velocity V , pressure p, and all fluid properties, such as density ρ and viscosity μ,
are uniform and we account only for variations from location to location, i.e. V , p, ρ,μ, etc.,
vary only with distance along the duct s. We shall make extensive use of this one-dimensional
approximation in many of the following chapters. For the flow of a gas, in the absence of
heat transfer, a decrease in pressure is inevitably accompanied by a decrease in density. As we
have already indicated in Section 3.12, provided the Mach number does not exceed a value
of about 0.3, the change in gas density is usually negligible (e.g. for air it is less than 5%) and
the flow may be considered to be incompressible. For higher Mach numbers, compressibility
effects, such as shockwaves and choking, where the Mach number reaches and is limited to
unity, become important. Compressible-gas flows are the subject of Chapters 11 to 13, includ-
ing internal one-dimensional flows with area change, frictionless pipe flow with wall heating
(Rayleigh flow), and adiabatic pipe flow with wall friction (Fanno flow), and external flows
with shockwaves and expansion waves. In Chapter 14 we analyse the compressibility effects
which arise in the blading of gas compressors and gas turbines.
The fact that the flow of real fluids is affected by viscosity and the associated no-slip condi-

tion means that the uniform-velocity assumption is certainly invalid in the immediate vicinity
of the inner surface of a duct and may well be of limited validity in interior regions of a flow.
The uniform pressure assumption is quite different in character and is usually regarded as valid
wherever streamline curvature is small but is inappropriate in situations where the streamlines
are strongly curved.
As we shall show in Section 6.8, for steady flow of a constant-density fluid the streamwise-

velocity variation V (s) results directly from the shape of the streamtube through which flow
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Figure 6.3 Principal flow directions for various external flow situations: (a) double-wedge supersonic
aerofoil with shockwaves (S) and expansion fans (F); (b) plume from chimney stack or cooling tower;
(c) flow induced by a propeller

occurs. In Chapter 7 we shall show that these velocity changes are accompanied by pressure
variations p (s) and in Chapter 9 we shall derive a form of themomentum equation (essentially
Newton’s second law of motion) which will enable us to calculate the hydrodynamic forces
which a moving fluid exerts on the surfaces with which it is in contact (Chapter 10).
External flows, which are usually more difficult to deal with than internal flows, will be

discussed to a limited extent in Chapters 12, 16, 17, and 18.

6.8 One-dimensional continuity equation (mass-conservation
equation)

We assume that the cross-sectional area A of the streamtube shown in Figure 6.4 varies in
some specified way with distance s along the streamtube. As already stated, we also assume
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that the flow through the streamtube is steady and adopt the one-dimensional assumption
that all fluid and flow properties are uniform across any given cross section but can vary from
location to location. Our aim now is to find the variation in the flow velocity V with location s
as a consequence of the area variation A (s).
The basis for our analysis is the principle of conservation of mass, according to whichmatter

(in this case, the flowing fluid) is neither created nor destroyed. For a steady flow this principle
requires that the same mass of fluid flows across every cross section in a given time.
We start by considering an infinitesimal slice of fluid of thickness δs at some location s along

the streamtube, as shown in Figure 6.5. This slice has volume

δV = Aδs

and mass

δm = ρδV = ρAδs

where ρ is the density of the fluid within the slice (note that at this stage we do not need to
assume that the density remains constant along the streamtube).

fixed  line

V(s)

δs

flu
id

slice

location s

Figure 6.5 Fluid slice moving through a streamtube
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If the velocity of the fluid particles within the slice is V , then the slice will move a distance
equal to its thickness δs in time δt given by

δt = δsV .

If we use this equation to substitute for δs in the expressions for δV and δm above, we have

δV = AVδt and δm = ρAVδt

or

δV
δt = AV and δm

δt = ρAV .

We observe that δm/δt represents the mass of fluid which crosses a section of the streamtube
(in this case the section which instantaneously coincides with the elemental slice) per unit
time. This quantity is constant for a steady flow and is called themass flowrate ṁ, i.e.

ṁ = ρAV = constant. (6.1)

Equation (6.1) is referred to as either themass-conservation equation or the continuity equa-
tion. The historical origin of the latter name is unclear, with some fluid dynamicists suggesting
it reflects the continuum nature of a fluid, while others feel it refers to the continuous nature
of fluid flow.
The quantity δV/δt represents the volume of fluid which crosses a section of the streamtube

per unit time and is termed the volumetric (or volume) flowrate Q̇, i.e.

Q̇ = AV . (6.2)

We pointed out in Section 6.3 that a streamtube can be thought of as representing the interior
wall of a duct such as a tube or pipe through which there is flow. In fact, equations (6.1) and
(6.2) are important results, one or other of which is used in every one-dimensional, steady-
flow analysis, including situations where the fluid density changes as a consequence of pressure
changes, heating, or cooling.

ILLUSTRATIVE EXAMPLE 6.1

As shown in Figure E6.1, water flows through a nozzle of circular cross section which contracts
from an inlet area A1 of 0.05 m2 to an outlet area A2 of 0.01 m2. If the mass flowrate ṁ is 110
kg/s, calculate the volumetric flowrate Q̇ and the water velocity at inlet, V1, and at outlet, V2.

Solution

ṁ = 110 kg/s; A1 = 0.05 m2; A2 = 0.01 m2; ρ = 1000 kg/m3.
From the mass-conservation equation, we have ṁ = ρQ̇ so that

Q̇ = ṁ
ρ

= 110
1000 = 0.11m3/s.
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From Q̇ = AV , we have Q̇ = A1V1 = A2V2 so that

V1 =
Q̇
A1

= 0.11
0.05 = 2.2 m/s

and

V2 =
Q̇
A2

= 0.11
0.01 = 11 m/s.

ILLUSTRATIVE EXAMPLE 6.2

A cryogenic wind tunnel is being designed to develop the aerodynamic performance of a For-
mula 1 car. The wind tunnel will operate with an air density ρ of 8 kg/m3 at an airspeed V2 of
90 m/s in the working section (see Figure E6.2). The working section is to have a rectangular
cross section 1 m high and 2 m wide and will be just downstream of a contraction from a
plenum chamber39 with a cross-sectional area A1 of 10 m2. Calculate the air mass flowrate ṁ
through the wind tunnel and the airspeed V1 in the plenum chamber.

Solution

V2 = 90 m/s; ρ = 8 kg/m3; A1 = 10 m2; A2 = 2 m2.
From the mass-conservation equation, ṁ = ρA2V2, we have

ṁ = 8 × 2 × 90 = 1440 kg/s.

Also Q̇ = A1V1 = A2V2, so that

V1 =
A2V2
A1

= 2 × 90
10 = 18m/s.

39 A brief outline of wind-tunnel design is given in Section 8.1.
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ILLUSTRATIVE EXAMPLE 6.3

Helium flows through a nozzle of circular cross section with an outlet diameter D of 50 mm.
Calculate the maximummass flowrate ṁ for which the flow can be considered incompressible,
i.e. for which the outlet Mach numberM is less than 0.3.

Solution

D = 0.05 m; from Table A.6 in Appendix 2, for helium at STP, density ρ = 0.166 kg/m3, and
soundspeed c = 1007m/s.
We requireM < 0.3, andM = V/c, so the flow velocity V < 0.3 × 1007 = 302.1 m/s.
The nozzle outlet area A = πD2/4 = 1.99 × 10–4 m2, and ṁ = ρAV , so that

ṁ < 0.166 × 1.99 × 10–4 × 302.1 = 0.01 kg/s.

6.9 Average flow velocity V

In any real flow through a duct, the fluid velocity varies from zero at the interior duct surface
(the no-slip condition) to a maximum usually somewhere close to the duct axis. No matter
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Figure 6.6 Parabolic velocity distribution for fully-developed flow of a viscous fluid through a
circular pipe

how complex the velocity variation (also called the velocity distribution or profile), it is often
convenient to define a spatial-average40 flow velocity V using equation (6.1) or (6.2), i.e.

V = ṁ
ρA = Q̇

A . (6.3)

The quantity V is also referred to as themean velocity or bulk-mean velocity.
It is convenient and appropriate when applying the one-dimensional approximation to

identify the velocity V with the average velocity V , but it has to be appreciated that other
quantities, such as the momentum flowrate ṁV and the kinetic-energy flowrate ṁV2/2, do
not accurately represent the average values of these quantities for a real flow. For example, for
the flow of a viscous liquid through a long circular pipe at low flowrates, the velocity variation
across the pipe is parabolic (Poiseuille flow, discussed in detail in Section 16.3), as depicted
in Figure 6.6, and we find V = VMAX/2, where VMAX is the centreline velocity. The true mo-
mentum flowrate for Poiseuille flow is given by 4ṁV/3, and the true kinetic-energy flowrate
by ṁV2. In both cases the correct values are considerably higher than would be the case for a
flow with uniform velocity. Fortunately, the velocity distributions for many internal flows of
engineering interest are much flatter (i.e. closer to uniform velocity) than the parabolic profile,
and the one-dimensional approximation leads to results of acceptable accuracy.

6.10 Flow of a constant-density fluid

Equations (6.1) and (6.2) are related as follows

ṁ = ρAV = ρQ̇ = constant,

V being the spatial-average fluid velocity. If the fluid density ρ is constant and uniform
throughout the flow, then we have

Q̇ = AV = constant (6.4)

40 For unsteady flows, especially turbulent flows (see Chapter 18), it is usual to introduce flow properties averaged
with respect to time (temporal averages).
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which shows that, for steady duct flow of an incompressible fluid, if the cross-sectional area of
the duct A(s) decreases with distance along the duct s, the fluid velocity V(s) must increase. If
A increases,V decreases. There is evidence that Leonardo da Vinci was aware of the continuity
equation for a constant-density fluid and it may even have been known some 1400 years earlier
to the Roman Sextus Julius Frontinus. As we shall see in Chapter 11, the situation can be very
different for the flow of a compressible fluid.
This chapter has been limited to consideration of the kinematic description of fluid flow;

in other words, we took no account of the forces and stresses which cause the flow. In
Chapter 7 we derive Bernoulli’s equation, which for steady flow of an incompressible, in-
viscid fluid allows us to relate pressure and velocity changes along a streamline. Engineering
applications of Bernoulli’s equation, particularly to the measurement of flowrate, are discussed
in Chapter 8. Chapter 9 is concerned with the application of Newton’s second law of mo-
tion to one-dimensional internal flow of an incompressible fluid, which leads to the linear
momentum equation and allows us to calculate the hydrodynamic forces (Chapter 10) which
arise from fluid flow through ducts with changes in area and/or direction.

6.11 SUMMARY

In this chapter we have introduced some of the terminology and simplifications which
enable us to begin to describe and analyse practical fluid-flow problems. The principle
of conservation of mass applied to steady one-dimensional flow through a streamtube of
varying cross-sectional area resulted in the continuity equation. This important equation
relates mass flowrate ṁ, volumetric flowrate Q̇, average fluid velocity V , fluid density ρ,
and cross-sectional area A

ṁ = ρQ̇ = ρAV = constant.

For a constant-density fluid this result shows that fluid velocity increases if the cross-
sectional area decreases, and vice versa.

The student should be able to

• explain what is meant by the following terms: fluid particle, steady flow, streamline,
streamsurface, streamtube, no-slip condition, boundary layer, single-phase flow,
incompressible, isothermal, adiabatic, one-dimensional flow, average velocity,
mass flowrate, volumetric flowrate

• apply the continuity equation to one-dimensional duct flow

6.12 SELF-ASSESSMENT PROBLEMS

6.1 Liquid medication of density 990 kg/m3 is injected from a hypodermic syringe with
an internal barrel diameter of 10 mm through a needle with an internal diameter
of 0.3 mm. If it takes 30 s to inject 2 ml of liquid, calculate the mass flowrate and
the average liquid velocities within the syringe and the needle. Assume the plunger
moves at constant speed.
(Answers: 6.6 × 10–5 kg/s, 8.5 × 10–4 m/s, 0.94 m/s)
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6.2 Two pipes, one of internal diameter (I.D.) 0.5 m and the other of I.D. 1 m, are con-
nected as shown in Figure P6.2 to a pipe of I.D. 1.2 m. Oil with a density of 880 kg/m3

flows through the pipe system at a total flowrate of 15,000 t/h. If the liquid velocity
in each of the two smaller-diameter pipes is the same, calculate this velocity, the cor-
responding volumetric and mass flowrates in the two pipes, and also the velocity in
the large outlet pipe.

1

2

3

Figure P6.2

(Answers: 4.82 m/s, 0.95 m3/s, 3.79 m3/s, 3000 t/h, 12,000 t/h, 4.19 m/s)

6.3 Hot gas with a density of 0.4 kg/m3 is exhausted from a rocket engine through a
nozzle of exit diameter 1 m. If the mass flowrate through the nozzle is 370 kg/s, cal-
culate the exhaust-gas velocity and the volumetric flowrate. If the soundspeed for the
gas is 550 m/s, calculate the Mach number of the exhaust-gas flow. Can the exhaust
flow be considered incompressible?
(Answers: 1178 m/s, 925 m3/s, 2.14, no)

6.4 A water jet 50 mm in diameter impinges on a cone as shown in Figure P6.4. If the
water velocity has the samemagnitude at all points in the flow, calculate the thickness
of the liquid layer at a location where the cone diameter is 0.5 m. If the mass flowrate
of the water is 16 kg/s, calculate the flowspeed.

Figure P6.4

(Answers: 1.2 mm, 8.15 m/s)



7 Bernoulli’s equation

In this chapter we apply Newton’s second law of motion to derive Euler’s equation, which is
a differential equation connecting the pressure, velocity, and height above a datum of a fluid
particle moving steadily along a streamline in an inviscid fluid. By integrating Euler’s equation
for an incompressible fluid, we obtain Bernoulli’s equation, which, in spite of the underlying
restrictions, is arguably the most important and practically useful equation of fluid mechanics.
It is shown that each of the terms in Bernoulli’s equation can be interpreted as being a pressure,
a form of energy, or the height of a fluid column.

7.1 Net force on an elemental slice of fluid flowing
through a streamtube

In Chapter 6 we derived the one-dimensional continuity equation for steady flow through a
streamtube

ṁ = ρQ̇ = ρAV (6.1)

where ṁ is the mass flowrate through the streamtube, Q̇ is the volumetric flowrate, ρ is the
fluid density, V is the magnitude of the fluid velocity, and A is the cross-sectional area of the
streamtube. To go further we need to introduce another of the basic laws of classical mechan-
ics, the principle of conservation of momentum, usually referred to as Newton’s second law
(of motion). Probably the most familiar form of Newton’s second law is

F = ma (7.1)

which states that a net force of magnitude F exerted on a mass m results in an acceleration of
the mass of magnitude a in the direction of F. As the words magnitude and direction suggest,
F and a are both vector quantities.
We shall apply Newton’s second law to the fluid slice of infinitesimal length δs shown in

Figure 7.1. The net force δF which acts on the slice in the streamwise s-direction is made up of
four components, as follows

• a pressure force pA on the face at location s
• a pressure force –

(
p + δp

)
(A + δA) on the opposite face at location s + δs

• a pressure force
(
p + δp/2

)
δA on the curved face

• the component of the weight of the slice in the s-direction = –δW cos θ

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 7.1 Elemental fluid slice moving through a streamtube

so that

δF = pA –
(
p + δp

)
(A + δA) +

(
p + 1

2δp
)
δA – δW cos θ .

In writing the equation for δF we have assumed that the pressure p is uniform across the cross
section of the streamtube, consistent with the one-dimensional assumption, but varies with
distance s along it. The terms in the equation have been taken as positive in the direction of
increasing s, which is also the flow direction. Although Figure 7.1 shows A increasing with s,
this in no way restricts the analysis, which is valid whether A increases or decreases. The angle
between the velocity vector at any location along the streamtube and the vertical is denoted
by θ . The third term on the right-hand side of the equation for δF represents the compon-
ent of force in the s-direction due to the pressure acting on the section of the surface of the
streamtube, which coincides instantaneously with the moving slice. The average pressure act-
ing on this strip of surface must have a value somewhere between p and p + δp and has been
taken as the simple average p+ δp/2, though, as we shall see shortly, the factor 1/2 is unimport-
ant. Just as for the horizontal component of the elemental force due to the hydrostatic pressure
acting on a curved surface (see Section 5.5), the net force in the s-direction due to the pressure
p + δp/2 acting on the strip of streamtube surface is

(
p + δp/2

)× projected area, where the
projected area here is δA.
If we now multiply out and simplify by cancellation the terms on the right-hand side of the

equation for δF, we have

δF = –δp
(
A + 1

2δA
)
– δW cos θ .

Since our elemental slice is infinitesimally thin, it is permissible to neglect the area change δA
in comparison with the area A itself (which is why the factor 1/2 is unimportant), so that

δF = –δpA – δW cos θ .
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The weight δW of the infinitesimal slice is given by

δW = δmg = ρδV g = ρAδs g

where δm is the mass of the slice, δV is its volume, and g is the acceleration due to gravity. If
we substitute for δW in the equation for δF, we have

δF = –δpA – ρAδs g cos θ

or

δF = –δpA – ρAδz′g (7.2)

wherein we have made use of the fact that the vertical height change δz′, corresponding to the
distance along the streamtube δs, is given by δz′ = δs cos θ (see Figure 7.1). Just as in Chapter 4,
we use the symbol z′ to denote altitude, and z to denote depth, so that δz = –δz′.

7.2 Acceleration of a fluid slice

Since we have restricted our attention to steady flow, it may seem a contradiction that we are
now discussing acceleration of the fluid. However, as stated in Section 6.2, where this restric-
tion was introduced, steady flow of a fluid implies that the fluid velocity in a flowfield is always
the same at any fixed point but can vary from point to point. As shown in Figure 7.2, what this
means is that the velocity V of each fluid particle can change as it moves through the flowfield
and so the particle experiences acceleration.
If the acceleration of a particle with instantaneous velocity V at time t is a, by definition we

have

a = dV
dt

= dV
ds

ds
dt

wherein we have made use of the rule of differential calculus for differentiation of a function
of a function. In this case V is a function of s, which itself is a function of t. By definition the
particle velocity along a streamline is given by

V = ds
dt
,

streamtube

V1

s1

s2

s3

s4V2

V3

V4

streamline

Figure 7.2 Velocity variation for steady flow along a streamline
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so the acceleration of a fluid particle can be written as

a = V dV
ds

.

ILLUSTRATIVE EXAMPLE 7.1

A liquid flows at a constant volumetric flowrate Q̇ through a duct which decreases in area A
such that A/A0 = s0/s, where s is the distance along the duct and A0 is the area at s = s0. Derive
an expression for the fluid acceleration at any location along the duct. If s0 = 1 m, A0 = 0.1m2,
and Q̇ = 0.2m3/s, calculate the fluid velocity and acceleration at s = 5 m.

Solution

We have Q̇ = AV so that

V = Q̇
A = Q̇ s

A0s0
from which

dV
ds

= Q̇
A0s0

.

Then, from a = V (dV/ds), we have

a =
(

Q̇
A0s0

)2
s.

For the numerical part of the problem we have s0 = 1m, A0 = 0.1m2, Q̇ = 0.2m3/s, and s = 5
m. At s = 5m,

A = A0s0
s = 0.1 × 1

5 = 0.02m2.

Therefore,

V = Q̇
A = 0.2

0.02 = 10m/s

and

a =
(

Q̇
A0s0

)2
s =
(

0.2
0.1 × 1

)2
× 5 = 20m/s2.

Comment:

Although the flow velocity here, 10 m/s, is quite modest, the particle acceleration produced by
the area reduction is about 2g.
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7.3 Euler’s equation

We are now in a position to apply Newton’s second law to the infinitesimal fluid slice since we
now have expressions for both the net force acting on the slice in the s-direction and for the
acceleration of the fluid particles which constitute the slice. We start with the basic form of the
second law

δF = δma.

From Section 7.1 we have δm = ρAδs and, from Section 7.2, a = V(dV/ds), so that

δF = ρAδs V dV
ds

(7.3)

We can now substitute for δF from equation (7.2) which, after dividing through by the area A,
leads to

–δp – ρδz′g = ρδs V dV
ds

.

We now divide through by δs and rearrange to find

δp
δs + ρg δz

′
δs + ρV dV

ds
= 0

which, in the limit δs → 0, gives

dp
ds

+ ρg dz
′

ds
+ ρV dV

ds
= 0. (7.4)

Equation (7.4) is a first-order ordinary differential equation which connects the variation of
pressure, velocity, and density along a streamline for the steady flow of an inviscid fluid and is
known as Euler’s equation. To be more precise, equation (7.4) is a restricted form of a much
more general set of equations derived by Euler for the flow of an inviscid fluid.
As is the mass-conservation equation (6.1), Euler’s equation is valid whether or not the fluid

density is constant. We note too that equation (7.4) is independent of area and so applies to
both internal and external flows. For a fluid at rest (i.e. V = 0), equation (7.4) reduces to the
hydrostatic equation (4.5)

–
dp
dz′ =

dp
dz

= ρg.

7.4 Bernoulli’s equation

If the fluid density is taken as constant, then equation (7.4) is easily integrated and we have

p + ρgz′ + 1
2V

2 = constant (7.5)

which is known as Bernoulli’s equation (or theorem) after Daniel Bernoulli, who included
a form of it in his treatise Hydrodynamica (1738). It was not until 1755 that Bernoulli’s
close friend Leonhard Euler gave a complete derivation of equation (7.5). The constant of



BERNOULLI’S EQUATION 179

integration on the right-hand side is called the Bernoulli constant, although it is not an ab-
solute constant but one that can vary from streamline to streamline in a given flow and is
different for every flow. In a one-dimensional flow, however, the Bernoulli constant is uniform
throughout the flowfield.
As we pointed out in Section 4.3, the combination of terms p + ρgz′ which appears in

Bernoulli’s equation is termed the piezometric pressure, P.
Since we shall make extensive use of Bernoulli’s equation in this and Chapters 8, 9, and 10,

it is important to be aware of the assumptions on which its validity depends

• steady flow
• constant-density fluid
• inviscid fluid

For many flows, including compressible flow, which we discuss in some detail in Chapters 11,
12, and 13, the potential-energy (gravity) term in Euler’s equation is generally negligible, and
equation (7.4) then reduces to

dp
ds

+ ρV dV
ds

= 0 (7.6)

or, in integral form,

1
2V

2 +
∫

dp
ρ

= constant. (7.7)

To evaluate the integral requires that the relationship between pressure and density be known
(see Section 11.3).

ILLUSTRATIVE EXAMPLE 7.2

(a) Calculate the Bernoulli constant for water flowing through a pipe at zero altitude at a speed
of 10 m/s if the water pressure is 1 bar. (b) If the elevation of the pipe falls by 20 m and the
flowspeed decreases to 2 m/s, what is the new fluid pressure? The flow geometry is shown in
Figure E7.2.

Solution

z′1 = 0;V1 = 10 m/s; p1 = 105 Pa; z′2 = –20 m; V2 = 2 m/s; ρ = 103 kg/m3; g = 9.81 m/s2.

(a) The terms in Bernoulli’s equation are as follows

p1 = 105 Pa, ρgz′1 = 0, and 1/2ρV2
1 = 1/2 × 103 × 102 = 5 × 104 Pa

so the Bernoulli constant = 105 + 0 + 5 × 104 = 1.5 × 105 Pa or 1.5 bar.
(b) We have z′

2 = –20 m, and V2 = 2 m/s, so that

ρgz′2 = 103 × 9.81× (–20) = – 1.96× 105 Pa and 1/2 ρV2
2 = 1/2× 103 × 22 = 2× 103 Pa.

If the flow is steady, of constant density, and frictionless, the Bernoulli constant remains
unchanged, so that

p2 + (–1.96 × 105) + 2 × 103 = 1.5 × 105 and p2 = 3.44 × 105 Pa or 3.44 bar.
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V1

2

1

p1

V2
p2

zʹ
1

zʹ
2

Figure E7.2

Comment:

It was important to take z′2 as negative because the elevation z′2 of the pipe at location ➁ was
less than z′1 at location ➀.

7.5 Interpretations of Bernoulli’s equation

The first term of Bernoulli’s equation, p, is the pressure which would be sensed by an observer
moving with the fluid (the stick man on the left in Figure 7.3) and is called the static pressure.
As we discuss further in Section 15.1 this pressure is also called themechanical pressure and is
usually taken to be equal to the thermodynamic pressure. From the principle of dimensional
homogeneity, which we discussed in Section 3.5, if one term in equation (7.4) is a pressure,
then each of the other terms, including the constant of integration (i.e. the Bernoulli constant),
must have the units and dimensions of pressure. In fact, it is common practice to refer to each
of these terms individually, and certain combinations of them, as pressures

• ρgz = –ρgz′ = hydrostatic pressure (7.8)

• p + ρgz′ = P = piezometric pressure (7.9)

• p + 1
2ρV

2 = p0 = stagnation pressure (7.10)

• 1
2ρV

2 = dynamic pressure (7.11)

• p + ρgz′ + 1
2ρV

2 = pT = total pressure. (7.12)



INTERPRETATIONS OF BERNOULLI’S EQUATION 181

V

V

h

V1

V2

V = 0

2

zero (datum)

level

p

p
T

Δp
1

ρ
F

ρ
M

z1
'

z2
'

Figure 7.3 Static and total pressures

The terms hydrostatic pressure and piezometric pressure were introduced in Section 4.3,
where we considered fluids at rest. The dynamic pressure ρV2/2 is a new term which arises
when a fluid is in motion. For a constant-density flow, the sum of the static and dynamic
pressures is called the stagnation pressure. Stagnation conditions at any point in a flow are
the conditions that would be attained if the flow there were brought to rest. A point where a
flow is actually brought to rest, such as the point P (in reality a line) on the dividing streamline
for flow around an aerofoil, as shown in Figure 6.1, is called a stagnation point. For flows
where changes in the hydrostatic pressure –ρgz′ are negligible compared with changes in the
static and dynamic pressures, the stagnation pressure is essentially constant along a streamline.
This condition obviously applies if the streamline lies in a horizontal plane, and is an excellent
approximation for all gas flows. For high-speed gas flows where compressibility effects are
significant, ρV2/2 is still called the dynamic pressure but, as will be seen in Section 11.3, is no
longer simply the difference between the stagnation and static pressures as it depends upon
both the static pressure and also the Mach number. The total pressure is identically equal
to the Bernoulli constant and so constant along any streamline in steady inviscid flow. With
reference to Figure 7.3, the ‘stick man’ on the left who is moving along the streamline at the
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same velocity as the fluid in his immediate vicinity would sense the local static pressure p
whereas the stationary stick man on the right and on the same streamline would sense the
local total pressure pT .

ILLUSTRATIVE EXAMPLE 7.3

The difference between the stagnation pressure p0 and the static pressure p of air of density
ρ = 4.4 kg/m3 and soundspeed c = 323 m/s is found to be 172 kPa. Calculate the gas velocity
and determine whether the flow can be considered incompressible.

Solution

ρ = 4.4 kg/m3; c = 323m/s; p0 – p = 1.72 × 105 Pa.
Assuming the flow to be incompressible, we have

p0 – p = 1
2ρV

2

so that

V =

√
2
(
p0 – p

)
ρ

and so

V =
√
2 × 1.72 × 105/4.4 = 279.6m/s.

The Mach number M = V/c = 279.6/323 = 0.87, i.e. significantly greater than 0.3 so that
compressibility effects cannot be regarded as negligible, and our calculation of the gas velocity
must be in error. It can be shown, using the concepts presented in Chapter 11, that the error is
about 8% and it depends upon the situation as to whether or not this is acceptable.

The dynamic pressure ρV2/2 can be thought of as a pressure which characterises the motion of
a fluid, and its value at a particular location in a flow, usually the undisturbed flow upstream of
an object, such as the uniform flow approaching the aerofoil of Figure 6.2, is frequently chosen
to make other pressures, pressure differences, surface shear stress, etc., non-dimensional. The
term normalise is often used to mean make non-dimensional. Several such non-dimensional
quantities were introduced in Section 3.12, including

pREF – pV
1
2ρV

2
= cavitation number, (7.13)

pREF being a reference pressure, typically the barometric pressure, and pV the saturated vapour
pressure for a flowing liquid (see Sections 2.13 and 8.11), and

cf =
τS

1
2ρV

2
= friction factor (7.14)

where τS is the surface shear stress (see Chapters 16, 17, and 18).
The dynamic pressure is also used together with an appropriate area A to non-

dimensionalise forces such as the drag and lift forces D and L exerted on an object by a fluid
flowing past it



INTERPRETATIONS OF BERNOULLI’S EQUATION 183

CD = D
1
2ρV

2A
= drag coefficient (7.15)

CL = L
1
2ρV

2A
= lift coefficient. (7.16)

Either the projected frontal area (i.e. the area corresponding to a silhouette) or (for a wing) the
planform area is frequently chosen for A.
To the above we can add

CP =
�p
1
2ρV

2
= pressure coefficient (7.17)

where �p is a pressure loss or pressure difference with respect to a reference pressure such as
the static pressure at the same location as that forV (often equal to the barometric pressure B).
The inclusion of the factor 1/2 in these definitions is conventional, and a consequence of
its ‘natural’ occurrence in Bernoulli’s equation. Its inclusion is not essential (without it all
quantities are still non-dimensional) and it is sometimes omitted, as is the case for the Euler
number

Eu =
p – pREF
ρV2 . (7.18)

7.5.1 Energy

The dynamic pressure ρV2/2 represents the kinetic energy per unit volume of a flowing fluid.
We can see that this is so by considering a massm of volumeVmoving at speed V . The kinetic
energy of the mass is mV2/2, and its kinetic energy per unit volume is therefore mV2/(2V) or
ρV2/2 since the density ρ ≡ m/V. Again on the basis of the principle of dimensional homo-
geneity, it must be the case that each of the terms in Bernoulli’s equation can also be regarded
as representing a form of energy

• p = pressure energy per unit volume
• ρgz′ = potential energy per unit volume
• pT = total energy per unit volume

and it follows that Bernoulli’s equation itself can be thought of as an equation for the conser-
vation of mechanical energy. In fact, Bernoulli’s equation can be derived directly from the first
law of thermodynamics, which is the basis for a general energy-conservation equationwhich
we discuss in some detail in Chapter 11.

7.5.2 Head

If we divide through Bernoulli’s equation by ρg we find

p
ρg + z′ + V2

2g =
pT
ρg . (7.19)
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Once again the principle of dimensional homogeneity leads to the conclusion that, since z′
represents altitude or height, each term in equation (7.19) corresponds to a height or, as it is
usually called (see Section 4.3), a head

• p
ρg = static head (7.20)

• V2

2g = dynamic head (7.21)

• pT
ρg = total head. (7.22)

The head in each case corresponds to the vertical height of a column of fluid with the same
density ρ as that of the flowing fluid.

7.6 Pressure loss versus pressure difference

It is important to understand the distinction between pressure difference (or pressure change)
and pressure loss. At points ➀ and ➁ on the streamline shown in Figure 7.3 the pressures,
velocities, and heights are related by Bernoulli’s equation as follows

p1 + ρgz′
1 + 1

2ρV
2
1 = p2 + ρgz′

2 + 1
2ρV

2
2 = pT (7.23)

or(
p1 + ρgz′

1
)
–
(
p2 + ρgz′

2
)
= 1
2ρ
(
V2
2 – V2

2
)
. (7.24)

Equation (7.24) shows that a change in velocity between points ➀ and ➁ results in a change in
the piezometric pressure

(
p + ρgz′) and this is precisely the pressure difference that would be

measured by a manometer or differential pressure transducer, as illustrated in the figure. If the
velocities at points ➀ and ➁ were the same, both the manometer and the pressure transducer
would indicate zero because the only change in pressure would be the hydrostatic pressure dif-
ference due to the height difference z′2 – z′1 whereas the difference in the piezometric pressures
is zero.
The difference in pressure associated with a velocity change becomes clearer if the hydro-

static pressure difference ρg
(
z′
2 – z

′
1
)
is negligible since we then have

p1 – p2 = 1
2ρ
(
V2
2 – V2

2
)
. (7.25)

From equation (7.25) we see that an increase in velocity results in a decrease in static pressure
and vice versa. If we couple this statement with the constant-density form of the continuity
equation (6.4), then, for one-dimensional, steady flow of an inviscid, constant-density fluid
through a streamtube, we can conclude that

• if A2 < A1, then V2 > V1 and p2 < p1
• if A2 > A1, then V2 < V1 and p2 > p1

It should be clear that, irrespective of whether the static and piezometric pressures increase or
decrease, according to our assumptions the total pressure pT will remain constant. In practice
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the effect of fluid friction at a surface, due to viscosity, is for the total pressure to decrease in the
absence of work or thermal-energy input to the fluid. This is what is meant by a pressure loss.
According to the energy interpretation of Bernoulli’s equation (Subsection 7.5.1), such a re-
duction in total pressure corresponds to a loss in mechanical energy. A more detailed analysis
reveals that, for flow of a viscous fluid, mechanical energy is dissipated resulting in an increase
in the internal energy of the fluid and hence an increase in fluid temperature. This frictional
heating is usually negligible but can become a major factor at very high gas velocities as, for
example, encountered in supersonic flight or re-entry of spacecraft into the earth’s atmosphere.

7.7 SUMMARY

In this chapter we used Newton’s second law of motion to derive Euler’s equation for
the flow of an inviscid fluid along a streamline. For a fluid of constant density ρ Euler’s
equation can be integrated to yield Bernoulli’s equation

p + ρgz′ + 1
2ρV

2 = pT

which shows that the sum of the static pressure p, the hydrostatic pressure ρgz′, and the dy-
namic pressure ρV2/2 is equal to the total pressure pT . Each of the terms on the left-hand
side of Bernoulli’s equation can be regarded as representing different forms of mechan-
ical energy and also equivalent to the hydrostatic pressure due to a vertical column of
liquid. The dynamic pressure can be thought of as measuring the intensity or strength
of a flow and is frequently combined with other fluid and flow properties to produce
non-dimensional (or dimensionless) numbers which characterise various aspects of fluid
motion.

The student should be able to

• state Bernoulli’s equation in the forms

p + ρgz′ + 1
2ρV

2 = constant = pT

and

p1 + ρgz′1 + 1
2ρV

2
1 = p2 + ρgz′2 + 1

2ρV
2
2

• state the assumptions made in the derivation of Bernoulli’s equation and the lim-
itations on its applicability, i.e. to conditions along a streamline in the steady flow
of an inviscid, constant-density fluid

• define the terms
• Bernoulli constant
• dynamic pressure and dynamic head
• total pressure and total head
• stagnation pressure

in addition to the relevant terms introduced in Chapter 4

• hydrostatic pressure and hydrostatic head
• piezometric pressure and piezometric head
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• interpret Bernoulli’s equation in terms of pressure, mechanical energy, and head
• distinguish between pressure difference (or pressure change) and pressure loss

7.8 SELF-ASSESSMENT PROBLEMS

7.1 Water from a reservoir flows to the nozzles of a Pelton turbine through a pipe 2
m in diameter. The vertical height between the reservoir and the turbine is 400 m.
Assuming steady, one-dimensional, frictionless flow, calculate the flow velocity in the
pipe and at the nozzle outlet if the nozzle diameter is 200 mm. The static pressure at
outlet is the same as that at the surface.
(Answers: 0.0886 m/s; 88.6 m/s)

7.2 The mass flowrate of methane gas through a pipeline 0.5 m in diameter is 10 kg/s.
Calculate the gas velocity if the density of methane is taken as 0.66 kg/m3. If the
pipeline contracts linearly to a diameter of 0.35 m over a distance of 0.5 m, calculate
the gas velocity and acceleration at the end of the contraction, the stagnation pressure
if the upstream static pressure is 1 bar, and the drop in static pressure across the
contraction. Assume steady, one-dimensional, incompressible, frictionless flow.
(Answers: 77.17 m/s; 157.5 m/s; 4.25 × 104 m/s2; 1.0197 bar; 6219 Pa)

7.3 Calculate the Bernoulli constant and the stagnation pressure at a location in a
pipeline where the water velocity is 25 m/s, the static pressure is 8 bar, and the el-
evation is 65 m. Also calculate the pressure head, the dynamic head, the total head,
and the piezometric head. If the cross-sectional area of the pipeline is 1 m2, what is
the kinetic-energy flowrate?
(Answers: 17.5 bar; 11.125 bar; 81.55 m; 31.86 m; 178.4 m; 146.6 m; 7.81 MW)

7.4 The exhaust gas from a turbojet engine has a density of 0.18 kg/m3 and a sound-
speed of 600 m/s. If the exhaust-gas flowrate is 600 kg/s, and the exhaust has a
cross-sectional area of 4 m2, calculate the velocity of the gas and the Mach number.
Calculate the stagnation pressure of the air entering the engine if its static pressure is
0.5 bar, its density is 0.7 kg/m3, and the inlet area is 5 m2. The mass flowrates of air
and exhaust gas can be assumed to be the same.
(Answers: 833.3 m/s; 1.39; 0.603 bar)



8 Engineering applications
of Bernoulli’s equation

Bernoulli’s equation is so valuable in analysing a wide range of fluid-flow problems that we
now devote an entire chapter to illustrate how it is applied in practice, frequently together
with the continuity equation. The basic design of a wind-tunnel contraction provides valu-
able insight into the interplay between pressure and kinetic energy. Instrumentation for flow
measurement provides several application examples, including the Pitot-static tube for velocity
measurement, and the Venturi-tube and orifice-plate meters for themeasurement of total fluid
flowrate. We show how Bernoulli’s equation gives some insight into aerofoil lift and into the
aerodynamics of modern racing cars. Liquid draining from a tank under the influence of grav-
ity provides another example of the application of Bernoulli’s equation. Another important
application is the determination of the conditions for the onset of cavitation in a liquid flow.

8.1 Wind-tunnel contraction

A feature of most subsonic wind tunnels is a contraction, which is a smooth reduction in the
cross section between the settling chamber (also called the plenum chamber) and the work-
ing section, as illustrated in Figure 8.1. The contraction is one of several flow-conditioning
components designed to produce a flow of uniform velocity, low swirl, and low levels of fluctu-
ation (known as turbulence, see Chapter 18). Swirl is minimised by installing a honeycomb (a
composite structure consisting of an array of parallel cells of hexagonal cross section manufac-
tured from thin aluminium sheets) and turbulence reduced using a sequence of fine wire-mesh
screens. A diffuser is usually installed downstream of the working section to gradually increase
the static pressure. Wind tunnels where the fan which produces the flow is upstream of the set-
tling chamber, as in Figure 8.1, are called blower tunnels. Since the tunnel shown is not part
of a closed loop, the configuration is referred to as open-return.
This section is concerned with applying Bernoulli’s equation together with the continuity

equation to demonstrate how a contraction produces a uniform flow.
We assume the flow is steady and incompressible with an upstream velocity V1 and static

pressure p1, and corresponding values V2 and p2 downstream. According to the continuity,

A1V1 = A2V2 (8.1)

where A1 and A2 are the upstream and downstream cross-sectional areas, respectively.
What this equation shows is that the flow velocity increases as the flow passes through the
contraction such that at exit we have

V2 =
A1
A2

V1.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 8.1 Typical open-return wind-tunnel configuration

We now apply Bernoulli’s in the form

p1 + 1
2ρV

2
1 = p2 + 1

2ρV
2
2 = p0 (7.10)

where p0 is the constant stagnation pressure (assuming there is no appreciable change in el-
evation between locations ① and ② so that, in this case, no change in the total pressure pT
implies no change in the stagnation pressure p0). Substitution for V2 then leads to

p1 + 1
2ρV

2
1 = p2 + 1

2ρ
(
A1
A2

)2
V2
1 = p0.

This result shows that the contraction increases the kinetic energy of the flow by the factor
(A1/A2)2. Since we are assuming a frictionless flow, the mechanical energy of the flow must
be conserved (as we pointed out in Section 7.5, Bernoulli’s equation can be thought of as an
energy-conservation equation).We can interpret this to mean that there has been a transform-
ation of pressure energy into kinetic energy.We can draw another important conclusion: since
the upstream static pressure p1 must be practically uniform because of the low flow speed, and
a large fraction of that pressure has been transformed into kinetic energy, the downstream flow
speed V2 must be practically uniform, which is precisely what is needed for the flow in the test
section of a wind tunnel.

8.2 Venturi-tube flowmeter

The Venturi tube, developed by Clemens Herschel and named after Giovanni Battista Ven-
turi, is one of a number of differential-pressure, inline flowmeters, designed on the basis of
Bernoulli’s equation (7.10), which are commonly used to measure the total volumetric rate Q̇
at which a low-viscosity41 gas or liquid flows through a pipe. A typical Venturi tube, which is
a convergent-divergent nozzle, is illustrated in Figure 8.2. The essential features are a gradual
conical contraction from the initial pipe diameter to a cylindrical throat section followed by an

41 As we saw in Chapter 3 the Reynolds number is the essential flow parameter involving viscosity. When we say
‘low-viscosity fluid’, we really mean ‘high Reynolds number flow’ and this, in turn, normally means turbulent flow, as
will be seen in Chapter 15.
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Figure 8.2 Venturi-tube flowmeter

even more gradual area increase, usually back to the original pipe diameter42. The convergent
section, between the inlet and throat, sometimes called a confuser, accelerates the fluid flowing
through it, thereby reducing the fluid pressure. As we shall now show, the flowrate is derived
from ameasurement of the piezometric pressure drop across this upstream section of the Ven-
turi tube. The absolute pressure is of significance only insofar as it influences the density of a
gas or the tendency for a liquid to cavitate (see Section 8.11).
If we assume that the flow through the confuser is one dimensional, frictionless, and incom-

pressible with density ρF , we can apply Bernoulli’s equation between the sections marked ①

and ② in Figure 8.2, as follows

p1 + ρFgz′1 + 1
2ρFV

2
1 = p2 + ρFgz′2 + 1

2ρFV
2
2

which we can rearrange as
(
p1 + ρFgz′1

)
–
(
p2 + ρFgz′2

)
= 1
2ρF(V

2
2 – V2

1 ).

If the Venturi tube is installed with its axis horizontal, such that z′1 = z′2, the terms on the
left-hand side reduce to the static-pressure difference,�p = p1 – p2. More generally, however,
a manometer or differential-pressure transducer connected between sections ① and ② will
measure the piezometric pressure difference�P given by

�P = �p + ρFg�z′ = ρFg�H (8.2)

where�z′ = z′1 –z′2 is the height difference between ① and②, such that�z′ > 0 if z′2 < z′1, and
�H is the piezometric head difference. In the event that either the static-pressure difference

42 Further details are given in Section 8.3.
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�p = p1 –p2 or the individual static pressures p1 and p2 are measured directly, the piezometric
pressure difference �P is determined by adding ρFg�z′ to �p, i.e. the absolute height of the
Venturi tube is of no significance, only the height difference�z′.
We now rewrite Bernoulli’s equation in the convenient form

�P = 1
2ρF
(
V2
2 – V2

1
)
. (8.3)

From the continuity equation for a constant-density flow, Q̇ = AV , the velocities V1 and V2
can be written in terms of the volumetric flowrate Q̇ and the cross-sectional areas at sections
① and ②, A1 and A2, as

V1 =
Q̇
A1

and V2 =
Q̇
A2

.

Substitution for V1 and V2 in equation (8.3) then gives

�P = 1
2ρFQ̇

2

(
1
A2
2
– 1
A2
1

)

so that, after rearrangement, we have

Q̇ = A2

√
2�P

ρF
[
1 – (A2/A1)2

] (8.4)

from which Q̇ can be calculated. The corresponding expression for the mass flowrate, ṁ =
ρFQ̇, is

ṁ = A2

√
2ρF�P[

1 – (A2/A1)2
] . (8.5)

Since�P/ρF = g�H, equation (8.4) can be written in terms of the piezometric head difference
�H as

Q̇ = A2

√
2g�H[

1 – (A2/A1)2
] . (8.6)

8.3 Venturi-tube design and the coefficient of discharge CD

Equations (8.4), (8.5), and (8.6) are all based directly on Bernoulli’s equation and the continu-
ity equation for one-dimensional, incompressible flow. The constant-density assumption is
practically always valid for single-phase liquid flows and, as we showed in Chapter 7, remains
very accurate for gas flows with Mach numbers up to about 0.3. Any error associated with the
constant-density assumption is further minimised by the fact that the fluid density ρF appears
in the expression for the mass flowrate ṁ within the square root.
The influence of the one-dimensional flow assumption on the accuracy of equations (8.4)

and (8.5) is far less straightforward to quantify. The radial distribution of the fluid velocity
upstream of the Venturi is likely to be far from uniform because any real fluid is affected by
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viscosity. As we shall see in Chapter 16, if the flow is laminar the velocity distribution will be
parabolic; in Section 18.8, the velocity distribution is shown to be ‘flatter’ if the flow is tur-
bulent, which is likely to be the case in most practical situations43. To compensate for the
non-uniformity in the velocity distribution, it is usual to calibrate Venturi tubes against a
standard of known, high accuracy to determine a performance factor called the coefficient
of discharge, CD, which is defined as the ratio of the actual (i.e. true) flowrate Q̇A to the
theoretical flowrate Q̇TH based upon Bernoulli’s equation for the measured�P, i.e.

CD ≡ Q̇A
Q̇TH

= Q̇A
A2

√
ρF
[
1 – (A2/A1)2

]
2�P . (8.7)

The coefficient of discharge can be regarded as a direct measure of the validity of the theory
given in Section 8.2. It is quite remarkable, therefore, that values ofCD for a low-viscosity liquid
such as water flowing through a well-designed Venturi tube can be as high as 0.995, suggest-
ing that this very simple theory is almost perfect in this application. Calibration is normally
carried out over a wide range of flowrates, and the results presented in the form of a graph or
table of CD versus the pipe-flow Reynolds number ρFV1D1/μF , where D1 is the upstream pipe
diameter, V1 = 4Q̇A/πD2

1 is the upstream flowspeed, and μF is the dynamic viscosity of the
fluid.
The section of a Venturi tube downstream of the throat, which is known as a diffuser, has a

negligible influence on the characteristics of the Venturi tube and is designed to minimise the
stagnation pressure loss between inlet and outlet.
Optimum values for the convergence angle of the confuser and the divergence angle of the

diffuser are about 21◦ and 7◦ to 8◦, respectively, while the throat-to-pipe diameter ratio is
between 0.3 and 0.75. A key installation requirement is a run of straight undisturbed pipe
(i.e. free of bends, valves, area changes, etc.) upstream of the Venturi at least 40 diameters
in length and including a honeycomb flow conditioner to remove swirl. Detailed design in-
formation, including installation requirements, is given in various international and national
standards, including the British Standard EN ISO 5167 and ASME MFC-3M44. As we dis-
cussed in Section 7.6, stagnation-pressure loss represents a loss (or, more correctly, conversion
to heat) of mechanical energy. If the reduction in stagnation pressure is �p0 and the flowrate
Q̇, the power required to maintain the flow against this pressure difference is Q̇�p0. The en-
gineer who designs a pipework system which includes a Venturi-tube flowmeter has to trade
off the long-term operating costs associated with this (and other) power requirements against
the capital cost of the Venturi tube and the cost of correct installation.

ILLUSTRATIVE EXAMPLE 8.1

A Venturi tube installed in a horizontal pipe 80 mm in diameter has a throat diameter of
50 mm (see Figure E8.1). The flowing fluid is compressed air with a density of 5 kg/m3 and a
dynamic viscosity of 1.8 × 10–5 Pa · s. In a calibration test at a mass flowrate of 1.5 kg/s, the
static pressure upstream of the Venturi tube was 4.20 bar, the throat pressure 3.69 bar, and

43 See also comments on the installation requirements in the final paragraph of this section.
44 Most standards are published in several parts and periodically updated.
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the pressure at the Venturi-tube exit 4.19 bar. Calculate the coefficient of discharge, the pipe
Reynolds number, the pressure-loss coefficient for the Venturi tube, and the rate of energy
dissipation by the fluid flowing through the Venturi tube.

1

V1 V2

A2A1 A3

p3p2p1
V3

2
3

Figure E8.1

Solution

D1 = 0.08 m; D2 = 0.05 m; D3 = 0.08 m; ρF = 5 kg/m3; μF = 1.8 × 10–5 Pa · s; ṁA = 1.5 kg/s;
p1 = 4.20 × 105 Pa; p2 = 3.69 × 105 Pa; p3 = 4.19 × 105 Pa.
The coefficient of discharge CD ≡ ṁA/ṁTH , where ṁTH is the theoretical mass flowrate
according to equation (8.5)45

ṁTH = A2

√√√√ 2ρF
(
p1 – p2

)
[
1 – (A2/A1)2

]
= π × 0.052

4

√
2 × 5 × (4.20 – 3.69) × 105[

1 – (0.05/0.08)4
]

= 1.523 kg/s

so that

CD = 1.5/1.523 = 0.985.

Since the pipe Reynolds number Re is found from Re = ρFV1D1/μF , we need to calculate the
average (or mean) flow velocity V1 from the continuity equation (6.3), i.e.

V1 =
ṁA
ρFA1

= 1.5
5 × π × 0.082/4

= 59.7 m/s

and so

Re = 5 × 59.7 × 0.08
1.8 × 10–5

.

The pressure-loss coefficient was defined in Section 7.5 as

CP ≡ �p
1
2ρFV

2
.

In this case we take �p = p1 – p3 = 103 Pa, i.e. the pressure difference between two sections
where the areas are the same, and V = V1 so that

45 In an examination, equation (8.5) would either be given or have to be derived from Bernoulli’s equation rather
than remembered.
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CP = 103
0.5 × 5 × 59.72

= 0.112.

Finally, the rate of energy dissipation is given by

P =
ṁA�p
ρF

= 1.5 × 103
5 = 300.

Comment:

While the closeness of the value of CD (i.e. 0.985) to unity indicates a well-designed upstream
section, the CP value is rather high and this is reflected in the energy dissipation rate which
would result in a small rise in fluid temperature (about 0.05 ◦C in this case).

8.4 Other Venturi-tube applications

The pressure reduction produced at the throat of a Venturi tube leads to its use as a suction
device in a number of practical applications, including gas-fired water-heater control systems,
carburettors, and firehose foam injectors. A typical application is illustrated in Illustrative
Example 8.2.

ILLUSTRATIVE EXAMPLE 8.2

The convergent-divergent nozzle arrangement shown in Figure E8.2 is used to inject liquid
from a reservoir into a gas stream. If the stagnation pressure of the gas is p0, show that the
minimum volumetric flowrate Q̇G of gas through the nozzle which will produce a liquid flow
is given by

Q̇G = A
√
2
(
p0 – B + ρLgH

)
/ρG

where A is the cross-sectional area of the nozzle throat, ρG is the gas density, ρL is the liquid
density, B is the barometric pressure which acts on the liquid surface, g is the acceleration due
to gravity, and H is the vertical height of the injection-tube tip above the liquid surface. Any
effect of the injection tube on the gas flow can be neglected, the gas flow can be considered to
be loss free, and the gas density neglected relative to that of the liquid.
If the relationship between the mass flowrate of liquid ṁL and the frictional pressure drop�pf
between the injector-tube tip and the inlet to the injector tube is

ṁL = C�pf

where C = 1.33 × 10–6 m · s, calculate the volumetric flowrate of gas required to produce a
liquid mass flowrate of 8× 10–3 kg/s. The gas density is 1.2 kg/m3, and the stagnation pressure
of the gas stream is 1.1 bar. The tip of the injector tube is 100 mm above the liquid surface, and
the liquid density is 800 kg/m3. The throat area of the nozzle is 10–3 m2, and the barometric
pressure is 1.01 bar.
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B

H

gas flow

throat

liquid

Figure E8.2

Solution

According to Bernoulli’s equation, as the gas flowrate Q̇G through the nozzle is progressively
increased, the static pressure pt at the throat drops such that

p0 – pt = 1
2ρGV

2

where the velocity V of the gas at the nozzle throat is obtained from the continuity equation,
i.e. V = Q̇G/A. The two equations can be combined to give

p0 – pt = 1
2ρG
(
Q̇G
A

)2
.

Once the static pressure falls below the barometric pressure B, the injection tube behaves much
like a piezometer tube, and the liquid will rise within the tube to a height h above the level of
the liquid surface, as given by the hydrostatic equation

pt + ρLgh = B.

At a certain gas flowrate, the liquid rises to the top of the injection tube such that h = H. The
corresponding value of pt is then given by

pt = B – ρLgH

and the corresponding gas flowrate by

p0 – B + ρLgH = 1
2ρG
(
Q̇G
A

)2
.

After rearrangement, this equation gives

Q̇G = A
√
2
(
p0 – B + ρLgH

)
/ρG

which corresponds with the value of Q̇G, which must be exceeded to produce a flow of liquid
into the gas stream.
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Higher gas flowrates than this minimum will result in a liquid mass flowrate ṁL according to

ṁL = C�pf

where�pf is the frictional pressure drop over the total length of the injection tube correspond-
ing to ṁL, the liquid density and viscosity, and the tube diameter, all of which are accounted
for by the dimensional constant C. The overall pressure drop for the injection tube is the sum
of�pf and the hydrostatic pressure difference ρLgH, i.e.

B – pt = �pf + ρLgH.

For the numerical part of the problem we have

C = 1.33 × 10–6 m.s; ṁ = 8 × 10–3 kg/s; ρG = 1.2 kg/m3; p0 = 1.1 × 105 Pa; H = 0.1m;

ρL = 800 kg/m3; A = 10–3 m2; B = 1.01 × 105 Pa.

To produce a liquid flowrate ṁL = 8 × 10–3 kg/s requires

�pf =
ṁL
C = 8 × 10–3

1.33 × 10–6
= 6015 Pa

so that

B – pt = 6015 + 800 = 6815 Pa.

Since we have B = 1.01 × 105 Pa, we find pt = 9.42 × 104 Pa. The relationship between p0, pt ,
and Q̇G is still valid, i.e.

p0 – pt = 1
2ρG
(
Q̇G
A

)2
.

Since the stagnation pressure p0 is given as 1 bar, we have(
Q̇G
A

)2
=
2
(
p0 – pt

)
ρG

= 2 × 5800
1.2 = 9666 m2/s2.

From this, the gas flowrate Q̇G is

Q̇G = 10–3 × √
9666 = 0.0983m3/s.

The corresponding gas velocity in the throat is 0.0983/10–3 = 98.3 m/s, which is well below the
level at which compressibility effects become significant.

8.5 Orifice-plate flowmeter

A relatively simple, and therefore inexpensive, alternative to the Venturi-tube flowmeter is the
orifice-plate flowmeter. An orifice plate is a thin disk with a hole (the orifice) in it which has an
open area significantly smaller than that of the pipe cross section. As is the case for the Venturi
tube, orifice-plate flowmeters can be used with both gases and liquids, and even a vapour such
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Figure 8.3 Orifice-plate flowmeter

as steam. In principle, the orifice can be of any shape and located anywhere in the disk but is
usually circular, concentric with the pipe bore, in the diameter range 0.75D1 > D2 > 0.2D1
(minimum value of D2 is 12.5 mm), with a sharp bevelled edge. In a typical installation, as
shown in Figure 8.3, the orifice plate is clamped between two flanges, and the pressure drop
which results from the acceleration of the fluid passing through the orifice ismeasured between
pressure tappings46 located at distances D1 upstream andD1/2 downstream of the plate. A full
specification for the design and installation of orifice-plate flowmeters is given in ISO 5167.
The basic analysis of flow through an orifice is identical to that for a Venturi tube, with

the same final result for the theoretical volumetric flowrate Q̇TH in terms of the pressure dif-
ference p1 – p2, the fluid density ρF , the cross-sectional area of the pipe A1, and that of the
orifice A2, i.e.

Q̇TH = A2

√√√√ 2
(
p1 – p2

)
ρF
[
1 – (A2/A1)2

] . (8.8)

It turns out from calibration that the value of the coefficient of discharge,

CD = Q̇A
Q̇TH

Q̇A being the actual volumetric flowrate, is typically about 0.6. Such a low value, compared with
a Venturi-tube flowmeter, suggests that Bernoulli’s equation is a poor basis on which to analyse
flow through an orifice plate. Reference to Figure 8.3 reveals that the fault is not so much with
Bernoulli’s equation but with the way it has been applied. In effect, the fluid passing through
an orifice creates its own Venturi tube with a contraction starting at about location ① and a

46 A pressure tapping is a small hole drilled into a surface such that the pressure of the fluid on the side exposed to
the flow is communicated to a pressure sensor connected to the hole on the other side.



ORIFICE-PLATE FLOWMETER 197

throat at location ②, the latter a distance of about D1/2 downstream of the plate. This fluid
throat is called the vena contracta, which means contracted vein, and if its cross-sectional
area AV replaced A2 in equation (8.8), the result would be a coefficient of discharge practically
equal to unity. Unfortunately, the diameter DV is not defined by the geometry of the orifice
plate nor is it easily measured. In practice, orifice plates are widely used with coefficients of
discharge either based on a standard or determined from calibration tests. A low value for CD
does not mean that an orifice flowmeter is inherently inaccurate: the accuracy is determined by
that of CD. As with the Venturi tube, for a given orifice plate, CD depends upon the Reynolds
number.
Immediately upstream and downstream of the orifice plate the central stream of high-

velocity fluid is surrounded by recirculating eddies of fluid within which the fluid velocity
is relatively low (for this reason, sometimes called a deadwater zone) and the pressure roughly
constant. Location ② corresponds with the position of minimum static pressure (at the vena
contracta) so that the measured pressure difference p1 – p2 is as high as possible, thereby im-
proving the accuracy of the flowrate measurement. The loss of stagnation pressure, i.e. the
irrecoverable pressure loss, is much higher (for the same flowrate, fluid, and pipe diameter)
for an orifice plate than for a Venturi tube. This is partly due to the contraction region but
primarily the result of the rather violent way in which the flow recovers downstream of the
orifice without the aid of a diffuser. As with the Venturi tube, there is an economic trade-
off between the low capital cost of an orifice plate and the operating cost associated with the
irrecoverable pressure loss.

ILLUSTRATIVE EXAMPLE 8.3

An orifice-plate flowmeter with an orifice diameter of 350 mm and a coefficient of discharge
of 0.6 is used to monitor the flowrate of water in a pipe of 500 mm diameter. Calculate the
volumetric flowrate if the pressure difference across the orifice plate is 1.26 bar and estimate
the diameter of the vena contracta.

Solution

Using the symbols of Figure 8.3, D2 = 0.35 m; D1 = 0.5 m; CD = 0.6; �p = p1 – p2 =
1.26× 105 Pa; and ρF = 1000 kg/m3 (water).
We have A1 = πD2

1/4 = 0.196 m2; A2 = πD2
2/4 = 0.0962 m2; and A2/A1 = (0.35/0.5)2 = 0.49.

From equation (8.6),

Q̇TH = 0.0962

√
2 × 1.26 × 105

103
(
1 – 0.492

) = 1.75 m3/s

and so

Q̇A = CDQ̇TH = 1.05m3/s.

As mentioned in the penultimate paragraph before this example, if the area A2 in equation
(8.6) is replaced by that of the vena contracta AV , we have
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Q̇A = AV

√√√√ 2
(
p1 – p2

)
ρF
[
1 – (AV /A1)2

]
wherein we have taken CD = 1. This equation can be rearranged to give an explicit expression
for AV , as follows

1
A2
V

= 1
A2
1
+
2
(
p1 – p2

)
ρFQ̇2

A
.

Substitution of the values for A1, ρF , Q̇A, and p1 – p2 leads to

1
A2
V

= 1
0.1962

+ 2 × 1.26 × 105

103 × 1.052

from which AV = πD2
V /4 = 0.0627 m2 and so DV = 0.283 m or 283 mm, i.e. the diameter of

the vena contracta is about 19% smaller than that of the orifice (350 mm).

8.6 Other differential-pressure inline flowmeters

The Venturi tube and the orifice plate are both examples of flowmeters designed on the basis
of Bernoulli’s equation where flowrate is determined from the measured static-pressure dif-
ference across an area reduction. Both devices are manufactured to high tolerances according
to internationally agreed design specifications. There are numerous other differential-pressure
inline flowmeters, such as flow nozzles, flow tubes, and the Dall tube, which is essentially a
combination of a Venturi tube and an orifice plate. Which device is chosen and the material
from which it is manufactured (bronze, mild steel, and stainless steel are common choices),
depends upon the application, including such considerations as contamination of the flowing
fluid by solid particles which increases wear, corrosivity, tolerable pressure loss, and required
accuracy.

8.7 Formula One racing car

The modern Formula One, or Grand Prix, racing car is a complex package of mechanical
and electronic components designed to a formula (hence the name) defined by the sport’s
governing body, the Federation Internationale de l’Automobile (FIA), which prescribes a
wide range of design parameters, including critical dimensions (length, width, wheelbase, tyre
radius and width, etc.), weight, allowable fuel load, volumetric engine capacity, etc. Aerody-
namic performance has long been a critical aspect of the design of high-performance racing
cars, including Formula One, GP2, Indy Car, and LMP2. Computational Fluid Dynamics
(CFD) and extensive wind-tunnel testing of large-scale models is an essential aspect of racing-
car development. An essential feature of wind tunnels used to investigate the aerodynamic
characteristics of cars is a rolling road to properly simulate the aerodynamic interaction
between a car and the road surface over which it travels. Cryogenic wind tunnels, which
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Figure 8.4 Idealised Formula One car

operate at reduced temperature, are sometimes employed to achieve Reynolds numbers close
to those which correspond to typical racing speeds (i.e. up to about 360 kph).
Figure 8.4 shows an idealised picture of a Formula One car. Multi-element front and rear

aerofoils, designed to produce download (i.e. negative lift) on the front and rear wheels and
thereby improve traction in corners, are themost obvious aspects of designmotivated solely by
aerodynamic considerations. Considerable download is also generated by the underside (floor)
of the car which is designed to reduce the pressure of air flowing under the car. Just as for the
wings and other lifting surfaces of aircraft, devices which generate aerodynamic download
inevitably result in drag (known as induced drag) which adds to the drag associated with the
exposed tyres, bodywork, radiators, oil coolers, engine inlet, and the driver. The complexity
of the aerodynamic problem is made even worse by the interaction between these individual
components and, in actual racing, other cars, particularly when one car is travelling in the wake
of another car a short distance in front. It is the intense trailing vortices, often visible in humid
or damp conditions swirling away from the endplates on either side of the rear wing, which are
responsible for the asymmetric loss of download experienced by the following car. The same
phenomenon affects one aircraft following another and can lead to catastrophic consequences
for small aircraft following much larger aircraft.
On the basis of the material covered so far, we can make crude estimates of some aspects

of the aerodynamic performance of a Formula One car. A more complete analysis would be
immensely complicated, carried out on a powerful computer, and require knowledge of closely
guarded design data.
We assume the following values which have been extracted or estimated from published

information

maximum speed 330 kph V = 91.7m/s
tractive power 900 hp P = 672 kW
projected frontal area AF = 1.5m2

air density ρ = 1.2 kg/m3

area reduction for flow beneath car 1.15:1
mass of car including fuel and driver m = 800 kg
projected plan area AP = 7m2
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At maximum speed V we assume that the tractive power P is used to overcome the
aerodynamic drag force D, so that

P = DV

and we can therefore calculate the aerodynamic drag force to be

D = P
V = 6.72 × 105

91.7 = 7328N.

In the above estimate we have neglected the rolling resistance.
We can now calculate the overall drag coefficient CD from

CD = D
1
2ρV

2AF

= 7.328 × 103

0.5 × 1.2 × 91.72 × 1.5
= 0.968.

This value of CD is about three times the value for a well-designed passenger car for which low
drag is desirable in order to reduce fuel consumption and aerodynamic noise. Neither of these
requirements is of paramount importance to the designer of a Formula One car, and the high
value of CD is to a large extent a direct consequence of the induced drag associated with the
high levels of download. Drag coefficients for various shapes of practical significance are listed
in Section 18.15.
If we assume the airflow under the car is loss free, we can apply Bernoulli’s equation to

estimate the reduction in pressure below the ambient level B, i.e.

B + 1
2ρV

2 = p2 + 1
2ρV

2
2

where p2 is the pressure beneath the car and V2 the corresponding airspeed. There are many
things that can be criticised about this simple approach. For example, the area beneath the
car is far from constant, especially towards the rear where a diffuser brings the flow back to
ambient pressure. Also, the flow is likely to be three dimensional rather than one dimensional.
Nevertheless, Bernoulli’s equation incorporates much of the essential physics of many real
flows and is unlikely to provide answers which are orders of magnitude different from reality.
For an area ratio of 1.15:1, the continuity equation (6.1) leads to V2 = 1.15V = 115 m/s

and so

B – p2 = 0.5 × 1.2 × (1152 – 1002) = 7225 Pa.

If we now assume that this pressure difference is applied to the projected plan area AP, the
corresponding download is 50.6 kN compared with the weight of the car mg = 7.85 kN. The
outcome of this calculation is critically dependent upon both the plan area and the cross-
sectional area change. The overall download (including the wings) is certainly well in excess
of the weight of the car and our crude calculation suggests that the contribution due to the
underflow may be substantial.
We conclude this section by estimating the retardation due to aerodynamic drag. If all tract-

ive force (whether due to the power unit or the brakes) is lost, according to Newton’s second
law of motion at maximum speed, we have a deceleration given by

ma = –D.
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Our estimate for the drag force D at maximum speed was 7328 N, which leads to

–a = D
m = 7328

800 = 9.16m/s2 or 0.933 g,

i.e. a deceleration about 7% less than 1g, solely due to aerodynamic drag, a value well in excess
of the braking capability of the majority of passenger cars.

8.8 Pitot tube

The simple L-shaped tube shown in Figure 8.5(a) is called a Pitot tube after the French en-
gineer who devised it in the 18th century. When immersed in a liquid flow to a depth Z as
shown, the liquid enters the tube and rises to a levelH above the free surface. If the liquid flow
is steady, once the equilibrium situation is reached the liquid velocity within the tube falls to
zero, and the point P at its tip becomes a stagnation point at which the static pressure is equal
to the stagnation pressure p0. If the undisturbed liquid velocity upstream of the tip is V , and
the corresponding static pressure is p, then from Bernoulli’s equation we have

p0 = p + 1
2ρLV

2 or p0 – p = 1
2ρLV

2

where ρL is the liquid density. From the hydrostatic equation (4.8) for a constant-density fluid,
we have

p0 = B + ρLg(H + Z) and p = B + ρLgZ

where B is the static pressure (the barometric pressure) acting on the liquid surface. The
validity of these two equations should be evident from Figure 8.5(a). If we eliminate B, we have

p0 – p = ρLgH

B
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Figure 8.5 Pitot tube: (a) free-surface flow; (b) pipe flow



202 ENGINEERING APPLICATIONS OF BERNOULLI’S EQUATION

so that

1
2ρLV

2 = ρLgH or V =
√
2gH. (8.9)

The more usual arrangement for the measurement of the velocity of a flowing gas or liquid
using a Pitot tube is in combination with a probe tomeasure the static pressure p in the vicinity
of the Pitot tube tip.
As shown in Figure 8.5(b) for liquid flow in a pipe the static pressure can be measured with

an appropriately positioned piezometer tube (see Section 4.6). If the pipe radius is R and the
Pitot tube is aligned with the pipe axis, as shown, then

p0 = B + ρLg (H + R) and p = B + ρLg (h + R) .

As before, from Bernoulli’s equation we have

p0 – p = 1
2ρLV

2

so that now

1
2ρLV

2 = ρLg (H – h) = ρLg�H (8.10)

where �H = H – h is the vertical height difference between the liquid levels in the Pitot and
piezometer tubes. The velocity on the pipe centreline is then

V =
√
2g�H.

For the flow through a pipe of an incompressible gas of density ρG, it would be necessary to
measure the pressure difference p0 – p using a device such as a manometer or differential-
pressure transducer and the velocity would then be determined from

V =
√
2
(
p0 – p

)
/ρG. (8.11)

There is an important difference between the application of Bernoulli’s equation to the ana-
lysis of flow through differential-pressure inline flowmeters and to the analysis of the response
of a Pitot tube immersed in a flowing fluid. For the flowmeters, the analysis in the early sec-
tions of this chapter dealt with all the fluid flowing through the pipe and so made use not
only of Bernoulli’s equation but also the continuity equation, with any departures from one-
dimensional flow being accounted for by the coefficient of discharge. In the case of a Pitot tube,
there is no dependence in the analysis of the one-dimensional assumption and it requires only
that we know the difference between the stagnation and static pressures at the measurement
location. It is often the case in pipe flow that there is negligible variation in the static pres-
sure with radial distance from the centreline so that the flow velocity at any radius47 can be
determined using a Pitot tube at that radius.

47 The variation of velocity with distance from a surface is termed the velocity profile or distribution (see
Chapters 16, 17, and 18).



PITOT-STATIC TUBE 203

ILLUSTRATIVE EXAMPLE 8.4

The output from a differential-pressure transducer, with one side connected to a Pitot tube
immersed in a gas flow and the other side to a static-pressure tapping in the near vicinity of
the Pitot tube, is 3.9 kPa. If the gas density is 0.8 kg/m3 and its soundspeed 330 m/s, calculate
the gas velocity and the corresponding Mach number to verify that the flow can be assumed
incompressible. If the pressure transducer were to be replaced by a U-tube manometer, would
kerosene (density 800 kg/m3) or mercury be the more suitable manometer liquid?

Solution

p0 – p = 3900 Pa; ρG = 0.8 kg/m3; c = 330 m/s; ρM = 800 or 13.6 × 103 kg/m3.
We start with equation (8.11) derived above (in an examination the derivation would probably
be part of the problem), so that

V =
√
2
(
p0 – p

)
/ρG =

√
2 × 3900/0.8 = 98.7m/s.

The corresponding Mach number M = V/c = 98.7/330 = 0.299, so the assumption of
incompressible flow is only just valid (i.e.M is below 0.3).
From Section 4.7, for a U-tube manometer we have�p = (ρM – ρF) g�H, where�H is the

difference in the levels of the manometer liquid in the two arms of the U-tube. For mercury
we thus find �H = 3900/[

(
13.6 × 103 – 0.8

) × 9.81] = 0.292m or 29.2 mm, and for kerosene
�H = 3900/[(800 – 0.8)×9.81] = 0.497m or 497 mm. On the basis of height difference, either
liquid would be acceptable for the measurement although the inaccuracy of measuring 497
mmwould be much less than for 29.2 mm. It is more likely that safety concerns might rule out
both liquids: kerosene is inflammable, and mercury poisonous. In fact, in this instance, water
would be preferable.

8.9 Pitot-static tube

The Pitot-static tube illustrated in Figure 8.6 consists of an inner tube to sense the stagnation
pressure of a flow and a concentric outer tube, of outer diameter D, closed and rounded at its
upstream end but perforated by a series of small holes to sense the static pressure p of the flow.
The static-pressure holes should be located sufficiently far downstream of the probe tip for any
disturbance to the flow created by the probe to have died out: a distance of 6D is typical. Any
bend in the two tubes should be a similar distance downstream of the static-pressure holes. To
ensure an accurate measurement, the tube assembly must be aligned with the flow to within
about 5◦.
If the density of the flowing fluid is ρF , assumed constant, and the undisturbed flow velocity

is V , then from Bernoulli’s equation we have

p0 = p + 1
2ρFV

2 so that, as before, equation (8.11) V =

√
2
(
p0 – p

)
ρF

.

In a typical application, as shown in Figure 8.5, the pressure difference p0 –p is measured using
a differential-pressure transducer or a U-tube manometer. In the latter case, if the density of
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Figure 8.6 Pitot-static tube

the manometer liquid is ρM and the vertical height difference of the liquid in the two arms of
the manometer is�H, then we have

p0 – p = (ρM – ρF) g�H = 1
2ρFV

2

from which

V =

√
2 (ρM – ρF) g�H

ρF
.

As we shall see in Chapter 11, it is relatively straightforward to allow for the effects of
compressibility on the behaviour of a Pitot tube.

8.10 Liquid draining from a tank

Figure 8.7 shows a cylindrical container of cross-sectional area AS open to atmospheric pres-
sure B and containing a liquid of density ρL. Under the influence of gravity, the liquid drains
out of the tank through an orifice in the tank wall of cross-sectional area AO. In practice, the
orifice could be simply a hole, a nozzle such as a Venturi tube, or a control valve.
To determine the volumetric flowrate Q̇ with which the liquid flows out of the tank, we

start by writing Bernoulli’s equation for a streamline connecting the liquid surface and the jet
emerging from the orifice

pT = B + ρLgh + 1
2ρLV

2
S = B + 1

2ρLV
2
O
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Figure 8.7 Liquid draining from a tank

where pT is the total pressure of the liquid, B is the barometric pressure, h is the vertical height
of the liquid surface above the orifice48, VS is the surface velocity, and VO is the velocity of the
liquid passing through the orifice. An unusual feature of this problem is that the static pressure
of the liquid is equal to the ambient pressure B both at the liquid surface and at the location of
the orifice.
The continuity equation in this case is as follows

Q̇ = ASVS = AOVO.

In a typical situation, the surface area AS is far greater than the orifice area AO so that (from
the continuity equation) VO � VS and we may neglect the term ρLV2

S /2 in comparison with
ρLV2

O/2 in Bernoulli’s equation, which then simplifies to

V2
O = 2gh or VO =

√
2gh

which is called Torricelli’s formula.
The theoretical volumetric flowrate Q̇TH can now be written as

Q̇TH = AOVO = AO
√
2gh

and the actual flowrate Q̇A as

Q̇A = CDAO
√
2gh (8.12)

where we have introduced CD, the coefficient of discharge (see Section 8.3) for flow through
the orifice.
It is now straightforward to calculate the time t required for the liquid level to fall to an

intermediate value h from an initial value h0 at t = 0. We make use of the kinematic relation

48 It is assumed that the orifice diameter is small compared with h so that the vertical pressure variation across the
orifice is negligible.



206 ENGINEERING APPLICATIONS OF BERNOULLI’S EQUATION

VS = –dh
dt

i.e. the downward velocity of the liquid surface must equal the rate of change of the liquid
level h. We can combine this result with the continuity equation and equation (8.12) for the
actual volumetric flowrate Q̇A as follows

Q̇A = ASVS = –AS
dh
dt

= CDAO
√
2gh

which can be rearranged to yield a first-order ordinary differential equation for h as a function
of time t, i.e.

1√
h
dh
dt

= –CD
AO
AS

√
2g.

Since the right-hand side is a constant, this equation is easily integrated to give the desired
relationship between liquid level h and the time t

2
(√

h –
√
h0
)
= –
(
CD

A0
AS

√
2g
)
t (8.13)

wherein the constant of integration has been determined from the initial condition h = h0 at
t = 0.
As a final step, we can combine equations (8.12) and (8.13) to give an equation for the flowrate
Q̇A as a function of time t

Q̇A = CDAO
√
2gh0

⎡
⎣1 –

⎛
⎝CD

AO
AS

√
g
2h0

⎞
⎠ t

⎤
⎦ .

This equation shows that the flowrate decreases linearly with time from the initial value
CDAO

√
2gh0. The observant reader will have noticed that the problem we have just dealt with

involves an unsteady flow (i.e. the flowrate Q̇A varies with time) but has been analysed on the
basis of steady-flow forms of Bernoulli’s equation and the continuity equation. As we pointed
out in Section 6.2, a steady flow is one in which the velocity and pressure at any given point in
the flow do not change with time but there will usually be changes from one point to the next.
In other words, even in a steady flow, a fluid particle moving along a streamline will experi-
ence acceleration and deceleration. The question to be answered in the draining-tank problem
is whether the acceleration at a fixed point has a significant influence on the flow.
It is straightforward to estimate the fluid acceleration at the upper surface and at the orifice.

For the upper surface we have

VS =
Q̇A
AS

= CD
AO
AS

√
2gh0

⎡
⎣1 –

⎛
⎝CD

AO
AS

√
g
2h0

⎞
⎠ t

⎤
⎦

so that the corresponding acceleration is given by

dVS
dt

= –C2
D

(
AO
AS

)2
g.
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At the orifice, the flow velocity is given by

VO = Q̇A
AO

= CD
√
2gh0

⎡
⎣1 –

⎛
⎝CD

AO
AS

√
g
2h0

⎞
⎠ t

⎤
⎦

and the acceleration is

dVO
dt

= –C2
D
AO
AS

g.

Estimating the acceleration of a fluid particle at any point along a streamline is far more
difficult. For a steady flow we can write

dV
dt

= V dV
ds

whereV is the flow velocity a distance s along the streamline. Although calculatingV(s) is bey-
ond the scope of this book, we can at least make an order of magnitude estimate.We know that
between the surface and the orifice the flow velocity increases from VS to VO over a distance
comparable with h0 so that we have, very roughly,

dV
dt

≈ V2
O

h0
= 2gC2

D.

If we compare this result with that for dVO/dt, we see that the latter is smaller by a factor
AO/2AS which is likely to be far less than unity since AO � AS and we conclude that treat-
ing this unsteady flow as though it was steady is probably valid. Such flows are termed quasi
steady.
As the following example illustrates, the foregoing analysis can be extended without great

difficulty to the situation where the tank is closed at the top and a pressure pS is applied to the
liquid surface.

ILLUSTRATIVE EXAMPLE 8.5

Gas at a pressure pS is used to force a liquid of density ρL out of a container, as shown in
Figure E8.5. The liquid leaves the container through a Venturi tube of exit area A. Show that
the mass flowrate ṁ of the liquid is given by

ṁ = A
√
2ρL
(
pS – B + ρLgh

)
where h is the vertical height of the liquid surface above the Venturi-tube axis. The flow,
including that through the Venturi tube, may be assumed to be steady, frictionless, and
one dimensional, and the liquid pressure at exit from the Venturi tube equal to that of the
surrounding atmosphere B. The downward velocity of the liquid surface may be neglected
compared with that of the liquid jet.
If the liquid has a density of 800 kg/m3 and its surface is 3 m above the Venturi tube, the
applied pressure is 2 bar, the nozzle exit area is 0.01 m2, and the atmospheric pressure is 1.01
bar, calculate the liquidmass flowrate. Calculate also the jet velocity and the downward velocity
of the liquid surface if the cross-sectional area of the tank is 1 m2.
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Solution

Since the flow can be treated as steady, frictionless, and one dimensional, we can apply
Bernoulli’s equation between the liquid surface and the Venturi-tube exit, as follows

pT = pS + ρLgh + 1
2ρLV

2
S = B + 1

2ρLV
2
J

where pT is the total pressure, which is constant along a streamline, VS is the downward
velocity of the liquid surface, and VJ is the jet velocity.
We can rearrange the equation as follows

V2
J – V2

S = 2
(
pS + ρLgh – B

)
/ρL.

Since VS � VJ , we have

VJ =
√
2
(
pS + ρLgh – B

)
/ρL.

We now introduce the continuity equation, applied to the liquid jet, ṁ = ρLAVJ and substitute
for VJ to obtain

ṁ = A
√
2ρL
(
pS – B + ρLgh

)
.

For the numerical part of the problem we have

pS = 2 × 105 Pa; B = 1.01 × 105 Pa; ρL = 800 kg/m3; h = 3m; A = 0.01m2; AS = 1m2.

It is a matter of straightforward substitution to find ṁ = 140 kg/s.
From the continuity equation, VS = ṁ/(ρLAS), and VJ = ṁ/(ρLA), so that

VS = 140
800 × 1 = 0.175m/s and VJ = 140

800 × 0.01 = 17.5m/s.

We shall return to this problem at the end of Section 8.11.
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8.11 Cavitation in liquid flows

From Bernoulli’s equation we can see that in a flowing fluid it is possible to develop very low
pressure in regions of high flow velocity. If this pressure falls below the saturated vapour
pressure for a liquid, tiny vapour bubbles begin to form, a process known as cavitation or
flow-induced boiling. For a given temperature, the saturated vapour pressure is the pressure
at which a liquid boils and is in equilibrium with its own vapour, i.e. it is the pressure which
exists in pure vapour in contact with the liquid at a given temperature. The variation of the
saturated vapour pressure with temperature for water, shown in Figure 2.7 and tabulated in
Table A.3 in Appendix 2, is based upon the saturation table for water and steam (the vapour
form of water). As we should expect, the saturated vapour pressure at 100 ◦C is 1.01 bar, i.e.
at normal atmospheric pressure water boils at 100 ◦C. If the pressure is reduced to 0.1 bar,
water boils at 45.8 ◦C and, at a pressure of 20 bar, the boiling point is raised to 212.4 ◦C. An
application which takes advantage of the influence of pressure to raise the boiling point of
water is the domestic pressure cooker.
Vapour bubbles formed due to the pressure reduction in a flowing liquid initially grow, are

swept downstream, and then collapse implosively upon reaching a zone of sufficiently high
pressure. Cavitation in pumps and hydraulic turbines is undesirable, first because it leads to
a decrease in efficiency, and second because repeated impacts on blading and other compon-
ents, due to the collapse of vapour bubbles, can be so intense as to cause serious wear (surface
pitting). Much the same is true for ships’ propellers where cavitation can occur at the tips.
Further cavitation examples are provided by liquid flow through nozzles, valves, and pipes,
where there are no moving parts but the liquid pressure is reduced by a sudden reduction
in cross-sectional area. The examples given so far are for isothermal flows whereas in boilers
and heating systems cavitation may result from a combination of increased temperature and
reduced pressure. Cavitation is often detectable from the sound created by the implosive col-
lapse of the vapour bubbles. In small-scale devices this is a harsh crackling sound whereas in
very large structures, such as the spillway tunnels which carry water away from a dam, it can
sound like rocks impacting the tunnel wall.
For a flow of a fluid of density ρL with velocity V , the non-dimensional parameter used to

characterise cavitation is the cavitation number Ca, defined as

Ca =
pREF – pV
ρLV2/2

where pREF is a reference pressure (often taken as the atmospheric or barometric pressure) and
pV is the saturated vapour pressure. Cavitation within a given device occurs if the cavitation
number falls below a critical value dependent upon the flow geometry.

ILLUSTRATIVE EXAMPLE 8.6

Figure E8.6 shows water being drawn vertically upwards from a level z′ = 0 at the bottom of
a well to a level z′ = H at the inlet to a suction pump. Find the greatest depth of well H from
which water can be pumped if the water surface is at atmospheric pressure B, the saturated
vapour pressure of the water is pV , and the water density is ρL.
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Calculate the water depth if the atmospheric pressure is 1.01 bar and the saturated vapour
pressure is 1.23 kPa (corresponding to a water temperature of 10 ◦C).

pump
discharge

pump inlet

well

suction pipe

V

B

H

Figure E8.6

Solution

We apply Bernoulli’s equation to the flow in the suction pipe, between the pump inlet (z′ = H)
and the level of the water surface in the well (z′ = 0)

pT = pI + ρLgH + 1
2ρLV

2
I = B + 1

2ρLV
2
I .

Note that we have assumed that the water velocity VI is the same at entry to the suction pipe
and the inlet to the pump. The terms involving VI cancel out and we have

H =
B – pI
ρLg

fromwhich it is clear thatH is greatest when the inlet pressure pI is as low as possible, i.e. when
pI = pV , so that

HMAX =
B – pV
ρLg

.

For the numerical part of the problem, we have

B = 1.01 × 105 Pa; pV = 1.23 × 103 Pa; ρL = 103 kg/m3; g = 9.81m/s2.
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Thus,

HMAX = 1.01 × 105 – 1.23 × 103

103 × 9.81
= 10.2m.

ILLUSTRATIVE EXAMPLE 8.7

If the vapour pressure for the liquid in Illustrative Example 8.5 is 7×104 Pa, what is the smallest
throat diameter of the Venturi tube if the liquid is not to cavitate?

Solution

If we take the throat velocity at Vt and the corresponding pressure as pt , then we can apply
Bernoulli’s equation between the throat and the Venturi-tube exit as

p0 = pt + 1
2ρLV

2
t = B + 1

2ρLV
2
J

where p0 is the stagnation pressure on the horizontal streamline coinciding with the nozzle
centreline. We have B = 1.01 × 105 Pa, and ρL = 800 kg/m3, and we calculated previously that
VJ = 17.5 m/s, so that p0 = 2.54 × 105 Pa. Cavitation occurs when the lowest pressure in the
Venturi tube pt falls to the value of the vapour pressure pV , so that

p0 = pV + 1
2ρLV

2
t

or

Vt =

√
2
(
p0 – pV

)
ρL

=

√
2
(
2.54 × 105 – 7 × 104

)
800 = 19.2m/s.

If the throat area is At , from the continuity equation,

ṁ = ρLAtVt

so that At = ṁ/ρLVt = 7.3 × 10–3 m2. Since At = πD2
t /4, where Dt is the throat diameter, we

have finally Dt = 0.096 m or 96 mm.

8.12 SUMMARY

In this chapter we have shown how Bernoulli’s equation can be applied to practical fluid-
flow problems. In the case of internal flows, such as that through a Venturi tube, we also
needed the continuity equation to relate changes in cross-sectional area to changes in
flow velocity. For liquid flows it was shown that for sufficiently high flowspeeds the static
pressure could fall below the saturated vapour pressure and lead to cavitation.

The student should be able to

• identify flow problems where the application of Bernoulli’s equation is appropriate
• identify problems where the continuity equation is also needed for their solution
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• apply Bernoulli’s equation to analyse such internal flow problems as the flow
through a Venturi tube or an orifice plate

• understand the concept of a coefficient of discharge as a correction factor
• apply Bernoulli’s equation to analyse the response of a Pitot-static tube to a fluid
flow

• understand the significance of the saturated vapour pressure to liquid flow and its
relevance to cavitation

8.13 SELF-ASSESSMENT PROBLEMS

8.1 (a) A fluid of density ρ flows through a horizontal duct which contracts from a cross
section of area A1 to a minimum (throat) area A2. Assume one-dimensional, incom-
pressible, frictionless flow to show that the theoretical mass flowrate through the duct
is given by

ṁ = A1A2

√
2ρ�p
A2
1 – A2

2

where �p is the static-pressure difference between sections 1 and 2. How would the
equation be modified using a coefficient of discharge to determine the actual mass
flowrate?

(b) Water flows through a horizontal duct which changes from a circular pipe of dia-
meter 100 mm to an annulus of outer diameter 100 mm and inner diameter 90 mm.
Calibration tests show that the coefficient of discharge for this arrangement is 0.94.
Calculate the pressure drop across the area change for a mass flowrate of 20 kg/s.
Also calculate the velocity and static pressure in the annular section if the upstream
stagnation pressure is 7 bar.
(Answers: 0.98 bar, 13.4 m/s, 5.99 bar)

8.2 (a) A pure liquid of density ρL and saturated vapour pressure pV flows vertic-
ally upwards through a Venturi tube which contracts from a diameter D1 to a
throat diameter D2. If the static pressure ahead of the Venturi tube is p1, show
that the maximum volumetric flowrate which can be measured before the onset of
cavitation is

Q̇CAV = πD2
1D2

2

√
p1 – ρLgS – pV
8ρL
(
D4
1 – D4

2
)

where S is the distance from the throat to the location where p1 is measured. Assume
frictionless flow.

(b) If the liquid in the above situation is pure water at 90 ◦C, for which the vapour
pressure is 7 × 104 Pa, calculate the mass flowrate corresponding to the onset of
cavitation if the upstream static pressure is 2 bar, D1 is 100 mm, D2 is 50 mm, and S
is 5 m. Calculate the pressure differences for the same flowrate if the Venturi tube is
operated (i) in a horizontal water line and (ii) in a vertical water line with downflow.
(Answers: 25.8 kg/s, 0.81 bar, 0.32 bar)

8.3 (a) A liquid of density ρL and vapour pressure pV flows through a convergent-
divergent nozzle which discharges to an ambient pressure B. If the exit area AE of
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the nozzle is a factor r times the throat area, show that cavitation first occurs at a
flowrate Q̇CAV , given by

Q̇CAV = AE

√
2
(
B – pV

)
ρL
(
r2 – 1

) .
Assume one-dimensional, frictionless, incompressible flow.

(b) If the throat diameter is 60 mm and the exit diameter 90 mm, calculate the
flowrate at which cavitation first occurs for a liquid of density 800 g/m3 and a va-
pour pressure of 5 × 104 Pa if the barometric pressure is 1 bar. Also calculate the
stagnation pressure for the flow.
(Answers: 0.0353 m3/s, 1.123 bar)

8.4 (a) A Pitot-static tube in combination with an inclined-tube manometer is used to
measure the speedV of an incompressible fluid of density ρ, as shown in Figure P8.4.
If the cross-sectional area of the inclined tube is a and that of the reservoir is A, show
that

V =

√
2gL

[(
ρM
ρ

– 1
)(

sin θ + a
A

)]

where ρM is the density of the manometer liquid, θ is the inclination angle of the
manometer tube, g is the acceleration due to gravity, and L is the change in level of
the manometer reading (i.e. the level change measured along the tube).

reservoir zero level

L

θ

V

ρ

ρ
M

Figure P8.4

(b) A Pitot-static tube is used to measure the flowspeed of a gas of density 1.2 kg/m3.
The manometer liquid is water. The internal diameter of the manometer tube is 5
mm and that of the reservoir is 100 mm; the inclination angle is 15◦. Calculate the
flowspeed and dynamic pressure if the manometer reading L is 436 mm.
(Answers: 43.1 m/s, 1.115 kPa)
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8.5 (a) A jet of liquid of density ρL, surrounded by air, flows vertically downwards from
a nozzle of cross-sectional area AN . If the stagnation pressure of the jet at exit from
the nozzle is p0, and B is the surrounding air pressure, show that the cross-sectional
area of the jet AJ changes with vertical distance below the nozzle exit z according to(

AN
AJ

)2
= 1 +

ρLgz
p0 – B

where g is the acceleration due to gravity. Assume the flow is one dimensional and
frictionless and regard the air density as negligible.

(b) If the nozzle area AN is 5 × 10–4 m2 and the stagnation pressure p0 is 2 bar,
determine the jet velocity a distance 1000 m below the nozzle if the liquid is aviation
fuel of density 700 kg/m3 and the ambient pressure is 0.5 bar.
(Answer: 141.6 m/s)

8.6 (a) The arrangement shown in Figure P8.6 is used to inject liquid detergent of density
ρW from a pool into the water, also of density ρW , flowing through a fire hose in
order to create foam. The cross-sectional area of the contraction at section 1 is AT
and the cross-sectional area of the outlet nozzle is AE. The stagnation pressure of
the water flow is p0, the ambient pressure to which the nozzle discharges is B, and
the contraction height above the surface of the detergent pool is H. Show that the
stagnation pressure at which detergent just rises to the top of the vertical tube is
given by

p0 – B =
ρWgH(AT/AE)2

1 – (AT/AE)2

where g is the acceleration due to gravity. Assume one-dimensional, incompressible,
frictionless flow for the water flow, and hydrostatic conditions for the detergent.

AT

H

p0

detergent pool

1

AE

B

Figure P8.6

(b) If the outlet nozzle has a diameter of 70 mm and the internal diameter of the
contraction is 60 mm, calculate the stagnation pressure for a water mass flowrate of
55 kg/s if the ambient pressure is 1.02 bar. Calculate also the static pressure at the
location of the contraction. What is the maximum vertical height difference between
the contraction and the surface of the detergent pool if the detergent is to rise to the
top of the vertical tube? If the vapour pressure of water is taken as 2.3 kPa, calculate
the water mass flowrate at which cavitation occurs.
(Answers: 2.04 bar, 0.15 bar, 8.9 m, 58.9 kg/s)



9 Linear momentum equation
and hydrodynamic forces

This brief but important chapter is concerned with fluid flow through a duct which changes in
direction (typically a bend) and/or cross-sectional area. Force must be exerted on the fluid to
produce the changes in fluid momentum which are a consequence of such geometric changes.
What is of interest from an engineering point of view is the external reaction force which has
to be applied to a duct to counteract the force exerted by the fluid on its interior surface. We
use Newton’s second law of motion to derive the linear momentum49 equation for a flowing
fluid. We then identify the separate contributions to the net force acting on the fluid due to
the fluid pressure at inlet and outlet to the duct, and the force exerted on the fluid by the duct’s
interior surface. We exclude from the analysis any body forces, including the weight of the
fluid. The analysis is completed by applying the principle of static equilibrium to equate the
internal and external forces acting on the duct. Emphasis is given to the vector nature of force
and momentum flowrate.

9.1 Problem under consideration

We consider the flow of a fluid through a duct, such as that illustrated in Figure 9.1, which
may be curved or straight and have a cross section which changes in shape and cross-sectional
area A with streamwise distance s. The term duct is used to mean any passage or channel
through which there is fluid flow and includes, for example, pipes, bends, nozzles, Venturi
tubes, engine intakes and exhausts, and rocket engines. We retain the assumption of steady,
one-dimensional flow, but allow the interaction between the flowing fluid and the duct walls
to involve not only the static pressure p(s) but also the surface shear stress τS(s) due to the
fluid viscosity, i.e. we no longer assume that the flow is frictionless. The restriction to constant
density is also dropped for the basic analysis.
As indicated in Figure 9.1, we apply our analysis to a segment of the duct with an inlet

(section ➀) and an outlet (section ➁). In many practical examples, sections ➀ and ➁ will cor-
respond to an actual inlet or outlet, for example the intake to a jet engine or a nozzle exit. As we
shall illustrate in Chapter 10, in other situations, such as flow through a complex duct system,
an essential aspect of the analysis is to identify an appropriate duct segment for consideration.
The volume between the inlet and outlet defined by the wetted interior surface of the duct
segment is referred to as a control volume.

49 We are concerned here with linear momentum because, for the flows under consideration, the effects of rota-
tion of the fluid about an axis can be neglected. In Chapter 14, where we consider the flow within the blading of a
turbomachine, the effects of rotation are important and it is essential then to consider the torque acting on the fluid
and its angular momentum.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 9.1 Fluid flow through a duct

As we saw in Chapter 6, changes in the cross-sectional area of a duct result in changes in the
velocity of fluid flowing through it. We shall show in Section 9.2 that, because a fluid stream
has mass (or, more precisely, density), if its velocity and/or direction changes then so must a
quantity we call themomentum flowrate, symbol Ṁ50, and this requires that a force is applied
to the flow.
The forces acting on the fluid within the control volume are shown in Figure 9.2(a). The

net force F arises from the pressures at inlet and outlet, p1 and p2, and from the pressure
and shear stress, p(s) and shear stress τS(s), distributed over the wetted surface of the duct.
The net force due to p(s) and τS(s) we refer to as the fluid-structure interaction force S. As
indicated in Figure 9.2(b), for the duct segment to be in static equilibrium, this force must
be balanced by the external force (or forces) acting on the duct, usually made up of a force
due to the external pressure B distributed over its outer surface and an applied restraining
(or reaction) force51 R. Polygons illustrating the vector addition of these forces are given
in Figure 9.2.
The aim of this chapter is to relate the forces F, S, and R, the external pressure B, the pres-

sures p1 and p2, the mass flowrate of fluid through the duct ṁ, the fluid density ρ, and the
cross-sectional areas at inlet and outlet, A1 and A2, respectively. As we shall see in Chapter 10,
the results of this chapter can be applied directly even if there is more than inlet or outlet. Al-
though for simplicity we restrict attention to flows for which the velocity and all other vector
quantities have components only in two orthogonal directions, x and y, the analysis is readily
extended to include the third direction.

50 In this chapter, vector quantities (i.e. those having both a magnitude and a direction), are shown in bold-
face type.

51 The fluid-structure interaction force and the external reaction force both arise as a consequence of Newton’s
third law of motion: to every action, there is an equal and opposite reaction.
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Figure 9.2 Forces acting on (a) fluid control volume (b) duct segment

9.2 Basic linear momentum equation

In Chapter 7 we applied Newton’s second law of motion to an elemental fluid slice flowing
through a streamtube. In much the same way, as shown in Figure 9.3, we now apply Newton’s
second law to a fluid slice flowing through the control volume. As should already be evident,
it is crucial that we take into account that force, velocity, acceleration, and momentum are all
vector quantities. We do that here by considering separately the x- and y-directions.

1

2

x

A

V

y

δF

δs

Figure 9.3 Elemental fluid slice moving through a control volume
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We consider first the x-direction. If themass of the fluid slice is δm, then fromNewton’s second
law of motion we have

δFx = δm ax (9.1)

where δFx is the component of force acting on the fluid slice in the x-direction and ax is the
corresponding acceleration. Since the flow is steady, the acceleration of δm is a consequence
of changes in its velocity due to changes in the cross-sectional area of the duct, i.e. in a similar
way to the treatment of the acceleration of fluid particles in Section 7.2 we may write

ax =
dVx
dt

= dVx
ds

ds
dt

= V dVx
ds

where V is the resultant velocity of the slice a distance s along the duct.
Substituting the final expression for ax into equation (9.1) gives

δFx = δm V dVx
ds

= ρA δsV dVx
ds

where we have replaced the mass of the slice by ρA δs, ρ being the fluid density, A being the
cross-sectional area of the duct at location s, and δs being the thickness of the slice.
From the continuity equation (6.1) we have ṁ = ρAV so that the equation for δFx can be

written as

δFx = ṁdVx
ds
δs.

In the limit of an infinitesimally thin fluid slice (i.e. δs → 0),

dFx
ds

= ṁdVx
ds

or

dFx = ṁ dVx = dṀx (9.2)

where Ṁx = ṁVx is the x-component of the momentum flowrate of the fluid flowing through
the duct52. What equation (9.2) shows is that the x-components of the fluid velocity and
the momentum flowrate will increase if the x-component of force acting on the fluid slice
is positive.
Integration of equation (9.2) along the duct centreline between locations ➀ and ➁ produces

the important result

Fx = ṁ (V2,x – V1,x) = Ṁ2,x – Ṁ1,x (9.3)

where Fx is the x-component of the net force acting on the fluid within the control volume,
V2,x is the x-component of the fluid velocity leaving the control volume, and V1,x is the
x-component of the fluid velocity entering the control volume. Also in equation (9.3), Ṁ2,x

52 For a solid of mass mmoving with velocity V , the product mV is called the momentum. In a similar way, for a
fluid flowing through a duct with mass flowrate ṁ, the momentum flowrate is Ṁ = ṁV where V is the fluid velocity.
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Figure 9.4 Net force and momentum flowrates for control volume

is the x-component of the momentum flowrate at exit from the control volume, and Ṁ2,x is
the x-component of the momentum flowrate at the inlet to the control volume.
It should be apparent that the corresponding result to equation (9.3) for the y-direction is

Fy = ṁ
(
V2,y – V1,y

)
= Ṁ2,y – Ṁ1,y. (9.4)

We can express equations (9.3) and (9.4) in words as follows: the net force acting on the
fluid within the control volume, in a given direction, is equal to the change in the mo-
mentum flowrate (i.e. the rate of change of fluid momentum) in the same direction. The
triangle in Figure 9.4 illustrates that the net force F is equal to the vector difference between
the momentum flowrates out of and into the control volume, Ṁ2 – Ṁ1.

ILLUSTRATIVE EXAMPLE 9.1

A fluid of density ρ flows with mass flowrate ṁ through a pipe which turns through 90◦ and
at the same time halves in cross-sectional area. If the initial cross-sectional area is A, find the
net force exerted on the fluid within the pipe bend and the direction in which it acts.

Solution

The problem under consideration is illustrated in Figure E9.1(a), and the corresponding fluid
control volume in Figure E9.1(b). The inflow direction is taken as x, and the outflow direction
as y. If the inflow velocity is V1, the momentum equation for the x-direction gives

Fx = 0 – ṁV1 = – ṁ
2

ρA

where we havemade use of the continuity equation ṁ= ρAV1. The zero on the left-hand side of
the equation for Fx appears because the outflow has no velocity component in the x-direction.
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Figure E9.1

For the y-direction we have

Fy = ṁV2 – 0 = ṁ2

ρA2
= 2ṁ2

ρA

where we have again made use of the continuity equation and also the area relation A2 = A/2.
The magnitude F of the net force F acting on the fluid is then

F =
√
F2x + F2y =

√
5ṁ2

ρ A

and this force acts at an angle θ with respect to the x-axis (see Figure E9.1), given by

tan θ =
Fy
Fx

= –2 so that θ = –63.4◦.

Comments:

(1) It is essential to draw a diagram showing the general arrangement of the flow situation
under consideration, including symbols for any specified quantities, reference axes, etc.
To further aid in the solution, draw a second diagram showing the control volume, again
including all relevant information.

(2) As mentioned above, in the equation for Fx the x-component of the outflowmomentum is
zero and, in consequence, Fx is negative, i.e. opposed to the direction of the approach flow.
The y-component of the outflow momentum, on the other hand, is positive while that of
the inflowmomentum is zero so that Fy is positive. This is entirely what should be expected
since the action of turning the flow through 90◦ requires that its initial momentum in the
approach-flow direction is reduced to zero while the momentum in the outflow direction
is increased from zero to the value ṁV2. In this case V2 = 2V1 so that the magnitude of
the momentum outflow ṁV2 is double that of the momentum inflow ṁV1.
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9.3 Fluid-structure interaction force

As pointed out in Section 9.1 and illustrated in Figure 9.2(a), the net force F acting on the
fluid within the control volume includes the pressure forces p1A1 and p2A2 together with the
fluid-structure interaction force S.
For the x-direction we have

Fx =
(
p1A1
)
x –
(
p2A2
)
x + Sx = ṁ (V2,x – V1,x) (9.5)

and, for the y-direction,

Fy =
(
p1A1
)
y –
(
p2A2
)
y + Sy = ṁ

(
V2,y – V1,y

)
(9.6)

where the subscripts x and y again indicate the components of the vector quantities F, pA, S,
and V in the x- and y-directions, respectively.
In order to proceed further, the pressures p1 and p2 must be either specified or calculated.

If, as is often the case, the flow can be regarded as frictionless, Bernoulli’s equation can be used
to relate p1, p2,V1, and V2. If the flow discharges to atmosphere, then p2 = B, the ambient
pressure. In other situations it may be possible to calculate p1 and p2 from other information,
or the values may be available from measurements.

ILLUSTRATIVE EXAMPLE 9.2

The flow through the pipe bend considered in Illustrative Example 9.1 discharges to atmo-
spheric pressure B and can be assumed frictionless and incompressible. Gravitational effects
may also be ignored. Find the force exerted on the fluid by the internal surface of the pipe bend.

p1A1

p1A1

S

S

F

BA/2 (= p2A2)

BA/2

ϕ

Figure E9.2
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Solution

Figure E9.2 again shows the fluid control volume but now includes the pressure forces p1A1
and p2A2 (= BA/2) and also the fluid-structure interaction force S exerted on the fluid in the
control volume by the wetted surface of the pipe.
For the x-direction we have

Fx = p1A1 – Sx

and, for the y-direction,

Fy = –p2A2 + Sy = –12BA + Sy

wherein we have made use of the fact that the flow discharges to atmospheric pressure,
i.e. p2 =B, and also that the outlet area is half the inlet area, i.e. A2 = A/2.
Since the flow can be assumed frictionless, we introduce Bernoulli’s equation to evaluate the
unspecified inlet pressure p1, i.e.

p1 + 1
2ρV

2
1 = B + 1

2ρV
2
2 .

As before, the velocities V1 and V2 can be determined from the continuity equation as

V1 = ṁ
ρA and V2 = 2ṁ

ρA

so that

p1 = B + 3
2ρ

(
ṁ
A

)2
.

We can now substitute in the equation for Fx to find

Fx = BA + 3ṁ2

2ρA – Sx.

From Illustrative Example 9.1 we have

Fx = – ṁ
2

ρA

so that, by eliminating Fx between the two equations, we find

Sx = BA + 5
2
ṁ2

ρA .

For Fy we showed that Fy = –BA/2 + Sy and from Illustrative Example 9.1,

Fy = 2ṁ2

ρA
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so that

Sy = 1
2BA + 2ṁ2

ρA .

From the two components of S we can find its magnitude from
√
S2x + S2y and its direction φ

relative to the x-axis (see Figure E9.2) from tanφ = Sy/Sx.

