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Preface

Clinical development of new drugs (or new biologics) can be broadly divided into
four phases: Phases I, II, III, and IV. The first 3 phases are considered as
“pre-marketing development,” and Phase IV is known as the “post-marketing”
phase. For the pre-marketing clinical development programs, concerns for devel-
oping agents treating life-threatening diseases, such as cancer, are different from
concerns for other indications. In oncology development programs for treating
cancer patients, typical Phase I trials recruit cancer patients and escalate doses to
help find the maximally tolerable dose (MTD). Then, this MTD is used in Phase II
for proof of concept (PoC) and for Phase III confirmatory trials.

On the other hand, in most of the product candidates developed for the treatment
of chronic diseases or non-life-threatening conditions, Phase I clinical trials recruit
healthy normal volunteers, and the main objectives of Phase I are to understand the
pharmacokinetics (PK) and to estimate MTD. Phase II clinical trials are designed to
establish PoC and to estimate the efficacy dose range. After these exploratory
phases (Phase I to explore PK and upper limit of dose range, Phase II to explore
lower limit of dose range), Phase III uses large-scale confirmatory clinical trials
with an objective to establish the longer-term efficacy and safety of this new can-
didate product. If the dose(s) studied in these Phase III trials demonstrate efficacy
and safety, then these doses can be approved by regulatory agency for indicated
patient population use. The focus of this book is on the Phase II development of
medicinal products treating most non-life-threatening indications, oncology gen-
erally excluded (although some of the material may be relevant to oncology trials).

In practice, most of the new compounds or new biologics fail to become a
successful medical intervention. Hence, an appropriate angle to view clinical
development could be to think of it as a weeding out process. In other words, if a
product candidate does not demonstrate clinical efficacy or safety, then this can-
didate should be stopped for further development. From this point of view, an
efficient clinical development process should be such that if the candidate is a
successful drug, then this drug should be made available for treating patients as
soon as possible. On the contrary, if this candidate is not a successful agent, then it
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should be stopped from further development as early as possible, in order to avoid
unnecessary sponsor investment and resources.

The difficult question is how to achieve both objectives. We believe the most
efficient process of new drug development should align with the concept of “design
to stop.” Using this strategy, the project team uses every clinical trial to weed out
the drug candidate under development. This is the most efficient way of ensuring an
unsuccessful candidate to be stopped at the earliest stage. The natural question
would then be “What about the successful candidates?” In fact, a good drug reveals
its good properties under most simple designs. Across all the successful drugs on
the market, most of them revealed their good efficacy and safety characteristics at
very early stage of clinical development. In other words, with the “design to stop”
strategy, it is very unlikely to weed out a very good product candidate.

For study drugs developed to treat a non-life-threatening condition, before it
enters Phase II, it is not known whether this study drug can deliver the expected
efficacy (because efficacy cannot be observed from healthy volunteers in Phase I).
At the end of Phase II, a critical decision must be made as to whether to continue
developing this test drug into Phase III, which implies an enormous amount of
commitment in investment and resources. Given this background of medicinal
product development, project team members need to know that among all of the
product development processes, no other step could be more important and critical
than Phase II.

The objective of this book is to clarify the importance of Phase II clinical
development and also to lay out the key thinking process in designing and ana-
lyzing of each Phase II clinical study. With a clear understanding of the importance
of Phase II, as well as how to face these challenges in new product development,
readers will be able to design the most efficient Phase II clinical trials. As a product
candidate moves into Phase II, these strategies will maximize the likelihood that a
“not so good” candidate will be weeded out as early as possible and that the really
good product can reach to the patients as soon as possible.

As a general note, the references for each chapter are at the end of the chapter so
that the readers can readily refer to the chapter under discussion. Thus, each chapter
is self-contained with respect to references. The first seven chapters focus on design
of Phase II clinical trials, and then, Chaps. 8–10 discuss analysis of these clinical
data. Finally, Chap. 11 covers a Bayesian approach, and Chap. 12 lays out Phase III
trial considerations.

The entire content of this book is intended solely and strictly for educational and
pedagogical purposes. The material herein expresses the views of the authors and
does not in any way reflect the views of their employers or any other entity.

We would like to express our gratitude to many individuals. Thanks to Hannah
Qiu (Springer/ICSA Book Series coordinator) from Springer Beijing for their
professional support to make this book published at Springer (http://www.springer.
com/series/13402).

We welcome any comments and suggestions on typos, errors and future
improvements about this book. If such an exchange, please contact Dr. Naitee Ting
(e-mail: naitee.ting@boehringer-ingelheim.com) as the corresponding author and,
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if desired, Drs. Ding-Geng Chen (e-mail: DrDG.Chen@gmail.com or dinche-
n@email.unc.edu), Shuyen Ho (e-mail: shuyenho@gmail.com), and Joseph C.
Cappelleri (e-mail: joseph.c.cappelleri@pfizer.com).

Ridgefield, CT, USA Naitee Ting, Ph.D.
Chapel Hill, NC, USA/Pretoria, South Africa Ding-Geng Chen, Ph.D., M.S.
Durham, NC, USA Shuyen Ho, Ph.D.
Groton, CT, USA Joseph C. Cappelleri, Ph.D., M.P.H., M.S.
January 2017
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Chapter 1
Introduction

1.1 Background

Most of the drugs available in pharmacy started out as a chemical compound or a
biologic discovered in laboratories. A chemical compound is a relatively smaller
molecule synthesized in a laboratory, while a biologic tends to be a large molecule
extracted from living bodies such as plant or animal tissues (Morrow 2004). When
first discovered, this new compound or biologic is denoted as a product candidate.
Medicinal or therapeutic product development is a process that starts when the
product candidate is first discovered and continues until it is available to be pre-
scribed by physicians to treat patients (Ting 2003, 2006). A compound is usually a
new chemical entity synthesized by scientists from pharmaceutical companies,
universities, or other research institutes. A biologic can be a protein, a part of a
protein, DNA or a different form either extracted from tissues of another live body
or cultured by some type of bacteria. In any case, this new compound or new
biologic will have to go through the product development process before it can be
used by the general patient population.

The product development process can be broadly classified into two major com-
ponents: non-clinical development and clinical development. Non-clinical develop-
ment includes all product testing performed outside of the human body. Non-clinical
development can further be broadly divided into pharmacology, toxicology, and
product formulation. In these processes, experiments are performed in laboratories or
pilot plants. Observations from cells, tissues, animal bodies, or product components
are collected to derive inferences for potential new products. Chemical processes are
involved in formulating the new compound into drugs to be delivered into human
body. In contrast, clinical development is based on experiments conducted in the
human body. Clinical development can be further divided into Phases I, II, III, and IV.
Clinical studies are designed to collect data from normal volunteers and subjects with
the target disease in order to help understand how the human body acts on the product
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candidate and, in addition, how the product candidate helps patients with the disease
or leads to any potential adverse events.

A new chemical compound or a biologic can be designated as a product can-
didate because it demonstrates some desirable pharmacological activities in the
laboratory. At the early stage of product development, the focus is mainly on
evaluating cells, tissues, organs, or animal bodies. Experiments on human beings
are performed after the candidate passes these early tests and looks promising.
Hence non-clinical development may also be referred to as pre-clinical develop-
ment since these experiments are performed before human trials.

Throughout the whole product development process, two scientific questions are
constantly being addressed: (1) Does the product candidate “work”? and (2) Is it
safe? Starting from the laboratory where the compound or biologic is first dis-
covered, the candidate has to go through lots of tests to see if it demonstrates both
efficacy (the candidate works) and safety. Only the candidates passing all those tests
are allowed to progress to the next step of development. In the United States (US),
after a drug candidate passes all the essential non-clinical tests, an Investigational
New Drug (IND) document is filed with the Food and Drug Administration (FDA).
After the IND is accepted, clinical trials (tests on humans) can then be performed. If
this product candidate is shown to be safe and efficacious through Phases I, II, and
III clinical trials, the pharmaceutical company will file a New Drug Application
(NDA) to the FDA in the US. For a biologic, the application is known as Biologic
License Application (BLA). If the NDA or BLA is approved, the medicinal product
can then be available for general public consumption in the US. Often times the
approved product is continually studied for safety and efficacy, for example, in
different subpopulations or for regulatory required commitments. These
post-marketing studies are generally referred as Phase IV clinical trials.

1.2 Non-clinical Development

1.2.1 Pharmacology

Pharmacology is the study of the selective biological activity of chemical sub-
stances on living matters. A substance has biological activities when, in appropriate
doses, it causes a cellular response. It is selective when the response occurs in some
cells but not in others. Therefore, a chemical compound or a biologic has to
demonstrate these activities before it can be further developed. In the early stage of
product testing, it is important to differentiate an “active” candidate from an “in-
active” candidate. There are screening procedures to select these candidates. Two
properties of particular interests are sensitivity and specificity. Sensitivity is the
conditional probability that the screen will classify it as positive (active), given that
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a compound or a biologic is truly active. Specificity is the conditional probability
that the screen will call a compound or a biologic negative, (not active) given that it
is truly inactive. Sensitivity and specificity involve tradeoffs; however, in the ideal
case, their values are to be high and as close to one as possible.

Quantity of these pharmacological activities may be viewed as the product
potency or strength. The estimation of product potency by the reactions of living
organisms or their components is known as bioassay. Bioassay is defined as an
experiment for estimating the potency of a drug (biologic), material, preparation, or
process by means of the reaction that follows its application to living matters
(Finney 1978).

1.2.2 Toxicology/Product Safety

Product safety is one of the most important concerns throughout all stages of
product development. In the pre-clinical stage, product safety needs to be studied
for a few different species of animals (e.g., mice, rabbits, rodents). Studies are
designed to observe adverse product effects or toxic events experienced by animals
treated with different doses of the product candidate. Animals are also exposed to
the product candidate for various lengths of time to see whether there are adverse
effects caused by cumulative dosing over time. These results are summarized and
analyzed using statistical methods. When the results of animal studies indicate
potentially serious adverse effects, product development is either terminated or
suspended pending further investigation of the problem.

Depending on the duration of exposure to the product candidate, animal toxicity
studies are classified as acute studies, subchronic studies, chronic studies, and
reproductive studies (Selwyn 1988). Usually the first few studies are acute studies;
that is, the animal is given one or a few doses of the product candidate. If only one
dose is given to each animal during the entire study, it can also be called a
single-dose study. Only those product candidates demonstrated to be safe in the
single-dose studies can be progressed into multiple-dose studies. Single-dose acute
studies in animals are primarily used to set the dose attempted in chronic studies.
Acute studies are typically about two weeks in duration. Repeat dose studies of 30–
90 days duration are called subchronic studies. Chronic studies are usually
designed with more than 90 days of duration. These studies are conducted in
rodents and in at least one non-rodent species. Some chronic studies may also be
viewed as carcinogenicity studies since the rodent studies consider tumor incidence
as an important endpoint. In addition, reproductive studies are carried out to assess
the candidate’s effect on fertility and conception; such studies can also be used to
study product effect on the fetus and developing offspring.
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1.2.3 Formulation Development

As discussed earlier, a potential new product can be either a chemical compound or
a biologic. If the product candidate is a biologic, then the formulation is typically a
solution which contains a high concentration of such a biologic, and the solution is
injected into the subject. On the other hand, if the potential product is a chemical
compound, then the formulation can be tablets, capsules, solution, patches, sus-
pension, and other forms. There are many formulation issues that require statistical
analyses. The formulation issues that stem from chemical compounds are more
likely to involve widely used statistical techniques, to account for various settings in
performing these experiments.

A drug is the mixture of the synthesized chemical compound (active ingredients)
and other inactive ingredients designed to improve the absorption of the active
ingredients. How the mixture is made depends on results of a series of experiments.
Usually these experiments are performed under some physical constraints, for
example, the amount of supply of raw materials, capacity of container, size and
shape of the tablets. In the early stage of product development, product formulation
needs to be flexible so that various dose strengths can be tested in animals and in
humans. In non-clinical development stage or in an early phase of clinical trials, the
product candidate is often supplied in powder form or as solutions to allow flexible
dosing. By the time the product candidate progresses into late Phase I or early
Phase II, then fixed dosage form such as tablets, capsules, or other formulations are
more desirable.

The dose strength depends on both non-clinical evidence and clinical evidence.
The product formulation group works closely with laboratory scientists, toxicolo-
gists and clinical pharmacologists to determine the possible dose strengths for each
product candidate. In many cases, the originally proposed dose strengths will need
to be changed depending on results obtained later from Phase II studies. These
formulations are developed for clinical trial usage and are often different from the
final formulation used in clinical practice. After the new product is approved for the
market, final formulation should be readily available for distribution.

1.3 Pre-marketing Clinical Development

If a compound or a biologic passes the selection process from animal testing and is
shown to be safe and efficacious to be tested in humans, it progresses into clinical
development. In product development for human use, the major distinction between
“clinical trials” and “non-clinical testing” is the experimental unit. In clinical trials,
the experimental units are live human beings, whereas in “non-clinical testing” the
experimental units are non-human subjects. As mentioned earlier, the results of
these non-clinical studies will be used in the IND submission prior to the first
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clinical trial. If there is no concern from FDA after 30 days of the IND submission,
the pharmaceutical company can then start clinical testing for this drug candidate.

An IND is a document that contains all the information known about the new
drug up to the time the IND is prepared. A typical IND includes the name and
description of the drug (such as chemical structure and other ingredients), how the
drug is processed, information about any pre-clinical experiences relating to the
safety of this test drug, marketing information, and past experiences or future plans
for investigating the drug both in the US. and in other countries. In addition, it also
contains a description of the clinical development plan (CDP). Such a description
should contain all of the informational materials to be supplied to clinical inves-
tigators, signed agreements from investigators, and the initial protocols for clinical
investigation.

Clinical development is broadly divided into four phases: Phases I, II, III, and
IV. Phase I trials are designed to study the short-term effects; for example, phar-
macokinetics (PK, what does a human body do to the drug), pharmacodynamics
(PD, what does a drug do to the human body), and the upper bound of dose range
(maximally tolerated dose, MTD) for the new product. Phase II trials are designed
to study the efficacy of the new product in well-defined patient populations, often
with dose-response relationships as one of the major objectives. Phase III studies
are usually longer-term, larger-scale studies to confirm findings established from
earlier trials. These studies are also used to detect adverse effects caused by
cumulative dosing. If a new product is found to be safe and efficacious from the first
three phases of clinical testing, in the US, an NDA or a BLA is submitted to FDA
for review. Once the new product is approved by FDA, Phase IV (post marketing)
studies are planned and carried out. Many of the Phase IV study designs are dictated
by the FDA to examine safety questions; some designs are used to establish new
uses or indications.

1.3.1 Phase I Clinical Trials

In a Phase I PK study, the purpose is usually to understand PK properties and to
estimate PK parameters (e.g., AUC, Cmax, Tmax, terms to be described in the next
paragraph) of the test drug. In many cases, Phase I trials are designed to study the
bioavailability of a drug or the bioequivalence among different formulations of the
same drug. “Bioavailability” means “the rate and extent to which the active drug
ingredient or therapeutic moiety (such as the metabolite of interest) is absorbed and
becomes available at the site of drug action” (Chow and Liu 1999). Experimental
units in such Phase I studies are mostly normal volunteers. Subjects recruited for
these studies are generally in good health.

A bioavailability or a bioequivalence study is carried out by measuring drug
concentration levels in blood or serum over time from participating subjects. These
measurements are summarized into one value per subject per treatment period.
These summarized data are then used for statistical analysis. Figure 1.1 presents a
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drug concentration-time curve. Data on this curve are collected at discrete time
points. Typical variables used for analysis of PK activities include area under the
curve (AUC), maximum concentration (Cmax), minimum concentration (Cmin),
time to maximum concentration (Tmax), and others. These variables are computed
from drug concentration levels as shown in Fig. 1.1. Suppose AUC is used for
analysis, then these discretely observed points are connected (for each subject under
each treatment period) and the area under the curve is estimated using a trapezoidal
rule. For example, AUC up to 24 h for this curve is computed by adding up the
areas of the triangle between 0 and 0.25 h, the trapezoid between 0.25 and 0.5 h,
and so on, and the trapezoid between 16 and 24 h. Usually the AUC and Cmax are
first transformed using a natural log transformation before being included in the
data analysis.

Statistical designs used in Phase I bioavailability studies are often cross-over
designs where, for instance, a subject is randomized to be treated with formulation
A first and then treated with formulation B after a “wash-out” period; another
subject may be randomized to formulation B first and then treated with A after
wash-out. In some complicated Phase I studies, two or more treatments may be
designed to cross several periods for each subject. Advantages and disadvantages of
cross-over designs are discussed in Chow and Liu (1999). Response variables,
including AUC and Cmax, are usually analyzed using analysis of covariance
(ANCOVA) models. Random effects and mixed effects linear/nonlinear models are
also commonly used in the analysis for Phase I clinical studies. In certain designs,
covariate terms considered in these models can be very complicated in order to
assess various contributing sources of variations.

Fig. 1.1 Example of a time-concentration curve
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1.3.2 Phase II Clinical Trials

Phase II trials are designed to study the efficacy and safety of an experimental or
investigational product. Unlike Phase I studies (except for life-threatening diseases),
Phase II studies include patients with the disease that the product is developed for.
Response variables considered in Phase II studies are mainly clinical efficacy
variables and safety variables. For example, in a trial for the evaluation of hyper-
tension (high blood pressure), efficacy variables are blood pressure measurements.
For an anti-infective trial, response variables can be the proportion of subjects cured
or time to cure for each subject. Phase II studies are mostly designed with parallel
treatment groups (in contrast to cross-over treatment groups). Hence if a patient is
randomized to receive dose A of the test product, then this patient is planned to be
treated with dose A of this product throughout the entire study.

Phase II trials are often designed to compare one or a few doses of a test product
against a placebo control. These studies are usually shorter term (e.g., several
weeks) and designed with a small or moderate sample size. Patients recruited for
Phase II trials are somewhat restrictive, that is, they tend to be with a certain disease
severity (e.g., moderate severity), without other underlying diseases, and are not on
background treatments. In practice, Phase III trials tend to relax the inclusion/
exclusion criteria so that a more heterogeneous patient population can be recruited.
The two major types of Phase II clinical trials are proof of concept (PoC) trials and
dose-ranging trials. A typical PoC trial includes two treatment groups—placebo and
a high dose of the test (experimental) product. The high dose is typically the
maximal tolerated dose (MTD) or a dose that is slightly below the MTD.
A dose-ranging trial usually includes multiple doses of test product and placebo.
One typical dose-ranging trial uses placebo, low dose, medium dose, and high dose
of the test product. Again, PoC trials and dose-ranging trials tend to be parallel
designs with fixed doses. Some Phase II trials can have both the PoC part and the
dose-ranging part. From a dose-ranging point of view, the objective of Phase I
should be to help exploring the upper limit of dose range (MTD), and Phase II
should be to help finding the lower limit of dose range. This lower limit is also
known as minimum effective dose (MinED). More details of these trials will be
thoroughly covered in later chapters of this book.

1.3.3 Phase III Clinical Trials

Phase III trials are longer term (can last up to a few years), larger scale (several
hundreds, thousands, or even tens of thousands of patients), with less restrictive
patient populations (patient characteristics are more heterogeneous), and often
compared against a known active comparator (or, in some cases, placebo) for the
disease to be studied. Phase III trials tend to be confirmatory trials designed to
verify findings established from earlier studies.
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Statistical methods used in Phase III clinical studies can be different from those
used for early Phase or non-clinical studies. Statistical analyses are selected based
on the distribution of the variables and the objectives of the study. Many Phase I
analyses tend include descriptive, estimates and patterns observed. In Phase III,
categorical data analyses are frequently used in analyzing binary data (e.g., number
of subjects responded, number of subjects developed a certain condition, or number
of subjects improved from “severe symptom” to “moderate symptom”). Survival
analyses are commonly used in analyzing time-to-event data (e.g., time to dis-
continuation of the study medication, time to the first occurrence of a side effect,
time to cure).

T-tests, regression analyses, analyses of variance (ANOVA), ANCOVA, and
mixed effects models with repeated measures (MMRM) are useful in analyzing
continuous data (e.g., blood pressure, grip strength, forced expiration volume,
number of painful joints). In some cases, non-parametric analytical methods are
selected because the sample size is quite limited to rely on the central limit theorem
when the data do not fit any known parametric distribution well. In some other
cases, the raw data are transformed (e.g., log-transformed, summarized over time)
before a statistical analysis is performed in order to meet the distributional
assumptions of the model. A combination of various statistical tools may sometimes
be used in a product development program. Hypothesis tests are often used to
compare results obtained from different treatment groups. Point estimates and
confidence intervals are also frequently used to estimate subject responses to a
study medication or to demonstrate equivalence between two treatment groups.

In many recent Phase III clinical development programs, enriched trial design or
multi-regional clinical studies become more common. For these types of Phase III
clinical trials, subgroup analyses can be useful, and these considerations will have
to be incorporated at the design stage. It is important to understand that, for product
approval, if a given dose that was studied in replicated Phase III studies demon-
strates efficacy and safety, then that dose would be considered approvable. In order
to help the regulatory agencies with a better understanding of the benefit/risk
relationship of the medicinal product under study, it is helpful to incorporate the
key efficacy and safety endpoints in the study. Frequently, FDA encourages
sponsors to set an “End of Phase II” meeting with FDA in order to review and
discuss Phase III trial designs, and possibly the entire Phase III development
program.

1.3.4 Clinical Development for Products Treating
Life-Threatening Diseases

In clinical development programs, concerns for products to treat life-threatening
diseases can be very different from those for the development of compounds or
biologics to treat other diseases/conditions. Cancer is a life-threatening disease, and
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some of the concerns in developing products treating cancer are used as an example
in this section. In the early stage of developing a cancer therapy, patients are
recruited to trials under open label treatment with test product and some effective
background cancer therapy. Traditional cancer treatments such as chemotherapy are
usually cytotoxic (the therapies kills tumor cells but is also toxic to ordinary cells
and tissues). Hence it is not ethical to recruit healthy normal volunteers to test the
study product at Phase I. Because the experiment units are patients with cancer, it
would not be ethical to use placebo control. Under these circumstances, typical
Phase I cancer trials tend to be open label, dose escalation designs. These clinical
studies focus on finding MTD and exploring biomarkers.

Typical oncology development programs start out with dose-escalation designs
to find out MTD in Phase I. After that, the MTD is used to design Phase II trials in
order to achieve proof of concept. Before entering Phase II, it is important to
identify the type(s) of cancer the product will be indicated for, and patients with the
targeted cancer type will be recruited to study product efficacy and safety. If the
clinical or radiological response can be established from these Phase II trials, then
the concept is considered proven, and the development program will continue into
Phase III. Under the oncology development programs, dose-ranging studies or dose
finding studies are not typically used in Phase II. The major challenge of these
programs tends to be finding the right tumor type or finding the right patient
population, instead of finding the right dose. Most oncology treatments are dosed at
MTD for the Phase III or Phase IV trials. Therefore most of the discussions covered
in this book may not necessarily be directly applicable to development programs in
oncology.

Identification of biomarkers can be an important task in developing therapies for
treating cancer. It is typical that cancer patients with a specific biomarker tend to
respond better to a particular class of treatments. Hence certain oncology clinical
development programs are planned with an enrichment strategy. An enriched
patient population for a given clinical trial can be thought of as a trial recruiting
patients with a specific characteristic—such as having a particular gene marker or a
particular tumor type. In some cases, medicinal products for oncology are approved
for the target patient population before large scale Phase III studies are completed
because of unmet medical needs. When this is the case, additional clinical studies
may be sponsored by National Institute of Health (NIH) or National Cancer
Institute (NCI) in the US.

There are many statistical, methodological, and conceptual considerations in
products developed for oncology, and these issues tend to be specific to the
oncology therapeutic area (Crowley and Hoering 2012; Green and Benedetti 2012).
However, Phase II clinical development programs for oncology products tend to
assume that the MTD would be the target dose for clinical efficacy. Usually after the
concept is proven from Phase II, such a dose would be used for Phase III devel-
opment. This is different from the Phase II development programs for products
treating chronic diseases. Typical product development programs for non-oncology
products study a range of doses in Phase II, before engage in Phase III. Phase II
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considerations in this book will include proof of concept (PoC) and dose-ranging
studies. Discussions related to PoC studies could be similar between oncology and
non-oncology development programs.

1.3.5 New Drug Application/Biologics License Application

When there is sufficient evidence to demonstrate that a new drug or biologics is
efficacious and is safe, an NDA or BLA is compiled and submitted by the sponsor
to the FDA for a decision on product approval in the US. An NDA/BLA is a huge
package of documents describing all of the results obtained from both non-clinical
experiments and clinical trials. A typical NDA/BLA contains sections on proposed
product label, pharmacological class, foreign marketing history, chemistry, manu-
facturing and controls, nonclinical pharmacology and toxicology summary, human
pharmacokinetics and bioavailability summary, microbiology summary, clinical
data summary, results of statistical analyses, benefit/risk relationship, and others. If
the sponsor intends to market the new drug in countries other than the US, then
packages of documents will need to be prepared for submission to those corre-
sponding countries, too. For example, a New Drug Submission (NDS) needs to be
filed to Canadian regulatory agency and a Marketing Authorization Application
(MAA) needs to be filed to the European regulatory agencies. Recently a common
technical document (CTD) can now be prepared for all agencies to review. An
electronic version of CTD is also known as eCTD.

An NDA/BLA package usually includes not only individual clinical study
reports but also combined study results. These results may be summarized using
meta-analyses or pooled data analyses on individual patient data across studies.
Such analyses are performed on efficacy data to produce Summary of Clinical
Efficacy (SCE, also known as Integrated Analysis of Efficacy—IAE) and on safety
data to produce the Summary of Clinical Safety (SCS, also known as Integrated
Analysis of Safety—IAS). These summaries are important components of an
NDA/BLA. Nowadays, almost all NDA/BLA submissions are filed electronically.
Electronic submissions usually include individual clinical data, programs to process
these data, and software/hardware to help reviewers from FDA or other regulatory
agencies in reviewing the individual data as well as the whole NDA package.

1.4 Clinical Development Plan

In the early stage of a product development program, as early as in the non-clinical
stage, a clinical development plan (CDP) should be drafted. This plan should
include clinical studies to be conducted in Phases I, II and III. The CDP should be
guided by the draft product label. The draft label provides detailed information of
how the product should be used. Hence a draft label at the early stage of product
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development lays out the target profile for the product candidate. Clinical studies
should be designed to obtain information that will support this given target product
profile.

One of the most important aspects of labeling information is the recommended
regimen for this new product. The regimen includes dosage and dose frequency. In
the early stage of product development, scientists need to predict the dosage and
frequency as to how the medicinal product will be labeled. Based on this prediction,
the clinical development program should be designed to obtain necessary infor-
mation that will support the recommended regimen. For example, if the product will
be used with one fixed dose, then the CDP should propose clinical studies to help
find that dose. On the other hand, if the drug will be used as titration doses, then
studies need to be designed to evaluate the dose range for titration.

In addition to dose, dosing frequency deserves evaluations. Patients with chronic
diseases tend to take multiple medications every day. Many patients may prefer a
once-a-day (QD) drug or a twice-a-day (BID) drug. In early development of a new
drug, suppose the best marketed product for the target disease is prescribed as a
twice-a-day drug, and preliminary information of this test product indicates it will
have to be used three or more times a day. Then the CDP needs to include studies
for re-formulating the test product so that it can be used as a twice a day or even
once a day drug, before it can be progressed into later phase development.

A CDP is an important document to be used during the clinical development of a
new product. As a candidate progresses in the clinical development process, the
CDP should be updated to reflect the most current information about the product
and, depending on the most recent findings at the time, the sponsor can assess
whether a new version of product label should be drafted. In case a new draft of
label is needed, the development plan should be revised so that studies can be
planned to support the new product label.

The overall clinical development process can be viewed in two directions as
shown in Fig. 1.2. The forward direction is a general scientific process—as more
data and information are accumulated, the project team knows more about the
product candidate and can use this information to design subsequent studies, in
order to progress the candidate along in its clinical development. Such planning,
however, is based on the draft product label, which is driven by the backward
direction of the process. From the draft label, there is a target product profile
(TPP) for the candidate. The difference between a label claim and the TPP can be
described as follows:

Claim—A statement of treatment benefit. A claim can appear in any section of a
medical product’s regulatory-approved labeling or in advertising and promotional
labeling of prescription drugs and devices.

Target product (TPP)—A clinical development program summary in the context of
labeling goals where specific types of evidence (e.g., clinical trails or other source of data)
are linked to the targeted labeling claims or concepts.

Depending on documented product properties found on the label, the sponsor
needs to have Phase III studies to support such claims. In order to collect
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information to help design those Phase III studies, data need to be available from
the corresponding Phase II or Phase I studies. Therefore the thinking process is
backward by first looking at the draft label emanating from the draft target profile
first and then preparing the CDP according to the draft label and supportive target
profile.

1.5 Patient-Centered Outcomes

1.5.1 Clinical Outcome Assessments

A clinical outcome assessment (COA) directly or indirectly measures how patients
feel or function and can be used to determine whether a treatment has demonstrated
efficacy or effectiveness. COAs can also measure safety outcomes of the inter-
vention itself or relative to another intervention. COAs measure a specific concept
(i.e., what is being measured by an assessment, such as pain intensity) within a
particular context of use. The context of use, which describes important boundaries
or criteria under which the COA is relevant, typically includes the following ele-
ments: disease, injury, impairment or condition being treated (e.g., neuropathic
pain); patient population demographics (e.g., age, disease severity, language, cul-
ture, education); and clinical treatment objectives and plan of care (e.g., reduction in
pain intensity over three months with the experimental treatment administered
daily) (Cappelleri and Spielberg 2015).

Of the four types of COAs (patient, clinician, non-clinician observer, and per-
formance), the first 3 of these depend on the implementation, interpretation, and
reporting from a rater on a patient’s assessment—a rater being a patient, clinician,
or non-clinician observer. The fourth type of a COA—performance outcomes—
involves no rater judgment but is still considered a COA (and not, say, a biomarker)

Forward:  Accumulating information

Backward: Planning Based on Label

Pre -clinical Phase I Phase II Phase III Drug label 

Fig. 1.2 Clinical development process
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because, like the other three COAs, it centers on active patient performance of a
task (or activity) or on subjective assessments regarding aspects of a patient’s health
status. Thus, COAs involve volitionally performed tasks or subjective assessments
of health status that are patient-focused or centered (Cappelleri and Spielberg
2015).

1.5.2 Patient-Reported Outcomes

Patient-reported outcome assessments have a patient as rater and rely on
patient-provided responses to questions that are directly captured, without any
interpretation or judgment on the part of anyone else. An example is a patient’s
self-report on a pain scale from 0 (no pain) to 10 (worst possible pain). Responses
can be captured in several ways such as on paper, electronic forms, or by an
interviewer (without interviewer’s interpretation of responses).

Patient-reported outcomes are an umbrella term that includes a whole host of
subjective outcomes such as pain, fatigue, depression, aspects of well-being (e.g.,
physical, functional, psychological), treatment satisfaction, health-related quality of
life, and physical symptoms such as nausea and vomiting. While the term
“health-related quality of life” (HRQoL) has been frequently used instead of PRO,
HRQoL has a broad and encompassing definition that consumes a whole array of
health attributes collectively, including general health, physical functioning,
physical symptoms and toxicity, emotional functioning, cognitive functioning, role
functioning, social well-being and functioning, sexual functioning, among others.
As a more suitable term than HRQoL, PROs accommodate health questionnaires
whose objective is to measure a patient’s health, be it HRQoL, symptom, satis-
faction with treatment, functioning, well-being—whatever the purpose—from his
or her perspective rather than from a physician, caretaker, or biological measure
(Cappelleri et al. 2013).

Patient-reported outcomes are often relevant in studying a variety of conditions
—including pain, erectile dysfunction, fatigue, migraine, mental functioning,
physical functioning, and depression—that cannot be assessed adequately without a
patient’s evaluation and whose key questions require patient’s input on the impact
of a disease or a treatment. After all, who knows better than the patient him or
herself? To be useful to patients and other decision makers (e.g., clinicians,
researchers, regulatory agencies, reimbursement authorities), who are stakeholders
in medical care, a PRO must undergo a validation process to confirm that it is
reliably and accurately measuring what it is intended to measure.

In general, the same clinical trial design principles that apply to directly
assessable clinical endpoint measures (be they clinician-based or biologically-
based), such as blood pressure, also apply to PROs. Although not necessarily
unique to PROs, at least five characteristics tend to be associated with PROs
(Fairclough 2004; Cappelleri 2013). One characteristic is that, by definition, PROs
require the patient’s active participation, resulting in the potential for missing data
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from not only missed assessments on an entire PRO but also non-response of some
items on a PRO used in a clinical study. A second characteristic is that, being
subjective and not an objective endpoint like death, PROs require their measure-
ment properties to be assessed, leading to additional steps of validation (reliability
and validity) prior to their analysis on treatment effect.

A third characteristic, related to the second one of subjectivity, is that special
steps and methods may be needed to enhance the interpretation of PROs. A fourth
characteristic is that most PROs are multidimensional and hence produce multiple
scores on various aspects of what is being measured, engendering multiple com-
parisons and testing of outcomes that need to be at least methodologically con-
sidered and possibly statistically addressed. The fifth characteristic is that the
outcomes are generally repeated over time, calling for methods that effectively
handle longitudinal data in the context of the research question. These character-
istics may also pertain to other types of COA (clinician-reported outcomes,
observer-reported outcomes, performance outcomes).

Identifying which components of a PRO measure (as well as other COA mea-
sures) are relevant to measuring the impact of a disease or effect of a treatment are
essential to good study design and subsequent scientific scrutiny. Successful
measurement of PROs begins with the development of a protocol to provide a guide
for the conduct of the study. The protocol provides not only key elements of the
study design but also the scientific rationale and planned analysis for the study,
which are inextricably linked to study design. It is advisable to include a new or
existing PRO measures (or other COA measures) as early as possible in the clinical
development program.

A Phase II trial is well-suited to examine the measurement properties of a PRO
measure in the targeted population. The validation process of a PRO instrument in
Phase II involves whether the instrument is measuring the concept of interest
(validity) and whether it is doing so dependability (reliability). Importantly, the
responsiveness (within-group change) and the sensitivity (between-group change)
of a PRO measure should be ascertained in Phase II before going into a confir-
matory Phase III trial. Modification to and testing of an instrument should occur
during the Phase II stage in order to mitigate the risk of an unacceptable instrument
in Phase III, where it might be too late to make changes to the instrument. An
exception occurs when the PRO instrument is already “qualified” (meaning it has
been blessed a priori for use in a potential label claim by a regulatory agency) but
even here it would be useful to better understand the measurement properties of the
instrument in Phase II trials and Phase III trials.

For a treatment benefit to be meaningful, there should be evidence that the PRO
(and COAs in general) under consideration effectively measures the particular
concept (or construct or attribute) that is studied. Generally, findings measured by
PROs and other COAs may be used to support claims in approved medical product
labeling when the claims are derived from adequate and well-controlled investi-
gations—Phase II trials and Phase III trials—in which PROs measure specific
concepts accurately and as intended. Such PROs can be developed and assessed in
accordance with regulatory guidances from the FDA (2009) and the European
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Medicines Agency (EMA 2005). Even if the intent is not to seek a label claim, at
least some elements from these guidance documents will be helpful for question-
naire development and assessment.

Both the EMA and the FDA have provided guidance on the qualification process
for drug development tools (DDTs) (EMA 2009; FDA 2010). These guidances on
DDTs can serve as a complementary adjunct to the guidance on PROs for label
claims to ensure expeditious review of the new measure for use in clinical trials and
potential product labeling. All too frequently, innovative and improved DDTs are
delayed, which results in missed opportunities for ensuring DDTs are adequate for
allowing product labeling; hopefully these new DDT processes will help with this
situation.

If a DDT is qualified, analytically valid measurement on it can be relied upon to
have a specific use and interpretable meaning in drug development. The objective is
to develop innovative and improved DDTs that can help streamline the drug
development process, improve the chances for clinical trial success, and yield more
and better information about treatment or disease or both. Once a DDT is qualified
for specific use, industry can use the DDT for the qualified purpose during drug
development and FDA/EMA reviewers can be confident in applying the DDT for
the qualified use without the need to reconfirm the DDT’s utility.

Because the validation of PROs (and COAs in general) is an ongoing process,
multiple protocols with each having its specific purpose may often be necessary.
A protocol for a study, be it a clinical trial or a method study, should contain several
essential elements: the rationale for the specific aspect of PRO being measured,
explicit research objectives and endpoints, rationale for timing of assessments and
non-compliance off-study rules, rationale for instrument selection, details for
administration of PRO assessments to minimize bias and missing data, sample size
estimation, and analytic plan (Fairclough 2004, 2010; Cappelleri et al. 2013).

A method study protocol involves by definition methodological considerations,
such as which measurement properties of a PRO will be tested, and these consid-
erations will define the design of the study. For example, if an objective is to obtain
test-retest reliability data, data should be collected on at least two occasions.
Contrary to a clinical trial design, which includes a pre-selected diseased population
at baseline, method studies may not involve any treatment and may include a
variety of subjects from healthy to severely ill for whom a PRO is designed to
assess. It is advisable to have a methods study at around the same time as the
Phase II program and before the Phase III program, where it may be too risky and
too late to modify the instrument.

1.6 Post-marketing Clinical Development

An NDA/BLA serves as a landmark in the development of a drug or a biologic. The
development process does not stop when an NDA/BLA is approved, however.
Instead, objectives of the process are changed after the product is approved and is
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available on the market. Studies performed after the product is approved are typ-
ically called post-marketing studies, or Phase IV studies.

One of the major objectives in post-marketing development is to establish a
better safety profile for the new product. Large-scale safety surveillance studies are
very common in Phase IV. Subjects/patients recruited in Phases I, II, and III are
often somewhat restricted (e.g., patients would have to be within a certain age
range, gender, disease severity or other restrictions). However, after the new pro-
duct is approved and is available for the indicated patient population, every indi-
cated patient with the underlying disease can be exposed to this product. Problems
related to safety that have not been detected from the pre-marketing studies (Phases
I, II, and III) may now be observed in this large, general patient population.

Another objective of a Phase IV trial is for the sponsor to increase the market
potential for the new product by demonstrating additional benefits such as by
establishing economic value and improvement in COAs such as PROs. Studies
designed to achieve these objectives include humanistic (COA) studies (previously
discussed in Sect. 1.5) and pharmacoeconomic studies. Such studies are often
referred to as “outcomes research” studies. While these studies definitely have a
place in Phase II and III, they also certainly have a placed in Phase IV.

Pharmacoeconomic studies are designed to study the direct and indirect cost or
resource utilization (or both) of treating a disease (Drummond et al. 2005; Glick
et al. 2005). In these studies, costs or resource utilization (e.g., hospital visits) of
various FDA approved drugs are compared. Direct costs may include the price of
the medication, expenses for monitoring the patient (physician’s charge, costs of lab
tests, and so on), costs for treating side effects caused by a treatment, hospital
charges, and other items. Indirect costs may include worker loss in time or pro-
ductivity and so forth. Utilities on health status obtained from Phase III trials can be
used for “effectiveness” in a cost-effectiveness model, which is typically performed
as part of the Phase III or Phase IV program. Cost-effectiveness analysis is used for
successful market access (Muennig 2007). By showing that the new product overall
costs less than another marketed product from a different company, or cost more but
with a much greater benefit, the pharmaceutical or the biotech company (also
known as sponsor) can increase the competitive advantage by marketing this new
product.

Results obtained from “outcomes research” studies (both humanistic studies and
pharmacoeconomic studies) can be used by the pharmaceutical company to pro-
mote or at least augment the new product profile. For example, if the new product is
competing against another product treating the same disease or condition, the
company may be able to show the new product improved the patient’s quality of
life beyond the improvement provided by the competing medication. The company
may also be able to demonstrate that the new product brought overall savings to
both the patients and the insurance carriers based on results from pharmacoeco-
nomic studies. These studies can help expand the medical value of the new product
and thereby increase the market potential for it.

Finally, another type of study frequently found during the post-marketing stage
is the study designed to use the same new product for additional indications
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(symptoms or diseases), expanding its use to other subpopulations of patients.
A product developed for disease A may also be useful for disease B, but the
pharmaceutical company may not have sufficient resources (e.g., budget, man-
power) to develop the product for both indications at the same time. In this case, the
sponsor may decide to develop the product for disease A to obtain approval for it to
be on the market first and later develop it to treat disease B. There are also other
situations that this strategy can be useful. Phase III and IV studies designed for
“new indications” are quite common.

Occasionally in post-marketing studies, we may see that a product is efficacious
at a lower dose than the dosage recommended in the product label. This lower dose
tends to provide a better safety profile. When this is the case, product label could be
changed to include the lower dose as one of the recommended doses. On the other
hand, it may happen that the recommended dose may work for many patients, but
the dose is not high enough for some other patients. When this is the case, a dose
increase may be necessary for some patients. Based on Phase IV clinical trials, if
there is a need to label a higher dose, the sponsor would seek approval from
regulatory agencies to modify the product label so that a higher dose of the product
can be allowed for prescription.

Patient-reported outcomes (and other COAs) have merit that go beyond satis-
fying regulatory requirements for a US. label claim (Doward et al. 2010). Results
from Phase IV trials, as well as Phase II and III trials, can have value even when
they do not appear in a label claim. Payers both in the United States and Europe,
clinicians and patients themselves all have an interest in PROs that transcend a label
claim for PROs and other COAs. These key stakeholders help to determine the
availability, pricing, and value of medicinal products. And PROs can provide
complementary and supplementary evidence distinct from other clinical outcomes
in shaping the overall profile of a medical intervention. The publication of results
from a well-developed PRO scale based on a well-conducted clinical study, from
Phase II to Phase IV, can identify distinguishing clinical aspects, favorable and not
favorable, about the treatment or disease (or both) relevant to stakeholders
(Cappelleri et al. 2013).

1.7 Product Label

Throughout the entire product discovery and development process, a vast amount of
data are collected and analyzed. These data were observed from molecules, cells,
tissues, organs, animals, analytical laboratories, raw materials, processed batches,
pilot plants, blood samples, urine samples, and human beings. All of these data are
summarized, analyzed, and reported for each individual experiment or each indi-
vidual clinical trial. All of the reports are then organized into integrated summary
documents, and these documents then become components of an NDA or a BLA.
The highest level of summary for all of these data is organized into a product label.
Another way to view this is that the entire NDA or BLA could be thought of as a
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pyramid where the bottom of the pyramid includes all of the raw data, the second
level includes data are organized into study reports, the third level converts these
reports into integrated summary documents and, eventually, the top of the pyramid
contains the most condensed information, which is the product label.

A product label serves many purposes. The most important objective of a label is
to communicate the product information to healthcare professionals. Physicians and
other healthcare professionals need to know the efficacy and safety of a medicinal
product so that a benefit/risk balance can be delivered to patients. Another
important objective of a product label is to educate patients regarding how to use
the product and what types of adverse events a patient may anticipate while taking
this product. Hence the label serves as a communication tool to educate physicians
and patients regarding the characteristics of a medicinal product.

Yet another objective of the label is to reflect the competitive advantage of the
product. Usually for a given indication, there could have been several medicinal
products available on the market. Hence for a new product to enter the market
place, the product’s sponsor needs to communicate with patients, healthcare pro-
fessionals, and payers (such as insurance companies) why this new product should
be used and its comparative advantage over competing products.

A label is finalized after intensive discussion between the regulatory agency and
the sponsor. Note that, from a sponsor’s point of view, an ideal product label would
apply one single label across all over the world. In reality, however, such a situation
(?) very rarely happens. This is because the fact that label negotiation is performed
between the sponsor and each regulatory agency. From a regulatory point of view,
the approval of any specific product means that the approved product will be
marketed in the country where the agency is responsible to regulate. Since each
country has its own distinctive set of circumstances—type of medical practice,
products available for treating the same disease or condition, size of patient pop-
ulation, demographic characteristics, common co-morbidities, and so forth—most
of the product labels are different at different countries based on the judgment from
their regulatory bodies.

The product label must be finalized after a new product completes the
pre-marketing development process but before it receives regulatory approval and is
ready for indicated patient population use. Label negotiation between the sponsor
and the regulatory agency takes place shortly before product approval. Nonetheless,
it is advised to start planning the draft label early in the clinical development
program. The draft product label evolves over time, taking several modifications
and iterations, to reflect the most current understanding of the candidate under
development. Eventually at the time of submission, a proposed label is included as
part of the package. Regulatory agencies typically focus on the evaluation of the
product itself and only after the decision is to approve the product does planning for
label negotiation take priority and highest relevance.

From a sponsor’s point of view, a good label should satisfy two criteria: (1) the
label needs to help the product to be approvable and, then after the product is
approved, (2) the label should help the clinicians to prescribe the product to help
patients. Hence evidence that supports the approvability of a product can be
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considered mandatory for eligible and legal market access, while evidence that
supports the prescribability of a product can be considered essential for patient care.
The ideal draft label should be designed with both sets of features in consideration.

Therefore, at an earlier stage of clinical development of a new product, the team
needs to propose the endpoints such that a good study design will help the product
to meet all regulatory requirements. Furthermore, all information obtained from
clinical trials will help differentiate the product under development with its special
or distinctive characteristics, especially when compared with competing medicines
prescribed by the same set of physicians and other healthcare practitioners.
Similarly, the dose, or range of doses, the dosing frequency and other product
characteristics should all be proposed in the target product profile, which in turn
will support the drug label.

A label contains clinical, non-clinical, and manufacturing information about the
product. It provides necessary detailed product characteristics and describes how
the product should be dosed. A complete label usually includes sections with the
following titles: Description, Clinical Pharmacology, Indications and Usage,
Contraindications, Warnings, Precautions, Adverse Reactions, Overdosage, Dosage
and Administration, and How Supplied. The sponsor and the regulatory agency
have to agree upon the content of the label. The draft label specifies the anticipated
and desired characteristics of the new product. The quantitative information in a
drug label is presented using descriptive and inferential statistics.

1.8 Importance of Phase II Clinical Development

Within a major sponsor (either a mid-size to large pharmaceutical company or a
similar size biotech company), product candidates enter the clinical development
programs on a regular basis. Many of these candidates are equipped with good
potential to cure a certain disease, to largely improve a medical condition, or to
slow down health deterioration. However, for a given candidate, the most crucial
and difficult question is whether this particular candidate can be a successful pro-
duct, or it is simply another placebo or a toxic pill. At every stage of product
discovery or development, this query needs to be asked and addressed. An efficient
development program is to progress a good candidate as fast as possible, so that
patients will benefit from it at an earliest possible date. Meanwhile, the program
should allow a bad candidate to be eliminated as early as possible so that the
sponsor will not have to waste additional investments or resources on it.

Based on experiences accumulated over many decades, the best implementation
of an efficient development strategy would be “design to stop.” In other words,
design every study with a clear objective that if the candidate is not good enough,
then stop developing it. With the concept of “design to stop” for every study design,
it offers the opportunity to stop developing candidates with low likelihood of being
successful at the earliest stage, saving investments and resources so that the entire
development portfolio can be made more efficient. Under this strategy, a natural
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question would be, if every study follows the “design to stop” principle, how about
those very good candidates? In fact, if a candidate is really good, it will demonstrate
its strength given a reasonable decent robust design. Hence a “design to stop”
strategy tends to be one of the most efficient strategies of clinical development for
new medicinal products.

One example of “design to stop” is that in most of the development programs,
the first Phase II clinical trial is a PoC trial. A typical PoC trial includes two
treatment groups: a test treatment group and a placebo group. The test group usually
is based on the MTD of the product candidate. Such a design allows the candidate
the best opportunity, if a non-decreasing dose response trend holds, to demonstrate
its efficacy by using the highest allowable dose and to compare it with an agent
known to be ineffective (placebo). If under this setting, the candidate still cannot
show efficacy, the sponsor would be comfortable to stop developing it. This
paradigm is a common example of the thinking behind “design to stop.” In other
words, this strategy allows an unsuccessful candidate to be eliminated at the earliest
stage.

In contrast to “design to stop,” another strategy would be “design to progress.” If
the sponsor has much confidence on the candidate being developed, and decided to
design a POC study with an active control, to allow the experimental candidate to
be compared with an active control intervention that is already approved for the
indication being studied; the active agent could be a standard intervention and one
of the market leaders. If the candidate is really strong, it could be superior to the
active comparator, and the sponsor would then progress this candidate aggressively.
The downside of such a design is that if the candidate is non-superior to the active
control, then it is not known whether the candidate works in some way. Given this
example, it helps to clarify what is meant by “design to progress,” which is a
contrast strategy to “design to stop.” Statistically speaking, the idea of “design to
stop” is implemented by a clear primary statistical hypothesis in comparing against
placebo with a strict control on the level of significance (alpha). Throughout this
book, the thinking process follows this “design to stop” concept.

As can be learned from the previous discussions, a first Phase II clinical trial is
the earliest opportunity for a product candidate to demonstrate its efficacy in
treating patients with the target disease or condition under study. The reason is that
before Phase II the only data available for the product candidate are from either
non-clinical studies or from healthy normal volunteers participated in Phase I trials
(except for products developed to treat life-threatening diseases). Neither data could
offer any opportunity to test for product efficacy in humans. Hence it becomes time
critical for the sponsor to evaluate the potential of whether the candidate has a
chance to be a successful medicinal product. If the likelihood of the candidate being
successful is high, then the sponsor will increase the investments in developing it
and in learning more features regarding this medicinal candidate. On the other hand,
if the candidate is not very hopeful, then the sponsor may stop developing it or may
reduce further investment on this candidate. Thus a first Phase II clinical trial tends
to be a PoC study. Based on the PoC study results, a product candidate either makes
it or fails to make it.
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The most important deliverable of a PoC study is a clear Go/NoGo decision. As
described previously, a typical PoC design is a two-treatment group parallel design.
In certain situations, there could be a PoC study designed to compare the test drug
against both a placebo and an active control. This is a very special case, and it will
be covered in later chapters. Patients with the target disease under study are ran-
domized into a placebo group or a test treatment group, where the dose of the test
treatment tends to be the MTD of the medicinal product candidate. The null sta-
tistical hypothesis for this study is that there is no difference between the two
treatment groups; the alternative hypothesis is that the test treatment is significantly
superior to the placebo based on the primary measurement of the disease condition.
This primary hypothesis is tested at a pre-specified Type I error rate—alpha. In this
circumstance, results obtained from the PoC study is expected to deliver a clear
Go/NoGo decision regarding the product candidate under development. However,
in most cases, the results are not necessarily clear cut. The reasons of cases where a
clear decision cannot be easily made include unclear efficacy about the primary
endpoint, different responses observed from secondary endpoints, and confusing
safety signals.

The two major types of Phase II clinical trials are PoC studies and dose-ranging
studies. A dose-ranging design is a parallel treatment design with many doses of the
test product, plus a placebo control (ICH-E4 1994). A typical dose ranging study
includes a high dose, a medium dose, a low dose, and a placebo control. Patients are
randomized into one of these four treatment groups, and followed to measure their
responses to the assigned treatment. Data analyses are performed after the clinical
data are available.

A dose-ranging study can be thought of both as a confirmatory study and as an
exploratory study. It can include statistical hypotheses with multiple comparison
adjustments to ensure alpha protection. It can also include modeling or estimating
dose-response relationship where responses at a given dose or within a range of
doses could be obtained.

One of the most important objectives of the Phase II clinical development
program is to help propose particular doses or a range of doses to help with the
designs in the pivotal Phase III trial. It is important to note that in product approval,
for a given dose of the study product, if it is safe and efficacious at that dose, then
that dose can be approvable. Hence after the product is approved and prescribed for
the indicated patient population, it will be very difficult to study a dose of this
product which is lower than the doses studied in Phase II or higher than a dose that
is evaluated at Phase III. In other words, Phase II is the critical time of exploring a
wide range of doses. If this dose range is not studied in Phase II, then the oppor-
tunity of learning dose-response relationship for that range of doses is lost. More
details about these challenges will be covered in details in later chapters.

For a product candidate to enter Phase III clinical development, it is a
momentous sponsor commitment to move the candidate forward. A typical
Phase III program includes many larger scale, longer term clinical trials which
require tens or hundreds of million dollars of investments. In the US, the FDA
encourages sponsor to set an “End of Phase II” meeting with FDA. End of Phase II
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and begin of Phase III is very critical from a sponsor’s point of view. Because this
is the last milestone point for a sponsor to stop developing a product that may not
be deemed “successful” (here successful is considered as both a regulatory success
and a commercial success; that is, the product can be approved and marketed so that
development investments can be returned). Note that a product that is not very
successful is different from a failed product. A sponsor needs to evaluate the
likelihood of a candidate being successful in terms of the huge amount of invest-
ments for the entire development program. There are many examples where a
candidate failed after Phase III—it did not receive any approval even when some of
the Phase III trial results were beneficial and noteworthy. There are also many
examples where products were successfully approved by regulatory agencies but
failed to generate meaningful returns of investments. Therefore, for any given
candidate at the stage between late Phase II and early Phase III, the sponsor needs to
evaluate all evidence obtained from non-clinical, Phase I, and Phase II clinical
studies to project how likely this candidate can be eventually successful. Based on
these critical thinking and benefit/risk evaluations, a sponsor makes the very
important “Go/NoGo” decision on the candidate being developed to determine
whether the candidate can be progressed into Phase III.

Given the fact that Phase II is the stage where a product candidate demonstrates
its activity in patients with the disease, and enable a sponsor to progress the can-
didate into Phase III, Phase II can be thought of as the most important phase across
the entire product development process. Note that although the title of this book is
about Phase II clinical development, many of the thinking process introduce in this
book can be applied to Phase III, also.

1.9 Highlight of Each Chapter of This Book

Chapter 2 introduces the concept of alpha or Type 1 error, the level of significance
(i.e., probability of rejecting the null hypothesis when it is true). It was the ran-
domized controlled clinical trials that revolutionized the twentieth-century medi-
cine. The statistical basis of approving a drug or a biologic is because of the Type I
error is controlled under alpha. It helps inform the public about potential Type I
error associated with approved medications. Without alpha control, it would be very
difficult to demonstrate treatment efficacy delivered by a given product. In fact, the
thinking of alpha control not only allows for product approval but also guides the
clinical development process.

Alpha control reflects a confirmatory point of view. In other words, if the
question is about decision making, such as a Go/NoGo decision, then alpha control
is very important. The background on the confirmatory feature of a clinical trial
relates to statistical hypothesis testing. Alpha control is also a tool used by regu-
latory agencies for making decisions to approve, or not to approve an application.
Meanwhile, researchers typically learn from clinical trial results and the learning is
generally exploratory in nature. In practice, every clinical trial has both
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confirmatory and exploratory feature. Chapter 3 covers more detail about how these
concepts help guide designing clinical trials.

Chapter 4 discusses considerations in designing PoC trials. Although a PoC trial
looks simple with one test treatment compared against one placebo control group,
there are many facets behind the design and analysis of these trials. More often than
not, there are lengthy discussions after a PoC study results read out because a
Go/NoGo decision is not always simple and straightforward.

If a “Go” decision is made after the PoC, the next Phase II trial would be a
dose-ranging trial—to be covered in Chap. 5. A dose-ranging trial is one of the
most challenging trials in clinical development programs. Most of the confusion
originates from the dual features of dose-ranging studies—they are both confir-
matory and exploratory. Statisticians designing these trials need to keep both fea-
tures in mind. Consequences from poorly designed dose-ranging trials can be costly
and time wasting.

In recent years, many sponsors attempt to combine elements of PoC and
dose-ranging trials into a single study. Advantages and disadvantages of this
practice are covered in Chap. 6. Many of the considerations in such a combined trial
are similar to those for the individual PoC or dose-ranging trials. Nevertheless, the
PoC feature of these studies can cause confusion when embedded in the combined
trial. Chapter 6 introduces methods of designing these combined trials, and dis-
tinguishes the confirmatory feature based on PoC and the exploratory feature based
on dose-ranging.

Inconclusiveness from a PoC study result is an important yet often poorly
documented risk. Chapter 7 discusses some of the causes of this risk and how to
minimize them. Usually inconclusiveness happens after the clinical data read out.
However, important discussions should take place before the data are ready, after
study design has been finalized. Statisticians play a key role in communicating with
the team so that team members can be prepared with various scenarios from data
read out. Hence a set of Go/NoGo criteria needs to be clearly documented before
the blind is broken.

Chapter 8 covers data analysis of a two group PoC trial. The primary endpoint of
a Phase II PoC trial is either a continuous or a discrete variable. Data analysis
methods for these two types of data are introduced in this chapter.

Chapter 9 covers data analysis of dose-ranging trials when the primary endpoint
is a continuous variable. The two popular types of statistical analyses for
dose-ranging trials are multiple comparison procedures and modeling approaches.
In the past decade, the combined method (MCP-Mod) has also received more
attention. This chapter discusses situations for which analytical method is more
appropriate, and presents examples to help illustrate how to use these methods.
Similarly, analysis of dose-ranging trials with a binary variable as the primary
endpoint is discussed in Chap. 10. As Bayesian methods have been applied broadly
to various areas of statistical analyses, Chap. 11 covers the Bayesian concepts with
a simple example and illustrates its application to Phase II clinical trials by con-
tinuing the dose-finding example from Chap. 9.
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After Phase II is completed and that the decision is to progress the product
candidate, then the next step is to design Phase III trials. Chapter 12 highlights the
scope of Phase III plans in order to put Phase II trials in a larger context. It covers
drug label and target product profile, non-inferiority trial designs, dose selection,
drug formulations and patient populations, number of required trials for a labeling
claim, number of primary efficacy endpoints, missing data issues, clinical outcome
assessments, multi-regional trial issues, and the trend towards development of
personalized or precision medicines.
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Chapter 2
Concept of Alpha

2.1 Lady Tasting Tea

During a tea party in the 1920s in Cambridge, United Kingdom, the waiter pre-
sented cups, a pot of tea and milk in a tray to the party guests (Salsburg 2002). One
gentleman picked up a cup, poured the tea into the cup and then added milk into the
tea. At this point, a lady on the side indicated that the tea tastes better if the milk is
poured in the cup first, with the tea then added to the milk. After hearing this
comment, people began to discuss this suggestion. One question is whether this
lady could actually tell the difference—whether tea was poured in the cup first or
milk was poured in the cup first.

During the discussion, a professor suggested that he could design an experiment
to check and see whether this lady could, in fact, tell the difference. This simple
experiment was for the waiter to prepare 8 cups of tea, where 4 cups with tea first
and 4 cups with milk first, without letting the lady know which was which. Then the
lady was asked to taste each cup and to identify which cup was tea first and which
was milk first. The professor’s point was that by purely guessing, the lady might be
able to guess 0 cups correctly, a few cups correctly, or all 8 cups correctly. The
probability of such guessing could be calculated. If the probability of purely
guessing was small enough, then people might be convinced that the lady could, in
fact, tell the difference between tea first or milk first.

Now suppose 100 cups of tea are prepared, with 50 cups tea first and 50 cups
milk first. By purely guessing, the lady may be able to guess 40 cups correctly, 45,
50, 55, or even 60 cups correctly. However, if she guessed 65 or even more cups
correctly, we may be able to conclude that the lady is, indeed, able to tell the
difference.

Similarly, instead of 100 cups of tea, suppose 100 patients are recruited to
participate in a clinical trial, with 50 of them randomized to receive the test
treatment and 50 randomized to receive the placebo treatment. Then if the sample
means of these two groups are very similar, we can say that the test treatment is not
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different from placebo. On the other hand, if the means of these two groups are far
apart, we may be confident to conclude that the test treatment is different from
placebo treatment. In a randomized, double-blind, controlled clinical trial both the
subject and the investigator are blinded to treatment assignment. This type of trial is
ideal to test treatment against control treatment (like placebo) in humans to see
whether the test treatment is truly efficacious.

