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Preface

This volume, which is completely dedicated to continuous bivariate distri-
butions, describes in detail their forms, properties, dependence structures,
computation, and applications. It is a comprehensive and thorough revision
of an earlier edition of “Continuous Bivariate Distributions, Emphasizing Ap-
plications” by T.P. Hutchinson and C.D. Lai, published in 1990 by Rumsby
Scientific Publishing, Adelaide, Australia.

It has been nearly two decades since the publication of that book, and
much has changed in this area of research during this period. Generaliza-
tions have been considered for many known standard bivariate distributions.
Skewed versions of different bivariate distributions have been proposed and
applied to model data with skewness departures. By specifying the two condi-
tional distributions, rather than the simple specification of one marginal and
one conditional distribution, several general families of conditionally speci-
fied bivariate distributions have been derived and studied at great length.
Finally, bivariate distributions generated by a variety of copulas and their
flexibility (in terms of accommodating association/correlation) and struc-
tural properties have received considerable attention. All these developments
and advances necessitated the present volume and have thus resulted in a sub-
stantially different version than the last edition, both in terms of coverage
and topics of discussion.

In a volume of this size and wide coverage, there will inevitably be some
mistakes and omissions of some important published results. We have made a
sincere effort to minimize these, and what are left and left out are accidental
and are certainly not due to nonscientific antipathy. We welcome the readers
to write to us about the contents of this volume and inform us of any errors,
misrepresentations, and omissions that you find. If ever there is a next edition,
we will take your comments into account and make the necessary changes
(keep in mind that our expected residual lives are probably not large enough
to guarantee the next edition!).

We express first and foremost our sincere thanks and gratitude to Paul
Hutchinson for his generosity in permitting us to use good portions from
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the last edition that he was part of, and for his support and encourage-
ment through out the course of this project. We also thank Ingram Olkin for
proposing and initiating this revision through Springer-Verlag. Thanks are
also due to John Kimmell (Editor, Springer-Verlag) for his interest in this
book, and his support and immense patience during the long preparation pe-
riod, and to Debbie Iscoe (McMaster University, Canada) for converting the
not-so-presentable initial manuscript that we prepared into this fine-looking
book that you hold in your hands. Our final special thanks go to our families
who have endured all the countless hours we were away from them (it is quite
possible, of course, that they enjoyed these times in our absence) just to make
a bit of progress everytime.

We both enjoyed very much putting this book together and we sincerely
hope that you, as reader, would enjoy it as much while using it!

N. Balakrishnan
Chin-Diew Lai

Hamilton, Canada
Palmerston North, New Zealand

November 2008
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Chapter 0
Univariate Distributions

0.1 Introduction

A study of bivariate distributions cannot be complete without a sound back-
ground knowledge of the univariate distributions, which would naturally form
the marginal or conditional distributions. The two encyclopedic volumes by
Johnson et al. (1994, 1995) are the most comprehensive texts to date on con-
tinuous univariate distributions. Monographs by Ord (1972) and Hastings
and Peacock (1975) are worth mentioning, with the latter being a convenient
handbook presenting graphs of densities and various relationships between
distributions. Another useful compendium is by Patel et al. (1976); Chapters
3 and 4 of Manoukian (1986) present many distributions and relations be-
tween them. Extensive collections of illustrations of probability density func-
tions (denoted by p.d.f. hereafter) may be found in Hirano et al. (1983) (105
graphs, each with typically about five curves shown, grouped in 25 families
of distributions) and in Patil et al. (1984). Useful bibliographies of univari-
ate distributions, though dated now, have been given by Haight (1961) and
Patel et al. (1976). A compact text on univariate distributions with a brief
discussion of multivariate distributions at the end has been presented by Bal-
akrishnan and Nevzorov (2003). Finally, it is of interest to mention here that
most of the univariate distributions and related concepts discussed in this
chapter are also present in the form of concise entries in the 16-volume set
Encyclopedia of Statistical Sciences prepared by Kotz et al. (2006), which
would serve as a valuable and useful general reference for readers of this
volume.

In this chapter, we provide an elementary introduction and basic details
on properties of various univariate distributions, and an understanding of
these will be key to following the developments in subsequent chapters, as
they will rely time and again on these univariate properties. In Section 0.2,
we first introduce the pertinent notation and properties. In Section 0.3, we
describe some of the useful measures that capture specific shape character-

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 1
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2 0 Univariate Distributions

istics of univariate distributions. In Section 0.4, we present details on the
normal distribution and its transformations. Section 0.5 discusses the beta
distribution, while Section 0.6 handles the exponential, gamma, and Weibull
and Stacy’s generalized gamma distributions. A few important aging dis-
tributions are presented in Section 0.7. Some symmetric distributions, such
as logistic, Laplace, and Cauchy distributions, are presented in Section 0.8.
Next, in Sections 0.9 and 0.10, we describe the extreme-value and the Pareto
distributions, respectively. The general broad families of Pearson and Burr
distributions are presented in Sections 0.11 and 0.12. Section 0.13 discusses
t- and F-distributions, while Section 0.14 presents the wrapped t-family of
circular distributions. Some noncentral distributions are briefly mentioned in
Section 0.15. Skew-families of distributions, which have seen a lot of activ-
ity recently in the literature, are described in Section 0.16. Jones’ family of
distributions is introduced in Section 0.17, and some lesser-known but useful
distributions are described finally in Section 0.18.

0.2 Notation and Definitions

0.2.1 Notation

In the univariate case, the cumulative distribution function and the proba-
bility density function will be denoted by F(z) and f(z), respectively. The
following is a list of terms and symbols that will be used in this chapter as
well as all subsequent chapters.

Term Symbols  Brief explanation

Moment generating function M (t) E(et)

Characteristic function (t) E(etX)

Cumulant generating function K(t) log ()

rth moment (about the origin) .. E(X7)

rth central moment Ly E[(X =), pn=p

rth cumulant Ko The coefficient of (it)" /!
in the expression of K(t)

Variance o? 12

Coefficient of skewness as =P s / o3

Coefficient of kurtosis ay = (o /ot

Coefficient of variation o/u

Survival function F(x) 1—F(x)

Hazard (failure rate) function r(x) f@)/{1 - F(x2)}

Sample mean X Y Xi/n

Sample variance s? Doy (X — X)?/(n—1)
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In the bivariate context, p; and ue will often be used for the means of the
two variables. There is unlikely to be any confusion over this notation. Also,
log simply means log,.

0.2.2 Explanations

Moment Generating Function

Let X be a random variable (denoted by r.v. hereafter) with cumulative
distribution function (denoted by c.d.f. hereafter) F(z) and p.d.f. f(x). Then,

M(t) = E(e!X) = / T e () da (0.1)

—00

is the moment generating function (denoted by m.g.f. hereafter) of X if the
integral is convergent for all values of ¢ belonging to an interval that contains
the origin. The existence of the m.g.f. is not assured for all distributions;
however, if it does exist, it will uniquely determine the distribution. When it
exists, it may be written as

M) = M;;. (0.2)
j=0 7

This readily implies that p; is M ()(0), i.e., the jth derivative of M, evaluated
at 0. Note that it is possible to have y; exist for all j and yet M(t) not exist.

Let X7 and X5 be two independent r.v.’s with m.g.f.’s M7 () and Ma(t),
respectively. It is easy to see that the m.g.f. of X7 + Xo is M;(¢t)M(t). Hence,
the m.g.f. is a convenient tool to study distributions of sums of independent
r.v.’s.

For univariate distributions, the existence (finiteness) of a moment of some
particular order implies the existence of all moments of lower order.!

0.2.3 Characteristic Function

The cumulative function (denoted by c.f. hereafter) ¢ of X is a complex-
valued function defined as

1 Is the same true for bivariate distributions? No. What we can say is that if moments of orders
(K, 1), (k,N\), and (k,1) exist, then so do all the moments of order (m,n), where kK < m < k and
A < n < I; see van der Vaart (1973).
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plt) = B(e") (0-3)
_ / ¢t f(2)d (0.4)
= /jo costx f(m)deri/jo sintz f(x)dx, (0.5)

where i = v/—1, for all real ¢.
The c.f. uniquely determines the distribution. It has the following
properties:

(i) (0) =1,
(ii) |¢(t)] < 1 for all real ¢, and
(iii) @(—t) = ¢(t), where the bar denotes the complex conjugate.

Unlike the m.g.f., ¢(t) exists for all distributions.

Suppose that X has finite moments x; up to order n. Then 09 (0) = iju;-
(for 1 < j < n), where ) is the jth derivative of ¢.

The c.f. can be inverted to give the p.d.f. using the formula

flx) = % /jo e o (t)dt. (0.6)

If X7 and X5 are independent r.v.’s with c.f.’s ¢1 and 9, respectively, the
c.f. of the sum X; + X5 is simply the product of the c.f.’s 1 (t)p2(t).

An overview of the characteristic function and its various properties and
applications is due to Laha (1982). The books by Lukacs (1970, 1983) are
key references on this topic.

0.2.4 Cumulant Generating Function

Cumulant Generating Function

Let K(t) = logp(t). Then, K(t) is known as the cumulant generating func-
tion. Assuming again that the first n moments of X exist, we have

K',
S+ o)

n
Jj=1

as t — 0. The coefficients «; in this expression are called the cumulants (or
semi-invariants) of X. Clearly,
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Hj = 7K(‘])(0),

where KU)(0) is the jth derivative of K (t), evaluated at 0.
It is of interest to note here that the normal distribution has the unique
characterizing property that all its cumulants of order 3 and higher are zero.

Interrelationships of Moments and Cumulants

Relationships between the lower moments about the origin /1;-, central mo-
ments /1, and cumulants x; are as follows:

k1 = p) = p = (the mean),

Ky = piy — p3 = o?(the variance),

kg = py — 3t b + 20 = ps,

Ka = ply — 35 — A ply + 1202 g — 6p1f,

’
My = K1,

/ 2
Mo = K2 + K1,

/ 3
Hg = k3 + 3KeK1 + KT,

Wy = Ky + 3K3 + dKiky + 6K Ko + KT

0.3 Some Measures of Shape Characteristics

0.3.1 Location and Scale

If F(x) is the cumulative distribution of a variable X, we may introduce
a location parameter a and a scale parameter b into it by writing F' (wga)'
These parameters a and b are often the mean and the standard deviation,
respectively, but they need not be—(i) the mean and standard deviation may
not be finite (in such a case, we might set ¢« = median and b = semiquartile
range), and (ii) it may be more convenient for distributions whose p.d.f. is
zero for X < xg to set a as z( instead of as the mean (in which case a is
often referred to as a threshold parameter).

0.3.2 Skewness and Kurtosis

The most common measure of skewness is the normalized third central mo-
ment,
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as = /B = @—?2 (0.7)
Ko

For symmetric p.d.f.’s such as the normal, logistic, and Laplace, this is zero.
The normalized fourth moment,

ay = o = —5, (0.8)

is the usual measure of kurtosis. The normal distribution has f; = 3, and
so sometimes 7o = [ — 3 is referred to as the “excess of kurtosis.” There
is some controversy as to what kurtosis actually means, but a distribution
with [y < 3 (“platykurtic”) usually is less sharply peaked in the center and
has thinner tails than the normal distribution having the same standard de-
viation, whereas a distribution with 32 > 3 (“leptokurtic”) usually is more
sharply peaked in the center and has heavier tails than the normal distribu-
tion having the same standard deviation. For all distributions, they satisfy
the inequality (o > (1 + 1.

The shape of a distribution is not completely determined by the values of
(1 and (5. Nevertheless, these two quantities are helpful while evaluating the
shape when we have decided on a particular family of distributions (such as
Pearson or Johnson families) because we can plot them on a chart marked
with what regions of (1, 52) correspond to which member of the family and
hence make the choice of a member suitable for modeling.

0.3.3 Tail Behavior

While considering this aspect, we are not concerned with tail behavior as
affected by the standard deviation or any other measure of scale—we assume
such effects have been taken care of by some process of standardization. Even
when this has been done, it is still possible to classify distributions as short-,
median-, or long-tailed; see, for example, Parzen (1979) and Schuster (1984).

0.3.4 Some Multiparameter Systems of
Univariate Distributions

Among systems of univariate distributions having several parameters
—typically, four, so that skewness and tail-heaviness can be captured properly
while fitting to empirical data—are Pearson’s, the transformed normal sys-
tem of Johnson, the transformed logistic system of Tadikamalla and Johnson,
the generalized lambda, and Tukey’s g and h families. Mendoza and Iglewicz
(1983) used these 5 to fit 12 of the symmetric distributions commonly used in
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simulation studies and compared them in terms of ease of fitting and goodness
of fit at selected percentiles. Pearson et al. (1979) compared the percentage
points of distributions chosen from the Pearson, Johnson, and Burr systems.

0.3.5 Reliability Classes

Patel (1973) classified 15 continuous distributions as to whether they have
the increasing (or decreasing) failure rate on average property.

A table of formulas including the reliability function (F), the hazard (fail-
ure rate) function, and the mean residual life function has been given by
Sheikh et al. (1987); the distributions included are the normal, gamma, and
Weibull, and also their reciprocals.

Lai and Xie (2006, Chapter 2) have discussed various concepts of aging

for lifetime random variables.

0.4 Normal Distribution and Its Transformations

0.4.1 Normal Distribution

The normal (Gaussian) distribution is symmetric about p and has a density

function )
exp{w}, —00 < & < 0. (0.9)

flz) = —7— 572

For the unit normal (the standard form), the density is conventionally de-
noted by ¢ with the argument as z rather than z; i.e.,

¢(z)_\/127rexp{z22}, —o0 < x < o0. (0.10)

The corresponding c.d.f. is conventionally denoted by @, and there is no
explicit expression for it. It can be shown from (0.57) that

E(X) = 4, (0.11)
var(X) = o2, (0.12)
kr =0 forr > 2.

The mode and median are the same as the mean, pu.
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0.4.2 Lognormal Distribution

The p.d.f. is given by

1 (logz — £)*
f(x)—mjexp{—w}, x> 0. (0.13)

With & denoting the standard normal distribution function, we have

F(z) = ® (k’g””_’s> . (0.14)

g

It can be shown from (0.13) that

o= etz (0.15)
2

var(X) = e (e —1). (0.16)

It should be noted that if log X has a normal distribution, then X is said
to have a lognormal distribution.

0.4.3 Truncated Normal

A normal distribution can be singly or doubly truncated. Johnson et al. (1994,
pp. 156-162) have provided a detailed description of these truncated forms.
Barr and Sherrill (1999) have given simpler expressions for the mean and
variance and their estimates. Castillo and Puig (1999) showed that the likeli-
hood ratio test of exponentiality against singly truncated normal alternatives
is the uniformly most powerful unbiased test and that it can be expressed in
terms of the sampling coeflicient of variation.

0.4.4 Johnson’s System

Johnson’s (1949) system of distributions is obtained by starting with a stan-
dard normal variate Z [with p.d.f. as in (0.10)] and applying one of several
simple transformations to it,

Z =+ 6T(Y), (0.17)

where

e T(Y)=1logY gives the lognormal family, denoted by Sp;
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e T(V)= sinh ™'Y gives the Sy system with unbounded range, —o0o < Y <
o0;

e T(Y)=log (%) gives the Sp family with bounded range, 0 <Y < 1;

e the normal distribution may be considered within this family (by taking
T(Y) =Y) and be denoted by Sy.

Making one of the choices above determines the shape of the distribution.
Location and scale parameters may naturally be introduced by setting Y =
(X —a)/b.

Detailed discussions may be found in Johnson et al. (1994, Section 4.3,
Chapter 12) and Bowman and Shenton (1983). DeBrota et al. (1988) have
provided software to help in the choice of an appropriate member of this
system for fitting to practical data.

0.4.5 Boxr—Cox Power Transformations to Normality

If X is not normally distributed, a power function transformation may often
bring it close to normality. One such transformation is the Boz—Cox trans-
formation given by

(XA —1)/X for A #0,
log X for A = 0. (0.18)

0.4.6 g and h Families of Distributions

These families of distributions are obtained by starting with a standard nor-
mal variable Z and then applying the transformation of the form

e9% _

T,n(2) = ! exp(hZ?/2), (0.19)

where g and h are constants, with the former controlling asymmetry or skew-
ness and the latter controlling elongation, or the extent to which the tails are
stretched relative to the normal.

When g = 0, a symmetric distribution is obtained from Z exp(hZ?/2).
When h = 0, the lognormal distribution is obtained.
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0.4.7 Efron’s Transformation

Efron (1982) considered the question of whether there is a single transfor-
mation Y = a(X) such that Y has nearly a normal distribution when the
distribution of X comes from some one-parameter family of distributions.
Efron developed a general theory to answer this question without consider-
ing a specific form of a and, in those cases where the answer is positive, he
gave formulas for calculating a.

0.4.8 Distribution of a Ratio

Rogers and Tukey (1972) discussed distributions obtained from the ratio form
X/V, where X has a normal distribution and V' is a positive r.v. independent
of X. Among the special cases of this form are:

e The normal distribution itself (the denominator being a constant).

e {-distribution (the denominator being the square root of a chi-squared
variate divided by its degrees of freedom), including the special case of the
Cauchy distribution (the denominator being half-normal).

e The so-called contaminated distributions (the denominator taking only two
values).

e The slash distribution (the denominator being uniformly distributed).

e If V is another independent normal denoted by Y, then X/Y has a Cauchy
distribution.

e Suppose Y has a punctured normal distribution with a small interval con-
taining zero being removed [Lai et al. (2004)]. Then E(X/Y) is well de-
fined.

0.4.9 Compound Normal Distributions

Starting from a normal distribution for X, denoted as usual by N(u,0?), we
may now suppose that p or o are themselves random variables.

e If y has a normal distribution, N(&,02), then the distribution of X will
also be normal and is given by N (&, O'2H—|— ai).

o If X ~ N(u+ BU,0%U), with U being a random variable, the resulting
distribution of X is called a normal variance mean mixture; see Barndorfi-

Nielsen et al. (1982). If 8 =0, it is a normal variance mizture.
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0.5 Beta Distribution

0.5.1 The First Kind

The density function is

f(z) = P —2) 0<x <1, (0.20)

where p and ¢ are shape parameters and B(p, q) is the complete beta func-
tion.?

The distribution function (denoted by d.f. hereafter) cannot be expressed
in a closed form other than as an incomplete beta function.

We shall use beta(a, 3) to denote the beta distribution with shape param-
eters a and (.

From the p.d.f. in (0.20), it can be readily shown that

B(p+r,q)

1= =BT 0 0.21

= " Blg) (0-21)
p

A 0.22
P+ (0.22)

o? = P4 (0.23)

P+ p+aq+1)

For p > 1, ¢ > 1, the mode can be shown to be at (p — 1)/(p + q + 2).

2 The beta function with arguments « and (3 is defined as
! 1 1
B(a,B) = / 7t — )P ae
0
(av > 0,8 > 0). The incomplete beta function is defined as
By(a, B) = / 71— )P ar
0

We shall see that the beta function is related to the gamma function. With argument «, the
gamma function is defined as

I'(a) :/ t* e tdt.
0
It satisfies the recurrence relation
T(a+1) =al'(a).

Also, T'(3) = /7, I'(1) = 1, and if a is an integer, I'(a + 1) = a!. The incomplete gamma
function is defined as

Tp(a) = / t* e tat.
Jo

For methods for computing I';, see DiDonato and Morris (1986) and Shea (1988).
The beta and gamma functions are connected by the relationship

B(e, B) = D'(a)T(B)/T(a + B).
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0.5.2 Uniform Distribution

A special case of the beta distribution is the uniform distribution over the
range 0 < z < 1. The following expressions hold for the more general case of
a<x<b:

f) =+ i -, (0.24)
Flz) = “;:Z (0.25)

(Outside this range, f and F are either 0 or 1.)
From the p.d.f. in (0.24), it can be readily shown that

0 for r odd
ol { (%)r /(T +1) for r even ’ (0.26)
p=0-a)2, (0.27)
0% = (b—a)?/12. 025

One reason why this distribution is so important is its role in generating
random variates. Specifically, if U is uniformly distributed over [0, 1], then
F~Y(U) has a distribution F, and thus random variates from any required
distribution F' can be generated through uniform variates.

0.5.3 Symmetric Beta Distribution

Let p = ¢ in (0.20), and further let Y = 2X — 1. Then, the density function
of Y is given by

1

=—— (1-—¢Hrt 1 1 0.29
P V) Thevsh o 02

()

which is symmetric in y. This is the reason for the name symmetric beta. It
is in fact the Pearson type II distribution.

0.5.4 Inverted Beta D:istribution

This is commonly known as the beta distribution of the second kind and is in
fact the Pearson type VI distribution. Its p.d.f. is given by

1 ,I.afl

IO s mara

x>0, (0.30)
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where a and (3 are shape parameters. The c.d.f. F' can be expressed once
again in terms of an incomplete beta function.
From the p.d.f. in (0.30), it can be readily shown that

w. =Bla+r,+2—7). (0.31)

This is a transformation of the beta distribution in (0.20). Suppose X has
a beta distribution. Then, X/(1 — X) is distributed as (0.30). A convenient
summary of the interrelationships between the beta, inverted beta, gamma,
t-, F-, and Cauchy distributions has been given by Devroye (1986, p. 430).

When we take the logarithmic transformation of an inverted beta variate,
the resulting distribution is sometimes termed the Z-distribution. For —oco <
T < 00, A1 > 0, Ag > 0, we obtain the density

f@) = o —
a B(/\l7 )\2) (1 + 6_'”)>‘1"")‘2 '

(0.32)

Its properties include

M+ TN — 4)
L(A)T(A2)

M = X
and
Ry = ¢T_1()‘1) + (_1)r¢(r—1) ()‘2)7

where (") (t) = w. When A; + A2 = 1, this becomes an example of

the Meixner hypergeometric distribution discussed briefly in Section 0.18.2.

0.6 Exponential, Gamma, Weibull, and
Stacy Distributions

0.6.1 Exponential Distribution

For scale parameter A\ > 0, the p.d.f. and c.d.f. are given by

f(z)=xe ™, x>0, (0.33)
Flx)=1—¢? x>0 (0.34)

From the p.d.f. in (0.33), it can be readily shown that
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=1/, (0.35)
p=1/x (0.36)
median = log2/\, (0.37)
mode = 0, (0.38)
o? = 1/)\% (0.39)

This distribution is characterized by the “lack of memory” property,

Pr(X <z+y|lX >y)=Pr(X <ux). (0.40)

0.6.2 Gamma Distribution

For a > 0, 8 > 0, the p.d.f. is given by

z* ! exp(z/f3)
pel(a)

where T'(«) is the gamma function, defined earlier. An expression for F', with
the use of the incomplete gamma function, is given by

fz) = x>0, (0.41)

F(z) =T;/5(a)/T' (), x>0. (0.42)

From the p.d.f. in (0.41), it can be readily shown that

r—1
pp = 0" T (a+d), (0.43)
=0
n=ap, (0.44
o? = ap?. (0.45)

We use gamma(q, 3) to denote the gamma distribution with shape pa-
rameter o and scale parameter 3. The Erlang distribution is simply a gamma
distribution with « being a positive integer. When o« > 1, the mode of the
distribution can be shown to be at S(a — 1).

0.6.3 Chi-Squared and Chi Distributions

The chi-squared distribution is the gamma distribution written in a slightly
different form (and often thought of in different contexts). v, effectively a
shape parameter, is referred to in this case as the degrees of freedom of the
distribution. For v > 0, the p.d.f. is
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1

S —— S ) 0.46
T2 o (0.46)

f(x)

The chi-squared variate may be obtained as the sum of v squared inde-
pendent standard normal variates.
As to the chi distribution, x,, = \/x2 has as its density function

1
flz) = — el g >0, (0.47)

and its moments are given by
pho=2"2T (v +7)/2]/T(v/2). (0.48)

The case v = 2 is commonly known as the Rayleigh distribution.

0.6.4 Weibull Distribution

For positive « (a shape parameter) and A (a scale parameter), the p.d.f. and
c.d.f. are given by

f(x) = ax(A\z)* e A" 1 >0, (0.49)
F(z)=1—¢ 2% z>0. (0.50)

From the p.d.f. in (0.49), it can be shown that

p. = A""T[(a+r)/al, (0.51)
p=A""T[(a+1)/al, (0.52)

S R

0.6.5 Stacy Distribution

Seeing the p.d.f.’s in (0.41) and (0.49), a general density can be easily thought
of in the form
1 ¢
flz) = ——— ca®@ e~ @B 2 >0, 0.54
where «, 3, ¢ > 0. This is generally called the Stacy distribution, after Stacy
(1962), but it dates back at least as far as Knibbs (1911). In the study
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of hydrology, in the former U.S.S.R., it was known as the Kritsky—Menkel
distribution; see Sokolov et al. (1976, Section 2.3.3.1).
From the p.d.f. in (0.54), it can be easily shown that

.= p"T(a+r/c)/T (). (0.55)
When g = 1, the cumulant generating function becomes
K(t) =logT'(a+t/i) — logT'(a). (0.56)

It is also easy to verify that if X ~ gamma(a, 3°), then Y = X'/¢ has a
Stacy distribution in (0.54).

0.6.6 Comments on Skew Distributions

Basically, the shapes of the gamma, Weibull, and lognormal distributions are
somewhat similar. If the starting point is a free parameter (so that the p.d.f.
is nonzero for X > a, instead of X > 0), they all have three parameters.
In such a three-parameter form, methods of estimating the parameters have
been compared by Kappenman (1985).

0.6.7 Compound Exponential Distributions

Because of its lack-of-memory property, the exponential distribution is often
considered to be the embodiment of true randomness. However, in the life-
testing context, it can easily be imagined that the specimens tested differ in
their quality, and hence their lifetimes do not have an exponential distribu-
tion. This is the compounding model; i.e., the parameter A of the exponential
distribution is itself a random variable with some distribution.

If A has a gamma distribution, the resulting compound distribution is a
Pareto distribution.

Bhattacharya and Kumar (1986) considered the case of 1/\ having an in-
verse Gaussian distribution. They then obtained a p.d.f. that involves a mod-
ified Bessel function of the third kind, and this distribution has a decreasing
failure rate. Earlier, Bhattacharya and Holla (1965) and Bhattacharya (1966)
had considered 1/\ having various elementary distributions.
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0.7 Aging Distributions

Section 2.3 of Lai and Xie (2006) discusses ten commonly used aging distribu-
tions, which are exponential, gamma, truncated normal, Weibull, lognormal,
Birnbaum-Saunders, inverse Gaussian, Gompertz, Makeham, linear failure
rate, Lomax, log-logistic, Burr XII, and the exponential-geometric (EG) dis-
tributions. Details of these distributions can also be found in the two volumes
by Johnson et al. (1994, 1995). The exponential-geometric is a special case
of Marshall and Olkin’s family described below.

0.7.1 Marshall and Olkin’s Family of Distributions

Let G be the survival function of a lifetime variable X. Marshall and Olkin’s
(1997) family of life distributions is obtained by adding a parameter 3 to the
original survival function G resulting in the form

6w
o =0 pany

Note that, in their original paper, € (—o00,00) is taken to be the support
of the random variable X.

The special case where G(z) = exp(—Az) was discussed in detail, and it
was shown in this case that

0<z<oo, 3>0. (0.57)

Blog B
B(X)= 2280
SR )
and 5
0, <9
mode(X) = {Al log(8—1), 3> 2
The failure (hazard) rate function is given by
e
R

which is decreasing in ¢ for 0 < 8 < 1 and increasing for g > 1.

For § =1—p < 1, the model reduces to the EG (exponential-geometric)
distribution mentioned above. If g = 1, it becomes the exponential
distribution.
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0.7.2 Families of Generalized Weibull Distributions

The Weibull distribution is by far the most popular lifetime model in the
area of reliability. There are several reasons for this, and the two most im-
portant ones are: (i) it has a simple survival function, and (ii) the model is
flexible, and its parameters are easy to estimate. Despite its popularity, many
researchers still find the original Weibull model to be inadequate while mod-
eling for one reason or another. During the last decade, many modifications
and generalizations of the Weibull distribution have been proposed. A key
motivation behind this development is the desire to produce a generalized
Weibull distribution that yields a more meaningful failure rate shape than
merely decreasing or increasing as in the case of the original Weibull.
From (0.50), we have

F(z)=exp{—(\2)*}, a,A>0, z>0. (0.58)
For any lifetime distribution, the survival function can be expressed as
F(z) = exp{—H(2)}, (0.59)

where H is the cumulative hazard function defined as H(x) = fom h(t)dt.
Loosely speaking, any H(x) that generalizes (Az)® would thus constitute a
generalized Weibull. We now select four such families as listed below:

o Additive Weibull [Xie and Lai (1995)],

Fz)=exp{—(z/B)" = (2/B2)*}, a1,00,B1,5 >0, x> 0;
e Modified Weibull [Lai et al. (2003)],
F(t) = exp{ — axaem}, a,a, A >0, x> 0;
e Flexible Weibull [Bebbington et al. (2007)],
F(z) = exp{ — (e‘”_ﬁ/x)}, a, B, x> 0;
e Weibull family of Marshall and Olkin (1997),

o e
F(.’E) - 1— (1 . ﬁ)efo‘m)a’

a,>0,0<z< 0.

For other Weibull related distributions and details, we refer the reader to
Murthy et al. (2003) and Lai and Xie (2006, Chapter 5).
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0.8 Logistic, Laplace, and Cauchy Distributions

These three distributions are grouped together since they are symmetric and
have their support as —oo < x < oo and so may be seen as competitors for
the normal distribution.

0.8.1 Logistic Distribution

For the scale parameter 3 > 0 and location parameter c,

1 e-(a—a)/B

fx) = B te G /B2 (0.60)
F(z) = m (0.61)
- % [1 + tanh <x2_ﬂo‘>} . (0.62)

The mean, median, and mode are all equal to «, and the variance is 3272 /3.

Johnson’s system of transformations can be applied to a logistic variate in-
stead of starting with a normal variate; see Tadikamalla and Johnson (1982).

Tukey’s lambda distribution may be regarded as a generalization of the
logistic. In this case, instead of a friendly form for F' in terms of x, there is
a simple expression for z in terms of F',

z=[F*—(1-F)*/\ (0.63)

On letting A — 0, we find F = (1 +e~®)~1. An extended Tukey family may
be written as
T =M+ [F* — (1 — F)M]/\,. (0.64)

0.8.2 Laplace Distribution

This is also known as the double exponential distribution, and its p.d.f. and
c.d.f. are

fl@) = g emp(cla =01/¢), —so<a<oo, 630, (06)
[ Lexp[—(0—x)/¢] for z <6
F(z) = {1 i I%)exp[—(as —0)/9] fgr x>0 (0.66)

The mean, median and mode all equal 6, and the variance is 2¢2.
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Johnson’s system of transformations can once again be applied to a Laplace
variate instead of starting with a normal variate; see Johnson (1954).

0.8.3 The Generalized Error Distribution

To subsume the normal and Laplace distributions within one family, we can
consider the generalized error distribution with p.d.f.

-1
fz) = [2(5+2>/2r (; - 1)] exp (—;’x ; 9‘”) , —oo<w <o
(0.67)

0.8.4 Cauchy D:istribution

For scale parameter A > 0 and location parameter 6, the p.d.f. and c.d.f. are
given by

f(x)zwl)\l_’_(i/\e)27 -0 < T < 00, (0.68)
F(z) = %—&— %tan_1 (m _/\0)) . (0.69)

The moments do not exist. However, # and A are location and scale pa-
rameters, respectively. Both the median and mode are at 6.

The distribution, like the normal, is stable, meaning that the distribution
of the sample mean is of the same form as the parent distribution. In contrast
to the normal distribution, the distribution of the sample mean has the same
scale parameter as the parent distribution.

0.9 Extreme-Value Distributions

0.9.1 Type 1

This is also known as the Gumbel distribution, and its c.d.f. and p.d.f. are
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respectively.

0.9.2 Type 2

This is also known as the Fréchet distribution. For o > 0, the c.d.f. is given
by
F(z) =exp(—2z~%), x>0. (0.72)

Note that if X has the Fréchet distribution in (0.72), then Y = X~¢ has an
exponential distribution.

0.9.3 Type 3

This is related to the Weibull distribution, and its c.d.f. is given by
F(z) =exp{—(-2)"}, a>0, z<0. (0.73)

It is then evident that —X has a Weibull distribution.
Distributions (0.72) and (0.73) can be transformed readily to type 1 by
the simple transformations

Y =log X, Y = —log(—X).

A book-length account on extreme-value distributions is Kotz and Nadara-
jah (2000).

0.10 Pareto Distribution

For z > k > 0 and a > 0, we have as the p.d.f. and c.d.f.

ka
flx) = % (0.74)

Flz)=1- <k> , (0.75)

T

respectively. From the p.d.f. in (0.74), it can be readily shown that
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= " ifa>r, (0.76)
k
o= a‘il, ifa>1, (0.77)
ak? .
2 = m, if a > 2. (078)

This is sometimes referred to as the Pareto distribution of the first kind.
Another form of this distribution, known as the Pareto distribution of the
second kind (sometimes also called the Lomax distribution), is given by

Flz)=1-c"/(x+¢)* ¢>0, z>0, (0.79)
f(z) =ac"/(x+ c)(“+1); (0.80)

see Chapter 20 of Johnson et al. (1994) for details.

A monograph devoted to Pareto distributions is Arnold (1983). The so-
called Pareto IV distribution in that monograph has been termed the gener-
alized Pareto distribution in Arnold et al. (1999) and has a survival function
of the form

F) —Q
F(z) = [1+ (%) } . >0, (0.81)

g

where o,d, and « are all positive parameters.