9.4 Hydrodynamic reaction force

So far in this chapter we have been concerned with the forces exerted on the fluid within a
control volume and with the fluid-structure interaction force S. However, of principal interest
in the majority of engineering applications is the reaction force R required to restrain the
structure through which there is flow. At first sight it might appear that the reaction force
would be equal in magnitude to the force exerted by the fluid on the duct surface, i.e. the
fluid-structure interaction force S. That this is not so should be apparent from the free-body
diagram in Figure 9.2(b), which shows that the forces due to the external pressure B must
also be taken into account. If the x- and y-components of the reaction force are Rx and Ry,
respectively, for the duct to be in static equilibrium we require

Rx + BA2,x – BA1,x – Sx = 0 (9.7)

and

Ry + BA2,y – BA1,y – Sy = 0. (9.8)

The form of the terms involving the external pressure B can be explained as follows. As we
showed in Section 5.1, the net force acting on a body subjected to uniform pressure over its
entire outer surface is zero. In the present case, since there are openings in the outer surface at
the inlet and outlet, unbalanced forces of magnitude BA1 and BA2 must arise on the opposite
sides of the duct, as shown in Figure 9.2(b). It is the x- and y-components of these two forces
which appear in equations (9.7) and (9.8).
If we now combine equations (9.5) and (9.7) to eliminate Sx we find

Rx = ṁ(V2,x – V1,x) –
(
p1 – B

)
A1,x +

(
p2 – B

)
A2,x (9.9)

and from equations (9.6) and (9.8) we have

Ry = ṁ
(
V2,y – V1,y

)
–
(
p1 – B

)
A1,y +

(
p2 – B

)
A2,y. (9.10)

Equations (9.9) and (9.10) reveal that for the calculation of the reaction force it is the so-called
gauge pressures p1 – B and p2 – B, which we introduced in Section 4.1 which are important
rather than the absolute static pressures p1 and p2. As in the following example, the reaction
force R frequently depends only upon the mass flowrate ṁ, the fluid density ρ, and the flow
geometry and so is called the hydrodynamic reaction force.
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ILLUSTRATIVE EXAMPLE 9.3

Calculate the external reaction force required to hold in place the pipe bend of Illustrative
Example 9.1.

Solution

Once again it is valuable to draw a diagram to aid the solution, this time showing the
internal and external forces acting on the pipe bend: Figure E9.3(a) shows the internal fluid-
structure interaction force S (with components Sx and Sy), the external reaction force R (with
components Rx and Ry), and the pressure forces BA (in the –x-direction and BA/2 in the
+y-direction).
For the bend to be in static equilibrium we require

–Rx – BA + Sx = 0 and Ry + 1
2BA – Sy = 0.

From Illustrative Example 9.2 we have

Sx = BA + 5
2
ṁ2

ρA and Sy = 1
2BA + 2ṁ2

ρA .

If we combine the two pairs of expressions we find

Rx = 5
2
ṁ2

ρA and Ry = 2ṁ2

ρA

so that the magnitude of the external force R is given by

R =
√
R2x + R2y =

√
41ṁ2

2ρA

BA/2

BA

BA/2

ϕ
RR

S

(a) (b)

S
BA

Figure E9.3
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and the direction of R is given by

tanφ =
Ry
Rx

= 0.8 so that φ = 38.7o.

The angle φ is shown in Figure E9.3.

Comment:

This example underlines the point made earlier in this section that the external restraining
force R differs from the force S exerted on the wetted surface of the pipe bend by the fluid
flowing through it as a consequence of the forces arising from the pressure of the surroundings,
and the final result is independent of the external pressure. That R and S are not of equal
magnitude should be clear from the polygon of forces shown in Figure E9.3(b).

ILLUSTRATIVE EXAMPLE 9.4

A pipe bend such as that shown in Figure E9.1 has an upstream diameter of 1 m. With water
flowing through the bend, the external force required to hold it in place is 1200 N. Calculate
the volumetric flowrate of the water and the pressure drop through the bend.

Solution

D1 = 1 m; R = 1200 N; ρ = 1000 kg/m3.
We calculate first the cross-sectional area at inlet A = πD2

1/4 = 0.785 m2.
From Illustrative Example 9.3 we have |R| = √

41 ṁ2/2ρA which gives

ṁ =
√
1200 × 2 × 1000 × 0.785/

√
41 = 543 kg/s

and so the volumetric flowrate Q̇ = ṁ/ρ = 0.543 m3/s.
To calculate the pressure drop through the bend,�p= p1 – p2, we use Bernoulli’s equation53

p1 + 1
2ρV

2
1 = p2 + 1

2ρV
2
2 .

Since the cross-sectional area halves, according to the continuity equation the fluid velocity
must double so that

�p = p1 – p2 = 3
2ρV

2
1

= 1.5 × 1000 ×
(
0.543
0.785

)2
= 716 Pa.

Comment:

The calculated pressure drop does not represent a pressure loss. It arises because in passing
through the bend the fluid has been accelerated in a frictionless process (which is why

53 Since we are given no information about any change in altitude between inlet and outlet, it is assumed that the
axis of the duct lies in a horizontal plane.
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Bernoulli’s equation was applied). If a diffuser were attached to the bend outlet with an exit
area equal to the duct inlet area, the initial static pressure would be recovered (in practice
there would be frictional losses).

9.5 SUMMARY

The overall objective of this chapter was to show how we can calculate the external force
whichmust be applied to a duct to counteract the hydrodynamic forces generated by a fluid
flowing through it. After introducing the concept of a fluid control volume, we showed
that the analysis involves three separate considerations. We started by applying Newton’s
second law of motion to fluid flow through a duct of arbitrary shape. The outcome was the
linear momentum equation for a fluid flow which shows that the change in the momentum
flowrate of the fluid is equal to the net force exerted on the fluid. The second step was to
identify the individual forces which contribute to the net force: the pressure forces at inlet
and outlet, and the forces which arise due to the static pressure and shear stress distrib-
uted over the wetted interior surface of the duct. Finally, we used the condition of static
equilibrium for the duct to relate the external restraining force to the force exerted by the
flowing fluid on the wetted surface, which we termed the fluid-structure interaction force.
The vector nature of force and momentum was accounted for by considering components
in orthogonal directions.

The student should be able to

• explain the concept of a fluid control volume
• apply the linear momentum equation

Fx = ṁ(V2,x – V1,x) and Fy = ṁ
(
V2,y – V1,y

)
to fluid flow through a specified control volume

• write down expressions for the separate forces which contribute to the net force
acting on the fluid flowing through a control volume, i.e. the pressure forces act-
ing on the fluid at inlet and outlet to the control volume and the fluid-structure
interaction force

• use the condition of static equilibrium for a duct to write down equations relating
the external reaction force, the fluid-structure interaction force, and the forces due
to the pressure of the surroundings

• draw diagrams showing the forces acting on a fluid control volume, the net force
and momentum flowrates for the control volume, and the forces acting on a duct
through which there is fluid flow

9.6 SELF-ASSESSMENT PROBLEMS

9.1 A pipe of cross-sectional area A turns through 90◦. A fluid of density ρ with static
pressure equal to the external pressure flows through the pipe with mass flowrate ṁ.
Draw two diagrams: (a) the fluid control volume including the forces and mo-
mentum flowrates, and (b) a free-body diagram showing the forces acting on the
bend. Show that the net force required to hold the bend in place is

√
2ṁ2/ρA. Assume
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that the flow is one-dimensional and friction free, and that gravitational effects can
be ignored.

9.2 Fluid of density ρ flows through a turbomachine at a mass flowrate ṁ. If the inlet
area is A and the outlet area is fA, where f is a numerical factor, derive a formula
for the net force F on the fluid within the turbomachine in terms of ṁ, ρ, f , and A
if the angle between the entry and outlet directions is 60◦. Assume that the flow is
one-dimensional and friction free, and that gravitational effects can be ignored.

9.3 A fluid of density ρ flows at static pressure p and velocity V through a pipe of cross-
sectional area A. If the pipe turns through 90◦, find the force exerted on the fluid
by the pipe wall. Assume that the flow is one-dimensional and friction free, and that
gravitational effects can be ignored.

9.4 (a) A liquid of density ρ flows through a circular pipe of diameter D at a mass
flowrate ṁ. The pipe turns through 90◦ in the horizontal plane and also reduces in
diameter by 50%. The hydrodynamic loads exerted on the bend have to be supported
externally. Assume that the flow is one-dimensional and friction free to show that
the components of the external reaction, Rx and Ry, are given by

Rx = π4
(
p – B

)
D2 + 4

πρ

(
ṁ
D

)2
and

Ry = π16
(
p – B

)
D2 + 17

2πρ

(
ṁ
D

)2
where Rx is in the oppsite direction to the approach flow and Ry is in the same dir-
ection as the leaving flow. B is the external pressure and p is the static pressure of the
approach flow.

(b) The flow described in part (a) discharges at the exit from the bend to an external
pressure of 1 bar, the liquid density is 2000 kg/m3, the mass flowrate is 100 kg/s,
and the upstream pipe diameter is 150 mm. Calculate the resultant force required to
support the bend and the direction of its line of action.
(Answers: 2658 N, 25.2◦)

9.5 (a) A liquid flows through a pipe which turns through 180◦ in a horizontal plane and
at the same time doubles in diameter. If the flow discharges at atmospheric pressure,
show that the magnitude of the force R needed to hold the pipe in place is given by

R = 25ṁ2

32ρA

where ṁ is the liquid mass flowrate, ρ is the liquid density, and A is the cross-
sectional area of the pipe before the bend. Assume that the flow is one-dimensional
and friction free, and that gravitational effects can be ignored.

(b) The external force required to hold in place the pipe bend described in part (a)
is 1500 N. Calculate the volumetric flowrate of liquid of density 1000 kg/m3 and the
pressure change through the bend if the pipe diameter is 0.5 m upstream of the bend.
(Answers: 0.614 m3/s, 0.046 bar)



10 Engineering applications
of the linear momentum equation

In this chapter we use a number of specific problems to show how the analyses presented
in Chapter 9 and other previous chapters can be applied to real engineering situations. Each
problem, together with the numerical example which follows it, can be thought of as a case
study. It is important not to think of the numerical examples in isolation, to be solved simply by
substituting numbers into formulae. In an examination, the student would be expected to carry
out the theoretical analysis first starting from the basic equations of continuity, momentum,
and static equilibrium together with, where appropriate, Bernoulli’s equation.
We consider flow through a convergent nozzle, a rocket engine, a turbojet engine, a tur-

bofan engine, a sudden enlargement, and a jet pump—all examples where the generation of
hydrodynamic force and changes in static pressure, velocity, and momentum flowrate are due
entirely to changes in cross-sectional area. The remaining problems involve the additional
complication of a change in flow direction, as in the internal flow through a pipe bend, a
pipe junction, a set of guidevanes, and finally two situations where a free jet is deflected by
impingement on a fixed or a moving object.

10.1 Force required to restrain a convergent nozzle

The conventional technique for dousing a major fire relies upon a convergent nozzle to create
a high-speed jet of water directed towards the fire. Water at high pressure (typically 3 bar)
flows at low speed through a long hose (typically 80mm internal diameter) and is discharged at
atmospheric pressure and high speed through a hand-held nozzle typically 50 mm in diameter
at exit. As we shall see, the nozzle generates a considerable reaction force which has to be
resisted by the firefighter.
As shown in Figure 10.1(a), we consider a convergent nozzle, of exit area A2, connected to

a circular-cylindrical hose of cross-sectional area A1, through which an incompressible fluid
of density ρ flows at a mass flowrate ṁ. The fluid discharges to the surroundings, which are at
static pressure B. Our aim is to determine the magnitude and direction of the restraining force
R required to hold the nozzle in place.
In this instance there is only one choice for the fluid control volume, as shown in

Figure 10.1(b). Since there is no change in flow direction, we need consider only the axial
direction. According to the linear momentum equation, the net force F exerted on the fluid
in the control volume is equal to the difference in the momentum flowrate between outlet and
inlet, i.e.

F = Ṁ2 – Ṁ1 = ṁ(V2 – V1) . (10.1)

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 10.1 (a) Nozzle arrangement; (b) fluid control volume; (c) forces acting on nozzle

The flow velocities at inlet and outlet,V1 andV2, respectively, can be found from the continuity
equation (6.1) as V1 = ṁ/ρA1, and V2 = ṁ/ρA2, so that equation (10.1) leads to

F = ṁ2

ρ

(
1
A2

– 1
A1

)
. (10.2)

As indicated in Figure 10.1(b), there are three contributions54 to the force F: the pressure forces
p1A1 and p2A2, and the force exerted directly on the fluid by the internal surface of the nozzle,
S (the fluid-structure interaction force), i.e.

54 The symmetry of the situation requires that all forces and momentum flowrates in this case are coaxial with the
nozzle centreline.
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F = p1A1 – p2A2 – S = ṁ2

ρ

(
1
A2

– 1
A1

)
. (10.3)

Equation (10.3) can be rearranged to eliminate F and give

S + ṁ2

ρ

(
1
A2

– 1
A1

)
– p1A1 + p2A2 = 0. (10.4)

Our aim is to calculate the external reaction force R required to restrain the nozzle against
the forces imposed on it. As shown in Figure 10.1(c), these forces comprise the internal force S
exerted directly on the fluid by the nozzle (equal in magnitude but opposite in direction to the
force exerted on the fluid) and the forces due to the external pressure B.
From the condition for static equilibrium of the nozzle we have

R – S + BA1 – BA2 = 0 (10.5)

which we can combine with equation (10.4) to eliminate S and find

R = – ṁ
2

ρ

(
1
A2

– 1
A1

)
+
(
p1 – B

)
A1 –

(
p2 – B

)
A2. (10.6)

Since the nozzle discharges to the surroundings at ambient pressure B, we can take p2 = B so
that

R = – ṁ
2

ρ

(
1
A2

– 1
A1

)
+
(
p1 – B

)
A1. (10.7)

Equation (10.7) is as far as we can take our calculation without further information about the
upstream static pressure p1. If the flow within the nozzle can be regarded as frictionless, p1 can
be calculated from Bernoulli’s equation, which was derived in Chapter 7, i.e.

p0 = p1 + 1
2ρV

2
1 = B + 1

2ρV
2
2 (7.10)

where p0 is the stagnation pressure of the flow at inlet to the nozzle. As before, we can use
the continuity equation (6.1) to substitute for V1 and V2, so that Bernoulli’s equation can be
written as

p1 – B = ṁ2

2ρ

(
1
A2
2
– 1
A2
1

)
(10.8)

which we can substitute into equation (10.7) to obtain, after some simplification,

R = ṁ2A1
2ρ

(
1
A2

– 1
A1

)2
. (10.9)

Although this result came about from an analysis in which frictional effects were excluded,
it turns out that, as here, for many situations where the flow is highly turbulent and there are
substantial frictional losses, hydrodynamic forces are proportional to the square of the flowrate
or velocity, i.e. to the dynamic pressure.
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ILLUSTRATIVE EXAMPLE 10.1

Water flows through a hose with an internal diameter of 80 mm and discharges to the
atmosphere through a convergent nozzle with an exit diameter of 60 mm. If the water mass
flowrate is 50 kg/s, calculate the force required to restrain the nozzle. If the ambient pressure
is 1.03 bar, calculate the static and stagnation pressures of the flow within the hose assuming
the flow to be frictionless.

Solution

D1 = 0.08m; D2 = 0.06m; ṁ = 50 kg/s; p2 = B = 1.03 × 105 Pa; and ρ = 1000 kg/m3.
First, we calculate the areas A1 = πD2

1/4 = 5.03× 10–3 m2, and A2 = πD2
2/4 = 2.83× 10–3 m2.

Substitution in equation (10.9)55 then gives

R = 0.5 × 502 × 5.03 × 10–3
1000

(
1

2.83 – 1
5.03

)2
× 106

= 150.4 N.

Since the flow is frictionless, we can use Bernoulli’s equation to relate the stagnation pressure
of the water

(
p0
)
, to the static pressures within the hose

(
p1
)
and at the nozzle exit

(
p2 = B

)
as

follows

p0 = p1 + 1
2ρV

2
1 = B + 1

2ρV
2
2 .

The corresponding velocities V1 and V2 are calculated from the continuity equation
ṁ= ρA1V1 = ρA2V2, from which

V1 = 50
1000 × 5.03 × 10–3

= 9.95m/s and V2 = 50
1000 × 2.83 × 10–3

= 17.68m/s.

The stagnation pressure is then

p0 = B + 1
2ρV

2
2 = 1.03 × 105 + 0.5 × 1000 × 17.682 = 2.59 × 105 Pa or 2.59 bar

and the upstream pressure p1 is

p1 = p0 – 1
2ρV

2
1 = 2.59 × 105 – 0.5 × 1000 × 9.952 = 2.10 × 105 Pa or 2.10 bar.

10.2 Rocket-engine thrust

Figure 1.15, in Chapter 1, shows the general configuration (greatly simplified) of a
liquid-propellant rocket engine such as those used for the space-shuttle main engines, and
the SaturnVboosters in the Apollo programme. A typical propellant (i.e. fuel) would be liquid

55 As we have made clear throughout this book, in an examination the student would be required to derive the
necessary equations. A practicing engineer would be more likely to find them stated in a handbook or textbook (such
as this!).
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hydrogen, with liquid oxygen as the oxidiser. The fuel and oxidiser are pumped into the com-
bustion chamber, where they mix and burn to produce a gas at high temperature and pressure,
which is exhausted to the surrounding atmosphere through a convergent-divergent nozzle as
a high-velocity jet. Although the nozzle resembles a Venturi tube, it functions very differently
because the gas flow through it is highly compressible. The flow is subsonic in the combus-
tion chamber itself, accelerates to sonic conditions (i.e. a Mach number of unity) at the nozzle
throat, and becomes supersonic in the divergent section of the nozzle56. Unlike the situation
for subsonic flow, the static pressure of the jet flow at exit from the nozzle is usually higher57

than that of the surrounding atmosphere, which, at high altitude (above 30 km), is almost zero.
The supersonic jet adjusts to the low pressure through a series of shock and expansion waves
(see Section 11.9).
We now show that the thrust produced by a rocket engine is equal to the sum of the mo-

mentum flowrate of the exhaust jet and the pressure force due to the difference between the
exhaust and ambient pressures. It is convenient to consider the gas flow relative to the rocket
engine, as would be the case if it were on a test bed. As for the convergent nozzle of the pre-
vious section, the interior surface of the engine is a suitable choice to define a fluid control
volume, as shown in Figure 10.2(a). The momentum flowrates associated with the inflow of

(b)

T
B AE

S

S

(a)

mVE

pEAE

Figure 10.2 Liquid-propellant rocket engine: (a) fluid control volume; (b) forces acting on rocket
engine

56 Compressible gas flow through a convergent-divergent nozzle is discussed in detail in Section 11.7.
57 A supersonic jet exhausting into a low-pressure environment is said to be underexpanded (see Section 11.8).
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fuel and oxidant are assumed to be negligible so that the momentum equation applied to the
fluid control volume gives

F = ṁVE (10.10)

where ṁ is themass flowrate of the exhaust gas, whichmust equal the combinedmass flowrates
of the fuel and oxidant. In the case of a solid-propellant rocket, the principal difference to the
liquid-propellant case would be that the exhaust mass flowrate would equal the rate at which
the propellant burned. In equation (10.10) the symbol VE denotes the velocity of the exhaust
gas at exit from the nozzle, and F represents the net force exerted on the fluid within the control
volume.
If the static pressure of the exhaust gas at exit from the engine is pE, and S is the force exerted

on the fluid within the control volume by the interior surfaces of the engine (the fluid-structure
interaction force), including the combustion chamber and the exhaust nozzle, then

F = S – BAE (10.11)

where AE is the cross-sectional area of the nozzle at exit and B is the ambient pressure. The
condition for static equilibrium is

T – S + BAE = 0 (10.12)

where, as shown in Figure 10.2(b), the symbol T represents the restraining force which would
be required to keep the engine in place on a test bed, and this would be the thrust exerted on
a moving rocket-powered vehicle such as the space shuttle.
We can now combine equations (10.10), (10.11), and (10.12) to yield the final result for the

thrust

T = ṁVE +
(
pE – B

)
AE (10.13)

which shows that thrust arises due to both the momentum flowrate of the exhaust gas
ṀE = ṁVE and also the exhaust pressure. Since the exhaust flow is supersonic and must be
treated as a compressible flow, we cannot use Bernoulli’s equation to connect pE,VE, ṁ, etc.
Nevertheless, the continuity equation (6.1) does remain valid so that ṁ = ρEAEVE, where
ρE, the gas density at exit from the nozzle, can be calculated from the ideal gas equation
pE = ρERETE, where TE is the exhaust-gas absolute temperature, and RE is the specific gas
constant of the exhaust gas. The latter depends upon the molecular weight of the exhaust gas
but as an approximation can be assumed to have the value 287 m2/s2 ·K, which is appropriate
for air.

ILLUSTRATIVE EXAMPLE 10.2

The gas leaving the exhaust nozzle of a rocket engine has a temperature of 1400 ◦C, a pressure
of 12 kPa, and a velocity of 4500 m/s. If the exit diameter of the exhaust nozzle is 2.3 m and the
ambient pressure is 0.5 bar, calculate the thrust developed by the engine. The exhaust gas can
be assumed to behave as an ideal gas with a specific gas constant of 280 m2/s2 ·K.
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Solution

TE = 1400 + 273 = 1673 K; pE = 1.2 × 104 Pa; R = 280 m2/s2 ·K; VE = 4500 m/s; DE = 2.3 m;
and B = 5 × 104 Pa.
We calculate first the exhaust-gas density using the ideal gas law

ρE = pE/RTE = 1.2 × 104/ (280 × 1673) = 0.0256 kg/m3

and the exit cross-sectional area from AE = πD2
E/4 = 4.15m2.

The exhaust-gas momentum flowrate is then

ṀE = ρEV2
EAE = 0.0256 × 45002 × 4.15 = 2.15 × 106 N or 2.15 MN

the pressure force is(
pE – B

)
AE =

(
1.2 × 104 – 5 × 104

)× 4.15 = –3.8 × 104 N or – 0.38 MN

and the total thrust is

T = ṀE +
(
pE – B

)
AE = 2.11 MN.

Comment:

The values used in this example are typical for a large liquid-propellant cryogenic rocket engine
such as one of the three main engines which power the space shuttle58. The combined thrust
provided by the two solid-propellant boosters required to launch the shuttle is about five times
that of the three main engines.

10.3 Turbojet-engine thrust

A simplified cross section of a basic jet engine59 is shown in Figure 10.3(a). The function of
a jet engine for propulsion purposes60 is to take in air from the surroundings and increase its
momentum in a three-stage process: compression, combustion, and expansion. A kerosene-
based liquid fuel is injected into combustion chambers, where it burns in the air which has
been raised to high pressure by a multi-stage axial-flow compressor61. The power required
to drive the compressor is produced by expansion of hot gas flowing from the combustion
chambers through an axial-flow turbine. The inventor of the turbojet engine was the British
Royal Air Force engineer Sir Frank Whittle. The supersonic airliner Concorde was powered

58 The rated thrust of the Rocketdyne RS-25 Space Shuttle Main Engine (SSME) is given as about 1.86 MN at
lift-off.

59 The terms jet engine, turbojet engine, and gas-turbine engine are used interchangeably in the literature.
60 For both commercial and combat aircraft, the turbojet engine has been largely superseded by the turbofan

engine, which is the subject of Section 10.4. Other variants of the basic turbojet engine include the turboprop en-
gine and turboshaft engines, in which all the useful power is transmitted by a shaft. The principal applications of
turboshaft engines are to helicopters, ships, land-based power generation, the compression of natural gas at the point
of extraction, and pumping oil through pipelines.

61 Usually abbreviated to axial compressor.
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Figure 10.3 Turbojet engine: (a) configuration; (b) fluid control volume; (c) forces acting on engine;
(d) and (e) flow into and out of engine, respectively
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by four Rolls-Royce Olympus 593 turbojet engines: the final version of this engine developed
142 kN of thrust (169 kN with reheat).
As for the rocket engine, the fluid control volume corresponds to the interior of the engine

casing. In the equations which follow, the subscript I denotes airflow conditions at the engine
intake, E the exhaust-gas conditions at the engine outlet, and F the fuel. If the engine is attached
to a flying aircraft, it is convenient to consider flow relative to the engine, i.e. the engine is
regarded as being stationary with the air flowing towards and around it at the cruising speed
of the aircraft VA (Figure 10.3(e)).
Overall mass conservation requires that the mass flowrate of the exhaust gas ṁE must equal

the sum of the flowrates of air ṁI and fuel ṁF into the engine, i.e.

ṁE = ṁI + ṁF . (10.14)

Since the velocity of the fuel at inlet to the engine VF will be low compared with that of the air
VI , which will be close to the cruising speed VA, and the air-fuel ratio is considerably greater
than unity, as with the rocket engine it is permissible to neglect the momentum flowrate of the
inflowing fuel, ṁFVF , compared with that of the air, ṁIVI . The momentum equation applied
to the fluid flowing through the control volume can then be written as

F = ṁEVE – ṁIVI (10.15)

where the net force F acting on the fluid in the control volume is given by

F = S – pEAE + pIAI . (10.16)

In this case the fluid-structure interaction force S represents the net result of all the complex
processes taking place within the engine.
The thrust T is again equal to the reaction force applied to the airframe to which the engine

is attached, so that, for static equilibrium of the engine (see Figure 10.3(c)),

T – S + BAE – BAI = 0. (10.17)

We can now combine equations (10.15) to (10.17) to give the fundamental thrust equation
for jet propulsion

T = (ṁI + ṁF)VE – ṁIVI +
(
pE – B

)
AE –

(
pI – B

)
AI (10.18)

and we now need to assign values to the pressures pI and pE. For subsonic conditions, it is
reasonable to assume that the pressure pE at the propelling nozzle outlet is equal to the ambi-
ent pressure B. The inlet pressure pI is less straightforward to deal with. Since the continuity
equation is still valid, for the intake we have ṁI = ρIAIVI , from which we can evaluate the air
velocity at the engine inlet VI if we know the air mass flowrate ṁI and the air density ρI . The
airflow approaching the intake may be assumed to satisfy Bernoulli’s equation (7.10), so that
pI can be calculated from

p0 = B + 1
2ρIV

2
A = pI + 1

2ρIV
2
I

where the airspeed of the aircraft VA is the velocity of the airflow relative to the engine far
upstream of the aircraft, where the air pressure is equal to the ambient pressure B. Bernoulli’s
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equation provides a more satisfactory way to specify the inlet static pressure pI than the more
obvious assumption that pI = B, which is only valid if the inlet velocity VI is close to VA, as
in Figure 10.3(e). In the case of an engine on a test bed or for an aircraft prior to take-off,
as in Figure 10.3(d), the air far from the engine will be at rest so that VA = 0 and it is clear
that air must be drawn into the engine by reducing pI to a value much less than B. In some
circumstances, the airspeed of the aircraft may exceed VI , and if this occurs then pI is greater
than B and the engine benefits from what is called a ram effect.
If we combine Bernoulli’s equation with the continuity equation, then

pI – B = ρI

[
V2
A –
(

ṁI
ρIAI

)2]
. (10.19)

To complete the analysis, we introduce the continuity equation for the exhaust-gas flow
together with equation (10.14)

ṁE = ρEAEVE = ṁI + ṁF

from which VE = (ṁI + ṁF) /ρEAE, which we can substitute into the thrust equation (10.18)
together with equation (10.19) for pI – B and the exhaust-pressure condition pE = B, to give

T = (ṁI + ṁF)2
ρEAE

–

[
1 +
(
VA
VI

)2] ṁ2
I

2ρIAI
. (10.20)

The second of the two terms in equation (10.20) is called the momentum drag because it
reduces the thrust below the value which would be obtained from the exhaust-gas flow alone.
If the airspeedVA is equal to the airflow velocity into the engineVI , such that pI = B, the thrust
equation reduces to

T = (ṁI + ṁF)2
ρEAE

–
ṁ2

I
ρIAI

(10.21)

while for an engine at rest, with VA = 0, we have

T = (ṁI + ṁF)2
ρEAE

–
ṁ2

I
2ρIAI

. (10.22)

As can be seen from equation (10.18), the difference in the momentum drag between the two
situations arises because, forVA = VI , the gauge pressure pI–B = 0while, whenVA = 0, pI–B =
ρI[ṁ/ (ρIAI)]2.

ILLUSTRATIVE EXAMPLE 10.3

The cross-sectional area of the inlet to a turbojet engine is 2.9 m2 and that of the exhaust nozzle
is 2.6 m2. The engine powers an aircraft flying at a speed of 250 m/s (900 km/h) at an altitude
of 10 km, where the ambient pressure is 0.265 bar, the temperature is –50 ◦C, and the density
is 0.41 kg/m3. The engine consumes fuel at a rate of 13.5 kg/s and operates with an air:fuel
ratio of 20:1. The exhaust-gas density is 0.19 kg/m3. Calculate the air velocity and pressure at
the engine intake, the velocity of the exhaust gas leaving the engine, and the thrust developed
by the engine.
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Solution

AI = 2.9 m2; AE = 2.6 m2; VA = 250 m/s; ρI = 0.41 kg/m3; TI = 223 K; B = 2.65 × 104 Pa;
ṁF = 13.5 kg/s; ṁI/ṁF = 20; and ρE = 0.19 kg/m3.
From the value for ṁF and the air:fuel ratio, we have ṁI = 13.5 × 20 = 270 kg/s.
We can now calculate the airflow velocity at the engine intake VI from the continuity
equation, i.e.

VI =
ṁI
ρIAI

= 270
0.41 × 2.9 = 227.1 m/s.

We see that VI is slightly lower than VA, so that from Bernoulli’s equation (see Comment
below) the inlet pressure pI must be slightly higher than the ambient pressure B according to

pI = B + 1
2ρI
((
V2
A – V2

I
))

= 2.65 × 104 + 0.5 × 0.41 × (2502 – 227.12)
= 2.87 × 104 Pa or 0.287 bar.

The values of the two terms in equation (10.20) are as follows

(ṁI + ṁF)2
ρEAE

= 1.627 × 105 N or 162.7 Kn

and

–

[
1 +
(
VA
VI

)2] ṁ2
I

2ρIAI
= –6.78 × 104 N or – 67.8 Kn

so that the overall thrust is 94.9 kN.
The gas velocity at outlet from the engine we obtain from the continuity equation as

VE = ṁI + ṁF
ρEAE

= 574 m/s.

Comment:

The speed of sound cI corresponding to –50 ◦C is 299 m/s so that the flight Mach num-
ber VA/cI = 0.835, which is considerably above the incompressible threshold of about 0.3
(see Section 3.12). The use of Bernoulli’s equation, which assumes incompressible flow, there-
fore introduces errors into the calculation. Since the exhaust-gas temperature TE will be much
higher than the ambient temperature (ca 650 ◦C), the exhaust soundspeed will be much
higher than cI and the exhaust velocity subsonic but, again, the assumption of incompress-
ibility is unrealistic. A more detailed analysis accounting for the effects of compressibility
would show whether the calculation provides reasonable estimates for the thrust and other
quantities.
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10.4 Turbofan-engine thrust

The majority of commercial and combat aircraft are now powered by turbofan engines such as
that shown schematically in Figures 1.8 and 10.4(a). Most of the air flowing through a turbofan
engine bypasses the engine core (i.e. the compressor stages, the combustors, and the turbine
stages): a typical bypass ratio62 for a large, modern, turbofan engine, such as the Rolls-Royce
Trent XWB, which powers the Airbus A350, is 9:1. Much lower bypass ratios are typical of
engines for combat aircraft, such as the Pratt andWhitney F135, which powers the Lockheed
Martin F-35 Lightning II stealth fighter, which has a bypass ratio of 0.57.

mE
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mE
mI mB

(a)

(b)

BAB

BAE

pI AI

S

mBVB
mI VI

mEVE

(c)

BAE  + BAB
BAI

T

S

Figure 10.4 Turbofan engine: (a) flow configuration; (b) fluid control volume; (c) forces acting on
engine

62 The bypass ratio is the ratio of the air mass flowrate that bypasses the engine core to the air mass flowrate that
passes through the core.
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In Figure 10.4(a), the total mass flowrate of air into the engine is ṁI , the bypass flowrate is ṁB,
and the fuel mass flowrate is ṁF . Overall mass conservation requires that

ṁI + ṁF = ṁE + ṁB (10.23)

where ṁE is the exhaust mass flowrate from the engine core. If the air density at inlet to the
engine is ρI , the air density at outlet from the bypass ducting is ρB, and the exhaust-gas density
is ρE, then from the continuity equation we have

ṁI = ρIAIVI , ṁB = ρBABVB, and ṁE = ρEAEVE, (10.24)

from which the fluid velocities at inlet VI , bypass outlet VB, and exhaust VE, can all be
calculated given the corresponding cross-sectional areas AI ,AB, and AE.
If F is the net force acting on the two streams of fluid within the fluid control volume shown

in Figure 10.4(b), then from the linear momentum equation we have

F = ṁBVB + ṁEVE – ṁIVI . (10.25)

The air pressure at the front face of the fan is pI , and both the bypass air and exhaust gas are
assumed to leave the engine at ambient pressure B, so that

F = S + pIAI – B(AB + AE) (10.26)

where S is the fluid-structure interaction force, again taking account of both fluid streams.
If R is the reaction force required to hold the engine in place, then from Figure 10.4(c) we

can see that the condition for static equilibrium is given by

R – S – BAI + B(AB + AE) = 0 (10.27)

so that the thrust T, which must be equal in magnitude to R but opposite in direction, is
given by

T = S + BAI – B(AB + AE)

= ṁBVB + ṁEVE – ṁIVI –
(
pI – B

)
AI . (10.28)

For a stationary engine, we can use Bernoulli’s equation to relate the static pressure at the inlet
pI to the ambient pressure B as follows

pI + 1
2ρIV

2
I = B

where we have assumed that the air density is the same at the inlet and in the surroundings. If
we now substitute –ρIV2

I /2 for pI – B in equation (10.28) for the thrust, we have, finally,

T = ṁBVB + ṁEVE – 1
2 ṁIVI . (10.29)

In the following numerical example, the cross-sectional areas, flowrates, and bypass ratio are
similar to those representative of a large turbofan engine such as the Rolls-Royce Trent XWB,
for which the take-off thrust range is 330 to 430 kN.
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ILLUSTRATIVE EXAMPLE 10.4

Air at a density of 0.9 kg/m3 enters a turbofan engine at a flowrate of 1440 kg/s. The bypass
ratio is 9.3:1 and the fuel flowrate is 4.4 kg/s. The bypass air leaves the engine with a density
of 0.8 kg/m3 and the exhaust-gas density is 0.15 kg/m3. The bypass air and the exhaust gases
leave the engine at ambient pressure, which is 1.01 bar. The cross-sectional areas are 6.5 m2

at inlet, 5.2 m2 at exit from the bypass ducting, and 1.9 m2 at the exit of the exhaust nozzle.
Calculate the thrust developed by the engine.

Solution

ṁI = 1440 kg/s; r = 9.3; ṁF = 4.4 kg/s; B = 1.01 × 105 Pa; ρI = 0.9 kg/m3; ρB = 0.8 kg/m3;
ρE = 0.10 kg/m3; pB = pE = B; AI = 6.5 m2; AB = 5.2 m2; AE = 1.9 m2;

ṁI = ṁB +
ṁB
r = 1440

from which ṁB =1330 kg/s, and the exhaust mass flowrate must be given by ṁE = (ṁI – ṁB) +
ṁF = 114 kg/s. We can now use the continuity equation to find the gas velocities as follows

VI =
ṁI
ρIAI

= 246 m/s VB = ṁB
ρBAB

= 320 m/s VE = ṁE
ρEAE

= 600 m/s.

The thrust can then be calculated from

T = ṁBVB + ṁEVE – 1
2 ṁIVI

= 1330 × 320 + 114 × 600 – 0.5 × 1440 × 246

= 3.17 × 105 N or 317 kN.

10.5 Flow through a sudden enlargement

From the continuity equation we know that, if there is an increase in the cross-sectional area
of a duct through which fluid is flowing and if the fluid density remains constant, then the
fluid velocity will decrease. If the area increase is gradual, as for the diffuser section of a
Venturi tube, the assumption of frictionless flow is usually justified and Bernoulli’s equation
shows that the fluid static pressure will increase while the stagnation pressure remains con-
stant. However, in many practical applications the area increase has to take place suddenly; for
example, when there is inadequate space for a well-designed diffuser or, for other design con-
siderations, a sudden area increase is advantageous. We now show how the static-pressure
recovery and stagnation-pressure loss can be calculated for flow through such a sudden
enlargement63.

63 The term expansion rather than enlargement is sometimes used but it should be understood that it is the area
that is expanding, not the fluid.
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Figure 10.5 Sudden enlargement: (a) flow geometry; (b) fluid control volume

The flow geometry under consideration is shown in Figure 10.5(a), and the fluid control
volume in Figure 10.5(b). The duct downstream of the enlargement is taken to be cylindrical
and circular64. A key assumption in the flow analysis is that the static pressure is uniform
across section ➀, where the flow enters the control volume, and equal to the static pressure
in the pipe just upstream of the enlargement. This assumption, which in practice is well justi-
fied, implies that fluid enters the control volume with negligible streamline curvature. In the
region immediately downstream of section ➀, the flow forms a central jet, which is strongly
affected by viscosity, becomes turbulent at all but very low Reynolds numbers, diverges un-
til it reaches the interior wall of the duct at section ➁, and then adjusts to the downstream
cross section, where the static pressure can again assumed to be uniform. Although in reality
the distribution of velocity both upstream of section ➀ and downstream of section ➁ would
be non-uniform (see Chapter 15), for present purposes we shall retain the one-dimensional
assumption of uniform velocity and negligible wall shear stress.
If we apply the momentum equation (9.3) to the flow through the control volume (between

sections ➀ and ➁), we have

F = Ṁ2 – Ṁ1 = ṁ(V2 – V1)

where F is the force acting on the fluid within the control volume, ṁ is the mass flowrate, V1
and V2 are the flow velocities at entrance to and exit from the control volume, respectively,
and Ṁ1 and Ṁ2 are the corresponding momentum flowrates. Since the surface shear stress
is assumed to be negligible, and the duct downstream of the enlargement is cylindrical, the

64 The term cylindrical alone does not mean that the cross section is circular, but rather only that the duct is
straight and has the same cross section at all axial locations.
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fluid-structure interaction force in this case is negligible, and the force F is due entirely to the
pressures p1 and p2 so that (with reference to Figure 10.5(b))

F = p1A2 – p2A2 =
(
p1 – p2

)
A2. (10.30)

We note that the area associated with p1 is A2 not A1 because this pressure is exerted over the
entire cross section of the duct immediately downstream of the enlargement.
If we combine the two equations for F we can derive an equation for the static-pressure

difference

p2 – p1 = ṁ
A2

(V1 – V2) . (10.31)

We now introduce the continuity equation as ṁ = ρA1V1 = ρA2V2, which allows equation
(10.31) to be written as

p2 – p1 = ṁ2

ρA2

(
1
A1

– 1
A2

)
. (10.32)

The stagnation pressures upstream and downstream of the enlargement are given by

p0,1 = p1 + 1
2ρV

2
1 and p0,2 = p2 + 1

2ρV
2
2 (7.10)

so that the loss in stagnation pressure is given by

p0,1 – p0,2 = 1
2ρ
(
V2
1 – V2

2
)
–
(
p2 – p1

)
. (10.33)

We can use equation (10.32) to substitute for p2 – p1, and the continuity equation to substitute
for V1 and V2, so that after some rearrangement we have, finally,

p0,1 – p0,2 = ṁ2

2ρ

(
1
A1

– 1
A2

)2
(10.34)

which is a version of the Borda-Carnot equation. The reduction (or ‘loss’) in stagnation pres-
sure, called the Borda-Carnot or expansion pressure loss, is often stated in terms of the
reduction in stagnation-pressure head as

h0,1 – h0,2 =
p0,1 – p0,2
ρg =

V2
1

2g

(
1 – A1

A2

)2
. (10.35)

As we showed in Subsection 7.5.1, pressure can be thought of as mechanical energy per unit
volume, so this loss of stagnation pressure represents mechanical energy which is dissipated by
viscous effects (which includes turbulent dissipation), resulting in an increase in entropy and
a small increase in fluid temperature. Equation (10.33) can also be written as

p0,1 – p0,2 = 1
2ρV

2
1

(
1 – A1

A2

)2
(10.36)

i.e. the loss of stagnation pressure can also be viewed as a loss of kinetic energy. For the lim-
iting case of a flow discharging from a duct of cross-sectional area A1 into surroundings of
effectively infinite extent (i.e. A2 � A1) we have the situation of a free jet and see that the loss
in stagnation pressure is equal to ρV2

1 /2, the dynamic pressure of the jet.
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If a perfect diffuser were substituted for the sudden expansion, there would be no loss in
stagnation pressure and, from Bernoulli’s equation, the static-pressure recovery would be
given by

p2 – p1 = 1
2ρ
(
V2
1 – V2

2
)
= ṁ2

2ρA2
2

[(
A2
A1

)2
– 1

]
(10.37)

which is larger than the pressure recovery for a sudden expansion (given by equation (10.32))
by the factor [(A2/A1) + 1]/2. However, we emphasise that Bernoulli’s equation does not apply
to flow through the sudden enlargement, and the last result should be regarded as a basis for
comparison.

ILLUSTRATIVE EXAMPLE 10.5

Part of the exhaust system from an engine can be modelled as an axisymmetric gradual con-
traction followed by a sudden enlargement, as shown in Figure E10.5. The upstream and
downstream pipes both have a cross-sectional area of 3 × 10–3 m2, and the contraction outlet
area is 1.5×10–3 m2. Calculate the differences in static pressure between sections ➀ and➁ and
between sections ➁ and ➂, and also the overall loss in stagnation pressure, for a gas of density
0.8 kg/m3 with a mass flowrate of 0.2 kg/s. The entire flow may be considered incompressible
and one dimensional, and the flow in the contraction as frictionless.

Solution

A1 = 3 × 10–3 m2; A2 = 1.5 × 10–3 m2; A3 = 3 × 10–3 m2; ρ = 0.8 kg/m3; and ṁ = 0.2 kg/s.
We start by calculating the gas velocities at sections (1), (2), and (3), using the continuity
equation

V1 = ṁ/ρA1 = 0.2/
(
0.8 × 3 × 10–3

)
= 83.3 m/s;A2 = A1/2 so V2 = 2V1 = 166.7 m/s; and

A3 = A1 so V3 = V1 = 83.3 m/s.

Since the flow in the contraction, between sections➀ and➁, is frictionless, Bernoulli’s equation
is applicable and we have

p1 + 1
2ρV

2
1 = p2 + 1

2ρV
2
2

1 2 3

Figure E10.5
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so that

p1 – p2 = 1
2ρ
(
V2
2 – V2

1
)

= 0.5 × 0.8 × (166.72 – 83.32)
= 8.33 × 103 Pa or 8.33 kPa.

For the sudden enlargement we can use the results of this section, equation (10.31), with
appropriate changes to the subscripts, so that

p3 – p2 = ṁ
A3

(V2 – V3)

= 0.2 × (166.7 – 83.3)
3 × 10–3

= 5.56 × 103 Pa or 5.56 kPa.

Since there is no loss of stagnation pressure in the frictionless contraction, the entire
stagnation-pressure loss occurs between sections ➁ and ➂. Here again we can use the results
of this section, equation (10.34), i.e.

p0,2 – p0,3 = ṁ2

2ρ

(
1
A2

– 1
A3

)2

= 0.5 × 0.22
0.8

(
1
1.5 – 1

3

)2
× 106

= 2.78 × 103 Pa or 2.78 kPa.

Comment:

As we pointed out in Section 7.6, it is crucially important to understand the difference between
a static-pressure loss and a static-pressure difference. The latter may be recoverable; the former
is not.

10.6 Jet pump (or ejector or injector)

A basic jet pump consists of two concentric tubes, as shown in Figures 1.16 and 10.6(a). A
secondary flow occurs in the annulus surrounding the inner tube due to fluid being drawn
into the high-speed jet of fluid discharging from the central pipe. This process of low-speed or
even stationary fluid being drawn into a fast-flowing stream is termed entrainment. Vigorous
mixing takes place between the primary and secondary streams to produce a homogeneous
exit flow. In practice, for liquids, the primary jet flow usually discharges into the body of the
pump through a convergent-divergent nozzle to produce a high-speed, low-pressure jet flow.
For gas flows a convergent-divergent nozzle producing a low-pressure supersonic jet is more
common. The design of the outer tube depends upon the application, but is often divergent
to act as a diffuser if a high outlet pressure is required. A convergent exit nozzle to reduce the
pressure and increase the momentum of the outflow is more suitable in thrust applications.
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Flow machines, such as the jet pump, which have no moving parts, often used in fluid con-
trol systems, are called fluidic devices. Jet pumps are cheap and robust, thereby requiring little
maintenance, but are inefficient and can be noisy because of the high velocity of the primary
flow. The low efficiency is often of little consequence because jet pumps are commonly used
where the primary-flow energy would otherwise be wasted. The numerous applications of jet
pumps include water-aeration systems, water-jet aspirators (commonly encountered in chem-
istry laboratories), feedwater pumps for boilers, air/gas mixers in domestic, laboratory, and
industrial burners (the Bunsen burner is an example), thrust augmenters, and pumps for sand,
gravel, foodstuffs, and other slurries.
For simplicity we shall consider an arrangement in which the outer body of the pump is

circular and cylindrical with an inner injector tube which is concentric with the outer body.
If we apply the momentum equation to the fluid control volume shown in Figure 10.6(b),
we have(

pN – p2
)
A2 = ṁ2V2 – ṁNVN – ṁSVS (10.38)

where V is the flow velocity, ṁ is the mass flowrate, p is the static pressure, the subscript S
denotes the secondary flow (i.e. the flow in the annulus surrounding the injector tube), the
subscript N denotes conditions at the exit of the injector tube (section ➀), and 2 refers to
section ➁, at which location it is assumed that the primary and secondary flow streams are
fully mixed, and the flow velocity is uniform across the cross section, as is the pressure p2. The
static pressure in both streams at section ➀ is assumed to be the same and equal to the pressure
pN of the jet flow, i.e. pI = pN . As was the case for the sudden enlargement (Section (10.5)),
in writing equation (10.38), we have neglected any shear stresses acting on the fluid at the
outer tube surface so that the only force exerted on the fluid in the control volume is due to the

pNA2 p2A2

(b)

m2V2

mSVS

m  NVN

AS
A2

m2

p2
p1

AN

pN

1

(a)

2

mN

mS

Figure 10.6 Jet pump: (a) flow configuration; (b) fluid control volume
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pressure difference pN–p2. It should be noted that an important difference between the analysis
of the jet pump and the previous example is that we now have two fluid streams entering the
control volume and it is necessary to account separately for the momentum flowrate of each.
Since the primary and secondary streams mix and leave the control volume as a single

stream, overall mass conservation requires that

ṁ2 = ṁN + ṁS (10.39)

and since the geometry is cylindrical we have the area relationship

A2 = AN + AS. (10.40)

The continuity equation can be applied separately to the primary and secondary streams at
section ➀ and to the mixed stream at section ➁. Assuming the two streams at section ➀ have
the same density ρ, we have

ṁN = ρANVN ṁS = ρASVS and ṁ2 = ρA2V2. (10.41)

To go further we need to state which quantities can be regarded as specified and which are to
be calculated, and this depends upon the application. For example, we may wish to calculate
the mass flowrate of the induced secondary flow ṁS for a pump of given dimensions (i.e. AN
and AS specified), a fluid of specified density ρ, and given pressures pN and p2. An alternative
might be to calculate the final pressure p2 for a given overall flowrate ṁ2. In both cases we
have sufficient information to carry out the calculations. In other circumstances we might
be given the pressure of the secondary flow upstream of section ➀ and the outlet pressure
downstream of section ➁ where the area is different from A2. In such situations we need to
introduce further assumptions. For example, for a pump completely submerged in a liquid,
it might be appropriate to assume the flow up to section ➀ is frictionless and use Bernoulli’s
equation to relate pN , the velocity of the secondary streamVS, and the ambient fluid pressure B.
A similar approach could be used to relate p2 and V2 to the conditions at outlet from a nozzle
or diffuser downstream of section ➁. It should be apparent that many other variations on this
problem are possible.

10.6.1 Jet pumpwith specifiedmass flowrates

We return to the configuration shown in Figure 10.6(a), for which the momentum equation
led to(

pN – p2
)
A2 = ṁ2V2 – ṁNVN – ṁSVS (10.38)

and the continuity equation to

ṁN = ρANVN ṁS = ρASVS and ṁ2 = ρA2V2. (10.41)

If we now substitute in equation (10.38) for V2,VN , and VS and rearrange, we have

p2 – pN = 1
ρA2

[
ṁ2

N
AN

+
ṁ2

S
A2 – AN

– (ṁN + ṁS)2
A2

]
. (10.42)
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This equation can be used to calculate the outlet pressure if the inlet pressure pN and the two
mass flowrates are known. Alternatively if the pressure difference pN – p2 is known, then the
secondary mass flowrate ṁS can be calculated given ṁN .

ILLUSTRATIVE EXAMPLE 10.6

A jet pump with the configuration shown in Figure 10.6(a) has been designed to raise the
pressure of a gas of density 1.1 kg/m3. The inner tube has a cross-sectional area of 5× 10–4 m2

while that of the outer tube is 8×10–3 m2. The primary flowrate is 0.15 kg/s and the secondary
flowrate is 0.5 kg/s. Calculate the pressure increase produced by the pump.

Solution

ρ = 1.1 kg/m3; AN = 5 × 10–4 m2; A2 = 8 × 10–3 m2; ṁN = 0.15 kg/s; and ṁS = 0.5 kg/s.
From the equation for p2 – pN we have

p2 – pN = 1
1.1 × 8 × 10–3

(
0.152

5 × 10–4
+ 0.52
7.5 × 10–3

– 0.652
8 × 10–3

)
= 2900 Pa or 2.9 kPa.

As remarked already, if the pressure rise were specified, then the equation for p2 – pN could be
used to calculate ṁS from

2900 × 1.1 × 8 × 10–3 = 0.152
5 × 10–4

+
ṁ2

S
7.5 × 10–3

– (ṁS + 0.15)2

8 × 10–3

which can be simplified to give the quadratic equation for ṁS

ṁ2
S – 4.5ṁS + 2 = 0.

The two solutions are ṁS = 0.5 kg/s, and ṁS = 4.0 kg/s. The first solution corresponds to
the secondary flowrate specified in our original problem while the second corresponds to a
secondary flowspeed of 455m/s and has to be ruled out since this would represent a supersonic
flow condition (Mach number ≈ 1.34) and we have taken no account of compressibility.
The situation becomes more difficult if we need to calculate A2 given all other quantities
because the equation for p2 – pN results in a cubic equation for A2.

10.6.2 Jet pumpwith specified external pressures

We consider the configuration shown in Figure 10.7(a) in which a submerged jet pumpwith an
inlet contraction and a convergent exit nozzle is used to generate a high-speed flow of a liquid
of density ρ. For the central section of the pump, between locations ➀ and ➁, the momentum
equation derived earlier is again applicable, i.e.(

pN – p2
)
A2 = ṁ2V2 – ṁNVN – ṁSVS. (10.38)

According to the continuity equation applied to the primary and secondary flows,

ṁN = ρQ̇N = ρANVN ṁS = ρQ̇S = ρASVS (10.41)
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Figure 10.7 Jet pump with convergent exit nozzle: (a) flow geometry; (b) fluid control volume;
(c) performance curves

where Q̇N and Q̇S are the volumetric flowrates corresponding to the mass flowrates ṁN
and ṁS, VN and VS are the corresponding flow velocities, and AN and AS the appropriate
cross-sectional areas. In addition we have the overall mass-conservation equation

ṁ2 = ṁN + ṁS = ρ
(
Q̇N + Q̇S

)
= ρA2V2. (10.39)
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We can now recast the momentum equation in terms of the volumetric flowrates and the
cross-sectional areas as(

p2 – pN
)
A2

ρ
=
Q̇2
N

AN
+
Q̇2
S

AS
–
(
Q̇N + Q̇S

)2
A2

. (10.42)

We now need to relate the static pressure pN at the end of the injector pipe shall to the stag-
nation pressure in the reservoir p0, and the pressure p2 at the end of the mixing zone to the
exit pressure pE which, finally, will give us an equation for the overall pressure rise across the
pump pE – p0. We assume that the secondary flow is frictionless upstream of section ➀ and
that the mixed flow is frictionless downstream of section ➁ so that in both cases we can use
Bernoulli’s equation as follows

p0 = pN + 1
2ρV

2
S ,

where we have again made use of the pressure condition pS = pN at section ➀, and

p2 + 1
2ρV

2
2 = pE + 1

2ρV
2
E,

where the exit-flow condition corresponds to a jet discharging into the surroundings at a static
pressure pE. If we combine these two equations, we have

p2 – pN = pE – p0 + 1
2ρ
(
V2
E – V2

2 + V2
S
)
. (10.43)

If we again make use of the continuity equation to eliminate the velocities, we have

p2 – pN = pE – p0 + 1
2

[(
Q̇N + Q̇S

)2
AE

–
(
Q̇N + Q̇S

)2
A2

+
Q̇2
S

AS

]
. (10.44)

If we substitute this equation for p2 – pN in the momentum equation, after some algebra we
find that the overall pressure rise is given by(

pE – p0
)
A2
2

ρQ̇2
N

= A2
AN

–
(
1
2 + Q̇S

Q̇N

)[
1 +
(
A2
AE

)2]

+
(
Q̇S
Q̇N

)2 [A2
AS

– 1
2

{
1 +
(
A2
AS

)2
+
(
A2
AE

)2}]
. (10.45)

As can be seen, the final result is in non-dimensional form, all the quantities on the right-
hand side appearing as ratios. As we argued in Chapter 3, it is preferable to present any result,
whether theoretical or experimental, in non-dimensional form. In the present case one advant-
age is that the geometry of a range of geometrically similar pumps can be represented by the
two parametersAN/A2 andAE/A2(AS/A2 is not an independent parameter sinceAS = A2–AN).
The non-dimensional pressure rise

(
pE – p0

)
A2
2/ρQ̇2

N can be calculated for a range of values of
the ratio Q̇S/Q̇N to produce performance curves for any value of AN/A2. Figure 10.7(c) shows
two such curves for AN/A2 = 0.18: one for AE/A2 = 0.8, corresponding to a convergent exit
nozzle, and one for AE/A2 = 1.2, which corresponds to a diffuser. Although we carried out the
analysis with the convergent arrangement in mind, it applies equally well to the situation of
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a well-designed diffuser65. As we should expect, for any given value of the flow ratio Q̇S/Q̇N ,
the results show that the diffuser produces a higher exit pressure than the nozzle does. We also
see that the jet pump becomes increasingly effective as Q̇S/Q̇N is reduced, i.e. as the primary
flowrate is increased.

ILLUSTRATIVE EXAMPLE 10.7

A jet pump, similar to that shown in Figure 10.7(a), has dimensions corresponding to the
following cross-sectional areas: AN = 5 × 10–4 m2, A2 = 8 × 10–3 m2, and AE = 6 × 10–3 m2.
The pump operates completely submerged in water at a depth where the pressure is 1.51 bar,
which can be taken as both the stagnation pressure of the secondary flow and also the pump
outlet pressure. If the primary mass flowrate is 25 kg/s, calculate the secondary and overall
mass flowrates and also the static pressures pN and p2.

Solution

AN = 5 × 10–4 m2; A2 = 8 × 10–3 m2; AE = 6 × 10–3 m2; p0 = pE = 1.51 × 105 Pa; ṁN = 25
kg/s; and ρ = 1000 kg/m3.
From the specified cross-sectional areas, we can find the area ratios AN/A2 =
0.0625,AS/A2 = (A2 – AN) /A2 = 0.9375, and AE/A2 = 0.75, so that the area terms in
the final equation for pE – p0 are

A2
AN

– 1
2

[
1 +
(
A2
AE

)2]
= 14.61

1 +
(
A2
AE

)2
= 2.78

and

A2
AS

– 1
2

[
1 +
(
A2
AS

)2
+
(
A2
AE

)2]
= –0.89.

Since p0 = pE in this case, we have

0.89
(
Q̇S
Q̇N

)2
+ 2.78

(
Q̇S
Q̇N

)
– 14.61 = 0,

i.e. a quadratic equation for Q̇S/Q̇N which we can solve to find Q̇S/Q̇N = 2.78. The second root
is negative and is thus ruled out on physical grounds.

65 We know from the continuity equation that an increasing cross-sectional results in a velocity decrease. From
Bernoulli’s equation this in turn leads to a pressure increase. As we shall see in Section 16.5, a pressure increase results
in a reduction of surface shear stress and, in extreme circumstances, this may fall to zero, leading to separation of
the boundary layer. The analysis presented here assumes the diffuser is running full (i.e. the boundary layer is not
separated).
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Since the flow is incompressible, the mass flowrates are in the same ratio as the volumetric
flowrates, so that

ṁS = 2.78 × 25 = 69.5 kg/s

and the total mass flowrate is

ṁE = ṁN + ṁS = 94.5 kg/s.

In the derivation of the equation for pE –p0 it was assumed that the flow upstream of section ➀

is frictionless. We can therefore use Bernoulli’s equation to calculate the pressure pN from

p0 = pN + 1
2ρV

2
S

where the velocity of the secondary stream upstream of section ➀ VS is obtained from the
continuity equation

ṁS = ρASVS

so that VS = ṁS/ρAS = 9.27 m/s. From Bernoulli’s equation we find

pN = p0 – 1
2ρV

2
S = 1.51 × 105 – 0.5 × 1000 × 9.272 = 1.08 × 105 Pa or 1.08 bar.

To find the intermediate pressure p2 we can use Bernoulli’s equation between section ➁ and
the outlet

p2 + 1
2ρV

2
2 = pE + 1

2ρV
2
E

so that

p2 = pE + 1
2ρ
(
V2
E – V2

2
)
.

The outlet velocity VE and the intermediate velocity V2 are again found from the continuity
equation, VE = ṁE/ρAE = 15.75 m/s, and V2 = ṁ2/ρA2 = 11.81 m/s, so that

p2 = 1.51 × 105 + 0.5 × (15.752 – 11.812) = 2.05 × 105 Pa or 2.05 bar.

10.7 Reaction force on a pipe bend

In the remaining sections of this chapter we consider situations where the flow geometry leads
to a change in flow direction. We start with a pipe bend which turns through an angle θ and
at the same time changes in cross-sectional area. This is a more general version of the 90◦
bend discussed in Chapter 9. Although we restrict consideration to a bend in the horizontal
plane, the principles applied are general. The flow configuration is shown in Figures 1.14 and
10.8(a), the fluid control volume and the forces acting on it as well as the momentum flowrates
in Figure 10.8(b), and the forces exerted on the bend itself in Figure 10.8(c). The inflow
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Figure 10.8 Pipe bend: (a) flow configuration; (b) fluid control volume; (c) forces exerted on bend

cross-sectional area is A1, the outflow area is A2, the mass flowrate is ṁ, the flow velocities
corresponding to A1 and A2 are V1 and V2, respectively, and the fluid density, assumed to be
constant, is ρ. A uniform static pressure B acts over the external surface of the bend. For con-
venience, the inflow at section ➀ is taken to be in the x-direction, and the outflow at section ➁

to be at an angle θ to the x-direction.
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The momentum equation applied to the fluid in the control volume gives

p1A1 – p2A2 cos θ – SX = ṁ (V2 cos θ – V1) (10.46)

in the x-direction, SX being the x-component of the fluid-structure interaction force S. The
corresponding equation for the y-direction is

–p2A2 sin θ + SY = ṁV2 sin θ . (10.47)

With experience, it is usually straightforward to decide whether SX and SY are positive or
negative, but it is of no consequence if we choose incorrectly, as the directions of both S and the
reaction forceR are results of the analysis. In writing these two equations, we note that, because
the inflow at section➀ is in the x-direction, there is no contribution of either the pressure force
p1A1 or the momentum flowrate ṁV1 to the y-momentum equation. In contrast, unless the
outflow at section➁ is at 90◦ to the inflow, both p2A2 and ṁV2 contribute to the x-momentum
equation.
From Figure 10.8(c) we can see that the condition of static equilibrium leads to

–RX + SX – BA1 + BA2 cos θ = 0 (10.48)

and

RY – SY + BA2 sin θ = 0. (10.49)

Between the x-momentum equation and the equation for static equilibrium in the x-direction,
we can eliminate SX to give the equation for RX

RX = ṁ (V1 – V2 cos θ) +
(
p1 – B

)
A1 –

(
p2 – B

)
A2 cos θ . (10.50)

A similar procedure for the y-direction leads to the equation for RY

RY = ṁV2 sin θ +
(
p2 – B

)
A2 sin θ . (10.51)

The magnitude of the net reaction force R and its direction ξ are then found from

R =
√
R2X + R2Y and ξ = tan–1

(
RY
RX

)
.

As we remarked in Section 9.4, the reaction force depends upon the gauge pressures p1 – B,
and p2 – B, rather than the absolute static pressures p1 and p2.
Up to this point the analysis has been quite general and to go further we need more inform-

ation, for example about the pressures p1 and p2. A common outlet condition is that the flow
discharges at ambient pressure B so that p2 – B = 0. If, in addition, the flow within the pipe
bend can be assumed to be frictionless, then p1 and p2 (now equal to B) can be related using
Bernoulli’s equation, i.e.

p1 + 1
2ρV

2
1 = B + 1

2ρV
2
2

which conveniently provides an equation for p1 – B, i.e.

p1 – B = 1
2ρ
(
V2
2 – V2

1
)
.
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To combine this equation with the equation for RX requires the introduction of the continuity
equation

ṁ = ρA1V1 = ρA2V2.

After some algebra we find

RX = ṁ2

2ρA1

[(
A1
A2

)2
– 2A1

A2
cos θ + 1

]
= 1
2ρA1V2

1

[(
A1
A2

)2
– 2A1

A2
cos θ + 1

]
(10.52)

while the equation for RY (with p2 – B = 0) simplifies to

RY = ṁ2

ρA2
sin θ =

ρA2
1V2

1
A2

sin θ . (10.53)

The equations for RX and RY written in terms of V1 rather than ṁ have the form

reaction force = non-dimensional geometric factor × dynamic pressure × area

much like the equation for drag force

drag force = drag coefficient × dynamic pressure × area.

As we commented at the end of Section 10.1, it is typical of many practical flow situations to
find that a hydrodynamic force is proportional to the dynamic pressure.

ILLUSTRATIVE EXAMPLE 10.8

Liquid of density ρ flows through a pipe which turns through 180◦ in the horizontal plane
and at the same time doubles in cross-sectional area (see Figure E10.8(a)). The static pressure
before the bend is twice the external ambient pressure B, and the flow within the bend can be
regarded as frictionless. Show that the external reaction force required to restrain the bend is
given by

R = 9ṁ2

4ρA + 3BA

where ṁ is the mass flowrate and A is the cross-sectional area upstream of the bend.

Solution

We start by substituting p1 = 2B, A1 = A, A2 = 2A, and θ = 180◦ in equation (10.50) for RX
(because θ = 180◦, RY must be zero and so R = RX), i.e.

R = 3ṁ2

2ρA + BA + 2
(
p2 – B

)
A

wherein we have also made use of the continuity equation, which gives

V1 = 2V2 = ṁ
ρA .
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From Bernoulli’s equation we have

p2 = p1 + 1
2ρ
(
V2
1 – V2

2
)

= 2B + ṁ2

2ρA2 – ṁ2

8ρA2

so that

p2 – B = B + 3ṁ2

8ρA2 .
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If we substitute for p2 – B in the equation for R, we have

R = 9ṁ2

4ρA + 3BA.

Although this is the required result, rather than starting by simply substituting in the equation
for RX , it would be better to carry out the analysis from first principles, as follows.
We draw a diagram, Figure E10.8(b), of the fluid control volume, including the forces acting
on the fluid and the momentum flowrates. The momentum equation applied to the control
volume gives

–S + p1A1 + p2A2 = –ṁV2 – ṁV1.

Note that care has to be taken over the sign given to the momentum flowrate –ṁV2 at the
outlet to account properly for the fact that the bend has turned a full 180◦.
From Figure E10.8(c) we see that the condition of static equilibrium applied to the pipe bend
leads to

–R + S – BA1 – BA2 = 0

so that if we eliminate the fluid-structure interaction force S between the two equations we
find

R = ṁ (V1 + V2) +
(
p1 – B

)
A1 +

(
p2 – B

)
A2

which can be shown to lead to the same result as before.

10.8 Reaction force on a pipe junction

When we applied the momentum equation to the jet pump in Section 10.6 we pointed out
that because there were two fluid streams entering the control volume it was essential to ac-
count separately for the momentum flowrate of each stream. The pipe junction shown in
Figure 10.9(a) has two outlets, each at a different angle to the inlet flow direction, so we must
now account for both the mass and momentum flowrates of each outlet stream and also for
the pressure force acting on each outlet.
The momentum equation applied to the fluid control volume shown in Figure 10.9(b)

leads to

–SX + p1A1 – p2A2 cos θ2 – p3A3 cos θ3 = ṁ2V2 cos θ2 + ṁ3V3 cos θ3 – ṁ1V1 (10.54)

for the x-direction, and

–SY – p2A2 sin θ2 + p3A3 sin θ3 = ṁ2V2 sin θ2 – ṁ3V3 sin θ3 (10.55)

for the y-direction, where the symbols have their usual meanings.
The corresponding static-equilibrium conditions are

SX – RX + BA2 cos θ2 + BA3 cos θ3 = 0 (10.56)
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Figure 10.9 Pipe junction: (a) flow configuration; (b) fluid control volume; (c) forces exerted on pipe
junction
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and

RY – SY + BA2 sin θ2 – BA3 sin θ3 = 0. (10.57)

These equations can be combined to eliminate the components SX and SY with the result

RX = ṁ1V1 – ṁ2V2 cos θ2 – ṁ3V3 cos θ3 +
(
p1 – B

)
A1 –

(
p2 – B

)
A2 cos θ2

–
(
p3 – B

)
A3 cos θ3 (10.58)

and

RY = ṁ2V2 sin θ2 – ṁ3V3 sin θ3 +
(
p2 – B

)
A2 sin θ2 –

(
p3 – B

)
A3 sin θ3. (10.59)

Overall mass conservation requires that

ṁ1 = ṁ2 + ṁ3 (10.60)

and the continuity equation applied to each of the three streams gives

ṁ1 = ρQ̇1 = ρA1V1 ṁ2 = ρQ̇2 = ρA2V2 and ṁ3 = ρQ̇3 = ρA3V3. (10.61)

To proceed further, we need information about the static pressures p1, p2, and p3. An inter-
esting situation arises if the flow can be considered frictionless since this implies that the
stagnation pressure of all three flow streams must be the same. From Bernoulli’s equation
(7.10) we then have

p0 = p1 + 1
2ρV

2
1 = p2 + 1

2ρV
2
2 = p3 + 1

2ρV
2
3 .

It should be apparent that, by properly accounting for all the relevant pressure forces,
momentum flowrates, flow angles, and cross-sectional areas, we could generalise the pipe-
junction analysis to include any number of inlets and outlets.

10.9 Flow through a linear cascade of guidevanes

A linear cascade (or set) of curved guidevanes (or turning vanes), such as shown in
Figures 1.17 and 10.10(a), is frequently used in wind tunnels, water channels, air-conditioning
ducts, etc., to change the direction of a liquid or gas stream. In such applications, the
guidevanes may well be formed from sheet metal. Cascades are also used with profiled
guidevanes in the preliminary testing of compressor and turbine blades. The nozzle ring and
stator stages of axial-flow turbomachines, which we consider in Chapter 14, are essentially
cascades with a radial rather than a linear blade configuration. As we shall demonstrate in
this section, consideration of the flow through a cascade gives some insight into aerofoil lift
and drag.
We shall analyse incompressible flow through a single channel between adjacent guidevanes,

as shown in Figure 10.10(a). If the guidevane pitch (i.e. the blade separation distance) isw, and
the span is s, the cross-sectional area A1 normal to the flow at inlet to the channel (section ➀)
is given by

A1 = ws. (10.62)
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Figure 10.10 Flow through a linear cascade of guidevanes: (a) flow geometry; (b) fluid control
volume; (c) circulation loop

If the flow-deflection angle is α, the effective width of the channel at outlet (section ➁), taken
normal to the flow, must be w cos α, and the effective outlet area A2 is given by

A2 = w cos α s = A1 cos α. (10.63)

From the continuity equation for the flow of an incompressible fluid of density ρ, the mass
flowrate ṁ through the channel is shown in Chapter 6 to be given by

ṁ = ρQ̇ = ρA1V1 = ρA2V2 (6.1)
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so that the velocity at inlet V1 is related to that at outlet V2 according to

V2 =
V1

cos α . (10.64)

Since cos α < 1, it is apparent that one effect of the guidevanes is to accelerate the fluid flowing
through the cascade (the other principal effect is to turn the flow).
If we assume the flow to be frictionless, we can use Bernoulli’s equation to calculate the

corresponding pressure drop, i.e.

p0 = p1 + 1
2ρV

2
1 = p2 + 1

2ρV
2
2 (7.10)

where p0 is the stagnation pressure, p1 is the static pressure at inlet to the cascade, and p2 is the
static pressure at outlet. After some algebra, we thus find

p1 – p2 = 1
2ρV

2
1 tan2 α. (10.65)

If we apply the momentum equation to the fluid control volume shown in Figure 10.10(b), we
have

–SX + p1A1 – p2A1 = ṁV2 cos α – ṁV1

= 0 (since V2 cos α = V1) (10.66)

so that

SX =
(
p1 – p2

)
A1 = 1

2ρV
2
1 tan2 αA1 = 1

2 ṁV1 tan2 α (10.67)

and

SY = ṁV2 sin α = ṁV1 tan α. (10.68)

Note that, in applying the momentum equation in the x-direction, the area acted on by the
pressures p1 and p2 is A1 in both cases and not A2 for p2. Also, the fluid-guidevane interaction
force S (with components SX and SY ) takes into account the forces acting on both surfaces of
the guidevane.
The components of the net force exerted by the fluid on a single guidevane are thus

L = SY = ṁV1 tan α (10.69)

and

D = SX = 1
2 ṁV1 tan2 α. (10.70)

We have introduced the symbols L and D here because the force exerted by the fluid on the
guidevane normal to the approach-flow direction is the lift force L, and the corresponding
force in the x-direction is the associated drag force66 D. The drag associated with lift is termed
the induced drag, and we see that

D = 1
2L tan α (10.71)

66 These two forces are often referred to simply as lift and drag.
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a result which holds good in much more general situations. We also note that another general
aspect of aerodynamic lift is that it is invariably achieved through a change in momentum
flowrate brought about by a change in flow direction. As we shall see in Chapter 14, there
are similarities between the analysis of flow through a cascade of guidevanes and through the
stator or rotor of an axial-flow turbomachine.
A rather sophisticated approach to the calculation of aerofoil lift is through the concept of

circulation. If we draw a closed loop around an aerofoil and split the loop into infinitesimal
segments each of length δl, then the circulation Γ (upper case Greek letter gamma) is just the
sum of the product of each δl and the component V of velocity tangential to the loop at the
location of the segment, i.e.

Γ =
∑

Vδl =
∮

Vdl (10.72)

where the line integral is calculated around the loop. For one of our guidevanes, we choose the
loop shown in Figure 10.10(c), with identical curved segments in adjacent channels separated
by a distance equal to the pitch w. In this case the circulation can be seen to be given by Γ =
V2w sinα because, over section ➀, the channel inlet, the velocity V1 is normal to the loop and
so its contribution to Γ is zero; the sum of all the contributions to Γ along the upper curved
section of the loop exactly cancel those along the lower curved section; and all that is left is
V2w sin α along the outlet section ➁.
According to the Kutta-Joukowski theorem, the lift force per unit span on a body in a two-

dimensional, inviscid flowfield is given by V1Γ , so that, for the guidevane,

L = ρV1Γ s = ρV1V2 sin αws = ṁV1 tan α

which is exactly the same result as we obtained from the momentum equation. Unfortunately,
it is usually far more difficult to calculate the circulation for an isolated aerofoil than it was for
the simple guidevane considered here. A more detailed discussion of subsonic aerofoil lift is
given in Section 17.7.

ILLUSTRATIVE EXAMPLE 10.9

Hot gas with a density of 0.2 kg/m3 and velocity of 200 m/s leaves a combustion chamber
and is deflected through an angle of 20◦ by a set of curved guidevanes. If the approach-flow
cross-sectional area is 0.5 m2, calculate the components of force exerted on the guidevanes
in directions parallel to and perpendicular to the approach-flow direction. If the gas exhausts
from the guidevanes at a pressure of 1.01 bar, calculate the stagnation pressure of the flow and
the pressure drop across the guidevanes.

Solution

ρ = 0.2 kg/m3; V1 = 200 m/s; α = 20◦; A1 = 0.5 m2; and p2 = 1.01 × 105 Pa.
We start by calculating the mass flowrate

ṁ = ρA1V1 = 0.2 × 0.5 × 200 = 20 kg/s.

The total lift force (i.e. the component of force perpendicular to the approach-flow direction)
is thus
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L = ṁV1 tan α = 20 × 200 × tan 20◦ = 1456 N

and the total drag force is

D = 1
2L tan α = 0.5 × 1456 × tan 20o = 265 N.

The stagnation pressure p0 can be calculated from the values of p2 andV2, so that we must first
calculate the outlet velocity V2 from the continuity equation, i.e.

V2 = ṁ
ρA1 cos α

= 20
0.2 × 0.5 × cos 20o = 213 m/s

so that

p0 = p2 + 1
2ρV

2
2 = 1.01 × 105 + 0.5 × 0.2 × 2132 = 1.055 × 105 Pa or 1.055 bar.

For the pressure drop across the guidevanes we have

p1 – p2 = 1
2ρ
(
V2
2 – V2

1
)
= 0.5 × 0.2 × (2132 – 2002) = 530 Pa.

10.10 Free jet impinging on an inclined flat surface

A free jet is one unaffected by solid boundaries. As in the example of a jet of water flowing
through air, it is often the case that the surrounding fluid has a much lower viscosity and
the two fluids are immiscible. Where the two fluids interact strongly, such as a jet of water
flowing through water, the term submerged jet is used. In contrast to the internal flows we
have considered so far, there are many situations in which the momentum flowrate of a free
jet, usually liquid, is reduced in one direction and increased in another direction because the jet
is deflected by impingement on a stationary or moving object. In this section, we analyse, first,
the situation of a flat stationary plate held at an angle to the jet and, second, the situation where
the plate is moving in the same direction as the jet. Also, we shall restrict ourselves to a liquid
jet discharging into surroundings which have no influence on the jet other than to impose a
uniform pressure B on the free surface of the liquid. We shall also neglect gravitational effects
and assume the flow to be frictionless throughout.

10.10.1 Stationary plate

If the jet shown in Figure 10.11(a) has a circular cross section and the plate is held normal
to it (i.e. the angle α = 0◦), the deflected fluid will flow radially outwards over the plate.
The net momentum outflow from the fluid control volume, shown in Figure 10.11(b), is
then practically zero67 and there is no difficulty in applying the momentum equation. The
situation is more complicated for a round jet if the plate is held at an angle α, as shown in

67 The outflow will be axisymmetric so that the net momentum outflow normal to the jet is identically zero and
any residual momentum flow in the original direction negligible.



264 ENGINEERING APPLICATIONS OF THE LINEAR MOMENTUM EQUATION

S

S

R
BA

BA

(b)

(c)

m1V1

m2V2

m3V3

(a)

m2

B

A

α
m1

m3

1

2

3

Figure 10.11 Free jet impinging on a stationary flat plate: (a) flow geometry; (b) fluid control volume;
(c) forces exerted on plate

Figure 10.11(a), because the flow over the plate is no longer axisymmetric and thus is unsuited
to the simple analysis presented here. To simplify matters we consider a flat jet, i.e. what we see
in Figure 10.11(a) is a section through a sheet of liquid leaving a rectangular nozzle of height
t and width w where w � t. Following the impingement the flow splits into two separate
streams as shown.
The frictionless-flow assumption has two important consequences: first, Bernoulli’s equa-

tion can be used in the flow analysis and, second, the fluid-plate interaction force S must act
normal to the plate because the liquid pressure B is the only stress exerted by the liquid on the
plate surface.
As shown in Chapter 7, according to Bernoulli’s equation, the stagnation pressure p0 is

given by

p0 = B + 1
2ρV

2
1 = B + 1

2ρV
2
2 = B + 1

2ρV
2
3 (7.10)
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from which we deduce that

V1 = V2 = V3, (7.11)

i.e. the liquid velocity is constant throughout the flowfield.
From the continuity equation we have

ṁ1 = ρA1V1, ṁ2 = ρA2V2, and ṁ3 = ρA3V3 (6.1)

where ṁ2 and ṁ3 are the mass flowrates following impingement and ṁ1 is the total mass
flowrate of the liquid issuing from the nozzle, such that

ṁ1 = ṁ2 + ṁ3 (10.73)

from which we conclude that the cross-sectional areas are related by

A1 = A2 + A3. (10.74)

Because the fluid-plate interaction force acts normal to the plate, it is convenient to apply the
momentum equation in directions normal to and parallel to the plate. Normal to the plate we
have

–S + BA = –ṁ1V1 cos α (10.75)

and from the condition for static equilibrium of the plate (see Figure 10.11(c)), we have

S – R – BA = 0 (10.76)

so that the magnitude of the hydrodynamic reaction force R is given by

R = ṁ1V1 cos α. (10.77)

The momentum equation applied parallel to the plate gives

0 = ṁ2V2 – ṁ3V3 – ṁ1V1 sin α. (10.78)

If we substitute in this equation for the mass flowrates from the continuity equation and also
use the results V1 = V2 = V3, and A1 = A2 + A3, we find

A2 = 1
2A1 (1 + sin α) and A3 = 1

2A1 (1 – sin α) (10.79)

so that the impingement splits the initial flowrate ṁ1 in the ratio

ṁ2
ṁ3

= 1 + sin α
1 – sinα . (10.80)

The flowrates ṁ2 and ṁ3 are then

ṁ2 = 1
2 (1 + sin α) ṁ1 and ṁ3 = 1

2 (1 – sin α) ṁ1. (10.81)

10.10.2 Moving plate

If the plate in Subsection 10.10.1 is moving at velocity VP in the same direction as the jet,
relative to the surroundings, we now have an unsteady-flow problem. To convert this to a
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steady-flow problem, we apply a Galilean transformation (see Section 6.2) by imposing a ve-
locity –VP on both the plate and the jet. The relative velocity between the jet and the plate is
now VREL = V1 – VP and if, in the analysis of Subsection 10.10.1, V1 is replaced by VREL, all
results remain valid.

ILLUSTRATIVE EXAMPLE 10.10

A water jet with a velocity of 10 m/s has a rectangular cross section of 25 mm by 100 mm.
Calculate the hydrodynamic reaction force exerted on a flat plate held at 60◦ (measured from
the jet centreplane) to the jet (a) if the plate is stationary and (b) if the plate is moving in the
same direction as the jet at a velocity of 5 m/s. Calculate also the ratio in which the approach
flow is split by the plate.

Solution

(a) VP = 0 m/s; ρ = 1000 kg/s; V1 = 10 m/s; A1 = 0.025 × 0.1 = 2.5 × 10–3 m2; and α = 30◦.
We calculate first the mass flowrate ṁ1 of the jet

ṁ1 = ρA1V1 = 103 × 2.5 × 10–3 × 10 = 25 kg/s.

From the analysis of Subsection 10.10.1, we have the magnitude of the reaction force,

R = ṁ1V1 cos α = 25 × 10 × cos 30◦ = 217 N

and the flow is split in the ratio

1 + sin α
1 – sin α = 3

i.e. the mass flowrate of the upper stream (see Figure 10.11(a)) is three times that of the
lower stream.

(b) VP = 5 m/s.
As we pointed out in Subsection 10.10.2, the essential change is that V1 is now replaced by
VREL = V1 – VP, i.e. by 5 m/s. Then,

ṁREL = ρA1VREL = 103 × 2.5 × 10–3 × 5 = 12.5 kg/s

and

R = ṁRELVREL cos α = 12.5 × 5 × cos 30◦ = 54.1 N.

10.11 Pelton impulse hydraulic turbine

There are two principal types of hydraulic turbine: reaction turbines and impulse tur-
bines. In the more common reaction turbine, power is generated by water losing pressure
and momentum as it passes through fully encased fixed and moving blades (the stator and
runner). In an impulse turbine, water at high pressure flows through nozzles to create high-
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speed jets which impinge on the blades (often called buckets) of a rotor. The rotor does
not need to be encased and the water pressure remains essentially constant downstream
of the nozzles. The classic bucket shape of the Pelton turbine shown in Figure 1.9 is de-
signed to split the impinging water jet into two, turn each half through about 165◦ and eject
the water to either side of the runner. The symmetrical design of the bucket ensures that
there is no axial load on the runner, and the high deflection angle produces a momentum
change within a few per cent of the maximum possible. A large Pelton turbine generating
about 350 MW will have a runner diameter of about 4 m diameter with about 20 buckets
equally spaced around its rim. Water is supplied to the turbine through a number of nozzles
(2, 4, and 6 are common choices) with spear (or needle) valves and deflectors to control the
flowrate. The high water pressure required by a Pelton turbine is achieved by supplying wa-
ter to it through a pipe (called a penstock) fed from a reservoir 200 to 1800 m above the
turbine.
In the simple analysis which follows we neglect the influence of rotation on the water jet-

bucket interaction and assume that a water jet impinges on a typical bucket moving at a linear
velocity VB (see Figure 10.12(a)) equal to the peripheral speed of a bucket at pitch radius R on
a runner rotating at N rps, i.e.

VB = 2πNR. (10.82)

B

S

θ

mV2
1
2

1
2

(b)

mV1

mV2

B

θ

VJ VB

AJ

(a)

Figure 10.12 Pelton-wheel bucket: (a) flow configuration cross section; (b) fluid control volume
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As we did for a free jet impinging on a moving plate in Subsection 10.10.2, we consider the
water flow relative to the Pelton bucket. If we apply the linear momentum equation to the
fluid control volume shown in Figure 10.12(b), we have

–S + BAB = –ṁEFFVREL cos θ – ṁEFFVREL (10.83)

where S is the fluid-bucket interaction force, AB is the projected area of the bucket (normal to
the incoming water jet), B is the ambient pressure, θ is the angle of the exiting water stream
as shown in Figure 10.12(b), and VREL is the velocity of the inflowing water jet relative to the
bucket, i.e.

VREL = VJ – VB, (10.84)

VJ being the actual velocity of the jet produced by the stationary nozzle. The magnitude of
the relative water velocity is the same at the inlet and outlet of the control volume because we
have assumed that the static pressure on the surface of the water, and hence within the water, is
constant and equal to the ambient pressure B, and also that there is negligible friction between
the bucket surface and the water flowing over it. Although the actual mass flowrate of the water
jet leaving the nozzle ṁJ is given by

ṁJ = ρAJVJ , (10.85)

AJ being the cross-sectional area of the nozzle exit, the effective mass flowrate entering the
control volume ṁEFF must correspond to the relative velocity VREL so that

ṁEFF = ρAJVREL = ρAJ
(
VJ – VB

)
. (10.86)

The net force exerted by the water on the Pelton bucket is then given by

FB = S – BAB = ρAJ
(
VJ – VB

)2 (1 + cos θ) . (10.87)

Some care is necessary in calculating the power generated by the turbine due to the force FB
acting on the runner. The reason is that, as one bucket sweeps into the path of the water jet, a
substantial quantity of water is still being deflected by the previous bucket so that for a short
period of time at least two buckets will be generating power simultaneously. We take this effect
into account for a single jet as follows. Since the time for one complete rotation of the runner
is 1/N, if there are nB buckets in total, the time tI for which the jet is intercepted by any one
bucket during one rotation must be given by

tI = 1
nBN

. (10.88)

During this time, the total mass of liquid leaving the nozzle m = ṁJtI = ρAJVJtI . Since the
mass flowrate through the fluid control volume is only ṁEFF , the period of time the mass of
fluidm is in contact with the bucket tC and so generating power, must be given by

tC = m
ṁEFF

=
VJ

VJ – VB
tI . (10.89)

The angular displacement of the runner during this time is 2πNtC, and the work done by the
torque FBR due to the force FB acting at radius R is 2πFBRNtC. Since there are nB buckets
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in total, the total work for one rotation of the runner is 2πnBFBRNtC, and the corresponding
power P generated by the turbine must be given by

P = 2πnBFBRNtC
1/N = 2πnBFBRN2tC. (10.90)

If we substitute for FB, tI , and tC, after some algebra, we find

P = ṁJVB
(
VJ – VB

)
(1 + cos θ) .

This result applies to a Pelton turbine supplied by a single nozzle. For a turbine with nJ nozzles,
the power output is

P = nJṁJVB
(
VJ – VB

)
(1 + cos θ) . (10.91)

As a final point, we can see from the equation (10.91) that the power is a maximum for a given
jet velocity VJ when the peripheral bucket velocity VB is VJ/2.

ILLUSTRATIVE EXAMPLE 10.11

A Pelton turbine with a runner diameter (i.e. a bucket pitch circle) of 2.85 m rotates at a speed
of 8.3 rps. Water is supplied through six nozzles, each producing a jet 270 mm in diameter
with a speed of 139 m/s. If the Pelton buckets deflect the water through 165◦, calculate the
power generated by the turbine.

Solution

R = 1.425 m; ρ = 1000 kg/m3; nJ = 6; DJ = 0.17 m; VJ = 139 m/s; N = 8.3 rps; and θ = 15◦.
We start by calculating AJ , ṁJ , and VB as follows

AJ = πD2
J /4 = 0.0573 m/s2

ṁJ = ρAJVJ = 7958 kg/s

VB = 2πNR = 74.3 m/s.

The total power generated from all six nozzles is then

P = nJṁJVB
(
VJ – VB

)
(1 + cos θ) = 4.51 × 108 W or 451 MW.

Comment:

The data used for this example are close to those for two vertical Pelton-turbine sets, among
the most powerful ever built, installed in Sellrain-Silz, Austria.

10.12 SUMMARY

In this chapter we have shown how to apply the linear momentum equation, together with
the continuity equation and either Bernoulli’s equation or some other information about
static pressure, to the analysis of a diverse range of practical problems. A key aim was to
demonstrate that we have established a relatively simple theoretical basis which can give
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quite accurate and useful information about the performance of such complex machines
as jet and rocket engines, the jet pump, and the Pelton turbine. Other examples include
flow through pipe bends, pipe junctions, and a cascade of guidevanes.

For a given problem, the student should be able to

• identify a fluid control volume appropriate for the application of the linear
momentum equation

• apply the linear momentum equation to the flow through the control volume,
either in one direction or two orthogonal directions

• apply the continuity equation to the flow through the control volume and also, for
flow geometries with multiple inlets and/or outlets, the overall mass-conservation
equation

• use either Bernoulli’s equation or other information to determine the static
pressure throughout the flow

• where appropriate, calculate the hydrodynamic forces created by fluid passing
through or around a component or machine

• sketch and label appropriate diagrams to show (a) the geometric arrangement for
a given problem, (b) the fluid control volume, and (c) the forces exerted on the
device concerned

10.13 SELF-ASSESSMENT PROBLEMS

10.1 The jet engine shown on the left-hand side of Figure P10.1 takes in air at standard
atmospheric conditions (i.e. 20 ◦C and 1.01 bar) at section ➀, where the flow ve-
locity V1 is 200 m/s and the inlet area A1 is 0.3 m2. The fuel:air mass ratio is 1:40.
The exhaust gases leave the engine at atmospheric pressure at section ➁, where the
gas velocity V2 is 1000 m/s and the cross-sectional area A2 is 0.25 m2. Compute the
reaction force required to balance the thrust of the engine.

What will be the reaction force if a deflector, as shown on the right-hand side
of the figure, is attached to the engine? How does this reaction force relate to the
braking effectiveness of the deflector?

A1V1 V2A2

1 2

mF 45°

45°

Figure P10.1

(Answers; 59.4 kN, –66.6 kN)

10.2 (a) A liquid atomiser has the configuration shown in Figure P10.2. The liquid to be
atomised is accelerated through the circular nozzle and impinges on a cone attached
to the nozzle by a thin rod. The entire arrangement is axisymmetric. Show that the
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magnitude R of the net hydrodynamic force to hold the nozzle-cone arrangement
in place is given by

R = ρQ̇
2

2A2

(
A1
A2

+ A2
A1

– 2 cos θ
)

where ρ is the liquid density, Q̇ is the liquid volumetric flowrate, A1 is the cross-
sectional area of the nozzle upstream of the contraction, A2 is the cross-sectional
area of the nozzle exit, and θ is the half angle of the cone. Assume that, external to
the nozzle, the liquid static pressure is equal to that of the surroundings, frictional
and gravitational effects are negligible, and the thin rod has no effect on the flow.

flange bolts

θ

Figure P10.2

(b) A light oil of density 900 kg/m3 flows through a nozzle-cone atomiser as shown
in Figure P10.2. The upstream nozzle diameter is 50 mm and the exit diameter is
15 mm. If the liquid mass flowrate is 1.35 kg/s and the ambient pressure is 1.01 bar,
calculate the stagnation pressure of the liquid and the separate forces acting on the
nozzle and on the cone, which has a half angle of 60◦.
(Answers: 1.33 bar, 52.7 N, 5.73 N)

10.3 (a)Water flows into a hydraulic turbine through a horizontal pipe of cross-sectional
area A and then over a hub, concentric with the pipe, of cross-sectional area CA,
where C is a numerical constant less than unity. The arrangement is shown in
Figure P10.3. If V is the velocity of the water in the pipe, and ρ its density, show
that the water exerts a force on the hub of magnitude R given by

R = 1
2ρA

(
CV
1 – C

)2

V

guidevanes

hub

1 2

Figure P10.3
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and find the direction (upstream or downstream) of the force R. Assume that the
flow is steady and frictionless, that gravitational effects are negligible, and that the
pressure and velocity are uniformly distributed across sections ➀ and ➁. Note that
the hub is connected rigidly to the shaft supporting the guidevanes by a spindle of
negligible cross section in such a way that the static pressure at section➁ is constant
across the back of the hub and equal to the value in the water stream at section ➁.

(b) Calculate R for a turbine with an inlet pipe 10 m in diameter and a hub 8.5 m
in diameter for a water flowrate of 2 × 105 kg/s. Calculate also the static-pressure
difference between the forward stagnation point on the nose of the hub and the back
of the hub.
(Answers: 1.73 MN, 0.42 bar)

10.4 (a) The flowrate of a liquid through a duct of square cross section is controlled by a
hinged plate, as shown in Figure P10.4. Show that when the plate is at an angle θ as
shown, the magnitude F of the force acting on the hinge is given by

F =
(
p0 – pE

)
A cos θ

where p0 is the upstream stagnation pressure, pE is the liquid pressure immediately
downstream of the plate, and A is the area of the duct cross section. Assume that
the flow is steady, one dimensional, frictionless, and incompressible.

A

p0

p
E

θ

Figure P10.4

(b) For a duct of cross-sectional area 4 m2 the mass flowrate is 1000 kg/s when the
opening angle of the plate is 30◦. Calculate the upstream flow velocity and the force
F if the liquid density is 800 kg/m3.
(Answers: 0.313 m/s, 7539 N)

10.5 (a) A liquid stream is split and deflected by the pipe junction shown in Figure P10.5
and discharged to surroundings at ambient pressure. Gravitational effects may be
neglected and the flow may be assumed to be steady, one dimensional, incompress-
ible, and frictionless. Each of the two exits has an area one quarter that of the inlet
area A. Show that the magnitude R of the reaction force required to hold the pipe
junction in place is given by

R = 5ṁ2

2ρA

where ṁ is the mass flowrate of the liquid and ρ its density. In which direction does
the reaction force R act? Hint: Show that the outflow conditions are the same for
each exit and use this information to guide the solution.

(b) In a particular case, the liquid is crude oil of relative density 0.85, and the inlet is
a circular pipe of diameter 1 m. The static pressure of the oil at inlet to the junction



SELF-ASSESSMENT PROBLEMS 273

inlet

exit exit
θ

Figure P10.5

is 1.04 bar, and the ambient pressure is 1.01 bar. Calculate the oil mass flowrate, the
stagnation pressure, and the magnitude of the reaction force.
(Answers: 1024 kg/s, 1.05 bar, 3.93 kN)

10.6 (a) Figure P10.6 shows the design of a simple jet pump in which a secondary airflow
is sucked through a tube of large diameter D by air flowing at high speed through a
concentric central tube of diameter d. If the mass flowrate of air through the central
tube is ṁP, show that the secondary mass flowrate ṁS is given by the quadratic
equation

(ṁP + ṁS)2 –
ṁ2

P
x –

ṁ2
S

1 – x +
ṁ2

S

2 (1 – x)2
= 0

where x = (d/D)2. Assume that the flow is one dimensional and incompressible
throughout, that up to plane ➀ both flows are frictionless, and that the static pres-
sure is the same in both flows at plane ➀. The secondary flow is drawn from the
surrounding atmosphere, and the total discharge is to the atmosphere. Note that
Bernoulli’s equation does not apply downstream of plane ➀.Hint: Write equations
for both mass flowrates and for the stagnation pressure of the secondary flow, and
apply the momentum equation to the flow downstream of plane ➀.

secondary airflow

d Dprimary airflow

1

Figure P10.6
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(b) A jet pump is designed with D = 100 mm and d = 10 mm. Calculate the ratio
between the two mass flowrates ṁS/ṁP. If the air velocity in the central tube is 150
m/s, calculate the velocity of the secondary flow, the static pressure at plane (1), and
the stagnation pressure of the primary airflow. The air density may be taken as 1.2
kg/m3 and the atmospheric pressure as 1.01 bar.
(Answers: 12.2, 18.5 m/s, 1.0079 bar, 1.143 bar)



11 Compressible fluid flow

In this chapter we shall introduce the thermodynamic principles which, together with the
mass- and momentum-conservation equations, underlie the analysis of the flow of a com-
pressible fluid. For the most part, we shall limit consideration to one-dimensional, internal gas
flows, first through a convergent nozzle or duct, then through a convergent-divergent nozzle.
We show the important role played by the Mach number M and how subsonic fluid flows
(M < 1) are fundamentally different from supersonic fluid flows (M > 1). We show that the
existence of a minimum cross section, termed the throat of a convergent-divergent nozzle,
leads to a limiting condition called choking and is required for transition from subsonic to
supersonic flow for an internal compressible flow. While the transition from subsonic to su-
personic flow occurs gradually, the change from supersonic to subsonic conditions may be
practically discontinuous across a thin zone called a shockwave.

11.1 Introductory remarks

In Section 2.11 we introduced a material property called the bulk modulus of elasticity and
defined by K = –Vδp/δV, where V represents volume and p represents thermodynamic pres-
sure. What this definition implies is that the higher the value of K for a material, the less
compressible it is since a large change in pressure produces only a small change in volume.
The inverse of K is called the compressibility. From Table A.5 in Appendix 2 we see that typ-
ical values of K for liquids are in the range 104 to 105 bar. Also in Section 2.11 we showed that,
for a perfect gas, the isentropic bulk modulus KS = γ p, γ being the ratio of specific heats,
which allows us to quantify the statement that gases are far more compressible than liquids.
We conclude that the subject of compressible fluid flow primarily concerns gas flow68 and, in
consequence, is frequently referred to as gas dynamics.

11.2 Thermodynamics

11.2.1 Specific-entropy change

Throughout this chapter we shall assume that flow processes are adiabatic, i.e. no heat is
transferred to or from the flow, and reversible. A fluid process is reversible if the fluid can
return to its initial state with no effect on the surroundings. According to the second law of

68 In principle we should also include vapour flow as dry vapour is usually dealt with as a perfect gas.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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thermodynamics, the entropy remains constant for a process which is adiabatic and revers-
ible. Such a process is said to be isentropic. Although in reality viscous effects cause all flow
processes to be irreversible, the isentropic assumption is common in compressible-flow the-
ory and leads to practically useful results for both internal and external flows. Flow through a
shockwave, which we discuss in Section 11.8 and Chapter 12, is not isentropic but the flow on
either side of the shock69 may be treated as isentropic.
From the first and second laws of thermodynamics for a pure substance, the entropy

change in any process is given by

Tds = dh – 1
ρ
dp (11.1)

where T is the absolute temperature, s is the specific entropy, h is the specific enthalpy, p is
the static pressure, and ρ is the density. Equation (11.1) is called the second Tds equation.
For a perfect gas70, p = ρRT (equation (2.9)), where R is the specific gas constant for the
gas under consideration and is related to the universal (ormolar) gas constantR, which has
the value R = 8.3144621 kJ/kmol ·K, through the equation R = R/M,M being the molecular
weight of the gas with units kg/kmol. For the specific enthalpy we have dh = CPdT so that,
if CP, the specific heat at constant pressure, is constant, the change in specific entropy from
state 1 to state 2 is given by

s2 – s1 = CP ln
(
T2
T1

)
– R ln

(
p2
p1

)
. (11.2)

11.2.2 Isentropic flow

For isentropic flow (or an isentropic process) of a perfect gas, s2 – s1 = 0, and from equation
(11.2) we thus find

p2
p1

=
(
T2
T1

)γ /γ –1
=
(
ρ2
ρ1

)γ
(11.3)

where γ = CP/CV is the ratio of the specific heats, CV being the specific heat at constant
volume. The term involving density ratio ρ2/ρ1 arises from the perfect-gas law, equation
(2.9). Since R = CP – CV (see Section 2.4), it is easily shown that CP = γR/ (γ – 1)
and CV = R/ (γ – 1). Values for M,R, and γ for a range of common gases are lis-
ted in Table A.6 in Appendix 2. For dry air71 we have γ = 1.402 (usually rounded
to 1.4 for engineering calculations), M = 28.96 kg/kmol, R = 287.0 m2/s2 ·K, and
CP = 1000.9 m2/s2 ·K.
A convenient general form of the relationship between p and ρ for an isentropic process is

p
ργ

= constant. (11.4)

69 It is common practice to drop the word ‘wave’ and to refer to a shockwave simply as a shock.
70 The definition of a perfect gas is given in Section 2.4.
71 It is easily shown that the units of R and CP can also be stated as J/kg ·K.
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11.2.3 Steady-flow energy equation

The steady-flow energy equation represents a form of the first law of thermodynamics which,
together with the continuity andmomentum equations, is the basis for analysing compressible
duct flow. As shown in Figure 11.1, we consider a duct through which fluid flows with mass
flowrate ṁ. The dashed lines define a control volume between sections ➀ and ➁. It is assumed
that the mechanical power (i.e. work) input or output is zero while, in general, the rate of heat
transfer q̇ into the control volume is non-zero. For present purposes, the steady-flow energy
equation can be written in terms of the change in specific72 stagnation (or total) enthalpy,
�h0 = h0,2 – h0,1 as follows

q̇ = ṁ�h0 (11.5)

where h0 is defined as

h0 = h + 1
2V

2 (11.6)

h being the thermodynamic property specific enthalpy. Since we shall be limiting consid-
eration to gas flow, no account has been taken of minimal potential-energy variations due
to altitude changes. The term V2/2 will be recognised as kinetic energy per unit mass. The
specific enthalpy h is defined by

h = u + pv = u +
p
ρ

(11.7)

where v is the specific volume (v = 1/ρ) of the fluid and u is its specific internal energy, a
measure of the kinetic energy of the molecules comprising the fluid. Both h and u are intensive

1

2
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V1
q

T1
V2

T2

A2

p2p1

ρ1 

ρ2

.

m
.

m
.

Figure 11.1 Control volume for compressible fluid flow through a duct

72 The word specific, indicating per unit mass, is normally omitted for the stagnation enthalpy.
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thermodynamic properties73 determined by pressure and temperature. The quantity pv = p/ρ
is termed the flow energy or flow work. If we substitute equations (11.6) and (11.7) into the
steady-flow energy equation (11.5), we have

q̇ = ṁ�
(
u +

p
ρ
+ 1
2V

2
)
= �
(
ṁu +

ṁp
ρ

+ 1
2 ṁV2

)
. (11.8)

We note that, for one-dimensional flow, the continuity equation is ṁ = ρAV , so that the
combination ṁp/ρ = pAV , i.e. a force pAmultiplied by a velocity V , therefore represents work
per unit time or power. This interpretation of the term ṁp/ρ justifies calling the combination
p/ρ flow work.
From the foregoing, we see that the steady-flow energy equation may be written as

q̇ = ṁ(h0,2 – h0,1) (11.9)

= ṁ
[(

h2 + 1
2V

2
2

)
–
(
h1 + 1

2V
2
1

)]
. (11.10)

For a perfect gas we have h = CPT so that

q̇ = ṁ
[(

CPT2 + 1
2V

2
2

)
–
(
CPT1 + 1

2V
2
1

)]
. (11.11)

For a gas with constant specific heat, i.e. a calorically perfect gas, equation (11.11) can thus be
written as

q̇ = ṁCP�T0 (11.12)

where T0 is the stagnation (or total temperature) defined by

T0 = T + V2

2CP
. (11.13)

As stated earlier, in this chapter we shall limit consideration to adiabatic flows74, i.e. flows for
which q̇ = 0, so that our steady-flow energy equation reduces to

T0 = T + V2

2CP
= T
(
1 + V2

2CPT

)
= T
[
1 +
(
γ – 1
2

)
M2
]
= constant (11.14)

where M = V/c is the Mach number (see Section 11.4). In deriving equation (11.14) we have
made use of the relationships CP = γR/ (γ – 1) and c =

√
γRT.

While the equations including the heat-transfer rate q̇ apply to one-dimensional duct flow,
those for adiabatic flow (q̇ = 0) also apply along a streamline in an external compressible-gas
flow. It is important to keep in mind that the static temperature T, and so the speed of sound c,
will usually vary along a duct or streamline so that the Mach number M is the ratio of two
varying quantities, V and c.

73 An intensive thermodynamic property is one that is independent of the size of a thermodynamic system.
Examples are temperature, pressure, and density.

74 In Chapter 13 we discussRayleigh flow, which is flow through a pipe of constant cross section with heat transfer,
i.e. non-adiabatic or diabatic.
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11.3 Bernoulli’s equation and other relations
for compressible-gas flow

In Section 7.3 we derived Euler’s (momentum) equation for flow along a streamline in an
inviscid flow

dp
ds

+ ρg dz
′

ds
+ ρV dV

ds
= 0, (7.4)

s being distance along the streamline.
As we saw in Section 7.4, for a constant-density fluid, equation (7.4) can be integrated to

yield Bernoulli’s equation. As we pointed out in Section 11.2, for gas flow the potential-
energy term (involving changes in the altitude z′) in Euler’s equation can be neglected and
the equation can then be written as

1
ρ

dp
ds

+ V dV
ds

= 0. (11.15)

If we restrict consideration to isentropic flow of a perfect gas, we have

p
ργ

= constant. (11.4)

We can then combine this with equation (11.15) to show that

(
γ

γ – 1

)
d
ds

(
p
ρ

)
+ V dV

ds
= 0. (11.16)

Since the specific-heat ratio γ is a constant, equation (11.16) can be integrated to yield

(
γ

γ – 1

)
p
ρ
+ 1
2V

2 = constant =
(
γ

γ – 1

)
p0
ρ0

, (11.17)

which can be regarded as Bernoulli’s equation for steady compressible flow of a perfect gas.
Unlike the total temperature T0, which remains constant throughout an adiabatic flow, the
local total pressure p0 and the local total density ρ0 remain constant throughout an adiabatic
flow only if it is also reversible, i.e. isentropic. As we shall see in Section 11.8, while there is
no change in T0 across a shockwave, there is an entropy increase and an associated decrease in
both p0 and ρ0.
In compressible flow, the dynamic pressure ρV2/2, which appears in Bernoulli’s equation, is

no longer the difference between the stagnation and static pressures, as in the incompressible-
flow case. For a perfect gas, we have

1
2ρV

2 = 1
2ρc

2M2 = 1
2γρRTM

2 = 1
2γ pM

2 (11.18)

so that the dynamic pressure depends upon the static pressure p and the Mach numberM.
If we now introduce into equation (11.17) the perfect-gas equation, p = ρRT, together with

c =
√
γRT and the Mach-number definition,M = V/c, we find
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T
[
1 +
(
γ – 1
2

)
M2
]
= constant = T0 (11.19)

i.e. the same result as equation (11.14), which we obtained from the steady-flow energy
equation. This equation is more usually written as

T0
T = 1 +

(
γ – 1
2

)
M2. (11.20)

From equation (11.3) for an isentropic flow,

ρ0
ρ

=
(
T0
T

)1/(γ –1)
so, from equation (11.20),

ρ0
ρ

=
[
1 +
(
γ – 1
2

)
M2
]1/(γ –1)

. (11.21)

Again using equation (11.3) for an isentropic flow we have

p0
p =
[
1 +
(
γ – 1
2

)
M2
]γ /(γ –1)

. (11.22)

For subsonic flow (M < 1), a Pitot tube can be used to measure the stagnation pressure
p0, and the Mach number can be determined if an independent measurement is made of the
static pressure p. For supersonic flow (M > 1), a detached shock forms ahead of a Pitot tube,
a situation we consider in Subsection 11.8.3.
Values for the ratios p0/p, ρ0/ρ, and T0/T, or their reciprocals, together with other quantit-

ies of interest in compressible flow, including normal and oblique shock-wave properties, have
been tabulated for different values of the specific-heat ratio γ in numerous textbooks. The
source of many of these tabulations is NACA75 Report 1135, Equations, Tables, and Charts for
Compressible Flow, published by NACA AMES Research Staff in 1953. Also included are many
of the equations for supersonic flow discussed in this chapter and Chapter 12. Numerical val-
ues for many compressible-flow relations are now available free in the form of a Compressible
Aerodynamics Calculator at <http://www.dept.aoe.vt.edu/∼devenpor/aoe3114/calc.html>76.
This Calculator, as we shall refer to it, consists of six sections: Isentropic flow, Normal shocks,
Oblique shocks, Conical shocks, Fanno flow, and Rayleigh flow. Throughout this chapter
and Chapters 12 and 13, we shall make extensive use of the Calculator in the numerical
solution of compressible-flow problems. The advantage of the Calculator over tables is that
very accurate calculations can be made for any values of M and γ without the necessity of
interpolation.