The drug regulatory agency in the United States is the Food and Drug
Administration (FDA). Imagine that you are the FDA reviewer, and a drug company
(a sponsor) submitted a new drug application (NDA) for you to review. Howwill you
make the decision to approve or not to approve this application? Suppose this new
drug is developed for pain reduction, and the application states that patient A took the
medication and concluded that his/her pain was reduced. Patient B did the same,
patient C did the same, and many more took the study drug and claimed pain
reduction. Can you approve this drug for reducing pain? You cannot. All of those
reports reflect the placebo effect—if a patient takes a placebo (a fake drug, a sugar pill,
something we know that does not reduce pain), he or she may feel pain is reduced.

In order to avoid the approval of a placebo, the FDA requires the sponsor to
demonstrate treatment effect that is statistically superior to placebo. In 1962, the
Kefauver-Harris Amendment demands that an NDA would have to show that a new
drug was both safe and effective for FDA to approve it. This amendment estab-
lished an objective, scientific foundation for drug approval and the scientific evi-
dence is based on statistical hypothesis testing. In order to implement this
amendment, FDA had to hire statistical reviewers. As a consequence, sponsors
began to hire statisticians, too. Hence the Kefauver-Harris Act is also known as
“statistician employment act.” This act, for demanding approved drugs to be safe
and effective, in fact, has extended human life expectancy substantially. All of these
scientific improvements, to some extent, originated from the Lady Tasting Tea
experiment.

From this background, we see that it is nearly impossible to objectively establish
the efficacy of a drug. Up to now, the best known scientific approach is to declare
that the probability of this new drug being another placebo is controlled under
alpha. Hence the scientific foundation for drug approval is based on this hypothesis
testing frame work.

Because drug approval is based on Phase III pivotal clinical trials (ICH E-9
1998), people tend to confuse that the only confirmatory studies are Phase III trials.
In fact, alpha protection based on hypothesis testing in Phase II is at least as
important as in Phase III. As illustrated in later chapters of this book, one of the
most critical steps in Phase II is proof of concept (PoC). If the concept is proven in
Phase II, then a “Go” decision will be made for the drug candidate and it will be
progressed into further development. Otherwise, if the concept is not proven, then a
NoGo decision will be made and further development of this drug candidate will be
stopped.

The PoC process is very similar to the FDA drug approval process—both are
making a Go/NoGo decision. Although the FDA decision looks more complicated
than the PoC decision, the PoC decision is, to some extent, more difficult than the
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FDA approval decision. This is because that when FDA makes the decision, there
are already large amount of data from non-clinical studies, manufacturing, and
Phases I, II, and III clinical trials. However, for Phase II Go/NoGo decision, the
results are from only one PoC clinical trial. When FDA makes a decision, the alpha
protection is very critical—because a drug cannot be scientifically approved on
drug efficacy but, rather, it is approved based on the Type-I error rate being pro-
tected at alpha level.

Similarly, alpha protection is also very critical in Phase II PoC studies. However,
because the lack of knowledge on Phase II, sometimes PoC studies are designed
with an alpha greater than 0.025 (one-sided). In the clinical development of new
medicinal products, the primary interest is in demonstrating the study intervention
is superior to, or non-inferior to the control agent. The focus is not to show the test
treatment is inferior to control. On this basis, almost all of the efficacy clinical trials
are designed with a one-sided test. The only exceptions are bioequivalence trials, or
biosimilar trials, where in those cases, a two-sided statistical inference is of primary
interest. However, the F-test and v2 test are two-sided in nature. Hence in practice,
many clinical trial protocols specified that “a two-sided alpha of 0.05 is used”
Under this setting, the observed p-value is compared with 0.05. Although the
fundamental spirit of such a design is to compare half of the observed p-value with
0.025. In this book, in order to maintain consistency, all hypotheses tests are
considered as one-sided.

For the purposes of establishing scientific evidence of a study treatment’s effi-
cacy, the null hypothesis would be that the new treatment is no different from
placebo. Only after sufficient evidence exists to the contrary—that the difference of
the test treatment is far from placebo—then we may conclude that the test treatment
is efficacious.

For example, a treatment was studied to determine whether it lowers systolic
blood pressure (SBP). A four-week clinical trial was designed to compare the SBP
changes observed from the placebo group versus that from the test treatment
group. Now the change in SBP from baseline (measured before a patient took the
first dose of the blinded treatment) to week 4 is calculated for each patient ran-
domized into this clinical trial. Suppose 100 patients were recruited in the trial, with
50 randomized to the test treatment and 50 to placebo. Then the group mean change
in systolic blood pressure is computed from each individual patient in each treat-
ment group.

The null hypothesis in this study is H0: lT = lP, implying that the mean SBP
change in the test treatment group is no different from the mean SBP change in the
placebo group. Here lT denotes the mean change in SBP from the test treatment
group, and lP denotes the mean change in SBP from the placebo group. Therefore,
unless there is a sufficiently large difference in the mean changes between these two
groups, we cannot conclude that the test treatment is different from placebo. In this
clinical trial, where the primary endpoint is change in SBP from baseline to week 4,
if the difference of subtracting the placebo mean change from the test treatment
mean change is only—1.3 mm Hg, it is not likely that the test treatment is different
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from placebo. Such a small treatment difference could simply be due to random
chance.

However, if the mean treatment difference becomes −6 mm Hg or even −8 mm
Hg, then we may consider that the test treatment could be different from placebo.
When the difference is large, we may reject the null hypothesis and conclude that
the alternative hypothesis can be true: the mean change in SBP from the test
treatment is less than that from the placebo group. Based on the previous discus-
sion, a one-sided alternative is considered. The statistical hypotheses can be written
as follows:

H0 : lT ¼ lP versus H1 : lT\lP:

The essence of this story is that by designing and performing an experiment, we
are able to convert a subjective “feeling” into an objective probability. From
drinking only one cup of tea, the lady may subjectively claim whether this cup of
tea tastes better or not. By repeating the tea tasting experiment for many times in a
blinded fashion (i.e., without the lady knowing whether the tea or the milk was
poured in the cup first), this subjective “taste” can now be converted into an
objective probability statement. Similarly, after a patient is treated with a study
treatment, this patient may subjectively “feel better”. With a randomized,
double-blind, controlled clinical trial, we are able to convert this subjective “feel-
ing” into an objective probability statement.

The idea of modern clinical trials would not be possible without the story of lady
tasting tea. In this true story, the lady was Dr. Muriel Bristol, and the professor who
proposed this experiment was Sir Ronald A. Fisher. By the way, with 8 cups of tea,
Dr. Bristol guessed all correctly.

2.2 Alpha Type I Error Rate

In practice, many important decisions are made without complete understanding of
the entire truth. For example, a suspect may be sentenced to severe penalty while
the jury does not have 100% certainty that this suspect indeed committed the crime.
FDA may approve a medicinal product without 100% assurance that this product is,
in fact, efficacious. Therefore, for almost every single decision based on statistical
testing results, there is a risk of making an error. Table 2.1 presents the two types of
errors for statistical hypothesis testing.

Table 2.1 Null hypothesis
and decision

Null hypothesis Decision

Accept null Reject null

True OK Type I error (a)

False Type II error (b) OK
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In the case of criminal justice, the null hypothesis is that the suspect is innocent.
Unless there is sufficient evidence to demonstrate the suspect is a criminal, the null
hypothesis should not be rejected. Similarly, in product evaluation, the null
hypothesis is that the test product is not different from placebo. Unless there is
sufficient evidence to show that the test treatment is efficacious, the null hypothesis
should not be rejected. Nevertheless, if the truth is that the suspect is innocent, but
the jury rejected this null hypothesis, then the jury makes a Type I error. On the
other hand, if the suspect is the real criminal (null hypothesis is false), but the jury
releases the suspect, then a Type II error is made. In review and evaluation of new
medicinal products, if the FDA approves a product that is not efficacious, then a
Type I error is made. If the FDA rejects a good product that really works, then a
Type II error is made.

Alpha is the probability of making a Type I error. From an FDA point of view,
alpha is the probability of approving a product when in fact this product does not
work as planned (Friedman et al. 2010; Piantadosi 2005). Therefore, there should
be sufficient evidence to demonstrate the product’s efficacy, before it can be
approved for use in the general patient population. The question becomes how to
quantify “sufficient evidence.” The story of lady tasting tea provided an example to
quantify the level of evidence. After the randomized, double-blind, controlled
clinical trials can be practically designed, conducted and reported, the evidence can
be quantified by a probability (p-value) based on the null hypothesis. In other
words, by controlling alpha at a small quantity considered widely acceptable, a new
product can be judged as efficacious when the probability of making a Type I error
is less than alpha.

The one-sided Type I error rate is commonly chosen to be 0.025, or 2.5%.
Therefore, after the 1962 Kefauver-Harris Amendment, FDA approves medicinal
products using this alpha level. Is alpha at 0.025 just right? Too high? Or too low?
These questions are very difficult to answer.

Typically the regulatory agencies require two replicated studies in Phase III for
approval, so generally the actual Type I error for any approved product is much less
than 2.5% (one-sided alpha, or one in forty chance). In the case of replicate evi-
dence with two studies, the probability of false positive reduces to one out of 1600
[(0.025)2 = (1/40)2 = 1/1600], when these two studies are statistically independent.
It has been over 50 years since the Kefauver-Harris Amendment and many
important medicinal products have been approved worldwide for patients to use, the
extended life expectancy and the improved quality of life brought up from these
products are very real and very clear. Controlling one-sided alpha at 0.025 seems to
be appropriate based on these facts. Without this concept of alpha, the medicinal
product development may not be as advanced as it is today.

Although the focus of this chapter is alpha, the probability of making a Type I
error, it is important to understand that Type II error is also very critical in new
product development. The probability of making a Type II error is denoted as beta
(b). The probability of not making a Type II error (i.e., given that the null
hypothesis is false, the decision is to correctly reject the null hypothesis) is referred
as the power of the test. In other words, power = 1 − b. Hence when a statistician
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is performing a sample size estimation using the pre-specified alpha and beta, this
practice is usually referred to as “to power a study.”

Both alpha and beta are important in designing a clinical trial for product
development. Simply put, in terms of treatment efficacy tested by a primary efficacy
endpoint, alpha is the probability that a non-efficacious treatment can be statistically
tested as efficacious, and beta is the probability that an efficacious treatment can be
statistically tested as non-efficacious.

2.3 Intention-to-Treat

It helps to understand how the normal (bell-shaped) curve in Fig. 2.1 is derived.
Consider the example of developing a new treatment to reduce SBP. A clinical trial
is designed to compare the test treatment against the placebo group with a
four-week duration. One hundred patients with hypertension were randomized to
test product and placebo control in a 1:1 ratio with 50 patients in each treatment
group. Suppose the test product does not really work; it lowered blood pressure by
only 1.3 mm Hg. After this trial is completed and 100 SBP reductions are observed,
Table 2.2 captures the results of the first 8 patients: four received treatment A and
four received B. Based solely on the results from these eight patients, there is a
mean difference of −4 mm Hg between these two treatment groups.

Under the null hypothesis, the test treatment is not different from the placebo.
Therefore, the patient response (change in SBP) should be the same (under null
hypothesis) regardless of the actual treatment given. In other words, when the test
treatment is not different from placebo, then whichever treatment the patient is
randomized to, there should be no impact on the SBP change. Hence, under the null

Fig. 2.1 A normal density curve with the critical value on the left
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hypothesis, the treatment label (A or B) should not have anything to do with a
patient’s response, so we can permute these labels.

From Table 2.3, by permuting the labels once (under #1 of re-randomized), the
mean difference between treatment A and B of the first 8 patients is 1 mm Hg. For
the same reason, the labels can be permuted again—the re-randomization #2 pro-
vides a mean difference of −3.5 mm Hg. There are almost infinite number of
possible permutations (under sampling with replacement) of the treatment assign-
ments for these 100 patients, given 50 receive A and the other 50 receive B. By
permuting hundreds of thousands times, the central limit theorem indicates the
mean will follow a normal distribution given that the sample size is large enough
(generally at least 30 subjects) and that these mean treatment differences will be
expected to follow a normal distribution, like the bell-shaped curve given in
Fig. 2.1, with a mean around the observed overall mean 0 based on all 100 patients
together with its corresponding standard deviation.

As discussed previously, this test treatment is, in fact, not different from placebo
treatment; that is, the true underlying mean treatment difference is zero (the long
vertical black line in Fig. 2.1). But simply by chance, suppose that an observed

Table 2.2 Change in SBP from baseline to week 4 in 8 patients

Randomization assignment SBP reduction in clinical trial

Patient 1 A −8

Patient 2 B −2

Patient 3 B −4

Patient 4 A −7

Patient 5 A −9

Patient 6 B −3

Patient 7 A −4

Patient 8 B −3

Mean (A-B) −4

Table 2.3 Change in SBP of the 8 patients with results from 4 re-randomizations

Randomization assignment SBP reduction
in clinical trial

Re-randomized

#1 #2 #3 #4

Patient 1 A −8 B A A B

Patient 2 B −2 A B B A

Patient 3 B −4 A B A B

Patient 4 A −7 B A B A

Patient 5 A −9 A A B A

Patient 6 B −3 B B A B

Patient 7 A −4 B B A B

Patient 8 B −3 A A B A

Mean (A-B) −4 1 −3.5 0.5 0.5
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realization is −1.3 mm Hg, which falls only short of the critical point of statistical
difference given by the red vertical mark (bar) in Fig. 2.1. In this case, the observed
treatment difference should be the yellow vertical bar located to the right of the red
vertical bar.

Nevertheless, during the conduct of this trial, if for some unknown reason, a
patient randomized to treatment A was mistakenly dosed with treatment B; in this
situation, the treated patients is different from the randomized patients. If the sta-
tistical analysis is performed on the treated patients, it is possible that the results
become the green vertical bar to the left the red bar. Under this circumstance, the
truth would be that the test treatment is not different from placebo, but the analysis
based on treated patients makes it look like the test treatment is significantly dif-
ferent from the placebo treatment. This creates the possibility of alpha inflation. Of
course, a reverse condition could also happen, which leads to a potential alpha
deflation. It is critical to note that in clinical trial decision making, alpha deflation is
not of a main concern. However, consequences of alpha inflation can be critical.

The concept of intention-to-treat (ITT) (Gupta 2011) is simply to follow the
principle “analyzed as randomized.” There are two key features to this principle:
(1) all randomized patients will need to be included in the ITT analysis and (2) each
patient is analyzed based on the randomized treatment, not the actual treatment
taken. It is easier to understand the first principle, that all patients need to be
included in the analysis. For example, if a wonder drug that cures 9999 patients out
of 10,000. Unfortunately, one patient is not cured and experienced a serious adverse
event (SAE). When reporting the study results, it is critical to report data from all
10,000 patients so that people reading the report get to see the whole picture. It
would be biased to consider the SAE as an outlier or to delete it from the report.
Therefore, every randomized patient needs to be included in the analysis and appear
in the study report under the ITT principle.

The fundamental point of ITT is grounded in the permutation distribution
illustrated in Fig. 2.1. Again, from the scientific-thought process, a test treatment is
not considered efficacious until sufficient evidence to prove it is. Hence the null
hypothesis is that the test treatment is no different from the placebo. The
bell-shaped curve represents the placebo distribution. Only when the standardized
observed treatment difference is very far away from the placebo mean, more than
what chance will allow, then we can conclude that the test treatment is effective. In
the example above, analyze as randomized would provide the true results corre-
sponding to the given randomization.

But analysis by treatment actually received could yield a biased conclusion. Note
that the green bar, in fact, reflects one of the background permutations which help
construct this bell-shaped curve. Here, when the null hypothesis is in fact true, the
null hypothesis would be rejected by mistake because the ITT principle was not
followed. When this is the case, alpha is not protected, and the actual alpha can be
artificially inflated. Of course it can be argued that if the truth is the green bar
(ITT) and analyze as treated makes the yellow bar. This is the case when alpha is
artificially deflated. From the statistical hypothesis testing point of view, if alpha is
deflated, this is not a main concern.
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2.4 Patient Analysis Sets

As discussed above, the primary analysis set for efficacy should be ITT (Gupta
2011). In practice, however, ITT may be difficult to achieve as some randomized
patients may never receive study treatment may have received study treatment but
have no baseline measurement, and may withdraw from the study before its
completion, along with other possibilities. In application, therefore, a full analysis
set (FAS) is defined for practical implementation. As indicated in ICH E-9, spon-
sors define FAS in the protocol and in the statistical analysis plan (SAP). Then, for
statistical analysis of efficacy data, FAS is used for the primary analysis of the
primary and secondary efficacy endpoints.

In reality, long before there is a clinical trial, the field of epidemiology has
already been following patients over time in order to learn about the disease history
and to explore the association between exposure and response (Rothman et al.
2008). One important type of epidemiological studies is the prospective cohort
study. Clinical trial is simply a prospective cohort study with randomization. Based
on the experiences from the past half of century, it is clear that a clinical trial is
much more efficient than a (non-randomized) prospective cohort study. Hence, after
randomization and blinding, patient follow up in clinical trials is the same as that
performed in prospective cohort studies in epidemiology.

Nonetheless, principles used in epidemiologic cohort studies should still be
followed closely in clinical trials. When reporting the results from a cohort study, it
is extremely important to document all the findings truthfully—in other words,
report as observed. Therefore, other than efficacy, clinical trials need to report as
observed as well. The question that arises in a clinical trial is when a patient is
randomized to treatment A, but actually took treatment B, how should the demo-
graphic data and the safety data be reported. From the ITT principle, it is clear that
efficacy analysis uses the FAS. However, all of the patient data other than efficacy,
should be reported as observed—that is, report as treated. In this case, the patient
actually received treatment B, then the demographic data and the safety data of this
patient should be summarized and reported with this patient in treatment B. This is
because a clinical trial is still part of a prospective cohort study, and the principles
of cohort studies should be followed. In protocols and SAPs for most clinical trials,
a “Treated Set (TS)” is defined. ATS is very similar to an FAS. The only difference
is that when a patient was randomized to treatment A, but actually took treatment B,
then this patient is considered in the treatment group A in FAS but B in TS. It is
important to distinguish these two concepts because analysis for efficacy is based on
statistical hypothesis testing and hence needs to be alpha protected. Under this
circumstance, FAS helps preserve the randomization. Patient demographic data and
safety data are not alpha protected, because there is no statistical hypothesis
specified for testing demographic or safety data.

Another way to look at this is that efficacy analysis is part of a designed feature
of the clinical trial. On the other hand, most of the clinical trials are not designed to
compare patient demography or safety. By nature of any clinical trial, product
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candidate safety is an observed feature, not a designed feature. There is no statistical
hypothesis behind safety reporting. Hence under the principles of cohort studies,
report as observed, demographic data and safety data should be reported using the
TS. This is why TS is defined, and that demographic and safety data are summa-
rized with this patient analysis set.

Another analysis set is the per protocol set (PPS). This is a subset of FAS by
excluding those patients with important protocol violations from the full analysis
set. During the conduct of a clinical trial, sometimes a patient who did not meet the
inclusion/exclusion criteria could be recruited to the study. In some other cases
patients entered the study satisfying all of the inclusion/exclusion criteria, but they
took restricted medications that may impact the efficacy response. In certain cir-
cumstances, there is a need of performing an efficacy analysis excluding these
“protocol violators.” When this is the case, PPS is defined at the study design stage.

When performing data analyses, statisticians have found it typical that the pri-
mary results are based on FAS, with PPS analysis performed as a sensitivity
analysis or a supporting analysis. If the clinical results are robust, then the con-
clusion obtained from PPS should be consistent with those obtained from FAS.
Yet alpha protection is based on the FAS analysis. In other words, if it is not
pre-specified that the primary analysis is based on FAS, and the interpretation is
based on either FAS or PPS, then alpha could be inflated. In order to reduce the
likelihood that PPS results are different from FAS results, it is advised that the
number of protocol violators be minimized so that PPS can be as close as possible
to FAS.

It is important to note that the concept of patient analysis set is with regard to
patients, but not with regard to variables observed from patients. If a patient is in
FAS, but the patient’s baseline measurement of the primary endpoint is missing,
this patient cannot be included in the analysis of the primary endpoint (if, for
instance, change from baseline is the primary endpoint). However, values corre-
sponding to the secondary endpoint of this patient are not missing and, therefore,
analysis of the secondary endpoint for this patient should be included in the FAS.
Therefore, definitions of FAS, TS, and PPS for any given clinical study should be
based on characteristics of individual patients, regardless of measurements from a
primary or secondary efficacy variable or a safety endpoint.

2.5 Multiple Comparisons

2.5.1 Multiple Doses

For confirmatory trials, statistical procedures need to be well defined and docu-
mented before the blind is broken in order to ensure that the Type I error rate
(alpha) is not arbitrarily inflated. Consider a simple example in a dose-response
study with high dose and low dose of test treatment compared against placebo.
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There are at least two pairwise comparisons of interest: (1) high dose vs placebo
and (2) low dose versus placebo. If there is no multiple comparison adjustment and
each comparison uses the entire alpha to perform the hypothesis test, then the
experiment-wise Type I error rate is inflated. It is well known that in the case where
there is more than one primary comparison, or more than one primary endpoint,
then multiple comparison adjustment will be necessary.

Many statistical references are available in handling multiple comparison pro-
cedures (MCP) (Dmitrienko et al. 2005, 2010). In the analysis of dose-response
studies, popular MCP include Bonferroni, Dunnett, Holm, Hochberg, and gate-
keeping procedures. Some of these methods are briefly introduced here using the
above simple example. Suppose a Type I error rate of alpha is pre-specified, then
the experimentwise (overall study) error rate is alpha. For each comparison, there is
also a comparisonwise error rate. The concept of MCP is to adjust the compar-
isonwise error rate so that the experimentwise error rate is protected.

The simplest adjustment is the Bonferroni method. Suppose there are k com-
parisons of interest. The Bonferroni adjustment is to divide the experimentwise
error alpha by k. This reduced error rate is applied at the comparison-wise level. In
the above example with two comparisons (high dose vs. placebo and low dose vs.
placebo), if each pairwise comparison is performed using alpha/2, then the
experiment-wise error rate is protected. Bonferroni adjustment is considered overly
conservative and hence one of the less powerful methods. Nevertheless, it is easy to
explain to clinical scientists, easy to implement, and can be applied without con-
sidering distributional properties of the clinical efficacy data. Hence it is preferred
by several regulatory agencies.

Another simple method is to assume the k comparisons are independent, and
then each pairwise comparison is tested at 1 − (1 − alpha)(1/k) level. In the above
example, each pairwise comparison is performed at the 1 − (1 − alpha)(1/2) level.
Although in practice, many of the pairwise comparisons are correlated, they often
are positively correlated. Hence this procedure is still considered conservative. This
method is somewhat more powerful than the Bonferroni adjustment and still easy to
use and to interpret.

Another popular choice of MCP adjustment is the Dunnett’s procedure (Dunnett
1955). If the data are normally distributed, then Dunnett’s tests suggests to take
advantage of positive correlations among these pairwise comparisons and to cal-
culate the necessary critical points for the t-statistics. Suppose there are k pairwise
comparisons with each dose against placebo, Dunnett’s procedure calculates a
critical value for the set of k jointly distributed t-statistics, a critical value for the
k − 1 jointly distributed t, and so on until a set of two jointly distributed t-statistics.
This MCP can be applied either in a step-down fashion or a step-up fashion.

In the case with k pairwise comparisons, the step-down application starts with
the largest observed absolute t-statistic. This observed t is compared with the
critical value associated with the jointly distributed t calculated based on
Dunnett MCP from all k comparisons. If the observed t is less than the critical t,
then stop and claim there is no dose of the study product is different from placebo;
perform no further hypothesis testing. If the observed t is greater than the critical
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value, then claim the particular dose associated with this largest observed absolute
t is significantly different from placebo, then move on to test the next largest
observed absolute t-statistic. This second largest observed t is compared with the
critical value calculated from the jointly distributed t based on the set of k − 1
comparisons. If the observed t is less than the critical value, then claim that there is
only one significant dose (obtained from the previous test) and no other dose is
different from placebo. If this second largest observed t is greater than the critical
value, then claim there are at least two doses being significant and move on to test
the third largest observed t. Continue this sequential process until an observed t is
less than the corresponding critical value, or until all pairwise comparisons are
made. This is the step-down application of Dunnett MCP for when several (or even
many) doses are compared against a placebo control.

As a counterpart to the step-down application, the step-up application of Dunnett
procedure starts with the smallest observed absolute t. Compare this with the
ordinary critical value obtained from a t-table (with one pairwise comparison). If
this observed t is greater than the ordinary critical value from the t-table, then claim
all k doses are significantly different from placebo and stop. Otherwise, claim the
dose associated with the smallest t to be no different from placebo, and compare the
second smallest observed absolute t with the Dunnett critical value calculated from
the jointly distributed t based on two comparisons. If the observed t is greater than
the critical value, then claim all k − 1 doses are significant (the dose associated with
the smallest t is not significant), and stop. Otherwise, claim the first two doses are
not significant and move on to test the third smallest t. Continue in this fashion until
either all pairwise comparisons are performed or one of the observed t values is
greater than the corresponding critical value, with the claim that dose associated
with these t-statistics and all t greater than this critical t are significant.

Using the example with high dose, low dose, and placebo, the step-down
application of Dunnett MCP starts with the larger observed absolute t-statistics
among the two and compares it with the critical value calculated from Dunnett
procedure with jointly distributed t based on all two comparisons. If the observed
t is less than the critical value, claim that neither dose is different from placebo and
stop. Otherwise claim the dose associated with the larger t as significant and
continue to test the lower t against the critical value obtained from t-table. If the
observed t is greater than the tabled t-value, then claim both doses are significant.
Otherwise claim there is only one dose is significant.

On the other hand, the step-up application of Dunnett’s procedure starts with the
smaller observed absolute t and compares it with the critical value from the t-table.
If the observed t is greater than the critical value, then claim both doses are sig-
nificant and stop further comparisons. Otherwise, claim the dose associated with the
smaller t is not different from placebo and continue to compare the larger observed
absolute t with the critical value calculated from Dunnett’s procedure with two
jointly distributed t-statistics. If the observed t is less than the critical t-value, claim
both doses are not different from placebo. Otherwise claim only one dose (the dose
associated with the larger observed t) is significant.
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Holm MCP is a step-down procedure using Bonferroni adjustment. The proce-
dure is similar to Dunnett step-down but, instead of assuming normality and using a
t-test, Holm’s procedure uses observed p-values. It starts with the smallest observed
p, and compares it with alpha/k. If p is greater than alpha/k, then claim none of the
doses as significant, and stop. Otherwise, claim the dose with the smallest p is
significant, and move on to test the dose associated with second smallest observed
p-value. This p is compared with alpha/(k − 1). If the second smallest p is greater
than alpha/(k − 1), then claim there is only one dose (the one with the smallest p-
value) is significantly different from placebo, and none of any other doses being
significant. If the second smallest p is less than alpha/(k − 1), then claim two doses
(both the dose with the smallest p and the dose with the second smallest p) being
significant, and continue to the next smallest p-value. This process continues until
there is a p-value that is not significant at that particular step or, alternatively, until
all doses are compared. When compared with Dunnett’s procedure, the Holm’s
procedure has the advantage of using p-values, not t-statistics, to make the decision,
meaning that the Holm’s MCP is not limited to normally distributed data. The
disadvantage of the Holm’s method is it being more conservative (or less powerful)
than Dunnett’s method, as the alpha is based on the Bonferroni adjustment.

Hochberg method is a step-up procedure. It is similar to the Holm procedure,
because it uses the Bonferroni adjustment for alpha. The first step of
Hochberg MCP is to test the pairwise comparison with the largest p-value. If it is
less than alpha, then claim all k doses are significantly different from placebo. If not,
then the next step is to compare the second largest p-value with alpha/2. If the
observed p is less than alpha/2 then claim all k − 1 doses (all except for the dose
with largest p) are different from placebo. Otherwise move up to check the third
largest p-value with alpha/3. This process is continued until a p-value that is sig-
nificant or until all doses are tested.

One popular method applied to dose-finding studies is the gate-keeping proce-
dure. This procedure pre-specifies the order of testing and uses the entire alpha at
each step. The most intuitive setting is to assume a monotonic dose-response
relationship and start the first step to compare the highest dose against placebo,
using the entire alpha. If the null hypothesis that “there is no difference between the
highest dose of study product and placebo” is accepted, then stop and claim none of
the doses is effective. Otherwise claim the highest dose is effective, and use the
entire alpha to test the next highest dose against placebo. This process is repeated
until either a null hypothesis is accepted, or all doses are tested. The name gate
keeping comes from the fact that the highest dose serves as a gate; if the gate is not
open, none of the following doses will be tested. The advantage of gate keeping is
that this is the most powerful MCP under monotonic dose-response
relationship. The disadvantage is that, at any particular dose, if the null hypothe-
sis is accepted, then none of the lower doses would have the opportunity of being
tested.
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2.5.2 Multiple Endpoints

It is well known that multiplicity inflates alpha, making it more likely to falsely
reject the null hypothesis of no difference. The above section discusses multiple
treatment groups. Another popular multiplicity in clinical trials comes from mul-
tiple endpoints. The term endpoint could be confusing in applications. For example,
in a four-week anti-hypertensive clinical trial, the “variable” of interest could be
change in systolic blood pressure. The “measurements” are systolic blood pressure
at each time point, and the primary endpoint is the change in SBP from baseline to
week four. In scenarios like this, terms such as measurement, variable and endpoint
are used loosely and interchangeably. In designing and analyzing clinical trial data,
we prefer this well-defined term “endpoint.”

It is common that more than one efficacy endpoint is included in a given clinical
trial. When this is the case, a natural classification would be “primary endpoint” or
“secondary endpoint”. Under this setting, the statistical hypothesis tests applied on
these endpoints form a natural hierarchy—test the primary endpoint first and then,
only after the null hypothesis associated with the primary endpoint is rejected, the
secondary endpoint is tested. This type of adjustment is very similar to the
gate-keeping method discussed previously in dealing with multiple treatment
groups. In certain other trial designs, a few “co-primary” endpoints may be intro-
duced. The term “co-primary” implies that all endpoints specified in this group
should be statistically significant in order for the study to be considered successful.

In the hierarchical specification of endpoints, typically one particular endpoint is
used as the primary endpoint, and all other endpoints are considered as secondary
endpoints. When more than one secondary endpoint is included in a study design,
and if alpha protection is needed for secondary endpoints, it is important to
pre-specify the testing order of these secondary endpoints. Again, no secondary
endpoint should be tested if the null hypothesis associated with the primary end-
point was accepted. In certain clinical trials, a tertiary class of endpoints may also
be pre-specified. When this is the case, these less important endpoints can be
considered as “other endpoints” or “further endpoints.”

Sometimes a composite endpoint is used as the primary endpoint, with com-
ponents of this composite endpoint considered as secondary endpoints. One
example is a time-to-event endpoint where the primary endpoint includes time to
cardiovascular death, time to first stroke, and time to first severe cardiovascular
event. Here the primary endpoint is time to first of any of these pre-specified events.
In this example, time to each of the component event is considered a secondary
endpoint.

Another example occurs with a patient-reported outcome (PRO). In the analysis
of PRO measures, there is usually a set of questionnaires for each patient to answer
at each visit. These questionnaires are often derived with input from patients who
have the disease and the experts of the disease. There are usually recommendations
as to how to score the responses to the items (questions). Usually certain scoring
algorithm precede data analysis. For example, consider Western Ontario and
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McMaster University (WOMAC) Osteoarthritis index (Bellamy et al. 1997), which
is designed to help evaluate patients with osteoarthritis. The WOMAC total score
includes a composite of 24 questions, five of these questions relate to the pain
domain, two relate to the stiffness domain, and 17 relate to the function domain.

For the analysis of WOMAC data, the pain domain, stiffness domain, and
function domain are analyzed separately. Typically the pain domain is considered
as the primary endpoint and everything else is considered as secondary.

Suppose the objective is to show whether there is treatment difference between
active treatment and placebo control in the mean change score from baseline to
Week 12 for five domains on a PRO questionnaire, with the intent being a label
claim. Also suppose that the researcher is considering three types of alpha or p-
value adjustment are recommended: (1) Bonferroni method, (2) Bonferroni-Holm
(Step-Down) procedure, and (3) Hochberg’s (Step-Up) method.

Scenarios 1 (Bonferroni), 2 (Step-Down), and 3 (Step-Up) illustrate what may
happen in the case of an instrument with five domains, the conclusion could differ
among the three approaches.

Scenario 1: Illustration of Bonferroni Adjustment: Example: K = 5 domains
with observed p-values of 0.20, 0.006, 0.011, 0.018, and 0.021 (i = 1, …, K = 5
domains).

• Bonferroni Method

– p(i) > a/K, then “accept” null hypothesis of no effect (a = alpha).
– p(i) � a/K, then reject null hypothesis of no effect.

Ordered p-values a/K = (0.05/5) Decision

p(1) = 0.006 0.01 Reject

p(2) = 0.011 0.01 Accept

p(3) = 0.018 0.01 Accept

p(4) = 0.021 0.01 Accept

p(5) = 0.200 0.01 Accept

• Conclusion: Only the domain with the lowest p-value (0.006) showed a treat-
ment difference.

Scenario 2: Illustration of Step-Down Procedure: Example: K = 5 domains
with observed p-values of 0.20, 0.006, 0.011, 0.018, and 0.021 (i = 1, …, K = 5
domains).

• Start with smallest p-value
• If p(1) > a/K, then accept all null hypothesis (no treatment effect) and stop
• If p(1) � a/K, then the first hypothesis [referring to p(1)] is rejected and then

compare p(2) with a/(K − 1)
• If p(2) > a/(K − 1), then all remaining null hypothesis are retained
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• Otherwise this second hypothesis is rejected
• Compare p(3) with a/(K − 2) and proceed in like fashion

Ordered p-values a/K, …, a Decision

p(1) = 0.006 0.05/5 = 0.0100 Reject

p(2) = 0.011 0.05/4 = 0.0135 Reject

p(3) = 0.018 0.05/3 = 0.0167 Accept

p(4) = 0.021 0.05/2 = 0.0250 Accept

p(5) = 0.200 0.05/1 = 0.0500 Accept

• Conclusion: Only the two domains with the two lowest p-values showed a
treatment difference.

Scenario 3: Illustration of Step-Up Procedure: Example: K = 5 domains with
observed p-values of 0.20, 0.006, 0.011, 0.018, and 0.021 (i = 1, …, K = 5
domains).

• Step-Up: Start with largest p-value
• If p(K) < a, then reject all null hypothesis
• If not, compare p(K − 1) with a/2
• If p(K − 1) � a/2, reject all the remaining hypotheses
• Otherwise, this second null hypothesis is retained
• Compare p(K − 2) with a/3 and proceed in like fashion

Ordered p-values a/ K,…, a Decision

p(1) = 0.006 0.05/5 = 0.0100 Reject

p(2) = 0.011 0.05/4 = 0.0135 Reject

p(3) = 0.018 0.05/3 = 0.0167 Reject

p(4) = 0.021 0.05/2 = 0.0250 Reject

p(5) = 0.200 0.05/1 = 0.0500 Accept

• Conclusion: Four of the five domains showed a treatment difference.

2.5.2.1 Summary Measures or Summary Statistics

One of the methods is to use summary measures or summary statistics. For many
PRO instruments, a single score can be constructed by aggregating data across
different domains on the same questionnaire. Such a summary score can be used as
the primary endpoint for hypothesis testing and, consequently, prevents the concern
of repeated testing on multiple domains of the same instrument.

In certain situations, a combination of several steps of data transformation is
necessary for analyzing multiple endpoints. One example is the O’Brien’s score
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(O’Brien 1984), which can be considered for all types of outcomes (be they PRO or
not) with multiple endpoints embedded within them. The strategy is to combine the
multiple endpoints by first ranking all the data from each variable across all patients
and then summing up the ranks of all variables of interest for data analysis. Here the
ranking will need to be standardized—first rank all the data from each variable and
then divide the rank by the total number of subjects used in this variable. This
standardization is necessary, because when some of the variables have missing data,
the combination of ranks tend to assign different weights to different variables. This
summed standardized rank is then used as the primary variable for data analysis.
O’Brien’s score is a very useful method in hypothesis testing when multiple end-
points are of equal priority. However, this method does not provide a clinically
meaningful and clearly interpretable point estimate or interval estimate of the
combined standardized ranks.

Summary measures can also be constructed on a particular subscale or domain of
an instrument to summarize the repeated observations over time on an individual
and then across individuals in the same treatment group. Examples include, for each
treatment group, the average of within-subject post-treatment values, area under
growth curve, and time to reach a peak or pre-specified value. The use of these
summary measures begins with the construction of a summary measure for each
individual, follows with the analysis of a summary measure across individuals for a
within-group, and then continues with a corresponding between-group comparison.
For instance, it is possible to construct summary statistics on the repeated measures
within a group of individuals by taking the average rate of change over time for a
treatment group and then comparing these summary statistics between groups.

A potential problem with the use of the summary score is that significant
changes in some specific domains may be masked and what is really measured may
become clouded or convoluted, resulting in low confidence about the effect of
treatment as measured by the summary score. A major drawback of summary
measures across time is that they do not fully capture the weighted and correlated
nature of repeated observations on PRO measures over time.

Another way to minimize the problem of multiplicity is to restrict the number of
key domains and time points, no more than a few. These key domains at specific
time points should be pre-specified in the statistical analysis plan as primary end-
points for statistical inference. Other domains at other time points may be regarded
as secondary endpoints. While this recommendation provides a straightforward way
to handle the multiplicity issue, a major challenge is how to select the most
appropriate domains and time points. One way to address this challenge is to rely on
substantive knowledge, well-grounded theory, and research objectives in tandem
with the nature of the disease and the intended effects of the interventions.

Often several multiple endpoints, both PRO endpoints and non-PRO endpoints,
would be of clinical interest. One suitable method is to test them using a
gate-keeping strategy whereby secondary endpoints are analyzed and tested infer-
entially in a pre-specified sequential order only after success on a primary endpoint
(US Department of Health and Human Services 2009)
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More generally, the key endpoints are ranked from most important to least
important from the list of endpoints considered most relevant. This process can be
done using a sequential method by testing additional endpoints in a defined
sequence each at the usual one-sided alpha at the 0.025 level of statistical signifi-
cance. The analyses cease when a failure occurs. It is important that the clinical trial
protocol specify all relevant primary and secondary endpoints, and their order for
inferential analysis and testing (Cappelleri et al. 2013).

2.5.3 Other Types of Multiplicity

Ideally, one design answers one question. When a dose-ranging clinical trial is
designed, multiple comparison adjustment would be considered in order to control
alpha. Sometimes an active control is used and there is a sequence of non-inferiority
test, followed by a superiority test. In some cases, multiple endpoints are unavoid-
able, and the advice is to limit the number of endpoints. However, multiplicity may
happen in many other settings. Some of the scenarios include: subgroup analyses,
multiple analysis sets, time points, analytic methods, models, and interim analysis.

As mentioned earlier, it is important to pre-specify that the primary analysis will
be based on the full analysis set (FAS). In a superiority trial, results obtained from
analyzing the per protocol set can at most be used for the support of FAS results. In
some cases, when a non-inferiority trial is designed, some may argue that PPS can
be considered for the primary analysis. However, even in those cases, FAS results
are still considered very important. In Phase II, most of the trials are superiority
trials and hence FAS is generally used as the primary analysis set.

Longitudinal data are frequently seen in clinical trials. For example, suppose in
the development of a candidate product for the treatment of hypertension, a
four-week trial was designed as a Phase II study. In this clinical study, each patient
is randomized to one of a few treatment groups where patients are followed on a
weekly basis. At end of study, each completing patient contributes four data points
(assuming no missing data), in addition to the baseline blood pressure measure-
ments. Observations are collected at weeks 1, 2, 3, and 4. All of these patient data
are included in a longitudinal data model for statistical analysis. Typical analysis
would consider week 4 as the primary time point and statistical inferences are based
on treatment comparisons at week 4.

After the publication of Mallinckrodt et al. (2008), mixed model with repeated
measures (MMRM) became a widely accepted analytical tool for longitudinal data.
Under the MMRM setting, a primary time point needs to be pre-specified, and the
linear mixed effects model is then applied to the clinical data in order to obtain
treatment comparisons at the primary time point. Under this setting, data observed
before the primary time point are used to help with the estimation of parameters of
interest. In the specification of this analytical model, it is important to focus on the
primary time point. Although multiple data points are collected over time, only the
primary time point will be used to formulate the statistical inference. If more than
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one time point is used for treatment comparison, then alpha could potentially be
inflated.

Primary analysis method needs to be pre-specified in the protocol and in the
statistical analysis plan (SAP). For example, binary endpoints are frequently
included in clinical trial data. Physicians are used to identify a given patient as a
responder or a non-responder to the prescribed medication. Therefore it is common
that in a clinical trial the primary endpoint is response to test treatment (Yes/No),
and each patient is classified as one of the only two possible outcomes. For the
analysis of a two-by-two contingency table (two treatment groups and two values of
an outcome), there are often several statistical methods that can be used for data
analysis. Widely used methods include analysis of risk difference, relative risk,
odds ratio, Cochran-Mantel-Haenszel (CMH), normal approximation of binomial
analysis, logistic regression, Fisher’s exact test, and generalized linear models.
However, for the primary analysis, only one method should be pre-specified. Other
analytical methods may be used for checking the robustness of the primary results,
for use in a sensitivity analysis, but only one statistical analytical method should be
considered primary.

In the analysis of continuous data, typical methods include analysis of variance,
regression, and analysis of covariance. For data collected over time, longitudinal
analytical models could be considered. Again, only one statistical model can be
pre-specified as the primary analysis model. This model needs to be clearly
described so that when the statistical reviewers in regulatory agencies attempt to
replicate the sponsor’s analysis on the same dataset, by using the model specified in
the protocol, or in the SAP, they can obtain the identical results as those presented
in the clinical study report submitted by sponsors.

Model specification should clearly describe how the primary endpoint is cal-
culated. Is it change from baseline or the post baseline outcome? Are covariates
included in the model? For longitudinal data, what variance-covariance structure is
assumed for the residuals over time for each subject Since only one primary model
can be pre-specified, this implies that in the primary analysis of clinical trials, there
will be no “model selection.” This concept, again, follows the principle of “analysis
respects design.”

For example, a widely accepted statistical model for analysis of a continuous
primary endpoint is an ANCOVA with treatment effect, stratification factor, and the
continuous baseline as a covariate as follows:

Yijk ¼ lþ si þ cj þ bXijk þ eijk

where Yijk is the response of the kth subject from the ith treatment group with
baseline stratum level j. i = 1, …, I, j = 1, … J, and k = 1, …, nij, and

l is the overall mean
si is the ith treatment effect
cj is the jth stratum effect
b is the slope associated with the baseline measure
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Xijk is the baseline corresponding to the kth patient in ith treatment of kth stratum,
and

eijk is the residual of this subject

In this example, a stratification factor is included in the model as a covariate.
Typically, stratification factors are accepted as potential covariates in the primary
analysis model. One interesting factor could be center effect, or investigator effect.
In some situations when the disease assessment is more subjective, then it is sen-
sible to include center or investigator as a covariate in the primary model. However,
if the assessment is more objective, then the team may not want to include this
effect in the model because it usually takes away a number of degrees of freedom.

Much literature in biostatistics includes discussion on interim analysis, adaptive
design, sample size re-estimation, and other related topics (e.g., Proschan et al.
2006). In most of these publications, the authors attempted to demonstrate that
alpha is fully protected. The reason that alpha protection is a main concern is that if
there is only one analysis—the final analysis—for the given clinical trial, it avoids
alpha inflation. Whenever there is more than one analysis, then alpha could
potentially be inflated. Hence if the protocol and the SAP pre-specified that there is
no interim analysis, it will be easier to protect alpha.

Subgroup analysis is quite common in most of clinical trials. In general,
statisticians are aware of the fact that these analyses are not alpha-protected. Hence,
from a regulatory perspective, there should be no “statistical significance” associ-
ated with subgroup analyses. In fact, all of the alpha associated with a study is used
in the primary analysis of the entire patient set. Hence, in principle, it would not be
appropriate to discuss statistical significance or even provide p-values for subgroup
analyses. In practice, if a p-value is reported, it should be considered merely
descriptive. One impression is that the pre-specified subgroup analyses tend to be
more credible than post hoc subgroup analyses. On this basis, people attempt to
overly pre-specify. When this is the case, even the pre-specified subgroup analyses
became lack of credibility.

Therefore, it is extremely important that methods to control all of the potential
multiplicities are well defined in the SAP. The simple principle is that for a given
clinical trial, there will be only one primary comparison, with only one primary
endpoint, using the primary analysis set, analyzing at the primary time point, with
the pre-specified analysis method, only the primary model, minimize interim
analysis, and not to over interpret subgroup analysis results. This way, hopefully,
alpha inflation could be reduced.

2.6 P-Value and Statistical Significance

Most of the popular statistical testing procedures such as z-test, t-test, F-test or
chi-square test, are basically a signal-to-noise ratio. In the case of z-test or t-test, the
numerator reflects the treatment difference and the denominator is the square root of
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variance, adjusted by sample size. Hence the denominator represents the back-
ground noise from the data set. In a placebo controlled trial, the numerator repre-
sents the treatment difference from placebo. Therefore under the null hypothesis of
no difference, the mean should be zero. If there is a strong signal (or a large
numerator), then after adjustment for noise (dividing by standard error), the resulted
z-value or t-value can still be very far from zero. A p-value can be considered as a
measure of this distance—the farther away of a test statistic from the null value
(zero, in this case), the smaller the p-value would be. Hence for a product candidate
that is weak on efficacy, the signal-to-noise ratio is expected to be small and the p-
value is expected to be large.

When the numerator degree of freedom equals one, the F-test is the square of the
respective t-test, where the denominator degree of freedom of the F-test corresponds
to the degree of freedom associated with the t-test. When the denominator degree of
freedom of an F-test goes to infinity, then the F-test turns into a chi-square test,
where the numerator degree of freedom of the F-test corresponds to the degree of
freedom associated with the chi-square test. Both the F-distribution and the
chi-square distribution have values that are positive. The larger these values, the
smaller the corresponding p-values. Again, if the signal is strong after adjustment
for the noise, then the corresponding p-value would be relatively small; if the signal
is weak, then a larger p-value would be observed.

In the case of analysis of variance (ANOVA) or analysis of covariance
(ANCOVA) for comparison of treatment effect, the F-test equals the mean square of
treatment divided by the mean square of residual. Here the numerator is the signal,
and the denominator reflects the noise (or the unexplained variability observed from
the given set of data). In a clinical development program when the signal is very
strong (i.e., a very good treatment which delivers strong efficacy as compared with
placebo), then after adjustment for noise (by dividing the signal by the mean square
of residual), the F-statistic can still take a large positive value and a small p-value
could still be observed. On the other hand, if the treatment efficacy is not strong,
then the corresponding numerator may not be large enough and, after dividing by
the mean square of residual, the observed p-value could be relatively large.

Reconsider the model equation

Yijk ¼ lþ si þ cj þ bXijk þ eijk

The analysis of variance (ANOVA) table from this model.
In this Table 2.4, SS is the sum of residuals and MS is the mean sum of

residuals. Regarding the z-test or the t-test, from an extreme point of view, no
matter how weak the treatment signal is, as long as the sample size is increased to a
large amount, a very small p-value can always be observable. When this is the case,
the treatment difference could be completely clinically meaningless, yet a small p-
value is achieved. From this perspective, the focus of product development cannot
be only on reducing p-values. It is very important to understand that a clinically
meaningful treatment effect and a reasonable sample size have to be both available
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so that a clinically meaningful effect with a statistically significant p-value can be
delivered.

Under the ANOVA or ANCOVA setting, if the sponsor hopes to obtain a
smaller p-value, then there are at least two ways to proceed: (1) increase the sample
size (as in the situation of a z-test or a t-test), and (2) add covariates in the model
which are good predictor of the outcome (dependent variable). As can be seen from
the ANOVA table, the columns are source of variation, sum of squares, degrees of
freedom, mean squares, and F; the rows are treatment, covariates, residual, and
total. From the rows, every covariate explains some part of the variability (which is
expressed as sum of squares). Hence as long as a covariate is not using too many
degrees of freedom and explains outcome (the variation in the outcome can be
explained by the covariate), then by adding covariates into the model, the mean
square for residual could be reduced. Therefore, even when the treatment effect is
weak, the sponsor can reduce p-values simply by increasing sample size or by
introducing additional covariates into the ANOVA or ANCOVA model, a smaller
p-value could be arrived. Without a strong treatment benefit, manipulation of sta-
tistical models or increasing sample sizes to reduce p-values are poor clinical
practices that does a disservice to all stakeholders and, therefore, should be avoided
as they neither help patients nor serve the sponsor’s interest.

Non-statisticians in a project team tend to interpret an observed p-value from a
two-sided test that is less than 0.05 as “statistically significant.” This tendency is
based on a common misunderstanding. Whether a p-value is statistically significant
or not depends on the pre-specified alpha. In a design with two doses compared
against placebo, if the pre-specified one-sided alpha is 0.025, and a Bonferroni
procedure is used to adjust for multiple comparisons, then a pairwise comparison
(e.g., high dose against placebo) is only statistically significant if the observed
two-sided p-value is less than 0.0125.

In a clinical development program, it would be the statistician’s responsibility to
clarify this point to team members so that the term “statistical significance” is not
misused or misinterpreted. In a clinical study report, there could be p-values sup-
porting the primary and secondary endpoints. Sometimes p-values may be provided
for exploratory endpoints. However, not every p-value is alpha-protected. In a
regulatory setting for drug approval, it is very important for the statistician to clearly

Table 2.4 ANOVA

Source of variation SS df MS F

Treatment SStrt dftrt = I − 1 MStrt = SStrt/dftrt MStrt/MSR
Stratification factor SSstr dfstr = J − 1 MSstr = SSstr/dfstr MSstr/MSR
Baseline SSbas dfbas = 1 MSbas = SSbas/dfbas MSbas/MSR
Residual SSR dRt = dftotal –I − J + 1 MSR = SSR/dfR
Total SStotal dftotal = RRnij − 1
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articulate which p-values are alpha-protected (in this case, a statistical significance
or non-significance can be associated with the p-value) and which p-values are not.
In the case a p-value that is not alpha-protected, it can be considered only as
descriptive or a nominal value.

2.7 Stages of a Clinical Trial

Every clinical trial can be broadly categorized into four stages—design, conduct,
analysis, and report (Evans and Ting 2015). Design stage starts from the time when
a clinical question is raised, or when a clinical study objective is formulated, and
continues until before the first subject is screened. In most of the clinical trials, there
is usually an investigator meeting, and the time of this meeting is often viewed as
the end of the design stage and the starting point of the trial conduct stage. Trial
conduct stage finishes at the time of clinical database lock and, after the database
lock, the trial enters the analysis stage. After all analyses are ready, the medical
writer works with the team to agree the key messages summarized from these
analyses. Then the clinical trial enters the reporting stage.

The document to be prepared during the design stage is a clinical protocol. The
protocol describes the background about the test treatment, sets the objective for the
clinical trial, and covers all aspects about the study design—patient inclusion or
exclusion criteria, duration of treatment, treatment groups to be included in the
study, the randomization procedure, and the statistical details such as sample size
calculation, definition of primary and secondary endpoints, alpha, power, and other
considerations. A protocol is a comprehensive document that explicitly describe the
entire clinical trial design.

The study conduct stage covers the main part of the trial. During this stage,
subjects are screened and recruited to the investigators’ site for assessment; clinical
data are collected, reviewed, and checked. This stage can be considered as the
clinical monitoring stage where most of the trial execution activities take place.
Typically during this time, a SAP will be prepared and signed off. A SAP describes
the statistical procedures to be applied on clinical data in performing analyses, most
importantly, it describes how the alpha is protected. The SAP needs to be signed off
some time before database lock.

After database lock, the clinical trial enters the analysis and the report stage. In
randomized, controlled, double-blinded trials, treatment allocation is blinded to the
study investigators and to the patients during the study. After last patient completes
the study, and clinical data are cleaned, the database will be locked and subse-
quently the blind will be broken. Data analysis can only be started after blind is
broken. At this time, data sets are created and statistical analyses are performed.
With the analytical results being summarized into tables or figures, the statistician
works with the clinician and medical writer to interpret these results. Finally, the
findings from these results are written up in clinical study reports. In many studies,
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these results may also be published in medical journals to deliver the messages
about a product to the medical community.

Statisticians are involved in all four stages of a clinical trial, but their most
important contributions to the trial team are mainly during the design stage and in
the analysis/report stage. Statisticians are trained to analyze data, to interpret results,
and to document statistical findings. Most of pharmaceutical statisticians are trained
in design of experiments, but their graduate training in experiment design could be
different from the clinical trial designs. Statistical design of experiments (DoE) tend
to focus on number of factors to be controlled, interactions included in the model,
and other factors. However, in clinical trial design, the most important concept is
confirm and explore—confirmatory thinking is based on hypothesis testing, and
exploratory practices are mostly estimations. Given this education background
obtained from schools, many clinical statisticians tend to pay more attention to data
analyses. However, in clinical trial design and clinical development planning,
statisticians could play a much more important role. As indicated in a well-known
cliché “good data analyses cannot rescue a bad design”, no matter how great the
statistical analysis can be performed, if the study design did not appropriately
collect the necessary data for analysis, then the key question cannot be addressed.

The two major professions involve in clinical trial design are medicine and
statistics. Hence it is critical for a statistician to work closely with clinicians in
understanding the objective(s) of a clinical trial. The study should be designed to
address the primary objective, as well as the secondary objectives. Although this
collaboration is critically important, difficulties may arise in communication
between these two professions in practice.

One of the key differences between these two professions originates from their
educational background. Physicians are trained to care for individual patients—a
physician observes and thinks about the patient coming to the clinic and tries to
consider all possible angles that can best care for the patient. For a human body,
many systems and organs exist, and all need to work together in order for a person
to function normally. Clinicians need to understand which part of the system or
organ that possibly went wrong, so that the physician can diagnose and treat the
symptoms experienced by the patient. Hence medical education trained them to be
thorough and complete, so that none of the details is missed in examining a patient.
The focus is on the micro-level at individual patients, trying to understand what are
behind the signs and symptoms observed from these individuals.

On the other hand, a statistician is trained to think about a population, and
samples obtained from the given population. Given the data observed from the
sample, how are inferences to be extended to the population at large. With this type
of thinking, one patient is only one data point within the sample. Hence the edu-
cational background is very different between a physician and a statistician—the
physician thinks about patient care and how to formulate a complete understanding
of a given patient, while the statistician thinks about the population and how to
make correct inferences to the population from an observed sample, which includes
many patients, sometimes up to thousands or tens of thousands. In addition to
educational background, when the clinician and the statistician partner on a project
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team, there could be many other factors such as differences in personality, years of
exposure to clinical trials, and practical experience which may affect the working
relationship and mutual understanding. Therefore, clear communications between a
physician and a statistician is very critical in designing clinical trials.

One major practical clinical trial design problem is that the clinical team tends to
ask too many questions out of one single trial. Ideally, one design answers one
question. Most of the confusion came from the lack of understanding about the
priority of different questions. Often times it takes the statistician to probe these
various questions and helps the team to prioritize those questions. Only after the
priority becomes clear, the statistical hypothesis can then be clearly written out. If it
takes a set of statistical hypotheses to address the main clinical issues, multiple
comparison adjustments may need to be considered.

Analysis needs to respect design. This is an extension of the ITT principle—in
other words, analyze as randomized, but also analyze as designed. No matter how
well a clinical trial is designed, problems may happen during the study conduct. As
indicated earlier, collecting trial data from live human beings and controlling
human behavior are challenging endeavors. Hence during the study conduct many
things could go wrong. Situations occurs as when patients miss medication,
investigators fail to recruit, clinical data are not collected, and many other practical
limitations. However, no matter what happens during the trial, by the time of
performing data analysis, the statistician should respect the study design, and
analyses should be consistent with the design.

2.8 Subject Selection and Choice of Alpha at Phase II

Phase III clinical trials are designed for the submission of regulatory review. These
trials are also known as confirmatory trials because they are designed with an
understanding of all learnings accumulated from non-clinical studies and Phases I
and II clinical (human) trials. Sponsors use Phase III to confirm that all of the
treatment benefits learned from previous investigations can be demonstrated to be
clinically important and statistically significant. Sponsors also hope that Phase III
clinical results can be generalizable so that the entire patient population with the
indicated condition or disease can benefit from the product under development.
Hence it is desirable that patients recruited to Phase III studies can be representative
to the general patient population. This is why patient selection criteria for Phase III
trials are less restrictive than in Phase II trials.

This situation in Phase III clinical trials is in contrast to the thinking of designing
Phase II clinical trials. The major challenge in Phase II is proof of concept—at this
stage, it is unclear whether the test product will work or not. Hence patient char-
acteristics to be selected for trial recruitment tend to be somewhat limited and
restrictive. Patients entered in Phase II studies cannot be too sick so that no matter
how good the medications, these patients tangible less likely to improve. On the
other hand, Phase II patients cannot be too mild so that the treatment improvement
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is very difficult to detect. Thus the inclusion criteria in selecting Phase II patients
have to be within a certain disease severity so that the recruited patients will provide
the best opportunity to differentiate efficacy of the test product from that of the
control.

Given the nature of differences between entry criteria for Phase II and Phase III
clinical studies, it can be expected that the patients recruited to Phase II trials tend to
be more homogeneous than patients in Phase III trials, which tend to be more
heterogeneous. Accordingly, the relative efficacy from test treatment in Phase III
trials tends to be diluted when compared with efficacy observed in Phase II
(Chuang-Stein and Kirby 2014).

For Phase III, studies are mostly designed with a one-sided alpha of 0.025 (or
equivalently, two-sided alpha of 0.05). The reason is that all regulatory agencies use
this alpha level for product evaluation, and Phase III trial results are submitted to
the agencies for approval decisions. However, Phase II trial results have a different
audience. The objective of a Phase II study design is primarily to answer the
Go/NoGo question within the sponsor. Hence the key audience of Phase II trial
results is the upper management of the sponsor who has to decide whether or not to
continue with the development program. The main responsibility of a trial team is to
deliver the clinical data to help the decision makers within the sponsor to answer a
Go/NoGo question. On this basis, the risks of making a Type I error or a Type II
error are relevant and need to be taken into account by the sponsor.

Because there is a great deal of uncertainty about the treatment efficacy of the
test product at early Phase II, sponsors are reluctant to make major development
investments in this stage. Therefore, the sample sizes of early trials could be lim-
ited. Study sample sizes is determined by four quantities: alpha, beta, delta, and
sigma. In other words, rates of Type I error (alpha), Type II error (beta), clinically
meaningful treatment difference (delta), and standard deviation of patient response
(sigma). In general, sigma tends to be a stable quantity. Delta is the most difficult
quantity to postulate. It usually takes a lot of discussions among team members,
before a reasonable delta can be proposed. Finally, rates of Type I error and Type II
error can be controlled by the study team. When sample size is limited at early
Phase II, and when delta cannot be increased, the only option for the team is to
increase alpha or beta (or both) in order to meet the sample size limitations.