0.11 Pearson System

All members of Karl Pearson’s system of continuous densities satisfy the
differential equation
df _ (z—a)f(x)

= 7 0.82
de bo + bll’ + bQI’Q ( )

For b; = be = 0, the density f is normal. There are 12 other types, many
of which are better known under other names, as presented in the following
table.
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Common name Type  Density Support
Beta (shifted) I (1+x)™ (1 —x)m —1tol
Symmetric beta I (1—az2)m —1tol
Gamma I11 e " 0 to oo
v (1+2%)"mexp(—vtan~tx) —o0 to oo
Reciprocal of gamma 'V x ™ exp(—z~ 1) 0 to oo
Inverted beta (F') VI ™2 (14 x)~™ 0 to oo
t VII (14 22)—™ —00 to 0o
VIII (I4+az)—™ Otol
IX (1+2)™ 0to 1
Exponential X e " 1 o0
Pareto XI ™ 1 to oo
XII [(14+2)/(1—a)™ —1to1l

0.12 Burr System

There are 12 types of Burr distributions. The two most important ones are
presented below. In both cases, the parameters ¢ and k are positive and, as
usual, location and scale parameters can be introduced if required.

Type XII:
Flz)=1-(1+2%7% z>0; (0.83)

Type III:
F(x)=(14+27°7% a>0. (0.84)

If X has a Burr type XII distribution, then Y = X ¢ has a Lomax distribution.
Equation (0.83) is a special case of (0.81).
0.13 t- and F-Distributions

These distributions are not models that describe the variability of some di-
rectly observed quantity such as length or time but are usually obtained as
the theoretical distribution of some statistics of interest.

0.13.1 t-Distribution

With v being the degrees of freedom (effectively a shape parameter), the
p-d.f. is given by
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1 22\ ~th/2
[(#) = =+~ (1 + ) , —oo <z < oo. (0.85)
\/;B(%ﬂ 5) v

Simple expressions for F' can be given for the cases when v = 1,2,3. The
mean is zero for v > 1, while the variance is v/(v —2) for v > 2. When v =1,
X has a Cauchy distribution.

The ratio Z/+/X /v has a t-distribution in (0.85) when Z has a standard
normal distribution, X has a chi-squared distribution with v degrees of free-
dom, and Z and X are independent random variables.

0.13.2 F-D:istribution

This distribution is effectively the inverted beta introduced earlier written in
a slightly different way. The pair 1 and v», effectively two shape parameters,
is referred to as the degrees of freedom of the distribution. The p.d.f. is given
by

Tl +1)/2] (11 v1/2 oy . —(vit12)/2
10 = Fayrnay (o) = (1 ) o0,
(0.86)

The c.d.f. F(x) cannot be expressed in an elementary form.
For vy > 2, the mean is v/(v2 — 2). For vy > 4, the variance is 2v3 (vy +
vy — 2)/[v1(va — 2)%(ve — 4)]. For vy > 1, the mode is vo(vy — 2)/[v1(v2 + 2)].
The ratio (X1/11)/(X2/v2) has a F-distribution if X; and X, are inde-
pendent chi-squared variates with v and vy degrees of freedom, respectively.
The chi-squared—i.e., the gamma—is not the only distribution for which this
is true; see Section 9.14 of Springer (1979).

0.14 The Wrapped t Family of Circular Distributions

Pewsey et al. (2007) considered the three-parameter family of symmetric
unimodal distributions obtained by wrapping the location-scale extension of
Student’s t distribution onto the unit circle. The family contains the wrapped
normal and wrapped Cauchy distributions as special cases, and can closely
approximate the von Mises distributions as special cases.

Let X have a t-distribution with v degrees of freedom, and let Y = p+AX,
where p is a real number and A > 0. Wrapping Y onto the unit circle § =
Y (mod 27), we obtain a circular random variable having probability density
function
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¢\ (6 + 27p — po)*\ ~ 3
FO3po, A v) = 1 > (1 + 25 ) , 0<6<o2r,

p=—00

with po = p(mod2).

0.15 Noncentral Distributions

The noncentral chi-squared variate, with v degrees of freedom and noncen-
trality parameter \, arises as the distribution of "7 ,(Z; + a;)?, where the
Z;’s are independent standard normal variates and A = >, a?.

The noncentral F-variate is obtained from the ratio of a noncentral chi-

squared variate to an independent chi-squared variate of the form

vo Yoot (Zi + ai)?
n ZV1+V2 72

1=v1+1 “1

The doubly noncentral F-variate is similarly obtained from the ratio of two
independent noncentral chi-squared variates.

The noncentral ¢-variate with v degrees of freedom and noncentrality pa-
rameter § arises as the distribution of (Z +¢§)/+/X /v, where Z is a standard
normal variate and X is an independent chi-squared variate with v degrees
of freedom. The doubly noncentral ¢-variate is similarly obtained if X has a
noncentral chi-squared distribution.

The noncentral beta variate is obtained as X/(X +Y), where Y and X are
independent chi-squared and noncentral chi-squared variates, respectively. If
they are both noncentral chi-squared variates, X/(X + Y) has the doubly
noncentral beta distribution.

These distributions do not have elementary expressions for either their
densities or their distribution functions.

0.16 Skew Distributions

There are various ways to skew a distribution, and some important develop-
ments in this direction are described in this section.

0.16.1 Skew-Normal Distribution

A random variable X is said to be skew-normal with parameter X if its density
function can be written as
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flz;A) =2¢(2)P(\x), —o0 <z < o0, (0.87)

where ¢(z) and ®(x) denote the density and distribution function, respec-
tively, of the standard normal. The parameter A, which regulates the skew-
ness, varies in (—oo,00), and A = 0 corresponds to the standard normal
density. For detailed properties, see Azzalini (1985, 1986) and Henze (1986).
The distribution has been used by Arnold et al. (1993) in the analysis of
screening procedures.

An alternative skew extension of normal is considered in Mudholkar and
Hutson (2000) by splitting two half-normal distributions and introducing an
explicit skewness parameter so that the new p.d.f. can be expressed as

flz,e) = ¢(1L_|_€>I(z<o) + ¢(1€?>I(m20)-

The distribution above is called the epsilon-skew-normal distribution.

Log-Skew-Normal Distribution

Following the same connection as between the normal and the lognormal dis-
tributions, Azzalini et al. (2003) obtained the log-skew-normal distribution.

0.16.2 Skew t-Dzistributions

There are several types of skew ¢-distributions, and we present here a brief
review of these forms.

General Type

A general method of skewing a symmetric density function g(x) with distri-
bution function G(x) is to define

fx; ) = 2g9(x)G(A\x). (0.88)

This family of skew distributions obviously includes the skew-normal in
(0.87). An equivalent definition of X is to regard it as a scale mixture of
skew-normal variates.

If g(x) is the t-density with v degrees of freedom, (0.88) becomes a skew
t-distribution. The resulting distribution function is relatively intractable; see
some comments by Jones and Faddy (2003).
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Skew t-distribution of Azzalini and Capitanio

Suppose Y is skew-normal with density as given in (0.87). Azzalini and Cap-
itanio (2003) defined a skew t-distribution through the transformation

X =¢4+ V12, (0.89)

where V ~ x2 /v, independent of Y. The density function of X has the form
t, ()T (w(z)). Here, w(x) is not a linear function of z, and thus it differs from
the previous skew t-distribution.

Log-Skew t-Distributions

The log-skew t-distribution was obtained by Azzalini et al. (2003) in the same
manner as for the log-skew-normal. They found it to fit the American family
income data satisfactorily.

Skew t-Distribution of Jones and Faddy

Jones and Faddy (2003) derived a skew ¢-distribution having density

f(x) = flx;a,b)

X ' a+1/2 ‘ b+1/2
SIS R § [ R — (L E—
a,b{ + (a+b+t2)1/2} { (a+b+t2)1/2} ’

(0.90)

where Cyp = 2°t*"1B(a,b)(a + b)*/2,a > 0,b > 0. When a = b, f(x) in
(0.90) reduces to the t-distribution with 2a degrees of freedom. When a < b
or a > b, f is negatively or positively skewed, respectively. Furthermore, it
should be noted that f(z;b,a) = f(—z;a,b).

0.16.3 Skew-Cauchy Distribution

Arnold and Beaver (2000) introduced a skew-Cauchy distribution with den-
sity function

)\()
1+ XN

f(z) = ()T (Ao + A1)/ ¥ ( > , —oo <z < oo, (0.91)

where
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and 1 1
U(z) =~ + —tan" !
(x) 5 + —tan” @
are, respectively, the density and distribution function of the standard Cauchy
distribution.
If Ao =0, (0.91) reduces to

F(@) = 20(2) ¥ (M) (0.92)

which has the same form as (0.88).

0.17 Jones’ Family of Distributions

Jones (2004) constructed a family of distributions arising from distributions
of order statistics, and it has a p.d.f. to be of the form
I'(a+b)

fz) = WLCJ(x){CJ(SE)}CH{1 —G@)}Y, a>0,0>0, (0.93)

where G is a symmetric distribution with density g, i.e., G' = g.

Starting from a symmetric f with a = b = 1, a large family of distributions
can be generated with the parameters a and b controlling skewness and tail
weight. In particular, if a = b, the corresponding distributions remain sym-
metric; if @ and b become large, tail weights are decreased, with normality
being the limiting case as a,b — oo; if @ and b are small, tail weights are
increased; if a and b differ, skewness is introduced, with the sign of skewness
depending on the sign of a — b; and if only one of a or b tends to infinity, a
standard extreme-value type distribution arises.

0.18 Some Lesser-Known Distributions

0.18.1 Inverse Gausstan Distribution

This is also sometimes called the Wald distribution. For ¢ > 0, the p.d.f. and
c.d.f. are given by

f(z) = @e¢x_3/2 exp [—;(b(x + x_l)} , x>0, (0.94)
F(z) = [(x - 1)\/%} + 2 [—(x + 1%/%} . x>0, (0.95)
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where ® denotes the distribution function of a standard normal. It can be
shown that ¢ = 1 and 62 = ¢~!. When the mean y is other than 1, the Wald
distribution is generally known as the inverse Gaussian distribution (because
of the inverse relationship between the cumulant generating function of this
distribution and that of the normal (Gaussian) distribution). In this case, the
density becomes

flz) = £x73/2 exp {M} , (0.96)

and the variance is now ¢~ 3.

0.18.2 Meixner Hypergeometric Distribution

The p.d.f. is given by

1T

f(z) = [7r1"(a)]_12a_2‘f‘ (; +5 > ’26WC(COS’V)Q (0.97)

(in which |y| < § and a > 0). This is called the generalized hyperbolic secant
distribution if v = 0 [Harkness and Harkness (1968)]. If, in addition, a = 1,
it is known as the hyperbolic secant distribution. The distribution function
F(z) can be expressed through an incomplete beta function.

From the density in (0.97), it can be shown that

W= atan-y, (0.98)
o? = a[l + (tan~)?]. (0.99)
0.18.3 Hyperbolic Distributions

The logarithm of the p.d.f. is a hyperbola, and omitting the location and
scale parameters, we have the p.d.f.

f(z) < exp {fg ( (14+n2)(1+a?) — nx)] . (0.100)

0.18.4 Stable Distributions

If X’s are i.i.d. r.v.’s and there exist constants a,, > 0 and b,, such that
a,* S X; — b, has the same distribution as the X’s, then this distribu-
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tion is said to be stable. a,, = n*/®, where « is known as the characteristic

exponent (0 < o < 2); o = 2 for the normal distribution and o = 1 for the
Cauchy distribution. In addition to a and scaling and centering constants, a
skew parameter 3 is involved. The expression for the characteristic function
is reasonably simple, but not so for the p.d.f. (except for some special cases).
The main area of application of stable distributions is in modeling certain
economic phenomena that seem to possess very heavy-tailed distributions.
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Chapter 1
Bivariate Copulas

1.1 Introduction

The study of copulas is a growing field. The construction and properties of
copulas have been studied rather extensively during the last 15 years or so.
Hutchinson and Lai (1990) were among the early authors who popularized
the study of copulas. Nelsen (1999) presented a comprehensive treatment of
bivariate copulas, while Joe (1997) devoted a chapter of his book to multi-
variate copulas. Further authoritative updates on copulas are given in Nelsen
(2006). Copula methods have many important applications in insurance and
finance [Cherubini et al. (2004) and Embrechts et al. (2003)].

What are copulas? Briefly speaking, copulas are functions that join or
“couple” multivariate distributions to their one-dimensional marginal distri-
bution functions. Equivalently, copulas are multivariate distributions whose
marginals are uniform on the interval (0, 1). In this chapter, we restrict our
attention to bivariate copulas.

Fisher (1997) gave two major reasons as to why copulas are of interest
to statisticians: “Firstly, as a way of studying scale-free measures of depen-
dence; and secondly, as a starting point for constructing families of bivariate
distributions.” Specifically, copulas are an important part of the study of
dependence between two variables since they allow us to separate the effect
of dependence from the effects of the marginal distributions. This feature
is analogous to the bivariate normal distribution where the mean vectors
are unlinked to the covariance matrix and jointly determine the distribution.
Many authors have studied constructions of bivariate distributions with given
marginals: This may be viewed as constructing a copula.

In this chapter, we present an overview of the properties of a copula as well
as a brief sketch on constructions and simulation of copulas. Following this
introduction, we describe the basic properties of bivariate copulas in Section
1.2. Some further properties of copulas are presented in Section 1.3. Next,
in Sections 1.4-1.6, the survival, Archimedean, extreme-value, and Archimax
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copulas are discussed, respectively. In Sections 1.8 and 1.9, the Gaussian, t,
and copulas of the elliptical distribution in general and the order statistics
copulas are described. In Section 1.10, the polynomial copulas and their use
in approximating a copula are discussed. In Section 1.11, we describe some
measures of dependence between two variables with a given copula such as
Kendall’s tau, Spearman’s rho, and the geometry of correlation under a cop-
ula. We also present in this section some measures based on Gini’s coefficient,
tail dependence, and local dependence measures. The distribution of the vari-
able Z = C(U,V) is discussed in Section 1.12. The simulation of copulas and
different methods of constructing copulas are presented in Sections 1.13 and
1.14, respectively. Section 1.15 details some important applications of copu-
las in different fields of study. Finally, the chapter closes with some criticisms
levied against copulas in Section 1.16 and brief concluding remarks in Section
1.17.

1.2 Basic Properties

Let C(u,v) denote a bivariate copula. Then:
e For everyu,v € (0,1),
C(u,0)=0=C(0,v), C(u,1) =u, C(1,v) =v.

o C(ug,v9) — C(ug,v1) — C(ug,va) + C(ug,v1) > 0.
e A copula is continuous in w and v; actually, it satisfies the stronger
Lipschitz condition [see Schweizer and Sklar (1983)]

|C(u2,v2) — Clur,v1)| < |ug —ur] + |vg — vi;
o For0<u; <wuy<land0<w; <wvy<1.

Pr(up <U < ug, vy <V <)
= C(ug,v2) — C(uy,v2) — C(ug,v1) + Clug,vy) > 0.

It is easy to verify that the following are valid copulas:
C™ (u,v) = min(u,v), C~(u,v) = max(u + v — 1,0), and C°(u,v) = wv.

Sklar’s theorem below elucidates the role that copulas play in the relation-
ship between bivariate distribution functions and their univariate marginals
[see Sklar (1959)].

Theorem 1.1. Let H be a joint distribution function with marginals F and
G. Then, there exists a copula C' such that, for all z,y € [—o0, x|,

H(z,y) = C(F(x),G(y))- (1.1)
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If F and G are continuous, then the copula C' is unique; otherwise, C is
uniquely determined on (Range of Fx Range of G). Conversely, if C is a
copula and F' and G are univariate distribution functions, then H is a joint
distribution function with marginals F' and G.

It follows from the representation in (1.1) that if F' and G are uniform, then
H(z,y) = C(x,y), which indicates that the copula is in the form of a bivariate
distribution with its marginals transformed to be uniform over the range (0,
1). In other words, a bivariate copula is simply the uniform representation of
the bivariate distribution in question. The dictionary definition of copula is
“something that connects,” and the word is used here to indicate that it is
what interconnects the marginal distributions to produce a joint distribution.

Let h, f, g, and ¢ be the density functions of H, F, G, and C, respectively.
Then, the relation (1.1) yields

hz,y) = c(F(x), G(y)) f(x)g(y). (1.2)

1.3 Further Properties of Copulas

e For every copula C and every (u,v) € [0,1] x [0, 1],
C™(u,v) < C(u,v) < CF(u,v),

where C*(u,v) = min(u,v) and C~ (u,v) = max(u + v — 1,0) are the
Fréchet upper and lower bounds, respectively.

e For every v € [0,1], the partial derivative dC/0u exists for almost all u
and 0 < %C(u,v) < 1. Similarly, 0 < %C(u,v) <1

o C(u,v) = uv is the copula associated with a pair (U, V) of independent
random variables.

e A convex combination of two copulas C7 and Cs is a copula as well. For
example,

C(u,v) = aCt(u,v) + (1 — a)C~ (u,v), 0<a<l,

is also a copula. Generalizing this, we can conclude that any convex linear
combination of copulas is a copula, i.e., >, @;C; is a copula for a; > 0
and Y_ a; = 1. A family of copulas that includes C,C? and C~ is said to
be comprehensive. The two-parameter comprehensive copula given below
is due to Fréchet (1958):

Ca,p = aC™ (u,v) + BC™ (u,v) + (1 — o = B)C°(u, v),

commonly known as the Fréchet copula.
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A one-parameter comprehensive family due to Mardia (1970) is

Cy(u,v) = woﬂu,v) +(1-6%C° +

0%(1 — )

5 C~ (u,v);

e Strictly increasing transformations of the underlying random variables re-
sult in the transformed variables having the same copula. See Nelsen (2006,
Theorem 2.4.3), for example, for a proof.

e The copula associated with the standard bivariate normal density (i.e., the
marginals are standard normal with zero mean and standard deviation 1)
has a density

P 1 2 1 2

e, 0) = ———=exp | = =L {(@7 () + (071 ()%}

- 20— )
+—L gy (v)]. (1.3)

1—p?

Note. The copula that corresponds to (1.3) is an important one. It is known
as the Gaussian copula in finance and extreme-value study. We will discuss
this further in Section 1.8.

1.4 Survival Copula

If one replaces C' by C,u by 1 —u, and v by 1 —v in the copula formula, one
is effectively moving the origin of the coordinate system from (0,0) to (1,1)
and results in measuring the variates in the reverse direction. Although this
is such a trivial procedure, the two distributions are perhaps best regarded
as distinct, as the results of fitting them to data are different (unless there is
symmetry).

The copula C' obtained in this way is called the survival copula [Nelsen
(2006, p. 33)] or complementary copula [Drouet-Mari and Kotz (2001, p. 85)],
satisfying

Clu,v) =u+v—-—14+C(1—u,1—0) (1.4)

and

H(z,y) = C(F(z),G(y)). (1.5)
It is clear that C is a copula that “couples” the joint survival function H to
the univariate marginal survival functions in a manner completely analogous
to the way in which a copula connects the joint distribution to its margins.
The term survival copula is a bit misleading, in our opinion, as C is not a
survival function.
Let C be the joint survival function of two uniform variables whose joint
distribution is the copula C. Then we have the relationship
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Cluv)=1—u—v+Cu,v) =C(1—u,1—0). (1.6)

Ezample 1.2. Consider the bivariate Pareto distribution considered in
Hutchinson and Lai (1990). Let X and Y be a pair of random variables
whose joint survival function is given by

l4+z+y)? 2>0y>0
_ ), x>0,y <0
HG(‘TJ/)* (1+y)79’ ZL’<O,y>0’
1, r<0,y<0

where § > 0. The marginal survival functions are F(z) = (1 + 2)~% and

G(y) = (1 +y)~Y. It can be shown that the survival copula is

Co(u,v) = (u*1/9 NS v 1) —0

1.5 Archimedean Copula

In some situations, there exists a function ¢ such that

P(C(u,v)) = p(u) + ¢(v). (1.7)

Copulas of the form above are called Archimedean copulas [Genest and
MacKay (1986a)]. Equivalently, we have

p(H(z,y)) = (F(x)) + 0(G(y)); (1.8)

i.e., we can write H(x, y) as a sum of functions of marginals ' and G. Since we
are interested in expressions that we can use for the construction of copulas,
we want to solve the relation p(C'(u,v)) = ¢(u) + ¢(v). We thus need to find
an appropriately defined “inverse” ¢[=1l so that

C(u,v) = o1 Vp(u) + ¢(v)). (1.9)

Definition 1.3. [Nelsen (2006, p. 110)] Let ¢ be a continuous, strictly de-
creasing function from [0, 1] to [0, oo] such that ¢(1) = 0. The pseudoinverse
of ¢ is the function ¢!~ with domain [0, oo] and range [0, 1], given by
{wla%0<t<w@

=) = .
0 0, ¢(0) <t < oo

Note that if ¢(0) = co, then @l=1(t) = ¢~(t) and
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Clu,v) = 9~ (p(u) + 9 (v)). (1.10)

C'is a copula if and only if the pseudoinverse (or inverse if ¢(0) = c0) is a
convex decreasing function; see Nelsen (2006, p. 111) for a proof.

The function ¢ is called a generator of the copula. If ¢(0) = oo, we then
say that ¢ is a strict generator and C'(u,v) = ¢~ (¢(u)+¢(v)) is said to be a
strict Archimedean copula. Nelsen (2006) and Drouet-Mari and Kotz (2001)
have given several examples of Archimedean copulas.

Ezample 1.4 (Bivariate Pareto copula). In this case, ¢(t) =t~/ — 1 and

Clu,v) = (u e ot/ — 1), (1.11)

Ezample 1.5 (Gumbel-Hougaard copula). In this case, ¢(t) = (—logt)* and

Co(u,v) = exp (—[(— logu)® + (—log v)"]l/a) . (1.12)

Example 1.6 (Frank’s copula). In this case, p(t) = log(i+=%), 0 < a < 1, and

11—«

C(u,v) = log, (1 G _(al)_(an - 1)> . (1.13)

The survival copula of Frank’s distribution is also Archimedean. In fact, this
is the only family that satisfies C(u,v) = C(u, v).

It is shown by Drouet-Mari and Kotz (2001, pp. 78-79) that the frailty
models are also Archimedean.

These authors have further considered the following aspects of Archimedean

copulas:

characterization of Archimedean copulas;

limit of a sequence of Archimedean copulas;

archimedean copulas with two parameters; and

fitting an observed distribution with an Archimedean copula.

1.6 Extreme-Value Copulas

Let (X1,Y1),(X2,Y2),...,(X,,Y,) be independent and identically dis-
tributed pairs of random variables with a common copula C, and also let
C(n) denote the copula of componentwise maxima X, = maxX; and
Y(5) = max Y;. From Theorem 3.3.1 of Nelsen (2006), we know that
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Ciny(u,v) = C"(ul/",vl/")7 0<wu,v<l1.

The limit of the sequence {C(n)} leads to the following notion of an extreme-
value copula.

Definition 1.7. A copula C, is an extreme value copula if there exists a
copula C' such that

Cy(u,v) = lim C™(u™,0'™), 0 <wu,v < 1. (1.14)

n—00

Furthermore, C' is said to belong to the domain of attraction of C,. It is easy
to verify that C. satisfies the relationship

C.(u®,v%) = C¥(u,v), k> 0.

Ezample 1.8 (Gumbel-Hougaard copula).

1/«
C(u,v) = exp (= [(~logw)® + (~logv)°| ),
see Section 2.6 for a discussion.

The Gumbel-Hougaard copula is also an Archimedean copula; in fact,
there is no other Archimedean copula that is also an extreme-value copula
[Genest and Rivest (1989)].

Ezample 1.9 (Marshall and Olkin, copula,).
C(u,v) = womin(u=*, v™?) = min(uv' =%, u' =),

see Section 2.5.1 for details.

1.7 Archimax Copulas

Capéraa et al. (2000) have defined a new family of copulas for which
Archimedean copulas and extreme-value copulas are particular cases.
Recall that the extreme-value copula associated with the extreme-value
distribution of a copula C' is

Ciax(u,v) = lim C" (u%,v%) .

n—0oo

Following the work of Pickands (1981), Capéraa et al. (2000) obtained as a
general form of a bivariate extreme-value copula
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Ca(u,v) =exp [log(uv) A { 11)0;((51))) H , (1.15)
where A is a convex function [0, 1] — [1/2, 1] such that max(¢,1—1¢) < A(t) <
lforall0 <t¢<1.

Let ¢ be the generator of a copula and A be defined as before. A bivariate
distribution is said to be an Archimaz copula [Capéraa et al. (2000)] if it can
be expressed in the form

Conlun) =7 [t + o) a{ 2L A ()

If A = 1, we retrieve the Archimedean copula, and if ¢(t) = log(t), we retrieve
the extreme-value copula.

Note. This procedure to generate a bivariate copula is a particular case
of Marshall and Olkin’s generalization (Section 1.10.2), where the function
K is the bivariate extreme-value copula Ca(u,v) given in (1.15), and the
mixture distribution has the Laplace transform ¢ = ¢! and the generator

p(t) = logt.

1.8 Gaussian, t-, and Other Copulas of the
Elliptical Distributions

Gaussian Copula

The Gaussian copula is perhaps the most popular distribution in applications.
Let @ denote the standard univariate normal distribution function and ¥ de-
note the standard bivariate normal distribution function. Then the bivariate
Gaussian (normal) copula is given by

Cp(u,v) = V(7 (u), 27 (v))
—(s% — 2pst +12)

1 o) rd7(v)
- exp |
27T\/1—p2 /;oo [oo P 2(]—_/)2)

}dsdu
(1.17)

where p € (0,1) is the correlation coefficient such that p # 0. The density of
the Gaussian copula is simpler, as given in (1.3).

The bivariate Gaussian copula can be used to generate bivariate dispersion
models [Song (2000)]. There are numerous applications of Gaussian copulas,
particularly in hydrology and finance.
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t-Copula

The t-copula is simply the copula that represents the dependence structure of
the bivariate t-distribution discussed in Section 7.2. Its properties are stud-
ied in Embrechts et al. (2002), Fang et al. (2002), and Demarta and McNeil
(2005). The model has received much attention recently, particularly in the
context of modeling multivariate financial data (e.g., daily relative or log-
arithmic price changes on a number of stocks). Marshall et al. (2003) and
Breymann et al. (2003) have shown that the empirical fit of the ¢-copula is
often good and is almost always superior to that of the Gaussian copula. One
reason for the success of the t-copula is its ability to capture the phenomenon
of dependent extreme values, which is often observed in the financial return
data.

The Gaussian and ¢- copulas are copulas of elliptical distributions (see
Chapter 15); they are not elliptical distributions themselves.

The dependence in elliptical distributions is essentially determined by co-
variances. Covariances are considered by some as being poor tools for describ-
ing dependence for non-normal distributions, in particular for their extremal
dependence; see Embrechts et al. (2002) for a critique in risk modeling and
Glasserman (2004) for advocating t-distributions for risk management.

1.9 Order Statistics Copula

Let X,.,, be the rth order statistic (1 < r < n) from a sequence of independent
and identically distributed variables { X1, X3, ..., X, }. Nelsen (2003) showed
that the copula C ,, of X1, and X,,., is given by

Cip=v-— max{(l—u)% o —1,0}}71; (1.18)

see also Schmitz (2004).

1.10 Polynomial Copulas

Drouet-Mari and Kotz (2001) utilized the Riischendorf method to construct
a polynomial copula. To begin with, let f = «*v? and obtain

fu,v) = f—/o1 f(u,v)dv—/o1 f(u,v)du—i—/ol /01 fu,v)dudv
1 , 1

k
= _— _— kE>1 > 1.
(“ k+1>(” q+1)’ ==
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Therefore, the function

c(u,v) = 1+ 0 <u - kh) (uq _ qi1> (1.19)

with the constraint

0<0§mm((k+1)q(q+1)7(k+1)k(q+1)>

is the density of a polynomial copula. Repeating the process above for all k
and ¢ (k> 1, ¢ > 1), we obtain a general formula

02C k 1 k 1
auau*H Z qu<u k—l—l) <U q+1>

k>1,q>1

with the same constraints
0 < min Z qui Z Hkq <1.
k>1,g>1 (k+1)(g+1 E>1,g>1 k+1)
A polynomial copula of power m can now be obtained as

k+q<m-—2

C(u,v) =uwv |1+ Z

k>1,q>1

Orq

FDErn® Vet - 20

Ezample 1.10 (Polynomial copula of order 5). The polynomial copula of the
fifth power from (1.20) then becomes

C(u,v) = uv {1 + %(u —Dw—-1)+ @(u —1)(v* =1)
Jr?(u —w-1), (1.21)

which coincides with the expression given by Wei et al. (1998).

Ezample 1.11 (Iterated F-G-M family). Johnson and Kotz (1977) presented
the iterated Farlie-Gumbel-Morgenstern (F-G-M) family with the copula

C(u,v) =uwv{l+ ol —u)(l —v)+ fuv(l —u)(l—v)}.

Ezample 1.12 (Woodworth’s polynomial copula). The uniform representation
of the Woodworth (1966) family of distributions is given by
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c(u,v) =14+0[1 — (m+ Du™][1 — (m+1)v™], 0<60<1/m? m> 1.

For m = 1, the equation above clearly coincides with the F-G-M distribution.

Ezample 1.13 (Nelsen’s polynomial copula). In this case, the copula is given
by

C(u,v) =uv 4+ 20uv(l —u)(1 —v)(1+u+v—2uw), 0<60<1/4

[Nelsen (1999, pp. 168-169)].

1.10.1 Approximation of a Copula by a
Polynomsial Copula

Suppose a copula Cy(u,v), indexed by a parameter 6, has a continuous nth
derivative. We can then express it by means of the Taylor expansion in the
neighborhood of 6y as

n C(z) 7 0_0 i
Colu,v) ~ Cgy () + 3 S (O = 0)"

7!

i=1

Choosing 6y corresponding to independence [i.e., with Cp, (u,v) = uv], and if
the derivatives of Cy with respect to 6 are powers in uv, we then obtain an
approximation of Cp by means of a polynomial copula.

Ezample 1.14 (The F-G-M family). The F-G-M family corresponds to its
first-order expansion in Taylor’s series around 6 = 0.

Ezample 1.15 (The Ali-Mikhail-Haq family). In this case,

uv

Cluv) = A wa =

oy =W 14> 01 —uw)(d—v)'|, (1.22)

i>1

where |f| < 1. If we consider only the first order in (1.22), we obtain the
F-G-M family, and with the second-order approximation, we arrive at the
iterated F-G-M of Lin (1987). For an approximation of any order, we have a
polynomial copula.

Ezample 1.16 (The Plackett family). Nelsen (1999) proved that the F-G-M
family is a first-order approximation to the Plackett family by expanding it
in Taylor’s series around 6 = 1.
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1.11 Measures of Dependence Between Two Variables
with a Given Copula

Many measures of dependence are “scale-invariant”; i.e., they remain un-
changed under strictly increasing transformations of random variables. Since
the copula C' of a pair of random variables X and Y is invariant under strictly
increasing transformations of X and Y, several scale-invariant measures of de-
pendence are expressible in terms of the copulas. Two such “scale-invariant”
measures are Kendall’s tau and Spearman’s rho.

1.11.1 Kendall’s Tau

Let (x;,y;) and (x;,y;) be two observations from (X, Y") of continuous random
variables. The two pairs (z;,y;) and (z;,y;) are said to be concordant if
(i —2;)(yi —yj) > 0 and discordant if (x; — x;)(y; — y;) <O.

Kendall’s tau is defined as the probability of concordance minus the prob-
ability of discordance,

T=P[(X-X")(Y-Y)>0-P[(X-X)Y-Y")<0], (1.23)
where (X’,Y”) is independent of (X,Y") and is distributed as (X,Y).
The sample version of Kendall’s 7 is defined as

c—d

t:
c+d

=(c—d)/n, (1.24)

where ¢ denotes the number of concordant pairs and d the number of discor-
dant pairs from a sample of n observations from (X,Y"). Just as H can be
expressed as a function of copula C, Kendall’s 7 can be expressed in terms
of the copula [see, for example, Nelsen (2006, p. 101)] as

11
T= 4/0 /0 C(u,v)e(u,v)dudv — 1 =4E(C(U,V)) — 1. (1.25)

Let C be an Archimedean copula generated by ¢. Then, Genest and
MacKay (1986a,b) have shown that

T =4BE(C(U,V))—1= 4/01 5/((?) dt. (1.26)

Ezample 1.17 (Bivariate Pareto copula). In this case, () = t~/* — 1 and
S0

o(t) 144

Lttt —t

EOI



1.11 Measures of Dependence Between T'wo Variables with a Given Copula 45

_ 1
and, consequently, T = 575 —

1.11.2 Spearman’s Rho

Like Kendall’s tau, the population version of the measure of association
known as Spearman’s rho (denoted by pg) is based on concordance and dis-
cordance. Let (X1,Y7), (X2,Y2), and (X3,Y3) be three independent pairs of
random variables with a common distribution function H. Then, pg is defined
to be proportional to the probability of concordance minus the probability of
discordance for the two pairs (X1,Y7) and (Xs,Y3); i.e.,

ps = 3(P[(X1 — X2)(¥i = ¥3) > 0] = P[(X; — X;)(¥ — ¥3) < 0]). (1.27)

Equation (1.27) is really the grade correlation and can be expressed in terms
of the copula as

11
ps = 12/ / C(u,v)dudv — 3 =12E(UV) — 3. (1.28)
0o Jo

Rewriting the equation above as

EUV) -1
ps = 2OV 5 (1.20)

12

we simply observe that Spearman’s rho between X and Y is simply Pearson’s
product-moment correlation coefficient between the uniform variates U and
V.

1.11.3 Geometry of Correlation Under a Copula

Long and Krzysztofowicz (1996) provided a novel way of deriving and inter-
preting the correlation coefficient p under a copula.

The sample space of U and V' can be partitioned into four polygons (equi-
lateral triangles) by drawing two diagonal lines, l; ;v =w and Iy : v =1—w.
From a fixed point (u,v), the distance to l; is di = |u — v|/v/2 and the
distance to Iy is dy = |u +v — 1|//2. Let

A=d} —d? = [4uv — 2(u +v) +1]/2, (1.30)

which measures the relative closeness of the point (u,v) to the diagonals.
Then, the function A has the following behavior:
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e )\ > 0 when a point is closer to l; than to ls;
° )\:OWheneitheru:%orv:%.
e Its minimum, A = —1, is attained at (0,1) or (1,0).
e A =1isattained at (0,0) or (1,1).