75 NACA was the National Advisory Committee for Aeronautics and the predecessor of NASA, the National
Aeronautics and Space Administration, which came into being on 1 October 1958.

76 The basic calculator was written by Professor William Devenport of the Department of Aerospace and Ocean
Engineering at Virginia Tech. The last update, at the time of writing, was 5 January 2014.
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11.4 Subsonic flow and supersonic flow

In Subsection 3.12.6 we defined the Mach number M as the ratio of a flowspeed77, V , to the
local soundspeed of the fluid c, i.e. M = V/c. The adjective ‘local’ is important because c is
not constant but a variable in most flow situations (in the case of a perfect gas, c =

√
γRT

so that the soundspeed varies if the static temperature changes). As will become apparent, the
Mach number is the key parameter in the description of compressible flows with the sonic
condition,M = 1, taking on special significance.
Flows may be classified according to the Mach number as follows

subsonic flow, M < 1, with compressibility effects becoming increasingly significant as M
increases although no new physical phenomena arise untilM approaches unity.
transonic flow, M ≈ 1, with some regions remaining subsonic while others are supersonic
and shockwaves begin to appear.
supersonic flow,M > 1, with shock and expansion waves arising (see Chapter 12).
hypersonic flow, M � 1, with new phenomena (beyond the scope of this text), such as gas
ionisation, arising.

In this text we shall limit attention to one-dimensional internal flows, including the ef-
fects of heat transfer and surface friction on compressible duct flow (Chapter 13), and to
two-dimensional external flows (Chapter 12).

11.5 Mach wave andMach angle

An infinitesimal pressure pulse (i.e. sound) originating from a point source within anymedium
with uniform properties propagates spherically outwards, with the centre of each spherical
wavefront being advected78 at the flow velocity V . A wavefront moves away from the sphere
centre at the speed of sound c so that after a time t the front will have moved a distance ct rel-
ative to the instantaneous centre, which itself will have moved a distance Vt. Figure 11.2 shows
four situations for a series of such a pulses emitted at fixed time intervals �t, corresponding
to a constant frequency f , from the source and propagating through a gas flowing from left
to right at steady velocity V : (a) M = 0, (b) M < 1, (c) M = 1, and (d) M > 1. This figure,
based upon one first given in a paper presented by Ernst Mach in 1887, is known as Mach’s
construction. We observe the following

Figure 11.2(a),M = 0. The wavefronts are concentric with the outermost front a distance ct
from the origin. A stationary observer anywhere in the wavefield would hear the sound at
frequency f .
Figure 11.2(b), M < 1. Each wavefront and its centre has been advected to the right, with
the instantaneous centre of the outermost wavefront a horizontal distance Vt from the ori-
gin, and the wavefront a distance ct (> Vt) from its instantaneous centre. On the centreline,

77 We can apply a Galilean transformation (see Section 6.2) to transform the situation of an object moving at
steady velocity through a stationary fluid to that of steady flow past a stationary object.

78 The term advection should not be confused with convection, which is the combination of advection and
diffusion.
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Figure 11.2 Mach’s construction for the propagation of a disturbance (a)M = 0, (b)M < 1, (c)M = 1,
(d)M > 1

left-moving wavefronts propagate upstream at velocity (c – V)t while those moving down-
stream to the rightmove at velocity (c + V)t. A stationary observer would now hear the sound
at different frequencies, depending upon his or her position in the wavefield: higher frequen-
cies to the right, lower frequencies to the left. This dependence of frequency upon location is
an example of theDoppler effect.
Figure 11.2(c),M = 1. Since we now have V = c, wavefronts on the centreline coalesce to the
left, forming aMach wave, while those moving to the right do so at velocity 2c.
Figure 11.2(d), M > 1. The situation is now completely different from M < 1. The wave-
fronts are confined within a cone, termed the Mach cone79, of semi-angle μ = sin–1 (1/M),
called the Mach angle. The region within the cone is referred to as the zone of action (also
called the region of influence), while the undisturbed region outside is the zone of silence.

Mach’s construction may also be applied to a solid surface over which there is a supersonic
flow with Mach number M, as shown in Figure 11.3. Any slight irregularity in the surface

79 In two dimensions the wavefronts are cylindrical and are confined within aMach wedge.
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M > 1 M > 1μ = sin–1 1

M

Figure 11.3 Mach wave at a surface

results in a small disturbance communicated to the flow along a Mach wave of infinitesimal
strength at the Mach angle μ to the surface.

11.6 Steady, one-dimensional, isentropic, perfect-gas flow
through a gradually convergent duct

We consider isentropic flow through the gradually convergent duct (or nozzle) shown in
Figure 11.4(a), for which the cross-sectional area A decreases monotonically to the exit area
AE, and the flow exhausts to an external (or back) pressure pB, which will be less than or equal
to the static pressure pE in the exit plane of the duct. The limitation to a gradually convergent
duct is to rule out sudden changes in cross section, such as we considered in Chapter 10 for
incompressible flow. In the absence of viscous effects, flow in a gradually convergent (or di-
vergent) nozzle will be very nearly one dimensional. It may help the reader to imagine that the
duct is axisymmetric (i.e. circular) and straight, although the analysis is not limited to straight
circular ducts.
The continuity equation for one-dimensional flow through the duct may be written, as

derived in Chapter 6, as follows

ṁ = ρAV . (6.1)

If we substitute for ρ from the perfect-gas equation, p = ρRT, for V using the Mach-number
definition,M = V/c, and, for the soundspeed, as shown in Chapter 2,

c =
√
γRT, (2.50)

we can rewrite the continuity equation as

ṁ = pAM

√
γ

RT . (11.23)
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Figure 11.4 (a) Flow through a convergent duct (b) Static pressure variation along a convergent duct
for (i) pB > p∗, (ii) pB = p∗, (iii) pB < p∗

We now introduce the stagnation (or reservoir) conditions p0 and T0, both of which remain
constant throughout the flow since we are assuming isentropic conditions, to find

ṁ
√
RT0

Ap0
=

√
γM

p
p0

√
T0
T . (11.24)

We can substitute in equation (11.24) for T0/T using equation (11.20) and for p/p0, using
equation (11.22) so that, finally, we have

ṁ
√
RT0

Ap0
=

√√√√√√
γM2[

1 +
(
γ – 1
2

)
M2
](γ+1)/(γ –1) . (11.25)
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The combination of terms ṁ
√
RT0/

(
Ap0
)
is referred to as themass-flow function. At the exit

of the duct we have

ṁ
√
RT0

AEp0
=

√√√√√√
γM2

E[
1 +
(
γ – 1
2

)
M2

E

](γ+1)/(γ –1) (11.26)

whereME is the Mach number at the duct exit. It is sometimes useful to write equation (11.25)
in terms of the pressure ratio p/p0 rather thanM

ṁ
√
RT0

Ap0
=

√√√√ 2γ
γ – 1

[(
p
p0

)2/γ
–
(

p
p0

)(γ+1)/γ]
(11.27)

so that, at the duct exit,

ṁ
√
RT0

AEp0
=

√√√√ 2γ
γ – 1

[(
pE
p0

)2/γ
–
(
pE
p0

)(γ+1)/γ]
. (11.28)

At the beginning of this section, it was stated that the flow exhausts to a back pressure pB, which
must be less than or equal to pE so that equation (11.28) shows how the mass flowrate, for
given values of the stagnation conditions, p0 and T0, and the exit area AE, is determined by the
back pressure pB(= pE). When pB and p0 are equal, there is no flow but, as pB is progressively
reduced below p0, ṁ increases until it reaches a maximum value ṁ∗ for

pE
p0

=
(

2
γ + 1

)γ /(γ –1)
= 0.528 with γ = 1.4. (11.29)

Substitution of this value for pE/p0 into equation (11.28) leads to

ṁ∗√RT0
AEp0

=

√
γ

(
2
γ + 1

)(γ+1)/(γ –1)
= 0.685 (11.30)

for the maximum possible flowrate for given values of the stagnation conditions and nozzle
exit area. The corresponding exit Mach numberME is then equal to unity. For any other pres-
sure ratio pE/p0, above that corresponding to equation (11.29), the flowrate can be calculated
from equation (11.28), the pressure variation along the duct from equation (11.27), and the
Mach-number variation from equation (11.25).
Since it is possible to derive from equation (11.28) values of ṁ

√
RT0/

(
AEp0

)
for values of

pE/p0 less than that given by equation (11.29), it might be thought that themass flowrate would
continue to increase. In fact, not only are the mass flowrates lower but, as can be seen from
equation (11.22), the corresponding values of the exit Mach number exceed the maximum
allowable value of unity. From a practical point of view, we can reduce the back pressure pB
to any value we wish, down to absolute zero (i.e. vacuum), but the lowest possible value for
the exit pressure pE cannot be lower than that given by equation (11.29), and the highest pos-
sible mass flowrate ṁ∗ is that given by equation (11.30) when the duct is said to be choked.
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The corresponding flow conditions at the exit are said to be critical80 and are identified by a
superscript asterisk81, as follows

T∗
T0

= 2
γ + 1 = 0.8333 (11.31)

p∗
p0

=
(

2
γ + 1

)γ /(γ –1)
= 0.5283 (11.32)

ρ∗
ρ0

=
(

2
γ + 1

)1/(γ –1)
= 0.6339. (11.33)

The conclusions drawn here for compressible, subsonic flow through a convergent duct are
generalised in the following section for flow through a convergent-divergent duct.
Figure 11.4(b) shows the static pressure variation along a convergent duct, calculated from

equation (11.27), and Figure 11.5 the variation of non-dimensional mass flowrate as a function
of pB/p0, calculated from equation (11.28).
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Figure 11.5 Non-dimensional mass flowrate through a convergent duct as a function of back
pressure

80 The term ‘critical’ in gas dynamics should not be confused with the thermodynamics use of the term with regard
to phase changes.

81 In some texts a subscript c is used instead of a superscript asterisk to indicate critical conditions.
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The three conditions (i) , (ii), and (iii), identified in Figure 11.4(b), are also shown in
Figure 11.5, which shows the variation of the ratio ṁ/ṁ∗ with overall pressure ratio pB/p0.

ILLUSTRATIVE EXAMPLE 11.1

An industrial furnace is supplied with propane gas through a convergent nozzle with an exit
diameter of 25 mm. The stagnation pressure of the gas is 3 bar, and the stagnation temperature
is 300 K. Calculate the exit conditions and mass flowrate if (a) the nozzle exit is choked and (b)
the furnace pressure is 2.4 bar.

Solution

For propane R = 188.6 m2/s2 ·K, γ = 1.136, p0 = 3 × 105 Pa, T0 = 300 K, DE = 0.25 m, and
AE = πD2

E/4 = 4.909 m2.
(a) If the nozzle is choked, ME = 1, pE = p∗, TE = T∗, and VE = c∗. From the Isentropic-flow
Calculator, p∗/p0 = 0.528 so p∗ = 1.585 × 105 Pa, and T∗/T0 = 0.833 so T∗ = 250 K.
The soundspeed corresponding with T∗ is c∗ =

√
γRT∗ = 231.5 m/s.

From the perfect-gas equation, ρ∗ = p∗/RT∗ = 3.361 kg/m3.
From the continuity equation, ṁ = ρ∗AEV∗ = 0.382 kg/m3.
(b) If pE = 2.4 bar, pE/p0 = 0.8 and from the Isentropic-flow Calculator, ME = 0.574, and
TE/T0 = 0.938, so that TE = 281.5 K.
The soundspeed corresponding with TE is cE =

√
γRTE = 245.6 m/s so that VE = MEcE =

140.9 m/s.
From the perfect-gas equation, ρE = pE/RTE = 4.521 kg/m3.
From the continuity equation, ṁ = ρEAEVE = 0.313 kg/s.

11.7 Steady, one-dimensional, isentropic, perfect-gas flow
through a convergent-divergent nozzle

11.7.1 General considerations

We begin with general considerations of steady, one-dimensional, isentropic flow of a perfect
gas through a convergent-divergent nozzle, as shown schematically in Figure 11.6. A nozzle of
this form is called a Laval nozzle or an effusor. As before, the continuity equation is

ṁ = ρAV (6.1)

where the nozzle cross-sectional area A decreases to a minimum throat area AT and then in-
creases again. If we differentiate equation (6.1) with respect to the distance along the nozzle s
and divide through by ṁ, we find

0 = 1
ρ

dρ
ds

+ 1
A
dA
ds

+ 1
V
dV
ds

. (11.34)
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Figure 11.6 Geometry of a convergent-divergent nozzle

From equation (11.15), Euler’s (momentum) equation, we have

1
ρ

dp
ds

+ V dV
ds

= 0

or

1
ρV2

dp
ds

= – 1
V
dV
ds

. (11.35)

From Section 2.12 we can write, for isentropic flow,

dp
dρ

= c2 (2.49)

so that

dp
ds

= c2 dρ
ds

(11.36)

or

1
ρ

dρ
ds

= 1
ρc2

dp
ds

= M2

ρV2
dp
ds

(11.37)

where p is the static pressure, c is the soundspeed, andM ≡ V/c is the local Mach number. We
can combine equations (11.35) and (11.37) to show that

1
ρ

dρ
ds

= –M
2

V
dV
ds

. (11.38)

If we substitute dρ/ds from equation (11.38) into equation (11.34), we find

1
A
dA
ds

=
(
M2 – 1

) 1
V
dV
ds

(11.39)

or

1
V
dV
ds

= 1(
M2 – 1

) 1A dA
ds

(11.40)
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and equation (11.38) then gives

1
ρ

dρ
ds

= –M2(
M2 – 1

) 1A dA
ds

. (11.41)

Equation (11.40) is known as the Hugoniot equation.
Since

dp
ds

= c2 dρ
ds

, (11.36)

with c2 = γRT (equation (2.50) and p = ρRT (equation (2.9)) we have

1
p
dp
ds

= γ
ρ

dρ
ds

(11.42)

so that, from equation (11.41)

1
p
dp
ds

= –γM2(
M2 – 1

) 1A dA
ds

. (11.43)

From equation (11.20) for T0/T we can show that, for an adiabatic flow

–
[
1 +
(
γ – 1
2

)
M2
]
1
T
dT
ds

= (γ – 1)MdM
ds

(11.44)

and, from the definition ofM = V/c, we have the general result

1
c
dc
ds

= 1
V
dV
ds

– 1
M

dM
ds

. (11.45)

Since c =
√
γRT, we have

2
c
dc
ds

= 1
T
dT
ds

(11.46)

so that, if we combine the last three equations with equation (11.40), we can show that

1
M

dM
ds

=

[
1 +
(
γ – 1
2

)
M2
]

(
M2 – 1

) 1
A
dA
ds

(11.47)

and, from equation (11.44)

1
T
dT
ds

= – (γ – 1)M2(
M2 – 1

) 1
A
dA
ds

. (11.48)

The equations above reveal important fundamental differences in the behaviour of subsonic
and supersonic flows in response to an area change. These differences may be summarised as
follows
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SubsonicM < 1 SupersonicM > 1

If dA/ds < 0 dV/ds > 0 dV/ds < 0
(convergent) dρ/ds < 0 dρ/ds > 0

dp/ds < 0 dp/ds > 0
dM/ds > 0 dM/ds < 0
dT/ds < 0 dT/ds > 0

If dA/ds > 0 dV/ds < 0 dV/ds > 0
(divergent) dρ/ds > 0 dρ/ds < 0

dp/ds > 0 dp/ds < 0
dM/ds < 0 dM/ds > 0
dT/ds > 0 dT/ds < 0

The differences between subsonic and supersonic duct flow are remarkable

• For subsonic flow, an area decrease causes a velocity increase and a pressure decrease, in
accordance with Bernoulli’s equation for incompressible flow, though now the density also
decreases, i.e. for subsonic flow, a convergent duct acts as a subsonic nozzle.

• For subsonic flow, an area increase causes a velocity decrease and a pressure increase, again
in accordance with Bernoulli’s equation for incompressible flow, though now the density
also increases, i.e. for subsonic flow, a divergent duct acts as a subsonic diffuser.

• For supersonic flow, an area decrease causes a velocity decrease, a pressure increase, and a
density increase, i.e. for supersonic flow, a convergent duct acts as a supersonic diffuser.

• For supersonic flow, an area increase causes a velocity increase, a pressure decrease, and a
density decrease, i.e. for supersonic flow, a divergent duct acts as a supersonic nozzle.

We can draw other conclusions from the equations derived in this section

• Equation (11.41) shows why the Mach number is a measure of compressibility in a flow: as
M → 0, dρ/ds → 0, i.e. forM � 1 the gas density is effectively constant.

• Equation (11.47) shows that for subsonic flow, an area decrease (i.e. dA/ds < 0) causes
a Mach-number increase and for supersonic flow a Mach-number decrease, i.e. the Mach
number always tends to unity if the area decreases.

• Since infinite acceleration (i.e. dV/ds = ∞) or deceleration is a physical impossibility,
equation (11.40) shows that isentropic duct flow can only pass through sonic velocity
(M = 1) to change from being subsonic to supersonic, or from supersonic to subsonic,
if dA/ds = 0, i.e. if the cross-sectional area of the duct is a minimum, at what is termed a
throat.

• Equation (11.40) also shows that the velocity of a subsonic flow reaches a maximum at a
throat while a supersonic flow reaches a minimum. Equation (11.43) then shows that the
pressure is a minimum at the throat for subsonic flow and a maximum for supersonic flow.

11.7.2 Pressure andMach number variations through a Laval nozzle

Many of the equations derived in Section 11.6 for flow through a convergent duct are still
valid here. Of particular interest is equation (11.27) for the variation of the static pressure p
with respect to the cross-sectional area A
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ṁ
√
RT0

Ap0
=

√√√√ 2γ
γ – 1

[(
p
p0

)2/γ
–
(

p
p0

)(γ+1)/γ]
(11.27)

and equation (11.28) for the relationship between the exit area AE and the exit pressure pE for
the same flowrate

ṁ
√
RT0

AEp0
=

√√√√ 2γ
γ – 1

[(
pE
p0

)2/γ
–
(
pE
p0

)(γ+1)/γ]
. (11.28)

We have also equation (11.25) for the Mach-number variation through the duct

ṁ
√
RT0

Ap0
=

√√√√√ γM2[
1 +
(
γ – 1
2
)
M2
](γ+1)/(γ –1) . (11.25)

We have shown that, for isentropic gas flow, sonic conditions (M = 1) are only possible at a
throat. If we setM = 1 in equation (11.25), we find that the cross-sectional area A∗ for a given
flowrate ṁ and stagnation conditions, p0 and T0, is given by

ṁ
√
RT0

A∗p0
=

√
γ

(
2
γ + 1

)(γ+1)/(γ –1)
(11.49)

or

A∗ = ṁ
√
RT0
p0

√
1
γ

(
γ + 1
2

)(γ+1)/(γ –1)
(11.50)

which can be used as a reference area, called the critical area. It is perhaps worth noting that
A∗ may not correspond to a physical area for a given duct but is the cross-sectional area that
would result in sonic conditions for given values of ṁ, p0, and T0. If the throat area AT > A∗
for a given convergent-divergent duct, an initially subsonic flow through that duct will remain
subsonic throughout.
Equations (11.25) and (11.50) can be combined to give

A
A∗ = 1

M

√[(
2
γ + 1

)[
1 +
(
γ – 1
2

)
M2
]](γ+1)/(γ –1)

(11.51)

while combining equations (11.27) and (11.50) leads to

A∗
A =

√√√√( 2
γ – 1

)(
γ + 1
2

)(γ+1)/(γ –1) [( p
p0

)2/γ
–
(

p
p0

)(γ+1)/γ]
. (11.52)

The static pressure and temperature can also be made non-dimensional using the throat
conditions, p∗ and T∗. If we combine equations (11.20) and (11.31) we have

T∗
T =

(
2
γ + 1

)[
1 +
(
γ – 1
2

)
M2
]
. (11.53)
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and, from equations (11.22) and (11.32),

p∗
p =

{(
2

γ + 1

)[
1 +

(
γ – 1
2

)
M2
]}γ /(γ –1)

. (11.54)

In addition, instead of defining a Mach number in terms of the local (i.e. varying) soundspeed
c we can define a Mach number (i.e. a normalised flow velocity) in terms of the soundspeed at
the throat for choked flow c∗, i.e. V/c∗82. Since V/c∗ = Mc/c∗ = M

√
T/T∗, we have

V
c∗ = M

√√√√√√
⎡
⎢⎣ γ + 1

2
[
1 +

(
γ – 1
2

)
M2
]
⎤
⎥⎦. (11.55)

The variation withMach number of T/T0,T/T∗, p/p0, p/p∗,A/A∗, andV/c∗, according to equa-
tions (11.20), (11.53), (11.22), (11.54), (11.51), and (11.55), respectively, is shown graphically
in Figure 11.7.
As we did for a convergent duct, it is instructive to investigate flow conditions within a

convergent-divergent duct as the back pressure pB is reduced below p0. For pB ≈ p0 (but
pB < p0) an essentially incompressible subsonic flow will occur throughout the duct, with
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Figure 11.7 Variation of flow properties with Mach number for isentropic nozzle flow of air (γ = 1.4)

82 The symbol V∗ is also used to represent the soundspeed at the throat for choked flow.
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an increase in velocity to a maximum at the throat, and a corresponding minimum pressure
followed by pressure recovery in the divergent section (curve (i) in Figure 11.8). As pB is
further reduced, the mass flowrate progressively increases and the flow remains subsonic
throughout the duct, again with a maximum velocity and minimum pressure at the throat,
until sonic conditions are reached at the throat, i.e. the duct is choked and the mass flowrate
is a maximum (curve (ii) in Figure 11.8). For the corresponding static pressure in the nozzle
exit plane we introduce the symbol pE, SUB. No matter by how much more pB is reduced, the
flow in the convergent section up to the throat remains unchanged, and isentropic flow in the
divergent section is impossible until supersonic flow is established from the throat to the exit
(curve (iii) in Figure 11.8). This situation corresponds to the design pressure ratio, and the
nozzle is said to be perfectly expanded. The static pressure in the exit plane is now pE,SUP. The
static pressure variation throughout the duct for the three pressure ratios was calculated from
equation (11.52) and the Mach number variation from equation (11.51), using the Isentropic-
flow Calculator. The nozzle length is 5DT , and the area ratio, AE/AT = 1.25, where the throat
area AT = πD2

T/4,DT being the throat diameter. A conical nozzle with this geometry would
have a total included angle of 1.35◦83.

ILLUSTRATIVE EXAMPLE 11.2

Nitrogen gas with a stagnation pressure of 5 bar and a stagnation temperature of 400 K flows
through a convergent-divergent nozzle. The throat area is 0.01m2 and the exit area is 0.015m2.
Assuming isentropic flow, calculate the throat and exit conditions if (a) the exit static pressure
is 4.5 bar, (b) the flow is choked but the flow in the divergence is subsonic, and (c) the flow in
the divergence is supersonic.

Solution

For nitrogen R = 296.8 m2/s2 ·K, γ = 1.401, p0 = 5 × 105 Pa, T0 = 400 K, AT = 0.01 m2, and
AE = 0.015 m2.
(a) At the nozzle exit, pE = 4.5 × 105 Pa so pE/p0 = 0.9.
From the Isentropic-flow Calculator, the exit Mach number ME = 0.391, and TE/T0 = 0.970,
so that TE = 388.1 K. Also, from the same Calculator, AE/A∗ = 1.620.
The exit soundspeed cE =

√
γRTE = 401.7 m/s so that VE = MEcE = 157.0 m/s.

From the perfect-gas equation, ρE = pE/RTE = 3.906 kg/m3.
From the continuity equation, ṁ = ρEAEVE = 9.202 kg/s.
We have alreadyAE/A∗ = 1.620 so thatAT/A∗ = AT/AE×AE/A∗ = 1.620×0.01/0.015 = 1.080.
From the Isentropic-flow Calculator, MT = 0.721 so that the flow at the throat is subsonic
and the nozzle is not choked for an exit static pressure pE = 4.5 bar. Also, from the same
Calculator, forMT = 0.721 we have pT/p0 = 0.708, and TT/T0 = 0.906, so that pT = 3.538 bar
and TT = 362.4 K.
The throat soundspeed cT =

√
γRTT = 388.2 m/s so that VT = MTcT = 279.7 m/s.

From the perfect-gas equation, ρT = pT/RTT = 3.290 kg/m3.
From the continuity equation, ṁ = ρTATVT = 9.202 kg/s, the same value as we calculated at
the nozzle exit, as it should be.

83 Figure 11.8 is not to scale and shows a divergence angle larger than 1.35◦.
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(b) Since the flow is choked, A∗ = AT = 0.01 m2, p∗ = pT , and p∗/p0 = [2/ (γ + 1)]γ /(γ –1) =
0.528, a result which can also be obtained from the Isentropic-flow Calculator, as can T∗/T0 =
2/ (γ + 1) = 0.833. We thus find pT = 2.641 bar and TT = T∗ = 333.3 K. In addition, with
AE/AT = 1.5, from the Calculator we find ME = 0.430 if the flow remains subsonic from the
throat to the exit, andME = 1.854 if the flow becomes supersonic downstream of the throat.
The throat soundspeed is thus cT =

√
γRTT = 372.3 m/s and this is also the gas velocity at the

throat VT .
From the perfect-gas equation, ρT = pT/RTT = 2.670 kg/m3.
From the continuity equation, ṁ∗ = ρTATVT = 9.940 kg/s, where we have again used the
symbol ṁ∗ to emphasise that the flowrate is a maximum for choked flow.
If the flow remains subsonic from the throat to the exit, we have already ME = 0.430 so that,
again from the Isentropic-flow Calculator, pE/p∗ = 1.667, and TE/T∗ = 1.157, so that pE,SUB =
4.403 bar and TE = 385.7 K.
The exit soundspeed is thus cE =

√
γRTE = 400.5 m/s, and the exit velocity VE = MEcE =

172.3 m/s.
From the perfect-gas equation, ρE = pE/RTE = 3.846 kg/m3.
From the continuity equation, ṁE = ρEAEVE = 9.940 kg/s, which equals the throat value ṁ∗,
as it should.
(c) We again have AE/AT = 1.5 but the flow downstream of the throat is now supersonic with
ME = 1.854 and from the Isentropic-flow Calculator pE/p∗ = 0.303 and TE/T∗ = 0.711, so that
pE,SUP = 0.801 bar and TE = 237.0 K.
The exit soundspeed is thus cE =

√
γRTE = 313.9 m/s and the exit velocity VE = MEcE =

582.0 m/s.
From the perfect-gas equation, ρE = pE/RTE = 1.138 kg/m3.
From the continuity equation, ṁE = ρEAEVE = 9.940 kg/s, the same value we calculated for
the subsonic flow. This is as it should be, because the throat conditions for the two flows are
identical.

Comments:

(i) The exit-flow conditions for the subsonic and supersonic flows downstream of the
choked throat are significantly different in magnitude even though the mass flowrates
are the same. The flow velocities, for example, differ by a factor of 3.4.

(ii) The exit pressure is pE,SUB = 4.403 bar for the subsonic flow and pE,SUP = 0.801 bar
for the supersonic flow. It is clearly possible to impose a back pressure pB on the nozzle
such that pE,SUB > pE > pE,SUP and we should ask how this affects the flow downstream
of the throat. We could select, for example, pE/p0 = 0.528 (i.e. pE = 2.642 bar), for
which ME = 1. Following the steps detailed above for other values of pE we find ṁE =
14.9 kg/s, i.e. 50% higher than ṁ∗, the value for the choked throat. Other values for exit
pressures in the range pE,SUB–pE,SUP also lead to higher values for ṁE than for ṁ∗. This is
clearly inadmissible, since the choking value is the maximum possible. The discrepancy
is explained by the incorrect assumption that the flow in the divergence is isentropic:
there has to be an entropy increase and a stagnation pressure decrease such that the mass
flowrate remains equal to ṁ∗. The entropy increase is a consequence of an important new
phenomenon, which we shall now discuss in detail: the occurrence of a shockwave.
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11.8 Normal shockwaves

An object moving through a compressible fluid at a speed that exceeds the speed of sound
produces wavefronts in the fluid within which the fluid pressure, temperature, and density
appear to change discontinuously. These wavefronts are called shockwaves. Depending upon
the Mach number of the moving object, the shockwaves may be curved or straight, much like
the infinitesimally weak waves considered in Section 11.5. The simplest form of shockwave,
which can be generated by a close-fitting piston moving at constant speed into a long cyl-
indrical tube filled with stationary gas, is called a normal84 shockwave. The shock moves away
from the face of the piston and propagates into the stationary gas at a speed higher than that
of the piston. Shockwaves can also occur in the divergent section of a convergent-divergent
nozzle (discussed in Section 11.8.4) or in supersonic flow in a cylindrical pipe with wall fric-
tion or heat transfer (Chapter 13). As we shall show, the static pressure, density, and static
temperature of a gas all increase across a shock, and the stagnation pressure decreases, while
the stagnation temperature remains unchanged.

11.8.1 Shock analysis

To analyse the change in flow properties across a normal shock, it is convenient to con-
sider the flow relative to the shock, as shown in Figure 11.9. Location ➀ is immediately
upstream of the shock, and location ➁ is immediately downstream. Although we shall treat the
shock as a discontinuity (the internal structure of a shock is discussed in Subsection 11.8.2),
we follow Liepmann and Roshko (1957) in representing it with two closely separated
lines.

shock wave

control volume

1 2

h1

p1 p2

ρ1 ρ2

V1 V2

h2

τs = 0 q  = 0

Figure 11.9 Control volume for steady flow through a normal shock

84 The adjective ‘normal’ is used because it is only the velocity component normal to the shock which undergoes
change, as we shall see when we consider oblique shocks.
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Since we are treating the shock as a discontinuity, there is no area change between locations ➀

and ➁, the continuity equation (6.1) reduces to ρV = constant, and we have

ρ1V1 = ρ2V2 (11.56)

Equation (11.15) represents the momentum equation for frictionless flow of a perfect gas

1
ρ

dp
ds

+ V dV
ds

= 0. (11.15)

Since ρV = constant, we can integrate equation (11.15) to give

p1 + ρ1V2
1 = p2 + ρ2V2

2 (11.57)

Equation (11.57) should not be confused with Bernoulli’s equation for an incompressible flow
where pressure and velocity changes are a consequence of area changes (there is no area change
across a shock).
Finally, for adiabatic flow (q̇ = 0)

h1 + 1
2V

2
1 = h2 + 1

2V
2
2 . (11.58)

From equation (11.57) combined with equation (11.56) we see that

p1 – p2 = (ρV)2
(

1
ρ2

– 1
ρ1

)
(11.59)

and, from equation (11.58) again combined with equation (11.56),

2 (h1 – h2) = (ρV)2
(

1
ρ
2
2
– 1
ρ
2
1

)
= (ρV)2

(
1
ρ2

– 1
ρ1

)(
1
ρ2

+ 1
ρ1

)
. (11.60)

If equations (11.59) and (11.60) are combined to eliminate ρV we have

2 (h1 – h2) =
(
p1 – p2

) ( 1
ρ2

+ 1
ρ1

)
(11.61)

which is a form of the Rankine-Hugoniot relation for the change of thermodynamic variables
across a shockwave. If we substitute CP (T1 – T2) for h1 – h2 and use the perfect-gas equation
p = ρRT to substitute for T1 and T2, after some rearrangement, we have

p2
p1

= (γ + 1) – (γ – 1) (ρ1/ρ2)
(γ + 1) (ρ1/ρ2) – (γ – 1)

. (11.62)

In deriving equation (11.62) we have assumed that the flow through the shock is adiabatic but
not reversible, i.e. the flow is not isentropic. Although solutions of equation (11.62) can be
obtained for p2/p1 < 1, these can be shown to violate the second law of thermodynamics and
so are inadmissible.
If we again introduce the perfect-gas equation p = ρRT together with the equation for the

soundspeed c =
√
γRT, the equation CP = γR/ (γ – 1), the enthalpy-temperature relation

h = CPT, and the Mach-number definitionM = V/c, it is straightforward to rewrite equations
(11.56), (11.57), and (11.58) in terms of the Mach numbersM1 andM2
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p2
p1

=
1 + γM2

1

1 + γM2
2

(11.63)

T2
T1

=
1 +
(
γ – 1
2
)
M2

1

1 +
(
γ – 1
2
)
M2

2

(11.64)

and

ρ2
ρ1

=

(
1 + γM2

1

1 + γM2
2

)⎡⎢⎢⎣
1 +
(
γ – 1
2

)
M2

2

1 +
(
γ – 1
2
)
M2

1

⎤
⎥⎥⎦ . (11.65)

Since p = ρRT, we can combine these three equations to show that

M1
M2

=

(
1 + γM2

1

1 + γM2
2

)√√√√√√1 +
(
γ – 1
2

)
M2

2

1 +
(
γ – 1
2
)
M2

1

(11.66)

which can be rearranged as a quadratic equation forM2 in terms ofM1 with the solution85

M2 =

√√√√√ 2
γ – 1 +M2

1( 2γ
γ – 1

)
M2

1 – 1
. (11.67)

If we now substitute forM2 in equation (11.63) for p2/p1 we find

p2
p1

=
(

2γ
γ + 1

)
M2

1 –
(
γ – 1
γ + 1

)
. (11.68)

The quantity Π , defined by Π ≡ �p/p1, where �p ≡ p2 – p1, is a convenient definition of
shock strength86. From equation (11.68) we see thatΠ is given by

Π ≡ �pp1 =
(

2γ
γ + 1

) (
M2

1 – 1
)
. (11.69)

A weak shock is one for whichΠ � 1 while for a strong shockΠ � 1.
Equation (11.64) for T2/T1 can also be written in terms ofM1

T2
T1

= 2 (γ – 1)
(γ + 1)2M2

1

[(
γ – 1
2

)
M2

1 + 1
] [(

2γ
γ – 1

)
M2

1 – 1
]

(11.70)

as can equation (11.65) for ρ2/ρ1

ρ2
ρ1

= V1
V2

=

(
γ + 1
2

)
M2

1

1 +
(
γ – 1
2
)
M2

1

(11.71)

wherein use has been made of equation (11.56).

85 A second (trivial) solution is simplyM2 = M1.
86 Shock strength is sometimes defined as�p/γ p1.
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The quantity (ρ2 – ρ1) /ρ1, referred to as the condensation, is a measure of the density increase
across the shock and can also be regarded as an indicator of shock strength.
Since the flow is adiabatic, to the equations derived so far, we can add

T02
T01

= 1. (11.72)

Although the flow is not isentropic so far as the shock itself is concerned, we may still use the
isentropic relationship for p0/p, equation (11.22), on either side of the shock, so that

p02
p01

=
p02
p2

p1
p01

p2
p1

=

⎡
⎢⎢⎣
(
γ + 1
2

)
M2

1

1 +
(
γ – 1
2
)
M2

1

⎤
⎥⎥⎦
γ /(γ – 1) [(

2γ
γ + 1

)
M2

1 –
(γ – 1)
(γ + 1)

]–1/(γ – 1)
. (11.73)

According to equation (11.2) the entropy change for a perfect gas in a thermodynamic process
is given by

s2 – s1 = CP ln
(
T2
T1

)
– R ln

(
p2
p1

)
. (11.2)

Since we are assuming that the flow on either side of the shock is isentropic (i.e. the specific
entropy is constant), it must be that

s01 = s1 and s02 = s2

where s01 and s02 are the specific entropies for stagnation conditions on either side of the
shock. We can then write

s2 – s1 = s02 – s01 = CP ln
(
T02
T01

)
– R ln

(
p02
p01

)
(11.74)

so that for adiabatic flow of a perfect gas, for which T02 = T01, for the entropy change across a
shock we find

s2 – s1 = –R ln
(
p02
p01

)
. (11.75)

Equation (11.73) shows that p02/p01 < 1 for M1 > 1, so that from equation (11.75) there
must be an entropy increase across a shock. Since M1 > 1, equations (11.68), (11.70), and
(11.71) show that pressure, temperature, and density all increase across a shock. The ratios
p2/p1, T2/T1, ρ2/ρ1, and p02/p01 are also included in NACA Report 1135, as are various forms
of the equations derived here. Numerical values for these and other ratios can be found from
the Calculator. The ratios are shown in graphical form plotted versusM1 in Figure 11.10.
In Subsection 11.7.2 it was shown that the mass flowrate ṁ for flow of a perfect gas through

a choked convergent-divergent nozzle can be determined from

A∗ = ṁ
√
RT0
p0

√
1
γ

(
γ + 1
2

)(γ+1)/(γ –1)
. (11.50)

Since we have shown that the stagnation pressure decreases across a shock, it is evident from
equation (11.50) that the critical or choking area A∗ must increase according to

p01A∗
1 = p02A∗

2 (11.76)



300 COMPRESSIBLE FLUID FLOW

1
0

1

2

4

6

=( (

8

10

32 4
0

0.2

0.4

0.6

0.8

1.0

p2

p1p2

p1

ρ2

ρ1

ρ2

ρ1

p02

p01

T2

T1

V1

T2

p02

p01

M2

M1

M2

V2

T1

Figure 11.10 Shock-wave properties as a function of upstream Mach number

which plays an important role in calculations of flow through a convergent-divergent
nozzle with a shockwave downstream of the throat, as will become apparent in Illustrative
Example 11.4.
We can summarise as follows the principal conclusions reached in this subsection regarding

the flow changes which occur across a shockwave

• the changes are effectively discontinuous
• the flow changes from supersonic to subsonic so thatM1 > 1 andM2 < 1
• the gas static pressure p increases
• the gas static temperature T increases
• the gas density ρ increases, i.e. the gas is compressed
• the stagnation temperature T0 is unchanged
• the stagnation pressure p0 decreases
• the specific entropy s increases

11.8.2 Shock thickness

It should be evident that an infinitesimally thin shockwave across which occur discontinuous
changes in fluid and flow properties is a theoretical idealisation. Photographs of normal shocks
in supersonic-flow wind tunnels show that shocks are indeed very thin but often not quite
straight, especially at the ends where they interact with the boundary layers on the wind-tunnel
sidewalls. Theoretical calculations and experimental observations show that the thickness of a
normal shock is of the order of 1 μm, which is about an order of magnitude greater than the
mean free path Λ of the gas molecules: for air at ambient pressure Λ ≈ 0.07 μm. In reality
the velocity and all fluid properties vary continuously through the shockwave in the direction
of motion and involve complex viscous and heat-conduction phenomena. Nevertheless, cal-
culations based upon the simplified model, which assumes that discontinuous changes occur
across infinitesimally thin shocks, compare well with observations.
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An approximate one-dimensional theory for the internal structure of a weak shockwave
was published by Taylor in 191087. Without going into the details, the theory, which is based
upon the conservation equations for mass, momentum, and energy, includes the influence of
bulk viscosity μB and heat conduction. The end result may be stated as follows

(γ + 1)
2α′ (V1 – V2) x = ln

(
V1 – V
V – V2

)
= ln

( ρ
ρ1 – 1

1 – ρρ1
ρ1
ρ2

)
(11.77)

where V1 and ρ1 are the flow velocity and density far upstream of the shock, respectively, V2
and ρ2 are the velocity and density far downstream, respectively, x is the distance measured
from the centreplane of the shock, γ is the ratio of specific heats, and α′ is a constant involving
γ ,CP, the thermal conductivity k, ρ, and the full viscosity coefficient μ + 3μB/4

ρα′ = 4
3μ + μB + (γ – 1) k

CP
(11.78)

so that ρα′ has the dimensions of dynamic viscosityM/LT. From equation (11.77) we find, by
differentiation, that the velocity gradient at the midplane (x = 0) of the shock is given by

dV
dx

∣∣∣∣
0
= –(γ + 1) (V1 – V2)2

8α′ (11.79)

and we can define a representative shock thickness�S as

�S =
V1 – V2
–dV/dx

∣∣
0
= 8α′
(γ + 1) (V1 – V2)

. (11.80)

For the continuum hypothesis to be valid, we require that�S/Λ� 1. Based upon the kinetic
theory of gases, a rough estimate for the viscosity is given by

μ =
√

2
πγ
ρcΛ (11.81)

whereΛ is the molecular mean free path (see Section 2.8), and c is the soundspeed. Equations
(11.80) and (11.81), together with equation (11.71) for V1/V2, can be combined to give an
equation for the ratio�S/Λ

�S
Λ

= 16
√

2
πγ

⎡
⎢⎢⎣
(
4
3 + μBμ + γ – 1Pr

)
M1

M2
1 – 1

⎤
⎥⎥⎦ . (11.82)

The quantity Pr = CPμ/k is the non-dimensional Prandtl number, which plays a key role
in heat transfer. It is apparent immediately that as M1 → 1,�S/Λ → ∞, and the weak-
shock theory is valid. However, the validity of the continuum approximation deteriorates for
M1 � 1. Note that, in deriving equation (11.82) it has been assumed that fluid properties
remain constant through the shock, an assumption that is only valid for very weak shocks.
Finally, the ratio �S/Λ can be regarded as a Knudsen number, based upon the thickness of
the shockwave.

87 More complete details of Taylor’s analysis are given by Thompson (1972).
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Figure 11.11 Velocity distribution within a shockwave

The density distribution, calculated by Thompson from equation (11.77), agrees well with ex-
perimental data for a shock in helium atM1 ≈ 1.59. Figure 11.11 shows the velocity variation
within a shockwave according to equation (11.77), with the dashed line corresponding to the
midplane velocity gradient upon which�S is based (equation (11.80)).

ILLUSTRATIVE EXAMPLE 11.3

Calculate the thickness of a shockwave �S in a flow of air at a temperature of 27 ◦C, a static
pressure of 2 bar, and a Mach number of 1.1. The dynamic viscosity μ of air can be taken as
1.86 × 10–5 Pa · s, the ratio of the bulk viscosity μB to the dynamic viscosity is 0.8, and the
thermal conductivity of air k has the value 2.6 × 10–2 W/m K. Calculate the mean free pathΛ
for air and hence determine the ratio�S/Λ.

Solution

We have T1 = 273 + 27 = 300 K, p1 = 2 × 105 Pa, and μB = 0.8μ = 1.488 × 10–5 Pa · s.
For air, γ = 1.4, and R = 287 m2/s2K, so that CP = γR/ (γ – 1) = 1004.5 m2/s2 ·K.
From the perfect-gas equation, ρ1 = p1/RT1 = 2.323 kg/m3.
The soundspeed c1 =

√
γRT1 = 347.2 m/s so that V1 = M1c1 = 381.9 m/s.

From the Calculator, with M1 = 1.1, ρ2/ρ1 = 1.169 = V1/V2 so that V2 = V1/1.169 = 326.7
m/s, and V1 – V2 = 55.2 m/s.
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From equation (11.78),

ρ1α
′ = 4

3 × 1.86 × 10–5 + 0.8 × 1.86 × 10–5 + 0.4 × 2.6 × 10–2/1004.5

= 5.003 × 10–5Pa · s so that α′ = 2.154 × 10–5 m2/s.

From equation (11.80),�S = 8 × 2.154 × 10–5/ (2.4 × 55.2) = 1.30 × 10–6 m or 1.30 μm.
From equation (11.81),Λ = √

πγμ
/(√

2ρ1c1
)
= 3.42× 10–8 m or 34.2 nm. The ratio�S/Λ

is thus 38.0, which suggests that the continuum hypothesis is just valid in this case.

11.8.3 Pitot tubes in supersonic flow

As illustrated in Figure 11.12, a detached bow shock forms a short distance upstream of the
mouth of a Pitot tube facing a supersonic gas stream. The segment of the shock on the stagna-
tion streamline may be regarded as a normal shock so that the pressure registered by the Pitot
tube, p02, is given by equation (11.73)

p02
p01

=

⎡
⎣
(
γ + 1
2
)
M2

1

1 +
(
γ – 1
2
)
M2

1

⎤
⎦
γ /(γ –1) [(

2γ
γ + 1

)
M2

1 –
(γ – 1)
(γ + 1)

]–1/(γ –1)
(11.73)

and the stagnation pressure of the flow ahead of the shock p01 can be computed if the Mach
number ahead of the shockM1 is known. Otherwise, an additional measurement is needed.
The static pressure p1 and stagnation pressure p01 for the flow are related to the Mach

number through equation (11.22)

p01
p1

=
[
1 +
(
γ – 1
2

)
M2

1

]γ /(γ –1)
(11.22)

Pitot tube

p
01

p
02

M1 > 1 M2 < 1

Figure 11.12 A Pitot tube in supersonic flow
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which allows p01 to be eliminated from equation (11.73) to provide an equation for M1 in
terms of p1 and p02

p1
p02

=

[( 2γ
γ + 1

)
M2

1 – (γ – 1)
(γ + 1)

]1/(γ –1)
[(
γ + 1
2
)
M2

1

]γ /(γ –1) (11.83)

which is called Rayleigh’s supersonic Pitot formula. This formula is useful when p1 and p02
are both known, e.g. from independent measurements, while p01 is not known.

11.8.4 Normal shockwave in a convergent-divergent duct

In Section 11.7, which is concerned with isentropic flow of a perfect gas through a convergent-
divergent duct, we concluded that as the exit pressure pE was reduced below the stagnation
pressure p0 a level pE,SUB was reached at which the throat of the duct became choked (i.e. the
throat Mach number MT = 1), the mass flowrate was a maximum, ṁ∗, and the flow down-
stream of the throat remained subsonic. For a second, much lower exit pressure, pE,SUP, the
flow within the divergence became supersonic while the mass flowrate remained unchanged.
For pE,SUB > pE > pE,SUP the assumption of isentropic flow led to the contradictory con-
clusion ṁE > ṁ∗. This contradiction is resolved by the realisation that a flow process must
occur within the divergence, resulting in a reduction of stagnation pressure downstream of the
throat: at some location between the throat and the exit a normal shockwave occurs across
which there is a sudden increase in static pressure accompanied by an entropy increase and a
decrease in stagnation pressure. Flow in the region between the throat and the shockwave is
supersonic and can be treated as isentropic, while downstream of the shock the flow is now
subsonic and again isentropic. The sudden increase in static pressure across the shock is fol-
lowed by a gradual increase to the exit static pressure, pE. As the back pressure is decreased
further, the shock moves towards the nozzle exit, while the Mach number ahead of the shock
increases, as does the shock strength. The shock location within the nozzle is determined by
the exit pressure: the shock ‘finds’ the location where the pressure increase across it is just suf-
ficient for the pressure rise in the subsonic flow downstream of the shock to match the exit
pressure.
Figure 11.13(b) shows the variation of Mach number along the convergent-divergent

nozzle for the same range of back pressures as in Figure 11.8, together with a back pres-
sure

(
pB/p01 = 0.73

)
which produces a shock at x/DT = 3 (curve (iv)), a back pressure(

pB/p01 = 0.66
)
which causes a shock at the nozzle exit (x/DT = 5, curve (v)), and back

pressures corresponding to underexpanded and overexpanded flows (curves (vi) and (vii),
respectively). Figure 11.13(c) shows the variation of the non-dimensional static pressure p/p01
with axial location x/DT for the same back pressures as for Figure 11.13(b). As indicated
in Subsection 11.8.3, the total included angle for a nozzle with the geometry under consid-
eration is 1.35◦. Although in practice these flows would be affected by surface friction and
other viscous effects, it is quite remarkable that shockwaves can arise within such a modest
divergence.
If the shock location is known, it is straightforward to calculate the flow conditions upstream

and downstream of the shock. However, if the exit pressure is specified, an iterative calculation
is required to find the shock location and the corresponding flow properties on either side.
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Figure 11.13 Flow of a perfect gas through a convergent-divergent nozzle: (a) flow geometry,
(b) Mach-number variation, (c) static pressure variation; curves labelled (i) pB/p01 = 0.91, (ii) pB/p01 =
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panded flow, (vii) pB/p01 corresponding to overexpanded flow



306 COMPRESSIBLE FLUID FLOW

Illustrative Example 11.4 shows how a typical calculation is carried out for the two situations,
again making use of the Calculator.

ILLUSTRATIVE EXAMPLE 11.4

As in Illustrative Example 11.2, we consider the situation where nitrogen gas with a stagnation
pressure of 5 bar and a stagnation temperature of 400 K flows through a convergent-divergent
nozzle. The throat area is 0.01 m2, and the exit area is 0.015 m2. A shockwave arises in the
divergence (a) at a location where the cross-sectional area is 0.0125 m2, (b) in the exit plane,
and (b) at a location determined by an exit pressure of 3.35 bar. In all cases the flow upstream
and downstream of the shock can be assumed to be isentropic. Calculate the flow conditions
upstream and downstream of the shock and also the exit conditions. The flow can be assumed
to be isentropic upstream of the shock in all three cases, and downstream of the shock in cases
(a) and (c).

Solution

For nitrogen R = 296.8 m2/s2 ·K, γ = 1.401, p01 = 5 × 105 Pa, T0 = 400 K, AT = 0.01 m2, and
AE = 0.015 m2.
(a) The shock is located where the cross-sectional area AS = 0.0125 m2 so AS/AT = 1.25. Since
there is a shock downstream of the throat, the flow in this region must be supersonic. From
the Isentropic-flow Calculator, for AS/A∗

1 = 1.25 we findM1 = 1.600 for the Mach number just
ahead of the shock. We have also T1/T0 = 0.661, and p1/p01 = 0.235, from which T1 = 264.6 K,
and p1 = 1.177 bar. The symbol A∗

1 (= AT) has been introduced for the choking area upstream
of the shock in anticipation of the increased value A∗

2, which will correspond with the Mach
numberM2 (< 1) and stagnation pressure p02

(
< p01

)
just behind the shock.

The soundspeed c1 =
√
γRT1 = 331.7 m/s so that V1 = M1c1 = 530.6 m/s.

From the perfect-gas equation, ρ1 = p1/RT1 = 1.499 kg/m3.
From the continuity equation, ṁ = ρ1ASV1 = 9.940 kg/s, which is precisely the same as the
throat value found in Illustrative Example 2 and so provides a check on the calculated values
for ρ1and V1.
From the Normal-shock Calculator, for conditions just behind the shock we have M2 =
0.669, p02/p01 = 0.895, p2/p1 = 2.819, and T2/T1 = 1.388, from which p02 = 4.477 bar,
p2 = 3.317 bar, and T2 = 367.2 K.
The soundspeed c2 =

√
γRT2 = 390.7 m/s so that V2 = M2c2 = 261.2 m/s.

From the perfect-gas equation, ρ2 = p2/RT2 = 3.044 kg/m3.
From the continuity equation, ṁ = ρ2ASV2 = 9.940 kg/s, which is again precisely the same
as the throat value found in Illustrative Example 2 and so provides a check on the calculated
values for ρ2 and V2.
To determine the exit conditions we first calculate the increased choking area A∗

2 correspond-
ing to M2 and the reduced stagnation pressure. From the Isentropic-flow Calculator we have
A2/A∗

2 = 1.119, from which A∗
2 = 0.0112 m2. The same result can be obtained from equation

(11.51), p01A∗
1 = p02A∗

2.
We thus have AE/A∗

2 = 1.343 and, from the Isentropic-flow Calculator ME = 0.498,TE/T0 =
0.953, and pE/p02 = 0.844, so that TE = 381.1 K and pE = 3.778 bar.
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The soundspeed at exit cE =
√
γRTE = 398.1 m/s so that VE = MEcE = 198.4 m/s.

From the perfect-gas equation, ρE = pE/RTE = 3.340 kg/m3.
From the continuity equation, ṁ = ρEAEVE = 9.940 kg/s, which provides a check on the
calculated values for ρE and VE.
(b) The flow upstream of the exit plane is identical with that for case (c) of Illustrative Ex-
ample 11.2. Now, however, a shock is located in the exit plane, indicating that the back pressure
must be higher.
In Illustrative Example 11.2 we found ME = 1.854, pE = 0.801 bar, and TE = 237.0 K so
these correspond to the conditions just ahead of the shock, i.e. AS = AE = 0.015 m2, M1 =
1.854, p1 = 0.801 bar, and T1 = 237.0 K.
From the Normal-shock Calculator we find M2 = 0.605 (= ME) , p2/p1 = 3.844, p02/p01 =
0.788, and T2/T1 = 1.572, from which p2

(
= pE
)
= 3.079 bar, p02

(
= p0E

)
= 3.942 bar, and

T2 (= TE) = 372.7 K.
The soundspeed at exit cE =

√
γRTE = 393.7 m/s so that VE = MEcE = 238.1 m/s.

From the perfect-gas equation, ρE = pE/RTE = 2.783 kg/m3.
From the continuity equation, ṁ = ρEAEVE = 9.940 kg/s, which again provides a check on the
calculated values for ρE and VE.
(c) The calculation proceeds as in part (a) but now we do not know the location (i.e. the cross-
sectional area AS) of the shockwave and this has to be determined by trial and error until the
calculated mass flowrate matches the throat value of 9.940 kg/s.
The exit-plane pressure (behind the shock) is now 3.35 bar, which is higher than the value
pE = 3.079 bar for a shock in the exit plane (part (b) above) but lower than the value 3.778 bar
for part (a) above. We conclude that the shock must lie between AS/AT = 1.125 and the exit
plane.
As a first guess we try AS = 0.0145 m2, which leads toM1 = 1.810,M2 = 0.614, p02 = 4.040 bar,
TE = 374.8 K, and pE = 3.216 bar. This indicates that AS < 0.0145 m2, i.e. the shock is located
closer to the throat.
A second guess with AS = 0.0140 m2 leads to M1 = 1.763,M2 = 0.625, p02 = 4.145 bar,
TE = 376.4 K, and pE = 3.353 bar, which may be regarded as close enough to the specified
value. The step-by-step procedure for calculating these values is identical to that for part (a).

11.9 Perfectly expanded, underexpanded, and overexpanded
nozzle flow

When a supersonic flow leaves a convergent-divergent nozzle at precisely the same pressure as
that of the surroundings, i.e. pE = pB, there is no shock, and the nozzle is said to be perfectly
(or correctly) expanded (curve (iii) in Figure 11.13). If the back pressure is higher than that
of the flow in the exit plane, but still lower than that which causes a normal shock in the exit
plane, the nozzle is underexpanded. Finally, if the back pressure is lower than that for the
nozzle to be correctly expanded, the nozzle is said to be overexpanded.
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An overexpanded flow leaves the nozzle as a supersonic jet within which there is a series
of oblique shockwaves and expansion fans88 which raise the jet’s static pressure from the
exit-plane pressure pE to that of the surroundings pB. A flow pattern typical of an overex-
panded jet is shown in Figure 11.14(a). In the situation of an underexpanded jet, the role of
shockwaves and expansion fans is to reduce the static pressure from pE to pB, as shown in
Figure 11.14(b).

(a)

(b)

jet boundary

pE > pB

ME > 1

pB

pB pB

pEp < pB

jet boundary

pE > pB

ME > 1

pB

pB pB pB

p > pB p > pBp < pB

(c)

pE < pB

 pB

 pB

 pB
 pB

ME > 1

oblique shock

slip line (free- jet boundary)

expansion fan

compression fan

p > pB

M
a
c
h

d
is

c

Figure 11.14 Schematic diagrams showing the internal structures of (a),(c) overexpanded and (b)
underexpanded supersonic nozzle flows

88 Oblique shocks and expansion fans are the subject of Chapter 12.
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The patterns appearing within an overexpanded or underexpanded jet are termed Mach (or
shock) diamonds. Regions of high pressure, such as those apparent in the overexpanded jet,
occur in aircraft and rocket exhausts. Because such regions are also hot, they emit light and so
are visible.

11.10 SUMMARY

In this chapter we analysed compressible-gas flow through convergent and convergent-
divergent nozzles based upon the conservation laws for mass, momentum, and energy. We
showed that in both cases the key parameter in describing the flow is the Mach number,
which is used to distinguish between subsonic and supersonic flow. So that significant res-
ults could be achieved, the flowing fluid was treated as a perfect gas, and the flow as one
dimensional. We also discussed flow through a normal shockwave, which is an important
feature of supersonic flow. No account was taken of surface friction or heat transfer, and
the flow upstream and downstream of a shockwave was treated as isentropic.

The student should be able to

• define the terms Mach number and choking
• understand the trends for convergent-divergent nozzle flows based upon the
differential equations derived

• perform calculations using the using the Virginia Tech Compressible Aerodynam-
ics Calculator for flow through a convergent nozzle or a convergent-divergent
nozzle depending upon the back pressure

• where appropriate, in carrying out the calculations, allow for the presence of a
normal shock within the divergent section of a convergent-divergent nozzle

11.11 SELF-ASSESSMENT PROBLEMS

It is recommended that, where appropriate, the Virginia Tech Compressible
Aerodynamics Calculator be used in the solution of all numerical calculations.

11.1 Nitrogen with a stagnation pressure of 8 bar and stagnation temperature of 500 K
flows through a convergent nozzle with an exit area of 0.1 m2. Calculate the mass
flowrate if the back pressure is (a) 5 bar and (b) 2 bar. Assume that the flow is
isentropic.
(Answers: (a) 129.2 kg/s (b) 142.2 kg/s)

11.2 Sulphur hexafluoride (SF6; R = 56.93 m2/s2 ·K, and γ = 1.098) with an initial
stagnation pressure of 10 bar and a stagnation temperature of 350 K flows through
a convergent-divergent nozzle with a throat area of 0.04 m2 and an exit area of
0.08 m2. Calculate the flow conditions (static pressure, static temperature, stagna-
tion pressure, density, velocity, and Mach number) in the exit plane if (a) the back
pressure is 8.5 bar, (b) the flow is just choked at the throat, and the flow in the di-
vergence is subsonic, (c) the flow is just choked at the throat, and the flow in the
divergence is supersonic, (d) there is a normal shockwave in the exit plane, and (e)
there is a normal shockwave where the cross-sectional area is 0.055 m2. (f) For case
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(e) calculate the flow conditions on either side of the shock. The flow may be as-
sumed to be isentropic throughout for (a), (b), and (c); isentropic upstream of the
shock for (d); and isentropic upstream and downstream of the shock for (e).
(Answers: (a) 8.5 bar, 344.9 K, 10 bar, 43.3 kg/m3, 80.2 m/s, 0.546; (b) 9.47 bar, 348.3
K, 10 bar, 47.8 kg/m3, 46.6 m/s, 0.316; (c) 1.38 bar, 293.3 K, 10 bar, 8.27 kg/m3, 268.9
m/s, 1.99; (d) 5.64 bar, 345.3 K, 6.56 bar, 28.2 kg/m3, 77.6 m/s, 0.53; (e) 7.91 bar,
347.6 K, 8.55 bar, 40.0 kg/m3, 55.7 m/s, 0.378; (f) upstream of shock 2.50 bar, 309.2
K, 10 bar, 14.2 kg/m3, 228.0 m/s, 1.64; downstream of shock 6.92 bar, 343.4 K, 8.55
bar, 35.4 kg/m3, 91.5 m/s, 0.624. Mass flowrate for (a) 277.7 kg/s, and 177.9 for all
other cases.)

11.3 Starting with equations (11.56), (11.57), and (11.58), derive expressions for the ra-
tios T2/T1, p2/p1, and V2/V1 in terms of M1 and M2 for the flow of a perfect gas
through a normal shockwave.

11.4 Calculate the thickness of a shockwave�S in a flow of SF6 at a temperature of 20 ◦C,
a static pressure of 2 bar, and a Mach number of 1.2. The dynamic viscosity μ of
SF6 can be taken as 1.43 × 10–5 Pa · s, the ratio of the bulk viscosity μB to the dy-
namic viscosity is 0.8, and the thermal conductivity k of SF6 has the value 1.3×10–2
W/m K. Calculate the mean free path Λ, the quantity α′ for SF6, and the shock
thickness�Sfor the conditions given, and hence determine the ratio�S/Λ.
(Answers: 11.57 nm, 2.711 × 10–6 m2/s, 0.219 μm, 18.9)

11.5 A blast wave from a nuclear explosion is moving through the lower atmosphere at
a speed of 6000 m/s. Estimate the static and stagnation pressure, static temperat-
ure, velocity, and Mach number behind the blast wave. Assume the atmospheric
conditions are 1 atm and 20◦C and treat the blast wave as a normal shock.
(Answers: 357 bar, 394 bar, 1.77 × 104 K, 1016 m/s, 0.381)

11.6 Air at 25◦C and 0.7 bar flows through a pipe at a speed of 120 m/s. The flow
is stopped by a valve which closes suddenly, causing a shockwave to propagate
back into the pipe. Calculate the speed of the shockwave and the pressure and
temperature of the air which has been brought to rest.
(Answers: 305.4 m/s, 1.119 bar, 68.7◦C)



12 Oblique shockwaves
and expansion fans

This chapter concerns the changes in fluid and flow properties which occur when a super-
sonic flow is forced to make a sudden change of direction, for example by a sharp corner.
For a ‘concave’ corner the direction change occurs through an isentropic expansion fan while
for a ‘convex’ corner the flow passes through an oblique (i.e. inclined) shockwave. For the
analysis of these two flow phenomena, no further equations are needed beyond those em-
ployed in Chapter 11. We use these equations to derive the working equations which are the
basis for practical calculations performed, most conveniently, using the Virginia Tech Com-
pressible Aerodynamics Calculator89. We consider in detail supersonic flow over an inclined
flat-plate and a diamond-profile aerofoil to illustrate the application of oblique shock-wave
and expansion-fan theory, usually referred to as shock-expansion theory.

12.1 Oblique shockwaves

In Chapter 11 we considered the situation of a normal shockwave, where there is a practically
discontinuous change in flow conditions from supersonic to subsonic across a region of negli-
gible thickness normal to the flow.We showed that, for certain back pressures, a normal shock
is essential to the operation of supersonic flow through a divergent nozzle.We now consider an
external supersonic flow approaching a two-dimensional wedge-shaped object, as illustrated
in Figure 12.1(a). If the included half angle of the wedge is θ , the flow above the wedge90 has to
turn through the same angle so that it is parallel to the wedge surface. The angle θ is thus the
flow turning angle91. Turning is accomplished through an oblique shockwave92 at an angle β ,
called the wave angle, measured with respect to the approach flow. An identical flowfield res-
ults for supersonic flow approaching a concave corner, as shown in Figure 12.1(b). As shown
in Figure 12.1(c), we can analyse flow through an oblique shock simply by superimposing on
the flowfield of a normal shock, with velocity componentsV1N andV2N , a uniform velocityVT
parallel to the shock. The resultant velocity components on the two sides of the shock are then

V1 =
√
V2
1N + V2

T , and V2 =
√
V2
2N + V2

T , and the inclination of the shock to the approach-
flow velocity V1 is given by β = tan–1 (V1N/VT). As in the case of a Galilean transformation,
superimposition of the uniform velocity VT does not affect the static pressure or any other of

89 Details of the Calculator were given in Section 11.3.
90 For convenience, we assume here that the centreline of the wedge is aligned with the approach flow so that the

flow divides symmetrically above and below the wedge.
91 The term turn angle is used in the Calculator.
92 The term inclined shockwave is also used.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 12.1 (a) Supersonic flow over a symmetrical wedge (b) supersonic flow into a corner
(c) oblique shock-wave notation

the static parameters of the flow. As shown in Figure 12.1(c), the flow angle downstream of the
shock is β – θ with respect to the shock and must be less (because V2N < V1N) than the angle
β upstream of the shock, i.e. the flow has turned through an angle θ towards the shock.
We can transform the equations derived in Chapter 11, for property changes across a normal

shock, to the corresponding equations for an oblique shock by observing that these changes are
all associated with the components of velocity normal to the shock. Thus whereverM1 occurs
in the normal-shock relations it must be replaced by V1N/c1 = M1 sinβ , where the approach-
flow Mach number M1 = V1/c1, and M2 must be replaced by V2N/c2 = M2 sin (β – θ), where
M2 = V2/c2. We then have, from equation (11.67)

M2 sin (β – θ) =

√√√√√ 2
γ – 1 +M2

1 sin2 β( 2γ
γ – 1

)
M2

1 sin2 β – 1
. (12.1)
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From equation (11.68),

p2
p1

=
(

2γ
γ + 1

)
M2

1 sin2 β –
(
γ – 1
γ + 1

)
. (12.2)

From equation (11.70),

T2
T1

= 2 (γ – 1)
(γ + 1)2M2

1 sin2 β

[(
γ – 1
2

)
M2

1 sin2 β + 1
] [(

2γ
γ – 1

)
M2

1 sin2 β – 1
]
. (12.3)

From equation (11.71)

ρ2
ρ1

=

(
γ + 1
2
)
M2

1 sin2 β

1 +
(
γ – 1
2
)
M2

1 sin2 β
. (12.4)

From equation (11.73)

p02
p01

=

⎡
⎣
(
γ + 1
2
)
M2

1 sin2 β

1 +
(
γ – 1
2
)
M2

1 sin2 β

⎤
⎦
γ /(γ –1) [(

2γ
γ + 1

)
M2

1 sin2 β –
(γ – 1)
(γ + 1)

]–1/(γ –1)
. (12.5)

We can also derive an equation relating the flow directions on either side of an oblique shock.
From Figure 12.1(c), ahead of the shock we have

tanβ = V1N
VT

(12.6)

and, behind the shock,

tan (β – θ) = V2N
VT

. (12.7)

According to the continuity equation (6.1)

ρ1V1N = ρ2V2N , (12.8)

so that

tan (β – θ)
tanβ = V2N

V1N
= ρ1
ρ2

=
1 +
(
γ – 1
2
)
M2

1 sin2 β(
γ + 1
2
)
M2

1 sin2 β
. (12.9)

Equation (12.9) can be rearranged as follows

tan θ = 2 cotβ
M2

1 sin2 β – 1
M2

1 (γ + cos 2β) + 2
(12.10)

fromwhich, ifM1 and the wave angle β are known, it is straightforward to calculate the turning
angle θ . Equation (12.10) is sometimes referred to as the θ – β –M relation. Emanuel (2000)
has provided a direct relationship which enables calculation of the wave angle if, as is more
usual in a practical flow problem,M1 and δ are given:
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tanβ =
M2

1 – 1 + 2λ cos
(
4πξ + cos–1 χ

3

)

3
[
1 +
(
γ – 1
2
)
M2

1

]
tan θ

(12.11)

where

λ =

√(
M2

1 – 1
)2 – 3 [1 + (γ – 12

)
M2

1

] [
1 +
(
γ + 1
2

)
M2

1

]
tan2 θ

(12.12)

χ = 1
λ3

{(
M2

1 – 1
)3 – 9 [1 + (γ – 12

)
M2

1

] [
1 +
(
γ – 1
2

)
M2

1 +
(
γ + 1
4

)
M4

1

]
tan2 θ

}

and

ξ = 1 for the weak-shock solution, ξ = 0 for the strong-shock solution.

The strong-shock solution corresponds to the larger of the two values for the wave angle β .
Equation (12.11) is called the β – θ –M relation.
Numerical calculations can be made using the equations derived here directly but it is more

likely (also more convenient and less prone to error) that calculations will be carried out using
either the Virginia Tech Compressible Aerodynamics Calculator or a computer program.
Figure 12.2 shows the relation between the wave angle β and the turning angle θ for various

values of the upstream Mach numberM1. We can make several observations
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Figure 12.2 Oblique shock solutions: strong shocks above θ = θMAX; weak shocks below
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• For each value ofM1 there are two values of β for which there is zero flow deflection (θ = 0):
μ = sin–1 (1/M1) corresponding to aMach line (or wave of infinitesimal strength), and π /2
for a normal shockwave.

• For each value of M1 there is a maximum value of the turning angle θ = θMAX , and a
corresponding value for the wave angle βMAX . An explicit expression for the latter is

sin2 βMAX = 1
γM2

1

⎡
⎣ (γ + 1)

4 M2
1 – 1 +

√
(γ + 1)

{
1 +
(
γ – 1
2

)
M2

1 +
(
γ + 1
16

)
M4

1

}⎤⎦ .

(12.13)

Themaximum turning angle θMAX can be found by substituting into equation (12.10) the value
of βMAX found from equation (12.13).

• The question arises as to what happens when the turning angle θ imposed on a super-
sonic flow by a wedge exceeds the maximum possible value θMAX , corresponding to the
flow Mach number M1. Observations show that the flow is then compressed as it passes
through a curved bow shock detached from the wedge and located some distance ahead of
it. The same holds for supersonic flow over a blunt object and this is what we assumed when
analysing the behaviour of a Pitot tube immersed in a supersonic flow in Subsection 11.8.3.
The segment of the bow shock on the body centreline can be treated as a normal shock but
a more general analytical treatment of the flowfield is beyond the scope of this text.

• From equation (12.11) for any value ofM1, for θ < θMAX , there are two possible values for
the wave angle β . The larger value of β corresponds to the so-called strong-shock solution
(shown in Figure 12.2 by the broken curves above the line representing θ = θMAX), and the
smaller value to the weak-shock solution.

• Behind a strong shock, the flow becomes subsonic (i.e.M2 < 1) and the associated pressure
ratio p2/p1 is higher than for a weak shock.

• Behind a weak shock the flow remains supersonic (M2 > 1) except for turning angles just
less than θMAX .

• Since there are two possible solutions for θ < θMAX , the question arises as to which will
occur in any given situation. The answer is that much depends on the downstream pres-
sure. For external flow past a wedge, for example, the downstream pressure must eventually
return to the level upstream of the wedge, suggesting that the weak solution is likely in this
case, and this is consistent with observations. For compressive turning in internal duct flow,
a strong shock occurs when the back pressure is high.

• Just below the curve in Figure 12.2 for θ = θMAX , is a narrow region for weak shocks in
which the flow becomes subsonic behind the shock.

• The solid line just below the curve labelled θ = θMAX represents the locus of solutions to
equation (12.1) for whichM2 = 1. The wave angle β∗ corresponding toM2 = 1 is given by

sin2 β∗ = 1
γM2

1

[
(γ + 1)

4 M2
1 –

(3 – γ )
4

+

√
(γ + 1)

{
9 + γ
16 –

(
3 – γ
8

)
M2

1 +
(
γ + 1
16

)
M4

1

}⎤⎦ (12.14)

and the corresponding deflection angle θ∗ can be found by substituting into equation
(12.10) the value of β∗ found from equation (12.14)93.

93 The equations for βMAX and β∗ are taken from Chapter 3 of Ferri (1949).
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Figure 12.3 Rarefaction shockwave

12.1.1 Rarefaction shock

In the paragraphs above we discussed positive turning angles between zero and θMAX and what
happens when θ > θMAX . At first sight there would appear to be no reason why an oblique
shock should not occur for a negative turning angle, as depicted in Figure 12.3, which shows
a supersonic flow being turned around a convex corner by a single oblique wave. Since the
velocity component VT parallel to the wave must remain unchanged, the flow geometry shows
that for this situation to that the normal velocity would have to increase, i.e. V2N > V1N .
As we now show, such a change violates the second law of thermodynamics and so has to be
ruled out.
The combination of terms within the first square bracket of equation (12.5) can be recog-

nised from equation (12.9) as corresponding to V1N/V2N while, from equation (12.2), the
terms within the second square bracket correspond to p2/p1. Equation (12.5) can thus be
rewritten as

p02
p01

=
[
V1N
V2N

]γ /(γ –1) [p1
p2

]1/(γ –1)
. (12.15)

Equations (12.2) and (12.9) can be combined to eliminateM1 sinβ to give

p1
p2

=

(
γ – 1
γ + 1

) V1N
V2N

–
(
γ + 1
γ – 1

)
(
γ – 1
γ + 1

)
–
(
γ + 1
γ – 1

) V1N
V2N

(12.16)

so that, finally, we can write

p02
p01

=
[
V1N
V2N

]γ /(γ –1)⎡⎢⎢⎣
(
γ – 1
γ + 1

)
V1N
V2N

–
(
γ + 1
γ – 1

)
(
γ – 1
γ + 1

)
–
(
γ + 1
γ – 1

) V1N
V2N

⎤
⎥⎥⎦
1/(γ –1)

. (12.17)
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Equation (12.17) shows that, if V2N/V1N > 1, p02/p01 > 1 so that, from equation (11.75),
s2 < s1, i.e. a decrease in specific entropy. For an adiabatic flow this would represent a vi-
olation of the second law of thermodynamics, leading to the conclusion that an increase in
the normal velocity component across a shock is impossible. Since V2N/V1N = ρ1/ρ2 we
have also demonstrated the impossibility of a rarefaction shock (i.e. one across which density
decreases).

12.2 Prandtl-Meyer expansion fan (centred expansion fan)

We have just shown that, while a compressive oblique shockwave is produced by a supersonic
flow flowing into a concave corner, a rarefaction shock cannot result from supersonic flow
over a convex corner. Instead, expansion of a supersonic flow around a convex corner occurs
progressively through an isentropic centred wave known as a Prandtl-Meyer expansion fan.
The fan is defined by radial Mach lines centred on the corner, as shown in Figure 12.4, with
the leading Mach line at the Mach angle μ1 = sin–1 (1/M1) measured from the upstream flow
direction and the terminating Mach line at the Mach angle μ2 = sin–1 (1/M2) measured from
the downstream flow direction. If the turning angle between the upstream and downstream
flow directions is θ12, the angle between the two Mach lines is given by μ1 – μ2 + θ12 and is
termed the fan angle. The fundamental difference between compression through a shock and
expansion through a fan is that that non-linear mechanisms tend to steepen a compression
whereas the opposite occurs in an expansion. Since the individual Mach waves which make
up an expansion fan are infinitesimally weak, flow through such a fan is isentropic through-
out. This is important as it means that the stagnation pressure upstream p0 remains constant
through an expansion fan, in contrast to the reduction in stagnation pressure across a shock-
wave. In the absence of heat addition, the stagnation temperature T0 remains constant for both
an expansion fan and a shockwave.

θ

M1

μ1

μ2

M2

fan angle

V1

V2

Figure 12.4 Prandtl-Meyer centred expansion fan
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We consider an elemental segment of the centred expansion wave, as illustrated in Figure 12.5,
in which a supersonic flow with initial velocity V and Mach number M expands by turning
through an infinitesimally small angle δθ . After the expansion the flow velocity is V + δV , and
the Mach number is M + δM. The velocity component normal to the Mach wave increases
from VN to VN + δVN while the component parallel to the wave, which remains unchanged, is
VT . We see from the geometry of the figure that

VT = V cosμ = (V + δV) cos (μ + δθ)

from which, after expanding the terms on the right-hand side and neglecting second-order
terms, we obtain

δV
V = δ θ tanμ.

Since sinμ = 1/M, this leads to

δθ =
√
M2 – 1δVV .

From the definition of the Mach number,M = V/c, we have

δV
V = δMM + δcc

so that

δθ =
√
M2 – 1

(
δM
M + δcc

)
.

Since the flow is adiabatic, the soundspeed c0 corresponding to the stagnation temperature T0
is constant and we have c20 = c2

[
1 + (γ – 1)M2/2

]
= constant, so that
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δc
c =

–
(
γ – 1
2
)
M2 δM

M[
1 +
(
γ – 1
2
)
M2
]

which leads to

δθ =
√
M2 – 1[

1 +
(
γ – 1
2
)
M2
] δMM .

In the limit δM → 0, we then have

dθ =
√
M2 – 1[

1 +
(
γ – 1
2
)
M2
] dMM . (12.18)

Integration of this equation from an initial Mach number M = 1 and θ = 0 to an arbitrary
Mach number M leads to an important quantity ν(M) is called the Prandtl-Meyer function,
which is another quantity tabulated in NACA 1135 and incorporated into the isentropic-flow
section of the Calculator. The angle ν(M), in radians, is thus the angle through which an
initially sonic flow (i.e. M = 1) turns and expands isentropically to supersonic conditions.
We have

ν(M) = θ(M) – θ(1) =
M∫
1

√
M2 – 1[

1 +
(
γ – 1
2
)
M2
] dMM

=

√
γ + 1
γ – 1 arctan

⎡
⎣
√
γ – 1
γ + 1

(
M2 – 1

)⎤⎦ – arctan
(√

M2 – 1
)
. (12.19)

According to equation (12.19), as the Mach number increases without limit, ν asymptotes to
the value

νMAX =

⎡
⎣
√(
γ + 1
γ – 1

)
– 1

⎤
⎦ π

2 = 2.277c
(≈ 130.45o

)
for γ = 1.4. (12.20)

This theoretical limit to the turning angle corresponds to infinite Mach number, zero absolute
pressure, and zero absolute temperature, none of which is physically realisable.
The Prandtl-Meyer function can be used to calculate the Mach numberM2 following super-

sonic expansion through a finite turning angle θ12 from an initial Mach numberM1 using the
relation

θ12 = ν(M2) – ν(M1)

or

ν(M2) = ν(M1) + θ12. (12.21)

Once M2 is known, other flow properties can be calculated using the Isentropic-flow Calcu-
lator or the relations derived in Section 11.3.
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ILLUSTRATIVE EXAMPLE 12.1

As shown in Figure E12.1, a supersonic airflow with Mach number M1 = 2 turns through
an angle θ12 = 30◦ through an expansion fan and then back θ23 = 30◦ through an oblique
shockwave. If the initial static pressure p1 is 0.5 bar and the static temperature T1 is 280 K,
with the aid of the Calculator, calculate the wave angle μ1, the Mach number M2, the wave
angle μ2, the static temperature T2, the static pressure p2, and the density ρ1. Determine the
Mach number M3, the static temperature T3, the static pressure p3, the density ρ3, and the
shock angle β23 for both a weak shock and a strong shock. Calculate the stagnation pressure
p03 for both cases.

V1

M1

V2

M2 V3

M3β23

θ23

θ12 μ2

μ1

3

2

1

Figure E12.1

Solution

We haveM1 = 2, p1 = 5 × 104 Pa, T1 = 280 K, θ12 = 30◦, and θ23 = 30◦.
We consider first region ①.
From the perfect-gas equation we have ρ1 = p1/RT1 = 0.622 kg/m3.
From the Isentropic-flow Calculator with M1 = 2, we find p1/p01 = 0.128, T1/T0 = 0.556, the
Mach angle μ1 = 30◦, and the Prandtl-Meyer angle ν1 = 26.38◦, from which p01 = 3.91 × 105

Pa, and T0 = 504.0 K. The soundspeed c1 =
√
γRT1 = 335.4 m/s so that V1 =M1c1 = 670.8 m/s.

We consider next the flow between regions ① and ②.
The flow is turned through an angle θ12 = 30◦ by an expansion fan so that ν2 = ν1 + θ12 =
56.38◦. From the Isentropic-flow Calculator, with ν2 = 56.38◦ we find M2 = 3.368, p2/p02 =
0.0158, T2/T0 = 0.306, and μ2 = 17.27. Since flow through an expansion fan is isentropic, we
have p02 = p01 = 3.91× 105 Pa so that p2 = 6.194× 103 Pa, and T2 = 154.2 K. The soundspeed
c2 =

√
γRT2 = 248.9 m/s so that V2 = M2c2 = 838.3 m/s.

We consider next the flow from region ② to region ③ through a weak oblique shockwave.
The flow is turned through an angle θ23 = 30◦. From the Oblique-shock Calculator, for a weak
shock with M2 = 3.368 and a turning angle θ23 = 30◦, we find M3 = 1.596, p3/p2 = 7.292,
T3/T2 = 2.166, p03/p02 = 0.488, and the shock angle β23 = 48.65◦. Thus p3 = 4.516 × 104 Pa,
T3 = 333.9 m/s, and p03 = 1.908 × 105 Pa. The soundspeed c3 =

√
γRT3 = 366.3 m/s so that

V3 = M3c3 = 584.6 m/s.
For flow from region ② to region ③ through a strong oblique shockwave, the flow is turned
through an angle θ23 = 30◦. From the Oblique-shock Calculator, for a strong shock with
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M2 = 3.368 and a turning angle θ23 = 30◦, we find M3 = 0.626, p3/p2 = 12.43, T3/T2 = 3.032,
p03/p02 = 0.256, and the shock angle β23 = 77.33◦. Thus p3 = 7.701 × 104 Pa, T3 = 467.4 m/s,
and p03 = 1.003 × 105 Pa. The soundspeed c3 =

√
γRT3 = 433.4 m/s so that V3 = M3c3 =

271.2 m/s.

12.3 Supersonic aerofoils and shock-expansion theory

The classic streamlined aerofoil profile used in low subsonic-flow applications is entirely un-
suited to supersonic flight as it would result in a strong attached or detached shockwave
resulting in excessively high drag forces on the aerofoil. A typical supersonic aerofoil has a
thin profile with a sharp leading edge, such as the diamond profile shown in Figure 12.6(a).
Even the flat-plate aerofoil shown in Figure 12.6(b) is well suited to supersonic flight. The latter
is simpler to analyse than the diamond profile but structurally impractical.
In the flat-plate case, flow over the upper surface is turned through a Prandtl-Meyer ex-

pansion fan, centred on the leading edge, while the flow over the lower surface is compressed
through a weak oblique shock attached to the leading edge. The situation is reversed at the
trailing edge where the turning angles ensure the same pressure and direction in each stream.
The two streams downstream of the plate have different velocities and so are separated by a
surface of discontinuity termed a contact surface94. The direction of the flow downstream of
the trailing edge will, usually, be slightly different from that of the flow upstream of the lead-
ing edge, as indicated by the angle ε in Figure 12.6(a). Upwash corresponds with the situation
where ε > 0, and downwash where ε < 0. For the diamond aerofoil ε = θ12 – θ23 + θ34 and
for the flat-plate aerofoil ε = – θ12 + θ23, the latter being too small to show in Figure 12.6(b).
If the pressure on the upper surface of the flat plate is pU and that on the lower surface is pL,

which will be greater than pU since the flow over the upper surface has undergone expansion
while that over the lower surface has undergone compression, it is easily seen that the lift L
and drag D exerted on the plate are given by

L =
(
pL – pU

)
cScosα (12.22)

and

D =
(
pL – pU

)
cSsinα (12.23)

where c is the chord length, S is the span, and α is the angle of attack. These two results can be
written in terms of lift and drag coefficients as

CL = L
1
2ρ1V

2
1 cS

=
(
pL – pU

)
cosα

1
2γ p1M

2
1

(12.24)

94 Among other names for the contact surface are slip surface, which assumes that the velocity difference between
the two streams does not result in a shear stress, and vortex sheet, which confines shearing effects to a region of
infinitesimal thickness.



322 OBLIQUE SHOCKWAVES AND EXPANSION FANS

sh
oc

k

o
bl

iq
u
e

expansion fan

original flow

chord

direction

p2 > p1

V2

V3

2

p6 < p5

p3 < p2

p5 > p1 p7 > p6

p4 = p7

p4 > p3

V4

V7

V6

V5

V1

V1

M1

p1

β12

β15

β67

β34

𝜀

θ15

θ23

θ56

θ67

θ34

θ12

ϕ

α
ϕ

p5 > p2

1

(a)

1

5

6

7

4
3

1

μ3

μ6

μ5

μ2

(b)

p2 < p1

p5 < p4

V5

V3

p4 > p1

p3 > p2

V4

V1

M1p1

V2

β14

β23

θ23

α
2

3

5

4
1

1 expansion

fan

oblique

μ5

μ4

μ2

shock

θ12

μ1

Figure 12.6 Supersonic aerofoils: (a) diamond profile (b) inclined flat plate

and

CD = D
1
2ρ1V

2
1 cS

=
(
pL – pU

)
sinα

1
2γ p1M

2
1

(12.25)

where p1 is the static pressure upstream of the plate, ρ1 is the corresponding density,M1 is the
upstreamMach number, and γ is the ratio of specific heats. Equation (11.18) has been used in
equations (12.24) and (12.25) to replace ρ1V2

1 /2 by γ p1M2
1/2.

These simple results reveal another feature which distinguishes supersonic flow from sub-
sonic flow: the plate experiences drag, termed wave drag, even though no account has been
taken of viscous effects on its surfaces. The leading-edge shockwave is the cause of the so-called
sonic boom experienced at ground level when a supersonic aircraft flies overhead.
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For supersonic flow of a symmetrical diamond aerofoil (see Figure 12.6(a)), weak shocks
occur at the leading edge95, followed by supersonic expansion at the shoulders, and oblique
shocks at the trailing edge. Clearly, the details of the flow over a diamond aerofoil depend upon
the total includedwedge angle 2φ, the angle of attack α, and the upstreamMach number. Since
shock (and expansion) waves will occur on a symmetric diamond aerofoil in a supersonic flow,
even at zero angle of attack, such an aerofoil will experience wave drag without generating lift.
The foregoing comments apply to flow close to the aerofoil. Further away, in what is some-
times called the far field, the expansion waves attenuate, curve, and ultimately dissipate the
shockwaves.
The simple analysis used to determine the lift and drag coefficients for an inclined flat plate

can be extended to the diamond aerofoil, as follows. The lift L and drag D resulting from the
static pressures p2, p3, p5, and p6 are given in terms of the turning angles by

L =
[
–p2 cos θ12 – p3 cos(θ23 – θ12) + p5 cos θ15 + p6 cos(θ56 – θ15)

]
cS (12.26)

and

D =
[
p2 sin θ12 – p3 sin(θ23 – θ12) + p5 sin θ15 – p6 sin(θ56 – θ15)

]
cS. (12.27)

It is straightforward to rewrite these two equations in terms of the angle of attack α and the
half wedge angle φ as

L =
[
–p2 cos(φ – α) – p3 cos(φ + α) + p5 cos(φ + α) + p6 cos(φ – α)

]
cS (12.28)

and

D =
[
p2 sin(φ – α) – p3 sin(φ + α) + p5 sin(φ + α) – p6 sin(φ – α)

]
cS. (12.29)

After some simplification, in terms of lift and drag coefficients we then have

CL =
[(
p5 – p3

)
cos(φ + α) –

(
p2 – p6

)
cos(φ – α)

]/(1
2γ p1M

2
1

)
(12.30)

and

CD =
[(
p5 – p3

)
sin(φ + α) +

(
p2 – p6

)
sin(φ – α)

]/(1
2γ p1M

2
1

)
. (12.31)

The theory outlined here in which fully supersonic flow over simple two-dimensional shapes is
analysed by patching together flow turned through oblique shockwaves and centred expansion
fans is termed shock-expansion theory.
For both the flat plate and the diamond shape, calculations of the pressures, velocities, tem-

peratures, and Mach numbers are straightforward with the aid of the Calculator, as illustrated
by the following examples.

95 For an angle of attack α greater than the half wedge angle φ, an expansion fan, rather than an oblique shock,
would occur at the leading edge between regions ① and ③.
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ILLUSTRATIVE EXAMPLE 12.2

A flat-plate aerofoil flies at Mach 3 at an angle of attack of 10◦ at an altitude where the static
pressure is 5000 Pa and the static temperature is 217 K. Calculate the static pressure and static
temperature, the stagnation pressure, the Mach number, and the flow velocity in each of the
five flow regions identified in Figure E12.2. Calculate also the wave angles for the shock and
expansion waves shown in the figure and the flow direction downstream of the trailing edge.
Assume that the shockwaves are weak.
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Figure E12.2

Solution

We haveM1 = 3, p1 = 5 × 103 Pa, T1 = 217 K, and α = 10◦.
We consider first region ① upstream of the plate.
From the Isentropic-flow Calculator96 withM1 = 3, we find p1/p01 = 0.0272, T1/T0 = 0.357, the
Prandtl-Meyer angle ν1 = 49.76◦, and the wave angle μ1 = 19.47◦, from which p01 = 1.837 ×
105 Pa, and T0 = 607.6 K. The soundspeed c1 =

√
γRT1 = 295.3 m/s so that V1 = M1c1 =

885.8 m/s.
We consider next the flow between regions ① and ②.
The flow is turned through an angle θ12 = α = 10◦ by an isentropic expansion fan so that
ν2 = ν1+θ12 = 59.76◦. From the Isentropic-flowCalculator, with ν2 = 59.76◦ we findM2 = 3.578,
p2/p01 = 0.0117, T2/T0 = 0.281, and μ2 = 16.23◦. Thus p2 = 2156 Pa, and T2 = 170.6 K. The
soundspeed c2 =

√
γRT2 = 261.8 m/s so that V2 =M2c2 = 936.9 m/s.

We consider next the flow between regions ① and ④.
The flow is turned through an angle θ14 = α = 10◦ by an oblique shockwave. From the
Oblique-shock Calculator, for a weak shock with M1 = 3 and turning angle θ14 = 10◦, we
find M4 = 2.505, p4/p1 = 2.054, p04/p01 = 0.963, T4/T1 = 1.242, ν4 = 39.24◦, μ4 = 23.53◦,

96 Throughout the calculation, the subscripts correspond to those in Figure E12.2 whereas in the Calculator
subscript 1 indicates conditions upstream of a shock or expansion wave, and subscript 2 conditions downstream.
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and β14 = 27.4◦. Thus p4 = 1.027 × 104 Pa, p04 = 1.769 × 105 Pa, and T4 = 269.4 K while
T04 = T01. The soundspeed c4 =

√
γRT4 = 329.0 m/s so that V4 = M4c4 = 824.2 m/s.

So far the calculation has been a straightforward, step-by-step process. Calculating the condi-
tions downstream of the trailing edge is less straightforward because the flow direction itself is
unknown and its determination entails an iterative procedure. The conditions to be satisfied
are that the flow directions in regions ③ and ⑤ are the same, i.e. the turning angles satisfy
θ23 = θ45, and the static pressures in these two regions, p3 and p5, are also the same.
We start with a first guess that the flow from region② turns through a weak oblique shock with
a turning angle θ23 = 10◦, which would bring the flow back to its original direction. From the
Oblique-shock Calculator we find p3/p2 = 2.305 so that p3 = 4969 Pa. The flow from region ④

turns through an expansion fan with a turning angle θ45 = 10◦ so that ν5 = 49.24◦. From the
Isentropic-flow Calculator we find p5/p04 = 0.0283 so that p5 = 5012 Pa which is very close to
p3 indicating that the turning angle is indeed about 10◦.
The mean of 4969 and 5012 Pa is 4991 Pa, which we can use to determine a new estimate for
the turning angle. If p3/p2 = 4991/2156 = 2.315, from the Oblique-shock Calculator we find
θ23 = 10.06◦. With θ45 = 10.06◦ we have ν5 = ν4 + θ45 = 49.30◦ so that from the Isentropic-
flow Calculator p5/p04 = 0.0282, and p5 = 4990 Pa, in almost perfect agreement with the
estimate of 4991 Pa.
Finally, withM2 = 3.578, and θ23 = 10.06◦, from the Oblique-shock Calculator we haveM3 =
2.962, T3/T2 = 1.293, β23 = 24.05◦, and p03/p02 = 0.942, from which T3 = 220.6, K and
p03 = 1.731× 105 Pa. The soundspeed c3 =

√
γRT3 = 297.7 m/s so that V3 =M3c3 = 881.8 m/s.

With ν5 = 49.30◦, from the Isentropic-flow Calculator we have M5 = 2.976, T5/T0 = 0.361,
and μ5 = 19.63◦, from which T5 = 219.2 K. The soundspeed c5 =

√
γRT5 = 296.8 m/s so that

V5 = M5c5 = 883.4 m/s. The upwash angle ε, between the initial and final flow directions is
0.06◦, which is evidently negligible.
Figure E12.2 has been constructed using the values for the turning, shock, and wave angles
calculated here.

Although the inclined flat plate provides a useful example for the application of shock-
expansion theory, the symmetric diamond aerofoil of the following example is practicallymore
realistic.

ILLUSTRATIVE EXAMPLE 12.3

A diamond-profile aerofoil, symmetrical about its chordline, flies at Mach 3 at an altitude
where the static pressure is 5000 Pa and the static temperature is 217 K. If the semi-included
aerofoil wedge angle is 20◦ and the angle of attack is 10◦, calculate the static pressure, the
static temperature, the stagnation pressure, the Mach number, and the flow velocity in each of
the seven flow regions identified in Figure E12.2. Calculate also the wave angles for the shock
and expansion waves and the flow direction downstream of the trailing edge. Assume that the
shockwaves are weak.
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Solution

We haveM1 = 3, p1 = 5 × 103 Pa, T1 = 217 K, α = 10◦, and φ = 20◦.
The upstream conditions in region ① are identical to those in Illustrative Example 12.2, i.e.
p01 = 1.837 × 105 Pa, T0 = 607.6 K, and V1 = 885.8 m/s.
Between regions ① and ② the flow is turned through an angle θ12 = φ – α = 10◦ by an oblique
shockwave, which is identical to the situation in Illustrative Example 12.2 between regions ①

and ②. The conditions in region ② are therefore as follows:M2 = 2.505, p2 = 1.027 × 104 Pa,
p02 = 1.769 × 105 Pa, T2 = 269.4 K, the wave angle μ2 = 23.53◦, the Prandtl-Meyer angle
ν2 = 39.24◦, and the flow velocity V2 = 824.2 m/s. The shock angle β12 = 27.4◦.
Between regions ② and ③ the flow is turned through an angle θ23 = 2φ = 40◦ so that ν3 = ν2 +
θ23 = 79.24◦. Since flow through an expansion fan is isentropic, p03 = p02 = 1.769× 105 Pa.
In region ③, from the Isentropic-flow Calculator with ν3 = 79.24◦, we find M3 = 5.258,
p3/p03 = 1.405 × 10–3, T3/T0 = 0.153, and μ3 = 10.96◦. Thus p3 = 248.6 Pa, and T3 = 93.0 K.
The soundspeed c3 =

√
γRT3 = 193.4 m/s so that V3 = M3c3 = 1017 m/s.

We consider next regions ⑤, and ⑥ on the lower surface.
Between regions ① and ⑤ the flow is turned through an angle θ12 = φ + α = 30◦ by an oblique
shockwave. From the Oblique-shock Calculator, for a weak shock with M1 = 3 and turning
angle θ15 = 30◦, we find M5 = 1.406, p5/p1 = 6.356, p05/p01 = 0.555, T5/T1 = 2.007, and
β15 = 52.01◦. Thus p5 = 3.178 × 104 Pa, p05 = 1.020 × 105 Pa, and T5 = 435.5 K. The
soundspeed c5 =

√
γRT5 = 418.3 m/s so that V5 = M5c5 = 588.1 m/s.

In region ⑤, from the Isentropic-flow Calculator with M5 = 1.406, μ5 = 45.34◦, and
ν5 = 9.16◦.
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Between regions ⑤ and ⑥ the flow is turned through an angle θ56 = 2φ = 40◦ so that ν6 =
ν5 + θ56 = 49.16◦. Since flow through an expansion fan is isentropic, p06 = p05 = 1.020 × 105.
In region ⑥, from the Isentropic-flow Calculator with ν6 = 49.16◦, we find M6 = 2.969,
p6/p06 = 2.852 × 10–2, T6/T0 = 0.362, and μ6 = 19.68◦. Thus p6 = 2.908 × 103 Pa, and
T6 = 219.9 K. The soundspeed c6 =

√
γRT6 = 297.2 m/s so that V6 = M6c6 = 822.6 m/s.

As in Illustrative Example 12.2, so far the calculation has been a straightforward, step-by-step
process. Calculating the conditions downstream of the leading edge is again less straightfor-
ward because the flow direction itself is unknown and its determination entails an iterative
procedure. The conditions to be satisfied are that the flow directions in regions ④ and ⑦ are
the same, i.e. the turning angles satisfy θ34 + θ67 = 40◦, and also that the static pressures in
these two regions, p4 and p7, are the same.
We start with a first guess that the flow from region ③ turns through a weak oblique shock
with a turning angle θ34 = 40◦. From the Oblique-shock Calculator we find p4/p3 = 23.6 so
that p4 = 5867 Pa. Since the corresponding turning angle θ67 for the flow from region ⑥ is
zero, p7 = p6 = 2908 Pa, which is much lower than p4.
To increase p7 and decrease p4 we reduce θ34 to 35◦ and increase θ67 to 5◦, where the flow
again turns through a weak oblique shock. We then find p4/p3 = 18.4, and p7/p6 = 1.449, so
that p4 = 4574 Pa, and p7 = 4214 Pa, i.e. the two values are much closer.
Ultimately, we find θ34 = 34.3◦, θ67 = 5.7◦, and p4 ≈ p7 = 4.420 × 103 Pa. From the Oblique-
shock Calculator we also find M4 = 1.822, T4/T3 = 3.924, p04/p03 = 0.148, β34 = 48.2◦,
M7 = 2.689, T7/T6 = 1.129, p07/p06 = 0.993, and β67 = 23.9◦, ThusT4 = 365.2 K,V4 = 697.9 m/s,
p04 = 2.625 × 104 Pa, T7 = 248.4 K, V7 = 849.5 m/s, and p07 = 1.012 × 104 Pa. From the
Isentropic-flow Calculator, μ4 = 33.23◦, and μ7 = 21.84◦. The upwash angle is obtained from
ε = θ12 – θ23 + θ34 = – θ15 + θ56 – θ67 = 4.3◦, i.e. significantly greater than was the case for the
inclined flat plate of Illustrative Example 12.2.
Figure E12.3 has been constructed using the values for the turning, shock, and wave angles
calculated here.

12.4 SUMMARY

In this chapter we analysed external supersonic gas flow in which changes in the fluid
and flow properties were brought about by direction change. We showed that flow over
a corner between two flat surfaces resulted in an oblique shockwave if the angle between
the two surfaces is less than 180◦ (a concave corner). The analysis of flow through an ob-
lique shockwave was based upon the superposition of the flowfield for a normal shock onto
a uniform flow parallel to the shock. For an angle in excess of 180◦ (a convex corner), the
flow is turned through an isentropic Prandtl-Meyer expansion fan. Analysis of a Prandtl-
Meyer expansion fan started from consideration of an infinitesimal flow deflection through
a Mach wave.

The student should be able to

• explain the terms turning angle, shock angle, Mach angle, wave angle, and Prandtl-
Meyer angle
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• understand the changes in oblique-shock behaviour as the turning angle is in-
creased from zero to the maximum possible

• understand the difference between a weak oblique shock and a strong oblique
shock

• understand the changes in flow behaviour for a Prandtl-Meyer expansion fan as
the turning angle is increased from zero to the maximum possible

• perform calculations using the equations derived in this chapter for an oblique
shock and for a Prandtl-Meyer expansion fan

• for an oblique shock, perform calculations using the Virginia Tech Compressible
Aerodynamics Calculator

• for a Prandtl-Meyer expansion fan, perform calculations using the Virginia Tech
Compressible Aerodynamics Calculator

• carry out a shock-expansion calculation for an inclined flat-plate aerofoil or a
diamond-section aerofoil

12.5 SELF-ASSESSMENT PROBLEMS

12.1 Air flows at aMach number of 3.0 with static pressure 2.0 bar and static temperature
50 ◦C. Calculate theMach number, the static and stagnation temperatures, the static
and stagnation pressures, the flow velocity, and the shock angle following a 20◦ turn
through (a) a weak oblique shock and (b) a strong oblique shock.

1

1

3

4

original flow direction

5

2

α

ε

oblique shock

oblique

expansion fan

expansion fan

shock

Figure P12.3
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(Answers: (a) 1.994, 503.8 K, 904.4 K, 7.54 bar, 58.48 bar, 897.2 m/s, 37.8◦; (b) 0.539,
854.7 K, 904.4 K, 20.27 bar, 24.71 bar, 316.1 m/s, 82.15◦)

12.2 For the same upstream conditions as in Problem 12.1, calculate the Mach number,
Mach angle, static temperature, static and stagnation pressure, and flow velocity
following a 20◦ expansion turn.
(Answers: 4.318, 13.39◦, 191.2 K, 0.319 bar, 73.47 bar, 1197 m/s)

12.3 As shown schematically in Figure P12.3, air flows over a flat-plate aerofoil at an
angle of attack α of 25◦. If the upstream Mach number is 2.5, the static pressure
is 0.4 bar, and the static temperature is 260 K, calculate the Mach number, static
pressure, static temperature, and flow velocity in regions ②, ③, ④, and ⑤, shown in
the figure, and also the final flow direction ε. Assume both shockwaves are weak.
(Answers:② 3.877, 0.0531 bar, 146.0 K, 939.1 m/s; ③ 1.386, 1.657 bar, 422.5 K, 571.3
m/s; ④ 2.047, 0.391 bar, 318.2 K, 732.1 m/s; ⑤ 2.335, 0.391 bar, 279.8 K, 783.1 m/s,
1.53◦ upwash)



13 Compressible pipe flow

This chapter concerns the flow of a perfect gas through a pipe of constant cross section. The
analysis is simplified, so that a number of complete analytical solutions are possible, by again
assuming one-dimensional flow. Three separate situations are discussed: adiabatic flow with
wall friction (Fanno flow), isothermal pipe flow with wall friction, and frictionless flow with
heating or cooling through the pipe wall (Rayleigh flow). If the initial flow is subsonic, it is
shown that the flow becomes choked after a certain length. An initially supersonic flow also
chokes after a certain length but a shockwave may be required to match the exit condition.

13.1 Basic equations

In Chapters 11 and 12 we considered compressible gas flows in which property changes were
brought about by area or direction change in the absence of surface friction or heat transfer.
In reality, all flows are affected by surface friction and in this chapter we present the one-
dimensional analysis of the steady flow of a perfect gas through a straight pipe of constant
cross-sectional area, including the influence of friction and/or heat transfer. The analysis is
based upon the three conservation equations

• mass-conservation equation (continuity equation; derived in Chapter 6)

ṁ = ρAV = AG = constant (6.1)

where ṁ is the mass flowrate, ρ is the fluid density, A is the (constant) cross-sectional area
of the pipe, V is the flow velocity, and G is (constant) the flow per unit area defined as
G = ρV = ṁ/A, often termed themass velocity (ormass flux)

• linear momentum-conservation equation
The flow situation under consideration is shown in Figure 13.1(a), in which we have defined
an elemental control volume of infinitesimal length δx at some axial location x. The forces
acting on the control volume and the momentum flowrates into and out of it are shown
in Figure 13.1(b). If we apply the linear momentum equation (see Section 9.2) to the flow
through the control volume, for steady flow we have

pA –
(
p + δp

)
A – τS δAF = ṁ (V + δV) – ṁV

which, after cancellation, simplifies to

–Aδp – τSδAF = ṁδV .

In this equation, p represents the static pressure, τS the pipe-wall shear stress, and δAF the
surface area over which τS acts. For a circular duct97 of diameter D, we have A = πD2/4,

97 The analysis can be generalised for non-circular ducts by replacing D with the hydraulic diameter DH
(discussed in Section 16.2).