Alpha can be thought of as the probability of developing a placebo, and beta can
be thought of as the probability of giving up a potentially good candidate product.
At early Phase II, beta could be more important than alpha to the sponsor. Hence it
is not uncommon to see early Phase II trials designed with one-sided alpha of 0.05,
0.075, or 0.1. Meanwhile, beta tends to be always no greater than 0.2. Given the
variance is known, and that the treatment difference is fixed at a certain quantity, it
is typical that the study team discusses how to allocate alpha or beta (or both) such
that the calculated sample size is feasible.

In order to allow the best opportunity for a candidate product to demonstrate its
efficacy in treating patients with the indication under study, clinical trial designs in
Phase II are usually with a restricted entry criteria and often accompanied with a
one-sided alpha greater than or equal to 0.025. These thinking processes allow
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flexibilities in clinical trial design for early Phase II development. It can, however,
also be a source of confusion for inexperienced biostatisticians. Much of this book
is intended to address or clarify such points of confusion.
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Chapter 3
Confirmation and Exploration

3.1 Introduction

It should be noted that contributions of statistical science to modern medicine are
not limited to statistical methods for estimating sample sizes, calculating p-values or
confidence intervals. In addition to these methods, the indispensable and invaluable
contributions are in statistical thinking and concepts and, more generally, in
research methodology at are aimed at good clinical research practice. Clinical trial
designs and clinical development programs are mostly based on statistical thinking
and concepts. One example is the statistical hypothesis testing—the null hypothesis
is that there is no difference between the test product and the placebo control.

However, unless there is strong enough evidence to demonstrate that the test
product is significantly different from placebo, scientists would not reject the null
hypothesis (that the test treatment is not different from the control treatment). When
a decision is made that the test product is efficacious, statistical methods help
quantify the Type I error, that is, the probability that the test drug is observed to be
different from the control treatment when in fact it is not. This statistical thinking
process establishes the foundation of designing an individual clinical trial.
Furthermore, statistical thinking can also help guide the planning of an entire
clinical development program composed of many clinical trials.

Another example of statistical thinking that contributes to clinical trial design is
the differentiation between confirmation and exploration, the main topic of this
chapter. In most Phase II and Phase III clinical trials, a study is designed with at
least two purposes: decision-making and learning. Trials designed for
decision-making purposes are usually called “confirmatory trials.” Trials designed
for learning are generally called “exploratory trials.” Nevertheless, if most of these
trials are used both for confirmatory purposes and for exploratory purposes, it is
sensible to design studies considering both properties in a stepwise fashion.
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The statistical tool to help exploration would be estimation—point estimation
and interval estimation. The statistical tool to help with confirmatory is hypothesis
testing.

3.2 A Motivational Example

In the Phase II clinical development of a new product, one study design may
involve three treatment groups—test product, placebo, and an active control.
Typically in such a study the clinical objective may be “to compare the product
candidate with the active control and the placebo.” Suppose the primary endpoint
for this study is a continuous variable that follows a normal distribution. Then,
under this objective, the project statistician is apt to propose the hypothesis

H0: lT ¼ lP ¼ lA; versus H1: not all means are equal

where

lT is the mean treatment effect of the test drug
lP is the mean treatment effect of the placebo and
lA is the mean treatment effect of the active control

Based on this hypothesis, an F-test may be used to compare the three treatment
groups; i.e., use an F-test to test H0 and, if the null hypothesis is rejected, then
proceed to make the pairwise comparisons. This procedure is known as the Fisher’s
protected least significant difference (LSD) test.

Suppose the test product is really effective, and the pairwise comparison between
the test product and the placebo is statistically significant; however, the F-test of the
3 groups fails to support a statistical difference. According to the Fisher’s protected
LSD procedure, if the overall F-test is not significant, the testing procedure stops
and a pairwise test would not be performed. In this situation, a statistical procedure
could delay or even stop a potentially beneficial product to reach those patients who
need this medically advanced treatment. What is wrong with this proposal?

Under this circumstance, the fundamental issue is the study objective. Although
the project team is interested in the comparison among all three treatment groups,
there is a natural sequence of testing. The first step could be to demonstrate that the
test product is superior to the placebo. This comparison will demonstrate the effi-
cacy of the test product. Only after this step is completed, the next step examines
whether the test product is non-inferior to the active control or, alternatively,
superior to it. More details about this sequence of hypothesis can be found in
Chap. 8.

Hence, as the study is being designed, the objectives should be explicit. The first
objective is to demonstrate efficacy of the test product by comparing it with pla-
cebo, with the entire alpha applied on this comparison to protect the Type I error
rate. Then the second objective is to show the non-inferiority (or superiority) of the
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test product against the active control. If the sponsor is interested in making claims
about the test product against the active control, then a non-inferiority margin for
confidence interval estimation (for non-inferiority purpose) or a Type I error rate
(for superiority) should be clearly pre-specified.

Note that if the second objective is to show non-inferiority, the Fisher’s pro-
tected LSD procedure is not appropriate for this study design because part of the
alternative hypothesis of interest is nested in the null hypothesis (H0: lT = lP = lA)
that none of the three treatment groups are different.

A third possible pairwise comparison is between the placebo and the active
control (H0: lP = lA). Typically, this comparison is used to check for assay sen-
sitivity. That is, if the first test fails to demonstrate the difference between the test
product and placebo, then the natural question is whether the test product does not
work or that the test product is in fact effective, but the study fails to indicate the
treatment difference. Under this circumstance, a comparison between the active
control and placebo can be used to identify where the problem is—that is, if a
significant difference (between active control and placebo) is detected, then the test
product is not efficacious. On the other hand, if a difference between placebo and
the active control cannot be established, that implies the study may be conducted
poorly, and there may still be a significant difference between test product and
placebo, but this particular study fails to demonstrate that difference.

This example shows that the most important confirmatory step for this study is
the pairwise comparison of test product against placebo. Only after this is con-
firmed, scientists can then explore the second objective. Even if both objectives are
clearly pre-specified in a stepwise fashion, additional comparisons and safety
profiles can still be explored from this study. The key aspect of the thinking process
is that this study should be designed to confirm the primary (and possibly sec-
ondary) objective first and then move to the next step of exploration. Therefore, for
each study design, it becomes a stepwise process such that seeking confirmation
comes first and, only after confirmation, exploration and learning from the clinical
data follow.

3.3 Clinical Development Plan (CDP)

As indicated in Chap. 1, a clinical development plan (CDP) is drafted at the very
early stage, even before the product candidate enters the clinical program. In
general, the early phases of clinical development (Phases I and II) are considered as
exploratory development because, at this stage, it usually is unclear as to potency,
dose frequency, dose regimen, and general safety profile about the product candi-
date. At Phase III, sponsors design and execute a large scale, longer-term trials;
these are considered as confirmatory studies. Regulatory agencies review results
from these Phase III studies and make decisions whether or not to approve the new
product. This approach is sensible because the scientific process is to learn more
first and then, based on these understandings, decisions are made. As such, a
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recurring theme resonants: The process is to learn (or explore), then to confirm, and
next to learn, and to confirm again, and so on.

The overall clinical development process can be viewed in two directions (Ting
2003) as shown in Fig. 1.2. One is the forward scientific process—as more data and
information accumulate, more is known about the product candidate in order to
design later phase studies to help progress the candidate in drug development. On
the other hand, the planning is based on the draft product label. Depending on the
product properties to be demonstrated on the label, the thinking process is for-
mulated with the goal in mind by looking at the target profile first and then crafting
the CDP according to the draft label motivated by the target profile. Although the
product development process is a first learning (exploratory) and then confirming
process, study design for each individual trial should be thought of in the reverse
way. A clinical trial should be designed with the confirmatory objective in mind
first and, after the study can be assured to achieve that goal, additional properties of
the study product can be explored.

According to the “design to stop” strategy, the most efficient development
strategy is to allow each individual clinical trial before Phase III to have the
opportunity to stop the product candidate for further development. As indicated
earlier, although the focus of this book is about Phase II, many of the principles
covered in this book can be applicable to Phase III, also From this point of view,
every such individual clinical trial can in principle be considered as a Go/NoGo
trial. Before engagement in Phase III, the most important question of every clinical
trial should be a Go/NoGo decision. For many (if not most) clinical development
project teams, members tend to not focus on this question because, buoyed from
optimism after completing a particular trial, they may be more inclined to move to
the natural next step of designing a new study and moving forward. This scenario is
the typical case because an implied “Go” decision has been made based on
favorable (or, at least, not unfavorable) study results observed from this given trial.
For those candidates that are promising or somewhat promising, this could be a
somewhat easy decision when the study results are available. If there is no critical
issue from these clinical data, the team tends to make a Go decision.

However, the difficulty comes from the design stage which occurs before any
team member sees the data. The key question is, how to design a clinical trial so
that by the time when blind is broken and data are available, an easy decision can be
made? A good design tends to address the Go/NoGo question directly. Thus, from
the view point of planning for the entire development program, it would be more
efficient to build in a Go/NoGo criteria in order to correspond to every study
planned in the program through Phase II. In other words, a critical evaluation of the
Go/NoGo criteria that should be built in for every Phase II clinical trial before a
product candidate enters Phase III.
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3.4 Clinical Study Design and Sample Size Calculations

For every clinical trial, before the study design, there is always a clinical question of
interest. Based on this clinical question, sample sizes are calculated. The 4 quan-
tities necessary for sample size calculations are alpha, beta, delta and sigma (a, b, d,
and r; see Table 3.1).

Sample size calculations are important because this number reflects the
assumptions a project team is willing to make. These assumptions include selection
of primary endpoint, tolerability of errors (Type I and Type II errors), anticipation
of the clinical difference to be observed, and the budget to execute the study. Each
study design is a compromise of these assumptions. Selection of the primary
endpoint is based on the understanding of the disease to be studied, regulatory
guidelines, mechanism of action of the experimental intervention, study duration,
and how difficult it is to reach clinically meaningful efficacy.

Based on all of these considerations, a sample size is calculated with the
expectation that the clinical data will help make a Go/NoGo decision on the product
candidate. Hence this part is the confirmatory part of the study design. After the
sample size is determined, the clinical study is designed to collect additional effi-
cacy and safety data for scientists to learn more about the study product. While
patient-reported outcomes (PROs) have been primary endpoints in several thera-
peutic areas such as sexual dysfunction, pain and rheumatology, PROs have been
also secondary endpoints in many other circumstances (e.g., studies on oncology,
smoking cessation, cardiovascular, and diabetes) ti help assess health status such as
physical and mental functioning and well-being.

In many Phase II clinical trials, the secondary endpoints such as PROs are not
alpha-protected. For example, in many oncology trials, PROs are secondary end-
points while the progression-free survival is the primary endpoint. Hence these
PRO endpoints are not typically considered in the sample size calculation.
However, in Phase III, some of these endpoints may be considered to be included in
the product label. In this case, sample size for the given Phase III trial should be
sufficiently large so that the secondary endpoints (including PROs if they are
secondary outcomes) can be confirmed to support the label statements. Additional
endpoints and other design features for this study could be for exploratory purposes.

Table 3.1 Factors considered for sample size calculations

Symbol Meaning Typical values Implications

a Type I error rate One-sided at 0.025 Develop a placebo

b Type II error rate 0.1 or 0.2 Give up a good drug

d Clinically meaningful
difference

Obtained from regulatory
guidance, literature, etc.

Achievable?
Regulatory acceptable?

r Standard deviation Obtained from literature
or pilot studies

Mis-specification of r could
affect sample size calculation
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Here the two-step approach of designing a clinical study is to first use the primary
study objective to determine the sample size, which serves as the confirmatory step;
the second step is to include the necessary adjunct or exploratory pieces into the
study design.

3.5 Statistical Analysis Plan (SAP)

For most Phase II/III clinical trials, a SAP exists for each study. In contrast to the
CDP, which guides the entire development program, a SAP provides guidance of
how to analyze data collected from a single clinical trial. The SAP is drafted around
the time a study protocol is being finalized. It needs to be completed and signed off
before the blind is broken. This document serves as a contract between the statis-
tician and the project or the trial team. It can also be submitted to regulatory
agencies as a supporting document illustrating that all statistical analyses are
pre-specified and prospectively defined, not based on post hoc data dredging.

The SAP describes the statistical analysis methods in more details than in the
protocol. Usually topics covered in a SAP include definitions of the primary end-
point, the primary comparison, the primary analytical population, the primary
analysis method, the primary time point, and all secondary analyses. The SAP
might also specify the safety analysis and other relevant analyses [e.g., pharma-
cokinetics (PK) analysis, pharmacogenomics analysis, patient-reported outcomes,
additional doses, and others].

With these detailed specifications, the statistician collaborates with the project
(or the trial) team to agree on what exactly can be expected when the study results
are ready. The team may also request for specific analyses to address particular
clinical issues. Thus a SAP serves as a contract with the team. The main purpose of
a SAP is to ensure that the Type I error is not inflated. All this effort is made for a
confirmatory purpose—when the study results demonstrate drug efficacy, the team
is certain that by progressing this candidate product, the probability of developing a
placebo is controlled to be less than the stated level of significance (alpha). After the
primary analysis is performed, and the candidate product is shown to be efficacious,
the team then explores other characteristics of this product candidate (secondary
efficacy analyses, product safety, and other issues of interest).

As covered in Chap. 2, for regulatory purposes, multiplicities could potentially
inflate alpha—multiple comparisons, multiple endpoints, multiple analysis sets, and
other multiplicities—should be well-controlled so that the pre-specified
experiment-wise Type I error rate (alpha) can be fully protected. Of course a
simple design with only one primary comparison, one primary endpoint, one pri-
mary analysis set, one primary time point, one primary analysis method with one
primary model without any interim analysis would clearly help with alpha pro-
tection. Hence in a proof of concept study where the key question is a Go/NoGo
decision, all of these simplicities help with alpha protection, with the intention that
the decision will not be too difficult after study results are ready. As also mentioned
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earlier, the most efficient clinical development strategy is to make every pre-Phase
III clinical study a Go/NoGo study. From this point of view, therefore, a very
simple design that answers one single key question could be one of the most
efficient strategies in clinical development of new medicinal products.

However, when multiplicities exist, statistical adjustment for handling multi-
plicity should be included in both the protocol and the SAP. It should be noted that
p-values used to test all of the alpha-protected statistical hypotheses can be inter-
preted; that is, a “statistical significance” or “statistically non-significant finding”
can be associated with those p-value(s). A preferred way to move forward would be
that, other than those hypotheses where alpha is protected, no additional p-value
will be provided in a study report, assuming that all those statistical summaries are
for exploratory purposes only. The differentiation of confirmation and exploration
in this case would be that all alpha-protected statistical hypotheses tests serve
confirmatory purposes; all of the additional results are considered exploratory from
a regulatory perspective. Exploratory analyses include all those efficacy analyses
that are not alpha-protected—background and demographic data, safety summaries,
outcome research clinical outcomes (including PROs, if applicable, and resource
utilization metrics), and others. Again, the study design thinking is to confirm first
and then to explore.

3.6 Application Example—Another Three Group
Phase III Design

In the Phase III clinical development of valdecoxib, one of the dental pain studies
includes 3 treatment groups: valdecoxib compared with placebo and rofecoxib
(Fricke et al. 2002). In this study, valdecoxib is the test drug and rofexocib is the
active control. The primary purpose of this study is to demonstrate that valdecoxib
is superior to rofecoxib. However, in order to obtain drug approval, it is necessary
to also include a placebo group. As a result, a study becomes a three-group
Phase III study for dental pain.

Dental pain is a well-established therapeutic indication. Assume that the primary
endpoint, clinically meaningful difference, and variability of clinical measures are
all established from previous studies. Hence from a product approval perspective
for a dental pain study to demonstrate superiority to placebo, there is generally no
need to have more than 50 patients per treatment group.

For this Phase III dental pain study, the primary endpoint is the proportion of
patients experiencing treatment failure, defined as those patients who took rescue
medication within a given period of time. Since the primary objective is to
demonstrate superiority of the test drug over the active comparator, this study
should be powered based on this primary comparison. Because the efficacy margin
for superiority to an active control is less than the margin to the placebo, the sample
size calculation indicated 80 patients per treatment group in order to meet the
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pre-specified power. However, the secondary objective of this study requires the
test drug to be superior to placebo. Hence a placebo group with 40 patients would
be sufficient. Based on these considerations, this dental pain study is designed with
an unbalanced randomization of 2:2:1 ratio of the three treatment groups—80
patients for test drug and for the active comparator and 40 patients for the placebo
group.

In this example, the most important confirmatory step is to demonstrate the
superiority of valdecoxib to the active control (rofexocib). The next confirmatory
step is to show that valdecoxib is superior to placebo. After these two confirmatory
steps, investigators are interested in exploring other characteristics of valdecoxib.
The key to this imbalanced design is to recognize that the first confirmatory step
requires a larger sample size than the second step and, to that end, a 2:2:1 ran-
domization ratio introduces additional efficiency to this Phase III study design.

3.7 Application Example—Dose Selection

In a typical dose-ranging clinical trial, a placebo and a few active test doses are
studied. One frequently used dose-ranging study is designed with four treatment
groups: placebo, low dose, medium dose, and high dose of the test drug. Clinical
data obtained from these studies can be viewed from two different angles. First, the
statistician can perform pairwise comparisons to see if any of the doses is superior
to placebo. Second, the statistician can consider parametric model that includes all
doses to describe a dose-response relationship. When analyzing data from
dose-ranging studies, statisticians consider two families of common statistical
methods: multiple comparison procedures (Tamhane et al. 1996) and modeling
approach (Ruberg 1995).

As discussed in Chap. 2, multiple comparison procedure (MCP) is usually
performed with pairwise comparisons of each test dose against placebo. When
pairwise comparisons are made, the level of significance (alpha, the probability of
making a Type I error) could be inflated and multiple comparison adjustment need
to be made. For example, in the case of a four treatment group dose-ranging design,
the three pairwise comparisons are high dose versus placebo, medium dose versus
placebo, and low dose versus placebo. The Bonferroni adjustment divides alpha by
3, and each pairwise comparison is tested at the alpha/3 level. Other MCP
adjustments include Dunnett’s method, Holm’s procedure, closed testing, and
others. One of the frequently used procedures in drug development is the gate
keeping adjustment (Dmitrienko et al. 2006).

As indicated in Chap. 2, an example of the gate-keeping procedure in a four
treatment group dose-response study can be described as follows. The first step is to
test the high dose against placebo at alpha. If the null hypothesis is accepted, then
stop and claim that none of the test dose is effective. If a p-value less than alpha is
observed, then claim that the high dose is significantly different from placebo and
test the medium dose versus placebo at alpha. If a p-value is greater than or equal to
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alpha, then accept null hypothesis and stop; claim that only the high dose is
effective and that none of the lower doses are effective. If the p-value from the
second step is less than alpha, then claim that both the high dose and the medium
dose are effective and move to test low dose versus placebo at level alpha.

In general, MCP is very useful in protecting alpha so that it is not arbitrarily
inflated. Controlling alpha is extremely important in Phase II and Phase III studies
where regulatory agency will need to make a decision about the study drug. The
other family of methods in analyzing dose-ranging clinical data is based on the
dose-response modeling approach. A simple example is to assume that the three test
doses and placebo forms a linear dose-response relationship. Based on such a
model, this four-treatment group study can be analyzed using a linear contrast test,
or a simple linear regression, using dose as the regressor. Of course, other models
such as Emax, logistic, and many others can also be considered for data analysis.
Results obtained from the analysis of a linear dose-response model will help
investigators to determine whether or not there is a linear dose-response
relationship. Also the coefficient estimated from this model can be used to study
various properties of the dose-response relationship. The advantages of using a
dose-response modeling approach include at least the following five characteristics:
(1) helps to identify a target dose of interest [e.g., minimum effective dose, ED90

(a dose with 90% of maximum efficacy)]; (2) provides confidence intervals on
selected doses; (3) avoids multiple testing concerns; (4) helps better understanding
of dose-response relationship; and (5) guides planning of future studies. With
identification of a target dose of interest, doses do not necessarily have to be the
doses being studied (a dose-response model helps interpolate responses from
observed doses to estimate the responses of doses that were not selected and
observed).

Pinheiro et al. (2003) propose a method to combine the MCP and the modeling
approaches, denoted as the MCP-Mod method, for analyzing dose-ranging studies.
The basic idea is to consider a set of candidate models at the design stage and, then
for each model, construct an optimal contrast corresponding to each model. If there
is a single candidate model with only a given set of parameters, then the data
analysis will be performed with just one contrast. Hence no multiple comparison
adjustment is necessary.

Once a dose-response model is determined, this model can be used to estimate
target doses of interest and construct confidence intervals on efficacy responses of
these doses. Information obtained from this model can help to design other Phase II
studies and even Phase III studies. The MCP-Mod is an integrated approach to
explore dose-response relationships, while confirming that the test product is effi-
cacious based on hypothesis testing. Therefore, in the desing of a dose-response
study using MCP-Mod approach, the first step is to confirm there is a dose response
that fits at least one of the candidate models, and this can be accomplished by the
“MCP” step. Then, after the confirmation of dose response, investigators continue
to explore using dose response modeling, the “Mod” step. This approach can be
considered as an application of the paradigm on confirm–then-explore.
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One example can be found from Westfall and Krishen (2001). Table 3.2 displays
the pairwise comparisons of treatment to placebo using a 5% one-sided alpha.
These data are also plotted in Fig. 3.1. Pinheiro et al. (2003) applied the Emax,
linear in log dose, linear, exponential and quadratic (umbrella shape) models to
re-analyze data in this example, and demonstrate how the MCP-Mod method can be
used to estimate the minimum effective dose.

3.8 Proof of Concept and Dose Ranging

In the development of a new medicinal product for non-life threatening diseases, a
proof of concept (PoC) study is designed at early Phase II to evaluate whether the
test treatment could show product efficacy based on the non-clinical and early
clinical findings. Typical Phase I programs for these drug candidates recruit healthy
normal volunteers to help establish the pharmacokinetics/ pharmacodynamics
(PK/PD) profile. But drug efficacy can only be studied in patients with the target
disease. For these products, therefore, no efficacy data is available at the beginning

Table 3.2 Pairwise comparisons to placebo

Parameter Estimate Standard
error

t-value One-sided
p-value

Marginal 90% Conf. Int.

l1 − l0 0.6038 0.2253 2.68 0.0044 (0.2296, 0.9780)

l0.6 − l0 0.5895 0.2253 2.62 0.0052 (0.2153, 0.9638)

l0.2 − l0 0.4654 0.2253 2.07 0.0201 (0.0912, 0.8396)

l0.6 − l0 0.1118 0.2253 0.50 0.3103 (−0.2624, 0.4861)

Fig. 3.1 Estimated treatment
differences with respect to
placebo and associated
marginal 90% confidence
intervals for each dose in the
Phase II example
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of Phase II. In many situations, the drug candidate may show strong efficacy from
animal models and non-clinical experiments but may fail to provide efficacy to
human subjects. Hence a PoC study is very critical in product development to help
sponsors make a decision as to whether or not to follow-up developing this
candidate.

A typical PoC study is designed with two treatment groups—a high dose of the
study product and a placebo group. The high dose is usually the maximal tolerated
dose (MTD) or a dose that is a bit lower than the MTD to avoid potential tolera-
bility or safety concerns. The selected dose should be high enough so that it will
provide the best hope for the study product to demonstrate efficacy. The major
advantage of this design is that if the test product does not deliver the efficacy as
expected, a single PoC study will provide sufficient information to stop the entire
development program. Thus the sponsor can allocate resources (investments and
manpower) into developing other product candidates that are more promising. On
the other hand, the disadvantage of such a design is that if the PoC demonstrates the
efficacy of the study drug, there is quite limited information to carry the candidate
product into the next study.

Usually after the concept is proven for a test product, the natural next step in the
Phase II clinical development is to run a dose-ranging study in order to evaluate the
product efficacy and safety at various doses. A dose-ranging study can be viewed as
the first dose-response study and it typically includes a high dose, a placebo control,
and a few doses in between. The high dose would be a dose that is close to MTD, or
a dose not much different from the one used in the PoC study. However, the choice
of the low dose or other doses between placebo and high dose can be a difficult
challenge. Some researchers (e.g., Wong et al. 1996) suggest an equal-dose spacing
while some suggest log dose spacing and Fibonacci series. In addition, the modified
Fibonacci series approach can also be considered (Penel and Kramar 2012), along
with the approach suggested by Quinlan and Krams (2006). An equal-dose spacing
can be achieved by dividing the high dose by the number of test doses; for example,
if the high dose is 90 mg, and there are three doses, then the medium dose would be
60 mg and the low dose would be 30 mg. The log-dose spacing allows a loga-
rithmic relationship; for instance, if the high dose is 90 mg, then the medium dose
would be 30 mg and the low dose would be 10 mg.

Hamlett et al. (2002) recommend a binary-dose spacing for dose allocation.
Basically, this proposal starts with MTD. Without loss of generality, the MTD can
be denoted as 1 (100%). If the dose-ranging study uses two test doses and placebo,
then the high dose is allocated to be between 0.5 and 1, and the low dose is
allocated between 0 and 0.5. One example is 25 and 75% of MTD.

Now suppose the design is for three test doses and placebo. Then the high dose
would stay between 0.5 and 1, the medium dose would be between 0.25 and 0.5,
and the low dose would be between 0 and 0.25. One example is that low dose can
be at 12.5% of MTD, medium dose at 37.5% of MTD, and the high dose at 75% of
MTD. When more doses are considered in this dose-ranging design, the spaces are
further divided to the low end and every time the reference point is divided by 2.
Hence the name binary-dose spacing.
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Considerations in designing PoC and dose-ranging studies will be elaborated
upon in the next few chapters.

3.9 Treatment-by-Factor Interaction

Subgroup analyses are very popular after clinical study results are available, and
many of them are performed on a post hoc basis. However, from a study design
point of view, most of the clinical trials are designed to study the entire subject
population recruited using the inclusion/exclusion criteria. The primary objective of
a given clinical trial is rarely to test a statistical hypothesis on any subgroup of the
selected subject population. Accordingly, it is typical to design trials primarily for
the understanding and assessment of the entire study population and only consider
subgroup analyses as secondary or exploratory. After the blind is broken and
clinical results are ready for data analysis, post hoc subgroup analyses are often
performed.

At the study design stage, if particular subgroups are thought of as important, or
specific factors could be potentially interacting with the study treatment effect, then
stratified randomization might be employed. In a stratified randomization, patients
are randomized based on their baseline characteristics; for instance, if sex is used as
a stratification factor, then male patients are randomized to each treatment group;
separately from female patients. This way it is expected that treatment allocations
are balanced within each sex. This will reduce the risk that most of male patients are
randomized to one treatment group, while most female patients are randomized to
the other treatment group. Under such a randomization, the stratification factor(s)
can be included as a discrete covariate and possibly as a treatment-by-stratification
factor in the primary analytical model. When a stratification factor is included in the
main model, statisticians tend to ask the question about whether there is a treatment-
by-factor, or treatment-by-covariate, interaction. Does the treatment effect depend
on levels of a stratification factor?

Before the early to mid-1990s, traditional clinical trials are designed with block
randomization having test products pre-packaged in blocks and shipped to inves-
tigator sites (or centers). Hence investigator sites or centers became a natural
stratification factor, and it used to be typical that center is included in the primary
model for data analysis. The International Conference on Harmonization
(ICH) formulated in the early 1990s and the ICH guidelines were also drafted
around that time. The most important statistical ICH guidance is ICH-E9, which
was first available in 1998, at the time when center was still a popular stratification
factor. Therefore, “center” was used as an example of stratification factor in the
ICH-E9 discussions. E9 made recommendations about how to pre-specify a primary
analysis model using center as an implicit stratification factor and discussed the use
of treatment-by-center interaction.

Note that newer ways of performing randomization such as minimization or
interactive voice recognition system (IVRS) were also popularized in the early
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1990s. Minimization is a method for randomization which allows more stratifica-
tion factors or more levels of a stratification factor to be included in a single clinical
trial design. IVRS offers flexibility of randomizing patients and medications. With
these newer technologies and the fact that more centers, countries, or regions are
included in a single clinical trial, center effect became less popular as a stratification
factor. In many of the recent Phase III trials, center is not considered as a stratifi-
cation factor, and center effect is no longer included in the primary model as a
covariate. Under today’s environment, it helps to read and understand ICH-E9 with
some of these historical perspectives. In other words, in the attempt of under-
standing the ICH-E9 recommendations about a “center effect,” we can interpret it as
a “stratification factor effect”.

On this basis, the implications of the following paragraphs from this statistical
guidance may be expanded to a more general setting of stratification factors.
According to ICH-E9 (Sect. 3.2),

The statistical model to be adopted for the estimation and testing of treatment effects should
be described in the protocol. The main treatment effect may be investigated first using a
model that allows for center differences, but does not include a term for treatment-by-center
interaction [author explanation—this means that the primary analytical model include
center as a main effect, but not to include the interaction term]. If the treatment effect is
homogeneous across centers, the routine inclusion of interaction terms in the model reduces
the efficiency of the test for the main effects. In the presence of true heterogeneity of
treatment effects, the interpretation of the main treatment effect is controversial.

In some trials, for example, some large mortality trials with very few subjects per center,
there may be no reason to expect the centers to have any influence on the primary or
secondary variables because they are unlikely to represent influences of clinical importance.
In other trials, it may be recognized from the start that the limited numbers of subjects per
center will make it impracticable to include the center effects in the statistical model. In
these cases, it is not considered appropriate to include a term for center in the model, and it
is not necessary to stratify the randomization by center in this situation.

If positive treatment effects are found in a trial with appreciable numbers of subjects per
center, there should generally be an exploration of the heterogeneity of treatment effects
across centers, as this may affect the generalizability of the conclusions. Marked hetero-
geneity may be identified by graphical display of the results of individual centers or by
analytical methods, such as a significance test of the treatment-by-center interaction. When
using such a statistical significance test, it is important to recognize that this generally has
low power in a trial designed to detect the main effect of treatment.

If heterogeneity of treatment effects is found, this should be interpreted with care, and
vigorous attempts should be made to find an explanation in terms of other features of trial
management or subject characteristics. Such an explanation will usually suggest appropriate
further analysis and interpretation. In the absence of an explanation, heterogeneity of
treatment effect, as evidenced, for example, by marked quantitative interactions (see
Glossary) implies that alternative estimates of the treatment effect, giving different weights
to the centers, may be needed to substantiate the robustness of the estimates of treatment
effect. It is even more important to understand the basis of any heterogeneity characterized
by marked qualitative interactions (see Glossary), and failure to find an explanation may
necessitate further clinical trials before the treatment effect can be reliably predicted. (ICH
E9 1998)
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The previous paragraphs from ICH-E9 statistical guidance suggest that the
treatment-by-center interaction is exploratory. If this rationale is generalized from
center to stratification factors, then the nature of treatment-by-factor interaction is
also exploratory in nature.

In most protocols or statistical analysis plans, the description of the primary
analysis model may include the main effects of treatment, stratification factor, and
baseline covariate of the outcome (dependent) variable as a continuous covariate,
allowing for treatment-by-factor interaction to be explored. There could be at least
three reasons to consider this interaction as exploratory in the primary analytical
model:

1. The primary objective is to study the entire subject population, not any par-
ticular subgroups,

2. A model selection process could potentially inflate the study-wise Type I error,
and

3. There is no pre-specified alpha for testing the treatment-by-factor interaction.

The first reason has been clarified in the ICH-E9. In other words, at the study
design stage, the expectation is that the test product be superior to the placebo
control across all subgroups. Again, the objective, or the designed feature, is not to
“confirm” any interaction or any treatment benefit to a particular subgroup. Any
treatment-by-subgroup interaction or subgroup treatment effect can be considered
only as an “observed feature” (as opposed to a “designed feature”). Nevertheless, if
it is not known at the design stage whether any subgroup may benefit more from
this test treatment, the treatment effect in subgroups or with interactions can be
explored. In case it is already known that the study treatment benefits a particular
subgroup and then Phase III clinical trials may be designed to only confirm treat-
ment efficacy for this well-defined subgroup. For example, if the team believes that
the study drug only benefits female patients, then the clinical study should be
designed to only recruit females. Here protocol inclusion//exclusion criteria would
reflect the selection of those subjects of interests. On this basis, at the design stage,
there is no need of a treatment-by-subgroup interaction in the primary statistical
analysis model.

From the alpha protection perspective, any model selection process could
potentially inflate alpha. Suppose that two models are considered as candidates for
the primary analysis. After data read out, one model shows a statistical significance
in the primary treatment comparison whereas the other fails to do that. A question
arises of which result should be used to make the decision from this given clinical
trial. Therefore, a recommended process of including a treatment-by-subgroup
interaction term in the initial model and, then after it is decided that the interaction
is not significant, dropping this term from the model (in favor of reanalyzing the
same data without such an interaction term) could potentially inflate alpha in
practice. This approach is not applicable in designing clinical trials where the
primary objective is to demonstrate clinical efficacy across all participating subjects.
Hence the second point from above indicates that, in practice, model selection is not
appropriate under this setting.
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The third reason is about pre-specified alpha in regard to the interpretation of a
“treatment-by-factor” interaction which is a natural extension from the previous
point. If an interaction is included in the primary model, what p-value offers a
“significant interaction”? Dose an observed p-value of 0.06 imply that there is no
treatment-by-subgroup interaction? In case an alpha is allocated to test for such an
interaction, how should this alpha be used? Should the alpha for the interaction test
be split and use the rest to test for the main treatment effect? Note that the afore-
mentioned paragraphs describe the justification why the interaction term should not
be included in the primary analytical model. If readers are interested in the
exploration of interaction, a separate discussion will be necessary, which is beyond
the scope of this book.

All of the above discussions point to a simple understanding that the
treatment-by-subgroup interaction, by nature, is an exploratory phenomenon in a
trial; it is not likely to be confirmatory. This aspect is part of an observed feature in
any given clinical study, as the interaction test does not appear to be a designed
feature. On this basis, the exploration of a treatment-by-subgroup interaction can be
achieved by estimation, instead of hypothesis testing.

In other words, when the interest is to learn about a particular interaction of
interest, a point estimate and a confidence interval for this interaction provides more
information than a simple p-value. For example, in a two-treatment clinical trial that
is designed to compare the test product against a placebo control, if gender is
considered as a stratification factor, then the primary analysis model for this study
design may include treatment, and gender as main effects (and frequently the
baseline covariate of the outcome) in the main model. Then either in the protocol or
in the statistical analysis plan, a statement could be added such as
“treatment-by-gender interaction will be explored.”

After the data read out, a treatment-by-gender interaction can be estimated based
on the clinical question of interest: Is there a difference in treatment benefits for
those male patients as compared to those female patients? In order to answer this
question, the interaction can be specified as (ltest,M − lpbo,M) − (ltest,F − lpbo,F).
A point estimate of such a quantity can be interpreted as the treatment benefit for
males subtracted by the treatment benefit for females. Then appropriate confidence
intervals can be constructed for such a parameter. The more informative presen-
tation could be a sequence of confidence intervals such as 80% confidence interval
(CI), 90% CI, 95% CI, and 99% CI. This analysis provides not only the direction of
the interaction (more benefit to males? or more to females?), it also quantifies the
interaction. For exploratory or learning purposes, a p-value does not offer sufficient
information to the readers.

Another worthwhile point is that the mixed model with repeated measures
(MMRM) has become a popular model in analyzing longitudinal clinical data
(Mallinckrodt et al. 2008). When this model is used as the primary model, another
term—visit—is included as a categorical covariate in the primary analysis model.
Accordingly, a treatment-by-visit interaction, as well as baseline covariate (of
outcome)-by-visit interaction term, may be added to this model. The interpretations
of these terms are very different from the interpretation of the
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treatment-by-subgroup interaction. Note that if the model does not include a
treatment-by-visit interaction, that implies a strong assumption that the treatment
differences are constant across visit. If the team is not willing to make this strong
assumption, then a treatment-by-visit interaction is necessary in the longitudinal
model. This, of course, is very different from the treatment by subgroup interaction.

First, when a treatment-by-visit interaction is added to this model, what does this
interaction mean? Suppose a very simple model includes only the main effect of
treatment and main effect of visit. Then the estimate of treatment provides infor-
mation regarding the treatment responses to each treatment group and treatment
differences between groups of interest, across all visits. The estimate of a visit effect
offers estimates at each visit across all treatment groups.

Still, in an MMRM analysis, the primary interest is typically a treatment benefit
at the primary time point of interest. Such a simple model assumes treatment effects
are constant over time; that is, treatment benefit at the first visit post-baseline is the
same as that what follows later at the primary time point of interest.

Suppose a trial is designed with monthly visit and the primary time point is at
month 6. Under such a study design, the assumption would be that the treatment
benefit of test product as compared to the placebo control improves over time, and
that up to month 6, such a benefit would be clinically meaningful. In other words, it
is not expected that the treatment benefit at month 1 is strong enough and, in
addition, that patients will need to be exposed to the test product over 6 months in
order to experience the full benefit of such a product.

A treatment-by-visit interaction allows the treatment benefits to change over time
(visits). Hence by adding this interaction term, the model users are relaxing an
assumption of a constant treatment effect over time. Doing so is more realistic and
less restrictive.

A baseline-by-visit interaction implies that the impact of baseline to responses at
different visits could be different. Again, in a six-month trial with only main fixed
effects of treatment, visit and baseline covariate of outcome, without any interaction
term, the implication is that the baseline effect to patient responses at the one month
visit is the same as that to the six months after randomization. In common analytical
models using baseline (of outcome) as a covariate, the assumption is that baseline
values is correlated to corresponding values in post-baselines outcome at the pri-
mary time point of analysis.

On this basis, it can be understood that the treatment-by-visit interaction, as well
as the baseline-by-visit interaction, is part of the designed feature associated with a
longitudinal study. Including these terms in the MMRM for the primary analysis is
scientifically justified. It is also noteworthy that there is no model selection activ-
ities in such an MMRM as the interaction terms remain in the primary model
regardless of the corresponding observed p-values for these terms.

The understanding of treatment-by-subgroup interaction is exploratory in nature.
It is generally not recommended to include such a term in the primary analytical
model. However, in a secondary analytical model, both the interaction analysis and
the subgroup analysis are viewed as exploratory. Estimation procedures are
appropriately applied to learn these results. Point estimates, along with confidence
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intervals, can be constructed on the parameter of interests. For subgroup analyses,
descriptive statistics can be very useful. For treatment-by-subgroup interaction,
whenever there is a particular single degree of freedom interaction needs to be
studied, appropriate confidence intervals can be established. For example if there is
only two treatment groups and two subgroups, let lij represent the subgroup mean
of the ith treatment and jth subgroup. Then the interaction can be expressed as
l11 − l12 − l21 + l22, after which the point estimate and interval estimate can be
obtained for this contrast.

3.10 Evaluation of Product Safety

Before the story of lady tasting tea and the concept of randomized controlled
clinical trial, it was very difficult to objectively demonstrate product efficacy. In
fact, a medicinal product would be approved, from a statistical point of view,
because “the probability that the product being a placebo is controlled under alpha.”
If the demonstration of product efficacy is very difficult, then the proof of product
safety is almost impossible. Therefore, most of the approved products have “their
benefits outweigh their risks” mainly because to scientifically prove product effi-
cacy and product safety are extremely difficult.

Product safety does not tend to be a comparative concept. Hence “the safety
profile of the test product is no different from that of a placebo” may not be
sufficient to demonstrate the safety of a test product. Although safety profiles are
compared between the test intervention and the control intervention in a clinical
trial, “relative safety” itself is not enough to establish the safety of the test product.
Product safety is not necessarily a population-wide phenomenon—in some situa-
tions, a very severe individual event may cause the development of a particular
product candidate to be stopped. For example, in the development of a candidate
product indicated for a certain type of chronic pain, if treatment-related
Stevens-Johnson Syndrome is observed from a few patients, then the entire
development program may have to be stopped.

Finally, patient demographic data and product safety is an observed feature, not
a designed feature. For a clinical trial, primary and secondary endpoints are gen-
erally considered as efficacy variables. All other observations such as patient
demographic data, baseline characteristics or safety variables are considered
exploratory because they are not part of the designed feature. In other words, these
results are observed phenomena but not designed phenomena. All of these dis-
cussions imply that the thinking and the understanding of patient demographic data
and product safety are different from that of product efficacy. Hence safety and
demographic data do not follow a statistical hypothesis testing framework; it is
exploratory in nature.

Product safety is one of the most important characteristics to be followed and
observed for every medicinal product. In fact, during the entire product discovery
and development process, safety is being studied very closely at every stage. One of
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the critical non-clinical development activities is product toxicity. As discussed in
Chap. 1, animal toxicity studies are conducted for various species of animals at
multiple doses with different duration. The need to understand product safety
continues during clinical Phase I, II, and III development; even after the product is
approved and available for general patient population use, Phase IV studies and
pharmacovigilance studies are still designed to follow product safety.

Again, because product efficacy is evaluated in the form of statistical hypothesis
testing, it follows a confirmatory way of thinking. In contrast, patient demographic
data and product safety can be thought of as exploratory. The main point of this
chapter is that in designing clinical trials, especially Phase II and Phase III trials, the
confirmatory objectives (e.g., treatment efficacy of the candidate product) are
addressed first and only after the product efficacy is confirmed, then the safety
profile of the test product can be explored in a greater degree.

3.11 Every Clinical Trial Can Be Considered as Both
Confirmatory and Exploratory

It is generally believed that Phase III clinical trials are designed for regulatory
decision making; therefore, these studies are thought of as confirmatory trials.
Accordingly, Phase I and II clinical trials are designed to explore various charac-
teristics of the product candidate. It would be natural to think of these studies as
exploratory ones. Note that, in certain situations like life-threatening diseases (e.g.,
oncology), there may be no Phase III for drug approval: a drug may get approved at
Phase III. Or Phase II may be skipped and the drug accelerated to Phase III. In fact,
After Phase III studies are completed and data are summarized, analyzed and
reported, researchers can still learn about the medicinal product under study. Thus,
in a certain extent, Phase III studies are exploratory In many cases, new hypotheses
could be generated based on Phase III clinical trial results, and additional studies are
designed to help further understanding the product. Similarly, Phase I and Phase II
studies are usually used for internal decision-making within the sponsor and,
consequently, Phase I and II clinical trials possess the confirmatory features too.
Therefore, every individual clinical trial can be looked at as both exploratory and
confirmatory depending on the purpose at hand.

Because the entire scientific process involves a evolution of learning, it is easy to
understand why researchers learn from every clinical trial and thus that each trial is
an exploratory trial. It could be difficult to consider every clinical trial also as
confirmatory.

Sample size calculation usually is based on a statistical hypothesis. Sometimes
the sample size of a given study is obtained from confidence intervals. In general,
when there is a hypothesis that is used to calculate the sample size, this hypothesis
reflects the confirmatory feature of the study. On the other hand, if sample size is
calculated from a confidence interval, then it will be of interest to understand the

72 3 Confirmation and Exploration



primary objective of this study—if the objective is exploratory, then estimation can
be applied for data analysis. However, if the objective is confirmatory, then the
confidence interval can be translated into a hypothesis, and the traditional
hypothesis testing methods can be used for data analysis.

Recall from Chap. 1 that the most efficient strategy in medicinal product
development would be a “design to stop” concept. The confirmatory objective of
each study could be thought of as a Go/NoGo decision. On this basis, it might be
easier to think that the confirmatory objective of each study is a Go/NoGo decision
and, only after the “Go” decision is confirmed, other efficacy endpoints, safety,
interaction, or various doses can be explored from this given study.

Following this thread of reasoning, we can consider every clinical trial design as
“confirmatory” first implying a Go/NoGo decision is made about the candidate
product. If the decision is NoGo, it is a very efficient way to weed out a weak test
product at the earliest stage. On the other hand, if a clear “Go” decision is made
about this candidate, then the sponsor could assume this test product is good
enough to move to the next step of development. Meanwhile, various characteristics
about this candidate can be explored. Hence for those studies designed to answer a
confirmatory question, the design can be viewed as a process that is first “confirm”
and then “explore.”

3.12 Conclusion

This chapter discusses the paradigm of drafting a clinical development plan and
designing individual Phase II or III clinical trials. Traditionally, in general, the
scientific learning process begins with exploration and then confirmation, followed
by more exploration and then more confirmation, and so on. But in the clinical
development program of a new medicinal product, this thinking process is reversed.
A clinical plan needs to start with a draft label and work backwards to consider
what Phase III data are necessary to support the language in the drug label.
Considerations are given to how Phase II studies can deliver the data to help with
Phase III design. In order for Phase II studies to deliver the data that will help
Phase III design, certain information needs to be available from Phase I. In
designing each individual Phase II or III clinical trial, the statistician and the team
can proceed with the thinking process that starts with confirming the clinical
question of interest. After this step is accomplished, the next step is to explore
additional findings.

However, establishing the confirmatory step is not the only important aspect of
clinical development. Studies also need to be designed to explore other charac-
teristics of the test drug, which is especially important in the Phase II proof of
concept and dose-finding stage. A motivational example is introduced to demon-
strate why it is important to consider this stepwise paradigm in designing Phase
II/III clinical studies. Finally, a few additional examples are discussed to show how

3.11 Every Clinical Trial Can Be Considered … 73



this thinking process can be applied critically and judiciously in practical study
design situations.
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Chapter 4
Design a Proof of Concept Trial

4.1 Introduction

In typical clinical development programs, Phase II is the first time for the candidate
product (compound or biologic) to be tested in patients with the target disease under
study. For medicinal products discovered and developed to treat chronic diseases,
most of the Phase I clinical trials recruit normal healthy volunteers and, as a result,
the disease improvement cannot be observed in Phase I. Under this situation,
therefore, study results cannot be used to assess product efficacy. In Phase I
oncology trials, although cancer patients are recruited to help study the maximal
tolerable dose (MTD), these patients may or may not be with the tumor type for
which the compound is developed for. Also, the sample sizes used for Phase I
oncology trials are not large enough for study of product efficacy. Therefore, in
most of product development programs, Phase II is the first time the product
efficacy can be observed and evaluated. In other words, before the first Phase II
clinical trial, the sponsor does not have an opportunity to study whether or not the
test product, or compound, works in human patients.

Under this circumstance, it is especially important that the product efficacy be
established from the first Phase II clinical trial. The most commonly used study
design for a first Phase II clinical trial is a proof of concept (PoC) study. A PoC
typically includes two treatment groups: a placebo group and a test product treat-
ment group (for PoC designed with more than two groups, please refer to Chap. 6).
In order to offer the best opportunity for the test product to demonstrate its efficacy,
the dose of test product used in a PoC tends to be the highest possible dose. And
this dose is usually the MTD, or a dose that is slightly below MTD. This design
allows the project team to make a Go/NoGo decision on the test product after study
results read out.

If the results fail to demonstrate a clear efficacy, then a No-Go decision can
be made for this candidate product, and further development can be stopped. The
sponsor does not have to make more investment on it. Budget and resources can be
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allocated to develop other candidates that show more promise for success. This
approach can be also considered as a “sledgehammer” approach, because such a
simple design helps simplify the conclusion to be a “make it or break it” result for
the product under development; that is, a clear Go/NoGo decision should be made
based on analysis of data obtained from the PoC study.

Another type of study is known as a “Proof of Mechanism” (PoM) study. In the
laboratories in which basic research and discovery are performed, it is important
that a good understanding of the “mechanism of action” be available for the
compound that is being discovered. For example, before the beta blockers were
developed for the treatment of high systolic blood pressure (SBP), the biologic
theory was that the beta receptors in heart muscles may increase SBP as a response
to stress stimulants. Given this understanding, the lab scientists searched for a
chemical structure that could bind to the beta receptors and inhibits their activities.
Such a chemical compound could be considered as a “beta blocker” because it
blocks the activities of beta receptors in heart muscles.

As discussed earlier, product efficacy cannot be established until Phase II.
However, in the case of developing a beta blocker, there could be opportunities to
observe whether the mechanism of action can be demonstrated in a Phase I clinical
trial. This query can be achieved by observing the activities of beta receptors in
healthy normal volunteers. In other words, although healthy subjects with normal
SBP are recruited in Phase I, activities of beta receptors from these subjects can still
be measured. By assessing beta receptor activities from these subjects, a proof of
mechanism objective could potentially be achieved. Often times the measurement
that helps establishing PoM is denoted as a biomarker. Generally speaking, PoM is
not a well-defined, widely accepted term that applies to all candidate products. Only
under certain situations where the marker can be easily identified, and clearly
measured, a PoM study design would be contemplated.

Traditionally, cancer treatments are thought of as “chemotherapy,” which is
grounded in the thinking of eliminating cancer cells in the human body. In fighting
cancer, the first step is to remove the tumor (either by surgery or by radiation), and
then to follow it by chemotherapy to destroy the remaining tumor cells which were
not removed by surgical or radiation procedures. Most of those drugs which were
developed to destroy cancer cells could, unfortunately, also be harmful to normal
tissues. These drugs belong to a class of “cytotoxic” medications, implying that
these drugs are toxic to normal cells too. In the past few decades, a newer class of
anti-cancer agents has been developed and marketed. This new class of medications
is considered as “cytostatic.” The concept of developing cytostatic drugs is not to
kill tumor cells or normal cells; it is to allow tumor cells in human body, by merely
suppress their growth and their activities. One example could be the discovery and
development of vascular endothelial growth factor (VEGF) inhibitors. Certain
tumor cells attract VEGF so that blood vessels are over grown to supply blood to
tumor tissues, instead of normal tissues. VEGF inhibitors are developed to slow
down the growth of these blood vessels and hence tumor tissues do not grow as fast
as normal tissues. From this point of view, a VEGF inhibitor is considered as
cytostatic because it is not harmful to normal cells.
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In the development of cancer treatments, because most of the compounds could
be cytotoxic, it is not ethical to expose healthy normal volunteers to this class of test
products. Hence Phase I cancer clinical trials recruit cancer patients as study sub-
jects. Consequently, placebo is not appropriate to be used as the control agent. In
typical product development programs for treating cancer, Phase I clinical trials are
designed to explore MTD. These trials recruit cancer patients, and escalate test
product doses from low to high, without a placebo control.

One of the popular designs is the 3 + 3 design (Ivanova 2006), which allows
cancer patients to be exposed to escalating doses from low to high. MTD is usually
achieved or exceeded when one or several dose limiting toxicities (DLT) are
observed. One reason that cancer patients, instead of healthy normal volunteers, are
recruited for Phase I cancer trials is that for a life-threatening disease like cancer,
patients are willing to tolerate more severe adverse events. For example, among the
typical adverse events associated with chemotherapy include nausea, vomiting, and
hair loss. For cancer patients, they are willing to tolerate these events because the
condition they are facing is life-threatening. However, for another indication such
as pain or high cholesterol, subjects may not be willing to tolerate these types of
events. Consequently in oncology Phase I trials, it is typical to recruit cancer
patients, instead of healthy normal volunteers.

Therefore, Phase I clinical development programs for compounds treating cancer
is very different from compounds developed in treating other, non-life-threatening
conditions. In oncology, the primary objective of Phase I development is to estimate
MTD, which is accomplished by observing DLT’s from cancer patients. For clinical
development programs of products treating non-life-threatening conditions, the
objectives for Phase I clinical trials are estimating MTD from normal healthy
volunteers and to characterize the pharmacokinetics properties of the candidate drug
under development. However, after Phase I, the first Phase II study is usually a
Proof of Concept (PoC) study regardless whether the compound is developed to
treat a life-threatening disease or not. At this stage, the organization (usually the
sponsor) that develops this compound is eager to learn whether such a candidate
product can really deliver efficacy in treating patients with the underlying condition.
Running a PoC study is a very sensible first step in Phase II.

4.2 Proof of Concept Trials

4.2.1 Impact of PoC Decisions

Most PoC studies tend to have two treatment groups: one placebo control group,
and another treatment group with a high dose of the candidate product. In recent
years, some PoC studies are designed with more than two treatment groups. These
studies will be discussed in Chap. 6. Generally speaking, the PoC designs are based
on two key assumptions: (1) the MTD estimated from Phase I is appropriate and
(2) efficacy dose-response relationship is monotonic.
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Under these two assumptions, the highest possible dose (either MTD or a dose
slightly below MTD) of the test product offers the best opportunity to demonstrate
efficacy response. In other words, if this dose does not show efficacy response, then
there is no need to invest any more resources to develop this test product. Hence,
only after the concept is proven, extended development activities can be funded and
resources can be allocated to further develop the compound under investigation.

A positive PoC result triggers many important development activities.
A long-term toxicity study is one of those activities. Drug formulation and drug
supply also depend upon a positive PoC. At early Phase II, there is usually sufficient
drug supply to handle the first few dose-ranging studies. If the PoC result is pos-
itive, there will be more study medication needed for Phase III clinical trials, and
large amount of raw materials need to be ordered or to be manufactured. Moreover,
depending on the dosage forms that may be necessary for additional Phase II trials
and Phase III trials, various formulations of the candidate product will have to be
prepared. On the other hand, if the concept is not proven, there is no need to stock
up a huge pile of raw materials for the making of large quantities of the study drug
or study biologic.

Furthermore, additional bioavailability or bioequivalence (or both) studies may
be necessary. In some situations, additional drug-drug interaction studies may also
be needed. Therefore, a clear Go/NoGo decision is critical from the PoC study
results. When the study results are not clear (inconclusive), many of the important
development activities will be delayed. Challenges of inconclusive PoC results are
covered in Chap. 7.

A typical early phase clinical trial tends to be designed with relatively short
duration. Many Phase I trials are single-dose trials, which means only one single
dose is given to the trial participants. Some other trials may be designed with
treatment duration of one week or two weeks. For products developed to treat
non-life-threatening conditions, the limiting factor of time length comes from the
pre-clinical (animal) toxicity studies. If results from two-week animal toxicity
studies indicate the test drug is negative with respect to toxic findings, then a
clinical trial can be designed with two-week duration so that trial participants are
not subject to excessive test product exposure.

According to the clinical development plan for a study medication, if the
Phase III study needs to be of one-year duration, then (before the Phase III study is
started) a one-year toxicity study on animals should be completed and with no
safety findings. Usually such a one-year toxicity study will not be initiated unless
the concept is proven from early Phase II. In practice, if the Go/NoGo decision is
delayed because of inconclusiveness, then all these operations could be postponed
and, eventually, this problem of inconclusiveness may delay the entire product
development program.
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4.2.2 How to Communicate Risks Associated
with a PoC Study

Usually a statistician is involved in a study design when there is a need for sample
size calculation. Sample size estimation is one of many essential contributions
provided by a clinical trial statistician. An experienced statistician will begin by
understanding the primary endpoint and by probing its clinically meaningful dif-
ference, delta (d). Sometimes this quantity is readily available. However, in many
cases, this could be the beginning of long discussions.

After the study completes, clinical data are analyzed and results are presented to
the project team. The project team members and upper management evaluate these
results and make a decision. A Go/NoGo decision is easy if both statistical sig-
nificance is observed and treatment difference exceeds d, where d is the postulated
clinically meaningful difference. These results indicate a clear “Go” decision. On
the other hand, when the results are not statistically significant, and the observed
treatment difference is too small, then the team may make, often times reluctantly, a
NoGo decision. However, if the observed treatment difference is not too small, but
failed to reach statistical significance, then the team is in a difficult position and not
clear as to whether a “Go” or a “No-Go” decision could be made with confidence.
Under this circumstance, a situation of inconclusiveness may take place.

In many cases, when the observed p-value is close to statistical significance, but
not strictly statistically significant, the team tends to decide to move forward.
However, future development could indicate this “Go” decision was a mistake
because the observed treatment difference was not large enough. These difficulties
occurred because, at the time of designing PoC, a delta which is larger than the true
desired treatment difference was used for various reasons. One typical case could be
that such a d was selected based on the available sample size; that is, from the
sample size and the given a and b, a treatment difference can be calculated. A larger
d was chosen so that such a PoC study was feasible under the given budget
constraints. However, after the PoC results are ready, although the observed
treatment difference was actually smaller than the hypothesized d, the project team
may still make a “Go” decision simply because the p-value was either statistically
significant or close to be significant.

On the other hand, there were situations where the decision was NoGo even
when a statistical significance is observed, yet the clinically meaningful difference d
was not achieved. One example can be found when the PoC endpoint is different
from the Phase III endpoint. When this is the case, a lowest d was selected for PoC
and the decision rule was that, if the PoC results cannot deliver such a d, then there
is no hope for the test product to meet the Phase III primary endpoint.

Under certain situations, the PoC study may have to be repeated so that a clear
decision can be made. Inconclusiveness can be thought of as the time period
between the study results read out and a definitive “Go” or NoGo decision is made.
During this period, the team could consider a “Go” decision, even when the
observed p is greater than a. On the other hand, if the observed p is less than a, but
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the observed treatment difference is less than d, but a NoGo decision was made
incorrectly (b could be inflated). In either case, the risk of making a wrong decision
is greater than the pre-specified error rate.

Based on the above discussion, it is clear that when there is an observed sta-
tistical significance, and the decision is Go, then the risk of making a wrong
decision is preserved under the pre-specified level alpha (a). Also, when statistical
significance is not observed, and the decision is NoGo, then the risk of making a
wrong decision is also preserved under the pre-specified level of beta (b). However,
if a Go decision is made when there is no statistical significance, then the risk of
making a wrong “Go” decision is increased to be more than the pre-specified risk
level. At the other end, when there is a statistical significance and a NoGo decision
is made, then the risk of making a wrong NoGo decision is increased to be more
than the pre-specified b. Of course, these decisions are usually made from long
discussions among team members after looking at all clinical data on hand—
primary and secondary endpoints, multiple doses if more than one dose was used,
safety data, sometimes pharmacokinetic (PK) or outcomes research data, and so on.

The main issue we hope to address in this chapter is during the time between the
PoC data are ready, and the actual decision is made, there is a period of time that the
PoC study was considered as “inconclusive.” This time period is difficult because
there is always tight timelines for the entire project. Will there be a need for a
long-term toxicity study? when should it start? What amount of drug supply will be
necessary? At what time frame (Phase II requirements and Phase III requirements)?
What dosages to be formulated? Will there be additional PK studies such as
drug-drug-interaction or food effect studies to be designed? At this time, a
Go/NoGo decision is very critical. Yet the data are not always clear. Regardless of
all these discussions and various perspectives, in the end, there will have to be a
decision—to go or not to go. This problem becomes much more difficult when the
PoC study needs to be repeated.

Although the design of a PoC study is considered a sledgehammer approach, in
practice there could still be many difficulties and challenges in decision-making
after the study is completed. Below are some important points need to be consid-
ered before designing a PoC clinical trial. It is critical to keep in mind that in the
design of such a study, there should be sufficient discussions among team members
with the objective of minimizing the risk of potential inconclusiveness.

4.3 The Primary Endpoint in a PoC Design

As mentioned previously, the duration of treatment for a clinical trial is limited by
the length of time covered by toxicology studies from the non-clinical development
stage. At early Phase II, trials are usually designed with duration of a few weeks or
a few months depending on the therapeutic area, and characteristics associated with
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the test product being studied. Accordingly, the primary endpoint of Phase II trials
tends to be a clinical efficacy variable, usually measured as relatively short-term
patient response to the interventions.

In certain trials, the primary endpoint could be a time-to-event variable (for
example, oncology trials). However, the primary efficacy endpoints for most of
Phase II clinical studies are measured as a continuous variable or a categorical
variable. For products developed to treat chronic diseases, the primary endpoint is
typically a change from baseline. For example, if the indication is hypertension
(high blood pressure), then the primary endpoint would be the change in systolic
blood pressure (SBP) or diastolic blood pressure (DBP) from baseline to the pri-
mary time point (e.g., four weeks after double-blind treatment). For a product
developed to treat depression, the primary endpoint could be the change in
Hamilton Depression Rating Scale (HAM-D) from baseline to the primary time
point.