Long and Krzysztofowicz (1996) showed that, as a continuous function of
a random vector (U, V), the random distance A has an expectation that is

determined by the density ¢ of the copula as

//)\uv (u, v)dudv

= E[d3(U,V) — d}(U,V)]
— 2B V) — % . (1.31)

Upon comparing (1.31) with (1.29), we readily find that pg = 6 E(A). In other
words, Spearman’s pg under the copula is proportional to the expected dif-
ference of the quadratic distance from a random point (U, V) to the diagonal
lines [; and [y of the unit square.

1.11.4 Measure Based on Gini’s Coefficient

The measure of concordance between X and Y known as Gini’s 7 can be
expressed as

11
Yo = 2/ / (lu+v—=1] = |u—v|)dC(u,v).
o Jo
This is equivalent to
vo=2E(U+V -1 —-|U-V]), (1.32)

which can be interpreted as the expected distance between (U, V) and the
diagonal of [0, 1] x [0, 1]. For further discussion, see Nelsen (2006, p. 212).

1.11.5 Tail Dependence Coefficients

The dependence concepts introduced so far are designed to show how large
(or small) values of one random variable appear with large (or small) values
of the other. The following tail dependence concepts measure the dependence
between the variables in the upper-right quadrant and the lower quadrant of
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[0,1] x [0, 1]. In practice, the concept of tail dependence represents the current
standard to describe the amount of extremal dependence.

Definition 1.18. The upper tail dependence coefficient (parameter) Ay is
the limit (if it exists) of the conditional probability that Y is greater than
the 100ath percentile of G given that X is greater then the 100ath percentile
F as « approaches 1,

Ay = 1iglPr Y >G Na)| X >F ' (a)]. (1.33)
«
If Ay > 0, then X and Y are upper tail dependent and asymptotically

independent otherwise.
Similarly, the lower tail dependence coefficient is defined as

N~ g% Pr[Y <G o)X < F ()] (1.34)

Let C be the copula of X and Y. It can be shown that

where C(u,v) = Pr(U > u,V > v).
Expressions for the coefficients of tail dependence for a wide range of

bivariate distributions, as presented in Table 1.1, may be found in Heffernan
(2001).

Table 1.1 Tail dependence of some of the families of copulas

Family AU AL
Fréchet a «
Cuadras and Augé 0 0
Marshall and Olkin 0 min(a, )
Placket 0 0

For explicit expressions for both the Cuadras and Augé
copula and the Marshall and Olkin copula, see Section 4.5.

The tail dependence coefficient has become very popular for those inter-
ested in extreme-value techniques [Kolev et al. (2006, Section 4)]. However,
Mikosch (2006a) did not think it very informative with regard to the joint
extreme behavior of the vector (X,Y"). For nonparametric estimation of tail
dependence, see Schmidt and Stadmuller (2006).
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1.11.6 A Local Dependence Measure

A local dependence measure defined as a correlation between X and Y given
X =z, Y =y was proposed by Kotz and Nadarajah (2002):

_ E(X - BX|Y = y)][Y - B(V|X = 2)])
VECEXIY = y)PEY — E(VIX =)

v(z,y)

—o0 < 2,y < 0.

(1.35)
A copula analogue of (1.35) has been defined by Kolev et al. (2006) as

_ E(U-EWV =v)lV - E(V|U =u))
VE[-EUV = 0)PE[V - B(VIU = u)P

~vs(u,v) , 0<u, v<1.

(1.36)
The measure g may be interpreted as a “conditional” Spearman p.

1.11.7 Tests of Dependence and Inferences

Genest and Favre (2007) presented an introduction to inference for copula
models based on rank methods. In particular, they considered empirical esti-
mates for measures of dependence and dependence parameters. Simple graph-
ical tools and numerical techniques were presented for selecting an appropri-
ate model, parameter estimation, and checking the model’s goodness of fit.

Shih and Louis (1995) presented both parametric and nonparametric es-
timation procedures for the association (dependence) parameter in copula
models.

1.11.8 “Concepts of Dependence” of Copulas

For “concepts of dependence” that are expressed in terms of various notions of
positive dependence for copulas, see Section 5.7 of Nelsen (2006) and Chapter
3 of this volume.

1.12 Distribution Function of Z = C(U, V)

In Section 1.7.1, we presented the expression

T=4B(C(U,V)) = 1=4BE(Z) -1, (1.37)
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where Z = C(U,V) and E(Z fo {1 — K(2)}dz, with K being the dis-
tribution function of Z. It is Well known that for any random variable X
with continuous distribution function F', F'(X) is uniformly distributed on
[0,1]. However, it is not generally true that the distribution K of Z is uni-
form on [0,1]. The fact that K is related to Kendall’s tau via (1.37) has
encouraged several authors [see, e.g., Genest and Rivest (1993) and Wang
and Wells (2000)] to develop estimation and goodness-of-fit procedures for
different classes of copulas using the empirical version of K, whose asymptotic
behavior as a process was first studied by Barbe et al. (1996).
For Archimedean copulas, Genest and Rivest (1993) showed that

K(z)=2z- z’((zz)) , (1.38)

where ¢ is the generator of the copula C. The key results on K when C'is an
Archimedean copula given by Genest and MacKay (1986a) and Genest and
Rivest (1993) are as follows:

(1) The function K(z) = z— ;ﬁ((zz)) is the cumulative distribution function of
the variable Z = C(U, V). Hence, with a knowledge of K(z), we can in
principle retrieve the function ¢(z) and hence the Archimedean copula.

(2) The function K(z) can be estimated by means of empirical distribution
functions K, (z;), where z; is the proportion of pairs (X;,Y;) in the
sample that are less than or equal to the pair (X;,Y;) componentwise.

(3) The empirical function K, (z) can be fitted by the distribution function
Kj of any family of Archimedean copulas, where the parameter 6 is
estimated in such a manner that the fitted distribution has a coefficient
of concordance (1) equal to the corresponding empirical coefficient (7).

(4) Z and W are independent, with the latter given by the expression W =
%, which is uniformly distributed on [0, 1].

For copulas not necessarily Archimedean, Chakak and Ezzerg (2000) have
shown that K can be expressed in terms of the quantile function associated
with the bivariate copula C. Genest and Rivest (2001) have also given a
general formula for computing K.

1.13 Simulation of Copulas

The following method of simulation is described in Drouet-Mari and Kotz
(2001).
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1.13.1 The General Case

To generate a sample (U;, V;), i = 1,2,...,n, from a copula C(u,v), we use
the fact that the conditional copula Cy(v) = C(V|U = v) is a distribution
function and that Z = C, (V) follows a uniform distribution on [0, 1]. Since
U has a uniform distribution, its density is 1 over [0, 1] and thus C,(v) =

W. Hence, the simulation procedure is as follows:

Step 1: Generate two variables U and Z independent and uniform over
[0, 1].

Step 2: Calculate V = C1(Z). Then, the pair (U, V) has the desired
copula.

This procedure works well but requires an analytical expression for V =
C;l(2).

u

1.13.2 Archimedean Copulas

For Archimedean copulas, we can modify the procedure above. The method
described below is due to Genest and MacKay (1986a). Since ¢(C) = ¢(U) +
o(V), it follows that ¢’ (C’%) = ¢'(u). An auxiliary variable W = C(U, V)

is calculated as
/
_ [ ¢ (u)
W - (QDI) ( gic ) 9

where (¢’)7! is the inverse of the derivative of ¢. The simulation procedure
is then as follows:

Step 1. Generate two uniform and independent random variables U
and Z on [0,1].

Step 2: Calculate W using the formula above.

Step 3: Calculate V = ¢~ 1[p(W) — ¢(V)].

This procedure works well for Clayton and Frank’s families (see Section 2.4).
However, for the Gumbel-Hougaard family, there is no analytical expression

for (/)71
1.14 Construction of a Copula

1.14.1 Rischendorf’s Method

We shall now describe a general method of constructing a copula developed
by Riischendorf (1985).
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Suppose f!(u,v) has integral zero on the unit square and its two marginals

integrate to zero; i.e.,
1,1
/ / fH(u,v)dudv =0 (1.39)
o Jo

1 1
/ fH(u,v)du =0 and / fH(u,v)dv = 0. (1.40)
0 0

Equation (1.39) implies (1.40). In that case, 1+ f!(u,v) is a density of a cop-
ula. However, there is the constraint that 1+ f*(u,v) must be non-negative.
If it is not the case, but f! is bounded, we can then find a constant a such
that 14 af! is positive.

A function of the type described above can be constructed quite easily.
One needs to start with an arbitrary real integrable function f on the unit
square and compute

//fuvdudv fi(u /fuvdv fa(v /fuv

Then set f!=f —fi — fo+V.

If we have two functions f! and g' possessing the properties stipulated
above, then 1 + f! 4 ¢! is the density of a copula, and more generally, 1 +
S, flis a density with f! satisfying the conditions in (1.39) and (1.40).

and

Ezample 1.19. Long and Krzysztofowicz (1995) utilized a particular case of
the Riischendorf method of construction. Let f!(u,v) = ¢1(u,v) + ca(u,v) —
2K (1), where

=k(v—u) ifv ; u (1.41)

and
(1, v) = klu+v) fu<u—wv
e\t v) = k(v—u) ifu>1-—w,

and K(1) = fol k(t) dt, where k(t) is a continuous and monotonic function on
[0,1].

Ezample 1.20. [Lai and Xie’s extension of F-G-M] Lai and Xie (2000) ex-
tended the Farlie-Gumbel-Morgenstern family by considering

Clu,v) = uwv + w(u,v) = wv + aubv® (1 — u)*(1 — v)?,

a,b,0 <a<1. (1.42)
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1.14.2 Generation of Copulas by Mixture

Marshall and Olkin (1988) and Joe (1993) considered a general method in
generating bivariate distributions by mixture. Set

H(u,v)://K(F‘)l,G(’?) dA(6y,6-), (1.43)

where K is a copula and A is a mixing distribution, ¢; being the Laplace
transform of the marginal A; of A. Thus, different selections of G and K lead
to a variety of distributions with marginals as parameters. Note that F' and
G here are not necessarily the marginals of H.

If K is an independent bivariate distribution and the two marginals of A are
equal such that it is the Fréchet bound [i.e., A(61,62) = min(A;(61), A2(62))],
then H(u,v) = [;° FO(u)G’(v)dA1(f) with 6; = 6. Now, let F(u) =
exp[—¢~1(u)] and G(u) = exp[—¢~'(u)], where ¢(¢) is the Laplace trans-
form of Ay, i.e., ¢(—t) is the moment generating function of A;. It follows
that

H(u,v) = /000 exp [—0 (¢ (u) + ¢~ (v))] dA1 (). (1.44)

From (1.44), it is clear that the marginals of H are uniform and so H is a
copula. In other words, when ¢ is the Laplace transform of a distribution,
then the function defined on the unit square by

Clu,v) = ¢ (67 (u) + 67 (v)) (1.45)

is indeed a copula. However, the right-hand side of (1.45) is a copula for a
broader class of functions than the Laplace transforms, and these copulas are
called Archimedean copulas, mentioned earlier in Section 1.5.

Ezample 1.21. If the mixing distribution A;(f) has a negative binomial dis-

tribution with the Laplace transform ¢(t) = (ﬁf};t) ,a>0,0<p<l,

. . 1/a
g = 1 — p, and the inverse function p(t) = log (m» then

[T g(1— ut/e)(1 — ot

C(u,v) = (1.46)

which is the survival copula of the bivariate Lomax distribution (see Section
2.8).
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1.14.3 Convexr Sums

In Section 1.3, it was shown that if {Cy} is a finite collection of copulas, then
any convex combination of the copulas in {Cy} is also a copula. Convex sums
are an extension of this idea to an infinite collection of copulas indexed by a
continuous parameter 6.

Suppose now that € is an observation of a random variable with distribu-
tion function A. If we set

Clu,v) = /_ Gy dA®), (1.47)

then it is easy to verify that C' is a copula, which was termed by Nelsen
(1999) as the conver sum of {Cyp} with respect to A. In fact, A is simply a
mixing distribution of the family {Cp}.

Consider a special case of Marshall and Olkin’s method discussed earlier,
in which K is an independent copula (i.e., K (u,v) = uv) and A is a univariate
distribution so that

Clu,v) = /0 ~ PU0)GU(0) dA. (1.48)

The expression in (1.48) can clearly be considered as a convex sum of the
family of copulas {(FG)?}.

1.14.4 Univariate Function Method

Durante (2007) constructed a family of symmetric copulas from a univariate
function f : [0,1] — [0,1] that is continuous, differentiable except at finitely
many points. Define

Cy(x,y) = min(z,y) f (max(z, y)).
Then CYy is a copula if and only if
(i) f(1) =1

(ii) f is increasing; and
(iii) the function ¢t — f(t)/t is decreasing on (0, 1].

Ezample 1.22. f(t) = at + (1 — a), a € [0,1]. Then Cy(u,v) = auv + (1 —
a) min(u, v) is a member of the Fréchet family of copulas (see Section 3.2).

Ezample 1.23. Let fo(t) = t*. Then

wv®, ifu<w
u®v, ifu>wv

)

Co(u,v) = {
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which is the Cuadras-Augé copula given in (2.25).

1.14.5 Some Other Methods

Nelsen (2006) presented several other methods for constructing of copulas,
including the following.

The Inversion Method

This is simply the so-called marginal transformation method through inverse
probability integral transforms of the marginals F~!(u) = z and G~ (v) = y.
If either one of the two inverses does not exist, we simply modify our definition
so that F~(u) = inf{z : F(x) > u}, for example. Then, given a bivariate
distribution function H with continuous marginals F' and G, we obtain a
copula

Clu,v) = H (F " (u),G"'(v)) . (1.49)

Nelsen (2006) illustrated this procedure with two examples:

(1) The procedure above is used to find Marshall and Olkin’s family of
copulas (also known as the generalized Cuadras and Augé family) from
Marshall and Olkin’s system of bivariate exponential distributions.

(2) A copula is obtained from the circular uniform distribution with X and
Y being the coordinates of a point chosen at random on the unit circle.

Geometric Methods

Several schemes are given by Nelsen (2006), including:

singular copulas with prescribed support;

ordinal sums;

shuffles of Min [Mikusinski et al. (1992)];

copulas with prescribed horizontal or vertical sections; and
copulas with prescribed diagonal sections.

A particular copula of interest generated by geometry is the symmetric copula

constructed by Ferguson (1995). In this copula, C'(u,v) = C(u,v).

Algebraic Methods

Two well-known families of copulas, the Plackett and Ali-Mikhail-Haq fam-
ilies, were constructed using an algebraic relationship between the joint dis-
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tribution function and its univariate marginals. In both cases, the algebraic
relationship concerns an “odds ratio.” In the first case, we generalize 2x2
contingency tables, and in the second case we work with a survival odds
ratio.

1.15 Applications of Copulas

There is a fast-growing industry for copulas. They have useful applications
in econometrics, risk management, finance, insurance, etc. The commercial
statistics software SPLUS provides a module in FinMetrics that include cop-
ula fitting written by Carmona (2004). One can also get copula modules in
other major software packages such as R, Mathematica, Matlab, etc. The
International Actuarial Association (2004) in a paper on Solvency II,! rec-
ommends using copulas for modeling dependence in insurance portfolios.
Moody’s uses a Gaussian copula for modeling credit risk and provides soft-
ware for it that is used by many financial institutions. Basle II? copulas are
now standard tools in credit risk management.

There are many other applications of copulas, especially the Gaussian
copula, the extreme-value copulas, and the Archimedean copula. We now
classify these applications into several categories.

1.15.1 Insurance, Finance, Economics, and
Risk Management

One of the driving forces for the popularity of copulas is their application in
the context of financial risk management. Mikosch (2006a, Section 3) explains
the reasons why the finance researchers are attracted to copulas.

e Risk modeling—van der Hoek and Sherris (2006)

e Daily equity return in Spanish stock market—Roch and Alegre (2006)

e Jump-driven financial asset model—Luciano and Schoutens (2006)

e Default correlation and pricing of collateralized obligation—P. Li et al.
(2006)

e Credit derivatives—Charpentier and Juri (2006)

e Modeling asymmetric exchange rate dependence—Patton (2006)

e Credibility for aggregate loss—Frees and Wang (2006)

e Decomposition of bivariate inequality by attributes — Naga and Geoffard

(2006)

1 Solvency 11 is a treaty for insurances.

2 Basle I and II are treaties for banks.
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Group aspects of regulatory reform in insurance sector—Darlap and Mayr
(2006)

Financial risk calculation with applications to Chinese stock markets—Li
et al. (2005)

Measurement of aggregate risk—Junker and May (2005)
Interdependence in emerging markets—Mendes (2005)

Application to financial data—Dobric and Schmid (2005)

Tail dependence in Asian markets—Caillault and Guegan (2005)
Modeling heterogeneity in dependent data—Laeven (2005)

Bivariate option pricing—van den Goorbergh et al. (2005)

Worst VaR scenarios—Embrechts et al. (2005)

Correlated default with incomplete information—Giesecke (2004)
Value-at-risk-efficient portfolios—Malevergne and Sornette (2004)
Fitting bivariate cumulative returns—Hiirlimann (2004)

General cash flows—Goovaerts et al. (2003)

Modeling in actuarial science—Purcaru (2003)

Financial asset dependence—Malevergne and Sornette (2003)
High-frequency data in finance—Breymann et al. (2003)

Dependence between the risks of an insurance portfolio in the individual
risk model-—Cossette et al. (2002)

e Portfolio allocations—Hennessy and Lapan (2002)
e Relationship between survivorship and persistency of insurance policy

holders—Valdez (2001)

Loss and allocated loss adjustment expenses on a single claim—Klugman
and Parsa (1999)

Sum of dependent risks—Denuit et al. (1999)

.15.2 Hydrology and Environment

On the use of copulas in hydrology: Theory and practice—Salvadori and
De Michele (2007).

Case studies in hydrology—Renard and Lang (2007)

Bivariate rainfall frequency—Zhang and Singh (2007)

Bivariate frequency analysis of floods—Shiau (2006)

Groundwater quality—Bardossy (2006)

Flood frequency analysis—Grimaldi and Serinaldi (2006)

Drought duration and severity—Shiau (2006)

Temporal structure of storms—Salvadori and De Michele (2006)
Successive wave heights and successive wave periods—Wist et al. (2004)
Ozone concentration—Dupuis (2005)

Phosphorus discharge to a lake—Reichert and Borsuk (2005)

Frequency analysis of hydrological events—Salvadori and De Michele
(2004)
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e Adequacy of dam spillway—De Michele et al. (2005)
e Hydrological frequency analysis—Favre et al. (2004)
e Storm rainfall—De Michele and Salvadori (2003)

.15.3 Management Science and Operations Research

Decision and risk analysis—Clemen and Reilly (1999)

Entropy methods for joint distributions in decision analysis—Abbas (2006)
Field development decision process—Acciolya and Chiyoshi (2004)
Uncertainty analysis—van Dorp (2004)

Schedulability analysis—Burns et al. (2003)

Database management—Sarathy et al. (2002)

Decision and risk analysis—Clemen et al. (2000)

Beneficial changes insurance—Tibiletti (1995)

.15.4 Reliability and Survival Analysis

Bivariate failure time data—Chen and Fan (2007)

Competing risk survival analysis—Bond and Shaw (2006)
Interdependence in networked systems—Singpurwalla and Kong (2004)
Competing risk—Bandeen-Roche and Liang (2002)

Time to wound excision and time to wound infection in a population of
burn victims—van der Laan et al. (2002)

Survival times on blindness for each eye of diabetic patients with adult
onset diabetes—Viswanathan and Manatunga (2001)

Bivariate current status data—Wang and Ding (2000)

.15.5 Engineering and Medical Sciences

Poliomyelitis incidence—Escarela et al. (2006)

Modeling of vehicle axle weights—Srinivas et al. (2006)
Plant-specific dynamic failure assessment—Meel and Seider (2006)
Trait linkage analysis—M.Y. Li et al. (2006)

Unsupervised signal restoration—Brunel and Pieczynski (2005)
Real option valuation of oil projects—Armstrong et al. (2004)
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e Probabilistic dependence among binary events—Keefer (2004)
e QTL mapping—Basrak et al. (2004)
e Modeling the dependence between the times to international adoption of

two related technologies—Meade and Islam (2003)

e Signal processing—Davy and Doucet (2003)
e Interaction between toxic compounds—Haas et al. (1997)
e Removing cancer when it is correlated with other causes of death—Carriere

(1995)

.15.6 Mziscellaneous

Expert opinions—Jouini and Clemen (1996)

Accident precursor analysis—Yi and Bier (1998)

Generations of dispersion models—Song (2000)

Health care demand—Zimmer and Trivedi (2005)

Biometric data studies—Rukhin and Osmoukhina (2005)
Uncertainty measures in expert systems—Goodman et al. (1991)

1.16 Criticisms about Copulas

Despite their immense popularity, copulas have their critics. In a critical
article entitled “Copulas: Tales or Facts” published in FExtremes, Mikosch
(2006a,b) gave several far-reaching criticisms to caution readers about the
problems associated with copulas. Below are his verbatim remarks that sum-
marize his opinion about copulas.

There are no particular advantages of using copulas when dealing with
multivariate distributions. Instead one can and should use any multivariate
distribution which is suited to the problem at hand and which can be
treated by statistical techniques.

The marginal distributions and the copula of a multivariate distribution
are inextricably linked. The main selling point of the copula technology—
separation of the copula (dependence function) from the marginal
distributions—Ileads to a biased view of stochastic dependence, in par-
ticular when one fits a model to the data.

Various copula models (Archimedean, t-, Gaussian, elliptical, extreme
value) are mostly chosen because they are mathematically convenient; the
rationale for their applications is murky.

Copulas are considered as an alternative to Gaussian models in a non-
Gaussian world. Since copulas generate any distribution, the class is too
big to be understood and to be useful.
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e There is little statistical theoretical theory for copulas. Sensitivity studies
of estimation procedures and goodness-of-fit tests for copulas are unknown.
It is unclear whether a good fit of the copula of the data yields a good fit
to the distribution of the data.

e Copulas do not contribute to a better understanding of multivariate
extremes.

e Copulas do not fit into the existing framework of stochastic processes and
time series; they are essentially static models and are not useful for mod-
eling dependence through time.

There were several discussants [de Haan (2006), de Vries (2006), Genest
and Rémillard (2006), Joe (2006), Linder (2006), Embrechts (2006), Peng
(2006), and Segers (2006)] of the paper, and some did agree on certain aspects,

but others did not agree at all with the issues raised. A rejoinder is given by
Mikosch (2006b).

1.17 Conclusions

Over the last decade, there has been significant and rapid development of the
theory of copulas. Much of the work has been motivated by their applications
to stochastic processes, economics, risk management, finance, insurance, the
environment (hydrology, climate, etc.), survival analysis, and medical sci-
ences.

In many statistical models, the assumption of independence between two
or more variables is often due to convenience rather than to the problem
at hand. In some situations, neglecting dependence effects may lead to an
erroneous conclusion. However, fitting a bivariate or multivariate distribution
to a dataset has often proved to be difficult. The copula approach is a way
to solve the difficult problem of finding the whole bivariate or multivariate
distribution by a two-stage statistical procedure; i.e., estimating the marginal
distributions and the copula function separately from each other. A weakness
of the copula approach is that it is difficult to select or find an appropriate
copula for the problem at hand. Often, the only alternative is to commence
with some educated guess by selecting a parametric family of copulas and
then try to fit the parameters. As a result, the model obtained may suffer
a certain degree of arbitrariness. Indeed, there are some authors who have
strong misgivings about the copula approach. Nevertheless, judging from the
amount of interest generated, the copulas certainly have secured themselves
an important place in the world.
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Chapter 2
Distributions Expressed as Copulas

2.1 Introduction

A feature common to all the distributions in this chapter is that H(xz,y) is
a simple function of the uniform marginals F(x) and G(y). These types of
joint distributions are known as copulas, as mentioned in the last chapter,
and will be denoted by C(u,v); the corresponding random variables will be
denoted by U and V, respectively.

When the marginals are uniform, independence of U and V implies a flat
p-d.f., and any deviation from this will indicate some form of dependence.

Most of the copulas presented in this chapter are of simple forms although
in some cases [e.g., the distribution of Kimeldorf and Sampson (1975a) dis-
cussed in Section 2.12] they have a rather complicated expression. Some are
obtained through marginal transformations, while several others already have
uniform marginals and need no transformations to bring them to that form.

The great majority of the copulas described in this chapter have a single
parameter that reflects the strength of mutual dependence between U and
V. To emphasize its role, we could have chosen to use the same symbol in all
these cases. We have not done this, however, since for some distributions it
is customary to find « used, others 6, and yet others c.

Throughout this chapter, we assume that U and V are uniform with
C(u,v) as their joint distribution function and c(u,v) as the corresponding
density function. Thus, the supports of the bivariate distributions are unit
squares. For each case, we state some simple properties such as the correlation
coefficient and conditional properties. Also, we should note that for bivariate
copulas, Pearson’s product moment correlation coefficient is the same as the
grade coefficient (Spearman’s coefficient), as mentioned in Section 1.7.

Unless otherwise specified, the supports of all the distributions are over
the unit square. Also, the distribution functions are in fact the cumulative
distribution functions. Following this introduction, we discuss the Farlie-
Gumbel-Morgenstern (F-G-M) copula and its generalization in Section 2.2.
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Next, in Sections 2.3 and 2.4, we discuss the Ali-Mikhail-Haq and Frank
distributions. The distribution of Cuadras and Augé and its generalization
are presented in Section 2.5. In Section 2.6, the Gumbel-Hougaard copula
and its properties are detailed. Next, the Plackett and bivariate Lomax dis-
tributions are described in Sections 2.7 and 2.8, respectively. The Lomax
copula is presented in Section 2.9. In Sections 2.10 and 2.12, the Gumbel
type I bivariate exponential and Kimeldorf and Sampson’s distributions are
discussed, respectively. The Gumbel-Barnett copula and some other copulas
of interest are described in Sections 2.11 and 2.14, respectively. In Section
2.13, the Rodriguez-Lallena and Ubeda-Flores families of bivariate copulas
are discussed. Finally, in Section 2.15, some references to illustrations are
presented for the benefit of readers.

2.2 Farlie-Gumbel-Morgenstern (F-G-M) Copula and
Its Generalization

Formula for Distribution Function
C(u,v) = wo[l + a(l —u)(1 —v)], -1<a<l (2.1)
Formula for Density Function
c(u,v) =1+ a(l —2u)(1 — 2v). (2.2)

Correlation Coefficient

The correlation coefficient is p = ¢, which clearly ranges from —% to % After
the marginals have been transformed to distributions other than uniform,
Gumbel (1960a) and Schucany et al. (1978) showed that (i) p cannot exceed

% and (ii) determined it for some well-known distributions—for example, &
for normal marginals and ¢ for exponential ones.

Conditional Properties

The regression E(V|U = u) is linear in u.
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Dependence Properties

e Lai (1978) has shown that, for 0 < a < 1, U and V are positively quadrant
dependent (PQD) and positively regression dependent (PRD).

e For 0 < a <1, U and V are likelihood ratio dependent (LRD) (TP3)
[Drouet-Mari and Kotz (2001)].

e For —1 <« <0, its density is RRo; see Drouet-Mari and Kotz (2001).

Remarks

e This copula is not Archimedean [Genest and MacKay (1986)].

e The p.d.f. is symmetric about the point (%, %), i.e., it is the same as at
(1—u,1—w) asitis at (u,v), and so the survival (complementary) copula
is the same as the original copula.

e Among the results established by Mikhail, Chasnov, and Wooldridge
(1987) are the regression curves when the marginals are exponential.
Drouet-Mari and Kotz (2001, pp. 115-116) have also provided expressions
for the conditional mean and conditional variance when the marginal dis-
tributions are F' and G.

e Mukherjee and Sasmal (1977) have worked out some properties of a two-
component system whose components’ lifetimes have the F-G-M distribu-
tion, with standard exponential marginals, such as the densities, m.g.f.’s,
and tail probabilities of min(X,Y), max(X,Y), and X +Y, these being of
relevance to series, parallel, and standby systems, respectively. Mukherjee
and Sasmal (1977) have compared the densities and means of min(X,Y")
and max(X,Y) with those of Downton (1970) and Marshall and Olkin
(1967) distributions.

e Tolley and Norman (1979) obtained some results relevant to epidemiolog-
ical applications with the marginals being exponential.

e Lingappaiah (1984) was also concerned with properties of the F-G-M dis-
tribution with gamma marginals in the context of reliability.

e Building a paper by Phillips (1981), Kotz and Johnson (1984) considered
a model in which components 1 and 2 were subjected to “revealed” and
“unrevealed” faults, respectively, with (Y, Z) having an F-G-M distribu-
tion, where Y is the time between unrevealed faults and Z is the time from
an unrevealed fault to a revealed fault.

e In the context of sample selection, Ray et al. (1980) have presented results
for the distributions having logistic marginals, with the copula being the
F-G-M or the Pareto.
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2.2.1 Applications

e Cook and Johnson (1986) used this distribution (with lognormal marginals)
for fitting data on the joint occurrence of certain trace elements in water.

e Halperin et al. (1979) used this distribution, with exponential marginals, as
a starting point when considering how a population p.d.f. h(z,y) is altered
in the surviving and nonsurviving groups by a risk function a(z, y). (X and
Y were blood pressure and cigarette smoking, respectively, in this study.).

e Durling (1974) utilized this distribution with logistic marginals for y, re-
analyzing seven previously published datasets on the effects of mixtures of
poisons.

e Chinchilli and Breen (1985) used a six-variate version of this distribution
with logistic marginals to analyze multivariate binary response data arising
in toxicological experiments—specifically, tumor incidence at six different
organ sites of mice exposed to one of five dosages of a possible carcinogen
[data from Brown and Fears (1981)].

e Thinking now of “lifetimes” in the context of component reliability, Teich-
mann (1986) used this distribution for (U, Us), with U; being a measure
of association between an external factor and the failure of the ith unit—
specifically, it was the ratio of how much the external factor increases
the probability of failure compared with how much an always fatal factor
would increase the probability of failure.

e With exponential marginals, Lai (1978) used the F-G-M distribution
to model the joint distribution of two adjacent intervals in a Markov-
dependent point process.

e In the context of hydrology, Long and Krzysztofowicz (1992) also noted
that the F-G-M model is limited to describing weak dependence since
ol < 1/3.

2.2.2 Univariate Transformations

The following cases have been considered in the literature: the case of ex-
ponential marginals by Gumbel (1960a,b); of normal marginals by Gumbel
(1958, 1960b); of logistic marginals by Gumbel (1961, Section 6); of Weibull
marginals by Johnson and Kotz (1977) and Lee (1979); of Burr type III
marginals by Rodriguez (1980); of gamma marginals by D’Este (1981); of
Pareto marginals by Arnold (1983, Section 6.2.5), who cites Conway (1979);
of “inverse Rayleigh” marginals (i.e., F = exp(—60/x?)) by Mukherjee and
Saran (1984); and of Burr type XII marginals by Bagchi and Samanta (1985).

Drouet-Mari and Kotz (2001, pp. 122-124) have presented a detailed dis-
cussion on the bivariate F-G-M distribution with Weibull marginals. Kotz
and Van Dorp (2002) have studied the F-G-M family with marginals as a
two-sided power distribution.
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2.2.3 A Switch-Source Model

For general marginals, the density is f(x)g(y){1 + «[l — 2F(x)][1 — 2G(y)]}.
The density
a(z)a(y)[1 + ab(z)b(y)] (2.3)

arises from a mixture model governed by a Markov process. Imagine a source
producing observations from a density f;, another source producing observa-
tions from a density fo, a switch connecting one or the other of these sources
to the output, a Markov process governing the operation of the switch, and
X and Y being observations at two points in time; see Willett and Thomas
(1985, 1987).

2.2.4 Ordinal Contingency Tables

The nonidentical marginal case of (2.3) is a(x)b(y)[1 + ab(x)d(y)]. This looks
very much like the “rank-2 canonical correlation model” used to describe
structure in ordinary contingency tables; see Gilula (1984), Gilula et al.
(1988), and Goodman (1986).

Now, instead of generalizing (2.1) and comparing it with contingency
table models, we shall explicitly write (2.1) in the contingency form and
see what sort of restrictions are effectively being imposed on the param-
eters of a contingency table model. The probability within a rectangle
{zg < X <21,y0 <Y <1} is Hyy — Hoy — Hyo + Hoo (in an obvious no-
tation), which equals

(1 —20)(y1 — yo) + afz1 (1 — z1) — 20(1 — 20)][y2(1 — y1) — yo(1 — o)]

= (21 —20)(y1 — yo)[1 + a(l —z1 — 20)(1 — y1 — vo)]-

Comparing this with equation (2.2) of Goodman (1986), we see that (1 —
1 — o) and (1 —y; — yo) play the role of row scores and column scores—in
effect, Goodman’s model U.

2.2.5 Iterated F-G-M Distributions

For the singly iterated case, the distribution function C' and p.d.f. ¢ are,
respectively, given by

C(u,v) = wo[l + a(l —u)(1 —v) 4+ fuv(l —u)(1 —v)], (2.4)

c(u,v) =[1+a(l —2u)(1 —2v) + fuv(2 — 3u)(2 — 3v)], (2.5)
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where the valid combinations of &« and f are —1 < a<land —1—-a <3<
(3 —a+vV9 —6a — 3a2) /2. This distribution is obtained [Johnson and Kotz

(1977) and Kotz and Johnson (1977)] by realizing that (2.1) may alternatively
be written in terms of the survival function C' as

C=(1-u)(1—-2)(1+ auv). (2.6)

Now replacing the independent survival function (1 — u)(1 — v) in (2.1) by
this survival function of an F-G-M distribution, having a possibly differ-
ent associated parameter, 3/« (say) instead of «, we obtain the result in
(2.4). This process can be repeated, of course. The correlation coefficient is
corr(U, V) = § + %

Note

For normal marginals, corr(X,Y) = < + %. The first iteration increases the
maximum attainable correlation to over 0.4. However, very little increase of
the maximum correlation is achievable with further iterations, as noted by
Kotz and Johnson (1977).