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 13.1 (a) Elemental control volume for the analysis of compressible pipe flow (b) The forces
acting on the control volume and the momentum flowrates into and out of it

and δAF = πDδx, so that, if we divide through by Aδx and take the limit δx → 0, the
momentum equation results in

–
dp
dx

– 4τS
D = ρV dV

dx
(13.1)

wherein we have substituted for ṁ using equation (6.1). The wall shear stress can be written
in terms of the Fanning friction factor fF ≡ 2τS/ρV2, leading to

–
dp
dx

–
2ρV2fF

D = ρV dV
dx

. (13.2)

• energy-conservation equation
In the absence of external work, the steady-flow energy equation derived in Chapter 11,
equation (11.11), for the elemental control volume, reduces to

δq̇ = ṁδh0 = ṁ

[
δh +

δ
(
V2)
2

]

where δq̇ is the rate of thermal-energy addition to the fluid within the control volume, h is
the specific enthalpy, and h0 is the specific stagnation enthalpy. For a perfect gas, δh = CPδT
where CP is the specific heat at constant pressure and T is the absolute temperature, so that
the energy equation becomes

δq̇ = ṁCPδT0 = ṁ

[
CPδT +

δ
(
V2)
2

]
.

If q̇′ represents the rate of heat transfer into the control volume per unit length, such that
δq̇ = q̇′δx, the differential form of the energy equation may be written as

q̇′ = ṁCP
dT0
dx

= ṁ
(
CP

dT
dx

+ V dV
dx

)
, (13.3)
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T0 being the stagnation temperature (see Section 13.2). In the three conservation equa-
tions (13.1), (13.2), and (13.3), ṁ, fF ,D, and q̇′ can all be regarded as specified, although
in principle fF depends upon the pipe Reynolds number which, for compressible flow,
varies with x, and, as will be seen, we are not completely free to specify either ṁ or q̇′.
Since we have four variables, ρ,V , p, and T, we need one more equation: an equation of
state that relates p, ρ, and T

• Equation of state
The equation of state for a perfect gas, given in Chapter 2, is

p = ρRT (2.9)

where R is the specific gas constant.
Although this completes the set of equations which incorporate the underlying physics of

compressible pipe flow, to proceed further it is convenient to introduce the Mach number
M, which was defined in Chapter 3 as

M = V
c (3.42)

where c =
√
γRT is the local speed of sound and γ is the ratio of specific heats.

Useful analytical results can be obtained by considering three specific situations
• adiabatic flow with wall friction, known as Fanno flow
• isothermal flow with wall friction
• frictionless flow with heating or cooling, known as Rayleigh flow98

13.2 Adiabatic pipe flowwith wall friction: Fanno flow

From the energy-conservation equation (13.3),

T0 = T + V2

2CP
= T
(
1 + V2

2CPT

)
= T
[
1 +
(
γ – 1
2

)
M2
]
= constant (13.4)

so that

T
T∗ = c2

c∗2
=

γ + 1
2

1 +
(
γ – 1
2
)
M2

. (13.5)

As will be seen later, for both subsonic and supersonic flow of a perfect gas through a pipe un-
der adiabatic conditions, the Mach number tends to unity. The flow properties corresponding
toM = 1 are indicated by an asterisk, i.e. c∗(= V∗), p∗, p∗

0, s∗, T∗, and ρ∗, and used as reference
conditions. Since A = constant, from the mass-conservation equation (13.1)

ρ∗
ρ

= V
c∗ = M c

c∗ . (13.6)

98 Instead of Fanno flow and Rayleigh flow, the terms Fanno-line flow and Rayleigh-line flow are also used, for
reasons that will become apparent shortly.
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which can be combined with equation (13.5) to give

V
c∗ = V

V∗ = M

√√√√ γ + 1

2
[
1 +
(
γ – 1
2
)
M2
] (13.7)

and

ρ

ρ∗ = 1
M

√√√√2
[
1 +
(
γ – 1
2
)
M2
]

γ + 1 . (13.8)

From the perfect-gas equation (2.9),

p
p∗ = ρ

ρ∗
T
T∗ , (13.9)

which can be combined with equations (13.5) and (13.8), for T/T∗ and ρ/ρ∗, respectively,
to give

p
p∗ = 1

M

√√√√ γ + 1

2
{
1 +
(
γ – 1
2
)
M2
} . (13.10)

The stagnation pressure p0 is defined by equation (11.22)

p0 = p
[
1 +
(
γ – 1
2

)
M2
] γ
γ –1

so that, from equation (13.10)

p0
p∗
0
= 1
M

⎡
⎣2
{
1 +
(
γ – 1
2
)
M2
}

γ + 1

⎤
⎦
γ+1

2(γ –1)

. (13.11)

Finally, from equation (11.2) for the change in specific entropy s up to the choking location, as
derived in Chapter 11

s – s∗ = CP ln
(

T
T∗
)
– R ln

(
p
p∗
)
, (11.2)

from which, since CP = γR/ (γ – 1),

s – s∗
R = ln

[(
T
T∗
)γ /(γ –1) (p∗

p

)]
. (13.12)

Substitution in equation (13.12) for T/T∗ from equation (13.5) and for p/p∗ from equation
(13.10) leads to

s – s∗
R = ln

⎧⎪⎪⎨
⎪⎪⎩M
⎡
⎣ (γ + 1)

2
{
1 +
(
γ – 1
2
)
M2
}
⎤
⎦
γ+1

2(γ –1)

⎫⎪⎪⎬
⎪⎪⎭ . (13.13)
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As already mentioned, the asterisked quantities in equations (13.5) to (13.13), i.e. c∗, p∗, p∗
0, s∗,

T∗, and ρ∗, indicate that all these quantities correspond to the reference choking state,M = 1
for adiabatic pipe flow.
We now introduce the momentum-conservation equation

–
dp
dx

–
2ρV2fF

D = ρV dV
dx

(13.2)

where fF is the Fanning friction factor. Substitution for V , ρ, and p in equation (13.2), using
equations (13.7), (13.8), and (13.10), leads to

1
M2

dM2

dx
=
γM2

[
1 +
(
γ – 1
2
)
M2
]

1 –M2
4 fF
D . (13.14)

Equation (13.14) shows that dM/dx > 0 if the initial flow is subsonic, i.e. M < 1, and M
increases along the pipe, while, if the initial flow is supersonic, i.e.M > 1, we see that dM/dx <
0, andM decreases along the pipe. We can thus draw an important conclusion from equation
(13.14): in adiabatic pipe flow of a perfect gas, the influence of wall friction causes the Mach
number, whether subsonic or supersonic, to approach unity. If the pipe is sufficiently long, at a
certain length L∗, depending upon the value of the friction factor fF , the pipe diameter D, and
the initial Mach numberM at x = 0, the flow becomes frictionally choked (M = 1).
For subsonic flow, if L > L∗, the mass flow and initial Mach number have to be reduced

until the exit flow is sonic, with a new value of L∗ corresponding to the reduced inlet Mach
number. If the pipe is preceded by an appropriately designed convergent-divergent nozzle (see
Section 11.7), the flow entering the pipe may be supersonic. In this situation, slight increase
in the pipe length beyond L∗ causes a normal shock to form within the pipe just upstream of
the exit such that the subsonic flow downstream of the shock is just choked at the exit. As the
pipe length is increased further, the shock moves further upstream until it reaches the inlet.
As we shall see in Illustrative Example 13.2, if the shock location is known the calculation is
straightforward. If instead the pipe length is specified, an iterative trial-and-error procedure is
needed to determine the shock location.
To enable practical calculations, a value for the Fanning friction factor averaged over the

length L∗ is usually defined by

f F = 1
L∗
∫ L∗

0
fFdx (13.15)

and the weak dependence of fF on the pipe Reynolds number is neglected. With an average
value for the friction factor, f F , equation (13.14) can be integrated to give

4 f FL
∗

D = 1 –M2

γM2 + (γ + 1)
2γ ln

⎡
⎣ (γ + 1)M2

2
(
1 + γ – 12 M2

)
⎤
⎦ . (13.16)
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Values for 4 f FL
∗/D for any initial Mach numberM, together with the ratios T/T∗, p/p∗,V/V∗,

ρ/ρ∗, p0/p∗
0, and

(
s∗ – s

)
/R, can be calculated from the equations above, or obtained from the

Fanno-flow Calculator. It is worth noting that the friction factor used in the Calculator is the
Fanning friction factor99.
Figure 13.2 shows the variation with Mach number of selected flow properties for Fanno

flow according to the equations derived above. The curve of f FL
∗/D versus M is particularly

interesting: (a) forM < 1, the curve steepens considerably asM → 0, so that small changes in
the inlet Mach number have a significant effect on the maximum possible pipe length, and (b)
forM > 1, small changes in the pipe length have a significant effect on the shock location. We
note too that, asM → ∞, 4 f FL

∗/D approaches the asymptotic value

4
γ

[
(γ + 1)

2 ln
(
γ + 1
γ – 1

)
– 1
]

≈ 3.286 (13.17)

so that the flow chokes after a relatively short length of pipe, e.g. with f F = 0.005, D = 50 mm,
and L∗ = 2.5 m.
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Figure 13.2 Variation of flow properties with Mach number for Fanno flow of a perfect gas with
γ = 1.4

99 The factor 4 on the left-hand side of equation (13.16) can be regarded as a reminder that the friction factor used
in this textbook is the Fanning friction factor fF and not the Darcy friction factor fD = 4 fF . The Darcy friction factor
is used in the tabulated values presented in many textbooks, and great care is necessary to avoid confusing the two
friction factors.
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13.2.1 Fanno-flow calculation procedure

When confronted with a Fanno-flow problem, the readermay find it somewhat confusing to be
dealing with so many quantities: the stagnation pressure and temperature, p0 and T0; the static
pressure and temperature, p and T; the soundspeed, c; the density, ρ; the flow velocity, V ; the
Mach numberM; the mass flowrate ṁ; the pipe length; the cross-sectional area A; the friction
factor, f F ; and the sonic conditions, indicated by the superscript ∗. In addition, apart from
T0, ṁ, and the sonic conditions, all the flow variables vary with distance along the pipe x.
The situation is greatly simplified if it is realised that the key quantities involved in solving
many problems are the stagnation pressure and temperature at the pipe inlet, and one other
quantity, often the inlet velocity or Mach number. It is then straightforward to calculate all
other quantities sequentially as follows

• specify T0, which is a constant for adiabatic pipe flow
• specify p01, the stagnation pressure at inlet
• specify D (or A)

• specify f F , which is a constant for the flow
• specify V1, the flow velocity at inlet (orM1, p1,T1, ρ1, or c1)
• calculate T1 from T1 = T0 – V2

1 /2CP

• calculate c1 from c1 =
√
γRT1

• calculateM1 fromM1 = V1/c1
• calculate p1 from p1 = p01/

[
1 + (γ – 1)M2

1/2
]

• calculate ρ1 from ρ1 = p1/RT1

• calculate ṁ from ṁ = ρ1AV1, which is a constant for the flow
• calculate 4 f FL

∗
1/D from equation (13.16), or the Fanno-flow Calculator, corresponding to

the Mach numberM1, which may be less than or greater than unity

Although in this sequence it is assumed that the calculation starts with specified conditions at
the pipe inlet, numerous other possibilities can be envisaged, for example, specified stagnation
conditions at the inlet, p01 and T0, and a specified exit pressure, pE. An iterative procedure
is now required to carry out the calculation: assuming the flow is choked at the pipe exit,
such that pE = p∗

1, then, for subsonic flow, a first guess for M1 would lead to p1/p01 from the
Isentropic-flow Calculator and to p1/p∗

1 from the Fanno-flow Calculator. We can thus obtain
p∗
1/p01 =

(
p1/p01

)
/
(
p1/p∗

1
)
corresponding to the guessed value forM1. This value can be com-

pared with pE/p01 and the process repeated with a new guess forM1 until the calculated value
of p∗

1/p01 is sufficiently close to pE/p01.
We now consider separately how to proceed for pipes where the length L �= L∗

1, first for
subsonic flow then for initially supersonic flow.

13.2.1.1 Subsonic Fanno flow

• If the actual pipe length L1 < L∗
1, calculate the exit Mach number ME from equation

(13.16), or the Fanno-flow Calculator, with L∗
E = L∗

1 – L1, L∗
E being the choking length

corresponding with an initial Mach numberME; the procedure is illustrated in Figure 13.3
withM1 = 0.35, and L1 = 0.7 L∗

1.



ADIABATIC PIPE FLOW WITH WALL FRICTION: FANNO FLOW 337

1.0

0.8

0.6

0.4

0.2

0
0 1 2 3 4

D DD

5

M

M = 1

ME

M1

M2

4 fFL1 4 fFL24
 
fFL*

1

4 fFL*
E

D

Figure 13.3 Calculation of flow conditions for subsonic Fanno flow with L1 = 0.7 L∗
1 , and L2 = 1.5 L∗

1 .

• If the actual pipe length L2 > L∗
1, calculate a new (lower) initial Mach number M2 from

equation (13.16) with L∗
2 = L2; the procedure is illustrated in Figure 13.3, with L2 = 1.5 L∗

1.

ILLUSTRATIVE EXAMPLE 13.1

Air at a stagnation pressure of 2.5 bar and a stagnation temperature of 600 K flows into a well-
insulated 50 mm diameter pipe. The average Fanning friction factor is 0.005. For the specified
stagnation pressure and temperature at inlet, calculate (a) the maximum possible pipe length,
themass flowrate, and the flow properties at inlet and exit if the inlet velocity is 120m/s; (b) the
mass flowrate and the flow and fluid properties at inlet and exit, if the pipe length compared
with part (a) is reduced by 30% but the inlet flowspeed is still 120 m/s; (c) the mass flowrate
and the flow and fluid properties at inlet and exit, if the pipe length is doubled.

Solution

Since the pipe is well insulated, we assume the flow is adiabatic and so can be treated as a Fanno
flow. The subscript E will be used to indicate exit conditions: 1 for the inlet of the full-length
pipe and the half-length pipe, 2 for the inlet of the double-length pipe, and 3 for the outlet of
the reduced-length pipe. The three flow situations are shown schematically in Figure E13.1,
assuming subsonic flow.
(a) p01 = 2.5 × 105 Pa, T0 = 600 K, D = 0.05 m, V1 = 120 m/s, f F =
0.005, γ = 1.4, R= 287 m2/s2K, and CP = 1004.5 m2/s2K.
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Figure E13.1 Mach-number variation for subsonic Fanno flow through a full-length, reduced-length,
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For specified inlet conditions, the maximum possible pipe length in subsonic Fanno flow is the
choking length L∗

1, and 4 f FL
∗
1/D can be evaluated from equation (13.16) once the inlet Mach

numberM1 is known.
To calculateM1 we start with CPT0 = CPT1 +V2

1 /2, from which the inlet static temperature T1
is given by

T1 = T0 – V2
1 /2CP = 592.8 K.

The corresponding soundspeed c1 is obtained from

c1 =
√
γRT1 = 488.0m/s

and so the inlet Mach numberM1 = V1/c1 = 0.246, confirming that the flow is subsonic.
The value of 4 f FL

∗
1/D can now be found by calculation from equation (13.16), by interpolation

in tables, or from the Fanno-flow Calculator. The simplest method is to use the Calculator,
which gives 4 f FL

∗
1/D = 8.83 so that L∗

1 = 22.1 m.
From equation (11.22), or the Isentropic-flow Calculator, p1/p01 = 0.959 so that p1 = 2.398
bar. The inlet gas density ρ1 now follows from the perfect-gas equation, ρ1 = p1/RT1 = 1.409
kg/m3.
The mass flowrate is then ṁ1 = ρ1AV1 = 0.332 kg/s, wherein we have used A = πD2/4 =
1.963 × 10–3 m2 for the cross-sectional area.
Since the flow is adiabatic, the stagnation temperature at exit is the same as at inlet, i.e. T0E =
T0 = 600 K.
The pipe length L∗

1 corresponds to choked flow, i.e. the exit conditions are sonic with ME =
1. So far as the temperature is concerned we thus have T∗

E1 = T0/
[
1 + (γ – 1)M2

E/2
]

=
2T0/(γ + 1) = 500 K.
The exit soundspeed and flow velocity are then V∗

E1 = c∗E1 =
√
γRT∗

E1 = 448.2 m/s.
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The mass flowrate is unchanged from the inlet so the exit gas density ρ∗
E1 = ṁ1/AV∗

E1 = 0.377
kg/m3.
The static pressure at exit p∗

E1 = ρ
∗
E1RT

∗
E1 = 5.415 × 104 Pa or 0.541 bar.

The stagnation pressure at exit p∗
0E1 = p

∗
E1
[
1 + (γ – 1)M2

E1/2
]γ /(γ –1) = [(γ + 1) /2]γ /(γ –1)

p∗
E1 = 1.024 × 105 Pa or 1.024 bar.
(b) Since the inlet velocity, stagnation temperature, and stagnation pressure for the reduced-
length pipe are the same as for case (a), so are the inlet static temperature, static pressure,
soundspeed, and mass flowrate. To find the exit conditions for the reduced-length pipe we
consider a choked pipe with exit conditions identical to those of the pipe in part (a) but of
length L∗

2 = 0.7 L∗
1 = 15.47 m such that 4 f F L

∗
2/D = 6.188. The exit conditions for the reduced-

length pipe are the same as the inlet conditions for the choked pipe of length L∗
2. The Fanno-

flow Calculator gives M2 = 0.283,T2/T∗
E2 = 1.181, and p2/p∗

E2 = 3.841. We thus find T2 =
590.5 K, c2 = 487.1 m/s, and p2 = 2.078 bar. The corresponding density ρ2 = 1.226 kg/m3.
The velocity at inlet to the short choked pipe is then V2 = 137.8 m/s. Finally, from the Fanno-
flow Calculator, p02/p∗

0E2 = 2.145 so that the stagnation pressure at inlet to the choked pipe
p02 = 2.196 bar. The mass flowrate ṁ2 = ρ2AV2 = 0.332kg/s, which is the same as in part (a),
as it should be.
(c) p03 = 2.5 × 105 Pa, T0 = 600 K, D = 0.05 m, f F = 0.005, γ = 1.4, R = 287 m2/s2K,
CP = 1004.5 m2/s2K, and L∗

3 = 2 L∗
1.

The new pipe length is L3 = L∗
3 = 2 × 22.1 = 44.2 m so that 4 f FL

∗
3/D = 17.68. Using tables

to find the corresponding inlet Mach numberM3 requires interpolation while to findM3 from
equation (13.14) necessitates iteration. The simplest way of determiningM3 is again from the
Fanno-flow Calculator, which givesM3 = 0.184.
From the Isentropic-flow section of the Calculator, withM3 = 0.184, we find p3/p03 = 0.977 so
that p3 = 0.977 × 2.5 × 105 = 2.443 × 105 Pa.
Also from the Isentropic-flow Calculator, T3/T0 = 0.993 so that T3 = 0.993 × 600 = 595.8 K.
The corresponding soundspeed c3 =

√
γRT3 = 489.3 m/s.

The flow velocity is then V3 = M3c3 = 90.0 m/s.
The gas density at inlet is ρ3 = p3/RT3 = 1.429 kg/s.
The new mass flowrate ṁ3 = ρ3AV3 = 1.429 × 1.96 × 10–3 × 90.0 = 0.252 kg/s.

Comment:

Doubling the pipe length reduced the inlet velocity, the inlet Mach number, and the mass
flowrate by about 25%.

Initially supersonic Fanno flow

• If the actual pipe length L3 < L∗
1, the procedure is the same as for subsonic flow.

• If the actual pipe length L3 > L∗
1, use the iterative procedure of Illustrative Example 13.2 to

determine the normal-shock position and all flow quantities.

Figure 13.4 illustrates the situation of adiabatic pipe flow of air with an initial Mach num-
ber M1 = 4: (a) supersonic flow throughout for a pipe with 4 f FL

∗
1/D = 0.633, where L∗

1 is



340 COMPRESSIBLE PIPE FLOW

4

3

(a)

(b)

(c)

s
h
o
c
k

s
h
o
c
k

2

1

0

= 1.759

0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

M

M2

M3M4

M1

4
−
fFL*

1

D

4
−
fFL*

4

D

D

4
−
fFL2

D

4
−
fFL

D

4
−
fF ( L2+L*

3)

Figure 13.4 Mach number variation along a pipe for initially supersonic Fanno flow with (a) L = L∗
1 ,

(b) L = 2 L∗
1 with a normal shock at L2 where M2 = 2.70, and (c) L∗

4 = 2.78L∗
1 with a normal shock at

the pipe inlet. In all cases the initial Mach number = 4.0.

the choking length corresponding to M1; (b) a pipe of length 2 L∗
1 with a normal shock at

4 f FL2/D = 0.161 (this location was found using the trial-and-error procedure outlined in
Illustrative Example 13.2) with M2 = 2.70 ahead of the shock, and M3 = 0.496 behind the
shock, such that L2 + L∗

3 = 2 L∗
1; and (c) a pipe of length 2.78 L∗

1, which causes a normal shock
at the pipe inlet withM1 = 4, andM4 = 0.4 just behind the shock, for which 4 f FL

∗
4/D = 1.759,

i.e. L∗
4 = 2.78 L∗

1. For a pipe with a length greater than L∗
4, the initial Mach number would have

to reduce below 4.

ILLUSTRATIVE EXAMPLE 13.2

Air at a stagnation pressure of 2.5 bar and a stagnation temperature of 600 K flows into a well-
insulated 50 mm diameter pipe at a velocity of 700 m/s. The average Fanning friction factor is
0.005. Calculate (a) themaximum possible pipe length corresponding to these inlet conditions,
the mass flowrate, the inlet and exit flow, and the fluid properties; (b) the mass flowrate and
the inlet and exit conditions, if the pipe length is reduced by 30%; and (c) the mass flowrate
and the inlet and exit conditions, if the pipe length is increased by 20%.

Solution

As in Illustrative Example 13.1, since the pipe is well insulated, we shall assume the flow is adia-
batic and can be treated as a Fanno flow. Key locations in the flow are shown in Figure E13.2,
assuming supersonic flow at the inlet. It is suggested that the solution procedure is more easily
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followed with reference to this figure. The subscript 1 will be used to indicate conditions at the
inlet, 2 for the outlet of the reduced-length pipe, and 3 for the outlet of the increased-length
pipe. The subscripts 4 and 5 indicate the location of the shockwave, referring to the upstream
supersonic and downstream subsonic sides of the shock, respectively.
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Figure E13.2 Variation of Mach number with 4fFx/D for initially supersonic Fanno flow through
(a) full-length, (b) increased-length, and (c) reduced-length pipe

(a) > p01 = 2.5 × 105 Pa, T0 = 600 K, D = 0.05 m, V1 = 700 m/s, f F =
0.005, γ = 1.4, R= 287 m2/s2K, and CP = 1004.5 m2/s2K.
For specified inlet conditions, the maximum possible pipe length in shock-free supersonic
Fanno flow is the choking length L∗

1 where 4 f FL
∗
1/D can be evaluated from equation (13.16)

once the inlet Mach numberM1 is known.
To findM1 we start with CPT0 = CPT1 + V2

1 /2, and V1 = 700 m/s, from which the inlet static
temperature T1 is given by

T1 = T0 – V2
1 /2CP = 356.1 K.

The corresponding soundspeed c1 is obtained from

c1 =
√
γRT1 = 378.3m/s
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so the inlet Mach number M1 = V1/c1 = 1.851, and the flow at inlet is confirmed to be
supersonic.
The value of 4 f FL

∗
1/D can be found by calculation from equation (13.16), by interpolation

in tables, or from the Fanno-flow Calculator. As before, the simplest method is to use the
Calculator, which gives 4 f FL

∗
1/D = 0.259 so that L∗

1 = 0.647 m.
From equation (11.22), or the Isentropic-flow Calculator, p1/p01 = 0.161 so that p1 = 0.403
bar.
The inlet gas density ρ1 is found from the perfect-gas equation, ρ1 = p1/RT1 = 0.394 kg/m3.
The mass flowrate ṁ1 = ρ1AV1 = 0.542 kg/s, wherein we used A=πD2/4 = 1.963× 10–3 m2.
The exit (choked) conditions are best found using the Fanno-flow Calculator, which gives
T1/T∗

1 = 0.712 so that T∗
1 = 500.1 K, p1/p∗

1 = 0.456 so that p∗
1 = 0.884 bar, and p01/p∗

01 = 1.496
so that p∗

01 = 1.671 bar.
The exit velocity is given by V∗

1 = c∗1 =
√
γRT∗

1 = 448.3 m/s.
From the perfect-gas equation, the exit density is ρ∗

1 = p∗
1/RT∗

1 = 0.616 kg/m3, and the mass
flowrate ṁ = ρ∗

1AV
∗
1 = 0.542 kg/s, i.e. precisely the same as at inlet, as it should be, and so

provides a check on the accuracy of the other calculations.
(b) Since the inlet velocity, stagnation temperature and stagnation pressure for the reduced-
length pipe are the same as for case (a), so are the inlet static temperature, static pressure,
soundspeed, and mass flowrate.
To find the exit conditions for the reduced-length pipe we consider a choked pipe with exit
conditions identical to those of the pipe in part (a) (i.e. V∗

2 = V∗
1 ,T∗

2 = T∗
1 , etc.) and of length

L∗
2 = 0.3 L∗

1 = 0.194 m such that 4 f FL
∗
2/D = 0.0776.

For this value of f FL
∗
2/D, the Fanno-flow Calculator gives M2 = 1.338,T2/T∗

2 = 0.884, and
p2/p∗

2 = 0.703. We thus find T2 = 442.1 K, c2 = 421.5 m/s, and p2 = 0.621 bar.
From the perfect-gas equation, the corresponding density ρ2 = 0.490 kg/m3.
The velocity at inlet to the short choked pipe is V2 = M2c2 = 564.0 m/s.
Finally, from the Fanno-flow Calculator, p02/p∗

02 = 1.083 so that the stagnation pressure at
inlet p02 = 1.810 bar.
The exit conditions for the reduced-length pipe must be the same as those for the short choked
pipe while the mass flowrate ṁ = ρ2AV2 is unchanged from 0.542 kg/s, as in part (a).
(c) p02 = 2.5 × 105 Pa, T0 = 600 K, D = 0.05 m, V1 = 700 m/s, f F = 0.005, γ = 1.4, R = 287
m2/s2K, CP = 1004.5 m2/s2K.
The pipe length is now 20% greater than L∗

1, i.e. L3 = 1.2 L∗
1 = 0.776 m or 4 f FL3/D = 0.311.

Due to this increase in pipe length, there will be a shock a distance L4, to be determined, from
the inlet such that 4 f FL4/D < 4 f FL

∗
1/D (= 0.259).

We shall adopt the following trial-and-error procedure to find the shock location relative to
the exit, L3 – L4 = L∗

5

• guess 4 f FL4/D
• from the Fanno-flow Calculator, calculate the subsonic Mach number M5 just behind the
shock corresponding to L∗

5

• from the Normal-shock Calculator, calculate the supersonic Mach number M4 just ahead
of the shock corresponding toM5
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• from the Fanno-flow Calculator, calculate the choking length L∗
4 corresponding toM4

• calculate L∗
5 + L4, the pipe length for an inlet Mach numberM1 with a shock a distance L4

from the inlet and choked at the exit
• if f F

(
L∗
5 + L4

)
/D > 1.2 f FL

∗
1/D, we need to reduce L4 and repeat the calculation until we

find f F
(
L∗
5 + L4

)
/D = 1.2 f FL

∗
1/D = 0.311 within, say,±1%. If f F

(
L∗
5 + L4

)
/D < 1.2 f FL

∗
1/D

we need to increase L4 and repeat the calculation. The logic of this sequence should be
apparent from Figure E13.2. The results are set out in Table E13.2.

Table E13.2 Trial-and-error procedure for finding the shock location relative to the exit, L3 – L4 = L
∗
5

4 f FL4/D 4 f F (L3 – L4) /D = 4 f FL
∗
5/D M5 M4 4 f FL

∗
4/D 4 f F

(
L∗
4 + L5

)
/D

1st guess 0.04 0.271 0.671 1.592 0.169 0.209, i.e.< 0.259

2nd guess 0.10 0.211 0.699 1.507 0.139 0.239, i.e.< 0.259

3rd guess 0.20 0.111 0.763 1.348 0.081 0.281, i.e.> 0.259

4th guess 0.15 0.161 0.727 1.432 0.111 0.261, i.e.> 0.259

5th guess 0.14 0.171 0.721 1.447 0.117 0.257, i.e.< 0.259

6th guess 0.145 0.166 0.724 1.439 0.114 0.259, i.e. = 0.259

The shock location is thus obtained from 4 f FL4/D = 0.145 so that L4 = 0.363 m or 0.413 m
from the pipe exit. The Mach number just ahead of the shock M4 = 1.439, and the Mach
number just behind the shockM4 = 0.724. We can now calculate all flow quantities on either
side of the shock and at the pipe exit, as follows.
Just before the shock, we have supersonic Fanno flow, just as in part (b). From the supersonic
Fanno-flow Calculator, for M4 = 1.439 we find T4/T∗

1 = 0.849, p4/p∗
1 = 0.640, p04/p∗

01 =
1.137,V4/V∗

1 = 1.326, so that T4 = 0.849 × 500.1 = 424.4 K, p4 = 0.640 × 0.884 = 0.566 bar,
p04 = 1.137 × 1.671 = 1.900 bar, and V4 = 1.326 × 448.3 = 594.3 m/s.
From the perfect -gas equation, ρ4 = p4/RT4 = 0.465 kg/m3.
To find conditions just behind the shock, we use theNormal-shock Calculator withM4 = 1.439,
which givesM5 = 0.724,T5/T4 = 1.280, p5/p4 = 2.249, p05/p04 = 0.948, and ρ5/ρ4 = 1.757, so
that T5 = 1.280×424.4 = 543.2 K, p5 = 2.249×0.566 = 1.273 bar, p05 = 0.948×1.900 = 1.801
bar, and ρ5 = 1.757 × 0.465 = 0.816 kg/m3.
Since G = ρ4V4 = ρ5V5 we find V5 = ρ4V4/ρ5 = 338.2 m/s.
Finally, we use the subsonic Fanno-flow Calculator to find the exit conditions for the
increased-length pipe. ForM5 = 0.724 we have T5/T∗

5 = 1.086, p5/p∗
5 = 1.439, p05/p∗

05 = 1.078,
and V5/V∗

5 = 0.755, so that T∗
5 = 543.2/1.086 = 500.1 K, p∗

5 = 1.273/1.439 = 0.884 bar,
p∗
05 = 1.801/1.078 = 1.671 bar, and V∗

5 = 338.2/0.755 = 448.2 m/s.
From the perfect-gas equation, ρ∗

5 = p∗
5/RT∗

5 = 0.616 kg/m3.
As a final check, we calculate the mass flowrate ṁ = ρ∗

5AV∗
5 = 0.616× 1.963× 10–3 × 448.2 =

0.542 kg/s, as before.
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Comments:

The exit temperatures for both the full-length and increased-length pipes is the same, 500.1 K,
because the stagnation temperature remained constant throughout and at the exit the Mach
number was unity in both cases.
It is strongly recommended that a clear schematic diagram be drawn prior to carrying out

any calculation. The value of such a diagram in this case should be apparent.

13.2.2 Fanno-flow trends

The trends in all the flow variables for both subsonic and supersonic flow are most clearly
revealed by differential versions100 of the equations for V , ρ, p, c,T, p0, and s, arranged to
include f F

1
V
dV
dx

= –1
ρ

dρ
dx

= γM2

2
(
1 –M2) 4 f FD (13.18)

1
p
dp
dx

= –
γM2 [1 + (γ – 1)M2]

2
(
1 –M2) 4 f F

D (13.19)

1
c2

dc2
dx

= 1
T
dT
dx

= –γ (γ – 1)M
4

2
(
1 –M2) 4 f F

D (13.20)

1
p0

dp0
dx

= –γM
2

2
4 f F
D (13.21)

1
R
ds
dx

= – 1
p0

dp0
dx

= γM
2

2
4 f F
D . (13.22)

Based upon these differential equations for the flow variables, the changes that occur in
adiabatic, frictional pipe flow of a perfect gas are summarised in Table 13.1.

13.2.3 Fanno line

We return at this point to the energy equation, equation (13.3), which, for Fanno flow,
becomes

CP
dT0
dx

= CP
dT
dx

+ V dV
dx

= 0 (13.23)

or

dh0
dx

= dh
dx

+ V dV
dx

= 0 (13.24)

100 The derivation of the differential equations for Fanno flow is given in Appendix 4(a).
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Table 13.1 Property changes for adiabatic, frictional pipe flow
of a perfect gas under subsonic and supersonic conditions

Subsonic Supersonic

static pressure p decreases increases

static temperature, T and soundspeed c decreases increases

density, ρ decreases increases

velocity, V increases decreases

Mach number,M increases decreases

stagnation pressure, p0 decreases decreases

specific entropy, s increases increases

where h is the specific enthalpy. Equation (13.24) can be integrated to give

h + 1
2V

2 = h0 = constant, (13.25)

where the specific stagnation enthalpy h0 is constant since we are dealing with an adiabatic
flow (the heat-transfer rate per unit length, q̇′

S, in equation (13.3) was set equal to zero). From
the continuity equation

ṁ = ρAV = AG = constant, (6.1)

so that if we substitute V = Gv in equation (13.25) we have

h + (Gv)2
2 = h0 = constant (13.26)

where v = 1/ρ is the specific volume. SinceG and h0 are constants for a given flow, this equation
defines a relation between the local specific enthalpy h and the local specific volume, termed
the Fanno line. By dividing through the equation by h0 we obtain the non-dimensional form

h
h0

+ (Gv)2

2h0
= 1 (13.27)

which is shown graphically in Figure 13.5(a). The local speed of sound is given by c2 = γRT,
and also R = cP – cV = (γ – 1) cP/γ so that c2 = (γ – 1) cPT = (γ – 1) h. From equation
(13.25) have V2 = 2(h0 – h), so that at the sonic point 2(h0 – h∗) = (γ – 1) h∗, which leads to
h∗/h0 = 2/(γ + 1). The dashed horizontal line in Figure 13.5(a) corresponds to this value of
h/h0 for γ = 1.4.
Fanno lines are more usually presented on a Mollier diagram of specific enthalpy h versus

specific entropy s. Since changes in specific entropy are given by

s – s1 = CP ln
(
T
T1

)
– R ln

(
p
p1

)
(11.2)
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where s1,T1, and p1 are reference values (e.g. at an upstream starting location), making use of
the perfect-gas equation, p = ρRT = RT/v, we have

s – s1 = (CP – R) ln
(
T
T1

)
+ R ln

(
v
v1

)
. (13.28)

From equation (13.27)(
v
v1

)2
= h0 – h
h0 – h1

= T0 – T
T0 – T1

(13.29)

wherein we have used the enthalpy-temperature relation, h = CPT +constant. If the specific
enthalpy is referenced to a zero value at zero absolute temperature, the constant is zero and
we have T/T1 = h/h1. Substitution for v/v1 and T/T1 in equation (13.28), together with the
relations R = CP – CV , and γ = CP/CV , then leads to

s – s1
R =

(
1
γ – 1

)
ln
(

h
h1

)
+ 1
2 ln
(
h0/h1 – h/h1
h0/h1 – 1

)
(13.30)

which, for a given gas, can be plotted on the Mollier diagram in the non-dimensional form
h/h1 versus (s – s1) /R for specific values of the initial value h1/h0, as in Figure 13.5(b).
Figure 13.5(b) shows that each h – s curve has a maximum, indicated by the short dashed

lines. To find what condition the maximum corresponds to, we differentiate s with respect to
h and set the result equal to zero

1
R
ds
dh

=
(

1
γ – 1

)
1
h
– 1
2 (h0 – h)

= 0 (13.31)

which leads to

h
h0

= 2
γ + 1 . (13.32)

Since h + V2/2 = h0 = constant, we find that the peak corresponds with V2 = (γ – 1) h. Since
h = CPT, we find V2 = γRT = c2, i.e. M = 1. In other words, the choking or sonic condition
corresponds to maximum entropy.

13.3 Isothermal pipe flowwith wall friction

Gas flow through a long, buried, uninsulated pipeline is probably better represented as iso-
thermal flow with wall friction101 than the adiabatic flow just discussed. The starting point for
the analysis of such a flow is the same as for the adiabatic-flow situation except that now we
have the important simplification

T = constant = T∗T (13.33)

The superscript ∗T is used here to identify properties which correspond to the choking condi-
tion for isothermal pipe flow of a perfect gas: as we shall see (equation (13.39)), in contrast to

101 Sometimes referred to as isothermal Fanno flow.
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the adiabatic flow considered in Section 13.2, the isothermal choking condition corresponds
toM = M∗T = V∗T/c = 1/√γ , i.e.M∗T < 1.
Since the temperature, and so the soundspeed c, is constant, the mass-conservation equation

(6.1) reduces to

ρ∗T
ρ

= V
V∗T = V

c
c

V∗T =
√
γM. (13.34)

From equation (13.34), with the perfect-gas equation (2.9),

p
p∗T = ρ

ρ∗T = 1√
γM

. (13.35)

The stagnation pressure p0 is given by

p0 = p
[
1 +
(
γ – 1
2

)
M2
] γ
γ – 1

(11.22)

so that, from equation (13.35),

p0
p∗T
0

= 1√
γM

{(
2γ

3γ – 1

)[
1 +
(
γ – 1
2

)
M2
]} γ
γ –1

. (13.36)

Since T = constant,

s – s∗T
CP

= –
(
γ – 1
γ

)
ln
(

p
p∗T

)
=
(
γ – 1
γ

)
ln
(√
γM
)

(13.37)

and

T0

T∗T
0

= 2γ
(3γ – 1)

[
1 +
(
γ – 1
2

)
M2
]
. (13.38)

In deriving equations (13.34) to (13.38) we made no use of the momentum-conservation
equation

–
dp
dx

–
2ρV2fF

D = ρV dV
dx

. (13.2)

Substitution for p,V , and ρ in equation (13.2), using equations (13.34) and (13.35), leads to

1
M2

dM2

dx
= γM2(

1 – γM2) 4 fFD . (13.39)

Again, as for the adiabatic-flow situation, if we take an average value for the friction factor, f F ,
then equation (13.39) can be integrated to give

4 f FL
∗T

D = 1 – γM2

γM2 + ln
(
γM2) . (13.40)

In Section 13.2, which was concerned with adiabatic (Fanno) flow, we concluded that, for both
subsonic and supersonic flow, the influence of friction causes the Mach number to approach
unity. Equation (13.39) reveals that for an isothermal flow, ifM < 1/√γ ,M increases whereas,
ifM > 1/√γ ,M decreases, so that due to friction the Mach number in isothermal pipe flow of
a perfect gas always tends towards the value 1/√γ . As for Fanno flow, if the pipe is sufficiently
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long, after a certain length LMAX , depending upon the value of f F , the pipe diameter, and the
initial Mach numberM at s = 0, the flow becomes choked withM → 1/√γ .
However, for isothermal subsonic flow the energy-conservation equation (13.3) reveals that

a practical limitation is imposed by the heat-transfer rate required to achieve choking of an
isothermal flow

q̇′ = ṁCP
dT0
dx

= ṁV dV
dx

= GAV dV
dx

. (13.41)

If we use equation (13.34) to substitute for V , we find

q̇′ = GAV2

2M2
dM2

dx
= GAc2

2
dM2

dx
. (13.42)

We can now substitute for dM2/dx from equation (13.39), with fF replaced by f F , to find

q̇′ = γGAc
2M4

2
(
1 – γM2) 4 f FD (13.43)

so that, as M → 1/√γ , q̇′ → ∞, i.e. the heat-transfer rate required to maintain isothermal
conditions becomes infinite. Equation (13.43) also shows that, for subsonic flow with M <
1/√γ , the heat-transfer rate to maintain isothermal flow is positive, i.e. heating is necessary,
whereas, forM > 1/√γ , the flow must be cooled.
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Figure 13.6 Variation of flow properties with Mach number for isothermal flow of a perfect gas with
γ = 1.4
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Values for 4 f FL
∗T/D for any initial Mach number M, together with the ratios V/V∗T ,

ρ/ρ∗T , p/p∗T ,T0/T∗T
0 , and

(
s – s∗T

)
/R, can be calculated from the equations above, but are

yet to be incorporated in the Virginia Tech Compressible Aerodynamics Calculator. Tabu-
lated values are given in the textbook by Chapman and Walker, (1971). Figure 13.6 shows the
variation with Mach number of flow properties according to the equations derived above.

ILLUSTRATIVE EXAMPLE 13.3

Air is to be pumped through a pipe of 0.5 m I.D. and 100 m in length. The inlet pressure is
7 bar and there is sufficient heat transfer through the wall to maintain the gas at 20 ◦C. The
value of the Fanning friction factor for this flow is 0.005. Calculate the maximum possible mass
flowrate and the outlet pressure.

Solution

Since the flowrate is a maximum, the flow must be isothermally choked at the entry to the
second compressor, i.e. the pipe length Lmust correspond with the isothermal choking length
for the inlet Mach number. With L = 100m = L∗T

1 we have 4 f FL
∗T
1 /D = 4, from which we

can calculate the inlet Mach number M1 using equation (13.40). This requires a trial-and-
error process. Omitting the logarithmic term provides a first guess for γM2

1, i.e. 4f FL
∗T
1 /D ∼=(

1 – γM2
1
)
/γM2

1, from which γM2
1 ∼= 0.2.

The trial-and-error steps are set out in Table E13.3.

Table E13.3 Trial-and-error steps for calculating the inlet Mach
numberM1

γM2
1

(
1 – γM2

1
)
/γM2

1 ln
(
γM2) 4 f FL

∗T
1 /D

1st guess 0.20 4.00 –1.60 2.40
2nd guess 0.15 5.67 –1.90 3.77
3rd guess 0.14 6.14 –1.97 4.17
4th guess 0.145 5.90 –1.93 3.97
5th guess 0.144 5.94 –1.94 4.00

With γM2
1 ∼= 0.144 we haveM1 = 0.321.

The soundspeed is c=
√
γRT = 343.1 m/s so that the inlet gas velocity V1=

M1c= 110.1 m/s.
From the perfect-gas equation the gas density at inlet ρ1 = p1/RT = 8.324kg/m3 so that the
mass flowrate ṁ = ρ1AV1 = 180 kg/s.
The outlet density is given by ρ2 = ṁ/AV2. Since the flow is isothermally choked at the outlet,
M2 = 1/√γ = 0.845, from which V2 = M2c = 290 m/s. The outlet density is thus 3.161 kg/m3.
The outlet pressure is given by the perfect-gas equation p2 = ρ2RT = 2.658 × 105 Pa or
2.658 bar.
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13.3.1 Isothermal pipe-flow trends

As for adiabatic flow, first-order ordinary differential equations can be derived102 for
V , ρ, p, c0,T0, p0, s, and fF (note that since the flow is isothermal, c0 appears instead of c and
T0 instead of T) in terms of M to reveal more clearly the trends for M < 1/√γ and for
M > 1/√γ :

1
V
dV
dx

= – 1
ρ

dρ
dx

= –1p
dp
dx

= 1
2M2

dM2

dx
= γM2

2
(
1 – γM2) 4 f FD (13.44)

1
c20

dc20
dx

= 1
T0

dT0
dx

=

(
γ – 1
2
)
M2[

1 +
(
γ – 1
2
)
M2
] 1
M2

dM2

dx
= γ (γ – 1)M4

2
(
1 – γM2) [1 + (γ – 12

)
M2
] 4 f FD

(13.45)

1
p0

dp0
dx

=
γM2

[
1 –
(
γ + 1
2

)
M2
]

2
(
γM2 – 1

) [
1 +
(
γ – 1
2
)
M2
] 4 f FD (13.46)

and

1
R
ds
dx

= γM
2

2
4 f F
D . (13.47)

together with

4 f F
D =

(
1 – γM2)
γM2

1
M2

dM2

dx
. (13.48)

Based upon the equations developed here, the various changes that occur in isothermal,
frictional pipe flow are summarised in Table 13.2.

Table 13.2 Property changes for isothermal, frictional pipe flow for M < 1/
√
γ

and forM > 1/
√
γ

M < 1/√γ M > 1/√γ
(subsonic) (subsonic/supersonic)

static pressure, p decreases increases
density, ρ decreases increases
velocity, V increases decreases
Mach number,M increases decreases
stagnation temperature, T0 increases decreases

stagnation pressure, p0
{
increases forM <

√
2 (γ + 1)

decreases forM >
√
2 (γ + 1)

specific entropy, s increases increases

102 The derivation of the differential equations for isothermal pipe flow is given in Appendix 4(a).
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13.3.2 Static-pressure change in isothermal pipe flow

A useful result which can be obtained for isothermal pipe flow involves the static-pressure
change, from p1 to p2, over a length L. We start with the perfect-gas equation p = ρRT =
GRT/V combined with G = ρV so that

1
p
dp
dx

= – 1
V
dV
dx

. (13.49)

We can write the momentum equation (13.2) as follows

– 1
GV

dp
dx

– 1
V
dV
dx

=
2 f F
D . (13.50)

If we now substitute in this equation for (1/V) dV/dx from equation (13.49) we have

– 1
GV

dp
dx

+ 1
p
dp
dx

=
2 f F
D (13.51)

which leads to

–
p

G2RT
dp
dx

+ 1
p
dp
dx

=
2 f F
D (13.52)

wherein we have made use of the relationships V = G/ρ, and p = ρRT. Since G,R,T, and fF
are all constant, equation (13.52) can be integrated to give

p21 – p22 – 2G2RT ln
(
p1
p2

)
= G2RT

4 f FL
D . (13.53)

Assuming R,T,D, and f F are all known, equation (13.53) can be used in various ways, for
example, to find

• the initial pressure p1 if the exit pressure p2 and pipe length L are known
• the exit pressure p2 if the initial pressure p1 and pipe length L are known
• the pipe length L if the initial and exit pressures p1 and p2 are both known
• the mass flowrate ṁ = GA if the pipe length L and the initial and exit pressures p1 and p2
are all known

ILLUSTRATIVE EXAMPLE 13.4

Methane gas (γ = 1.31, gas constant 518.4 J/kg ·K) is to be pumped through a pipe of 1 m
I.D. connecting two compressor stations 90 km apart. At the upstream station the pressure
is not to exceed 7 bar and at the downstream station it is to be at least 1.7 bar. Calculate the
maximum allowable volume flowrate (at 20 ◦C and 1 bar), assuming there is sufficient heat
transfer through the wall to maintain the gas at 20 ◦C. The value of the Fanning friction factor
for this flow is 0.005.
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Solution

The simplest way to solve this problem is to use equation (13.53)

p21 – p22 – 2G2RT ln
(
p1
p2

)
= G2RT

4 f FL
D

which can be rearranged to give

G2 =
p21 – p22

RT
[
2 ln
(p1
p2
)
+ 4 f FL

D

] .

We have R = 518.4 J/kg ·K, p1 = 7 × 105 Pa, p2 = 1.7 × 105 Pa, T = 293 K, L = 9 × 104 m,
D= 1m, and f F = 5×10–3. Substitution of these values into the equation forG2 givesG = 41.03
kg/ms so that ṁ = GA = 32.2 kg/s, wherein the cross-sectional area A = πD2/4 = 0.785 m2.
To find the volumetric flowrate Q̇ = ṁ/A we need the inlet gas density ρ1, which can
be calculated from the perfect gas equation p1 = ρ1RT so that ρ1 = 7 × 105/518.4 ×
293 = 4.608 kg/m3. The volumetric flowrate is then 32.2/4.608 = 6.99 m3/s, or
6.04 × 105 m3/day.
The alternative approach to solving this problem is as follows. Since the flowrate is a max-
imum, the flow must be isothermally choked at the entry to the second compressor, i.e. the
pipe length Lmust correspond with the isothermal choking length for the inlet Mach number.
With L = 9 × 104 m = L∗T

1 we have 4 f FL
∗T
1 /D = 1800, from which we can calculate the inlet

Mach numberM1 from equation (13.40). This requires a trial-and-error process. Omitting the
logarithmic term provides a first guess forM1, i.e. 4 f FL

∗T
1 /D ∼= (1 – γM2

1
)
/γM2

1, from which
M1 ∼= 0.021. The final value is 0.0199.
The soundspeed is c =

√
γRT = 446.1 m/s so that the inlet gas velocity V1 = M1c= 8.863 m/s.

From the perfect-gas equation the gas density at inlet ρ1 = p1/RT = 4.608 kg/m3 so that the
mass flowrate ṁ = ρ1AV1 = 32.2 kg/s, in agreement with the value calculated earlier.

Comments:

The neglect of the logarithmic term in equation (13.40) to obtain an initial guess for M1 is
justified by the low value ofM1.
The calculation reveals that friction causes the gas velocity to increase from less than 10 m/s

at inlet to 390 m/s (= M2c = c/√γ ) at exit.

13.4 Frictionless pipe flowwith heat addition or extraction:
Rayleigh flow

The third, and final, compressible pipe-flow situation to be considered is frictionless gas flow
with addition of heat to, or extraction of heat from, the flowing fluid, usually referred to as
Rayleigh flow. We shall not be concerned here with the mechanism by which thermal energy
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is added to or subtracted from the gas: combustion, evaporation, and condensation are all
possibilities. Convective heat transfer at the interior surface of the pipe has been omitted from
the list as it would be inconsistent with the assumption of a frictionless (i.e. inviscid) flow. The
analysis is simplified by assuming the fluid is a calorically perfect gas. In reality, combustion
would involve significant property variations while evaporation or condensation by definition
involve phase change.
As for the adiabatic-flow situation, the mass-conservation equation reduces to

ρ

ρ∗ = V∗
V = c∗

c
c
V =

√
T∗√
T

1
M (13.54)

where, as was the case for adiabatic flow and as we shall show later, the flow chokes when
M = 1. The asterisk superscript will again be used to identify flow properties corresponding
with the sonic condition.
From the perfect-gas equation,

p
p∗ = ρ

ρ∗
T
T∗ =

√
T
T∗

1
M = c

c∗
1
M . (13.55)

Since Rayleigh flow is assumed to be frictionless, the momentum-conservation equation (13.2)
reduces to

–
dp
dx

= ρV dV
dx

(13.56)

which integrates to give

p + ρV2 = constant = p∗ + ρ∗c∗2 (13.57)

from which we obtain

p
p∗ + γM c

c∗ = 1 + γ . (13.58)

If we combine equations (13.55) and (13.58), we find

c
c∗ = (γ + 1)M

1 + γM2 =
√

T
T∗ (13.59)

so that

ρ

ρ∗ = V∗
V = 1 + γM2

(γ + 1)M2 (13.60)

and

p
p∗ = γ + 1

1 + γM2 . (13.61)
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From T0 = T
[
1 + (γ – 1)M2/2

]
we have

T0
T∗
0
=
2 (γ + 1)M2

[
1 +
(
γ – 1
2

)
M2
]

(
1 + γM2)2 (13.62)

and, from p0 = p
[
1 + (γ – 1)M2/2

] γ
γ –1 ,

p0
p∗
0
= (γ + 1)(

1 + γM2)
⎡
⎢⎢⎣
2
{
1 +
(
γ – 1
2

)
M2
}

γ + 1

⎤
⎥⎥⎦
γ
γ –1

. (13.63)

From equation (11.2), the change in specific entropy up to the choking location is given by

s – s∗ = CP ln
(

T
T∗
)
– R ln

(
p
p∗
)
. (13.64)

After substitution in equation (13.64) for T/T∗, and p/p∗ from equations (13.59) and (13.61),
respectively, and making use of the relation R/CP = (γ – 1) /γ , we have, finally,

s – s∗
CP

= ln

⎡
⎣M2

(
γ + 1

1 + γM2

) γ+1
γ

⎤
⎦ . (13.65)

As was the case for isothermal flow, changes in the stagnation temperature of the flow re-
quire either heat addition or extraction, i.e. either heating or cooling. According to the
energy-conservation equation,
q̇′ = ṁCP

dT0
dx

(13.3)

where q̇′ is the rate of heat addition to the fluid per unit length of pipe. After integration
between the initial location and the choking location,

T∗
0 – T0 =

∫ L∗
0 q̇′dx
ṁCP

=
q̇

ṁCP
(13.66)

where q̇ is the total rate of thermal-energy addition over the pipe length L∗. A negative value
of q̇ corresponds with heat extraction.
If q̇1–2 is the total rate of heat transfer over a length of pipe L, separating locations 1 and 2,

we have

T02 – T01 =

∫ L2
L1 q̇′dx
ṁCP

=
q̇1–2
ṁCP

. (13.67)

Values for 4 f FL
∗/D for any initial Mach number M, together with the ratios

T/T∗, p/p∗,V/V∗, ρ/ρ∗, p0/p∗
0, and (s – s∗) /CP can be calculated from the equations above,

or obtained from the Rayleigh-flow Calculator. Figure 13.7 shows the variation with Mach
number of flow properties according to the equations derived above.
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Figure 13.7 Variation of flow properties with Mach number for Rayleigh flow of a perfect gas with
γ = 1.4

ILLUSTRATIVE EXAMPLE 13.5

Air enters a 75 mm-diameter pipe of length 10 m with a flow velocity of 800 m/s. The ini-
tial static temperature is 20 ◦C, and the static pressure is 5 bar. The air is heated at a rate of
200 kW/m. A shockwave occurs 5 m from the pipe inlet. Calculate the outlet conditions.

Solution

Figure E13.5 shows the flow configuration, with subscript 1 denoting the inlet state, 2 and 3
the conditions upstream and downstream of the shock, respectively, and 4 the outlet state.

D = 75 mm

L1–2 = 5 m L3–4 = 5 m

q̇' = 200 kW/m

T1 = 20°C T2

V2 V3

T3

p3

V4

T4

p4p2

V1 = 800 m/s

p1 = 5 bar

Figure E13.5 (not to scale)
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D = 0.075 m, L1–2 = 5 m, L3–4 = 5 m, V1 = 800 m/s, p1 = 5 × 105 Pa, T1 = 293 K, and
q̇′ = 2 × 105 W/m.
The cross-sectional area of the pipe A = πD2/4 = 4.418 × 10–3m2.
From the perfect-gas equation, the inlet density ρ1 = p1/RT1 = 5.946 kg/m3.
The mass flowrate ṁ = ρ1AV1 = 21.01 kg/s.
The inlet soundspeed c1 =

√
γRT1 = 343.1 m/s so the inlet Mach numberM1 = V1/c1 = 2.332.

From the Isentropic-flow Calculator, for M1 = 2.332, T1/T01 = 0.479 so that the inlet
stagnation temperature T01 = 293/0.479 = 611.7 K.
From the energy-conservation equation applied to the flow between the inlet and the shock-
wave, Q̇ = q̇′L1–2 = ṁCP (T02 – T01), from which T02 = 611.7+2×105×5/ (21.01 × 1004.5) =
659.1 K.
From the Rayleigh-flow Calculator withM1 = 2.332,T01/T∗

0 = 0.735 so that T∗
0 = 832.7 K. We

then have T02/T∗
0 = 0.792 and from the Rayleigh-flow CalculatorM2 = 2.010.

From the Normal-shock Calculator, withM2 = 2.010 we haveM3 = 0.576.
From the energy-conservation equation applied to the flow between the shockwave and the
outlet, noting that there is no change in the stagnation temperature across the shock, Q̇ =
q̇′L3–4 = ṁCP (T04 – T03), from which T04 = 659.1 + 2 × 105 × 5/ (21.01 × 1004.5) = 706.5 K.
We now have T04/T∗

0 = 706.5/832.7 = 0.848 and, from the Rayleigh-flow Calculator,
M4 = 0.629.
From the Isentropic-flow Calculator, for M4 = 0.629,T4/T04 = 0.927 so that the outlet static
temperature T4 = 0.927 × 706.5 = 654.7 K.
The soundspeed at outlet is then c4 =

√
γRT4 = 512.9 m/s, and the flow velocity at outlet

V4 = M4c4 = 322.5 m/s.
From the mass flowrate, the outlet density ρ4 = ṁ/AV4 = 14.75 kg/m3.
From the perfect-gas equation, p4 = ρ4RT4 = 2.771 × 106 Pa or 27.71 bar.

13.4.1 Rayleigh-flow trends

As for adiabatic and isothermal flow, first-order ordinary differential equations can be de-
rived103 for V , ρ, p, c,T0, p0, and s, but now including the heat-transfer rate per unit length q̇′
rather than fF

1
V
dV
dx

= – 1
ρ

dρ
dx

= 1(
1 –M2) q̇′

ṁCPT0
(13.68)

1
p
dp
dx

= – γM2(
1 –M2) q̇′

ṁCPT0
(13.69)

1
T
dT
dx

= 2
c
dc
dx

=
(
1 – γM2)(
1 –M2) q̇′

ṁCPT0
(13.70)

103 The derivation of the differential equations for Rayleigh flow is given in Appendix 4(c).
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1
T0

dT0
dx

=
q̇′

ṁCPT0
(13.71)

1
p0

dp0
dx

= –γM
2

2
q̇′

ṁCPT0
(13.72)

1
CP

ds
dx

= –
γ q̇′

ṁCPT
(13.73)

1
M2

dM2

dx
=

(
γM2 + 1

) [
1 +
(
γ – 1
2
)
M2
]

(
1 –M2) q̇′

ṁCPT
. (13.74)

Based upon these equations, the various changes that occur in frictionless pipe flow
with heating (i.e. positive heat transfer, q̇′ > 0) are summarised in Table 13.3.
For cooling (q̇′ < 0) all the changes for heating are reversed, including that for entropy

which then decreases. Based upon equation (13.59), the effects of heat transfer on static
temperature are illustrated in Figure 13.8 (the same curve is included in Figure 13.7).
As expected, the maximum static temperature occurs for a Mach numberM = 1/√γ , which

for air, with γ = 1.4, corresponds to M = 0.845,T/T∗ = 1.029 (point A on the curve). We
note that, when the Mach number is in the range 1/√γ < M < 1, the static temperature falls
even though thermal energy is being added to the flow. This apparent contradiction is a con-
sequence of the amount of thermal energy required to increase the kinetic energy of the flow.
If the flow is cooled once the sonic point (B on the curve) is reached, the flow becomes super-
sonic. The total temperature increases with the addition of thermal energy for both subsonic
and supersonic flow, with a maximum whenM = 1.

Table 13.3 Property changes for frictionless pipe flow with heating, under
subsonic versus supersonic conditions

Subsonic Supersonic

Mach number,M increases decreases

static pressure, p decreases increases

density, ρ decreases increases

velocity, V increases decreases

static temperature, T
{
increases forM < 1/√γ
decreases forM > 1/√γ increases

stagnation temperature, T0 increases increases

stagnation pressure, p0 decreases decreases

specific entropy, s increases increases
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13.4.2 Rayleigh line

Equations (13.59) and (13.55) can be combined to give an equation for the Rayleigh line104

in terms of the temperature ratio T/T∗, which, for a perfect gas, is equivalent to the specific-
enthalpy ratio h/h∗

s – s∗
CP

= ln
(

T
T∗
)
–
(
γ – 1
γ

)
ln

⎡
⎢⎢⎣
γ + 1 ±

√
(γ + 1)2 – 4γ T

T∗
2

⎤
⎥⎥⎦ . (13.75)

The curve representing this equation is shown in Figure 13.9.
Points A and B on the Rayleigh line correspond to points A and B in Figure 13.8.

13.5 SUMMARY

In this chapter we analysed gas flow through pipes, taking account of compressibility and
either friction or heat exchange with the fluid. We showed that in all cases the key para-
meter is the Mach number. The analyses were based on the conservation laws for mass,
momentum, and energy. So that significant results could be achieved, the flowing fluid was
treated as a perfect gas, and the flow as one dimensional.

The student should be able to

• define the terms Mach number and choking
• explain the differences between Fanno flow, isothermal pipe flow, and Rayleigh
flow

• understand the trends for each of these flows based upon the differential equations
derived

• perform calculations using the equations derived in this chapter for Fanno flow,
isothermal pipe flow, or Rayleigh flow

• for Fanno flow and Rayleigh flow, perform calculations using the Virginia Tech
Compressible Aerodynamics Calculator

• where appropriate, in carrying out the calculations, allow for the presence of a
normal shock within the flow

13.6 SELF-ASSESSMENT PROBLEMS

13.1 Air flows through a pipe of 10 mm diameter and 1.2 m length. The Fanning friction
factor is 0.005. The static pressure at inlet is 220 kPa and the static temperature 300
K; the static pressure at exit is 140 kPa. Calculate the mass flowrate assuming the
flow is (a) isothermal (b) adiabatic.
(Answers: (a) 0.0250 kg/s; (b) 0.0254 kg/s)

13.2 Air flows into an insulated pipe 80 mm in diameter with a stagnation pressure of
2 bar, stagnation temperature of 500 K, and velocity 200 m/s. The Fanning friction
factor is 0.005.

104 Sometimes referred to as the Rayleigh curve.
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(a) Calculate the maximum possible pipe length for the specified inlet conditions,
and the corresponding mass flowrate.

(b) Calculate the static pressure, static temperature, inlet velocity, andmass flowrate
if the pipe length is increased to 15 m.
(Answers: (a) 6.03 m, 1.266 kg/s; (b) 1.846 bar, 487 K, 150.4 m/s, 0.999 kg/s)

13.3 Air enters an insulated pipe 50 mm in diameter and 1 m in length at 800 m/s with
static pressure 10 bar and static temperature 100 ◦C. The Fanning friction factor
is 0.005. Calculate the location of the normal shockwave required for this flow, the
static pressure, temperature, and velocity at exit, and the mass flowrate.
(Answers: 0.455 m from inlet, 25.7 bar, 303.3 ◦C, 481.2 m/s, 14.7 kg/s)

13.4 Methane gas flows through a buried pipeline 200 m long and having a diameter of
100 mm. If the inlet velocity is 20 m/s, the inlet static pressure is 5 bar, and the gas
temperature is constant at 15 ◦C, calculate the drop in static pressure and the mass
flowrate. Assume γ = 1.32, and R = 520 kJ/kg ·K, and that the Fanning friction
factor is 0.004.
(Answers: 0.29 bar, 0.524 kg/s)

13.5 Air enters a pipe with cross-sectional area 0.01 m2 at a static pressure of 1.5 bar,
static temperature of 300 K, and a velocity of 75 m/s. If heat is added at a rate of
1.2 MW, find the static temperature, the static pressure, and the flow velocity at the
pipe exit assuming frictionless flow.
(Answers:M = 0.583, 865 ◦C, 1.083 bar, 394.2 m/s)

13.6 Air flows through a pipe 200 mm in diameter. The inlet static temperature is 650
K, the inlet static pressure is 6 bar, and the inlet velocity is 100 m/s. Liquid fuel
with a heating value of 60,000 kJ/kg is sprayed into the airflow such that the air:fuel
ratio is 40:1. Assuming complete combustion, and that the flow can be regarded as
frictionless flow of a perfect gas with γ = 1.4, and CP = 1004.5 J/kg ·K, calculate
the static pressure, static temperature, and flow velocity after the combustion zone.
(Answers: 5.11 bar, 2078 K, 375.5 m/s)



14 Flow through
axial-flow-turbomachinery blading

After some introductory remarks about turbomachinery in general, we show how the non-
dimensional parameters used in the representation of turbomachinery data are arrived at using
the principles set out in Chapter 3. As a prelude to the more complicated situation of flow
through rotating blading, we discuss first the analysis of incompressible flow through a linear
array of fixed blades (or vanes), termed a cascade, and then isentropic flow of a perfect gas
through a cascade. Both the latter and the subsequent analysis of the flow through axial-flow
compressors and turbines represent an important application of the compressible-flow the-
ory developed in Chapter 11. Prior to the detailed analysis of flow through rotating blading,
we derive Euler’s turbomachinery equation, which is a key element in the analysis of any
turbomachine.

14.1 Turbomachinery (general)

Machines designed to convert the energy of a fluid stream into mechanical energy, and
vice versa, fall into two categories: rotary fluid machines, termed turbomachines or rotody-
namic105machines, and positive-displacement machines, which are regarded as static. The
Latin prefix turbo, meaning spin, whirl, or circular motion, indicates that a key compon-
ent, called a rotor, of a turbomachine rotates. Centrifugal pumps, centrifugal compressors,
turbochargers, axial-flow pumps, axial-flow compressors, axial-flow turbines, and ducted
fans are all rotodynamic machines. An impeller is the rotating element of a centrifugal ma-
chine while for a turbine the rotor is often called a runner. Reciprocating piston pumps,
diaphragm pumps, vane pumps, screw pumps, peristaltic pumps, gear pumps, and lobe
pumps, designed primarily to operate with a liquid, are all examples of static machines al-
though a rotating component is a central element of many such pumps. The Roots blower or
supercharger is a lobe pump designed to operate with air.
This chapter is concerned primarily with axial-flow compressors and axial-flow turbines,

which form the basis of the majority of engines for large commercial and military aircraft.
The essential active component for both types of machine is the blade or vane, a relatively
thin, tapered, and twisted ‘plate’ of metal or composite material with the cross section of an
aerofoil. Flow passages may be incorporated within a blade to carry a cooling fluid. Both
compressors and turbines generally consist of many stages (multistage machines), a stage
comprising a rotor and a stator. A stator is a multi-bladed non-rotating disc where the blades
are attached to the machine’s casing. A rotor is a rotating flat disc of many blades: according to

105 Sometimes referred to simply as dynamic machines.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 14.1 Cross section of a turbofan engine (Diagram courtesy Rolls-Royce plc)

Cumpsty (1997), in the case of a compressor, typically between 30 and 100 blades. Rotor blades
are attached at one end (the root) to a rotating central shaft which, in the case of an engine,
runs through both the compressor and the turbine. Since the circumferential (or tangential)
blade speed increases in proportion to the radial distance from the rotor axis, blade twist is
required to maintain a constant angle of attack with respect to the relative gas flow. For short
blades on a relatively large diameter rotor, as in the final stages of an axial-flow compressor,
the degree of twist may be negligibly small. The opposite is true for the front fan of a turbofan
engine or for the low-pressure stages of a gas turbine.
For an aircraft engine, such as the bypass turbofan engine shown schematically in Fig-

ure 14.1, air enters the compressors, and its pressure and temperature are progressively
increased as it flows through each stage. This compressed air flows into combustors106 where
fuel is injected and burned to produce gas, at very high temperature and pressure, which flows
into the turbine. As the gas flows through the turbine stages, its temperature and pressure pro-
gressively decrease. The power produced by the turbine is used to drive both the compressors
and a large diameter fan at the front of the engine). Thrust is generated both by the bypass
airflow through the fan and the exhaust-gas momentum (the core jet).

14.2 Dimensional analysis and basic non-dimensional
parameters

The aim in this section is to use the principles of dimensional analysis set out in Chapter 3 to
determine the non-dimensional parameters of relevance to the flow of a perfect gas through

106 Combustor is a shortened form of the term combustion chamber.
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a turbomachine. We characterise the gas by the specific gas constant R and the specific-heat
ratio γ . For any given design, the machine is characterised by a length scale D, a logical choice
for which, depending upon the type of machine in question, is the diameter of the impeller or
of the largest-diameter rotor blade. We assume that the stagnation pressure107 at exit from the
machine, p02, depends upon the mass flowrate ṁ, the angular rotation speed108 Ω , the stag-
nation pressure at inlet p01, and the inlet stagnation temperature T01. We could also include
the kinematic viscosity of the fluid, ν, which (from Chapter 3) we know would simply add a
Reynolds number,ΩD2/ν, to the list of any non-dimensional parameters we derive. Generally
speaking, the Reynolds number plays a minor role in determining the behaviour of large fluid
machines and will be excluded from further consideration.
Based upon the foregoing, we may write

p02 = f
(
p01,T01,D, ṁ,Ω ,R, γ

)
. (14.1)

The dimensions of each physical quantity are

[p02] = [p01] = M
LT2 , [T01] = θ , [D] = L, [ṁ] = M

T , [Ω] = 1
T , [R] = L2

T2θ
, [γ ] = 1

where the dimension symbols, as in Chapter 3, are L for length, T for time, M for mass,
and θ for temperature. Since we have eight physical quantities and four dimensions, from
Buckingham’s Π theorem there will be four non-dimensional groups. Conventional choices
are

�1 =
p02
p01

, �2 =
ṁ

√
RT01

p01D2 , �3 = ΩD√
RT01

, and �4 = γ (14.2)

so that we can write

p02
p01

= f1
(
ṁ

√
RT01

p01D2 , ΩD√
RT01

, γ
)

(14.3)

or

�1 = f1 (�2,�3,�4) . (14.4)

The first of the four parameters, p02/p01, which represents the pressure ratio across the ma-
chine, could be replaced by the non-dimensional pressure difference �p0/p01, where �p0 =∣∣p02 – p01∣∣ (see also Subsection 14.2.1). The second parameter is termed the mass-flowrate
coefficient or simply the flow coefficient, while the third is effectively a blade-tip Mach num-
ber, since the soundspeed corresponding to T01 is

√
γRT01, and ΩD is twice the tipspeed of

a rotor of diameter D. The outlet stagnation temperature T02, the power input (for a com-
pressor) or output (for a turbine), P, and the torque, G, must also depend upon p01,T01,D, ṁ,
Ω ,R, and γ dependencies, which can be expressed in non-dimensional form as

107 Instead of the stagnation pressure and temperature, this analysis could be formulated in terms of the static
pressure and temperature.

108 Instead ofΩ we could just as well have chosen the shaft rotation speed (in rpm) N = 60Ω/2π .
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�5 =
T02
T01

= f2
(
ṁ

√
RT01

p01D2 , ΩD√
RT01

, γ
)

(14.5)

�6 = G
ρ01Ω

2D5 = f3
(
ṁ

√
RT01

p01D2 , ΩD√
RT01

, γ
)

(14.6)

and

�7 = P
ρ01Ω

3D5 = f4
(
ṁ

√
RT01

p01D2 , ΩD√
RT01

, γ
)
. (14.7)

�6 is termed the torque coefficient, and �7 the power coefficient. The symbol ρ01 =
p01/RT01 represents the stagnation density at inlet.
We note that in the absence of any heat input or output, according to the form of the steady-

flow energy equation derived in Chapter 11, equation (11.12), the stagnation temperature
change T02 – T01 = P/ṁCP = (γ – 1) P/ṁγR. If we substitute P = ṁγR (T02 – T01) / (γ – 1)
into�7, and substitute for ṁ and D in terms of�2 and�3, we find

�7 =
γ

(γ – 1)
(T02 – T01)

T01

�2

�
3
3

(14.8)

from which we conclude that�7 can be replaced by either (T02 – T01) /T01 or�5 (= T02/T01).
Finally, therefore, we find that the flow of a perfect gas through a turbomachine can be

represented by the following six parameters

�1 =
p02
p01

, �2 =
ṁ

√
RT01

p01D2 , �3 = ΩD√
RT01

, �4 = γ , �5 =
T02
T01

,

and �6 = G
ρ01Ω

2D5 . (14.9)

Thus, the performance of a given design of compressor or turbine can be represented in graph-
ical form by curves of p02/p01, T02/T01, and G/ρ01Ω2D5 plotted versus ṁ

√
RT01/p01D2 for

fixed values of the parameterΩD/
√
RT01.

14.2.1 Related non-dimensional parameters

A number of related non-dimensional parameters can be defined by combining some of the
groups derived above. Although generally valid, they are more usually encountered in the ana-
lysis of hydraulic (i.e. incompressible-flow) machines. We can replace p01 in �2 by ρ01RT01
and introduce �3 to give �2 = ṁ/ρ01

√
RT01D2 = ṁ�3/ρ01ΩD3, from which we see that an

alternative to�2 as a non-dimensional group, based upon the mass flowrate ṁ, is

φ = ṁ
ρ01ΩD3 (14.10)

which, like�2, is called the flow coefficient109.

109 Care should be taken to avoid confusion which can obviously arise when two different quantities, such as �2
and φ, are given the same name.
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An alternative to�1 is

ψ =
(
p02 – p01

)
ρ01 (ΩD)2

(14.11)

which, like�p0/p01, is a parameter that can be used to characterise the pressure change across
a radial hydraulic machine.
Another parameter encountered in the characterisation of radial hydraulic machines is the

so-called specific speed NS, which combines φ and ψ in such a way as to remove the length
scale, D, and produce a non-dimensional parameter proportional to rotational speed,Ω

NS =
√
φ

ψ
3
4
=

√
ṁρ

1
4
01Ω(

p02 – p01
) 3
4
. (14.12)

It is also apparent that�7 and ψ can be combined to eliminate the length scale. The result is a
non-dimensional quantity also proportional toΩ and called the power specific speed, NP

NP =
√
�7

ψ
5
4

=
√
Pρ

3
4
01Ω(

p02 – p01
) 5
4
. (14.13)

14.2.2 Loss coefficients and efficiencies

The term losses in turbomachinery refers to the reduction in stagnation pressure or stagna-
tion enthalpy as a consequence of thermodynamic irreversibilities such as surface friction,
boundary-layer separation, secondary flows, non-zero incidence angles, and shockwaves. For
the most part such losses are difficult to account for analytically and are usually dealt with by
applying empirical loss coefficients.
For one stage of a compressible-flow machine, a loss coefficient K may be defined by

K =
�p0
p0 – p

(14.14)

where�p0 is the loss in stagnation pressure across the stage and p0 –p is the dynamic pressure
at either inlet (for a compressor stage) or outlet (for a turbine stage).
Stagnation enthalpy provides an alternative to stagnation pressure for the definition of a loss

coefficient ξ

ξ =
h02 – h02,S

V2/2
(14.15)

where h02 is the stagnation enthalpy at outlet from a stage and h02,S is the stagnation enthalpy
at outlet for an isentropic flowwith the same initial and final stagnation pressures. The denom-
inator represents the specific kinetic energy based upon the inlet velocity, the outlet velocity,
or the blade-tip speed. A similar definition is based upon static enthalpy.
The overall efficiency of a machine is related directly to these loss coefficients, and losses

can also be characterised by various efficiencies defined as the ratios of the actual static or
stagnation enthalpy across a stage to the change in the same quantity for an isentropic process.
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For detailed information about loss coefficients and efficiencies, the reader should con-
sult one of the specialist turbomachinery texts, such as Japikse and Baines (1994) or
Cumpsty (1989).

14.3 Linear blade cascade: Geometry and notation

As illustrated in Figure 14.2, a linear blade cascade110 is a row of evenly spaced, identical blades,
which may be typical of axial-compressor blading (Figure 14.2(a)) or axial-turbine blading
(Figure 14.2(b)). The geometry of a linear cascade is a close approximation to the rotor or
stator of a turbomachine if the mean radius of the machine blading is large compared with
the blade length z. We refer to the flow direction normal to the cascade as the axial direction,
or x-direction, and the direction parallel to the front and back planes of the cascade as the
tangential direction, or y-direction.
The symbols in the figure represent the following quantities

c blade chord length
s blade spacing (or pitch)
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Figure 14.2 Linear blade cascades: (a) axial-compressor blade shape (b) axial-turbine blade shape

110 The term rectilinear cascade is also used.
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V1 flow velocity at cascade inlet
V2 flow velocity at cascade exit
α1 gas-flow anglemeasured between the V1-direction and the axial direction
α2 gas-flow angle measured between the V2-direction and the axial direction
χ1 blade angle in, measured between the axial direction and a line tangent to the camber

line at the leading edge
χ2 blade angle out, measured between the axial direction and a line tangent to the camber

line at the trailing edge
i incidence, i = α1 – χ1
δ deviation, δ = α2 – χ2
θ turning angle, θ = α1 – α2 or α2 – α1
ξ blade stagger angle111
φ camber angle, φ = χ1 – χ2 or χ2 – χ1

The quantity σ (Greek letter sigma) = c/s is termed the solidity. High solidity corresponds
with σ � 1: the blades are close together so the flow is well guided but there is a high degree
of blockage. For low solidity, σ � 1: the blades are far apart, so there is little blockage, but the
flow is poorly guided.
For simplicity, in the analyses developed in this book we shall assume that the gas flow

follows the camber line112 of a blade, i.e. a line drawn midway between the two surfaces of
the blade, so that both the incidence iand the deviation δ are taken as zero. For compressor
blading, the camber-line shape is usually a circular arc or, sometimes, a parabola. In general, it
can be seen that the flow turning angle θ = φ + i – δ so that if i = δ = 0, θ = φ.
If we take the camber line as a circular arc of radius R, then the chord length c can

be shown to be given by c = R
√
2 (1 – cosφ), and the axial length w of the cascade by

w = R (sinχ1 – sinχ2), two relations which are useful in constructing a schematic diagram
of a cascade. The stagger angle ξ is given by ξ = 90◦ – (χ1 + χ2) /2. If we combine the equa-
tions for c and w with the elimination of R, we have w/c = (sinχ1 – sinχ2) /

√
2 (1 – cosφ).

Figure 14.3 shows the results of constructing diagrams with χ1 = 40◦ and (a) χ2 = 20◦ and (b)
χ2 = 60◦. In the first case, ξ = 60◦, and w/c = 0.866; in the second, ξ = 40◦, and w/c = 0.643.
Although the channel between adjacent blades is of constant width s, a consequence of the

blade curvature is that the effective flow area (taken normal to the flow direction) varies. If
χ1 > χ2, as in Figure 14.3(a), the flow area increases. Assuming the flow is subsonic, from
what we learned in Section 7.6, the consequence of an increase in cross-sectional area is a
decrease in flow velocity and an increase in static pressure. The opposite is true if χ1 < χ2,
as in Figure 14.3(b). As we shall learn in Chapter 18, increasing static pressure in the flow
direction is referred to as an adverse pressure gradient because it can lead to separation of
the flow from the surface, stall, instability, and, in the case of a compressor, surge, all of which
are undesirable. The pressure ratio across a compressor stage is therefore usually relatively low
(1.05 to 2) as are the forces acting on an individual blade so that the blades are quite thin. This
reasoning also explains why there are so many stages (20 to 30 is typical for an aeroengine
compressor) in a multistage axial-flow compressor. Turbine blades, on the other hand, are

111 Although the symbol γ is commonly used for the stagger angle, to avoid confusion with the specific-heat ratio,
we use the symbol ξ .

112 The term blade centre line is sometimes used.
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Figure 14.3 Construction of a cascade geometry for (a) χ1 > χ2 and (b) χ1 < χ2

generally much thicker because the flow in a blade channel leads to a favourable pressure
gradient, i.e. decreasing pressure, with little danger of large-scale separation. The pressure
ratio for a turbine stage is thus quite large, and the number of stages in a multistage axial-flow
turbine relatively low (in an aircraft engine, a high-pressure turbine may have as few as two
stages, a low-pressure turbine less than ten).

14.4 Incompressible flow through a linear cascade

The broken lines in Figure 14.4(a) show the control volume, centred on a blade camber line,
that will be used in the analysis of flow through a single cascade channel. The upper and lower
boundaries also have the shape of the camber line, and each boundary is located midway
between two adjacent blades. The upstream and downstream boundaries coincide with the
front and back faces of the cascade. The analysis will assume one-dimensional, incompress-
ible flow through the control volume. In addition to the notation introduced in Figure 14.2,
Figure 14.4(a) includes the components of the flow velocity V in the axial direction, VA, and
in the tangential direction, VT , the static pressures p acting on the upstream and downstream
faces of the control volume, and the x- and y-components of the force acting on the fluid within
the control volume, FX and FY . As shown in Figure 14.4(b), the force components acting on
a blade, FBX and FBY , will be equal in magnitude but opposite in sign and direction toFX and
FY , i.e. FBX = –FX , and FBY = –FY . The subscripts 1 and 2 refer to the inlet and outlet of
the control volume, respectively, and the subscript B to the blade. If the blade length is z, and
the blade spacing is s, then the mass flowrate ṁ′ through the control volume (i.e. through a
single flow channel between adjacent blades) is given by the continuity equation derived in
Chapter 6 (equation (6.1)) as

ṁ′ = ρszVA1 = ρszVA2. (14.16)
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Figure 14.4 Cascade-flow analysis: (a) control volume (b) force components acting on a blade

Since the fluid is incompressible, with density ρ, we conclude that the axial component of
velocity is constant, i.e.

VA1 = VA2 = VA. (14.17)

From the flow geometry,

VA = V1 cosα1 = V2 cosα2. (14.18)

If the upstream static pressure is p1, and the downstream static pressure is p2, then, from the
linearmomentum equation applied to the control volume (see Section 9.2) in the x-direction,
the net axial force acting on the fluid within the control volume is given by the equation

FX +
(
p1 – p2

)
sz = ṁ′ (VA2 – VA1) = 0 (14.19)

where FX is the x-component of the force exerted on the fluid by a single blade (the fluid-
structure interaction force). Because the axial component of velocity is constant, there is no
change in the axial component of the momentum flowrate, and FX is given by

FX =
(
p2 – p1

)
sz. (14.20)

From the linear momentum equation applied to the control volume in the y-direction we have

FY = ṁ′ (VT2 – VT1) = ρszVA (VT2 – VT1) . (14.21)

We have already VA = V cosα and from the flow geometry we also see that

VT = V sinα. (14.22)
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If we combine equations (14.18) and (14.22) to eliminate V , we have

VT = VA tanα (14.23)

so that, from equation (14.21)

FY = ρszV2
A (tanα2 – tanα1) . (14.24)

To determine the static-pressure change across the control volume, we introduce an exten-
ded form of Bernoulli’s equation, which we derived in Chapter 7 as equation (7.5), neglecting
altitude changes

p01 = p02 +�p0F (14.25)

where p01 and p02 are the stagnation pressures upstream and downstream of the control
volume, respectively, and�p0F is the reduction in stagnation pressure due to surface friction.
Since stagnation pressure is given by

p0 = p + 1
2ρV

2 (14.26)

from equation (14.25) we have

p1 + 1
2ρV

2
1 = p2 + 1

2ρV
2
2 +�p0F (14.27)

or

p2 – p1 = 1
2ρ
(
V2
1 – V2

2
)
–�p0F . (14.28)

From equations (14.18) and (14.22), we have

V2 = V2
A + V2

T (14.29)

so that, sinceVA1 = VA2, equation (14.28) can be rewritten in terms of the change in the square
of the tangential component of velocity, VT :

p2 – p1 = 1
2ρ
(
V2
T1 – V

2
T2
)
–�p0F . (14.30)

The two components of force, FX and FY , can thus be written as

FX =
[
1
2ρ
(
V2
T1 – V

2
T2
)
–�p0F

]
sz (14.31)

and

FY = ρszVA (VT2 – VT1) . (14.32)

The force components acting on an individual blade are thus

FBX =
[
1
2ρ
(
V2
T2 – V

2
T1
)
+�p0F

]
sz (14.33)

and

FBY = ρszVA (VT1 – VT2) . (14.34)
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14.5 Compressible flow through a linear cascade

We consider now isentropic flow of a perfect gas through a linear cascade of blades. As we
pointed out in Section 14.4, although the blades in a cascade are uniformly spaced, the effective
flow area varies through each channel of the cascade as the blade angle χ changes from its
inlet value χ1 to its outlet value χ2. Changes in flow properties are a consequence of this area
change, much as was the case in Section 11.7, where we analysed isentropic flow of a perfect
gas through a convergent-divergent nozzle. If the width of the blade channel (i.e. the distance
between adjacent blade surfaces measured normal to the flow) is t at a location where the blade
angle is χ then t = s cosχ . As stated in Section 14.3, we shall assume that the flow follows the
blade camber line so that the gas-flow angle α is equal to χ . The inlet area is thenA1 = sz cosα1
and the outlet area A2 = sz cosα2. The area ratio is thus A2/A1 = cosα2/ cosα1. Although the
analysis of flow through a cascade could be written in terms of the area ratio, we shall retain
the flow angles.
We shall seek to express the outlet Mach numberM2 in terms of the inlet Mach numberM1.

We start with the continuity equation (6.1), which may be written as

ṁ′ = ρ1szVA1 = ρ2szVA2 (14.35)

where the symbols are the same as for the incompressible case but now reflect the fact that the
density at inlet to the cascade, ρ1, will be different from that at outlet, ρ2.
Equation (14.35) leads to

ρ1VA1 = ρ2VA2. (14.36)

The axial-velocity component VA = V cosα so that equation (14.36) becomes

ρ1V1 cosα1 = ρ2V2 cosα2. (14.37)

From the definition of the Mach number, we haveV = Mc = M
√
γRT so that equation (14.37)

becomes

ρ1M1
√
T1 cosα1 = ρ2M2

√
T2 cosα2. (14.38)

From the perfect-gas equation, equation (2.9)

p = ρRT (14.39)

which can be used to eliminate the gas densities from equation (14.38) so that

p1M1 cosα1√
T1

=
p2M2 cosα2√

T2
. (14.40)

The stagnation and static properties are related to the Mach number as follows (see
Chapter 11)

p0
p =
[
1 + (γ – 1)

2 M2
]γ /(γ –1)

(11.22)
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and

T0
T = 1 + (γ – 1)

2 M2. (11.20)

We can substitute for p and T in equation (14.40) using these two equations, recognising that,
since the flow is assumed to be isentropic, both the stagnation pressure, p0, and the stagnation
temperature, T0, remain constant as the gas passes through the cascade. Equation (14.40) then
leads to

M2 cosα2[
1 + (γ – 1)

2 M2
2

](γ+1)/2(γ –1) = M1 cosα1[
1 + (γ – 1)

2 M2
1

](γ+1)/2(γ –1) . (14.41)

For a given cascade, the flow angles α1 and α2 are known. If α1 > α2 the flow channel is di-
vergent and we should expect M2 < M1, and p2 > p1, if the inlet flow is subsonic, and the
reverse if the flow is supersonic. If α1 < α2 the flow channel is convergent and we should
expectM2 > M1, and p2 < p1, if the inlet flow is subsonic, and again the reverse if the flow is
supersonic. WithM1,α1, and α2 specified,M2 can be calculated from equation (14.41), unfor-
tunately necessitating an iterative procedure. Once M2 is known, all other flow quantities are
easily calculated. Figure 14.5 shows how the outlet Mach number M2 and overall static pres-
sure ratio p2/p1 vary with the outlet-flow angle α2 for a cascade with inlet-flow angle α1 = 20◦,
for a subsonic flow with inlet Mach number M1 = 0.5 (Figure 14.5(a)), and for a supersonic
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Figure 14.5 Outlet Mach number M2 and pressure ratio p2/p1 versus outlet-flow angle α2 for flow
through a cascade with inlet-flow angle α1 = 20◦ and inlet Mach number (a)M1 = 0.5 and (b)M1 = 1.5
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flow with M1 = 1.5 (Figure 14.5(b)). We note that no account has been taken of the influ-
ence of the blade cross section in the calculations underlying Figure 14.5, only of the inlet- and
outlet-flow angles.
Just as with a convergent duct, as discussed in Section 11.6, for a given inlet Mach number

M1 and inlet-flow angle α1, as the outlet-flow angle α2 increases, the outlet Mach numberM2
increases until it reaches unity and the flow channel is choked. It is easily seen from equation
(14.41) that the choking limit (M2 = 1) is reached when the outlet-flow angle α∗

2 is given by

cosα∗
2 =

[
γ + 1

2 + (γ – 1)M2
1

](γ+1)/2(γ –1)
M1 cosα1. (14.42)

Another limiting case is when the outlet-flow angle falls to zero (i.e. the outflow is in the axial
direction) and the channel area is then a maximum. The corresponding outlet Mach number
M2 can be calculated from

M2[
1 + (γ – 1)

2 M2
2

](γ+1)/2(γ –1) = M1 cosα1[
1 + (γ – 1)

2 M2
1

](γ+1)/2(γ –1) . (14.43)

The choking limit and the axial-outflow limit are both identified in Figure 14.5.

ILLUSTRATIVE EXAMPLE 14.1

Air at 500◦C and 10 bar flows through a linear cascade with blade spacing 100 mm, blade
height 50 mm, and an initial flow direction of 30◦ measured from the axial-flow direction.
Determine the Mach number, flow velocity, static pressure, and static temperature at outlet
from the cascade for the following conditions: (a) mass flowrate between adjacent blades of 6
kg/s and an outflow direction of 20◦, (b) mass flowrate of 6 kg/s and an outflow direction of
40◦, and (c) mass flowrate of 11 kg/s and an outflow direction of 20◦.

Solution

(a) s = 0.1 m, z = 0.05 m, ṁ′ = 6 kg/s,T1 = 773 K, p1 = 106 Pa, α1 = 30◦, α2 = 20◦, R = 287
m2/s2 K, and γ = 1.4.
From the perfect-gas equation, ρ1 = p1/RT1 = 4.508 kg/m3.
From the continuity equation, VA1 = ṁ′/ρ1sz = 266.2 m/s.
Since VA1 = V1 cosα1, we have V1 = 307.4 m/s.
Since c1 =

√
γRT1 we have c1 = 557.3 m/s, andM1 = V1/c1 = 0.552.

From the Isentropic-flow Calculator, for M1 = 0.552, we find T1/T0 = 0.943, and p1/p0 =
0.813, so that T0 = 820.0 K, and p0 = 1.230 × 106 Pa.
With M1 = 0.552, the right-hand side of equation (14.41) has the value 0.400 and we need to
find the value of M2 which leads to the same value for the left-hand side. The calculation is
aided if we recognise that (γ + 1) /2 (γ – 1) = 3. We guess M2 = 0.5, for which the left-hand
side equals 0.406. As a second guess we take M2 = 0.49, for which the left-hand side equals
0.400.
From the Isentropic-flow Calculator with M2 = 0.490, we find T2/T0 = 0.954, and p2/p0 =
0.849, so thatT2 = 782.5 K, and p2 = 1.044×106 Pa, i.e. as expected, both the static temperature
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and the static pressure have been increased by compression of the flow as it passed through
the cascade. The outlet-gas soundspeed is c2 =

√
γRT2 = 560.7 m/s so the outlet-gas velocity

V2 = M2c2 = 274.7m/s.
(b) s = 0.1 m, z = 0.05 m, ṁ′ = 6 kg/s, T1 = 773 K, p1 = 106 Pa, α1 = 30◦, α2 = 40◦, R = 287
m2/s2K, and γ = 1.4.
The inlet-flow conditions are the same as for part (a), i.e. ρ1 = 4.508 kg/m3,VA1 = 266.2 m/s,
V1 = 307.4 m/s, c1 = 557.3 m/s, M1 = 0.552, T0 = 820.0 K, p0 = 1.230 × 106 Pa, and the
right-hand side of equation (14.41) again equals 0.400. The outlet angle α2 is now 40◦, so as
an initial guess forM2 we choose 0.600 for which the left-hand side equals 0.373. As a second
guess we takeM2 = 0.65 for which the left-hand side equals 0.390. After a few more iterations,
we findM2 = 0.682.
From the Isentropic-flow Calculator with M2 = 0.682, we find T2/T0 = 0.915, and p2/p0 =
0.732, so that T2 = 750.2 K, and p2 = 9.01 × 105 Pa, i.e. both the static temperature and
the static pressure have now been decreased by expansion of the flow as it passed through the
cascade. The outlet-gas soundspeed is c2 =

√
γRT2 = 549.0 m/s so the outlet-gas velocity

V2 = M2c2 = 374.4m/s.
(c) s = 0.1 m, z = 0.05 m, T1 = 773 K, ṁ′ = 11 kg/s, p1 = 106 Pa, α1 = 30◦,α2 = 20◦, R = 287
m2/s2K, and γ = 1.4.
The inlet density ρ1 = 4.508 kg/m3, as before.
From the continuity equation, VA1 = ṁ′/ρ1sz = 488.1 m/s.
Since VA1 = V1 cosα1, we have V1 = 563.6 m/s.
The inlet soundspeed is unchanged, c1 = 557.3 m/s, soM1 = V1/c1 = 1.011.
From the Isentropic-flow Calculator, for M1 = 1.011, we find T1/T0 = 0.830, and p1/p0 =
0.521, so that T0 = 931.1 K, and p0 = 1.918 × 106 Pa.
WithM1 = 1.011, the right-hand side of equation (14.41) has the value 0.501. We guessM2 =
1.2, for which the left-hand side equals 0.528. As a second guess we take M2 = 1.3, for which
the left-hand side equals 0.510. After a few more iterations we haveM2 = 1.342, for which the
left-hand side is 0.501.
From the Isentropic-flow Calculator with M2 = 1.342, we find T2/T0 = 0.735, and p2/p0 =
0.341, so that T2 = 684.5 K, and p2 = 6.535× 105 Pa, i.e. in contrast to the subsonic case, both
the static temperature and the static pressure have been decreased by expansion of the flow as
it passed through the cascade.

14.5.1 Blade forces

As for the incompressible-flow case, discussed in Section 14.4, in order to determine the forces
exerted by the gas flow on a single blade, or by a blade on the gas flow, we must now apply the
linear momentum equation to the fluid flowing through the control volume (the flow situation
is identical to that shown in Figure 14.4).
The momentum equation for the x-direction is

FX +
(
p1 – p2

)
sz = ṁ′ (VA2 – VA1) (14.44)

but, in contrast to the situation for incompressible flow, it is now the case that the axial
component of velocity VA changes.
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The linear momentum equation for the y-direction is identical to that for the
incompressible-flow situation

FY = ṁ′ (VT2 – VT1) . (14.45)

The force components acting on a single blade are equal in magnitude but opposite in sign to
the force components exerted by the blade on the gas, i.e.

FBX = –FX = ṁ′ (VA1 – VA2) +
(
p1 – p2

)
sz (14.46)

and

FBY = –FY = ṁ′ (VT1 – VT2) . (14.47)

As before, the subscript B indicates that the force is that acting on the blade.
The resultant force acting on a blade is then

RB =
√
F2BX + F2BY (14.48)

and the angle θB between RB and the axial direction is

θB = tan–1
(
FBY
FBX

)
. (14.49)

ILLUSTRATIVE EXAMPLE 14.2

Calculate the resultant force and its direction acting on a single blade in the cascade considered
in Illustrative Example 14.1 for all three flow conditions.

Solution

(a) From Illustrative Example 14.1, we have ṁ′ = 6 kg/s, s = 0.1 m, z = 0.05 m,α1 = 30◦,
α2 = 20◦, p1 = 106 Pa, p2 = 1.044 × 106 Pa, V1 = 307.4 m/s, and V2 = 274.8m/s.
We also have VA1 = 266.2 m/s, VA2 = V2 cosα2 = 258.3 m/s, VT1 = V1 sinα1 = 153.7 m/s,
and VT2 = V2 sinα2 = 93.97 m/s.
From equation (14.46) FBX = – 169.3 N and from equation (14.47) FBY = 358.4 N, so
that RB =

√
F2BX + F2BY = 396.4 N. The direction is an angle given by θB = tan–1

(FBY /FBX) = –64.7◦.
(b) From Illustrative Example 14.1, we have ṁ′ = 6 kg/s, s = 0.1 m, z = 0.05 m,α1 = 30◦,
α2 = 40◦, p1 = 106 Pa, p2 = 9.01 × 105 Pa, V1 = 307.4 m/s, and V2 = 374.4 m/s.
We also have VA1 = 266.2 m/s, VA2 = V2 cosα2 = 286.8 m/s, VT1 = V1 sinα1 = 153.7 m/s,
and VT2 = V2 sinα2 = 240.7 m/s.
From equation (14.46) FBX = 372.7N and from equation (14.47) FBY = –521.9 N,

so that RB =
√
F2BX + F2BY = 641.3 N. The direction is given by θB = tan–1 (FBY /FBX) – 54.5◦

(c) From Illustrative Example 14.1, we have ṁ′ = 11 kg/s, s = 0.1 m, z = 0.05 m,α1 = 30◦,
α2 = 20◦, p1 = 106 Pa, p2 = 6.535 × 105 Pa, V1 = 563.6 m/s, and V2 = 703.8 m/s.
We also have VA1 = 488.1 m/s, VA2 = V2 cosα2 = 661.4 m/s, VT1 = V1 sinα1 = 281.8 m/s,
and VT2 = V2 sinα2 = 240.7 m/s.
From equation (14.46) FBX = –173.8 N and from equation (14.47) FBY = 451.8 N, so that
RB =

√
F2BX + F2BY = 484.1 N. The direction is given by θB = tan–1 (FBY /FBX) = –69◦.

The results of parts (a) and (b) are illustrated through the vector triangles in Figure E14.2.
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Figure E14.2

14.6 Rotor-flow velocity triangles

Until now in this chapter we have considered flow through a stationary array of blades. We
turn now to flow through a ring of blades attached to a rotating disc, i.e. a compressor or
turbine rotor. To analyse such a flow, it is convenient to consider flow relative to the rotor. If
the blade length z is much less than the rotor radius R, then it is reasonable to treat the flow as
two-dimensional and very similar to cascade flow. The circumferential velocity of the rotor U
is determined at the mean radius of the rotor, R, so that U = ΩR,Ω being the angular velocity
of the rotor in rad/s. If the mean radius changes from R1 at entry to the rotor to R2 at exit,
there will be a change in U from U1 to U2. If the rotational speed of the rotor in rpm is N,
thenΩ = 2πN/60. If the fluid absolute velocity is V , and the fluid velocity relative to the rotor

blade isW, then
⇀

V =
⇀

W +
⇀

U , the arrows indicating that these are vector quantities and that the
addition is a vector addition, as illustrated by the velocity triangles in Figure 14.6: (a) represents
a turbine rotor, and (b) a compressor rotor. The velocity W is also referred to as the velocity
in a rotating frame of reference, and V as the velocity in an absolute or stationary frame of
reference. The subscripts 1 and 2 refer to the inlet flow and the outlet flow, respectively. The
direction of the absolute velocity with respect to the axial direction is measured by the angle
α, and that of the relative velocity by the angle β . For consistency with our analysis of cascade
flow, it is assumed that the relative flow follows the blade camber line, i.e. β = χ .
Both V and W can be resolved into axial components, VA and WA, and tangential

components, VT andWT , such that

VA = V cosα, VT = V sinα, WA = W cosβ , and WT = W sinβ . (14.50)
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Figure 14.6 Velocity triangles for flow through (a) a turbine rotor and (b) a compressor rotor

It can be seen from the velocity triangles that WA = VA, as must be the case since the blade
speed U has no axial component. Also, from the velocity triangles we have

W2 = V2 + U2 – 2UV sinα. (14.51)

An axial-flow turbine stage comprises a ring of fixed guidevanes or nozzles, termed a stator,
followed by a rotor. An axial-flow compressor stage consists of a rotor followed by a stator.
The first stage of a multistage compressor is preceded by inlet guidevanes which accelerate the
flow rather than diffuse it. For a particular stage in a multistage machine, the purpose of the
stator is to accept the flow from the rotor of the previous stage and turn it into the appropriate
direction for the succeeding rotor.

14.7 Euler’s turbomachinery equation for an axial-flow rotor

We consider flow through an idealised rotor such as that shown in either Figure 14.6(a) or
Figure 14.6(b). For an axial-flow turbomachine, it can be assumed that the radial component
of flow velocity is negligible so that the fluid velocity has two non-zero components: tangential
VT and axial VA. The flow enters at mean radius R1 with tangential velocity VT1 and leaves at
radius R2 with tangential velocity VT2. Themoment of momentum (or angular momentum)
per unit mass about the rotor axis is thus R1VT1 at entry, and R2VT2 at outlet. If the mass
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flowrate is ṁ, the torque T exerted on the flow by the rotor to produce this change in the
moment of momentum is given by

T = ṁ
(
R2VT2 – R1VT1

)
(14.52)

which is known as Euler’s turbomachinery equation and is valid for both axial-flow com-
pressors (T > 0) and axial-flow turbines (T < 0), and for both incompressible and
compressible flow. If the angular velocity of the rotor is Ω , the rate of work input113 to the
flow Ẇ, i.e. the power input P, is

P = Ẇ = ΩT = Ωṁ
(
R2VT2 – R1VT1

)
. (14.53)

Since the blade speed U at radius R is given by U = ΩR, equation (14.53) can be written as

P = Ẇ = ṁ (U2VT2 – U1VT1) (14.54)

another form of Euler’s turbomachinery equation. If the flow is assumed to be adiabatic, the
power input into the flow must equal the change in the stagnation enthalpy flowrate, i.e.

P = Ẇ = ṁ (U2VT2 – U1VT1) = ṁ (h02 – h01) (14.55)

where the stagnation enthalpy h0 = h + V2/2, h being the specific enthalpy of the fluid, and V
the absolute velocity. From equation (14.42) we see that

h2 + 1
2V

2
2 – U2VT2 = h1 + 1

2V
2
1 – U1VT1. (14.56)

From the velocity triangle we see that V2 = V2
A + V2

T , and W2 = W2
A + W2

T . Since the axial
components of velocity, VA and WA, are unaltered by the tangential blade velocity U, we
have V2 – W2 = V2

T – W2
T . We also have VT + WT = U so that V2 – W2 = V2

T – W2
T =

(VT +WT) (VT –WT) = U (2VT – U) , or V2 – 2UVT = W2 – U2. If we use this result to
substitute for V2

1 and V2
2 in equation (14.56), we have

h2 + 1
2W

2
2 – 1

2U
2
2 = h1 + 1

2W
2
1 – 1

2U
2
1 . (14.57)

The combination h +W2/2 is referred to as the relative stagnation enthalpy, h0,REL while the
combination of termsh+W2/2–U2/2 has been termed the rothalpy, I. Equation (14.57) shows
that for an adiabatic flow, as assumed in the derivation of this equation, the rothalpy remains
constant through a turbomachine. For a perfect gas h = CPT, so that equation (14.57) can be
written in terms of the static temperature T as

CPT2 + 1
2W

2
2 – 1

2U
2
2 = CPT1 + 1

2W
2
1 – 1

2U
2
1 (14.58)

and in terms of the relative stagnation temperature T0,REL as

CPT02,REL – 1
2U

2
2 = CPT01,REL – 1

2U
2
1 (14.59)

113 For a turbine, the purpose of which is to convert flow energy into mechanical energy, the power output
will be –P.
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the relative stagnation temperature being defined as

T0,REL = T + W2

2CP
= T
[
1 +
(
γ – 1
2

)
M2

REL

]
(14.60)

where the relative Mach numberMREL = W/c.
We can also define a relative stagnation pressure p0,REL as

p0,REL =
[
1 +
(
γ – 1
2

)
M2

REL

]γ /(γ –1)
. (14.61)

We observe that, for an axial compressor or turbine, the mean blade radius for a single stage
is approximately constant, so that U1 ≈ U2, and both the relative stagnation enthalpy and the
relative stagnation temperature then remain constant. The relative stagnation pressure also
remains constant across the rotor if the flow is assumed to be isentropic. In essence the rotor
problem has been reduced to the cascade problem dealt with in Section 14.5, provided the
stagnation temperature, T0, is replaced by the relative stagnation temperature, T0,REL, and the
absolute velocity, V , by the relative velocity,W.
As already stated, Euler’s turbomachinery equation (14.52) is valid for both compressible

and incompressible flow, and therefore so is equation (14.55). For an incompressible flow, it is
more usual to see the latter equation written as

P = Ẇ = ṁ (U2VT2 – U1VT1) = Q̇
(
p02 – p01

)
. (14.62)

If we introduce the first Tds, or Gibbs, equation, the justification for replacing ṁ (h02 – h01)
in equation (14.53) by Q̇

(
p02 – p01

)
, and the associated limitations, become clear:

Tds = du + pd
(
1
ρ

)
(14.63)

wherein s is the specific entropy and u is the specific internal energy. We observe that, for
an incompressible flow, equation (14.63) shows that Tds = du, i.e. an increase in the specific
internal energy is consistent with an increase in specific entropy. From the outset we assumed
that the flow is adiabatic. If, in addition, we now assume that it is reversible (i.e. no frictional
effects) then ds = 0, i.e. the flow is isentropic, and also for an incompressible flow there is no
change in the internal energy.
By definition, the specific enthalpy h = u + p/ρ so that equation (14.63) leads to the second

Tds equation, which was introduced in Chapter 11

Tds = dh – 1
ρ
dp. (11.1)

For an incompressible, isentropic flow, equation (11.1) may be integrated and we have

h2 – h1 = 1
ρ

(
p2 – p1

)
. (14.64)

If we add V2
2 /2 – V2

1 /2 to both sides of equation (14.52), we have

h2 + 1
2V

2
2 –
(
h1 + 1

2V
2
1

)
=
p2
ρ

+ 1
2V

2
2 –
(
p1
ρ

+ 1
2V

2
1

)
(14.65)
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which may be rewritten (since the flow is incompressible) as

h02 – h01 = 1
ρ

(
p02 – p01

)
. (14.66)

Finally, if we use equation (14.66) to substitute for h02 – h01 in equation (14.55), we have

P = Ẇ = ṁ (U2VT2 – U1VT1) = ṁ
ρ

(
p02 – p01

)
= Q̇
(
p02 – p01

)
(14.67)

which is the equation for the power input or output of an axial-flow turbomachine where
the fluid is incompressible. In more general applications for turbomachinery handling an
incompressible fluid, we have

P = Ẇ = ṁ
ρ

(
p02 – p01

)
= Q̇
(
p02 – p01

)
. (14.68)

14.8 Compressible flow through an axial turbomachine stage

We complete this chapter by applying many of the principles of compressible flow of a perfect
gas, established in Chapter 11 and previous sections of this chapter, to gas flow through a
stator-rotor stage, such as the axial-flow turbine stage shown in Figure 14.7.
At any axial location within either an axial-flow compressor or a turbine, the gas flows

through the annular space between concentric surfaces of outer radius RO and inner radius
RI . The corresponding blade length114 z = RO – RI , and the flow area A is given by A =
π
(
R2O – R2I

)
= π (RO – RI) (RO + RI). If we define a mean diameter D by D = (DO + DI) /2 =

RO + RI , then

A = πzD. (14.69)

We shall assume that the mean diameter of the stator at inlet is D1, and D2 at outlet, while
the blade length increases from z1 to z2. The diameter of the rotor at inlet is also taken to be
D2, increasing toD3 at outlet, while the corresponding blade length increases from z2 to z3. As
shown in Figure 14.7, the flow angles and flow velocities are α1 and V1, respectively, at inlet to
the stator, and α2 and V2, respectively, at outlet. For the rotor the absolute flow angle and gas
velocity at inlet are α2 andV2, respectively, while the relative flow angle and velocity are β2 and
W2, respectively. At outlet from the rotor the angles are α3 and β3, respectively, and velocities
are V3 andW3, respectively. The angular velocity of the rotor isΩ so that the circumferential
speed is U2 = ΩD2/2 at inlet, and U3 = ΩD3/2 at outlet. The mass flowrate of the gas is ṁ.