In analysis of a continuous variable such as changes in SBP, DBP or HAM-D,
the analysis of covariance model is typically employed. In a development program
for a test product to treat rheumatoid arthritis (RA), a Phase II primary endpoint
could be the number or proportion of ACR20 responders. ACR20 is proposed by
the American College of Rheumatology (ACR) based on a summary of seven
clinical measurements—if an RA patient experiences at least a 20% improvement
using the ACR algorithm of these seven measures, that patient is considered as an
ACR20 responder. Otherwise the patient is considered as a non-responder to
ACR20.

If the primary endpoint is a binary variable such as proportion of ACR20
responders, then a two-by-two table (two treatment groups and two responding
status—yes or no) can be formulated from the study results. There are many dif-
ferent ways of analyzing two-by-two tables—normal approximation of binary
responses, difference in proportions of responders, ratio of proportions, or Fisher’s
exact tests.

4.4 MTD Could Be Under Estimated or Over Estimated

One of the most important deliverables of Phase I clinical trials is an estimate of
maximal tolerable dose (MTD). The understanding of MTD is that a subject may
experience adverse events or tolerability issues if he or she receives doses of the
study product that is above MTD. In clinical development programs for products
treating non-life-threatening diseases, Phase I experimental units are normal healthy
volunteers. Unfortunately, in many practical cases, the MTD obtained from Phase I
turns out to be either higher or lower than the true MTD, which gets subsequently
determined at a later stage of clinical development. One question could be that, if
the MTD was found based on healthy normal volunteers, can it be translated to
patients appropriately?
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If MTD gets overestimated, then patients recruited in Phase II clinical trials
could be exposed to excessive toxic doses and a large number of adverse events
could be observed. This miscalculation may lead to a pre-mature stopping devel-
opment of a potentially good candidate or a slowdown in the development process.

On the other hand, underestimation of MTD creates a more difficult problem in
product development. In this case, the dose used at PoC may demonstrate a weak
signal as compared against placebo. Phase II clinical data may indicate that a dose
higher than the perceived MTD could be relatively safe, and deliver more efficacy.
When this is the case, multiple studies can be designed to help the doses to creep
higher and higher until a true MTD can be determined. Consequently, underesti-
mation of MTD from Phase I could introduce major inefficiencies in product
development. One of the most expensive delays in clinical development programs
is re-work. In the case of underestimation of MTD, time consuming re-work could
potentially drag the development process backward.

One common confusion stems from the assessment of success or failure of a
clinical project team is linked with the success or failure of the study product. In
other words, people tend to consider the team is successful when the compound is
successful, and the team fails when the compound fails. This is, in fact, a wrong
perception. In many cases when a very strong team that designed and carried out
very scientifically sound clinical trials, yet the study product failed. Under this
circumstance, it is not fair to claim the team failed.

One of the metrics in assessing a project team is to see if a clinical trial needs to
be repeated. The problem of underestimation of MTD is a good example—the
project team in Phase I failed to deliver a good estimate of MTD. Another example
could be that a dose ranging trial was designed without a placebo control. In this
situation, if there are three doses and the high dose is more efficacious than medium
dose, and the medium dose is more efficacious than the low dose. Then the study
product was progressed and later people found that even the high dose does not
provide better efficacy than placebo. This example indicates that the test product
should have been stopped for development if the dose ranging trial included a
placebo control in it. Therefore, it is critically important to recognize that whether
the test product is successful or not, it should not be used as a yard stick to measure
the performance of the study team.

Nevertheless, there is always a need to establish an anchor for the upper dose
range to help design the next Phase II study. An estimate of MTD remains nec-
essary, and the only way to move forward is to assume that the MTD estimated
from Phase I is correct.

In certain drug development programs, when dose-escalation studies from
Phase I pushed the dose up very high, but no adverse event was observed.
Practically, if the dose is too high so that the pill is too big to swallow, or that there
is a formulation limit, then higher doses became not feasible. When this is the case,
the escalation study still needs to stop at a relatively high dose. This dose is denoted
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as the maximally feasible dose (MFD). Hence in order to progress a test product to
Phase II, it is important for the project team to assume either the MTD, or the MFD,
is correctly estimated.

4.5 Monotonicity Assumption

4.5.1 Background

The fact that typical PoC studies are designed with the MTD of test product
comparing against a placebo control is based on the monotonicity assumption. In
other words, the hidden justification of choosing the highest tolerable dose for proof
of concept is that it is assumed that this dose offers the best possible opportunity to
show efficacy among all of the candidate doses to be selected. The question is, is it
reasonable to assume a monotonic efficacy dose-response relationship?

For product safety, or toxicity, it is generally believed that the safety issues
(adverse events, lab abnormalities, or others) increase as doses increase. This belief
is why MTD serves as an anchor for the upper end of the dose range to be studied.
The reason behind such a belief, or such an assumption, is that every medicinal
product is toxic—if a product could cure a disease, or improve a particular health
condition, it must have changed the biological system in human body. If it changes
the system, it could also cause problems to the human body. Hence by increasing
the amount of exposure, it is expected that the potential safety problems or issues
will also increase—a monotonicity assumption.

In most of the disease areas, this same assumption is also applicable to product
efficacy. If the medicinal product helps improve the disease or health condition,
then more of such a product would help improve the condition better. For example,
if a compound is developed to reduce pain, then it is expected that more of such a
compound in the body could translate to more pain reduction for the patient who
suffers from pain. This idea is applicable in most therapeutic areas. Therefore,
unless it was proven otherwise, the generally accepted assumption is that as doses
increase, efficacy responses also increase—again, the monotonicity assumption.

However, one well-known therapeutic area that does not assume monotonic
efficacy dose-response relationship is the class of anti-psychotic products (for
example, this phenomenon can be found in drug labels of Lexapro, Celexa, Paxil,
Zoloft, Prozac or other antipsychotic drugs). Many of the candidates developed for
the treatment of psychiatric disorders demonstrate a non-monotonic dose-response
relationship. The phenomenon of non-monotonicity in this therapeutic area can be
observed not only in animal models but also in clinical experiences. It can also be
observed across many different anti-psychotic medicines with various indications
(anti-depression, anti-anxiety, and other conditions) and with various mechanism of
actions.
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4.5.2 Strong or Weak Application of the Monotonicity
Assumption

The assumption of monotonic efficacy dose-response relationship can be applied
with different ways. For example, one of the popular multiple comparison-procedures
(MCP) is known as the gate-keeping procedure. One of the uses of the gate-keeping
procedure in dose-response studies is to sequentially test each dose, from high to low,
and that each dose is tested against the placebo control with the entire alpha applying
to each pairwise comparison. Under the monotonicity assumption, the highest dose is
first tested against placebo. If there is no statistical significance, then the MCP stops
and claim none of the doses is different from placebo. If the null hypothesis that the
highest dose is not different from placebo is rejected, then declare the highest dose to
be statistically significantly different from placebo, and the entire alpha is left for the
testing of the second highest dose against placebo.

This testing procedure is continued until either there is lack of statistically
significance (at the full level of alpha) or until all doses are compared against
placebo. Under this application of the monotonicity assumption, if any of the lower
doses become efficacious, while one of the higher doses fails to demonstrate sta-
tistical significance, the decision to stop further testing would prohibit the lower
doses to even be tested. Hence such an application of the monotonicity assumption
can be considered as a strong assumption of monotonic efficacy in the
dose-response relationship.

In practice, variability could be observed among various test doses of a com-
pound. Even if the underlying dose-response is truly monotonic, the observed
treatment effect could still look non-monotonic. One statistical tool was developed
to deal with this situation is called isotonic regression (Robertson et al. 1988). The
main idea of isotonic regression estimates is pool adjacent violators (PAV). Based
on the strong assumption of monotonicity, the isotonic regression forces the esti-
mate of a treatment group mean obtained from a higher dose to be not lower than
that of a relatively lower dose (assuming that higher scores are better). For example,
in a dose-response study with placebo and four test doses, denoted as d0, d1, d2, d3
and d4, in the order of doses; that is, d0 represents placebo, d1 represents the lowest
dose, d2 the next lowest, d3 the next one, and d4 represents the highest dose.
Suppose the respective observed mean responses at each dose group are 5, 7, 9, 8,
and 12, respectively. In this result, the observed response of dose d3 is 8, while the
observed response of dose d2 is 9, which violates the monotonicity assumption. The
isotonic regression estimate forces monotonicity by pooling the observed means of
doses d2 and d3. Under PAV, the isotonic regression estimates of these two doses
are 8.5 and 8.5 (the average of 9 and 8).

The above two cases—the use of gate-keeping procedure to control alpha
adjustment in MCP and the use of isotonic regression to force monotonic
dose-response relationship—are examples of assuming monotonicity in a strong
sense. However, in the design of a PoC study, with the MTD selected as the dose to
compare against placebo, this could be thought of as a weak application of this
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monotonicity assumption. This occurs because, even if a dose lower than MTD
demonstrates a higher level of efficacy than the MTD, as long as the MTD is
significantly different from placebo, those lower doses will still have an opportunity
to be evaluated in future studies.

In the discovery laboratories, if a compound or a biologic does not demonstrate a
clear and strong monotonic concentration-response relationship, that candidate
would not likely progress into clinical development. Therefore the assumption of a
monotonic dose-response relationship in efficacy from human beings is not only
intuitive and natural; it also has its scientific basis. Nonetheless, non-monotonic
dose-response relationships are actually observed in clinical trials. Given these
difficulties, before designing a PoC clinical study, can monotonicity be assumed?
Our belief is that in a PoC design, we cannot afford not to use the monotonicity
assumption. What follow is a set of rationales to support this line of reasoning.

4.5.3 Why This Assumption Is Still Useful

In the early Phase II stage, the upper dose range for exploration is bounded above
by the MTD. Moving into Phase II, one of the objectives is to evaluate efficacy
responses observed from patients treated with the candidate product, and the range
of possible doses to be studied is bounded between placebo (the zero dose), and
MTD. Although the true underlying efficacy dose-response relationship may not be
monotonic, it may still be reasonable to assume monotonicity of efficacy
dose-response within the range between placebo and MTD. At least it may be
assumed that the dose at or close to MTD could still deliver an efficacy response
that is significantly different from placebo.

Figure 4.1 distinguishes between individual dose-response relationships—the
three thinner curves representing three different individual subjects—and the single,
thicker population average dose-response relationship. Because of inter-subject
variability, different subjects may respond to the same drug differently (Holford and
Sheiner 1981).

In Phase II clinical development of a medicinal compound, the dose-response
relationship is typically viewed as a population dose-response (instead of individual
dose-response) and such a relationship could be estimated based on responses
observed across the entire patient population being studied. In addition, a
dose-response relationship can also be viewed on an individual basis. When this is
the case, the response to a given dose of the study product from a particular
individual can also be contemplated. The efficacy response of a particular patient to
the particular dose of the test product could be a continuous function or, alterna-
tively, it could be a step function.

In the case of a continuous relationship within an individual patient, it can be
thought that, as doses of the candidate product increase, the amount of protein
within the human body responding to the product increases. For example, in the
development of a beta blocker for reducing systolic blood pressure, more drugs may
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be able to inhibit more beta agonists. Accordingly, the symptom reduces in an
incremental fashion. Under this assumption, for each individual patient, the dose
and the response follow a monotonic relationship.

Alternatively, the individual patient’s response to increase of doses could be a
step function, where an underlying threshold exists in the human body. When the
amount of doses in the body is below the threshold, the patient does not experience
any response. Once the dose increases to be over the threshold, then the patient
responds.

In most cases when the monotonicity assumption is considered, the implied
dose-response relationship tends to be a population dose-response. If people are
skeptical about a monotonic population dose-response assumption, can the
assumption of monotonic individual dose-response be acceptable? If so, then
the non-monotonic population efficacy dose-response may be explained using the
individual monotonic dose-response. For example, if the within patient
dose-response follows a step function, and the threshold of each patient is different,
then the observed population dose-response may reflect a random proportion of
responders at various doses. Moreover, if the test product is indeed efficacious, and
if the sample size of each treatment group is large enough, then some of the doses
could demonstrate a statistical difference from placebo, although no apparent
dose-response monotonicity can be observed. In cases where responses do not
increase as doses increase, this can still be considered as monotonic dose-response
relationship.

Given the previous discussion, we believe it may still be useful to make the
monotonicity assumption at the population level in designing the PoC trial. Under
this situation, the choice of MTD as the dose of test product in comparison with a
placebo control could still be considered a reasonable choice. Again, even if the true
(underlying) dose-response relationship may not monotonic, it is likely that the
MTD may be able to deliver sufficient efficacy response to support PoC.

Fig. 4.1 Individual dose
response and population dose
response
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4.6 Agreement on a Delta

One of the most difficult questions in designing any clinical trial is the agreement of
a treatment difference (d) between the test product and placebo. Sometimes the
discussion about d may take a long time and may involve in team members from
many scientific background. It is well known that a treatment difference between
the test product and the placebo control needs to be “clinically meaningful.”
However, during the discussions about proposing a d to be used for study design, a
minimally clinically important difference (MCID) is very difficult to achieve. The
major challenge is that it is really hard to know how much improvement in the
primary efficacy measure delivered by a useful treatment can realistically benefit the
patients with the condition or the disease under study.

For example, in the development of a new test product to treat pain, and the
primary endpoint is a 11-point self-report pain scale, from 0 being no pain to 10
being the most severe pain. In a two-week clinical trial, patients are randomized to
test product and placebo, and the mean reduction in pain from baseline to week 2 is
compared between the two treatment groups. The question is which d should be
used for designing such a study.

Suppose the mean reduction on 0–10 pain scale is calculated as the week 2
measurement minus the corresponding baseline measurement. Then both treatment
groups would observe negative mean changes if there is benefit for both groups. Let
the treatment difference be obtained from the test product mean subtract the placebo
mean, the delta would be expected to be a negative value. The question becomes what
values of d are considered clinically meaningful. From a sample size calculation point
of view, these various d values could translate into large differences in sample sizes.

Several instruments have their clinically important differences or minimum
clinically important differences (MCID) (Katz et al. 2015; Rosen et al. 2011; Osoba
et al. 1998). One example is the reduction in blood pressure in an anti-hypertensive
trial—it is generally accepted that a mean reduction of 5 mmHg in comparison with
placebo would be clinically meaningful. Another example is the erectile function
domain of the International Index of Erectile Function for men with erectile dys-
function, with a minimum clinical important difference of 4 points (Rosen et al.
2011). A third example are the domains on the European Organization for Research
and Treatment of Cancer (EORTC) Quality of Life Questionnaire, with such a
minimum given as 5 points. A fourth example pertains to the treatment of
rheumatoid arthritis (RA). The widely accepted primary measure is ACR20, which is
a 20% reduction in symptoms based on a composite of seven symptom measures
proposed by the American College of Rheumatology (ACR). It is generally expected
that in a short-term RA trial, there would be about 30% placebo responders. Hence a
clinically meaningful difference of 15–20% treatment improvement would imply an
observed ACR20 response of 45–50% can be expected from the test treatment, if the
test product is truly efficacious in treating patients with RA. A fifth example is the
0–10 numeric rating pain scale with its two-point reduction (or more extreme)
considered as clinically important (Farrar et al. 2001).
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However, for most of disease conditions, an MCID is very difficult to agree upon
(King 2011; Copay et al. 2007; Hays et al. 2000). Generally speaking, there are
three approaches of proposing a treatment difference for sizing a study. The most
frequently used method is to learn from other products. One example is to look at
the treatment differences observed from the approved products developed by other
sponsors. In the US, this could be obtained from the Summary Basis of Approval
(SBA) issued by FDA. In the European Union, the information could be found in
the European Public Assessment Report. One other way of learning about postu-
lating a reasonable treatment difference is by studying compounds developed within
the sponsor themselves. Such a learning could be obtained from previous experi-
ences of a similar product from the same class of the new candidate product or even
a product from a different class.

The second approach of postulating a reasonable treatment difference is based on
prior information of the product being developed—the data collected from
pre-clinical studies or from Phase I studies. Sometimes biomarker information can
be used to help with this effort. For example, in the development of a beta blocker,
the amount of inhibition for beta agonists in Phase I studies can be useful. In
certain situations a combination of both approaches (using information from other
products and prior information of the same product) are considered in reaching an
agreement of a delta (treatment difference) to be used for sample size calculation.

The third way of guessing a delta is interesting, which also happens in practice,
not infrequently—to start with a reasonable sample size and then reverse the sample
size calculation to identify a feasible delta. This happens when there is an entirely
new indication or a new endpoint, where there is no previous experience. This
situation may also happen when patient recruitment is slow or when the budget is
limited. When this is the case, team members often spend considerable time to
discuss pros and cons about various choices of d. A final way to reach agreement is
based on a compromise on two or three of these approaches.

One question associated with choice of delta concerns variability corresponding
to the primary endpoint. In most disease areas, the standard deviation is known and
the variability tends to be stable. For example, in a four-week treatment of patients
with hypertension, the standard deviation of changes in blood pressure within a
treatment group is about 10–15 mmHg. In the case of a binary endpoint, based on
the binomial distribution, if the proportion of responders corresponding each
treatment is known, then the variability can be calculated with the given sample
size. If we know the proportion of patients who respond in each of the two groups,
as well as the alpha and power, we can get the sample size needed. Once the
discussion of delta is completed, a reasonable standard deviation would be used to
simplify these two quantities and obtain the effect size. This is easier to understand
when the outcome is continuous as the effect size is the delta divided by standard
deviation (signal-to-noise ratio).

Agreeing on a clinically meaningful treatment difference from placebo control is
a very difficult challenge in the early Phase II clinical trial design. Such is one of the
greatest difficulties at this stage. However, without a delta, it would almost be
impossible to calculate the sample size for a clinical trial. Once the delta is obtained,
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the next natural step is to discuss with the team regarding types of risks the team is
willing to take, namely, selection of a Type I error rate and a Type II error rate.

4.7 Choice of Alpha and Beta

In clinical development of new products, it is well known that alpha is the prob-
ability of making a Type I error (i.e., the probability of essentially developing a
placebo). Beta is the probability of making a Type II error, or the probability of
stopping development of a potentially good product. In most of the Phase III
development programs, alpha is set at one-sided at 0.025, because this is required
by regulatory agencies; this quantity is not negotiable. Alpha can be thought of as a
regulatory risk. If a product without efficacy is approved for the general patient
population use, then millions, or tens of millions of patients could use a product
which does not deliver efficacy, but could cause adverse events or other safety
concerns.

Beta can be thought of as the sponsor’s risk. If a potentially good product was
stopped for further development because of a wrong decision, then the sponsor’s
investments on this candidate would have been wasted, resulting in opportunity
cost. For this reason, regulatory agencies do not require any particular beta to be
used in any phase of the clinical studies. Hence the choice of beta is usually left for
the sponsor to determine. Usually in Phase III, sponsors tend to choose a smaller
beta (or a higher power) for study designs so that a larger sample size will increase
the likelihood of providing a smaller p-value. A typical Phase III study tends to be
with a design of beta being 20% or less.

However, choice of alpha or beta in Phase II trial designs can be flexible. The
two main reasons are that (1) decision after a Phase II clinical trial is a sponsor
decision, not a regulatory decision and hence the sponsor gets to select the level of
risks they are willing to take; and (2) there is insufficient amount of evidence at
Phase II for the sponsor to commit a huge amount of investment. Accordingly,
under a reasonable or affordable sample size, the alpha or beta may have to be
larger.

When designing a Phase II study, if the d has been determined, and the sample
size is limited, then the only choice left for the project team would be whether to take
a larger risk of making a Type I error or a larger risk of making a Type II error, or
both. This choice is critical, because a discussion about probability of making a
wrong decision should take place at the design stage, not after the study is unblinded
and results are ready. From a frequentist point of view, the probability of observing a
head or a tail of a coin toss can only be contemplated before the coin is landed. After
the coin is landed, the observation is either a head or a tail. There would be no
uncertainly involved as the outcome is known and certain. In clinical trials, the coin
is landed when the blind is broken. At that time, clinical data are ready for statistical
analysis, and a p-value can be calculated. It is important to understand that such a
p-value is an observed p, and there is no uncertainty associated with it.
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The underlying truth—whether the test product is in fact efficacious or not—is
still unknown. Yet a Go or NoGo decision will have to be made. What can be
concluded at this stage is that if the observed p-value is small (less than alpha), and
a Go decision is made, then the probability of making a Type I error under such a
decision is controlled at a level alpha. If an observed p-value is large (p greater than
alpha), and a NoGo decision is made, then the probability of making a Type II error
is maintained at level beta.

In Phase III, the selection of beta reflects the level of commitment of moving the
candidate product forward (a smaller beta implies a stronger commitment). It also
represents the degree of investment the sponsor is willing to spend. On the other
hand, in Phase II, the choice of beta may need to be balanced with the choice of
alpha. In most of situations, beta is set at a higher level than alpha. For example, a
typical alpha is 0.05 (either one-sided or two-sided), while a typical beta is 0.2
(indicating 80% power). These settings do not necessarily have to be the case in all
Phase II designs. In practice, Phase II studies are designed with a one-sided alpha of
0.0125, 0.025 and 0.05 or sometimes at one-sided alpha of 0.075 or 0.1. A beta
value of greater than 0.2 is rare. But beta values of 0.15, 0.1 or 0.05 are not
uncommon.

It frequently takes the project team to discuss and agree with the level of risk the
team is willing to take—either to give up a good product or to develop a placebo.
From a frequentist’s point of view, it is very important to note that these discussions
should take place at the study design stage, because after the results are known, the
coin has landed, and it would be too late to discuss probabilities or risks.

4.8 Sample Size Considerations

In the design of a clinical trial (PoC, dose-ranging, Phase III, or any other clinical
efficacy trials), a typical first step is to clearly articulate a clinically important
question. Next, team members collaborate to identify the primary endpoint, to agree
on the treatment difference (d), and to choose Type I and Type II error rates.
A statistical hypothesis is then formulated and, finally, the sample size estimate is
calculated based on this information.

Whenever sample size calculation is needed for a given study, the first point is to
understand the hypothesis to be tested. In the process of designing a Phase II PoC
clinical trial, the statistical hypothesis associated with such a trial is typically a
simple hypothesis with a one-sided test. In general, there are only two treatment
groups, with a placebo group compared against the MTD of the test product. The
hypothesis can be expressed in a straight-forward fashion as responses from the test
treatment against responses from placebo. For a comparison based on treatment
means, where higher sores are more favorable, then the hypothesis can be written as
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H0 : lT ¼ lP versus H0 : lT [ lP ð4:1Þ

where lT is the test treatment group mean and lP is the placebo treatment group
mean. In other words, if mean responses of the test treatment group is statistically
significantly greater than the mean responses of the placebo group, then the concept
is considered proven.

Once the statistical hypothesis, the clinical difference, and the corresponding
alpha and beta have been determined, sample size for a given clinical trial can be
calculated. Here a general formula for sample size calculation is provided, for
instance, it is used to help calculate sample sizes under a dose-ranging study. For
PoC, the number of treatment groups reduces to two, and the number denoted by
k in the following formula reduces to be one (k = 1, for a PoC trial). For PoC with
more than 2 groups, see Chap. 6. This formula will be re-visited in the next chapter
(Chap. 5) where dose-ranging trials will be discussed. Based on the above dis-
cussion, the sample size of a Phase II (either PoC, or dose-ranging) study can be
calculated using the following formula (Chang and Chow 2006):

n ¼ ðz1�a � z1�bÞr
d

� �2Xk
i¼0

c2i
fi

where

n is the total sample size of all treatment groups combined,
z1�a and z1�b are the critical values of the standard normal distribution

corresponding to Type I and Type II error, respectively,
d is the treatment difference between test product and placebo,
r is the standard deviation,
fi is the fraction of number of patients in treatment group i,
ci is the contrast coefficient that is associated with treatment group i.

In the case of two group PoC, then the coefficients are −1 and 1.
It is assumed to have k dose groups, plus placebo, where placebo is denoted as

the 0 dose group. Again, in the case of designing a two-group PoC clinical trial,
k = 1.
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Chapter 5
Design of Dose-Ranging Trials

5.1 Background

Typically, Phase I clinical trials are designed to evaluate escalating doses in order to
find the maximum tolerable dose (MTD) so as to establish the upper anchor of
doses for future development of new medicinal products. After Phase I, one of the
most important objectives for Phase II clinical development is to answer the
Go/NoGo question—proof of concept (PoC). For new drugs treating
non-life-threatening diseases, the next important objective is to establish the “dose
range.” A range of doses can be identified by the high dose and the low dose, and
the high dose is limited by MTD. As such, a key Phase II objective is to find a low
dose of this dose range. Usually this low dose is considered as minimum effective
dose (MinED). Simply put, Phase I is moving doses upward to find MTD; Phase II
is moving doses downward to find MinED.

After the concept is proven, the most important next step is to explore and
recommend the commercial doses to be tested in large Phase III confirmatory
clinical trials. PoC is usually faster and cheaper as it only requires a well-tolerated
dose of test therapy plus the placebo (control) group. A dose-ranging study,
however, needs multiple doses of the test therapy to characterize the dose-response
relationship. Therefore, a classical Phase II development program usually consists
of small-scale PoC trials followed by moderately sized dose-ranging studies.

Conceptually, the efficacy of a candidate product increases as the dose increases
(Fig. 5.1). The left curve plotted in Fig. 5.1 can be viewed as an efficacy–response
curve, with the response (y-axis) representing some measure of product efficacy. In
addition to efficacy response, there are also toxicity dose–response curves. We will
assume, as shown in Fig. 5.1, when dose increases, both efficacy and toxicity
increase. Based on these curves, the maximum effective dose (MaxED) and the
MTD can be found: MaxED is the dose above which there is no clinically sig-
nificant increase in pharmacological effect or efficacy; MTD is the maximal dose
acceptably tolerated by a particular patient population.
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In certain products, the efficacy curve and the toxicity curve are widely sepa-
rated. When this is the case, there is a wide range of doses for patients to take; that
is, as long as a patient receives a dose that is greater than the minimum effective
dose, and below a toxic level, the patient can benefit from the efficacy while
avoiding certain toxicities from the test product. However, for other products, the
two curves may be very close to each other. Under this situation, physicians have to
dose patients very carefully so that while benefitting the efficacy, patients do not
have to be exposed to potential toxicity from the candidate product.

The area between the efficacy and the toxicity curve is known as the “therapeutic
window.” One way to measure the therapeutic window is to use the “therapeutic
index (TI).” TI is thought of as the ratio of TD50/ED50, where TD50 is the dose that
produces toxicity in 50% of population and ED50 is the efficacious dose for 50% of
the population. Clearly, a product with a wide therapeutic window (or a high TI)
tends to be preferred by both physicians and patients. We want the drug to have
sufficient efficacy with the smallest dose in order to lessen or minimize side effects
(even when the dose is on the low side). If a test product has a narrow therapeutic
window, then it will need to be developed carefully. Caution is needed should the
medicine be approved and prescribed to the target population.

Frequently, products developed for life-threatening diseases (e.g., cancer) tend to
have narrow therapeutic windows. In contrast, products developed to treat chronic
diseases (e.g., high blood pressure, depression, high cholesterol, or arthritis) are
required to have wide therapeutic windows, because these products are frequently
used in older patients, or patients with other concurrent diseases, and sometimes
used in children.

In clinical development, Phase III trials are designed to confirm product efficacy.
Results obtained from Phase III studies provide evidence to help regulatory
agencies make decisions to approve or not to approve the candidate product.

Fig. 5.1 Efficacy and toxicity dose response curves

94 5 Design of Dose-Ranging Trials



Therefore, it is critical that dose-ranging trials from Phase II deliver the information
to help with Phase III design. In other words, if the appropriate dose or doses for
product registration is not included in Phase III trials, it is likely that the compound
will miss the opportunity of being approved for marketing. Hence information
obtained from Phase II dose-ranging trials need to provide sufficient support for
dose selection in Phase III study designs.

5.2 Finding Minimum Effective Dose (MinED)

Minimum effective dose (MinED) is a crucial concept in product development.
Unfortunately, there is no universally accepted definition of this term (Thomas and
Ting 2009). Finding MinED is critical because it is generally believed that toxicity
increases as dose increases. Hence a lower dose that is effective implies it could be
safer than higher doses.

Clinical results obtained from Phase III studies are used to support product
registration. Based on these data, if a dose is efficacious and safe, then that dose can
be approved, and the product label specifies the dose or the range of doses the
product is approved for. Nevertheless, after approval, if excessive adverse events
are observed from the low dose of the product, then a question as to whether this
low dose is low enough could be raised. At this time, it would be very challenging
to ask what is the MinED for this product. Therefore, it is critical to find MinED in
Phase II, before it is too late.

Drug price in US is not directly associated with dosage. However, in many other
countries, the price of a medicinal product is linked to its dose. In other words, if the
dose of the product is higher, then it is more expensive. Now suppose a certain
product is approved in such a country and the price is set based on the lowest
approved dose. If later it was detected that the MinED for the product is, in fact,
lower than the approved dose, then a dose reduction is needed at a post-market
stage. Accordingly, the price of this product at a lower dose may have to be further
lowered as well. When this happens, there is a huge impact on the earnings from
such a product. Therefore, from a marketing strategy point of view, it would be very
critical to identify the MinED before the product enters its Phase III development.

MinED Finding is performed in the practice of Phase II trial. As discussed
previously, if MinED was not identified at Phase II, it would be very difficult and
very expensive to find the MinED at a later stage of product development. In fact,
Phase II studies may be the only opportunity to characterize the relationship
between doses and product efficacy. Therefore, it is vital to pay more attention to
Phase II and to carefully design dose-ranging clinical trials during this critical phase
of clinical development for a new product.

Although there is a definition of MinED from ICH E4—“MinED is the smallest
dose with a discernible useful effect,” the interpretation and implementation of
such a definition varies a lot in practice. The first question is the understanding of “a
useful effect.” It is difficult to achieve consensus about the smallest magnitude of an
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effect that is useful. One approach is to follow a well-established treatment effect
such as lowering 5 mmHg of blood pressure in developing an antihypertensive
product. Another is to consider the concept of minimal clinically important dif-
ference (Farrar et al. 2001; Katz et al. 2015; Osoba et al. 1998; Rosen et al. 2011)
the magnitude of the treatment effect above and beyond placebo effect is large
enough to be perceived by a subject, described in the previous chapter.

The implementation of a “discernible” effect could be even more difficult.
Typically a “discernible” effect could be referred as a “statistically significant”
difference from control. Under this interpretation, various authors recommend
different ways of calling a dose as MinED based on the difference in treatment
effect from a given dose as compared with placebo. Some researchers suggest the
use of a dose-response model to help estimate MinED (Fillon 1995; Pinheiro et al.
2006). In the modeling approach, a treatment difference (d) against placebo is
proposed and from the model, if there is a dose achieves such a d, then this dose is
considered as the MinED. Others (Hochberg and Tamhane 1987; Wang and Ting
2012) suggest the use of pairwise comparisons. Under pairwise comparisons of
each dose versus placebo, a point estimate and an interval estimate can be calcu-
lated. Depending on the definition of MinED, these estimates are used to help
proposing a dose as MinED. Even among those authors recommending use of
pairwise comparisons to find MinED, there could be many differences, too. For
example, some may argue that multiple comparison adjustment could be necessary,
others may not. Whether or not multiple comparison is needed, the understanding
of “a dose that delivers treatment effect which is different from placebo” could still
vary substantially, depending on individual’s point of view.

For example, let the useful effect be denoted as d; then, for a given dose, a point
estimate and a confidence interval can be constructed for d. If a positive value
indicates a benefit effect, then the treatment response of the given dose of test
product subtracted from the placebo response is expected to be positive. Hence it is
hoped that the point estimate of the treatment difference could be as much as d. This
leaves a wide range of interpretations—for MinED, should that dose be such that
the point estimate is greater than d? Should that dose be such that the lower
confidence limit be greater than 0? Should that dose be such that the upper con-
fidence limit be greater than d? Or should that dose be such that the lower confi-
dence limit be greater than d (McLeod et al. 2016)?

The implementation of “the smallest dose with a discernible useful effect” is
fraught with various interpretations and complexity, making the definition difficult
to implement unambiguously. In practice, one feasible way of finding a MinED in a
dose-ranging clinical trial is to find a dose that is lower than MinED. Regardless of
which practical definition the project team uses to identify MinED, suppose there is
a dose deemed to be “not efficacious,” and another dose that is higher could be
considered to be “efficacious.” Then it can be considered that the non-efficacious
dose is below MinED and the efficacious dose is above MinED. From a practical
point of view, this information would usually be sufficient to help the team to
design Phase III clinical trials.
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Of course in the selection of Phase III doses, many other aspects will also have
to be considered: such as safety or toxicity findings, pharmacokinetic properties,
formulations, and so on. But the information about MinED would be one of the
most critical deliverables from Phase II in supporting any Phase III development
plans.

5.3 A Motivating Example

In a clinical development program for a test drug to treat osteoarthritis, the first dose
response study included placebo, 80, 120, and 160 mg of the test drug (Ting 2008).
Results from this study indicate that all three doses are efficacious (Fig. 5.2a).
These results also show that 80 mg may have already been at the high end of the
efficacy dose-response curve. A second study was designed to explore the 40 mg
dose, and results from this second study are given in the middle panel of Fig. 5.2b.
With these findings, the project team started Phase III studies using a dose range of
40–120 mg to confirm the long-term efficacy of this test drug.

An End-of-Phase II meeting with the Food and Drug Administration (FDA) was
held after the long-term Phase III study started. FDA commented that the minimum
effective dose (MinED) was not yet found. Hence the project team designed a third
dose-response study to explore the lower dose range. Doses included in the third
study are 2.5, 10, and 40 mg. As shown in the bottom panel of Fig. 5.2c, the third
study successfully established the dose-response relationship. Based on these
results, it is clear that the Phase III studies were designed with a range of doses that
are too high. The impact of this process can cause a major delay in the development
program and considerable waste of resources.

5.4 How Wide a Range of Doses to Study?

The key lesson learned from this osteoarthritis drug development program is that a
very low dose was not explored in early Phase II. In other words, if a dose at or
below 10 mg was explored in the first study, a narrower dose range could have been
established using a second study. Then the Phase III studies could have been
designed with the appropriate dose range.

In general, the most difficult challenge in designing the first dose ranging trial in
developing a new intervention is the selection of doses to be included in this design.
Just like designing a PoC trial, the dose-ranging study is designed with two very
important assumptions:
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(1) The maximal tolerated dose (MTD) was correctly estimated from earlier trials
and

(2) Efficacy response is monotonic to ascending doses.

However, it is unclear what range of doses to choose for efficacy activities. At
this stage, the best guidance available is data obtained from pre-clinical experiments
or from Phase I biomarkers. Even under the assumptions that the MTD was cor-
rectly estimated and there is a monotonic efficacy dose-response relationship, there
can still be many possible shapes of dose-response curves.

Fig. 5.2 Dose response
results from the three studies
of osteoarthritis drug
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Figure 5.3 presents an example of three dose-response curves. The three curves
on this figure represent dose projections based on three animal models from
non-clinical studies. One curve represents a dog model, another is a mouse model,
and the third is from a rabbit model. The vertical dashed grey line (at the right side
of Fig. 5.3) represents the maximum tolerated dose (MTD). The question then
becomes, what range of doses should be considered in the upcoming dose-ranging
clinical trial? From this perspective, the primary challenge in the dose-ranging trial
design is to consider which range of doses needs to be studied.

5.4.1 Definition of Dose Range in a Given Study

Dose range in a clinical trial design is defined as the ratio calculated as the highest
dose divided by the lowest dose included in the same design. For example, if the
doses in trial A are placebo, 20, 40, and 80 mg, then the dose range is 4 (= 80/20).
If the doses in trial B are placebo, 0.1, 1 and 10 mg, then the dose range is 100
(= 10/0.1). Although the doses used in trial A are higher than doses used in trial B,
trial B has in fact a much wider dose range—25 times wider than trial A.

Given the discussion in the previous sections about MinED, it is critical to
realize that in the first dose-ranging design, a wide dose range need to be studied.
The high dose is typically set at MTD or a dose below MTD to avoid any potential
toxicity. The real design challenge is to choose the lowest dose for this
dose-ranging trial. If there is an interest to identify a dose that is below MinED, then
the difficult question would be “how low would it be low enough?” Once the low
dose is selected for the design, a dose range can be calculated as the ratio of the
highest dose divided by the lowest dose.
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Fig. 5.3 Several possible dose response curves
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5.4.2 Binary Dose Spacing

Hamlett et al. (2002) propose to use a binary dose spacing (BDS) design for dose
allocation. If the trial includes two dosing groups and a placebo, then the BDS
design identifies a mid-point between the placebo and the MTD and allocates one
dose above and another below the midpoint. If the trial includes three dosing groups
and a placebo, then the BDS design identifies the high dose as described in the two
dose case. A second midpoint is then identified between the placebo and the first
midpoint, and a low dose is selected below the second midpoint and the medium
dose is selected between the two mid-points. The BDS design iteratively follows
this strategy with more dosing groups. The BDS design employs a wide dose range,
helps identify the MinED, employs a log-scale dose spacing strategy avoiding
allocating doses near the MTD (i.e., identifies more doses near the lower end), and
is flexible and easy to implement.

5.5 Frequency of Dosing

In designing dose-ranging clinical studies, we need to know how often should a
patient take the test drug (e.g., once a day, twice a day, or dose every 4 h during the
day). This is a question about dosing frequency, and it is usually guided by the
Phase I pharmacokinetics/pharmacodynamics (PK/PD) findings. One of the PK
parameters is the half-life of a drug (this is a PK parameter that estimates how long
will it take to excrete 50% of test drug out of the body). The estimated half-life
helps to explore how long the drug will stay in human body. Using this information,
we can propose a dosing frequency to be used in a dose-ranging study design. In
certain cases, we may study more than one dosing frequency in a single study.
When this is the case, a factorial design (dose, frequency, dose*frequency) could be
considered.

However, in some drugs, the PD response may be different from the PK
response. Note that PD measures how the drug works in human body while PK
measures how the body acts to the drug. In the example of developing a beta
blocker, the beta receptors could be served as one of the PD markers. When this is
the case, based on the PK half-life data, we may believe that insufficient drug in the
body even after several hours of dosing and there may still be enough drug in the
tissue to help with PD responses. On the other hand, the PK may indicate that there
are still plenty of drug in the body, but these drugs may not cause any effective PD
responses. In some drugs, the concentrations for PD activities can be very different
from that for PK activities. Hence the dose frequency purely derived from PK may
either overestimate or underestimate the concentration needed for PD responses. In
some cases the best dose frequency may be derived in later phases of the drug
development.
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Another important guiding principle in selecting dosing frequency is based on
the market assessment. For example, if the market requires a once-daily dosing
treatment, but the drug candidate under development has a twice-a-day PK profile,
then some formulation change may be necessary. Figure 5.4 presents
time-concentration curves for this situation. The horizontal line that is directly
above the x-axis represents the efficacy concentration level (often based on PD
information). Theoretically speaking, we need to keep the drug concentration
staying above this line all the time for the drug to work. In order to achieve this
concentration, two strategies are possible: (1) dose the subject twice a day
(BID) with low dose (Fig. 5.4); or (2) double the BID dose, and treat the patient
with this high dose once a day (QD) (Fig. 5.4). Note that in the first few hours post
dosing, the high dose may result in a very high concentration which could poten-
tially cause severe adverse events. When this is the case, re-formulation of the drug
may be needed so that, for dosing once a day, the Cmax (which is a PK parameter
that estimates the maximal amount of drug observed in plasma at any given time)
would not be too high, while the efficacy concentration can be maintained
throughout a 24-h period.

In designing the first few Phase I trials to study PK, there is very limited
information about how the human body will metabolize the drug candidate. At this
stage, data observed from pre-clinical studies and animal experiments on this
candidate are used to help guide designing these Phase I trials. In case the drug
candidate belongs to a certain drug class where other drugs of the same class were
already on the market, information obtained from these other drugs can be used to
help guiding the study designs for the drug candidate being studied.

Fig. 5.4 Once a day versus twice a day dosing (QD is once a day, BID is twice a day)

5.5 Frequency of Dosing 101



During the development of a compound, sometimes reformulation may be
needed. There can be many different reasons why there is a need for drug refor-
mulation, including to help absorption and to change the half-life. It is critical to
understand that after reformulation, the PK/PD properties of the product candidate
are different from what they were prior to reformulation. Hence all of the dosing
information and drug regimen obtained from studies before the reformulation will
need to be changed and re-studied. This change can potentially cause major
re-work. Re-work in drug research and development delays the development pro-
cess and results in additional amount of investment.

In studying the PK/PD relationship, we should realize that the main point is
whether Cmin (Cmin is the PK parameter that estimates the minimal amount of
drug observed in plasma), Cmax (the maximal concentration), or AUC (area under
the curve) drives the PD. This area is fertile for collaboration between statisticians
and pharmacokineticists. Models based on prior trial data (e.g., from pre-clinical
data, clinical data of the drug candidate under study, other compounds of the same
class) can be developed to inform the decision.

5.6 Parallel Controlled Fixed Dose Designs

Typical dose-ranging trials are designed with parallel dose groups plus a placebo
control. Patients are randomized to each treatment group and receive study medi-
cations for the entire duration of the study. For example, in a four treatment group
design with four weeks duration, the doses are placebo, low dose, medium dose and
high dose, then a patient is randomized into one of these four groups and will
receive the same dosage of study medication from after randomization to week 4.
A parallel design indicates that at the time a patient is recruited, the opportunity of
randomizing into each dosing group is dictated by the study design, and that there is
no requirement for any study dose to be before, or after another study dose.

Dose-escalation designs are frequently used in Phase I. In a dose-escalation
design, a group of subjects started with the lowest designed dose. After these
subjects complete the lowest dose and there is no safety concern, then a different
group of subjects will receive a higher dose. If this dose is well tolerated, then a
third group of subjects will receive an even higher dose. This process continues
until the stopping rule is met. A typical stopping rule would be some kind of
pre-specified adverse events. In oncology, the stopping rule could include a dose
limiting toxicity (DLT). In other words, if several subjects experiencing DLT’s,
then it can be claimed that the MTD was exceeded. Dose-escalation designs are
very useful in finding the MTD. However, since the duration of each treatment
period is relatively short, these designs are not used in clinical efficacy trials.
Phase II dose ranging trials are designed to study drug efficacy and, in most of
therapeutic areas, drug efficacy can only be observed after a reasonable treatment
period. Hence dose-escalation designs are not used in dose-ranging trials.
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A fixed-dose design and a dose-titration design are in contrast to each other. In a
fixed-dose design, once a patient is randomized to a dose group, the patient would
take the same dose of study product throughout the complete dosing period. In a
dose-titration design, in contrast, a patient is randomized to a dose regimen with a
starting dose, where the dose for a patient can be changed over time. In a titration
design, patients are randomized to regimens, instead of doses. The regimen could
be a 10–20 mg test drug versus placebo. In this case, a patient could be randomized
to test drug or placebo. If the patient is randomized to test drug, he or she would be
dosed at 10 or 20 mg of test drug, depending on study design. If a patient is
randomized to placebo, then this patient may receive 10 mg matching placebo or
20 mg matching placebo, according to the double-blind study design.

Dose-titration designs include forced titration, and response guided titration. For
example, in an eight-week study with forced titration of test drug against placebo,
with 10 and 20 mg dosages, then the design may dictate that every patient starts
with 10 mg of test drug or matching placebo. Then after two weeks of 10 mg (or
placebo) double-blind treatment, every patient will be titrated up to 20 mg, until
end of treatment (week eight). On the other hand, a response-guided titration design
(again, two treatment groups with test drug against placebo, and eight weeks
duration) would randomize patients into one of the two treatment groups, and every
patient starts with 10 mg (or matching placebo). Then, depending on patient
response, if the efficacy is not sufficient, then the treating physician may consider
titrate the dose up to 20 mg. However, after the patient on the 20 mg dose, if there
is safety concern at this dose, then the physician may down titrate the dose back to
10 mg. Hence dose-titration designs can be viewed as two different types—forced
titration or response-guided titration.

There are some advantages of a titration design. For example, a study with this
design will allow a patient to be treated at the best dose for that specific patient; this
dose allocation feature reflects the actual medical practice. However, the disad-
vantage of a titration design is the difficulty in data analysis. For example, if a
patient responded to the test drug after doses are titrated up, it is unclear whether the
higher dose delivered the efficacy or the accumulation of lower doses caused the
response. In titration designs with multiple treatment groups, there may be over-
lapping doses—for example, one treatment group is 10 mg escalating to 20 mg,
while another group is 20 mg escalating to 40 mg. When this is the case, it is
difficult to make inferences about the 20 mg dose group.

In some rare cases, instead of a dose-response study, a concentration response
study could be considered. A concentration response study assesses efficacy and
safety measurements observed from subjects according to the plasma concentration
of the study drug but not the doses of the study drug. There are many practical
limitations in using this type of designs. These limitations include, among others,
how to blind the patient and the physician and also how and when to measure the
blood concentration. Because of the issues with dose-titration designs and con-
centration response designs, the parallel, fixed-dose designs are, in general, the
more commonly used designs for dose-ranging studies. Therefore, in many of the
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dose-response studies, patients are randomized to a few fixed-dose groups and are
compared with one or more control treatment groups.

In Phase II dose ranging clinical trials, the primary objective is to evaluate drug
efficacy of each studied dose, and hence the most useful design is the parallel,
controlled, fixed-dose design. In these designs, each patient is randomized to a
pre-specified dose and followed for the designed study duration. During the entire
study period, patients received the same dosage of the double-blind medication.
Results obtained from these studies can be used to help understanding drug efficacy
associated with each studied dose. It is important to note that dose-escalation
design, dose-titration design or concentration response design cannot be used for
efficacy dose-response purposes.

5.7 Number of Doses and Control Groups

As discussed in the previous sections, a wide dose range is critical in the Phase II
dose-ranging studies (Yuan and Ting 2014). Once MTD is estimated from earlier
studies and a wide dose range is considered, the natural questions to think about are
how many doses should be included in the study and whether a placebo-control
group is sufficient or an active control group is needed.

A single high-dose plus a placebo-arm design may be able to demonstrate PoC
but cannot adequately characterize the dose-response relationship. Any attempt to
interpolate a dose-response relationship between the placebo and the test dose
would require very strong assumptions, which often times are not realistic.
Therefore, a dose-ranging study typically needs several test dose levels. Generally
speaking, it would be desirable to have more than two test doses plus one placebo
arm in defining the dose-response relationship and estimating the difference of the
test doses versus placebo. One very commonly used design is a four-group study
with placebo, low-dose, medium-dose and high-dose groups of the drug candidate
under development.

Some authors suggest that more doses could help (Krams et al. 2003)—that is, in
the first dose-ranging study, adding more doses to the study design. However, the
number of doses to be used in a dose-ranging trial is usually limited by practical and
logistical considerations, such as available formulations of test doses, dosing fre-
quencies, convenience for outpatients to use on their own, and blinding complexity.
In some situations, an active control is also employed in a dose-ranging trial. Given
the multiple treatment groups already included in a study, it may not be practical to
add very many test doses into the same study.

In an early Phase II dose-ranging trial design, typically the total sample size is
limited depending on budget, ethical concerns, availability of patients, and difficulty
in recruitment. Under this circumstance, more treatment groups in a design imply
fewer patients per treatment group. A smaller sample size of each treatment group
provides a less precise estimate of treatment effect. Hence merely adding dose
groups to a study design does not necessarily make the design to deliver more
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informative results. A well-thought through design strategy is needed before the
number of dose groups can be determined.

In our opinion, for the first-dose ranging study design, it is more important to
cover a wide dose range, than simply adding more doses to cover a narrow range of
doses. This suggestion is both practical and sound. In practice, a trial with four or
five test doses, plus a placebo control (a total of five or six treatment groups), will
deliver a good understanding of where the test medication is most active, if the dose
range is wide enough and the dose spacing is reasonable. Some simulation studies
(Yuan and Ting 2014) suggest that, among the number of treatment arms (4, 5, 6, or
7, including placebo), it looks like three test doses (the 4-arm design) could be
insufficient in some cases. The performance increases when more than three doses
are studied.

On the other hand, six test doses (the 7-arm design) may not necessarily deliver
better results than the four test doses (the 5-arm design) or five test doses (the 6-arm
design) comparisons. When the total sample size is fixed, the 7-arm design offers a
smaller sample size per group when equal sample size is used, and the precision on
the treatment effect would be sacrificed. In this case, it may be a good idea to
consider an unbalanced sample size allocation, for example by allocating more
subjects to highest dose and placebo arm. Therefore, from a practical point of view,
a dose-ranging design including four to five test doses (in addition to placebo),
which cover a wide dose range, may be very useful in designing the first-dose
ranging clinical trial.

5.8 MCP-Mod

Pinheiro, Bretz and other authors introduced the concept of MCP-Mod in the first
decade of the new millennium as seen in Pinheiro et al. (2006). This approach is
currently widely used in the pharmaceutical industry and biotech companies. The
basic idea of MCP-Mod is to consider a dose-ranging trial as a combination of two
major components—the MCP part serves as the confirmatory process (hypothesis
tests) and the Mod part serves as exploration (or estimation) of the dose-response
relationship. This approach is very sensible in the dose-ranging trials because it
helps clarify the two most important statistical ingredients in the design and analysis
of a dose-ranging clinical trial: confirm and explore.

In MCP-Mod, MCP represents multiple comparison procedure, which is applied to
select the dose-response model(s) for analysis. Use of MCP allows the alpha to be
controlled during model selection, which serves as the confirmatory part for the study
design. Mod represents modeling, which serves the purpose of estimation. In other
words, after the MCP is applied to select the best model, then this selected model is
used in the estimation process. One of the most important contributions of MCP-Mod
is to help recognize that, although MCP has traditionally been used as a dose-selection
method, it can also be used for model selection. Once this point is clarified, the
flexibility of MCP applications in dose-ranging clinical trials can greatly increase.
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The MCP, the first approach, takes dose as a discrete factor and generally makes
few assumptions about the underlying dose-response relationship. When there is no
assumed ordering imposed on the testing of multiple doses, multiplicity adjustment
is necessary to protect the familywise error rate (FWER). Popular procedures such
as the Bonferroni procedure, Holm procedure, and Hochberg procedure require
splitting of alpha, and the level of significance (false positive rate), which results in
an increased sample size.

The modeling approach (Mod), the second approach, treats dose as a continuous
variable and assumes a functional relationship between the response and the dose.
Sometimes the multiplicity issue is avoided as a result of the assumed functional
relationship (e.g., non-decreasing dose-response relationship). The problem is
potential bias caused by model misspecification.

MCP-Mod, the third (and hybrid) approach, addresses this issue by first selecting
the dose-response model using MCP to protect the FWER; then the selected model
is used to estimate the dose-response relationship. This approach is flexible in the
sense of model selection; on the other hand, it pays the price of splitting a at the
model selection step.

Although MCP-Mod was originally developed for analyzing dose-ranging
clinical trials, it can also be a useful tool for study design. Details regarding the use
of MCP-Mod in data analysis will be covered in Chap. 9. The focus of the current
chapter is about design of dose-ranging trials, and the discussions that follow are to
describe how MCP-Mod can be used in study designs.

The application of MCP-Mod in study design can be simplified to be the
two-step confirm and explore process. The first step is the use of MCP to perform
the confirmatory step, where alpha protection can be achieved using MCP. After the
model is selected (confirmed), then this model is applied for exploration of
dose-response relationships (estimation). At the design stage, the project team
discusses potential models to be used for the possible dose-response relationships.
After the candidate models are selected, then these models are included in the
design, and MCPs are applied to control the alpha for model selection.

As a way to further simplify this procedure, a single model can be proposed
(Ting 2009; Wang and Ting 2012) to implement the dose-ranging study design.
Based on extensive simulations, it is apparent that a trend test can be very powerful
under the monotonicity assumption. The trend test can be easily expressed as a
contrast and employing such a powerful contrast test requires only a one degree of
freedom and hence the entire MCP reduces to one comparison. Hence no alpha
adjustment will be necessary. The statistical hypothesis can be expressed as this
contrast and the entire alpha of the study is devoted into this test.

After the results demonstrate the trend test is statistically significant, the
dose-response relationship can be estimated using this simple model. In fact,
because the estimation of dose-response relationship does not involve any alpha
consequence, such an objective can be achieved with more flexibility. It is
important to understand that the purpose of a Phase II dose-ranging clinical trial is
to help in describing a range of doses for the next Phase II dose-ranging exploration
or for the Phase III confirmation. The ultimate objective of such a trial is not to
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“confirm” minimum effective dose nor to “select” several fixed dose for Phase III.
Instead, it is to help in establishing the range of doses for further exploration. Of
course, based on efficacy and safety results from such a Phase II dose-ranging
study, one or more doses could also be selected for confirmatory purposes and to be
used in Phase III.

Given this understanding, the design thinking of “confirm, and then explore” can
be implemented in such a way that a trend test is used for confirmation purposes.
After a statistically significant result is obtained from this trend test, dose responses
can be estimated from the observed data. One of the most important point of this
strategy is the understanding that the study objective is not to identify any particular
dose being a specific anchor (such as MinED, ED50 or ED90). Rather, the objective
is to determine whether there is a dose-response and, after such a relationship is
established, the next step is to explore or to estimate a range of doses that could
potentially be confirmed in future studies. Discussion of applications of MCP,
modeling, or MCP-Mod in analysis of dose-ranging trials can be found in Chap. 9.

5.9 Sample Size Considerations

Whenever sample size calculation is needed for a given study, the first point is to
understand the hypothesis to be tested. In the design of a Phase II dose-ranging
clinical trial, the statistical hypothesis associated with such a trial is typically a
proof-of-concept hypothesis. In the case when a Phase II PoC study designed with
only two treatment groups, a placebo group is compared with the MTD of study
product, the hypothesis can be expressed in a straightforward fashion—responses
from the test treatment is compared against responses from placebo. If the com-
parison is based on treatment means, then the hypothesis can be written as

H0 : lT ¼ lP versus H0 : lT [ lP;

where lT is the test treatment group mean and lP is the placebo treatment group
mean.

In other words, if mean responses from the test treatment group is statistically
significantly improved than the mean responses from the placebo group, then the
concept is considered proven.

However, in a dose-ranging trial design, the primary hypothesis is not
straightforward. In this case, the trial includes more than two treatment groups.
A typical dose-ranging design consists of the highest dose of the test product (could
be the MTD) on the upper end and of the zero-dose group in the form of placebo
Additionally, such a design includes one or more different doses in between these
two extreme treatment groups. Under this circumstance, two possible options could
be considered in specifying the primary hypothesis. One option is to keep the
hypothesis the same as that in the two-group setting—namely, only test the highest
dose (may be MTD) against placebo.

5.8 MCP-Mod 107



Another option is to use a contrast which includes more than two treatment
groups in order to perform the primary hypothesis test. If this second option is
selected, then there could be many varieties in writing such a contrast.

For example, in a four-group design with placebo, low dose, medium dose and
high dose, let lL be the mean response of low dose, lM be the mean response of the
medium dose, and lH be the mean response of high dose. The contrast can be a
trend test based on all doses (Wang and Ting 2012; Ting 2009) assuming a
monotonic dose-response relationship:

H0 : �3lP�lL þ lM þ 3lH ¼ 0 versus H0 : �3lP�lL þ lM þ 3lH [ 0

Another possible proof-of-concept contrast may also include (which assumes all
test doses are equally effective) is

H0 : �3lP þ lL þ lM þ lH ¼ 0 versus H0 : �3lP þ lL þ lM þ lH [ 0

Alternatively, it can be assumed that only the high dose is effective:

H0 : �lP � lL�lM þ 3lH ¼ 0 versus H0 : �lP � lL � lM þ 3lH [ 0

As can be found from these sets of hypotheses, if a contrast (which includes
more than two treatment groups) is used for the statistical hypothesis, then there
could be many possible ways of writing such a contrast.

Once the statistical hypothesis, the clinical difference (after adjusted for standard
deviation), and the corresponding alpha (a) and beta (b) have been determined,
sample size for a given dose-ranging trial can be calculated. Based on the above
discussion, the sample size of a dose-ranging study can be calculated using the
following formula (Chang and Chow 2006, which also appeared in Chap. 4,
Sect. 4.8).

n ¼ ðz1�a � z1�bÞr
d

� �2Xk
i¼0

c2i
fi

where

n is the total sample size of all treatment groups combined,
z1�a and z1�b are the critical values of the standard normal distribution

corresponding to Type I and Type II error, respectively,
d is the treatment difference between test product and placebo,
r is the standard deviation,
fi is the fraction of number of patients in treatment group i,
ci is the contrast coefficient that is associated with treatment group i.

In addition, it is assumed to have k dose groups plus placebo, where is denoted
as the 0 dose group.
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In the calculation of sample sizes for a dose-ranging study, two popular types of
patient allocation are possible: (1) balanced allocation where each treatment group
receives an equal number of patients and (2) imbalanced allocation where the
highest dose and the placebo groups receives more patients and other dose groups
receives fewer patients per group. The sample size formula above works well with
either type of patient allocation. Examples of these types of allocation can be found
in Yuan and Ting (2014). The above formula applies to cases where the primary
endpoint is a continuous variable. In fact, sample size formula based on other types
of response variables such as binary or time-to-event can also be found in Chang
and Chow (2006).

As an illustration of how an early Phase II dose-ranging trial is designed, a
real-world example is discussed in the next section. This example reflects three key
features of the thinking process involved: (1) dose-range, (2) number of treatment
groups, and (3) sample size. Note that in the real-world setting, other considerations
are also important—selection of primary endpoint, choice of clinically meaningful
difference (d), and determination of Type I and Type II error rates, as well as
statistical hypothesis to be tested. All of these considerations involve the steps on
sample size calculation. Therefore, in dose-ranging study designs, once the
dose-range and number of treatment groups are determined, the other design con-
siderations are very similar to those for designing an ordinary clinical trial.

5.10 Application Example

Rofecoxib® is a medication developed by Merck for the treatment of rheumatoid
arthritis (RA) and osteoarthritis (OA). In late 2004, Merck withdrew Rofecoxib®

from market because of concerns with excessive cardiovascular events. After this
withdrawal, the drug development environment for any new anti-inflammatory
agents became more and more challenging. For every new product developed to
treat RA or OA, both drug safety and efficacy are followed very closely to ensure
that the efficacy of this new product can be well established, while there is no signal
of any safety concerns. The clinical development plan will now involve after the
PoC and early-dose ranging studies to demonstrate drug efficacy, large scale,
long-term Phase III studies to follow for cardiovascular safety and gastro-intestinal
(GI) safety, as well as overall safety.

A true case study of developing a compound treating osteoarthritis (OA) is
introduced here as an example (Ting 2009). Consider a four-week study where OA
patients first go through a screening visit. Then, after a wash-out of the current OA
medication, patients are randomized to treatments into this study. Baseline mea-
surements (demographic, medical history, background medications, efficacy, and
other data) are collected prior to the first dose of study drug. Thereafter, over the
four-week treatment period, efficacy and safety measurements are regularly col-
lected at each visit. Note that at the early stage of clinical development, the length
of study is constrained by the time length of animal studies completed in the
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non-clinical experiments. In this case study, the animal toxicity studies are followed
for up to 4 weeks and, therefore, the current clinical study is designed with a
four-week study period.

In order to offer the best opportunity for the new compound to show efficacy at
the early Phase II stage, the test dose to be used in the PoC should be as high as
possible. In a typical clinical development program for drugs treating OA, both the
efficacy dose response and the safety dose response relationships are assumed to be
monotonic. If the very high dose of this new product does not demonstrate drug
efficacy, the sponsor can stop developing this product and allocate investments and
resources into developing other compounds with more potential to become suc-
cessful drugs.