Lin (1987) suggested another way of iterating the F-G-M distribution:
Start with (2.6), and replace uv by (2.1). After substituting for C' in terms
of C, we obtain

C(u,v) = wo[l + (1 —u)(1 —v) + B(1 —u)?(1 — v)?]

at the first step.
Zheng and Klein (1994) studied an iterated F-G-M distribution of the form

Clu,v) = o+ 3 oy (o) 2[(1 - w)(1 = )02 —1<a; <.

J

2.2.6 Extensions of the F-G-M Distribution

We shall discuss here a number of extensions of F-G-M copulas developed
primarily to increase the maximal value of the correlation coefficient. Most
of these are polynomial-type copulas (copulas that are expressed in terms of
polynomials in w and v).

Huang and Kotz Extension

Huang and Kotz (1999) considered
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C(u,v) = uwv[l + a(l —uP)(1 —oP)]. (2.7)
The corresponding p.d.f. is
c(u,v) = 1 +a(1 1 —l—p)up) (1 1 —I—p)vp). (2.8)
The admissible range for « is given by

—(max {1,p*}) 7 <a<p .

The range for p = corr(U, V) = 304(1%)2 is
=3(p+2)?min{1,p?} <p < 3—p
T (p+2p

Thus, for p= 27 Pmax = %7 and for p= 1,pmin = I_GS

It is clear that the introduction of the parameter p has enabled us to
increase the maximal correlation for the F-G-M copula.
Another extension of the bivariate F-G-M copula is given by

C(u,v) = wo[l + a(l — uw)?P(1 —v)P], p >0, (2.9)
with p.d.f.
c(u,v) =1+ a(l —u)P~ (1 —v)P~! (1 -1 +p)u> (1 —(1 —|—p)v). (2.10)

The admissible range of « is (for p > 1)

~1
—1<a<(1il)p .
<a< (o3

The range is empty for p < 1. The correlation

1

2
p=corr(U,V) = 12a<m)

in this case has the range

1

( ) (p—D'"Pp+ 1"
P+ 1(p+2)

(p+2)?

2
<p<12

Thus, for p = 1.877, pmax = 0.3912 and ppi, = %17 showing that the maximal
correlation is even higher than the one attained by the first extension in (2.7).
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Sarmanov’s Extension
Sarmanov (1974) considered the following copula:
C(u,v) = uv {14 3a(l —u)(1 —v) +50*(1 — u)(1 — 2u)(1 — v) 1—2;) }. :
2.11

The corresponding density function is
c(u,v) =14 3a(2u — 1)(2v — 1) + Za2[3(2u —1)2 - 1][3(2v — 1)® —1].

Equation (2.11) is a probability distribution when |a| < f ~ 0.55.

Bairamov—Kotz Extension

Bairamov and Kotz (2000a) considered a two-parameter extension of the
F-G-M copula given by

C(u,v) = wo[l + (1 —u®)’(1 —v*)°], a>0,b>0, (2.12)
with the corresponding p.d.f.
c(u,v) =1+ a(l — 2711 =021 —u(1 + ab)][1 — v*(1 + ab)]. (2.13)

The admissible range of « is as follows: For b > 1,

2
1 fab+1\""" 1 fab+1\""
— min 1[ (b—l) ] Sagl&(b_l) ,
and for b = 1, the quantity inside the square bracket is taken to be 1. It can be

2
shown in this case that corr(U,V) = 12@{@12 %} . For a = 2.8968

and b = 1.4908, we have pyax = 0.5015. For a = 2 and b = 1.5, ppin = —0.48.
Another extension that does not give rise to a copula is

C(u,v) = PPl + a(l —u?)™(1 — 09", p,g >0, n>1, (2.14)

with marginals uP and vP, respectively.

Lai and Xie Extension

Lai and Xie (2000) considered the copula

C(u,v) = uv + au’v’(1 — u)*(1 —v), a,b>1, (2.15)
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and showed that it is PQD for 0 < a < 1. The corresponding p.d.f. is
c(u,v) =14 a(uw)’ (1 — u)(1 —0)]* L [b— (a+ b)u][b — (a+ b)v]. (2.16)

The correlation coefficient is given by corr(U, V) = 12a[B(b + 1,a + 1)]%
Bairamov and Kotz (2000b) observed that (2.15) is a bivariate copula for o
over a wider range satisfying

min{ ! ! } <a< !
[Bt(a,b)]?” [B—(a,b)]? | = — B*(a,b)B~(a,b)’

where BT and B~ are functions of a and b.

Bairamov—Kotz—Bekci Generalization

Bairamov et al. (2001) presented a four-parameter extension of the F-G-M
copula as

C’(u,v) = uv{1+a(1_upl)(h(l_,UPQ)qz}’ P1,P2 Z 1a q1, 492 Z 1. (217)

2.2.7 Other Related Distributions

Farlie (1960) introduced the more general expression
H(z,y) = F(2)G(y){1 + aAlF ()] B[G(y)]}-

e Rodriguez (1980, p. 48), in the context of Burr type III marginals, made
passing references to H = FG[1 + a(1 — F%)(1 — G*)].

e Cook and Johnson (1986) discussed a compound F-G-M distribution.

e Regarding a distribution obtained by a Khintchine mixture using the
F-G-M distribution as the bivariate F-G-M copula, see Johnson (1987,
pp. 157-159).

e Cambanis (1977) has mentioned C'(u,v) = wv[14+5(1—u)+B(1—v)+a(l—
u)(1 — v)], which arises as the conditional distribution in a multivariate
F-G-M distribution.

e The following distribution was denoted ug in Kimeldorf and Sampson
(1975b):

C(u,v) = w[l + a(l —u)(1 —v) + B(1 —u?)(1 —v?)], (2.18)

c(u,v) =14+ a(l —2u)(1 — 2v) + B(1 — 3u?)(1 — 3v?), (2.19)
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with correlations 7 = 2 + g + % and ps = § + %.

2.3 Ali-Mikhail-Haq Distribution

uv
C = 2.20
(o) = T A A =) (2:20)
and . +o wo
T
c(u,v) = 1-a(l-w)(l-v) (2.21)

[1—a(l—u)(l-2v)]?

Correlation Coefficients

The range of product-moment correlation is (—0.271, 0.478) for uniform
marginals, (—0.227, 0.290) for exponential marginals, and approximately
(—0.300, 0.600) for normal marginals; see Johnson (1987, pp. 202-203), cred-
iting these results to Conway (1979).

Derivation

This distribution was introduced by Ali et al. (1978). They proposed searching
for copulas for which the survival odds ratio satisfies
1-Cy(u,v) 1—u 1-w l—u 1-w

= 1-— .
Co(u,v) u + v +(1-a) w o

Solving C,, (u,v) yields the Ali-Mikhail-Haq family given in (2.20).

Remarks

e This distribution is an example of an Archimedean copula:
1 -1 1 -1 1 -1
log[ + a(C )}:log[ + au )}—Hog[ + a(v )}’
C U v
i.e., the generator is ¢ = log %uu*l)
e The distribution may be written as

C(u,v) =uv[l + ol —u)(1—v)]+ _a'(1—u)'(1-0),
=2
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with the first term being the F-G-M copula.

o Aliet al. (1978) showed that the copula is PQD, LTD, and PRD.

e Mikhail et al. (1987a) presented some further results, including the (mean)
regression curves when the marginals are logistic. They also corrected er-
rors in the calculations of the median regression by Ali et al. (1978).

Genest and MacKay (1986) showed that

_ N2
_3a 2 2(1-o log(1 — ).

T 3 3a2

To obtain pg, the second integration requires finding fol (1—u)"tlog(l —a+
au)du. By substituting # = a(1 — u), it becomes [;* #~*log(1 — x)dx, which
is diln(1 — «), diln being the dilogarithm function.

The final expression for pg is then

12(1 + a)
Sl

diln(1 — o) — 3(12; @) _ 24(104; D 1og(1 — a).

ps =
(6%

2.3.1 Bivariate Logistic Distributions

A bivariate distribution that corresponds to (2.20),

uv

C(u,v) = 1—a(l—u)(l—-0o)

is
H(xy) =[l+e +e?+(1—a)e®¥] ', —1<a<l, (222)

[Ali et al. (1978)].

Properties

e The marginals are standard logistic distributions.
e When a =0, X and Y are independent.
e When a = 1, we have Gumbel’s bivariate logistic distribution discussed in
Section 11.17:
H(z,y)=(1+e "+ e*y)_l .

e Gumbel’s logistic lacks a parameter which limits its usefulness in applica-
tions. The generalized bivariate logistic (2.22) makes up for this lack.
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2.3.2 Biwvariate Exponential Distribution

The copula in (2.20) with @ = 1 also corresponds to the survival copula of a
bivariate exponential distribution whose survival function is given by
H(z,y) = (e" +¢e¥ — 1)71.

Clearly, X and Y are standard exponential random variables.

2.4 Frank’s Distribution

(a* = 1)(a” = 1)
a—1

C(u,v) =log, |1+ (2.23)

and
(a —1)log, "t

[ =1+ (a*—1)(av —1)]?

c(u,v) = (2.24)

Correlation and Dependence

(i) For 0 < a < 1, we have (positive) association.
(ii) As a — 1, we have independence.
(iii) For oo > 1, we have negative association.

Nelsen (1986) has given an expression for Blomqvist’s medial correlation
coefficient. Nelsen (1986) and Genest (1987) have shown that

T=1+4[Di(a") = 1]/,

ps =1+ 12[Da(a”) — Di(a")]/a”,
where o* = —log(a) and Dy and Dy are Debye functions defined by

k B k
Do) = 55 [ et

Derivation

This is the distribution such that both C and €' = u+v — C are associative,
meaning C[C(u,v),w] = Clu,C(v,w)] and similarly for C' [Frank (1979)].
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There does not seem to be a probabilistic interpretation of this associative
property.

Remarks

e This distribution is an example of an Archimedean copula [Genest and
MacKay (1986)],

1 1—a¢ 1 1—a* 1 1-a”

() e (=) o ()
so that ¢(t) = log( 1{_‘5 ).

e The p.d.f. is symmetric about (%, %), and consequently the copula and the
survival (complementary) copula are the same. In fact, this family is the
only copula that satisfies the functional equation C(u,v) = C(u, v).

e When 0 < o < 1, this distribution is positive likelihood ratio dependent
[Genest (1987)].

e This distribution has the “monotone regression dependence” property
[Bilodeau (1989)].

2.5 Distribution of Cuadras and Augé and
Its Generalization

This distribution, put forward by Cuadras and Augé (1981), is given by
C(u,v) = womax(u,v)]”¢ = wv[min(u™%v™°)], (2.25)

with ¢ being between 0 and 1. It is usually met with identical exponential
marginals in the form of Marshall and Olkin given by

H(z,y) = exp(=Az — Ay — Aig max(z,y)).

2.5.1 Generalized Cuadras and Augé Family
(Marshall and Olkin’s Family)

The Marshall and Olkin bivariate exponential distribution in the original
form is -
H(z,y) = exp (— Az — Aoy — Az max(z,y)).
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Nelsen (2006, p. 53) considered the uniform representation of the survival
function above. In order to obtain it, we rewrite the preceding equation in
the form

H(z,y) = exp(—(M1 + M2)7 — (A2 + A12)y + A2 min(z, y))

= F(z)G(y) min{exp(A127), exp(A12y)}. (2.26)
Set v = F(x) and v = G(y), and let o = ﬁ, and 3 = (/\21%;12)

Then, exp(A2z) = u™® and exp(Ai2y) = v=?, with the survival copula

(complementary copula) C' given by

C(u,v) = vomin(u=*

, v P) = min(uv' =7, ul =), (2.27)
Since the \’s are all positive, it follows that « and ( satisfy 0 < «, 8 < 1.
Hence, the survival copula for the Marshall and Olkin bivariate exponential
distribution yields a two-parameter family of copulas given by
Cop(u,v) = min(u' =%, v'77) = = 5 (2.28)
This family is known as the Marshall and Olkin family and the generalized
Cuadras and Augé family. When a = 8 = ¢, (2.28) reduces to the Cuadras
and Augé family in (2.25). Hanagal (1996) studied the distribution above
with Pareto distributions of the first kind as marginals.
A slight complicating factor with this is that the p.d.f. has a singularity
along y = z. For a = [ = ¢, Cuadras and Augé determined Pearson’s
correlation to be 3¢/(4 — ¢). Since the marginals are uniform, pg is the same

value. It may also be shown that 7 = ¢/(2 — ¢), and so ps = 37/(2+ 7).
Nelsen (2006, Chapter 5) showed that ps = 37/(2 + 7) also holds for the

asymmetric case H = min(zy'~?, 2'~%y), but 7 = #ngﬁ
2.6 Gumbel-Hougaard Copula
The copula satisfies the equation
[—log C(u,v)]* = (—logu)® + (—logv)®. (2.29)
Rewriting it in a different form gives
1/«
C(u,v) = exp (— {(— logu)® + (— logv)a} ) . (2.30)

Letting —logu = e~%, —logv = e~ ¥ in (2.30), we can verify that the joint
distribution of X and Y is
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H(x,y) = exp [ —(e7" + e_o‘y> l/a] , (2.31)

which is the type B bivariate extreme-value distribution with type 1 extreme-
value marginals, see Kotz et al. (2000, p. 628) and Nelsen (2006, p. 28).

Correlation Coefficient

Kendall’s 7 is (a—1) /v [Genest and MacKay (1986)]. The correlation between
logU and logV is 1 — a?2.

Derivation

Perhaps surprisingly, the survival copula corresponding to (2.30) can be de-
rived by compounding [Hougaard (1986)].

Suppose there are two independent components having failure rate func-
tions given by OA(x) and OA(y). Then the joint survival probability is
e V4@ AW Now assuming 6 has a stable distribution with the Laplace
transform E(e=%%) = ¢=*" then E(e MA@+ AW]) = ¢~ [A@)+AWI"  Finally,
we might suppose that A(u) is of the Weibull form equ®~?!, in which case
A(t) = et®, so that

H(z,y) = exp[—(ez® + ey®)?], z,y > 0. (2.32)
Set v = 1/a, and it follows that
H(w,y) = exp[—(ea® +ey®) /], 2,y > 0.

Clearly, H(z,y) = C(F(x),G(y)) where C is the Gumbel-Hougaard cop-
ula and F(z) = e~ and Gy) = e .

It now follows from (1.4) that the Gumbel-Hougaard copula is the survival
copula of the bivariate exponential distribution given by (2.31).

The Pareto distribution is obtained in a similar manner, but with 6 having
a gamma distribution. Hougaard (1986, p. 676) has mentioned the possibility
of using a distribution that subsumes both gamma and positive stable distri-
butions in order to arrive at a bivariate distribution that subsumes both the
Gumbel-Hougaard and Pareto copulas.

Independently, Crowder (1989) had the same idea but added a new wrinkle
to it. His distribution, in the bivariate form, is

H(z,y) = exp[r® — (k +ex” +ey7)?], (2.33)

where we see an extra parameter k; also, note that €’s and +’s are allowed
to be different for X and Y. An interpretation of k is in terms of selection
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based on Z > zy from a population having trivariate survival distribution
exp[—(exY +ey? +¢e27)?]. Crowder has discussed further the dependence and
association properties, hazard functions and failure rates, the marginal dis-
tributions, the density functions, the distribution of minima, and the fitting
of the model to data.

Remarks

e We have called this a Gumbel-Hougaard copula since it appeared in the
works of Gumbel (1960a, 1961) and a derivation of it has been given by
Hougaard (1986).

o Clearly, from the form of (2.29), it is an Archimedean copula [Genest and
MacKay (1986)].

Fields of Applications

e Gumbel and Mustafi (1967) fitted this distribution, in the extreme value
form, to data on the sizes of annual floods (1918-1950) of the Fox River
(Wisconsin) at two points.

e Hougaard (1986) used a trivariate version of this distribution to analyze
data on tumor appearance in rats with 50 liters of a drug treated and two
control animals.

e Hougaard (1986) analyzed insulation failure data using a trivariate form
of the Weibull version of this distribution.

e Crowder (1989) fitted (2.33) to data on the sensitivity of rats to tactile
stimulation of rats that did or did not receive an analgesic drug.

2.7 Plackett’s Distribution

The distribution function is derived from the functional equation

Cl—u—v+0C)
(u—C)(v—0C)

= 4. (2.34)

The equation above can be interpreted as (having the support divided into
four regions by dichotomizing U and V)

Probability in lower-left region x Probability in upper-right region
Probability in upper-left region x Probability in lower-right region
= a constant

independent of where the variates are dichotomized. Expressed alternatively,
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1+ @ = D(u+v)] = VI + @ = D(u+o) 4% - Huv
2y —1) '

It needs to be noted that the other root is not a proper distribution function,
not falling within the Fréchet bounds.
The probability density function is
Y[ —1)(u+ —2uv) + 1]
{0+ (1) (w4 0))2 = 40( — Duv}*?

C— (2.35)

CcC =

Correlation Coefficient

Spearman’s correlation is pg = % — %
to be known as a function of ¢. For the product-moment correlation when
the marginals are normal, see Mardia (1967).

log ¢. Kendall’s 7 does not seem

Conditional Properties

The regression of V on U is linear. After the marginals have been transformed
to be normal, the conditional densities are skew and the regression of Y on
X is nonlinear [Pearson (1913)].

Remarks

e Interest in this distribution was stimulated by the papers of Plackett (1965)
and Mardia (1967), but in fact it can be traced in the contingency table
literature back to the days of Yule and Karl Pearson [see Goodman (1981)].

e As compared with the bivariate normal distribution, the outer contours
of the p.d.f. of this distribution with normal marginals are more nearly
circular—their ellipticity is less than that of the inner ones [Pearson (1913)
and Anscombe (1981, pp. 306-310)].

e For low correlation, this distribution is equivalent to the F-G-M in the
sense that, if we set ¢ = 1 — «v in (2.33), expand in terms of «, and then
let @ be small so that we can neglect o> and higher terms, we arrive at
(2.1).

e Arnold (1983, Section 6.2.5) has made brief mention of the Pareto-
marginals version of this distribution, citing Conway (1979).

e Another account of this distribution is by Conway (1986).
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Fields of Application

e This distribution has received considerable attention in the contingency
table literature, where it is known as the constant global cross ratio model.
Suppose one has a square table of frequencies, the categories of the di-
mensions being ordinals. Then, if the model of independence fails and a
degree of positive (or negative) association is evident, one model that has
a single degree of freedom to describe the association is the bivariate nor-
mal. But this is inconvenient to handle computationally with most of the
present-day packages for modeling tables of frequencies. Another model
consisting of a single association model is Plackett’s distribution, which is
much easier computationally. Work in this direction has been carried out
by Mardia (1970a, Example 8.1), Wahrendorf (1980), Anscombe (1981,
Chapter 12), Goodman (1981), and Dale (1983, 1984, 1985, 1986).

e In the context of bivariate probit models, Amemiya (1985, p. 319) has
mentioned that Lee (1982) applied Plackett’s distribution with logistic
marginals to the data of Ashford and Sowden (1970) and Morimune (1979).

e Mardia (1970b) fitted the Spy-marginals version of this distribution to
Johansen’s bean data.

2.8 Bivariate Lomax Distribution

The joint survival function of the bivariate Lomax distribution (Durling—
Pareto distribution) is given by

H(z,y)=(14+ax+by+0zxy)~¢ 0<60<(c+1)ab, a,b,c>0, (2.36)
with probability density function

cle(b+ 0x)(a+ 0y) + ab — 0]

2.37
(1+ az + by + Ozy)ct? (2.37)

h(l‘,y) =

Marginal Properties

It has Lomax (Pareto of the second kind) marginals with

E[X]:ﬁ7 ElY]= ——— ¢>1

(the mean exists only if ¢ > 1) and
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C C

=’ var(Y) = c>2

var(X) = 12— 20

(the variance exists only if ¢ > 2).

Derivations

e Begin with two exponential random variables X and Y with parameters 6,
and 6, respectively. Conditional on (61, 63), X and Y are independent. We
now assume that 61, 65) has Kibble’s bivariate gamma distribution with
density h(67,02) (see Section 8.2). Then

Pr(X >uz,Y >y) = / / exp(—01x, 02y)h(01, 02)d010-
o Jo

will have the same form as (2.36).
e Begin with Gumbel’s bivariate distribution of the type

F(a,y) = exp (= n(aw + By + Aey)).

Assuming that 1 has a gamma distribution with scale parameter m and
shape parameter ¢, then (2.36) will be obtained by letting a = a/m,b =
B/m, and 6 = X\/m; see Sankaran and Nair (1993).

Properties of Bivariate Dependence

Lai et al. (2001) established the following properties:

e For the bivariate Lomax survival function, X and Y are positively (nega-
tively) quadrant dependent if 0 < 6 < ab (ab < 0 < (¢ + 1)ab).

e The Lomax distribution is RTT if 6 < ab and RTD if 6 > ab.

e X and Y are associated if 8 < ab.

Correlation Coefficients

e Lai et al. (2001) have shown that

1—0)(c—2
p= ¥§C)F[l,2;c+l;(l—9)}, 0<0<(c+1),a=b=1,
c
where F(a,b;c;z) is Gauss’ hypergeometric function; see, for example,
Chapter 15 of Abramowitz and Stegun (1964).
e For a # 1,0 # 1, the correlation is
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e For ¢ =n an integer and ab =1,

corr(X,Y)
0%—2

-1
B T G A T ] oy i O

9n—1—1ﬂ

D D)
on—2 n—1 gn—1—i
- Wloge—zz':z (i L
= = 7
(n—1)(n—2)

n > 3.

(i) For ¢ =n =2, and ab = 1, in particular,

log 6 B

cov(X,Y) = o1

1.

Thus, the covariance exists for ¢ = 2 even though the correlation does not
exist since the marginal variance does not exist for ¢ = 2.
(ii) For ¢ = n = 3, and ab = 1, in particular,

2 1
Sflogh — ———— —

2
p=corr(X,Y) = 3012 361 3

e For a given ¢ and ab = 1, the correlation p decreases as 6 increases. How-
ever, it does not decrease uniformly over c.
e For a given ¢ and ab = 1, the value of p lies in the interval

(c—2)

Thus, the admissible range for p is (—0.403,0.5).

e This reasonably wide admissible range compares well with the well-known
Farlie-Gumbel-Morgenstern bivariate distribution having the ranges of
correlation (i) —% to % for uniform marginals, (ii) —;11 to % for exponential
marginals, and (iii) —% to % for normal marginals, as mentioned earlier.

F(1,2;¢c+1;—c)<p<l1/e

Remarks

e In order to have a well-defined bivariate Lomax distribution, we need to
restrict ourselves to the case ¢ > 2 so that the second moments exist.

e The bivariate Lomax distribution is also known as the Durling-Pareto
distribution.

e Durling (1975) actually proposed an extra term in the Takahasi-Burr dis-
tribution rather than in the simpler Pareto form. Some properties of Durl-
ing’s distribution were established by Bagchi and Samanta (1985).
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e Durling has given the (product-moment) correlation coefficient for the
general case in which z and y are each raised to some power.

e An application of this distribution in the special case where ¢ = 1, con-
sidered in the literature, is in modeling the severity of injuries to vehicle
drivers in head-on collisions between two vehicles of equal mass.

e Several reliability properties have been discussed by Sankaran and Nair
(1993). Lai et al. (2001) have discussed some additional properties per-
taining to reliability analysis.

e Rodriguez (1980) introduced a similar term into the bivariate Burr type
III distribution, resulting in H = (14+2~%+y~*+kxr~%~")~¢. He included
a number of plots of probability density surfaces of this distribution in the
report. This distribution (with location and scale parameters present) was
used by Rodriguez and Taniguchi (1980) to describe the joint distribution
of customers’ and expert raters’ assessments of octane requirements of
cars.

e The special case

_ 1

H = —— 0 2.38
(@,9) (1 + ax + by)e’ ¢>5 (2.38)

is also known as the bivariate Pareto and has been studied in detail by
several authors, including Lindley and Singpurwalla (1986).

e Sums, products, and ratios for the special case given in (2.38) are derived
in Nadarajah (2005).

e Shoukri et al. (2005) studied inference procedures for v = Pr(Y < X)
of the special case above; in particular, the properties of the maximum
likelihood estimate 4 are derived.

2.8.1 The Special Case of c =1

Suppose now that we have a number of 2 x 2 contingency tables, each of which
corresponds to some particular z and some particular y, and we want to fit the
distribution H = (1+ax +by+ kabxy)~! to them. Notice that the parameter
0 depends on a and b. This special case with ¢ = 1 is very convenient in these
circumstances because we have p1; = (1 + ax + by + kabry) ™%, pio + p11 =
(1+az)™t, and po1 + p11 = (1 + by)~ L. We can then estimate a and b from
the marginals by

1—(p10+p11):ax and 1 — (po1 + p11)

= by,
P10 + P11 Po1 + P11

and k can be estimated by
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1-p11 _ 1—(pio+pi1) 1—(po1+p11)

P11 Piot+pPi1 Po1tpi1
1—(p1o+p11) + 1—(po1+p11)
pio+pi1 po1+pi1

Applications of this distribution in transformed form have been discussed by
Morimune (1979) and Amemiya (1975).

2.8.2 Bivartate Pareto Distribution

In this case, we have

H(z,y)=14+z+y)~° (2.39)

The marginal is known as the Pareto distribution of the second kind (some-
times the Lomax distribution). The p.d.f. is

ha,y) = cle+1)(1 +z 4 y) "2, (2.40)

Correlation Coefficients and Conditional Properties

Pearson’s product-moment correlation is 1/c¢ for ¢ > 2. The regression of YV’
on X is linear, E(Y|X = z) = (¢ + 1)/¢, and the conditional variance is
quadratic, var(Y|X = z) = (cc——%& (x+1)2 for ¢ > 1. In fact, Y|X = x is also
Pareto.

Derivation

Starting with X and Y having independent exponential distributions with the
same scale parameter and then taking the scale parameter to have a gamma
distribution, this distribution is obtained by compounding. More generally,
starting with Pr(X > z) = [1 — A(2)]? and Pr(Y > y) = [1 — B(y)]%, where
A and B are distribution functions, and then taking 6 to have a gamma
distribution, the distribution (2.39) is obtained by compounding, with the
only difference being that monotone transformations have been applied to X
and Y.

If compounding of the scale parameter is applied to an F-G-M distribu-
tion that has exponential marginals instead of an independent distribution
with exponential marginals, a distribution proposed and used by Cook and
Johnson (1986) results.
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Remarks

e Barnett (1979, 1983b) has considered testing for the presence of an outlier
in a dataset assumed to come from this distribution; see also Barnett
and Lewis (1984, Section 9.3.3). An alternative proposal given by Barnett
(1983a) involves transformations to independent normal variates.

e The bivariate failure rate is decreasing [Nayak (1987)].

e The product moment is E(X"Y*) =T(c—r — s)I'(r + 1)I'(s + 1)/T(c) if
r+ s < c and oo otherwise.

e Mardia (1962) wrote this distribution in the form h o (bx +ay —ab)~(¢+2),
with £ > a > 0, y > b > 0. In this case, Malik and Trudel (1985) have
derived the distributions of XY and X/Y.

Univariate Transformation

In the bivariate Burr type XII (Takahasi—-Burr) distribution, = and y in
the distribution function are replaced by their powers; see Takahasi (1965).
Further results, oriented toward the repeated measurements experimental
paradigm, for this case have been given by Crowder (1985). For generation of
random variates following the method of the distribution’s derivation (scale
mixture), see Devroye (1986, pp. 557-558). Arnold (1983, p. 249) has referred
to this as a type IV Pareto distribution.

Rodriguez (1980) has discussed the bivariate Burr distribution, H(x,y) =
(142724 y~?)~¢. In that report, there is a derivation (by compounding an
extreme-value distribution with a gamma), algebraic expressions for the con-
ditional density, conditional distributions, conditional moments, and correla-
tion, and a number of illustrations of probability density surfaces. Satterth-
waite and Hutchinson (1978) replaced x and y in the distribution function
by e™* and e~¥. Gumbel (1961) had previously done this in the special case
¢ = 1, thus getting a distribution whose marginals are logistic; however, it
lacks an association parameter.

Cook and Johnson (1981) and Johnson (1987, Chapter 9) have treated
this copula [whether in Takahasi (1965) form, or Satterthwaite—Hutchinson
(1978) form] systematically and have also provided several plots of densities.
Cook and Johnson (1986) and Johnson (1987, Section 9.2) have generalized
the distribution further.

2.9 Lomax Copula

Consider the bivariate Lomax distribution with the survival function given by

(2.36). As H(z,y) = C(F(x),G(x)), we observe that (2.36) can be obtained
from the survival copula
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C’(um):uv{l—a(l—u%)(l—v%)}ic, —c<a<l, (2.41)

by taking a =1 — %. Recall that the survival function of C' is related to the
survival copula through C(u,v) =1 —u—v+ C(u,v) = C(1 —u,1 —v), and
so the copula that corresponds to (2.41) is
1-— 1-—
C(u,v) = (1-wd—v) - f+u+v—1 (2.42)

c

{1 —all - (1—wi - (1 —v)%]} ‘

e Case=0(a=1),s0 C(u,v) = (u"/+v71/¢=1)¢ is known as Clayton’s
copula.

e The case a = 0 (i.e., # = ab) corresponds to the case of independence.
Fang et al. (2000) have also shown that U and V are also independent as
c — 0.

e When ¢ = 1, the survival copula (2.41) becomes

A uv

Clu) =T i —oy

—-1l<a<l,

which is nothing but the Ali-Mikhail-Haq family of an Archimedean cop-

ula with generator log 1all-t)

+— . Thus, the survival copula in (2.41) can be
considered to be a generalization of the Ali-Mikhail-Haq family.
e Fang et al. (2000) have shown that the correlation coefficient of the copula

is
p=3{3F(1,1,c: 14+ 2¢,1 4 2¢;a) — 1}, 0<a<l1, ¢>0,

where -
(a)k(D)i(c)r ¥
Fs(a,b,c;d,e;x) = —
a2 ) g%(@a@k k!
e It is noted in Fang et al. (2000) that the copula is LRD if o > 0.
e For a = 1, the survival copula is also known as the Pareto copula, which
is discussed next.

2.9.1 Pareto Copula (Clayton Copula)

Clu,v) = (w™ Ve 4o e —1)=¢,  c¢>0. (2.43)

This is the survival copula that corresponds to the bivariate Pareto dis-

tribution in (2.39). This is not symmetric about (3, 3). Equation (2.43) is
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also called the Clayton copula by Genest and Rivest (1993). Clearly, this is
a special case of the Lomax copula in (2.41).

The survival function of the copula that corresponds to the bivariate
Pareto distribution in (2.43) is given by

Clu,v) =[(1—u) ™Yo+ (1 —v)"e—1]7¢ >0,

which has been discussed by many authors, including Oakes (1982, 1986) and
Cox and Oakes (1984, Section 10.3). Note that the copula that corresponds
to the bivariate Pareto distribution is given by

Clu,v) =[(1—u) Ver (1 —v) Ve futov—1

Remarks

e Johnson (1987, Section 9.1) has given a detailed account of this distribu-
tion and has paid more attention to the marginals than we have done here.
Johnson has referred to this as the Burr—Pareto-logistic family.

e This distribution is an example of an Archimedean copula [Genest and
MacKay (1986)] with generator o(t) = t=/¢ — 1.

e Ray et al. (1980) have presented results relevant in the context of sample
selection.

e This distribution has the “monotone regression dependence” property
[Bilodeau (1989)].

e It is possible [see Drouet-Mari and Kotz (2001, p. 86)] to extend the Pareto
copula in (2.43) to have negative dependence by allowing ¢ < 0. In that
case, C(u,v) = max(u=/¢+ v~ —-1,0)7¢ ¢ < 0. As ¢ — —1, this
distribution then tends to the lower Fréchet bound.

Fields of Applications

e Cook and Johnson (1981, 1986) fitted this distribution, among others,
with lognormal marginals to data on the joint distribution of certain trace
elements (e.g., cesium and scandium) in water.

e Concerning association in bivariate life tables, Clayton (1978) deduced
that a bivariate survival function must be of the form H(x,y) = [1 +
a(z) 4+ bly)] € if

hH (2,y) = c/:o (o, ) du /ym h(w, v)dv.

Clayton’s context is in terms of deaths of fathers and sons from some
chronic disease, with association stemming from common environmental
or genetic influences. The equation above arises as follows:



92 2 Distributions Expressed as Copulas

— Consider the ratio of the age-specific death rate for sons given that the
father died at age y to the age-specific death rate for sons given that the
father survived beyond age y. This ratio is assumed to be independent
of the son’s age.

— As a symmetric form of association is being considered, an analogous
assumption holds for the ratio of fathers’ age-specific death rates.

— The proportionality property % = Ca% (—log H)a%(_ log H) then holds.
(The left-hand side of this equation is the bivariate failure rate, and
the right-hand side is ¢ times the product of the hazard function for
sons of fathers who survive until y and the hazard function for sons of
fathers who survive until x.) See also Oakes (1982, 1986) and Clayton
and Cuzick (1985a,b).

e Klein and Moeschberger (1988) have used this form of association in the
“competing risks” context.

e The bivariate Burr distribution, both with and without the extra associ-
ation term introduced by Durling (1975), was used by Durling (1974) in
reanalyzing seven previously published datasets on the effects of mixtures
of poisons.

e The Takahasi-Burr distribution, in its quadrivariate form, was applied
by Crowder (1985) in a repeated measurements context—specifically, in
analyzing response times of rats to pain stimuli at four intervals after
receiving a dose of an analgesic drug.