(a) Stator inlet
If the static pressure and static temperature of the gas at inlet to the stator are p1 and T1,
respectively, then, from the perfect-gas equation, the inlet gas density ρ1 is

ρ1 = p1/RT1.

114 In practice there has to be a small gap or clearance between the blade tips and the casing (for the rotor) and the
shaft (for the stator).
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Figure 14.7 Schematic diagram of an axial-flow turbine stage

From equation (14.70) the inlet area A1 is given by

A1 = πD1z1

and from the continuity equation, the axial-velocity component at inlet to the stator is

VA1 = ṁ/ρ1A1 = ṁ/ρ1πD1z1.

From the velocity triangle at inlet to the stator, shown in Figure 14.7(a), the inlet velocity
V1 is

V1 = VA1/ cosα1

and the tangential component of velocity VT1 is

VT1 = V1 sinα1.

It is useful to introduce the flow area A1N normal to V1 from ṁ = ρ1A1NV1

A1N = A1 cosα1.

The soundspeed at inlet c1 is given by

c1 =
√
γRT1
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so the inlet Mach numberM1 is

M1 = V1/c1.

The stagnation temperature T01 and stagnation pressure p01 are then

T01 = T1 +
V2
1

2CP
= T1

[
1 +
(
γ – 1
2

)
M2

1

]

and

p01 = p1
[
1 +
(
γ – 1
2

)
M2

1

]γ /(γ –1)
.

These expressions for T01 and p01 were derived in Section 11.3, and numerical values
for the ratios T1/T01 and p1/p01, givenM1, can be determined using the Isentropic-flow
Calculator. The ratio A1N/A∗

1, A∗
1 being the choking area corresponding with M1, can

also be found using the Calculator or calculated from equation (11.50):

A∗
1 = ṁ

√
RT01
p01

√
1
γ

(
γ + 1
2

)(γ+1)/(γ –1)
.

(b) Stator outlet
We shall assume that the flow through the stator is isentropic so that the stagnation
temperature and pressure remain unchanged, i.e. at outlet T02 = T01, and p02 = p01.

The Mach number M2 at outlet from the stator can be determined through the Cal-
culator from the ratio of the outlet area A2N , normal to the outflow velocity V2, to
the choking area A∗

2, which is unchanged from A∗
1 since the flow is isentropic. The

Isentropic-flow Calculator also gives values for p2/p02 and T2/T02 so that the static
temperature T2 and static pressure p2 can be calculated.

From the perfect-gas equation ρ2 = p2/RT2, the soundspeed c2 =
√
γRT2, the outlet

velocity V2 = M2c2, and the tangential component of velocity VT2 = V2 sinα2.
(c) Rotor inlet

Since we are now concerned with flow through a rotor, it is appropriate to consider
the flow relative to the rotor. The velocity triangle for the inlet flow is shown in
Figure 14.6(a), with appropriate changes to the subscripts. The absolute velocity at inlet
is V2 at angle α2 to the axial direction, while the relative velocity isW2 at angle β2 which
we assume is the same as the blade angle χ2 at the rotor inlet.

From the velocity triangle for the flow at the rotor inlet, the axial components of the
absolute and relative velocities are equal, i.e.WA2 = VA2 = V2 cosα2 = W2 cosχ2, from
which the relative velocityW2 at inlet to the rotor can be obtained.

The relative Mach number at inlet to the rotor M2,REL = W2/c2, and from the
Isentropic-flow Calculator we can find p2/p02,REL and T2/T02,REL and hence the relative
stagnation pressure p02,REL and the relative stagnation temperature T02,REL.

Since both the relative and absolute velocities at the rotor inlet,W2 and V2, are now
both known together with the angle between them, α2 – β2 (see the velocity triangle in
Figure 14.7 at the rotor inlet), we can calculate the blade speed U2 from

U2
2 = V2

2 +W2
2 – 2V2W2 cos (α2 – β2) .

The rotational speed of the rotor is thenΩ = 2U2/D2.
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The relative stagnation temperature T02,REL is given by

T02,REL = T2 +W2
2 /2CP

and the relative stagnation pressure p02,REL by

p02,REL = p2
[
1 +
(
γ – 1
2

)
M2

2REL

]γ /(γ –1)
.

Both T02,REL and p02,REL can be calculated from these equations but are more easily
determined using the Isentropic-flow Calculator from T2/T02,REL and p2/p02,REL.

The relative stagnation enthalpy h02,REL = CPT02,REL and the rothalpy I2 at entry to
the rotor is given by

I2 = h02,REL – 1
2U

2
2 = CPT2 + 1

2W
2
2 –
(
ΩD2

)2
8 .

(d) Rotor outlet
Since the flow is adiabatic, the rothalpy remains constant so that at the rotor outlet I3 =
I2, i.e.

CPT3 + 1
2W

2
3 – 1

2U
2
3 = CPT2 + 1

2W
2
2 – 1

8
(
ΩD2

)2 .
and the blade speed at outlet from the rotor is given by U3 = ΩD3/2 so that

CPT3 + 1
2W

2
3 = CPT2 + 1

2W
2
2 + Ω

2

8
(
D
2
3 – D

2
2
)
. (14.70)

The relative Mach numberM3,REL = W3/c3, where the soundspeed c3 =
√
γRT3.

Equation (14.70) can thus be written as

c3

√[
1 +
(
γ – 1
2

)
M2

3,REL

]
=

√
(γ – 1)

[
CPT2 + 1

2W
2
2 + Ω

2

8
(
D
2
3 – D

2
2
)]
. (14.71)

The mass flowrate ṁ is again unchanged, so that

ṁ = ρ3πz3D3WA3 = ρ3πz3D3W3 cosβ3 (14.72)

from which

ρ3W3 = ṁ
πz3D3 cosχ3

(14.73)

wherein we have assumed that the relative flow direction at outlet from the rotor
coincides with the blade angle, i.e. β3 = χ3.
From the perfect-gas equation, ρ3 = p3/RT3 so that equation (14.73) can be written as

p3M3,REL
c3

= ṁ
γπz3D3 cosχ3

. (14.74)

Equations (14.71) and (14.74) can be combined to eliminate c3. After some rearrange-
ment we find

p3M3,REL

√[
1 +
(
γ – 1
2

)
M2

3,REL

]
=

ṁ

√
(γ – 1)

[
CPT2 + 1

2W
2
2 + Ω

2

8
(
D
2
3 – D

2
2
)]

γπz3D3 cosχ3
.

(14.75)
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To progress further requires information about the static pressure p3 at the ro-
tor outlet. For simplicity, we shall assume that the relative stagnation pressure re-
mains unchanged through the rotor, i.e. p03REL = p02REL. We note that p03REL =
p3
[
1 + (γ – 1)M2

3,REL/2
]γ /γ –1 so that equation (14.75) can be written as

M3,REL[
1 +
(
γ – 1
2
)
M2

3,REL

](γ+1)/2(γ –1) =

ṁ

√
(γ – 1)

[
CPT2 + 1

2W
2
2 + Ω

2

8
(
D
2
3 – D

2
2
)]

γπz3D3 cosχ3p02,REL
.

(14.76)

Equation (14.76) can be solved (iteratively) forM3,REL, since all terms on the right-hand
side of the equation are known. Once the value of M3,REL has been determined, it is
straightforward to calculate p3, ρ3,T3, c3, andW3.

The final flow velocity V3 and direction α3 can be found using the velocity triangle at
the rotor outlet

V2
3 = W2

3 + U2
3 – 2W3U3 sinβ3 (14.77)

and

cosα3 =
W3 cosβ3

V3
. (14.78)

The stagnation temperature at outlet is found from T03 = T3 + V2
3 /2CP, and the

stagnation enthalpy from h03 = CPT03.
Finally, the power output from the turbine P can be calculated from either the steady-

flow-energy equation

P = –ṁ (h03 – h02) (14.79)

or Euler’s turbomachinery equation

P = –ṁ (U3VT3 – U2VT2) . (14.54)

14.9 Degree of reaction Λ

The power generated in a turbine is invariably accompanied by expansion of the working fluid.
For any stage of amultistage turbine the expansion is shared by the rotor and the stator. An im-
portant design parameter which quantifies this sharing is the degree of reaction (or reaction)
Λ defined by

Λ = �hROTOR
�hSTAGE

= �TROTOR
�TSTAGE

(14.80)

i.e. the ratio of the static enthalpy (or temperature) change across the rotor to the change in
static enthalpy115 (or temperature) across the stage.

115 The denominator in the definition of the reaction is sometimes taken as the change in stagnation enthalpy
across the stage.
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In principle the value ofΛ can be anywhere between zero (i.e. all the enthalpy change occurs
across the stator) and unity (i.e. all the enthalpy change occurs across the rotor and the stator
simply turns the flow without expanding it). A zero-reaction turbine is commonly referred to
as an impulse turbine. According to Euler’s turbomachinery equation, power is produced as a
result of turning the fluid through an angle, the turning angle θ = α2 – α1, in the stator-blade
passages thereby changing the tangential component of velocity. Values for Λ close to 0.5 are
more usual than the two extremes.

ILLUSTRATIVE EXAMPLE 14.3

Air, at a static temperature of 700◦C and static pressure of 3.75 bar, enters an axial-flow gas-
turbine stage at a mass flowrate of 25 kg/s. The stator-blade angles are 20◦ at entry and 50◦ at
exit. For the rotor, the blade angle at entry is 25◦ and –45◦ at exit. The mean blade diameter
is 0.5 m for both stator and rotor, and the blade length is 50 mm for both. Calculate the flow
conditions (static pressure, static temperature, flow velocity and direction, Mach number) at
entry to and exit from the rotor, the reaction, and the power developed by the turbine. Sketch
the velocity triangles at entry to, and exit from the stator/entry to the rotor, and at exit from
the rotor, including both the absolute and relative velocities and their components. Assume
the flow is adiabatic throughout, is isentropic through the stator, and the relative stagnation
pressure is constant through the rotor. Assume too that the flow direction always matches the
blade angles. The schematic diagram of an axial gas-turbine stage in Figure 14.7 shows the
geometric arrangement for this example.

Solution

p1 = 3.75 × 105 Pa, T1 = 973K, α1 = 20◦, α2 = 50◦, β2 = 25◦, β3 = –45◦, D = 0.5 m, and
z = 0.05 m.

(a) Stator entry

(b) (c)(a)

V1

VA1

VT1α2

V2

W2

U

VA2

VT2

WT2
α2

β2

W3 U

VT3

VA3

V3 WT3

α3

β2

Figure E14.3

Annulus area A = πDz = 0.0785m2.
From the perfect-gas equation, entry density ρ1 = p1/RT1 = 1.343 kg/m3.
From the continuity equation, the axial-velocity component VA1 = ṁ/ρ1A =

237.0 m/s = V1 cosα1.
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From the velocity triangle at entry to the stator, Figure E14.3(a), absolute velocity
V1 = VA1/ cosα1 = 252.2 m/s.

Soundspeed c1 =
√
γRT1 = 625.3 m/s.

Entry Mach numberM1 = V1/c1 = 0.4034.
From the Isentropic-flow Calculator with this value of M1, T1/T01 = 0.9685, and
p1/p01 = 0.8939, so that stagnation temperature T01 = 1004.7 K, and stagnation pressure
p01 = 4.195 bar.
It is convenient to introduce the choking area A∗

1 corresponding to M1 : from the
Isentropic-flow Calculator, the area ratio A1N /A∗

1 = 1.579, where A1N is the flow area
normal to the flow direction at entry, i.e. A1N = A cosα1.

(b) Stator exit/rotor entry
The flow area normal to the flow direction at exit from the stator, A2N = A cosα2,
and the choking area remains unchanged since the flow is isentropic, so the area ratio
A2N /A∗

2 =
(
A1N/A∗

1
)
(A2N /A1N) =

(
A1N/A∗

1
)
(cosα2/ cosα1) = 1.080.

From the Isentropic-flow Calculator with this area ratio,M2 = 0.7206, p2/p02 = 0.7077,
and T2/T02 = 0.9059.
Since the flow through the stator is isentropic, T02 = T01 = 1004.7 K, and p02 = p01 =
4.195 bar, so that static temperature T2 = 910.2 K, and static pressure p2 = 2.969 bar.
From the perfect-gas equation, the stator exit density ρ2 = p2/RT2 = 1.136 kg/m3.
From the continuity equation, the axial-velocity component VA2 = ṁ/ρ2A = 280.1 m/s
= V2 cosα2.
From the velocity triangle at the stator exit, Figure E14.3(b), the absolute velocity V2 =
VA2/ cosα2 = 435.7 m/s, and the tangential component of velocity VT2 = V2 sinα2 =
333.8 m/s.
The soundspeed c2 =

√
γRT2 = 604.7 m/s, and the Mach numberM2 = V2/c2 = 0.7206.

From the velocity triangle for the rotor entry, the axial component of relative velocity
WA2 = VA2 = 280.1 m/s = W2 cosβ2, so that the relative velocityW2 = 309.0m/s.
The relative-velocity Mach number at entry to the rotorM2,REL = W2/c2 = 0.5110.
From the Isentropic-flow Calculator, for this value of the relative Mach number,
T2/T02,REL = 0.9504, and p2/p02,REL = 0.8368, so that the relative stagnation temperature
T02,REL = 957.7 K, and the relative stagnation pressure p02,REL = 3.548 bar.
From the velocity triangle at rotor entry, U2 = V2

2 + W2
2 – 2V2W2 cos (α2 – β2), from

which the blade speed U = 203.2 m/s.
The rothalpy at entry to the rotor I2 = CPT2 +W2

2 /2 – U2/2 = 9.414 × 105 m2/s2.
(c) Rotor exit

Since the relative stagnation pressure remains constant through the rotor, the relative
stagnation pressure at exit p03,REL = p02,REL = 3.548 bar.
The rothalpy also remains unchanged through the rotor, so that at the rotor exit I2 =
I3 = CPT3 +W2

3 /2 – U2/2 = 9.414 m2/s2.
The relative stagnation enthalpy is then h03,REL = I3 + U2/2 = CPT03,REL = CPT3 +

W2
3 /2 = 9.620 × 105 m2/s2, and the relative stagnation temperature T03,REL = 957.7 K.

As shown in Section 14.8, we can combine all the information necessary to calculate the
relative outlet Mach numberM3.REL into the equation, based upon equation (14.76):

M3,REL =
ṁ
√
(γ – 1)

(
I + 1

2U
2
) [

1 +
(
γ – 1
2
)
M2

3,REL

](γ+1)/2(γ –1)
γ p0,RELπDz cosβ3

.

Note that since D2 = D3, here, the term D2
3 – D2

2 in equation (14.76) vanishes.
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If we substitute I = I3, p0,REL = p02,REL, and the values for ṁ, γ ,π ,D, z, and β3, we find

M3,REL = 0.5622
[
1 +
(
γ – 1
2

)
M2

3,REL

](γ+1)/2(γ –1)
which, after several iterations starting withM3,REL = 0.5622, leads toM3,REL = 0.8233.
From the Isentropic-flow Calculator, p3/p03,REL = 0.6409,and T3/T03,REL = 0.8806, from
which p3 = 2.274 bar, and T3 = 843.4 K.
The exit density ρ3 = p3/RT3 = 0.9393 kg/m3.
The exit soundspeed c3 =

√
γRT3 = 582.1 m/s.

The relative exit velocityW3 = M3,RELc3 = 479.2 m/s.
From the velocity triangle at the rotor exit, Figure E14.3(c), the axial component ofW3
is WA3 = W3 cosβ3 = 338.9 m/s= VA3, and the tangential component of W3isWT3 =
–W3 sinβ3 = –338.9 m/s.
Also from the velocity triangle at the rotor exit, V2

3 = W2
3 + U2 – 2W3U sinβ3, from

which the flow velocity at exit from the rotor V3 = 365.0 m/s.
The tangential component of velocity VT3 = U –WT3 = –135.7 m/s.
The flow direction for V3is then α3 = sin–1 (VT3/V3) = –21.82◦.
The Mach numberM3 = V3/c3 = 0.6271.
From the Isentropic-flow Calculator, p3/p03 = 0.7672, and T3/T03 = 0.9271, from which
p03 = 2.963 bar, and T03 = 909.7 K.
The reactionΛ = (T2 – T3) / (T1 – T3) = 0.5152.
The power output of the turbine is then P = ṁCP (T02 – T03) = 2.385× 106 W, with the
same value given by P = ṁU (VT2 – VT3).

Comments:

Although this was a lengthy calculation, the reader should be aware that it consisted primarily
of numerous small steps using basic relations, many of them repeated several times. The im-
portant point to note is that the procedure involved was systematic with each step leading to
the next.

14.10 SUMMARY

This chapter has been concerned primarily with the flow of a compressible fluid through
stationary and moving blading, for the most part using the analysis introduced in
Chapter 11. The principles of dimensional analysis were applied to determine the appro-
priate non-dimensional parameters to characterise the performance of a turbomachine.
The analysis of incompressible flow through a linear cascade was followed by the analysis
of compressible flow. Velocity triangles and Euler’s turbomachinery equation were intro-
duced to analyse flow through a rotor. The concepts introduced were applied to the analysis
of an axial turbomachine stage.

The student should

• be able to apply the principles of dimensional analysis to derive the non-
dimensional parameters used to characterise the performance of turbomachinery
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• in the context of turbomachinery, understand what is meant by a cascade, a stator,
a rotor, and a stage

• understand how changes in the flow direction (turning) for flow through a cascade,
stator, or rotor result in a change in flow area

• be able to analyse both incompressible and compressible flow through a linear
cascade of blades or an axial-flow stator

• understand the principle of relative flow through moving blading and be able to
construct velocity triangles at entry to and exit from a rotor

• understand the basis for Euler’s turbomachinery equation and be able to apply it to
a turbomachine rotor

• understand the concepts and definitions of relative stagnation temperature, relat-
ive stagnation pressure, relative Mach number, and the property rothalpy

• be able to analyse both incompressible and compressible flow through an axial-
flow rotor to determine both flow properties at entry and exit as well as the power
input (for a compressor) or output (for a turbine)

• understand the concept and definition of the reaction

14.11 SELF-ASSESSMENT PROBLEMS

14.1 An axial-flow compressor is designed to compress hydrogen gas (specific gas con-
stant R = 4124 m2/s2 ·K) from a temperature T1 of 25◦C and a pressure p1 of 1
bar when running at a rotation speed N of 5000 rpm. The design mass flowrate ṁ
is 75 kg/s. Calculate the rotation speed and mass flowrate for a half-scale model
compressor tested with air at an initial temperature of 20◦C and initial pressure 1
bar, assuming the flow coefficient (ṁ

√
RT1/p1D2) and the non-dimensional rota-

tion speed (ΩD/
√
RT1) are the same for the actual compressor and the model. The

ratio of specific heats γ for both gases may be taken as 1.4.
(Answers: 2616 rpm, 71.7 kg/s)

14.2 The mean blade diameter at inlet to the inlet of one stage of an axial-flow turbine is
0.75 m, and the blade length 150 mm. At exit from the stator and entry to the rotor
the mean blade diameter is 0.77 m, and the blade length is 170 mm. At exit from
the rotor the mean blade diameter is 0.79 m, and the blade length is 190 mm. The
mass flowrate of gas through the stage is 35 kg/s. The static temperature at entry
to the stage is 930◦C, and the static pressure is 2.5 bar. The flow enters the stage
with a flow angle of 20◦. The flow exit angle from the stator is 65◦ while the blade
angles are 30◦ at entry to the rotor, and 60◦ at exit. All angles are with respect to the
axial-flow direction. It may also be assumed that the flow processes within the stator
are isentropic, while within the rotor the rothalpy and stagnation pressure remain
constant. The gas can be treated as a perfect gas with the same properties as air.

Calculate the flow conditions (static pressure, static temperature, flow velocity,
and flow direction) at (a) the stator exit and (b) the rotor exit. Also calculate the
power output from the turbine and the reaction.
(Answers: (a) 2.262 bar, 1169.1 K, 298.7 m/s, 65◦; (b) 2.161 bar, 1154.9 K, 114.0 m/s,
2.90◦, 1.834 MW, 0.296)
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14.3 An axial-flow compressor with mean blade diameter 0.75 m is designed so that the
axial component of the gas velocity is constant throughout the machine and the
flow enters the rotor of each stage at 20◦ to the axial direction (i.e. this is the angle
at which the flow leaves each stator). The entry-flow angle for each stator is 40◦.
The mass flowrate is 100 kg/s, and the rotational speed is 7500 rpm. For a stage
where the inlet static temperature is 20◦C, the static pressure is 2 bar, and the blade
length is 120 mm, sketch the velocity triangles at entry to and exit from the rotor,
and calculate
(a) the axial component of velocity
(b) the static pressure, static temperature, absolute velocity, and Mach number at

exit from the rotor
(c) the static pressure, static temperature, absolute velocity, and Mach number at

exit from the stator
(d) the blade length at exit from the rotor and from the stator
(e) the reaction and the power input into the stage

Assume that the gas has the same properties as air, that the relative stagna-
tion pressure and the rothalpy are both constant within the rotor, that the flow is
adiabatic, and that the flow through the stator is isentropic.
(Answers: (a) 148.7 m/s; (b) 2.366 bar, 307.4 K, 194.1 m/s, 0.5523; (c) 2.5402 bar,
313.7 K, 0.4457; (d) 106 mm, 101 mm; (e) 0.696, 2.081 MW)



15 Basic equations of viscous-fluid flow

In this chapter we derive the partial differential equations, based upon the principles of
mass and momentum conservation, which describe unsteady (i.e. time-dependent), three-
dimensional viscous-fluid flows. The principle of mass conservation leads to the continuity
equation, while Cauchy’s equations of motion result from Newton’s second law of motion
applied to a fluid. Cauchy’s equations lead to theNavier-Stokes equations when we introduce
Stokes’ constitutive equations, which, for a Newtonian fluid, connect the normal and shear
stresses116 with the strain rates within the fluid. If flows with density and viscosity variations
are to be considered, it is also necessary to introduce the energy-conservation equation and
an equation of state, but this is not the case here, where we shall ultimately limit attention to
flows with physical properties independent of pressure and temperature. For completeness and
reference, we present the continuity equation, Cauchy’s equations, and theNavier-Stokes equa-
tions not only in rectangular-Cartesian-coordinate form, but also in cylindrical-coordinate
form and in vector form. We conclude the chapter by extending consideration to the flow of a
generalised Newtonian fluid.

15.1 Equations of motion in Cartesian-coordinate form

In this section we derive the basic equations for the flow of a viscous fluid in a rectan-
gular Cartesian-coordinate system with velocity components u in the x-direction, v in the
y-direction, and w in the z-direction. At any instant of time t the fluid is assumed to have
density ρ

(
t, x, y, z

)
and dynamic viscosity μ

(
t, x, y, z

)
.

15.1.1 Continuity equation

We consider flow through an infinitesimal cubic volume element fixed in space and shown in
Figure 15.1. For convenience we identify the cube dimensions as δx, δy, and δz, although, being
a cube, it is obvious that the side lengths are all equal in magnitude. In words, the principle of
mass conservation is[

rate of mass accumulation
]
=
[
mass flowrate in

]
–
[
mass flowrate out

]
. (15.1)

The mass of the volume element at time t is ρ δx δy δz so that the rate of mass accumulation is
δx δy δz (∂ρ/∂t).

116 The term shearing stress is sometimes used.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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x – 1
2 δx

(ρu)  

P (x,y,z)

δx

δz

δy
2

x + 1δx
(ρu)

Figure 15.1 Infinitesimal volume element fixed in space. Only the x-direction mass flux is shown.

We take the location of the cube centre as the point P(x, y, z) so that the faces perpendicular to
the x-direction are located at x – δx/2, and x + δx/2. The mass flowrate into the cube through
the face at x – δx/2 is

(ρu)x–δx/2 δy δz,

the product ρu being themass flux, and the subscript x – δx/2 denoting the x-location of the
cube face. The mass flowrate out of the cube through the opposite face at x + δx/2 is

(ρu)x+δx/2 δy δz.

Similar expressions may be written for the other two pairs of faces.
According to equation (15.1), we thus have

δx δy δz ∂ρ
∂t =

[
(ρu)x–δx/2 – (ρu)x+δx/2

]
δy δz +

[
(ρv)y–δy/2 – (ρv)y+δy/2

]
δx δz

+
[
(ρw)z–δz/2 – (ρw)z+δz/2

]
δy δx. (15.2)

If we divide through by δx δy δz and take the limit as δx, δy, and δz approach zero, we find

∂ρ

∂t + ∂
∂x (ρu) + ∂

∂y (ρv) +
∂
∂z (ρw) = 0. (15.3)

This general continuity equation, a reduced form of which was derived in Section 6.8 for
steady, one-dimensional flow, can also be written as

∂ρ

∂t + u∂ρ
∂x + v ∂ρ

∂y + w∂ρ
∂z + ρ

(
∂u
∂x + ∂v

∂y + ∂w
∂z

)
= 0, (15.4)

or

Dρ
Dt + ρ

(
∂u
∂x + ∂v

∂y + ∂w
∂z

)
= 0 (15.5)
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where we have introduced the derivative following the fluid117

D
Dt =

∂
∂t + u ∂

∂x + v ∂
∂y + w ∂

∂z . (15.6)

This derivative is also variously referred as the particle, substantial (or substantive), total,
Lagrangian, Eulerian, or material derivative. In this text we shall use the term material de-
rivative. The first term on the right-hand side of equation (15.6) represents change due to any
unsteadiness (i.e. time dependence) at the point P(x, y, z). The final three terms are associated
with changes due to fluid particles changing their position and are referred to as the advective
or convective118 terms.
It is easily seen from equation (15.5) that, for the flow (steady or unsteady) of a constant-

density fluid, the continuity equation in Cartesian-coordinate form reduces to

∂u
∂x + ∂v

∂y + ∂w
∂z = 0. (15.7)

Compact forms of the continuity equation (15.3), independent of coordinate system, are

∂ρ

∂t + div (ρV) = ∂ρ
∂t + ∇ · (ρV) = 0 (15.8)

and

Dρ
Dt + ρ div V = Dρ

Dt + ρ∇ ·V = 0, (15.9)

where V is the vector velocity

V = iu + jv + kw, (15.10)

i, j, and k being the unit vectors in the x-, y-, and z-directions, respectively, while div repres-
ents the vector operator119 of divergence, and the symbol ∇ represents the del (or gradient)
operator

∇ = i ∂
∂x + j ∂

∂y + k ∂
∂z . (15.11)

For a Cartesian-coordinate system, the divergence of a vector A
(
= iAx + jAy + kAz

)
is the dot

product of the vectors ∇ and A

div A = ∇ ·A = ∇ · (iAx + jAy + kAz
)
= ∂Ax
∂x +

∂Ay
∂y + ∂Az

∂z . (15.12)

It should be clear that in equation (15.9) we have replaced the partial derivatives of the velocity
components in equations (15.4) and (15.5) by the divergence (div) of the vector velocity V,
i.e. ∇ ·V.

117 The symbol d/dt is sometimes used for this quantity instead of D/Dt although this can obviously lead to
confusion as d/dt normally represents a simple time derivative.

118 The term ‘convective’ is more commonly encountered in the study of heat transfer.
119 The vector form of the continuity equation, together with a number of other equations later on in this chapter,

are included here for completeness and reference although it is appreciated that many engineering students in the
early years of study will not be familiar with vector algebra.
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For a constant-density flow we have

∇ ·V = 0. (15.13)

15.1.2 Cauchy’s equations of motion

In Subsection 15.1.1, we showed how the principle of mass conservation applied to flow
through an elemental cube fixed in space led to the continuity equation. We now apply
the principle of linear momentum conservation, which is derived directly from Newton’s
second law of motion, to the same volume element. In words, the principle of momentum
conservation, for any given direction, may be written for the volume element as[

net force acting on fluid volume
]
=
[
rate of momentum accumulation

]
+
[
momentum flowrate out

]
–
[
momentum flowrate in

]
. (15.14)

The forces arise from the shear stresses, τxy, τyx, τyz, τzy, τzx, and τxz, and the normal stresses,
σxx, σyy, and σzz, acting at the centre of the cube P

(
x, y, z

)
, as shown in Figure 15.2(b).

These stresses act on the three orthogonal plane surfaces (within the fluid) which in-
tersect at P

(
x, y, z

)
, as shown in Figure 15.2(a). The symbol X denotes the surface with

sides δy and δz, and Y the surface with sides δz and δx, while Z denotes the surface with
sides δx and δy. The point P also corresponds with the centroids of the surfaces X,Y , and Z.
The first subscript attached to a stress indicates the direction of the normal of the fluid surface
on which the stress acts, while the second subscript indicates the direction in which the stress
itself acts.
Figure 15.3 shows the shear and normal stresses acting in the x-direction on all six faces of

the element, which has side lengths δx, δy, and δz. The normal forces in the x-direction are due
to the normal stress σxx, which includes the fluid pressure p, as discussed in Subsection 15.1.4,
together with fx, the x-component of the body force per unit mass (not included in Fig-
ure 15.3), which acts through the centre P. Typical body forces which arise are those due to
gravitational or centripetal acceleration, or electromagnetism (in magnetohydrodynamics).
On the x – δx/2 face of the volume the normal force is

–
(
σxx – 1

2
∂σxx
∂x δx

)
δy δz,

and on the opposite face it is

+
(
σxx + 1

2
∂σxx
∂x δx

)
δy δz.

The normal-force difference in the x-direction is thus

∂σxx
∂x δx δy δz

while the body force is ρfx δx δy δz.
The x-direction forces exerted on the remaining faces of the volume are due to the shear

stresses τxy, τyx, τxz, and τzx.
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Figure 15.2 Stresses acting at a point P(x, y, z): (a) orientation of planes X,Y , and Z within volume
element (b) normal stresses σxx, σyy, and σzz ; shear stresses τxy, τyx, τyz , τzy, τzx , and τxz

It is evident that the shear forces

–

(
τyx – 1

2
∂τyx
∂y δy

)
δx δz exerted on the y –

δy
2 face

and

+

(
τyx + 1

2
∂τyx
∂y δy

)
δx δz exerted on the y +

δy
2 face
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2
1

2
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2
1

2
1

2
1

δx
дσxxдx

σxx –

Figure 15.3 x-Direction normal and shear stresses acting on the faces of an elemental cube of fluid

generate moments on the volume element acting clockwise about an axis parallel to the z-axis
and passing through P, while the forces

–

(
τxy – 1

2
∂τxy
∂x δx

)
δy δz exerted on the x – δx2 face

and

+

(
τxy + 1

2
∂τxy
∂x δx

)
δy δz exerted on the x + δx2 face

generate moments acting anticlockwise. The net clockwise moment is

1
2
(
τyx – τxy

)
δx δy δz = ρδx δy δz k2 θ̈

where k is the radius of gyration of the volume element about the z-axis and θ̈ is the angular
acceleration of the element. For the elemental cube, k2 = δx2/6 so that, as the size of the
volume approaches zero, it must be that τyx –τxy also approaches zero and so τyx = τxy. Similar
arguments lead to the conclusion that τzx = τxz, and τyz = τzy.
The shear forces exerted on the volume element in the x-direction are

–

(
τyx – 1

2
∂τyx
∂y δy

)
δx δz acting on the y –

δy
2 face

and

+

(
τyx + 1

2
∂τyx
∂y δy

)
δx δz acting on the y +

δy
2 face,

as before. In addition, there are shear forces exerted on the volume element in the x-direction

–
(
τzx – 1

2
∂τzx
∂z δz

)
δx δy acting on the z – δz2 face
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and

+
(
τzx + 1

2
∂τzx
∂z δz

)
δx δz acting on the z + δz2 face.

The net shear force in the x-direction acting on the volume is thus

+

(
∂τyx
∂y + ∂τzx

∂z

)
δx δy δz.

The x-momentum of the volume element at time t is ρu δx δy δz so that the rate of momentum
accumulation, the first term on the right-hand side of equation (15.14), is

δx δy δz ∂
∂t (ρu) .

Momentum is advected into, and out of, the volume by each of the velocity components.
The momentum fluxes are ρu2, ρvu, and ρwu, so that the x-momentum flowrate out of the
volume is(
ρu2
)
x + δx/2 δy δz + (ρvu)y+ δy/2 δx δz + (ρwu)z + δz/2 δx δy

and the x-momentum flowrate into the volume is(
ρu2
)
x – δx/2 δy δz + (ρvu)y – δy/2 δx δz + (ρwu)z – δz/2 δx δy.

The difference between the outflow and the inflow of momentum is thus[(
ρu2
)
x + δx/2 –

(
ρu2
)
x – δx/2

]
δy δz +

[
(ρvu)y+ δy/2 – (ρvu)y – δy/2

]
δx δz

+
[
(ρwu)z + δz/2 – (ρwu)z – δz/2

]
δx δy.

In the limit, as δx, δy, and δz approach zero, the difference becomes[
∂
∂x
(
ρu2
)
+ ∂
∂y (ρuv) +

∂
∂z (ρuw)

]
δx δy δz.

If we substitute for all the terms in equation (15.14) and divide through by δx δy δz we have

∂
∂t (ρu) +

[
∂
∂x
(
ρu2
)
+ ∂
∂y (ρuv) +

∂
∂z (ρuw)

]
=

(
∂σxx
∂x +

∂τyx
∂y + ∂τzx

∂z

)
+ fx

which leads to

ρDuDt = ρ
(
∂u
∂t + u∂u

∂x + v ∂u
∂y + w∂u

∂z

)
=

(
∂σxx
∂x +

∂τyx
∂y + ∂τzx

∂z

)
+ ρfx. (15.15)

Equation (15.15) is one of the three equations of motion for a fluid, the other two being similar
equations for v, in the y-direction, and for w, in the z-direction

ρDvDt = ρ
(
∂v
∂t + u∂v

∂x + v ∂v
∂y + w∂v

∂z

)
=

(
∂σyy
∂y +

∂τzy
∂z +

∂τxy
∂x

)
+ ρfy (15.16)

ρDwDt = ρ
(
∂w
∂t + u∂w

∂x + v ∂w
∂y + w∂w

∂z

)
=

(
∂σzz
∂z + ∂τxz

∂x +
∂τyz
∂y

)
+ ρfz. (15.17)
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Figure 15.4 Distortion of a fluid element: (a) volumetric (b) angular

Equations (15.15) to (15.17), known as Cauchy’s equations, are quite general with no limit-
ations on the fluid considered other than it satisfies the continuum hypothesis (discussed in
Section 2.5).

15.1.3 Strain rates and shear rates

Themotion of an infinitesimal volume of flowing fluid can be described in terms of translation,
rotation, volumetric distortion, and angular distortion. Only distortion of a fluid element,
but not translation or rotation, is associated with stress: Figure 15.4 illustrates the two forms
of distortion.
Volumetric distortion is a consequence of the longitudinal or extensional strain (i.e.

stretching) in the x-, y-, and z-directions, the three components of extensional (or normal)
strain rate being

ėxx = ∂u∂x , ėyy = ∂v∂y , and ėzz = ∂w∂z . (15.18)

The total extensional-strain rate, i.e. the rate of change in volume per unit volume, Θ (upper
case Greek letter theta), termed the dilation120, is given by

Θ = ėxx + ėyy + ėzz = ∂u∂x + ∂v
∂y + ∂w

∂z = div V = ∇ ·V. (15.19)

The continuity equation (15.9) can be written in terms ofΘ as

Dρ
Dt + ρΘ = 0 (15.20)

from which it is evident that the dilation is identically zero for a constant-density flow.
The three components of the rate of angular distortion, often referred to as shear rates or

shear-strain rates, are

γ̇xy = γ̇yx = 1
2

(
∂u
∂y + ∂v

∂x

)
, γ̇xz = γ̇zx = 1

2

(
∂u
∂z + ∂w

∂x

)
, and γ̇yz = γ̇yz = 1

2

(
∂w
∂y + ∂v

∂z

)
.

(15.21)

120 The spelling dilatation is also used.
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It should be noted that the dynamics of fluid flow is not involved in these descriptions of
fluid motion, which are purely kinematic. Also, the temporal rather than spatial aspect of
strain rates is apparent from their dimension, 1/T, and emphasised by the dot in the symbols
indicating per unit time.

15.1.4 Stokes’ constitutive equations

The normal- and shear-stress components, introduced in Subsection 15.1.2, are related to the
strain rates of Subsection 15.1.3 by so-called constitutive equations. For a Newtonian fluid
these are based upon three assumptions

(a) the stress components are proportional to the strain rates, a consequence of which is
that in the absence of angular distortion the shear stresses vanish,

(b) within the fluid there are no preferred directions, i.e. the fluid is isotropic, and
(c) in the absence of dilation, the normal stresses must reduce to the pressure.

The equations, introduced in a paper by Stokes in 1845, corresponding to these assumptions
may be written, for the normal-stress components, as

σxx = –p – 2
3μ Θ + 2μ ėxx = –p – 2

3μΘ + 2μ∂u
∂x (15.22)

σyy = –p – 2
3μ Θ + 2μ ėyy = –p – 2

3μΘ + 2μ∂v
∂y (15.23)

σxx = –p – 2
3μ Θ + 2μ ėzz = –p – 2

3μΘ + 2μ∂w
∂z (15.24)

whereΘ is the dilation given by equation (15.19),μ is the dynamic viscosity or, more precisely,
the first coefficient of viscosity, and p is the average (mechanical) pressure. The latter is the
arithmetic average of the three normal stresses, i.e.

p = –13
(
σxx + σyy + σzz

)
. (15.25)

For an incompressible fluid and for a perfect monatomic gas, the average mechanical pressure
at a point is identically equal to the thermodynamic pressure at that point. More gener-
ally, the difference between the average pressure and the thermodynamic pressure is equal
to –λΘ , where λ is the bulk viscosity (or second coefficient of viscosity). This difference
is negligible except for extreme cases of compressible flow, such as within a shockwave or
in a high-frequency sound field. Stokes’ assumption is that the thermodynamic and average
pressures are equal, i.e. λΘ = 0.
For the shear-stress components

τxy = τyx = 2μγ̇xy = μ
(
∂v
∂x + ∂u

∂y

)
(15.26)

τyz = τzy = 2μγ̇yz = μ
(
∂w
∂y + ∂v

∂z

)
(15.27)
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τzx = τxz = 2μγ̇xz = μ
(
∂u
∂z + ∂w

∂x

)
. (15.28)

Equation (15.26) is a more general version, for a flow with velocity components u and v (and
w) of τ = μ ∂u/∂y introduced in Section 2.8 for a simple unidirectional, developed flow where
u is independent of x and z so that u = u

(
y
)
.

15.1.5 Navier-Stokes equations

In rectangular Cartesian coordinates, after substitution for σxx, τxy, and τxz in Cauchy’s
equations, equations (15.15) to (15.17), we have:
x-component

ρDuDt = –
∂p
∂x – ∂

∂x

(
2
3μ!

)
+ ∂
∂x

(
2μ∂u
∂x

)
+ ∂
∂y

[
μ

(
∂u
∂y + ∂v

∂x

)]

+ ∂
∂z

[
μ

(
∂u
∂z + ∂w

∂x

)]
+ ρfx (15.29)

y-component

ρDvDt = –
∂p
∂y – ∂

∂y

(
2
3μ!

)
+ ∂
∂y

(
2μ∂u
∂y

)
+ ∂
∂x

[
μ

(
∂u
∂y + ∂v

∂x

)]

+ ∂
∂z

[
μ

(
∂v
∂z + ∂w

∂y

)]
+ ρfy (15.30)

z-component

ρDwDt = –
∂p
∂z – ∂

∂z

(
2
3μ!

)
+ ∂
∂z

(
2μ∂w
∂z

)
+ ∂
∂y

[
μ

(
∂v
∂z + ∂w

∂y

)]

+ ∂
∂x

[
μ

(
∂u
∂z + ∂w

∂x

)]
+ ρfz. (15.31)

This set of three partial differential equations for a Newtonian fluid, established independently
by Louis Navier, in 1827, and by George Stokes, in 1845, are known as the Navier-Stokes
equations. They are quite general and apply to both steady and unsteady flow, to one-, two-,
and three-dimensional flows, and to flows where the viscosity and density are temperature
and/or pressure dependent.

15.1.6 Constant- and uniform-property flow

It might be thought that, since we now have a complete set of equations governing the flow
of a Newtonian fluid, it would now possible to solve any such flow problem. In fact, the
Navier-Stokes equations are a set of coupled, unsteady, non-linear, second-order, partial dif-
ferential equations to which there are as yet no general analytical or numerical solutions: less
than a hundred exact analytical solutions have been found to highly simplified versions of the
equations. Some of these solutions for internal laminar flow will be discussed in Chapter 16.
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The main source of difficulty stems not from the inclusion of viscosity in the equations
but from the non-linearity of the advective terms, which arises from terms like u(∂u/∂x) =(
∂u2/∂x

)
/2. Because the viscous terms are linear, and the advective terms non-linear, the term

quasi-linear is sometimes used to describe the Navier-Stokes equations.
If we restrict attention to flow of a fluid with constant and uniform121 viscosity, the Navier-

Stokes equations reduce to:
x-component

ρDuDt = –
∂p
∂x + μ

[(
∂2u
∂x2

+ ∂
2u
∂y2

+ ∂
2u
∂z2

)
+ 1
3
∂Θ
∂x

]
+ ρfx (15.32)

y-component

ρDvDt = –
∂p
∂y + μ

[(
∂2v
∂x2

+ ∂
2v
∂y2

+ ∂
2v
∂z2

)
+ 1
3
∂Θ
∂y

]
+ ρfy (15.33)

z-component

ρDwDt = –
∂p
∂z + μ

[(
∂2w
∂x2

+ ∂
2w
∂y2

+ ∂
2w
∂z2

)
+ 1
3
∂Θ
∂z

]
+ ρfz. (15.34)

In vector form these equations may be written as

ρDVDt = –∇p + μ
[
∇2V + 1

3∇Θ

]
+ ρf (15.35)

where

∇2 = ∂
2

∂x2
+ ∂

2

∂y2
+ ∂

2

∂z2
(15.36)

is the Laplacian operator.
If, in addition to restricting attention to constant-viscosity fluids, we also limit ourselves to

fluid with constant and uniform density, then the dilationΘ = 0.

15.2 Equations of motion in cylindrical-coordinate form

For certain problems, particularly internal flows through ducts of circular or annular cross
section, it is convenient to work with the equations ofmotion in cylindrical-coordinate122 form
in which x is the distance along the axis, r is the distance from the axis, and θ is the azimuthal
angle about the axis. The velocity components are now u in the x-direction, referred to as the
axial-direction, v in the r-, or radial, direction, and w in the θ-, or tangential, direction. The
equations are arrived at through a transformation of the equations in Section 15.1.

121 In principle, a fluid could have a viscosity that varied with time and depended upon position in a flow, i.e.
μ(t, x, y, z). The restriction to uniform viscosity means that the viscosity is the same at all points throughout the
flowfield, and constant means unchanging with time.

122 The term cylindrical-polar coordinate is also used.
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15.2.1 Continuity equation

The continuity equation can be written as

∂ρ

∂t + ∂
∂x (ρu) + 1

r
∂
∂r (ρrv) +

1
r
∂
∂θ

(ρw) = 0 (15.37)

or

∂ρ

∂t + u∂ρ
∂x + v ∂ρ

∂r + w
r
∂ρ

∂θ
+ ρ
[
∂u
∂x + 1

r
∂
∂r (rv) +

1
r
∂w
∂θ

]
= 0 (15.38)

or

Dρ
Dt + ρ

[
∂u
∂x + 1

r
∂
∂r (rv) +

1
r
∂w
∂θ

]
= 0. (15.39)

Note that the material derivative in cylindrical coordinates is

D
Dt =

∂
∂t + u ∂

∂x + v ∂
∂r +

w
r
∂
∂θ

. (15.40)

For a constant-density fluid, equation (15.39) reduces to

∂u
∂x + 1

r
∂
∂r (rv) +

1
r
∂w
∂θ

= 0. (15.41)

15.2.2 Cauchy’s equations of motion

The normal-stress components are now σxx in the x-direction, σrr in the r-direction, and σθθ in
the θ-direction; the shear-stress components are τxr , τrθ , and τθx; and the components of the
body force per unit mass are fx, fr , and fθ . The subscripts x, r, and θ are to be interpreted as
explained in Subsection 15.1.2. Cauchy’s equations in cylindrical coordinates are:
x-component

ρDuDt = ρ
(
∂u
∂t + u∂u

∂x + v ∂u
∂r + w

r
∂u
∂θ

)
= ∂σxx
∂x + 1

r
∂
∂r (rτrx) +

1
r
∂τθx
∂θ

+ ρfx (15.42)

r-component

ρ

(
Dv
Dt – w2

r

)
= ρ
(
∂v
∂t + u∂v

∂x + v ∂v
∂r + w

r
∂v
∂θ

– w2

r

)

= ∂τxr
∂x + 1

r
∂
∂r (rσrr) +

1
r
∂τθr
∂θ

– σθθr + ρfr (15.43)

θ-component

ρ

(
Dw
Dt + vw

r

)
= ρ
(
∂w
∂t + u∂w

∂x + v ∂w
∂r + w

r
∂w
∂θ

+ vw
r

)

= ∂τxθ
∂x + 1

r2
∂
∂r
(
r2τrθ

)
+ 1
r
∂σθθ
∂θ

+ ρfθ .. (15.44)
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The second term on the left-hand side of equation (15.43), w2/r, arises in the transformation
from rectangular Cartesian to cylindrical coordinates123. It represents the centripetal force
per unit mass and is an effective force in the radial direction as a consequence of fluid motion
in the tangential direction.
The second term on the left-hand side of equation (15.44), vw/r, also arises in the transform-

ation. It represents the Coriolis force per unit mass and is an effective force in the tangential
direction as a consequence of fluid motion in both the radial and tangential directions.

15.2.3 Strain rates

The longitudinal strain rates are

ėxx = ∂u∂x , ėrr = ∂v∂r , and ėθθ = 1
r
∂w
∂θ

+ v
r (15.45)

and the angular strain rates are

γ̇rθ = γ̇θr = 1
2

[
r ∂
∂r

(
w
r

)
+ 1
r
∂v
∂θ

]
, γ̇θx = γ̇xθ = 1

2

(
1
r
∂u
∂θ

+ ∂w
∂x

)
,

γ̇xr = γ̇rx = 1
2

(
∂v
∂x + ∂u

∂r

)
. (15.46)

The dilation is

Θ = ėxx + ėrr + ėθθ = ∂u∂x + 1
r
∂
∂r (rv) +

1
r
∂w
∂θ

. (15.47)

15.2.4 Stokes’ constitutive equations

The constitutive equations relating the normal- and shear-stress components to the strain
rates for a Newtonian fluid in cylindrical coordinates are as follows:
For the normal-stress components

σrr = –p – 2
3μΘ + 2μ ėrr = –p – 2

3μ Θ + 2μ∂v
∂r (15.48)

σθθ = –p – 2
3μΘ + 2μ ėθθ = –p – 2

3μ Θ + 2μ
(
1
r
∂w
∂θ

+ v
r

)
(15.49)

σxx = –p – 2
3μΘ + 2μ ėxx = –p – 2

3μ Θ + 2μ∂u
∂x (15.50)

and, for the shear-stress components

τxr = τrx = 2μ γ̇xr = μ
(
∂v
∂x + ∂u

∂r

)
(15.51)

123 This term, and the corresponding term in equation (15.44), is sometimes, arguably incorrectly, included in the
material derivative itself.



404 BASIC EQUATIONS OF VISCOUS-FLUID FLOW

τrθ = τθr = 2μ γ̇rθ = μ
[
r ∂
∂r

(
w
r

)
+ 1
r
∂v
∂θ

]
(15.52)

τθx = τxθ = 2μ γ̇rx = μ
(
1
r
∂u
∂θ

+ ∂w
∂x

)
. (15.53)

15.2.5 Navier-Stokes equations

In cylindrical coordinates, after substitution for the normal and shear-stress components in
Cauchy’s equations (15.42) to (15.44), we have:
x-component

ρDuDt = –
∂p
∂x – ∂

∂x

(
2
3μ!

)
+ ∂
∂x

(
2μ∂u
∂x

)
+ 1
r
∂
∂r

[
μr
(
∂u
∂r + ∂v

∂x

)]

+ 1
r
∂
∂θ

[
μ

(
1
r
∂u
∂θ

+ ∂w
∂x

)]
+ ρfx (15.54)

r-component

ρ

(
Dv
Dt – w2

r

)
= –
∂p
∂r – ∂

∂y

(
2
3μ!

)
+ ∂
∂r

(
2μ∂v
∂r

)
+ 1
r
∂
∂θ

[
μ

(
1
r
∂v
∂θ

+ ∂w
∂r – w

r

)]

+ ∂
∂x

[
μ

(
∂v
∂x + ∂w

∂r

)]
+ 2μ

r

(
∂v
∂r – v

r – 1
r
∂w
∂θ

)
+ ρfr (15.55)

θ-component

ρ

(
Dw
Dt + vw

r

)
= – 1

r
∂p
∂θ

– 1
r
∂
∂θ

(
2
3μ!

)
+ 1
r
∂
∂θ

(
2μ
r
∂w
∂θ

+ 2μv
r

)

+ ∂
∂r

[
μ

(
1
r
∂v
∂θ

+ ∂w
∂r – w

r

)]
+ 2μ

r

(
1
r
∂v
∂θ

+ ∂w
∂r – w

r

)

+ ∂
∂x

[
μ

(
1
r
∂u
∂θ

+ ∂w
∂x

)]
+ ρfθ . (15.56)

15.2.6 Constant- and uniform-property flow

In cylindrical coordinates, the Navier-Stokes equations for a fluid with constant and uniform
properties are:
x-component

ρDuDt = –
∂p
∂x + μ

[
∂2u
∂x2

+ 1
r
∂
∂r

(
r ∂u
∂r

)
+ 1
r2
∂2u
∂θ2

]
(15.57)

r-component

ρ

(
Dv
Dt – w2

r

)
= –
∂p
∂r + μ

[
∂2v
∂x2

+ ∂
∂r

{
1
r
∂
∂r (rv)

}
+ 1
r2
∂2v
∂θ2

– 2
r2
∂w
∂θ

]
(15.58)
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θ-component

ρ

(
Dw
Dt + vw

r

)
= –1r

∂p
∂θ

+ μ
[
∂2w
∂x2

+ ∂
∂r

{
1
r
∂
∂r (rw)

}
+ 1
r2
∂2w
∂θ2

+ 2
r2
∂v
∂θ

]
. (15.59)

15.3 Boundary conditions

For flow over a solid surface, the velocity component normal to the surface vS, say, must
be zero but there are also practical problems where the surface is porous and there is flow
through it. For example, the turbine blades of a gas turbine are commonly cooled by blowing
cool gas through tiny holes in the surface into the flow over the surface, vS > 0, a process called
transpiration cooling. In other situations, flow control involves suction through the surface,
vS < 0. For almost all the problems we shall consider, our first boundary condition is vS = 0.
Although it is obvious that fluid cannot pass through a solid surface, it is primarily a matter

of experimental observation that the components of fluid velocity tangential to the surface, u
and w, are also zero and this is our second boundary condition. According to this no-slip con-
dition, introduced in Section 6.4, in the immediate vicinity of a solid surface a consequence of
viscosity is that the fluid is brought to rest (or, more generally, if the surface is itself moving,
to the same velocity as the surface so that the relative velocity is zero). In essence, the fluid
adheres to the surface. In an external flow, the change from zero to the external (free-stream)
velocity takes place across a relatively thin layer of fluid called the viscous boundary layer124.
In an internal flow, as the flow develops from the flow inlet, velocity changes initially occur
across a boundary layer but ultimately the flow becomes fully developed (i.e. unchanging with
streamwise location) and the entire cross section is influenced by viscosity. Chapter 16 is con-
cerned primarily with the analysis of fully-developed internal flows, while laminar boundary
layers are the subject of Chapter 17.

15.4 Non-dimensional form of the Navier-Stokes
and continuity equations

If we can identify a length scale, L, and a velocity scale,U, for any given flow, then we can trans-
form the Navier-Stokes and continuity equations to non-dimensional form. For simplicity, we
restrict consideration to constant- and uniform-property flows with zero body force so that,
in Cartesian coordinates, the relevant equations are those of Subsection 15.1.6. We introduce
the non-dimensional variables t∗ = tU/L, x∗ = x/L, y∗ = y/L, z∗ = z/L, u∗ = u/U, v∗ = v/U,
w∗ = w/U, and p∗ = p/ρU2. The non-dimensional form of the Navier-Stokes equations is then

∂u∗
∂t∗ + u∗ ∂u∗

∂x∗ + v∗ ∂u∗
∂y∗ + w∗ ∂u∗

∂z∗ = –
∂p∗
∂x∗ + μ

ρUL

(
∂2u∗
∂x∗2 + ∂

2u∗
∂y∗2 + ∂

2u∗
∂z∗2

)
(15.60)

124 In situations where there is heat transfer between a flowing fluid and a surface, termed forced convection, the
temperature change from the surface value to the free-stream value occurs across a thermal boundary layer.
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∂v∗
∂t∗ + u∗ ∂v∗

∂x∗ + v∗ ∂v∗
∂y∗ + w∗ ∂v∗

∂z∗ = –
∂p∗
∂y∗ + μ

ρUL

(
∂2v∗
∂x∗2 + ∂

2v∗
∂y∗2 + ∂

2v∗
∂z∗2

)
(15.61)

and

∂w∗
∂t∗ + u∗ ∂w∗

∂x∗ + v∗ ∂w∗
∂y∗ + w∗ ∂w∗

∂z∗ = –
∂p∗
∂z∗ + μ

ρUL

(
∂2w∗
∂x∗2 + ∂

2w∗
∂y∗2 + ∂

2w∗
∂z∗2

)
, (15.62)

while the continuity equation in non-dimensional form is

∂u∗
∂x∗ + ∂v

∗
∂y∗ + ∂w

∗
∂z∗ = 0. (15.63)

Transformation of the usual boundary conditions, uS = 0, wS = 0, and vS = 0, is obviously
trivial.
The important result of this section is that the Reynolds number Re = ρUL/μ emerges as

the single parameter in the set of equations and it can be concluded that, for two geometrically
similar situations with the same Reynolds number (dynamic similarity), the solutions to equa-
tions (15.60) to (15.63) will be the same, and the corresponding flow patterns identical (i.e.
kinematically similar) (see Section 3.14). It is crucially important to understand that a Reyn-
olds number defined for, say, flow through a pipe, based upon pipe diameter and average flow
velocity, has no direct relevance to flow at the same flow velocity over a cylinder of the same
diameter or over an aerofoil with thickness equal to the pipe diameter.
We have already established that any flow of a fluid satisfying Stokes’ constitutive equations

is governed by the Navier-Stokes equations. Such viscous-fluid flows are often categorised
as being either laminar or turbulent, terms we shall define more precisely in Chapters 16
and 18 than we did in Sections 3.12 and 3.16, with an appropriately defined Reynolds number
differentiating between the two: laminar flow below a critical Reynolds number and turbu-
lent flow for higher values. This crude characterisation is adequate for some basic engineering
situations, such as steady flow through long pipes, but in general more careful consideration
of the flow condition is necessary.

15.5 Flow of a generalised Newtonian fluid

Up to this point we have been concerned with the governing equations for the flow of a
Newtonian fluid. In Section 2.10 we discussed briefly the characteristics of so-called non-
Newtonian fluids, for which the apparent or effective dynamic viscosity μEFF is no longer
a fluid parameter independent of any distortion of the fluid and which may exhibit time-
dependent elastic effects or normal-stress effects. The effective viscosity is defined in the same
way as the Newtonian viscosity μ, through the equation

τyx = μEFF γ̇ . (15.64)

For many real fluids, known as generalised Newtonian fluids, the viscosity is shear depend-
ent but other effects are negligible, at least in steady laminar flow. In Cartesian coordinates
the equations describing the flow are equations (15.29) to (15.31) and, in polar coordinates,
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equations (15.54) to (15.56), with μEFF = μEFF (γ̇ ), γ̇ being the magnitude of the total strain
rate, which can be calculated from the shear-strain-rate125 components as

γ̇ =
√
γ̇ 2xy + γ̇ 2yz + γ̇ 2zx (15.65)

in Cartesian coordinates, with a similar expression (replacing γ̇xy with γ̇xr , etc.) in cylindrical
coordinates. A practical example in which two orthogonal strain-rate components play a role
is that of the flow of a non-Newtonian fluid, such as drilling mud, through a concentric an-
nulus (a borehole) with centrebody (the drill stem) rotation. The magnitude of the total strain
rate is then

γ̇ =
√
γ̇ 2xr + γ̇ 2rθ . (15.66)

For many real fluids of industrial importance it is found that the apparent viscosity is con-
stant at low and very-high shear rates with decreasing (or increasing) viscosity at intermediate
shear rates, as illustrated in Figure 15.5. Such a plot of viscosity versus shear rate is known
as a flow curve. The Ostwald-de Waele power-law model is widely used as an empirical
representation of the intermediate region

μEFF = Kγ̇ n–1, (15.67)

the constant K being called the consistency index, with units Pa · sn, and n being the power-
law exponent. Clearly, if n < 1 equation (15.67) corresponds to an effective viscosity which
decreases with increasing shear rate, termed shear-thinning (or pseudoplastic) behaviour, but
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Figure 15.5 Effective viscosity versus shear rate for a shear-thinning liquid

125 In more general situations the total strain rate would have to include the extensional strain-rate components,

so that γ̇ =
√
γ̇ 2xy + γ̇ 2yz + γ̇ 2zx + 1

2
(
ė2xx + ė2yy + ė2zz

)
.
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if n > 1 the viscosity increases with shear rate, and the fluid is said to be shear thickening (or
dilatant). The power-law model has been widely used for the polymeric liquids commonly
found in the food and cosmetic industries.
The simple power-law equation has the obvious drawback that (for n < 1), as γ̇ → 0,
μEFF → ∞. Nevertheless, analytical solutions to the flow equations are possible for a number
of practical flow geometries and provide some insight into the qualitative effects of a shear-
dependent viscosity. In Chapter 16 we present the solution for fully-developed flow of a power-
law fluid between parallel plates.
The Sisko model provides a better description of most emulsions and suspensions over

a wide range of shear rates (0.1 to 103 s–1). This model overcomes the high-shear-rate defi-
ciency (μEFF → 0) of the power-law equation by adding an appropriate constant viscosityμ∞
so that

μEFF = Kγ̇ n–1 + μ∞. (15.68)

Many liquids exhibit a yield stress, i.e. a shear stress below which there is no shear flow.
The list is extensive and includes fine aqueous nuclear fuel slurries, rocket-propellant pastes,
drillingmuds, toothpaste, ketchup, certain inks and paints, mayonnaise, and yoghurt. A simple
model which for many purposes adequately describes such yield-stress (or viscoplastic)
liquids is the Bingham plastic

τyx = ±τY + μP γ̇ (15.69)

where τY is the yield stress of the liquid and μP is the constant plastic viscosity126.
The Herschel-Bulkley model is a more general equation used to characterise a viscoplastic

liquid

τyx = ±τY + Kγ̇ n (15.70)

where K is the consistency index and n the power-law index. Equation (15.70) has the merit of
reducing to the power-law or Bingham models with appropriate choices for τY ,K, and n.
The Casson equation also represents an alternative model for a viscoplastic liquid
√–τyx =

√
τY +

√
μPγ̇ (15.71)

and has been found to represent the viscosity of molten chocolate and blood. In Chapter 16
we derive an equation for pipe flow of a Bingham plastic and state the equivalent equation for
a Casson liquid.
There are several μEFF (γ̇ ) models for shear-thinning liquids involving more parameters

than the power-law model, such as the five-parameter Carreau-Yasuda model, which are
useful in curve fitting experimental data

μEFF – μ∞
μ0 – μ∞

=
[
1 + (λγ̇ )a

](n–1)/a . (15.72)

The Carreau-Yasudamodel parameters are the zero-shear-rate viscosity,μ0; the infinite-shear-
rate viscosity, μ∞; a time constant, λ; a power-law exponent, n; and a parameter, a, which

126 The positive sign in equation (15.68) is used when τyx is positive, and the negative sign when it is negative.
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quantifies the transition from the zero-shear-rate plateau and the power-law region. Un-
fortunately, the Carreau-Yasuda model is unsuitable for analytical work but can be used in
numerical simulations.
The reader is reminded that most synthetic, and some natural, liquids exhibit elastic beha-

viour (viscoelasticity) and time-dependent behaviour (termed thixotropy if there is a viscosity
decrease with time when a stress is suddenly applied, and rheopecty when the opposite
occurs). Analysis of the flow of such fluids is outside the scope of this text.

15.6 SUMMARY

In this chapter we showed how the momentum-conservation equation (Newton’s second
law of motion) applied to an infinitesimal cube of fluid leads to a set of partial differential
equations, Cauchy’s equations of motion, which govern the flow of any fluid satisfying the
continuum hypothesis. Any fluid flow must also satisfy the continuity equation, another
partial differential equation, which is derived from the mass-conservation equation. It was
shown that distortion of a flowing fluid can be split into elongational distortion and angular
distortion or shear strain. For a Newtonian fluid, the normal and shear stresses in Cauchy’s
equations are related to the elongational and shear-strain rates through Stokes’ constitutive
equations. Substitution of these constitutive equations into Cauchy’s equations leads to the
Navier-Stokes equations, which govern steady or unsteady flow of a fluid which may have
density and viscosity which vary with pressure and temperature. A minor modification of
the constitutive equations for a Newtonian fluid allows consideration of fluids for which
the viscosity depends upon the shear-strain rates, so-called generalised Newtonian fluids.

Self-assessment problems relevant to this chapter are included in Chapters 16 and 17.
At the end of this chapter, the student should be able to

• interpret the individual terms in Cauchy’s equations of motion
• distinguish between extensional (or longitudinal) strain and angular strain
• explain the difference between a Newtonian and a non-Newtonian fluid
• understand the concept of a yield stress



16 Internal laminar flow

In this chapter we present analytical solutions of the Navier-Stokes equations for the flow of
pressure- and shear-driven flows of a viscous fluid through long ducts of constant cross section.
Pressure-driven flow of this type is referred to as Poiseuille flow, while the shear-driven flow
is known as Couette flow. For the fully-developed flows under consideration, analytical solu-
tions are possible because the non-linear terms in the Navier-Stokes equations are identically
zero. Although for the most part we limit our attention to constant-property Newtonian flu-
ids, we also include limited consideration of some generalised Newtonian liquids. The chapter
concludes with a presentation of the principles underlying the design of instruments used to
measure viscosity.

16.1 General remarks

A laminar flow127 is one in which all transport processes occur at a molecular level, the rate
of transport (or movement) being proportional to the gradient of a flow property. Viscosity is
the transport property that relates momentum flux to velocity gradient, already discussed in
Section 2.8; thermal conductivity relates heat flux to temperature gradient; and the diffusion
coefficient relates mass transport to concentration gradient. We shall be concerned almost
exclusively with the effects of viscosity.
For a steady (i.e. time independent) laminar flow, the fluid can be visualised as flowing

smoothly in infinitesimally thin layers128 such that the velocity varies smoothly from one layer
to the next. A laminar flow in which disturbances introduced from outside (such as from
surface imperfections) are attenuated is said to be stable. For a given flow geometry, a flow re-
mains stable up to a certain critical Reynolds number129 ReC or, for rotating flow, the Taylor
number (see Section 16.5). As Re is progressively increased above ReC, new stable flow pat-
terns may appear until a point is reached when Re = ReU , say, at which any disturbances
introduced into the flow are amplified because the flow has become unstable. Demonstrating
that solutions to the Navier-Stokes equations are unstable for Re ≥ ReU is the subject of stabil-
ity analysis, which is beyond the scope of this book. We shall assume that the flows for which
we present solutions in this chapter are in a Reynolds-number regime where they are stable.

127 The term streamline flow is sometimes used.
128 The word laminar stems from lamina, which is New Latin meaning ‘thin plate’ or ‘layer’.
129 It is crucially important for the reader to understand that the numerical value of the critical Reynolds number

for one geometry is normally quite different from that from another, not least because of different choices for the
length and velocity scales in each case.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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Figure 16.1 Developing flow between parallel plates

It was pointed out in Chapter 15 that, when a viscous fluid flows steadily through a pipe or
other duct, streamwise-velocity changes occur normal to the duct wall as the flow develops
from the duct inlet, initially across a relatively thin boundary layer, as illustrated in Figure 16.1
for flow between two parallel plates. Ultimately, the entire cross section is influenced by vis-
cosity, and the flow is said to be fully developed (i.e. unchanging with streamwise location).
The streamwise distance over which this process occurs is called the development length. This
chapter is concerned with the analysis of steady, fully-developed, internal, laminar flows. If the
streamwise coordinate is x, and the corresponding velocity component is u, then for a fully-
developed flow we require ∂u/∂x = 0 so that, in rectangular Cartesian coordinates, u = u

(
y, z
)

or, in polar-cylindrical coordinates, u = u (r, θ). If there is no relative movement between the
duct walls, we also have v = 0 in the y-direction, and w = 0 in the z-direction (or v = 0 in
the r-direction, and w = 0 in the θ-direction). As we shall show, the assumption that a lam-
inar flow is steady and fully developed reduces the Navier-Stokes equations to a level where
straightforward analytical solutions are possible. Not only are such solutions of practical rel-
evance, for example, to flow through long pipelines and capillary tubes, and to viscometry, but
they also provide insight into laminar flows more generally.
Two principal types of steady, fully-developed, laminar duct flowmay be identified. The first

is Poiseuille flow, where the flow through a long cylindrical duct130 is driven by a pressure
difference applied between the ends of the duct. The second is Couette flow, where flow of
the fluid contained between two parallel or concentric surfaces occurs when there is relative
tangential movement between the two surfaces. A third possibility involves a combination of
Couette and Poiseuille flows for a given geometry.
Whether the most appropriate starting point for a detailed analysis of any flow is the

continuity and Navier-Stokes equations in Cartesian- or polar-cylindrical-coordinate form de-
pends upon the duct geometry. The Cartesian-coordinate form of the equations is chosen in
Section 16.2, which concerns Poiseuille flow in general, although either form could be chosen.
The detailed analysis of Poiseuille flow through rectangular, triangular, and other non-circular

130 Although the term cylindrical is commonly used to refer to an object of circular cross section, more generally
it applies to any object for which the surface is generated by lines parallel to a straight axis.
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duct shapes is generally complicated and beyond the scope of this text. However, if the equa-
tions are posed in polar-cylindrical-coordinate form, flow through or within axisymmetric
ducts is more amenable to analysis and is the subject of Sections 16.3 and 16.5. In all cases we
shall assume that body forces are negligible.

16.2 Poiseuille flow of a Newtonian fluid, hydraulic diameter,
and Poiseuille number

We discuss first the general case of Poiseuille flow of a Newtonian fluid through a cylindrical
duct of arbitrary cross section. Our starting point is the continuity andNavier-Stokes equations
in rectangular-Cartesian-coordinate form for uniform-property flow, which were derived in
Subsection 15.1.6:
continuity

∂u
∂x + ∂v

∂y + ∂w
∂z = 0 (16.1)

x-component

ρ

(
∂u
∂t + u∂u

∂x + v ∂u
∂y + w∂u

∂z

)
= –
∂p
∂x + μ

(
∂2u
∂x2

+ ∂
2u
∂y2

+ ∂
2u
∂z2

)
(16.2)

y-component

ρ

(
∂v
∂t + u∂v

∂x + v ∂v
∂y + w∂v

∂z

)
= –
∂p
∂y + μ

(
∂2v
∂x2

+ ∂
2v
∂y2

+ ∂
2v
∂z2

)
(16.3)

z-component

ρ

(
∂w
∂t + u∂w

∂x + v ∂w
∂y + w∂w

∂z

)
= –
∂p
∂z + μ

(
∂2w
∂x2

+ ∂
2w
∂y2

+ ∂
2w
∂z2

)
. (16.4)

For steady Poiseuille flow, ∂/∂t = 0, ∂u/∂x = 0, v = w = 0, so that equation (16.2) reduces to

0 = –
∂p
∂x + μ

(
∂2u
∂y2

+ ∂
2u
∂z2

)
(16.5)

while all that remains of equations (16.3) and (16.4) is

∂p
∂y =

∂p
∂z = 0 (16.6)

from which we conclude that p = p (x). Since u is independent of x, the parenthetical term
on the right-hand side of equation (16.5) must be independent of x while ∂p/∂x can only be a
function of x or a constant. For both conditions to be satisfied we conclude that the pressure
gradient dp/dxmust be a constant independent of x.
We thus have

dp
dx

= μ
(
∂2u
∂y2

+ ∂
2u
∂z2

)
= constant. (16.7)
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p + δpp
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Figure 16.2 Pressure difference δp and average shear stress τ̄S acting on a control volume of
infinitesimal length δx, circumference c, and cross-sectional area A

From Subsection 15.2.6 we find that the corresponding equation in polar-cylindrical coordin-
ates is

dp
dx

= μ
[
1
r
∂
∂r

(
r ∂u
∂r

)
+ 1
r2
∂2u
∂θ2

]
. (16.8)

If the cross-sectional area of the duct is A, and the circumference of the wetted perimeter131

is c, then it is easily seen, from the force balance for the elemental control volume of length δx
shown in Figure 16.2132, that, for fully-developed duct flow,

–δpA – τ̄S c δx = 0 (16.9)

or, as δx → 0,

τ̄S = –Ac
dp
dx

= constant. (16.10)

The quantity τ̄S represents the average shear stress exerted on the fluid by the wetted surface
of the duct while δp is the change in static pressure between the ends of the control volume.
The right-hand side of equation (16.9) is zero because it represents the change in momentum
flowrate through the control volume, which must be zero for fully-developed flow.
We can now use equation (16.10) to substitute for dp/dx in equation (16.7) in terms of τ̄S

to give

– cτ̄S
μA = ∂

2u
∂y2

+ ∂
2u
∂z2

. (16.11)

To convert equation (16.11) to non-dimensional form, we need to identify suitable length and
velocity scales. For the latter we choose the average flow velocity V̄ , which can be determined
from the volumetric flowrate Q̇

V̄ = Q̇
A . (16.12)

131 The term wetted refers to any surface in contact with a fluid, whether a liquid or a gas.
132 Note that the cross section of the control volume is that of the duct with cross-sectional area A.
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The choice of a length scale is less straightforward since there is no ‘natural’ axial length
scale for a fully-developed flow. Instead, it is conventional to define a length scale in terms
of the geometric properties of the cross section,A and c. The ratio A/c, which appears in
equation (16.10), has the dimensions of length and is easily seen to equal D/4 for a circular
pipe of diameter D, i.e. 4A/c = D. More generally, the combination 4A/c is used to define a
length scale

DH = 4A
c (16.13)

which is referred to as the hydraulic diameter133. The hydraulic diameter is easily calculated
for any cross section: e.g. for a square duct of side length a, we find DH = a and, for a duct
of annular cross section, with inner radius RI and outer radius RO, we have DH = 2δ, where
δ = RO – RI is the average width of the gap between the inner and outer surfaces. The latter
example reveals a deficiency of the hydraulic-diameter concept: in the case of an annulus, it
takes no account of eccentricity, i.e. the situation where the two cylinders are not concentric.
If we define the non-dimensional variables u∗ = u/V̄ , y∗ = y/DH , and z∗ = z/DH , equation

(16.11) can be written in non-dimensional form as

4τ̄SDH
μV̄

= –
(
∂2u∗
∂y∗2 + ∂

2u∗
∂z∗2

)
= constant. (16.14)

Although the term on the left-hand side of equation (16.14), is a natural non-dimensional
parameter to characterise a Poiseuille flow, it is conventional for any duct flow of a viscous
fluid to introduce a Reynolds number, defined here as

ReH = ρV̄DH
μ

(16.15)

and the Fanning friction factor134

fF = 2τ̄S
ρV̄2 (16.16)

where ρ is the fluid density.
In terms of ReH and fF , equation (16.14) may be written as

–
(
∂2u∗
∂y∗2 + ∂

2u∗
∂z∗2

)
= constant = 2fF ReH = 2Po (16.17)

where Po is the Poiseuille number Po, defined as

Po = fF ReH = 2τSDH
μV̄

. (16.18)

Although the appearance of a Reynolds number is to be expected in any analysis of viscous
fluid flow, it can be argued that it has been introduced here artificially (and unnecessarily). The

133 It should be noted that the hydraulic radius, RH , is defined as A/c and so is equal to DH/4, not DH/2 as would
seem logical.

134 The Darcy friction factor fD = 8τS/ρV̄2, also referred to as the Darcy-Weisbach friction factor, is also in
common use, particularly in hydraulics.
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artificiality is associated with the introduction of the fluid density, ρ, which does not appear in
either equation (16.7) or equation (16.10) as it plays no role in a fully-developed flow, where
no fluid particle undergoes either spatial or temporal acceleration since Du/Dt = 0. However,
in the majority of viscous-fluid flow problems the fluid density does play a significant role,
so the Reynolds number then arises naturally as the non-dimensional flow parameter, and it
is conventional to introduce it in the way we have done here, even for fully-developed flows
where the Poiseuille number is arguably more appropriate.
Solutions of equation (16.17), or its polar-cylindrical form, have been obtained for a wide

variety of duct cross sections leading to velocity distributions, u
(
y, z
)
or u (r, θ), and cor-

responding values of the Poiseuille number. A selection of the latter have been plotted in
Figure 16.3 against an aspect ratio which characterises the relevant cross section. We note that
the result Po = 16 for a pipe of circular cross section, discussed in detail in Subsection 16.3.1,
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Figure 16.3 Poiseuille number Po versus aspect ratio b/a for Poiseuille flow through ducts with the
cross sections shown



416 INTERNAL LAMINAR FLOW

appears both as a limiting case for flow through a duct of elliptical cross section as b/a → 1 and
for flow through a concentric annulus, discussed in Subsection 16.3.2, as b/a → 0. The result
Po = 24 for flow between parallel plates, discussed in Section 16.4, also appears as a limiting
case, both for flow through a rectangular duct as b/a → 0 and for flow through a concentric
annulus as b/a → 1.
Figure 16.3 is based upon data reported in the book by Shah and London (1978), which also

gives data for a wide variety of other cross sections.

16.3 Poiseuille flow through an axisymmetric cylindrical duct

In this section we derive solutions for Poiseuille flow through both a circular pipe and a
concentric-annular duct from simplified forms of the flow equations in polar-cylindrical-
coordinate form. From Section 15.2 we have, for the flow of a uniform-property Newtonian
fluid:
continuity equation

∂u
∂x + 1

r
∂
∂r (rv) +

1
r
∂w
∂θ

= 0 (16.19)

x-component

ρ

(
∂u
∂t + u∂u

∂x + v ∂u
∂r + w

r
∂u
∂θ

)
= –
∂p
∂x + μ

[
∂2u
∂x2

+ 1
r
∂
∂r

(
r ∂u
∂r

)
+ 1
r2
∂2u
∂θ2

]
(16.20)

r-component

ρ

(
∂v
∂t + u∂v

∂x – v ∂v
∂r + w

r
∂v
∂θ

– w2

r

)

= –
∂p
∂r + μ

[
∂2v
∂x2

+ ∂
∂r

{
1
r
∂
∂r (rv)

}
+ 1
r2
∂2v
∂θ2

– 2
r2
∂w
∂θ

]
(16.21)

θ-component

ρ

(
∂w
∂t + u∂w

∂x + v ∂w
∂r + w

r
∂w
∂θ

+ vw
r

)

= –1r
∂p
∂θ

+ μ
[
∂2w
∂x2

+ ∂
∂r

{
1
r
∂
∂r (rw)

}
+ 1
r2
∂2w
∂θ2

+ 2
r2
∂v
∂θ

]
. (16.22)

The boundary conditions are vS = 0 at an impervious surface and, from the no-slip condition,
uS = wS = 0 at any stationary, solid surface135. The subscript S is used to denote conditions at
a wetted surface.
Since the flow is fully developed, ∂u/∂x = 0 and, in the absence of rotation of either surface,

the azimuthal velocity w = 0, so that the continuity equation simplifies to

d
dr (

rv) = 0 (16.23)

135 More generally, if the surface itself is moving, uS andwS equal the surface velocity components in the x- and/or
θ directions, respectively.
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which may be integrated to give rv = constant. Since vS = 0, we conclude that v = 0 throughout
the flowfield.
With v = w = 0, equation (16.21) reduces to

∂p
∂r = 0 (16.24)

and equation (16.22) to

∂p
∂θ

= 0. (16.25)

The only possibility for the static pressure p which satisfies both equations (16.24) and (16.25)
is p = p (x). Equation (16.2) then reduces to

1
r
∂
∂r

(
r ∂u
∂r

)
+ 1
r2
∂2u
∂θ2

= 1
μ

dp
dx

. (16.26)

For fully-developed flow, the left-hand side of this equation must be independent of x, while
the right-hand side can only be a function of x or is a constant. For both to be satisfied, we
conclude that the pressure gradient dp/dxmust be a constant (i.e. independent of x).
Since we are restricting attention to axisymmetric geometries, such as a circular pipe or a

concentric annulus, u = u (r) and equation (16.26) can be integrated once to give

r du
dr

= r2
2μ

dp
dx

+ A (16.27)

where A is a constant of integration, while a second integration leads to

u = r2
4μ

dp
dx

+ A ln r + B. (16.28)

To proceed further and determine the constants of integration, A and B, we have to consider
specific geometries.

16.3.1 Poiseuille flow through a circular pipe: Hagen-Poiseuille flow

Poiseuille flow through a cylindrical pipe of circular cross section is referred to as Hagen-
Poiseuille flow. If the pipe has radius R (diameter D), the two constants in equation (16.28)
have the values

A = 0 and B = – R
2

4μ
dp
dx

.

The value for A is a consequence of the fact that equation (16.27) must be valid for all values of
the radial position r, including r = 0 (the centreline). The value for B is a consequence of the
no-slip condition at the pipe surface, r = R. Thus, the velocity distribution (or profile) for a
circular pipe is given by

u =
(
R2 – r2

)
4μ

(
–
dp
dx

)
, (16.29)
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with the minus sign in the second parenthesis emphasising that for the flow to be in the
positive x-direction the pressure gradient dp/dxmust be negative, i.e. the static pressure
decreases with streamwise distance x.
The centreline velocity is thus

u0 = R2
4μ

(
–
dp
dx

)
(16.30)

so that the velocity distribution can be written as

u
u0

= 1 –
(
r
R

)2
(16.31)

i.e. the velocity variation is parabolic with r.
The shear stress at any radial position within the fluid is given by

τrx = μdudr
= r
2
dp
dx

= –2μru0
R2

(16.32)

so that the shear stress exerted by the fluid on the pipe surface τS is given by

τS = – τrx|r=R = 2μu0
R . (16.33)

Equation (16.32) shows that the shear stress variation within the fluid is proportional to dis-
tance r from the centreline. The radial distributions of shear stress and velocity are shown in
Figure 16.4.
As we have emphasised in previous chapters, it is advantageous to present formulae in non-

dimensional form. In the case of equation (16.33) this is achieved by rearranging the terms,
leading to

τSR
μu0

= 2. (16.34)

0

0

0.5 r / R

1.0

–0.5

τrx / τS

–1.0 0 0.5

(b)(a)

1.0

u/u0

Figure 16.4 Shear stress and velocity distributions in fully-developed laminar pipe flow
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From a practical point of view it is more convenient to express a formula for the wall shear
stress τS in terms of an average flow velocity V̄ , based upon the volumetric flowrate Q̇, rather
than the centreline velocity u0. We define V̄ as follows

V̄ = Q̇
A = 4Q̇
πD2 (16.35)

where A = πD2/4 is the cross-sectional area of the pipe, D = 2R being its diameter. Since the
velocity distribution is now known, we can calculate Q̇ from:

Q̇ =
∫ R

0
2πru dr (16.36)

so that, after substitution for u from equation (16.31), we have

V̄ =
∫R0 2πru dr
πR2

= 1
2u0 (16.37)

and equation (16.34) can be rewritten as

τSD
μV̄

= 8. (16.38)

The conclusion that the average flow velocity is 50% of the peak velocity, shown by equation
(16.37), is peculiar to fully-developed laminar flow in a circular pipe and is not a general result
applicable to any cross section.
In terms of the Fanning friction factor fF and Reynolds number Re, defined in Section 16.2

but noting that in this case DH = D and so the subscript H is unnecessary, equation (16.38)
leads to

τSD
μV̄

= 1
2
2τS
ρV̄2
ρDV̄
μ

= 1
2 fF Re = 8 (16.39)

or

fF Re = Po = 16 = Po (16.40)

where Po is the Poiseuille number, also defined in Section 16.2.
Above a critical Reynolds number, usually taken as 2100, Hagen-Poiseuille flow becomes

unstable and eventually turbulent so that the analysis presented here is no longer valid.
Poiseuille and Couette flow through other geometries also remain laminar up to values of
critical Reynolds (or Taylor) numbers, which will be different in each case.

16.3.2 Poiseuille flow through a concentric annulus

The geometry of a concentric annulus is illustrated in Figure 16.5. The fluid flows through
the annular space between an inner circular pipe of radius RI and an outer circular pipe,
co-axial with the inner pipe, of radius RO. Equation (16.28) is still valid, and the constants
of integration,A and B, are again determined from the boundary conditions, which are now
u = 0 for both r = RI , and r = RO, so that

0 =
R2I
4μ

dp
dx

+ A lnRI + B
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δx

RI

RO
p

(b)

p + δp
τS

τS

RI

(a)

RO

Figure 16.5 (a) Geometry of a concentric annulus (b) Elemental control volume

and

0 =
R2O
4μ

dp
dx

+ A lnRO + B.

If we subtract one equation from the other, after some rearrangement we find

A =
(
R2O – R2I

)
4μ ln(RO/RI)

(
–
dp
dx

)
.

Substitution of this expression for A into either of the equations including B leads to

B =

[
R2O –

(
R2O – R2I

)
lnRO

ln(RO/RI)

]
1
4μ

(
–
dp
dx

)

or

B =

[
R2I –

(
R2O – R2I

)
lnRI

ln(RO/RI)

]
1
4μ

(
–
dp
dx

)
.

It is easily shown that the two equations for B are equivalent.
If the expressions for A and B are substituted into equation (16.28) we have the following

equation for the velocity distribution in the annular region RO ≥ r ≥ RI

u =

[
R2O – r2

R2O – R2I
– ln (r/RO)
ln(RI/RO)

] (
R2O – R2I

)
4μ

(
–
dp
dx

)
. (16.41)

The volumetric flowrate Q̇ through the annulus can now be obtained from

Q̇ =
∫ RO

RI
2πrudr =

[
R2O + R2I –

(
R2O – R2I

)
ln (RO/RI)

]
π
(
R2O – R2I

)
8μ

(
–
dp
dx

)
. (16.42)



COMBINED PLANE COUETTE AND POISEUILLE FLOW 421

The surface shear stresses acting on the cylindrical surfaces can be determined individually
from equation (16.41) but, from a practical point of view, a value τ̄S averaged over the two
annular surfaces is adequate. From a force balance for the elemental control volume shown in
Figure 16.5(b)

τ̄S = 1
2 (RO – RI)

(
–
dp
dx

)
(16.43)

so that

Q̇ =

[
R2O + R2I –

(
R2O – R2I

)
ln (RO/RI)

]
π (RO + RI) τ̄S

4μ (16.44)

and the average flow velocity V̄ is

V̄ = Q̇
A = Q̇
π
(
R2O – R2I

) =
[
R2O + R2I –

(
R2O – R2I

)
ln (RO/RI)

]
τ̄S

4μ (RO – RI)
. (16.45)

We can now convert this result to the Poiseuille-number form, as we did for the circular pipe,
with the result

Po = fF ReH = 16 (RO – RI)2[
R2O + R2I –

(
R2O – R2I

)
ln (RO/RI)

] (16.46)

where the Reynolds number has been defined as ReH = ρV̄DH/μ, DH being the hydraulic
diameter 2 (RO – RI).
We note that, if the radius of the inner cylinder is negligibly small, i.e. RI � RO, equa-

tion (16.46) reduces to Po = 16, the result for a circular pipe. This conclusion is not quite as
straightforward as it seems at first since, no matter how small the radius of the inner cylinder,
the noslip condition holds at its surface, i.e. for r = RI , u = 0 even when RI → 0 but, in the
absence of an inner cylinder, u is a maximum for r = 0. This apparent contradiction is resolved
when it is realised that, as RI → 0, the location of the velocity maximum in the annulus also
tends to r = 0, and the radial extent of the region affected by the inner cylinder becomes neg-
ligibly small. If the annular gap δ = RO – RI is small compared with RO, then Po → 24, the
value for Poiseuille flow between infinite parallel plates, discussed in Section 16.4. In fact, if
the radius ratio exceeds 0.5, a good approximation (within 1%) for annular Poiseuille flow is
Po = 24.

16.4 Combined plane Couette and Poiseuille flow between
infinite parallel plates: Couette-Poiseuille flow

Plane (or linear)Couette flow arises in the fluid between two parallel plates when one of them
moves at constant tangential velocity relative to the other. A pressure difference imposed on
the fluid between the ends of two fixed parallel plates produces a Poiseuille flow if the plates
are sufficiently long for the flow to become fully developed. Analysis of a combination of these
two flows provides some insight into the influence of a streamwise pressure gradient on a
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y = 0

u0= 0δx

δyp p + δp

y = h

uh =  Vτyx + δτyx

τyx y

Figure 16.6 Control volume for analysis of plane Couette-Poiseuille flow

boundary layer, which is the subject of Section 17.4 and Subsection 17.6.2. The situation is
illustrated in Figure 16.6. The streamwise coordinate is taken as x, and the plates are assumed
to be of infinite extent in the z-direction. The plate spacing is h, the velocity of the moving
plate is V , and the fluid viscosity is μ. The fluid velocity a distance y from the stationary plate
is u, which, since the flow is fully developed, is a function only of y, i.e. u = u

(
y
)
.

We could analyse this flow starting with the continuity and Navier-Stokes equations, but for
such a simple flow we shall develop the solution from first principles. We refer to the elemental
control volume shown in Figure 16.6, which has length δx and height136 δy. The static pressure
p changes by an amount δp across the control volume in the x-direction, and the shear stress
τyx changes by an amount δτyx in the y-direction. A force balance for the control volume gives

δτyx δx – δp δy = 0

the right-hand side being zero because there is no change in fluid momentum for a fully-
developed flow. This equation can be rearranged as

δp
δx –

δτyx
δy = 0

so that, in the limit δx → 0, δy → 0, we have

∂τyx
∂y =

∂p
∂x . (16.47)

From Subsection 15.1.4, Stokes’ constitutive equations here reduce to

τyx = μdudy
(16.48)

so that, from equation (16.47)

μd
2u
dy2

=
dp
dx

= constant. (16.49)

Partial derivatives have been replaced by ordinary derivatives, and the pressure gradient must
be a constant because the flow is fully developed, i.e. u = u

(
y
)
.

136 The reader is reminded that elemental control volumes such as that depicted in Figure 16.6 have to be imagined
to be infinitesimally small and are shown disproportionately large here and elsewhere.
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Equation (16.49) can be integrated once to give

μdu
dy

= y
dp
dx

+ A

and a second integration leads to

μu =
y2

2
dp
dx

+ Ay + B

where A and B are constants of integration, determined from the no-slip boundary conditions
y = 0, u = 0, and y = h, u = V . We find

B = 0 and A = μV
h

– h
2
dp
dx

so that, after some rearrangement, the velocity distribution is given by

u =
Vy
h

–
y
2μ
(
h – y
) dp
dx

. (16.50)

The first (linear) term on the right-hand side of equation (16.50) represents the Couette-flow
contribution to u, while the second (parabolic) term is the Poiseuille-flow contribution.
A non-dimensional form of equation (16.50) is then

u
V =

[
1 – 1

2 (1 – ξ ) λP
]
ξ (16.51)

where ξ = y/h, and

λP = – h2
μV

dp
dx

(16.52)

is a non-dimensional pressure-gradient parameter for Poiseuille flow.
From equation (16.50), the shear stress, τyx, at any distance from the lower plate, y, is

given by

τyx = μdudy
= μV

h
+
(
y – h

2

)
dp
dx

(16.53)

so that the shear stress exerted on the lower plate τ0 is given by

τ0 =
μV
h

– h
2
dp
dx

. (16.54)

The volumetric flowrate per unit width Q̇′ is given by

Q̇′ =
∫ h

0
udy = Vh

2 – h3
12μ

dp
dx

. (16.55)
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An average velocity V̄ can be defined from Q̇′ = V̄h so that, from equation (16.55), we have

V̄ = V
2 – h2

12μ
dp
dx

. (16.56)

As before, the Fanning friction factor fF is defined by

fF = 2τ0
ρV̄2 (16.57)

and the Reynolds number ReH by

ReH = 2ρV̄h
μ

, (16.58)

since the hydraulic diameter here is 2h The Poiseuille number Po is then given by

Po = fF ReH = 4τ0h
μV̄

= 24
(
2 – λP
6 – λP

)
(16.59)

from which for plane Couette flow with λP = 0 we find Po = 8. To find the value of Po for
plane Poiseuille flow we observe that the definition of λP with V → 0 leads to λP → ∞ and,
from equation (16.59), Po → 24.
Velocity distributions according to equation (16.51) are shown in Figure 16.7 for values of

the pressure-gradient parameter in the range –10 < λP < 10.

0

λP = –10

0.6

0.8

1.0

0.4

0.2

0 0.4

u/V

–0.4–0.8 0.8 1.2

1.0

1.6

5 10

2

–2

y/h

Figure 16.7 Velocity distributions for Couette-Poiseuille flow for different values of the pressure-
gradient parameter λP .
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We note the following

• λP = 0 corresponds to plane Couette flow, with u proportional to y, and constant shear
stress τyx = μV/h

• for λP = 2 the shear stress at y = h is zero, and the corresponding velocity distribution
u/V = y/h

(
2 – y/h

)
can be used as an approximate model for a zero pressure-gradient

boundary layer (see Section 17.6)
• for λP > 2 the shear stress exerted on the upper plate is positive, and the velocity dis-
tribution exhibits a maximum at y/h = 1/λP + 1/2, at which location the shear stress is
zero

• for λP = –2 the shear stress at y = 0 is zero and corresponds to the condition in boundary-
layer analysis referred to as flow separation

• for λP < –2 both the shear stress exerted on the lower plate and the near-surface flow
velocity are negative: there is so-called backflow near the lower surface

ILLUSTRATIVE EXAMPLE 16.1

A fluid with viscosity μ is contained within the annular space between two long concentric
cylinders, the outer of which has radius RO, while the inner has radius RI . The outer cylin-
der moves axially at velocity uO while the inner cylinder is stationary. There is zero pressure
difference between the ends of the cylinders.
Derive a reduced form of the Navier-Stokes equations for the flow, stating all the assumptions
made. Solve the equations to find the radial variation of the axial velocity u(r) within the an-
nular gap and the corresponding distribution of the shear stress τrx acting on the fluid. Derive
an equation for volumetric flowrate Q̇ through the annulus.

Solution

Since the cylinders are long, we can assume the flow is fully developed, and ∂u/∂x = 0. In the
absence of rotation of either cylinder, it must also be that w = 0. From the continuity equation
with ∂u/∂x = 0, and w = 0, it must be that v = 0.
The boundary conditions are r = RI , u = 0, and r = RO, u = uO. We also have ∂p/∂x = 0.
The r-component of the Navier-Stokes equations then reduces to

∂p
∂r = 0,

the θ-component reduces to

∂p
∂θ

= 0,

and we have also ∂p/∂x = 0, so it must be that the static pressure p is the same at all points
within the annulus.
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The x-component of the Navier-Stokes equations is thus

μ

r
d
dr

(
r du
dr

)
= 0

or

d
dr

(
r du
dr

)
= 0

which can be integrated to give

r du
dr

= A

or

du
dr

= A
r .

A second integration gives

u = A ln r + B

where A and B are constants of integration to be determined from the boundary conditions

0 = A ln RI + B

and

uO = A ln RO + B.

We thus find

A = uO
ln (RO/RI)

and B = – uO lnRI
ln (RO/RI)

.

Thus, for the velocity distribution we have

u = uO
ln (r/RI)
ln (RO/RI)

.

The shear stress τrx is given by

τrx = μdudr
= μAr = μuOr

ln (r/RI)
ln (RO/RI)

.

The volumetric flowrate Q̇ is found from

Q̇ =
∫ RO

RI
2πrudr =

2πuOR2I
ln ξO

∫ ξO
1
ξ ln ξdξ

where, for convenience, we have introduced the variable ξ = r/RI .
From tables of integrals,
∫ ξ

ln ξdξ = ξ
2

2 ln ξ – ξ
2

4
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so that

Q̇ =
πuOR2I
ln ξO

(
ξ
2
O ln ξO –

ξ
2
O
2 + 1

4

)

or

Q̇ = πuOR2O

[
1 – 1

2 ln (RO/RI)

(
R2O – R2I
R2O

)]
.

16.5 Taylor-Couette flow

As we stated in Section 16.1, if fluid is contained between two parallel or concentric sur-
faces and there is relative tangential movement between the two surfaces, the resulting flow
is termed a Couette flow. The two Couette-flow possibilities for the concentric-cylinder geo-
metry are flow resulting from axial movement of one cylinder relative to the other, as in
Illustrative Example 16.1, or from differential rotation of the two cylinders. The latter, known
as Taylor-Couette flow, is straightforward to analyse. If the axes of the two cylinders are par-
allel but not coincident, the geometry is said to be eccentric, the offset between the two axes
defining the eccentricity. Streamwise flow through an eccentric annulus with inner cylinder
rotation is of great practical interest, particularly if the fluid is a liquid with shear-thinning
(non-Newtonian) properties, which is a goodmodel for the flow of drilling fluid during drilling
of an oil or gas well. For a Newtonian fluid a series solution has been found for the eccentric
geometry but for a non-Newtonian fluid this problem can only be solved numerically.
The analysis in Subsection 16.3.2 of fully-developed axial flow through a concentric annulus

assumed no rotation of either cylinder. If we now allow rotation of the inner cylinder, at angu-
lar velocity Ω , but retain the restriction to steady, fully-developed flow, the flow equations in
polar-cylindrical coordinates reduce to:
x-component

0 = –
∂p
∂x + μr

d
dr

(
r du
dr

)
(16.60)

r-component

ρw2

r = –
∂p
∂r (16.61)

θ-component

0 = d
dr

[
1
r
d
dr (

rw)
]

(16.62)

with boundary conditions r = RI , u = 0,w = ΩRI ; r = RO, u = 0,w = 0.
Since we are restricting consideration to fully-developed flow, the second term on the right-

hand side of equation (16.60) can depend only upon r. If we differentiate with respect to x, it
must be the case that ∂2p/∂x2 = 0 and so ∂p/∂x is a constant (which could be zero) with respect
to x (as will become apparent shortly the static pressure p varies with r if there is centrebody
rotation).
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Integration of equation (16.62) leads to

1
r
d
dr (

rw) = A

where A is a constant of integration. Integration again leads to

rw = Ar2
2 + B

where B is again a constant of integration. The boundary conditions for the tangential velocity
component w lead to

A =
–2ΩR2

I

R2O – R2I
and B =

ΩR2OR2I
R2O – R2I

so that

w =

(
ΩROR2I
R2O – R2I

)(
RO
r – r

RO

)
. (16.63)

Equation (16.63) can also be written as

w =

(
ΩR2I

R2O – R2I

)(
R2O – r2

r

)
=

(
ΩR2I

R2O – R2I

)
(RO – r) (RO + r)

r (16.64)

from which it is straightforward to show that, for geometries where the annular gap between
the inner and outer cylinders δ = RO – RI is small (i.e. δ/RI � 1)

w =
Vy
δ

(16.65)

where y = RO – r is the distance measured from the inner surface of the outer cylinder and
V = ΩRI is the peripheral velocity of the outer surface of the inner cylinder. Evidently, there
is no influence of curvature, and the proportional variation of flow velocity is identical to that
for plane (or linear) Couette flow, which we analysed in Section 16.4.
Now that the dependence of the tangential velocity component on r, w(r), is known, the

static-pressure variation p(r) can be obtained by substituting equation (16.63) for w into
equation (16.61)

∂p
∂r = ρ

(
ΩROR2I
R2O – R2I

)2 (
R2O
r3

– 2
r + r

R2O

)

which can be integrated to give

p – pI = ρ

(
ΩROR2I
R2O – R2I

)2 [
1
2

(
R2O
R2I

–
R2O
r2

)
– 2 ln

(
r
RI

)
+ 1
2

(
r2

R2O
–
R2I
R2O

)]
(16.66)

where pI is the static pressure at r = RI . As already demonstrated, both p and pI are dependent
upon the axial location x so that ∂pI/∂x = ∂p/∂x = constant.
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Also of interest is the shear stress, τrθ , at any radius r, which (from equation (15.53), derived
in Chapter 15) is given by

τrθ = μr ddr

(
w
r

)
= –2μ

r2

(
ΩR2OR

2
I

R2O – R2I

)
. (16.67)

The shear stress exerted by the fluid on the inner (rotating) cylinder is thus

τSI = 2μ

(
ΩR2O

R2O – R2I

)
. (16.68)

Finally, if the length of the inner cylinder is L, the torque TI exerted on its surface is

TI =
4πμΩR2I R2OL

R2O – R2I
. (16.69)

The torque exerted on the inner surface of the outer cylinder is identical in magnitude but
opposite in sign.
As we discuss in Section 16.7, equation (16.69) is the basis for the design of concentric-

cylinder rheometers and viscometers137, which are instruments used for the measurement of
viscosity.
The solution to the problem of flow through a concentric annulus with inner-cylinder

rotation, so far, reveals three significant features for this flow

• the variation of the tangential- (or swirl-) velocity component with r is not directly
dependent on viscosity, although the no-slip condition was involved in the derivation

• the radial variations of the axial u(r) and tangential w(r) velocity components are inde-
pendent

• thew(r) variation has a linear component and a component wherew is inversely dependent
upon r

As stated in Section 16.1, laminar flows become unstable if an appropriately defined Reynolds
or Taylor number exceeds a critical value. One of the earliest flows for which such a stability
criterion was established is that of Taylor-Couette flow where only the inner cylinder rotates.
The relevant non-dimensional parameter is the Taylor number, defined by

Ta =
(
RO
RI

– 1
)3 (
ρΩR2I
μ

)2
(16.70)

which can be viewed as a modified Reynolds number. If the annular gap is small, it is found
that the flow becomes unstable if the Taylor number exceeds about 1700.

ILLUSTRATIVE EXAMPLE 16.2

A viscous fluid fills the annular space between two long concentric cylinders, the outer of which
has radius RO, and the inner has radius RI . The outer cylinder rotates clockwise at an angular
velocity ω while the inner cylinder rotates anticlockwise at angular velocity –ω. There is zero
pressure difference between the ends of the annulus.

137 The term viscosimeter is also used.
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State the boundary conditions for the flow. Derive a reduced form of the Navier-Stokes equa-
tions for the flow, stating all the assumptions made. Solve the equations to find the radial
variation of the circumferential velocity w(r) and shear stress τrθ within the annular gap and
find the location of zero velocity. Derive an equation for the torque per unit length T′ exerted
on the fluid.

Solution

The boundary conditions are w = ωRO at r = RO, and w = –ωRI at r = RI .
We have ∂p/∂x = 0 and, from symmetry, ∂p/∂θ = 0 so p = p (r). It must also be that u = v = 0,
and w = w (r).
The Navier-Stokes equations reduce to

dp
dr

= ρw
2

r

and

d
dr

[
1
r
d
dr (

rw)
]
= 0.

The second equation can be integrated to give

d
dr (

rw) = Ar

and a second integration gives

w = Ar
2 + B

r

where A and B are constants of integration.
From the boundary conditions we have

ωRO = ARO
2 + B

RO
and

–ωRI =
ARI
2 + B

RI
from which

A = 2ω

(
R2O + R2I
R2O – R2I

)

and

B =
–2ω
(
RORI

)2(
R2O – R2I

)
so that

w = ω(
R2O – R2I

) [r (R2O + R2I
)
– 2 (RORI)2

r

]
.
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We can check the result by substituting r = RI , which leads to w = –ωRI , and by substituting
r = RO, which leads to w = ωRO, both of which are correct.
The location of zero velocity, i.e. w = 0, is then

r0 =
√
2RORI√(
R2O + R2I

) .
The shear stress is given by

τrθ = μr ddr

(
w
r

)
=
4μω
(
RORI

)2(
R2O – R2I

)
r2

and the torque per unit length is then

T′ (r) = τrθ2πr2 =
8πμω

(
RORI

)2(
R2O – R2I

) .

Comments:

The shear stress decreases monotonically with r from 4μωR2O/
(
R2O – R2I

)
at the surface of the

inner cylinder to 4μωR2I /
(
R2O – R2I

)
at the inner surface of the outer cylinder.

The torque is independent of r.

16.6 Poiseuille flow of generalised Newtonian fluids between
infinite parallel plates

In this section we analyse Poiseuille flow for four model fluids: the Ostwald-deWaele power-
law fluid, the Bingham plastic fluid, the Casson fluid, and the Herschel-Bulkley fluid. Each
is an example of a generalised Newtonian fluid for which the effective viscosity μEFF depends
upon the shear rate γ̇xy (see Section 15.5).

16.6.1 Power-law fluid

We consider pressure-driven flow between parallel plates separated by a distance 2hh as shown
in Figure 16.8 (only half the channel is shown). The plates are assumed to be of infinite length
and width so that the flow can be considered as fully developed and two dimensional. From
the symmetry of the geometry, the flow will be symmetrical about the centreplane, from which
we measure the normal distance y at which location the velocity is u and the shear stress is τyx.
Also, from symmetry, the shear stress must be zero on the centreplane.
Since we are considering fully-developed flow with u = u

(
y
)
, the shear rate is given by

γ̇xy = du/dy, γ̇xz = γ̇yz = 0, so that, for a power-law fluid

μEFF = K
(
du
dy

)n–1
. (16.71)

For the shear stress we then have

τyx = μEFF dudy
= K
(
du
dy

)n
. (16.72)
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δx

δy p + δpp

τyx + δτyx

τyx

y = h

y = 0

y

Figure 16.8 Elemental control volume for Poiseuille flow between parallel plates

The elemental control volume in Figure 16.8 is of infinitesimal height δy and infinitesimal
length δx (not shown to scale in the diagram). The static pressure changes from p on the up-
stream face to p + δp on the downstream face, while the shear stress changes from τyx on the
lower face to τyx + δτyx on the upper face. For fully-developed flow, the forces acting on the
control volume must be in balance so that

δτyx δx – δp δy = 0

from which

δτyx
δy =

δp
δx .