Given the requirement of demonstrating long-term drug safety, it is critical for
the new compound to offer doses low enough so that in the Phase III studies where
patients are exposed to long-term treatment, there is no safety concern, and patients
can still experience the treatment benefit of efficacy. Hence it becomes desirable
that in the PoC study, some low doses of this new compound are explored to help
detect a MID. For these reasons, it is of interest to study a wide range of doses, so
that the high dose that is close to MTD to help with PoC, and the low dose is low
enough to help establish MinED.

In this example, the project team decides to study five parallel dose groups,
which cover a wide enough dose range. In addition to these five dose groups, a
placebo control and an active control are also used to help confirm the efficacy and
explore the safety of the drug candidate. In most of the early Phase II clinical
studies, there is no active control group. Active controls are more likely to be used
in Phase III development. The reason to choose an active control in this case study
is, if the results fail to distinguish between placebo and the tested doses, it will be
unclear as to whether the test drug is truly ineffective or there happens to be a very
high placebo response.

Under this situation, the comparison between an active control and placebo helps
the project team to differentiate these two conditions. If the active control is clearly
superior to placebo, then it can be concluded that the test drug is not efficacious. On
the other hand, if the data cannot differentiate between the active control and the
placebo, then this study is not informative because it is still unknown as to whether
the test drug is beneficial or not. Hence, in this study, the active control is used for
reference purposes only.

For this test drug, the MTD is estimated from results observed in previous
studies. Furthermore, the formulation group has already prepared tablets with fixed
drug strengths. Let the dose at MTD be 100% of the dose strength and the for-
mulated tablets be at 2.5% and the 12.5% strengths of MTD. Given this, five doses
are selected using the BDS approach. In this case study, the doses selected are
placebo, 2.5, 5, 12.5, 25, and 75% of MTD, plus an active control. Based on this
design, the dose range is 30 (¼ 75%=2:5%). The active control group is selected to
be a popular NSAID (non-steroidal anti-inflammatory drug).

Although osteoarthritis is considered an inflammatory disease, the symptom that
brought an OA patient to the doctor is usually joint pain. Therefore, in clinical
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studies of OA, the primary measure of efficacy focuses on pain or symptoms related
to pain. One of the widely accepted clinical measures for OA is the Western Ontario
and McMaster University (WOMAC) Osteoarthritis index (Bellamy et al. 1997).
The WOMAC score includes 24 questions with five of these questions relating to
the pain domain, two relating to the stiffness domain, and 17 relating to the function
domain. In this true case study, the WOMAC pain domain is selected as the primary
endpoint for efficacy analysis.

From the alpha-protection point of view, it is important that each study be
designed with one primary efficacy endpoint, one primary comparison, and one
primary analysis set at one primary time point. Under these pre-specified condi-
tions, it is less likely that the probability of Type I error (alpha) be artificially
inflated. In this case study, the primary endpoint is change in the pain domain of the
WOMAC score from baseline to week 4 (the primary time point for analysis). The
primary analysis set is the intent-to-treat set; typically, this set is defined to include
all patients who received at least one dose of randomized study treatment.

At this point, one of the most important considerations in alpha control is the
primary comparison. Given that the design consists of five test doses plus placebo
and an active control, the question is how to set the primary comparison so that the
PoC decision can be made regarding this test drug. In this case study, a trend
contrast with discrete doses is proposed to serve as the primary comparison. For this
contrast, the active control is not included in the comparison. As discussed earlier,
the NSAID to be used in this study is only for validation purposes, in case the
concept is not proven (refer to Sect. 3.1 example). Hence the proposed trend
contrast includes only the five dosing groups plus placebo. Here only one contrast is
used and therefore no MCP adjustment. This is a simplified application of the
MCP-Mod method.

For a simple trend contrast with discrete doses, the treatment groups are simply
ordered from low to high. The placebo response is assumed to be 0, the lowest dose
(2.5% of MTD) is assumed to have 20% response, the next lowest dose (5% of
MTD) is assumed to have 40% response, the medium dose (12.5% of MTD) is
assumed to have 60% of response, the second highest dose (25% of MTD) is
assumed to have 80% response, and the high dose (75% of MTD) is assumed to
have 100% response. Then the coefficients −5, −3, −1, 1, 3, and 5 are assigned
respectively to these treatment groups coefficients of contrasts under various
number of treatment groups, as given in Table 5.1. Hence the primary hypothesis to
be tested is as follows:

H0 : �5l0 � 3l1 � l2 þ l3 þ 3l4 þ 5l5 � 0 versus

HA : �5l0 � 3l1 � l2 þ l3 þ 3l4 þ 5l5 [ 0

where

l0 denotes the mean of placebo group,
l1 denotes the mean of the 2.5% dose group,
l2 denotes the mean of the 5% dose group,
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l3 denotes the mean of the 12.5% dose group,
l4 denotes the mean of the 25% dose group, and
l5 denotes the mean of the 75% dose group.

In the case of a dose-response study with k dose groups and placebo, the sample
size estimates based on a contrast can be derived as follows (Chang and Chow
2006).

Let li be the population mean for group i, i = 0,…, k, where l0 is the mean from
the placebo group and let ci be the corresponding coefficients in the contrast. The
null hypothesis of no treatment effect can be written as follows:

H0 : LðlÞ ¼
Xk
i¼0

cili � 0 versus HA : LðlÞ ¼
Xk
i¼0

cili ¼ d[ 0

Note that
Pk

i¼0 ci ¼ 0. Under the alternative hypothesis and the condition of
homogeneous variance, the sample size per group can be obtained as

n ¼ ðz1�a þ z1�bÞr
d

h i2Pk
i¼0 c

2
i , where z1−a and z1−b are the corresponding quantile

points of a standard normal distribution.
Based on published data, the standard deviation is about 4 (r = 4). From the

observed placebo response, and the anticipated response from this test drug, pos-
sible targeted clinical differences can be considered including 1.00, 1.25, or 1.50.
From such a large standard deviation, and a relatively small delta, the required
sample size could be very large. For example, if a pairwise comparison is used, then
under one-sided alpha of 0.05, with 90% power and delta of 1.25, the sample size
for each treatment group would be approximately 176 subjects. For a 7-arm study,
this criterion will take a total sample size of 1232 subjects. For a study powered
using the trend contrast as specified above, the sample size would reduce to 126 per
group (882 overall, across the 7 groups).

Suppose the study with the same assumptions is powered to detect a significant
trend contrast test under a balanced design with equal number of subjects in each
treatment group. In Table 5.2, a scenario is considered for different sets of alpha
(a), power (b), and delta (d). The standard deviation is assumed to be 4, and the

Table 5.1 Coefficients to be used in contrast for the trend test

Number of doses plus
placebo

Coefficients

Placebo Lowest dose Doses increase
from left to right

Highest
dose

Two doses −1 0 1

Three doses −3 −1 1 3

Four doses −2 −1 0 1 2

Five doses −5 −3 −1 1 3 5

Six doses −3 −2 −1 0 1 2 3
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response is assumed to be 1 unit, 1.25 units, or 1.5 units. The sample sizes under
various alpha, power and delta are presented in Table 5.2.

Since the test drug is at an early stage of clinical development, and the concept
has not been proven, it is difficult to justify a huge budget of 882 subjects in an
early Phase II study. Upper management discussed the matter with the project team
and decided that they are willing to take a higher risk on alpha and reduce the
sample size to meet the budget requirement. The compromise is that the two-sided
alpha can be increased to 0.2 (or one-sided alpha of 0.1) and keep the power at
90%.

For this study, a treatment difference from placebo of approximately 1.25 was
selected. From Table 5.2, a sample size of 97 per treatment group provides esti-
mated power of 90% for an one-sided alpha of 0.10 and, for this sample size, the
power is over 80% for one-sided alpha of 0.05. A sample size of 100 subjects per
treatment group is sufficient to detect differences larger than 1.25 in the mean
change from baseline in the WOMAC OA Index Pain Subscale, using the afore-
mentioned linear contrast. Since a single test statistic for trend is employed, no
adjustment for multiple comparison is needed. If this statistical test is significant at
alpha of 0.1 (one-sided) MID will be estimated.

5.11 Discussion

There are many challenges in designing the first dose-ranging clinical trial. Two
main problems surface. First, there is not much of information about the efficacy of
the candidate product available. Second, too many answers are expected for this
trial to deliver. Project team members tend to anticipate such a study will establish
the PoC, identify the MinED, characterize the dose-response relationship, and
recommend doses for Phase III designs. Fundamental statistical training points out

Table 5.2 Sample sizes
under various one-sided
alpha, statistical power, and
delta (difference in means)

Alpha Power Delta Sample per
group

Total
sample

0.10 0.9 1.00 151 1057

0.05 0.8 1.00 142 994

0.05 0.9 1.00 196 1372

0.10 0.9 1.25 97 679
0.05 0.8 1.25 91 637

0.05 0.9 1.25 126 882

0.10 0.9 1.50 67 469

0.05 0.8 1.50 63 441

0.05 0.9 1.50 87 609

Note Calculations assume a standard deviation (r) of 4. Contrast
used to perform this sample size estimation is −5 l0−3
l1 − l2 + l3 + 3 l4 + 5 l5
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that the best design is that one study answers one question. Hence the nature of a
dose-ranging trial makes it a very difficult design in order to address many scientific
questions and with sparse information available before the study design stage.

In fact, there should be a logic sequence of thinking in addressing these relevant
questions. The first step is to consider how wide a dose range should be—which is
the most critical step. As a way to approach this question, information about the
candidate under development, other marketed drugs in similar class, the indications
this study is designed for, the target product profile, and characteristics of the
primary endpoint, as well as other considerations, can all contribute to help with a
better understanding of the potential dose range need to be explored. In practice, it
is also important to have a good understanding of dosing frequency (from Phase I
results), formulation (from manufacturing), and other relevant issues.

After the dose range is determined, the next step would be to consider the
number of treatment groups. Will there be a need of an active control? How many
doses should be included in this design? What dose spacing should be considered?
Basically speaking, a trial with four or five test doses, plus a placebo control, will
deliver a good understanding of where the test medication is most active, if the dose
range is wide enough and the dose spacing is reasonable. Extensive simulations
indicate that six or more test doses (in addition to placebo) design may not nec-
essarily deliver better results than the four test doses or five test doses (Yuan and
Ting 2014). A study design with too many doses may introduce additional com-
plexities from practical and logistical points of view (e.g., formulation, blinding).

Sample size calculation is needed for almost every clinical trial. Considerations
in sample size calculations for a dose-ranging trial are very similar to those for other
trials. However, because the nature of a dose-ranging trial includes multiple
treatment groups, this feature may cause some level of confusion both to statisti-
cians and to non-statisticians. Nonetheless, if the decision is to only use a single
degree of freedom contrast test as the primary comparison, then the situation can be
simplified and addressed successfully. In the case of one contrast, the two major
challenges would be what assumptions of dose-response relationship the team is
willing to make and sample size allocation, either a balanced approach (an equal
number of patients per group) or an imbalanced approach (an unequal number of
patients per group). After these decisions are made, the statistician would then
follow up and calculate the sample size for the study.

Suppose a contrast with one degree of freedom is selected and the sample size
allocation is determined, the typical sample size considerations such as choice of
treatment difference, choice of alpha and beta can then be specified. With these
information, sample size can be calculated using existing formula. An example of a
real study design in a test product developed for treatment of osteoarthritis is
included in this chapter to demonstrate how all of these key elements thinking can
be applied in a real-world situation.
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Chapter 6
Combining Proof of Concept
and Dose-Ranging Trials

6.1 Background

Chapters 4 and 5 discuss proof of concept (PoC) and dose-ranging studies
respectively and separately. However, sometimes it is desirable to combine PoC
and dose-ranging studies into one single clinical trial. The advantage of such a
design is to first make a Go/NoGo decision based on PoC. If the decision is “Go,”
then the same study would subsequently provide dose-ranging information to help
design the next study. When well designed and analyzed, the combined study saves
development time by providing a range of efficacious doses going forward. The
disadvantage is more investment would be needed before the concept is proven or
not proven. In case the test drug does not work, this translates into larger sunken
and opportunity costs. Again, as mentioned in Chap. 5, in designing dose ranging
trials four to five doses (Yuan and Ting 2014) plus placebo would be appropriate
and the use of binary dose spacing (Hamlett et al. 2002) is highly recommended.

The idea of combining a PoC and a dose-ranging study is very similar to the
consideration of confirm and explore, as discussed in Chap. 3. The PoC objective
involves a confirmatory practice—this can be achieved by performing statistical
hypothesis tests. Only after the concept is proven, the natural next step will be
dose-range exploration. On the other hand, if the concept is not proven, then the
conclusion is that the drug candidate cannot deliver the efficacy as expected;
therefore, there is no need to explore the dose-response relationship. The PoC
hypothesis needs to be simple and clear. Ideally, this would be a single degree of
freedom test, without any multiplicity adjustment of alpha. In a one degree of
freedom, simple hypothesis test setting, the PoC decision should be relatively easier
and more straight forward.

However, in a combined PoC and dose-ranging study, there are multiple treat-
ment groups—a placebo control plus several doses of the test drug. Hence under
this setting, some statisticians tend to perform multiple comparison procedure
(MCP) adjustment from the hypothesis test point of view. The difficulty is that once
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MCP is performed, PoC becomes a complex question—it is no longer a single
degree of freedom hypothesis testing to answer a Go/NoGo question. The key to
avoid this confusion is to separate PoC from dose-ranging and see them as two
different questions. These two questions are addressed sequentially—confirm PoC
first and then explore the dose-response relationship.

6.2 Considerations in Designing Combined
PoC and Dose Ranging Studies

In a two-group PoC study, the confirmatory step is relatively simple: compare the
test drug [typically at a high dose or the maximum tolerated dose (MTD)] against
the placebo control. But this step could be confusing in a PoC combined with
dose-ranging clinical trial design, even when the PoC step is simplified into a single
degree of freedom test. In other words, what does it mean that the concept is
proven? In fact, the simplest approach can still be that the comparison of highest
dose against placebo—by ignoring the low or medium doses. As discussed in
Chap. 4, this is based on the monotonicity assumption.

Another option is to combine all test doses and compare this combination against
placebo. This approach is not recommended if any two doses could provide dif-
ferent efficacy responses. As a result of averaging all test doses, the dose with lower
efficacy response could drag the combined dose effect to be closer to placebo. More
on this point will be discussed in later sections. A different approach could be use of
MCP to select at least one effective dose. For example, if Bonferroni procedure is
used, then if any dose is significantly different from placebo using the Bonferroni
adjustment, then the concept is proven. Again, use of MCP is not recommended for
PoC because these MCP approaches are generally less powerful.

One popular approach is to propose a single degree of freedom contrast test.
A contrast can be very flexible, and any possible linear combination of doses can be
expressed in a contrast comparison. Among all potential contrasts, Wang and Ting
(2012) recommend the use of a trend test. The authors performed large amount of
simulations and, generally speaking, if the monotonic efficacy dose-response rela-
tionship can be assumed, then the trend test is one of the most powerful ways of
evaluating PoC.

One question of using a trend test would be what if the underlying dose-response
relationship is not monotonic? For example, what to do if the drug under devel-
opment is for a CNS indication (where monotonicity is not necessarily assured)?
Under this circumstance, our recommendation is to use a two-group comparison of
highest dose against placebo to establish PoC. However, a trend test can still be
considered in developing a CNS drug. What follows are some arguments to support
this proposal.

First, even though the population dose-response is not monotonic, the individual
dose-response could still be monotonic. Second, for the drug under development,
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the part of non-monotonicity may be beyond MTD. In other words, for the given
range of doses to be studied (doses below MTD), the dose-response relationship
could still be monotonic. Third, based on simulations, as long as the violation of
monotonicity is not too strong, a trend test is still relatively powerful.

The trend test is implemented using a one degree of freedom contrast, where the
coefficients of this contrast mimic those coefficients of a linear contrast. For a given
dose-ranging study, coefficients for the proposed trend test can be found in
Table 5.1 (Wang and Ting 2012). In this table, doses of the study drug are arranged
in an ascending order; that is, the first coefficient always corresponds to the placebo
treatment group, the last coefficient corresponds to the highest dose group, and
other coefficients correspond to the doses arranged in an ascending order. In
practice, there is rarely any fixed dose-ranging design employing more than six test
doses; therefore, Table 5.1 provides these coefficients up to six test doses.

For example, in a design with five doses (see example in Sect. 5.10), the null and
alternative one-sided statistical hypotheses are

H0: � 5l0 � 3l1 � l2 þ l3 þ 3l4 þ 5l5 � 0 versus

H1: � 5l0 � 3l1 � l2 þ l3 þ 3l4 þ 5l5 [ 0;

assuming that higher responses are more favorable.
If the one-sided trend test is not significant at level the stated level of significance

(alpha, a) then claim the concept is not proven and further development of the study
drug is stopped. On the other hand, if the trend test is statistically significant, then
the concept is proven and a “Go” decision is made about the drug candidate. The
proposed method is to estimate dose-response relationship using the doses included
in the study design.

In a combined PoC and dose-ranging clinical trial, the recommended PoC
hypothesis test is either using the highest dose to compare against the placebo
control or performing a trend test using a trend test contrast. The most important
understanding is that, in such a combined study, the first step should be PoC and,
only after PoC, then estimate dose-response relationship. It is also of interest to note
that dose-ranging, by nature of the problem, is an estimation practice. No need for
hypothesis tests. This point is further elaborated in later sections of this chapter.

6.3 Concerns of Using a Dose-Response Model

It is common that a dose-response model is used in analyzing dose-ranging trials.
However, from a study design point of view, the use of such a model is typically
based on additional assumptions. It is well known that “all models are wrong, some
are useful” (Box 1987). Designing dose-ranging trials based on a wrong model, or
wrong parameters (even when the underlying model is correct, the parameter values
may be wrong) could potentially lead to undesirable consequences. In data analysis,
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when blind is broken, efficacy dose-response data are observed. At this point, use of
a model that “fits the data well” is a reasonable thing to do. But it could be risky to
use a model at the design stage.

As indicated earlier, the two key assumptions necessary in designing a
dose-ranging trial are the correct MTD and monotonicity in efficacy. Based on the
experiences of the authors, any additional assumptions about the shape of the
underlying dose-response relationship could be potentially misleading. Hence,
although modeling is a useful tool for data analysis, it is not recommended to use
models at the study design stage unless information is available to make reasonable
assumptions for a dose-response model.

In fact, when a model is used in designing a dose-ranging trial, the underlying
assumption could be relatively strong—not only does that the selected model have
to be right but also its parameters have to be all correct. More importantly, the
model has to assume the explored range of doses being correct. In practice, these
assumptions could be incorrect, especially when the range of active doses guessed
is wrong. Many very expensive mistakes are made in practice because the designed
dose-range was too narrow or that the dose-response model was mis-specified. Over
the years, experiences indicate that these two critical assumptions—correct MTD
and monotonicity—are necessary for study design. In some practical situations,
even these two simple assumptions may not be met. Any additional assumption
could potentially lead to very ineffective study design and expensive failures. At the
time of designing a trial, if there are too many unknowns, adding assumptions
would add potential risks to the design. In the advancement of science, expensive
mistakes are often made not because “we didn’t know,” but because “we thought
we knew.” The real-world cases repeatedly demonstrated that we thought we knew
the model, and studies were designed according to the model, which eventually led
to wasteful failures. One example can be found in Sect. 5.3, other examples include
approved drugs whose labeled (and approved) dose needs to be increased or
decreased after during the post-approval phase.

Given this background, the authors would warn readers to check every addi-
tional assumption very carefully by assessing factually the robustness of all the
available information, such that any further assumptions supporting the model is
valid before it is used in designing the dose-ranging clinical trial. For this same
reason, the discussion regarding specifically study design in this chapter is basically
model-free with the intent to separate somehow the thinking during study design
stage from the analysis stage. Modeling can be valuable for analyzing the data to
better understand the dose-response relationship and to provide a better
dose-regimen selection. It still remains important to have proper consideration as to
whether the method used for sample size estimation is more or less conservative
than the method to be used for data analysis.
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6.4 Sample Size Allocation

In a PoC combined with dose-ranging design, the sample size calculation would
naturally be based on the PoC hypothesis test. However, there may still be an
interest in comparing each dose against placebo. Under this setting, one of the more
powerful ways of making multiple comparison adjustment would be the
gate-keeping multiple comparison procedure (MCP). The gate-keeping procedure
(Dmitrienko et al. 2003) is to start testing with the highest dose against placebo,
using the entire study-wise alpha. If the highest dose is statistically significant at
alpha, then test the next highest dose against placebo with the entire alpha. If the
highest dose is not statistically significant, stop and claim none of the doses is
different from placebo. Repeat this testing procedure until either a particular dose is
not significant (in this case, stop testing and claim all doses higher than this dose are
significant, and this dose together with all lower doses are not significant) or all
study doses are tested. Gate-keeping MCP is very powerful and widely accepted in
the pharmaceutical industry; however, it strongly depends on the monotonicity
assumption.

We propose two ways of writing PoC contrasts: (1) the traditional two-group
comparison (i.e., highest studied dose against placebo) and (2) a trend test. If the
decision is to follow the traditional two-group contrast to test the PoC hypothesis,
then the sample size can be calculated using two-group contrasts, without multiple
comparison adjustment. If the concept is proven, then follow the gate-keeping
procedure to test from highest dose downward to lower doses, each against placebo.
Such a strategy begets several advantages, including: Type I error rate (a) is well
protected, the procedure is simple to understand and to implement; it can be easily
explained to non-statisticians; mistakes are less likely to occur in real-world
applications under monotonicity assumption; and it is among the most powerful
ways of testing pairwise hypotheses.

The only limitation of this strategy is its heavy dependence on the monotonicity
assumption. One option of this approach is to consider not to test subsequent
pairwise hypothesis. In other words, test only one PoC hypothesis and, after the
concept is proven, move on to estimate a dose-response relationship. Hence no
alpha will be spent after PoC. On this basis, an unequal allocation of sample size
could potentially make the entire study more efficient. In a four-treatment-group
design (placebo plus three test doses), an allocation of 2:1:1:2 of sample size could
be powerful, efficient, and informative. Similarly, in a five-treatment-group design
(placebo plus four test doses), a 3:2:2:2:3 allocation or a 2:1:1:1:2 allocation could
also be considered.

The second strategy is to write the PoC hypothesis as a trend test. In other words,
if the trend test is significant at level alpha, then we claim that the concept is proven
and make a “Go” decision for this drug candidate. Once the concept is proven, no
more hypothesis test is performed and the dose-response questions are turned into
an estimation procedure. Thus all alphas are spent on the PoC, which leaves no
more alpha for further pairwise comparisons. With this strategy, both equal and
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unequal sample size allocations can be contemplated. Use of trend test to determine
PoC may reduce the total sample size if no pairwise comparison is performed.
However, if there is still an interest in testing each dose against placebo after the
concept is proven, then the sample size should be calculated using the first strategy
(two-group traditional PoC).

Examples of combined PoC and dose-ranging designs can be found in Ting
(2009) and Wang and Ting (2012). In these articles, the proposed PoC can be
achieved using a trend test. For example, in a four-group design with placebo, low
dose, medium dose and high dose, the traditional PoC can be only based on high
dose versus placebo (let lL be the mean response of low dose, lM be the mean
response for the medium dose, and lH be the mean response of high dose).

Table 5.1 lists the coefficients for trend tests under a variety number of treatment
groups. Because a four group (three doses plus placebo) is a popular design, a set of
contrasts based on four groups can be described as

H0: lH ¼ lP versus H1: lH [ lP

or a contrast can be a trend test which is based on all doses (Wang and Ting 2012;
Ting 2009), assuming monotonic dose-response relationship. The corresponding
contrast for a four group design is

H0: � 3lP � lL þ lM þ 3lH ¼ 0 versus H1: � 3lP � lL þ lM þ 3lH [ 0

or, if only the high dose is assumed effective,

H0: � lP � lL � lM þ 3lH ¼ 0 versus H1 : �lP � lL � lM þ 3lH [ 0:

Alternatively, if the high dose and median dose are assumed equally effective,
while low dose is like placebo,

H0: � lP � lL þ lM þ lH ¼ 0 versus H1: � lP � lL þ lM þ lH [ 0:

Other possible PoC contrast may also include (assuming all doses are equally
effective)

H0: � 3lP þ lL þ lM þ lH ¼ 0 versus H1: � 3lP þ lL þ lM þ lH [ 0:

As can be found from the these examples, if a contrast (that includes more than
two treatment groups) is used for the PoC hypothesis, then there could be many
possible ways of writing such a contrast.
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6.4.1 Comparison of Power

In this section, we compare the power of five tests discussed above in Sect. 6.3.
Chang and Chow (2006) indicated that for a dose-ranging study with k arms., the
proof-of-concept can be tested using the following contrast test (either strategy 1
with two-group traditional PoC or strategy 2 with trend test):

H0: LðlÞ ¼
Xk
i¼0

cili ¼ 0 Ha: LðlÞ ¼
Xk
i¼0

cili ¼ e

where
Pk

i¼0 ci ¼ 0, where µi is the population mean for group i.
The power of the test is
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r
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2
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where U is CDF of a standard normal distribution, r is the population standard
deviation, n is the total sample size of the study and fi is the sample size fraction for
the ith group. For example, for a study with n = 60 and f ¼ ð1=3; 1=6; 1=6; 1=3Þ,
20 subjects would be allocated to the first group and the fourth group, while 10
subjects would be allocated to the second group and the third group respectively.

Given the flexibility of selecting PoC criteria, a variety of sample size allocations
can be considered such as 2:1:1:2 and 3:2:2:3, which would to allow the placebo
and the high dose to have more patients, with fewer patients assigned to doses in
between. Other proposals can also be candidates for sample size allocations.

Under a fixed total sample size, with the aforementioned five PoC contrasts,
comparisons of methods were made with equal or unequal sample size allocation.
In these comparisons, the metric used is power of PoC test. Because power com-
parisons can be evaluated analytically, there is no need to perform simulations in
these comparisons. Consider the statistical power for a study with a total sample
size of 60 patients allocated to four groups: high (30 mg), median (10 mg), low
dose (3 mg) of test drug and placebo. These comparisons are performed under five
scenarios with different dose response relationships as illustrated in Table 6.1 and
Fig. 6.1.

Table 6.1 Mean response for the four arms assuming a common standard deviation of 1

No. Shape l0 (placebo) l1 (low) l2 (median) l3 (high)

1 Linear 0.15 0.24 0.45 1.05

2 Step 0.15 0.6 0.6 1.05

3 Quadratic 0.15 0.6 1.05 0.9

4 Convex (curving out) 0.15 0.15 0.15 0.9

5 Concave (curving in) 0.15 0.9 0.9 0.9
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Table 6.2 shows the statistical power of PoC given a total sample size of 60
patients, assuming the five different dose response shapes as given in Table 6.1 and
Fig. 6.1. In Table 6.2, A, B, C, D, E represent the five different contrast as shown in
Table 6.1. The power for total sample size of 60 is also shown as in Table 6.2. The
methods with 2:1:1:2 (20:10:10:20) allocation in general has a better performance
(except for B where it is slightly worse but comparable) than 1:1:1:1 (15:15:15:15)
allocation. This result is not surprising given the fact that more subjects are allo-
cated on the higher dose and the placebo, where the treatment effect can be most
easily differentiated.

The most powerful yet robust method is the trend test and the traditional PoC
test, which uses only information from the highest dose and placebo. Both contrasts
provided more than 80% power consistently across different dose response shape
with 2:1:1:2 allocation and more than 75% of power with 1:1:1:1 allocation.
Although the traditional PoC test did not incorporate all data in the study, the power
is comparable to trend test in most situations.

While it is not intuitive at first glance, using average of high dose and median
against the average of low dose and placebo should be avoided. It only provides
around 50% power under a commonly seen concave response curve, and it is
almost uniformly less powerful than the trend test or the traditional PoC test (except
for the umbrella shape under equal allocation where it is close to trend test). The
loss of statistical power is substantial under many situations.

Using high dose against average of the other three groups should be avoided by
all means, because the power will be below 40% under the concave (curving in)
curve. Using the average of three doses from test drug against placebo could be an
option, if the umbrella shape of curve is a real possibility, for example in the

Fig. 6.1 Shapes of dose-response relationship evaluated under a four-arm design
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development of certain anti-psychotic agents. However, stemming from the sig-
nificant loss of power of between 30 and 35% in case of a convex (curving out)
shape for the dose-response curve, it should only be used when there is strong
confidence that the possibility of convex shape can be excluded, which may not
happen often in the first dose ranging study.

In fact, there are several advantages of using a trend test, two of which are stated
as follows:

1. it is simple to implement; there is no need to be concern about MCP adjustment
(the trend test is only a one degree of freedom test);

2. under the monotonicity assumption, a trend test is robust with respect to
dose-ranges selected within a given study.

Table 6.2 Statistical power for a trial with 60 patients in total, one-sided alpha = 0.1. Simulation
results

Method Linear Step Quadratic Convex Concave

1:1:1:1 A: High versus PBO
(−1, 0, 0, 1)

0.88 0.88 0.78 0.78 0.78

B: Trend test
(−3, −1, 1, 3)

0.89 0.85 0.85 0.75 0.75

C: High versus
median/low/PBO
(−1, −1, −1, 3)

0.90 0.77 0.39 0.89 0.33

D: High/median versus
low/PBO
(−1, −1, 1, 1)

0.81 0.68 0.85 0.57 0.57

E: High/median/low
versus PBO
(−3, 1, 1, 1)

0.56 0.77 0.86 0.33 0.89

2:1:1:2 A: High versus PBO
(−1, 0, 0, 1)

0.94 0.94 0.86 0.86 0.86

B: Trend test
(−3, −1, 1, 3)

0.93 0.90 0.90 0.81 0.81

C: High versus
median/low/PBO
(−1, −1, −1, 3)

0.93 0.81 0.42 0.92 0.35

D: High/median versus
low/PBO
(−1, −1, 1, 1)

0.77 0.64 0.82 0.53 0.53

E: High/median/low
versus PBO
(−3, 1, 1, 1)

0.60 0.81 0.89 0.35 0.92
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6.5 Estimation of Dose-Response Relationship

It is critical to keep in mind that the two major objectives of Phase II are PoC and
recommendation of a range of doses for Phase III development. Note that some
investigators consider objectives of Phase II to also include establishing the precise
minimum effective dose (MinED) (ICH-E4; Thomas and Ting 2009); characterizing
the dose-response relationships (or describing the entire dose-response curves);
finding the optimal doses; and understanding the benefit/risk ratio. In fact, many of
these additional objectives are neither realistic nor desirable at Phase II.

Within the pharmaceutical and bio-tech industries, drugs/biologics are discov-
ered and developed for the general patient population. Hence the dose-selection
process is to recommend one or a few doses for the overall patient population use,
not for individual patient dosing. If the target dose is for the entire patient popu-
lation, then the chosen dose cannot be optimal to each and every individual patient.
Therefore, it is not practical to search for an “optimal dose” because an optimal
dose is more meaningful to a given individual patient, rather than to the entire
patient population.

Although the dose-response curve from Fig. 6.1 looks like continuous curves,
which are only theoretical curves. In reality, drugs are formulated with discrete dose
strengths. In the treatment of chronic diseases, the number of pre-formulated doses
is somewhat limited. From this viewpoint, instead of “characterizing the
dose-response relationships,” early Phase II studies are designed to help locate the
target efficacy dose range (the range of doses where the ascending part of the
efficacy dose-response curve is the steepest). Therefore, it is reasonable to consider
dose-finding practices as operated under a few fixed-dose levels, instead of a
continuous dose-response curve.

From this point of view, MinED is not a specific number but an efficacious dose
based on the existing formulation, a dose strength lower than this dose is not
anticipated to deliver meaningful population efficacy response. For instance, sup-
pose the test drug is formulated as 10 mg tablets and 20 mg (2 tablets) were shown
to be efficacious, while 10 mg failed to distinguish its efficacy from placebo. Then
the MinED is, practically, 20 mg. In case a model was applied to the dose-response
study, and this model indicates that the MinED is 16.32 mg. In practice, such a
MinED is not very useful. From the drug development point of view, it is more
practical to consider 20 mg as the MinED. Hence a precise point estimate of
MinED is not necessarily useful or necessary.

In most of the drug development programs, benefit/risk ratio is studied after
Phase III study results are ready. The benefit-risk discussion is typically covered in
the Clinical Overview document in a regulatory submission based on the review of
the entire clinical database. Therefore to seek for clear benefit-risk relationship at
Phase II would generally be pre-mature.

One very common misunderstanding in the Phase II clinical development pro-
cess is that, when the project team planned for a combined PoC and dose-ranging
trial, the team expects to move to Phase III after results are ready from this
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combined trial. In general, though, it may be more efficient to establish a good
understanding of efficacy and safety of various doses at Phase II, before rushing to
Phase III. Traditionally, a good Phase II plan takes at least three sequential studies,
before progressing a candidate into Phase III. The first is a PoC trial; the second is a
dose-ranging trial capturing a wide range of doses; and the third is a dose-ranging
study with a narrower range of doses focusing on the steepest ascending part of the
dose-response curve.

For instance, if the second trial is designed with placebo, 1, 10, 100 and
1000 mg doses, and based on the study results, the appropriate dose range is
between 10 and 100 mg. In this case the third clinical trial will be designed to study
the doses around this range. After a good understanding about efficacy and safety of
all the studied doses, then the drug candidate can be progressed into Phase III
development. In the case when a PoC is combined with the first dose-ranging study,
and if the decision is to “Go” forward and further develop this drug candidate, then
at least one second dose-ranging study should be considered to “zoom in” or target
the appropriate range of doses.

Dose finding is, by its nature, an exploratory practice. In many team discussions,
researchers emphasize that “a decision is needed for selecting doses to move for-
ward.” Such an affirmation could easily be misunderstood as a confirmatory
practice. In fact, it is not! The entire Phase II process is to propose a range of doses
for contemplation of designing Phase III clinical trials. Therefore, the statistical
procedure in supporting this objective is estimation, not statistical hypothesis
testing. Phase II clinical data provide information for point estimates and confi-
dence intervals about efficacy responses at various doses being studied. These
estimates can then be used to help understanding the doses to be proposed for
Phase III.

Note that in recommending doses for Phase III study designs, the considerations
are not only restricted to efficacy. In addition to efficacy, selection of Phase III doses
including considerations from safety, pharmacokinetics, and all available clinical
data. One major concern in evaluating these data and selecting Phase III doses is
how likely the Phase I/II findings can be extrapolated into Phase III. Experiences in
drug development indicate that Phase III usually dilute the treatment effects
observed from previous phases. It is also important to consider how to manage
potential safety findings from patients after long-term exposure of the drug can-
didate. If feasible, it is advised that more than one dose of study medication be
included for evaluation in Phase III clinical trials.

One very important point that project team members, as well as upper manage-
ment, should keep in mind is that dose ranging is a Phase II practice; it will be too
late if doses outside of the Phase II recommended range are tested at Phase III or IV.
One common mistake made by almost all sponsors, and across most of therapeutic
areas, is taking shortcut in Phase II clinical development. Then at the Phase III or
Phase IV stages, sponsors were forced to repeat dose-finding trials at doses outside
of range being studied in Phase II. Typically the cost of such a practice is very high.

Phase II is the most important phase of clinical development of new medicinal
products, because the experiment units in Phase I studies generally do not include
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patients with the targeted disease (and hence drug efficacy is first assessed in Phase
II). The development investment for Phase III is quite expensive. Experiences indi-
cate that careful evaluations of Phase II results before rushing into Phase III almost
always lead to a better quality decision. It is critical to realize that Phase II provides
the last opportunity to stop developing an unsuccessful drug candidate before com-
mitting huge amount of Phase III investments.

6.6 Risk of Inconclusiveness

In the new drug development process, the management within a sponsor company
attempts to make decisions based on the study results from each of the clinical
trials. Unfortunately, in many situations, the study results are inconclusive. If the
results from a clinical trial cannot clearly address this question, then some studies

Table 6.3 Examples of statistically-related issues that may cause inconclusiveness from clinical
studies

1 Study was underpowered because of an underestimation of variance

2 Study was underpowered because of an overestimation of effect size

3 Study was adequately powered, with results demonstrating statistical significance, but not
for clinical significance

4 Only one of the co-primary endpoints reached significance

5 Study demonstrated efficacy only at the lowest dose, but no efficacy as the medium or
high doses

6 Study failed on the primary endpoint but demonstrated strong trend in all the secondary
endpoints

7 Study failed the primary comparison but demonstrated strong trend in a particular
subgroup

8 The interim analysis showed promising trend, but the final analysis failed to demonstrate
significance

9 No clear signal at interim, study continued but showed good response in the final analysis

10 Significant treatment-by-region interaction in a multi-regional trial

11 Significant results from the per protocol analysis set but not from intention-to-treat

12 Significant at a different time point other than the primary time point

13 Outliers (conclusions changed if outliers are excluded)

14 Missing covariate data where the covariate is used in the primary analysis model

15 Inconsistent conclusion when the center-pooling strategies are different

16 Inconsistent conclusion when visit windows are defined differently

17 Different analytical methods (e.g., Cochrane-Mantel-Haenzel versus logistic regression)
le to different conclusions

18 Different analytical model (different covariatesor interactions in the analysis of
covariance model) led to different conclusions

19 Different multiple comparison procedures led to different conclusions

20 Different data transformation (e.g., log and rank) led to different conclusions
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may have to be repeated and additional resources will need to be invested.
Oftentimes these additional investments are wasted as the entire project gets ter-
minated and, in some cases, the entire development schedule is severely delayed.
Therefore the cost of inconclusiveness can be very high. Some examples of
inconclusive study results are listed in Tables 6.3 and 6.4 (Ting 2011). Table 6.3
provides some statistical issues while Table 6.4 some non-statistical issues that
potentially cause inconclusiveness.

In addition to those issues listed in Tables 6.3 and 6.4, data cleaning is always a
difficult operational challenge. Occasionally, data errors are detected during the
report review process. In some situations, the correction of some data errors may
cause the change of clinical conclusions. Thus, it is crucial for the project team to
design studies not only to control the Type I and II errors but also to reduce the
likelihood of inconclusiveness. In fact, there are many other types of risks in
inconclusiveness. This will be the topic of the next chapter.
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Chapter 7
Risks of Inconclusiveness

7.1 Introduction

During the entire clinical development of a new medicinal product, there are lots of
milestones and decision points. Many of these key decisions could have long-term
impact and involve a large amount of resources and investment. As indicated in
previous chapters, the Go/NoGo decision after a PoC study is one of such exam-
ples. A NoGo decision means that all of the investments and efforts in developing
this candidate up to early Phase II have not paid off. The high hopes of the many
scientists and other project team members will not be realized. On the other hand, a
“Go” decision implies a significant amount of additional investments and resources,
as well as more man power will be committed in further development of this
candidate. Important activities such as purchasing large amount of raw materials for
preparing Phase III clinical supplies, as well as long-term toxicology studies, will be
initiated.

However, such a Go/NoGo decision is not an easy decision. Usually it takes time
to make a clear decision after the PoC study final data read out. When this is the
case, the time between PoC results and a final decision is considered as a period of
“inconclusiveness.”

In addition to such major decisions, other Phase II decisions can be difficult as
well. For example, how to choose doses for the upcoming clinical trial design?
Which observed doses can be thought of as “efficacious”? What type of
dose-response relationship can be considered in moving forward to the next step of
development? In this chapter, the inconclusiveness (Ting 2011) regarding PoC
decision will be discussed in further detail. Moreover, a few ambiguous situations
in dose ranging and recommendations of finding minimum effective dose are also
covered in this chapter.

One popular confusion of evaluating a clinical project team’s success is the use
of the candidate product’s success. In other words, some people tend to say a team
is successful because the product is successful. Accordingly, if a product fails, the
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impression is that the team failed. This is, in fact, a misunderstanding. In clinical
development of new drugs, the criterion to evaluate the success of a team could
have nothing to do with the success of the product. An efficient project team should
allow the good product to reach patients as soon as possible and should stop
developing a potentially unsuccessful drug as early as possible.

On this basis, the criterion to evaluate the success of a team should be “re-work.”
In clinical development, re-work does not only cause delay in decision making but
can also be very costly. The patent life of a product is 20 years. The time to develop
a product can run at least 7 or 8 years and, in many cases, this time could be much
longer. A re-work of one Phase II clinical trial can easily erode the patent life by at
least one year. The amount of potential revenue of a successful product could run
up to billions of dollars or more each year. Hence the delay caused by re-work can
be very expensive. Major re-work such as adjusting for underestimation of maximal
tolerable dose (MTD) could be considered as a failure of the project team,
regardless on whether the product being developed will eventually be successful or
not. The real example introduced in Sect. 5.3, which took three studies to even-
tually identify the dose-response relationship, can also be interpreted as a failure of
the team.

7.2 Go/NoGo Decision in a Two-Group PoC Study

One of the most important contributions a statistician makes to the clinical devel-
opment team is statistical consulting. This includes many types of communications
—oral communication, teleconference, email exchange, written memos, statistical
analysis plans, study reports, publications, and other types. Among all these
communications, one key message is regarding the probability of risks. In a proof of
concept study, the study results should indicate a “Go” decision or a NoGo decision
regarding the product under development. Hence before the study results read out, it
is critical that the statistician communicates clearly with the team regarding the
probabilities of making a wrong decision—either a wrong “Go” decision (making a
Type I error) or a wrong NoGo decision (making a Type II error).

However, in many situations, such a Go/NoGo decision may not be straight-
forward. This chapter attempts to describe some of these situations and proposes
some tools to help with these difficult communications. As indicated in Chap. 4, a
positive PoC result triggers many important development activities. A long-term
toxicity study is one of those activities. Drug formulation and drug supply are also
dependent upon a positive PoC. If the concept is not proven, there is no need to
stock up a huge pile of raw materials to make a large quantity of study drug or study
biologic. Hence there is a practical impact of not being able to make a Go or a
NoGo decision after the data read out.

When a clinical statistician calculates sample size for a new study, the four
pre-specified quantities needed are alpha, beta, delta (d, the treatment difference)
and sigma (r, the within-group standard deviation) of the primary endpoint. In most
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of the disease areas, the variance of the primary endpoint is generally well
approximated, and it tends to be stable. However, the most difficult quantity to
come up with is d. In order to simplify the discussion that follows, we assume delta
to be such that a more positive value indicates a more favorable outcome. Let this
delta be the difference between test treatment subtracted from placebo treatment,
where a higher score is considered more favorable. Furthermore, we assume
(without loss of generality) the variance is 1 (in case variance is not one, then let d
be the treatment difference divided by pooled standard deviation). Let alpha (a) be
the pre-specified one-sided Type I error and beta (b) be the pre-specified Type II
error (so that power is 1 − b).

Agreeing on a clinically meaningful treatment difference from placebo control is
a very difficult problem in the early Phase II clinical trial design. This is one of the
greatest challenges at this stage. However, without a delta, it would be virtually
impossible to calculate the sample size for a clinical trial. Once the delta is obtained,
the next natural step is to discuss with the team the different types of risks the team
will take, namely, the selection of a Type I error rate and a Type II error rate.

Now, let za be the positive value of critical point on standard normal distribution
with a on the right. For example, if a is 0.025, then za = 1.96, and if a is 0.05, then
za = 1.645 (Fig. 7.1). Similarly, let zb be the absolute value of critical point on
standard normal distribution with b to the left of the alternative distribution (e.g.,
zb = 1.04 when b = 0.15). Then, for any given alpha and beta, the sample size of
each treatment group is n = 2 * ((za + zb)/d)

2 = 2 * (Z/d)2 (denoting Z = za + zb).
Note from Fig. 7.1 that za is associated with the null distribution on the left, and zb
is associated with the alternative distribution on the right. Let lP denote the mean of
the placebo treatment and let lT be the mean of test product (higher values are more
favorable). Then the hypothesis

H0: lT � lP versus H1: lT [ lP
ðwhich can be re-written as H0: d� 0 versus H1: d[ 0Þ

is tested at level a.
A typical PoC clinical trial is designed with such a sample size, involving a

comparison of a high dose of the product candidate with placebo to examine
whether statistical significance of the treatment difference is greater than d. In fact,
lP (mean of the placebo group) is on the left, lT (mean of the test treatment group)
is on the right, and the difference between lT and lP is d. Then, by going through
the standardization process—subtracting lP and dividing by the standard deviation
(assumed to be 1 here for each of the two treatment groups), then the relationship
looks like Fig. 7.1.

From Fig. 7.1, the distance between za and d reflects the absolute value of zb.
Hence d = za + zb. After the study is completed, clinical data are analyzed and
results are presented to the project team. The team members and upper management
evaluate these results and make a decision This is the time when inconclusiveness
could happen. A Go/NoGo decision is easy if both statistical significance is
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observed and treatment difference >d is achieved. These results indicate a clear
“Go” decision. On the other hand, when the results are not statistically significant,
and the observed treatment difference is too small, then the team may make, often
times reluctantly, a NoGo decision. However, if the observed treatment difference is
not too small, but failed to reach statistical significance, then the team is in a
difficult position and not clear as to whether a “Go” or a NoGo decision should be
made. Under this circumstance, a situation of inconclusiveness may take place.

A typical early phase clinical trial tends to be designed with a relatively short
duration. Many Phase I trials are single-dose trials, which means only one single
dose is given to the trial participants. Some other trials may be designed with
treatment duration of one week or two weeks. The limiting factor of time length
comes from the pre-clinical toxicity studies.

In many cases, when the observed p-value is close to statistical significance, but
still not statistically significant, the team tends to decide to move the candidate

product forward. Also, in most of the cases where the observed bd value is between
za and d, the decision is to “Go.” However, future development could indicate that

this “Go” decision was a mistake because the observed bd was not large enough.
These difficulties occurred because, at the time of designing PoC, a d which is
larger than the actual (true) treatment difference was used for various reasons. One
typical case could be that such a d was selected based on the available sample size;
that is, from the sample size and the given a and b, a d was calculated. A larger d
may have been chosen so that such a PoC study was feasible under the given budget

constraints. However, after the PoC results are ready, although the observed bd was
actually smaller than d, the project team still made a “Go” decision simply because
the p-value was either statistically significant or close to be significant.

Fig. 7.1 Standard normal distributions under the null and alternative hypotheses
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On the other hand, under certain situations, when the observed bd is to the right of
za (but to the left of d), yet a NoGo decision was made. This is the case where a
statistical significance was observed, but the clinically meaningful difference was
not achieved. One example can be found when the PoC endpoint is different from
the Phase III endpoint. When this is the case, a lowest d was selected for sample
size calculation during the study design stage. Given this background, the decision
rule was that, if the study results cannot deliver such a d, then there is no hope for
the test product to meet the Phase III primary endpoint.

Under certain other situations, the PoC study may have to be repeated so that a
clear decision can be made. Inconclusiveness can be thought of as the time period
between the study results read out and a definitive Go or NoGo decision is made. In
practice, when the study results are ready, the team decision does not necessarily
follow the statistical criteria. There are cases where the team made a Go decision,
even when the observed p-value is greater than a (this is the case that a is inflated).
There are also cases that when the observed p-value is less than a, and the observed
bd is less than d, but a NoGo decision could have been made (b could be inflated). In
either case, the risk of making a wrong decision is greater than the pre-specified
risk.

Based on the above discussion, it is clear that when the observed bd is greater
than za, and the decision is Go, then the risk of making a wrong decision is

preserved under the pre-specified level. Also, when the observed bd is less than za,
and the decision is NoGo, then the risk of making a wrong decision is also pre-
served under the pre-specified level. However, if a Go decision is made when the

observed bd is less than za, then the risk of making a wrong Go decision is increased

to be more than the pre-specified risk level. On the other hand, when the observed bd
is greater than za, and a NoGo decision is made, then the risk of making a wrong
NoGo decision is increased to be more than the pre-specified level b.

Of course, these decisions are usually made from long discussions among team
members after looking at all clinical data on hand—primary and secondary endpoints,
multiple doses if more than one dose was used, safety data, and sometimes phar-
macokinetics (PK) data. The main issue to be addressed here is during the time
between the PoC data is ready and the actual decision is made, a period of time that
the PoC study was considered as “inconclusive”. This time period is difficult because
there is always tight timelines for the entire project. Will there be a need for a
long-term toxicity study? If so, how long? And when should it start? What amount of
drug supply will be necessary? At what time frame (Phase II requirements and
Phase III requirements)? What dosages to be formulated? Will there be additional PK
studies such as drug-drug-interaction or food effect studies to be designed?

At this time, a Go/NoGo decision is very critical. However, the data are not
always clear. Regardless of all these discussions and examination into multiple
angles or perspectives, by the end, there will have to be a decision—to go or not to
go. This problem becomes much more difficult when the PoC study needs to be
repeated. Hence we consider this period as the time of “inconclusiveness.”
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7.2.1 The Decision Process

After study results are ready, the decision would be very easy if either the observed
bd is very large (an easy “Go” decision) or the observed bd is very small—very close
to zero, or even negative (then a NoGo decision is made). However, this decision

becomes more difficult if the bd is greater than zero but not sufficiently large.
Table 7.1 listed some possible scenerios. In Table 7.1 for a few possible scenarios,

with the observed bd, given that the team makes such a decision, then the conse-
quences are listed in Table 7.1.

In practice, situation #3 above could take place and the team is willing to accept
a larger Type II error. However, situation #5 above becomes a challenge to the team
and to the statistician. It is important to note that this communication should take
place before the blind is broken because, after clinical results read out, the team will
focus on the data, and it would be too late for the statistician to inform and guide the
team regarding risks. Under the scenarios proposed, the statistician would be able to
communicate the associated risks with the team before it is too late (after the blind
is broken).

7.2.2 The Concept of Another Delta

The team may want to consider a different delta to aid in the decision-making
process regarding the Go/NoGo decision. The statistician could use this concept as
a communication tool to discuss the additional risks the team is taking, that is, how
much of additional Type I error risk this decision may introduce.

Table 7.1 For the observed bd, and the team decision, and the associated consequences

Scenario Observed bd Decision Consequence

1 bd > za + zb Go Study results meet both statistical significance
and clinically meaningful difference between the
two treatment; under this situation, the potential
Type I error is much smaller than a

2 za < bd < za + zb Go Type I error is controlled under a, however, the
clinically meaningful treatment difference is not
achieved

3 za < bd < za + zb NoGo Type II error is inflated

4 0 < bd < za NoGo There is no inflation of Type II error

5 0 < bd < za Go The team inclined to make a “Go” decision,
knowing that Type I error is inflated, this is the
case where clear communications of risks are
necessary
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If the Go/NoGo decision is simply based on the observed p-value, then the decision
is not hard to make. In practice, there are many meetings and discussions after the
study is un-blinded, with statistical results are reviewed by various stake holders.
Typically, if the p-value is less than the pre-specified alpha, the secondary endpoints
demonstrate a similar trend, and if there is no excessive safety concerns, then the team
tends to make a Go decision so that this candidate will continue to be developed.

Nevertheless, when the p-value is slightly greater than alpha, only some sec-
ondary endpoints demonstrated good efficacy, and the safety profile is acceptable,
should a Go decision be made? At this point, one important question would be
“how large a p-value should be so that a definite NoGo decision will be made?” Or

alternatively, the question could be “how small an observed bd should be so that a
definite NoGo decision will be made?” Based on this line of thinking, the dis-
cussion between the statistician and the project team tends to be that “is there

another quantity, denoted as d0, such that when the observed bd is less than d0, then
the decision will be definitely NoGo. Therefore, after the sample size has been
calculated based on the pre-specified delta, alpha and beta, a useful discussion

would be to propose an alternate delta d0ð Þ so that if the observed bd is less than d0, a
clear NoGo decision will be made for this candidate.

Chuang-Stein et al. (2011) denoted the d as the target value (TV) and the
alternate d’ as lower reference value (LRV). They then propose a set of decision
rules based on these two values. While the proposal has merit, there would also be a
need to communicate with non-statisticians and use easy-to-understand decision
rules. The statistician in the project team can simply lay out the strategy that if the

observed bd is greater than d (TV), then a Go decision will be made. If the observed
bd is less then d′ (LRV), then a NoGo decision will be made. Under this simple
setting, it is obvious that when the observed treatment difference is between TV and
LRV, then a situation of inconclusiveness may occur.

Note that the purpose for pointing out the risks of inconclusiveness is not to solve
this problem but instead to educate the team that this is a true risk existing in the
real-world drug development process. It is the statistician’s role to help point this out
to the project team, which will allow the team to propose strategies in order to handle
their specific concerns. Complicated statistical procedures may not necessarily be
practical in the application of individual cases. Statisticians are encouraged to
employ a simple tool of communication so that non-statistical project team members,
as well as upper management, can appreciate the existence of such risks.

7.3 Go/NoGo Decision with Multiple Treatment Groups

As discussed in Chap. 6, when a PoC study is combined with a dose-ranging
clinical trial, one proposal is the use of trend test to establish PoC, and then to
perform estimation for finding individual doses as compared with the placebo
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control. In this proposal, the PoC step is accomplished with a single degree of
freedom trend test. In a study design with a total of two groups or three groups (one
test dose or two test doses plus placebo), the trend test is equivalent to a simple
PoC. That is, test the null hypothesis that the high dose against placebo at a, if this
null hypothesis is rejected, then claim the concept is proven. Otherwise claim the
concept is not proven and a NoGo decision should be made. In these simple cases,
the risks of inconclusiveness are the same as those discussed in the above section.

When more than two doses are included in a PoC combined with dose-ranging
design, potential inconclusiveness could occur. In this case, the trend test serves as
the single step for a PoC decision. If the null hypothesis of the trend test is accepted,
and the monotonicity assumption remains true, then this result implies that none of
the test doses delivers a treatment difference from placebo being greater than d. The
project team may opt for a NoGo decision. Under this circumstance, one potential
consideration that leads to a Go decision could be that the MTD was
underestimated.

On the other hand, the trend test could demonstrate a statistical significance, yet
none of the observed dose delivers a meaningful treatment effect d, as compared
with the placebo control. Such a study result also creates risks of inconclusiveness.
Under this situation, if a NoGo decision is made, then the Type II error (b) could be
inflated based on the designed criteria. Nevertheless, a Go decision could be dif-
ficult because a clinically meaningful treatment difference is not observed from any
of the test doses.

If the high dose is safe, this result could also be a potential case of underesti-
mation of MTD. As indicated in Chap. 4, the MTD is obtained from Phase I results.
If MTD is overestimated, then excessive toxicities could be observed in Phase II.
However, if MTD is underestimated, then it may take additional studies to help
revise the previous MTD estimates. This causes re-work, additional investment, and
time delay in clinical development. But if the MTD is correctly estimated, and still
no dose delivers a treatment difference of d against placebo, then this becomes a
case of inconclusiveness. One proposal of handling this situation could be to require
at least one dose to deliver a statistically significant difference from placebo.

Suppose the MTD is correctly estimated, the dose-response relationship appears
to be monotonic, and the null hypothesis that there is no dose trend is rejected.
Under this circumstance, if none of the tested dose delivers a treatment difference
greater than d, the proposal is to employ a gatekeeping procedure (Wang and Ting
2012), in addition to the trend test. Basically this proposal is to design such a
combined PoC and dose-ranging trial with a trend test plus a gatekeeping proce-
dure. The first step is the trend test; if significant, then test the highest dose against
placebo, with the entire alpha. If the test result is statistically significant, then
conclude the concept is proven, and move down to test the next dose with the entire
alpha. If the highest dose is not statistically significant, declare the concept is not
proven. If this strategy is considered at the design stage, then the time of incon-
clusiveness could be minimized.
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7.4 Dose Titration Studies Cannot Be Used
for Dose-Finding

The dose-escalation studies implemented in Phase I are fundamentally different
from dose titration studies implemented in later phases. The main difference is that
in dose-escalation studies the different cohorts of patients are exposed to different
doses of the study medication. On the other hand, in dose-titration studies, patients
are randomized to treatment groups where the same patient is exposed to a set of
different doses. For example, in a dose-titration design with test drug compared
against placebo, if the test doses under consideration include 10 and 20 mg, then a
titration design randomizes patients into two treatment groups—test drug against
placebo. For patients randomized into the test drug group, they started with 10 mg.
Over time, though, patients may be exposed to low dose and high dose, or for those
patients randomized to placebo, they are exposed to the corresponding placebo
treatment.

Dose titration designs include forced titration and response guided titration. For
example, in an eight-week study with forced titration of test drug against placebo,
with 10 and 20 mg dosages, the design may dictate that every patient starts with
10 mg of test drug or matching placebo. Then after two weeks of 10 mg (or
placebo) double-blind treatment, every patient will be titrated up to 20 mg until end
of treatment (week eight). On the other hand, a response-guided titration design
(again, two treatment groups with test drug against placebo, and eight weeks
duration of treatment) would randomize patients into one of the two treatment
groups, and every patient starts with 10 mg (or matching placebo). Then, depending
on patient responses, if the efficacy is not sufficient, the treating physician may
consider titrating the dose up to 20 mg. However, after the patient on the 20 mg
dose, if there is safety concerns, then the physician could down titrate the dose back
to 10 mg. Hence dose-titration designs can be viewed as two different types: forced
titration and response-guided titration.

In a forced titration study, this design may have been dictated by safety expe-
rience from previous studies. For example, if patients cannot tolerate a 20 mg
dosing at the beginning, there could be many adverse events, and patients may be
dropped out of study within the first 2 weeks of treatment. Then the design starts
patients with 10 mg so that patients can develop tolerability of this test drug. Later
after two weeks, if the patients’ systems are tolerating the test drug, then the dose is
titrated up to 20 mg in order to achieve the anticipated efficacy.

After the study completes, final statistical analysis is applied to test the
hypothesis that whether the two treatments (test drug vs. placebo) are the same.
Suppose the results are statistically significant, indicating that the observed efficacy
of the test drug is different from that of the placebo. This result provides evidence to
support that the designed regimen is effective, but there is no data to support
dose-response relationship. In other words, the only conclusion is that the studied
regimen (two weeks of 10 mg dosing followed by six weeks of 20 mg dosing) is
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superior to placebo. But this result cannot be used to differentiate patients’ response
to 10 mg dosing from 20 mg dosing.

In the response-guided dose titration study, the dosing picture is more
ambiguous. Suppose in a eight-week study with two treatments (test drug against
placebo), the test drug can be titrated between 10 and 20 mg. If at end of study the
statistical analysis indicating a significant treatment effect, then the project team
concludes that there is a treatment difference. However, no inference about
dose-response can be formulated from these results. If the project team attempts to
tease out dosing information based on the last dose each patient is taking, then there
could be interesting outcomes.

For example, in previous experiences, it could happen that such an analysis
provides wrong dose-response relationship in both efficacy and safety. The sub-
group of patients took 10 mg as the last dose demonstrate better efficacy than the
subgroup taking 20 mg as the last dose. Also, the 20 mg subgroup of patients
developed less adverse events than the 10 mg subgroup. This situation occurred
because during the study those patients who responded favorably to the 10 mg dose
would have stayed at the 10 mg dose. Only those patients who did not respond at
10 mg were titrated to 20 mg. Unfortunately, these patients still are not responding
at 20 mg.

Hence, by end of study, the 20 mg subgroup of patients includes many of these
non-responders, while most patients in the 10 mg subgroup are the responders. As
such, it appears that the 10 mg subgroup delivered better efficacy than the 20 mg
subgroup. Similarly, from a safety point of view, those patients who tolerate 20 mg
dose get to stay at 20 mg. Only those patients who could not tolerate 20 mg dose
were down titrated to 10 mg. In this case the 20 mg subgroup of patients look safer
than the 10 mg subgroup Therefore, if the development objective is finding
dose-response relationship, application of a dose-titration design could lead to
another form of “inconclusiveness.”