2.9.2 Summary of the Relationship Between
Various Copulas

For ease of reference, we summarize the relationship between the Lomax
copula and its special cases.
The Lomax copula (a, ¢) is given in (2.41):

(i) @ =1 = Pareto copula (Clayton copula) as given in (2.43).
(ii) ¢ = 1= Ali-Mikhail-Haq copula as given in (2.20).

2.10 Gumbel’s Type I Bivariate
Exponential Distribution

Again, we depart from our usual pattern by describing this distribution, with
exponential marginals, before the copula.



2.10 Gumbel’s Type I Bivariate Exponential Distribution

Formula for Cumulative Distribution Function

H(z,y)=1—e @ —e ¥4 @vtloy)  g<g<,

Formula for Density Function
h(z,y) = e~ TV Hm[(1 + 02)(1 + Oy) — 0]

Univariate Properties

Both marginals are exponential.

Correlation Coefficients and Conditional Properties

o0 efy
:71+/ dy.
P 0 1+9yy
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(2.44)

(2.45)

Gumbel (1960a) has plotted p as a function of 6. A compact expression may
be obtained in terms of the exponential integral (but care is always necessary
with this function, as the nomenclature and notation are not standardized).
For 6 =0, X and Y are independent and p = 0. As 6 increases, p increases,
reaching —0.404 at § = 1. Thus, this distribution is unusual in being oriented
towards negative correlation. (Of course, positive correlation can be obtained

by changing X to —X or Y to —Y.)

Barnett (1983a) has discussed the maximum likelihood method for esti-
mating # as well as a method based on the product-moment correlation.

Gumbel (1960a) has further given the following expressions:

glyla) = e VIV (1 + 62)(1 + 0y) — 6],
E(Y|X =) = (1+6+0x)(1+0z) 2,
(140 +0x)* — 202
(1+6x)4

var(Y|X =z) =

Remarks

e This distribution is characterized by
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EX —z|X>zand Y >y) = BE(X|Y >y),

EY —ylX>zandY >9y) = BE(Y|X > z), (2.46)

which is a form of the lack-of-memory property; see K.R.M. Nair and N.U.
Nair (1988) and N.U. Nair and V.K.R. Nair (1988).

e Barnett (1979, 1983b) and Barnett and Lewis (1984, Section 9.3.2) have
discussed testing for the presence of an outlier in a dataset assumed to
come from this distribution. An alternative proposal by Barnett (1983a)
involves transformation to independent normal variates.

e In the context of structural reliability, Der Kiureghian and Liu (1986) uti-
lized this distribution (with # = 1) in the course of demonstrating a proce-
dure to approximate multivariate integrals by transforming the marginals
to normality and assuming multivariate normality; see also Grigoriu (1983,
Example 2).

An Application

In describing this, let us quote the opening words of the paper by Moore
and Clarke (1981):“The rainfall runoff models referred to in the title of this
paper are (1) those that attempt to describe explicitly both the storage of
precipitated water within a river basin and the translation or routing of water
that is in temporary storage to the basin outfall, and (2) those in which
the parameters of the model are estimated from existing records of mean
areal rainfall, Penman potential evaporation Ep, or some similar measure of
evaporation demand, and stream flow.” On pp. 1373-1374 of the paper is a
section entitled “A Bivariate Exponential Storage-Translation Model.” This
introduces distribution (2.44), the justification being that it has exponential
marginals and that the correlation is negative (“a basin with thin soils in the
higher altitude areas that are furthest from the basin outfall is likely to have
s and t negatively correlated”). The variables s and t are, respectively, the
depth of a (hypothesized) storage element and the time taken for runoff to
reach the catchment outfall.

Moore and Clarke did not present in detail the results using (2.44), saying,
“Application of storage-translation models using more complex distribution
functions ... did not lead to any appreciable improvement in model perfor-
mance ... One exception ... gives a correlation of —0.37 between s and ¢.”

2.11 Gumbel-Barnett Copula

Gumbel (1960a,b) suggested the exponential-marginals form of this copula;
many authors refer to this copula as another Gumbel family. We call it the
Gumbel-Barnett copula since Barnett (1980) first discussed it in terms of
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the uniform marginals among the distributions he considered. The survival
function of the copula C(u,v) that corresponds to Gumbel’s type 1 bivariate
exponential distribution (2.44) is given by

C_'(u,v) _ (1 _ u)(l _ v)e—alog(l—u) log(l—v)’
so that
Clu,v) =u—+v—1+ (1 —u)(1 —v)e fleelt—w)log(l-v) (2.47)

because of the relationship C(u,v) = C(u,v) +u + v — 1. The density of the
copula is

c(u,v) = {—0+ [1 — Olog(1 — u)][1 — Alog(1 — v)]} e~ fleeli—uw)logl—v),
(2.48)
The survival copula that corresponds to (2.47) is

C(u,v) = C(1 —u,1 —v) = upe~ e vlos, (2.49)

2.12 Kimeldorf and Sampson’s Distribution

Kimeldorf and Sampson (1975a) studied a bivariate distribution on the unit
square, with uniform marginals and p.d.f. as follows:

e [ on each of [3] squares of side 1/ arranged corner to corner up to the di-
agonal from (0, 0) towards (1, 1), [3] being the largest integer not exceeding
B;

° ﬁ*i[ﬁl on one smaller square side of 1 — [3]/ in the top-right corner of the
unit square (unless § is an integer);

e and 0 elsewhere.

For this distribution, Johnson and Tenenbein (1979) showed that

18] 35 — 3B[8] + [8%] — 1

g p? 7
and Nelsen (in a private communication) showed that
_[B28-18)-1
B B

Hence, if 1 < 3 < 2, ps = 37/2; and if 3 is an integer, pg = 27 — 72.
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Remarks

e Clearly (2.49) is an Archimedean copula.

o If C, and Cp are both Gumbel-Barnett copulas given by (2.49), then their
geometric mean is again a Gumbel-Barnett copula given by C(,g)/2; see
Nelsen (2006, p. 133).

2.13 Rodriguez-Lallena and Ubeda-Flores’ Family of
Bivariate Copulas

Rodriguez-Lallena and Ubeda-Flores (2004) defined a new class of copulas of
the form
Clu,0) = uo + f(u)g(v), (2.50)

where f and g are two real functions defined on [0, 1] such that

(i) f(0) = f(1) = g(0) = g(1);

(ii) f and g are absolutely continuous;

(iii) min{ad, By} > —1, where a = inf{f'(u),u € A} <0, 8 = sup{f'(u),u €
A} >0~ =inf{¢g (v),v € B} <0, and § = sup{¢'(v),v € B} > 0, with
A={uel0,1]: f'(u)exists} and B = {v € [0,1] : ¢’(v) exists}.

Ezample 2.1. The family studied by Lai and Xie (2000), C(u,v) = uv +

Mt (1 —u)e(1 —v), u,v € 0,1, 0 < XA < 1, a,b,¢,d > 1, is a special case

of Rodriguez-Lallena and Ubeda-Flores’ family.

Properties

o T=8[) f(t)dt [} g(r)dt, ps = 37/2.

e Let (X,Y) be a continuous random pair whose associated copula is a
member of Rodriguez-Lallena and Ubeda-Flores’ family. Then X and Y
are positively quadrant dependent if and only if either f > 0 and g > 0 or
f<0and g <O0.

2.14 Other Copulas

Table 4.1 of Nelsen (2006) presents some important one-parameter families of
Archimedean copulas, along with their generators, the range of the parameter,
and some special cases and limiting cases. We have discussed some of these
here, and for the rest we refer the reader to this reference. Many other copulas
are discussed throughout the book of Nelsen (2006), wherein we can find a
comprehensive treatment of copulas.
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2.15 References to Illustrations

We will now outline five important references that contain illustrations of
distributions discussed in this chapter as well as some others to follow.

Conway (1981). Conway’s graphs are contours of bivariate distributions;
that is, for uniform marginals F'(x) = x and G(y) = y, y as a function of = has
been plotted such that a contour of the (cumulative) distribution is the result
(i.e., H(x,y) = ¢) a constant. The paper (i) presents such contours for various
¢ for three reference distributions (upper and lower Fréchet bounds, and the
independence), (ii) gives the ¢ = 0.2 contour for distributions having various
strengths of correlations drawn from the Farlie-Gumbel-Morgenstern, Ali—
Mikhail-Haq, Plackett, Marshall-Olkin, and Gumbel-Hougaard families, and
(iii) presents some geometric interpretations of properties of bivariate distri-
butions.

Barnett (1980). The contours in this paper are of probability density func-
tions. The distributions are again transformed to have uniform marginals;
the bivariate normal, Farlie-Gumbel-Morgenstern, Plackett, Cauchy, and
Gumbel-Barnett are the ones included.

Johnson et al. (1981). This contains both contours and three-dimensional
plots of the p.d.f.’s of a number of distributions after their marginals have
been transformed to be either normal or exponential. The well-known distri-
butions included are the Farlie-Gumbel-Morgenstern, Plackett, Cauchy, and
Gumbel’s type I exponentials, plus a bivariate normal transformed to expo-
nential marginals. However, the main purpose of this work is to give similar
plots for distributions obtained by a trivariate reduction technique and by
the Khintchin mixture.

Johnson et al. (1984). In this, there are 18 small contour plots of the
p-d.f.’s of distributions after their marginals have been transformed to be nor-
mal. The well-known distributions included are the bivariate normal, Farlie—
Gumbel-Morgenstern, Ali-Mikhail-Haq, Plackett, Gumbel’s type I exponen-
tial, and the bivariate Pareto.

Johnson (1987). Chapters 9 and 10 of this book presents contour and three-
dimensional plots of the p.d.f.’s of the following distributions: Farlie-Gumbel—-
Morgenstern (uniform, normal, and exponential marginals), Ali-Mikhail-Haq
(normal marginals), Plackett (contour plots only; uniform, normal, and expo-
nential marginals), Gumbel’s type I exponential (uniform, normal, and expo-
nential marginals), bivariate Pareto (uniform and normal marginals; contour
plots only for exponential marginals), and Cook and Johnson’s generalized
Pareto (contour plots only; uniform, normal, and exponential marginals; and
one three-dimensional plot of normal marginals).

When thinking of contours of p.d.f.’s, the subject of unimodality (or oth-
erwise) of multivariate distributions comes to mind. An excellent reference
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for this topic is the book by Dharmadhikari and Joag-Dev (1985), and we
refer readers to this book for all pertinent details.
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Chapter 3
Concepts of Stochastic Dependence

3.1 Introduction

Dependence relations between two variables are studied extensively in prob-
ability and statistics. No meaningful statistical models can be constructed
without some assumptions regarding dependence although in many cases
one may simply assume the variables are not dependent, i.e., they are
independent.

Karl Pearson is often credited as the first to introduce the concept of
dependence by defining the product-moment correlation, which measures the
strength of the linear relationship between two variables under consideration.

Basically, positive dependence means that large values of Y tend to ac-
company large values of X, and similarly small values of Y tend to accom-
pany small values of X. By the same principle, negative dependence between
two variables means large values of Y tend to accompany small values of X
and vice versa. The focus of this chapter is on different concepts of positive
dependence.

Various notions of dependence are motivated by applications in statistical
reliability; see, for example, Barlow and Proschan (1975, 1981). Although the
starting point of reliability models is independent of the lifetimes of compo-
nents, it is often more realistic to assume some form of positive dependence
among the components.

In the 1960s, several different notions of positive dependence between two
random variables and their interrelationships were discussed by a number of
authors including Harris (1960, 1970), Lehmann (1966), Esary et al. (1967),
Esary and Proschan (1972), and Kimeldorf and Sampson (1987). Yanagi-
moto (1972) unified some of these notions by introducing a family of positive
dependence. Some further notions of positive dependence were introduced
by Shaked (1977, 1979, 1982). Joe (1993) characterized the distributions for
which dependence is concentrated at the lower and upper tails. These con-
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cepts, which were initially defined for two variables, have been extended to a
multivariate random vector (X1, Xo,...,X,) with n > 2.

In the case of n = 2, the negative dependence is easily constructed by re-
versing the concepts of positive dependence, as was done by Lehmann (1966).
However, for n > 2, negative dependence is no longer a simple mirror reflec-
tion of positive dependence; see, for example, Joag-Dev and Proschan (1983).

In Section 3.2, the concept of positive dependence is introduced and then
some conditions for a family to be positively dependent are presented. In
Section 3.3, some dependence concepts that are stronger and weaker than
positive dependence are outlined. Next, in Sections 3.4 and 3.5, concepts
of positive dependence stronger and weaker than the positive quadrant de-
pendence (PQD) are discussed, respectively. In Section 3.6, some positively
quadrant dependent bivariate distributions are presented. Some additional
concepts of dependence are introduced in Section 3.7. In Section 3.8, the
concept of negative dependence is discussed in detail, while results on posi-
tive dependence orderings are described in Section 3.9.

For reviews of implications among different dependence concepts, we refer
the reader to Joe (1997), Miiller and Stoyan (2002), or Lai and Xie (2006).

3.2 Concept of Positive Dependence and Its Conditions

A basic motivation of Lehmann (1966) for introducing the basic concept of
positive dependence was to provide tests of independence between two vari-
ables that are not biased. As a matter of fact, in order to construct an unbi-
ased test, we need to specify the alternative hypothesis. Lehmann identified
subfamilies of bivariate distributions for which this property of unbiased-
ness is valid. Kimeldorf and Sampson (1987) presented seven conditions in
all that a subfamily of distributions FT with given marginals should sat-
isfy to be positively dependent. Recall that H*(z,y) = min (F(z),G(y))
and H™ (z,y) = max (0, F(x) + G(y) — 1) are the upper and lower Fréchet
bounds, where F(z) and G(y) are the marginal distributions of X and Y,
respectively. Then, the conditions of Kimeldorf and Sampson (1987) are as
follows:

H e Ft = H(z,y) > F(z)G(y) for all z and y.

If H(z,y) € FT, so does H (z,vy).

If H(x,y) € F*, so does H(z,y) = F(2)G(y).

If (X,Y) e FT, sodoes (¢(X),Y) € FF, where ¢ is any increasing
function.

If (X,Y) € Ft, so does (Y, X).

If (X,Y) € Ft, so does (—X,-Y).

7. If H, converges to H in distribution, then H € F+.

=W

i
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We note that condition 1 is equivalent to the positive quadrant dependence
(PQD) concept, which is discussed in the next section.

3.3 Positive Dependence Concepts at a Glance

We list several concepts of positive dependence that exist in the literature in
the form of two tables where the PQD is used as a benchmark, and so Table
3.1 lists the dependence concepts that are stronger than PQD, while Table
3.2 lists the dependence concepts that are weaker than PQD.

Table 3.1 Dependence concepts that are stronger than PQD

PQD Positive quadrant dependence
ASSOC Associated

LTD Left-tail decreasing

RTI Right-tail increasing

SI Stochastically increasing

(alias PRD) (Positively regression dependent)
RCSI Right corner set increasing
LCSD Left corner set decreasing

TP Total positivity of order 2

(alias LRD) (Likelihood ratio dependence)

Table 3.2 Dependence concepts that are weaker than PQD

PQD Positive quadrant dependence
PQDE Positive quadrant dependence in expectation
cov(X,Y) >0 Positively correlated

According to Jogdeo (1982), positive correlation, positive quadrant de-
pendence, association, and positive regression dependence are the four basic
conditions that describe positive dependence, and these are in increasing or-
der of stringency. For multivariate dependence concepts, one may refer to Joe
(1997).
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3.4 Concepts of Positive Dependence
Stronger than PQD

We now formally define the concepts of positive dependence that are stronger
than positive quadrant dependence listed in Table 3.1. Throughout this chap-
ter, we assume that X and Y are continuous random variables with joint
distribution function H.

3.4.1 Positive Quadrant Dependence

We say that (X,Y) is positive quadrant dependent (PQD) if

Pr( X >2z,Y >y) >Pr(X >2)Pr(Y > y) (3.1)
or, equivalently, if

Pr(X <x,Y <y) > Pr(X < 2)Pr(Y <y). (3.2)

Later, in Section 3.6, we will present many families of positive quadrant
dependent distributions.
Lehmann (1966) showed the conditions above to be

cov]a(X),b(Y)] >0 (3.3)

for every pair of increasing functions a and b defined on the real line R.
The proof is based on Hoeffding’s (1940) well-known lemma [also see Shea
(1983)], which states that

cov(X,Y) = [ h [ " H(n,y) — F(@)Gy) bady. (3.4)

We observe from (3.4) that (X,Y") being PQD implies cov(X,Y) > 0, with
equality holding only if X and Y are independent. Further, if @ and b are
two increasing real functions, then (X,Y") being PQD implies (a(X),b(Y))
is also PQD, and so cov]a(X),b(Y)] > 0. Suppose now cov[a(X),b(Y)] > 0
for all increasing functions @ and b. Set a(X) = I{ x>, and b(Y) = Ijy >y
Now, cov[a(X),b(Y)] = Pr(X > z,Y > y) — Pr(X > z)Pr(Y > y) > 0,
which means (X,Y") is PQD. Therefore, cov[a(X),b(Y)] > 0 for all increasing
functions a and b and the PQD conditions in (3.1) are indeed equivalent.
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PUOD and PLOD

Unlike other bivariate dependence concepts, which can be readily extended
to the corresponding multivariate dependence of n variables, this is not the
case with PDQ. This is because (3.1) and (3.2) are equivalent only for n = 2.
For n > 2, we say that X, X5, ..., X,, are positively upper orthant dependent
(PUOD) if

Pr(Xy > 2, Xo > xo,..., X, > xp) > HPr(Xi > x;)

and are positively lower orthant dependent (PLOD) if

Pr(X; <21, Xy < 7a,..., X S ) > [[Pr(X; < ).

=1

3.4.2 Association of Random Variables

Esary et al. (1967) introduced the following condition, termed association.
X and Y are said to be “associated” if for every pair of functions a and b,
defined on R?, that are increasing in each of their arguments (separately),
we have

covla(X,Y),b(X,Y)] > 0. (3.5)

A direct verification of this dependence concept is difficult in general, but
it is often easier to verify one of the alternative positive dependence notions
that do imply association. For example, it is easy to see that the condition
in (3.5) implies (3.3); that is, “association” = PQD.

The concept of “association” is very useful in reliability, particularly in the
context of multivariate (as distinct from just bivariate) dependence. Jogdeo
(1982) defined an n-variate random vector X = (X1, ..., X,,) or its distribu-
tion to be associated if for every pair of increasing real functions a and b,
defined on R™, cov(a(X),b(Y)] > 0.

The property of association has a number of consequences as listed by
Jogdeo (1982). Some of them are trivial, at least in the bivariate case. We
note here that (i) increasing (or decreasing) functions of associated random
variables are also associated, and (ii) if (Y3,...,Y,) is also associated, and
the X’s and Y’s are positive, then (X1Y7,...,X,Y,) is associated. Clearly,
the condition in (3.5) can be expressed alternatively as

Ela(X,Y)b(X,Y)] = E[a(X,Y)]Eb(X,Y)]. (3.6)
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Barlow and Proschan (1981, p. 29) considered the following practical relia-
bility situations in which the lifetimes of the components are not independent
but are associated:

a. Minimal path structures of a coherent system having components in
common.

b. Components subject to the same set of stresses.

¢. Structures in which components share the same load, so that the failure
of one component results in an increased load on each of the remaining
components.

Observe that, in all the situations listed above, the random variables of in-
terest act in a similar manner. In fact, all the positive dependence concepts
share this characteristic.

An important application of the concept of association is to obtain prob-
ability bounds for system reliability. Many such bounds are presented by
Barlow and Proschan (1981).

For a relation between association and multivariate total positivity, see
Kim and Proschan (1988). Similarly, with regard to the association of chi-
squared, t-, and F-distributions, one may refer to Abdel-Hameed and Samp-
son (1978).

Ezample 3.1 (Marshall and Olkin’s bivariate exponential distribution). X and
Y are associated in this case since they have a variable in common in their
construction.

Remarks

e It is easy to prove [see, e.g., Theorem 3.2, Chapter 2 of Barlow and
Proschan (1981)] that “association” implies both PUOD and PLOD.

e Xi,Xs,..., X, are weakly associated [Christofides and Vaggelatou (2004)
and Hu et al. (2004)] if for every pair of disjoint subsets A; and Ay of
1,2,....n

cov = [G(XZ,Z S A1)7b(Xj,j S Ag)] >0

whenever a and b are increasing. If the inequality sign is reversed, then
the random variables X7, Xo,..., X,, are said to be negatively associated,
see Definition 3.22.

3.4.8 Left-Tail Decreasing (LTD) and Right-Tail
Increasing (RTI)

Y is right-tail increasing in X, denoted by RTI(Y'|X), if



3.4 Concepts of Positive Dependence Stronger than PQD 111

Pr(Y > y|X > z) is increasing in z, for all y; (3.7)
and X is right-tail increasing in Y, denoted by RTI(X|Y), if

Pr(X > z|Y > y) is increasing in y, for all . (3.8)

Similarly, Y is left-tail decreasing in X, denoted by LTD(Y|X), if

Pr(Y < y|X < z) is increasing in z, for all y; (3.9)
and X is left-tail decreasing in Y, denoted by LTD(X|Y), if

Pr(X < z]Y <y) is decreasing in y, for all x. (3.10)

When there is no ambiguity, we will simply use RTI or LTD, for example.

Remarks

e Both RTI and LTD imply PQD. For example, suppose Y is right tail
increasing in X so Pr(Y > y|X > z) is increasing in « for all y. Thus
Pr(Y > y|X > x1) < Pr(Y > y|X > z), 21 < z. By choosing z; = —o0,
we have Pr(Y > y) < Pr(Y > y|X > z), giving Pr(X > y,Y > gy) >
Pr(Y > y) Pr(X > z). Hence RTI(Y|X) = PQD. Similarly, RTI(X]Y) =
PQD and both LTD(Y|X) and LTD(X|Y") imply PQD.

e The positive quadrant dependence does not imply any of the four tail
dependence concepts above. Nelsen (2006, p. 204) gives a counterexample.

e Nelsen (2006, p. 192) showed that LTD(Y'|X) and LTD(X|Y) if and only
if, for all w,v/,v,v" such that 0 <u <v' <land 0 <wv <o <1,

C(u,v) - C’(u’,v’).

uwv . uv

Similarly, the joint distribution is RTI(Y|X) if and only if [v—C'(u, v)]/(1—
u) decreasing in u; RTI(X|Y) if and only if [u—C(u,v)]/(1—v) decreasing
in v.

e Verifying that a given copula satisfies one or more of the dependence con-
ditions above can be tedious. Nelsen (2006, pp. 192-193) gave the following
criteria for tail monotonicity in terms of partial derivatives of C:

(1) LTD(Y|X) < for any v € [0,1], 9C(u,v)/0u < C(u,v)/u for almost all
u.

(2) LTD(X|Y) < for any u € [0,1], 9C(u,v)/0v < C(u,v)/v for almost all
v.

(3) RTI(Y|X) < for any v € [0,1], 9C(u,v)/0u > [v— C(u,v)]/(1 — u) for
almost all .
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(4) RTI(X|Y) < for any u € [0,1], 9C(u,v)/0v > [u— C(u,v)]/(1 —v) for
almost all v.

Ezample 3.2 (LTD copula). Nelsen (2006, p. 205) showed that the distribu-
tion with the copula

_ rnin(ﬂ,v)7 0
e = (i g 1.

is LTD(Y|X) and RTI(Y|X).

Ezample 3.3 (Durling—Pareto distribution). Lai et al. (2001) showed that X
and Y are right-tail increasing if £ < 1 and right-tail decreasing if k > 1. From
the relationships listed in Section 3.5.4, it is known that right-tail increasing
implies association. Hence, X and Y are associated if k£ < 1.

3.4.4 Positive Regression Dependent
(Stochastically Increasing)
Y is said to be stochastically increasing in X, denoted by SI(Y'|X), if
Pr(Y > y|X = x) is increasing in z, for all y; (3.11)
and X is stochastically increasing in Y, denoted by SI(X|Y), if

Pr(X > z|Y = y) is increasing in y, for all . (3.12)

If there is no cause for confusion, SI(Y|X) may simply be denoted by
SI. Some authors refer to this relationship as Y being positively regression
dependent on X (denoted by PRD) and similarly X being positively regression
dependent on Y.

Shaked (1977) showed that SI(Y|X) is equivalent to

R(y|X = z) is decreasing in z, for all y > 0, (3.13)
where R is the conditional hazard function defined by
R(y|X € A) = —logPr(Y > y|X € A). (3.14)

(The hazard function here is the cumulative hazard rate.) It is now clear
that RTI(Y|X) is equivalent to R(y|X > z) is decreasing in z for all y, and
therefore SI(Y|X) = RTI(Y|X). Similarly, we can show that SI(Y|X) =
LTD(Y|X).
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Further, it can be shown that RTI(Y|X) = “association,” but the proof is
quite involved; see Esary and Proschan (1972). However, it is not difficult to
show that SI(Y|X) = X and Y are “associated.” It can be shown that

0

E(Y|X =2) = —/

— 00

Pr(Y <y|X = x)dx +/ Pr(Y > y|X = z)dy,
0

(3.15)
which implies that E(Y|X = z) is increasing if the condition in (3.11) holds.
Consider now the identity

cov(X,Y) = cov[E(X|Z),E(Y|Z)] + E{cov[(X,Y)|Z]},

in which we have taken expectation over an arbitrary random vector Z. Now,
with a and b again being increasing functions, we have

cov[a(X,Y),b(X,Y)]
= cov{B(a(X,Y)|X], E(b(X,Y)|X]} + E{cov]a(X,Y),b(X,Y)|X]}.

If (3.11) holds, the expected values in the first term on the right-hand side
of the equation above are increasing' in X; this, taken with the result that
cov[a(X),b(X)] > 0, which we established earlier, means that the first term
is non-negative. Also, ¢ and b being monotone functions means that the
conditional covariance in the second term is non-negative, so its expected
value must be non-negative as well. As a result, X and Y are “associated.”

Ezample 3.4 (Marshall and Olkin’s bivariate exponential distribution). In this
case, we have

A
_ s e (CAe(y o) = Ay) @<y,
PrlY > y|X = 7] {e)lgp(i)\Zy) T >y

see, for example, Barlow and Proschan (1981, p. 132). Clearly, this conditional
survival function is nondecreasing in z, and so X and Y are SI(Y|X). This
in turn implies that X and Y are associated.

Ezample 3.5 (F-G-M bivariate exponential distribution). Rodel (1987) showed
that, for an F-G-M distribution, X and Y are SI (i.e., positively regression
dependent) if o > 0. For the case with exponential marginals with a > 0, a
direct and easy proof for this result is

I Pr(Y > y|X = ) in z implies that Prja(X,Y) > a(z,y)|X = x| increases in z for every
increasing function a defined on R2. By using (3.15), we now have

0
Ela(X,Y)|X = 2] = — /_ Pr{a(X,Y) < a(z, y)|X = a]dy
+/:O Prla(X,Y) > a(z,y)|X = z]dy,

which is therefore increasing in x.



114 3 Concepts of Stochastic Dependence
PriY <ylX=z)={l-ae®=1D}1—-e¥)+a2e®—1)(1—e%)
=(1—e ) +a2e®—1)(e? —e %),

and so
PriY>yX=2)=e?—a2e " —1)(e? e %)

which is clearly increasing in z, from which we readily conclude that X and
Y are positively regression dependent if a > 0.

Ezample 3.6 (Kibble’s bivariate gamma distribution). Rédel (1987) showed
that Kibble’s bivariate gamma distribution (see, e.g., Section 3.6.1) is also SI
(i.e., PRD).

Ezample 3.7 (Sarmanov’s bivariate exponential distribution). The conditional
distribution is [Lee (1996)]

Pr(Y <4IX =) = (o) +winla) [ " ba(2)a(2)dz,

where ¢;(x) = e * — %’)\L,z =1, 2. It then follows that

y
Pr(Y>yX=2)=e-w (e_‘” — 1 il)\l) /_OO p2(2)g(2)dz

is increasing in @ since [Y__ ¢2(2)g(2)dz > 0, and so Y is SI increasing in  if

0<w< % Further, it follows from Lee (1996) that (X,Y") is TP,

since we’(z)¢’(y) > 0 for w > 0.
Ezample 3.8 (Bivariate exponential distribution). We have
H(z,y)=1—e"—e V4 (e"+e’—1)"".

In this case, it can be shown easily that Pr (Y < y|X =) =1+ m
and hence Pr (Y > y|X =2) = m, which is increasing in z; hence,
Y is SI'in X.

3.4.5 Left Corner Set Decreasing and Right Corner
Set Increasing

X and Y are said to be left corner set decreasing (denoted by LCSD) if, for
all z1 and yq,

Pr(X <uz1,Y <y1|X < 25,Y < yo) is decreasing in 9 and yo.  (3.16)
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Similarly, we say that X and Y are right corner set decreasing (denoted by
RCSI) if, for all 21 and y,

Pr(X > z1,Y > 1| X > 22,Y > yo) is decreasing in o and yo.  (3.17)

By choosing 21 = —o0 and y2 = —oo in (3.17), we see that RCSI(Y|X) =
RTI(Y|X). We note that RCSI (LCSD) is on the same hierarchical order of
stringency of dependence as SI(X|Y) (SI(Y|X)) are, and yet they do not seem
to be directly related to each other.

3.4.6 Total Positivity of Order 2
The notation of a “totally positive” function of order was defined by Karlin
(1968).

Definition 3.9. A function f(x,y) is totally positive of order 2 (TP3) if
f(x,y) > 0 such that

>0

f@'y) f2'y)

whenever x < 2’ and y < y/.

‘ fla,y) fay

Let X and Y have a joint distribution function H, joint survival function
H, and joint density function h(z,y). Then, we can define three types of total
positive dependence, depending on whether we are basing it on H, H, or h.
We assume that x; < zo, and y; < y2 in the following definitions.

(i) We say that H is totally positive of order 2 (H-TPs) if
H(zy,y1)H(z2,y2) > H(x1,y2)H (72, 91). (3.18)
(ii) Similarly, H is said to be totally positive of order 2 (H-TPs) if
H(wy,y1)H (2, y2) > H(w1,y2) H (22, 91). (3.19)
(iii) Finally, we say that h is totally positive of order 2 (h-TP3) if
h(@1,y1)h(x2,y2) = h(w1, y2)h(@2, y1). (3.20)

Abdel-Hameed and Sampson (1978) have presented a sufficient condition
for h(z,y) to be totally positive of order 2. Some authors refer to this prop-
erty as X and Y being (positive) likelihood ratio dependent (denoted by LRD)
since the inequality in (3.20) is equivalent to the requirement that the con-
ditional density of Y given x have a monotone likelihood ratio.
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Ezample 3.10 (Bivariate normal distribution). The bivariate normal density
is TP» if and only if the correlation coefficient 0 < p < 1; see, for example,
Barlow and Proschan (1981, p. 149).

Ezxample 3.11 (Bivariate absolute normal distribution). Abdel-Hameed and
Sampson (1978) have shown that the bivariate density of the absolute normal
distribution is TP5.

It is easy to see that h-TPs implies that both H and H are TPs. It can
also be shown [see, e.g., Nelsen (2006, pp. 199-201)] that LCSD is equivalent
to H being TPy, while RCSI is equivalent to H being TPs.

Ezample 3.12 (Marshall and Olkin’s bivariate exponential distribution). X
and Y have Marshall and Olkin’s bivariate exponential distribution with
joint survival function

H(z,y) = exp[—Mz — Aoy — Mz max(z,y)],

and so

H(z,y)H(a',y')

= exp [-Mi(z +27) = Aa(y +¢') — Ada{max(z,y) + max(a’,y)}]
and

H(x,y ) H(z',y)

=exp[-M(z+2") = Xa(y +¥') — Mz{max(z’,y) + max(x,y’)}].
Now, if 0 <z < a2’ and 0 < y <%/, then

max(z,y) + max(z’,y’) < max(z’,y) + max(z,y’).

It then follows that H(z,y)H (2',y') < H(z,y')H(2',y), and so H is TPa,
which is equivalent to X and Y being RCSI.

Note that if h is TPy, then X and Y are LCSD < H is TPs. If h is TP,
then X and Y are RSCI < H is TPy, i.e., h is TPy implies that both H and
H are TP;. Thus, as pointed out by Shaked (1977), the notion of h being TPy
(positively likelihood dependent) is stronger than any notion of dependence
we have discussed so far. We thus have the following implications:

LRD(TP,) = SI(Y|X) = RTI(Y|X) « RCSI <« H-—TP,

I 3 J
1l LTD(Y|X)= PQD <« RTI(X|Y) 0
1) 1) 1)

H-TP, & LCSD = LTD(X|Y) <« SI(X|Y) < LRD(TP,)
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3.4.7 DTPy(m,n) and Positive Dependence by Mizture

Shaked (1977) used the classical theory of total positivity to construct a fam-
ily of concepts of dependence called dependent by total positivity of order 2
with degree (m,n), denoted by DTP(m,n). He then showed that DTP(0,0) is
equivalent to positive likelihood ratio dependence (LRD) and that DTP(1,1)
is equivalent to RCSI. In different applied situations, especially in reliability
theory and genetic studies, positive dependence by mixture is often assumed.

If (X,Y) are any two random variables, independent conditionally with
respect to a (latent) variable W with distribution function K, then their
joint distribution function is

H(x.y) = / FU(2) G (y)dK (w), (3.21)

where F¥(x) and G*(y) are the distribution functions of X and Y, given
W. Using the properties of TP5 functions, it is easy to associate a concept of
dependence with the pair (X,Y’). More precisely, if the joint distributions of
the pair (X, W) and (Y, W) are DTP(m,0) and DTP(n, 0), respectively, then
the pair (X,Y") is DTP(m,n); see, for example, Shaked (1977). In particular,
(X,Y)is DTP(0,0) (i.e., X and Y are LRD) if (X, W) and (Y, W) have LRD.