In the limit δx → 0, δy → 0:

dτyx
dy

=
dp
dx

= constant (16.73)

the full, rather than partial, derivatives recognising the fact that we are considering a fully-
developed flow.
Equation (16.73) can be integrated to give

τyx = y
dp
dx

+ A

where the constant of integration A is given by

A = –h
dp
dx

since, from symmetry, τyx must be zero on the centreplane
(
y = h

)
. We thus have

τyx =
(
h – y
) (

–
dp
dx

)
= K
(
du
dy

)n
. (16.74)
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Equation (16.74) can be rearranged as

du
dy

=
(
h – y
)1/n (– 1

K
dp
dx

)1/n
which can be integrated to give

–u =
(

n
n + 1

) (
h – y
)(n+1)/n (– 1

K
dp
dx

)1/n
+ B.

The constant of integration B is obtained from the no-slip condition, u (0) = 0

B = –
(

n
n + 1

)
h(n+1)/n

(
– 1
K
dp
dx

)1/n
so that for the velocity distribution we have

u =
(

n
n + 1

)[
h(n+1)/n –

(
h – y
)(n+1)/n](– 1

K
dp
dx

)1/n
. (16.75)

With y = h the centreline velocity u0 is thus

u0 =
(

n
n + 1

)(
– 1
K
dp
dx

)1/n
h(n+1)/n (16.76)

and equation (16.75) can be written as

u
u0

= 1 – ξ (n+1)/n (16.77)

where the non-dimensional quantity ξ =
(
h – y
)
/h.

The volumetric flowrate per unit width Q̇′ is given by

Q̇′ = 2
∫ h

0
udy = 2u0h

∫ 1

0

[
1 – ξ (n+1)/n

]
dξ = 2

(
n + 1
2n + 1

)
u0h (16.78)

and the average flow velocity V̄ by

V̄ = Q̇′
2h

=
(

n + 1
2n + 1

)
u0 =

(
n

2n + 1

)(
– 1
K
dp
dx

)1/n
h(n+1)/n (16.79)

wherein we have used equation (16.76) to substitute for u0.
Table 16.1 shows how the ratio of the average flow velocity V̄ to the peak velocity u0 changes
with the exponent n.
The conclusion to be drawn from Table 16.1 is that, as the fluid becomes more and more

shear thinning, i.e. as n decreases, the velocity profile flattens out until for n = 0 the velocity
is completely uniform. For n = 1, i.e. for a Newtonian fluid, equation (16.77) shows that the
velocity variation is parabolic, as for the flow of a Newtonian fluid through a circular pipe, but
now V̄/u0 = 2/3 compared with 1/2 in the latter case (a consequence of the difference in cross
section). As Table 16.1 shows, V̄/u0 = 1/2 now corresponds to the situation where the fluid is
infinitely shear thickening.
As always it is convenient to define a Reynolds number but we now have the complication

of a varying effective viscosity, so the question to be answered is, at what location in the duct
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Table 16.1 Ratio of average flow velocity V̄ to
peak velocity u0 as a function of exponent n
for Poiseuille flow of a power-law fluid between
infinite parallel plates

n V̄/u0

∞ 0.500 shear thickening

10 0.524 "

5 0.545 "

2 0.600 "

1 0.667 Newtonian

0.8 0.692 shear thinning

0.5 0.750 "

0.2 0.850 "

0.1 0.917 "

0 1.000 "

should μEFF be evaluated? From the velocity distribution, equation (16.77), we have

du
dy

=
(
n + 1
n

)
u0
h

(
1 –

y
h

)1/n
(16.80)

so that, from equation (16.71),

μEFF = K
(
–du
dy

)n–1
= K
[(

n + 1
n

)
u0
h

]n–1 (
1 –

y
h

)(n–1)/n
. (16.81)

As for the flow of a Newtonian fluid through a cylindrical duct, the average velocity V̄ is a
more logical choice for the velocity scale than the centreline velocity u0. We can substitute for
u0 in terms of V̄ from equation (16.79) to find

μEFF = K
[(

2n + 1
n

)
V̄
h

]n–1 (
1 –

y
h

)(n–1)/n
. (16.82)

It would make no sense to evaluate μEFF from this equation on the centreline (y = h), as this
would yield either μEFF = 0 for n > 1, or μEFF = ∞ for n < 1, so we choose the channel wall,
y = 0, at which location

μEFF,S = K
[(

2n + 1
n

)
V̄
h

]n–1
. (16.83)
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We can again introduce the hydraulic diameter, which in this case, is given by DH = 4h. An
appropriate definition for the Reynolds number is thus

ReH = ρV̄DH
μEFF,S

= 4ρV̄2–nhn
K

(
2n + 1
n

)n–1
. (16.84)

From equation (16.74) the shear stress τS exerted on the lower plate is given by

τS = –h
dp
dx

and if we substitute for dp/dx using equation (16.79) we find

τS = K
[(

2n + 1
n

)
V̄
h

]n
. (16.85)

Division by ρV̄2/2 leads to

fF = 2τS
ρV̄2 = 2K

ρV̄2–n

[(
2n + 1
n

)
1
h

]n
. (16.86)

Finally, the Poiseuille number is given by

Po = fF ReH = 8
(
2n + 1
n

)2n–1
. (16.87)

With n = 1, equation (16.87) gives fF Re = 24, in agreement with what we found in Sec-
tion 16.4 for Poiseuille flow of a Newtonian fluid between parallel plates (equation (16.59)
with λP → ∞).
A similar analysis for fully-developed flow of a power-law fluid through a circular pipe

leads to

Po = 4
(
3n + 1
n

)
. (16.88)

With n= 1, equation (16.88) gives Po= 16, in agreement with what we found in
Subsection 16.3.1.

16.6.2 Bingham plastic

We consider Poiseuille flow of a Bingham plastic through a circular tube of radius R. The shear
stress-shear rate equation is now

τrx = τY + μP dudr
(16.89)

where τY is the yield stress and μP is the plastic viscosity.
The starting point for the analysis is Cauchy’s equation of motion for steady axial flow, with

v = w = 0, and the normal stress σxx = –p:

–
dp
dx

+ 1
r
d
dr (

rτrx) = 0 (16.90)
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where dp/dx is the imposed pressure gradient. As in previous analyses of fully-developed duct
flow, it must be that the two terms of this equation are constant. After integration we have

– r
2

2
dp
dx

+ rτrx = A.

Since this equation must be valid for all values of r, including r = 0, we conclude that the
constant of integration A = 0, and

τrx = τY + μP dudr
= r
2
dp
dx

(16.91)

where we have substituted for τrx from equation (16.89).
If we define a radius rP through the equation

τY = –rP
2

dp
dx

(16.92)

we see that, if r < rPt, then –τrx < τY , i.e. the shear stress is below the level for shear flow. This
situation is interpreted to mean that there is a central ‘plastic plug’ of radius rP within which
the velocity gradient is zero.
For r ≥ rP we can integrate equation (16.92) to find

τYr + μPu = r2
4
dp
dx

+ B

or, after rearrangement

u = r2
4μP

dp
dx

+ τYr
μP

+ B
μP

.

At r = R we have the no-slip condition, u = 0, so that

B
μP

= –R2
4μP

dp
dx

– τYR
μP

(16.93)

and, after some rearrangement

u =

[
1 –
(
r
R

)2](
– R2
4μP

dp
dx

)
– τYR
μP

[
1 – r

R

]
for r ≥ rP. (16.94)

Since this equation is valid at the edge of the plug, r = rP, and the velocity gradient is zero
within it, we have therefore

uP =
[
1 – σ 2P

] (
– R2
4μP

dp
dx

)
– τYR
μP

[1 – σP] for r ≤ rP (16.95)

for the fluid velocity uP within the plug. The quantity σP is the non-dimensional plug radius
defined by

σP = rP
R . (16.96)

From the definition of rP, equation (16.92), it is seen that the pressure-gradient term in
equations (16.94) and (16.95)
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(
– R2
4μP

dp
dx

)
= 1
2σP
τYR
μP

(16.97)

so that the equations for the velocity distribution can be written as

u =
(
1 – r

R

)[
1

2σP

(
1 + r

R

)
– 1
]
τYR
μP

for r ≥ rP (16.98)

and

uP = [1 – σP]2
2σP

τYR
μP

for r ≤ rP. (16.99)

From equation (16.10), with c = 2πR and A = πR2:

τS = –R2
dp
dx

(16.100)

so that, from equation (16.92)

τY
τS

= rP
R = σP (16.101)

and another form for the velocity distribution is

u =
(
1 – r

R

)[
1 + r

R – σP
]
τSR
μP

for r ≥ rP (16.102)

and

uP = [1 – σP]2
τSR
μP

for r ≤ rP. (16.103)

The volumetric flowrate Q̇ and the average flow velocity V̄ are found from

Q̇ =
∫ R

0
2πru dr = πR2V̄ .

After some algebra we arrive at

4μPQ̇
πR3τY

= 1
ξP

[
1 – 4

3σP +
1
3σ

4
P

]
(16.104)

which is known as the Buckingham-Reiner equation. Equation (16.104) can be rewritten as

Po = fF Rep = 16

[
1 + 1

6Bi –
1
3

Bi4(
fF Rep

)3
]

(16.105)

where the non-dimensional combination

Bi = τYD
μPV̄

(16.106)

is the Bingham number138, and

138 Equation (16.105) can also be written in terms of theHedstrom number, He, defined by He = Bi Rep.
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Rep = ρV̄D
μP

(16.107)

is the Reynolds number based upon the plastic viscosity. It can be seen from equation (16.105)
that the Poiseuille number here is a function of the Bingham number and, for small values of
Bi, e.g. where the yield stress is small and the plastic viscosity is large, a useful approximation is

Po ≈ 16
(
1 + 1

6Bi
)
. (16.108)

16.6.3 Casson fluid

A fluid which obeys the shear-stress equation

√
τrx =

√
τY +

√
μP

du
dr

, (16.109)

where the symbols have the same meanings as for the flow of a Bingham plastic, is known as a
Casson fluid. An analysis similar to that for a Bingham plastic for flow through a circular pipe
leads to

4μPQ̇
πR3τY

= 1
ξP

[
1 – 16

7
√
σP + 4

3σP –
1
21σ

4
P

]
. (16.110)

16.6.4 Herschel-Bulkley fluid

TheHerschel-Bulkley shear-stress equation is

τrx = τY + Kγ̇ n

and the resulting equation for the volumetric flowrate in pipe flow is

Q̇
nπR3

(
K
τY

)1/n
= (1 – σP)(n+1)/n

σ 1/nP

[
(1 – σP)2
1 + 3n + 2σP (1 – σP)

1 + 2n +
σ 2P
1 + n

]
. (16.111)

In the equations for the volumetric flowrate of the three viscoplastic liquids, the right-hand
side is a function of σP (= τY /τS) and n, while the left-hand side is independent of τS. It is
therefore straightforward to calculate the flowrate if the surface shear stress is known, whereas
the inverse situation requires a numerical approach.

16.7 Viscometer equations

An instrument used to measure the viscosity of a fluid is called a viscometer, while a rheo-
meter is a viscometer that can also be used to measure the viscoelastic moduli, normal-stress
coefficients, etc., of a non-Newtonian liquid. The assumption of constant viscosity greatly sim-
plifies the measurement problem and for Newtonian fluids, whether liquid or gas, numerous
viscometer designs are available, including the capillary viscometer, in which the dynamic
viscosity μ is determined by measuring the volumetric flowrate Q̇ produced by imposing a
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pressure difference�p across the ends of a capillary tube of length L and internal diameter D.
Assuming Hagen-Poiseuille flow through the tube, it can be shown that

μ =
πD4�p
128Q̇L

. (16.112)

The dependence of μ on D4 shows that a capillary tube for this application must be produced
to high precision with a diameter D which is constant along its length and accurately known.
To minimise end effects, particularly entrance effects to the location where the flow is fully
developed, it is essential that L/D � 1.
For a shear-thinning or shear-thickening liquid, the effective viscosity is shear rate depend-

ent so that ideally the liquid should be subjected continuously to a uniform shear rate and
a uniform shear stress. Figure 16.9 shows two rotational configurations in which this can be
achieved to a high degree of accuracy. In the concentric-cylinder geometry (Figure 16.9(a)),
the liquid is contained within the annular space between the two cylinders. The effective vis-
cosity is determined by measuring the torque exerted on the rotating inner cylinder (or bob,
the outer cylinder being referred to as the cup) over a range of rotation rates, or the rotation
rate is measured over a range of torques, depending upon whether torque or rotation speed is
controlled139. The second geometry shown, Figure 16.9(b), is the cone-and-plate arrangement,
in which an inverted cone of large included angle (> 172◦ is typical) rotates about an axis nor-
mal to a plate. The liquid occupies the region between the cone and the plate, and the effective
viscosity is determined by measuring the torque required to rotate the cone over a range of
rotation rates.
In Section 16.5 we showed that, for the concentric-cylinder geometry, the variation of
tangential shear stress τrθ with radius r for a Newtonian fluid is given by

RO

RI

Ω

δ

L

(a)

liquid

< 4°

Ω

(b)

Figure 16.9 Viscometer geometries: (a) concentric cylinder (b) cone and plate

139 In some instruments, the inner cylinder is stationary, and the outer cylinder rotates.
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τrθ =
–2μ
r2

(
ΩR2OR

2
I

R2O – R2I

)
. (16.67)

where Ω is the constant angular velocity of the inner cylinder, RI is the outer diameter of the
inner cylinder, RO is the inner diameter of the outer cylinder, and w is the tangential velocity
at radius r.
From equation (16.67) we see that, if the annular gap width is δ = RO – RI , and the mean

radius is R̄ = (RO + RI) /2, the ratio of the value of τrθ at r = RO to the value at r = RI is
given by(

1 + ε/2
1 – ε/2

)2
where ε = δ/R̄. This ratio shows that the shear stress is constant across the annular gap to
within 1% if ε < 0.005 so that, for an inner cylinder of diameter 30 mm, the gap should
be less than 0.075 mm (or 75 μm). A value for ε of 0.02 is more typical of a commercially
available laboratory instrument, and then the shear-stress ratio is about 4%. Although this
analysis assumed the fluid was Newtonian, it is reasonable to assume that the conclusions are
valid for liquid with shear-dependent properties.
For the concentric-cylinder geometry, the shear rate is given by

γ̇rθ = 1
2 r

d
dr

(
w
r

)

and the radial variation of the tangential velocity w was shown to be

w =

(
ΩR2I

R2O – R2I

)(
R2O – r2

r

)
. (16.64)

The shear rate γ̇rθ is thus given by

γ̇rθ = –

(
ΩR2I R2O
R2O – R2I

)
1
r2

(16.113)

which can be rewritten in terms of ε as

γ̇rθ = – V2δ

⎛
⎜⎝ 1 – 1

4ε
2

1 + 1
2ε –

y
R̄

⎞
⎟⎠

2

≈ – V2δ (16.114)

where y = RO – r is the distance measured from the inner surface of the outer cylinder and
V = ΩRI is the peripheral velocity of the outer surface of the inner cylinder. Evidently, the
shear rate within the fluid is practically constant, again provided ε � 1. Equation (16.114)
shows that with ε = 0.02 the shear rate varies by about ±2% from its value at the midpoint of
the annulus, and the latter is within 0.02% of V/2δ.
Finally, for the velocity within the gap we can show that

w =
Vy
δ

(
1 – 1

2ε
) (1 + 1

2ε –
1
2
y
R̄

)
(
1 + 1

2ε –
y
R̄

) ≈ Vy
δ
. (16.115)
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Evidently, there is no influence of curvature in the final approximation, and the proportional
variation of flow velocity with y is identical to that for plane (or linear) Couette flow, which
we analysed in Section 16.4.
As shown in Section 16.5, if the cylinder length is L, for a Newtonian fluid the magnitude of

the torque T exerted on either cylinder is

T =
4πμΩR2I R2OL

R2O – R2I
(16.69)

from which the viscosity μ is easily calculated from a torque measurement on either cylinder.
For a Newtonian fluid, the viscosity is independent of the shear rate and so the rotation speed.
The shear-rate dependence of the effective viscosity of a non-Newtonian liquid can be found
in a concentric-cylinder rheometer by varying the rotation speedΩ and, if ε � 1, the value of
μEFF will correspond very closely to the shear rate at the midpoint of the annulus.
Once again we can introduce the ratio ε = δ/R̄ and rewrite the torque equation as

T = 2πμΩR̄3L
δ

(
1 – 1

4ε
2
)2

(16.116)

which reveals a number of important features of the concentric-cylinder flow:

• the dependence of the torque T on the mean radius R̄ is very strong (essentially cubic if ε is
less than about 0.3)

• the dependence of the torque T on the annular gap δ is also strong (essentially inverse,
again if ε is less than about 0.3)

An important conclusion to be drawn from these two observations is that both the cup and
the bob of a concentric-cylinder viscometer must be manufactured to very high tolerances. In
fact, it is usual for manufacturers of precision instruments to supply these two components as
a matched pair.

• If, as is usual in a narrow-gap, concentric-cylinder viscometer, ε � 1, then an excellent
approximation to equation (16.116) is

T ≈ 2πμΩR̄3L
δ

. (16.117)

With ε = 0.02, we see that the term in equation (16.116) involving ε has the value 0.9998 so
that the error in the approximation is less than 0.02%, which for most practical purposes is
acceptable. This value of ε is satisfied with R̄ = 25 mm, and δ = 500 μm, values typical of a
laboratory viscometer.
A practical consideration which we have not mentioned is that, for a simple flat-bottomed

cylinder, the measured torque would include a contribution from the viscous torque exerted
on the lower end of the bob. In principle this can be accounted for, but introduces additional
uncertainty into the measurement. To minimise this influence, the lower end of the bob is
usually either conical in shape or recessed, as shown in Figure 16.9(a), the recess being gas
filled.
A viscometer intended for use as a rheometer typically uses the cone-and-plate geometry

shown in Figure 16.9(b). If the cone rotates at constant angular velocity Ω the shear rate
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exerted on the liquid sample within the gap is practically independent of radius for cone semi-
angles close to 90◦ (gap angle ≤ 4◦). For such small gap angles the tangential velocity w can
be assumed to vary linearly with normal distance y from the plate according to w = Vy/αr,
where the velocity V at radius r on the cone surface is V = Ωr so that w = Ωy/α, α being the
gap angle in radians. The corresponding shear rate is γ̇yθ = dw/dy = Ω/α, and the shear stress
τyθ = μEFFΩ/α. Evidently, within the small-angle approximation, the shear rate and shear
stress are uniform throughout the liquid sample. The torque T exerted on the fluid by a cone
of radius R is given by

T =
∫ R

0
2πr2τyθdr =

2πR3μEFFΩ
3α . (16.118)

The shear-dependence of the effective viscosity for a non-Newtonian liquid is obtained by
measuring the torque as a function of angular velocity.
Among the practical considerations that have to be taken into account for both a concentric-

cylinder and a cone-and-plate rheometer are limiting the rotation speed to avoid secondary
flows in the gap, avoidance of surface evaporation and drying of the sample liquid, and, in the
case of suspensions, avoiding sedimentation of the solid phase.

16.8 SUMMARY

In this chapter we have shown how solutions to the Navier-Stokes equations can be de-
rived for steady, fully-developed flow of a constant-viscosity Newtonian fluid through a
cylindrical duct. The pressure-driven flow of generalised Newtonian fluids was also dis-
cussed. Solutions were also derived for shear-driven flow within the annular space between
two concentric cylinders or in the space between two parallel plates when there is relative
tangential movement between the wetted surfaces.

The student should be able to

• understand what is meant by the terms cylindrical duct, fully-developed flow,
Poiseuille flow, and Couette flow

• simplify the Navier-Stokes equations in either Cartesian-coordinate or polar-
cylindrical-coordinate form and so derive the equations for fully-developed flow

• solve the simplified Navier-Stokes equations for fully-developed flow: through
a circular pipe; through a concentric annulus, with or without rotation of one
or both wetted surfaces; and between parallel plates, with or without relative
tangential movement between the wetted surfaces

• solve the equations of fluid motion for fully-developed flow of a power-law or
Bingham plastic liquid between parallel plates or through a circular pipe, to find
equations for the distribution of velocity within the flow channel

• derive an expression for the volumetric flowrate in terms of the surface shear stress
for any of the flows for which velocity distributions were found

• for liquids obeying either the Casson or Herschel-Bulkley equations, be able to
calculate the flowrate, knowing the model parameters and the surface shear stress

• understand the principles underlying the design of a capillary tube, a concentric
cylinder, or a cone-and-plate viscometer
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16.9 SELF-ASSESSMENT PROBLEMS

16.1 A laminar-flow heat exchanger is made up of 3000 channels each having the cross
section of an equilateral triangle of side length 10 mm. Each channel is of length
500 mm. Paraffin, with a viscosity of 1.92 × 10–3 Pa · s and a density of 804 kg/m3,
flows through the heat exchanger with an average velocity of 0.41 m/s. Calculate
the pressure drop across the heat exchanger, the mass flowrate of paraffin, and the
power required to pump the paraffin.
The Poiseuille number for this channel shape is 13.33333.
(Answers: 78.72 Pa; 85.64 kg/s; 8.385 W)

16.2 A liquid with constant viscosity 0.9 Pa · s and density 900 kg/m3 is pumped through
a pipeline of radius 1 m and length 5 km at a mass flowrate of 2900 kg/s. If the
pressure at the downstream end of the pipeline is 1 bar, calculate the pressure at the
upstream end. Assume that the flow is laminar and fully developed so that the rela-
tionship between the surface shear stress τS, the pipe diameter D, the fluid viscosity
μ, and the mean velocity V̄ is

τSD
μV̄

= 8.

Calculate the flow Reynolds number and state whether the assumption of laminar
flow is valid.
(Answers: 1.369 bar, 2051, just (Re < 2100))

16.3 The velocity u at radius r for fully-developed Poiseuille flow through a concentric
annulus of a fluid with constant viscosity μ is given by

u =

[
R2O – r2

R2O – R2I
– ln (r/RO)
ln(RI/RO)

] (
R2O – R2I

)
4μ

(
–
dp
dx

)
,

where RI is the radius of the inner cylinder,RO is the radius of the outer cylinder,
and dp/dx is the axial pressure gradient.
If the inner cylinder is rotating at angular velocity Ω„ the tangential velocity at
radius r is given by

w =

(
ΩR2I

R2O – R2I

)(
R2O – r2

r

)
.

The shear stresses in the axial and tangential directions are given by

τrx = μdudr
and τrθ = μr ddr

(
w
r

)
,

respectively.
Derive expressions for
(a) the radial distributions of τrx and τrθ ,
(b) the location of the peak axial velocity, and
(c) the torque exerted on the fluid at the location of peak axial velocity.

16.4 A fluid with constant viscosity μ is contained between parallel plates separated
by a distance h. The upper plate moves in the positive x-direction with constant
velocity V , while the lower plate is stationary. There is a negative streamwise pres-
sure gradient dp/dx imposed upon the fluid. As shown in Section 16.4, the velocity
distribution between the plates is given by the equation
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u
V =

y
h
+ λP2

y
h

(
1 –

y
h

)

where y is the normal distance from the lower plate and λ is the non-dimensional
pressure-gradient parameter defined as

λP = – h2
μV

dp
dx

.

If λP < –2, there is forward flow in the vicinity of the upper (moving) plate, and
backflow near the lower stationary plate.
(a) Show that, in addition to y = 0, the location of zero velocity y0 for λP < –2 is

given by

y0
h

= 1 + 2
λP

.

(b) Show that at the location of zero velocity the shear stress τ0 is given by

τ0 = –
(
1 + λP2

)
μV
h

.

(c) Show that the volumetric flowrate in the forward direction Q̇′
F is given by

Q̇′
F = – 1

λP

(
1 + 2

3λP

)
Vh

and the volumetric backflow Q̇′
B is given by

Q̇′
B = 2

3λ2P

(
1 + λP2

)3
.

16.5 (a) The annular gap in a concentric-cylinder apparatus is filled with a liquid of con-
stant viscosity μ. If the outer radius of the inner cylinder is RI , the inner radius of
the outer cylinder isRO, and the outer cylinder rotates with angular velocityΩ while
the inner cylinder is stationary, show that the tangential velocity w of the liquid at
radius r is given by the equation

w =
ΩR2O

(RO – RI)

[
1 –
(
RO
r

)]
.

(b) If the liquid of part (a) is an oil with a viscosity of 0.5 Pa · s, calculate the torque
per unit length exerted on the outer cylinder if the radius of the inner cylinder is
50 mm, the gap width is 2 mm, and the angular velocity of the outer cylinder is 20
rad/s.
(Answer: 8.495 N ·m)

16.6 If the liquid in problem 16.5 is replaced by a Bingham plastic with yield stress τY
and plastic viscosity μP, show that the tangential velocity variation is given by140

w = T′r
4πR2IμP

[
1 –
(
RI
r

)2]
+ τYr
μP

ln
(
RI
r

)

where T′ is the torque per unit length imposed on the liquid. Assume that the shear
stress at all radii exceeds the yield stress.

140 The equation for w for this flow is often written in terms of RO, rather than RI , as w = Ωr +
T′r
[
1 – (R0/r)2

]
/
(
4πR2

OμP
)
– τYr ln (r/R0) /μP , which is known as the Reiner-Rivlin equation.



17 Laminar boundary layers

This chapter is concerned with laminar boundary layers, by which we mean the near-surface
region for developing laminar flow of a viscous fluid over a solid surface141. We introduce the
simplifying assumptions for thin boundary layers, which reduce the Navier-Stokes equations
to the so-called boundary-layer equations. In the case of a zero-pressure-gradient (flat-
plate) boundary layer, the velocity profiles exhibit self-similarity, which allows the partial
differential boundary-layer equations to be reduced to a single ordinary differential equa-
tion known as Blasius’ equation. It is shown that so-called wedge-flow boundary layers,
where U∞ ∝ xm, also exhibit self-similarity and lead to the Falkner-Skan equation. Because
exact solution of any of these equations is possible only numerically, a number of approxim-
ate procedures, involving an integrated form of the boundary-layer equations known as von
Kármán’s momentum-integral equation, have been developed which allow useful informa-
tion to be obtained with relatively little effort. These procedures include methods in which a
simple form, such as a polynomial function, is assumed for the velocity profile. When substi-
tuted into the momentum-integral equation, Pohlhausen’s quartic velocity profile leads to an
ordinary differential equation, incorporating a pressure-gradient parameter, which can be used
to calculate the development of any laminar boundary layer. Great simplification without ma-
jor loss of accuracy results when the full differential equation is replaced by a linear correlation
based upon the similarity solutions and other exact calculations.

17.1 Introductory remarks

In Chapter 16 we analysed a variety of internal laminar flows which were strongly influenced
by fluid viscosity and the no-slip boundary condition, but where there were no changes in
velocity in either the streamwise or the azimuthal direction. In the case of flow through a long
duct this meant that beyond a certain location there were no velocity changes in the axial
direction, or x, -direction, and such flows were said to be fully developed. This chapter is also
concerned with flows strongly affected by viscosity and the no-slip boundary condition but
which develop in the streamwise direction, or x, -direction, starting from a uniform approach
velocity, U∞. The situation for a uniform flow approaching a stationary thin flat plate aligned
with the approach flow is shown schematically in Figure 17.1 (only the flow above the surface
is shown). For convenience, a Cartesian-coordinate system has been adopted and it is assumed

141 A boundary layer can also develop over a porous surface or a liquid surface, but such flows will not be
considered in this book.

Introduction to Engineering Fluid Mechanics. Marcel Escudier.
© Marcel Escudier 2017. Published 2017 by Oxford University Press.
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x

U∞ u = U∞

u (x, y)

y = 𝛿 (x)

y

edge of boundary layer

Figure 17.1 Viscous flow over an aligned flat plate

that there is no flow in the z, -direction, a restriction that will apply throughout this and the
following chapter. Such flows are said to be two dimensional. We shall also restrict ourselves
to the study of steady, constant-property, flows in the absence of body forces.
A number of features are included in Figure 17.1 which will becoming increasingly familiar

as this chapter develops

• at the surface (y = 0), as a consequence of the no-slip condition, the streamwise velocity
component u = uS = 0

• changes in the streamwise velocity component u occur both in the streamwise direction, or
x, -direction, and in the normal direction, or y, -direction, i.e. u = u(x, y)

• with increasing normal distance y from the surface, the streamwise velocity component u
tends asymptotically to the approach velocity U∞

• there is a relatively thin viscosity-affected region y < δ, where u < U∞, referred to as the
boundary layer, which ‘grows’ in thickness with streamwise distance x, i.e. δ = δ (x)

• for values of the normal distance y greater than δ it is assumed that u = U∞
• although it cannot be defined precisely, the length δ is referred to as the boundary-layer
thickness

• the region y > δ where u = U∞ is referred to as the free stream142 in which it is assumed
that all velocity gradients with respect to y are zero, i.e. ∂nu/∂yn = 0, n = 1, 2, 3 . . .

• within the boundary layer (i.e. y < δ) the normal component of velocity v � u (for flow
over a solid surface, v = vS = 0 at y = 0)

• consistent with the previous statement is that streamlines within the boundary layer are
almost parallel to the solid surface

• there is negligible change in static pressure p across the boundary layer, i.e. ∂p/∂y ≈ 0

Some of the characteristics of flat-plate-boundary-layer flow we have just listed are identical
with, or closely related to, those of fully-developed flow. With minor modification, these char-
acteristics are typical of all boundary layers. The concept of a boundary layer, the crucial idea
that explained many features of real (i.e. viscous) flows, was introduced by Ludwig Prandtl
in 1904.

142 The termmainstream is also used.
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17.2 Two-dimensional laminar boundary-layer equations

Our starting point is the dimensional form of the continuity and Navier-Stokes equations
in rectangular-Cartesian coordinates, derived in Section 15.1, assuming steady, constant-
property, two-dimensional flow with zero body forces:
continuity

∂u
∂x + ∂v

∂y = 0. (17.1)

x-component

u∂u
∂x + v ∂u

∂y = – 1
ρ

∂p
∂x + ν

(
∂2u
∂x2

+ ∂
2u
∂y2

)
(17.2)

y-component

u∂v
∂x + v ∂v

∂y = – 1
ρ

∂p
∂y + ν

(
∂2v
∂x2

+ ∂
2v
∂y2

)
. (17.3)

In spite of considerable simplification compared with the full Navier-Stokes equations, these
equations still represent a major challenge, even to numerical solution. We now introduce the
key boundary-layer approximations which further simplify the equations to be solved

• there is negligible change in the static pressure p across the boundary layer, i.e. ∂p/∂y = 0
• streamwise gradients of u are much less than gradients with respect to the normal
distance y, in particular ∂2u/∂x2 � ∂2u/∂y2

The continuity equation is unchanged, but the static pressure p is now dependent only upon
x, and equation (17.2) reduces to

u∂u
∂x + v ∂u

∂y = – 1
ρ

dp
dx

+ ν ∂
2u
∂y2

. (17.4)

The essential difficulty of the non-linearity of the terms on the left-hand side of the partial dif-
ferential equation (17.4) remains. These terms are identically zero for the fully-developed flows
of Chapter 16. However, as we shall see in Sections 17.3 and 17.4, under some circumstances
equations (17.1) and (17.4) can be combined and reduced to a single ordinary differential equa-
tion which can be solved numerically with relatively little effort143. As we shall also see, in
Sections 17.5 and 17.6, a great deal of insight can be obtained from quite simple approximate
solution methods.
For y > δ, ∂u/∂y → 0, ∂2u/∂y2 → 0, and u → U∞ (x), the free-stream velocity, so that

equation (17.4) reduces to

U∞
dU∞
dx

= – 1
ρ

dp
dx

, (17.5)

143 Shortly after their formulation in the early 20th century such numerical calculations were carried out by hand,
requiring considerable effort.
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i.e. the differential form of Bernoulli’s equation. It is usually the case in practice that either
p (x) orU∞ (x) is specified. If dp/dx is zero, the flow is usually described as a flat-plate bound-
ary layer even though the plate is not necessarily flat144. The term zero-pressure-gradient
boundary layer is also used. If dp/dx < 0, the outer flow accelerates, and as we shall see the
surface shear stress τS increases: the pressure gradient is said to be favourable. The opposite
is true for dp/dx > 0, termed an adverse pressure gradient, and flow separation, where the
surface shear stress τS → 0, is possible.
The question should be asked ‘under what conditions are the boundary-layer approxim-

ations valid?’ To answer this we introduce the following non-dimensional variables: x∗ =
x/L, y∗ = y

√
Re/L, u∗ = u/U0, v∗ = v

√
Re/U0, and p∗ = p/ρU2

0 , with L being a length
scale characteristic of the streamwise flow direction, such as the length of the surface over
which the boundary layer develops, and U0 being a velocity scale, such as the velocity far up-
stream of the region influenced by viscosity. The reason for incorporating aReynolds number,
Re = U0L/ν, in the definitions ofv∗ and y∗ will become apparent shortly. In non-dimensional
form, equations (17.1) to (17.3) may be written as:
continuity

∂u∗
∂x∗ + ∂v

∗
∂y∗ = 0 (17.6)

x-component

u∗ ∂u∗
∂x∗ + v∗ ∂u∗

∂y∗ = –
∂p∗
∂x∗ + ∂

2u∗
∂y∗2 + 1

Re
∂2u∗
∂x∗2 (17.7)

y-component

1
Re

(
u∗ ∂v∗
∂x∗ + v∗ ∂v∗

∂y∗
)
= –
∂p∗
∂y∗ + 1

Re2
∂2v∗
∂y∗2 + 1

Re
∂2v∗
∂x∗2 (17.8)

with boundary conditions: y∗ = 0, u∗ = 0, v∗ = 0, and y∗ → ∞, u∗ → U∗∞ (x). We see that, if
Re → ∞, equation (17.8) reduces to

0 = –
∂p∗
∂y∗ , (17.9)

and equation (17.7) to

u∗ ∂u∗
∂x∗ + v∗ ∂u∗

∂y∗ = –
∂p∗
∂x∗ + ∂

2u∗
∂y∗2 , (17.10)

while equation (17.6) is unchanged.
If we now revert to dimensional variables we again arrive at equations (17.1) and (17.4),

with equation (17.9) justifying the change from ∂p/∂x to dp/dx. The answer to our question,
evidently, is that we are concerned with flows for which the Reynolds number is high. Typic-
ally, this means Re > 103 but it turns out that as Re approaches 106 laminar boundary layers
become unstable and eventually turbulent, just as for pipe and channel flows145.

144 The boundary-layer equations can be extended to strongly curved surfaces, but that is beyond the scope of this
book.

145 Note that, whereas for duct flows it was appropriate to define the Reynolds number in terms of the hydraulic
diameter, here we are using a streamwise length scale.
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It is also informative to make estimates of the orders of magnitude of each of the velocity-
gradient terms in equations (17.1) to (17.3). We shall again select U0 and L as the velocity
and length scales, respectively, for the streamwise direction, but V and δ for the transverse
direction, with the assumption that δ � L. So far as the continuity equation is concerned,
we have

∂u
∂x + ∂v

∂y = 0 (17.1)

with orders of magnitude146

∂u
∂x = O

(
U0
L

)
, ∂v
∂y = O

(
V
δ

)
.

Since there are only two terms in the continuity equation, they must be not only of the same
order of, but equal in, magnitude147 so that

V = U0δ
L ,

a result we shall use to replace V from now on.

For the x-direction we have

u∂u
∂x + v ∂u

∂y = – 1
ρ

∂p
∂x + ν

(
∂2u
∂x2

+ ∂
2u
∂y2

)
(17.2)

with orders of magnitude

u∂u
∂x = O

(
U2
0
L

)
, v ∂u

∂y = O
(
VU0
δ

)
= O

(
U2
0
L

)
,

ν ∂
2u
∂x2

= O
(
νU0
L2

)
, ν ∂

2u
∂y2

= O
(
νU0
δ2

)
,

from which we can conclude that, since δ � L, it must be that ∂2u/∂x2 � ∂2u/∂y2, just as we
postulated earlier in this section, and we can neglect ∂2u/∂x2. Assuming all remaining velocity
terms are of equal magnitude, we conclude that

νU0
δ2

=
U2
0
L or δ

L =
√
ν

U0L
= 1√

Re
,

i.e. the assumption that δ � L is consistent with saying Re � 1. Note too that our conclusion
that δ/L = 1/

√
Re reveals why it was appropriate to define y∗ and v∗ in terms of

√
Re.

For the y-direction we have

u∂v
∂x + v ∂v

∂y = – 1
ρ

∂p
∂y + ν

(
∂2v
∂x2

+ ∂
2v
∂y2

)
(17.3)

146 O (X) is used to mean of order of magnitude X.
147 Note that signs are not relevant to orders of magnitude estimates.
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with orders of magnitude

u∂v
∂x = O

(
U0V
L

)
= O

(
U2
0δ

L2

)
, v ∂v

∂y = O
(
V2

δ

)
= O

(
U2
0δ

L2

)
,

ν ∂
2v
∂x2

= O
(
νV
L2

)
= O
(
νU0δ

L3

)
, ν ∂

2v
∂y2

= O
(
νV
δ2

)
= O
(
νU0
δL

)
.

Clearly, the first three velocity terms are negligible compared with the fourth term and can be
neglected from now on.
So far we have avoided any statement about the pressure gradients in the x- and y-directions.

From equation (17.2) for the x-direction it must be that

1
ρ

∂p
∂x = O

(
U2
0
L

)

while from equation (17.3), for the y-direction,

1
ρ

∂p
∂y = O

(
νU0
δL

)
= O

(
1√
Re

U2
0
L

)

and we conclude that ∂p/∂y � ∂p/∂x, again consistent with our original postulate.
Equations (17.1) and (17.4) constitute what are referred to as the constant-property, two-

dimensional boundary-layer equations with surface boundary conditions y = 0, u = uS = 0,
for a stationary surface, and y = 0, v = vS = 0, for an impermeable surface. If the surface
has velocity uS in the x-direction, and mass transfer through a porous surface with velocity
vS in the y-direction, then the surface boundary conditions become y = 0, u = uS, v = vS.
Transpiration cooling is the term used when cooler fluid is blown through a porous surface
into hotter boundary-layer fluid, i.e. vS > 0. Boundary-layer control, for example to prevent
or delay boundary-layer separation, can be achieved by suction, when vS < 0. For y → ∞,
the boundary conditions are u → U∞, and ∂nu/∂yn → 0.
Since the boundary-layer approximations lead to ∂u/∂y = O (U0/δ), and ∂u/∂x = O (U0/L),

it should be apparent that a consequence is that the shear stress τ at any location x within a
boundary layer is given by

τ = μ ∂u
∂y. (17.11)

A number of commercial software packages are available which can be used for the numerical
integration of the laminar boundary-layer equations, and such calculations are now regarded
as routine. The purpose of this chapter is to give the reader some insight into the properties
and behaviour of laminar boundary layers, based upon exact solutions of the equations for a
flat-plate boundary layer and for boundary layers where the free-stream velocity is propor-
tional to xm, or from more general approximate solutions. The accuracy of such solutions will
be adequate for many engineering applications and often provide useful confirmation that a
numerical solution has not been compromised by the input of faulty data or an error in the
computer program.
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17.3 Flat-plate laminar boundary layer: Blasius’ solution

17.3.1 Derivation and solution of Blasius’ equation

For the flat-plate boundary layer, where the pressure gradient148 dp/dx = 0, the boundary-
layer equations are

∂u
∂x + ∂v

∂y = 0 (17.1)

and

u∂u
∂x + v ∂u

∂y = ν ∂
2u
∂y2

(17.12)

with boundary conditions u (x, 0) = 0, v (x, 0) = 0, u (x,∞) = U∞ = constant, and

y → ∞, ∂nu/∂yn → 0.

Figure 17.2 shows a schematic diagram of a flat-plate boundary layer in which are sketched
velocity profiles149 at three arbitrary x-locations. Although sketched only roughly, the three
profiles show several important features: in each case u changes from zero to the same free-
stream value U∞ in a distance δ which increases with x; the velocity gradient ∂u/∂y decreases

y = 𝛿(x)

𝛿1

Δ1

Δ2

Δ(x)

Δ3

0 1

𝛿2

𝛿3

U∞ χU∞χU∞

χ

χU∞

x1 x2 x3

U∞

U∞

y

u /U∞

Figure 17.2 Similar velocity profiles for a flat-plate laminar boundary layer

148 Since for most boundary layers ∂p/∂y = 0, it is usual to refer to dp/dx as the pressure gradient.
149 A velocity profile or distribution is a curve showing the variation of the axial velocity u with normal distance

from the surface y at any streamwise location x.
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to zero as the free stream is approached; and with increasing distance x the boundary layer
thickens and the near-surface velocity gradient ∂u/∂y

∣∣
0 decreases. We can summarise these

qualitative observations by saying the profiles are similar in shape150, which suggests that, if
we plot all three profiles in the form u/U∞versus y/� (x), they might fall on a single curve,
the length�(x) being the y-value at which u is the same fraction χ of U∞ at every x-location.
Mathematically, we can state this speculation as

u
U∞

= f
[

y
� (x)

]
(17.13)

with

χ = f (1) (17.14)

and the question which must be asked is ‘can we find a scaling length � which varies with x
in such a way that u/U∞ is a function of y/� only?’
To answer this question, we start by defining the non-dimensional variable η

η =
y
� (x)

(17.15)

so that according to equation (17.13) we anticipate that

u = U∞f (η). (17.16)

Because we are trying to demonstrate similarity between one velocity profile and the next, η
is termed a similarity variable.
From the continuity equation, we have

∂v
∂y = –∂u

∂x

so that

v = –
∫ y

0

∂u
∂x dy. (17.17)

From equation (17.16), we have

∂u
∂x

∣∣∣∣
y
=
∂
[
U∞f (η)

]
∂x

∣∣∣∣∣
y

= U∞
∂f (η)
∂x

∣∣∣∣
y
= U∞

df
dη
∂η

∂x

∣∣∣∣
y

and, from the definition of η, equation (17.15),

∂η

∂x

∣∣∣∣
y
= –

y
�2

d�
dx

= – η
�

d�
dx

,

so that

∂u
∂x

∣∣∣∣
y
= –U∞
�

d�
dx
ηf ′ (17.18)

150 The term congruent is also used.
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and, from equation (17.17),

v = U∞ d�
dx

∫ η
0
ηf ′dη = U∞ d�

dx

∫ f

0
ηdf = U∞ d�

dx

(
ηf –
∫ η
0

fdη
)
. (17.19)

In equation (17.18) we have introduced Lagrange’s dash-notation151 for differentiation, i.e.
f ′ = df /dη, a second derivative is denoted by two dashes, e.g. f ′′ = d2f /dη2, etc. An import-
ant feature of the present analysis, because it has consequences so far as establishing � (x)
is concerned, is the separation into products of x-dependent and η-dependent quantities as
evidenced, for example, by equations (17.18) and (17.19).
For those readers unfamiliar with manipulating partial differentials, a few comments may

be helpful. First, we are dealing with partial differentials because the function f depends upon
two variables, � and y. The fact that � is itself a function of a third variable, x, has also to be
borne in mind. Second, the subscript y alongside a vertical line as in

∂u
∂x

∣∣∣∣
y

is a reminder that the partial differentiation of u with respect to x is carried out treating y as
though it were a constant. Third,

∂f (η)
∂x

∣∣∣∣
y

is evaluated recognising that we are dealing with a function, in this case f , which depends upon
the variable η, which in turn is defined in terms of y and �, although it is only � that varies
directly with x. Although this process may at first seem confusing, and possibly intimidating,
if the differentiation process is dealt with systematically, it should ultimately prove straight-
forward. We should also point out that the final step in arriving at equation (17.19) involved
integration by parts, taking into account the boundary condition y = 0, u = 0.
Since it is convenient to avoid functions involving integrals, we introduce the variable F (η)

defined by

F =
∫ η
0

fdη (17.20)

so that, from equation (17.19), we have

v = U∞ d�
dx
(
ηF′ – F

)
. (17.21)

Apart from convenience, the quantity represented by F has an important physical significance,
which becomes apparent if we revert to dimensional quantities

U∞�
∫ η
0

fdη = U∞�F = ψ

where the quantity ψ , known as the stream function, is a measure of the flowrate within the
boundary layer between the surface and y, i.e.

151 Also referred to as prime notation.
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ψ =
∫ y

0
u dy (17.22)

and F is the non-dimensional stream function.
From equation (17.20) we have

f = dF
dη

= F′ (17.23)

so that

u = U∞f = U∞F′, (17.24)

∂u
∂x

∣∣∣∣
y
= U∞ ∂F

′
∂x

∣∣∣∣
y
= U∞F′′ ∂η

∂x

∣∣∣∣
y
= –ηF′′U∞

�
d�
dx

, (17.25)

∂u
∂y

∣∣∣∣
x
= U∞ ∂F

′
∂y

∣∣∣∣
x
= U∞F′′ ∂η

∂y

∣∣∣∣
x
= F′′U∞

�
, (17.26)

and

∂2u
∂y2

∣∣∣∣
x
= U∞
�
∂F′′
∂y

∣∣∣∣
x
= F′′′U∞

�2 . (17.27)

Finally, we can substitute for the various terms in the flat-plate boundary-layer equation
(17.12)

U∞F′
(
–ηF′′U∞

�
d�
dx

)
+
(
U∞ d�

dx

) (
ηF′ – F

)
F′′U∞
�

= νF′′′U∞
�2

which simplifies to

F′′′ + U∞
2ν

d�2

dx
FF′′ = 0. (17.28)

Since f , and so F, are functions of η only, and� is a function of x only, we conclude that

U∞
ν

d�2

dx
= constant = α (17.29)

where α is an arbitrary constant. Integration of equation (17.29) leads to

� =
√
ανx
U∞

, (17.30)

wherein we have set� = 0 at x = 0, i.e. the boundary layer has zero thickness at its origin, and
we then have

η =
y
�

= y

√
U∞
ανx (17.31)

together with

u
U∞

= f
(
y
�

)
= f

(
y

√
U∞
ανx

)
. (17.32)
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Equation (17.30) provides the answer to our original question: ‘can we find a scaling length�
which varies with x in such a way that u/U∞ is a function of y/�?’ It should be clear that the
answer is unchanged whatever the value chosen for α: Heinrich Blasius, who first investigated
the problem of the flat-plate boundary layer, effectively chose α = 2, which is what we adopt
here, while others have preferred α = 1, ormore complicated formswhen the pressure gradient
is non-zero (see Section 17.4).
According to equations (17.28) and (17.30) with α = 2, the ordinary differential equation to

be solved to find the form of the velocity distribution within a flat-plate boundary layer is

F′′′ + FF′′ = 0 (17.33)

subject to the boundary conditions

F(0) = 0

F′(0) = 0, from the no – slip condition

F′ (∞) = 1, i.e. y → ∞, u → U∞
F′′ (∞) = 0

F′′′ (∞) = 0.

There is no analytical solution to equation (17.33), which is referred to as Blasius’ equation152.
Early solutions were found using series approximations, while today the equation is easily
solved numerically. Values for the velocity ratio u/U∞ = f , the non-dimensional stream func-
tion F =

∫ η
0 fdη, and the non-dimensional velocity gradient f ′, are listed in Table 17.1 for

values of non-dimensional distance from the wall153, η = y
√
U∞/ (2νx). For the most part

values of calculated quantities are given to 4 d.p. The exceptions are values given to 5 d.p. for
η > 4.6 as F′ and F′′ approach their asymptotes. The velocity distribution calculated from
Blasius’ equation is included in Figure 17.6 in Subsection 17.4.1.
Values for dimensional quantities are calculated from y= η

√
(2νx) /U∞, " = F

√
(2νxU∞),

u = fU∞, and τ = f ′ρ
√(
νU3∞

)
/2x.

17.3.2 Comments on Blasius’ solution

(a) From equations (17.25) and (17.26)

∂u
∂x

∣∣∣∣
y
= –ηF′′U∞

�
d�
dx

and ∂u
∂y

∣∣∣∣
x
= F′′U∞

�
,

taken together with equation (17.30) for�, we see that

∂u
∂x

∣∣∣∣
y
= –ηd�

dx
∂u
∂y

∣∣∣∣
x
= –

y
x
∂u
∂y

∣∣∣∣
x
. (17.34)

152 Although in work subsequent to that of Blasius the value α = 1 was frequently used, the corresponding
differential equation was still referred to as Blasius’ equation.

153 A surface over which there is fluid flow is commonly referred to as the wall.
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Table 17.1 Blasius’ solution with α = 2 (based upon Table V.1 in Rosenhead (1963))

η F =
∫ η
0 f dη F′ = f F′′ = df

dη η F =
∫ η
0 f dη F′ = f F′′ = df

dη

0 0 0 0.4696 2.0 0.8870 0.8167 0.2557

0.1 0.0023 0.0470 0.4696 2.2 1.0549 0.8633 0.2106

0.2 0.0094 0.0939 0.4693 2.4 1.2315 0.9011 0.1677

0.3 0.0211 0.1408 0.4686 2.6 0.4148 0.9306 0.1286

0.4 0.0375 0.1876 0.4673 2.8 0.6033 0.9529 0.0951

0.5 0.0586 0.2342 0.4650 3.0 0.7056 0.9691 0.0677

0.6 0.0844 0.2806 0.4617 3.2 1.9906 0.9804 0.0464

0.7 0.1147 0.3265 0.4572 3.4 2.1875 0.9880 0.0305

0.8 0.1497 0.3720 0.4512 3.6 2.3856 0.9929 0.0193

0.9 0.1891 0.4167 0.4436 3.8 2.5845 0.9959 0.0118

1.0 0.2330 0.4606 0.4344 4.0 2.7839 0.9978 0.0069

1.1 0.2812 0.5035 0.4234 4.2 2.9836 0.9988 0.0039

1.2 0.3337 0.5452 0.4106 4.4 3.1834 0.9994 0.0021

1.3 0.3902 0.5856 0.3960 4.6 3.3833 0.9997 0.0011

1.4 0.4507 0.6244 0.3797 4.8 3.5833 0.99986 0.00054

1.5 0.5150 0.6615 0.3618 5.0 3.7932 0.99994 0.00026

1.6 0.5830 0.6967 0.3425 5.2 3.9832 0.99997 0.00012

1.7 0.6543 0.7299 0.3220 5.4 4.1832 0.99999 0.00005

1.8 0.7289 0.7611 0.3004 5.6 4.3832 1.00000 0.00002

1.9 0.8064 0.7900 0.2783 6.0 4.7832 1.00000 0.00000

Since y/x � 1, we confirm that the streamwise velocity gradient ∂u/∂x is much smaller
than the transverse (or cross-stream) velocity gradient ∂u/∂y.

(b) From equation (17.21) combined with the definitions of f , F, and F′, and the equation
for�, we have

v
u = 1

2

√
2ν

U∞x

(
η – F

F′
)
= 1
2

√
2ν

U∞x

(
η – 1

f

∫ η
0

f dη
)
. (17.35)

Close to the surface,

f ≈ ηf ′(0) so that
∫ η
0

f dη ≈ 1
2η

2f ′(0)
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and, from equation (17.35)

v
u ≈ η4

√
2ν

U∞x = η4

√
2
Rex

.

Far from the surface f → 1 and from the Blasius table we observe that for η→ ∞

η –
∫ η
0

fdη→ constant = 1.2168

so that, from equation (17.35)

v
u = V∞

U∞
→ 0.8604√

Rex
. (17.36)

We conclude therefore that, for all values of η, v > 0 and v � u.
(c) The shear stress τ at any location within the boundary layer is given by

τ = μ ∂u
∂y

∣∣∣∣
x
= f ′μU∞

�
= f ′ρU3/2∞

√
ν
2x ,

at the surface (η = 0) therefore

τS = f ′(0)ρU3/2∞

√
ν
2x = 0.3321ρU3/2∞

√
ν
2x = 0.2348ρU3/2∞

√
ν
x . (17.37)

Equation (17.37) confirms that τS decreases with increasing x. From the usual definition
for the skin-friction coefficient (or friction factor154) cf for a boundary layer we have

cf
2 = τS

ρU2∞
=

f ′ (0)√
2Rex

= 0.3321√
Rex

. (17.38)

From equation (17.37) the total drag forceD′ per unit width exerted by the fluid on one
side of a plate of length L is given by

D′ =
∫ L

0
τS dx = 0.6642ρU3/2∞

√
νL

from which we can define an average drag coefficient CF

CF = D′
ρU2∞L

= 0.6642√
ReL

= 2cf (L). (17.39)

(d) At the outset of our analysis of the flat-plate boundary layer, we introduced the ‘scaling
length’�, which we subsequently showed satisfies equation (17.30)

� =
√
ανx
U∞

.

From the tabulated solution, with α = 2, we now see that, when η = 1, (i.e. y = �),
the velocity ratio u/U∞ = 0.4606, which is thus the value of χ in Figure 17.2. Had we
chosen α = 1 rather than α = 2 at the conclusion of the derivation of Blasius’ equation,
we would have found u/U∞ = 0.3298 at y = �, i.e. a different point on the same velocity
profile.

154 Note that cf is defined in a similar way as the Fanno friction factor for duct flow fF = 2τS/ρV
2 but it is con-

ventional to write equations including the skin-friction coefficient in terms of cf /2 (spoken as ‘see eff over two’). The
symbol f is sometimes used instead of cf /2.
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(e) From the tabulated solution to Blasius’ equation, we see that, for η ≥ 5, f = 1 to within
0.01% so it would be reasonable to define the boundary-layer thickness as δ = 5�, i.e.

δ
x = 5�

x = 5
x

√
2νx
U∞

= 7.07√
Rex

. (17.40)

Since the velocity u approaches the free-stream velocity U∞ asymptotically, it is im-
possible to put a precise value on the boundary-layer thickness. A common choice is
the location where u/U∞ = 0.99 (corresponding with η ≈ 3.5), possibly because until
relatively recently this corresponded roughly with the precision to which a flow velocity
could be measured with a Pitot tube or hot-wire anemometer. Whatever choice is made,
we see that δ/x ∼ 1/

√
Rex.

(f) If, as in part (e) we take the edge of the boundary layer to correspond with η = 5, the
non-dimensional flowrate within the boundary layer is given by F (5) = 3.7832. From
the definition of F, equation (17.20), we then see that the volumetric flowrate per unit
width is the stream function ψ corresponding to y = δ

ψ(δ) = U∞�F (5) = 5.3503
√
νU∞x. (17.41)

Essential features of a streamline are that there is no flow across it (Section 6.3) and that
the stream function is constant along it. Since ψ(δ) ∼ √

x we can draw four important
conclusions
• the flowrate within the boundary layer increases with streamwise distance x
• the edge of the boundary layer corresponding to y = δ (x) is not a streamline
• there is flow from the free stream into the boundary layer, a phenomenon called

entrainment155
• streamlines originating in the uniform flow upstream of the plate are deflected away

from the plate before passing into it, consistent with the earlier conclusion that
v∞> 0 (equation (17.36))

(g) As illustrated in Figure 17.3, the deflection of any streamline can be quantified as follows.
Consider a streamline upstream of the plate a distance Y above the plane of the plate.
The value of the stream function ψ0 for this streamline is

ψ0 = U∞Y . (17.42)

At some streamwise location a distance x from the leading edge of the plate, for the same
streamline, the value of the stream function ψ (x, δ) at the edge of the boundary layer is
given by

ψ(x, δ) =
∫ δ
0

u dy (17.43)

which must equal ψ0. Since u < U∞ throughout the boundary layer and since ψ0 and
ψ(x, δ) correspond to the same streamline, it must be that δ > Y , i.e. the streamline has
been deflected (or displaced) away from the plate by an amount

δ – Y = δ – ψ0U∞
= δ – 1

U∞

∫ δ
0

u dy =
∫ δ
0

(
1 – u

U∞

)
dy = δ∗. (17.44)

Note that in deriving equation (17.44) we have made use of the relation
∫ δ
0 dy = δ.

155 Entrainment is a feature of all shear layers, i.e. boundary layers, jets, wakes, wall jets, etc.
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streamline

x

y

𝛿

u (x, y)
U∞

𝛿*

Y Y

Figure 17.3 Deflection of a streamline by the boundary layer: The displacement thickness

The quantity δ∗ (x), defined by equation (17.44), is termed the displacement
thickness156. The upper limit of the integral in equation (17.44) can be replaced by ∞
since, for y > δ, u = U∞, the integrand falls to zero, and there is no further contribution
to the integral. The displacement thickness is one of a number of integral thicknesses
which arise in boundary-layer theory. Although the boundary-layer thickness δ cannot
be defined precisely, a virtue of these integral thicknesses is that they are.
As illustrated in Figure 17.4, the area representing the velocity deficit between the

velocity distribution u(x, y) and the free-stream velocity U∞ corresponds with the
displacement thickness, a quantity which increases with streamwise distance x from the
leading edge of the plate.

u
U∞

u
U∞

u
U∞

u
U∞

y

y = 𝛿

dy = 𝜃1–area =

u
U∞

u/U∞0

= 1

ʃ 𝛿

0
( )

1–( )
u/U∞

u
U∞

dy = 𝛿*1 –area = ʃ 𝛿 ( )
0

Figure 17.4 Geometric interpretation of the displacement and momentum thicknesses

156 The symbol δ1 is often used instead of δ∗.
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If we again take η = 5 to define the thickness of the boundary layer then, fromTable 17.1,
the corresponding value F = 3.7832 and, from equation (17.44),

δ∗
δ

=
∫ 5

0

(
1 – f
)
dη = 5 – F(5) = 1.2168. (17.45)

A consequence of the streamline-displacement effect is an increase in the free-stream
velocity for developing flow in a duct of constant cross-sectional area. That this must be
the case is easily seen from the results of Chapter 16, where the peak velocity in Poiseuille
flow through a circular pipe is greater than the average velocity by a factor of 2.
As a final comment on the displacement thickness, it should be noted that the δ∗

definition of equation (17.44) is not limited to flat-plate flows but applies generally for
constant-property boundary layers.

(h) Although themomentum thickness (ormomentum-deficit thickness)157 θ(x) does not
arise directly in the analysis of the flat-plate boundary layer, it is also illustrated graph-
ically in Figure 17.4 and introduced here as it plays an important role in boundary-layer
theory generally (see Section 17.5). The definition of θ , which is again quite general for
constant-property boundary-layer flows, is

θ =
∫ δ
0

u
U∞

(
1 – u

U∞

)
dy, (17.46)

and, as is the case for δ∗, θ can be evaluated precisely. For the flat-plate, laminar
boundary layer, we have

θ
δ
=
∫ 5

0
f
(
1 – f
)
dη = F (5) –

∫ 5

0
f 2dη.

Numerical integration of the last term leads to

θ
δ
= 0.09393. (17.47)

(i) The reader will have noticed that
√
Rex appears in several results which arise from the

solution of Blasius’ equation. This partially explains the incorporation of
√
Re into the

non-dimensionalisation of the boundary-layer equations discussed in Section 17.2.
(j) The validity of Blasius’ equation requires that the flow is steady and laminar. As already

remarked in Section 17.2, for duct flow, once the Reynolds number exceeds a critical
value, the flow becomes unstable, and eventually transition to turbulent flow occurs.
Since a boundary layer is always developing with distance x along the surface, the
Reynolds number Rex = U∞x/ν is often chosen as the appropriate parameter, and
a value of about 3.5 × 105 can be taken as the upper limit for stability. For a direct
analogy with channel flow, U∞δ/ν suggests itself as the appropriate Reynolds num-
ber, with the boundary-layer thickness δ replacing the hydraulic diameter DH as the
length scale. However, given the uncertainty in determining δ, the momentum thickness
θ is a better choice. With a momentum-thickness Reynolds number Reθ = U∞θ /ν
it is found that a flat-plate laminar boundary layer is stable, provided Reθ is less than
about 300.

157 If the symbol δ1 is used for the displacement thickness rather than δ∗, it is usual for the momentum thickness
to be represented by δ2 rather than θ .
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A cautionary note has to be sounded as flow stability and transition to turbulence are in-
fluenced by such factors as surface roughness, unsteadiness of the free stream (free-stream
turbulence), and the streamwise pressure gradient, particularly an adverse gradient.

17.4 Wedge-flow laminar boundary layers:
Falkner and Skan’s equation

In this section we are concernedwith boundary layers which develop onwedge surfaces such as
that shown in Figure 17.5(a), which illustrates two-dimensional flow over a symmetric wedge
of included angle β (measured in radians). It can be shown that in the absence of viscosity, the
fluid velocity at the wedge surface U∞(x) is given by

U∞ = Kxm (17.48)

where x is the distance along the wedge surfacemeasured from the apex andK is a dimensional
constant. The exponentm is related to the wedge angle158 by

(c)

/ 2

x = 0

x 

(a)

x = 0

x

(b)

x
x = 0

Figure 17.5 (a) Flow over a symmetrical wedge (b) Flow approaching a stagnation point (c) Flow on
the leeward side of a corner

158 In some treatments of wedge flows the wedge angle is taken as πβ rather than β as here. It is also the case
that the symbol β sometimes represents the semi-included (or half angle) of the wedge rather than the included angle
as here.
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m = β

2π – β or β

2π = m
m + 1 . (17.49)

Two special cases incorporated in this formulation arem = 0, which corresponds with the zero
pressure-gradient or flat-plate flow we have just dealt with, andm = 1, β = π , which is a good
approximation to the flow near a forward stagnation point159, as illustrated in Figure 17.5(b).
Wedge flows with β < 0 are referred to as diffusion flows and realised physically by the flow
on the leeward side of a sharp corner, as shown in Figure 17.5(c).

17.4.1 Derivation and solution of Falkner and Skan’s equation

The pressure gradient is now non-zero, and the boundary-layer equations are

∂u
∂x + ∂v

∂y = 0 (17.1)

and

u∂u
∂x + v ∂u

∂y = U∞
dU∞
dx

+ ν ∂
2u
∂y2

, (17.50)

the latter corresponding with equation (17.4) with –dp/dx replaced by ρU∞dU∞/dx.
The similarity variable which reduced the partial differential equations to a single ordinary

differential equation for a flat-plate boundary layer was

η = y

√
U∞
ανx (17.32)

where α is an arbitrary constant. As already indicated, Blasius chose α = 2, many workers since
have adopted α = 1, while another common choice when m �= 0 is α = 2/m + 1 (so that α = 2
for m = 0). Whichever value is used leads to an ordinary differential equation for wedge-flow
boundary layers using essentially the same analytical procedure as in Section 17.3. We shall
continue to use α = 2.
Since the free-stream velocity obeys U∞ = Kxm, the pressure-gradient term in equation

(17.50) may be written as

U∞
dU∞
dx

= m
U2∞
x . (17.51)

We can transform all terms in equation (17.50) into the variables F (or f ) and η as follows

u = U∞f = U∞F′ (17.52)

∂u
∂x

∣∣∣∣
y
= U∞

x

[(
m – 1
2

)
ηF′′ +mF′

]
(17.53)

v = –

√
ανU∞

x F′′
[(

m – 1
2

)
ηF′ +

(
m + 1
2

)
F
]

(17.54)

∂u
∂y

∣∣∣∣
x
=

U3/2∞√
ανx

F′′ (17.55)

159 The flow withm = 1 is known asHiemenz flow.
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and

ν ∂
2u
∂y2

∣∣∣∣
x
=
U2∞
αx F′′′. (17.56)

Substitution of equations (17.52) to (17.56) into equation (17.50) leads to

F′′′ + α
(
m + 1
2

)
FF′′ + αm

(
1 – F′2) = 0 (17.57)

and we see that with α = 1 we have

F′′′ +
(
m + 1
2

)
FF′′ +m

(
1 – F′2) = 0 (17.58)

which is commonly referred to as the Falkner-Skan equation.
With α = 2, equation (17.57) becomes

F′′′ + (m + 1) FF′′ + 2m
(
1 – F′2) = 0 (17.59)

and with α = 2/(m + 1) we have

F′′′ + FF′′ + 2m
m + 1

(
1 – F′2) = 0 (17.60)

or

F′′′ + FF′′ + β
π

(
1 – F′2) = 0 (17.61)

where β is the wedge included angle in radians.
Withm = 0 and α = 2 in equation (17.57) we recover Blasius’ equation

F′′′ + 1
2αFF

′′ = 0. (17.33)

The boundary conditions for the wedge-flow boundary-layer problem are

F(0) = 0

F′(0) = 0

and

F′(∞) = 1.

As was the case for Blasius’ equation, the Falkner-Skan equation (17.58) can be solved only
numerically. The most important results of such numerical calculations are the values of the
integral boundary-layer thicknesses, δ∗ and θ , and the skin-friction coefficient cf /2.
From the definition of δ∗, equation (17.44), we have

δ∗ =
∫ ∞

0

(
1 – u

U∞

)
dy =

√
ανx
U∞

∫ ηδ
0

(
1 – f
)
dη (17.62)

so that

δ∗
x
√
Rex =

√
α[ηδ – F (ηδ)]. (17.63)
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Note that in equation (17.62) the upper limit of the integral was changed from ∞ to ηδ , the
value of η at which 1 – f , or η – F (η), is no longer measurably different from zero. For the
Blasius problem (m = 0) we took ηδ = 5 but, for other values of m, somewhat different values
are appropriate. From equation (17.46) for θ we have

θ =
∫ ∞

0

u
U∞

(
1 – u

U∞

)
dy =

√
ανx
U∞

∫ ∞

0
f
(
1 – f
)
dη (17.64)

so that

θ
x
√
Rex =

√
α

[
F (ηδ) –

∫ ηδ
0

f 2dη
]
. (17.65)

The surface shear stress τS is given by

τS = μ ∂u∂y

∣∣∣∣
0
= ρ
√
ν
αxU

3/2∞ f ′(0) (17.66)

from which

cf
2
√
Rex =

F′′(0)√
α

. (17.67)

Note that both the skin-friction coefficient cf /2 = τS/ρU2∞ and the Reynolds number Rex =
U∞x/ν include the free-stream velocity U∞ (x), which is no longer constant (as it was for
the Blasius problem) but varies with the streamwise distance x for wedge flows according to
U∞ = Kxm.
Table 17.2 lists values of (δ∗/x)

√
Rex, (θ /x)

√
Rex,
(
cf /2
)√

Rex, and
(
cf /2
)
Reθ for various

values of the wedge angle β and the exponentm (the parameter α = 2).
It is sometimes convenient to express both analytical results and experimental data in terms

of a Reynolds number Reθ based upon the momentum thickness θ rather than the streamwise
distance x

Reθ =
U∞θ
ν

. (17.68)

For wedge flows we can use equation (17.65) to relate Reθ and Rex

Reθ =
U∞θ
ν

= U∞x
ν
θ
x =
(
θ
x
√
Rex
)√

Rex =
√
α

[
F (ηδ) –

∫ ηδ
0

f 2dη
]√

Rex. (17.69)

If we combine equation (17.67) with equation (17.69) we have

cf
2 = F′′(0)√

αRex
=
F′′(0)

[
F (ηδ) –

∫ ηδ
0 f 2dη

]
Reθ

(17.70)

or

cf
2 Reθ = F′′(0)

[
F (ηδ) –

∫ ηδ
0

f 2dη
]
= C (m) , (17.71)

where the constant C is a function of the exponentm, a result which is reminiscent of equation
(16.18) for Poiseuille flow.
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Table 17.2 Results from the solution of Falkner and Skan’s equation with α = 2

β m
(
δ∗/x
)√

Rex (θ /x)
√
Rex

(
cf /2
)√

Rex
(
cf /2
)
Reθ

(rad)

π 1 0.6479 0.2923 1.2326 0.3603 stagnation point

π /2 1/3 0.9854 0.4290 0.7575 0.3250

π /5 1/9 1.3204 0.5477 0.5118 0.2803

0.5711 0.1 1.3478 0.5566 0.4966 0.2764

0 0 1.7208 0.6641 0.3321 0.2205 flat plate

–0.0635 –0.01 1.7800 0.6789 0.3115 0.2115

–π /10 –0.0476 2.0907 0.7464 0.2203 0.1644

–0.3307 –0.05 2.1174 0.7515 0.2135 0.1600

–3π /20 –0.06977 2.4149 0.7994 0.1475 0.1180

–0.6247 –0.0904 3.4978 0.8681 0 0 separtion

Velocity profiles corresponding to Falkner and Skan’s wedge-flow solutions, again with α = 2,
including that corresponding to Blasius’ solution for m = 0, are shown in Figure 17.6 for
–0.0904 < m < 1.

17.4.2 Comments on Falkner-Skan solutions

(a) For a wedge flow, where U∞ = Kxm = Kxβ/(2π–β), we see that dU∞/dx = mU∞/x =
βU∞/[(2π – β) x] so that if m > 0 (and β > 0) the free-stream is accelerating and
the static pressure is decreasing, i.e. the pressure gradient is negative. If m < 0 (and
β < 0) the free-stream is decelerating, the static pressure is increasing, and the pressure
gradient is positive.

(b) For a positive pressure gradient (i.e. m < 0,β < 0), we observe from Table 17.2 that(
cf /2
)√

Rex is lower than its value for a flat-plate boundary layer (m = 0). In fact, for
m = –0.09042854 (β = –0.62466699), the skin-friction coefficient cf /2, and so the wall-
shear stress τS, fall to zero, and the boundary layer is said to separate from the wall. A
positive pressure gradient is thus said to be an adverse pressure gradient.

It has to be pointed out that, for boundary layers subjected to strong adverse
pressure gradients, the boundary layer thickens rapidly, there is significant diver-
gence of the near-wall streamlines, the normal velocity v may become comparable
with u, and the normal pressure gradient is no longer negligible, i.e. the boundary-layer
approximation is no longer valid. A sketch illustrating near-wall streamlines in the
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Figure 17.6 Non-dimensional velocity profiles for wedge flows with π ≥ β ≥ –0.6247 (parameter on
curves is β followed by m in parentheses) and α = 2

vicinity of a separation point is shown in Figure 17.7. Included in the sketch are
streamlines indicating reverse flow downstream of this point.
For a negative pressure gradient (i.e.m> 0,β > 0), Table 17.2 shows that

(
cf /2
)√

Rex
is always higher than its value for a flat-plate boundary layer. A negative pressure
gradient is thus said to be a favourable pressure gradient.
In Chapter 14 we pointed out that the design of compressor blades is dictated by

the adverse pressure gradients generated by the progressive pressure increase through a
compressor, while turbine blades generally experience favourable pressure gradients.

(c) In Subsection 17.6.3 we show that an appropriate parameter160 to quantify the pressure
gradient is

λθ = θ
2

ν

dU∞
dx

= – θ
2

μU∞
dp
dx

. (17.72)

160 When spoken the parameter is ‘lamda theta’.
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separation point

Figure 17.7 Near-wall streamlines in the vicinity of a separation point

For the wedge flows we thus find

λθ = m
(
θ
x

)2
Rex (17.73)

so that λθ > 0 corresponds with a favourable pressure gradient, and λθ < 0 with an
adverse pressure gradient. Since (θ /x)

√
Rex is tabulated in Table 17.2 as a function of

m, λθ is readily obtained for the given values ofm.
(d) The special case β = π(m = 1) corresponds to flow at a stagnation point (Hiemenz

flow). Since (θ /x)
√
Rex = θ

√
Cxm–1/ν, we find the curious result that for flow near a

stagnation point the momentum thickness θ is independent of x and equal to the value
at x = 0. The same is true for δ∗,�, and δ, i.e. all the boundary-layer thicknesses are
non-zero at the stagnation point and independent of distance from it.

(e) Another interesting case is that form = 1/3, for which we see that

cf
2
√
Rex =

τS

ρU2∞

√
U∞x
ν

= τS
ρ

√
x

U3∞
, (17.74)

i.e. the wall shear stress τS is independent of x since U∞ ∝ x1/3.

ILLUSTRATIVE EXAMPLE 17.1

(a) Show that, for a flow with U∞ proportional to x1/3, the wall shear stress τS for a laminar
boundary layer is constant.

(b) Calculate τS for an airflow for which

U∞
U0

= B
(
x
L

)1/3
where B = constant, U0L/ν = 103, ρU2

0 /2 = 240 Pa, and, at x/L = 10, the free-stream
velocity U∞ = 2U0.
For either (a) or (b) make use of any relevant information from the Falkner-Skan

solutions.
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Solution

(a) For any wedge flow, we found

cf
2
√
Rex = c (17.67)

where c is a constant. We thus have

τS

ρU2∞

√
U∞x
ν

= c

and, with U∞ = Kxm, where K is a constant,

τS

ρK2x2m

√
Kxm+1

ν
= c

which can be rearranged to give

τS = ρc
√
K3νx(3m–1)/2.

Ifm =1/3, then τS = ρc
√
K3ν = constant.

(b) U0L/ν = 103, ρU2
0 /2 = 240 Pa, x/L = 10,U∞ = 2U0, and

U∞
U0

= B
(
x
L

)1/3
so that

B = 2
101/3

= 0.9283.

17.5 von Kármán’s momentum-integral equation

We have seen that even for the most basic boundary layer, that which develops along a flat
plate where we can reduce the partial differential equations governing the flow to a single
ordinary differential equation, an analytical solution to the problem is not possible and nu-
merical integration is necessary. By today’s standards such calculations can be regarded as
routine, and much the same can be said for the wedge-flow solutions. In fact commercial
software is widely available which allows the solution of boundary-layer problems where vari-
ation of the free-stream velocity U∞(x), or static pressure p(x), can take any specified form.
However, it is frequently the case that an approximate solution is either all that is needed
or is helpful in interpreting a complete solution of high accuracy. An integrated form of the
boundary-layer equations, known as von Kármán’s momentum-integral equation (or just
the momentum-integral equation161), is the starting point for many approximate solutions.
The momentum-integral equation can be derived by formal integration of the boundary-layer
form of the x-momentum equation (17.4) together with the continuity equation (17.1) or, by
considering the forces acting on, and the momentum flowrates flowing through, a control
volume of infinitesimal width δx and height δ. We shall adopt the second approach.

161 The momentum-integral equation is sometimes referred to as the integral momentum equation.



VON KÁRMÁN’S MOMENTUM-INTEGRAL EQUATION 469

edge of boundary layer

V∞

U∞

Y

Y +

ρu

p∞

𝛿x

𝛿xdY
dx

dp∞
dx

u + 𝛿x

𝛿x

дu
дx

ρ ( )
+p∞

τs

3

21

4

Figure 17.8 Control volume for momentum-integral-equation analysis

The control volume is shown in Figure 17.8. In this section, to avoid confusion with small
quantities such as δx, the symbol Y rather than δ will be used to represent the boundary-layer
thickness. The width δx, in the streamwise direction, is greatly exaggerated for clarity. We
shall assume the surface width is Z but that the flow is two-dimensional with zero velocity
in the z-direction. There is flow of mass and x-momentum into the control volume across
face ➀, outflow across face ➁, and zero flow across face ➃ since the surface is assumed to be
impermeable. Across face➂, which corresponds to the edge of the boundary layer, flow ofmass
and x-momentum associated with both the free-stream velocity U∞ (x) and the y-component
of velocity V∞ (x) has to be accounted for. So far as forces are concerned, there are pressure
forces acting on faces ➀, ➁, and ➂ due to the static pressure p (x), which is assumed to be
constant across the boundary layer, i.e. ∂p/∂y = 0, and a shear force acting on face ➃ due to
the surface shear stress τS (x).

17.5.1 Mass-conservation equation

We consider first the mass flowrate ṁY within the boundary layer, which is given by

ṁY =
∫ Y

0
ρ u dy Z. (17.75)

For steady flow, the mass flowrates into and out of the control volume must be in balance, so
that we can write themass-conservation equation as[

ṁY +
(dṁY

dx

)
δx
]
– ṁY + ρ∞V∞δxZ – ρ∞U∞ dY

dx δxZ = 0. (17.76)

➁ ➀ ➂ ➂
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The encircled numerals below each term in equation (17.76) indicate the face of the control
volume to which the term corresponds. After substitution for ṁY from equation (17.75) and
some rearrangement we find

d
dx

∫ Y

0
ρ u dy = ρ∞U∞ dY

dx
– ρ∞V∞ (17.77)

which will be used later to eliminate V∞ from the momentum equation.

17.5.2 x-Momentum-conservation equation

The basic equation is

net force acting on the control volume in the x-direction

= x-momentum flowrate leaving control volume

–x-momentum flowrate entering control volume (17.78)

from which we have

pYZ –
[
pYZ + d

dx
(
pYZ
)
δx
]
+ pdYdx δxZ – τSδxZ (17.79)

➀ ➁ ➂ ➃

=
[∫ Y

0 ρu
2dyZ + d

dx
∫ Y
0 ρu

2dyZδx
]
–
∫ Y
0 ρu

2dyZ + ρ∞V∞U∞δxZ – ρ∞U2∞ dY
dx δxZ.

➁ ➀ ➂ ➂

The encircled numerals below each term in equation (17.79) indicate the face of the control
volume to which the term corresponds. Most of the terms in this equation should require no
explanation. In evaluating the force exerted on face ➂ by the static pressure, we have taken
a mean static pressure p while (dY/dx) δx represents the projection of face ➂ onto a plane
normal to the surface. The terms involving U∞ take into account the flow of fluid across face
➂ with a component of velocity U∞ in the x-direction and a mass flowrate due to velocity
components in both the x- and y-directions.
A number of terms in equation (17.79) cancel each other out and, after some simplification,

we find

τS + Y
dp
dx

+
(
p – p
) dY
dx

= – d
dx

∫ Y

0
ρu2dy – ρU∞

(
V∞ – U∞ dY

dx

)
. (17.80)

For the mean static pressure p we can write

p = 1
2
[
p (x) + p (x + δx)

]
so that

p – p = 1
2
[
p (x + δx) – p (x)

] ≈ 1
2
dp
dx
δx + O

(
δx2
)
.

Since the control volume is infinitesimally thin, we can neglect terms of second order and
higher in this expression for p – p. If we now substitute for p – p in equation (17.80), we have



VON KÁRMÁN’S MOMENTUM-INTEGRAL EQUATION 471

τS + Y
dp
dx

+ 1
2
dp
dx

dY
dx
δx = – d

dx

∫ Y

0
ρu2dy – ρ∞U∞

(
V∞ – U∞ dY

dx

)
(17.81)

and we see that as δx → 0 the third term must disappear leaving

τS + Y
dp
dx

= – d
dx

∫ Y

0
ρu2dy – ρ∞U∞

(
V∞ – U∞ dY

dx

)
. (17.82)

Substitution from equation (17.77) for the parenthetical term in equation (17.82), which
includes V∞, leads to

τS + Y
dp
dx

= – d
dx

∫ Y

0
ρu2 dy + U∞ d

dx

∫ Y

0
ρudy. (17.83)

We can now introduce Bernoulli’s equation in the form

dp
dx

+ ρ∞U∞
dU∞
dx

= 0

so that, after some rearrangement, equation (17.83) may be written as

τS = U∞ d
dx

∫ Y

0
ρudy – d

dx

∫ Y

0
ρu2 dy + ρ∞U∞

dU∞
dx

∫ Y

0
dy. (17.84)

The final term on the right-hand side of equation (17.84) is arrived at by observing that

Y =
∫ Y

0
dy.

17.5.3 von Kármán’s momentum-integral equation

So far we have put no restriction on the density ρ so that equation (17.84) is valid for both com-
pressible and incompressible flow. If we now limit our attention to constant-density flow and
introduce the displacement thickness δ∗ and the momentum thickness θ , which were defined
in Subsection 17.3.2, equation (17.84) leads to

τS
ρ

=
d
(
θU2∞

)
dx

+ δ∗U∞
dU∞
dx

(17.85)

which is one of a number of forms of von Kármán’s momentum-integral equation. In
terms of the skin-friction coefficient cf /2 defined by equation (17.38), we can write equa-
tion (17.85) as

cf
2 = dθ

dx
+
(
δ∗ + 2θ

) 1
U∞

dU∞
dx

(17.86)

or

cf
2 = dθ

dx
+ (H + 2) θU∞

dU∞
dx

(17.87)

where

H = δ
∗
θ

(17.88)
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defines a non-dimensional quantity known as the boundary-layer shape factor162, or simply
the shape factor. As the name suggests, the value of H is closely related to the shape of
the velocity profile. The definitions of δ∗ and θ are given by equations (17.44) and (17.46),
respectively

δ∗ =
∫ δ
0

(
1 – u

U∞

)
dy (17.44)

θ =
∫ δ
0

u
U∞

(
1 – u

U∞

)
dy. (17.46)

17.5.4 Comments on the momentum-integral equation

(a) The arbitrariness associated with the boundary-layer thickness Y (= δ) is removed once
δ∗ and θ are introduced.

(b) For a flat-plate boundary layer, equation (17.87) simplifies to

cf
2 = dθ

dx
(17.89)

which, if θ(0) = 0, can be integrated with respect to x to give

θ (x) =
∫ L

0

cf
2 dx = 1

ρU2∞

∫ L

0
τS dx

so that the total drag force per unit width D′ exerted on a length L of the surface is
given by

D′ = ρU2∞θ (L) , (17.90)

i.e. for the flat-plate boundary layer themomentum thickness at x = L is a direct measure
of the drag force over the region 0 < x < L.

(c) For a constant-density boundary layer, equation (17.77) can be rearranged as an
equation for the y-direction velocity at the edge of the boundary layer, V∞

V∞ = U∞ dY
dx

– d
dx

∫ Y

0
u dy (17.91)

which can be written in terms of the displacement thickness δ∗ as

V∞ = d(U∞δ∗)
dx

– Y dU∞
dx

. (17.92)

For a flat-plate boundary layer, equation (17.92) simplifies to

V∞ = U∞ dδ∗
dx

= U∞
2
δ∗
x = 0.8604√

Rex
(17.93)

wherein we have used the result for δ∗ in Table 17.2 form = 0. Equation (17.93) leads to
the same conclusion regarding V∞ as equation (17.36), which we commented upon in
Subsection 17.3.2 following the analysis of Blasius’ equation.

162 When δ1 and δ2 are used instead of δ∗ and θ , it is usual for the shape factor to be represented by the symbol
H12 rather than H. Also, the term form factor is sometimes used instead of shape factor.
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17.6 Profile methods of solution

We saw in Section 17.3 that to arrive at practically useful numerical results requires significant
effort, including the numerical solution of a non-linear ordinary differential equation, even for
flow over a flat plate. We now show how results of acceptable accuracy can be obtained with
far less effort if we make reasonable assumptions concerning the shape of the velocity profile.
Any assumed velocity profile should satisfy as many of the boundary conditions stated at

the end of Section 17.2 as possible

at the surface: no – slip condition : y = 0, u = 0, ∂
2u
∂y2

∣∣∣∣
S
= –U∞
ν

dU∞
dx

(17.94)

approach to the free-stream velocity : y → ∞, u → U∞, ∂
nu
∂yn → 0,

n = 1, 2, 3, . . . .. (17.95)

At the surface the no-slip condition is a fundamental requirement and it should be clear that
the first derivative, ∂u/∂y

∣∣
S = τS/μ, is the main quantity of engineering interest and so cannot

be assumed. Equation (17.94) for the second derivative at the surface arises directly from the
x-momentum equation with u = v = 0. Nothing can be said about higher derivatives at the
surface whereas, ideally, all derivatives should become zero with approach to the free stream.

17.6.1 Flat-plate laminar boundary layer with cubic velocity profile

We assume that the velocity profile has the cubic-polynomial form

u = a + by + cy2 + dy3 (17.96)

where a, b, c, and d are constants to be determined from the boundary conditions.
It will be found that the algebra is simplified if we use non-dimensional variables, defined by

f = u
U∞

and ξ =
y
δ

(17.97)

so that from equations (17.94) and (17.95) the boundary conditions to be satisfied are

ξ = 0, f = 0,
d2f
dξ 2

∣∣∣∣
S
= –δ

2

ν

dU∞
dx

= –λ (17.98)

and

ξ → 1, f → 1,
dnf
dξn

→ 0. (17.99)

Note that we have reverted to using the symbol δ rather than Y to represent the boundary-
layer thickness. Equation (17.98) defines the non-dimensional quantity λ, which is seen to be
a pressure-gradient parameter since, from Bernoulli’s equation, p + ρU2∞/2 = constant. For
the flat-plate boundary layer, λ = 0.
In non-dimensional form, the equation for the velocity profile is

f = A + Bξ + Cξ 2 + Dξ 3 (17.100)
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where A,B,C, and D have replaced a, b, c, and d as the constants to be determined from the
boundary conditions.
The no-slip condition requires that A = 0, and the free-stream boundary condition (at
ξ = 1) for f then requires

1 = B + C + D. (17.101)

If we differentiate equation (17.100) with respect to ξ we have

df
dξ

= B + 2Cξ + 3Dξ 2 (17.102)

and the free-stream boundary condition for df /dξ requires

0 = B + 2C + 3D. (17.103)

If we differentiate equation (17.100) again, we have

d2f
dξ 2

= 2C + 6Dξ . (17.104)

For the flat-plate boundary layer λ = 0 and from equation (17.98) d2f /dξ 2
∣∣
S = 0 so that C = 0.

From equations (17.101) and (17.103), the remaining constants are found to be B = 3/2, and
D = –1/2, and the velocity-profile equation becomes

f = 1
2ξ
(
3 – ξ 2

)
(17.105)

or

u
U∞

= 1
2
y
δ

[
3 –
(
y
δ

)2]
. (17.106)

We can now use equation (17.105) to evaluate δ∗, θ ,H, and cf /2 as follows

δ∗
δ

=
∫ 1

0

(
1 – f
)
dξ = 3

8 , (17.107)

θ
δ
=
∫ 1

0
f
(
1 – f
)
dξ = 39

280 , (17.108)

H = δ
∗
θ

= 35
13 = 2.69, (17.109)

and

cf
2 =

τS

ρU2∞
=
μ
∂u
∂y

∣∣∣∣
S

ρU2∞
=
ν

U∞δ
df
dξ

∣∣∣∣
0
=

3ν
2U∞δ

. (17.110)

Since the boundary-layer thickness δ has yet to be quantified, at this stage only the value for the
shape factor H can be compared with the exact value from the numerical solution of Blasius’
equation: 2.69 compared with 2.59 calculated from the values listed in Table 17.2.
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To find an equation for the boundary-layer thickness δ (x) we use the momentum-integral
equation which, for the flat plate, is given by equation (17.89)

dθ
dx

=
cf
2 .

Substitution for cf /2 from equation (17.110) and for θ /δ from equation (17.108) leads to

39
280

dδ
dx

= 3ν
2U∞δ

(17.111)

which can be rearranged as

δ dδ
dx

= 140ν
13U∞

. (17.112)

If we assume the boundary layer has zero thickness at x = 0, i.e. δ(0) = 0, after integration of
equation (17.112) we have

δ =
√
280νx
13U∞

(17.113)

so that

cf
2 = 3ν

2U∞δ
=
√

117
1120Rex

= 0.323√
Rex

(17.114)

which is within 3% of the value form = 0 in Table 17.2

cf
2 = 0.331√

Rex
. (17.115)

The final comparison is with the result for the momentum thickness:

θ = 39
280δ =

39
280

√
280νx
13U∞

(17.116)

or

θ
x
√
Rex = 0.646 (17.117)

while the value in the table is 0.664, again within 3%.
In Table 17.3 we compare with the results of Blasius’ analysis values for (δ∗/x)√
Rex, (θ /x)

√
Rex,H, and

(
cf /2
)√

Rex for a zero-pressure-gradient boundary layer determ-
ined from linear, quadratic163, cubic, and quartic profiles, plus a sine-form profile. It is
noticeable that the results are relatively insensitive to the profile assumed, even f = ξ leading
to a value for cf /2 within 13% of the exact (Blasius) value.

163 As shown in Section 16.4, the quadratic profile corresponds to Couette-Poiseuille flow with λP = 2.
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Table 17.3 Flat-plate boundary-layer values for various velocity profiles

Profile
(
δ∗/x
)√

Rex (θ /x)
√
Rex H

(
cf /2
)√

Rex

f = ξ 1.732 0.577 3.000 0.289

f = 2ξ – ξ2 1.826 0.730 2.501 0.365

f = 3
(
ξ – ξ3

)
/2 1.740 0.646 2.700 0.323

f = 2ξ – 2ξ3 + ξ4 1.752 0.686 2.550 0.343

f = sin (πξ /2) 1.741 0.654 2.660 0.327

Blasius 1.721 0.664 2.590 0.332

17.6.2 Pohlhausen’s quartic velocity profile for boundary layers
with dp/dx �= 0

For flows with a streamwise pressure gradient dp/dx, a quartic equation has been found to rep-
resent a wide range of velocity profiles for both accelerating (i.e. favourable-pressure-gradient)
and decelerating (adverse-pressure-gradient) flows

f = A + Bξ + Cξ 2 + Dξ 3 + Eξ 4. (17.118)

From equation (17.94), the boundary condition for d2f /dξ 2 at the surface, ξ = 0, is

d2f
dξ 2

∣∣∣∣
S
= –δ

2

ν

dU∞
dx

= –λ,

λ being the pressure-gradient parameter (now non-zero) defined by equation (17.98), while
the other boundary conditions remain the same

ξ → 1,
d2f
dξ 2

→ 0, f → 1 (17.119)

As in Subsection 17.6.1, we can determine the constants A,B,C, and D, with the result now
that the velocity-profile equation (17.118) is given by

f = 2ξ – 2ξ 3 + ξ 4 + λ6 ξ (1 – ξ )
3 . (17.120)

This is known as Pohlhausen’s equation, and the pressure-gradient parameter λ as Pohl-
hausen’s parameter.
The wall shear stress τS is given by

τS = μ ∂u∂y

∣∣∣∣
0
= μU∞
δ

df
dξ

∣∣∣∣
0
= μU∞
δ

(
2 + λ6

)
(17.121)

so that the skin-friction coefficient cf /2 is given by

cf
2 = τS
ρU2∞

=
(
2 + λ6

)
ν

U∞δ
. (17.122)
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As for the flat-plate situation, we can derive expressions for δ∗/δ and θ /δ by substituting the
velocity-profile equation (121) for f (ξ ) in the definitions of δ∗ and θ (equations (17.44) and
(17.46)). The results are

δ∗
δ

= 1
10

(
3 – λ12

)
= Φ̃ (λ) (17.123)

and

θ
δ
= 1
63

(
37
5 – λ15 – λ

2

144

)
= Θ̃ (λ) . (17.124)

Equations (17.123) and (17.124) define the two non-dimensional quantities164, Φ̃ and Θ̃ , both
of which depend only upon λ. From the definition of the shape factor H we have

H = δ
∗
θ

= Φ̃
Θ̃

= 63
10

(
3 – λ12

)
(
37
5 – λ15 – λ

2

144

) . (17.125)

Equations (17.122), (17.123), (17.124), and (17.125) can be substituted into the momentum-
integral equation (17.87) to give the following ordinary differential equation for the mo-
mentum thickness θ

U∞θ
ν

dθ
dx

=
(
2 + λ6

)
Θ̃ – (2 +H) Θ̃2λ = 1

2F1 (λ) . (17.126)

Equation (17.126) defines the function F1 (λ), which will be needed later. The quantity Θ̃2λ

provides the connection between θ and λ through the identity

θ2

ν

dU∞
dx

= Θ̃2 δ2

ν

dU∞
dx

= Θ̃2λ (17.127)

so that equations (17.126) and (17.127) can be combined to give

d
dx

(
U∞θ2
ν

)
=
(
2 + λ6

)
Θ̃ – (1 +H) Θ̃2λ. (17.128)

Unfortunately, once again, we have arrived at a differential equation that can be solved only
numerically, except for the trivial (flat-plate) case of λ = 0. A simplifying feature of equations
(17.126), (17.127), and (17.128) is that the right-hand side of each depends only upon the
Pohlhausen pressure-gradient parameter λ.
GivenU∞ (x) and its gradient, a step-by-step numerical procedure generates a value for θ at

each step from which λ can be calculated from equations (17.124) and (17.127) (although this
involves solving a quintic equation), and all other quantities

(
δ, δ∗,H, cf /2, etc.

)
then follow.

The initial conditions for the numerical calculation can be taken either as those for a thin
flat plate at zero incidence or, for a shape such as an aerofoil, those for a stagnation point. For a
thin flat plate, at x = 0, we have δ = 0, θ = 0, δ∗ = 0, and λ = 0. In the case of a stagnation point,
U∞(0) = 0, so that according to equation (17.126), for dθ /dx to remain finite, the right-hand
side must also be zero, i.e.

2 + λ06 – (2 +H0) Θ̃0λ0 = 0, (17.129)

164 The curly overbar ∼ is used here to indicate that Φ̃ and Θ̃ are non-dimensional quantities.
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the subscript 0 indicating values at the stagnation point, x = x0. After substitution for Φ̃0 and
Θ̃0 from equations (17.123) and (17.124), equation (17.129) can be written in terms of λ0 as

2 – 116
315λ0 +

79
7560λ

2
0 + 1

7560λ
3
0 = 0

the solution of which is λ0 = 7.052. From equations (17.123), (17.124), and (17.125) we then
have

Θ̃0 = 0.1045, Φ̃0 = 0.2412, H0 = 2.308

and at x = x0, from equation (17.128),

d
dx

(
U∞θ2
ν

)
= –Θ̃2

0λ0 = 0.0737 (17.130)

which is used to start the numerical integration. In an adverse pressure gradient the calculation
cannot proceed beyond the point at which λ = –12, where from equation (17.122) we see
that boundary-layer separation (i.e. τS = 0) is predicted to occur. More exact solutions of
the laminar boundary-layer equations indicate that separation is found to occur for a λ-value
about 40% lower. We also note that at separation (λ = –12) equation (17.125) gives H = 3.5
compared with H = 3.95 from Table 17.2 for the wedge-flow solutions.
A starting condition can also be arrived at through consideration of Falkner and Skan’s

wedge-flow solutions which showed that, for any value of the exponentm

θ
x
√
Rex = A(m), (17.131)

values of (θ /x)
√
Rex being listed in Table 17.2. From equation (17.131),

U∞θ2
ν

= A2x

so that

d
dx

(
U∞θ2
ν

)
= A2

which can be used to initiate the numerical integration if a suitable value can be ascribed tom
and hence A. For a flat-plate boundary layer, m = 0 and, from Table 17.2, A = 0.6641. For a
stagnation point,m = 1, and A = 0.2923.
Although numerical integration of equation (17.128) is straightforward, it should not be for-

gotten that the equation is not exact but an approximation based upon Pohlhausen’s quartic
velocity profile. We have already seen that for a flat-plate boundary layer there are small
but significant differences between the exact results (from Blasius’ equation) and those for
various assumed profiles, including the quartic. Also, as we have already indicated, Pohl-
hausen’s profile leads to a –λ value at separation about 40% too high. It turns out that
a simpler approximate analytical procedure, known as Thwaites’ method, which is based
upon the wedge-flow solutions produces results comparable in accuracy to Pohlhausen’s
method.
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17.6.3 Thwaites’ method of solution

From equation (17.126) we have for Pohlhausen’s profile

U∞
ν

dθ2
dx

= F1 (λ) (17.132)

while, from the definitions of λ,

δ2

ν

dU∞
dx

= λ (17.98)

and Θ̃ ,

Θ̃ = 1
63

(
37
5 – λ15 – λ

2

144

)
, (17.124)

we see that

θ2

ν

dU∞
dx

= !2λ =
[
1
63

(
37
5 – λ15 – λ

2

144

)]2
λ = λθ (λ) . (17.133)

The pressure-gradient parameter λθ was introduced in Subsection 17.4.2 in the comments on
the solutions of Falkner and Skan’s equation and has the advantage over λ that θ , unlike δ,
can be calculated exactly. From equations (17.132) and (17.133) we can conclude that, for
Pohlhausen’s profile,

U∞
ν

dθ2
dx

= Fθ (λθ ) . (17.134)

From a range of exact solutions, numerical computations, and the wedge-flow solutions, it is
found that equation (17.134) is well represented by the linear relation

U∞
ν

dθ2
dx

= Fθ = 0.45 – 6λθ . (17.135)

It is important to realise that although equation (17.134) was derived from Pohlhausen’s profile
(it can be shown to have wider validity) equation (17.135) is an approximate relation which can
be used to calculate θ (x) for any variation of free-stream velocity U∞ (x).
If we multiply through the momentum-integral equation (17.85) by U∞θ /ν and rearrange

the terms, we find

Fθ = 2T – 2 (2 +H) λθ (17.136)

where T is a skin-friction parameter defined by

T = θτS
μU∞

= U∞θ
ν

cf
2 . (17.137)

Although equation (17.136) bears a superficial resemblance to equation (17.135), neither T nor
H is a constant but both are functions of λθ . Once θ (x) is known, λθ (x) is easily calculated
and τS (x) is then found from either a table of values of T vs λθ or an empirical correlation
such as

T = (0.09 + λθ )0.62 . (17.138)
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Equation (17.138) shows that the calculation procedure will indicate boundary-layer separa-
tion and τS = 0 for λθ = –0.09.
For the wedge-flow solutions, for which U∞ = Cxm, we found

θ
x
√
Rex = constant = A(m) (17.139)

so that

Fθ =
U∞
ν

dθ2
dx

= (1 –m)A2 (17.140)

and

λθ = θ
2

ν

dU∞
dx

= mA2. (17.141)

Figure 17.9 shows a plot of Fθ versus λθ , corresponding to equation (17.135), together with
points representing λθ and Fθ calculated from values of A andm taken from Table 17.2, using
equation (17.141) for λθ , and equation (17.140) for Fθ . Equation (17.135) is clearly not the
best possible fit to the wedge-flow data but, as already stated, it was based on a range of exact
solutions to the boundary-layer equations.
If we rearrange equation (17.135) and multiply through by νU5∞ we have

U6∞ dθ2
dx

+ 6θ2U5∞
dU∞
dx

= d
dx
(
U6∞θ2

)
= 0.45νU5∞

1.0

Fθ
Fθ = 0.45 – 6λθ

β = –0.6247
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Figure 17.9 Fθ versus λθ for Thwaites’ correlation and for wedge-flow solutions (β-values shown
for each data point)
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which can be integrated to give

U6∞θ2 – U6∞,0θ
2
0 = 0.45ν

∫ x

0
U5∞dx. (17.142)

In equation (17.142), which is referred to as Thwaites’ formula, U∞,0 is the value of U∞ at
x = 0, and θ0 is the corresponding value of θ .
Numerical evaluation of the integral in Thwaites’ formula, known as quadrature, is neces-

sary for all but the simplest variations of U∞. Once θ(x) has been calculated, cf (x) can be
determined from cf /2 = νT/ (U∞θ), with T calculated from equation (17.138).
Equations (17.140) and (17.141) show that, for a wedge flow, F and λθ are both functions

of m. It is easily shown that T =
[(
cf /2
)√

Rex
] [
(θ /x)

√
Rex
]
, which must also be a func-

tion of m, as must H. All terms in equation (17.136) are therefore functions of m and so can
also be regarded as functions of the pressure-gradient parameter λθ . A possible interpretation
of Thwaites’ method is that the velocity profile at any x-location within a laminar bound-
ary layer is assumed to have the similarity form, according to Falkner and Skan’s equation,
corresponding with the λθ -value at that location.

ILLUSTRATIVE EXAMPLE 17.2

(a) The free-stream velocity U∞ for flow around a circular cylinder in crossflow is given by
U∞ = 2U0 sinφ, whereU0 is the flow velocity far upstream of the cylinder, and the angle
φ is measured from the forward stagnation point. Near the forward stagnation point, the
variation of U∞ can be approximated by U∞ = 2U0φ, where φ is measured in radians.
Use Thwaites’ formula, equation (17.137), to show that, in the vicinity of the stagnation
point,

θ ≈
√

3νR
80U0

where R is the cylinder radius.
(b) Again using Thwaites’ formula, show that, for all values of φ up to boundary-layer

separation,

θ = 1
sin3 φ

√
0.225νR

U0

(
8
15 – 5

8 cosφ + 5
48 cos3φ – 1

80 cos5φ
)
.

You will need to make use of the relation∫
sin5 φdφ – 5

8 cosφ + 5
48 cos3φ – 1

80 cos5φ.

(c) Use the result of part (b) to find a formula for Thwaites’ pressure-gradient parameter λθ
in terms of φ and calculate values of λθ for φ = 30◦, 90◦, 100◦, and 103.11◦.
From these values of λθ calculate the shear-stress parameter T at the same values of φ
from the formula

T = (0.09 + λθ )0.62 .

Comment on the results.
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(d) If U0 = 0.5 m/s, calculate θ , the momentum-thickness Reynolds number, and the wall
shear stress at φ = 30◦, 90◦, and 100◦ for airflow (ν = 1.5 × 10–5 m2/s, ρ = 1.2 kg/m3)
over a cylinder 20 mm in diameter.

Solution

(a) In the present situation, U∞(0) = 0 so that Thwaites’ formula reduces to

U6∞θ2 = 0.45ν
∫ x

0
U5∞dx.

The surface distance x from the forward stagnation point is given by x = φR and, for
small values of φ, the free-stream velocity is given by U∞ = 2U0φ. If we substitute for
U∞ and x in Thwaites’ formula we have

2U0φ
6θ2 = 0.45νR

∫ φ
0
φ5dφ

which we can integrate to find

2U0φ
6θ2 = 0.45νRφ6

6 or θ2 = 3νR
80U0

.

(b) For any angle φ we have

2U0 sin6 φθ2 = 0.45νR
∫ φ
0

sin5 φdφ

= 0.45νR
[(

–58 cosφ + 5
48 cos3φ – 1

80 cos5φ
)
–
(
–58 – 5

48 + 1
80

)]

so that

θ2 = 0.225νR
U0 sin6 φ

(
8
15 – 5

8 cosφ + 5
48 cos3φ – 1

80 cos5φ
)
.

(c) From the definition of λθ

λθ = θ
2

ν

dU∞
dx

= 0.225R
U0 sin6 φ

(
8
15 – 5

8 cosφ + 5
48 cos3φ – 1

80 cos5φ
)
dU∞
dx

and, from U∞ = 2U0 sinφ,

dU∞
dx

= dU∞
dφ

dφ
dx

= 2U0 cosφ
R

so that

λθ =
0.45 cosφ
sin6 φ

(
8
15 – 5

8 cosφ + 5
48 cos3φ – 1

80 cos5φ
)
.

The calculated values of λθ and T for different values of φ are shown in Table E17.2.1.

Comments:

• At φ = 0◦ we have a stagnation-point flow. We showed in part (a) that, for φ →
0, θ2 → 3νR/ (80U0). Also, for φ = 0◦, dU∞/dx = 2U0/R so that λθ = 3/40 = 0.075.
For comparison, from Table 17.2 the wedge-flow solutions give λθ = 0.08544, and
T = 0.3603.

• At φ = 90◦ we have λθ = 0 so that at this location the boundary layer locally has
the form of a flat-plate boundary layer for which the wedge-flow solutions give T =
0.2205.
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Table E17.2.1 Calculated values
of λθ and T for different values of φ

φ λθ T

0◦ 0.075 0.3272

30◦ 0.07215 0.3237

90◦ 0 0.2247

100◦ –0.0603 0.1131

103.11◦ –0.08999 0.0005

• At φ = 103.11◦ the value of λθ is practically equal to –0.09, for which T = 0, i.e. the
flow has reached the separation point.

• This example suggests that fairly accurate results can be obtained from Thwaites’
method for quite a complex flow: one involving a stagnation point, rapid accelera-
tion (in the region 0◦ < φ < 90◦), and finally retardation (adverse pressure gradient)
beyond φ = 90◦ to a separation point.

(d) U0 = 0.5 m/s, R = 0.01 m, ν = 1.5 × 10–5 m2/s, and ρ = 1.2 kg/m3

By definition λθ =
(
θ2/ν
)
dU∞/dx and we have U∞ = 2U0 sinφ together with x = Rφ

so that θ =
√
νλθR/ (2U0 cosφ), and Reθ = U∞θ /ν = 2U0θ sinφ/ν.

Note that, when φ = 90◦, λθ = 0 so that θ must be calculated from the equation in
part (b), which leads to θ =

√
0.12νR/U0.