7.5 A Practical Design to Help Finding MinED

The challenges and difficulties relating to finding MinED (ICH E-4) are discussed
in Chap. 5. The key lesson is that if MinED was not detected at Phase II, it will be
too late and too expensive to find it in later phases. Minimum effective dose
(MinED) is a very important concept in product development. Unfortunately, there
is not a universally accepted definition for this term (Thomas and Ting 2008).
Finding MinED is critical because it is generally believed that toxicity increases as
dose increases. Hence a lower dose that is effective implies it could be safer than
higher doses.

In proposing early Phase II dose-ranging clinical trial designs, the coverage of a
wide range of doses is much more important than the consideration of
dose-response models. In practice, selection of dose range starts from the high dose
—either use of MTD or a dose that is not far below MTD. For the most common
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cases, this dose tends to be the highest available dose under existing formulation or
multiples of such a high dose formulation. The design process follows to select
doses lower than this highest dose and gradually moves down to the lowest dose. In
such a design, the dose range is then calculated as the highest dose divided by the
lowest dose.

Thus, practically, selection of doses in a dose-ranging design is not from low
dose moving up to high dose but rather from high dose moving down to low dose.
When proposing a dose-ranging design with a wide dose range, the question is not
“How high can you move up?” It is “How low can you go down?” On this basis,
binary dose spacing (BDS) proposed in Chap. 5 is a very practical recommendation
(Hamlett et al. 2002). Under the BDS framework, when more doses are included in
a design, lower doses will be selected based on the available formulated dosages.

There are many advantages of selecting a wide dose range. In other words, a
wide dose range indicates that the low dose in the given design can go very low.
When this is the case, if the lowest observed dose delivers sufficient efficacy, then
such a dose would be relatively safe because it is far lower than the MTD. On the
other hand, if the lowest dose does not deliver efficacy, team members look for a
higher dose that delivers efficacy. Once such a dose is found, then the observed
lowest dose that provides meaningful efficacy could usually be accepted as MinED,
because the observed data indicate that a dose lower than the perceived MinED is
not efficacious.

For instance, in the motivating example presented in Sect. 5.3, it took three
dose-ranging studies to identify the dose-response relationship. In that example, the
first design includes placebo, 80, 120, and 160 mg of test drug. The second design
includes placebo, 40, 80, and 120 mg doses. The third study uses placebo, 2.5, 10,
and 40 mg. If there is an opportunity to re-do this development program using the
current knowledge such as 4 or 5 test doses and BDS, then the first study would
have been designed as placebo, 160, 40, 10, and 2.5 mg of test drug. Study results
of such a design would indicate that 2.5 mg is not efficacious and that efficacy
responses of 40 mg are very close to that from 160 mg. And, most importantly,
clinical researchers can accept that 10 mg as the MinED with good practical
justification.

Therefore, the popular misunderstanding of finding MinED is that researchers
tend to struggle with a definition of such a dose, and statisticians are confused with
selecting a “good algorithm” for finding MinED. In fact, the practical way of
thinking about MinED should start from a wide dose range. In other words, for
every dose ranging design, the key question really should be “How low can you
go?” Practically, this question is limited by formulation. Therefore in preparations
of early Phase II clinical trials, it is desirable to formulate some very low doses, so
that a wide dose range can be explored.
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7.6 Discussion

The research and development of new medicinal products is a very expensive and
time consuming process; it is especially difficult during the clinical development
stage. A Go/NoGo decision and dose-finding practices are extremely challenging.
One important problem that deserves more attention would be the risks of incon-
clusiveness. In this chapter, a few situations of inconclusiveness are introduced, and
some communication methods are recommended to help minimize the time wasted
during the inconclusive stage.

In the case when a PoC is combined with dose-ranging trials, then the proposed
approach from Chap. 6 would be to start with a trend test, and then followed with
estimation of dose-response relationship. However, in case the trend test turned out
to be statistically significant, but none of the observe dose delivers a meaningful
difference from placebo. Then the inconclusiveness could be developed. When
there is concern of this potential inconsistency, the recommendation is to add a
gate-keeping procedure after the trend test. Hence the concept can only be con-
sidered as proven if both the trend test is statistically significant and the highest
dose is also significantly different from placebo, in a sequential fashion (trend test
has to be significant first, followed by the high dose being significantly different
from placebo).

It is suggested that dose-titration designs are not used for dose-finding purposes.
Regarding the difficulties in finding MinED, the proposal is to design the first
dose-ranging study with a wide dose range, using 4 or 5 test doses. Binary dose
spacing is a flexible and practical design tool. If the dose range is wide enough,
there is a good chance to catch one or more low doses that appear to be
sub-therapeutic, not efficacious. Then the lowest observed efficacious dose could be
considered as a candidate of MinED.

Experiences suggest that whenever an important mistake is made in the clinical
development of a new medicinal product, the critical point was not because “We
did not know” but rather, in fact, “We thought we knew.” Conducting clinical trials
is taking observations from live human being, and hence there are lots of ethical
concerns. Declaration of Helsinki (World Medical Association 2013) provides a set
of ethical principles regarding human experimentation. In performing clinical trials,
one of the most important scientific justifications is that “because we do not know
whether the drug works or not, we need to study this in human body.”

In other words, if we know the drug works, then it is not ethical to run clinical
trials. In designing trials, people usually make assumptions. Some assumptions are
more realistic, and some of the assumptions may not be realistic or practical. The
misunderstanding at this stage is that some team members took the assumptions as
known facts and moved forward. Hence it is important that when designing any
clinical trials, the scientists remain humble and open-minded, and not make
unwarranted assumptions.
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As mentioned in Sect. 7.1, the metric to measure a clinical team’s performance
should not be relating to the success of the candidate under development. The more
appropriate metric would be the amount of “re-work.” If most of the team members
keep this metric in their mind when designing or conducting clinical trials, it is
hoped that the inconclusiveness can be reduced to an acceptable amount. Again, the
inconclusiveness of Go/NoGo decision could potentially cost the sponsor lots of
investment and waste precious development time. It is the team members respon-
sibility to keep it to a minimum.
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Chapter 8
Analysis of a Proof of Concept Study

8.1 Introduction

From the data analysis perspective, clinical statisticians are typically faced with
continuous data, discrete data, or time-to-event data. For early Phase II clinical
trials, the most frequently seen data types are continuous data or binary data. In this
chapter, and the next two chapters covering data analysis, the discussion will
mainly be about analyzing continuous data or binary data.

In typical clinical trials, continuous data tend to follow normal distribution, log
normal distribution, or neither. When the continuous data are neither normally
distributed nor log normally distributed, nonparametric analysis can be applied to
handle these situations. One of the popular nonparametric approaches could be to
rank these data first and then to perform parametric analysis on the ranked data. The
central limit theorem for means, one of the most celebrated results in statistics,
makes the assumption of normality appropriate on the sampling distribution of the
mean even if the individual data are not normally distributed, provided that the
sample size is large enough (say, 30 subjects per treatment group). Therefore
parametric statistical tests for means, which assume normality, are appropriate
under these circumstances. When the sample size is not large enough, nonpara-
metric alternatives should be considered. Sample sizes of many Phase II clinical
trials exceed 30 subjects per group.

Give this background, analysis of continuous data obtained from Phase II
clinical trials are typically performed using analysis of variance (ANOVA), analysis
of covariance (ANCOVA), or mixed effects model with repeated measures
(MMRM). If the continuous data follow log normal distribution, then the raw data
are first log-transformed, and statistical analyses are applied on these
log-transformed data. Similarly, if the continuous data are neither normally dis-
tributed nor log normally distributed, then rank transformation can be applied to the
raw data and then ANOVA or ANCOVA can be used to analyze these
rank-transformed data.
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In medical practice of drug treatment, a patient is usually classified as a “re-
sponder to the treatment,” or a “non-responder” based on follow up observations
obtained while or after this patient is treated. Hence clinical trial outcomes from
each patient can be summarized into a responder status—a patient either “re-
sponded” or “did not respond.” Hence binary data is another popular analytical data
type (in addition to continuous data). In the analysis of binary data from a proof of
concept study, the outcomes can be summarized into a 2 � 2 table: two treatment
groups (test drug vs. placebo control) with two possible outcomes (responder status:
Yes or No). Typical statistical analytic tools for binary data involve a chi-square test
or logistic regression.

In this chapter, statistical analyses of PoC study results are presented and
discussed using examples. Based on the traditional PoC study design, only two
treatment groups: a high dose of test-treatment group and a placebo-control
group—are included in the PoC study. The two types of primary endpoints con-
sidered are in the form of either continuous data or binary data. Details of their
analyses are given below, with two examples provided.

8.2 When the Primary Endpoint Is a Continuous Variable

8.2.1 Data Description and Hypothesis

In the following illustrative (hypothetical) example, a Phase II proof-of-concept
trial is designed to assess a test agent in reducing a type of chronic pain as com-
pared with a placebo control. The primary measure is a patient-rated 0–100 visual
analog pain scale, a measurement instrument intended to measure pain across a
continuum from none (0) to the most extreme amount of pain (100). Here lower
values indicate less pain (more favorable). Treatment period is eight weeks with
weekly visit for the first 4 weeks, plus a week 6 visit and a week 8 visit—a total of
six visits denoted as visit 1, 2, 3, 4 (corresponding to the first 4 weeks), visit 5 is the
week 6 visit, and visit 6 as the week 8 visit. Baseline pain is measured at visit 0,

Table 8.1 Summary statistics for pain scale at each visit

Time Placebo Test drug

Sample
size

Mean Standard
deviation

Sample size Mean Standard
deviation

1 95 23.6 6.0 98 22.7 6.5

2 91 20.0 6.6 92 20.4 6.7

3 86 19.8 6.4 92 18.9 6.9

4 81 18.4 6.0 89 17.4 6.7

5 75 16.5 6.6 85 14.6 6.0

6 71 14.1 6.5 84 12.2 6.9
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before each patient is randomized. The pain scale is measured at every visit by each
participated patient. Summary statistics are presented in Table 8.1.

This study involved 95 subjects randomized into the placebo-treatment group,
and 98 subjects randomized into the test-treatment group. At baseline, the 95
placebo-treated subjects experienced a mean pain score of 24.4, with a standard
deviation of 6.0; 98 test-treated subjects experienced a mean pain score of 25.6,
with a standard deviation of 7.4 (Table 8.1). After 8 weeks of double-blind treat-
ment, 24 placebo-treated subjects dropped out and 71 subjects provided assess-
ments on pain using the 0–100 pain scale. For the 98 subjects randomized into the
test treatment, 14 subjects dropped out and 84 subjects provided week 8 measures.

The primary statistical hypothesis for this clinical trial is

H0 : lT8 ¼ lP8 versus H0 : lT8\lP8

The above hypothesis is to be tested at the pre-specified one-sided alpha of
0.025. Here lT8 stands for the mean change in pain from baseline to week 8 for the
subjects treated with the test drug, and lP8 stands for the mean change in pain from
baseline to Week 8 in pain for those placebo-treated subjects up to week 8.

8.2.2 T-Test Approach

Under the intention-to-treat (ITT) principle, a clinical trial analysis should in
principle include measurements on all patients and the clinical data should be
analyzed as randomized. In the case of patient drop out, one common analytical
methods is to carry forward the last available observation (last observation carried
forward, LOCF) and perform a statistical analysis on these LOCF data under the
assumption that the patient’s score remains stable (Ting 2000). Even this method is
somewhat debatable, one advantage of the LOCF analysis is that this concept is
easy for non-statisticians to understand. LOCF also provides each patient an equal
weight (one patient, one vote). The simplest statistical analysis on these LOCF data
would be a two-sample t-test. The SAS code (version 9.4) of the t-test for differ-
ences from baseline (i.e., DIF) to LOCF are obtained as follows:

PROC TTEST DATA=DTA22;

CLASS TRT;

VAR DIF;

RUN ;
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The analytical results from the above SAS program can be outputted as follows:

trt N Mean Std Dev Std Err Minimum Maximum

1 95 −7.8734 7.3661 0.7557 −21.2584 14.0913

2 98 −11.7935 6.7892 0.6858 −26.0588 10.4313

Diff (1–2) 3.9201 7.0790 1.0192

Method Variances DF t Value Pr > |t|

Pooled Equal 191 3.85 0.0002

Satterthwaite Unequal 188.61 3.84 0.0002

The first part of the output is the summary statistics to report the mean, standard
deviation, standard error, minimum and maximum for each treatment along with the
treatment means. The second part of the output is to report the results from the
independent two-sample statistical t-test. The “pooled” is the t-test assuming equal
variances and the “Satterthwaite” assuming non-equal variances (SAS Manual).
The variances between these two treatment groups are similar and hence it is natural
to consider the equal variance analysis from this two-sample t-test. The results from
the above output show a t value of 3.85, with a significant p-value of 0.0002, which
is much less than the pre-specified two-sided alpha of 0.05. Therefore, the null
hypothesis is rejected and it can be claimed that the test drug is statistically sig-
nificantly different from the placebo control in treating patients with this type of
chronic pain.

8.2.3 Analysis of Covariance Approach

It is also very common to introduce covariates in data analysis. When this is the
case, an analysis of covariance (ANCOVA) would be an appropriate model (ICH
E9). The two widely accepted covariates to be used in ANCOVA are stratification
factors (like center) and baseline measurements. In this hypothetical example, no
stratification factor is used and hence the corresponding ANCOVA model only
includes treatment effect and the baseline (a continuous variable) effect. In this
analysis, the response variable is the observed difference in the visual analog pain
scale from baseline to primary timepoint of the study (using LOCF for missing
data). The SAS code for this ANCOVA is given as follows:

PROC GLM DATA=DTA22;

CLASS TRT;

MODEL DIF=TRT V0;

RUN;
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The output for this analysis can be summarized as follows:

Source DF Sum of Squares Mean Square F Value Pr > F

Model 2 1964.30423 982.15211 22.35 <0.0001

Error 190 8348.39018 43.93890

Corrected Total 192 10312.69441

R-Square Coeff Var Root MSE Dif Mean

0.190474 −67.20089 6.628642 −9.863920

Source DF Type III SS Mean Square F Value Pr > F

treatment 1 581.168051 581.168051 13.23 0.0004

baseline 1 1223.030497 1223.030497 27.83 <0.0001

The first part of the above SAS output is the so-called ANOVA table to test
the proposed overall ANCOVA incorporating baseline which is to report the sum
of squares (denoted by Sum of Squares) and the mean square of errors (de-
noted by Mean Square) for both the ANCOVA model (denoted by Model)
and the residual errors (denoted by Error), the F statistic (denoted by F Value)
with the associated p-value (denoted by Pr > F). The p-value associated with the
proposed ANCOVA is less than 0.0001 which indicates overall statistical sig-
nificance. Then this model can be used to test the treatment significance which is
reported as the last part of the output. Under the statistical hypothesis of interest,
the observed p-value of 0.0004 indicates that the null hypothesis of no difference
in means is rejected under a two-sided alpha of 0.05. This conclusion is consistent
with that of the t-test.

8.2.4 Mixed-Effect Models to Analyze the Longitudinal Data

The same data set can also be analyzed using a longitudinal data model. Under
the assumption of missing at random (MAR), one common model is the
mixed-effects model with repeated measures (MMRM). In the illustrative MMRM
(Mallinckrodt et al. 2008), the clinical endpoint collected at each time point is
used as the response variable. Fixed effects include treatment (discrete) effect,
time (taken as discrete) effect, baseline (continuous) effect, treatment-by-time
interaction, and baseline-by-time interaction. Random effects include patient
effects and the residuals. In this data set, V0 stands for the value observed at the
baseline visit, and V6 is the observation taken at visit 6. The SAS code is given
below:
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PROC MIXED DATA=DTA21;

CLASS PID TRT TIME;

MODEL Y= TRT TIME TRT*TIME V0 V0*TIME / S ;

REPEATED TIME / SUBJECT=PID TYPE=UN R ;

The associated results from the above SAS code can be shown as follows:

Effect Den DF F Value Pr > F

TRT 1 190 8.38 0.0042

TIME 5 190 9.70 <0.0001

TRT*TIME 5 190 1.96 0.0862

V0 1 190 160.86 <0.0001

V0*TIME 5 190 1.02 0.4049

Estimates

Label Estimate Standard Error DF t Value Pr > |t|

V6 −2.6057 0.9148 190 -2.85 0.0049

It can be seen from the output that the observed p-value is 0.0049. Results
obtained from MMRM are consistent with the t-test and the ANCOVA results in
this particular case.

This hypothetical example is introduced to demonstrate how to analyze a set of
continuous data in a two-treatment group PoC clinical trial. Continuous data (or at
least data taken as continuous) are most commonly seen in PoC studies. Often times
an arithmetic mean change from baseline to LOCF is considered as the primary
endpoint, and the difference in mean changes between treatment groups is com-
pared to test for statistical significance. In certain continuous primary endpoints (for
example, lab data or pharmacokinetics data), the underlying distribution are con-
sidered as log-normal, and the interest is to analyze the ratio between treatments.
When this is the case, the raw data are first transformed with log (or natural log) and
then the t-test, ANCOVA, or MMRM is applied to the log-transformed data to
perform the statistical analysis. After all of the analyses are performed, the resulted
point estimates and interval estimates are then back transformed using the anti-log
(or exponent) function. These back transformed analytical results are then reported
for the clinical team to review and interpret.

In some other PoC studies, the continuous data do not follow a clear normal or
log-normal distribution—the distribution may look skewed, there may be some
outliers, or for various other reasons. When this is the case, analysis of the ranked
data can be helpful when the sample size per group is small (say, less than 30). One
proposal is to take the standardized rank of the original data and then perform
statistical analyses on these standardized ranks. Standardized ranks are obtained by
first ranking all of the data across treatment groups. These ranks are then divided by
the total number of observations, resulting in ranks between 0 and 1. Standardized

ESTIMATE "V6" TRT -1 1 TRT*TIME =0 0 0 0 0 -1 0 0 0 0 0 1 ; 
RUN;
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ranks can be obtained from SAS, PROC RANK, using the FRACTION option.
Under this circumstance, the t-test or ANCOVA with LOCF can be appropriate
analytical tools when data are missing completely at random..

8.3 When the Primary Endpoint Is a Binary Variable

8.3.1 Data Description and Hypothesis

In this section, another hypothetical example is presented and discussed. This time
the example is based on a PoC clinical trial where the primary endpoint is the
number and percent of responders in each treatment group (Table 8.2). Again, there
are two treatment groups: the test treatment group and the placebo control.
Randomization is stratified by sex (male or female). This is a four-week trial and
efficacy measures are collected at baseline and weekly at every week post-baseline.
The primary endpoint is to compare the last observation of each patient against the
associated baseline. If the change in clinical response achieves a pre-defined
threshold, then this patient is considered as a responder. The patient would be
denoted as a non-responder if his or her clinical measure fails to reach the
pre-defined threshold.

In this hypothetical study, fifty-three patients are randomized to the test treat-
ment group, and 56 patients are randomized to the control group. Study results are
presented below. Cochran-Mantel-Haenszel (CMH) test is used to analyze the
binary primary endpoint, using sex as a covariate. SAS output of the analytical
results are presented below. The statistical hypothesis of interest is

H0 : pT ¼ pP versus H0 : pT 6¼ pP

where pT represents the proportion of responders in the test-treatment group and pP
represents the proportion of responders in the placebo-control group.

8.3.2 Cochran-Mantel-Haenszel Method

In SAS programming, it is important to note that under PROC FREQ, in the
specification of TABLES statement, the order of variables is very critical.
The FREQ procedure makes comparisons between rows and responses should be

Table 8.2 Primary efficacy binary data in hypothetical example

Non-responder Responder Total

Placebo 45 11 56

Test drug 25 28 53
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specified as columns. Hence response should always be the last variable to be given
in the TABLES statement. Right before the response variable should be the treat-
ment variable (the key comparison). All covariates need to be placed before the
treatment variable. In this example, the SAS code can be as follows:

PROC FREQ DATA=DATA1 ;

TABLES SEX * TREATMENT * RESPONSE / CMH ;

RUN ;

The output from the above SAS FREQ Procedure is as follows:

Cochran-Mantel-Haenszel Statistics (Based on Table Scores)

Statistic Alternative Hypothesis DF Value Prob

1 Nonzero Correlation 1 5.4996 0.0190

2 Row Mean Scores Differ 1 5.4996 0.0190

3 General Association 1 5.4996 0.0190

Breslow-Day Test for Homogeneity of the Odds Ratios

Chi-Square 0.7279

DF 1

Pr > ChiSq 0.3936

The observed p-value is 0.0190 (for pairwise comparisons, the p-value should be
read from “Row Mean Score Differ”), indicating that there is a statistical signifi-
cance in comparing the two proportion of responders. The Breslow-Day test of
common odds ratio across strata presents a p-value of 0.39. Thus there is no
statistical difference in responses between male patients and female patients, which
can be thought of as lack of statistical interaction between treatment and sex.

8.3.3 Logistic Regression

This same data set can also be analyzed using the logistic regression. In the fol-
lowing set of SAS code and results, PROC LOGISTIC is used as follows:

PROC LOGISTIC DATA=DTA34 ;

CLASS TRT SEX ;

MODEL RESPONSE=TRT SEX ;

RUN ;

The logistic regression is fitted with maximum likelihood estimation and the
likelihood ratio chi-square test is used to test for all effects from the regression effect
which can be illustrated as follows:
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Effect DF Wald Chi-Square Pr > ChiSq

trt 1 5.4941 0.0191

Sex 1 1.6953 0.1929

From above results, the main comparison is based on the treatment effect
(trt) and its p-value of 0.0191 indicates that there is a significant difference between
the two treatment groups. Note that the CMH test provided a p-value of 0.0191.
These two results are very close to each other.

8.4 Discussion

Although the examples in this chapter presented a variety of ways in analyzing the
primary efficacy data from a PoC clinical trial, in reality, only one primary ana-
lytical method should be pre-specified from the protocol. For example, in the case
of the illustrative pain study, if the primary analysis is pre-specified as the
ANCOVA applied on LOCF, then the MMRM or t-test analysis can be considered
as only exploratory. In order to preserve alpha, only one primary model can be used
for the primary analysis using the primary endpoint. Allowing model selection will
inflate alpha. Furthermore, this primary analysis applied to the ITT analysis set, at
the primary analytical time point. Any deviation from the pre-specified endpoint,
time point, analysis set, or analytical model could inflate alpha.

In some situations, one or more secondary endpoint(s) may also be considered in
a PoC study. When this is the case, strategies of alpha allocation need to be clearly
specified in the statistical analysis plan (SAP). The team should also agree, before
blind is broken, as to how these secondary results will be used in the Go/NoGo
decision.

In practice, the design of a PoC clinical trial is a difficult and challenging task
(Chuang-Stein et al. 2011). After the data are ready, the primary statistical analysis
of PoC results is relatively straightforward. However, a Go/NoGo decision may not
necessarily be easy. In the previous hypothetical examples, statistical significance is
achieved in both the pain study, and the study with binary primary endpoint. In fact,
statistical significance may or may not be translated into clinical relevance. In many
cases, even though a statistical significance is observed, the sample mean difference
between treatment groups could still be less than the expected treatment difference
that was used to calculate sample size. Under this situation, lots of discussions
among team members and upper management may take place before a Go/NoGo
decision can be made.

In addition to the primary endpoint, the team (and the upper management) need
also look at secondary endpoints and safety profiles to help with the final decision.
As indicated in Chap. 4, a “Go” decision after PoC triggers much development
activities and substantial investment commitments. Sponsors do not take this
decision lightly. On the other hand, a compound could have passed all the stringent
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evaluations of the non-clinical development, formulation, toxicology, and all other
hurdles before moving into clinical development. Furthermore, this compound will
also have to endure the Phase I challenges before it can achieve PoC. This means
that many scientists have high hopes about such a compound. A NoGo decision
would, needlessly to say, be a disappointment.

It is because of all these situations, and other difficulties in decision-making as
discussed in Chaps. 6 and 7, a PoC clinical trial has to be designed carefully, with
much thought, consideration, and discussion. Nevertheless, after the primary ana-
lytical methods are well pre-specified, the statistical analysis of a PoC study is
simple and straightforward. The primary endpoint of most PoC studies is either a
continuous outcome or a binary outcome. Both cases are covered in this chapter
with relevant examples.
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Chapter 9
Data Analysis for Dose-Ranging Trials
with Continuous Outcome

9.1 Introduction

Traditionally, proof of concept (PoC) study and dose-ranging trials are conducted
separately in a sequential fashion. A two-group PoC design involves a comparison
between MTD of test drug and a placebo control, a comparison that is conducted
first. Only after the concept is proven, then dose-ranging trials are designed to study
the dose-response relationship. In recent years, more sponsors are combining these
two steps into one—using one trial with multiple doses to serve both the PoC and
dose-ranging purposes. The focus of this chapter is to discuss data analysis of
dose-ranging trials—either this dose-ranging trial is designed after PoC or in
combination with the PoC objective. In data analysis it is very important to keep in
mind that “analysis needs to respect design.” Hence it is always a good practice to
follow the pre-specified analysis, either from the protocol or from the statistical
analysis plan (SAP).

In a combined PoC and dose-ranging clinical trial, the first step should be PoC
based on statistical hypothesis testing. Chapter 6 recommends the use of a trend test
to help addressing the PoC question. As discussed previously, if the study is
designed with only two groups with high dose of test drug against a placebo
control, then it is not a dose-ranging trial. For a clinical trial to serve as a
dose-ranging study, it has to include multiple doses of the product candidate, plus
control(s). In a multiple dose, dose-ranging study design, the first consideration is to
see if PoC for this study drug has been established in a previous study. If so, then
the current clinical trial is mainly designed to study the dose-response
relationship. If not, then a PoC step would necessarily be the first statistical
hypothesis to be tested. Chapter 8 covers data analysis under the two-group designs.
This current chapter discusses data analysis when multiple dose groups are included
in a single study.

In the analysis of dose-ranging clinical trials, there are typically three approaches
commonly used to help determining the dose-response relationship: the first is a
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multiple comparison procedure (MCP) approach, the second to use a dose-response
modeling (Mod) approach and the third to combine both the MCP and Mod as a
newer approach, which is commonly referred as “MCP-Mod” approach (Bretz et al.
2005; Pinheiro et al. 2006).

In the MCP approach, the dose is treated as a qualitative factor with a set of dose
levels from the dosages available for testing in the clinical trial. In this approach,
there are usually no assumptions about the underlying dose-response relationship
and the statistical inferences to find doses of interest are restricted to this set of
doses. In contrast to the MCP approach, the “Mod” approach typically assumes a
parametric dose-response relationship between the dose and the efficacy response in
the trial. Then the doses are treated as a quantitative continuous variable that would
allow more flexibility for dose finding. Therefore, the validity of this “Mod”
approach would depend strongly on the assumed dose-response model.

Combining both the MCP and Mod approaches, Bretz et al. (2005) developed an
MCP-Mod approach to unify the MCP and Mod approaches, which is to assume the
existence of several candidate parametric dose-response models and use multiple
comparison techniques to choose the one most likely to represent the true under-
lying dose-response curve. At the same time, the hybrid MCP-Mod approach
preserves the family-wise error rate. The selected model is then used to provide
inference on adequate doses. Based on this novel approach, Bretz and colleagues
developed an R package (i.e. “MCPMod”) which is publicly available at http://cran.
r-project.org/web/packages/MCPMod/index.html with detailed description in
Bornkamp et al. (2009). Because thispackage is not further developed anymore. it
has become part of the new package in “DoseFinding” which can be freely accessed
at https://cran.r-project.org/web/packages/DoseFinding/index.html.

In this chapter, we illustrate how to use these R packages to analyze
dose-response trials in a step-by-step fashion with detailed explanations so that the
interested readers can use the packages and R programs in this chapter for their own
analysis. In order to help readers better understanding data analysis of dose-ranging
trials, we make use of the Phase II dose-finding study used in Bretz et al. (2005) as
the example in this chapter, which was in fact part of the R packages with name
“biom.” We will use this data to illustrate the MCP, the Mod, and the MCP-Mod
approaches.

This chapter is organized as following sections. Section 9.2 provides the data set
and the associated descriptive statistics. Section 9.3 presents analysis for making a
PoC decision. In the case when a previous PoC has concluded the efficacy of
thestudy drug, readers may skip this section. The multiple comparison procedures
(MCP) are introduced in Sect. 9.4 and the modeling (Mod) approach in Sect. 9.5. In
Sect. 9.6, we introduce the combined MCP and Mod approach (MCP-Mod) and
conclude the chapter with a discussion in Sect. 9.7.
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9.2 Data and Preliminary Analysis

Let’s first describe the data. As reported in Bretz et al. (2005), this study was a
randomized double-blind parallel group trial with a total of 100 patients being
allocated to either placebo or one of four active doses coded respectively as 0.05,
0.20, 0.60, and 1, with n = 20 per group. The response variable was assumed to be
normally distributed with larger values for a better outcome. The data is public
available in R packages “MCPMod” and “DoseFinding” as a data frame named
“biom” with 2 columns named “dose” for dose levels and “resp” for responses.
There are 20 observations for each of the 5 dosages. The data are reproduced here in
Table 9.1. Note that the actual response data have 8 digits and are rounded to 3
digits in this table.

To analyze this data, we first load the data frame “biom” with the R library
“MCPMod” or “DoseFinding.” When the data are available for analysis, we can
then call R function “boxplot” to make a boxplot for the data distribution as seen
from the following R code chunk:

# Load the library

>library(MCPMod)

# Get the data

>data(biom)

# Get the mean response for each dosage with ''aggregate''

>aggregate(biom$resp, list(dose=biom$dose), mean)

# Call R function ''boxplot'' function to make the plot

>boxplot(resp*dose, biom, xlab=''Dose'', ylab=''Response'')

As seen from Fig. 9.1, there is an observed monotonic increasing dose-response
relationship with sample means of 0.345, 0.457, 0.810, 0.934 and 0.949,
respectively.

Table 9.1 Dose-response data from “biom”

dose Resp

0.00 0.355 0.137 −0.017 0.367 0.395 0.358 0.313 −0.045 0.623 0.04
−0.308 −0.453 −0.202 1.561 0.561 0.336 −0.159 0.993 0.807 1.237

0.05 1.354 0.155 −0.071 0.584 0.963 0.381 −0.005 0.519 −0.363 0.339
0.146 0.443 −0.022 0.373 1.529 0.149 0.374 1.012 0.281 0.995

0.20 1.198 1.568 −0.156 0.207 1.853 0.996 2.452 −0.520 0.049 0.633
0.528 0.423 1.233 1.868 1.058 0.345 0.405 0.484 0.571 1.011

0.60 1.172 0.668 1.778 0.310 0.056 0.900 0.738 0.228 1.385 0.912
0.299 0.279 0.270 0.570 1.604 1.577 2.925 0.172 2.161 0.686

1.00 2.248 2.174 1.255 1.865 −1.113 1.198 1.975 0.625 1.330 0.149
0.887 0.563 0.731 −0.771 0.495 0.303 0.425 2.558 1.129 0.948
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9.3 Establishing PoC with a Trend Test

The PoC can be established based on the contrast test for statistical significance. Let
µi be the population mean for dose group i (i = 0, 1, …, k), where µ0 is the mean
from the placebo group. For example, k is 4 corresponding to the “biom” data in
Sect. 9.2 and the estimated sample means of µi (i = 0,1, 2,3,4) are 0.345, 0.457,
0.810, 0.934 and 0.949, respectively, as noted in the last section,

To construct a contrast for PoC, let ci be the corresponding contrast coefficients
with the condition that

Pk
i¼0 ci ¼ 0. Then the null hypothesis (H0) of no treatment

effect versus the one-sided alternative hypothesis (HA) of significant treatment
effect (PoC) can be written as follows:

H0 : L lð Þ ¼
Xk
i¼0

cili � 0 v:s: HA: L lð Þ ¼
Xk
i¼0

cili ¼ d[ 0 ð9:1Þ

Corresponding to “biom” data with k = 4, the contrast coefficients are
c ¼ c0; c1; c2; c3; c4ð Þ ¼ �2;�1; 0; 1; 2ð Þ, which can be found in Table 9.2 in
Wang and Ting (2012), and the above hypotheses become as follows:

Fig. 9.1 Boxplot distribution
for dataframe “biom”

Table 9.2 Commonly used dose-response models

Model Functional form Parameters

Linear E0 þ dd E0; d

Linear in log-dose (linlog) E0 þ dlogðdÞ E0; d

Exponential E0exp d=dð Þ E0; d

Quadratic E0 þ b1dþ b2d
2 E0; b1; b2

Logistic E0 þ Emax
1þ exp ED50�dð Þ=dð Þ E0;Emax; d

Emax E0 þ Emaxd
ED50 þ d

E0;Emax;ED50

Sigmoid Emax E0 þ Emaxdk

EDk
50 þ dk

E0;Emax;ED50; k
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H0 : L lð Þ ¼ �2ð Þl0 þ �1ð Þl1 þ 0l2 þ 1l3 þ 2l4 � 0; vs

HA : L lð Þ ¼ �2ð Þl0 þ �1ð Þl1 þ 0l2 þ 1l3 þ 2l4 ¼ d[ 0

The test statistic can then be constructed as a one-sided t-test as follows:

T ¼
dL lð Þ

SE dL lð Þ
� � ¼

Pk
i¼0 ci�xi

SE
Pk

i¼0 ci�xi
� � ð9:2Þ

where �xi is the sample mean of µi and SE denotes its standard error.
The step-by-step implementation in R can be done as follows. We first fit an

analysis of variance (ANOVA) model to estimate the sample means and their
associated standard errors:

# fit an ANOVA model to estimate means

>fit.aovmean = lm(resp*as.factor(dose)-1, data=biom)

# print the summary of fit

>summary(fit.aovmean)

In this fitting, we used R function “lm” (i.e., linear model) to fit the ANOVA
model and then named it as “fit.aovmean.” Notice that in this model fitting, we
used an R function “as.factor” to change the numerical “dose” variable into a
“factor” variable as categorical variable. Note that the “-1” in “as.factor(-
dose)-1” is to tell the R function “lm” to fit a linear model without the intercept
so to produce the estimated least-square means. Then we call the R function
“summary” to print the summary of model fit, which can be outputted as follows:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(dose)0 0.3449 0.1593 2.165 0.0329

(dose)0.05 0.4568 0.1593 2.867 0.0051

(dose)0.2 0.8103 0.1593 5.087 1.83e-06

(dose)0.6 0.9344 0.1593 5.866 6.47e-08

(dose)1 0.9487 0.1593 5.956 4.35e-08

Residual standard error: 0.7124 on 95 degrees of freedom

Multiple R-squared: 0.5336, Adjusted R-squared: 0.509

F-statistic: 21.74 on 5 and 95 DF, p-value: 1.897e-14
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We can see that the ANOVA model is statistically significant with
p-value = 1.897e-14 and a R2 = 53.36%. The estimated means are labeled
under the column “Estimate” for all the doses which are all statistically sig-
nificant as shown for their associated p-values. The estimated standard deviation,
also known as the residual standard error, is 0.7124. We can extract these values for
PoC calculations as follows:

# Extract the estimated sample means

>EstMean.aov = coef(fit.aovmean)

# Extract the estimated sigma

>aov.sigma = summary(fit.aovmean)$sigma

The statistical test for PoC in Eq. (9.2) can then be implemented in the following
R code chunk:

# PoC: contrast mean >0 statistically?

>Dosage = sort(unique(biom$dose)) # get the dosages

>len.Dosage = length(Dosage) # the number of dosages

>alpha=0.05 # the alpha level

>n=20 # sample size for each dosage

# The c's for 4-dose and 1-placebo

>Contrast.Coef = c(-2,-1,0,1,2)

# Implementation of equation 9.2. with 1-sided test

# where ''qt'' is for the quantile-t with one-sided (i.e. 1-alpha)

>PoC.Contrast=sum(Contrast.Coef*EstMean.aov)/(aov.sigma*

sqrt(sum(Contrast.Coef^2/n)))>

qt(1-alpha,df=(n-1)*len.Dosage)

# print the conclusion whether the PoC is established

>PoC.Contrast

TRUE

This established the PoC for these data and the next step is to identify the dose
from the dose range where the statistically significant difference occurs with MCP,
Mod, and MCP-Mod approaches.

9.4 Multiple Comparison Procedure (MCP) Approach

By nature of design, dose-response trials typically include multiple dose groups
plus a control. Therefore a multiple comparison procedure should be utilized to
adjust for multiplicity. For example, in this data, there are four doses of 0.05, 0.2,
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0.6, 1 plus the placebo dose. There are many procedures in multiple comparison
adjustment and we illustrate the most commonly used procedures, such as the
Fisher’s protected least significant difference (LSD), Bonferroni procedure,
Dunnett’s procedure, Holm’s procedure, Hochberg, and gate-keeping procedures.

9.4.1 Fisher’s Protected LSD (Fixed Sequence Test)

As a comparison, we first illustrate the naïve MCP procedure which was termed as
Fisher’s protected LSD (readers may refer to Sect. 3.1). This procedure is also
known as the “fixed sequence test” in Westfall and Krishen (2012) and in Bretz
et al. (2005) to determine the dose using a 5% one-sided level. This can be easily
conducted using the R function “lm” for all pairwise comparison to placebo as
follows:

# pairwise comparison to control without adjustment using ''lm''

>fit.aov2Cont =lm(resp*as.factor(dose), biom)

# print the model fit

>summary(fit.aov2Cont)

In the above R code chunk, the “lm” is used as an R function for one-way
analysis of variance with “dose” as a “factor” and the entire model is an R object
named as “fit.aov2Cont” to be used for future analysis. With this object, we can
call R function “summary” to reproduce the results reported in Table 9.2 from Bretz
et al. (2005) as follows:

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3449 0.1593 2.165 0.03287

as.factor(dose)0.05 0.1118 0.2253 0.497 0.62068

as.factor(dose)0.2 0.4654 0.2253 2.066 0.04155

as.factor(dose)0.6 0.5895 0.2253 2.617 0.01032

as.factor(dose)1 0.6038 0.2253 2.680 0.00867

Residual standard error: 0.7124 on 95 degrees of freedom

Multiple R-squared: 0.1153, Adjusted R-squared: 0.07808

F-statistic: 3.096 on 4 and 95 DF, p-value: 0.01921

It can be seen that the overall model fitting is statistically significant with
two-sided p-value = 0.019 from the F-test statistic of 3.096 with degrees of free-
dom of 4 and 95. The values in the column “Estimate” corresponding to “dose”
0.05, 0.2, 0.6 and 1 are the estimated mean difference to the placebo dose, that is,
li � l0, which are 0.1118, 0.4654, 0.5895 and 0.6038, respectively. Examining the
corresponding p-values at the column “Pr(>|t)”, we can see that they are all
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statistically significant as two-sided t-test except the dose at 0.05. As a default
setting in R function “lm,” the column “Pr(>|t|)” reported the 2-sided p-values
which can be converted a one-sided p-value. The one-sided raw p-values can then
be calculated as follows:

# Convert the raw 2-sided p-values to 1-sided from the model fit:

# to extract the p-values (i.e. ''Pr(>|t|)'') from the ANOVA

# coefficients(i.e. ''coef'') without the intercept (i.e.,''-1'')

> raw.pval = summary(fit.aov2Cont)$coef[-1,''Pr(>|t|)'']/2

# print these p-values

>raw.pval

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

0.310339936 0.020774426 0.005160541 0.004334960

This reproduced the results at their Table 9.2 (page 743) from Bretz et al. (2005).
Therefore, this fixed sequence test concluded that the top three doses (i.e. 0.2, 0.6
and 1) were statistically significantly different to placebo.

The model diagnostics can be done by plotting the R object “fit.aov2Cont”
using R code “plot(fit.aov2Cont)” which can be used to examine the
residuals with the residual plots and QQ-plot for residual normality. For these data,
we do not show the plot since there is no obvious deviation from the residuals.

9.4.2 Bonferroni Correction

As a way to adjust for multiple comparisons, the classical Bonferroni correction
(Bonferroni 1935, 1936) adjusts the raw p-values, ensuring strong family-wise
error-rate (FWER) control under arbitrary dependence of the raw p-values. It simply
multiplies each raw p-value by the total number of hypotheses. We make use of the
R package of “mutoss” which is maintained by the MUTOSS (multiple
hypotheses testing in an open software system) team and can be downloaded from
http://mutoss.r-forge.r-project.org/. This package is designed to unify the applica-
tion and comparison of multiple testing procedure. Most of the MCP procedures are
implemented in this package and we only need to call the corresponding function.
The Bonferroni correction procedure can be done as follows:

# load the `̀ mutoss'' library

> library(mutoss)

# call the ''Bonferroni'' function for Bonferroni correction:
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# with option ''silent=FALSE'' to generate output

> Bon.MCP = bonferroni(raw.pval, alpha, silent=FALSE)

In the above code, silent = FALSE is to generate output (another option is
silent = TRUE which means no output is generated. The “raw.pval” is the
vector of unadjusted p-values for the pairwise comparison (i.e., li � l0) which is
from the ANOVA model fitting named “fit.aov2Cont” and “alpha” is the
overall one-sided type I error or level of significance at which the FWER shall be
controlled, which is set at alpha (a) = 0.05. The output of this Bonferroni correction
can be shown as follows:

> Bon.MCP

$adjPValues

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

1.00000000 0.08309770 0.02064217 0.01733984

$rejected

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

FALSE FALSE TRUE TRUE

From this output, we can find the adjusted p-values associated with each com-
parison of the specific dose to placebo. With alpha (a) = 0.05, it also showed
whether the comparison was rejected or not. Among the four pairwise multiple
comparisons, the doses of 0.05 and 0.2 were not rejected, whereas the top two doses
of 0.6 and 1 were rejected.

9.4.3 Dunnett’s Test

Dunnett’s test is also to compare each of the dose treatments to the placebo
treatment. This test was developed in Dunnett (1955) and updated in Dunnett
(1964). The procedure takes advantage of positive correlations among pairwise
comparisons. The fact that each dose is compared with the same placebo control
makes all pairwise comparisons to be positively correlated. Dunnett’s test was
widely used in multiple comparison procedure for simultaneously comparing, by
interval estimation or hypothesis testing, all active dose treatments with placebo
when the outcome is sampled from a distribution where the normality assumption is
reasonable. This test is designed to hold the familywise error rate at or below a
when performing multiple comparisons of treatment group with control. To
implement the Dunnett’s test, we make use of the R package “DoseFinding” which
can be implemented as follows:

# load ''DoseFinding'' library

>library(DoseFinding)
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# make Dunnett contrasts matrix with R row-bind function ''rbind''

> contMat <- rbind(-1, diag(4))

# name this matrix for its rows with ''rownames''

# and columns with ''colnames'' as seen in the output below

> rownames(contMat) <- Dosage

> colnames(contMat) <- paste(''D'', Dosage[-1], sep='' '')

# ''MCTtest'' to calculate the adjusted p-value for Dunnett's test

> Dunnett.MCP = MCTtest(dose, resp, data=biom, contMat = contMat)

# print the result for Dunnett’s test

> Dunnett.MCP

The “MCTtest” function gave the Dunnett’s contrast to compare all the dose
treatments to the placebo and the test-statistic with the adjusted p-values for each
dose treatment as follows:

Multiple Contrast Test

Contrasts:

D0.05 D0.2 D0.6 D1

0 -1 -1 -1 -1

0.05 1 0 0 0

0.2 0 1 0 0

0.6 0 0 1 0

1 0 0 0 1

Multiple Contrast Test:

t-Stat adj-p

D1 2.680 0.0153

D0.6 2.617 0.0178

D0.2 2.066 0.0653

D0.05 0.497 0.6033

It can be seen from the multiple contrast test that the doses of 0.05 and 0.2 were
not statistically significant and the other top two doses of 0.6 and 1 were statistically
significant (adjusted p-value less than the nominal alpha of 0.05).

9.4.4 Holm’s Step-Down Procedure

The Holm’s step-down-procedure was developed in Holm (1979) and detailed in
Huang and Hsu (2007). The terms “step-down” or “step-up” are in reference to the
absolute values of t-test. “Step-down” implies the procedure starts with the pairwise
t-test with the largest absolute value, and then steps down to the smaller absolute
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value of t. It controls the family-wise error rate (FWER) and offers a simple test
uniformly more powerful than the Bonferroni correction. The Holm’s procedure is
implemented in the R package “mutoss” with function “holm.” This function
can be simply called to analyze the “biom” data as follows:

# call Holm's procedure from ''mutoss'' to adjust the raw p-value

> Holm.MCP = holm(raw.pval, alpha)

# print the result from Holm's procedure

> Holm.MCP

The function “holm” is called to adjust the raw p-values “raw.pval” to control
FWER and the output is produced as follows:

$adjPValues

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

0.31033994 0.04154885 0.01733984 0.01733984

$rejected

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

FALSE TRUE TRUE TRUE

The Holm’s test showed that the dose of 0.05 was not rejected. However, the
doses of 0.2, 0.6 and 1 were rejected as each of them is statistically significantly
different from placebo.

9.4.5 Hochberg Step-Up Procedure

The Hochberg procedure (Hochberg 1988) is based on marginal p-values. It con-
trols the FWER in the strong sense under joint null distributions of the test statistics
that satisfy Simes’ inequality as summarized in Sarkar and Chang (1997). Huang
and Hsu (2007) compared this Hochberg procedure with Holm’s procedure in
Sect. 9.4.4 and concluded that the Hochberg procedure is more powerful than
Holm’s (1979) procedure, but the test statistics need to be independent or have a
distribution with multivariate total positivity of order two or a scale mixture thereof
for its validity (Sarkar and Chang 1997). Whereas Holm’s procedure is a step-down
version of the Bonferroni test, Hochberg’s is a step-up version of the Bonferroni
test. Note that Holm’s method is based on the Bonferroni inequality and is valid
regardless of the joint distribution of the test statistics.

The Hochberg procedure is implemented in R function “hochberg” in R
package “mutoss”. This function can be called to analyze the “biom” data as
follows:
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# call ''hochberg'' to adjust the raw p-values

> Hoch.MCP <- hochberg(raw.pval, alpha)

# print the result from procedure

> Hoch.MCP

The output from this Hochberg procedure is as follows:

$adjPValues

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

0.31033994 0.04154885 0.01548162 0.01548162

$criticalValues

[1] 0.01250000 0.01666667 0.02500000 0.05000000

$rejected

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

FALSE TRUE TRUE TRUE

With the same conclusion reached as the Holm’s procedure, the Hochberg’s
procedure showed that the dose of 0.05 was not rejected and the doses of 0.2, 0.6
and 1 were rejected and hence statistically significantly different from placebo.

9.4.6 Gate-Keeping Procedure

Gate-keeping procedures are proposed to test hierarchically ordered hypotheses
from clinical trials. The hypotheses are grouped into ranked families, such that the
hypotheses in higher order ranked families are tested first and the lower ranked
families can be tested only if rejections achieved for higher ranked families. In other
words, the higher ranked families serves as gatekeepers for lower ranked ones.

In general, there are two types of gatekeeping procedures known as serial and
parallel gate-keeping procedure. As discussed in Bauer et al. (1998) and Dmitrienko
et al. (2006), the serial gatekeeping requires all hypotheses in one family be rejected
before testing the next family, whereas parallel gatekeeping as discussed in
Dmitrienko et al. (2003) only requires at least one hypothesis be significant in order
to test the next one. The gatekeeping approaches were first proposed as closed tests
as discussed in Marcus, Peritz and Gabriel (1976) by considering all possible
configurations of the null hypotheses where in general, the number of computa-
tional steps grows exponentially with n (about 2n calculations need to be performed
to test n null hypotheses). Under the assumption of the nondecreasing dose response
with respect to increasing doses, the multiple testing of individual doses could fit
into the serial gate-keeping procedure by ordering the testing sequence from the
highest to the lowest dose. A lower dose is tested only if all preceding higher doses
are tested and rejected at level of significance (alpha, a). The testing stops once a
hypothesis fails to be rejected.
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This gate-keeping procedure can be easily implemented to start with the highest
dose and then goes down to find the minimal dosage where dosage to placebo is
statistically significant at this dosage, all higher doses should be significant. The R
implementation can be done as follows:

# with the ranked dosages and the raw p-values

>GK.MCP = raw.pval < alpha

>GK.MCP

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

FALSE TRUE TRUE TRUE

Same as the Holm’s and Hochberg’s procedures, the gate-keeping procedure
showed that the dose of 0.05 was not rejected and the doses of 0.2, 0.6 and 1 were
rejected, with each being statistically significantly different from placebo at the 0.05
level of significance.

9.5 Modeling Approach (Mod)

Different form the MCP approach discussed in the Sect. 9.4, the modeling approach
(Mod) treats dose as a continuousvariable andassumesa functional relationshipbetween
the response and the dose. Sometimes, the multiplicity issue is avoided as a result of the
assumed functional relationship (e.g., non-decreasing dose–response relationship).

9.5.1 Dose-Response Models

The dose-response models are used to describe certain functional relationship
between the observed responses yij and the corresponding dose di, where i indicates
the dose-level from 1 to k (k = 5 in the “biom” data) and j indicates the observations
in each dose level from 1 to ni (ni = 20 in the “biom” data for all 5 dosages). This
model can be mathematically expressed as follows:

yij ¼ f di; hð Þþ eij

where eij is the error term. The mean response li = E(yij) and the corresponding
dose di can then be expressed as

li ¼ f di; hð Þ

where f(.) is a linear or nonlinear function of dose d and the vector of modeling
parameters h. There are potentially many types of dose-response models, such as
the linear model, linear in log-dose model, the exponential model, the quadratic
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model, the logistic model, the Emax model, the sigmoid Emax model and the beta
model. These models are briefly summarized in Table 9.2 with their functional
form and the associated model parameters.

The graphical presentation of these models can be shown using the following R
code chunk which produced Fig. 9.2.

# make a model list

modlist = list(linear = NULL,linlog=1, emax = c(0.05, 0.2),

logistic = matrix(c(0.25,0.7, 0.09,0.06), byrow=FALSE, nrow=2),

exponential = 1, sigEmax=c(0.1,1), quadratic=-1)

# call; ''plotModels''; function; to; plot; these; models

plotModels(modlist, Dosage, base=0, maxEff=1)

In this presentation, we specified these models with some selected parameters
and also we illustrated two Emax models and two logistic models. As seen from
Fig. 9.2, all these models except for the quadratic model are monotonic increasing
as doses increase.

Among these models, a very popular dose-response model is the sigmoid Emax
model as seen in Table 9.2. This sigmoid Emax model is a four-parameter model

Fig. 9.2 Shapes of dose-response models in Table 9.2
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where E0 is the effect at dose 0 (the placebo response); Emax is the maximum effect
attributable to the drug; ED50 is the dose, which produces half of Emax; and k is the
slope factor (Hill factor). In practice, the three-parameter Emax model is typically
considered, assuming the Hill factor k = 1. As discussed in Thomas (2006), the
Emax model can fit very well for most of the actual dose-response data and we
illustrate this Emax model in this chapter for the Mod approach.

With the estimated Emax dose-response model, the doses of interest can be
easily estimated from this model. Among the doses of interest, the ED50 is the most
interested dosage to be estimated. It is in fact embedded in the Emax model and can
be obtained from the model fitting. Other doses of interest, such as ED90, the dose
that produces 90% of maximum effect (Emax) from the baseline (E0), which is
sometimes used as an estimate of the maximum effect dose (MaxED), can be also
estimated. In general, for any p%, the associated dosage of interest from Emax
model can be derived as:

EDp ¼ ED50
p

1� p

� �
ð9:3Þ

With this formulation, we these that ED20 = 0.25 � ED50 and
ED90 = 9 � ED50.

9.5.2 R Step-by-Step Implementations

We fit the Emax dose-response model to the “biom” data using the R function
“fitMod” as follows:

# fit the ''Emax'' model

>fitemax = fitMod(dose, resp, data=biom, model=''emax'')

With the Emaxmodel, themodel fitting can be graphically illustrated in Fig. 9.3 by
calling R function “plot” to the fitted model object “fitemax” above as follows:

# Call ''plot'' to plot the Emax fit

>plot(fitemax,CI=TRUE,plotData=''meansCI'',

xlab=''Dose'',ylab=''Response'')''

We used the option “CI = TRUE” to add the confidence interval for the fitting.
The option plotData = “meansCI” to add the dashed vertical lines for the confi-
dence intervals for the means. It can be seen from Fig. 9.3 that the Emax model
fitted the “biom” data very satisfactorily. In Fig. 9.3, the dashed vertical lines at
each observed dosages indicated the confidence intervals for the means at those

9.5 Modeling Approach (Mod) 169



observed dosages. The solid curve in the middle is the fitted Emax model, which is
closed to the observed mean responses at each observed dosages. The confidence
interval for the fitted Emax model can be seen from the upper and lower curved
lines about the fitted Emax model.

With the established PoC from previous studies, we go further to compare the
dosages against placebo and then test for differences them.. The R implementation
is as follows:

# call ''predict'' to estimate the difference

>EstEff = predict(fitemax, se.fit=TRUE,

doseSeq=Dosage, predType=c(''effect''))

# print the estimated differences and associated SE

>EstEff

# calculate the t-statistics and p-values

> t.estEff = EstEff$fit/EstEff$se.fit

# compute the p-values

> pval.estEff = 1-pt(t.estEff[-1], df=fitemax$df)

# print the p-values

> pval.estEff

Fig. 9.3 Model fitting to “biom” using Emax model where the curves as upper 95% CI, predicted,
lower 95% (from top to bottom)

170 9 Data Analysis for Dose-Ranging Trials with Continuous Outcome



In the above R code chunk, we used the R function “predict” with option
predType = c(“effect”) at the observed dosage levels at “Dosage”, which
would output the estimated effects (i.e., the estimated mean differences at each
dose-level relative to the placebo). We used the options “se.fit = TRUE” to
output the standard errors for these differences. Doing so gave the following esti-
mated mean differences to placebo and associated standard errors at the 5 dosage
levels in the “biom” data:

$fit

0.0000000 0.1941593 0.4361932 0.6033237 0.6533942

$se.fit

0.0000000 0.1654233 0.2111702 0.1837320 0.1868323

These values are then used to calculate the t-statistics and the associated p-values
at dose-levels of 0.05, 0.2, 0.6 and 1 by using the R function “pt”:

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

0.1216920183 0.0207664633 0.0007128031 0.0003555304

It can be seen that treatment effects start from dose 0.20 and indicates that the top
three doses of 0.2, 0.6 and 1 are all statistically different from placebo.

Using this estimated Emax dose-response model, we can easily estimate the
doses of interest along with their confidence intervals. For example, the estimation
of ED50 can be done by using the following step-by-step R code chunk:

# extract the estimated 3 parameters from Emax model fit

>est.parm = coef(fitemax)

# extract the SE for the 3 estimated parameters

>se.parm = diag(sqrt(vcov(fitemax)))

# estract the estimated ED50

> ED50 = est.parm[“ed50”]

> ED50

ed50

0.1421871

# extract the SE for ED50

> se.ED50 = se.parm[“ed50”]

> se.ED50

0.1804621
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# To construct 95% CI, extract the df from Emax model

> df.emax = fitemax$df

> df.emax

[1] 97

# calculate the 95% quantile

> q.975 = qt(0.975, df.emax)

> q.975

[1] 1.984723

# the lower bound for 95% CI

> low.ED50 = ED50-q.975*se.ED50

> low.ED50

-0.2159802

# the upper bound for 95% CI

> up.ED50 = ED50+q.975*se.ED50

> up.ED50

0.5003544

From this above illustration, we can see that the estimated ED50 = 0.142 has a
relative large standard error of 0.180. Since the degrees of freedom is 97 from the
Emax model, the 95% upper quantile would be 1.985. Therefore the with 95% CI
for the estimated ED50 can be calculated as (−0.216, 0.500). Since the dose cannot
be zero, we would use (0, 0.500) as the adjusted 95% confidence interval for ED50.

For any other dosages of interest, we can use the Eq. (9.3) with the estimated
ED50 and its standard error. This can be illustrated with the following R code
chunk:

#calculate EDp for p from 0.1 to 0.95 by 0.05

p=seq(0.1,0.95, by=0.05)

# use equation 9.3 to calculate EDp

EDp = ED50*p/(1-p)

# the se for EDp

se.EDp = se.ED50*p/(1-p)

# the lower 95% CI

low.EDp = EDp-q.975*se.EDp
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# the upper 95% CI

up.EDp = EDp+q.975*se.EDp

# adjust the EDp and its CI between the 0 and 1

EDp.adj = pmin(1,ED50*p/(1-p))

low.EDp.adj = pmax(0,EDp-q.975*se.EDp)

up.EDp.adj = pmin(1,EDp+q.975*se.EDp)

This calculation can be summarized in Table 9.3. As seen in Table 9.3, we
calculated the EDs for percentages from 10 to 95% by 5%. In Table 9.3, we
reported two panels. The middle panel reported the EDs and its 95% CI without
adjustment. For this dose-response data, the estimated standard error for ED50 is
relative large and yielded the lower CI bound to be negative, which was adjusted to
be zero to corresponding to the original dose-response design from 0 to 1 (see right
panel). Similarly, there are estimates for the upper CI bounds of EDp, which were
greater than 1; those values were also adjusted, this time to 1 as shown in the right
panel.

This result can be graphically illustrated in Fig. 9.4. In Fig. 9.4, the line linked
the dots in the middle is the adjusted estimated EDs and the dashed lines at the top
and the bottom represent the adjusted 95% CI bounds. Note that the lower 95% CI
line is horizontal at fixed value of 0.

9.6 MCP-Mod Approach

9.6.1 Introduction

As the third approach in analyzing dose-response trials, the MCP-Mod method is to
combine the MCP approach in Sect. 9.4 and Mod approach in Sect. 9.5 into one
unified approach by first selecting the dose–response model using MCP to protect
the FWER; then, the selected model is used to estimate the dose-response
relationship. This approach is flexible in the sense of model selection; on the other
hand, it pays the price of splitting a at the model selection step.