3.5 Concepts of Positive Dependence Weaker than PQD

3.5.1 Positive Quadrant Dependence in Expectation

We now present a slightly less stringent dependence notion than PQD. For
any real number z, let Y, be the random variable with distribution function
Pr(Y < y|X > x). It is easy to verify that the inequality in the conditional
distribution Pr(Y < y|X > z) < Pr(Y < y) implies an inequality in expec-
tation E(Y;) > E(Y) if Y is a non-negative random variable. We then say
that Y is positive quadrant dependent in expectation on X (PQDE) if this
last inequality involving expectations holds. Similarly, we say that there is
negative quadrant dependence in expectation if E(Y,) < E(Y).

It is easy to show that the PQD=PQDE by observing that PQD is equiva-
lent to Pr (Y > y|X > 2) > Pr(Y > y), which in turn implies E(Y,) > E(Y),
assuming Y > 0. This establishes the fact that PQDE is a weaker concept
than PQD.
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3.5.2 Positively Correlated Distributions

We say that X and Y are positively correlated if
cov(X,Y) > 0. (3.22)

Now,
cov(X,Y) = // [H(z,y) — F(2)G(y)]dz dy
_ / Flz) ( / Pr(Y > y|X > 2) — G(y)] dy) do
= /F(x) {E(Y,) — E(Y)}dx,

which is > 0 if X and Y are PQDE. Thus, PQDE implies that cov(X,Y") > 0.
This means that PQDE lies between PQD and positive correlation. Many
bivariate random variables are PQDE since all the PQD distributions with
Y > 0 are also PQDE.

Positive correlation is the weakest notion of dependence between two ran-
dom variables X and Y. It is indeed easy to construct a positively correlated
bivariate distribution. For example, such a distribution may be obtained by
simply adopting a well-known trivariate reduction technique as follows: Set
X =X1+X3,Y = Xo+ X3, with X; (¢ = 1,2,3) being mutually independent
random variables, so that the correlation coefficient between X and Y is

. var(X3)
\/V&I‘(Xl =+ Xg)VaI‘(XQ —+ Xg)

3.5.3 Monotonic Quadrant Dependence Function

As described above, PQDE is based on a comparison of E(Y,) with E(Y).
Kowalczyk and Pleszcezynska (1977) introduced the monotonic quadrant de-
pendence function to quantify the difference between these two expectations.

Let B be the set of all bivariate random variables with finite marginal
means, and let x,, and y,, denote the pth quantiles of X and Y, respectively
(0 < p<1). For each (X,Y) € B, we define a difference function

Lyx(p) = B(Y|X > 2,) — B(Y). (3.23)

We may then define a function that can be used as a measure of the strength
of the monotonic quadrant dependence between X and Y as follows. With
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Ly x(p)

+

. 3.24
wrx ) = By Sy, - B o

and Ly x(p)

B y,x P
) ’ 3.25
#rx ) = BT EY < i) -

we define + ( )
1wy x if Ly,x(p) > 0

[ . 3.26
ty,x (p) { py x if Ly x(p) <0 | )

The function py, x is called the monotonic quadrant dependence function.
Described in words, it is a function that compares the improvement in pre-
diction of Y from knowing that X is big to the improvement in prediction of
Y from knowing that X is small.

Interpretation of py, x

From the definition above, we see that py x is a suitably normalized ex-
pected value of Y under the condition that X exceeds its pth quantile. It is
a measure of the strength of the monotonic quadrant dependence between
X and Y in the following sense. Let (X,Y) and (X’,Y’) be two pairs of
random variables from B having identical marginal distributions; then, the
positive quadrant dependence between X and Y is said to be stronger than
X" and Y if py, x(p) > py+ x/(p) for all p between 0 and 1. This is because
EY|X > z,) > E(Y'|X’ > x,) is equivalent to uy x(p) > py x/(p). The
PQD is strongest when py x(p) = 1 and weakest when uy x(p) = —1. In-
stead of B, if we consider only distributions for which E(Y,) > E(Y), then
PQD is weakest when uy, x(p) = 0.

Properties of py,x

The monotonic quadrant dependence function py, x (p) introduced above has
the following properties:

—1<pyx(p) <1

py,x(p) =1 Pr(X <z,and Y >y,) =Pr(X >z, and Y <y,) =0.
pyx(p) =—1<Pr(X <z, ¥V <yi1_p) =Pr(X >z, Y >y1_p) =0.
Let k and [ be functions such that F'(a) < F(b) = k(a) < k(b) and I(a) >
[(b). Then, for any real a and b (a # 0),

Hay +b,k(x)(P) = (sgn a)py,x (p),
Hay +b,k(x)(P) = (—sgn a)py, x (1 —p).
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wy,x(p) = 0 if and only if E(Y|X) = E(X) almost everywhere (i.e., the
probability that they are unequal is 0).

wy, x (p) is u;X(p) if X and Y are PQDE and is 1y y(p) if X and Y are
NQDE.

o If X and Y are PQD, then px,y > 0 and py,x > 0.
o If X and Y are either PQD or NQD, then pux y(p) = 0 if and only if X

and Y are independent.

If the distributions of (X,Y) and (X’,Y”’) are both in B they have the
same marginals, then py x = py+ x if and only if E(Y|X) and E(Y'|X’)
have the same distribution.

Remarks

The following observations about the monotonic quadrant dependence func-
tion are worth making:

iy, x is a function of p and thus takes on different values for different
choices of p.

My, x is not symmetric in X and Y'; thus, it is more similar to a prediction-
improvement index than to a conventional measure of correlation.

[y, x is invariant under increasing transformation of X and linear increas-
ing transformation of Y. Note that the product-moment correlation, in
contrast, is invariant under linear increasing transformations of both X
and Y.

For sample counterparts of py x, see Kowalczyk (1977). Kowalczyk and
Ledwina (1982) discussed the grade monotone dependence function pig(y), p(x),
while Kowalczyk (1982) provided some interpretations.

3.5.4 Summary of Interrelationships

The most common dependence property is actually a “lack of dependence”
property; viz., independence. If X and Y are two continuous random vari-
ables with joint distribution function H(x,y), independence of X and Y is a
property of the joint distribution function; i.e., H(z,y) = F(x)G(y).

Given that X and Y are not independent, TPy is the strongest positive

dependence concept we have introduced so far. On the other end, positive
correlation is the weakest positive dependence. The positive quadrant de-
pendence (PQD) is a common one among the positive dependence concepts,
and we have therefore used it as a benchmark for comparing the strength of
dependence between X and Y. Thus, we have conveniently divided various
concepts of dependence into two categories: one consisting of bivariate dis-
tributions with dependence stronger than PQD and the other consisting of
bivariate distributions with dependence weaker than PQD.
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We have summarized below interrelationships between different depen-
dence concepts after removing equivalent concepts (in which Y is conditional
on X whenever a conditioning is involved in the definition):

RSCI = RTI = ASSOC = PQD = PQDE

() f f U
LRD(TP,) = SI (PRD) = LTD cov >0

Another account of some of these interrelationships is due to Ohi and Nishida
(1978).

3.6 Families of Bivariate PQD Distributions

Consider a system of two components that are arranged in series. By assum-
ing that the two components are independent when they are in fact positively
quadrant dependent, we will underestimate the system reliability. For systems
in parallel, on the other hand, assuming independence when components are
in fact positively quadrant dependent will lead to overestimation of the sys-
tem reliability. This is because the other component will fail earlier knowing
that the first has failed. This, from a practical point of view, reduces the
effectiveness of adding parallel redundancy. Thus, a proper knowledge of the
extent of dependence among the components in a system will enable us to
obtain a more accurate estimate of the reliability characteristic of the system
under study.

Since the PQD concept is important in reliability applications, it is im-
perative for a reliability practitioner to know what kinds of bivariate PQD
distributions are available for reliability modeling. In this section, we list sev-
eral well-known bivariate PQD distributions, some of which were originally
derived from a reliability perspective. Most of these bivariate PQD distribu-
tions can be found, for example, in Hutchinson and Lai (1990).

As mentioned earlier, the concept of PQD is quite useful in reliability
applications; see Barlow and Proschan (1981) and Lai (1986). Before pre-
senting further applications of PQD, we need to state the following result
due to Lehmann (1966). Let r and s be a pair of real functions on R™ that
are monotone in each of their n arguments. The functions r and s are said to
be concordant in the ith argument if the directions of the monotonicity for
the ith argument are the same (i.e., both functions are either simultaneously
increasing or simultaneously decreasing in the ¢th argument while all others
are kept fixed) and discordant if the directions are opposite. Let (X;,Y;),
i =1,2,...,n, be n independent pairs each satisfying PQD. Suppose r and
s are concordant in each of these arguments. Then

cov[r(X1, ..., Xn),s(Y1,...,Y,)] > 0. (3.27)
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The result has the following implications [see also Jogdeo (1982)]:

1. Let r(X1,X5) = sgn(Xs — X1) and s(Y1,Y2) = sgn(Yz — 7). Then,
7 = covlsgn(Xs — X1),sgn(Ys — Y7)], where 7 is Kendall’s tau. From
(3.27), the condition PQD implies 7 > 0.

2. Spearman’s pgs = cov[sgn(Xs — X1),sgn(Ys — Y7)]. On letting

T(Xl,XQ,Xg) = XQ — Xl and S(Yl,YQ,Yg) = Y3 — Yl,

we see pg > 0 under PQD.

3. Blomqvist (1950) proposed (2p,, — 1) as a measure of dependence, with
pn being the proportion of pairs (X;,Y;) that fall in either the positive
or the negative quadrants formed by the lines X = z,Y = ¢, where =
and g are the medians of X and Y, respectively. The expectation of this
measure is given by

E(2pn — 1) = 2[COV(I{X1.257}, I{ylzg}) + COV(I{Xi§5}7 I{KSQ})L (328)

which is > 0 under PQD.

The class of all PQD distributions with fixed marginals has been shown
by Bhaskara Rao et al. (1987) to be conver; that is, if H; and Hs are both
PQD, then so is AHy + (1 — A\)Ha, for 0 < A < 1.

3.6.1 Bivariate PQD Distributions with
Simple Structures

Some of the bivariate distributions whose PQD property can be established

easily are now presented.

Ezample 3.13 (Farlie-Gumbel-Morgenstern bivariate distribution). We have
Ho(z,y) = F(2)G(y) 1 +a(1 - F(z)(1-Gy)], x,y=0 (329

The family above, denoted by F-G-M, is a general system of bivariate distri-
butions widely studied in the literature. It is easy to verify that X and Y are
positively quadrant dependent if o > 0.

Consider the special case of the F-G-M system where both marginals are
exponential. The joint distribution function in (3.29) is then of the form [see,
e.g., Kotz et al. (2000)]

H(z,y)=(1- e_’\””)(l — e_/\”) (1 + oze_)‘”_/\zy) , x,y > 0.

Evidently,
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= ae*’\lz*’\zy(l — e*)‘l"’”)(l — e*’\”’), 0<a<l1
>0,

and X and Y are therefore PQD.

Mukerjee and Sasmal (1977) discussed several properties of a system of two
exponential components having the F-G-M distribution, and these included
the densities, means, moment generating functions, and tail probabilities of
min(X,Y), max(X,Y), and X +Y, which are relevant to series, parallel, and
standby systems, respectively. Lingappaiah (1983) was also concerned with
properties of the F-G-M distribution with gamma marginals.

Based on an earlier work of Philips (1981), Kotz and Johnson (1984) con-
sidered a model in which components 1 and 2 were subject to “revealed” and
“unrevealed” faults, respectively, with (X,Y") having an F-G-M distribution,
where X is the time between unrevealed faults and Y is the time from an
unrevealed fault to a revealed fault.

Ezample 3.14 (Bivariate exponential distribution). We have as the joint dis-
tribution function

Hxy) =1l—e®—e ¥+ (e"+e¥—1)"", x,y > 0.

This distribution has both its marginals exponential. The joint distribution
function above can be rewritten as

Hzy)=1—e"—e¥+e @) 4 (% 4V — 1) — ¢ (@H)
= F(2)G(y) + (e* +e¥ — 1) " — e~ @ty
Now, (¢ + v — 1)~ — =) = ey = (it 2 0, and

H is therefore PQD.

Ezample 3.15 (Bivariate Pareto distribution). We have as the joint survival
function

H(z,y)=1-F(z) - G(y) + H(z,y)
=(1+az+y) “, a>0;

see, for example, Mardia (1970) and Kotz et al. (2000). Consider a system
of two independent exponential components that share a common environ-
ment factor 7 that can be described by a gamma distribution. Then, Lindley
and Singpurwalla (1986) showed that the resulting joint distribution has the
bivariate Pareto distribution above. It is very easy to verify that this joint
distribution is PQD since (1+z+y)~* > (1+z)"*(1+y)~®. For a general-
ization to the multivariate case, see Nayak (1987).

Ezample 3.16 (Durling—Pareto distribution). We have as the joint survival
function
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H(z,y)=1+z+y+kxy) *, 0<k<a+1, z,y>0. (3.30)

Clearly, this is a generalization of the bivariate Pareto example above. Con-
sider a system of two dependent exponential components having Gumbel’s
bivariate exponential distribution H(z,y) = 1 — e % — e™¥ 4 e~ v=02y,
z,y > 0,0 <6 <1, and sharing a common environment that has a gamma
distribution. Sankaran and Nair (1993) then showed that the resulting bivari-
ate distribution is given by (3.30). It follows from (3.30) that

H(z,y) — F(x)G(y)

1 1
= - as 0<Ek< +1
(I+z+y+key) {A+z)(1+y)} (at1)
_ ! 1 C0<k<1

1+ z+y+ kxry)e B {1+z+y+ay)}* —
H is therefore PQD if 0 < k < 1.

Ezample 3.17 (Marshall and Olkin’s bivariate exponential distribution). We
have as the joint survival function

P(X >z, >y) =exp{—Xix — Aoy — Ajamax(z,y)}, A1, A2, A2 > 0.

(3.31)
This has become a widely used bivariate exponential distribution over the last
four decades after being derived by Marshall and Olkin (1967) in the reliabil-
ity context as follows. Suppose we have a two-component system subjected
to shocks that are always fatal. These shocks are assumed to be governed
by three independent Poisson processes with parameters A1, Az, and Ais,
according to whether the shock applies to component 1 only, component 2
only, or to both components, respectively. Then, the joint survival function
for the two components is given by (3.13). Barlow and Proschan (1981, p.
129) showed that X and Y are PQD.

Ezample 3.18 (Block and Basu’s bivariate exponential distribution). For 6,
xz,y > 0, the joint survival function is

_ 2+6
H(z,y) =

exp [—z — y — O max(z,y)] — gexp [—(2 + 0) max(z,y)] .

This was constructed by Block and Basu (1976) to modify Marshall and
Olkin’s bivariate exponential distribution, which has a singular part. It is,
in fact, a reparametrization of a special case of Freund’s (1961) bivariate
exlzonential distribution. The marginal survival function of X is F(z) =
1+

10 exp [~ (1 + 0)z]— 4 exp [(1 + 0)z], and a similar expression exists for G ().

It is then easy to show that this distribution is PQD.

Ezample 3.19 (Kibble’s bivariate gamma distribution). The joint density
function is, for 0 < p < 1 and z,y,a > 0,
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hﬂ(x7 y; CY)
— ful)an)ex0 | -

p(xﬂj)} L (2@>,

1—p 1—p 1—p

where I, (+) is the modified Bessel function of the first kind of the ath order.
Lai and Moore (1984) showed that the distribution function is given by

H(z,y:p) = F(x)G(y) + a / " f@yia+ Ddt > F2)G(y)

since « fop fi(x,y; o+ 1)dt is clearly positive.

For the special case where o = 1, Kibble’s bivariate gamma distribution
presented above becomes the well-known Moran—Downton bivariate exponen-
tial distribution; see Downton (1970). Thus, the Moran-Downton bivariate
exponential distribution in particular and Kibble’s bivariate gamma distri-
bution in general are PQD.

Ezample 3.20 (Bivariate normal distribution). The bivariate normal distri-
bution has as its density function

haey) = (20V/T— ) exp [~{1/2(1 — )} (a? — 20wy +37)

for —oo < z,y < 0o and —1 < p < 1. In this case, X and Yare PQD for
0 < p<1,and NQD for —1 < p < 0. This result follows easily from the
following lemma.

Lemma 3.21. Let (X1,Y7) and (X2,Ys) follow standard bivariate normal
distributions with correlation coefficients p1 and ps, respectively. If py > pa,
then Pr(Xy, > z,Y1 > y) > Pr(Xo > a,Ys > y).

This is known as Slepian’s inequality [see Gupta (1963, p. 805)]. By letting
p2 = 0 (thus, p; > 0), we establish that X and Y are PQD. On the other
hand, letting p; = 0 (thus p < 0), X and Y are then NQD.

3.6.2 Construction of Bivariate PQD Distributions

Let H(x,y) denote the joint distribution function of (X, Y) having continuous
marginal c.d.f.’s F((x) and G(y) and with marginal p.d.f.’s f = F" and g = &,
respectively. For a bivariate PQD distribution, the joint distribution function
may be written as

H(z,y) = F(z)F(y) + w(z,y),

with w(x,y) satisfying the following conditions:
(i) w(z,y) = 0.
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(ii) w(z,0) — 0, w(oo,y) — 0, w(z, —c0) = 0, w(—o0,y) = 0.
(i) Ses) 4 f(x) f(y) > 0.
Note that if both X > 0 and Y > 0, then condition (ii) may be replaced
by
(i, 00) = 0, w(oo,y) — 0, w(,0)=0, w(0,y)=0.

Lai and Xie (2000) used these conditions to construct a family of bivariate
PQD distributions with uniform marginals.

Ezample 3.22 (Ali-Mikhail-Haq family). Consider the bivariate family of dis-
tributions associated with the copula
U

C(u’v)zl—ﬂ(l—u)(l—v)’ 0 €[0,1].

It is clear that the copula is PQD. In fact, it was shown in Section 2.9 that this
is a special case of the Lomax copula (the survival copula that corresponds to
the bivariate Lomax; viz., the Durling-Pareto distribution) given in Section
2.8.

Nelsen (2006, p. 188) has pointed out that if X and Y are PQD, then their
copula C is also PQD. Nelsen (1999) has provided a comprehensive treatment
on copulas and several examples of PQD copulas can be found therein.

3.6.3 Tests of Independence Against
Positive Dependence

Let us consider the problem of testing the null hypothesis of independence,
Hy: H(z,y)=F(x)G(y), forall z,vy,

against the alternative of positive quadrant dependence,
Hy: H(z,y)> F(x)G(y), forallx,y,

with strict inequality holding on a set of nonzero probability. This problem
was first considered by Lehmann (1966), who proposed the Kendall’s tau
and Spearman’s correlation tests. Since then, a large number of tests have
been proposed in the literature for this hypothesis testing problem; see, for
example, Joag-Dev (1984) and Schriever (1987b).

On the basis of a random sample (X1,Y7), ..., (X,,Y,) from the distribu-
tion H, we wish to test Hy against H4. Let k > 2 be a fixed positive integer,
and consider the following kernels:
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o1 ((w1,91), - (Th, k)
[ 1if (maxy<i<k @, maxy<;<k Y;) belongs to the same pair
] 0 otherwise

and

¢2k ((zla y1)7 ey (xka yk))
_J 1if (minj<;<p @;, mini<i<x ;) belongs to the same pair
~ ] 0 otherwise.

For skewed distributions, which arise particularly when the random variables
are non-negative, as in the case of reliability applications, Kochar and Gupta
(1987) proposed a class of distribution-free statistics based on U-statistics
defined by

Uy = % Z¢1k((xi17yi1)7 ) (xik7yik))7
(%)

where the summation is over all combinations of k integers (iy,ia,...,i)
chosen out of (1,2,...,n). Large values of Uy are significant for testing Hy
against H 4. Evidently, Us is the well-known Kendall’s tau statistic. Kochar
and Gupta (1987) observed that these tests are quite efficient for skewed
distributions.

Let ¢p = ¢11 + ¢ar. Kochar and Gupta (1990) then proposed another
class of distribution-free tests based on the U-statistics corresponding to the
kernel ¢, defined by

Vie = % Z¢k((aji1ayi1)7 R (xikayik))a
(&)

where the summation is over all combinations of k integers (i1,ia, - ,ig)
chosen out of (1,2,...,n). Yet again, V5 is the well-known Kendall’s tau
statistic. Large values of V, are significant for testing Hy against H;. In this
case, Kochar and Gupta (1990) found these tests to be quite efficient for
symmetric distributions.

Ledwina (1986) also considered two rank tests for testing independence
against positive quadrant dependence. These test statistics are closely related
to the monotonic quadrant dependence function described in Section 3.5.3.

3.6.4 Geometric Interpretations of PQD and Other
Positive Dependence Concepts

Geometric interpretations of positive dependence may be provided via copu-
las. Graphs and contour diagrams of Fréchet upper and lower bounds C* and
C~ and the independence copula C°(u,v) = uwv, are given in Nelsen (1999,
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p. 10). Nelsen (1999, p. 152) has also shown that X and Y are PQD if and
only if C(u,v) > wv from which it is concluded that if X and Y are PQD,
then the graph of the copula of X and Y lies on or above the graph of the
independence copula.

There are similar geometric interpretations of the graph of the copula when
the random variables satisfy one or more of the tail monotonicity properties
(LTD and RTT). These interpretations involve the shape of regions deter-
mined by the horizontal and vertical sections of the copula [Nelsen (1999, pp.
156-157)].

3.7 Additional Concepts of Dependence

Shaked (1979) introduced further ideas of positive dependence, applica-
ble to exchangeable bivariate random vectors (i.e., random vectors with
permutation-invariant distributions). These include the following concepts:

e Diagonal square dependent (denoted by DSD).

e Generalized diagonal square dependent (denoted by GDSD).

e Positive dependent by mixture (denoted by PDM). A bivariate distribution
is PDM if it can be expressed as a mixture of the form given in (3.21).

e DPositive dependent by expansion (denoted by PDE).

e Positive definite dependent (denoted by PDD).

Definitions of DSD and PDD are as follows:

e DSD means that Pr(X e Tand Y € I) > Pr(X € I)Pr(Y € I).

e PDD means that cov(a(X),a(Y)) > 0 for every real function a for which
the covariance exists.

e For definitions and explanations of the others, one may refer to Shaked
(1979).

These dependence concepts have interrelationships that can be summa-
rized as follows:

PDE
i3
PDM = PDD = GDSD = DSD

\
cov(X,Y) >0
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3.8 Negative Dependence

Having defined several concepts of dependence for the bivariate case, we can
easily obtain analogous concepts of negative dependence as follows. If (X,Y)
has a positive dependence, then (X, —Y) on R?, or if we have a constraint of
positivity (X,1—7Y") on the unit square, it has a negative dependence. How-
ever, if we have more than two variables, reversing the definition of positive
dependence does not allow us to retain the same appealing properties.

The negative dependence was first introduced by Lehmann (1966), and
this concept was further developed by others. All of them can be obtained
by negative analogues of positive dependence; viz., when the inequality signs
in (3.1), (3.7), and (3.20) are reversed, we obtain negative dependence. For
example, the negative analogue of PQD is negative quadrant dependent (de-
noted by NQD), and there are concepts of NRD (negatively regression depen-
dent), RCSD (right corner set decreasing), and RTD (right-tail decreasing) .
However, “association” has no negative analogue since the definition refers
to every pair of functions a and b, and the choice a = b will necessarily lead
to cov[a(X,Y),a(X,Y)] > 0.

Negative association of Xy, Xo,..., Xy is defined in a different way than
the positive association given in Section 3.4.2.

Definition 3.23 (Joag-Dev and Proschan (1983)). Xy, Xo,..., X, are
said to be negatively associated (denoted by NA) if, for every pair of disjoint
subsets A; and As of {1,2,...,n},

covia(X;,i € A1),b(X;,j € A2)] <0 (3.32)
whenever a and b are increasing.

Joag-Dev and Proschan (1983) pointed out that for a pair of random
variables X and Y, NA is equivalent to NQD. This definition of the concept
also leads to several properties; most of them are in the multivariate setting.
Among these are the following:

(1) A subset of two or more NA random variables is NA.

(2) A set of independent random variables is NA.

(3) Increasing functions of a set of NA random variables are NA.
(4) The union of independent sets of NA random variables is NA.

For a further generalization of this concept, see Kim and Seo (1995).

Block et al. (1982a,b, 1988), Ebrahimi and Ghosh (1981, 1982), Karlin and
Rinott (1980), Lee (1985), and Kim and Seo (1995) have all introduced and
studied some other concepts of multivariate negative dependence; see also
the pertinent references in Block et al. (1985).

Lehmann (1966) defined the concept of negative likelihood ratio depen-
dence. This was called reverse regular of order 2 (denoted by RRa) by Karlin
and Rinott (1980) and Block et al. (1982a). The latter authors showed that
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under a condition that essentially requires the sum of three independent r.v.’s
to be fixed, two of them satisfy the RRs condition. They also showed further
that RRy = NQD.

These concepts of negative dependence have interrelationships that can be
summarized as follows:

NA

RCSD = RTD = NQD = cov < 0

1)
RR»

3.8.1 Neutrality

It is important to mention one more context where negative dependence
is more natural than positive dependence: when concerned with three pro-
portion probabilities, X1, X5, and X3, that add to one, and we focus our
attention on only two of them. Then, (X7, X5) is distributed over a trian-
gle. The percentage composition of different minerals in rocks is an example,
and the percentage of household expenditures spent on different groups of
commodities is another.

The two variables are often taken to have a bivariate beta distribution. The
idea of neutrality was introduced by Connor and Mosimann (1969) as follows.
X, and X, are said to be neutral if X; and X;/(1 — X;) are independent
(i # j). It is well known that if X; and X5 have a bivariate beta distribution,
then they are neutral, and the converse is also true [Fabius (1973)]. It was
pointed out by Lehmann (1966) that the bivariate beta is RRo; hence, it is
also NQD. Negative covariance can also be observed quite easily in this case.

A thorough account of the concept of neutrality is by Mosimann (1988);
see also Mosimann (1975) and Mosimann and Malley (1981). We also note
here that quite often variables that sum to 1 are obtained by dividing more
basic variables by their total, as in X = X3 /(X1 + Xo + X3),Y = Xo/(X1 +
X2+ X3), and the spurious correlation may arise through the division by the
same quantity; see Pendleton (1986) and Prather (1988).

3.8.2 Examples of NQD

Several bivariate distributions discussed in Section 3.6, such as the bivariate
normal, F-G-M family, Durling-Pareto distribution, and bivariate exponen-
tial of Sarmanov are all NQD when the range of the dependence parameter
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is suitably restrained. The two variables in the following example can only
be negatively dependent.

Ezample 3.24 (Gumbel’s bivariate exponential distribution). The joint sur-
vival function is

H(z,y)=1—e " —e Ve ot g<p<i,
so that
H(z,y) — F(2)G(y) = e~ @Hot0an) _ =2 7y <0, 0<H<1,

showing that F' is NQD. In this case, it is known that —0.40365 < corr(X,Y)
< 0; see Kotz et al. (2000, p. 351).

Ezample 3.25. Lehmann (1966) presented the following situation in which
negative quadrant dependence occurs naturally. Consider the rankings of n
objects by m persons. Let X and Y denote the rank sum for the ith and jth
objects, respectively. Then, X and Y are NQD.

3.9 Positive Dependence Orderings

Consider two bivariate distributions having the same pair of marginals F' and
G, and assume that both are positively dependent. Naturally, we would like
to know which of the two bivariate distributions is more positively dependent.
In other words, we wish to order the two given bivariate distributions by the
extent of their positive dependence between the two marginal variables, with
higher in ordering meaning more positively dependent. In this section, the
concept of positive dependence ordering is introduced.

For a comprehensive treatment of dependence orderings, see Joe (1997).
Section 3.6 of Drouet-Mari and Kotz (2001) also contains a good summary
on this subject.

Throughout this section, we let H and H' denote the bivariate distribu-
tion functions of (X,Y) and (X’,Y”), respectively, having common marginal
distributions F' and G. We shall now introduce some (partial) orderings that
compare the strength of positive dependence of (X,Y) with that of (X', Y”).
The following definition is the one given by Kimeldorf and Sampson (1987).

Definition 3.26. A relation < on a family of all bivariate distributions is a
positive dependence ordering (denoted by PDO) if it satisfies the following
ten conditions:

(PO) H < H' = H(x,00) = H'(x,00) and H(co,y) = H'(c0,y);
(P1) H< H' = H(z,y) < H'(z,y) for all z,y;
(P2) H< H' and H' <« H* = H < H*;
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(P3) H < H,;

(P4) H< H and H <« H= H = H';

(P5) H- <« H < H™", where H"(z,y) = min[H (x,00), H(co,y)] and
H~ (z,y) = max[H (z,00) + H(c0,y) — 1, 0];

(P6) (X,)Y) < (U,V) = (a(X),Y) < (a(U),V), where (X,Y) < (U,V)
means the relation < holds between the corresponding bivariate distri-
butions;

(P7) (X,Y)< (U, V)= (-U,V) < (-X,Y);

(P8) (X, V)< (U, V)= (V,X) < (V,U);

(P9) H, < H],H, — H in distribution, H], — H' in distribution = H <
H', where H,,, H, H!,, H' all have the same pair of marginals.

We now present several positive dependence orderings, and it is assumed
that (z,y) € R%:

e M is said to be more PQDE than H', denoted by H’ < H, if EY|X >
x) > E(Y'| X" > z) [Kowalczyk and Pleszczyiika (1977)].

e H is said to be more quadrant dependent [Yanagimoto and Okamoto
(1969)] or more concordant dependent [Cambanis et al. (1976) and Tchen
(1980)] than H’, denoted by H' < H, if H(z,y) > H'(z,y).

e H is said to be more (positively) regression dependent than H’, denoted
by H < H, if Pr(Y < y|X = 2) > Pr(Y’ < /| X’ = z) implies Pr(Y <
y|X = x) > Pr(Y'|X' = 2/) for any 2’ > x [Yanagimoto and Okamoto
(1969)]. More (positively) regression dependent is also known as “more SI.”
The ordering can also be expressed in terms of quantiles of the conditional
distributions. A slight modification of the definition above was given by
Capéraa and Genest (1990).

e H is said to be more associated than H', denoted by H' £< H, if there exist
functions u and v that map R(f) x R(g) onto R(f) and R(g), respectively,

such that
r1 < T u(x1,y1)
=
Y1 < Y2 v(x1, y1)

u(x2,y2)
v(z2,y2)

INIA

u(z1,91) < u(xs, y2) N T < T2
vz, y1) > v(x2, Y2) Y1 > Y2

(X,Y) ~ (u(X', X"), (X", Y"));

see Schriever (1987a,b). In the special case where u(x,y) = x, H is more
regression dependent than H', as defined above. We note also that if X’
and Y’ are independent, then H is “more associated” than H' is equivalent
to X and Y are associated.

e Kimeldorf and Sampson (1987) defined a TPy ordering as follows. Let I x .J
be a rectangle and H(I,J) and H'(I,J) be the associated probabilities.
We write Iy < I if, for all z € I; and all y € I3, z < y. We say that
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T
H' < H if, for all I; < I and for all J; < Js, we have

H'(Iy,J1)H' (I, J2)H(I1, J2)H (I3, Jy)
< H'(I,Jo)H' (I, 1,)H(Iy, J1)H (I3, Js). (3.33)

Capéraa and Genest (1990) also defined an ordering H “more LRD” than
H’; see (3.34) for the definition. Although the dependence concepts LRD and
TP, are the same when the joint density function exists, “more LRD” is not
equivalent to “more TP5.”

Genest and Verret (2002) pointed out that all one-parameter systems of
Archimedean copulas listed by Nelsen (2006) in Chapter 4 of his book fail
to be ordered by TPs, with the possible exception of Ali-Mikhail-Haq and
Gumbel-Barnett copulas. Some counterexamples outside the Archimedean
class are provided by the bivariate Cauchy, Cuadras—Augé, and Plackett dis-
tributions. It seems that this positive ordering may be of limited use.

Among these different positive dependence orderings, the following impli-
cations hold: i " . .

=K =2K =K
see Yanagimoto and Okamoto (1969) and Schriever (1978b). Kimeldorf and
Sampson (1987) also showed that <T< = < . However, Capéraa and Genest

T T T a
(1990) showed that < # < . It is not known, however, whether < = < .
In the special case when H' = FG (i.e., X’ and Y’ are independent), the
following implications hold:

FG < H= X and Y are associated;

FG < H= X and Y are PRD;

FG < H = X and Y are PQD;

FG < H = X and Y are PQDE;

FG <:2 H = H is TPy. If H has a density, then

FG <:2 H if and only if h is TPy (X and Y are LRD).

Fang and Joe (1992) linked the concepts of the “more associated” and
“more regression dependent” orderings with families of continuous bivariate
distributions. They presented several equivalent forms of these two orderings
so that the orderings are more easily verifiable for some bivariate distribu-
tions. For several parametric bivariate families, the dependence orderings are
shown to be equivalent to the orderings of the underlying parameters.

Ezample 3.27 (Bivariate normal distribution with positive p). The Slepian
inequality mentioned in Section 3.4.2 states that

Pr(X; > x,Yy >y) > Pr(Xe > z,Ys > y) if p1 > po.
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Hence, a more PQD ordering can be defined in this case in terms of the
positive correlation coefficient p.

Genest and Verret (2002) have shown that the bivariate normal with given
means and variances can be ordered by their correlation coefficient in TPq
ordering.

Ezxample 3.28 (Ali-Mikhail-Haq family of distributions). In this case, the gov-
erning copula is
uw

Co(u,v) = =60 - =)’ 0 € [0,1].

It is easy to see in this case that Cy > Cy if 0 > ', i.e., Cy is more PQD
than Cy:.