By definition T = θτS/ (μU∞) so that τS = 2μU0 sinφT/θ .
Using the calculated values for λθ and T we find the following results (Table E17.2.2)

Table E17.2.2 Calculated values for θ , the
momentum-thickness Reynolds number, and
the wall shear stress for different values of φ

φ θ Reθ τS

(mm) (Pa)

0◦ 0.1061 0 0

30◦ 0.1118 3.727 × 103 0.0261

90◦ 0.1897 1.265 × 104 0.0213

100◦ 0.2282 1.498 × 104 0.0088

103.11◦ 0.2440 2.376 × 104 0
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17.7 Aerofoil lift in subsonic flow

The force which arises as a consequence of fluid flow around an object immersed in the fluid
may be resolved into two components, one acting in the same direction as the approach
flow and the other orthogonal (or perpendicular) to it. The aligned component is referred
to as the drag force and the orthogonal component as the lift force. In Section 12.3 we
showed that in supersonic (compressible) gas flow around both an inclined flat plate and
around a diamond-shaped aerofoil changes in flow direction brought about by shockwaves
and expansion waves lead to differences in the static pressures acting on the wetted surfaces.
The lift and drag forces result from integrating these static pressures over these surfaces.
The lift forces which arise in incompressible fluid flow around an aerofoil are also

primarily a consequence of the static-pressure distribution acting on the aerofoil sur-
face but an essential aspect of the flow is the influence of viscosity: in incompressible
flow, in the absence of viscosity there is neither lift or drag. The pressure distribution also
contributes to the drag force but it is the surface shear stress associated with the viscous
boundary layer which normally dominates the drag and also has a direct influence on
the lift.
Figure 17.10 shows the cross sections of five profiles which produce lift and drag to varying

degrees depending upon the geometrical shape and the angle of attack, α. The direction of the
approach flow, termed the relative wind, is taken to be horizontal so that lift is a vertically
upward force165. In each case, a major feature is downward deflection of the flow by the aero-
foil. Since the approach flow has zero momentum in the vertical direction, and downward
momentum immediately downstream of the aerofoil, according to the linear momentum
equation (Section 9.2) the fluid has been subjected to a downward force. From Newton’s
third law, there must therefore be a force equal in magnitude but opposite in direction act-
ing on the aerofoil: the lift force. A drag force is associated with the reduction in momentum
in the approach-flow direction. To this lift-associated drag forcemust be added the drag due
to surface friction, termed profile drag.
Section (a) is a thin curved plate, much like a guidevane; section (b) is symmetrical about

a straight chord line; section (c) is similar to (b) but cambered, i.e. asymmetrical; section (d)
has the profile of a compressor blade such as we considered in Chapter 14; and section (e) is
typical of a gas-turbine blade. It should be evident that the profiles are not all drawn to the
same scale. At zero angle of attack the symmetrical section (b) will generate zero lift whereas
section (c) will generate lift for α = 0 due to its shape.
In Section 6.3 we pointed out that flow over a stationary aerofoil divides at a forward stag-

nation point located on its leading edge. On the upper (suction) surface the velocity in the
free stream (outside the boundary layer) increases from zero to a maximum, depending upon
the aerofoil shape, and then decreases again. From Bernoulli’s equation we conclude that the
static pressure initially decreases then increases. The streamwise pressure gradient is thus

165 Lift is defined as the component of aerodynamic force acting on a body which is perpendicular to the relative
wind.
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(a)

(b)

(c)

(d)

(e)

Figure 17.10 Lifting cross sections: (a) thin curved plate (b) inclined symmetrical aerofoil
(c) cambered aerofoil (d) compressor blade (e) gas-turbine blade

initially favourable and then adverse. As we have seen in this chapter, an adverse pressure
gradient can lead to boundary-layer separation. Separation on an aerofoil leads to a loss of
lift and ultimately stall. On the lower surface of the aerofoil there is again a static-pressure
decrease beyond the stagnation point but the static pressure remains relatively high compared
with the upper (suction) surface.
The motion of an inviscid fluid is a well-developed mathematical problem referred to as

potential-flow theory. Particularly for bluff bodies, potential-flow theory leads to flow patterns
which bear little resemblance to real flows due to the neglect of viscosity. Steady potential flow
around a body produces no force (i.e. no lift or drag) irrespective of body shape, a result known
as d’Alembert’s paradox. In the case of an aerofoil, potential-flow theory leads to flow patterns
similar to that shown in Figure 17.11(a). Particularly in the late 19th and early 20th centuries,
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(a)

(b)

Figure 17.11 Potential flow around an aerofoil: (a) with zero circulation (b) with circulation imposed
to satisfy the Kutta condition

considerable effort was made to adapt potential-flow theory in such a way that it could predict
the lift generated by an aerofoil. In 1902 the German mathematician Martin Wilhelm Kutta
introduced the idea of adding sufficient circulation Γ to potential flow around an aerofoil
to move the rear stagnation point to the trailing edge, the so-called Kutta condition. The
result is

L = ρVΓ (17.143)

where ρ is the fluid density, V the flowspeed, and L the lift force.
Aerofoil lift is usually specified in terms of a non-dimensional lift coefficient CL which varies

with angle of attack α and the chord-based Reynolds number ρVc/u. Typically, CL increases
linearly with α initially but, as the stall condition is approached, CL reaches a maximum and
falls thereafter (see Figure 1.6 in Chapter 1).
We conclude this section by mentioning a fundamentally erroneous, but often stated, ex-

planation for lift. Certain aerofoils have an asymmetric profile, such as sections (c) and (e) in
Figure 17.10 and that known as the Clark Y profile shown in Figure 17.12, and the distance
from the leading edge to the trailing edge is greater over the upper surface than over the lower
surface. The erroneous argument is that because the fluid has further travel over the upper sur-
face its velocity must be higher and, according to Bernoulli’s equation, the static pressure must
be lower. An underlying assumption is that two particles of fluid flowing over the aerofoil, one
over the upper surface and the other over the lower surface, must reach the trailing edge at the
same time, but there is no reason for this to be so. It is in any case a fact that all particles in
contact with the aerofoil’s surface are at rest relative to it (the no-slip condition), and so never
reach the trailing edge. It is also the case that some aerofoils (more generally lifting surfaces)
have a symmetrical profile but nevertheless generate lift. On geometric considerations alone,
the erroneous argument clearly fails for the thin curved plate in Figure 17.10(a) and is barely
plausible for the compressor blade in Figure 17.10(d).
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0.117 c

c
0.3 c

Figure 17.12 Clark Y aerofoil section, chord length c

The brief, essentially two-dimensional, discussion of aerofoil lift given here is greatly sim-
plified and takes no account of wingspan or wing planform, both of which are of major
significance. It should be clear that the principles outlined in this section are equally valid
if the aerofoil is ‘inverted’ to generate download (i.e. negative lift).

17.8 SUMMARY

This chapter started by introducing the concept of a boundary layer and the associated
boundary-layer approximations. The laminar boundary-layer equations were then derived
from the Navier-Stokes equations. The assumption of velocity-profile similarity was shown
to reduce the partial differential boundary-layer equations to ordinary differential equa-
tions. Next were discussed the numerical solutions to Blasius’ equation, for zero pressure
gradient, and the Falkner-Skan equation for wedge flows. von Kármán’s momentum integ-
ral equation was derived and used to obtain useful results for the zero pressure-gradient
boundary layer. Pohlhausen’s quartic-profile method was then discussed, followed by the
approximate method of Thwaites. The chapter concluded with a qualitative account of the
way in which aerodynamic lift is generated.

The student should

• understand the concept of the boundary layer: a thin, near-surface region, in which
viscosity plays a dominant role

• be able to state the boundary conditions to which the velocity profile is subject at
both the surface over which the boundary layer is developing and in the approach
to the free stream

• understand what is meant by entrainment
• understand what is meant by self-similarity of the boundary-layer velocity profiles
and the importance of similarity in reducing the boundary-layer equations to an
ordinary differential equation

• understand the significance of, and be able to state the definitions of, the displace-
ment δ∗ andmomentum-deficit θ thicknesses, the shape factorH, the skin-friction
coefficient cf /2, and the Reynolds numbers Rex and Reθ

• be able to perform calculations using the tabulated results for δ∗, θ ,H, and cf /2
calculated from the Falkner-Skan equation

• understand the derivation and significance of von Kármán’s momentum-integral
equation

• be able to solve flat-plate boundary-layer problems using a profile method
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• understand how the constants in Pohlhausen’s quartic velocity profile are arrived
at by satisfying a number of surface and free-stream boundary conditions

• understand how substitution of Pohlhausen’s velocity profile into the momentum-
integral equation leads to an ordinary differential equation for the calculation of
θ(x) if U∞(x) is specified together with θ(0)

• be able to apply Thwaites’ approximate formula to the solution of laminar
boundary-layer problems

• be able to give a qualitative physical explanation of the manner in which lift is
generated by an aerofoil moving steadily through an incompressible viscous fluid

17.9 SELF-ASSESSMENT PROBLEMS

17.1 Starting with the flat-plate boundary-layer equations

∂u
∂x + ∂v

∂y = 0

and

u∂u
∂x + v ∂u

∂y = ν ∂
2u
∂y2

,

show that these two partial differential equations can be reduced to the single
ordinary differential equation (Blasius’ equation)

F′′′ + FF′′ = 0

where

F =
∫ η
0

f dη, F′′ = df
dη

, F′′′ = d2f
dη2

, and η = y

√
U∞
νx .

All symbols have their usual meanings.

17.2 (a) The velocity profile within a flat-plate boundary layer may be approximated by
u = A sin

(
By
)
. Use the boundary conditions u(δ) = U∞, and ∂u/∂y

∣∣
δ
= 0, to

determine the constants A and B.

(b) Show that the momentum thickness for the profile of part (a) is given by

θ
δ
= 2
π

– 1
2 .

You will need to make use of the relation∫ φ
0

sin2 φdφ = 1
2 (φ – sinφ cosφ) .

Show also that

cf
2 = π2

ν
U∞δ

.

(c) Use the results of part (b) and the momentum-integral equation for a flat-plate
boundary layer
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dθ
dx

=
cf
2

to find a differential equation for δ. Solve the equation and then show that

cf
2
√
Rex = 0.328.

17.3 The boundary layer which develops over the leading edge of a wing can be as-
sumed to behave like a laminar wedge-flow boundary layer with m = 1 for which
F′′(0) = 1.233, (δ∗/x)

√
Rex = 0.648, and (θ /x)

√
Rex = 0.292, where δ∗ is the

displacement thickness, θ is the momentum thickness, x is the distance from the
stagnation point, Rex = U∞x/ν,U∞ is the free-stream velocity at distance x, ν is the
kinematic velocity of the fluid, and F′′(0) is the non-dimensional velocity gradient
at the surface, i.e.

F′′(0) =
√
νx
U3∞
∂u
∂y

∣∣∣∣
0
.

For a particular wing, the free-stream velocity gradient dU∞/dx = 750 m/s. Calcu-
late the shape factorH = δ∗/θ , the Reynolds number based uponU∞ and θ , and the
wall shear stress at x = 0.3 m. Show that the average shear stress over this distance is
half the final value. The fluid density can be taken as 1.2 kg/m3, and the kinematic
viscosity as 1.5 × 10–5m2/s.
(Answers: 2.22, 619, 35.3 Pa)

17.4 A laminar boundary layer develops on a flat plate along which the free-stream ve-
locity varies with distance x from the leading edge according to U∞ = U0

√
(1 – z),

where z = Cx/L, U0 is the free-stream velocity at x = 0, L is the length of the plate,
and C is a positive constant.
(a) Show that the free-stream velocity variation corresponds to a constant adverse
pressure gradient.

(b) Assuming that the momentum thickness θ = 0 at x = 0, use Thwaites’ equation

θ2 = 0.45ν
U6∞

∫ x

0
U5∞dx

to show that the variation of θ (x) is given by

θ = 3

√√√√ νL
70U0C

[(
U0
U∞

)6
– U∞

U0

]
.

(c) From the result of part (b), find an equation for λθ in terms of U0/U∞.

(d) Given that boundary-layer separation occurs for λθ = –0.09,, find the x-location
at which separation occurs (in terms of Cx/L).

(e) Calculate λθ for Cx/L = 0.1 and the corresponding value of the shear-stress
parameter T, using the formula

T = (0.09 + λθ )0.62 .

(Answers: (d) 0.2213, (e) –0.0287, 0.1771)



18 Turbulent flow

This chapter begins with a brief description of the qualitative character of turbulent flow.
This is followed by the decomposition of a turbulent flow into a mean and fluctuating parts,
and the derivation of the Reynolds-averaged Navier-Stokes (RANS) equations, the turbulent
kinetic-energy equation, and the equation for the transport of the so-called Reynolds stress,
which arises from the time averaging. These equations represent the foundation on which
turbulence modelling is based. Reduced forms of the RANS equations for two-dimensional
boundary-layer and Couette flows are then derived. The Law of the Wall is shown to res-
ult from dimensional considerations applied to plane Couette flow. Three separate zones are
identified: the viscous sublayer, the fully-turbulent log-law region, and the buffer layer which
separates the two. The Law of the Wake for the outer region of a turbulent boundary layer is
then presented. A brief discussion follows concerned with the wide spectrum of length, time,
and velocity scales, which are an important aspect of any turbulent flow. The log law is then ap-
plied to the analysis of turbulent flow through a smooth-walled pipe, followed by consideration
of the effect of surface roughness. The calculation of pressure loss in piping systems is presen-
ted, largely based on empirical loss coefficients for such components as elbows, tee junctions,
and area changes, together with the frictional pressure drop in long sections of pipe. Both the
log-law and power-law velocity distributions are used as a basis for the analysis of a flat-plate
turbulent boundary layer, and the results compared with empirical skin-friction formulae. The
flow over a circular cylinder in crossflow is discussed based upon the experimentally based
curve for the drag coefficient CD versus Reynolds number, Re. Values of CD are given for
cylinders of various cross section in crossflow and also for a number of three-dimensional
objects.

18.1 Transitional and turbulent flow

For any given shear flow166, as the Reynolds number is progressively increased, some regions
of the flowfield exhibit an unsteady (i.e. time-dependent) but still relatively orderly, essentially
laminar, state, while other zones increasingly show irregular, chaotic, fluctuations in velocity.
The latter is called turbulent flow, while the intermittent mix of quasi-laminar and turbulent
flow is termed transitional flow. The intermittency factor γ at a fixed point in a flow is the
fraction of time the flow there is turbulent, so that γ ranges from 0 to 1. As a consequence of

166 Any flow in which viscous or turbulent shear stresses play a key role is termed a shear flow. Examples include
duct flow, boundary-layer flow, free and wall jets, and wakes.
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the velocity differences and overall scales involved, most flows of industrial interest fall into
the turbulent-flow category.
It is generally accepted that any flow of a Newtonian fluid, whether laminar, transitional,

or turbulent, obeys the Navier-Stokes equations. Although turbulent flow is inherently un-
steady, a time average can be taken leading to a set of equations for the time-averaged motion.
As we show in Section 18.2, these equations closely resemble the laminar-flow equations
of Chapter 17 but include additional terms, the so-called Reynolds stresses, which arise as
a consequence of correlations between the fluctuations in the three velocity components,
u′, v ′, and w′. Accounting for these correlations is the central problem in the analysis of
time-averaged turbulent flows.
In principle the Navier-Stokes equations for the fluctuating motion can be converted to

finite-difference, finite-volume, or finite-element form (a process called discretisation) and
solved numerically, an approach known as direct numerical simulation (DNS). In the case
of a turbulent boundary layer, such a simulation has to account for all length scales, ranging
from the Kolmogorov length scale167 lκ to the boundary-layer thickness δ itself. Since a fluid
volume of length L, width W, and thickness δ contains WLδ/l3κ cells of side length lκ , this
is the number of cells which would have to be considered in a complete simulation. With
typical values L = W = 1 m, δ = 50 mm, and lκ = 50 μm, we find that this corresponds
to 1015 (or 1000 trillion) cells, which exceeds the capacity of present-day computers and it is
unlikely that DNS will be used for routine engineering calculations in the foreseeable future.
Computing power, measured in flop/s, has increased exponentially over the last six decades,
roughly according to flop/s ≈ e0.5�y, where �y is the number of years from 1938168 at which
we have set flop/s = 1. The fastest computer as of June 2015 is reported to have achieved close
to 34 petaflops, i.e. 1015 flop/s.

18.2 Reynolds decomposition, Reynolds averaging,
and Reynolds stresses

At any point within a turbulent flow, the three orthogonal components of the velocity, u, v,
and w, together with the static pressure p, fluctuate apparently randomly with time. In general,
it would be necessary to include the density in this list, but we shall limit consideration to
constant-density flows. These fluctuations are subject to a number of constraints and so cannot
be completely random: the continuity equation 15.7 for the flow of a constant-density fluid
shows that u, v, andw are not independent, while p is related to u, v, andw through the Navier-
Stokes equations 15.29 to 15.31.
Since DNS for practical engineering calculations is at best a prospect for the distant future,

it is probable that for the foreseeable future the method of analysing turbulent flow, suggested
by Osborne Reynolds in 1895, will be based upon separating all flow quantities into a mean (or
time-averaged) part and a fluctuating (time-dependent) part, the latter having an average value

167 The Kolmogorov length scale, together with other turbulence scales, is discussed in Section 18.4.
168 The year 1938 is a consequence of extrapolating to zero a linear fit to a graph of computing power (flop/s)

versus calendar year on log-linear coordinates.
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of zero. This is known as Reynolds decomposition. If we take the x-component of velocity u,
to illustrate this idea, we have

u = u + u′ (18.1)

where u is the time average169 of the fluctuating velocity u and u′ is the fluctuating part. The
time average is defined by

u = 1
T

∫ T

0
u dt (18.2)

where the time interval T over which the average is taken is long compared with the fluctuating
time scale. The overbar170 here and elsewhere signifies a time average. Substitution of u =
u + u′ into equation (18.2) leads immediately to u′ = 0. As we shall see shortly, when we
apply this type of averaging process to the Navier-Stokes equations, non-zero terms like u′2
and u′v ′ arise.
According to equation (15.7), for an incompressible flow the continuity equation is

∂u
∂x + ∂v

∂y + ∂w
∂z = 0 (18.3)

which we can now write as

∂
(
u + u′)
∂x +

∂
(
v + v ′)
∂y +

∂
(
w + w′)
∂z = 0. (18.4)

If we take the time average of equation (18.4), the three fluctuating terms average to zero and
we have

∂u
∂x + ∂v

∂y + ∂w
∂z = 0. (18.5)

If we subtract equation (18.5) from equation (18.4) we find

∂u′
∂x + ∂v

′
∂y + ∂w

′
∂z = 0 (18.6)

and we see that the mean and fluctuating parts of the instantaneous velocity components
separately satisfy an equation of continuity.
From Subsection 15.1.6 the three components of the Navier-Stokes equations for the flow of

a constant- and uniform-property fluid in the absence of body forces are:
x-component

ρDuDt = ρ
[
∂u
∂t + ∂u

2

∂x + ∂(uv)
∂y + ∂(uw)

∂z

]
= –
∂p
∂x + μ

(
∂2u
∂x2

+ ∂
2u
∂y2

+ ∂
2u
∂z2

)
(18.7)

169 To avoid confusion, we shall assume that u is independent of time. However, just as we can have an unsteady
laminar flow, we can also have a turbulent flow for which u varies with time at a frequency much lower than is typical
of the turbulent fluctuations.

170 Angle brackets are sometimes used instead of an overbar to denote a time average, i.e. u = u.
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y-component

ρDvDt = ρ
[
∂v
∂t + ∂(vu)

∂x + ∂v
2

∂y + ∂(vw)
∂z

]
= –
∂p
∂y + μ

(
∂2v
∂x2

+ ∂
2v
∂y2

+ ∂
2v
∂z2

)
(18.8)

z-component

ρDwDt = ρ
[
∂w
∂t + ∂(wu)

∂x + ∂(wv)
∂y + ∂w

2

∂z

]
= –
∂p
∂z + μ

(
∂2w
∂x2

+ ∂
2w
∂y2

+ ∂
2w
∂z2

)
. (18.9)

In each of these equations we have replaced terms like v∂u/∂y by ∂ (uv) /∂y –u∂v/∂y and used
the continuity equation to eliminate ∂v/∂y171.
If we now take the time averages of these three equations we have, for a flow which is steady

on average

ρ

[
∂u2
∂x + ∂(uv)

∂y + ∂(uw)
∂z

]
= –
∂p
∂x + μ

(
∂2u
∂x2

+ ∂
2u
∂y2

+ ∂
2u
∂z2

)
(18.10)

ρ

[
∂(vu)
∂x + ∂v

2

∂y + ∂(vw)
∂z

]
= –
∂p
∂y + μ

(
∂2v
∂x2

+ ∂
2v
∂y2

+ ∂
2v
∂z2

)
(18.11)

ρ

[
∂(wu)
∂x + ∂(wv)

∂y + ∂w
2

∂z

]
= –
∂p
∂z + μ

(
∂2w
∂x2

+ ∂
2w
∂y2

+ ∂
2w
∂z2

)
. (18.12)

It should now be clear that the difference between the Navier-Stokes equations for a steady
laminar flow and for a time-mean-steady turbulent flow arises from the non-linear advective
terms on the left-hand side of each of the last three equations.
If we now introduce u = u + u′, v = v + v ′, and w = w + w′, we have

u2 = u2 + u′u′, uv = u v + u′v ′, and uw = uw + u′w′, etc. (18.13)

In arriving at these identities we have made use of the fact that u′u = u′u = 0, v ′v = v ′v = 0,
etc.
Equation (18.10) may now be written as

ρ

[
∂
∂x

(
u2 + u′u′

)
+ ∂
∂y

(
u v + u′v ′

)
+ ∂
∂z

(
uw + u′w′

)]
= –
∂p
∂x + μ

(
∂2u
∂x2

+ ∂
2u
∂y2

+ ∂
2u
∂z2

)

which simplifies to

ρ

(
u∂u
∂x + v ∂u

∂y + w∂u
∂z

)
= –
∂p
∂x + ∂

∂x

(
μ∂u
∂x –

[
ρu′u′

])
+ ∂
∂y

(
μ∂u
∂y –

[
ρu′v ′

])

+ ∂
∂z

(
μ∂u
∂z –

[
ρu′w′

])
(18.14)

equation (18.11) may be written as

ρ

[
∂
∂x

(
v u + v ′u′

)
+ ∂
∂y

(
v2 + v ′v ′

)
+ ∂
∂z

(
vw + v ′w′

)]
= –
∂p
∂y + μ

(
∂2v
∂x2

+ ∂
2v
∂y2

+ ∂
2v
∂z2

)

171 This part of the analysis is the subject of Self-assessment problem 18.1.
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which simplifies to

ρ

(
u∂v
∂x + v ∂v

∂y + w∂v
∂z

)
= –
∂p
∂y + ∂

∂x

(
μ∂v
∂x –

[
ρv ′u′

])
+ ∂
∂y

(
μ∂v
∂y –

[
ρv ′v ′

])

+ ∂
∂z

(
μ∂v
∂z –

[
ρv ′w′

])
(18.15)

and equation (18.12) may be written as

ρ

[
∂
∂x

(
wu + w′u′

)
+ ∂
∂y

(
wv + w′v ′

)
+ ∂
∂z

(
w2 + w′w′

)]
= –
∂p
∂z + μ

(
∂2w
∂x2

+ ∂
2w
∂y2

+ ∂
2w
∂z2

)

which simplifies to

ρ

(
u∂w
∂x + v ∂w

∂y + w∂w
∂z

)
= –
∂p
∂z + ∂

∂x

(
μ∂w
∂x –

[
ρw′u′

])
+ ∂
∂y

(
μ∂w
∂y –

[
ρw′v ′

])

+ ∂
∂z

(
μ∂w
∂z –

[
ρw′w′

])
. (18.16)

Equations (18.14), (18.15), and (18.16) are known as the Reynolds-averaged Navier-Stokes
(or RANS) equations. It is the terms in square brackets in these equations which distinguish
them from their laminar-flow counterparts. In fact, if the velocity fluctuations are zero, the
RANS equations reduce to those for steady, constant-property, laminar flow. From now on
we shall write u′u′, v ′v ′, and w′w′ as u′2, v ′2, and w′2, respectively. These additional terms,
usually shifted to appear on the right-hand sides of the time-averaged Navier-Stokes equations,
by comparison with the viscous normal and shear stresses, may be interpreted physically as
stresses: ρu′2, ρv ′2, and ρw′2 as pressure-like normal stresses, and ρu′v ′, ρv ′w′, and ρw′u′ as
shear stresses. The six stresses are known as the Reynolds stresses172 or apparent stresses.
Each of the shear stresses arises from the correlation of two orthogonal components of the
velocity fluctuation at a given point, a non-zero value of the correlation indicating that the two
components are not independent. If the correlation is negative, then the two components are
opposite in sign over most of the averaging period.

18.3 Turbulent-kinetic-energy equation
and Reynolds-stress equation

At any point in a turbulent flow, half the sum of the three normal stresses represents the
specific turbulent kinetic energy173 k, of the fluctuating velocity components

k = 1
2

(
u′2 + v ′2 + w′2

)
. (18.17)

Since it is often the case that there is a principal flow direction, for example the x-direction, it
is common to take the value of u′2 as a measure of the turbulence intensity. Other measures

172 The quantities u′2, v ′2, w′2, u′v ′, v ′w′, and w′u′ are also often referred to as the Reynolds stresses but, in the
absence of the density ρ, the term kinematic Reynolds stresses is more appropriate.

173 The specific turbulent kinetic energy is the turbulent kinetic energy per unit mass.
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in use include
√
u′2/u,

√
u′2/U∞„

√
k/u, and

√
k/U∞. The normalising velocity, u or U∞, is

measured at the same location as u′.
In addition to the RANS equations, further exact equations can be derived from the Navier-

Stokes equations. For example, for a steady, two-dimensional, constant-property, turbulent
boundary layer, neglecting viscous terms other than the dissipation, we have the turbulent-
kinetic-energy equation

u∂k
∂x + v ∂k

∂y = – ∂
∂y

[
v ′
(
1
2k +

p′
ρ

)]
+
(
ν ∂u
∂y – u′v ′

)
∂u
∂y – ε (18.18)

I II III IV
where ε is the average turbulent-kinetic-energy dissipation rate174 given by

ε = ν

[
2
(
∂u′
∂x

)2
+ 2
(
∂v ′
∂y

)2
+ 2
(
∂w′
∂z

)2
+
(
∂u′
∂y + ∂v

′
∂x

)2

+
(
∂u′
∂z + ∂w

′
∂x

)2
+
(
∂v ′
∂z + ∂w

′
∂y

)2]
. (18.19)

The combination ρ
(
ν∂u/∂y – u′v ′

)
is the combined viscous-plus-turbulent time-average

shear stress τ and, apart from the region close to a solid boundary, it is usually the case that
–u′v ′ � ν∂u/∂y. In addition to ε, the turbulent kinetic-energy equation has introduced two
further turbulence correlations: v ′k and v ′p′.
The terms in equation (18.18) can be interpreted as follows

I. Transport of k through advection by the mean flow
II. Transport of k by velocity fluctuations (turbulent diffusion)
III. Transport of k by pressure fluctuations
IV. Rate of production of k by interaction of the shear stress and the mean-velocity gradient

It should be noted that dissipation of kinetic energy also occurs due to the velocity gradients
of the time-mean motion (so-called direct dissipation).
Another equation commonly considered in two-dimensional turbulent boundary-layer

analysis is the Reynolds-stress equation

u
∂
(
–u′v ′

)
∂x + v

∂
(
–u′v ′

)
∂y = v ′2 ∂u

∂y –
p′
ρ

(
∂u′
∂y + ∂v

′
∂x

)
+ ∂
∂y

(
u′v ′2 + p′u′

ρ

)

+ ν
∂2
(
–u′v ′)
∂y2

+ 2ν ∂u
′
∂y
∂v ′
∂x (18.20)

which has again introduced further terms.
The turbulent kinetic-energy equation, the Reynolds-stress equation, and other equations

derived from or based on the RANS equations are the foundations for themethodology termed
turbulence modelling, which we discuss briefly in Section 18.5.

174 The symbol ε represents the lower-case Greek letter epsilon. Epsilon is also represented by ε, which we use for
surface-roughness height (see Section 18.9).
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18.4 Turbulence scales

So far we have made little mention of the structure of a turbulent flow. It is observed exper-
imentally that clumps (or packets) of fluid particles, called eddies, form, interact, break up,
and reform throughout a turbulent flow. The length scale (i.e. size) of these eddies varies from
the overall scale of the flow down to amicroscale, much larger than themolecular mean free
path, so that the continuum hypothesis still applies (already implied in assuming that the
Navier-Stokes equations apply), where viscosity dominates and turbulent kinetic energy is dis-
sipated into heat. Most of the kinetic energy of a turbulent flow is contained in the integral
length scales, which are the largest scales in an energy spectrum, i.e. the distribution of kin-
etic energy according to length scale or frequency. The largest scales correspond to the lowest
frequency, and vice versa. The kinetic energy in a turbulent flow passes progressively from the
largest energy-bearing eddies to the smallest dissipative eddies in what is termed the energy
cascade. It should be evident that, because there are fluctuations in velocity and a wide dis-
tribution of length scales, mixing within a turbulent flow is much stronger than in a laminar
flow. The practical consequence is enhanced surface shear stress and, where a surface is heated
or cooled, higher rates of heat transfer than in a laminar flow.
The smallest length scale at which turbulence can exist in a flow is the Kolmogorov length

scale lK , defined in terms of the kinematic viscosity of the fluid ν and the rate of dissipation of
turbulent kinetic energy per unit mass ε

lK =
(
ν3

ε

)1/4
. (18.21)

This combination of ν and ε is arrived at on dimensional grounds since [ν] = L2/T, and
[ε] = L2/T3. The Kolmogorov time and velocity scales, τK and vK , are similarly defined

τK =
(
ν
ε

)1/2
(18.22)

and

vK = (νε)1/4 . (18.23)

An inevitable consequence of these definitions is that the Reynolds number vKlK/ν = 1, indic-
ating that the small-scale motion is quite viscous. In numerical simulations of turbulent flows,
the smallest scale that has to be resolved is usually taken to be of the same order of magnitude
as the Kolmogorov length scale.
At any point in a turbulent flow, fluctuations in velocity and pressure contain energy across

a wide range of frequencies f . According to equation (18.17), the turbulent kinetic energy per
unit mass is k

k = 1
2

(
u′2 + v ′2 + w′2

)
(18.17)

and, if the kinetic energy in the frequency range f to f + δf is E
(
f
)
, then

k =
∫ ∞

0
E
(
f
)
df . (18.24)
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Rather than frequency, it is usual here to introduce the idea of a wavenumber κ , where

κ =
2π f
v = 2π

λ
(18.25)

and λ = v/f is the wavelength, v being the instantaneous velocity at the point of measurement.
Equation (18.24) is then written as

k =
∫ ∞

0
E(κ) dκ (18.26)

and the quantity E(k) is called the energy spectral density, or energy spectrum function.
The so-called inertial subrange corresponds with the non-dissipative Taylor microscales,

which are intermediate between the largest and smallest scales. Within the inertial subrange
Kolmogorov argued that a range of scales exists within which E (κ) is dependent upon the
dissipation rate ε and wavenumber κ but independent of viscosity so that

E(κ) = F(ε, κ) . (18.27)

It follows from dimensional analysis that

E = CKε
2/3κ–5/3 (18.28)

where CK is the Kolmogorov constant. The inertial subrange covers the wavenumber range
1/l � κ � 1/lK , where l is a measure of the largest scale, such as the integral length scale.
If it is assumed, as is reasonable, that the turbulence dissipation rate ε is determined by the

specific turbulent kinetic energy k and the integral length scale l, then dimensional analysis
leads to

ε ∼ k3/2
l
. (18.29)

For Couette flow, the convective terms on the left-hand side of the turbulent kinetic-energy
equation (18.18) are zero, and u is independent of x, so we have

– ∂
∂y

[
v ′
(
1
2k +

p′
ρ

)]
+
(
ν ∂u
∂y – u′v ′

)
du
dy

– ε = 0. (18.30)

It can be shown that the term involving v ′k and v ′p′ is negligible compared with the production
and dissipation terms, so that equation (18.30) reduces to

ε = –u′v ′ du
dy

(18.31)

where we have neglected the viscous shear stress compared with the Reynolds shear stress.
In Subsection 18.7.2 we show that, for the near-wall region, if –ρu′v ′ = τS, then

y
uτ

du
dy

= 1
k

(18.50)

so that from equation (18.31)

ε =
u3τ
κy (18.32)

and we have a good estimate for ε in the log-law region.
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From the definitions of the Kolmogorov scales (equations (18.21) to (18.23)) we then have

uτ lk
ν

=
(
κy+
)1/4 (18.33)

u2τ τK
ν

=
(
κy+
)1/2 (18.34)

and

vK
uτ

= 1(
κy+
)1/4 . (18.35)

In Illustrative Example 18.2 we calculate values for the Kolmogorov scales for a specified pipe
flow.

18.5 Turbulence modelling

Unfortunately, it is unlikely that physically exact equations will ever be established which take
into account the entire range of length and time scales which we have just identified and which
link the six Reynolds stresses, and correlations such as p′u′, u′v ′2, etc., to u, v, w, p, and their
spatial gradients. Apart from research into DNS and the closely related large-eddy simulation
(LES), which avoids the need to establish such links, research hitherto has concentrated on a
semi-empirical methodology in which the physics of turbulent flow is approximated by partial
differential equations for the specific turbulent kinetic energy k, the rate of turbulent dissipa-
tion ε, the Reynolds stresses u′v ′, u′2, v ′2, etc., and various length scales with approximations
for the correlations between u′, v ′, w′, p′, and their gradients. Devising these approximations
has become known as turbulence modelling.
For the foreseeable future, DNS and LES are likely to remain research topics providing

results used to guide the development of, and against which to test the predictions of, tur-
bulence modelling, particularly where experimental data are unavailable. Depending upon the
complexity involved and level of accuracy required, engineering applications will rely upon
software based upon empirical correlations and turbulence modelling of varying levels of
sophistication.
Probably the earliest example of turbulence modelling was Prandtl’s mixing-length hy-

pothesis based upon the idea that the large-scale random movements of fluid elements in
turbulent motion are analogous to the small-scale random motion of molecules in a gas (kin-
etic theory). From this beginning, with time the following hierarchy of turbulence models has
evolved

• zero equation model, such as the mixing-length or eddy-viscosity model
• two-equation model, in which time-averaged equations are solved for the specific
turbulent-kinetic energy k and the turbulent-kinetic-energy dissipation rate ε

• Reynolds-stress equation model
• algebraic-stress model

A detailed presentation and discussion of turbulence modelling is beyond the scope of this
text and from the foregoing the impression could be gained that little progress has been made



PLANE TURBULENT COUETTE FLOW AND THE LAW OF THE WALL 499

in devising relatively simple ways to analyse turbulent flows of practical interest. In fact much
of what was learned throughout the 20th century, based upon simplifications, dimensional
analysis, empiricism, and integral methods, forms the basis of current engineering practice
and to a large extent is incorporated into turbulence modelling. Some of the ideas involved are
discussed in the remainder of this chapter.

18.6 Two-dimensional turbulent boundary layers
and Couette flow

Although velocity fluctuations in a turbulent flow always occur in the three orthogonal direc-
tions, there are many practical situations, just as for laminar flow, where there is no variation
of time-averaged quantities in the third direction (usually taken as the z-direction). If in addi-
tion we introduce the boundary-layer approximations outlined in Chapter 17, the counterpart
to equation (17.4) for a turbulent boundary layer is

u∂u
∂x + v ∂u

∂y = – 1
ρ

dp
dx

+ 1
ρ
∂
∂y

(
μ∂u
∂y – ρu′v ′

)
. (18.36)

Even though the Reynolds shear stress ρu′v ′ is the only term remaining from the Reynolds
decomposition and time averaging, except in the near-vicinity of a wall, it is usually several or-
ders of magnitude greater than the viscous shear stress,μ∂u/∂y, and so has to be accounted for.
Just as for laminar flow, we can consider fully-developed turbulent flow through a cylindrical
channel, for which equation (18.36) reduces to

0 = – 1
ρ

dp
dx

+ 1
ρ
∂
∂y

(
μdu
dy

– ρu′v ′
)
. (18.37)

A further simplification occurs for Couette flow which, as we saw in Section 16.4, is the fully-
developed, shear-driven flow between two parallel surfaces where one is moving tangentially
with respect to the other. Within such an idealised flow the shear stress is constant (giving rise
to the term constant-stress layer) so that, if the flow is turbulent, the mean (i.e. time-averaged)
shear stress τ is given by

τ = μdu
dy

– ρu′v ′ = constant = τ S (18.38)

where τ S is the mean wall shear stress and y is the distance from the stationary surface.
The boundary conditions for equations (18.36), (18.37), and (18.38) are the same as those

for laminar flow.

18.7 Plane turbulent Couette flow and the Law of theWall

As we have just seen, for plane turbulent Couette flow the RANS equations reduce to

τ = μdu
dy

– ρu′v ′ = constant = τ S. (18.39)
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Equation (18.39) cannot simply be integrated to give the mean-velocity profile u
(
y
)
because

the dependence of the Reynolds shear stress –u′v ′ on other flow properties is unknown.
We shall return to equation (18.39) shortly but for the time being we introduce the

assumption that u depends upon y, τ S, and the fluid properties ρ and μ, i.e.

u = f
(
y, τ S, ρ,μ

)
, (18.40)

an assumption which can reasonably be applied to the near-wall region of any turbulent shear
flow over a smooth surface, i.e. to boundary layers and channel flows. Dimensional analysis
leads to

u
uτ

= f
(
uτ y
ν

)
(18.41)

where uτ =
√
τ S/ρ has the units of velocity and is termed the friction velocity (orwall-friction

velocity)175. Equation (18.41), first postulated by Prandtl, is known as the Law of the Wall, or
universal velocity distribution, and written as

u+ = f
(
y+
)

(18.42)

where

u+ ≡ u
uτ

and y+ ≡ uτ y
ν

(18.43)

are the so-called wall variables176. It is seen that y+ can be regarded as a turbulence Reynolds
number and that ν/uτ is a viscous length scale. The Law of the Wall is usually regarded as
comprising three parts: a viscous sublayer, a buffer layer, and a fully-turbulent region.

18.7.1 Viscous sublayer

From the boundary conditions at a solid surface it must be that u′ = 0 (the no-slip condition)
and v ′ = 0 (impermeable surface) so that in the immediate vicinity of a solid surface both u′
and v ′ decrease and μdu/dy � ρu′v ′. Equation (18.39) thus reduces to

du
dy

= τ S
μ

(18.44)

which integrates to give

u =
τ Sy
μ

(18.45)

or, in wall variables,

u+ = y+. (18.46)

The region where equation (18.46) is valid is termed the viscous (or linear) sublayer177 and
taken to have a thickness δSUB given by

175 The symbol u∗ is also used to represent the friction velocity and spoken as ‘ustar’.
176 u+ and y+ are spoken as ‘uplus’ and ‘yplus’, respectively.
177 Although the turbulence intensity is small, the flow within the viscous sublayer is not purely laminar, and the

term laminar sublayer is to be avoided.
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uτ δSUB
ν

= δ+SUB = 5. (18.47)

18.7.2 Fully-turbulent layer and the log law

Beyond the viscous sublayer, y+ > 30, say, it is argued that direct viscous effects on the
turbulent structure and the influence of viscosity on the mean flow is negligible so that the
mean-velocity gradient is dependent only upon y, ρ, and τ S, i.e.

du
dy

= f
(
y, ρ, τ S

)
(18.48)

or, if we introduce uτ ,

du
dy

= f
(
y, uτ
)
. (18.49)

The only dimensionally acceptable form of equation (18.49) is

y
uτ

du
dy

= 1
κ

(18.50)

or

y+ du
+

dy+
= 1
κ

(18.51)

where κ is a constant, known as von Kármán’s constant.
Equation (18.51) can be integrated to give

u+ = 1
κ
ln y+ + B (18.52)

where B is also a universal constant. The velocity distribution represented by equation (18.52)
is known as the log law and has been confirmed experimentally with the values178 κ = 0.4, and
B = 5.5.
An approximate indication of the sublayer thickness, δSUB, results from determining the

value of y+ at which the sublayer profile, represented by equation (18.46), has the same value
of u+ as given by the log law. The result is

uτ δSUB
ν

= δ+SUB = 11. (18.53)

This value is obviously much greater than δ+SUB = 5 given by equation (18.47) and which
represents the wall distance at which the velocity distribution begins to depart from u+ = y+.
Although the log law was arrived at primarily using dimensional arguments, it can also

be deduced using primitive turbulence modelling. In equation (18.36), the momentum equa-
tion for a two-dimensional, turbulent boundary layer, the only additional term, compared
with equation (17.4) for a laminar boundary layer, is the Reynolds shear stress τT = –ρu′v ′.
A natural first step in attempting to account for –ρu′v ′, first made by Boussinesq in 1877

178 Slightly different values are sometimes quoted: κ = 0.41, and B = 5.0, and there is evidence that κ and B are
weakly dependent upon Reynolds number.
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(two decades before Reynolds introduced the idea of time averaging), was to assume that this
quantity behaved in an analogous way to that for molecular shear, i.e.

τT = –ρu′v ′ = μT ∂u∂y , (18.54)

which defines the quantity μT known as the eddy viscosity.
As we stated in Section 18.5, the earliest example of turbulence modelling was probably

Prandtl’s suggestion that, by analogy with the small-scale random motion of molecules in a
gas (kinetic theory), the large-scale random movements of fluid elements (i.e. the eddies) in
turbulent motion leads to a transverse exchange of momentum. If this exchange occurs over
an average distance lM , which has become known as themixing length, then

μT = ρl2M
∣∣∣∣∂u∂y
∣∣∣∣ . (18.55)

One way of quantifying Prandtl’s idea is to assume that the root-mean-square values of u′ and
v ′ are approximated by√

u′2 ≈
√
v ′2 ≈ lM ∂u∂y (18.56)

so that

–u′v ′ ≈
√
u′2
√
v ′2 ≈ l2M ∂u

∂y

∣∣∣∣∂u∂y
∣∣∣∣ = νT

∣∣∣∣∂u∂y
∣∣∣∣ . (18.57)

Themodulus sign has been introduced to ensure that the Reynolds shear stress and the velocity
gradient have the same sign. In practice, it is found that, for turbulent flows in which the mean
velocity is asymmetric about a maximum, there is a small region where –u′v ′ and ∂u/∂y are
opposite in sign, but this is of little consequence. By analogy with ν, the quantity νT is termed
the kinematic eddy viscosity.
In the vicinity of a solid surface over which there is turbulent flow, it is reasonable to assume

that lM is proportional to y, i.e.

lM = κy (18.58)

where, at this stage, κ is simply a constant although equation (18.60) below shows that it can
be identified as von Kármán’s constant, introduced above.
If we substitute for lM from equation (18.58) in equation (18.57), and assume that

–ρu′v ′ = τ S, then we have

κy∂u
∂y =

√
τ S
ρ

= uτ (18.59)

which can be rewritten as

y+ du
+

dy+
= 1
κ

(18.60)

which is identical to equation (18.51) and so again leads to the log-law velocity distribution,
equation (18.52).
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18.7.3 Buffer layer

There is no simple theory covering the near-wall range 5 < y+ < 30, which is intermediate
between the viscous sublayer and the log-law region, often called the buffer layer. A formula
suggested by Spalding (1961), which has equation (18.46) as the asymptote for y+ → 0, and
which asymptotes to equation (18.52) at large y+ is

y+ = u+ + e–κB
[
eκu

+
– 1 – κu+ – 1

2
(
κu+
)2 – 1

6
(
κu+
)3] . (18.61)

The negative terms within square brackets can be regarded as correction terms, which are
subtracted from the log-law equation in the form

y+ = e–κBeκu
+
= e–κB

[
1 + κu+ + 1

2
(
κu+
)2 + 1

6
(
κu+
)3 + 1

24
(
κu+
)4 + . . .] . (18.62)

Equations (18.46), (18.52), and (18.61) are all plotted on semi-logarithmic coordinates in Fig-
ure 18.1, together with a power-law equation withA= 8.75, andm= 7 (see Subsection 18.13.3).
Spalding’s formula has been shown to be an accurate fit to measured velocity distributions for
pipe-flow data. The discrepancy between the power-law equation and the log law for y+ < 100
is exaggerated by the logarithmic scale for the abscissa.
Van Driest (1956) suggested that, to account for the viscous sublayer, equation (18.58) for

the mixing length should be modified by a so-called damping factor

lM = κy
(
1 – e–y

+/C
)

(18.63)

where the empirical constant C is usually given the value 26 if the streamwise pressure
gradient is zero. If equation (18.63) is substituted in equation (18.57), numerical integra-
tion, for a constant-stress layer, results in a velocity distribution close to that corresponding

25

u+

u+ = y+

y+

Spalding’s formula

20

15

10

5

0
1 10 102 103

u+= A ( y+) 1 / n

u+=    ln y+ +B1
𝜅

Figure 18.1 Distributions of mean velocity for near-wall turbulent flow
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with Spalding’s equation (18.61) but has the advantage that, if C is appropriately modified,
pressure-gradient and other effects, such as transpiration, can be incorporated.

18.7.4 Outer layer and the Law of theWake

Coles (1956) observed that, as the free stream is approached, experimentally determined
velocity profiles within a turbulent boundary layer increasingly depart from the log law, par-
ticularly if there is an adverse pressure gradient, i.e. static pressure increasing with streamwise
distance along the surface over which the boundary layer is developing. He showed that a good
fit to the data is given by a composite in which a so-called wake function179 f (η) is added to
the log law

u+ = 1
κ
ln y+ + B + 2Π

κ
f (η) (18.64)

where thewake-strength parameterΠ increases in an adverse pressure gradient. The variable
η = y/δ, δ being the boundary-layer thickness, and the wake function f (η) has a sigmoidal form
normalised such that f (0) = 0 and f (1) = 1. A simple equation which adequately represents
the wake function is180

f (η) = 3η2 – 2η3. (18.65)

The ratios between δ and the integral parameters displacement thickness δ∗ (equation
((17.44)) and momentum-deficit thickness θ (equation (17.61)) were defined in Section 17.3.
These ratios, evaluated using equation (18.64) combined with equation (18.65), are given by

δ∗
δ

= (1 +Π)
κ

√
cf
2 (18.66)

and

θ
δ
= δ

∗
δ

– F(Π)
κ2

cf
2 (18.67)

where

F(Π) = 52
35Π

2 + 19
6 Π + 2 (18.68)

and cf is the skin-friction coefficient defined by

cf =
τS

1
2ρU

2∞
. (18.69)

The shape factor H then follows as

1
H = θ

δ∗ = 1 – F(Π)
(1 +Π) κ

√
cf
2 (18.70)

179 Coles used the term ‘wake’ because the shape of the function f (η) resembles the velocity-defect distribution in
a turbulent wake.

180 Another equation for the wake function which is a good fit to the data is f (η) = sin2 (πη/2) but the cubic form
has the advantage that the algebra involved in determining such quantities as δ∗ and θ is appreciably simpler.
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which confirms, as was the case for a laminar boundary layer, thatH > 1. What is also sugges-
ted by equation (18.70) is that, given the dependence on the skin-friction coefficient,H will be
Reynolds-number dependent.
Another important result, independent of the form of the wake function, is a consequence

of evaluating equation (18.64) at the edge of the boundary layer, y = δ, where u = U∞√
2
cf

= 1
κ
ln

⎛
⎝U∞δ
ν

√
cf
2

⎞
⎠ + B + 2Π

κ
(18.71)

wherein we have made use of the identities

U+∞ =

√
2
cf

and δ+ = uτ δ
ν

= U∞δ
ν

√
cf
2 . (18.72)

For boundary layers subjected to an adverse pressure gradient, experimental measurements
increasingly depart from the log law as the pressure-gradient parameter181

λ = δ
τ S

dp
dx

(18.73)

is increased (λ > 10 corresponds with a strong adverse pressure gradient). For weak favourable
pressure gradients (λ < 0) the wake strength is low so that the log-law equation, equation
(18.52), applies throughout the near-wall region, i.e. for a boundary layer this means for y ≤ δ,
while for pipe flow y ≤ R.

ILLUSTRATIVE EXAMPLE 18.1

Use equation (18.64) with the wake function given by equation (18.65) to show that the ratio
of the displacement thickness δ∗ to the boundary-layer thickness δ for a turbulent boundary
layer is given by

δ∗
δ

= (1 +Π)
κ

√
cf
2

where cf /2 is the local skin-friction coefficient andΠ is the wake-strength parameter.

Solution

The definition of the displacement thickness is

δ∗ =
∫ δ
0

(
1 – u

U∞

)
dy.

The mean velocity is approximated by

u+ = 1
κ
ln y+ + B + 2Π

κ
f (η)

181 Note that the pressure gradient λ defined here is different from those defined for both Poiseuille flow λP ,
equation (16.52), and a laminar boundary layer, equation (17.97).
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where the wake function is given by

f (η) = 3η2 – 2η3.

If we substitute for u in the definition of δ∗ we have

δ∗ = δ – ν

uτU+∞

∫ δ+
0

(
1
κ
ln y+ + B

)
dy+ – 2Πδ

κU+∞

∫ 1

0

(
3η2 – 2η3

)
dη

= δ – ν

uτU+∞

(
δ+

κ
ln δ+ – δ

+

κ
+ Bδ+

)
– Πδ
κU+∞

= (Π + 1) δ
κU+∞

= (Π + 1) δ
κ

√
cf
2 .

18.8 Fully-developed turbulent flow through a smooth
circular pipe

For fully-developed turbulent flow through a smooth circular pipe, velocity-profile measure-
ments show that the wake strength Π is small so that equation (18.64) with Π = 0, i.e. the
log-law equation, equation (18.52), is a good approximation to the mean-velocity distribution

u+ = 1
κ
ln y+ + B.

We can use this equation to calculate a bulk-average (or spatial average) velocity V for fully-
developed flow through a pipe of radius R (diameter D) through

Q̇ = πR2V =
∫ R

0
u2πrdr (18.74)

where Q̇ is the volumetric flowrate and r is the radial distance from the pipe centreline. It
should be noted that we have neglected not only the wake component of the velocity distribu-
tion but also the contribution of the viscous sublayer. The latter approximation is increasingly
valid as the pipe Reynolds number increases (see Self-assessment problem 18.2).
Since r = R – y, where y is the distance from the pipe wall, equation (18.74) leads to

1
2VR

2 = R
∫ R

0
udy –

∫ R

0
u ydy

which can be transformed into

uτVR2

2ν2
= R+

∫ R+

0
u+dy+ –

∫ R+

0
u+y+dy+. (18.75)

If we substitute for u+ from equation (18.52), we find, after simplification,

V+ = 1
κ
ln R+ + B – 3

2κ (18.76)

where V+ = V/uτ .
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If we define a friction factor fF as in Section 16.2 (the Fanning friction factor, equation
(16.16)), i.e.

fF
2 = τS

ρV2 =
(
uτ
V

)2
(18.77)

then equation (18.76) leads to√
2
fF

= 1
κ
ln

⎛
⎝1
2

√
fF
2 ReD

⎞
⎠ + B – 3

2κ (18.78)

where ReD is the Reynolds number based upon V and D.
This is quite a remarkable result—a friction-factor equation which we have arrived at

without direct reference to the equations of motion. With κ = 0.41, and B = 5.0, equation
(18.78) gives√

2
fF

= 2.439 ln

⎛
⎝
√
fF
2 ReD

⎞
⎠ – 0.349

which is very close to a correlation, valid for ReD > 4× 103, based upon experimental data182√
2
fF

= 2.457 ln

⎛
⎝
√
fF
2 ReD

⎞
⎠ + 0.292. (18.79)

ILLUSTRATIVE EXAMPLE 18.2

Air at 25 ◦C flows through a smooth-walled circular pipe 100 mm in diameter at a bulk
velocity of 70 m/s. Calculate the Kolmogorov scales 0.5 mm from the pipe wall, assuming
fully-developed turbulent flow. Use the Kármán-Nikuradse formula to calculate the friction
factor.

Solution

D = 0.1 m, V = 70 m/s, ρ = 1.184 kg/m3, μ = 1.85 × 10–5 Pa · s, and y = 5 × 10–4 m.
The Reynolds number ReD = 1.184 × 70 × 0.1/

(
1.85 × 10–5

)
= 4.48 × 105, which confirms

that the flow is turbulent (i.e. ReD > 4 × 103).
The Kármán-Nikuradse formula is√

2
fF

= 2.457 ln

⎛
⎝
√
fF
2 ReD

⎞
⎠ + 0.292

from which the Fanning friction factor fF/2 = 1.678 × 10–3.
The surface shear stress is then τS = ρV2fF/2 = 9.734 Pa so that the friction velocity uτ =√
τS/ρ = 2.867 m/s.

The distance from the surface y in wall units is y+ = ρuτ y/μ = 91.75.

182 Equation (18.79) is known as the Kármán-Nikuradse equation, although according to White (2005) it was
originally suggested by Prandtl in 1935. It is sometimes stated in terms of log-base 10 and the Darcy friction factor
( fD = 8fF/2) (see Self-assessment problem 18.9).
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The Kolmogorov scales are then calculated as follows
from equation (18.33),

uτ lk
ν

=
(
κy+
)1/4 = 2.477 so that lK = 1.350 × 10–5 or 13.5 μm,

from equation (18.34),

u2τ τK
ν

=
(
κy+
)1/2 = 6.133 so that τK = 1.166 × 10–5s or 11.66 μs

and, from equation (18.35),

vK
uτ

= 1(
κy+
)1/4 = 0.404 so that vK = 1.158 m/s.

Perhaps the most striking thing is how small the length and time scales are at y+ = 91.75,
which is just into the log-law region. At the edge of the viscous sublayer (taken as y+ = 11,
as we calculated earlier), the values are lK = 3.2 μm, τK = 4.04 μs, and vK = 1.97 m/s.
Self-assessment problem 18.6 concerns the Kolmogorov scales for a boundary layer.

18.9 Surface roughness

So far we have dealt with turbulent shear flow over a smooth surface. Even when specially
treated, all real surfaces are hydrodynamically rough to some degree, i.e. the near-wall flow
differs from that for a smooth surface. While small-scale surface roughness has little effect
on laminar flow, if the average height of roughness elements183, ε, in turbulent flow is com-
parable with, or greater than, the thickness of the viscous sublayer δSUB then the near-wall
(sublayer) velocity distribution and the surface shear stress are affected. If we now include ε in
equation (18.40), we have

u = f
(
y, τ S, ρ,μ, ε

)
, (18.80)

so that dimensional analysis leads to

u
uτ

= f
(
uτ y
ν

, uτ ε
ν

)
(18.81)

or

u+ = f
(
y+, ε+

)
(18.82)

where ε+ = uτ ε/ν is the non-dimensional roughness height. Equation (18.47) shows that
equation (18.82) can also be written as

u+ = f
(
y+, ε
δSUB

)
(18.83)

which confirms that it is the ratio of the roughness height to the thickness of the viscous
sublayer which is important.

183 See footnote 174 regarding the symbol ε.
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It should be evident that to represent surface roughness in terms of a simple average rough-
ness height is highly simplified and in reality the geometry of the roughness elements plays a
role. Roughness may arise from the method of construction or finish of a surface (e.g. riveted,
welded, roughlymachined, sand blasted, etc.), it may be non-uniform or highly structured (e.g.
strips or grooves), it may be a consequence of wear or deposition (e.g. calcium build-up in wa-
ter pipes or rust), etc. Roughness is commonly modelled by glueing sand grains of a specified
size to a surface.
Experimental studies have shown that the influence of roughness on a near-wall turbulent

flow can be categorised as follows

ε+ < 4: hydraulically (or hydrodynamically) smooth, ε < δSUB, and the roughness has no
effect on the flow

4 < ε+ < 60: transitional-roughness regime
ε+ > 60: fully-rough regime where fF is independent of Reynolds number (see equation

(18.90))

Experimental data shows that the effect of roughness on the log law is a downward shift�B
dependent upon the magnitude of ε+, so that

u+ = 1
κ
ln y+ + B –�B

(
ε+
)

(18.84)

where, according to White (2005), based upon sand-grain roughness experiments,

�B ≈ 1
κ
ln
(
1 + 0.3ε+

)
. (18.85)

If�B from equation (18.85) is substituted into equation (18.84) then, for 0.3ε+ � 1, we have

u+ = 1
κ
ln
(

y+

0.3ε+

)
+ B = 1

κ
ln
(
y
ε

)
+ B – 1

κ
ln 0.3 = 1

κ
ln
(
y
ε

)
+ 7.94 (18.86)

where we have assumed κ = 0.41, and B = 5.
The principal significance of equation (18.86) is that for large values of the non-dimensional
roughness height ε+ the velocity distribution retains its logarithmic form but loses its
dependence on viscosity.

18.10 Fully-developed turbulent flow through
a rough-surface circular pipe

As for a smooth pipe, the velocity distribution for fully-developed turbulent flow through a
pipe with a rough surface can be used to determine an equation for the bulk-average flow
velocity, which can be rearranged to give a skin-friction formula. This is left as an exercise for
the reader. A useful formula, devised by Colebrook (1939), for pipes with surface roughness
representative of commercially available pipes is184

184 Equation (18.87) is usually referred to as the Colebrook-White formula.
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1√
fD

= –2log10

(
2.51

ReD
√
fD

+ ε
3.7D

)
. (18.87)

where fD = 8τS/ρV
2 is the Darcy friction factor. The ratio ε/D is referred to as relative rough-

ness and typically falls within the range 10–5 < ε/D < 0.05. In terms of the natural logarithm
and the Fanning friction factor fF = fD/4, equation (18.87) transforms to√

2
fF

= –2.457 ln

(
0.887
ReD

√
2
fF

+ ε
3.7D

)
. (18.88)

For a hydraulically smooth pipe, ε = 0, and equation (18.88) reduces to

√
2
fF

= 2.457 ln

⎛
⎝ReD

√
fF
2

⎞
⎠ + 0.295 (18.89)

which is very close to the empirical Kármán-Nikuradse equation (18.79).
For a fully-rough pipe, where ε/D � 1/ReD

√
fF , equation (18.88) leads to√

2
fF

= –2.457 ln
(
ε
D

)
+ 3.215 (18.90)

and we see that fF is independent of ReD and so also of viscosity. The corresponding flow is
referred to as wholly or completely turbulent because the viscous sublayer plays no role.
An equation which is more convenient to use than the Colebrook-White formula is√

2
fF

= –2.211 ln

[
6.9
ReD

+
(
ε

3.7D

)1.11]
(18.91)

which is based upon a formula suggested by Haaland (1983).
A diagram in which the Fanning (or Darcy) friction factor is plotted versus pipe Reyn-

olds number ReD on logarithmic scales for a range of values of the relative roughness height
ε/D, calculated from the Colebrook-White equation (18.87), is known as a Moody chart
(Moody (1944)). Figure 18.2 is a version of the Moody chart for values of ε/D in the range
10–5 to 0.05, as well as 0. Equation (16.40) for fully-developed laminar flow through a circular
pipe, fF ReD = 16, is included in Figure 18.2 for reference.
Various sources of roughness were identified in Section 18.9. Typical values for the rough-

ness height ε are listed in Appendix 5 but should be regarded as no more than guidance to the
order of magnitude of the average height of roughness elements likely to be encountered in
practice.
The lower limit for the validity of the Colebrook-White formula is usually taken as ReD =

4 × 103, while the upper limit of equation (16.40), for fully-developed laminar pipe flow, is
about ReD = 2 × 103. In the transition region 2 × 103 < 4 × 103 (omitted from Figure 18.2)
the flow becomes unsteady and there is no simple relationship between fF and ReD. From a
practical point of view, this region is best avoided if a steady flow is required with predictable
flow behaviour.
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Figure 18.2 Moody chart: Fanning friction factor fF versus Reynolds number ReD for flow through
pipes with relative roughness ε/D (logarithmic scales)

18.11 Minor losses in pipe systems

For fluid flow through any practically realistic pipe system, in addition to the stagnation-
pressure losses due to surface friction, termed the major losses, account has to be taken of
so-calledminor losses185, the main causes of which are

• disturbances at the pipe entrance and exit
• sudden increases or decreases in cross section
• gradual increases in cross section (diffusors)
• fully or partially open valves
• bends, elbows, tee junctions, and other pipe fittings

Since pressure can be regarded as a form of energy (see Subsection 7.5.1), the term pres-
sure loss is misleading as the mechanical energy concerned is simply converted into heat, and
no energy is actually lost. However, the term is well established and so will continue to be
used here. From the list above it is apparent that pressure losses are associated primarily with
friction, area change, and direction change.
The majority of flows of engineering significance have sufficiently high Reynolds numbers

that they are turbulent. Commercial software packages, based upon a wide variety of turbu-
lence models, are now available for the calculation to acceptable levels of accuracy of the flow
characteristics of pipe systems, including velocity, pressure, and turbulence-intensity distribu-
tions, as well as overall pressure loss. However, if all that is needed is the calculation of overall
stagnation-pressure loss from inlet to outlet of a system, it is usually adequate to characterise
each component (i.e. pipe fitting) in the system using an empirical loss coefficient K.

185 In spite of the names, it is often the case that in practice the minor losses exceed the minor losses.
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For an incompressible fluid of density ρ, the definition of K is

K =
�p0
1
2ρV

2
(18.92)

where �p0 is the loss in stagnation pressure across an individual component for a bulk flow
velocity V at its inlet. If there is no change in cross-sectional area from inlet to outlet of a
component, then the changes in static and stagnation pressure are equal.
Although K depends primarily on the basic shape of a component, details of the internal

geometry are also important. For example, for a sudden contraction K can be reduced from
0.5 to 0.02 by appropriate rounding of the inlet. In the case of a bend186, the pressure loss is
a consequence of the bend radius (which may not be constant), which gives rise to secondary
flows (counter-rotating vortices) due to centripetal acceleration. The loss may also be asso-
ciated with flow separation on the low-radius side and affected by the cross-section shape,
internal surface roughness, method of installation (e.g. flanged or threaded), which is often
unstated but has a major influence, and the Reynolds number (K typically decreases as the
Reynolds number increases). Loss coefficients for all fittings are also affected by the upstream
flow conditions, higher losses being associated with a fully-developed upstream flow rather
than a uniform flow. For large bends with a rectangular cross section, as is typical for a wind
or water tunnel, it is usual to incorporate a cascade of guidevanes (see Section 10.9) to reduce
losses and improve flow quality.
As will be shown in Subsection 18.11.1, for a sudden enlargement a good estimate for the

loss coefficient KSE is given by an analysis based upon the linear momentum equation. A
similar analysis (Subsection 18.11.2) for a sudden contraction requires a correction factor,
however. Subject to the influences mentioned in the previous paragraph, guideline values of
K for various elbows and tee junctions are listed in Table 18.1.
For more accurate values it is necessary to consult the manufacturer’s literature for a given

fitting. A regular elbow, a long-radius elbow, a line-flow tee junction, and a branch-flow tee
junction are shown schematically in Figure 18.3.

18.11.1 Sudden enlargement and Borda-Carnot equation

In Section 10.5 it was shown that the changes in static p and stagnation pressure p0 for flow
through a sudden enlargement can be calculated by applying the linear momentum equation
to the flow, which leads to

p2 – p1 = ṁ2

ρA2

(
1
A1

– 1
A2

)
(18.93)

186 The terms pipe bend and pipe elbow tend to be used interchangeably and inconsistently. Both refer to a com-
ponent which joins two sections of pipe where there is an angle between the two. It is sometimes said that all elbows
are bends but not all bends are elbows. The difference is that the term bend is generic and describes an offset or change
in the direction of piping, while an elbow is a component prefabricated to a standard, the bend angle usually being
45◦, 90◦, or 180◦, although any angle is clearly possible. An elbow with an angle of 180◦ is referred to as a return bend.
If the nominal (internal) pipe diameter is D, the bend radius for a standard (or regular or short-radius) elbow is 1D,
while for a long-radius elbow the standard bend radius is 1.5D. Other common choices for the radius of an elbow are
3D and 5D.
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Table 18.1 Loss coefficients (K) for pipe elbows
and tee junctions

Elbows

45◦ standard radius, flanged 0.2

45◦ standard radius, threaded 0.4

45◦ long radius, flanged 0.2

90◦ standard radius, flanged 0.3

90◦ standard radius, threaded 1.5

90◦ long radius, flanged 0.2

90◦ long radius, threaded 0.7

180◦ standard radius, flanged 0.2

180◦ standard radius, threaded 1.5

Tee junctions

Line flow, flanged 0.2

Line flow, threaded 0.9

Branch flow entering line 1.3

Line flow entering branch 1.5

and the Borda-Carnot equation

p0,1 – p0,2 = ṁ2

2ρ

(
1
A1

– 1
A2

)2
(18.94)

where ρ is the (constant) fluid density, ṁ is the mass flowrate, A is the cross-sectional area,
and the subscripts 1 and 2 refer to the regions upstream and downstream of the enlargement,
respectively.
If the upstream diameter is d, and the downstream diameter is D, it is straightforward to

show from equation (18.94) that for a sudden enlargement the loss coefficient KSE is given by

KSE =
�p0
1
2ρV

2
1

=

[
1 –
(
d
D

)2]2
. (18.95)

For flow from a duct with area issuing into the surroundings, equation (18.95) with D → ∞
leads to KSE = 1, i.e. the stagnation-pressure loss is equal to the dynamic pressure upstream of
the contraction.
The variation of KSE with diameter ratio is shown in Figure 18.5.
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Figure 18.3 Pipe fittings: (a) regular pipe elbow (b) long-radius pipe elbow (c) line-flow tee junction
(d) branch-flow tee junction

18.11.2 Sudden contraction

As shown in Figure 18.4, flow through a sudden contraction is complicated by the fact that
the flow separates at the corner of the contraction, in the same way as for an orifice-plate
flowmeter. Account then has to be taken of the occurrence of a vena contracta downstream
of the contraction, the cross-sectional area of which (AV ) is unknown. If we treat the flow

area A2

vena contracta, area AV

area A1

V1 V2

2

1

Figure 18.4 Schematic diagram of flow through a sudden contraction, showing separated flow and
the vena contracta
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between the vena contracta and the downstream pipe as though it were a sudden enlargement,
and also assume that there is zero loss in stagnation pressure between the upstream region so
that p0,V = p0,1, then we can use the Borda-Carnot equation, equation (18.94), to calculate the
loss in stagnation pressure as

p0,1 – p0,2 = ṁ2

2ρ

(
1
AV

– 1
A2

)2
. (18.96)

It is usual for a sudden contraction to refer to the bulk-average velocity in the
downstream pipe, V2, so that

p0,1 – p0,2
1
2ρV

2
2

=
(
A2
AV

– 1
)2

= KSC (18.97)

where KSC is the loss coefficient for the sudden contraction. Since the ratio AV /A2 depends
upon the overall contraction ratio A2/A1 so does the loss coefficient. For a contraction with
sharp edges, White (2011) recommends the empirical formula

KSC = 0.42

[
1 –
(
d
D

)2]
(18.98)

where d is the diameter of the downstream pipe and D is the diameter of the upstream pipe.
Other writers suggest that the coefficient should be 0.5 rather than 0.42.
The variation of KSC with diameter ratio is shown in Figure 18.5. Rounding the contraction

edges reduces KSC considerably: by about 50% if the edge radius is 0.06D, and 95% for 0.25D.

18.11.3 Total stagnation-pressure loss

For a pipe of diameter D and length L with N fittings, the overall stagnation-pressure loss
�p0,OVERALL is given by

�p0,OVERALL = �pL +
∑N

i=1
�p0,i (18.99)

where �pL is the pressure loss over the pipe length and �p0,i is the stagnation-pressure loss
across the ith fitting.
If fF is the Fanning friction factor then, assuming fully-developed flow in the pipe with

bulk-average velocity V ,

�pL = 4τSL
D = 2ρV2fF LD (18.100)

where τS is the surface shear stress within the pipe. If V , and hence ReD, are known, the Fan-
ning friction factor can be calculated from the Colebrook-White equation, from Section 18.10,
or obtained from the Moody chart.
If the pipe diameter changes between fittings, then the pressure loss in each section has to

be calculated separately to account for the changes in V . Clearly, if a section is too short, the
assumption of fully-developed flow (implied by equation (18.100)) becomes invalid.
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Figure 18.5 Variation of loss coefficient with diameter ratio d/D for (a) sudden enlargement (KSE)
and (b) sharp-edge sudden contraction (KSC).

For fitting i we have

�p0,i = Ki
1
2ρV

2
i (18.101)

so that, finally,

�p0,OVERALL = 2ρV2fF LD + 1
2ρ

N∑
i

KiV
2
i . (18.102)

As we saw in Section 4.3, a static-pressure difference �p can be represented in terms of
the height of a column of liquid h = �p/ρg, the height being referred to as the head. This
concept can be applied to any fluid but, in the case of gases and vapours, the density of a
reference liquid, such as water, an oil, or mercury, has to be introduced. The overall pressure
loss expressed in this way is referred to as a head loss.

ILLUSTRATIVE EXAMPLE 18.3

In a chemical plant, paraffin oil (kerosene) with a specific density of 0.804 and dynamic vis-
cosity 1.92 × 10–3 Pa · s is pumped between two large containers at a volumetric flowrate of
0.006 m3/s through a pipe with diameter D = 50 mm and length L = 150 m. The relative
roughness is 10–4. Installed within the pipe are the following: a standard 90◦ elbow with radius
D, a long-radius 90◦ elbow with radius 1.5 D, both flanged, and two partially open valves with
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loss coefficients 2.0 and 5.0, respectively. The flow enters the pipe through a sharp-edged en-
trance and leaves through a sharp-edged exit. Calculate the overall pressure difference and the
pumping power required. Both containers are on the same horizontal level.

Solution

D = 0.04 m, L = 150 m, Q̇ = 0.009 m3/s, ρ = 804 kg/m3, μ = 1.92 × 10–3 Pa · s, ε/D =
10–4,K1 = 0.42 (pipe inlet), K2 = 2.0 (first valve), K3 = 0.3 (flanged 90◦ standard elbow,
R3 = D), K4 = 0.2 (flanged 90◦ long-radius elbow, R4 = 1.5 D), and K5 = 5.0 (second valve).
Mean velocity in pipe V = 4Q̇/πD2 = 7.162 m/s.
Reynolds number ReD = ρVD/μ = 1.2 × 105.
From the Moody chart a first estimate for the Fanning friction factor is fF = 4.5 × 10–3.
With fF = 4.5 × 10–3 as an initial estimate, from the Colebrook-White equation
fF=4.475× 10–3.
The sum of the five loss coefficients

∑
Ki = 7.92.

The overall stagnation-pressure difference�p0,OVERALL is given by

�p0,TOTAL = 2ρV2fF LD + 1
2ρ

N∑
i

KiV
2 = 1.547MPa

and the required pumping power P = Q̇�p0,OVERALL = 13.92 kW.
The electrical power supplied to the pump would need to be about 25% higher, given that
pumps are less than 100% efficient.

18.12 Momentum-integral equation

In Section 17.5 we showed that, by considering the forces acting on a control volume of infin-
itesimal width in the streamwise direction, and the flowrates of streamwise momentum into
and out of the control volume, we can derive von Kármán’smomentum-integral equation for
a two-dimensional, constant-property, laminar boundary layer

cf
2 = dθ

dx
+ (H + 2) θU∞

dU∞
dx

. (17.86)

This equation can also be derived by formal integration across the boundary layer of the
boundary-layer form of the Navier-Stokes equations. The same approach can be applied to
the Reynolds-averaged equations for a turbulent boundary layer, with the result

cf
2 = dθ

dx
+ (H + 2) θU∞

dU∞
dx

+ 1
U2∞

d
dx

∫ ∞

0

(
u′2 – v ′2

)
dy (18.103)

although it is usual to assume that the integral involving the normal-stress terms is negligible.
The momentum-integral equation for a turbulent boundary layer is then identical to that for a
laminar boundary layer, although it has to be remembered that the momentum and displace-
ment thicknesses, θ and δ∗, respectively, have to be calculated from the distribution of the
mean velocity u

(
y
)
for a turbulent boundary layer.
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18.13 Flat-plate boundary layer

18.13.1 Wall-plus-wake velocity profile

From the wall-plus-wake velocity distribution, the skin-friction coefficient cf /2 is given by
equation (18.71)√

2
cf

= 1
κ
ln

⎛
⎝
√
cf
2
U∞δ
ν

⎞
⎠ + B + 2Π

κ
(18.71)

Π being the wake parameter, and δ the boundary-layer thickness.
In Subsection 18.7.4 we showed that the momentum-deficit thickness θ corresponding to

the combined log-law and law-of-the-wake velocity distribution, equation (18.64), is given by

θ
δ
=
(
Π + 1
κ

)√ cf
2 – F(Π)

κ2

cf
2 (18.104)

where

F(Π) = 52
35Π

2 + 19
6 Π + 2 (18.68)

so that equations (18.71) and (18.104) can be combined to eliminate δ and produce the follow-
ing equation connecting the skin-friction coefficient cf , the momentum-thickness Reynolds
number, defined by Reθ = U∞θ /ν, and the wake parameterΠ

U∞θ
ν

= Reθ =

⎡
⎣Π + 1 – F(Π) 1

κ

√
cf
2

⎤
⎦ eκ

√
2/cf

κ
e–(Bκ+2Π). (18.105)

In principle equation (18.105) can be seen as a relationship between the momentum-thickness
Reynolds number Reθ and cf /2 although the form of the equation is inconvenient, and the
value (or x-variation) of the wake parameterΠ is, as yet, unknown.
For a zero-pressure-gradient (flat-plate) boundary layer the momentum-integral equation

(18.103), neglecting the u′2 – v ′2 term, reduces to

dθ
dx

=
cf
2 . (18.106)

Substitution for θ from equation (18.105) in equation (18.106) leads to an ordinary differen-
tial equation which can be solved to give the following equation for the streamwise Reynolds
number Rex, if the wake parameterΠ is assumed to be independent of x

Rex = 1
κ3

[
(Π + 1)

(
2κ2
cf

– 2κ

√
2
cf

+ 2

)
– F(Π)

(
κ

√
2
cf

– 2

)]
eκ

√
2/cf e–(Bκ+2Π). (18.107)

Unfortunately, it is not possible to rearrange the equation such that cf is an explicit function
of Rex so that, given Rex, an iterative procedure is required to determine cf . Also, although
the algebra leading to equation (18.107) is straightforward, it is quite tedious and requires the
assumption that Π is constant. For a flat-plate boundary layer a value for Π of about 0.45 is
found to be a good fit to experimental data. With Π = 0 what remains of the wall-plus-wake
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equation (18.64) is the log law, but even then the resulting relationships between cf and both
Reθ and Rex are inconvenient for further analysis.

18.13.2 Empirical drag laws

A number of purely empirical relations between cf and Rex, known as drag laws, have been
proposed, one of the earliest being that suggested by Schultz-Grunow (1940) for the range
106 ≤ Rex ≤ 109

cf
2 = 0.185(

log10Rex
)2.584 (18.108)

while, more recently, White (2005) suggested

cf
2 = 0.2275

ln2 (0.06Rex)
. (18.109)

Both formulae have the merit that cf is an explicit function of Rex but, as we shall see in
Subsection 18.13.3, it is also useful to express the skin-friction coefficient in terms of the
momentum-thickness Reynolds number Reθ = U∞θ /ν.

18.13.3 Power-law velocity profile

It is straightforward to derive explicit relationships between cf and both Reθ and Rex if the
velocity-profile assumption (for a flat-plate boundary layer) takes the power-law form:

u+ = A
(
y+
)m (18.110)

whereA andm are constants. Such an assumption is tantamount to assumingΠ = 0: as shown
in Figure 18.1, with A = 8.75, and m = 1/7, equation (18.110) is close to the log law, equation
(18.52), for y+ < 1500.
If equation (18.110) is written in the form

u
U∞

=
(
y
δ

)m
= ξm, (18.111)

where ξ = y/δ, from the definition of θ , equation (17.46), we have

θ
δ
= 1
δ

∫ δ
0

u
U∞

(
1 – u

U∞

)
dy =

∫ 1

0
ξm
(
1 – ξm

)
dξ = m

(m + 1) (2m + 1)
. (18.112)

Withm = 1/7 equation (18.112) gives θ /δ = 7/72 = 0.0972, i.e. θ � δ.
According to the momentum-integral equation for a flat-plate boundary layer,

dθ
dx

=
cf
2 (18.106)

so that

cf
2 = m

(m + 1) (2m + 1)
dδ
dx

= m
(m + 1) (2m + 1)

dReδ
dRex

(18.113)

where Rex = U∞x/ν, and Reδ = U∞δ/ν.
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From equation (18.110) at y = δ

U∞+ = A
(
δ+
)m

which can be transformed into a skin-friction equation in terms of Reδ

cf
2 = A–2/(m+1)Re–2m/(m+1)

δ . (18.114)

With A = 8.75, andm = 1/7, this becomes

cf
2 = 0.0225 Re–0.25δ . (18.115)

Substitution for δ from equation (18.112) allows equation (18.114) to be transformed into the
required relationship between cf /2 and Reθ

cf
2 = A–2/(m+1)

[
m

(m + 1) (2m + 1)

]2m/(m+1)
Re–2m/(m+1)
θ . (18.116)

With the values for A andm used above we have

cf
2 = 0.0125 Re–0.25θ . (18.117)

If equation (18.114) is used to eliminate Reδ from equation (18.113) to give a differential
equation for cf /2, we find, after integration

cf
2 =
[
A–2/(3m+1) m

(2m + 1) (3m + 1)

]2m/(3m+1)
Re–2m/(3m+1)

x (18.118)

and, with A = 8.75, andm = 1/7, we have

cf
2 = 0.0288 Re–0.2x . (18.119)

The equations for cf /2 derived here from the power-law equation are less accurate than the
empirical equations based directly on experimental data. They are, however, very convenient
for analytical studies.
It may be remarked that this analysis of a flat-plate turbulent boundary layer is similar in a

number of ways to the profile-method of analysis for a laminar boundary layer presented in
Section 17.6.

ILLUSTRATIVE EXAMPLE 18.4

(a) Calculate the value of cf /2 given by White’s equation, equation (18.109), for a flat-plate
turbulent boundary layer with Rex = 109.

(b) Solve equation (18.107) with Π = 0.45, κ = 0.41, and B = 5.0 to find the value of Rex
corresponding to the value of cf /2 found in part (a).

(c) Calculate the value of cf /2 given by White’s equation with the value of Rex obtained in
part (b). Comment on the results.
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Solution

(a) White’s equation (equation (18.109)) is

cf
2 = 0.2275

ln2 (0.06Rex)
.

With Rex = 109 this equation gives cf /2 = 0.2275/ ln2
(
0.06 × 109

)
= 7.092 × 10–4.

(b) Equation (18.107) is

Rex = 1
κ3

[
(Π + 1)

(
2κ2
cf

– 2κ

√
2
cf

+ 2

)
– F(Π)

(
κ

√
2
cf

– 2

)]
eκ

√
2/cf e–(Bκ+2Π)

with

F(Π) = 52
35Π

2 + 19
6 Π + 2.

WithΠ = 0.45 we find F(Π) = 3.726. It is convenient to substitute β = κ
√
2/cf so that

Rex = 1
0.413

[
1.45
(
β2 – 2β + 2

)
– 3.726(β – 2)

]
eβe–(5×0.41+0.9).

With cf /2 = 7.092 × 10–4 we have β = 15.40 and, finally, Rex = 9.289 × 108.
(c) If we substitute the value of Rex from part (b) into White’s equation we find cf /2 =

7.151 × 10–4.

Comments:

The value for Rex found in part (b) is within 7% of 109, the value used to determine cf /2
from White’s equation, which initially suggests a significant discrepancy. However, this value
of Rex leads to a value of cf /2 within 1% of that given by White’s equation, showing that the
dependence of cf /2 on Rex is very weak and also that the log law plus wake function leads to a
skin-friction equation which is of comparable accuracy with experimental data as represented
by White’s empirical equation.

18.13.4 Flat-plate boundary-layer transition

It is usually the case, unless special measures are used to ‘trip’ the laminar boundary layer
which develops from the leading edge of a flat plate, that transition to turbulent flow occurs
following the growth of instabilities within the boundary layer. The streamwise distance over
which transition occurs is usually relatively short and it is sufficient to assume that transition
occurs instantaneously once a critical Reynolds number is reached.
For a zero pressure-gradient boundary layer on a smooth surface, an appropriate value for

the critical streamwise Reynolds numberRex,C = U∞x/ν is 3×106 if the free-stream turbulence
level k∞ < 1.5 × 10–6U2∞, where k∞ is the turbulent kinetic-energy per unit mass in the free
stream (i.e. for y > δ). Experiments show that the value of Rex,C decreases monotonically for
higher values of k∞, becoming negligible for k∞ > 10–3U2∞. Surface roughness also leads to a
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decrease in Rex,C, a value of 5 × 105 being appropriate for a typical industrial material where
low friction is important.
If we assume that the boundary layer remains laminar up to the point of transition, xC,

then, based upon the result for zero-pressure gradient tabulated in Table 17.2 in Chapter 17,
the momentum thickness θC corresponding with xC is given by

θC
xC
√
Rex,C = 0.6641

from which we conclude, if Rex,C = 3 × 106, then

Reθ ,C ≈ 1150. (18.120)

It is sometimes more convenient to present results as functions of the momentum-thickness
Reynolds number Reθ rather than the streamwise Reynolds number Rex.
Once the transition-onset location xC has been determined, the continuing development

of the (now turbulent) boundary layer can be calculated as follows. If it is assumed that the
transition region is short compared with the downstream stretch of turbulent boundary layer,
then it is reasonable to assume that both the mass flowrate per unit width within the boundary
layer ṁ′ given by

ṁ′ = ρ
∫ δ
0

u dy

and the corresponding momentum flowrate per unit width Ṁ′ given by

Ṁ′ = ρ
∫ δ
0

u2 dy

remain unchanged across the transition region. From this it can be concluded that the
momentum thickness also remains unchanged, since

θ =
∫ δ
0

u
U∞

(
1 – u

U∞

)
dy = ṁ′

ρU∞
– Ṁ′
ρU2∞

. (18.121)

Assuming that the momentum thickness remains unchanged leads to the interesting
conclusion that the boundary-layer thickness also changes only slightly. We found in
Subsection 17.3.2 that, for a flat-plate laminar boundary layer,

θL
δ

= 0.09393 (17.47)

and, assuming the 1/7th power-law velocity profile for a turbulent boundary layer,

θT
δ

= 7
72 = 0.0972 (18.122)

so that, at the location of transition,

θT
θL

= 1.035.

This value of θT/θL is subject to many uncertainties: the value of δL depends upon how close
to unity is the value of u/U∞ at which it is decided that the edge of the boundary layer has
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Figure 18.6 Schematic diagram of transition of a flat-plate boundary layer (note that there is a factor
of 250 between the Rex- and Reδ-scales)

been reached (according to Table 17.1 in Chapter 17, the value of y/� which leads to equation
(17.47) corresponds to u/U∞ = 0.99994), and the value of δT is a consequence of the choice
of the simple power-law representation of the velocity profile. Nevertheless, it is clear that
the boundary-layer thickness at has to adjust to accomodate the redistribution of momentum
which occurs during transition.
The continuing development of the (now turbulent) boundary layer can be calculated as-

suming that it originates from a virtual origin such that the momentum thickness of the
turbulent boundary layer at xC is equal to the momentum thickness of the laminar bound-
ary layer at that location. The flow configuration is illustrated in Figure 18.6, with the virtual
origin marked by V . The more rapid growth rate of the turbulent boundary layer is clearly
seen. The consideration here is a good example of the merit in specifying a transition criterion
in terms of the momentum-thickness Reynolds number.

ILLUSTRATIVE EXAMPLE 18.5

A flat plate 20 m long and 5 m wide is placed in an airflow at 20 ◦C having a velocity of 40 m/s.
The streamwise pressure gradient is zero. Assume that the boundary layer on the plate trans-
itions from laminar to turbulent instantaneously at a location where the streamwise Reynolds
number Rex = 3 × 106.

(i) Calculate the streamwise location xC at which transition occurs and the corresponding
values of the momentum-thickness Reynolds number Reθ ,C, the momentum thickness
θC, the surface shear stress τS,C, and the drag force DL for the laminar-flow section.

(ii) Calculate the location xV of the virtual origin of the turbulent boundary layer, the surface
shear stress at the location xC for the turbulent boundary layer, the surface shear stress
at the end of the plate τS,E, and the total drag force DT over the turbulent-flow section.
Hence calculate the drag force DE exerted by the flow on the entire plate.

(iii) What would be the drag force if the flow were entirely laminar from the leading edge to
the trailing edge of the plate?

(iv) What would be the drag force if the flow were entirely turbulent from the leading edge
of the plate?
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Solution

L = 20 m,W = 5 m, μ = 1.82× 10–5 Pa · s, ρ = 1.204 kg/m3, U∞ = 40m/s, and ReC = 3× 106.
To distinguish, where appropriate, the laminar section from the turbulent section of the
boundary layer we shall use the subscripts L and T, respectively, while subscript E will denote
the end of the plate, and C the location of transition.

(i) From ReC = 3 × 106, we have

xC = μ ReC/(ρU∞) = 1.82 × 10–5 × 3 × 106/ (1.204 × 40) = 1.134m.

For a flat-plate laminar boundary layer, from Table 17.2, Reθ = 0.6641
√
Rex, so that

Reθ ,C = 0.6641
√
Rex,C. We thus find Reθ ,C = 0.6641 × √

3 × 106 = 1150.3, so that
θC = μReθ ,C/(ρU∞) = 4.347 × 10–4 m, or 0.435 mm.
From Table 17.2, for a zero-pressure-gradient laminar boundary layer

(
cf ,L/2

)
Reθ =

0.2205 so that at x = xC we have cf ,L/2 = 0.2205/1150.3 = 1.917 × 10–4. Since
cf /2 = τS/ρU2∞, we find τS,C = 1.204 × 402 × 1.917 × 10–4 = 0.369 Pa.
From equation (17.89), the drag force exerted over the length xC is given by DC =
ρU2∞θCW = 4.19 N. The same result is arrived at by noting that, since τS ∝ x–1/2 for a
laminar, flat-plate boundary layer, the average wall shear stress over any length x = 2τS,x,
and so DC = 2τS,CWxC.

(ii) It is assumed that the momentum thickness for the turbulent boundary layer at the loc-
ation of transition is unchanged from that for preceding the laminar boundary layer, i.e.
θC = 0.435 mm, and Reθ ,C = 1150.3.
We shall use the symbol χ to represent streamwise distance from the virtual origin, as
shown in Figure 18.6, i.e. χ = x – xV . The location of the virtual origin xV is then found
as follows. According to equations (18.117) and (18.119), for the turbulent boundary
layer at the transition location,

cf ,T
2 = 0.0125 Re–0.25θ ,C = 0.0288 Re–0.2χ ,C

from which we find

cf ,T
2 = 2.146 × 10–3 and Reχ ,C = 4.349 × 105

so that

χC = μ

ρU∞
Reχ ,C = 0.164 m and τS,C = ρU2∞

cf ,T
2 = 4.135 Pa.

Given that χC = xC–xV (see Figure 18.6), we have xV = xC–χC = 1.134 –0.164 = 0.970m.
The distance from the virtual origin to the end of the plate χE = L – xV = 19.03 m. The
corresponding Reynolds number Reχ ,E = ρU∞χE/μ = 5.036×107, and the skin-friction
coefficient, from equation (18.119), cf ,T/2 = 0.0288 Re–0.2χ ,E , is cf ,T/2 = 8.298 × 10–4. The
shear stress at the end of the plate is then τS,E = ρU2∞cf ,T/2 = 1.599 Pa.
The drag force over the turbulent section DT is obtained from

DT = W
∫ χE
χC

τS,Tdx = μU∞W
∫ Reχ ,E

Reχ ,C

cf ,T
2 dReχ = 0.0288 μU∞W

∫ Reχ ,E

Reχ ,C
Re–0.2χ dReχ

= 0.0360 μU∞W
(
Re0.8χ ,E – Re

0.8
χ ,C

)
= 185.9 N.

The overall drag force on the plate is then DE = DC + DT = 190.1 N.
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(iii) If the boundary layer were laminar over the entire length of the plate, the Reynolds
number ReE would have the value 5.292 × 107, and the drag force would be given by

D = μU∞W
∫ ReL

0

cf ,L
2 dRex = 0.3321 μU∞W

∫ ReL

0
Re–0.5x dRex

= 0.6642 μU∞WRe0.5E = 17.59 N.

(iv) If the boundary layer were turbulent over the entire length of the plate, the drag force
would be given by

D = μU∞W
∫ ReL

0

cf ,T
2 dRex = 0.0288 μU∞W

∫ ReL

0
Re–0.2x dRex

= 0.036 μU∞WRe0.8E = 197.8 N.

Comments:

(a) At the transition location xC we see that the shear stress for the laminar boundary layer is
0.369 Pa, whereas for the turbulent boundary layer the value is 4.14 Pa, i.e. an increase by
an order of magnitude. These values should be regarded as indicative rather than 100%
accurate, but it is clearly the case that the shear stress in a turbulent boundary layer is far
in excess of that for a laminar boundary layer.

(b) Assuming the boundary layer to be turbulent over the entire plate would lead to an
error in the overall drag of only +4%. In general, if the drag calculated assuming the flow
is entirely turbulent is an order of magnitude (or more) greater than the drag due to
laminar flow up to the transition location, then neglect of the laminar-flow contribution
is justified.

18.14 Boundary layers with streamwise pressure gradient

In Section 18.13, concerned with the flat-plate boundary layer, it was found that an explicit
relationship between cf and Rex resulted from the assumption of a power-law form for the
velocity profile. The approach effectively neglects the outer-region wake contribution to the
velocity profile, i.e. the wake parameterΠ = 0, a simplification which cannot be justified where
there is a streamwise pressure gradient, particularly an adverse gradient. Furthermore, in the
latter case experiments show thatΠ can reach values as high as 100. Under such circumstances
it is clear that the variation ofΠ(x) has to be accounted for.
It is reasonable to assume that the momentum-integral equation (18.103) is still valid

cf
2 = dθ

dx
+ (H + 2) θU∞

dU∞
dx

(18.103)

where the normal-Reynolds-stress term has been neglected as before.
Equation (18.105) is also still valid

U∞θ
ν

= Reθ =

⎡
⎣Π + 1 – F(Π) 1

κ

√
cf
2

⎤
⎦ eκ

√
2/cf

κ
e–(Bκ+2Π). (18.105)
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We also found earlier that the shape factor H corresponding to the combined log law plus
law-of-the wake velocity distribution is given by

1
H = θ

δ∗ = 1 – F(Π)
(1 +Π) κ

√
cf
2 . (18.70)

Equations (18.105) and (18.70) can, in principle, be substituted into equation (18.103), leading
to an equation involving dcf /dx, dΠ /dx, cf , and Π , as well as the known (specified) quant-
ities ν, κ , U∞, and dU∞/dx. However, to proceed further requires additional information
which cannot be obtained by manipulating any of the existing equations or derived from the
Navier-Stokes equations. Various empirical equations have been proposed to provide this in-
formation, including an empirical entrainment function, in which the rate of entrainment
into the boundary layer is related to the wake strength. Another approach is based upon an in-
tegral equation for kinetic-energy dissipation.With these empirical equations, solutions can be
obtained using numerical integration. Such empirical approaches have now been superseded
by much more sophisticated, and general, methods based upon the partial differential equa-
tions for the transport of turbulent kinetic energy, the rate of dissipation of turbulent kinetic
energy, etc.
Qualitatively the influence of an adverse pressure gradient is similar to that for a laminar

boundary layer, as discussed in Chapter 17, i.e. decreasing surface shear stress and, if the
pressure-gradient parameter is sufficiently strong, boundary-layer separation. If the pressure
gradient is favourable, there is a tendency for the turbulence intensity to reduce and ultimately
to approach a laminar-like state, a process termed laminarisation, or relaminarisation.

18.15 Bluff-body drag

The force exerted by a flowing fluid on an immersed object is known as the drag force, or just
drag. That part of the drag force due entirely to the surface shear stress acting on the object
is called the skin-friction drag, or just friction drag. For a thin flat plate aligned with the
flow, the drag is due entirely to friction drag. Pressure drag, or form drag, is the net force
arising from the static pressure acting on an object’s surface. For a thin flat plate normal to the
flow, the drag is due entirely to pressure drag. For any object the sum of the form drag and
the friction drag is called the profile drag. Additional contributions to profile drag come from
wave drag, which in the case of marine craft arises from surface waves and in compressible
flow from shockwaves, and the drag associated with lift known as induced drag.
Solid objects can be categorised as streamlined or bluff depending upon whether their

shape is such that the flow over them remains attached, with accompanying low drag, or
separates, with associated high drag. The flow over low-drag aerofoils, for example, may
remain laminar but for most bodies of engineering interest the boundary layers will be tur-
bulent over much of the surface as will be the region of flow downstream known as the wake.
Although computer software has been developed which allows full details of the flow over
complex shapes to be calculated quite accurately, for many engineering purposes it is suffi-
cient to characterise the overall drag force D exerted on a body through a drag coefficient CD
defined by
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CD = D
1
2ρV

2A
(18.123)

where ρ is the fluid density,V is the flow velocity upstream of the body, andA is an appropriate
area, usually the frontal projected (or silhouette) area of the body. It is to be expected that for
any given shape, CD will depend on the Reynolds number Re defined by

Re = ρVL
μ

, (18.124)

the Mach numberM,

M = V
c , (18.125)

surface roughness, etc. In these equationsμ is the dynamic viscosity of the fluid, c is the sound-
speed, and L is a characteristic length of the body. For the most part we shall restrict attention
to incompressible flow, which corresponds withM less than about 0.5.
The variation of CD with Re for a long, smooth-surface, circular cylinder in crossflow is

shown in Figure 18.7. The curve shown is based upon a number of experimental investiga-
tions carried out in the early-to-mid 20th century. The early data are included in the paper
by Roshko (1961), who extended the range of conditions covered to Re ≈ 107. The original
experimental data exhibits considerable scatter, particularly for Re > 4 × 105. Several flow
regimes have been identified, some of which are evident from the CD versus Re curve.
The flow at very low Reynolds numbers is initially steady, symmetric, and laminar without

separation but as Re → 4 a closed separation bubble appears attached to the downstream face
of the cylinder. The vortices within the bubble grow, become unstable, are eventually (Re > 50)
shed from alternate sides of the cylinder, and are advected downstream. The pattern of vortices
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0.1 1 10
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Re = 2 × 105

CD = 0.95

CD
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1.17

0.23

102 103 104 105 106 107
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Figure 18.7 Drag coefficient CD versus Reynolds number Re for a smooth circular cylinder in
crossflow (logarithmic scales)



528 TURBULENT FLOW

of alternating rotation is known as a Kármán vortex street. The frequency f corresponding to
successive vortices passing a fixed point satisfies the equation

St =
f D
V ≈ 0.2 (18.126)

for 40 < Re < 60 – 100. The vortices are stable until 200 < Re < 400, when they be-
come unstable. The drag coefficient decreases progressively with increasing Re, reaching a first
minimum of CD ≈ 0.95 at Re ≈ 2000.
Once Re > 400 the vortices are already turbulent as they detach from the cylinder although

the boundary layer on the cylinder surface remains laminar until Re ≈ 2×105 with separation
occurring slightly before 90◦ measured from the forward stagnation line. A wide turbulent
wake is created downstream of the cylinder, within which the static pressure is much lower
than the free-stream pressure. From the minimum at Re ≈ 2000 the drag coefficient increases
slightly until Re ≈ 104 and then remains constant at about 1.2 until Re ≈ 2 × 105. At this
Reynolds number the boundary layer on the cylinder transitions from laminar to turbulent
and remains attached until about 120◦ from the stagnation line. The turbulent wake is now
narrower than before, the static pressure is close to its free-stream value, and the drag coeffi-
cient much lower with a minimum value CD ≈ 0.23 at Re ≈ 5×105. The sudden drop in CD at
Re ≈ 2× 105 is referred to as the drag crisis, and the corresponding value of Re as the critical
Reynolds number, ReC. If Re < ReC the flow is said to be subcritical, and supercritical187

if Re > ReC. Beyond this point the drag coefficient increases progressively until it appears to
plateau at a value of 0.7 at Re ≈ 4×106. Although there are no data for Re > 107, from a prac-
tical point of view this is unlikely to cause problems: for a 50 mm-diameter cylinder with flow
of air at 50 ◦C the velocity corresponding with Re = 107 would be 3000 m/s (i.e. for air at STP
a Mach number close to 9, and for a 1 m diameter cylinder it would be 150 m/s (M = 0.44).
The variation of CD with Re for a smooth sphere is qualitatively similar to that for a circu-

lar cylinder although the plateau value in the range 103 < Re < 2 × 105 is much lower at
about 0.4. The critical Reynolds number for a sphere or cylinder is reduced significantly by
surface roughness, trip wires, and free-stream turbulence. For example, at Re ≈ 105 the drag
coefficient for a dimpled golf ball is less than 50% of the value for a smooth sphere.
Once the Mach number exceeds about 0.4 compressibility effects become important and

CD begins to increase, initially gradually but dramatically so in the vicinity of M = 1 as
shockwaves arise.
Drag coefficients reported in the literature for long cylinders of various cross section in

crossflow are given in Figure 18.8, and for various three-dimensional objects in Figure 18.9. In
all cases the approach flow is from left to right. It is a great simplification to present CD values
as a single number but, as we have seen for a smooth circular cylinder, CD is approximately
constant in the range 104 < Re < 2 × 105, and the same is true for a similar Re range for
most of the shapes in these two figures. The values listed are an average from several sources,
some of which for a given object differ by as much as 20%. In these two figures, each object
is considered in isolation, whereas in practice it is often the case that there are two or more

187 The terms ‘subcritical’ and ‘supercritical’ as used here should not be confused with the same terms used for
open-channel flow.
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objects in close proximity. The situation is then more complex and it is not realistic to list all
the possible shape combinations.
In Figure 18.8 the streamwise length of each cylinder is L, its height is H, and, where the

corners of an object have been rounded, R denotes the corner radius. The projected area A is
given by BH, where B (� H) is the cylinder span.
The benefit of rounding corners is clearly evident from the entries for square and triangular

cross sections. Even more striking is the drag reduction associated with rounding to R= 0.5 H
the nose of a cylinder of rectangular cross section. Tapering the base of a rectangular cross
section with such a rounded nose reduces the drag coefficient to 0.15, the level for an elliptical
cross section with aspect ratio 4:1.
In Figure 18.9, for the cube, H is the side length; for the rectangular plate, H is the height,

and B is the span; for the axisymmetric three-dimensional objects, D is the maximum dia-
meter; for the cylindrical cylinder aligned with the flow, L is the length; for the cylindrical
cylinder normal to the flow, L is the height; and for the cone, θ is the total included angle. The
corresponding projected areas A are H2,

√
2H2,BH,HD, and πD2/4.

18.16 SUMMARY

In this chapter we have outlined the principal characteristics of a turbulent flow and
shown how Reynolds time-averaging procedure, applied to the Navier-Stokes equations,
leads to a set of equations similar to those governing laminar flow but including addi-
tional terms which arise from correlations between fluctuating velocity components and
velocity-pressure correlations. We showed that dimensional considerations applied to the
kinematic viscosity, and the rate of dissipation ε of specific turbulent kinetic energy k
leads to the Kolmogorov time, length, and verlocity scales which characterise the smal-
lest eddies of turbulent motion. The complex nature of turbulent motion has led to an
empirical methodology called turbulence modelling in which the correlation terms in the
Reynolds-averaged Navier-Stokes equations and in the transport equations for k, ε, and
other turbulence quantities are modelled. We show that limited, but useful, results for
fully-developed turbulent channel flow and zero-pressure-gradient boundary layers can
be deduced by treating the turbulent shear flow in the immediate vicinity of a solid sur-
face as a Couette flow which leads to the Law of the Wall and the logarithmic velocity
variation termed the log law. We discuss the characterisation of surface roughness, and its
effect on both the velocity distribution and surface shear stress. It is shown that the distri-
bution of mean velocity within a turbulent boundary layer can be represented by a linear
combination of the near-wall log law and an outer-layer Law of the Wake.

The student should be able to

• give a qualitative description of turbulent flow
• understand Reynolds’ decomposition and the derivation of the Reynolds-averaged
Navier-Stokes equations

• use dimensional analysis to derive the Kolmogorov length, time, and velocity scales
• explain why turbulence modelling is necessary
• use dimensional analysis to show that the velocity distribution in the near-wall
region of a turbulent shear flow has the universal form u+ = f (y+)

• show that within the viscous sublayer u+ = y+

• show that if viscosity has no direct influence on the velocity distribution then u+ =
ln y+/κ + B
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• understand the qualitative behaviour of a boundary-layer velocity profile described
by the combination of the log law and the law of the wake and the role of the wake
parameterΠ

• derive an equation for the dependence of the Fanning friction factor on the Reyn-
olds number for fully-developed turbulent flow through a pipe assuming that the
velocity distribution follows the log law

• apply the individual loss coefficients for various pipe fittings to calculate the
pressure loss through a piping system

• understand the influence of surface roughness on the near-wall velocity distribu-
tion in a turbulent flow

• derive an equation for the dependence of the skin-friction coefficient on the
momentum-thickness Reynolds number Reθ for a flat-plate turbulent boundary
layer, assuming that the velocity distribution follows the log law plus Law of the
Wake combination

• derive an equation for the dependence of the skin-friction coefficient on the
streamwise Reynolds number Rex for a flat-plate turbulent boundary layer, as-
suming that the velocity distribution follows the log law plus Law of the Wake
combination

• derive an equation for the dependence of the skin-friction coefficient on the
momentum-thickness Reynolds number Reθ for a flat-plate turbulent boundary
layer, assuming that the velocity distribution has a power-law form

• derive an equation for the dependence of the skin-friction coefficient on the
streamwise Reynolds number Rex for a flat-plate turbulent boundary layer, assum-
ing that the velocity distribution has a power-law form

• make use of drag coefficients to calculate the drag force acting on an object of given
shape

18.17 SELF-ASSESSMENT PROBLEMS

18.1 Show that, for an incompressible flow,

u∂u
∂x + v ∂u

∂y + w∂u
∂z = ∂u

2

∂x + ∂(uv)
∂y + ∂(uw)

∂z

where the symbols have their usual meaning.

18.2 Show that, for fully-developed turbulent flow through a smooth-wall circular pipe,
neglect of the contribution of the viscous sublayer to the mean-velocity distribution
is valid if√

2
fF

1
ReD

� 1

where fF = 2τS/ρV
2 is the Fanning friction factor, ReD = ρVD/μ is the pipe Reyn-

olds number, τS is the surface shear stress, V is the bulk-mean velocity,D is the pipe
diameter, ρ is the fluid density, and μ is the dynamic viscosity of the fluid.

18.3 Water at 10 ◦C is pumped through a pipeline which consists of a 50 mm diameter
pipe 25 m long followed by an 80 mm diameter pipe also 25 m long. The relative
roughness for both pipes is 0.001. The two sections of pipe are connected by a sharp-
edged sudden expansion. Entry to the 50 mm pipe and exit from the 80 mm pipe
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are both sudden with sharp edges. A threaded 90◦ standard elbow is installed in
the 50 mm pipe, and a threaded 90◦ long-radius elbow in the 80 mm pipe. The
flow is controlled by a valve in the 80 mm pipe, for which the loss coefficient is 6.0
when the valve is fully open. If the flowrate is 0.011 m3/s calculate the overall loss
in stagnation pressure and the pumping power required to maintain the flow.
(Answers: 0.235 MPa, 2.583 kW)

18.4 Assume that for fully-developed turbulent flow through a rough-wall circular pipe
the velocity distribution is given by the equation

u+ = 1
κ
ln y+ + B – 1

κ
ln
(
1 + 0.3ε+

)
.

Show that the bulk-mean velocity V for a pipe of diameter D is given by

V+ = 1
κ
ln
(

R+
1 + 0.3ε+

)
+ B – 3

2κ

and hence that the Fanning friction factor fFis related to the Reynolds number ReD
and the relative roughness ε/D through the formula

√
2
fF

= 1
κ
ln

⎡
⎢⎢⎢⎢⎣

√
fF
2 ReD

2

(
1 + 0.3 εD

√
fF
2

)
⎤
⎥⎥⎥⎥⎦ + B – 3

2κ .