This MCP-Mod approach was developed by Bretz et al. (2005) and they further
developed an R package (i.e. “MCPMod”) (Bornkamp et al. 2009) which is
available at http://cran.r-project.org/web/packages/MCPMod/index.html. We do
not intend to replicate the theory in this chapter but instead concentrate on illus-
tration of this package for real data analysis. We again make use of the “biom” data
for this illustration. This illustration is largely described in Bornkamp et al. (2009)
and this chapter is a further application of this package.
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Table 9.3 Estimation of effective-doses at different percentages of p (EDp) and their 95% CI

Un-adjusted EDp estimation Adjusted EDp estimation

p EDp Lower CI Upper CI EDp Lower CI Upper CI

0.10 0.016 −0.024 0.056 0.016 0 0.056

0.15 0.025 −0.038 0.088 0.025 0 0.088

0.20 0.036 −0.054 0.125 0.036 0 0.125

0.25 0.047 −0.072 0.167 0.047 0 0.167

0.30 0.061 −0.093 0.214 0.061 0 0.214

0.35 0.077 −0.116 0.269 0.077 0 0.269

0.40 0.095 −0.144 0.334 0.095 0 0.334

0.45 0.116 −0.177 0.409 0.116 0 0.409

0.50 0.142 −0.216 0.5 0.142 0 0.5

0.55 0.174 −0.264 0.612 0.174 0 0.612

0.60 0.213 −0.324 0.751 0.213 0 0.751

0.65 0.264 −0.401 0.929 0.264 0 0.929

0.70 0.332 −0.504 1.167 0.332 0 1

0.75 0.427 −0.648 1.501 0.427 0 1

0.80 0.569 −0.864 2.001 0.569 0 1

0.85 0.806 −1.224 2.835 0.806 0 1

0.90 1.28 −1.944 4.503 1 0 1

0.95 2.702 −4.104 9.507 1 0 1

Fig. 9.4 The estimated EDs at different percentages and the associated 95% CIs
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9.6.2 Step-by-Step Implementations in R Package
“MCPMod”

The first step to use MCPMod is to select a candidate set of models for approxi-
mating the underlying dose-response relationship. The package gave a list of
candidate models to be used, such as linear model, log-linear model, quadratic
model, logistic model, exponential model, beta-model, Emax model, and sigmoid
Emax model. In addition to these models, the users can also define their own
non-linear models. The candidate models should be specified as a list with the list
elements named according to the underlying dose-response model function, along
with guesstimates or NULL for the model parameters. For illustration purpose, let’s
specify the candidate model lists for the “biom” dose-response data as follows:

# Specify the candidate model list

> modlist = list(linear=NULL, linlog=NULL,

betaMod = c(0.5, 1), logistic=c(0.25, 0.09),

quadratic=-1, exponential=1,

emax=c(0.05,0.2), sigEmax=c(0.1,1))

# Plot the model list

>plotModels(modlist, doses=Dosage, base = 0,

maxEff=1,scal = 1.2)

We deliberately select the candidate model list, which is different from the
models used in Bretz et al. (2005), to show flexibility of the MCPMod to perform in
model fitting and model selection. Bretz et al. (2005) used linear model, log-linear
model, two exponential models, two quadratic models and the Emax model,
whereas we select the linear model, log-linear model, beta model, logistic model,
quadratic model, exponential model, Emax model and sigmoid Emax model,
respectively, as seen in the above R code chunk.

We named the selected model list as an R object “modlist” and the numerical
values are the guestimated parameter initial values. This model list can be plotted
using the R function “plotModels” to be examined for different varieties of model
shapes and distributions. Figure 9.5 gives the plot for this candidate model list. It
can be seen that this candidate model list includes some monotonic increasing
functions (such as the linear model, log-linear model, logistic model, exponential
model, Emax model and sigmoid Emax model) as well as other shapes of models
(such as beta model and quadratic model).

The main function in this package is also named as “MCPMod.” It provides all
the functionalities of the full MCP-Mod approach and includes two key steps:

(1) MCP-step to calculate the optimal contrasts, critical value, contrast test statis-
tics and possibly p-values, and selection of the set of significant models,

(2) Modeling step for model fitting, model selection/model averaging, and dose
estimation.
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We call this function to analyze the “biom” and the following simple R code
chunk is all that is needed for MCP-Mod analysis:

# Fit the MCP-Mod

>fit.MCPMod = MCPMod(biom, modlist, alpha = 0.05, pVal = TRUE,

selModel = ''maxT'', doseEst = ''MED2'', clinRel = 0.4, dePar = 0.05)

# Print the summary of model fitting

>summary(fit.MCPMod)

We now explain some of the most important arguments used for the MCPMod
function. For a complete description of the MCPMod function, we refer to the online
documentation or use R “help” function as help(MCPMod). It can be seen from
the above R code chunk that the first argument is the dose-response data set (i.e.,
biom in this case) followed by the candidate model list (i.e., modlist defined
previously). The alpha is the level of significance for the multiple contrast test,
specified as alpha = 0.05. The pVal argument is to determine whether multi-
plicity adjusted p-value for the multiple contrast test should be calculated or not and
we specified it as pVal = TRUE. The selModel argument is a dose-estimation
criterion to determine how to select a dose-estimation model from the set of
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Fig. 9.5 Shapes of the candidate dose-response models
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significant models (if there are any significant models). Possible selections include
the following:

• “MaxT” to select the model corresponding to the largest t-statistic (i.e., the
maximum contrast test statistic which is the default setting),

• “AIC” to select the model with smallest AIC,
• “BIC” to select the model with smallest BIC, or
• “aveAIC” and “aveBIC” to select the model using a weighted average of the

models corresponding to the significant contrasts (see Buckland et al. 1997 for
details).

Among the four selections, the first three are specifically for each dose-response
models whereas the fourth selection is the so-called “model averaging,” which
averages AIC/BIC from all the fitted dose-response models based on the list of
model fitting with a weighted-average. As detailed in Buckland et al. (1997), the

model weights for model k (k = 1, …, K) are calculated as wk ¼ exp �0:5AICkð ÞPK

k¼1
exp �0:5AICkð Þ

for AICs. The same formula can be modified for BICs.
The argument doseEst is to determine the minimum effective dose (MinED)

once the overall dose-response relationship is established from an adequate model
fitting. The MinED is defined as the smallest dose that demonstrates a clinically
relevant and a statistically significant effect (denoted by D), specified as
“clinRel.” Four dose-estimation options can be selected. One option is called
“ED” to estimate the dose that gives a pre-specified percentage of the maximum
effect. Specifically, the target dose EDp is defined as the smallest dose that gives a
certain percentage p of the maximum effect D observed in the dose range of d1; dkð �.
The other three options are defined in Bretz et al. (2005) as “MED1,” “MED2” and
“MED3” with default selection of “MED2.”

The dePar argument is used to specify additional parameters for the four dose
estimators. For ED-type estimators, it determines which effective dose is estimated
with the default 0.5 to estimate ED50. For MED-type estimators, it determines the
confidence level c used in the estimator. The used confidence level is given by
1 – 2 * dePar in corresponding to 1 − 2c. In the R code chunk, we specified
doseEst = ''MED2'' with dePar = 0.05 and clinRel = 0.4 to use the
MED2 estimator with c = 0.05 and the clinical threshold D = 0.4 to estimate the
MED. This configuration means that we wish to determine the smallest dose such
that the lower limit of the 95% confidence interval for the predicted response is
greater than the predicted response for placebo and the point estimate is 0.4 above
the predicted placebo level.

With all those settings, the summary of the MCPMod model fitting is given by
print(fit.MCPMod) as follows:

Input parameters:

alpha = 0.05 (one-sided)

model selection: maxT
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clinical relevance = 0.4

dose estimator: MED2 (gamma = 0.05)

Optimal Contrasts:

Lin linlog emax1 emax2 betaMod logistic exp sigEmax quad

0 -0.437 -0.580 -0.799 -0.643 -0.714 -0.478 0.388 -0.723 -0.420

0.05 -0.378 -0.379 -0.170 -0.361 -0.043 0.435 -0.353 -0.287 -0.197

0.2 -0.201 -0.035 0.207 0.061 0.452 -0.147 -0.236 0.148 0.331

0.6 0.271 0.385 0.362 0.413 0.498 0.519 0.179 0.397 0.706

1 0.743 0.609 0.399 0.530 -0.192 0.540 0.798 0.465 -0.420

Contrast Correlation:

linear linlog emax1 emax2 betaMod logistic exp sigEmax quad

linear 1.000 0.961 0.766 0.912 0.229 0.945 0.992 0.848 0.071

linlog 0.961 1.000 0.903 0.990 0.489 0.976 0.922 0.958 0.323

emax1 0.766 0.903 1.000 0.949 0.774 0.828 0.705 0.986 0.526

emax2 0.912 0.990 0.949 1.000 0.606 0.956 0.860 0.988 0.431

betaMod 0.229 0.489 0.774 0.606 1.000 0.448 0.122 0.703 0.890

logistic 0.945 0.976 0.828 0.956 0.448 1.000 0.898 0.905 0.377

exp 0.992 0.922 0.705 0.860 0.122 0.898 1.000 0.789 -0.054

sigEmax 0.848 0.958 0.986 0.988 0.703 0.905 0.789 1.000 0.494

quad 0.071 0.323 0.526 0.431 0.890 0.377 -0.054 0.494 1.000

Multiple Contrast Test:

Tvalue pValue

emax2 3.464 0.001

sigEmax 3.462 0.001

linlog 3.364 0.002

emax1 3.339 0.003

logistic 3.235 0.003

linear 2.972 0.007

exponential 2.752 0.012

betaMod 2.402 0.030

quadratic 1.850 0.093

Critical value: 2.156

Selected for dose estimation:

emax

Parameter estimates:

emax model:

e0 eMax ed50
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0.322 0.746 0.142

Dose estimate

MED2,90%

0.17

The summary output includes five major parts:

(1) Input parameters for some information about important input parameters that
were used for MCPMod modelling.

(2) “Optimal Contrasts” and “Contrast Correlation” and
“Multiple Contrast Test” for the estimated optimal contrasts and the
contrast correlations together with the contrast test statistics associated with the
candidate models specified in the modlist.

(3) “Multiple Contrast Test” and “Critical value” are the contrast
test statistics, the multiplicity adjusted p-values from the multivariate t-dis-
tribution in Bretz et al. (2005), and the critical value associated with the can-
didate models specified in the modlist. It should be noted in this part that all
contrast tests with an adjusted p-value less than 0.05 or equivalently with t-
value > 2.18 (the critical value) can be declared as statistically significant, with
FWER maintained at 5% level. Of these nine candidate models only the
quadratic model is not statistically significant, which is then not used in the
reference set.

(4) ''Selected for dose estimation'' and ''Parameter esti-
mates'' for the best fitted dose-response model from the candidate models
and its parameter estimates. For these data, the best model is found to be the
“Emax” model with estimated parameters as E0 = 0.322, Emax = 0.746 and
ED50 = 0.142.

(5) “Dose estimate” for the target dose estimate from this MCP-Mod modeling,
which is 0.17 based on the settings in this modeling and close to the estimate
from MoD approach at Sect. 9.4.

The fitted model from this MCP-Mod can be graphically displayed with the plot
function in R as:

>plot(fit.MCPMod, CI=TRUE, doseEst = TRUE, clinRel = TRUE)

In the above R code, we plot the fitted MCPMod model with 90% confidence
interval (i.e., CI = TRUE) and display the estimated dosage (i.e.,
doseEst = TRUE) and specified clinical relevance threshold (i.e.,
clinRel = TRUE). Figure 9.6 is produced with this R code. In this plot, the mean
is plotted for each dosage (i.e., Group Means) with the estimated dose-response
model (the Emax model for these data) prediction (i.e., Model Predictions)
with 90% CI (i.e., 0.9 Pointwise CI). The estimated MED (i.e., Estim.
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Dose) is at the intersection of the estimated dose-response model and the clinical
relevance threshold (i.e., the dashed horizontal line).

In summary for the MCP-Mod approach, the best model selected for dose
estimation from the model list is the Emax model and the estimated significant
dosage is 0.17.

9.7 Discussion

In this chapter, we used a real data “biom” to illustrate the three approaches in
analysis of dose- ranging trials, namely, the MCP approach, the Mod approach, and
the combined MCP-Mod approach. We illustrated these procedures in a
step-by-step implementation in R so that the interested readers can follow and
understand the logic of these procedures and also use the R program for their own
dose-response clinical trials

With the established PoC using the trend test in Sect. 9.3, we introduced six
MCP procedures in Sect. 9.4 to control the FWER to identify the dosage which are
statistically significantly different from placebo. These six approaches are the
Fisher’s protected LSD (fixed sequence test), the Bonferroni test, the Dunnett test,
the Holm’s test, the Hochberg test, and gate-keeping test. Among the six MCP tests,
the Bonferroni test and the Dunnett test identified that the top two doses (i.e., 0.6

Fig. 9.6 Fitted Emax model with summary data
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and 1) were statistically significantly different from placebo and the rest of four tests
(i.e., the fixed sequence test, the Holm’s test, the Hochberg test and gatekeeping
test) identified the top three doses (i.e., 0.2, 0.6 and 1) were statistically significantly
different from placebo.

The Mod approach in Sect. 9.5 used the Emax model to estimate the
dose-response relationships. With the estimated dose-response Emax model, we
further illustrated the estimation of doses of interest along with their confidence
intervals. We also investigated other models, such as the log-linear and the sigmoid
Emax model (as an extension of Emax model to include another parameter) and
found that both models gave the same conclusions (not shown here due to the space
limitations).

The combined MCP-Mod approach in Sect. 9.6 selected the best model as the
Emax model from a list of dose-response models that included the linear model,
log-linear model, logistic model, exponential model, Emax model, the sigmoid
Emax model, the beta model, and the quadratic model. With the best model being
Emax, the statistically significant dose was identified as 0.17.
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Chapter 10
Data Analysis of Dose-Ranging Trials
for Binary Outcomes

10.1 Introduction

Continuing the data analysis for dose-ranging clinical trials from Chap. 9 for
continuous outcomes, we illustrate the analysis for binary data in this chapter. We
will use the same data from Chap. 9, but dichotomize the continuous response data
into binary data simply for the pedagogical purpose of continuing from the previous
chapter and illustrating the methods on analyzing dose-ranging clinical trial with
binary data.

The dataset “biom” was reported in Bretz et al. (2005) and involves a ran-
domized double-blind parallel group trial with a total of 100 patients being allo-
cated to either placebo or one of four active doses coded as 0.05, 0.20, 0.60 and 1,
with 20 per group. The response variable was assumed to be normally distributed
with larger values for a better outcome. There are two columns in “biom” named
“dose” for dose levels and “resp” for responses.

For illustration in this chapter, we dichotomize all responses from all dose levels
at the global median for the illustration of analyzing dose-ranging clinical trials with
binary data, which is commonly called “median-splitting” in dichotomization for
instructional purposes and continuation from the previous chapter. In Sect. 10.2, we
describe the process of dichotomization. The resultant binary data is then used for
binary dose-response modeling in Sect. 10.3 with four methods, which are
Pearson’s chi-squared test for proportions, Cochran-Armitage test for trend, and
two versions of logistics regression models to establish significant dose-response
relationship. In Sect. 10.4, we cover multiple comparisons and four multiple
comparison procedures, which include the Bonferroni adjustment procedure,
Bonferroni-Holm procedure, Hochberg procedure and the gate-keeping procedure.
We conclude this chapter with some discussions in Sect. 10.5. All the illustrations
are implemented in R with a detailed step-by-step fashion so that interested readers
can follow the models and the R program for their own dose-response modeling.
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10.2 Data and Preliminary Analysis

For these data, the global mean and median for the continuous outcome are 0.699
and 0.545, respectively, which can be seen from Fig. 10.1. With skewed distri-
bution, the sample median is more representative statistic to categorize the data and
we then use it to dichotomize the responses. The interested readers can use the
mean or any other values as cutoff to re-do the dose-response modelling and
multiple comparison in this chapter following the R code illustrated in the chapter.
We leave this as an exercise to interested readers.

Using the global median (0.545) as cutoff to dichotomize the response data with
response greater than 0.545 to represent “better” efficacy, we can produce a binary
dose-response data with 100 observations along with the observed continuous data
as follows:

# Use median as cutoff for dichotomize the response

>cutoff = 0.545

# create a binary response as ''cresp''
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Fig. 10.1 Dose-response data distribution. The vertical sold line is the data mean and the dashed
vertical line is the median. The curved line is the normal distribution using the data mean and
standard deviation
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>biom$cresp = ifelse(biom$resp > cutoff, 1,0)

# print the first 5 observations using ''head'' function

>head(biom, n = 5)

dose resp cresp

1 0.05 1.35380098 1

2 0.05 0.15498024 0

3 0.05 -0.07083804 0

4 0.05 0.58374091 1

5 0.05 0.96259853 1

In the above R code chunk, we employed the R function ifelse for this
dichotomization at the cutoff = 0.545, which produced a binary response variable
named as cresp. It can be seen from the above observations, “cresp” is 1 (i.e.,
“better”) if “resp” is greater than the median of 0.545; otherwise the “cresp” is 0
(i.e., “worse”). A contingency table can be created to look at the binary data
distribution using the following R code chunk:

# call R ''table'' function to create a summary data ''dat.tab''

>dat.tab = data.frame(table(biom$dose, biom$cresp))

# create the variable names for the table

>colnames(dat.tab) = c(''dose'',''better'',''cresp'')

# print the summary table

> dat.tab

dose better cresp

1 0 0 14

2 0.05 0 14

3 0.2 0 9

4 0.6 0 7

5 1 0 6

6 0 1 6

7 0.05 1 6

8 0.2 1 11

9 0.6 1 13

10 1 1 14

We can see from this output that there are 50 (= 6 + 6 + 11 + 13 + 14) patients
who are categorized into “better” category and 50 (= 14 + 14 + 9 + 7 + 6) who are
categorized into “worse” category corresponding respectively to dosages 0, 0.05,
0.2, 0.6, and 1. The result of this dichotomization can be summarized into
Table 10.1 and compared with Table 9.1 in Chap. 9.

This table can be then used to create a contingency table using the R function
''xtabs'' as follows:
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> out.dat = xtabs(cresp*dose+better, dat.tab)

> out.dat

better

dose 0 1

0 14 6

0.05 14 6

0.2 9 11

0.6 7 13

1 6 14

This contingency table can then be used to display the binary data distribution using
the R function “dotchart” and “mosaicplot” as follows to produce Fig. 10.2:

Table 10.1 Binary
dose-response data
dichotomized from “biom”

Dose Better (coded 1) Worse (coded 0)

0.00 6 14

0.05 6 14

0.20 11 9

0.60 13 7

1.00 14 6
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Fig. 10.2 The binary data distribution
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# call R function ''dotchart'' to generate the dotplot

>dotchart(out.dat)

# call R function ''mosicplot''

>mosaicplot(out.dat,color=T,las=1,main ='''',xlab=''Dose'',

ylab=''Response: 1 for Better Outcome'')

In Fig. 10.2, the left panel is the “dotchart” for the number of patients of
binary response of 1 (i.e., “better”) and 0 (i.e., “worse”) from the total 20 patients at
each dosage. The right panel is the corresponding “mosicplot” for the binary
distribution. It can be seen from Fig. 10.2 that the proportions are the same for
dosages 0 and 0.05 and then jump at dosages 0.2, 0.6 and 1. This figure is the
graphical presentation for the binary data resulted from the dichotomization with 6,
6, 11, 13, and 14 patients in the ''better'' category and 14, 14, 9, 7 and 6 in the
“worse” category corresponding respectively to dosages 0, 0.05, 0.2, 0.6 and 1.

10.3 Modeling Approach

In modeling a dose-response relationship, we first test whether there is a statistically
significant dose-response monotone relationship, with a more favorable response
from lower to higher doses. Corresponding to these data, the monotonicity can be
cast into a null hypothesis (H0) of equal probability against the alternative
hypothesis (H1) of a monotone pattern among the five dose groups as formulated
below:

H0 : p0 ¼ p0:05 ¼ p0:2 ¼ p0:6 ¼ p1 versus H1 : p0 � p0:05 � p0:2 � p0:6 � p1
ð10:1Þ

At least one strict inequality from the above H1 should be held true to ensure
monotonicity. There are several methods which can be used for this hypothesis test
and we demonstrate four commonly used methods in this section.

10.3.1 Pearson’s v2-Test

The most commonly used method for binary responses is the Pearson’s v2-test
(chi-squared test) for categorical statistical analyses of contingency table data as
described in Pearson (1900), Wilson (1927), Newcombe (1998a, b), and Agresti
(2012). For this method, the first step in the test is to calculate the value of the
chi-square statistic. It is obtained by (a) forming the difference between the
observed number of frequencies and the expected number of frequencies (under the
null hypothesis of no difference among the groups being compared) in each cell
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of the contingency table, (b) squaring each difference, (c) dividing each squared
difference by the expected number of frequencies, and (d) summing the results. The
next step is to determine the degrees of freedom of the test, which is the total
number of dosages less than 1 (i.e., 4 = 5 − 1 in these data).

The formula of the test statistic is

v2 ¼
X
i

Oi � Eið Þ2
Ei

; ð10:2Þ

where Oi is the observed frequency in the ith cell of the contingency table, Ei is the
expected (theoretical) frequency under the null hypothesis of no difference in
proportions, and the

P
denotes summation. Asymptotically to the total number of

counts, the distribution of the test statistic is a chi-square distribution. The
“asymptotical” approximation to the chi-square distribution breaks down if
expected frequencies are too low. In this case, a better approximation is obtained by
using Yates’ correction for lack of continuity. This is accomplished by reducing the
absolute value of each difference between observed and expected frequencies by 0.5
before squaring. This v2test is implemented in R as function “prop.test.” We
can call this function to test this hypothesis as follows:

# ''table'' the original data

>dat = table(biom$dose, biom$cresp)

# make a data frame with the tabled data

Dat = data.frame(dose = c(0,0.05,0.2,0.6,1),

worse=dat[,1],better=dat[,2],tot=dat[,1]+dat[,2])

# print the resultant data

> dat

dose worse better tot

0 14 6 20

0.05 14 6 20

0.2 9 11 20

0.6 7 13 20

1 6 14 20

# call ''prop.test'' for to test the hypothesis

prop.test(dat$better, dat$tot, alternative = c(''greater'') )

This “prop.test” can then produce the output as follows:

5-sample test for equality of proportions without continuity

correction
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data: dat$better out of dat$tot

X-squared = 11.6, df = 4, p-value = 0.02059

alternative hypothesis: two.sided

sample estimates:

prop 1 prop 2 prop 3 prop 4 prop 5

0.30 0.30 0.55 0.65 0.70

It can be seen from the output that the chi-square statistic is 11.6 with 4 degrees of
freedom, which yields a statistically significant p-value of 0.021. From this test the
null hypothesis of equal proportions is rejected in favor of the alternative that at
least one proportion differs from another. In fact this can be seen from the estimated
sample estimates of these five proportions as {0.30, 0.30, 0.55, 0.65, 0.70} show a
monotonic increasing trend.

10.3.2 Cochran-Armitage Test for Trend

The second method is the well-known Cochran-Armitage test for trend named for
William Cochran and Peter Armitage. As detailed in Cochran (1954) and Armitage
(1955), the Cochran–Armitage test for trend is designed for categorical data anal-
ysis with the aim to assess the association between a variable with two categories
and a variable with several categories. It modifies the Pearson chi-squared test
described previously to incorporate a suspected ordering in the effects of these
categories of the second variable, which can be used specifically for dose-response
relationships using a binary outcome. Specifically to these data, there are doses of a
treatment ordered from “low” to “high” in five categories as 0 (placebo), 0.05, 0.20,
0.60, and 1.

We hypothesize that the treatment benefit is monotonic and cannot become
smaller as the dose increases. The Cochran-Armitage test is then designed to test the
presence of this trend. Compared with the Pearson’s chi-squared test, the trend test
has higher power when the hypothesized trend is correct. This Cochran-Armitage
test is implemented in the R package “coin” with a function “indepen-
dence_test” as follows:

# load the ''coin'' package

> library(''coin'')

> perform Cochran-Armitage trend test for proportions

> independence_test(cresp*dose, data=biom, teststat=''quad'')

where “teststat=”quad” indicates that the type of test statistic is in quadratic form.
The output of this test can be presented as follows:
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Asymptotic General Independence Test

data: cresp by dose (0 < 0.05 < 0.2 < 0.6 < 1)

chi-squared = 10.474, df = 1, p-value = 0.001211

It can be seen from the output that the associated p-value from this particular type
of chi-squared test is 0.0012, which indicates that there is a significantly significant
monotonic increasing dose-response trend.

10.3.3 Logistic Regression with Dose as Continuous
Variable

The third method uses logistic regression as described in McCullagh (1980), Chen
and Peace (2011) and Chen et al. (2017) with dose as a continuous variable
(di, i = 1, …, 100 subjects) to the observed proportions (pi) as follows:

ln
pi

1� pi

� �
¼ b0 þ b1di: ð10:3Þ

In this model, the parameter b0 is the intercept parameter to represent dose at
placebo and b1 is the slope parameter to be tested which represents the log
odds-ratio for one-unit increase of dose. The maximum likelihood estimation can be
used to estimate the model parameters and make statistical inferences, which can be
performed by calling the R function “glm”. In this model, the monotonic
dose-response relationship can be characterized to test H0: b1 = 0 versus H1:
b1 > 0, so rejecting H0: b1 = 0 would imply that higher doses will produce more
favorable response. Maximum likelihood estimation can be used to estimate the
model parameters and make statistical inferences which can be performed by
calling the R function “glm” as follows:

# call `̀ glm'' for logistic regression and name it as `̀ m3''

> m3 = glm(cbind(better,worse)*dose,

family=binomial,data=dat)

# print the model fit

> summary(m3)

The summary of parameter estimates can be shown as:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.6222 0.2907 -2.141 0.03230

Dose 1.7196 0.5801 2.964 0.00304
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It can be seen that the estimated slope coefficient b1ð Þ is 1.719 (which is posi-
tive) with standard error of 0.58, producing a statistically significantly p-value of
0.003 and indicating a monotonic increasing responses.

Based the model (10.3), the estimated or predicted response rates are 0.349, 0.369,
0.431, 0.601 and 0.750 corresponding to doses of 0, 0.05, 0.2, 0.6 and 1, respectively,
and compare with the observed response rates of 0.30, 0.30, 0.55, 0.65 and 0.70, as
shown in Fig. 10.3. In Fig. 10.3, the dots are the observed response rates, the solid line
represents the estimated (predicted) response rates, and the dashed lines represent the
associated 95% confidence intervals for true response rates.

With the estimated parameters from the dose-response model in Eq. (10.3), we
can easily estimate the doses of interest, such as effective dose of ED50 as the
effective dose that produces 50% probability of success:

ED50 ¼ �
cb0cb1 ð10:4Þ

For any other effective doses EDp at probability p, the formula in Eq. (10.4) can be
extended as follows:

EDp ¼ logit pð Þ � cb0cb1 ð10:5Þ

Fig. 10.3 Observed and estimated dose-response relationship
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The standard errors for these effective doses in Eqs. (10.4) and (10.5) can be
determined from the delta method which is to expand the Eq. (10.5) by Taylor
series to the order of 1. This estimation is implemented in the R MASS library with
the function dose.p. For illustration purposes, we can call this function to estimate
the ED40, ED50 and ED60 as follows:

# load the MASS library

> library(MASS)

# call ''dose.p'' function

> dose.p(m3, p=c(0.4,0.5,0.6))

Dose SE

p = 0.4: 0.1260292 0.1429848

p = 0.5: 0.3618175 0.1222877

p = 0.6: 0.5976058 0.1487271

Therefore the estimated ED40, ED50 and ED60 are 0.126, 0.362 and 0.598,
respectively, with corresponding standard errors of 0.143, 0.122 and 0.149.

10.3.4 Logistic Regression with Dose as Categorical
Variable

The fourth method is to use logistic regression as follows:

log
pi

1� pi

� �
¼ b0:00 þ b0:05 þ b0:20 þ b0:60 þ b1:00 ð10:6Þ

In this model, dose is treated as categorical so we estimate a parameter for each
dose-level where b0:00 represents the reference parameter corresponding to dose at
placebo, and the rest of parameters of b0:05; b0:20; b0:60; b1:00 represent the differ-
ences from placebo. All these parameters are in fact log odds ratios. The maximum
likelihood estimation can be used to estimate the model parameters and make
statistical inferences, which can be performed by calling the R function “glm” and
specifying the dose as factor in following R code chunk:

# call ''glm'' for logistic regression and name it as ''m2''

> m2 = glm(cbind(better,worse)*factor(dose),

family=binomial,data=dat)

# print the model fit

> summary(m2)
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The summary of parameter estimates can be shown as follows:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept)- 8.473e-01 4.880e-01 -1.736 0.0825

(dose)0.05 5.417e-16 6.901e-01 0.000 1.0000

(dose)0.2 1.048e+00 6.634e-01 1.580 0.1142

(dose)0.6 1.466e+00 6.767e-01 2.167 0.0302

(dose)1 1.695e+00 6.901e-01 2.456 0.0141

It can be seen from the column of “Pr(>|z|)” that the two lower doses of 0.05
and 0.2 are not statistically significantly different from placebo, but the two higher
doses of 0.6 and 1 are in this two-sided hypothesis test. These 2-sided p-values for
testing H0 : pi ¼ p0 versus H1 : pi 6¼ p0 can be converted to one-sided p-values, by
dividing by 2, for testing H0 : pi ¼ p0 versus H1 : pi [ p0 as 0.5000, 0.0572,
0.0155 and 0.0070 for doses 0.05, 0.2, 0.6 and 1, respectively. The pattern of
statistical significance for these pair-wise comparisons still holds in the one-sided
hypothesis testing, which is not statistically significantly better than the placebo for
the two lower doses of 0.05 and 0.2 but statistically significantly better for the two
higher doses of 0.6 and 1. Based on this model, the estimated log odds are −0.847,
−0.847, 0.201, 0.619 and 0.847 corresponding to doses of 0, 0.05, 0.2, 0.6 and 1,
respectively, which again indicated monotonic increasing responses. Note that these
one-sided p-values will be used in Sect. 10.4 for illustration of multiple
comparisons.

10.4 Multiple Comparisons

10.4.1 The Raw p-Values

Section 10.3 covers the analysis when all treatment groups are included in one
analysis. This current section will discuss how to handle pairwise comparisons of
each dose against placebo to control using the family-wise error rate (FWER). With
multiple doses are included in a dose-ranging trial, the goal of this section is to test
the efficacy of each dose against the control (often a placebo) and the statistical
analyses should be adjusted for multiple comparisons, focus of this section. It is
now well-recognized that the primary objective of a multiple-testing procedure is to
control the Type-I error rate (a) as the overall probability of erroneously rejecting at
least one null hypothesis irrespective of which and how many of the null
hypotheses of interest are in fact true.
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For this purpose, the model in Sect. 10.3.4 can be employed for this multiple
adjustment for pair-wise comparisons. As seen in Sect. 10.3.4, the estimated log
odds (in column “Estimate”) for placebo is −0.847, which is not statistically
significant (p-value = 0.0825). The log odds1 ratios to for the rest of the dosages of
0.05, 0.2, 0.6 and 1 (relevant to placebo) are respectively 0.000, 1.048, 1.466 and
1.695 (as shown in column “Estimate”), with the associated standard errors of
0.690, 0.663, 0.677 and 0.690 (as seen in column “Std. Error”), which resulted
in Wald z statistics of 0.000, 1.580, 2.167 and 2.456 (as seen in column “z
value”). The two-sided p-values for testing H0 : pi ¼ p0 versus H1 : pi 6¼ p0 on
the log odds scale are 1.000, 0.114, 0.030 and 0.014 (as seen in column ''Pr(>|z|)'').
The associated one-sided p-values for testing H0 : pi ¼ p0 versus H1 : pi [ p0 on
the log-odds scale become 0.5000, 0.0571, 0.0151 and 0.0070 for doses 0.05, 0.2,
0.6 and 1, respectively.

To control Type 1 error rate for these tests, we focus on the MCP approaches to
adjust p-values significance levels from these one-sided p-values for comparing
each dose to the placebo. We will assume throughout in Sect. 10.4 that the overall
Type 1 error rate is to be controlled at the 5% level. We can extract these p-values
from the logistic regression in Sect. 10.3.4 as follows:

# unadjusted p-values on pair-wise comparison

# use ''-1'' to remove the associated p-value for placebo

> raw.pval = summary(m2)$coef[-1,''Pr(>|z|)'']/2

# print the raw p-values

> raw.pval

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

0.500000000 0.057091821 0.015117195 0.007030475

10.4.2 Bonferroni Adjustment

Because of its simplicity, Bonferroni adjustment is often used despite its conser-
vativeness. Under this approach, the overall Type I error rate is adjusted to the
number of tests. That is, in the current example, we will compare each raw p-value
to 0.0125 (= 0.05/4) since there are 4 comparisons. Comparing the unadjusted raw
(observed) p-values to 0.0125, we can see that only the p-value associated with
dose of 1 is smaller than 0.0125. Thus, applying the Bonferroni procedure, we can
conclude only that the highest dose (i.e., dose = 1) produces a significantly better
result than the placebo.

Using the R mutoss library, we can call R function bonferroni as follows:
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Some explanations are needed for this R implementation. Instead of adjusting
the FWER (a) to 0.0125, the R bonferroni function expands the unadjusted raw p-
values (i.e., 0.500, 0.057, 0.015, 0.007) by the number of comparisons annotated as
$adjPValues in the output as 1.000, 0.228, 0.060, and 0.028 and compares these
adjusted p-values to the overall FWER (a = 0.05), where only the p-value at dose 1
is greater than 0.05. Therefore the bonferroni function outputs which comparison is
rejected as annotated as $rejected to be TRUE at dose = 1. The entire procedure are
summarized as follows:

Number of hyp.: 4

Number of rej.: 1

rejected pValues adjPValues

1 4 0.007030475 0.0281219

10.4.3 Bonferroni–Holm Procedure

The Bonferroni-Holm procedure begins with ordering the unadjusted p-values from
the smallest to the largest and then compares these ordered p-values with a sig-
nificance level that is FWER (at a = 0.05)] divided by the number of hypotheses
remaining to be tested at each stage until the p-value under comparison becomes
larger than the current significance level. When this occurs, the procedure would
stop and conclude significance for all comparisons before the present one.
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Corresponding to our data, we can call “sort” function to sort the unadjusted p-
values as follows:

# call ''sort'' function

> sort(raw.pval)

(dose)1 (dose)0.6 (dose)0.2 (dose)0.05

0.007030475 0.015117195 0.057091821 0.500000000

This sorting of the unadjusted p-values just happened to result in reversing the
order of the dosages from highest to lowest doses in these data, although this
ordering of dose may not be the case for other dose-ranging trials. Then we proceed
to compare the smallest p-value (i.e., 0.007 at dose 1) on whether it is smaller than
0.0125 (= 0.05/4, as there are 4 comparisons in the first step), which is true. We
then proceed with a comparison to the next smallest p-value, which is 0.015 at dose
0.6, with 0.0167 (= 0.05/3, given 3 remaining comparisons), which is again true.
We continue with this procedure to compare the next smallest p-value, which is
0.057 at dose 0.2 to 0.025 (= 0.05/2, at the remaining two comparisons), and can
see that this is not true. We then stop the procedure and conclude that dose 1 and
dose 0.6 are statistically significant. This Bonferroni–Holm procedure is imple-
mented in R holm function and can be illustrated as follows:

# call ''holm'' function

> Holm.MCP = holm(raw.pval, alpha)

Holm’s (1979) step-down Procedure

Number of hyp.: 4

Number of rej.: 2

rejected pValues adjPValues

1 4 0.007030475 0.02812190

2 3 0.015117195 0.04535158

# print the output

> Holm.MCP

$adjPValues

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

0.50000000 0.11418364 0.04535158 0.02812190

$rejected

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

FALSE FALSE TRUE TRUE
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$criticalValues

[1] 0.01250000 0.01666667 0.02500000 0.05000000

$errorControl

An object of class ''ErrorControl''

Slot ''type'':

[1] ''FWER''

Slot ''alpha'':

[1] 0.05

Again notice that the R implementation is to expand the unadjusted p-values by
the number of comparisons remaining and then to compare these adjusted p-values
to the overall FWER at 0.05.

10.4.4 Hochberg Procedure

As one of the most popular multiple-comparison procedures in biopharmaceutical
applications, the Hochberg procedure begins by ordering the unadjusted p-values
from the largest to the smallest and then compares these p-values to a decreasing
significance level given by 0.05/k at the kth step. Different from the
Bonferroni-Holm procedure, the Hochberg procedure continues the testing until a
statistical significance is reached; otherwise it will be concluded that none of these
doses is statistically different from the placebo.

For our data, the unadjusted raw p-values have already been in the order from
largest to the smallest corresponding to the doses at 0.05, 0.2, 0.6 and 1. The largest
p-value of 0.5 at dose 0.05 is then compared with 0.05, which is larger than 0.05.
We proceed to the second highest p-value at 0.057 at dose 0.2. We compare this p-
value to 0.025 (= 0.05/2, at the second step) on whether it is larger, which is true
again. We continue with the next smallest p-value, given by the third dosage. The
smallest p-value at this dose is 0.015, which is used to compare with 0.0167
(0.05/3, at the third step). Since 0.015 is now smaller than 0.0167, we then stop and
conclude a statistically significant difference between the dose at 0.6 and the pla-
cebo, which also implies automatically that there is a statistically significant dif-
ference between the higher dose at 1 and placebo. This Hochberg procedure is
implemented in R hochberg function as follows:

# Call ''Hochberg'' function

> Hoch.MCP = hochberg(raw.pval, alpha)
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Hochberg’s (1988) step-up procedure

Number of hyp.: 4

Number of rej.: 2

rejected pValues adjPValues

1 4 0.007030475 0.02812190

2 3 0.015117195 0.04535158

From the above output, we can see that there are two rejected tests from the four
hypotheses, where the rejected hypotheses are at the third and fourth tests. We can
then print the detailed results from this procedure as follows:

# print the detailed output

> Hoch.MCP

$adjPValues

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

0.50000000 0.11418364 0.04535158 0.02812190

$criticalValues

[1] 0.01250000 0.01666667 0.02500000 0.05000000

$rejected

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

FALSE FALSE TRUE TRUE

$errorControl

An object of class ''ErrorControl''

Slot ''type'':

[1] ''FWER''

Slot ''alpha'':

[1] 0.05

Again notice that the R implementation is to expand the unadjusted p-values by the
number of steps. These adjusted p-values are then compared with the overall FWER
at 0.05.

10.4.5 Gatekeeping Procedure

As discussed in Bauer and Budde (1994) and Bauer et al. (1998), this procedure is
the so-called pre-determined step-down or the hierarchy procedure. Specifically,
this procedure follows a pre-specified sequence where the comparison is to be
conducted at the FWER of 0.05 level at each stage and continues as long as the
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p-value is significant at the 0.05 level. The comparison is to be stopped whenever a
p-value is above 0.05. In this sense, all comparisons are conducted at the level of
0.05, if the previous null hypothesis was rejected.

Because of this step-down procedure, it is very commonly used in dose-response
analysis when a prior monotonic dose-response relationship can be assumed. For
the postulated monotonic dose-response relationship, it is then logical to start with
the highest dose by comparing the highest dose with the control and step-down on
the doses against control.

In our monotonic example, we sort the unadjusted p-values from highest dose to
lowest dose and compare these sorted p-values with 0.05 as the testing sequence.
We can see that the p-value at the highest dose (i.e., dose = 1) is 0.007, which is
smaller than 0.05, and we proceed to the next highest dose at dose = 0.6, where the
p-value is 0.015, which is then less than 0.05. We again proceed to the next dose
(0.2), where the p-value is 0.057, which is greater than 0.05. The procedure would
stop here and conclude that the dose at 0.6 is statistically significant as is the dose at
1.0, the same conclusion reached as the previous procedures. In general, if a
monotonic dose-response relationship cannot be assumed at the study design stage,
the advice is not to use the gate-keeping procedure.

10.4.6 MCP Using p-Values
from Cochran-Mantel-Haenszel Test

Cochran-Mantel-Haenszel (CMH) test is a commonly used test in biopharmaceu-
tical industry. In dose-ranging study, the common practice is to perform a CHM
analysis with only placebo and one dose, by excluding data from other dose
treatment groups. Corresponding to these data, we would perform four CMH tests
for dose combinations of (0, 0.05), (0, 0.2), (0, 0.6) and (0, 1). To limit the length of
this chapter, we illustrate the CMH test for the last combination of (0, 1) and leave
the other three combinations for interested readers.

To perform the CMH for the dose combination of (0,1), we first extract the
corresponding data using following R code:

# Extract the data from ''biom''

> dd = biom[(biom$dose==0)| (biom$dose==1),]

Since we have 20 observations for each dose level, we would have 40 observations
with three variables for this dose combination which can be seen as follows:

> dim(dd)

[1] 40 3
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We can then create a contingence table using R function “table” as follows:

> # using contingency table, first create the table

> dat.tab =data.frame(table(dd$dose,dd$cresp))

# name the variables from the variables

> colnames(dat.tab) = c(''dose'',''better'',''cresp'')

# print the contingence table

> dat.tab

dose better cresp

0 0 14

1 0 6

0 1 6

1 1 14

With this output, we can create a data frame to be used for R function
“cmh_test”. This can be done by using R function “xtabs” as follows:

# call ''xtabs'' to create data frame

> out.dat = xtabs(cresp*dose+better, dat.tab)

# print the data frame

> out.dat

better

dose 0 1

0 14 6

1 6 14

# now call ''cmh_test'' to do the CMH test

> cmh_test(out.dat)

Asymptotic Generalized Cochran-Mantel-Haenszel Test

data: better by dose (0, 1)

chi-squared = 6.24, df = 1, p-value = 0.01249

It can be seen the two-sided p-value from CMH test for this dose combination is
0.01249, which is close to the p-value (i.e., 0.0141) from the logistic regression in
Sect. 10.3.4. The associated one-side p-value is then 0.006245, which corresponds
to the last value of 0.007030475 in Sect. 10.4.1.

Readers can follow the above steps for other dose combinations which would
produce the one-sided raw p-values as follows:
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> raw.pval

(dose)0.05 (dose)0.2 (dose)0.6 (dose)1

[1] 0.500000 0.057150 0.014315 0.006245

It can be seen that these raw p-values are quite close to the raw p-values at the
end of Sect. 10.4.1 from the logistic regression in Sect. 10.3.4, especially for the
first two dose combinations of (0, 0.05) and (0, 0.2).

With these raw p-values from CMH, we can reproduce the adjusted p-values in
multiple comparison for procedures from Sect. 10.4.2 to Sect. 10.4.5. The detailed
methodological explanations can be seen in Sects. 10.4.2–10.4.5 and we only
re-produce the results here as comparison.

Corresponding to the procedure of Bonferroni adjustment at Sect. 10.4.2, the
output is as follows:

> Bon.MCP = bonferroni(raw.pval, alpha, silent=FALSE)

Bonferroni correction

Number of hyp.: 4

Number of rej.: 1

rejected pValues adjPValues

4 0.006245 0.02498

# print the detailed Bonferroni adjustment

> Bon.MCP

$adjPValues

[1] 1.00000 0.22860 0.05726 0.02498

$rejected

[1] FALSE FALSE FALSE TRUE

As seen from above, even the values are slightly different, the conclusion is the
same that only dose at 1 is statistically significantly different from placebo.

Corresponding to the Bonferroni-Holm procedure in Sect. 10.4.3, the R output is
as follows which gives the same conclusion:

# call the Bonferroni-Holm procedure

> Holm.MCP = holm(raw.pval, alpha)

Holm’s (1979) step-down Procedure

Number of hyp.: 4

Number of rej.: 2

rejected pValues adjPValues

4 0.006245 0.024980

3 0.014315 0.042945
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> Holm.MCP

$adjPValues

[1] 0.500000 0.114300 0.042945 0.024980

$rejected

[1] FALSE FALSE TRUE TRUE

$criticalValues

[1] 0.01250000 0.01666667 0.02500000 0.05000000

Corresponding to the Hochberg procedure in Sect. 10.4.4, the R output is as
follows which gives the same conclusion:

# call Hochberg procedure

> Hoch.MCP = hochberg(raw.pval, alpha)

Hochberg’s (1988) step-up procedure

Number of hyp.: 4

Number of rej.: 2

rejected pValues adjPValues

1 4 0.006245 0.024980

2 3 0.014315 0.042945

> Hoch.MCP

$adjPValues

[1] 0.500000 0.114300 0.042945 0.024980

$criticalValues

[1] 0.01250000 0.01666667 0.02500000 0.05000000

$rejected

[1] FALSE FALSE TRUE TRUE

Again, corresponding to the gatekeeping procedure in Sect. 10.4.5, the R output is
as follows which gives the same conclusion:

# GateKeeping by Dmitrienko et al 2006:

> GK.MCP = raw.pval < alpha

> GK.MCP

[1] FALSE FALSE TRUE TRUE
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10.5 Discussion

In this chapter, we illustrated both the modeling approach and the multiple-testing
approach using the same dataset from Chap. 9 by dichotomizing the response data
at the global median to illustrate the analysis and interpretation of a binary
dose-response relationship. In modeling approach, we illustrated 4 methods to
analyze dose-ranging studies and to establish a monotonic dose-response
relationship. We further illustrated the estimation of effective doses within the
dosing range that has a desirable probability to produce certain response using the
fitted logistic regression model.

As illustrated when multiple doses are included in a dose-ranging trial, another
question is to test the efficacy of each dose against the control (often a placebo)
where the statistical analyses should be adjusted for multiple comparisons to control
the family-wise Type 1 error rate. Many multiple testing procedures have been
proposed in clinical trials which can be classified generally into two classes. The
first class includes procedures that are developed specifically for continuous data,
such as the Dunnett’s method (1955) discussed in Chap. 9. The second class is for
procedures that are ''distributional free'' in the sense that their implementation does
not depend on any particular distributional assumption, which is directly to use the
unadjusted p-values from each test. For this, the procedures in the second class are
readily applicable to categorical data, which is why we illustrated four procedures
—Bonferroni, Bonferroni-Holm, Hochberg and the gate-keep procedure—in this
chapter.

Throughout the chapter, the analysis and illustration of data were implemented
in R software in a step-by-step fashion, so that interested readers can follow these
steps to analyze their own data. For readers interested in SAS, please see
Chuang-Stein and Li (2006).

As a final discussion, we would like make it clear that we do not promote
routinely dichotomizing continuous data into binary data, which was done here
simply for pedagogical purposes. Distinctions exist from strict binary responses
(e.g., dead or alive) versus artificially created binary responses from continuous
outcomes. Debating on the pros and cons of dichotomization, Lewis (2004) stated
that clinical researchers often simplify and dichotomize continuous data to make
sense of unfamiliar clinical measurements and treatment effects of uncertain
implication with a defendable threshold value based on continuous measurements.
Well-known examples in dichotomization in real life can be understood to
dichotomize the diastolic blood pressure at 80 mmHg as a borderline to determine
normal/high blood pressure and a total cholesterol level at 200 mg/dL as a bor-
derline to determine the desirable/undesirable cholesterol level.

The cons for this dichotomization is easily seen to be too crude in real practice,
but the pros can also be seen as this simplicity can really help human minds to make
decisions easily since human decisions are often indeed binary in nature. In an
extensive examination, MacCallum et al. (2002) concluded and warned that
dichotomization has substantial negative consequences in losing of information
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about individual differences and loss of effect size and power in statistical analysis
among other negative consequences. Further discussions can be seen from Snapinn
and Jiang (2007) and Uryniak et al. (2012). We encourage the readers to study these
papers and be cautious about dichotomizing the data for statistical analysis. In this
chapter, we dichotomize the `̀ biom'' data just for the purpose of continuation from
the previous chapter and illustrate the methods for analyzing the dose-ranging
clinical trials.
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Chapter 11
Bayesian Approach

11.1 Introduction

Generally there are two approaches to statistical inference, namely the frequentist
and Bayesian approaches. The frequentist approach considers probability as a
limiting long-run frequency, whereas the Bayesian approach regards probability as
a measure of the degree of belief about the value of an unknown parameter. As
such, Bayesian statistics expresses uncertainty about unknown parameters proba-
bilistically. Bayesian inference is a method of updating the probability for a
hypothesis as more evidence or information becomes available. In this chapter, we
will illustrate the Bayesian concept, update and inference by using a simple
example. We will also discuss its application to Phase II clinical trials by continuing
the dose-finding example used in Bretz et al. (2005) from Chap. 9.

11.1.1 An Example on Bayesian Concept

Let’s consider a simple open-label clinical trial that involves only one treatment Q
to treat headache (referred as the Q example hereafter). There was some anecdote
evidence that treatment Q is effective. So we may conduct a trial to test the
hypothesis of Q’s response rate p using a number of subjects. Furthermore, let’s
recruit subjects one at a time so each subject’s response to Q is available before the
next subject is recruited. Before the trial started, one may have some subjective
opinion about Q. For example, Q can be perceived just like a popular
over-the-counter (OTC) medicine for headache with a strong response rate, or Q is
similar to an herb remedy that only works for certain people. Suppose we have three
researchers, Captain is a strong believer in Q and perceives the actual p = 0.9,
Spock is neutral and perceives that p = 0.5, while Yeoman is strongly suspicious
and perceives the actual p = 0.1.
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Now if the first outcome is positive, Captain might feel fine about his perception
and Yeoman might think that it just happened to be one of those rare positive cases.
If the second outcome is also positive, Captain might become more confident, while
Spock might still feel fine for his neutral perception but Yeoman might become less
confident about her perception. If the third outcome is negative, Captain might lose
a little confidence while Spock and Yeoman might gain some confidence. On the
other hand, if the third outcome is still positive, Captain might gain more confi-
dence while Spock and Yeoman might lose some confidence. This can continue
until the trial is over. As one can imagine, when information accumulates, the
confidence of subjective belief may change. Initially the belief is mostly subjective;
however, as information accumulates, the belief becomes less subjective because
more information through empirical data has been incorporated into the belief. How
can the belief be quantified and updated? How does this idea work as a statistical
method? The answer is Bayesian statistics and the Bayesian method.

11.1.2 A Brief History

The term Bayesian came from Bayes’ theorem developed by Thomas Bayes (1702–
1761). The theorem is rather simple yet elegant and it is based on the principle of
conditional probability. Pierre-Simon Laplace (1749–1827) later introduced a
general version of the theorem and used it to approach real problems. Bayesian
statistics actually predates frequentist statistics, but only became more popular for
the last few decades during which computing speed and power increased
exponentially.

In the 1980s, the discovery of Markov Chain Monte Carlo methods (described
later in this chapter) relieved many of the computational burdens and enabled
Bayesian methods usage for nonstandard and complex applications.

11.1.3 Bayes Theorem

Bayes Theorem is based on the concept of conditional probability as described
below.

Given two events A and B with P(B) > 0, the conditional probability of A given
B is defined as the ratio of the joint probability of A and B, and the probability of B:

P AjBð Þ ¼ PðA\BÞ=PðBÞ

Essentially this restricts the sample space to B and it describes the conditional
probability of A given B as the ratio of probability of both events and the probability
of event B.
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Similarly with P(A) > 0, the conditional probability of B given A is defined as
the ratio of the joint probability of A and B, and the probability of B:

P BjAð Þ ¼ PðA\BÞ=PðAÞ

From the above two conditional probabilities, it’s clear that

P BjAð Þ ¼ PðBÞP AjBð Þ=PðAÞ

This is exactly the equation for Bayes theorem in the sense that, if event A occurs
before event B, then the posterior probability (probability of event B after event
A occurred) is a consequence of a prior probability (probability of event B before
event A occurs) and a conditional probability for event A given event B which is yet
to occur, normalized by the (total) probability of event A. The less intuitive and
intriguing concept is the probability conditional on a future unknown event, which
is useful when applied to the framework of hypothesis testing using posterior
probability, conditioned on yet to be observed future data, as described below.

11.1.4 Bayesian Hypothesis Testing Framework

Let’s first very briefly review the frequentist hypothesis testing. It starts with a null
hypothesis H0 in terms of parameter values, for instance, H0: h = h0, then collects
data D, and uses the sampling distribution of the data given the parameter value
(typically the null value of no effect), P(D|H0), to evaluate how likely H0 is true in
order to decide whether or not to reject the H0.

The Bayesian approach starts with the prior distribution of the parameter, PðhÞ.
After data are collected, Bayes theorem is applied to derive the posterior distri-
bution of parameter, P hjDð Þ, and then to make statistical inferences about h. The
prior distribution can be updated as more data are cumulated, and a new posterior
distribution can be derived for updating statistical inferences. In this manner
Bayesian approach follows a general scientific principle—that is, use of the
cumulative information or knowledge to make inferences.

To derive the posterior probability P hjDð Þ, again we apply the Bayes’ theorem:

P hjDð Þ ¼ PðhÞP Djhð Þ=PðDÞ

where

• h stands for any hypothesis whose probability may be affected by data;
• D corresponds to data yet to be observed and therefore have not been used in

contributing to the prior probability;
• P hð Þ; the prior probability, is the probability of h before D is observed; it’s the

prior belief about how likely different hypotheses are;
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• P hjDð Þ; the posterior probability, is the probability of h after D is observed; it’s
the probability of various hypotheses about h given the observed data;

• P Djhð Þ; the probability of observing D given h, is also known as the likelihood;
it indicates the compatibility of the data with the given hypothesis;

• P Dð Þ is the marginal likelihood, the integration of P Djhð Þ over h; this factor is
the same for all possible hypotheses being considered and does not enter into
determining the relative probabilities of different hypotheses.

Note that the posterior probability of a hypothesis is determined by a combi-
nation of the prior belief of the likeliness of a hypothesis and the compatibility of
the observed data with the hypothesis (likelihood). This also means that the pos-
terior is proportional to prior times likelihood. The critical point about Bayesian
method is that it provides a way of combining new data with prior beliefs, through
the application of Bayes’ theorem. Furthermore, Bayes’ theorem can be applied
iteratively: after observing some data, the resulting posterior probability can then be
treated as a prior probability, and a new posterior probability computed from new
data. This allows for Bayesian principles to be applied to various kinds of data,
whether viewed all at once or over time.

11.2 Bayesian Updating

11.2.1 Example Continued for Bayesian Updating

Now let’s consider the Q example, this time we will see how Bayes theorem is used
to update Bayesian (posterior) probabilities. For illustrative purposes, let’s assume
that there are only three possible response rates of treatment Q and they are 0.1, 0.5,
and 0.9. Essentially we are assuming that there are three hypotheses about p, and
they are Captain’s p ¼ 0:9, Spock’s p ¼ 0:5, and Yeoman’s p ¼ 0:1. Let’s also
define a subject outcome as Success if headache disappears within one and half
hours after treatment or Failure otherwise (i.e., headache persists one and half hours
after treatment).

For the prior probability distribution, it is a probability function of the response
rate expressing the degree of belief about it, prior to observing data. In this case, to
start with, we may consider that all three hypothetical probabilities of a successful
outcome are equally likely. In other words, Captain, Spock and Yeoman start with
an equally likely prior for p, so that the initial PðpÞ is the same for the three possible
values or hypotheses of p. That is,

P pð Þ ¼ 1
3
for p ¼ 0:1; 0:5; 0:9:
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For the likelihood function P Djh ¼ pð Þ; the probability of observing D given P,
follows a Bernoulli distribution:

P Djpð Þ ¼ p when the event is a Success;

P Djpð Þ ¼ 1� p when the event is a Failure

Let’s now assume that the first 5 subject outcomes are as follows: Success,
Failure, Success, Success, and Failure. The Bayes theorem P pjDð Þ ¼
PðpÞP Djpð Þ=PðDÞ can be used to update the posterior probability after each out-
come is observed.

The first outcome is a Success. Hence:

For Captain’s posterior probability, P pjDð Þ1¼ PðpÞP Djpð Þ=PðDÞ where P pð Þ ¼
1=3 and P Djpð Þ ¼ 0:9, so P pjDð Þ1¼ 1=3ð Þ � 0:9=P Dð Þ. Similarly for Spock’s
posterior probability, P pjDð Þ1¼ ð1=3Þ � 0:5=PðDÞ, and for Yeoman’s posterior
probability, P pjDð Þ1¼ ð1=3Þ � 0:1=PðDÞ. Here PðDÞ is a normalizing factor such
that the sum of all P pjDð Þ1’s equals 1, which is the total probability of any prob-
ability distribution, including any posterior probability distribution. Equivalently,
PðDÞ is the sum of PðpÞP Djpð Þ over all possible p’s, that is,
1=3ð Þ � 0:9þ 1=3ð Þ � 0:5þ 1=3ð Þ � 0:1 ¼ 0:5. Now the posterior probability dis-
tribution among the three hypotheses can be obtained as:

Captain : P p ¼ 0:9jDð Þ1¼
9
15

; Spock : P p ¼ 0:5jDð Þ1¼
5
15

;

Yeoman : P p ¼ 0:1jDð Þ1¼
1
15

:

Notice the posterior probability differences after just a single event, and now this
distribution serves as a new prior distribution for the next event.

The second outcome is a Failure. Hence:

For Captain’s posterior probability, P pjDð Þ2¼ P pjDð Þ1P Djpð Þ=PðDÞ where
P pjDð Þ1¼ 9=15 and P Djpð Þ ¼ 1� 0:9 ¼ 0:1, so P pjDð Þ2¼ 9=15ð Þ�
0:1=P Dð Þ ¼ 3=50ð Þ=P Dð Þ. Similarly for Spock’s, P pjDð Þ2¼ 5=15ð Þ�
1� 0:5ð Þ=PðDÞ ¼ 1=6ð Þ=PðDÞ, and for Yeoman’s, P pjDð Þ2¼
ð1=15Þ � 1� 0:1ð Þ=PðDÞ ¼ 3=50ð Þ=PðDÞ. Here PðDÞ again is the sum of
P pjDð Þ1P Djpð Þ over all P pjDð Þ1’s and that is (3/50) + (1/6) + (3/50) = 43/150.
Now the posterior probability distribution among the three hypotheses can be
obtained as follows:

Captain : P p ¼ 0:9jDð Þ2¼
9
43

; Spock : P p ¼ 0:5jDð Þ2¼
25
43

;

Yeoman : P p ¼ 0:1jDð Þ2¼
9
43

:
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Notice the swinging effect after the second outcome being a Failure; Captain
and Yeoman now have the same posterior probability about their individual
hypothesis, while Spock has gained more posterior probability than both of them.
This situation occurs because the current data supports 50–50 (p = 0.5) hypothesis
more than the other two hypotheses. Now this distribution serves as the new prior
distribution for the next event.

The third outcome is a Success. Hence:

For Captain’s posterior probability, P pjDð Þ3¼ 9=43ð Þ � 0:9ð Þ=P Dð Þ ¼
81=430ð Þ=P Dð Þ; for Spock’s, P pjDð Þ3¼ 25=43ð Þ � 0:5ð Þ=P Dð Þ ¼ 125=430ð Þ=
P Dð Þ; and for Yeoman’s, P pjDð Þ3¼ 9=43ð Þ � 0:1ð Þ=P Dð Þ ¼ 9=430ð Þ=P Dð Þ.

Here P(D) is the sum of P pjDð Þ2P Djpð Þ over all P pjDð Þ2’s, and that is
(81/430) + (125/430) + (9/430) = 215/430. Now the posterior probability distri-
bution among the three hypotheses can be obtained as follows:

Captain : P p ¼ 0:9jDð Þ3¼
81
215

; Spock : P p ¼ 0:5jDð Þ3¼
125
215

;

Yoeman : P p ¼ 0:1jDð Þ3¼
9

215
:

Again it can be seen how the posterior probabilities change as more data are
obtained; it’s like a tug of war among all possible hypotheses. Now this distribution
serves as the new prior distribution for the next event and the iteration continues
until no more data are retrieved. Table 11.1 summarizes the posterior probabilities
after each outcome is observed.

From this limited number of outcomes and restricted hypotheses, the posterior
probability distribution after 5 outcomes seems to support that this treatment Q may
have a 50–50% chance of stopping a headache within one and half hours because it
has the largest posterior probability of 0.79. This can also be generalized to say
that the Bayesian decision is simply for the hypothesis with the largest pos-
terior probability.

Table 11.1 Posterior probabilities for an outcome sequence: Success, Failure, Success, Success,
and Failure

Outcome Posterior probabilities
for Captain’s hypothesis
(p = 0.9)

Posterior probabilities for
Spock’s hypothesis
(p = 0.5)

Posterior probabilities
for Yeoman’s hypothesis
(p = 0.1)

0. Before
any event

1/3 (0.33) 1/3 (0.33) 1/3 (0.33)

1. Success 9/15 (0.60) 5/15 (0.33) 1/15 (0.07)

2. Failure 9/43 (0.21) 25/43 (0.58) 9/43 (0.21)

3. Success 81/215 (0.38) 125/215 (0.58) 9/215 (0.04)

4. Success 729/1363 (0.53) 625/1363 (0.46) 9/1363 (0.01)

5. Failure 729/3935 (0.19) 3125/3935 (0.79) 81/3935 (0.02)
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To further provide a flavor of the Bayesian method, Table 11.2 illustrates pos-
terior probabilities when there are five consecutive successes. From here one can
see how quickly Captain’s belief increases while Spock’s and Yeoman’s belief
fades away.