Ezxample 3.29. A special case of Marshall and Olkin’s BVE is given by

Pr(X >uz,Y >y) =exp{—(1-N(z+y)—Amax(z,y)},
z,y>0,0< A< 1. (3.34)

Fang and Joe (1992) showed that the distribution is increasing with respect
to “more associated” ordering as A increases but not with respect to “more
SL.”

Ezample 3.30. Kimeldorf and Sampson (1987) showed that the F-G-M copula
Co(u,v) =w +aw(l—u)(l-v), 0<u,v<1, -1<a<l1

can be ordered by the relation (3.33). Note, however, that this ordering holds
for —1 < a < 0 even though X and Y are RRsy for a < 0.

3.9.1 Some Other Positive Dependence Orderings

H is said to be more positive definite dependent (PDD) than H’, denoted by
d
H' < H [Rinott and Pollack (1980)] if,

cov(a(X),a(Y)) > cov(a(X"),a(Y")).

Capéraa and Genest’s Orderings

Capéraa and Genest (1990) presented the following definitions for some or-
derings.
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Definition 3.31. If the conditional distribution Hy|,(y) = H(x,y)/F(z) is
continuous and strictly increasing, then it has an inverse H;llm(u), and we can
then define, without ambiguity, a cumulative distribution function Hy/ ,(u)

that maps [0, 1] to [0, 1] such that H, ,(u) = Hy|, 0 H;‘lw(u)

The PRD (SI) property is then equivalent to

Hy p(u) <u forall z <a/, forall 0 <u<1.

L
They also defined H is more LRD than H', denoted by H' < H, if, for all
r<z andforall 0 <u<wv<t<l,
HT/thHzlz H;/tt—H;/Tu
a(t) = Hoalw) _ Hopa(t) — Hir ). s
Har’,:r(v) _H:r”:rr(u) z x )

This ordering is different from the TP5 ordering discussed earlier. Unlike the

L
more TPy property, H < H = H' < H if H and H' are two distribution
functions with the same marginals and such that the conditional distributions

Hy |, and H{,Ix have supports independent of z.

3.9.2 Positive Dependent Ordering with
Different Marginals

When the relation < was defined earlier on the entire family of bivariate dis-
tributions, property (P0) of the positive dependence ordering expressed the
condition that only bivariate distributions having the same pair of marginals
are comparable. Kimeldorf and Sampson (1987) showed that this definition
can be extended to allow for the comparison of bivariate distributions not
having the same pair of marginals. This is done through the uniform rep-
resentation, i.e., the ordering of two bivariate distributions is carried out
through the ordering of their copulas. Thus, we can extend the definition <
to <*, where the latter relation is defined by

H < H& Cy <* Ch.
It is clear that the relation <* satisfies (P2)-P(3), (P5)-(P9), and
(P4)* H < H=Cpy=0Cy.

There are several other types of positive dependence ordering in the lit-
erature, and we refer the interested reader to the book by Shaked and
Shantikumar (2005), which gives a comprehensive treatment on stochastic
orderings.
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In concluding this section, we note that Joe (1997, p. 19) has mentioned
that the concepts of PQD discussed in Section 3.6 and the concordance or-
dering (more PQD) defined above are basic for the parametric families of
copulas in determining whether a multivariate parameter is a dependence
parameter.

3.9.3 Bayesian Concepts of Dependence

Brady and Singurwalla (1996) introduced several concepts of dependence in
the Bayesian framework. They argue that the notion of dependence between
two or more variables is conditional on a known parameter () or (latent)
variable. For example, if X and Y have a bivariate normal distribution, then
they are independent or dependent conditionally on their correlation coeffi-
cient p. Thus, if we can define a prior distribution P on the parameter p, we
shall be able to associate a certain probability for independence or positive
dependence of the pair (X,Y).

More specifically, let p denote the correlation coefficient between two vari-
ables X and Y, and if a prior distribution on p can be defined, we can compute
the probability

11(a) = Pr(|p(X,Y)| = a),

which is termed by Brady and Singpurwalla as a correlation survival function.

Definition 3.32. The pair (X,Y) is stochastically more correlated than the
pair (X', Y") if

Pr(|o(X,Y)| > a) > Pr(|o(X',Y)| > a).

Definition 3.33. The pair (X,Y) is stochastically more correlated in expec-
tation than the pair (X',Y”) if

/ny(a)da Z /HX/,YI(OJ)dOé,

where [ IIxy(a)do = II(a) = Pr(|p(X,Y)| > a).

We conclude this chapter by mentioning that orderings of bivariate random
variables seem to be a fruitful and inexhaustible topic of research that attracts
the attention of theoretical as well as applied researchers.
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Chapter 4
Measures of Dependence

4.1 Introduction

A measure of dependence indicates in some particular manner how closely
the variables X and Y are related; one extreme will include a case of com-
plete linear dependence, and the other extreme will be complete mutual in-
dependence. Although it is customary in bivariate data analysis to compute
a correlation measure of some sort, one number (or index) alone can never
fully reveal the nature of dependence; hence a variety of measures are needed.

In Section 4.2, we describe the idea of total dependence, and then we
present some global measures of dependence in Section 4.3. Next, Pearson’s
product-moment correlation coefficient, the most commonly used measure of
dependence, is detailed in Section 4.4. In Section 4.5, the concept of maximal
correlation, which is based on Pearson’s product-moment correlation, is pre-
sented. The monotone correlation and its properties are described in Section
4.6. The rank correlation measures and their properties and relationships are
presented in Section 4.7. Next, in Section 4.8, three measures of dependence
proposed by Schweizer and Wolff (1976, 1981), which are based on Spear-
man’s rank correlation, are presented, and some related measures are also
outlined. The matrix of correlation is explained in Section 4.9, and tetra-
choric and polychoric correlations are introduced in Section 4.10. In Section
4.11, the idea of compatibility with perfect rank ordering is explained in the
context of contingency tables. Some brief concluding remarks on measures
of dependence are then made in Section 4.12. Some local measures of de-
pendence that have been proposed in the literature are presented in Section
4.13. Finally, the concept of regional dependence and some related issues are
described in Section 4.14.
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4.2 Total Dependence

Let us now examine the concept of total dependence.

4.2.1 Functions

Before presenting different definitions of total dependence, it is helpful to
remind ourselves what a function is.

e By a function b from a set A to another set B, we mean a mapping (rule)
that assigns to each z in A a unique element b(x) in B. (Because of the
uniqueness requirement, +./z, for instance, is not a function.)

e ) is said to be one-to-one if b(x) = b(y) only when = = y.

e b is called onto if b(A) = B; that is, for each y in B, there exists at least
one x in A such that b(z) = y.

e A function b that is one-to-one and onto is said to be a one-to-one corre-
spondence. Such a function has an inverse, which is denoted by b~!.

e b is said to be Borel measurable if, for each «, the set {z : b(z) > a} is a
Borel set, which is typically a countable union of open or closed sets or
complements of these. (The reader need not get bogged down with this,
as most functions we come across are indeed Borel measurable.)

In this chapter, we assume all the functions are Borel measurable and onto.

4.2.2 Mutual Complete Dependence

If each of two random variables X and Y can be predicted from the other,
then, intuitively, X is a function of Y and Y is a function of X, and so X
and Y are dependent on each other. In order to define this more formally, we
first need the following definition.

Definition 4.1. A random variable Y is completely dependent on X if there
exists a function b such that

Pr[Y = b(X)] = 1. (4.1)

This equation essentially means that ¥ = b(X), except on events of zero
probability.

Definition 4.2. X and Y are mutually completely dependent if the equation
above holds for some one-to-one function b; see Lancaster (1963).
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The concept of mutual complete dependence is an antithesis of stochas-
tic independence in that mutual complete dependence entails complete pre-
dictability of either random variable from the other (i.e., X and Y are mu-
tually determined), while stochastic independence entails X and Y being
completely useless in predicting one another.

4.2.3 Monotone Dependence

Clearly, if a sequence {(X,,Y,)} of pairs of independent random variables
converges in distribution to (X,Y’), then X and Y must be mutually inde-
pendent. However, Kimeldorf and Sampson (1978) constructed a sequence of
pairs of mutually completely dependent random variables, all having a uni-
form distribution on [0, 1], that converges to a pair of independent random
variables each having a uniform distribution on [0, 1]. From this point of
view, mutual complete dependence is not a perfect opposite of independence.
This defect of mutual complete dependence motivated Kimeldorf and Samp-
son (1978) to present a new concept of total statistical dependence, called
monotone dependence.

Definition 4.3. Let X and Y be continuous random variables. Then Y is

monotonically dependent on X if there exists a strictly monotone function b
for which Pr[Y = b(X)] = 1.

It is clear that Y is monotonically dependent on X if and only if X is
monotonically dependent on Y. We can then present the following additional
definitions.

Definition 4.4. If the function b in the preceding definition is increasing, X
and Y are said to be increasing dependent; if b is decreasing, X and Y are
said to be decreasing dependent.

Note that a function b may be one-to-one and yet not monotone; for ex-
ample,

z, 0<x<l,
blx)=¢3—z,1<x<2,
r, 2<x<3.

Hence, monotone dependence is stronger than mutual dependence.

Kimeldorf and Sampson (1978) showed that a necessary and sufficient
condition that X and Y be increasing (decreasing) monotonically dependent
is that the joint distribution function of (X,Y) be H*™ (H ™), which are the
Fréchet bounds.
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4.2.4 Functional and Implicit Dependence

These are some weaker definitions of total dependence.

Definition 4.5. X and Y are functionally dependent if either X = a(Y) or
Y = b(X) for some functions a and b; see Rényi (1959) and Jogdeo (1982).
X and Y are functionally dependent if either X is completely dependent on
Y or vice versa. An example is Y = X2,

Definition 4.6. X and Y are implicitly dependent if there exist two func-
tions @ and b such that a(X) = b(Y) with var[a(X)] > 0; see Rényi (1970,
p- 283). In other words, there may exist no function connecting X and Y and
yet they are related. For example, consider the relation X2 +Y? = 1. If we set
a(X)=X%and b(Y) =1-Y?2, then a(X) = b(Y). However, Y = 41 — X2
is not a function, as it assigns one value of X to two values of Y.

4.2.5 Overview

The different notions of total dependence in decreasing order of strength are
as follows:

linear dependence,

monotone dependence,
mutual complete dependence,
functional dependence,
Implicit dependence.

4.3 Global Measures of Dependence

If X and Y are not totally dependent, then it may be helpful to find some
quantities that can measure the strength or degree of dependence between
them. If such a measure can be expressed as a scalar, it is often more conve-
nient to refer to it as an indez. We may then ask what conditions ought an
index ought to satisfy or what desirable properties it should have in order
to be useful. Such indices are called the global measures in Drouet-Mari and
Kotz (2001).

Rényi (1959) proposed a set of seven conditions for this purpose and
showed that the maximal correlation (discussed in Section 4.5) fulfills all
of them. Lancaster (1982b) modified and enlarged Rényi’s set of axioms to
nine conditions, described below.

Let §(X,Y) denote an index of dependence between X and Y. The fol-
lowing conditions, apart from the last one, represent Lancaster’s version of
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Rényi’s conditions. Condition (9) is taken from Schweizer and Wolff (1981)
instead of Lancaster (1982b), as the latter is expressed in highly technical
terms.

(1) 0(X,Y) is defined for any pair of random variables, neither of them
being constant, with probability 1. This is to avoid trivialities.

(2) §(X,Y) =4(Y, X). But notice that while independence is a symmetric
property, total dependence is not, as one variable may be determined
by the other, but not vice versa.

(3) 0 <4(X,Y) < 1. Lancaster says that this is an obvious choice, but not
everyone may agree.

(4) 0(X,Y) = 0 if and only if X and Y are mutually dependent. Notice
how strong this condition is made by the “only if” part.

(5) If the functions @ and b map the spaces of X and Y, respectively,
onto themselves, in a one-to-one manner then é(a(X),b(Y)) = §(X,Y).
The condition means that the index remains invariant under one-to-one
transformation of the marginal random variables.

(6) 6(X,Y) =1if and only if X and Y are mutually completely dependent.

(7) If X and Y are jointly normal, with correlation coefficient p, then
5(X,Y) = |pl.

(8) In any family of distributions defined by a vector parameter 6, 6(X,Y)
must be a function of 6.

(9) If (X,Y) and (X,,Y,), n=1,2,..., are pairs of random variables with
joint distributions H and H,, respectively, and if { H,,} converges to H,
then lim,, . §(X,,Y,) =§(X,Y).

Another version of Rényi’s axioms for a symmetric nonparametric measure
of dependence is given in Schweizer and Wolff (1981). A similar set of criteria
for a good measure of association (dependence) is also given by Gibbons
(1971, pp. 204-207). The nonparametric measures of dependence such as
Kendall’s and Spearman’s rank correlations will be discussed in Section 4.7.

The following comments are worth making about the conditions given
above:

e A curious feature of the list of conditions is its mixture of the trivial and/or
unhelpful with the strong and/or deep. We would say that (1), (3), (7),
and (8) fall into the first category (unless there are subtle consequences to
them that elude us), whereas (2), (4), (5), (6), and (9) fall into the second
category.

e Summarizing, conditions (2), (5), (4), and (6) say that we are looking for
a measure that is symmetric in X and Y, is defined by the ranks of X
and Y, attains 0 only in the case of independence, and attains 1 whenever
there is mutual complete dependence.

e Condition (3) is too restrictive for correlations, as the range of these is
traditionally from —1 to +1.
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e Condition (6) is stronger than the original condition which says §(X,Y) =
1 if either X = a(Y) or ¥ = b(X) for some functions a and b, i.e.,
0(X,Y) =11if X and Y are functionally dependent. Rényi intentionally
left out the converse implication, i.e., §(X,Y) = 1 only if X and Y are
functionally dependent, as he felt it to be too restrictive. The strengthen-
ing from functional dependence to mutual complete dependence is possibly
due to Lancaster himself.

e Condition (7) is not appropriate to rank correlations; it should be replaced
by 4, being a strictly increasing function of |p|, as is done by Schweizer
and Wolff (1981).

e Schweizer and Wolff (1981) claimed that at least for nonparametric mea-
sures, Rényi’s original conditions are too strong.

e The main point about these axioms is not their virtues or demerits, either
individually or as a set, but that they make us think about what we mean
by dependence and what we require from a measure of it. They provide
a yardstick against which the properties of different measures may be
measured.

There are three prominent global measures of dependence: correlation co-
efficient, Kendall’s tau, and Spearman’s correlation coefficient.

4.4 Pearson’s Product-Moment Correlation Coefficient

Pearson’s product-moment correlation coefficient is a measure of the
strength of the linear relationship between two random variables, and is de-
fined by

cov(X,Y)

var(X )var(Y)

where cov(X,Y) = E{[X — E(X)][Y — E(Y)]} is the covariance of X and Y,
and var(X) and var(Y') are the variances of X and Y, respectively. If either
of the two variables is a constant, the correlation is undefined. If either has
an infinite variance, it may be possible to extend this definition, as done for
bivariate stable distributions, for example. From the definition, it is clear that
conditions (1) and (2) of Section 4.3 are satisfied.

From Cauchy-Schwarz inequality, it is also clear that |p(X,Y)| < 1; equal-
ity occurs only when X and Y are linearly dependent; p takes the same sign
as the slope of the regression line. Suppose the marginals F'(z) and G(y) are
given. Then, p can take all values in the range —1 to +1 if and only if these
exist constants a and 3 such that aX + fY has the same distribution as Y,
and the distributions are symmetrical about their means; see Moran (1967).

If X and Y are independent, then p(X,Y) = 0. But zero correlation does
not imply independence and therefore condition (4) of Section 4.3 is not sat-

p(X,Y) = (4.2)
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isfied. [Between uncorrelatedness and independence lies semi-independence.
This means that E(Y|X) = E(Y) and E(X|Y) = E(X); see Jensen (1988).]
As is well known, adding constants to X and Y does not alter p(X,Y),
and neither does the multiplication of X and Y by constant factors with
the same sign. As p(X,Y) may be negative, condition (3) is clearly vio-
lated. Furthermore, p(X,Y’) is not invariant under monotone transforma-
tions of the marginals, and so condition (5) is not satisfied. Further, since
p(X,—X) = —1, the “if” part of condition (6) is not satisfied. Conditions (7)
and (8) are obviously satisfied. Condition (9) is satisfied, which can be es-
tablished by using the continuity theorem for two-dimensional characteristic
functions [Cramér (1954, p. 102)] and the expansions of such characteristic
functions in terms of product moments [Bauer (1972, pp. 264-265)].

As to estimating the correlation coefficient p from a sample of n bivariate
observations (x1,%1), ..., (Zn, yn), the sample correlation coefficient

_ Z?:1($i —Z)(yi — 9)
Vo (@ — )2 (yi — 77)?

could be used, where  and y are the respective sample means.

If (x1,91),- .., (s, yn) are n independent pairs of observations from a bi-
variate normal distribution, r is indeed the maximum likelihood estimator
and also an approximate unbiased estimator of p. A disadvantage of r is that
it is very sensitive to contamination of the sample by outliers. Devlin et al.
(1975) compared r with various other estimators of p in terms of robustness;
see Ruppert (1988) for ideas on multivariate “trimming” (i.e., removal of
extreme values in the multivariate setting).

The value p(X,Y") will be simply denoted as p whenever there is no am-
biguity; furthermore, the symbols p’ and p* will be used for other types of
correlations.

The distribution of z = %log (

. (4.3)

1+47r
1—r

stabilizing transformation of r, approaches normality (as n increases) much
faster than that of r, particularly when p # 0. For a detailed discussion,
see Rodriguez (1982). Mudholkar (1983) has made some comments on the
behavior of this transformation when the parent distribution is non-normal.

) = tanh~ ' r, called Fisher’s variance-

4.4.1 Robustness of Sample Correlation

The distribution of r has been discussed rather extensively in Chapter 32
of Johnson et al. (1995). While the properties of r for the bivariate normal
are clearly understood, the same cannot be said about bivariate non-normal
populations. Cook (1951), Gayen (1951), and Nakagawa and Niki (1992) ob-
tained expressions for the first four moments of r in terms of the cumulants
and cross-cumulants of the parent population. However, the size of the bias
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and the variance of r are still rather hazy for general bivariate non-normal
populations when p # 0, since the cross-cumulants are difficult to quantify in
general. Although several non-normal populations have been investigated, the
messages regarding the robustness of r are somewhat conflicting; see Johnson
et al. (1995, p. 580).

Hutchinson (1997) noted that the sample correlation is possibly a poor
estimator. Using the bivariate lognormal as a case study on the robustness of
r as an estimate of p, Lai et al. (1999) found that for smaller sample sizes, r
has a large bias and large variance when p # 0 with skewed marginals, which
supports the claim that r is not a robust estimator. It is therefore important
to check for the underlying assumptions of the population before reporting
the size of .

4.4.2 Interpretation of Correlation

Rodriguez (1982) described the historical development of correlation, and in
it he has stated that although Karl Pearson was aware that high correlation
between two variables may be due to a third variable, this was not generally
recognized until Yule’s (1926) paper. One difficulty in interpreting correlation
is that it is still all too easy to confuse it with causation.

Rodriguez has argued that, for interpreting a calculated correlation, an
accompanying probability model for the chance variation in the data is nec-
essary, with the two most common ones being as follows:

e The bivariate normal distribution: In this case, r estimates the parameter
p; confidence intervals may be constructed for p, and hypothesis tests may
be carried out as well.

o The simple regression model y; = « + fx;4+ random error: Here, r2 rep-
resents the proportion of total variability (as measured by the sum of
squares) in the y’s that can be explained by the linear regression,

2 iz (9= 9)°
N 44

where g; is the predicted value of y; calculated from the estimated regres-
sion equation. In the regression context, the z’s are often prefixed and not
random, and so there is no underlying bivariate distribution in which r
can be an estimate of a parameter.

Even so, says Elffers (1980), “It can be difficult (i) to decide when a par-
ticular value of p indicates association strong enough for a given purpose,
and (ii) in a given situation, to weigh the losses involved in obtaining more
strongly associated variables against the gains.” Elffers therefore puts for-
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ward functions of the correlation that can be interpreted as the probability
of making a wrong decision in certain situations.

Although they are elementary, the following points are perhaps worth
emphasizing:

e For certain bivariate distributions, p may not even exist. For example,
the bivariate Pareto distribution (see Section 2.8) p does not exist when
0<c<L2.

e The equation r» = 0 does not mean that there is no relationship between
the 2’s and y’s. A scatterplot might reveal a clear (though nonlinear)
relationship.

e And even if the correlation is close to 1, the relationship may be nonlinear,
either to the eye when plotted directly or because a transformation reveals
a relationship that is incompatible with linearity. For example, if X has a
uniform distribution over the range 8 to 10 and Y is proportional to X?2,
then the correlation between X and Y is approximately 0.999; see Blake
(1979).

e Lots of different-looking sets of points can all produce the same value of
r; for example, Chambers et al. (1983, Section 4.2) have presented eight
scatterplots all having r = 0.7.

e The value of r calculated from a small sample may be totally misleading
if not viewed in the context of its likely sampling error.

In view of the above, the computation of r should be accompanied by the
use of such devices as scatterplots. When the data are not from a bivariate
normal population, r provides only limited information about the observa-
tions. Barnett (1985), citing two scatterplots in Barnett (1979), has expressed
the view that for highly skewed bivariate distributions, such as those with
exponential marginals, the ordinary correlation coefficient is not a very useful
measure of association.

History of Correlation Coefficients

Drouet-Mari and Kotz (2001) devoted their Chapter 2 to describing the his-
torical development of “independent event” and the correlation coefficient,
and they also conducted a brief tour of its early applications and misin-
terpretations. Readers should find this account of the early development of
statistical dependence useful.

14 Faces of Correlation Coefficients
Thirteen ways to look at the correlation coefficient have been discussed by

Rodgers and Nicewander (1988). A fourteenth way has been added to the list
by Rovine and Von Eye (1997). These are the following:
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Correlation as a function of raw scores and means.
Correlation as a standardized covariance.
Correlation as a standardized slope of the regression line.
Correlation as the geometric mean of the regression slopes.
Correlation as the square root of the ratio of two variances (proportion
of variability accounted for).
Correlation as the mean cross-product of standardized variables.
Correlation as a function of the angle between the two standardized
regression lines.

8. Correlation as a function of the angle between two variable vectors.

9. Correlation as a rescaled variance of the difference between two stan-

dardized scores.

10. Correlation estimated from the balloon rule.
11. Correlation in relation to the bivariate ellipses of isoconcentration.
12. Correlation as a function of the test statistic from designed experiments.
13. Correlation as the ratio of two means.
14. Correlation as the proportion of matches.

CU @ =

N

Cube of Correlation Coefficient

Falk and Well (1997) have also discussed many faces of the correlation co-
efficient. Dodge and Rousson (2000) have added up some new faces of the
correlation coefficient. One of their representations of results, the cube of
the correlation coefficient, is given as the ratio of skewness of the response
variable (yy) to that of the explanatory variable (yx),
3 Y

Pxy x
if yvx # 0 and the distribution of the error term is symmetric. Muddapur
(2003) gave an alternative proof for the same result. It was pointed out that
the quantity |p%y-| can be interpreted as the proportion of skewness “pre-
served” by the linear model.

Dodge and Rousson (2000) argued that (pg(y)3 = 3—? can be used to de-
X

termine the direction of the regression line (whether Y is dependent on X
or X is dependent on Y in a regression line) as follows. Since the left-hand
side of the equation is always less than or equal to 1, 42 < 4%. Thus, Y is
linearly dependent on X. A similar argument can be provided for the linear
regression dependence of X on Y. To put it simply, for a given pxy,v% > 7%
implies Y is the response variable and 7% < 7% implies X is the response
variable. It has been pointed out by Sungur (2005) that this approach of
“directional dependence” stems from the marginal behavior of the variables
rather than the joint behavior. We note that in the case where X and Y are
uniform variables, their coefficients of skewness are zero, so this approach to
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define directional dependence is inappropriate for copulas. Thus, it is clear
that Dodge and Rousson’s criterion only works for the skewed X and Y.

4.4.3 Correlation Ratio

The interpretation of r2 given above in Section 4.4.2, which presumes that
var(Y|X) is a constant, suggests writing the theoretical correlation as p? =
1- % More generally (i.e., beyond the context of linear regression),
ElY—E(Y|X)]?
var(y)
and was introduced by Pearson (1905). For further details on this, one may

refer to Chapter 26 of Kendall and Stuart (1979).

the quantity n =1 — is termed the correlation ratio of Y on X

4.4.4 Chebyshev’s Inequality

For any univariate distribution with zero mean and unit standard deviation,
Chebyshev’s inequality states that Pr(|X| < a) > 1 — a2, for all a > 0. In
the general case, when g is the mean and o is the standard deviation, the
left hand side of the inequality becomes Pr(|X — u| < ao).

For any bivariate distribution with zero mean, unit standard deviation,
and correlation p,

1 1—p2
Pr(X|<a, [V|<a)>1— V"
a

More generally,

+ as + \/ al + _as _ p2
2 2 2 2
Pr(|X| <ap, |Y|<as)>1-— oz 2, o 3d0) ;
aia9

see Tong (1980, Section 7.2).

4.4.5 p and Concepts of Dependence

If X and Y satisfy any concept of positive dependence, for example, they
are PQD. Then p will always be positive. Indeed in that case, cov(X,Y) >0
(Hoeffding’s lemma). If p > 0 and (X, Y") has a bivariate normal distribution,
then X and Y satisfy a more stringent dependence condition of LRD; see
Section 3.4 for pertinent details.
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4.5 Maximal Correlation (Sup Correlation)

A frequently quoted measure of dependence between two random variables
X and Y is that of mazimal correlation, introduced by Gebelein (1941) and
studied by, among others, Rényi (1959) and Sarmanov (1962, 1963), defined
by

p'(X,Y) = sup pla(X), b(Y)],

where the supremum is taken over all Borel-measurable functions a and b
for which var[a(X)] and var[b(Y)] are finite and nonzero and where p rep-
resents the ordinary (Pearson product-moment) correlation coefficient. The
maximal correlation is also known as sup correlation. This measure satisfies
the following:

L 0<p(X,Y)< 1.

2. p(X,Y) = o/(Y. X).

3. p(X,Y) = 0 if and only if X and Y are independent. To see this,
consider indicator functions of X < ¢, Y <, where £, n are varied.

4. If X and Y are mutually dependent, then p'(X,Y) = 1, but the converse
is not true; see Lancaster (1963) for counterexamples and for necessary
and sufficient conditions for the complete mutual dependence of random
variables. Hence, condition (6) of Section 4.3 fails in part.

5. Obviously, |p(X,Y)| < p/(X,Y).

6. p(X,Y) = |p(X,Y)] = |p| if (X,Y) is a bivariate normal random
variable. This is because, in this particular case, |pla(X),b(Y)]| <
|p(X,Y)], equality holding only when a and b are identity functions;
see Kendall and Stuart (1979, p. 600). This result was rediscovered by
Klaassen and Wellner (1997).

7. Condition (9) of Section 4.3 is not fulfilled; as mentioned in the be-
ginning of Section 4.2.3, Kimeldorf and Sampson (1978) presented an
example of a sequence of mutually completely dependent random vari-
ables {(X,,Y,)} converging in distribution to a distribution in which
X and Y are independent. Clearly, in this case, p(X,,Y,,) = 1 but
P(X,Y)=0.

Rényi (1970, p. 283) proved that even if X and Y are only implicitly depen-
dent, then p'(X,Y) is still equal to 1.
If the bivariate distribution is ¢?-bounded [Lancaster (1958)], then the
maximal correlation equals pp, the first canonical correlation coefficient.
This measure has many good properties. However, according to Hall
(1970), it has a number of drawbacks, too. For instance, it equals 1 too
often and is also generally not readily computable.
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4.6 Monotone Correlations

4.6.1 Definitions and Properties

In the beginning of Section 4.2.3, we noted that mutual complete dependence
is not compatible with independence, so they can hardly be opposites! For
this reason, Kimeldorf and Sampson (1978) suggested the notion of monoton-
ically dependence. X and Y are monotone dependent if there exists a perfect
monotone relation between them. If the random variables are not perfectly
monotonically related, it may be useful to measure numerically the degree
of monotone dependence between them. One such measure, called monotone
correlation, can be defined as

p"(X,Y) = sup pla(X),b(Y)], (4.5)

where the supremum is taken over all monotone functions a and b for which
var[a(X)] and var[b(Y")] are finite and nonzero.
The monotone correlation possesses the following properties:

1. 0<p"(X,Y) < 1.
p(X,Y) = p* (Y. X).
p*(X,Y) =0 if and only if X and YV are independent.!

[p(X,Y)| < p*(X,Y) < p/(X,Y), which is obviously true.

[p(X,Y)| = p*(X,Y) = p(X,Y) if (X,Y) has a bivariate normal

distribution.

6. If X and Y are monotonically dependent, then p*(X,Y’) = 1, but the
converse is not true; see an example given in Kimeldorf and Sampson
(1978, p. 899).

7. If (V, W) has the same uniform representation as (X, Y), then p*(X,Y) =
(V. W),

8. p*(X,Y) = sup{|p(V,W)| : (V,W) having the same uniform represen-
tation as (X,Y)}.

9. ps(X,Y) < p*(X,Y) < p/(X,Y), where pg is Spearman’s rank cor-
relation, pg(X,Y) = p[G(X),H(Y)]. Note that the grade correla-
tion (Spearman’s) is the ordinary correlation coefficient of the uniform
representations.

10. p* is invariant under all order-preserving or order-reversing transfor-
mations of X and Y, and hence it satisfies a weaker condition (5) of
Section 4.3.

Gt

For a more detailed discussion, one may refer to Kimeldorf and Sampson
(1978).

1 Suppose p*(X,Y) = 0. For any real ¢ define a;(z) to be 1 if # < ¢, and 0 otherwise. We claim
that plas(X),a:(Y)] = 0. If not, then either plas(X),a:(Y)] > 0 or plas(X), —ar(Y)] > 0,
which contradicts the hypothesis. Now, plas(X),a;(Y)] = 0 implies that Pr(X < s,Y < t) =
Pr(X < s)Pr(Y < t), which implies independence.
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4.6.2 Concordant and Discordant
Monotone Correlations

The concept of monotone correlation can be refined by measuring separately
the strength of relationship between X and Y in a positive direction and
the strength of the relationship in a negative direction, i.e., the strength of
concordancy and discordancy between X and Y. The following definitions
are due to Kimeldorf et al. (1982).

Definition 4.7. If a and b in (4.5) are both restricted to be increasing (or,
equivalently, both decreasing), the resulting measure sup pla(X),b(Y)] is
called the concordant monotone correlation (denoted by CMC).

Definition 4.8. If ¢ and b in (4.5) are both restricted to be increasing, then
inf pla(X),b(Y)] is called the discordant monotone correlation (denoted by
DMCQ).

Kimeldorf et al. (1982) have mentioned that CMC and DMC have natural
interpretations as measures of positive and negative association, respectively,
for ordinal random variables.

It is easy to observe that, for any pair of increasing functions a and b, we

have
DMC < pla(X),b(Y)] < CMC.

Suppose it is desired to impose numeric monotone scalings for a pair of
psychological tests. If the CMC and DMC are close, then by the equation
above, it makes little difference which monotone scales are used. If DMC =
CMC = 0, then X and Y are independent; however, it is possible for DMC
< CMC = 0 and yet X and Y not be independent. Note that if X and Y
are increasing dependent (Section 4.2.3), then CMC = 1; and if X and YV are
decreasing dependent, then DMC = 1.

In some situations, X and Y should have the same scaling—for example,
scores on a single test before and after treatment. This leads to two further
definitions.

Definition 4.9. If @ = b in (4.5), then the resulting measure is called the
isoconcordant monotone correlation (denoted by ICMC).

Definition 4.10. If ¢ = b in the definition of DMC, then the resulting mea-
sure is called the isodiscordant monotone correlation (denoted by IDMC).

Note that isoscaling (i.e., assuming a = b) is not appropriate when X
and Y have inherently different ranges of values. Kimeldorf et al. (1982)
evaluated these measures of association by means of a nonlinear optimiza-
tion algorithm. Kimeldorf et al. (1981) have also described an interactive
FORTRAN program, called MONCOR, for computing the monotone corre-
lations described above.
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4.7 Rank Correlations

Kendall’s tau (7) and Spearman’s rho (pg) are the best-known rank cor-
relation coefficients. Essentially, these are measures of correlation between
rankings, rather than between actual values, of X and Y’; as a result, they
are unaffected by any increasing transformation of X and Y, whereas the
Pearson product-moment correlation coefficient p is unaffected only by linear
transformations.

4.7.1 Kendall’s Tau

Let (x;,y;) and (x;,y;) be two observations from (X, Y") of continuous random
variables. The two pairs (z;,y;) and (x;,y;) are said to be concordant if
(x; — xj)(yi —y;) > 0 and discordant if (z; — z;)(y; —y;) < 0.

Kendall’s tau is defined to be the difference between the probabilities of
concordance and discordance:

T=P(X-X") Y -Y)>0-P[(X-X")(Y-Y")<0]. (4.6)
The definition above is equivalent to
7 = covlsgn(X’' — X),sgn(Y’ = Y)].

7 may also be defined as

T = 4//H(x,y)h(x,y)dm dy — 1. (4.7)

The sample version of 7 is defined as

c—d c¢—d

FdT )

7= (4.8)
where ¢ denotes the number of concordant pairs and d the number of dis-
cordant pairs from a sample of n observations from (X,Y). 7 is an unbiased
estimator of 7.

Since 7 is invariant under any increasing transformations, it may be defined
via the copula C of X and Y

4/01 01 C(u,v)e(u,v)dudv — 1 = 4B(C(U,V)) — 1; (4.9)

see Nelsen (2006, p. 162).
Nelsen (1992) proved that 7 represents an average measure of total posi-
tivity for the density h defined by
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= [ e

—h(x2,y1)h(x1, y2)]dr1 dyr dxo dys.