18.5 Show that, for a boundary layer with Π = 0, the streamwise variation of the skin-
friction coefficient is given by

Rex = 1
κ3

(
β2 – 4β + 6

)
e(β–Bκ)

where β = κ
√
2/fF .

If κ = 0.4, B = 5.5, and cf /2 = 7.15 × 10–4, find the value of Rex using this formula.
Use the calculated value of Rex to calculate cf /2 fromWhite’s formula:

cf
2 = 0.2275

ln2 (0.06Rex)
.

(Answer: 1.531 × 109, 6.767 × 10–4)

Comments:

The two values of cf /2 are within about 5.5% of each other.
Note that with Π = 0 it has been assumed that the log law applies throughout

the boundary layer. This is exactly the same assumption made in the analysis of
fully-developed turbulent pipe flow. The key difference here is that the boundary-
layer thickness increases with streamwise distance whereas the pipe diameter
is fixed.

18.6 Assume that for fully-developed turbulent flow through a parallel-wall channel of
height 2H the velocity distribution is given by the log law

u+ = 1
κ
ln y+ + B.
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Show that the bulk-mean velocity V is given by

V+ = 1
κ
lnH+ + B – 1

κ

and hence that the Fanning friction factor fF is related to the Reynolds number
ReH = 2VH/ν through the formula√

2
fF

= 1
κ
ln

⎛
⎝1
2

√
fF
2 ReH

⎞
⎠ + B – 1

κ
.

18.7 Use the power-law equations

cf
2 = 0.0288 Re–0.2x

and

cf
2 = 0.0225 Re–0.25δ

to calculate the skin-friction coefficient cF/2, the wall shear stress τS, the friction
velocity uτ , and the boundary-layer thickness δ at the end of a flat plate 20 m long
if the free-stream velocity is 70 m/s and the flowing fluid is air at 25 ◦C. Assume the
boundary layer is turbulent starting at the leading edge of the plate.

Calculate the Kolmogorov scales given by

lK =
(
ν3

ε

)1/4
, vK = (νε)1/4 , and τK =

(
ν
ε

)1/2
and the turbulent-energy dissipation rate given by

ε =
u3τ
κy ,

where the von Kármán constant κ = 0.41, at a distance 1mm from the plate surface.
Calculate the ratios lK /δ, vK/U∞, and τKU∞/δ.

(Answers: 7.395×10–4; 4.290 Pa; 1.904m/s; 191.3mm; 21.82μm; 0.725m/s; 30.1μs;
1.682 × 104 m3/s2; 1.184 × 10–4; 0.014; 0.0110)

18.8 Write the log law for a boundary layer in terms of u/U∞,U∞y/ν, cf /2, and the log-
law constants B and κ . Suggest how a value for the friction factor could be obtained
from an experimentally determined velocity distribution, u

(
y
)
.

18.9 Show that the following form of the Kármán-Nikuradse formula for turbulent flow
through a smooth pipe,

1√
fD

= –2log10

(
2.51

ReD
√
fD

)

can be transformed into the form√
2
fF

= 2.457 ln

⎛
⎝
√
fF
2 ReD

⎞
⎠ + 0.292

where fF = τS/ρV
2 is the Fanning friction factor, fD = 4fF is the Darcy friction

factor, and ReD = ρVD/μ is the Reynolds number.



Appendix 1
Principal contributors to fluid
mechanics

The entries here are for engineers, mathematicians, and other scientists whose names appear
in the main text. They are listed in chronological order according to year of birth. Many made
major contributions to other areas of science and mathematics but, for the most part, it is their
work in fluid mechanics which is outlined here.

Archimedes (ca 287–ca 212 BC) A Greek mathematical scientist remembered for discov-
ering the principle concerning buoyancy, which bears his name. According to legend,
as he was entering a public bath, the concept came to him as a way of determining the
amount of gold used in the fabrication of the crown of the Hieronn II, the king of Syra-
cuse. Archimedes is also credited with a number of inventions, including the water screw,
and for recognising that a fluid is a continuous substance.

Sextus Julius Frontinus (40 AD–103 AD) A Romanmilitary engineer responsible for the con-
trol and maintenance of the aqueducts of Ancient Rome. He wrote technical treatises,
including Deaqaducte. It is thought he was aware of the continuity equation.

Leonardo daVinci (1452–1519) An Italian polymath whowas fascinated by the phenomenon
of flight. Among his many inventions, he designed flying machines (ornithopters),
parachutes, and elementary hydraulic machines. He is credited with formulating a one-
dimensional form of the continuity equation, and made observations of various fluid
flows, including open-channel flow, eddies downstream of obstacles in a water flow, and
flow through contracted weirs.

Evangelista Torricelli (1608–1647) An Italian mathematician and philosopher who estab-
lished the principle of a barometer and was the first to create a sustained vacuum. He
showed that the flowrate of a liquid through an opening in the wall of a container is
proportional to the square root of the height of the liquid above the opening, a result
formulated as Torricelli’s theorem. The obsolete pressure unit torr is named after him.

Blaise Pascal (1623–1662) A French mathematician and physicist who developed the theory
of hydrostatics. A key contribution was the recognition that the pressure at any point
within a fluid is the same in all directions, now termed Pascal’s law. He also recognised
the connection between atmospheric pressure and the height of a barometric column.
The pascal (Pa) is the SI unit of pressure.

Sir Isaac Newton (1642–1727) It is impossible to do justice in just a few lines to the
English scientist who discovered the three laws of motion which form the basis of all
classical mechanics, including fluid mechanics, and are contained in his Philosophiae nat-
uralis principia mathematica, first published in 1687. His specific contributions to fluid
mechanics, to be found in Book II of the Principia, include the first derivation of the
velocity-squared drag law, the sine-squared law, which accounts for the influence on drag
of a plate in a fluid stream of the angle of attack, the Newtonian shear-stress law, and the
concept of a fluid property now called viscosity. Fluids for which the viscosity is inde-
pendent of the shear stress are called Newtonian, while those for which the viscosity is
affected by shearing and other aspects of the motion are non-Newtonian. The newton (N)
is the SI unit of force.
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Henri de Pitot (1695–1771) A French civil engineer who devised an instrument, the forerun-
ner of the Pitot-static tube, to measure the velocity distribution in a water channel and the
speed of a boat.

Daniel Bernoulli (1700–1782) A Dutch-born Swiss mathematician who laid the foundations
of hydrodynamics in a treatise published in 1738 entitled Hydrodynamica, sive de viribus
et motibus fluidorum commentarii. He recognised that there is a relationship between
pressure and velocity, now embodied in the equation known as Bernoulli’s equation, and
also discovered some of the basic energy relationships that apply to a liquid.

Leonhard Euler (1707–1783) A Swiss mathematician, one of the most prolific of all time,
who made major contributions to mechanics, dynamics, and hydrodynamics. He was the
first to recognise that pressure in a moving fluid is strictly a point property. He formu-
lated equations of fluid motion and introduced the concept of centrifugal machinery. The
analysis of most problems in fluid mechanics is based upon the Eulerian method, which
is concerned with the entire flowfield at any position and time. The Euler equations are
a set of partial differential equations for the flow of an inviscid fluid. The Euler number
is the ratio of a pressure difference to dynamic pressure. Euler’s turbomachine equation
expresses the relationship between torque and the change in the flowrate of moment of
momentum for a turbomachine.

Jean le Rond d’Alembert (1717–1783) A French mathematician and physicist who was the
first to derive an expression formass conservation in fluid flow.He introduced the concept
of a moving fluid element, the volume and velocity of which varied from point to point
in a flow, aspects of fluid flow encompassed in what is now called the continuity equa-
tion. d’Alembert’s paradox states that a body moving through a perfect fluid experiences
zero drag.

Jean-Charles de Borda (1733–1799) A French naval engineer who analysed ballistics prob-
lems and performed experiments using a whirling-arm apparatus. Borda observed that
the combined drag of two bodies in close proximity is different from the sum of the drag
of each body taken individually, a phenomenon termed the Borda effect. He introduced
the concept of a stream tube. The Borda-Carnot equation connects the reduction in stag-
nation pressure across a sudden expansion to the mass flowrate, fluid density, and the
cross-sectional areas.

Joseph-Louis Lagrange (1736–1813) An Italian-born, Frenchmathematician whomade con-
tributions to number theory and applied mechanics. He was the first to integrate Euler’s
equation for the motion of an irrotational, compressible fluid, obtaining a result which
reduces to Bernoulli’s equation for an incompressible fluid. The Lagrangian method of
analysis of fluid motion follows individual fluid particles.

Giovanni Battista Venturi (1746–1822) An Italian physicist who carried out experiments on
liquid flow through convergent-divergent tubes, including sudden enlargements. He also
investigated open-channel flows and the hydraulic jump. The Venturi-tube flowmeter,
the open-channel form of which is called a Venturi flume, was developed by Clemens
Herschel.

Lazare Nicolas Marguerite Carnot (1753–1823) A French military engineer, mathematician,
physicist, and politician. The Borda-Carnot equation is named after him and Jean-
Charles de Borda. The Carnot cycle is named after Carnot’s son, Nicolas Léonard Sadi
Carnot (1796–1832), also a military engineer, who was a pioneer in the development of
thermodynamics.

Amedeo Carlo Avogadro (1776–1856) An Italian scientist best known for his contributions
tomolecular theory. The number ofmolecules in 1 kmol of any substance is a fundamental
physical constant known as the Avogadro number.
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(Claude-) Louis (-Marie-Henri) Navier (1785–1836) A French physicist and civil engineer
who was the first to formulate the Navier-Stokes equations, which govern viscous flow of
a Newtonian fluid. Navier’s formulation was flawed in accounting for shear stress without
reference to viscosity. Navier was the first to precisely define the concept of mechanical
work and recognised for practical contributions to the design of bridges.

Augustin Louis de Cauchy (1789–1857) A French engineer and mathematician who contrib-
uted to the analysis of wave motion, an extension of Navier’s equations, and conformal
transformation for the analysis of irrotational flow. The general partial differential equa-
tions for the conservation of linear momentum applied to fluid flow are known as
Cauchy’s equations. The Cauchy-Riemann equations relate the partial spatial derivatives
of the stream function and velocity potential (or the corresponding velocity components)
in incompressible, two-dimensional irrotational flow. The Cauchy number preceded the
Mach number, of which it is the square, as the basic parameter of compressible flow.

Jean Léonard Marie Poiseuille (1797–1869) A French physician and physiologist trained in
physics and mathematics, who performed experiments on liquid flow through capillary
tubes. Poiseuille flow is the name now given to fully-developed laminar flow of a constant-
property fluid through a cylindrical channel. Such flows are characterised by the non-
dimensional Poiseuille number.

Gotthilf Heinrich Ludwig Hagen (1797–1884) A German physicist and hydraulic engineer
who carried out pipe-flow experiments from which he concluded that some kind of trans-
ition occurs when an unstable laminar flow is disturbed by heating. The Hagen-Poiseuille
equation governs fully-developed laminar flow of an incompressible Newtonian fluid
through a circular pipe.

Henry Philibert GaspardDarcy (1803–1858) A French engineer whomade important contri-
butions to hydraulics and flow through porous media. Darcy improved the design of the
Pitot tube by adding static-pressure tappings some distance from the tip of the tube. He
performed and correlated the results of experiments on the pressure drop of water flow-
ing through smooth- and rough-wall pipes. The non-dimensional pressure drop in such
pipes, commonly used in hydraulics, is called the Darcy (or Darcy-Weisbach) friction
factor. The equation governing low Reynolds-number flow through a porous medium is
called Darcy’s law.

Julius LudwigWeisbach (1806–1871) A German mathematician and engineer whose contri-
butions to hydraulics include an equation for flow over a weir, and the Darcy-Weisbach
friction factor.

William Froude (1810–1879) An English engineer, hydrodynamicist, and naval architect
who pioneered the use of towing tanks with small-scale models in the design of ships
and the prediction of their wave and boundary resistance. The Froude number is the
non-dimensional group used to characterise free-surface flows.

James Prescott Joule (1818–1889) An English brewer and physicist who established the rela-
tionship between thermal energy and work, which led to the first law of thermodynamics.
The SI-derived unit of energy is the joule (J). Joule’s law relates the heat dissipated by an
electrical resistance to the current flowing through it.

George Gabriel Stokes (1819–1903) An Irish physicist and mathematician who independ-
ently of, and more rigorously than, Navier formulated the Navier-Stokes equations for
the flow of an incompressible viscous fluid. Critically, Stokes formally incorporated the
dynamic viscosity in a set of constitutive equations for the normal and shear stresses in
Cauchy’s equations of motion. Stokes’ name is associated with many fluid-flow phenom-
ena, including low-Reynolds-number viscous flow, which is referred to as Stokes flow, and
the governing equation as Stokes equation; Stokes number is the non-dimensional group
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which characterises the behaviour of a small particle immersed in a fluid. The term also
refers to the non-dimensional group which characterises oscillatory viscous flow past a
solid object; the square root of this Stokes number is the Wommersley number. Stokes’
assumption is that the thermodynamic and mechanical pressure at any point in a fluid are
equal; Stokes’ drift is the term given to the average translation velocity in the direction of
wave propagation of a fluid or floating particle due to pure wave motion of a liquid; Stokes
stream function describes the streamlines in axisymmetric three-dimensional flow; and
the stokes is the obsolete cgs unit of kinematic viscosity. Stokes also contributed to the
theories of sound and light waves.

William JohnMacquorn Rankine (1820–1872) A Scottish engineer who established an abso-
lute scale for temperature, in which one degree Rankine is equal to one degree Fahrenheit,
and a thermodynamic cycle used as a standard of efficiency for steam power. Rankine also
established the equations of continuity, momentum, and energy, which govern changes
across a shockwave, but failed to recognise the impossibility of a rarefaction shock. These
equations, later published independently by Pierre Henri Hugoniot, are known as the
Rankine-Hugoniot relations.

Hermann Ludwig Ferdinand von Helmholtz (1821–1894) A German surgeon and physi-
cist who studied wave motion, free-surface stratified flow, viscous flow, irrotational flow,
and cavitation. A Helmholtz resonator is a rigid cavity with a short, narrow neck which
resonates when excitation is applied at the opening. Helmholtz distinguished between ro-
tational and irrotational flows, and is credited with introducing the concepts of vorticity,
a term he coined, vortex filaments, and vortex sheets. He also introduced the concept
of a surface of discontinuity in an inviscid fluid flow. The Kelvin-Helmholtz instability,
sometimes referred to as Helmholtz instability, is the instability of the interface between
immiscible, inviscid fluids due to shearing.

William Thomson, Lord Kelvin (1824–1907) A Northern-Ireland-born British scientist who
made significant contributions to numerous topics, including theories of sound, vortex
motion, capillary waves, and flow instability. The analogy between electrical and acoustic
quantities is called the Kelvin system. Kelvin was the first to derive an equation for the
wavespeed of shallow-water waves which includes the effects of surface tension and finite
depth. He was also the first to derive the exact kinematic condition for a free surface. The
Kelvin-Helmholtz instability is the instability of the interface between immiscible, inviscid
fluids due to shearing. In recognition of devising the absolute temperature scale, the SI
unit of absolute temperature is the kelvin (K). He also formulated in detail the energy
relationships of the second law of thermodynamics. That the limiting thermal efficiency
of a heat engine is 100% is embodied in the Kelvin-Planck statement of the second law.
Kelvin is also credited with introducing the word turbulence to describe the unsteady flow
which occurs once the critical Reynolds number is exceeded. A model for the stress-strain
relationship of a viscoelastic fluid is known as the Kelvin-Voigt model, sometimes referred
to as either the Kelvin model or the Voigt model.

Lester Allen Pelton (1829–1908) An American mining engineer at the time of the California
gold rush (ca 1850) who refined the design of the cup-shaped buckets then in use for
impulse turbines, now called Pelton turbines.

Peter Guthrie Tait (1831–1901) A Scottish mathematical physicist who collaborated with
Lord Kelvin. Tait contributed to many areas of physics, including the early development
of the kinetic theory of gases and the density of ozone. His experimental research on the
compressibility of water, glass, and mercury led to the formulation of the Tait equation of
state, which correlates liquid density and pressure.

John Thomas Fanning (1837–1911) An American architect and hydraulic engineer who
designed the municipal water system for the city of Manchester, New Hampshire. The
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non-dimensional Fanning friction factor is widely used to characterise frictional pressure
drop in pipes and other duct forms.

ErnstMach (1838–1916) AnAustrian experimental physicist whowas a pioneer in the field of
supersonic aerodynamics and demonstrated the existence of supersonic flow and shock-
waves, which he photographed using shadowgraphy. The Mach-Zehnder interferometer
is a more sensitive device used to visualise density variations in compressible flow. The
Mach number is the non-dimensional group used to characterise compressible flow. A
Mach wave is a weak wave due to an infinitesimal disturbance in steady supersonic flow.
The angle between the wavefront and the incident-flow direction is the Mach angle. A
point disturbance in a supersonic flow produces a Mach cone. The diagram which illus-
trates the propagation of sound waves originating from a point source in a flow is known
as Mach’s construction.

Josiah Willard Gibbs (1839–1903) An American mechanical engineer (the first American
to be awarded a PhD in engineering) who became a theoretical physicist credited as
a co-founder of statistical mechanics, together with James Clerk Maxwell and Ludwig
Boltzmann. He also devised vector calculus and made contributions to physical optics,
including birefringence. The set of fundamental equations relating specific internal en-
ergy, specific enthalpy, Helmholtz function, and Gibbs function to temperature, pressure,
specific volume, and specific entropy are known as the Gibbs relations.

Osborne Reynolds (1842–1912) A Northern-Ireland-born British mathematician, the first
professor of engineering at what is now the University of Manchester. Reynolds was
the first to suggest the decomposition of a turbulent flow into a mean and a fluctuating
part and made major contributions to the theory of turbulent flow. The apparent shear
stress that arises due to the statistical correlation between orthogonal fluctuations in flow
velocity is termed the Reynolds stress. Reynolds also deduced that the transition from
laminar to turbulent flow in pipe flow depended upon the non-dimensional combination
of variables now called the Reynolds number. He was also the first to demonstrate the
phenomenon of cavitation and suggested that the eddy diffusivities for momentum and
heat transfer are equal, a conjecture known as Reynolds analogy.

JohnWilliam Strut, Lord Rayleigh (1842–1919) An English scientist who developed the the-
ory of sound, discovered argon, investigated the density of gases, analysed bubble collapse
(the basis for studies of cavitation damage), investigated wave phenomena, proposed the
technique of dimensional analysis, and contributed the exponent method now known as
Rayleigh’s method. He appears to have been the first to recognise aerodynamic heating
at hypersonic speeds. Rayleigh showed that both viscosity and heat conduction were es-
sential in determining the structure of a shockwave and that a rarefaction shock violated
the second law of thermodynamics. Rayleigh’s supersonic Pitot formula relates the ratio of
static to stagnation pressure to the Mach number. Rayleigh flow is the term given to com-
pressible pipe flow with surface heat transfer, and Rayleigh line to the curve of specific
enthalpy versus specific entropy for such a flow as the Rayleigh line. Plateau-Rayleigh in-
stability, or just Rayleigh instability, is the name given to the instability of a falling stream
of liquid due to surface tension, which leads to breakup of the stream and the formation
of droplets. Rayleigh-Taylor instability is the instability of the interface between two im-
miscible liquid layers, the liquid of higher density being above that of lower density. The
Rayleigh number is the non-dimensional parameter which arises in viscous fluid flows
where buoyancy is important.

Joseph Valentin Boussinesq (1842–1929) A French mathematician and physicist who con-
tributed to the study of turbulence and hydrodynamics, in addition to vibration, light,
and heat. He is credited with introducing the concept of an eddy viscosity to model the
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Reynolds shear stress. The Boussinesq approximation refers to the assumption that fluid
properties are independent of temperature, with the exception of the density in the gravit-
ational body-force term in the momentum equations. Another Boussinesq approximation
concerns the propagation of water waves, including solitary waves.

ClemensHerschel (1842–1930) An American hydraulic engineer best known for developing
the Venturi-tube flowmeter. He also designed a flume for testing water wheels and trans-
lated a manuscript by Sextus Julius Frontinus, which he titled ‘Frontinus and the Water
Supply of the City of Rome’. The Herschel-Bulkley model for a yield-stress fluid is named
after Herschel’s son, Winslow H. Herschel.

Ludwig Eduard Boltzmann (1844–1906) An Austrian theoretical physicist, mathematician,
and philosopher who developed statistical mechanics. The ratio of the universal gas
constant to the Avogadro number defines the Boltzmann constant.

Carl Gustav Patrik de Laval (1845–1913) A Swedish engineer who designed a convergent-
divergent nozzle, now called a Laval nozzle, to drive a steam turbine. He is better known
for the centrifugal separators he designed to separate out the cream in milk.

Nicolai Egorovich Zhukovsky (1847–1921) A Russian mathematician, regarded as the
founder of hydrodynamics and aerodynamics in Russia, who made contributions to the
understanding of lift, hydraulic shock, and vortex theory. Conformal mapping of the
complex plane is known as the Zhukovsky transformation, and its application leads
to the design of Zhukovsky aerofoils. An equation for the lift on an aerofoil, estab-
lished independently by Zhukovsky and Martin Kutta, is known as the Kutta-Zhukovsky
equation.

Čenĕk (or Vincenc) Strouhal (1850–1922) A Czech physicist who showed that the frequency
of oscillations (so-called æolian tones) in flow over a taught wire is related to the flow
velocity. The frequency is characterised by the non-dimensional Strouhal number.

Pierre HenriHugoniot (1851–1887) A Frenchmechanical engineer and ballistician who con-
tributed to the theory of shockwaves. The Rankine-Hugoniot equation relates changes
in thermodynamic properties across a shockwave. An equation relating changes in
cross-sectional area and fluid velocity to theMach number for flow through a convergent-
divergent nozzle is termed the Hugoniot equation.

Maurice Marie Alfred Couette (1858–1943) A French physicist who studied the frictional
effects of fluids and devised a concentric-cylinder apparatus for the measurement of vis-
cosity. Viscous flow brought about by the relative tangential movement of two surfaces is
termed Couette flow. Taylor-Couette flow is the name given to flow of a viscous fluid in
the annular gap between differentially rotating cylinders.

William Sutherland (1859–1911) A Scottish-born, Australian theoretical physicist who con-
tributed to the understanding of gas kinetics, the surface tension of aqueous solutions, the
behaviour of gases at low temperatures, Brownianmotion, and the viscosity of gases. Suth-
erland’s formula is a widely used equation for the temperature dependence of the viscosity
of a gas.

Edgar Buckingham (1867–1940) An American physicist who made fundamental contribu-
tions to dimensional analysis, including the equation defining the number of independent
non-dimensional groups, now called Buckingham’s � theorem. His research also in-
cluded the flow of non-Newtonian fluids: the Buckingham-Reiner equation governs
fullydeveloped laminar pipe flow of a Bingham plastic.

Martin Wilhelm Kutta (1867–1944) A German mathematician who established the Kutta
condition, which requires that in potential-flow theory the circulation for flow over a body
with a sharp trailing edge is such as to fix the rear stagnation point at the trailing edge.
He is also credited with deriving the Zhukovsky-Kutta equation for aerofoil lift. Kutta
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also devised the Runge-Kutta method for the numerical solution of ordinary differential
equations.

Martin Knudsen (1871–1949) A Danish physicist who helped develop the kinetic theory of
gases. The Knudsen number is a non-dimensional group used to characterise rarefied
gas flows.

Moritz Weber (1871–1951) A German professor of naval mechanics who is credited with
formalising the use of non-dimensional groups as the basis for similarity studies. The
Weber number is the non-dimensional capillarity parameter involving surface tension.

Ludwig Prandtl (1875–1953, German) As with Newton, it is impossible in a few lines to do
justice to Prandtl, regarded as the father of modern fluid mechanics. He was a mechanical
engineer who introduced probably themost significant concept in all fluidmechanics: that
of the boundary layer. Together with his more mathematically inclined student, Hein-
rich Blasius, Prandtl developed boundary-layer theory, which underlies much of fluid
dynamics. Prandtl’s mixing-length hypothesis is often considered to be the first example
of turbulence modelling. He made many other contributions to the understanding of tur-
bulent flow, including the first formulation of the universal law of the wall, and he also
contributed to the understanding of low-speed and finite-wing lifting-line theory as well
as compressible-flow theory. Prandtl’s name is also given to the two kinds of turbulent
secondary flow. In the first decade of the 20th century Prandtl designed, and carried out
experiments on, a small-scale supersonic (Mach number ca 1.5) nozzle and published
photographs of the shock and expansion-wave patterns he observed. Together with his
PhD student Theodor Meyer, Prandtl developed the theory of oblique shocks and ex-
pansion waves. Prandtl’s relation for a normal shock is a remarkably simple equation
between the velocities on either side of a shock and the critical soundspeed. He estab-
lished, but never published, a rule for correcting low-speed aerofoil lift coefficients to
account for compressibility effects at high subsonic speeds. The correction was published
independently by the British aerodynamicist Hermann Glauert and is now known as the
Prandtl-Glauert rule. Together with Adolf Busemann, another student, Prandtl employed
the method of characteristics to establish the correct shape of a supersonic nozzle, the
method still used to design such nozzles and rocket engines. The Prandtl number is the
ratio of momentum diffusivity to thermal diffusivity, a key non-dimensional parameter in
convective heat transfer.

Eugene Cook Bingham (1878–1945) An American chemist who made significant contribu-
tions to rheology, a term he co-coined with Markus Reiner. The Bingham number is a
non-dimensional group used to characterise the flow of a yield-stress liquid.

Carl Wilhelm Oseen (1879–1944) A Swedish theoretical physicist who attempted to extend
to higher Reynolds numbers Stokes’ analysis of flow at very low Reynolds number.

Lewis FerryMoody (1880–1953) An American, the first professor of hydraulics at Princeton,
who developed the so-called Moody chart, a graphical representation of the Colebook-
White equation, which accounts for the effect of surface roughness on the frictional
resistance of turbulent pipe flow. He is also known for work on draft-tube design.

KarlHiemenz (born ca 1880) AGerman PhD student of Prandtl who carried out experiments
involving water flow over a circular cylinder in crossflow. Hiemenz observed that the flow
was unsteady and is famous for his daily comment to von Kármán, ‘It always oscillates.’
This led von Kármán to explain theoretically the phenomenon of vortex shedding. The
viscous flow in the vicinity of a stagnation point which obeys the Falkner-Skan equation
is known as Hiemenz flow.

Theodor von Kármán (1881–1963, Hungarian-born American) He was a major contributor
to many aspects of applied mechanics, including elasticity and above all fluid mechanics.
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He explained theoretically the tendency for periodic (i.e. fixed-frequency) disturbances to
arise in the wake of an object such as a circular cylinder immersed in a steady flow. The
alternating pattern of contra-rotating vortices in the wake is known as a Kármán vortex
street. The constant κ in the log law which describes the velocity distribution in near-wall
turbulent flow is known as von Kármán’s constant and originates from a mixing-length
model of turbulence. Von Kármán’s momentum-integral equation has been the basis for
many attempts to calculate boundary-layer development, including Pohlhausen’s method.
The Kármán-Schoenherr formula for the total frictional drag on a surface is employed by
naval architects. Von Kármán also made numerous contributions to compressible-flow
theory and was the first to realise that at an altitude of 100 km the density of the atmo-
sphere is too low to support aeronautical flight. The so-called Kármán line delineates the
boundary between the earth’s atmosphere and outer space.

Percy Williams Bridgman (1882–1961) An American who was awarded the Nobel prize for
physics in 1946. He was a major contributor to the development of dimensional analysis
and in 1922 published a book concerned with the logic of dimensional reasoning.

Gino Girolamo Fanno (1882–1962) An Italian mechanical engineer who studied compress-
ible duct flow with wall friction, now known as Fanno flow.

Theodor Meyer (1882–1972) A German mathematician who was a PhD student and major
collaborator of Prandtl. In his PhD thesis in 1908 Meyer developed the first theory for
calculating the properties of oblique shock and expansion waves in supersonic flow. A
Prandtl-Meyer expansion is the centred expansion wave which arises in supersonic flow
around a sharp corner, and the key parameter in the theoretical analysis is the Prandtl-
Meyer function. Meyer and Prandtl are also credited with developing oblique-shock
theory. In his thesis he also published a Schlieren photograph of theMachwaves generated
within a supersonic nozzle with roughened internal surfaces.

(Paul Richard) Heinrich Blasius (1883–1970) A German fluid dynamicist, one of the first
PhD students of Prandtl, who developed laminar boundary-layer theory. Blasius’ equation
is the ordinary differential equation which governs the velocity distribution within a zero-
pressure-gradient laminar boundary layer. Blasius’ formula is an empirical friction factor-
Reynolds number correlation for turbulent flow through a smooth-wall pipe.

Henri Marie Coandă (1886–1972) A Romanian aeronautical engineer who designed and
constructed aircraft in the early 20th century. He discovered the influence on a free jet
of a nearby surface, now called the Coandă effect.

Sir Geoffrey Ingram Taylor (1886–1975, English) A physicist and mathematician, frequently
referred to as G. I. Taylor or simply G. I., who made numerous contributions to fluid
mechanics and other areas of applied mechanics. He is credited with making the first
measurements of the pressure distribution over a wing in steady flight. He showed, inde-
pendently and almost simultaneously with Rayleigh, that only compression shockwaves
are physically possible. In his second published paper, he presented an analysis for the
internal structure of a shockwave and its thickness. The differential equations governing
supersonic flow over a cone were integrated numerically by Taylor and J. W. Maccoll.
Taylor is probably best known for his work on the stability of axisymmetric Couette flow
in the annular gap between differentially rotating cylinders, also known as Taylor-Couette
flow, on shear-augmented dispersion (Taylor dispersion), and on the statistical analysis
of turbulent flow. The Taylor number is the non-dimensional parameter used to charac-
terise the stability of Taylor-Couette flow. The circumferential vortices which occur once
a critical value of the Taylor number is exceeded are called Taylor vortices. The Taylor-
Proudman theorem and the Taylor column refer to phenomena occurring in rotating flow.
Rayleigh-Taylor instability is the instability of the interface between two immiscible liquid
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layers, the liquid of higher density being above that of lower density. Taylor made numer-
ous significant contributions to the understanding of turbulent flow, including the idea
of a mixing length, a decade before Prandtl. He also proposed the idea of approximating
turbulent transfer rates of momentum, heat, and water vapour in the atmosphere by eddy
diffusivities.

Markus Reiner (1886–1976) An Austro-Hungarian-born Israeli who was a major contrib-
utor to the field of rheology: the Buckingham-Reiner equation is named after him and
Edgar Buckingham. Together with Eugene Bingham he is credited with coining the term
‘rheology’.

Karl Pohlhausen (1892–1980) A German PhD student of Prandtl and collaborator of von
Kármán who made significant contributions to the development of boundary-layer the-
ory. He is primarily remembered for the Kármán-Pohlhausen calculation procedure for
laminar boundary-layer development, and the Pohlhausen pressure-gradient parameter
which arises. He was the first to demonstrate that von Kármán’s momentum-integral
equation can be derived directly by integration from the boundary-layer equations.

Johann Nikuradse (1896–1979) A Russian-born, German PhD student of Prandtl best
known for his pioneering experimental research into the influence of surface roughness on
turbulent pipe flow. The Kármán-Nikuradse formula is a friction factor-Reynolds number
correlation for turbulent flow through smooth pipes.

JakobAckeret (1898–1981) A Swiss mechanical engineer who contributed to supersonic fluid
dynamics, including the design in 1935 of a supersonic wind tunnel, the development of
linearised supersonic-flow theory (postdoctoral work carried out in Prandtl’s laboratory in
Göttingen), and in 1929 proposed the nameMach number for the non-dimensional group
which is used to characterise compressible flow. He also carried out research on cavitation
and on variable-pitch propellers for ships and aircraft, and designed a closed-circuit gas
turbine.

Cedric Masey White (1898–1993) A British civil engineer who was the PhD supervisor of
the British engineer Cyril Frank Colebrook (1910–1997) and with whom he developed
the empirical Colebook-White equation for the calculation of frictional pressure drop for
transitional and turbulent flow through smooth and rough pipes. The equation is the basis
for the Moody chart.

Andrei Nikolaevich Kolmogorov (1903–1987) A Russian mathematician who made major
contributions to several areas of mathematics and physics, including probability theory,
stochastic processes, topology, and turbulence theory. The microscales of turbulence are
called the Kolmogorov scales, and the E ∝ k–5/3 form of the turbulence energy spectrum
is also named after him.

Antonio Ferri (1912–1975) An Italian aeronautical engineer and former Chief of the Gas
Dynamics Section at NACA Langley Field who made significant contributions to the the-
ory of supersonic and hypersonic flow, particularly supersonic and hypersonic jet engines,
supersonic combustion, and aerodynamic heating. His book Elements of Aerodynamics of
Supersonic Flows includes original contributions to the theory of oblique shocks, and a
general discussion of conical flow.

Edward Reginald van Driest (1913–2005) An American engineer who carried out research
on boundary-layer transition under von Kármán. He suggested a widely used formula
for the variation of the mixing length in the buffer region of a turbulent boundary layer.
He also studied under Ackeret and made contributions to the understanding of high-
speed aerodynamics, particularly the effect of roughness on transition under supersonic
and hypersonic conditions. Other work concerned isotropic turbulence and the design of
rockets and missiles.
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David Carl Ipsen (1921–2015) An American engineer who made a major contribution to
dimensional analysis, particularly the method of sequential elimination of dimensions,
now called Ipsen’s method.

Sir Bryan Thwaites (1923–) An English applied mathematician who invented the Thwaites
flap and devised an approximate approach to the calculation of laminar boundary-layer
development, known as Thwaites’ method.

Dudley Brian Spalding (1923–2016) An English mechanical engineer whose early research
was concerned primarily with combustion, heat, and mass transfer. Spalding is one of the
pioneers and key developers of computational fluid mechanics and turbulence modelling.
The CFD code PHOENICS was developed under his direction. Spalding’s law-of-the-wall
formula covers the viscous sublayer, the buffer region, and the logarithmic layer. The
Spalding transfer number is a non-dimensional thermodynamic parameter which charac-
terises the rate of diffusion of fuel from a burning fuel droplet. A non-dimensional group
which arises in convective heat transfer for pipe flow is also called the Spalding number.

Pierre Jean Carreau (1939–) A Canadian chemical engineer who has made numerous con-
tributions to the understanding of polymer rheology and the design of mixing systems.
The five-parameter Carreau-Yasuda equation accurately describes the flow curve formany
polymer solutions, polymer melts, and other non-Newtonian liquids.



Appendix 2
Physical properties of selected
gases and liquids, and other
data

Gaps have been left in a number of tables where information could not be found for some
properties of a particular fluid. In a few instances, linear interpolation was used to find the
value of a property at a particular temperature.
The data in Tables A.1 toA.5 have been compiled primarily from Kaye and Laby (1973) and

White (2011).
The data for gases in Table A.6 have been compiled primarily from the online Air Liquide

Gas Encyclopedia (https://encyclopedia.airliquide.com).

Table A.1 The atomic weights and molecular weights of some common elements and molecules,
and their symbols and formulae

Atom Atomic weight Molecule Molecular weight,M

Carbon C 12.011 Air184 28.96

Chlorine Cl 38.453 Butane C4H10 58.12

Fluorine F 18.998 Chlorine Cl2 76.91

Helium He 4.003 Ethane C2H6 30.07

Hydrogen H 1.008 Hydrogen H2 2.02

Nitrogen N 14.007 Hydrogen sulphide H2S 34.08

Oxygen O 15.999 Methane CH4 16.04

Sulphur S 32.066 Nitrogen N2 28.01

Nitric oxide NO 30.01

Nitrogen dioxide NO2 46.01

Oxygen O2 32.00

Pentane C5H12 72.15

Propane C3H8 44.10

Sulphur hexafluoride SF6 146.0

Water H2O 18.02

184 Although air is a mixture of gases (major constituents 78.08% nitrogen, 20.95% oxygen, and 0.93% argon,
and 0.04% carbon dioxide by volume) and not a compound, it is normally treated as a gas with a molecular
weight of 28.96.
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Table A.2 Some universal constants and their symbols and values

Avogadro number (or constant) NA 6.02214 × 1026 molecules/kmol

Boltzmann constant kB 1.3807 × 10–23 J/K (= R/NA)

Speed of light in vacuum c0 2.9979 × 108m/s

Standard acceleration due to gravity g 9.80665m/s2

Universal (or molar) gas constant R 8.3145kJ/kmol.K (= MR)

Table A.3 Physical properties of pure water at 1 atm

t (◦C) ρ (kg/m3) μ (Pa · s) ν185 (m2/s) σ 186 (N/m) pV (kPa) c (m/s)

0 999.8 1.787 E–3 1.787 E–6 0.0757 0.6107 1402

4 1000.0 1.573 E–3 1.573 E–6 0.0749 0.8130 1422

10 999.7 1.304 E–3 1.304 E–6 0.0742 1.2276 1447

20 998.2 1.002 E–3 1.004 E–6 0.07275 2.3384 1482

30 995.7 7.982 E–4 8.016 E–7 0.0712 4.2451 1509

40 992.2 6.540 E–4 6.591 E–7 0.0696 7.3812 1529

50 988.0 5.477 E–4 5.544 E–7 0.0679 12.345 1543

60 983.2 4.674 E–4 4.754 E–7 0.0662 19.933 1551

70 977.8 4.048 E–4 4.140 E–7 0.0644 31.177 1555

80 971.8 3.554 E–4 3.657 E–7 0.0626 47.375 1555

90 965.3 3.155 E–4 3.268 E–7 0.0608 71.120 1550

100 958.4 2.829 E–4 2.952 E–7 0.0588 1.0133 E+2 1542

185 Calculated from the definition ν = μ/ρ.
186 In contact with air.

In Tables A.2 to A.5, the symbols have the following meanings and units

c speed of sound, for perfect gas c =
√
γRT (m/s)

K bulk modulus (Pa)
M molecular weight (kg/kmol)
p pressure (Pa)

pV vapour pressure (Pa)
R specific gas constant, R = R/M (m2/s2 ·K or J/kg ·K)
t temperature (◦C)
T absolute temperature (K)
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tB boiling point (◦C)
γ ratio of specific heats for perfect gas, γ = CP/CV
μ dynamic viscosity (Pa · s)
ν kinematic viscosity, ν = μ/ρ (m2/s)
ρ density (kg/m3)
σ surface tension (N/m)

Table A.4 Physical properties of air at 1 atm

t (◦C) ρ (kg/m3) μ (μPa · s) ν (m2/s) c (m/s)

–40 1.514 0.157 1.04 E–5 306.2

–20 1.395 0.163 1.17 E–5 319.1

0 1.292 0.171 1.32 E–5 331.4

5 1.269 0.173 1.36 E–5 334.4

10 1.247 0.176 1.41 E–5 337.4

15 1.225 0.180 1.47 E–5 340.4

20 1.204 0.182 1.51 E–5 343.4

25 1.184 0.185 1.56 E–5 346.3

30 1.165 0.186 1.60 E–5 349.1

40 1.127 0.187 1.66 E–5 354.7

50 1.109 0.195 1.76 E–5 360.3

60 1.060 0.197 1.86 E–5 365.7

70 1.029 0.203 1.97 E–5 371.2

80 0.9996 0.207 2.07 E–5 376.6

90 0.9721 0.214 2.20 E–5 381.7

100 0.9461 0.217 2.29 E–5 386.0

150 0.8343 0.238 2.85 E–5 412.3

200 0.7461 0.253 3.39 E–5 434.5

250 0.6748 0.275 4.08 E–5 458.4

300 0.6159 0.298 4.84 E–5 476.3

400 0.5243 0.332 6.34 E–5 514.1

500 0.8343 0.364 7.97 E–5 548.8

1000 0.2772 0.504 1.82E–4 694.8
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Table A.5 Physical properties of some common liquids at 20 ◦C and 1 atm

Liquid187 M ρ (kg/m3) μ188 (Pa · s) σ 189 (N/m) tB (◦C) pV (Pa) K (Pa) c (m/s)

Benzene C6H6 78.1 879 6.03 E–4 0.0289(A) 80.1 1.01 E+4 1.4 E+9 1320

Carbon tetrachloride CCl4 153.8 1632 9.12 E–4 0.0270(V) 76.7 1.20 E+4 9.65 E+8 940

Castor oil C57H110O9 938 960 0.7 313 1500

Ethanol C2H5OH 46.1 789 1.08 E–3 0.0224(V) 78.3 5.7 E+3 9.0 E+8 1162

Ethylene glycol C2H6O2 62.1 1110 0.0199 197.3 1339

Freon 12 CCl2F2 126.9 1330 2.63 E–4 –29.8

Glycerol C3H8O3 92.1 1261 1.41 0.0634(A) 182 1.4 E–2 4.39 E+8 1860

Mercury Hg 200.6 13546 1.53 E–3 0.489(V) 357 1.1 E–3 2.55 E+10 1454

Methanol CH3OH 32.0 791 5.43 E–4 0.0225(A) 64.7 1.34 E+4 8.3 E+8 1121

Olive oil 900 0.0607 1.6 E+9 1440

Paraffin oil (kerosene) 804 1.92 E–3 0.028 3.11 E+3 1.6 E+9 1315

Petrol 100 680 2.92 E–4 0.0216 5.51 E+4 9.58 E+8

Pure water H2O 18 998.2 1.00 E–3 0.0728 2.34 E+3 2.19 E+9 1482

SAE 10 W oil 870 0.104 0.036 1.31 E+9

SAE 30 W oil 891 0.29 0.035 1.38 E+9

SAE 150 W oil 902 0.86

Sea water (3.5% salinity) 1025 1.08 E–3 0.0728 100.6 2.34 E+3 2.33 E+9 1522

187 The principal constituent of castor oil is ricinoleic acid. Castor oil, petrol, paraffin oil (kerosene), and SAE oil are all generic terms for blends of miscible oils, either
natural hydrocarbons or synthetic. Since there are wide variations in the composition of these blends, the values of properties listed are representative.
188 For a liquid, there is a significant decrease in dynamic viscosity with increase in temperature (see Section 2.8 and Figure 2.5). Below 100 bar, viscosity is practically
independent of pressure.
189 A = against air; V = against own vapour.
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Table A.6 Physical properties of some common gases at 1 atm190

Gas M ρ μ R191 γ c192

Dry air193 28.96 1.225 1.721 E–5 287.0 1.402 340.4

Argon (Ar) 39.95 1.690 2.102 E–5 208.1 1.670 316.4

n-Butane (C4H10) 58.12 2.544 6.769 E–6 143.1 1.105 213.4

Carbon dioxide (CO2) 44.01 1.871 1.371 E–5 188.9 1.294 265.3

Carbon monoxide (CO) 28.01 1.185 1.652 E–5 296.8 1.401 346.1

Chlorine (Cl2) 70.91 3.04 1.245 E–5 117.3 1.355 214.0

Ethane (C2H6) 30.07 1.282 8.613 E–6 276.5 1.194 308.4

Ethylene (C2H4) 28.05 1.194 9.47 E–6 296.4 1.246 326.1

Helium (He) 4.003 0.169 1.870 E–5 2077 1.667 998.6

Hydrogen (H2) 2.016 0.0852 8.397 E–6 4124 1.405 1292

Methane (CH4) 16.04 0.680 1.025 E–5 518.4 1.306 441.6

Neon (Ne) 20.18 0.853 2.938 E–5 412.0 1.667 444.7

Nitric oxide (NO) 30.01 1.340 1.780 E–5 277.1 1.394 333.5

Nitrogen (N2) 28.01 1.185 1.663 E–5 296.8 1.401 346.1

Nitrogen dioxide (NO2) 46.01 1.947 1.331 E–10 180.7

Nitrous oxide (N2O) 44.01 1.872 1.363 E–5 188.9 1.280 263.9

Oxygen (O2) 32.00 1.354 1.914 E–5 259.8 1.397 323.3

Sulphur dioxide (SO2) 64.06 2.763 1.180 E–5 129.8 1.281 218.8

Sulphur hexafluoride (SF6) 146.06 6.256 1.377 E–5 56.93 1.098 134.2

Water vapour (H2O) 18.00 461.4 9.7 E–6

190 The temperatures are 15 ◦C for ρ,R, and c, 0 ◦C for μ, and 25 ◦C for γ .
191 Calculated from R = R/M.
192 Calculated from c =

√
γRT.

193 Major constituents of dry air by volume: 78.08% N2, 20.95% O2, 0.93% Ar, 0.04% CO2.
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Table A.7 Physical properties of the 1976 Standard Atmosphere; values determined using the
Digital Dutch 1976 Standard Atmosphere Calculator (http://www.digitaldutch.com/atmoscalc/)

(0) Troposphere: 0 to 11 km, 15 ◦C to –56.5 ◦C, lapse rate Γ = 6.5 ◦C/km

z′G (m) T(K) p (Pa) ρ (kg/m3) z′G (m) T (K) p (Pa) ρ (kg/m3)

0 288.15 1.01325 E+5 1.2250 6000 249.15 4.7181 E+4 0.6597

500 284.90 9.5461 E+4 1.1673 6 500 245.90 4.4035 E+4 0.6238

1 000 281.65 8.9875 E+4 1.1116 7 000 242.65 4.1061 E+4 0.5895

1 500 278.40 8.4556 E+4 1.0581 7 500 239.40 3.8251 E+4 0.5562

2 000 275.15 7.9495 E+4 1.0065 8 000 236.15 3.5600 E+4 0.5252

2 500 271.90 7.4683 E+4 0.9569 8 500 232.90 3.3099 E+4 0.4951

3 000 268.65 7.0109 E+4 0.9091 9 000 229.65 3.0743 E+4 0.4663

3 500 265.40 6.5764 E+4 0.8632 9 500 226.40 2.8524 E+4 0.4389

4 000 262.15 6.1640 E+4 0.8191 10 000 223.15 2.6436 E+4 0.4127

4 500 258.90 5.7728 E+4 0.7768 10 500 219.90 2.4474 E+4 0.3877

5 000 255.65 5.4020 E+4 0.7361 11 000 216.65 2.2632 E+4 0.3639

5 500 252.40 5.0507 E+4 0.6971

(1) Tropopause: 11 km to 20 km, isothermal at –56.5 ◦C (216.65 K)

11 000 216.65 2.2632 E+4 0.3639 16 000 216.65 1.0288 E+4 0.1654

11 500 216.65 2.0916 E+4 0.3363 16 500 216.65 9.508 E+3 0.1529

12 000 216.65 1.9330 E+4 0.3108 17 000 216.65 8.787 E+3 0.1413

12 500 216.65 1.7865 E+4 0.2873 17 500 216.65 8.121 E+3 0.1306

13 000 216.65 1.6510 E+4 0.2655 18 000 216.65 7.505 E+3 0.1207

13 500 216.65 1.5259 E+4 0.2454 18 500 216.65 6.936 E+3 0.1115

14 000 216.65 1.4102 E+4 0.2268 19 000 216.65 6.410 E+3 0.1031

14 500 216.65 1.3033 E+4 0.2096 19 500 216.65 5.924 E+3 0.0953

15 000 216.65 1.2045 E+4 0.1937 20 000 216.65 5.475 E+3 0.0880

15 500 216.65 1.1113 E+4 0.1790
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(2) Lower stratosphere: 20 to 32 km, –56.5 ◦C to –44.5 ◦C, lapse rate Γ = –1 ◦C/km

20 000 216.65 5.475 E+3 0.0880 28 000 224.65 1.586 E+3 0.0246

22 000 218.65 4.000 E+3 0.0637 30 000 226.65 1.172 E+3 0.0180

24 000 220.65 2.930 E+3 0.0463 32 000 228.65 8.680 E+2 0.0132

26 000 222.65 2.153 E+3 0.0337

(3) Upper stratosphere: 32 to 47 km, –44.5 ◦C to –2.5 ◦C, lapse rate Γ = –2.8 ◦C/km

32 000 228.65 8.680 E+2 0.0132 47 000 270.65 1.109 E+2 0.0014

40 000 251.05 2.775 E+2 0.0039

(4) Stratopause: 47 km to 51 km, isothermal at –2.5 ◦C

47 000 270.65 1.109 E+2 0.0014 51 000 270.65 66.9 0.0009

50 000 270.65 75.9 0.00098

(5) Lower mesosphere: 51 to 71 km, –2.5 ◦C to –58.5 ◦C, lapse rate Γ = 2.8 ◦C/km

51 000 270.65 66.9 0.0009 70 000 217.45 4.63 0.0001

60 000 245.45 20.3 0.0003 71 000 214.65 3.96 0.0001

(6) Upper mesosphere: 71 km to 84.852 km, –58.5 ◦C to –86.2 ◦C, lapse rate Γ = 2.0 ◦C/km

71 000 214.65 3.96 0.0001 84 852 186.95 0.373 0.0000

80 000 196.65 0.886 0.0000

(7) Mesopause: 84.852 km, –86.2 ◦C
In Section 4.13 the relationship between the geopotential altitude z′G and the geometric

altitude was shown to be

z′G = REz′
RE + z′ ,

RE = 6356 being the radius of the earth. The calculated values of z′ corresponding to z′G for
each layer are as follows

(0) Troposphere: 0 to 11.019 km
(1) Tropopause: 11.019 to 20.063 km
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(2) Lower stratosphere: 20.063 to 32.162 km
(3) Upper stratosphere: 32.162 to 47.350 km
(4) Stratopause: 47.350 to 51.413 km
(5) Lower mesosphere: 51.413 to 71.802 km
(6) Upper mesosphere: 71.802 to 86.000 km
(7) Mesopause: 86.000 km

Not included in the 1976 Standard Atmosphere are the following regions of the upper
atmosphere

Thermosphere: 85 km to 600 km, –120 ◦C to 2000 ◦C
Thermopause: 600 km, 2000 ◦C
Exosphere: 600 km to 10,000 km
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In Chapter 13 we discussed the trends with increasing or decreasing Mach number for
Fanno flow, for isothermal pipe flow with friction, and for Rayleigh flow based upon the
differential equations for these three pipe flows. In this appendix we show how the dif-
ferential equations can be derived from the basic equations presented in Chapter 13. The
key results are highlighted in colour. Where necessary we shall make use of the relations
CP = γR/ (γ – 1) , c2 = γRT,M =V/c, ρV =G= constant, and p = ρRT.

(a) Fanno flow: Adiabatic pipe flowwith friction
For adiabatic flow, q̇′ = 0 so thatT0 = constant, and the energy equation derived inChapter 13,
equation (13.3), simplifies to

CP
dT
dx

+ V dV
dx

= 0. (A1)

If we introduce the relations CP = γR/(γ – 1) , c2 = γRT, and M = V/c, after some algebraic
manipulation, we find

1
T
dT
dx

= 1
c2

dc2
dx

= –

⎡
⎣
(
γ – 1
2
)
M2

1 +
(
γ – 1
2
)
M2

⎤
⎦ 1

M2
dM2

dx
. (A2)

From equation (A1) we have

1
V
dV
dx

= – 1
(γ – 1)M2

1
T
dT
dx

(A3)

so that, after substitution for (1/T) dT/dx from equation (A2),

1
V
dV
dx

=

⎧⎨
⎩ 1
2
[
1 +
(
γ – 1
2
)
M2
]
⎫⎬
⎭ 1

M2
dM2

dx
. (A4)

From ρV = G = constant, we have

1
ρ

dρ
dx

= – 1
V
dV
dx

(A5)

so that

1
ρ

dρ
dx

= –

⎧⎨
⎩ 1
2
[
1 +
(
γ – 1
2
)
M2
]
⎫⎬
⎭ 1

M2
dM2

dx
. (A6)

Appendix 4
Differential equations for
compressible pipe flow
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From p = ρRT, we have

1
p
dp
dx

= 1
ρ

dρ
dx

+ 1
T
dT
dx

(A7)

and, after substitution for (1/ρ) dρ/dx from equation (A6) and for (1/T) dT/dx from equation
(A2), we find

1
p
dp
dx

= –12

⎡
⎣ 1 + (γ – 1)M2

1 +
(
γ – 1
2
)
M2

⎤
⎦ 1

M2
dM2

dx
. (A8)

The stagnation pressure p0 is given by an equation derived in Chapter 11,

p0 = p
[
1 +
(
γ – 1
2

)
M2
]γ /(γ –1)

(11.22)

from which

1
p0

dp0
dx

= 1
p
dp
dx

+ γM2

2
[
1 +
(
γ – 1
2
)
M2
] 1
M2

dM2

dx
. (A9)

After substitution for
(
1/p
)
dp/dx from equation (A8) in equation (A9), and some algebraic

manipulation, we find

1
p0

dp0
dx

= – 1 –M2

2
[
1 +
(
γ – 1
2
)
M2
] 1
M2

dM2

dx
. (A10)

The entropy variation, from equation (11.1) in Chapter 11, is

T ds
dx

= CP
dT
dx

– 1
ρ

dp
dx

(A11)

which can be rewritten as

1
R
ds
dx

= γ

(γ – 1)
1
T
dT
dx

– 1
p
dp
dx

. (A12)

After substitution in equation (A12) for (1/T) dT/dx from equation (A2) and for
(
1/p
)
dp/dx

from equation (A8), we have

1
R
ds
dx

= 1 –M2

2
[
1 +
(
γ – 1
2
)
M2
] 1
M2

dM2

dx
. (A13)

We can see from equations (A10) and (A13) that

1
R
ds
dx

= – 1
p0

dp0
dx

, (A14)

a result which could have been derived directly from equation (A11) since the flow is adiabatic
(i.e. T0 = constant).
The final form for each of the differential equations is arrived at by substituting for(

1/M2)/dM2/dx from equation (13.14), with fF replaced by fF , in equation (A2) for T, (A4)
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for V , in equation (A6) for ρ, in equation (A8) for p, in equation (A10) for p0, and in equation
(A13) for s

1
M2

dM2

dx
=
γM2

[
1 +
(
γ – 1
2

)
M2
]

1 –M2
4fF
D . (A15)

The resulting equations are given in Subsection 13.2.2, as equations (13.18) to (13.22).

(b) Isothermal pipe flowwith friction
Because the static temperature T is now constant, so is the soundspeed c, and a convenient
starting point is the definition of the Mach numberM

M = V
c (A16)

from which

1
V
dV
dx

= 1
2M2

dM2

dx
. (A17)

Equation (A5) is still valid, so that

1
ρ

dρ
dx

= – 1
V
dV
dx

= – 1
2M2

dM2

dx
. (A18)

From p = ρRT, we have

1
p
dp
dx

= 1
ρ

dρ
dx

= – 1
2M2

dM2

dx
. (A19)

The stagnation temperature T0, as defined in Chapter 11, is defined by equation (11.13)

T0 = T + V2

2CP
(11.13)

so that

dT0
dx

= V2

CP
1
V
dV
dx

. (A20)

After division by T0 this gives

1
T0

dT0
dx

=

⎛
⎜⎝

V2

CP

T + V2

2CP

⎞
⎟⎠ 1

V
dV
dx

= (γ – 1)M2[
1 +
(
γ – 1
2
)
M2
] 1V dV

dx

and, after substitution for (1/V) dV/dx from equation (A17),

1
T0

dT0
dx

= (γ – 1)M2

2
[
1 +
(
γ – 1
2

)
M2
] 1
M2

dM2

dx
. (A21)

Equation (A9), derived from the definition of the stagnation pressure p0, is still valid

1
p0

dp0
dx

= 1
p
dp
dx

+ γM2

2
[
1 +
(
γ – 1
2
)
M2
] 1
M2

dM2

dx
(A9)
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and after substitution for
(
1/p
)
dp/dx from equation (A19) in equation (A9) we find

1
p0

dp0
dx

= –

[
1 –
(
γ + 1
2
)
M2
]

2
[
1 +
(
γ – 1
2
)
M2
] 1
M2

dM2

dx
. (A22)

From equation (A11), with T = constant,

ds
dx

= – 1
ρT

dp
dx

(A23)

which leads to

1
R
ds
dx

= – 1
ρRT

dp
dx

= –1p
dp
dx

= 1
2M2

dM2

dx
. (A24)

The final form for each of the differential equations is arrived at by substituting for(
1/M2)dM2/dx from equation (13.39), again replacing fF with fF , in equation (A17) for V ,
in equation (A18) for ρ, in equation (A19) for p, in equation (A21) for T0, in equation (A22)
for p0, and in equation (A24) for s

1
M2

dM2

dx
= – γM2(
γM2 – 1

) 4fFD . (13.39)

The resulting equations are given in Subsection 13.3.1 as equations (13.44) to (13.47).

(c) Rayleigh flow: Frictionless pipe flowwith surface heat
transfer
If we differentiate the perfect-gas equation

p = ρRT (2.9)

we have

1
T
dT
dx

= 1
p
dp
dx

– 1
ρ

dρ
dx

. (A25)

From the mass-conservation equation derived in Chapter 6, equation (6.1), with A =
constant,

ρV = constant

from which

1
ρ

dρ
dx

= – 1
V
dV
dx

. (A5)

Equations (A25) and (A5) combine to give

1
T
dT
dx

= 1
p
dp
dx

+ 1
V
dV
dx

. (A26)

Since the flow is frictionless, the momentum equation derived in Chapter 13, equation (13.1),
reduces to
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dp
dx

+ ρV dV
dx

= 0 (A27)

from which

1
p
dp
dx

= –ρV
2

p
1
V
dV
dx

= –γM2 1
V
dV
dx

. (A28)

Substitution from equation (A28) in equation (A26) then gives

1
T
dT
dx

=
(
1 – γM2) 1

V
dV
dx

. (A29)

FromM = V/c we have

1
M

dM
dx

= 1
2M2

dM2

dx
= 1
V
dV
dx

– 1
c
dc
dx

= 1
V
dV
dx

– 1
2T

dT
dx

. (A30)

Equations (A29) and (A30) can be combined to eliminate dV/dx, with the result

1
T
dT
dx

= –
(
γM2 – 1
γM2 + 1

)
1
M2

dM2

dx
. (A31)

From equations (A25), (A30), and (A31), we thus have

1
V
dV
dx

= – 1
ρ

dρ
dx

=
(

1
γM2 + 1

)
1
M2

dM2

dx
(A32)

and, from equation (A28),

1
p
dp
dx

= –
(
γM2

γM2 + 1

)
1
M2

dM2

dx
. (A33)

Equation (A9), derived from the definition of the stagnation pressure p0, is still valid

1
p0

dp0
dx

= 1
p
dp
dx

+ γM2

2
[
1 +
(
γ – 1
2
)
M2
] 1
M2

dM2

dx
. (A9)

Combining equations (A9) and (A33) then gives

1
p0

dp0
dx

= –
γM2 (1 –M2)

2
(
γM2 + 1

) [
1 +
(
γ – 1
2
)
M2
] 1
M2

dM2

dx
. (A34)

From equation (11.14) for the stagnation temperature T0,

T0 = T
[
1 +
(
γ – 1
2

)
M2
]

(11.14)

we have

1
T0

dT0
dx

= 1
T
dT
dx

+

(
γ – 1
2
)
M2[

1 +
(
γ – 1
2
)
M2
] 1
M2

dM2

dx
. (A35)
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After substitution for (1/T) dT/dx from equation (A31) in equation (A35) we find

1
T0

dT0
dx

= 1 –M2(
γM2 + 1

) [
1 +
(
γ – 1
2
)
M2
] 1
M2

dM2

dx
. (A36)

The entropy variation from equation (A11) is

T ds
dx

= CP
dT
dx

– 1
ρ

dp
dx

(A11)

which leads to

1
R
ds
dx

= γ

(γ – 1)
1
T
dT
dx

– 1
p
dp
dx

. (A37)

After substitution for (1/T) dT/dx from equation (A31) and for
(
1/p
)
dp/dx from equation

(A33) we find

1
R
ds
dx

=
γ
(
1 –M2)

(γ – 1)
(
γM2 + 1

) 1
M2

dM2

dx
. (A38)

The final step is to introduce the energy-conservation equation derived in Chapter 13,
equation (13.3)

q̇′ = ṁCP
dT0
dx

(13.3)

from which we have

1
T0

dT0
dx

=
q̇′

ṁCPT0
(A25)

so that, from equation (A36),

1
M2

dM2

dx
=

(
γM2 + 1

) [
1 +
(
γ – 1
2
)
M2
]

(
1 –M2) q̇′

ṁCPT0
. (A39)

The final form for each of the differential equations is arrived at by substituting for(
1/M2)dM2/dx from equation (A39) in equation (A32) for V and ρ, in equation (A33) for p,
in equation (A36) for T0, in equation (A34) for p0, and in equation (A38) for s. The resulting
equations are given in Subsection 13.4.1 as equations (13.68) to (13.74).



The values here have been collected from a wide range of sources and should be regarded, at
best, as a rough (!) guide as there are very large variations (100%+ in some instances) in quoted
values. Also, in several instances the description of a surface is too vague and subjective to be
of real value, e.g. worn cast iron or moderately corroded carbon steel.

glass 0.3 μm
drawn aluminium, brass, copper, or lead 1–2 μm
PVC 1.5–7 μm
fibreglass 5 μm
flexible rubber tubing 6–7 μm
stretched steel 15 μm
stainless steel 15–30 μm
carbon steel 20–50 μm
sheet metal 20–100 μm
wrought iron 45 μm
commercial or welded steel pipe 45–90μm
slightly corroded carbon steel 50–150 μm
galvanised iron or steel 25–150 μm
sheet or asphalted cast iron 0.10–0.15 mm
moderately corroded carbon steel 0.15–1 mm
rusted steel 0.15–4 mm
cast iron 0.25–1 mm
smoothed cement 0.3–0.5 mm
concrete 0.3–3 mm
reinforced rubber tubing 0.3–4 mm
coarse concrete 0.3–5 mm
worn cast iron 0.8–1.5 mm
riveted steel 0.9–9 mm
badly corroded carbon steel 1–3 mm
rusted cast iron 1.5–2.5 mm

Appendix 5
Roughness heights



There is a very wide choice of text and reference books concerned with fluid mechanics. The
majority are by American authors and tend to be more mathematical than those by British
writers. The small selection below includes those which the author of this book has found to
be the most useful over many years. Those by Bird et al., Chapman and Walker, John and
Keith, Shapiro, Thompson, andWhite (2005) deal with more advanced topics than the others.
Also included are the books by Anderson and by Rouse and Ince concerning the history of
fluid mechanics, and a few books and research papers referred to in the main text.
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A
absolute

coefficient of viscosity 31
gas velocity 381
pressure 87–106, 120, 123, 319
temperature 22–39, 72, 80, 233, 276, 319, 331, 347

added mass 86
adiabatic 38, 113, 115, 164, 165, 275–279, 289–299, 317,

318, 330–357, 379–386, 556–558
lapse rate 113–115

advection 281, 495
adverse pressure gradient 368, 448, 465–483, 504, 505, 526
æolian tones 74, 540
aerofoil 2–13, 70, 137–165, 181, 182, 187, 199, 259, 262,

311, 321–327, 362, 406, 477–487, 526
aerostatics 87
Airbus 11, 239
altitude 9, 11, 12, 21, 25, 27, 41, 42, 91, 92, 109–115, 135,

136, 176, 179, 184, 232, 237, 277, 279, 324, 325, 371,
551

ampere 49
angle of attack 162, 321–32, 363, 484, 486
angular

distortion 398, 399
momentum 215, 378
velocity 31, 51, 377–381, 427, 429, 440–442

apparent
stress 494
viscosity 407

Archimedes’ principle 124–135
Armstrong’s limit 110
atmosphere

(earth’s), see earth’s atmosphere
(Mars) 48

atmospheric
ozone 110
pressure 21, 27, 28, 41, 70, 87, 92, 95, 96, 109, 204–210,

221, 222, 228
stability 113–115

atomic
bomb 61
weight 22, 545

average
flow velocity 170, 171, 406, 413, 419, 421, 433, 434, 437
mechanical pressure 399

Avogadro number 22–33, 73, 119
Avogadro’s law 25
axial-flow

compressor 234, 362–390
pump 362
turbine 234, 362–389
turbomachine (turbomachinery) 259, 262, 362–390

B
backflow 425, 444
back pressure 283–307, 311, 315
bar 53, 91

barometer 93–95
barometric pressure 29, 54, 97, 106, 125, 182, 183,

193–209
base units 49, 52
basic units 48, 66, 67
Bernoulli constant 179–181
Bernoulli’s equation 2, 4, 174–185, 187–211, 221–226,

228–264, 279–280, 290, 297, 371, 448, 471, 473, 484,
486, 536

β – θ –M relation 314
Bingham

number 437, 438
plastic 408, 431–438

biofluid mechanics 10
blade 8, 16, 259, 266, 267, 362–387, 405, 466, 484–486

angle 368, 372, 383–386
chord 367
pitch 367
speed 363, 378–387
stagger angle 368
-tip Mach number 364
twist 363

blading 165, 209, 362–388
Blasius’ equation 445–478
blockage 81, 368
blood 8, 10, 36, 164, 408

cell 164
plasma 10, 164

Bloodhound SSC project 80
blower tunnel 187
blowing 405
bluff body 526–531

drag 526–531
bob 147, 439, 441
boiling 2, 40–42, 94, 164, 209
Boltzmann’s constant 23, 27, 546
Borda-Carnot equation 243, 512–515, 536
boundary condition(s) 405, 406, 416–430, 445–463,

473–476, 499, 500
boundary layer 7–13, 69, 72, 162–164, 300, 405, 411, 421,

425, 445–486, 490–528
approximations 447–450, 465, 499
control 450
equations 445–454, 460–468, 478, 480
friction factor 71
separation 163, 251, 366, 450, 466, 467, 478–485, 526,

528
shape factor, see shape factor
thickness 446, 458–475, 491, 504, 505, 518–523

bow shock 303, 315
bucket 267–269
Buckingham-Reiner equation 437
Buckingham’s� (pi) theorem 57–68, 80, 364
buffer layer 490, 500–504
bulk

-average velocity 506–515
-mean velocity 171
modulus of elasticity 17, 37–39, 275
viscosity 301, 302, 399

Bullet train 12

Index
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buoyancy
equation 91
force 86, 124, 133–137, 147–153

buoyant jet 74
bypass

ratio 239–241
turbofan engine 363

C
Calculator 7, 280–307, 311–327, 335–357, 374–388, 550
calorically perfect gas 23, 278, 354
camber

angle 368
line 368–377

candela 49
capillarity 45, 541
capillary viscometer 438
Carreau-Yasuda model 408, 409
cascade 15–16, 165, 259–262, 362, 380, 496, 512
Casson fluid 408, 431, 438
Cauchy number 72, 75
Cauchy’s equations 391–404
cavitation 2, 40–41, 70, 81, 103, 105, 164, 182, 187,

209–211
number 70, 182, 209

centi 49
centrebody rotation 6, 427
centred expansion fan 317–323
centre of

buoyancy 135, 147–151
gravity 90, 135–152

centrifugal
compressor 362
pump 1, 67, 165, 362

centripetal force 403
centroid 127–151, 553–555
CFD 198
characteristic

length 69, 73, 74, 527
velocity 69, 71

choked flow 292, 295, 338
choking 14, 165, 275, 295, 333, 349

area 99, 306, 383, 387
condition 347–348
length 336–353
limit 374
location 355
state 334

chord 162, 486
length 321, 367, 368

chordline 325, 484
circulation 260, 262, 486, 486, 540
clear-air turbulence 10
coefficient of discharge 190–205
Colebrook-White formula 509–517
combustion chamber 14, 164, 232–234, 262, 363
combustor 239, 363
completely-turbulent flow 510
compressibility 12, 13, 17, 37–39, 60–81, 87, 165, 181, 182,

195, 204, 238, 248, 275–290, 528
compressible 7, 14, 21, 23, 38, 72, 73, 80, 92, 161–172, 179,

232, 233, 275–309, 311–314, 330–360, 362–385, 399,
471, 484, 526

Compressible Aerodynamics Calculator 7, 280, 311, 314,
350

compressible Bernoulli’s equation 279–280
compressible pipe flow 330–361, 556–561
compression 20, 38, 39, 234, 317, 321, 375

compressor 6, 13, 20, 69, 234, 239, 259, 350, 352, 353,
363–381, 466, 484–486

blade 367, 368, 466, 484, 486
rotor 377, 378
stage 6, 20, 239, 366, 368, 378

Computational Fluid Dynamics 198
concentric

annulus 407, 417–429
-cylinder rheometer 441
-cylinder viscometer 31, 32, 441

Concorde 11, 234
condensation 9, 110, 299, 354
cone-and-plate rheometer 442
confuser 189, 191
congruent 452
conservation of

mass 9, 161
momentum 174

consistency index 407, 408
constant-stress layer 499, 503
constitutive equations 391–406, 422
contact

angle 42–45, 100, 101
surface 321

continuity equation 166–172, 174, 184, 187–211, 218–225,
229–265, 278–307, 313, 330, 345, 369, 372, 374, 375,
382, 386, 387, 388, 391–406, 416–425, 447–468,
491–493

continuum hypothesis 17–33, 73, 161, 301, 303, 398, 496
contraction 13, 169, 187–197, 244–248, 512–515
contrail 110
control volume 215–223, 228–269, 277, 330, 331,

369–375, 413–432, 468–470, 517
convective 354, 393, 497
convergent

-divergent nozzle 2, 165, 188, 193, 232, 245, 275,
287–307, 334, 372

nozzle 228–232, 275
Coriolis force 309
corpuscles 10, 164
correctly expanded duct 307
Couette flow 410–429, 441, 490–506
creeping flow 71
critical

area 291
Reynolds number 71, 82, 406, 410, 412, 419, 521, 528,

538
temperature 17, 20

cruise altitude 11
cryogenic 79, 169, 198, 234
cup 439, 441
cylindrical

coordinate 142, 391, 401–407
duct 71, 72, 411, 412–419, 434
-polar coordinate 401, 411

D
d’Alembert’s paradox 485, 536
damping factor 503
Darcy

friction factor 71, 75, 335, 414, 507, 510, 534
-Weisbach friction factor 414, 537

dash notation 453
deadwater zone 197
deca 49
deci 49
deep oceans 108
deflection angle 260, 267, 315
del operator 393
densimetric Froude number 74
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density 10–13, 17–45, 47–82, 88–118, 124–154, 161–172,
174–185, 189–211, 215–226, 228–262, 276–302,
317–322, 330–360, 365–388, 391–402, 414, 415, 471,
472, 486, 491–516, 527, 547

density-stratified flow 538
dependent variable 58–76
depth 10, 13, 21, 28, 54, 73, 89–108, 124–154, 176,

201–210, 251
derivative following the fluid 393
derived units 48–50, 67
design pressure ratio 294
detached shock wave 280, 321
development length 411
deviation 95, 368
diabatic 278
diamond-shaped aerofoil 7, 484
diaphragm pump 362
differential-pressure transducer 99, 184, 189, 203
diffuser 187–200, 226, 241–251
diffusion

coefficient 410
flow 462

dilatant 36, 408
dilation (dilatation) 398–403
dimensional

analysis 1, 11, 14, 47–86, 363–367, 497–508, 531
consistency 53–55, 64, 65
homogeneity 47, 180–184

dimensionless 52
dimensions 25, 32, 47–82, 161, 180, 198, 247, 251, 301,

364, 414
direct dissipation of kinetic energy 495
direct numerical simulation 491
discretisation 491
dispersion of pollutants 11
displacement thickness 459–472, 504, 505, 517
dissipation 164, 192, 193, 243, 495–498, 526, 534
dissociation 22
distortion 398, 399, 406
divergence 191, 294–306, 393
dividing streamline 162, 181
DNS 491, 498
Doppler effect 282
download 199, 200, 487
downstream 13, 169, 187–209, 242–267, 282, 295–306,

312–327, 334–341, 352, 356, 369–371, 432, 466, 484,
513–528

downwash 321
angle 321

drag 7, 13, 54–64, 76–79, 182, 199–201, 259, 261, 321–323,
484, 485, 525, 526

coefficient 60–82, 183, 200, 255, 321, 323, 457, 490,
526–531

crisis 528
force 7, 13, 54, 69–78, 83, 200, 201, 255–263, 321, 457,

472, 484, 523–526
law 519
reduction 36, 531

duct 13, 68–72, 162–177, 215–226, 241–243, 259,
275–304, 315, 330, 374, 401, 410–419, 433–438,
445–460, 490, 513

ducted fan 362
dynamics 35, 139, 286, 399
dynamic

head 184
machine 362
pressure 69–74, 180–183, 230, 243, 255, 279, 366, 513
similarity 47, 75–80, 406
viscosity 11, 17, 19, 30–35, 49–81, 191, 301, 302,

391–406, 438, 516, 527, 547, 548

E
earth’s atmosphere 12, 27, 87, 91, 108–115, 185
eccentric annulus 427
eccentricity 414, 427
eddy viscosity 498, 502
effective

molecular diameter 27–33, 73
pressure difference 107
viscosity 10, 81, 406, 407, 431–442

effusor 287
Einstein’s

mass-energy equation 53
theory of relativity 53

ejector 245–252
elevation 91, 179, 180, 188
empirical drag law 519
empiricism 11, 499
energy 6–13, 35, 49–74, 164, 174–185, 187–193, 243,

246, 277–280, 301, 331, 332, 344, 359, 362–385, 391,
490–526

cascade 496
spectral density 497
spectrum function 497
-conservation equation 183, 188, 331, 332, 349–357,

391, 561
engine core 239, 240
engineering design 1, 14
entrainment 245, 458, 526
entropy 38, 243, 275–279, 295–304, 317, 333, 345–358,

380, 557, 561
change across a shock 299

environmental fluid mechanics 11
equation of state 17–39, 111, 332, 391
Eulerian derivative 393
Euler number 70, 75, 183
Euler’s

equation 174, 179, 279
turbomachinery equation 362, 378–386

evaporation 9, 40, 354, 442
exhaust

gas 8, 11, 233–241, 363
nozzle 233–241

exosphere 73, 109, 110, 552
expansion 13, 241, 244, 317

fan 166, 308, 311–327
pressure loss 243
process 20, 38, 39, 234, 317–323, 375, 385
wave 7, 165, 232, 281, 318–325, 484

exponent method 58, 64–66
extensional strain 398, 407
external flow 11–13, 68–71, 82, 163–166, 178, 276, 281,

315, 405

F
Falkner and Skan equation 445, 461–468, 478, 479, 481
fan 15, 187, 240, 362, 363

angle 317
Fanning friction factor 71, 331–340, 350, 352, 414–424,

507–517
Fanno

flow 165, 280, 330–349, 556
line 332, 344–347

far field 323
favourable pressure gradient 369, 505
Federation Internationale de l’Automobile (FIA) 198
first

coefficient of viscosity 399
law of thermodynamics 9, 12, 183, 277, 537
moment of area 137
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flat-plate
aerofoil 321, 324
boundary layer 446–483, 518–525

floating boom 2
flow

coefficient 364, 365
conditioning 187
control 405
curve 407
energy 246, 278, 379
-induced boiling 209
-induced vibrations 11, 74
separation 368, 369, 425, 448, 512, 527
visualisation 161
work 278

fluid 1–16, 17–45, 47–81, 87–117, 124–147, 161–172,
174–185, 187–209, 215–226, 228–269, 275–309, 311,
330–355, 362–386, 391–409, 410–442, 445–486,
491–527

control volume 219, 222, 226, 228–268
particle 87, 108, 114, 116, 161–168, 174–178, 206, 207,

218, 393, 415, 496
-structure interaction force 216–225, 229–243, 254,

257, 370
fluidic devices 73, 246
fluidity 31
forced convection 405
form

drag 526
factor 472fn162

Formula 1 car 1, 169
fracking 8, 10
free

-body diagram 223
jet 228, 243, 263–268

free stream 446–473, 487, 504
boundary condition 474
turbulence 461, 521, 528
velocity 405, 447–482

free surface 2, 20, 42, 68, 73, 89–103, 117, 118, 132, 135,
201, 263

frictional heating 11, 185
frictionally choked 334
friction 13, 14, 38, 147, 165, 168, 185, 268, 281, 296, 304,

330–353, 366, 371, 484, 511, 522
coefficient 71, 457–476, 504, 505, 518–524
drag 526
factor 70–75, 182, 331–352, 414–424, 457, 507–517
velocity 500, 507

frictionless 106, 164, 165, 179, 188, 189, 207–225,
230–264, 297, 330, 332, 353–359

Froude number 61, 73–75
fully-developed

flow 408–417, 427–442, 446, 447, 515
laminar pipe flow 419, 510
turbulent pipe flow 499–509

fully
-rough regime 509, 510
–turbulent 490, 500, 501

G
Galilean transformation 1, 162, 266, 281, 311
gas (gases) 7–15, 17–44, 60–82, 87–112, 135, 161–165,

181, 182, 185, 188–207, 232–248, 259, 262, 275–306,
330–354, 363–381, 399–413, 427–441, 484–502, 516,
545–552

dynamics 275, 286
-flow angle 368, 372

gas-turbine
-blade 484
-engine 234
-stage 386

gauge pressure 87–107, 125–128, 223, 237, 254
gear pump 362
generalised Newtonian fluid 37, 391, 406–410, 431–438
geometric

altitude 109, 551
similarity 75

geopotential altitude 109–113, 551
Gibbs equation 380
giga 49
gradient

of fluid momentum 35
operator 393

gravity waves 13
ground effect 81
guidevane 14–16, 16, 165, 228, 259–263, 378, 484

H
Hagen-Poiseuille flow 55, 417–419, 439
head 91, 92, 183–184, 243, 516

difference 189, 190
loss 516

heat transfer 1, 15, 38, 49, 75, 88, 115, 165, 277–281, 296,
301, 330, 331, 345, 349–358, 393, 405, 496, 559

hecto 49
Hedstrom number 437
height of

the atmosphere 9, 113
roughness element 508, 510

Herschel-Bulkley equation 438, 442
fluid 431, 438
model 408

Hertz 49
Hiemenz flow 462, 467
honeycomb 187, 191
Hooke’s law 18
Hoover dam 143
hydraulically smooth 510
hydraulic

diameter 68–72, 330, 412–424, 435, 448, 460
fracturing 10
machine 366
radius 133
turbine 8, 15, 143, 209, 266–269

hydrodynamically
rough 508
smooth 509

hydrodynamic
force 14, 125, 166, 172, 215–226, 228, 230, 255
reaction force 223–226, 265, 266

hydroelectric power plant 13
hydrosphere 8, 10
hydrostatics 2, 10, 87–119
hydrostatic

equation 87–116, 138, 178, 194, 201
force 124–154
pressure 91, 116, 117, 124–153, 175, 180, 181, 184, 195

hypersonic flow 72, 281

I
ICAO 109
ideal

fluid 22
gas 22, 108, 111, 233, 234
gas law 111, 234
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impeller 16, 67, 362, 364
Imperial System of Units 48, 52, 53, 87
impinging jet 263–268
impulse turbine 266, 267
incidence 366, 368, 477
inclined

flat plate 263–265, 311, 323–327, 484
shock wave 311
-tube manometer 101–105, 119, 213

incompressible 12, 13, 38, 69–82, 161–172, 174, 182,
187–190, 202, 203, 221, 228–260, 279–297, 362–381,
399, 471, 484, 492, 512, 527

independent variable 58–76
indicial method 64
induced drag 199, 200, 261, 526
inertia

force 73–75
subrange 497

infinite-shear-rate viscosity 408
injector 193, 245–252
inline flowmeter 188, 198, 202
inspection method 66
instability 368
integral

length scale 496, 497
momentum equation 468
thickness 459

interface 42, 68, 74, 96–108
interferometry 162
intermittency factor 490
intermolecular cohesive forces 20, 40
internal

boiling 2, 41
flow 11–16, 68–70, 82, 161–172, 228, 263, 281, 401,

405
shock structure 301

International
Civil Aviation Organisation Standard Atmosphere

(ICAO) 109
Standard Atmosphere (ISA) 109–114
System of Units 7, 47–49

inviscid 17, 164, 172, 174–184, 485
ionosphere 110
Ipsen’s method 58–61
irreversible 276
isentropic

bulk modulus 60, 73–80, 275
compressibility 39, 60
flow 73, 276–306, 319–327, 336–342, 357, 362–388
modulus of elasticity 39
process 38, 39, 73, 80, 115, 276–284, 297, 299, 366

isobar 117
isothermal

choking 348–353
Fanno flow 347
pipe flow with wall friction 330, 332, 347–353, 556–559
process 38, 110, 111, 164, 165, 209, 550, 551

isotropic 399

J
jet 74, 204–208, 242–269, 308, 309, 363, 458,

490
engine 20, 215, 234, 270
propulsion thrust equation 48, 236
pump 14, 15, 165, 228, 245–257

John Hancock Tower 11, 74
joule 49

K
Kármán

line 111
-Nikuradse equation 507, 510
vortex street 528

kelvin 22, 48, 49
kilo 49
kinematic 54, 161–172, 205, 399

eddy viscosity 502
Reynolds stress 494
similarity 76, 406
viscosity 17, 35, 68, 81, 364, 496, 547

kinetic
energy 69, 74, 171, 183–188, 243, 277, 358, 366,

490–496, 526
theory of gases 26–33, 301, 498, 502

Knudsen
number 72–73, 301
regime 73

Kolmogorov length, time, and velocity scales 491–498
Kutta

condition 486
-Joukowski theorem 262

L
Lagrange’s dash notation 453
Lagrangian derivative 393
lamina 410fn128
laminar

boundary layer 7, 405, 445–487, 501, 505, 517–526
flow 14, 72, 82, 191, 400, 406, 410–442, 445, 490–527

laminarisation 526
laminar sublayer 500
Laplacian operator 401
lapse rate 110–115, 550, 551
large-eddy simulation (LES) 498
Laval nozzle 287, 290, 540
law of the wake 490, 518, 526
Law of the Wall 490–505, 541, 544
leading edge 162, 321–327, 458, 459, 484, 486, 521, 523
Le Système International d’Unités 49
lift-associated drag force 484
lift coefficient 70, 183, 486
lift force 2, 7, 70, 136, 137, 182, 261, 262, 484, 486
lifting surface 199, 486
limonene 162
linear

blade cascade 259, 367–377
Couette flow 421, 428, 441
momentum conservation 330, 394
momentum equation 172, 215–226, 228–269, 330,

370–376, 394, 484, 512
sublayer 500

liquefaction 20
liquefy 20, 22
liquid 2–10, 17–45, 54–82, 87–113, 125–148, 161–171,

177, 182, 187–211, 231–234, 245–268, 275, 362,
408–410, 413, 427, 438–442, 516

propellant rocket engine 231–234
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lobe pump 362
Lockheed Martin

F-22 Raptor 11
F35 Lightning 239

log law 490–526
longitudinal strain 409
longitudinal strain rate 403
long-radius elbow 512–517
loss

coefficient 366–367, 490, 511–517
free 164, 193, 200

losses 70, 226, 230, 366, 511–517
low-drag aerofoil 526
lower

atmosphere 10, 73, 109
stratosphere 110, 115, 552

M
Mach

angle 281–283, 317, 320
cone 282
diamond 309
line 315, 317
number 7–13, 47, 61, 71–81, 165, 170, 181, 182, 190,

203, 232, 238, 248, 275–306, 312–325, 332–358,
364–388, 527, 528, 556, 558

wave 281–283, 283f, 317–318
wedge 282

Mach’s construction 281, 282
macroscopic 17, 26
magnetohydrodynamics 394
mainstream 446
major losses 511
manometer 1, 93–104, 184, 189, 202–204
manometry 87–102
Mariana trench 108
Mars Climate Orbiter 48
mass

-flow function 285
flowrate 168–170, 174, 190–195, 207, 216–223,

228–268, 277–307, 330–357, 364–386, 391, 392, 469,
470, 513, 522

-flowrate coefficient 364
flux 330, 392
transfer 450
velocity 330

mass-conservation equation 166–170, 178, 249, 270, 330,
332, 348, 354, 469, 559

material derivative 393, 402, 403
mean-free path, see molecular mean-free path
mean velocity 171, 495–506, 517
mechanical pressure 180, 399
mega 49
meniscus 42, 45, 93
mercury barometer 93, 94
mesopause 110, 115, 551, 552
mesosphere 25, 110, 111, 112, 115, 551, 552
meteorology 9, 109
micro 49
microchannel 25
microfluidics 73, 161
microscale 496, 497, 543
microtechnology 82
milli 49
minor losses 511–517
mixing 62, 108, 110, 164, 245, 250, 496

length 498, 502, 503
zone 250

modulus of
elasticity 17, 37–39, 275
rigidity 17, 18

molar gas constant 22, 276, 546
mole 22–26, 49
molecular

mean-free path 24–28, 33, 73, 300–302, 496
number density 25, 26
weight 21fn5, 22–24, 26, 28, 39, 73, 233, 276, 545,

546
molecule(s) 12, 20–28, 40–44, 161, 277, 300, 498, 502,

545
Mollier diagram 345, 347
moment of momentum 378, 379
momentum

-conservation equation 6, 275, 330, 334, 348, 354, 470
-deficit thickness 460, 487, 504, 518
drag 237
flowrate 171, 215–219, 228–263, 330, 370, 394, 397,

413, 468, 470, 522
flux 397, 410
-integral equation 445, 468–488, 517–525, 542, 543
thickness 460–477, 522–524
-thickness Reynolds number 460, 482, 483, 518–523

Moody chart 510–517
moving flat plate 265, 266
multiphase flow 164
multi-stage

axial compressor 234, 368, 369
axial turbine 369
compressor 378
machine 362, 378
turbine 385

N
NACA 280, 299, 319
nano 49

technology 82
NASA 280
Navier-Stokes equations 60, 391–406, 410–430, 445, 447,

491–496, 517, 526, 537
needle valve 267
newton 29, 40, 49
Newtonian fluid 8, 19, 31–37, 391–406, 410–441, 491
Newton’s

gravitational law 109
law of viscosity 6
laws of motion 9, 126
second law of motion 21, 48, 51, 116, 166, 172, 174,

178, 200, 215–218, 391, 394
third law of motion 126, 216, 484

non-dimensional
group 47–80, 364, 365
parameter 1, 14, 22, 209, 363–366
quantity 22, 48, 366, 433, 472, 473
stream function 454, 455

non-linear 317, 400, 401, 410, 447, 473, 493
non-Newtonian fluid 8, 10, 35–37, 62, 406, 409, 427,

438–442
non wetting 44
normalise 70, 182, 292, 504
normal shock (shockwave) 280, 296–308, 311–315,

334–343, 357
normal strain rate 398
normal stress 87, 394–406, 435, 438, 494, 517
no-slip condition 31, 163–170, 405, 416–436, 445, 446,

473, 474, 486, 500
nozzle ring 16, 259
number density 25, 26
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O
oblique shock (shockwave) 280, 296, 308, 311–327
oceanography 10
oceans 8, 10, 108
offset 427, 512
oil slick 2
one-dimensional flow 165–172, 174–185, 189–208, 215,

242, 244, 275–301, 330, 369, 392
open-return wind tunnel 187
orifice-plate flowmeter 187–198, 514
Oseen’s formula 54–57
Ostwald de Waele power-law model 407, 431
outer layer 504
outer space 9, 25, 111
outer thermosphere 110, 111
overall stagnation-pressure loss 511, 515
overexpanded flow 304–309
ozone layer 110

P
particle 8, 22, 73, 162, 164, 198, 393

derivative 393
pascal 22, 40–52, 87–89
Pascal’s law 87–89
pathline 161–163
Pelton hydraulic turbine 4, 266–269
penstock 267
perfect fluid 17, 22
perfect gas 7, 22, 23, 38, 39, 80, 112, 275–309, 320,

330–360, 362–381, 546, 547
-gas equation (law) 6, 12, 17–24, 27, 112–115, 276–307,

320, 333–357, 374–387, 559
perfectly expanded nozzle 294, 307–309
peristaltic pump 362
phase 8, 20, 161, 164, 286, 354, 442
pico 49
piezometer tube 95–96, 194, 202
piezometric head 92, 185, 189, 190

pressure 92, 179–185, 189, 190
pipe

bend 14, 165, 219–227, 252–257, 512
elbow 512, 513
fitting 511
flow 14, 72, 165, 191, 202, 330–360, 408, 438, 498–510,

556–561
junction 228, 257–259
system 14, 70, 511–517

piston pump 362
pitch 123, 259, 262, 267, 269, 367, 543
Pitot

-static tube 1, 187, 203–204
tube 1, 201–204, 280, 303–304, 315, 458
tube in supersonic flow 303–304

pi (�)-theorem 57–68, 80, 364
plane Couette flow 421–425, 490
planform area 70, 183
plasma 10, 12, 164
plastic

plug 436
viscosity 408, 435, 438

plenum chamber 169, 187
plume 74
Pohlhausen’s velocity profile 445, 476–479
point in a fluid 26, 30, 75, 89
Poiseuille

flow 171, 410–435, 460, 464, 505
number 71–72, 412–424, 435, 438

porous surface 405, 445, 450
positive-displacement machine 362

potential flow 164, 485, 486
power coefficient 365
power-law

exponent 408
fluid 407, 408, 431–435
velocity profile 490, 519–525

power specific speed 366
Prandtl-Meyer

angle 320–326
expansion fan 317–321
function 319

Prandtl number 75, 301
Pratt and Whitney F135, 239
pressure 2–12, 19–44, 47–55, 68–81, 87–118, 124–138,

161–172, 174–184, 187–211, 215–225, 228–268,
275–308, 311–323, 331–352, 363–383, 391–400, 410,
431, 469, 494–496, 511

change 38, 184, 352, 366, 371, 432
coefficient 70, 75, 183
difference 13, 42, 55, 67–75, 91–119, 136, 137, 182–184,

189–248, 364, 411, 421–429, 439, 517
drag 526
gradient 90, 116, 136, 368, 369, 412–425, 436, 445–485,

503–505, 525, 526
-gradient parameter 423, 424, 445–481, 505, 526
loss 70, 183–185, 191–198, 225, 241–245, 490, 511–517
-loss coefficient 192
recovery 241, 244, 294
surface 162
tapping 196, 203, 537

prime notation 453
principle of conservation of mass 161, 167
principle of conservation of momentum 174
principle of dimensional homogeneity (or

consistency) 47–65, 174–184
product of inertia 140
profile drag 484, 526
profile methods of solution 473–483
Project Thrust supersonic car 39
propellant 231–234, 408
pseudoplastic 36, 407

Q
quasi-

linear 401
steady flow 207

R
ram effect 237
Rankine-Hugoniot relation 297, 538
RANS equations 490, 494, 495, 499
rarefaction shock 316, 317
rate of deformation 17, 19, 30
Rayleigh

flow 165, 278, 280, 330, 332, 353–359, 556–561
line (or curve) 332fn98, 359f, 360
exponent method 64–66
supersonic Pitot formula 304

reaction
force 215–226, 228–266
turbine 266, 386

rectilinear cascade 367
reference

condition 91, 332
fluid 29

region of influence 282
regular elbow 512
reheat 236
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Reiner-Rivlin equation 444
relaminarisation 526
relative atomic mass 22
relative density 17, 29–30, 152
relative Mach number 380, 383, 384, 387
relative molecular mass 22
relative roughness 510, 516
relative stagnation enthalpy 379–387
relative stagnation pressure 380–387
relative stagnation temperature 379–387
relative wind 484
representative

area 69
length 71
shock thickness 301

reservoir conditions 284
rest mass 53
restraining force 216, 225, 228, 233
return bend 512
reversible 115, 275, 276, 279, 297, 380
Reynolds

-averaged Navier-Stokes equations 490, 494
decomposition 490–493, 525
stress 490–498, 525
-stress equation 495–498

Reynolds number 14, 54–82, 188–199, 242, 332, 334, 364,
406, 410–438, 448, 460, 464, 482, 486, 490–528

rheology 8
rheometer 31, 32, 429–442
rheopecty 409
Rocketdyne RS-25 Space Shuttle Main Engine 234
rocket engine 14, 15, 165, 215, 228–236
rolling road 1, 81, 198
Rolls-Royce

Olympus 593, 236
Trent XWB 239, 240

Roots blower 362
rotational

Reynolds number 68
speed 32, 51, 62–69, 366–384

rothalpy 379–389
rotodynamic machine 362
rotor 16, 262, 267, 362–389
roughness height 495, 508–510, 562
runner 266–269, 362

S
sand-grain roughness 509
saturated vapour pressure 40, 45, 94, 103, 182, 209, 210
saturation

table 209
temperature 40–41

Saturn V booster 231
scale factor 75
scaling 47, 75–83

complications 79–81
length 452–457

Schlieren technique 162
Schultz-Grunow drag law 519
screw pump 362
second 49
secondary flow 245–251, 366, 442, 512
second coefficient of viscosity 399
second law of thermodynamics 297, 316, 317
second moment of area 142, 553–555
self-excited flow oscillations 74
separation point 466, 483
sequential elimination of dimensions 58–69

settling chamber 187
shadowgraphy 162
shape factor 472–477, 504, 526
shear flow 408, 436, 490, 500, 508
shearing 10, 162, 321, 391
shearing stress 391
shear

layer 458
modulus 18
rate 19, 30–37, 398–409, 431–442
-strain rate 398, 407
stress 11, 17–19, 30–37, 70–75, 87, 116, 182, 215, 216,

242, 246, 330, 331, 391–408, 413–442, 448–484,
494–526

thickening 36, 37, 408, 433–439
thinning 10, 36, 37, 407, 408, 427–439

shock 276, 280, 296–327, 334–343, 356–357
analysis 296–300
diamond 309
expansion theory 311, 321–327
strength 298–299, 304
thickness 300–303
wave 7, 33, 72, 79, 164, 165, 275–281, 295–309, 311–327

short-radius elbow 512
SI unit 7, 20, 24, 30, 47–53, 66, 78
similarity 47, 75–80, 406, 445, 452, 462, 481

variable 452, 462
simple pendulum 54, 147
single-phase fluid 161, 164, 190
skin-friction

coefficient 71, 457, 463, 464, 465, 471, 476, 504–505,
518–519, 524

drag 526
parameter 479

slip surface 321
solid 8, 11, 13, 17–20, 36–45, 71, 72, 124, 126, 152,

162–164, 198, 233, 234, 263, 282, 405, 416, 442, 445,
446, 500, 502, 526

solidity 368
solid-propellant rocket engine 233
sonic boom 322
sonic condition 232, 236, 275–294, 319–358
sonic point 345, 358
soundspeed 11–14, 17–22, 33–40, 60–80, 170, 182, 203,

238, 278–307, 318–327, 332–357, 364–388, 527, 546,
558

space shuttle 12, 231–234
Spalding’s formula 503, 504
spatial-average conditions 165, 171
spatial-average velocity 171, 506
spear valve 267
specific

enthalpy 276–277, 331, 345, 347, 379–380
entropy 38, 275–276, 299, 300, 317, 333, 345t, 345,

351t, 355, 358, 380
gas constant 22–23, 39, 111, 233, 276, 332, 364, 546
gravity 29
heat at constant pressure 23, 39, 276, 331
heat at constant volume 23, 39, 276
-heat ratio 28, 33, 39, 110, 275–280, 301, 322, 332, 364,

368, 547
internal energy 277, 380, 539
speed 366
stagnation enthalpy 331, 345
turbulent kinetic energy 494, 497, 498
volume 17, 29, 277, 345
weight 29, 30

speed of light 53, 546t
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speed of sound 11–14, 17–22, 33–40, 60–80, 170, 182, 203,
238, 278–307, 318–327, 332–357, 364–388, 527, 546,
558

spillway tunnel 209
square brackets 50
stability 96, 107–115, 124, 147–153

analysis 151, 410, 429
stable

equilibrium 110, 147–152
flow 410

stage 6–16, 20, 234, 239, 259, 362–386
stagger angle 368
stagnation

conditions 181, 285–299, 336
enthalpy 277, 331, 345, 366, 379, 385
point 162, 181, 201, 462–467, 477–486
pressure 72, 180–182, 188–211, 230, 231, 241, 243–264,

280–306, 317–325, 333–358, 364–387, 511–517, 557,
558, 560

pressure loss 191, 241, 245, 511–515
temperature 287–306, 317, 318, 328, 332–358, 364–387,

558, 560
stall 163, 368, 485, 486
standard

atmosphere 21, 95, 109–115, 550, 552
atmospheric pressure 109
elbow 517, 533

static
equilibrium 42, 100, 126–136, 147, 153, 215–230,

233–240, 254, 257, 265
head 184
pressure 28, 70, 111, 180–184, 187–205, 215-226,

228–268, 276–308, 311–327, 330–358, 368–387,
413–432, 446–470, 484–486, 491, 504, 516, 526, 528

-pressure difference 189, 198, 243, 245, 516
-pressure recovery 241, 244

stator 16, 259–266, 362–387
steady flow 9, 74, 161–172, 174–184, 206–207, 266, 281,

330, 406, 469, 510
steady-flow energy equation 6, 9, 277, 278, 280, 331
Stokes’

assumption 399
constitutive equations 391, 399, 403, 406, 422
flow 71–72
formula 55

strain rate 391–407
strake 74
stratification 10, 108
stratified 108
stratopause 110–115, 551, 552
stratosphere 11, 25, 110–115, 551, 552
stream function 453–455, 458
streamline 69, 161–172, 174–184, 204–211, 242, 278, 279,

303, 410, 446, 458–466
-displacement effect 460
flow 410

streamlined 163, 321, 526, 530
streamsurface 162
streamtube 162–168, 174–184, 217
streamwise distance 215, 411, 418, 446–464, 504, 521, 524

pressure gradient 421, 461, 476, 484, 503, 523–6
Reynolds number 518–523

strong shock 298, 314–320
strong-shock solution 314, 315
Strouhal number 74, 75
styling 1
subcritical flow 74, 528

submerged jet 263
subsonic

diffuser 290
Fanno flow 336–343
flow 41, 232, 280, 281–304, 321, 322, 334–339, 349,

373, 484–487
nozzle 290

substantial derivative 393
substantive derivative 393
suction 193, 209, 210, 405, 450

surface 162, 163, 484, 485
sudden

contraction 512–515
enlargement 228, 241–246, 512–515

supercharger 15, 362
supercritical flow 528, 528fn187
superfluid 17
supersonic

aerofoil 165, 166f, 321–327
diffuser 290
Fanno flow 339–340, 341, 343
flow 72, 248, 275–323, 330–358
nozzle 290
Pitot tube 303

surface
pitting 209
roughness 68, 461, 490, 495, 508–528
shear stress 71, 182, 215, 242, 251, 421, 438, 448, 464,

469, 484, 496, 507–526
tension 17, 42–45, 61–75, 100–103, 164, 547

surge 368
Sutherland’s formula 32–33
swirling motion 10, 187–199
swirl velocity 429

T
Tacoma Narrows bridge 11
Tait equation 29, 108, 538
Taylor

-Couette flow 427–429
microscale 497
number 410, 419, 429

Tds equation 276, 380
tee junction 490, 511–513
tera 49
thermal 9, 10

boundary layer 405
conductivity 22, 301–310, 410
thermal diffusion 75
energy 35, 185, 331, 353–358
equation of state 22

thermally-perfect gas 22, 23
thermodynamic pressure 180, 275, 399
thermodynamics 1–16, 29, 49, 183, 275–286, 297, 316,

317
thermofluids 49
thermosphere 110–119, 552
θ – β –M relation 313
thixotropic 37
thixotropy 36, 409
throat 188–211, 232, 287–309
thrust 4, 48, 231–246, 363

equation 236, 237
Thrust SSC 12, 39
Thwaites’ method 478–483
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torque 32, 215, 268, 364, 379, 429–442
coefficient 365

Torricelli’s formula 205
total

derivative 116
enthalpy 277
head 184
pressure 180–185, 188, 205, 208, 279
stagnation-pressure loss 515–516
strain rate 407
temperature 278, 279, 358

trailing
edge 321–325, 368, 486, 523
vortex 199

transition 20, 275, 409, 460–461, 510, 521–528
transitional

flow 82, 490, 491
-roughness regime 509

transonic 12, 72, 281
transpiration cooling 405, 450, 504
transport property 410
Trinity Test 62
trip 528
tropopause 110–115, 550, 551
troposphere 109–112
turbine 4–15, 69, 143, 165, 209, 234, 239, 266–269,

362–369, 379–388, 466, 484
blade 259, 405, 466, 484
rotor 377
stage 239, 363–386

turbocharger 15, 362
turbofan engine 4, 11, 12, 15, 165, 228–241, 363
turbojet engine 11, 15, 234–237
turbomachine (turbomachinery) 13, 15, 16, 69, 215, 259,

262, 362–388
turboprop engine 234
turboshaft engine 234
turbulence 10, 14, 187, 461, 490–511, 521–528

modelling 490–511
scales 491–498

turbulent dissipation 243, 498
turbulent flow 82, 171, 188, 406, 460, 490–531
turbulent kinetic energy 490, 494–498, 521, 526
turbulent kinetic-energy dissipation rate 495,

498
turbulent kinetic-energy equation 490–497
turbulent mixing 496
turn angle 311
turning

angle 311–327, 368, 386
vane 259

24 Heures du Mans 77
two-dimensional flow 281, 377, 431, 446–469, 487, 499,

501, 517

U
underexpanded

jet 232, 308, 309
nozzle 304–308

units of measurement 47–82
universal gas constant 23, 27, 39, 40
universal velocity distribution 500
unstable flow 410, 419, 429, 448, 460, 527,

528
upper stratosphere 110, 115, 551, 552
upwash 321
upwash angle 325, 327
U.S. Standard Atmosphere 109
U-tube manometer 1, 96–100, 101, 203

V
vacuum 9, 87, 285
van Driest’s damping factor 503
vane 362

pump 362
vaporisation 41
vapour 8, 17, 19, 20, 41, 42, 82, 87, 109, 110, 164, 165, 195,

209, 275, 516, 548, 549
pressure 17, 40, 41, 70, 87, 94, 95, 103, 105, 182,

209–211, 546
vector quantity 174, 216–221, 377
velocity

deficit 459
distribution 171, 191, 415–437, 455, 459, 490, 500–526
profile 202, 433, 445–481, 500-506, 518-525
triangle 377–390

vena contracta 197, 198, 514, 515
Venturi tube 187–211, 215, 232, 241
Virginia Tech Compressible Aerodynamics Calculator

7, 280, 311, 314, 350
virtual origin 523, 524
viscid 17
viscoelastic (viscoelasticity) 10, 36, 409, 438
viscometer 31, 32, 429, 438–442
viscoplastic 408, 438
viscosimeter 429
viscosity 6–14, 17, 19, 30–37, 47–8, 161–165, 185,

188–195, 215, 242, 263, 301, 302, 364, 391–409, 410,
411, 422–442, 445–461, 484, 486, 496–516, 527, 547

viscosity-affected region 446
viscous 6–8, 14, 17–19, 35, 62–75, 163f, 164, 171, 185, 243,

276–304, 322, 391–409, 410–415, 429, 441, 445, 446,
484, 490–510

viscous boundary layer 164, 405, 484
viscous diffusivity 35
viscous length scale 500
viscous sublayer 490, 500–510
volatility 41, 93
volumetric

distortion 398
(volume) flowrate 55, 67, 168, 174, 177, 190–206, 225,

249–252, 352, 353, 413–438, 458, 506, 516
von Kármán’s

constant 501, 502
momentum-integral equation 445, 468–472

vortex sheet 321

W
wake 69, 74, 199, 458, 490, 504, 525, 526, 528

function 504–506, 521
wake (-strength) parameter 504, 505, 518, 525

wall 70, 162–168, 204, 209, 215, 242, 296, 330–353, 411,
419, 434, 455, 465–483, 490–524

-friction velocity 500, 507
jet 458, 490
variables 500

watt 49
wave

angle 311–327
drag 13, 322, 323, 526
motion 13

wavenumber 497
wavespeed 74
weak shock 298, 301, 314–326
weak-shock solution 314, 315
Weber number 61, 73, 75
wedge angle 323, 325, 461, 464
wedge flow 445, 461–468, 478–483
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wetted 44, 215, 413
perimeter 413
surface 216–225, 413, 416, 484

wetting 44
Whittle, Sir Frank 234
wholly-turbulent flow 510
wing

planform 487
span 69, 71

Y
yield 61
yield stress 36, 37, 408, 435, 438

yocto 49
yotta 49

Z
zero

-pressure-gradient boundary layer 445, 448, 462, 475,
518–524

shear-rate viscosity 408
zone of

action 282
silence 282
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