It is important to note that it is possible that the Bayesian update can be done
after a batch of outcomes become available. Yet the posterior probabilities will not
change due to the frequency of updates. This situation can occur when the prior and
the data are exactly the same, regardless how frequent the posterior probabilities get
calculated. For the example above, we may do the first update when three outcomes
are available and then the second update when the remaining two outcomes are
available. In this case, we just need to consider the likelihood function as being a
Binomial distribution (note that Bernoulli is a special case of Binomial when there
is only one event), because we will be updating after a few events; that is, we will
be counting how many Successes and Failures among the first three and on the last
two outcomes. So now the likelihood function P Djpð Þ; the probability of observing
D given P, for the first three outcomes, follows a Binomial distribution:

P Djpð Þ ¼ 3
k

� �
pkð1� pÞ3�k

for k = 0, 1, 2, 3 Successes, where
3
k

� �
¼ 3!

k! 3�kð Þ! and P is the probability of a

Success.
For the first update after 2 Successes and 1 Failure, the posterior probability for

Captain is P pjDð Þ1¼ PðpÞP Djpð Þ=PðDÞ where P(p) = 1/3 and P Djpð Þ ¼
3
2

� �
p2ð1� pÞ3�2 ¼ 3 0:9ð Þ 0:9ð Þ 0:1ð Þ, so P pjDð Þ1¼ 243=1000ð Þ=P Dð Þ. Similarly

for Spock,P Djpð Þ ¼ 3 0:5ð Þ 0:5ð Þ 0:5ð Þ, so P pjDð Þ1¼ ð375=1000Þ=P Dð Þ; and for
Yeoman, P Djpð Þ ¼ 3 0:1ð Þ 0:1ð Þ 0:9ð Þ, so P pjDð Þ1¼ 27=1000ð Þ=P Dð Þ. Since P(D) is
just a normalizing factor so the posterior probabilities for Captain, Spock, and
Yeoman are proportional to 243/1000, 375/1000, and 27/1000 respectively and they

Table 11.2 Posterior probabilities for an outcome sequence of 5 Successes

Outcome Posterior probabilities
for Captain’s hypothesis
(p = 0.9)

Posterior probabilities
for Spock’s hypothesis
(p = 0.5)

Posterior probabilities
for Yeoman’s hypothesis
(p = 0.1)

0. Before
any event

1/3 (0.33) 1/3 (0.33) 1/3 (0.33)

1. Success 9/15 (0.60) 5/15 (0.33) 1/15 (0.07)

2. Success 81/107 (0.76) 25/107 (0.23) 1/107 (0.01)

3. Success 729/855 (0.85) 125/855 (0.15) 1/855 (<0.01)

4. Success 6561/7187 (0.91) 625/7187 (0.09) 1/7187 (<0.01)

5. Success 59049/62175 (0.95) 3125/62175 (0.05) 1/62175 (<0.01)
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need to sum up to 1. As a result, the posterior probabilities for Captain, Spock, and
Yeoman can be obtained as 243/(243 + 375 + 27) = 243/645 = 81/215, 375/645 =
125/215, and 27/645 = 9/215, respectively. Note that these are identical to the third
update in Table 11.1.

It will be a similar and simple exercise to use these updated Bayesian proba-
bilities as the new prior and update the Bayesian probabilities after the fourth and
fifth outcomes. The posterior probabilities will be identical to the fifth update shown
previously.

All of the above is just a simple example to illustrate the Bayesian concept and
computation. Typically the hypotheses, likelihood, prior distribution, and event
outcomes can be much more complicated. The Bayesian posterior probability
derivation or computation can be intensive and requires heavy computation power.
This computational burden was one of the major obstacles for the Bayesian
methods until the last few decades. Nowadays with the tremendous advances in
computing technology, the Bayesian method can be implemented relatively quickly
and easily, as described in subsequent sections.

11.3 Bayesian Inference

Similar to the frequentist inference, Bayesian inference also includes hypothesis
testing and interval estimation. For Bayesian hypothesis testing, the above example
illustrates an oversimplified case. Nonetheless the principle is to use posterior
distribution to calculate the probability that a particular hypothesis is true, given the
observed data. Bayesian interval estimates are based on the posterior distribution
and are often called credible intervals.

If the posterior probability that an endpoint (e.g., a treatment response rate) lies
in an interval is 0.95, then this interval is called a 95% credible interval. For the Q
example, since we assume that there are only three possible response rates (0.1, 0.5,
and 0.9) with three discrete posterior probabilities, the credible interval for the
response rate does not have much meaning. However in reality, the response rate
can be any value between 0 and 1, therefore a wider range posterior distribution for
the response rate can be obtained and so can credible intervals. To further elaborate
using the Q example, suppose the prior distribution of response rate follows the
Uniform [0, 1] distribution, that is, any value between 0 and 1 is equally likely to be
the true response rate. This is one kind of “non-informative” prior for not giving
any preference to any possible response rates. The likelihood of n responses follows
the binomial distribution. In this case, the posterior probability distribution follows
a Beta distribution as derived below.

Consider the number of positive responses k * Binomial (n, p) where n is the
total number of subjects participating (sample size) and p is the response rate
parameter. Then as given in the previous section the likelihood function is
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P kjn; pð Þ ¼ n
k

� �
pkð1� pÞn�k

for k = 0, 1, 2, …, n, where
n
k

� �
¼ n!

k! n�kð Þ!.

The prior of p, P pð Þ follows Uniform (0, 1), that is, P pð Þ ¼ 1 for 0 \ p \ 1
and P pð Þ ¼ 0 otherwise. This prior is also a Beta (a = 1, b = 1) distribution
because the definition of Beta distribution is given by

Beta a; bð Þ ¼ C að ÞC bð Þ
C aþbð Þ p

a�1 1� pð Þb�1, where C cð Þ ¼ c� 1ð Þ! for any positive

integer c and 0! = 1. Furthermore, this prior is also a conjugate prior. A conjugate
prior for the likelihood function is a prior that produces a posterior in the same
distribution family. In this case, this Beta(1, 1) prior P pð Þ for the binomial likeli-
hood function P kjn; pð Þ produces the posterior probabilities

P pjkð Þ / P kjn; pð Þ � P pð Þ / pk 1� pð Þn�k�1 ¼ p kþ 1ð Þ�1 1� pð Þ n�kþ 1ð Þ�1;

which follows a beta distribution with parameters k + 1 and n − k + 1.
Therefore Bayesian inferences for p can be obtained using this posterior beta

distribution.
For example, if n = 100 and k = 60, which means there were 100 subjects took

the Q treatment and 60 of them had a positive response (similar to 60% response
rate as for the Q example), then the posterior probability distribution follows Beta
(60 + 1, 100 − 60 + 1) = Beta(61, 41).

It can be shown that the mean of Beta(a, b) is a/(a + b), so this posterior mean
for p is 61/102 = 0.598. It is noted that while one can also choose the posterior
median or mode as the Bayesian point estimator, here we choose the posterior
mean.

Now let’s review the definition of the credible interval. It is an interval where an
outcome of an endpoint lies in an interval with posterior probability of 1 − a.
Therefore there can be different choices of credible intervals that satisfy this defi-
nition. Two choices are commonly used: (1) equal-tailed (1/2 a probability on each
side) and (2) Highest Probability Density (HPD) interval under the posterior dis-
tribution. For symmetric unimodal posterior distribution, these two credible inter-
vals are identical. Otherwise the HPD credible interval is often used for Bayesian
approach, because it is the narrowest interval that covers the 1 − a credible level
and all values within it are more probable than other values outside of it. As the
actual calculation of the HPD interval typically involves iterations (in order to
determine the narrowest interval that covers 1 − a probability) and requires a
computing algorithm, it is easier to use computer software such as SAS
Proc MCMC to obtain it.

Based on the Beta(61, 41), a 95% HPD for p can be obtained as (0.503, 0.692)
(see Proc MCMC code in the next section), while the 95% equal-tailed interval is
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(0.502, 0.691). The latter can be easily obtained by using the Excel Beta inverse
function [(BETAINV (0.025, 61, 41), BETAINV (0.975, 61, 41)]. Also included
here as a reference is the frequentist 95% Wald confidence Interval using a normal
approximation

ðp̂� 1:96
pðp̂ð1� p̂Þ=nÞ; p̂þ 1:96

pðp̂ð1� p̂Þ=nÞÞ:

Given bp ¼ 60=100, this interval is (0.504, 0.696).
It is a simple exercise to obtain a posterior mean and 95% credible interval for

the posterior probabilities of Captain, Spock and Yeoman, assuming that they
agreed to use the Uniform (0, 1) as the prior for p and observed the same five
responses with 3 successes and 2 failures. In such a case, in principle there can be
infinite many hypotheses as p is assumed to take any value between 0 and 1;,
however, here the context is just for the three competing hypotheses of Captain,
Spock and Yeoman. The posterior distribution of p is then Beta(4, 3), with the
posterior mean 4/7 = 0.571. The 95% equal-tailed and HPD credible intervals are
(0.223, 0.882) and (0.243, 0.900), respectively. Although the two scenarios have
the same 60% response rate, as expected, the one based on a much larger sample
provides more precise inferences about p. One can also see that these intervals
support Spock’s p = 0.5 hypothesis, among the three competing hypotheses.

It is worth noting that, although the term “non-informative” is used for the
Uniform (0, 1) prior, it does not mean no information at all is introduced.
Non-informative prior is not unique and there are different criteria for choosing
non-informative priors. For example, the Beta(0.5, 0.5) is actually less informative
than the Uniform (0, 1) prior, as pointed out in Zhu and Lu (2004). It is less
informative because the associated Bayesian posterior estimator is more similar to
the Maximum Likelihood Estimator (MLE) of p. This and many other interesting
Bayesian topics are beyond the scope of this chapter. Interested readers can refer to
Berger (1985) and Kass and Wasserman (1996) for additional information.

11.4 Markov Chain Monte Carlo (MCMC) Method

MCMC is a sampling method for simulating data from the distributions of random
quantities. It consists of two parts: the Markov Chain part and the Monte Carlo
simulation part.

The Monte Carlo part, in the context of the MCMC method, refers to random
simulations or draws from a probability distribution. It is well understood that by
sufficient number of draws, the probability distribution can be approximated as
close as the desired precision. Interestingly, the use of the term Monte Carlo was
originated from classified nuclear weapons projects at the Los Alamos National Lab
by Stanislaw Ulam and John von Neumann in the late 1940s. The project required a
secret code name and a colleague of them, Nicholas Metropolis, suggested using the
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name Monte Carlo, which refers to the Monte Carlo Casino in Monaco where
Ulam’s uncle would borrow money from relatives to gamble (Metropolis 1987).

A Markov Chain, in the context of the MCMC method, can be viewed as a
sequence of random moves M1, M2, M3 and so on in the sample space with the
probability of moving to next state depending only on the present state and not on
the previous states. Hence the conditional probability distribution for the system at
the next step and at all future steps depends only on the current state of the system
and not additionally on the state of the system at previous steps. In theory, the chain
needs to converge to a steady state, namely the target probability distribution, for it
to be statistically useful. However, in practice, the convergence is often difficult to
be definitively confirmed; therefore, satisfying reasonable convergence diagnostics
criteria is sufficient for the MCMC results to be used.

Putting these two parts together, the MCMC method is to construct a sound
Markov chain with a prescribed stationary probability distribution that can be
parameterized, and then use Monte Carlo simulations to approximate this stationary
probability distribution. Statistical inferences can then be performed by using the
approximated probability distribution.

There are ways to construct a sound Markov chain, such as Gibbs sampler or
Metropolis-Hastings (MH) algorithm. The MH algorithm can be very general by
using a known and easier distribution (e.g., normal distribution) for simulation, and
it also avoids the integration of the posterior distribution, which makes it attractive
for Bayesian modeling. A general five-step MCMC algorithm is as follows:

1. Start at current place Mi

2. Propose moving to a new place Mi+1

3. Accept the new place based on the place’s adherence to the data and prior
distributions, typically by a probability criterion

4. If acceptable, move to the new place and return to Step 1
5. After a number of iterations, return the samples.

Essentially this algorithm leads samples to move towards the regions where the
posterior distributions exist meanwhile samples are also collect concurrently. When
the posterior distribution is reached (converged), the new samples drawn are likely
to all come from the posterior distribution.

In summary, MCMC method is popular for Bayesian approach because in many
analyses, the posterior distribution is too complex to write down and therefore
traditional numerical integration techniques cannot be carried out. Recall the
computations of our simple Q example given previously. Imagine how much more
tedious and complex the posterior distribution would be when the prior and like-
lihood are complex. The MCMC sampler draws samples from other known dis-
tributions to create a Markov chain of values. Eventually, as the chain converges,
the values sampled begin to resemble draws from the posterior distribution. The
draws from the Markov chain can then be used to approximate the posterior dis-
tribution and make Bayesian inferences. Current statistics software such as
SAS PROC MCMC has further made this method easy to implement. Below is a
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sample code for generating the 95% credible intervals for the Beta(61, 41) posterior
distribution, the example used in the previous section.

Title "Bayesian Credible Intervals for Binomial p by PROC
MCMC";
Data Qtrt; /*input dataset to specify 60 successes out of 100
events*/

n=100; k=60;
run;

Proc MCMC data=Qtrt;
seed=111
outpost=PostSample /*output dataset for posterior samples*/
nbi=10000 /*burn-in samples, to be discarded, optional for
this example*/
nmc=100000 /*number of iterations*/
statistics=all diagnostics=all plots=all; /*output all
relevant info*/
parms p 0.5; /*gives p an initial value*/
prior p * beta(1,1); /*uniform (0 1) prior of p*/
model k * binomial(n,p); /*likelihood function for k*/
run;

The primary output follows:

Bayesian credible intervals for binomial p by PROC MCMC

Parameter Alpha Equal-tail interval HPD interval

p 0.050 0.5016–0.6907 0.5026–0.6915

Interested readers are recommended to refer to Chen and Peace (2011),
Gamerman and Lopes (2006), and Brooks et al. (2011) for additional information.

11.5 Bayesian Methods for Phase II Clinical Trials

Bayesian methods depend on prior information to help leverage what has been
learned before in order to gain efficiency (by reducing uncertainties) in treatment
inference and effect estimation, using less resources (smaller sample sizes).
Although Bayesian decisions depend heavily on utility functions (which typically
involve costs and benefits) in which the criteria for decisions are based upon, our
focus is on Phase II clinical trials where objectives are more clear (e.g., dose
finding) without more complicated utility issues. We will not discuss the utility
function aspect of Bayesian methods.
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Design and analysis methods for phase II dose-ranging clinical trials include
multiple comparisons among doses, modeling of a dose-response relationship, and a
hybrid approach such as MCPMod (Bretz et al. 2005). These approaches serve well
when the data are positive and resources (e.g., sample size) are adequate. Given
resource constraints but with efficient computer power, Bayesian dose-response
modeling method offers an alternative. The dose-response modeling links multiple
doses and shares information among doses, the Bayesian incorporates prior infor-
mation from previous studies or experts’ opinions; therefore, it may lead to more
powerful comparisons and more precise estimates. The information-rich era and an
increasing trend of clinical data sharing by pharmaceutical companies such as the
SHARE program initiated by GlaxoSmithKline in 2013 (https://www.
clinicalstudydatarequest.com), make it easier to acquire relevant prior information
for clinical development that reaches Phase II. Therefore informative Bayesian
priors—based on the best available evidence—can be obtained to help design and
analyze Phase II dose-ranging clinical trials.

The challenge when leveraging historical data to form a prior for a new study is
to determine whether the existing data are sufficiently similar to the setting of the
new trial. For a Bayesian modeling Phase II clinical trial, prior distributions for the
dose response model parameters are needed. One can always use non-informative
priors to implement the Bayesian approach; nevertheless, informative priors may
take advantage of the Bayesian methods, especially if one can find and use the most
relevant historical data to estimate the dose-response curve shape and also to
estimate the within- and between-study variability.

There are generally two ways of obtaining informative prior distributions. One
way is to rely on specific historical data, which is also known as data-driven
method. The other way is to use prior elicitation which is an exercise that combines
historical data, literature and expert opinion to form a prior distribution. There are
packages such as SHELF (The Sheffield Elicitation Framework), that do prior
elicitation (Oakley and O’Hagan 2010) They can be used to facilitate discussion
among team members and experts to obtain a consensus prior distribution, however,
they do require training, meeting preparation, and time to conduct the elicitation.
The prior elicitation methods will not be covered in this chapter.

11.6 Example

We continue the Chap. 9 example for the “biom” data in the R packages, to
illustrate the Bayesian modeling approach. We adopt the Emax modeling for the
data and introduce Bayesian priors for the Emax parameters. We first choose one set
of non-informative priors to illustrate how the Bayesian modeling approach is
implemented, and then randomly select a subset of “biom” data to construct a set of
“informative” priors to explore differences in dose-response modeling and dose
selection.
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Let us first refresh the frequentist Emax modeling results for this example from
Sect. 9.5:

E0 mean (SE), 95% C. I. Emax mean (SE), 95% C. I. ED50 mean (SE), 95% C. I.

0.322 (0.152), (0.024, 0.620) 0.746 (0.236), (0.283, 1.209) 0.142 (0.180), (0.0, 0.500)a

aAdjusted from (−0.216, 0.500) due to ED50 > 0

11.6.1 Using Non-informative Priors

There are three parameters, E0;Emax; ED50 that need priors. For E0 and Emax, in
principle they can be both positive and negative, but for ED50, it is a dose in the
dose range scaled between 0 and 1. Without any other information, we can use the
following non-informative independent priors as shown in Table 11.3.

Note in Table 11.3 that we choose a normal distribution for both E0 and Emax

with mean 0 and a large standard deviation of 10 so that the distribution is flat
relative to the response range. This essentially provides non-informative priors for
these two parameters. For the ED50, we choose a beta-distribution in the interval of
0 to 1 with the two shape parameters to be 0.5 as a non-informative prior. As
mentioned earlier in this chapter, this prior is less informative than the Uniform
(0, 1) = Beta(1, 1) in terms of the Bayesian posterior estimator being less different
from the MLE estimator of p (Zhu and Lu 2004).

Given these priors, we perform the Bayesian modeling to the data with R
package “DoseFinding” using the following R code chunk:

### We first produce the mean estimates at each dose with “lm”

>mod4Mean= lm(resp*factor(dose)-1, data=biom)

# Extract the estimated mean and covariance matrix

>estMean = coef(mod4Mean) # the estimated means

S = vcov(mod4Mean) # the covariance matrix

### Now Bayesian analysis with non-informative prior

>prior1 <- list(norm = c(0, 10), norm = c(0,10),

beta=c(0,1,0.5,0.5))

# Fit the Emax model using Bayesian with 10,000 MCMC

>b1Mod <- bFitMod(dose, estMean, S, model = "emax",

nSim = 10000, prior = prior1)

Table 11.3 Non-informative priors for the Emax model

Parameter Non-informative prior distribution

E0 Normal with mean 0 and standard deviation 10

Emax Normal with mean 0 and standard deviation 10

ED50 Beta-distribution in (0, 1) with both shape parameters to be 0.5

218 11 Bayesian Approach



# Print the summary information

>print(b1Mod)

As can be seen in the above code, we made a list of priors and named it
prior1. For Bayesian modeling, we can use the R function bFitMod (in short
for “Fit a dose-response model using Bayesian or bootstrap methods”) in
DoseFinding package with options: model = "emax", nSim = 10000,
prior = prior1 for 10,000 MCMC samples. For the 10,000 MCMC samples,
the output summary information is as follows:

Summary of posterior draws

mean sdev 2.5% 25% 50% 75% 97.5%

e0 0.386 0.132 0.1097 0.300 0.389 0.476 0.629

eMax 0.931 0.338 0.3423 0.698 0.900 1.136 1.680

ed50 0.513 0.326 0.0327 0.202 0.493 0.835 0.997

This summary information of the posterior distributions for these three param-
eters are reported as the mean and standard deviation, as well as the sample
quantiles of 2.5, 25, 50, 75 and 97.5%. This Bayesian model can be graphically
illustrated in Fig. 11.1. Generally this figure is similar to Fig. 9.3 in Chap. 9.

Fig. 11.1 Bayesian dose-response model with non-informative priors
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11.6.2 Using Informative Priors

Because of lack of real historical data for this example, we create a “pilot” clinical
trial data set by randomly draw a subset from the original data set and use it to
construct a set of informative priors for the three Emax model parameters.

A random sample of 5 from the 20 observations for each dose is listed in
Table 11.4.

With this “pilot” data set, we fit the Emax model and the estimated parameters
are E0 = 0.178 [standard error (SE) = 0.267], Emax = 0.975 (SE = 0.347) and
ED50 = 0.063 (SE = 0.089), respectively. Since this would be a pilot study, so we
use the point estimates as the prior means, but we double the SEs as the prior
standard deviations, to account for potential future data variability. Now for the
prior of ED50, since ED50 is expected to be within the dose range 0 to 1, we would
still use a Beta-distribution. To derive a suitable prior for ED50, we make use of the
fact the if X follows a Beta-distribution with shape parameters a and b, then the
mean and variance are E Xð Þ ¼ a

aþ b and Var Xð Þ ¼ ab
aþbð Þ2 aþ bþ 1ð Þ. Given the esti-

mated mean ED50 = 0.063 and 2 � SE = 0.178 as the standard deviation, we can
solve the mean and variance equations to obtain an informative prior for ED50 with
a = 0.054 and b = 0.810. This leads to an informative prior set as in Table 11.5.

With this set of informative priors, we can refit the Bayesian model using the
following R code chunk:

## Define Normal priors for E0 and Emax

prior2 <- list(norm=c(0.178,0.533),norm=c(0.975,0.695),

beta=c(0,1,0.055,0.810))

## now fit the Emax model again with Bayesian MCMC

b2Mod <- bFitMod(dose, estMean, S, model = "emax",

nSim = 10000, prior = prior2)

## Print the summary information

b2Mod

Table 11.4 Random sample of 5 observations from each dose

Dose Response

0.00 0.137 0.358 0.623 −0.308 0.336

0.05 1.354 −0.071 0.584 −0.363 0.339

0.20 1.853 0.996 1.233 1.868 1.011

0.60 0.310 0.310 0.279 0.570 1.604

1 2.174 1.255 0.887 0.425 1.129
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This would give the summary information for the 10,000 MCMC as follow:

Summary of posterior draws

mean sdev 2.5% 25% 50% 75% 97.5%

e0 0.331 0.135 5.01e-02 0.2431 0.335 0.423 0.584

eMax 0.830 0.284 3.22e-01 0.6340 0.810 1.004 1.441

ed50 0.294 0.274 3.57e-07 0.0764 0.196 0.450 0.948

As an alternative for the informative priors, one can use t-distribution with three
degrees of freedoms for the E0 and Emax parameter, as recommended by Novick
et al. (2017). It can similarly be implemented as follows:

## Define prior for Eo and Emax with t-distribution

Prior3 <- list(t=c(0.178,0.533,3),t=c(0.975,0.695,3),

beta=c(0,1,0.055,0.810))

## now fit an emax model

b3Mod <- bFitMod(dose, estMean, S, model = "emax",

nSim = 10000, prior = prior3)

## summary information

b3Mod

Summary of posterior draws

mean sdev 2.5% 25% 50% 75% 97.5%

e0 0.332 0.136 5.46e-02 0.2435 0.337 0.425 0.582

eMax 0.783 0.286 2.78e-01 0.5834 0.767 0.959 1.396

ed50 0.257 0.271 5.04e-21 0.0406 0.158 0.396 0.934

As can be seen, essentially the two sets of informative priors produced similar
results.

We now summarize these Emax modeling results in Table 11.6.
We emphasize that this example is solely for illustrating how to implement

Bayesian Emax modeling using R, rather than making comparisons between the
choice of priors or versus the frequentist approach. Furthermore, we did not include

Table 11.5 Informative priors for the Emax model

Parameter Informative prior distribution

E0 Normal with mean 0.178 and standard deviation 0.533

Emax Normal with mean 0.975 and standard deviation 0.685

ED50 Beta-distribution with a = 0.054 and b = 0.810
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any Bayesian modeling diagnostics for this example, which would be essential for
any kind of Bayesian modeling analyses. We refer the readers to Carlin and Louis
(2008) and Gelman et al. (2013) for Bayesian diagnostics topics.

Nonetheless, we can still observe these results by using different methods for the
same example data. For the E0 estimates, they are very similar, perhaps stemming
from the fact it is a linear term in the model. For the Emax estimates, the Bayesian
estimates tend to have bigger variability and this might be due to the use of priors
that also bring in bigger variability. For the ED50 estimates, they are the most
variable among the 3 parameters, which can be confusing as to which estimate is
more plausible. It is noted that the original data set are very noisy in that each dose
has a wide range of responses. For example, the placebo responses range from
−0.308 to 1.561, whereas the highest dose group responses range from −1.113 to
2.248. As a result, any random sample for a subset of data (which we used to
construct informative priors) can be a biased sample for the whole data set and also
any prior used for the Bayesian approach can be sensitive to the results.

We also note that in selecting a dose for future development, there are various
considerations including efficacy, safety, drug formulation, existing medications in
the market, and so forth. Therefore it is important to recognize that the
dose-response modeling results provide useful information for dose selection, in the
context of the totality of information about the compound being developed.

11.6.3 Summary

In this chapter we covered the basic concepts of the Bayesian approach by using a
simple example to illustrate the Bayesian concept, update, and inference. We also
applied the approach to phase-II clinical trials by continuing the dose-finding
example from Chap. 9. We then summarized and discussed the example results.

Table 11.6 Emax modeling example result summary

Method Priors E0
mean (SE),
equal tail 95%
interval

Emax
mean (SE),
equal tail 95%
interval

ED50
mean (SE),
equal tail 95%
interval

Frequentist N/A 0.322 (0.152),
(0.024, 0.620)

0.746 (0.236),
(0.283, 1.209)

0.142 (0.180),
(0, 0.500)a

Bayesian Non-informative 0.386 (0.132)
(0.110, 0.629)

0.931 (0.338)
(0.342, 1.680)

0.513 (0.326),
(0.033, 0.997)

Bayesian Normal informative
base on pilot data

0.331 (0.135)
(0.050, 0.584)

0.830 (0.284)
(0.322, 1.441)

0.294 (0.274),
(0.000, 0.948)

Bayesian T informative based on
pilot data

0.332 (0.136)
(0.055, 0.582)

0.783 (0.286)
(0.278, 1.396)

0.257 (0.271),
(0.000, 0.934)

aAdjusted due to ED50 needs to be greater than 0
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Almost all clinical developments have existing historical data that can be used
for constructing Bayesian priors. In cases where historical data are rich and rele-
vant, more informative or less diffused priors can be derived and clinical trials can
potentially benefit from using them. In cases where historical data are not as rich,
less informative or more diffused priors can be used and the Bayesian approach still
applies.
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Chapter 12
Overview of Phase III Clinical Trials

12.1 Introduction

After the success of Phase II development, it comes to the Phase III development.
Phase III has fundamental objectives in confirming clinical efficacy and investi-
gating no unacceptable safety concerns. Clinical efficacy generally includes effects
that are measurable as reflected by clinical outcome assessments such as
patient-reported and clinician-reported outcomes and objective measures like sur-
vival or lab data. Unacceptable safety concerns generally refer to safety issues that
are worse than or new to those of placebo (for lack of standard treatments) or the
standard of care (with established treatments).

As this book is focused on Phase II development, details of Phase III devel-
opment will not be covered. Instead, in this chapter, we highlight the scope of
Phase III plans in order to put Phase II trials in a larger context. The discussion that
follows includes drug label and target product profile, non-inferiority trial designs,
dose selection, drug formulations and patient populations, number of required trials
for a labeling claim, number of primary efficacy endpoints, missing data issues,
clinical outcome assessments, multi-regional trial issues, and the trend towards
development of personalized or precision medicines.

12.2 Scope of Phase III Plans

Phase III developments generally include primary indications for the major patient
populations such as adults and minor patient populations including but not limited
to pediatrics, targeted at New Drug Application (NDA) in the US, Market
Authorization Application (MAA) in Europe, and other regional or country-specific
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submissions. These developments may continue to various extensions such as
different formulations on different devices and other related indications and labeling
changes. Generally Phase III also has two sub-phases. Before the first (and usually
primary) approved indication, it is called Phase IIIA; after the first approved
indication, it is called Phase IIIB. Therefore, a Phase III program can span from a
few to many years and cover a large number of patients.

The current requirement is that regulatory agencies ask for the overall Phase IIIA
plan to at least include relevant pediatric populations if applicable. Furthermore,
with the International Conference on Harmonization (ICH) agreement of using the
Common Technical Document (CTD) and its electronic version eCTD, most major
international submissions will need to be considered for the Phase IIIA develop-
ment in order to avoid issues at the time of submissions. As a result, Phase IIIA plan
needs to be well thought through and to receive major regulatory agencies’
agreement in advance, before its implementation.

12.3 Drug Label and Target Product Profile

Phase III trials are designed to support label claims for the investigational drug.
A drug label is an instruction to guide physicians how to prescribe the drug and
inform patients regarding appropriate drug use and potential adverse effects. It
contains all of the clinical, non-clinical, and manufacturing information and pro-
vides detailed drug characteristics and describes how the drug should be dosed.
Before approval it must be agreed and finalized between the regulatory agency and
sponsor who develops the drug. A complete label usually includes the following
sections: Indications and Usage, Dosage and Administration, Dosage Forms and
Strengths, Contraindications, Warnings and Precautions, Adverse Reactions, Drug
Interactions, Use in Specific Populations, Overdosage, Description, Clinical
Pharmacology, Nonclinical Toxicology, Clinical Studies, How Supplied/Storage
and Handling, and Patient Counseling Information.

A drug label is usually sketched early in the development stages and used to
guide drug development, because it specifies the anticipated or desired character-
istics of the new drug. In planning a clinical development program, this draft label
is also used to build a Target Product Profile (TPP), which provides the guiding
principles for Phase III clinical trial designs. When designing Phase III clinical
trials, it is crucial to consider what data to collect in order to support this TPP—in
other words, how to enable the drug to be approved with desirable label claims and
also reimbursable.
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12.4 Phase III Non-inferiority Trial Designs

It is not uncommon that a Phase III clinical trial be designed to compare against an
active control, a drug that has been approved and available for patients. This active
control may well be the market leader for the same indication for purposes like
reimbursement or pricing. As such, the primary hypothesis can be non-inferiority,
instead of superiority. The concept of non-inferiority is that from the primary
efficacy comparison, the test drug is as good as the active comparator. However, the
test drug could be better than the active control in other aspects such as having a
better safety profile, easier to use, or more cost-effective. Superiority trial designs
are more common and relatively straightforward. In this section, we focus on the
non-inferiority trial designs and highlight some of the key issues.

As noted in ICH E10, the primary objective of an active-controlled trial can be
either to establish superiority or non-inferiority. The superiority objective is to
demonstrate that the study drug is statistically better than the control. Suppose that
for this underlying condition, a larger value of the primary measurement implies
improvement. Then the one-sided hypothesis testing can be setup as

H0 : lA � lT ¼ 0 versus H1 : lA � lT\0;

where lA is the mean of the active control and lT is the mean of the test drug group.
On the other hand, a non-inferiority objective (ICH E10 2000) is to show that the

test drug is as good as or not inferior to the control. The active control has already
been demonstrated its efficacy and safety and approved by regulatory agencies. The
study drug is being developed to provide comparable efficacy and tolerance with
other potential advantages such as having a better safety profile, easier to use, or
more cost-effective.

The US Food and Drug Administration (FDA) Guidance for Industry on
Non-inferiority Trials (2010) provides guidance to ensure that a non-inferiority
conclusion not only pertains to study treatment being non-inferior to the active
control, but also being superior to placebo. We adopt the guidance and highlight
some key considerations for non-inferiority trial designs.

Let M1 denote the entire effect the active control has relative to placebo, and M2

denote the largest loss of effect that would still be clinically acceptable for the test
drug. Essentially M2 is the non-inferiority margin to be used for establishing that
the test drug is no worse than the active control by M2 difference in effect.

M1 and M2 can be more formally defined as:

M1 –the entire effect of the active control assumed to be present in the
non-inferiority trial

M2 –the largest clinically acceptable difference (degree of inferiority) of the test
drug compared to the active control
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Then the non-inferiority hypothesis testing is set up as:

H0 : lA � lT � M2 versus H1 : lA � lT\ M2:

The M1 effect is determined from historical information (not from the current
trial), and the M2 can be calculated as a difference from or a percentage of M1. In
principle, M2 needs to be clinically acceptable and agreeable by the regulatory
agency. Only after the agreement is reached, such a margin is used for the Phase III
trial design and upon which sample size calculations can be based.

Furthermore, the non-inferiority trial must demonstrate assay sensitivity which is
the ability to distinguish an effective treatment from an ineffective one, in order to
conclude non-inferiority. Assay sensitivity can be demonstrated directly from the
trial when placebo is present, otherwise indirectly from historical information as
described in the guidance “…by reference to results in previous placebo-controlled
studies of the active control drug.”

12.5 Dose and Regimen Selection, Drug Formulation
and Patient Populations

12.5.1 Dose and Regimen Selection

The choice of doses and regimens for a Phase III design follows the guidance of the
draft label or TPP. If the TPP dictates a single dose for approval and marketing,
then the strategy of this Phase III clinical program should be centered on the
objective of delivering a single efficacious and safe dose for long-term use. In
certain development programs, the project team devotes good efforts in Phase II to
obtain clear dosing information. At the End-of-Phase II (EoPII) meeting with FDA
or Scientific Advice (SA) meeting with European Medicinal Agency (EMA), the
sponsor team should reach an explicit agreement with the Agency regarding dose(s)
to be used for Phase III development of the candidate intervention. The objective is
that, afterwards, the choice of dose(s) could be made simple and clear to satisfy
regulatory requirements.

However, in most of the development programs for interventions treating
chronic diseases, the dosing information from Phase II is not as clear. Usually there
are ample discussions during the EoPII or SA meeting between the sponsor and
FDA or EMA. In cases where it is ethical to use a placebo control for the indication,
then one recommendation is to consider three test doses against placebo, using a
gate-keeping multiple comparison adjustment (if monotonicity can be safely
assumed) to avoid inflation of false positives. Rationale of this strategy is clarified
in the next few paragraphs.

The main trial purpose is to demonstrate the target dose is superior to placebo,
and maintains an acceptable long term safety profile. It helps to allocate a dose
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higher than the target dose so that in case the target dose does not provide sufficient
efficacy, this higher dose can serve as a backup, because efficacy in Phase III trials
tends to be diluted from efficacy in Phase II trials. There are several reasons for the
tendency of lower efficacy in Phase III trials. One of the likely reasons is the patient
selection criteria—Phase II tends to allow the test drug an optimal opportunity to
demonstrate its efficacy. As such, the inclusion/exclusion criteria in Phase II tend to
be more restrictive. If the patient’s disease is too severe, it may be difficult for any
drug to improve disease symptoms. If the patient’s disease is too mild, then the
efficacy from test drug can be difficult to differentiate from placebo.

Hence, in general, Phase II results may reflect the “best cases” of the efficacy
observed from the test drug. The inclusion/exclusion criteria for Phase III trials are
more relaxed, with a hope to recruit a wider patient population which is similar to
the real world patient population. Another reason is that Phase III trials are
longer-term trials, while Phase II tends to be shorter term. Efficacy observed from
shorter-term trials in Phase II may not be able to translate into longer-term efficacy
in Phase III. One situation is that for patients with chronic diseases, their expec-
tation changes over time—after initial symptom improvement, they tend to take this
improved state for granted, and anticipate further improvement of their conditions.
Given this response shift from patients, it helps to include a higher dose in Phase III
so that if the target dose does not deliver the anticipated long term efficacy, a higher
dose may be able to.

Similarly, a lower dose may be helpful in case the target dose tends to be less
safe after longer term follow up. One of the unexpected risks in Phase III devel-
opment is the late developed adverse events (AE). Because Phase I and II drug
exposure are shorter term, most of the AE’s could have been observed at the early
stage of drug development. In general, even for a relatively safe new drug, patients
may react within the first few weeks of drug exposure, because the human body is
not used to a new chemical or biological agent in their system. For most drugs,
these AE’s developed at early stage may disappear after repeated exposure, because
the human body adapts this new agent over time. However, some toxicity may be
related to drug accumulation in the body. Adverse events caused by this type of
drug exposure may not be detected from short-term trials. Then in Phase III, with
longer term accumulation, this kind of AE’s are observed, and it will be very
difficult to manage. As a way to avoid or mitigate such safety risk, it helps to
allocate a lower dose in Phase III so that if the target dose is not safe, then this lower
dose could serve as a backup.

For most of the new drugs, monotonic efficacy dose-response relationship can be
expected. In fact, this relationship should have been observed from Phase II. On this
basis, gate-keeping procedure for multiple comparison adjustment is very sensible.
However, in case it is not known whether the efficacy dose-response is monotonic,
then the preferred method for multiple comparison method would be
non-gate-keeping procedures such as the Hochberg procedure (Hochberg 1988).

In case for the underlying indication, if it is not ethical to use placebo control,
then an active control should be used for Phase III development. At this stage, it is
critical for the project team to discuss whether superiority trials or non-inferiority
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trials will be designed for Phase III. If the choice is a superiority trial, then the
previous discussions regarding placebo-controlled considerations can still be
applicable. However, if the decision is to design non-inferiority trials, then the team
should be clear about the advantages of this study drug. If the efficacy is only
non-inferior to the active control, then what will be the benefit to develop this new
drug candidate? Only after the answer to this question can be justified, then the
Phase III development program can be reasonable.

For non-inferiority designs, one of the first questions would be which active
control should be used. In some indications, the approved market comparators can
be different depending on the countries where the clinical trial will be conducted. It
is also necessary to consider the submission strategy of this new drug, which
regulatory agencies will the new drug be submitted to and in what sequence?
The EMA and FDA considerations could be different for this indication. Also,
various Asian or South American countries may have different requirements. Hence
it is critical for the project team to determine a submission strategy first, for
example, to decide which country or region the new drug will be submitted first and
where the Phase III trials will be conducted. Then, active control should be selected
according to these considerations.

After the active control is determined, it is also important to consider the
dosage/regimen of the active control agent. Which dose(s) or regimen(s) of this
active agent will be used in the Phase III comparisons? After some of these major
decisions, then the challenge will be selection of the primary endpoint and the
non-inferiority margin to be applied to this endpoint, which will be a joint decision
between the sponsor (e.g., pharmaceutical or biotech company) and the regulatory
agencies (often FDA or EMA). Only after these issues are settled can sample sizes
be calculated meaningfully. Again, even under the non-inferiority setting, it is
useful to consider multiple doses of test drug in comparison with the active control.

If the TPP indicates that multiple doses (or regimens) will be marketed, then the
potential range of doses or regimens will need to be studied. Again, for Phase III
trials, it will be helpful to design a higher dose above the targeted upper dose range
and a lower dose below the planned lower limit of dose range. This strategy will
help reduce the risks that the long-term efficacy of the high dose is not sufficient or
that the safety profile of the low dose is worse than anticipated.

12.5.2 Drug Formulations

In the early phase and Phase II developments, the drug formulations (including
delivery devices) may not be the one used in the final product. Nevertheless, in
Phase III trials, the final formulation should be used in order to assure trial results
reflect the product to be used by patients, after the product is approved by regu-
latory agencies. In certain situations, if final formulation is not used in Phase III
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trials, some bridging work will likely be required by regulatory agencies. Therefore,
it is necessary to have proactive communications with regulatory agencies, before
designing such Phase III trials.

12.5.3 Patient Populations

Similar to drug formulations, in the early phase and phase II developments, the
populations studied are not necessarily the final targeted treatment populations.
Nonetheless, in Phase III clinical trials, it is important to investigate the patient
population to be treated by the medication, with the expectation that treatment
effects observed in Phase III trials can reflect the responses from the indicated
patient population. Furthermore, if successful, the trial results will be included in
the drug label to guide physicians and patients. In certain situations, if the targeted
population (e.g., infants) is not used in Phase III trials, medical justification will
likely be required by regulatory agencies. Therefore it is necessary to have
proactive communications with regulatory agencies before designing such Phase III
trials.

12.6 Number of Phase III Trials for a Labeling Claim

Traditionally, regulatory agencies require two pivotal Phase III clinical trials to
demonstrate replicate evidence for a labeling claim. For example, in order to
demonstrate a corticosteroids is efficacious in improving lung function in
mild-to-moderate asthma patients, two replicated clinical trials need to demonstrate
that the drug improves patients’ lung function by a clinically meaningful and sta-
tistically significant magnitude (typically at two-sided 5% alpha level for each
study).

It is stated in ICH E9 that the evidence from a single trial can be considered
sufficient in some circumstances (ICH 1998b). Examples may be cases where
benefits on mortality are seen or where the disease is difficult to study. Additional
potential acceptance is expressed in the CPMP Points to Consider document labeled
“Points to Consider on Application with 1. Meta Analyses; 2. One Pivotal Study”
(EMEA 2001). Therefore, in recent years, sponsors have proposed to conduct single
pivotal Phase III clinical trial for confirmatory and submission purposes.

Technically for a single pivotal trial to replace two replicated trials, the statistical
significance level will need to be at two-sided 0.125%, much smaller than the usual
two-sided 5% level for two replicated trials. The reason is that in terms of the risk of
making a type I error in evaluating a null hypothesis of equality between a test and a
control treatment, only rejection in favor of the test over the control is used for
approval (0.00125 = 2 � 0.0252). Using one-sided testing, requiring two trials with
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p-values <0.025 is equivalent to requiring one trial with a p-value <0.000625,
which is the same standard as requiring a p-value <0.125% for two-sided testing.

In terms of power, a single trial with the same sample size as the total sample
size from two replicated trials will have greater power. For example in the case
where two independent trials are each powered at 90% for two-sided alpha = 0.05,
yielding an overall power of 81% (=0.902), a single trial using two-sided
alpha = 0.00125 would preserve the 90% power. However, it is noted that repli-
cation of evidence can be more important than a smaller p-value. Two trials expose
the study drug to two independent cohorts of patients and provide two separate
pieces of evidence. The readers are referred to Shun et al. (2005) for detail
discussions of these and other related issues.

There has been some precedent that FDA and EMA accept single pivotal
Phase III trial for a two-sided significance level of 1%, for some Phase III trials that
fit the ICH and CPMP guidance, as a balance among unmet medical needs, con-
trolling the overall type I error rate and the potential power increase from the single
pivotal trial. It is noted that such an agreement will need to be obtained between the
sponsor and the regulatory agency, before the trial is designed and conducted.

12.7 Number of Primary Efficacy Endpoints

Depending on the product indication and treatment effects, a single primary efficacy
endpoint or multiple primary efficacy endpoints can be used for Phase III pivotal
trials. For example, a combination of inhaled corticosteroids and long-acting beta
agonist for asthma, typically require more than one primary efficacy endpoint as this
combination drug needs to demonstrate treatment effects from each of its compo-
nents. For this example, a longer term treatment effect endpoint such as pre-dose
FEV1 (forced expiratory volume in one second, essentially the maximal amount of
air one can forcefully exhale in one second) after six weeks of treatment can be used
to demonstrate the corticosteroids anti-inflammatory effect. On the other hand, a
quick response such as two-hour post dose FEV1 on the first treatment day can be
used to demonstrate the beta agonist bronchodilator effect.

Co-primary or multiple primary efficacy endpoints can be useful and even
necessary for some Phase III trials, primarily due to two reasons. One reason is that
the efficacy can be better supported by more than one primary measure. For
example, the asthma patients can benefit from both lung function improvement
measured by FEV1 and the asthma symptoms measured by a composite score of
coughing, wheezing, shortness of breath, chest tightness, and so forth. The second
reason is that different regulatory agencies, reflected by their regional medical
practice, may require a different primary efficacy endpoint. For example, the FDA
tends to focus more on the lung function whereas the EMA tends to focus on
symptoms.
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Note that when there is more than one primary efficacy analysis, such as using
co-primary endpoints, or more than one primary time point, there are multiplicity
issues. In Phase III trials, it is necessary to consider multiplicity adjustments or
management methods to control the overall type I error rate for the primary anal-
yses, as the results will be used for labeling claims. Generally speaking, multiplicity
adjustment strategies include sequential gate-keeping comparisons without the need
to adjust p-values, parallel or simultaneous comparisons using adjusted p-values, or
a combination of the two strategies. There are various multiplicity adjustment
methods that are suitable for different situation and needs. Please refer to Westfall
et al. (2011), Dmitrienko and D’Agostino (2013), and Dmitrienko et al. (2013) for
more details on this topic.

12.8 Missing Data Issues

Missing data can influence clinical trial results, which may have profound impact
on drug developments. The best way to address missing data is at the design and
conduct stages, rather than at the analysis stage.

Elements in the design stage and in the conduct stage of clinical trials can help to
limit missing data (National Research Council 2010; Little et al. 2012a, b). At the
design stage, the following eight ideas have been suggested: (1) target a population
that is not adequately served by treatment, (2) include a run-in period, (3) allow a
flexible treatment regimen, (4) consider an add-on design, (5) shorten the follow-up
period, (6) allow the use of rescue medications, (7) consider a randomized with-
drawal design (for long-term efficacy), and (8) avoid outcome measures that are
likely to lead to substantive missing data. At the conduct stage, the following eight
ideas have been suggested: (1) select investigators with a good record for collecting
complete data, (2) set acceptable target rates for missing rates and monitor the
progress made, (3) provide monetary and nonmonetary incentives to investigators
and participants, (4) limit the burden and inconvenience of data collection,
(5) provide continued access to effective treatments after the trial (before treatment
approval), (6) train investigators and study staff on ways to keep participants in the
study until the end, (7) collect information from participants regarding likelihood
that they will drop out, and (8) keep contact information for participants up-to-date.
The relevance of the suggestions at the design and conduct stages varies greatly
according to setting, and they may have limitations or drawbacks that need to be
considered.

At the analytic stage, there are at least four approaches to address the missing
data problem, which are applicable to patient-reported outcomes as well as other
types of outcomes (Fairclough 2010). One approach is to remove patients with
missing or incomplete forms from the analysis and only analyze complete cases.
A second approach is to impute the missing data. A third approach to address the
problem of missing data is through the application of a likelihood-based approach
using repeated-measures models or mixed-effect models (Mallinckrodt et al. 2008);
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in this approach, every subject would contribute his or her available (observed)
measurements. The fourth approach is especially relevant when missing data are not
missing at random (MAR) and hence depend on the (unknown) missing value,
when missing data are said to be non-ignorable. The advantages and disadvantages
of these approaches—along with a guidance on how to handle missing data—are
found in National Research Council (2010), and Little and Rubin (2002).

For example, at the analysis stage, alternative approaches may be used
depending on the missingness mechanism. When data are MAR, multiple impu-
tation (Carpenter and Kenward 2013) and mixed-effect model with repeated mea-
sures (Fairclough 2010; Fitzmaurice et al. 2011) are routinely used. In
certain situations, the missingness mechanism may be obvious by inspecting the
study design or other aspects of the study conduct. However, in general, it may not
be possible to ascertain whether the assumption of MAR can be justified. As a best
practice, it is therefore advisable to perform sensitivity analysis to ensure the
robustness of the findings under alternate scenarios (Little and Rubin 2002;
National Research Council 2010). Pattern mixture models are sometimes used in
sensitivity analysis, with missing values imputed under a plausible scenario in
which the missing data are considered missing not at random (MNAR) (Little and
Rubin 2002). An alternative approach, which is relatively less dependent on
assumptions, involves searching for a tipping point that reverses the study con-
clusion (O’Kelly and Ratitch 2014).

The last observation carried forward (LOCF) analysis has been used in many
drug approvals over the years (Ting 2000). More recently there has been increased
discussion about the appropriate use of LOCF (Akacha et al. 2015; Mallinckrodt
et al. 2013a, b).

12.9 Phase III Clinical Outcome Assessments

There are various types of primary efficacy endpoints for Phase III trials, depending
on trial objectives, disease nature, measurement sensitivity, medical practice, reg-
ulatory requirements and so forth. The key consideration is for the primary efficacy
endpoints to accurately reflect clinical outcomes from study treatments, so that the
outcome assessments can help confirm clinical efficacy to obtain regulatory
approval.

Chapter 1 highlights clinical outcome assessments (patient-reported outcomes,
clinician-reported outcomes, observer-reported outcomes, performance-based out-
comes), which also included patient-reported health-related quality of life. They are
often used in Phase III trials, as well as in Phase II trials, as primary endpoints or
secondary endpoints or both. The formal validation of a clinical outcome assess-
ment (COA) instrument should begin in early development, much before Phase III
begins, with content validity. Content validity is the extent to which an instrument
covers the important concepts of the unobservable or latent attribute (e.g.,
depression, anxiety, physical functioning, self-esteem) the instrument purports to
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measure. It is the degree to which the content of a measurement instrument is an
adequate reflection of the construct (the same “thing” or concept) to be measured.
Steps to ensure content validity are found in Patrick et al. (2011a, b).

After content validity has been presumably established, the selection of a COA
instrument must also consider its measurement or psychometric properties, again
before Phase III trials begin such as in Phase II trials and pre-Phase III
non-interventional, methodological studies. Phase III trials can be used later to
confirm the measurement properties of a COA. While content validity is based on
qualitative methods, measurement properties of an instrument are grounded in
quantitative analysis.

The selected instrument must be psychometrically sound. Is the instrument
measuring what it is intended to measure—is it valid? Does it give accurate mea-
surements—is it reliable? Measurement characteristics including reliability and
validity are fundamental aspects for judging the quality and merits of a COA
instrument. Details on assessing reliability and validity can be found elsewhere and
involve correlations, means and regression methods, as well as theoretical expec-
tations (Fayers and Machin 2016; Streiner et al. 2015; Cappelleri et al. 2013; de Vet
et al. 2011).

Assuming that a COA has sufficient content validity and psychometric proper-
ties, it can be considered as a primary endpoint or a secondary endpoint for a label
claim or simply to expand the base of knowledge on patient-centered outcomes.
The number and timing of COAs are influenced by the study objectives, such as
when meaningful change is expected, and practical considerations, such as patient
burden. Details on key considerations in the design of a longitudinal study for
COAs can be found in Fairclough (2004, 2005, 2010).

Consider one type of COA: a patient-reported outcome (PRO). When the
objective of a study is to compare a PRO in subjects who experience the same type
of condition during a given phase of treatment, assessments can be planned at times
when clinically relevant events are expected to occur or at times that correspond to
a distinct, meaningful phase of the intervention or disease. Such assessment is more
common for a design with a relatively short duration. Many variations exist. Among
them, for example, is when differences in PRO values are expected during only the
early period of therapy. A breast cancer trial of adjuvant therapy in which a
16-week dose-intensive regimen was compared with a more traditional 24-week
regimen is an illustration of such an event-driven design (Fetting et al. 1998). Three
assessments were planned—prior to (baseline assessment), during, and after therapy
—where each phase of the disease or its treatment was considered distinct with
respect to the PRO of interest.

In event-driven designs where each assessment is conceptually identified with a
landmark event, repeated-measures models for longitudinal data (with time taken as
a categorical covariate) are an appropriate choice. Note that assessments for all
subjects should be taken at the same points in time (e.g., week 6, week 10, and
week 24), where points in time need not be equally spaced. Repeated-measures
models may also be useful in some studies with only a few assessments.
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When the scientific questions involve a more extended period, or when the
phases of the disease or its treatment are not distinct, the longitudinal designs are
based on or driven by time (Fairclough 2005, 2010). These designs are appropriate
for chronic conditions where therapies are given over elongated periods, such as
diabetes and arthritis.

In time-driven designs the duration of therapy may be indeterminate at study
onset, with therapy intended to be given to a patient until it is not efficacious or
produces unacceptable toxicity. For instance, patients with advanced renal cell
carcinoma were randomized to receive either repeated 6-week cycles of sunitinib
(experimental) or interferon alfa (control) (Cella et al. 2008). Doses were adjusted
in response to symptoms of toxicity. Treatment in both groups was continued until
the occurrence of death, unacceptable adverse events, or withdrawal of consent.
Patients were asked to complete the PRO questionnaires before any clinical
activities during visits to the study clinics at screening, on days 1 and 28 of each
42-day treatment cycle, and at the end of treatment or study withdrawal.

Time-driven designs are associated with mixed-effect models for studies where
time is often conceptualized and taken as a continuous variable. Mixed-effect
models are useful when the timing of assessment differs widely among individuals,
studies have a large number of PRO assessments, or changes over time are to be
modeled with a smaller number of parameters than that required for a
repeated-measures model (with time as a categorical covariate).

A major factor when deciding on the timing of the COA assessment, both
initially and subsequently, is the recall period of the COA questionnaire. Because
individuals have better recall for major events and more recent experiences, the
period of accurate recall for measuring certain areas (e.g., erectile dysfunction,
physical well-being) is between one and four weeks, whereas the period of recall for
the frequency and severity of symptoms (e.g., pain, fatigue) is accurate over shorter
periods such as at the time of patient completion of the COA or the past 24 h. That
said, it should be noted that recall period established by the developers of the COA
instrument should be used.

For regulatory claims on a COA, the recall period with the shortest time frame
consistent with the instrument’s purpose or intended use (e.g., when feasible, a
recall period referenced to the patient’s current or recent state) is preferable to a
recall period that is based on a longer period, a comparison of a patient’s current
state with an earlier period, and a self-reported average over time (FDA 2009). The
frequency of the assessments on COAs should be frequent enough to capture
meaningful change over a sufficient duration but not frequent enough to cause
excessive burden on participants.

Patients who drop out of a study prematurely are generally more likely to have a
less favorable score on a COA because of side effects or no effect of treatment.
A treatment arm with a high rate of dropout is likely to give an artificially more
favorable outcome because only the healthiest of the patients remain on treatment,
leading to selection bias and overly optimistic estimates of treatment effect. It is
therefore desirable to have a COA assessment in conjunction with premature
withdrawal from the study. If the research objective extends to off-therapy
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assessments, then they can be made by continuing the COA assessments after
discontinuation. The off-therapy assessments can always be excluded if deemed
uninformative or irrelevant to the research question. Including the off-therapy
assessments after discontinuation allows them to be available, should they be
determined to be of interest.

Missing data on COAs can occur as missing items or missing questionnaires.
Missing items involve the lack of responses for some specific items; missing
questionnaire involves patients who may fail to complete and return the whole
questionnaire. Many instruments include well-documented procedures by their
developers on how to handle missing items. Such recommendations by developers
are typically the preferred way to address missing items. Missing questionnaires are
a more complex situation than missing items. Missing questionnaires can happen as
a result of dropout from the study or randomly failing to fill out an entire ques-
tionnaire. Section 12.8, which covers this topic generally, is also applicable to
missing data on COA questionnaires.

12.10 Multi-regional Phase III Clinical Trial Issues

Phase III clinical trials tend to be larger in sample size and targeted for multiple
international submissions for approval. Globalizing clinical trials may enable more
efficient drug and product development, which would then enhance product
affordability and foster further investment in research and development. As a result,
they tend to be multi-regional and may cover the USA, Europe, China, Japan, other
Asian-Pacific countries, South America, or African countries. Different countries
and regions have different medical practice and regulatory requirements. Therefore,
multi-regional clinical trials (MRCT) will have to be harmonized, which prompts
actions from the FDA, EMA and Japanese Pharmaceuticals and Medical Devices
Agency (PMDA) to release guidelines. International harmonization will promote to
conduct the MRCT more appropriately and more efficiently on drug development,
as well as to avoid duplicative developments.

For example, Japan in their Basic Principles on Global Clinical Trials (2007)
document requires that “A global trial should be designed so that consistency can
be obtained between results from the entire population and the Japanese popula-
tion.” It also recommends two methods of calculating Japanese sample size, which
generated debates and discussions, as seen, for example in Ikeda and Bretz (2010).

Despite the globalizations of MRCTs, there are emerging challenges in the
conduct of such trials at different regions regarding potential regional heterogeneity.
This heterogeneity, which needs to be carefully considered, is generated by different
requirements from different regulatory agencies in different countries with regard to
the study design and conduct of MRCTs. As reviewed by Girman et al. (2011),
there are (1) different endpoints required by different regions since different regu-
latory authorities have different standards for primary, co-primary, or key secondary
endpoints; (2) different time points required for hypothesis testing since the
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expected treatment duration or the primary time point for measuring treatment
response in a trial may not be consistent across regions; (3) different experimental
designs which are modified to match the different characteristics from different
regions in a MRCT; (4) different non-inferiority margins required by different
regulatory agencies; and (5) different analytic patient populations defined in anal-
ysis plan by different regions.

Any of these aforementioned differences could lead to inflated type I and type II
errors from the perspectives of statistical analysis and final recommendations.
Therefore, attempts and attentions should be made to resolve these differences prior
to MRCT’s initiation. It then becomes imperative to enforce and follow the guid-
ance from global harmonization from different health and regulatory authorities as
in International Conference on Harmonization (http://www.ich.org). In addition to
regulatory considerations, regional differences can also be thought of in terms of
intrinsic or extrinsic factors (ICH E5 1998a). Intrinsic factors may be race or
genetic, and extrinsic factors could include diet, smoking or cultural related factors.
Currently ICH is drafting E17, which addresses MRCT issues.

12.11 The Trend Towards Personalized
or Precision Medicines

On April 14, 2003 the US National Human Genome Research Institute, the
Department of Energy, and their partners in the International Human Genome
Sequencing Consortium announced the essential completion of a high-quality
version of the human sequence, including the creation of physical and genetic maps
of the human genome. This major milestone enhanced the possibility of person-
alized or precision medicine, which involves getting the right therapy to the right
patient at the right time. Depending on each individual’s genetic content or other
molecular or cellular analysis, it is possible to identify individuals who may benefit
the most from certain medicine under a customized dosing regimen. Advances in
personalized medicine will create a more unified treatment approach specific to the
individual and their genome. Personalized medicine may provide better diagnoses
with earlier intervention, and more efficient drug development and therapies.

With this new trend, enrichment strategies will be popular and useful for
Phase III trials to identify patient subgroups with certain characteristics such as
certain genotyping or phenotyping, to benefit from optimized treatment effects.
From the standpoint of improving efficacy, safety and public health, there is a
general consensus about the value of targeting treatment at patients that are highly
likely to benefit from it. A core belief behind the concept of personalized medicine
is that it may expedite drug development and lead to greater efficacies in health
care. Examples include selecting patients whose disease does not spontaneously
disappear or exhibit a large degree of variability, who are likely to comply with
treatment, who are likely to have a high rate of disease progression, or who have
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some characteristic that suggests they can respond to the treatment. For more detail,
the reader is referred to the draft FDA guidance document on “Enrichment
Strategies for Clinical Trials to Support Approval of Human Drug and Biological
Products” (2012).

12.12 Summary

In this chapter, we highlight the scope of Phase III plans and various issues asso-
ciated with the Phase III development. These issues include drug label and target
product profile, non-inferiority trial designs, dose selection, drug formulations and
patient populations, number of required trials for a labeling claim, number of
primary efficacy endpoints, missing data issues, clinical outcome assessments,
multi-regional trial issues, and the trend towards development of personalized
medicines.

Although there are many other issues on Phase III clinical trials, we believe this
chapter provides a good general overview and introduction to the Phase III
developments. The reader is encouraged to refer to literature and books that cover
in-depth knowledge about Phase III developments.
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