4.7.2 Spearman’s Rho

As with Kendall’s tau, the population version of the measure of association
known as Spearman’s rho (denoted by pg) is based on concordance and dis-
cordance. Let (X1,Y7),(X2,Y3), and (X3,Y3) be three independent pairs of
random variables with a common distribution function H. Then, pg is defined
to be proportional to the probability of concordance minus the probability of
discordance for the two pairs (X1, Y1) and (X2, Ys),

ps = 3{P[(X1 — X5) (Y1 — Y3) > 0] — P[(X1 — X2)(Y1 — Y3) < 0]}. (4.10)

Equation (4.10) is really the grade correlation and can be expressed in terms
of the copula as follows:

11
ps = 12/ / C(u,v)dudv — 3 (4.11)
—12/ / wvdC(u,v) — 3 (4.12)

= 12E(UV) (4.13)

Rewriting the equation above as

ps = )71 (4.14)

we observe that Spearman’s rank correlation between X and Y is simply
Pearson’s product-moment correlation coefficient between the uniform vari-
ates U and V.

Quadrant Dependence and Spearman’s pg

The pair (X,Y) is said to be positively quadrant dependent (PQD) if
H(z,y) — F(z)G(y) > 0 for all  and y, and negatively quadrant depen-
dent (NQD) when the inequality is reversed, as defined in Section 3.3. Nelsen
(1992) considers that the expression H(x,y) — F(z)G(y) measures “local”
quadrant dependence at each point of (x,y) € R?. Now, (4.11) gives
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ps=12 [ [l - F@GEaF@ dow).  (@15)

It follows from the equation above that %ps represents an average measure of
quadrant dependence, where the average is taken with respect to the marginal
distributions of X and Y. It is easy to see from (4.15) that when X and Y
are PQD, then pg > 0.

The sample Spearman correlation for a sample of size n is defined as

() ()

)

where r; = rank(z;) and s; = rank(y;). Yet another common expression for

Ris
63, d7

n(n? —1)’
where d; = r; — s;. R is not an unbiased estimator of pg, and the expectation
of R in fact is E(R) = (n*(i)%% — ps as n — oo. If the distribution
of (X,Y) is bivariate normal with correlation p, then it can be shown that
ps = Ssin™! L.

It is important to note the following points:

R=1- (4.17)

e Independence of X and Y implies that 7 = pg = 0, but the converse
implication does not hold.

e 7 and pg are both restricted to the range —1 to +1, attaining these limits
for perfect negative and perfect positive relationships, respectively.

e If X and Y are positive quadrant dependent, then 7 > 0 and pg > 0.

e If two distributions H and H’ have the same marginals and H is more
concordant than H' (i.e., H > H'), then 7 and pg are at least as great for
H as for H' [see Tchen (1980)].

e It was mentioned that the sample correlation r is very sensitive to outliers;
the sample counterparts of 7 and pg are less so, but Gideon and Hollister
(1987) proposed a statistic that is even more resistant to the influence of
outliers.

For a review of measures including rank correlations, one may refer to
Nelsen (1999).

4.7.3 The Relationship Between Kendall’s Tau and
Spearman’s Rho

While both Kendall’s tau and Spearman’s rho measure the probability of
concordance between two variables with a given distribution, the values of



158 4 Measures of Dependence

ps and 7 are often quite different. In this section, we will determine just how
different p and 7 can be.

We begin by giving explicit relationships between the two indices for some
of the distributions we have considered; these are summarized in Table 4.1.

Table 4.1 Relationship between pg and 7

Distribution Relationship

Bivariate normal |pgs = % sin—1! (% sin 75-)

F-G-M ps =37/2
Marshall & Olkin|ps = 37/(2 + 7)
Raftery family [pg = 37(8 — 57)/(4 — 7)2

We may now ask what the relation is between 7 and pg for other distri-
butions and whether this relation can be used to determine the shape of an
empirical distribution. (By “bivariate shape,” we mean the shape remaining
once the univariate shape has been discarded by ranking.)

General Bounds Between 7 and pg

Various examples indicate that a precise relation between the two measures
does not exist for every bivariate distribution, but bounds or inequalities
can be established. We shall now summarize some general relationships [see
Kruskal (1958)]:

e —1 <37 —2p<1 (first set of universal inequalities).

o 2> (HTT)Q; 2> (I’TT)Q (second set of universal inequalities).

Combining the preceding two sets of inequalities yields a slightly improved
set

)

_ _ 72 2 _
STl T T paa T L
2 2 2 2
(4.18)
Another relationship worth noting [see, e.g., Nelsen (1992)] is
B(W) = = (37 — ps)
19 T = pPs);

where W = H(X,Y) — F(X)G(Y'), which corresponds to a measure of quad-
rant dependence. So E(W) is the “expected” measure of quadrant depen-
dence. This equation alludes that the relationship between the two rank cor-
relations may be affected by the strength of the positive dependence discussed
in the preceding chapter.
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Some Empirical Evidence

A figure pg as a function of 7 can be plotted for which the pair (7, pg) lies
within a shaded region bounded by four constraints given in the preceding
set of inequalities. Such a figure with bounds for pg and 7 can be found in
Nelsen (1999, p. 104).

These bounds are remarkably wide: For instance, when 7 = 0,pg can
range between —0.5 and 40.5. Daniels (1950) comments that the assumption
that 7 and pg describe more or less the same aspect of a bivariate popu-
lation of ranks may be far from true and suggests circumstances in which
the message conveyed by the two indices is quite different. [“The worse dis-
crepancy...occurs when the individuals fall into two groups of about equal
size, within which corresponding pairs of ranks are nearly all concordant, but
between which they are nearly all discordant”; Daniels (1950, p. 190)]. But
Fieller et al. (1957) do not think this would happen very often, saying that
although, after transforming the margins to normality, the resulting bivari-
ate distribution will not necessarily be the bivariate normal, “We think it
likely that in practical situations it would not differ greatly from this norm,”
adding “This is a field in which further investigation would be of considerable
interest.”

For a given value of 7, how much do distributions differ in their values
of pg? Table 4.2 shows that although pg could theoretically take on a very
wide range of values, for the distributions considered, the values are all very
similar. The distributions that are most different from the others are Marshall
and Olkin’s, with its singularity in the p.d.f. at y = x, and Kimeldorf and
Sampson’s, with its oddly shaped support. With these exceptions, at 7 = 0.5,
ps lies in the range .667 to .707, even though it could theoretically take any
value between .250 and .875.

Table 4.2 shows us that the bounds of pg in terms of 7 appear to be much
narrower than implied by (6.18). In fact, Capérad and Genest (1993) point
out that many of the bivariate distributions have their ps and 7 at the same
sign, with |pg| > |7|. Table 4.2 confirms this general finding.

Some Conjectures on the Influence of Dependence Concepts on
the Closeness Between 7 and pg

The discussion above suggests the following question. Is there some class of
bivariate distributions that includes nearly all of those that occur for which
only a narrow range of pg (for given 7) is possible? For instance, if every
quantile of y for a given = decreases with x, and vice versa [i.e., X and Y are SI
(PRD)], can bounds for pg in terms of 7 be found? Hutchinson and Lai (1991)
posed two conjectures when X and Y are SI:

(i)  ps<37/2
(i) —14+V1+31<pg<2r—72
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Table 4.2 Comparisons of the values of pg with corresponding values of 7

Distribution T = % = % = % = %
Lower bound —0.200 0.000 0.250 0.625
Upper bound 0.680 0.778 0.875 0.969
Normal 0.296 0.483 0.690 0.917
F-G-M 0.300¢ — — —
Ali-Mikhail-Haq 0.297 0.478 — —
Frank 0.297¢  0.484¢  0.695¢  0.922¢
Pareto 0.295 0.478 0.682¢ ?
Marshall and Olkin 0.273 0.429 0.600 0.818
Kimeldorf and Sampson 0.300 0.500 0.750 0.937
Weighted linear combination: exponential 0.289 0.467 0.667 0.900
Weighted linear combination: Laplace 0.293f 0.4739 0.674 0.904f
Weighted linear combination: uniform 0.298f 0.490 0.707 0.927
Part uniform® 0.298 0.486 0.707 0.919
Nelsen® 0.291 0.471 0.673 0.905
New lower bound 0.265 0.414 0.581 0.803
New upper bound 0.300 0.500 0.750 0.937
Notes:

@ Part uniform distribution: h(z,y) = (1 +¢)/(1 —¢), 2/ <y <a°,0<c < 1 and is 0
elsewhere.

b Nelsen’s distribution: H(z,y) = min[z, y, (:101/)(2*8)/2]7 z(2=0)/c < gy < ge/(2=0)

¢ For the iterated F-G-M with 7 = 0.2, pg lies between .297 and .301, depending on what «
and 3 are. The former corresponds to o = 0.446, 3 = 1.784, the latter toa = 1, 3 = —0.385.

4 We are grateful to Professor R.B. Nelsen of Lewis and Clark College for calculating these
values.

¢ One way of finding this is to use equation (1) of Lavoie (1986).

I We are grateful to M.E. Johnson of Los Alamos National Laboratory for calculating
these values.

9 This result is implicit in Table III of David and Fix (1961).

Combining the two conjectures, we have
—1+V1+37 < ps <min {37/2,27 — 7%}
Nelsen (1999, pp. 168-169) has constructed a polynomial copula
C(u,v) = uwv + 20uv(l —u)(1 —v)(1 +u + v — 2uv),

for which pg > 37/2 if 6 € (0,1/4). Hence, the first conjecture is false.
Hiirlimann (2003) has proved conjecture (ii) for the class of bivariate extreme-
value copulas.

We note that U and V' of the bivariate extreme-value copula are stochas-
tically increasing (SI).
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Positive Dependence Concepts as an Influential Factor on the
Relationship Between 7 and pg

Earlier in this section, we saw that Spearman’s rho (pg) can be interpreted as
a measure of “average” quadrant dependence and that Kendall’s tau (1) can
be interpreted as a measure of TPs (totally positive of order 2) or the like-
lihood dependence ratio. Of the dependence properties (concepts) discussed
in the preceding chapter, positive quadrant dependence is the weakest (cov
(X,Y) > 0 is even weaker, but we hardly discussed this in that chapter) and
totally positive of order 2 is the strongest. Thus, the two most commonly
used measures of association are related to two rather different stochastic de-
pendence concepts, a fact that may partially explain the difference between
the values of pg and 7 that we observed in several of the examples in this
chapter. (By the way, the Pearson correlation coefficient p is clearly related
to the dependence concept cov(X,Y) > 0.)

We now wish to raise the question of identifying, by means of necessary and
sufficient conditions on the joint distribution H(z,y), the weakest possible
type of stochastic dependence between X and Y that will guarantee either
ps>1>00r ps <1 <0

Capéraa and Genest (1993) have provided a partial answer to this question
and we now summarize their results.

Let X and Y be two continuous random variables. Then

ps =720 (4.19)

if Y is left-tail decreasing and X is right-tail increasing. The same inequality
holds if X is left-tail decreasing and Y is right-tail increasing.

Also, ps < 7 < 0if YV is left-tail increasing and X is right-tail decreas-
ing. The same inequality holds if X is left-tail increasing and Y is right-tail
decreasing.

Note. Fredricks and Nelsen (2007) also provided an alternative proof to the
results of Capéraa and Genest.

Nelsen (1992) and Nelsen (2006, p. 188) showed that if (X,Y") is PQD
(positive quadrant dependent), then

31 > ps = 0.

Note that PQD implies Cov(X,Y) > 0, which in turn implies pg > 0. Now,
it was shown in Section 3.4.3 that both left-tail decreasing and right-tail
increasing imply PQD. It now follows from (6.19) that

3r>ps=z72>0
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if Y is simultaneously LTD and RTI in X or X is simultaneously LTD and
RTT in Y. However, Nelsen (1999, p. 158) gives an example showing that
positive quadrant depndence alone is not sufficient to guarantee pg > 7.

Relationship Between ps and 7 When the Joint Distribution
Approaches That of Two Independent Variables

It has long been known that, for many joint distributions exhibiting weak
dependence, the sample value of Spearman’s rho is about 50% larger than
the sample value of Kendall’s tau. Fredricks and Nelsen (2007) explained this
behavior by showing that for the population analogues of these statistics,
the ratio of p to T approaches 3/2 as the joint distribution approaches that
of two independent random variables. They also found sufficient conditions
for determining the direction of the inequality between 37 and 2p when the
underlying joint distribution is absolutely continuous.

Relationship Between pg and 7 for Sample Minimum
and Maximum

Consider two extreme order statistics X(;) = min{Xy, X,,..., X, } and
Xy = max{Xi, Xo,..., X, } of n independent and identically distributed
random variables. Let p, and 7, denote Spearman’s rho and Kendall’s tau
for X (1) and X, respectively.

Schmitz (2004) conjectured that lim, o, pn/7 = 3/2. The conjecture
has now been proved true by Li and Li (2007). Since 7, = 52—, Li and Li
noted that p,, is given by 3/(4n — 2) for large n. Chen (2007) has established
inequalities between p,, and 7,.

4.7.4 Other Concordance Measures

Gini Index

The Gini measure of association may be defined through the copula C' as

e =14 {/01 Clu,1 — w)du — /Ol[u O, u)]du} : (4.20)

see Nelsen (2006, p. 180).
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Blomgqvist’s 3

This coefficient 3, also known as the quadrant test of Blomqvist (1950),
evaluates the dependence at the “center” of a distribution where the “center”
is given by (z,7), with & and § being the medians of the two marginals. For
this reason, § is often called the medial correlation coefficient. Note that
F(#) = G() = 1.

Formally, § is defined as

B=2Pr[(X —&)(Y —§) >0 —1=4H(i,j) — 1, (4.21)

which shows that 8 = 0 if X and Y are independent. Also, since H(z,7) =
C(3,%), we have 3 =4C(3,3) — 1.

It was pointed out by Nelsen (2006, pp. 182-183) that although Blomqvist’s
[ depends on the copula only through its value at the center of [0,1] x [0, 1],
it can nevertheless often provide an accurate approximation to Spearman’s

ps and Kendall’s 7, as the following example illustrates.

Ezample 4.11. Let C(u,v) = m 0 € [-1,1], be the copula for the
Ali-Mikhail-Haq family. We note from Section 2.3 that the expressions for
ps and 7 involve logarithm and dilogarithm functions. However, it is easy
to verify that g = 5 If we reparametrize the expressions for ps and 7 by
replacing 6 by 43/ (1 + () and expand each of the expressions in a Maclaurin
series, We obtaln ps =18+ 4p3+ 580+ and T = $p+ 241880+
Thus, 2 ? and & 9 are reasonable second-order approximations to ps and T,
respectively.

4.8 Measures of Schweizer and Wolff and
Related Measures

Schweizer and Wolff (1976, 1981) proposed three measures of dependence
that are based on Spearman’s rho, which can be defined through the copula
of X and YV as pg(X,Y) = 12 fol fol[C'(u,v) — wv]du dv. Observing that the
integral in this expression is simply the signed volume between the surfaces
z = C(u,v) and z = wv, and that X and Y are independent if and only if
C(u,v) = uv, these authors suggested that any suitably normalized measure
of distance, such as L,-distance, should yield a symmetric nonparametric
measure of distance. By considering p = 1, p = 2, and p — o0, they obtained
the following three measures of dependence:

11
o(X,Y) = 12/0 /0 |C(u,v) — wv| dudv, (4.22)
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(X, Y) = \/90/0 /0 [C(u,v) — uwv]? dudv, (4.23)

and
K(X,Y)=4 sup |C(u,v)—uv|. (4.24)
w,v€(0,1]

Equation (4.23) is equivalent to the Cramér—von Mises index given by
[ W@y - s dredc), (4.25)

which is equivalent to ®2 of Hoeffding (1940); also see Lancaster (1982b).
On the other hand, (4.24) is equivalent to the Kolmogorov—Smirnov measure
given by

Sup |H(z,y) — F(z)G(y)|.

Schweizer and Wolff (1981) showed that, when evaluating by a suitably
modified version of Rényi’s condition, o possesses many desirable properties,
including, in particular, condition (9) of Section 4.3. Therefore, a comparison
of o with pg may be desirable. Schweizer and Wolff (1981) measure the volume
and the signed volume between the surfaces C'(u, v) and uv, respectively. They
also noted the following properties:

d |pS(X7Y)| < G(X7 Y)
e Equality holds for the bivariate normal distribution.
e The difference can be large.

4.9 Matrix of Correlation

In this section, we present a summary of relevant aspects of the diagonal
expansion method [Lancaster (1982a,b)]. Specifically, let {&;} and {n;} be
complete orthonormal systems on F' and G, respectively, with &y = 7p; that
is, E(&:&) = 0;5, where §;; is either 1 or 0 depending on whether ¢ = j or
t # j and similarly for n. Let p;; = E(&n;) and R = (p;;), for all positive
integers ¢ and j, be an infinite matrix. For given F' and G, R completely
determines H [Lancaster (1963)], so that R can be said to be a matriz measure
of dependence. In particular, R = 0 if and only if X and Y are independent.
R is orthogonal if and only if X and Y are mutually completely dependent
[Lancaster (1963)]. Special interest arises when {&;} and {n;} possess the
biorthogonal property (i.e., E(&;n;) = 0;jpi;) in this case, R is diagonal.
The scalar ¢* = tr(RR') = >, 37, p?; is an index for measuring
dependence of two random variables. ¢ here is also referred to as the mean
square contingency, and it is zero if and only if X and Y are independent.
In the case of the bivariate normal distribution, ¢? +1 = (1 — p?)~1. As we
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have just mentioned, X and Y being mutually completely dependent implies
R is orthogonal, which in turn implies ¢? = co. However, ¢? can be infinite
without having X and Y be mutually completely dependent. Consider a
monotone transformation of ¢? defined by A\(X,Y) = ¢?/(1 + ¢?). It is clear
from the present discussion that A does not satisfy the “necessary” part
of condition (6) of Rényi’s measures of dependence listed in Section 4.3.
However, Rényi (1959) showed that A satisfies conditions (2)—(5) and (7). If
the distribution is absolutely continuous or discrete, condition (1) will also
be satisfied.

4.10 Tetrachoric and Polychoric Correlations

It is common for data to be recorded on an ordinal scale with only a few steps
to it. A typical case from the social sciences is where subjects (respondents)
are asked to report whether they approve strongly, approve, are neutral to-
ward, disapprove, or disapprove strongly of some proposal. When analyzing
this kind of data, a common approach is to assign an integer value to each
category and proceed with the analysis as if the results were on an interval
scale, with convenient distributional properties. Although this approach may
work satisfactorily in some cases, it may lead to erroneous results in some
others; see Olsson (1980). The polychoric correlation is suggested in the lit-
erature as an appropriate measure of correlation for bivariate tables of such
data; it is termed the tetrachoric correlations when applied to 2x2 tables.
The idea behind these measures is now described.

Formally, we denote the observed ordinal variables by X and Y, having r
and s distinct categories, respectively. We assume that X and Y have been
generated from some unobserved (latent) variables Z; and Z, that have a
bivariate normal distribution. The relation between X and Z; may be written

as
X=1if7Z; <s;
X =2is1 <71 < 59

X =rifs._1 < Zy;

similarly, there is a relation between Y and Z in terms of class lim-
its t1,ta,...,ts_1 of Zy. The s’s and the t’s are sometimes referred to as
thresholds.

Interest is often primarily in estimating p(Z1, Z2), the correlation between
Zy and Zs. Suppose we want to do this by means of the maximum likelihood
method. Given this general aim, the problem may be solved in at least two
different ways. One way is to estimate p and the thresholds simultaneously.
Alternatively, the thresholds are first estimated as the inverse of the normal
distribution function, evaluated at the cumulative marginal proportions of
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the contingency table, and the maximum likelihood estimate of p is then
computed with the thresholds fixed at those estimates. This may be referred
to as a two-step procedure. It has the advantage of greater ease of numer-
ical calculationough the former is formally more correct. In most practical
situations, the results are almost identical [Olsson (1979)]. For a generaliza-
tion of these methods to three- and higher-dimensional polytomous ordinal
variables, one may refer to Lee (1985) and Lee and Poon (1987a,b). Divgi
(1979b) describes a FORTRAN program for calculating tetrachoric correla-
tion and offers to provide a listing of it to any interested reader. Martinson
and Hamdan (1975) have presented a computer program for calculating the
polychoric correlation.

Other discussions on these correlations are by Drasgow (1986) and Har-
ris (1988), with the latter presenting a number of references to methods of
approximating the tetrachoric correlations.

4.11 Compatibility with Perfect Rank Ordering

Suppose we have a two-way ordinal contingency table, as described in Section
4.10, which we imagine to have arisen from grouping two continuous variables.
For simplicity, suppose each variate has been reduced to a dichotomy, so that

our table is only a 2x2 table. Suppose the frequencies are 0

1 ; How well are
X and Y correlated?

e One approach is to calculate the tetrachoric correlation, implicitly think-
ing of the bivariate normal distribution, or to estimate the association
parameter of some other bivariate distribution.

e There is an alternative approach, which is especially relevant if X and Y
are two different measures of the same characteristic (e.g., the severity of
disease as assessed by two doctors). The question here is to what extent
the data are compatible with perfect agreement between the X-ordering

and the Y-ordering. The set of frequencies ? ; is compatible with perfect

agreement between two orderings, as it may be that if finer discrimination
0001

— o

8 (1) 8. (The original table
1000

is obtained by combining the last three rows and combining the last three

columns.) In a sense, we are starting with perfect correlation, and not

zero, as our null hypothesis, and then asking to what extent the data

are incompatible. We feel that a formalization of this could be as follows:

Calculate

was insisted upon, the table would become

sup pr[a(Z),b(Z)]
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(where p,. is a rank correlation coefficient, such as pg or ) subject to X
being a nondecreasing function of a, and Y being a nondecreasing function
of b. (The point is that X — a and Y — b are one-to-many relationships
and not functions.)

From the work of Guttman (1986), we observe some common ground between
the second approach above and Guttman’s suggestion that “weak” coefficients
of monotonicity are sometimes more appropriate than “strong” ones.

4.12 Conclusions on Measures of Dependence

There is, we fear, no universal answer to, “What is the best measure of
dependence?” According to Lancaster (1982b), for some defined classes of
distributions, the absolute product-moment correlation |p| is the index of
choice—for the bivariate normal distribution, for example, it satisfies all the
conditions presented in Section 4.3 except for condition (5); for the random
elements in common model, it completely determines the joint distribution.
In other classes, there may be other indices useful for some purposes and the
user needs to think about what purposes have priority. There is inevitably
some loss of information in condensing the matrix of correlations to a single
index. The absence of an always best measure should not surprise us if we
reflect on the persistence in the literature of two competing measures of rank
correlation, Kendall’s and Spearman’s.

4.13 Local Measures of Dependence

We saw earlier that pg is an average measure of the PQD dependence. How-
ever, Kotz et al. (1992) presented an example to show that a distribution
with a high pg may not be PQD. Drouet-Mari and Kotz (2001, p. 149) have
given the following rationale for defining a local index (measure) of depen-
dence: “These indices (global measures) are defined from the moments of the
distribution on the whole plane and can be zero when X and Y are not in-
dependent. One needs therefore the indices which measure the dependence
locally. In the case when X and Y are survival variables, one needs to iden-
tify the time of maximal correlation: for example, the delay before the first
symptom of a genetic disease by members of the same family will appear.
The pairs (X,Y) and (X’,Y”) can have the same global measure of depen-
dence but may possess two different distributions H and H’: a local index
will allow us to compare their variation in time. The variations with x and y
of some local indices allow us to characterize certain distributions and con-
versely choosing a shape of variation for an index allows us sometimes to
choose an appropriate model.”
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4.13.1 Definition of Local Dependence

The following definitions of local dependence measures can be found in
Drouet-Mari and Kotz (2001).

Definition 4.12. If V(xg,yo) is an open neighborhood of (xg,yo), then a
distribution H(x,y) is locally PQD in the neighborhood V (zg, yo) if

H(z,y) > F(z)G(y) for all (z,y) € V(zo, o)

If V(zo,y0) = (z9,00) X (yo,00), we then arrive at the remaining PQD.
(We use the term remaining to indicate a part in R? beyond a certain point
of (z,y).) In a similar way, we can define a local or remaining LRD.

4.13.2 Local Dependence Function of
Holland and Wang

The following concepts were introduced by Holland and Wang (1987a,b), mo-
tivated by the contingency table for two discrete random variables. Consider
an 7 X s contingency table with cell proportions p;;. For any two pairs of
indices (7, ) and (k,1), the cross-product ratio is
ijp = DIPEL ) < k< (r—1), 1<j,1< (s—1). (4.26)
PilPkj

Yule and Kendall (1937, Section 5.15) and Goodman (1969) suggested
considering the following set of cross-product ratios:

_ DPijDi+1,5+1

;o 1<i<(r—1), 1<j<(s—1). (4.27)
Pij+1Pi+1,5

Oéij
Further, let v;; = log ;. Both «;; and v;; measure the association in the 2x2
subtables formed at the intersection of pairs of adjacent rows and columns.
They are, of course, invariant under multiplications of rows and columns.

Now, let us go back to the continuous case. Let R(h) = {(x,y) : h(x,y) >
0} be the region of the nonzero p.d.f. that has been partitioned by a very
fine rectangular grid. The probability content of a rectangle containing the
point (z,y) with sides dx and dy is then approximately h(z,y)dz dy. This
probability may be viewed as one cell probability of a large two-way table,
and so the cross-product ratio in (4.26) may be expressed as

hlz, y)h(u, v) (4.28)

a(z,y;u,v) = h(z, )h(ng)’ r<u, y<wv,
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assuming that all four points are in R(h). The function in (4.28) is called the
cross-product ratio function.

A local LRD may be defined by having a(x, y; u,v) > 0. The logarithm of
a(z,y; u,v), denoted by

0(z,y; u,v) = loga(z, y; u,v), (4.29)

has been used by Holland and Wang (1987a,b) to derive a local measure of
LRD as well.

4.13.3 Local ps and T

We can restrict pg and 7 to an open neighborhood of (g, yo) and then define
local pg and 7 as [Drouet-Mari and Kotz (2001, p. 172)]

PS(w0,y0) = 12//‘/( )(C(u,v) — uv) du dv (4.30)
Zo,Yo

and
T(zo,y0) = 4// C(u,v)dudv — 1, (4.31)
V(zo,y0)

upon noting that F(z) = u, G(y) = v for all (z,y) € V(zo,y0). We may
now interpret pg(s.y,)/12 as the average on the local PQD property, while
T(xo,y0)/2 is the average on the local LRD (TPs).

When V(z9,90) = (w0,00) X (y0,00), it is easy to estimate 7(,,,,,) by
counting the remaining concordant and discordant pairs and to estimate the
variance of this estimator from ng, the number of observations remaining.

4.13.4 Local Measure of LRD

Holland and Wang (1987a,b) defined a local dependence index that can be
used to measure a local LRD property as

L 0(z,y; 2+ do,y +dy)  O?
y(w,y) = dw,ltlig;neo drdy = 920y log h(x,y) (4.32)

assuming the partial derivative of the second order exists. The expression
~v(x,y) is the local index that can be used to measure a local LRD property.
It follows from the preceding equation that

. h(z,y)h(z + dz,y + dy)
= I . 4.
v(,9) da:,ltgjnao { 08 (h(x +dx,y)h(z,y + dy) /dx dy (4.33)
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Thus we see that y(z,y) > 0,Vz, Yy is equivalent to h(x,y) being TPy or
X and Y are LRD. Hence v(x,y) is an appropriate index for measuring local
LRD dependence.

4.13.5 Properties of v(x,y)

We shall assume that R(h) is a rectangle, and R? may also be regarded as
a rectangle for this purpose. (If R(h) is not a rectangle, then the shape of
R(h) can introduce dependence between X and Y of a different nature that
local dependence—we will take up this issue in the next section.) Note also
that Drouet-Mari and Kotz (2001, p. 189) regard (x,y) as a local measure
of LRD even though it was referred to as the local dependence function in
Holland and Wang (1987a,b).
The following properties are satisfied by the measure v(z,y):

o —00 < (x,y) < oo.

o v(z,y) =0 for all (xz,y) € R(h) if and only if X and Y are independent.
~(x,y) reveals more information about the dependence than other indices.
Recall, for example, that the product-moment correlation p may be zero
without being independent.

e ~y(z,y) is symmetric.

e v(z,y) is marginal-free, and so changing the marginals does not change
~(z,y); in particular, %;)y log c(u,v) = v(x,y), F(x) = u,G(y) = v, where
c is the density of the associated copula.

e Holland and Wang (1987b) mentioned that when ~(z, y) is a constant, any
monotone function of that constant will be a “good” measure of associa-
tion. But, when ~y(z, y) changes sign in R(h), most measures of association
will be inadequate or even misleading.

e ~(xz,y) is a function only of the conditional distribution of Y given X or
the conditional distribution of X given Y.

e If X and Y have a bivariate normal distribution with correlation coefficient
p, then y(z,y) = #, a constant. Conversely, if v(z,y) is a constant,
Jones (1998) pointed out that the density function h(x,y) should have the
form a(z;0)b(y; 6) exp(Oxy).

Jones (1996) has shown, using a kernel method, that v(xo,yo) is indeed a
local version of the linear correlation coefficient.

4.13.6 Local Correlation Coefficient

Suppose the standard deviations of X and Y are ox and oy, respectively.
Let p(z) = E(Y|X = z), 0%(z) = var(Y]|X = z) and f(z) = 22 Then,

T
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the local correlation coefficient of Bjerve and Doksum (1993) is defined as

) = AP + @)

If (X,Y) has a bivariate normal distribution, then g(x) = /3, a constant.
It is important to mention the following properties of the local correlation
coefficient p(z):

-1<p< 1

X and Y being independent implies p(z) = 0 V.

p = %1 for almost all z is equivalent to Y being a function of X.

In general, p(x) is not symmetric, but it is possible to construct a sym-
metrized version.

e p(x) is scale-free but not marginal-free, i.e., linear transformations of X
and Y (viz., X* = aX 4+ b and Y* = ¢Y + d, with ¢ and d having the
same sign) leave p(z) unchanged, but the transformation U = F(X) and
V = G(Y) results in p(u), which is different from p(x).

Note that if p(z) > 0 for all z, then H is PRD. We can therefore define a
local PRD when p(z) is positive in a neighborhood of (xq, yo).

(4.34)

4.13.7 Several Local Indices Applicable in
Survival Analysis

In the field of survival analysis, there is a need for time-dependent measures of
dependence; for example, to identify in medical studies the time of maximal
association between the interval from remission to relapse and the next inter-
val from relapse to death or to determine the genetic character of a disease
by comparing the degree of association between the lifetimes of monozygotic
twins [Hougaard (2000)].

The following indices may be found in this connection in Drouet-Mari and
Kotz (2001):

e Covariance function of Prentice and Cai (1992).
e Conditional covariance rate of Dabrowska et al. (1999).

4.14 Regional Dependence

4.14.1 Preliminaries

In this section, we shall discuss the notion of regional dependence introduced
by Holland and Wang (1987a). In addition to the notation of the previous
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section, we will write R(f) = {x : f(z) > 0} and R(g) = {y : ¢g(y) > 0} for
the support of the marginals. We assume that R(h) is an open convex set of
the plane, R(f) and R(g) are open intervals, and f, g, and h are continuous
in their respective regions of support.

Clearly, R(h) is contained in the Cartesian product of R(f) and R(g),
denoted by R(f)x R(g). If R(h) is not equal to R(f) x R(g), then there exists
a point (xg,yo) in R(f) x R(g) that is not in R(h), at which h(zg,yo) = 0.
Yet, f(x0)g(yo) > 0. So, h(xo,y0) # f(x0)g(yo). Therefore, X and Y cannot
be independent if their region of support is not a rectangle. This situation
is parallel to the effects caused by structural zeros in a two-way contingency
table. We are concerned here with the type of statistical dependence that is
“caused” by the region of support.

4.14.2 Quasi-Independence and Quasi-Independent
Projection

Let us define the z-section, Ry,(x), and the y-section, R,(y), of R(h) by
R,(z) = {z : h(z,y) > 0} and R,(y) = {y : h(z,y) > 0}. Clearly, R,(z) C
R(f) and R.(y) C R(g). The following definition of quasi-independence is
analogous to quasi-independence in a two-way contingency table.

Definition 4.13. X and Y, having a joint density function h(x,y), are said
to be quasi-independent if there exist positive functions fi(x) and ¢, (y) such
that h(z,y) = fi(x)g1(y) for all (z,y) € R(h). If R(h) = R(f) x R(g), then,
as we have seen, X and Y cannot be independent.

Definition 4.14. A positive density function Pj,(z,y) on R(h) is the quasi-
projection of h(x,y) on R(h) if there exist positive functions a(x) and b(y)
such that the following three equations hold:

Pp(z,y) = a(x)b(y) for all (z,y) € R(h),

/ a(@)b(y)dy = f(z) ¥z e R(f),
R (y)
/ a(@)b(y)de = g(y) ¥y € R(g).
Ry(z)

The quasi-independent projection of h is a joint density that has the same
marginals as those of X and Y, and has the functional form of the product of
two independent distributions. The explicit form of Pj,(z,y) can be obtained
by solving the two integral equations presented above. Holland and Wang
(1987a) have shown that if R(f) = (a,b) and R(g) = (¢, d) are both finite
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intervals, then the quasi-independent projection P, (z,y) exists uniquely over
R(h).

4.14.3 A Measure of Regional Dependence

The regional dependence measure M (z,y) = M (f, g, R(h)) is defined by

1
MX,)Y)=1- -,
c
where ¢ = fR(f)XR(g) Py, (z,y) dx dy. For discrete random variables, M (X,Y)
can be computed from incomplete two-way contingency tables. The following
properties of the measure M are reported by Holland and Wang (1987b):

0<M(X,Y)<1.

X and Y being independent implies M (X,Y) = 0 but the converse is not
true.

e If X and Y are monotonically dependent, then M (X,Y) = 1.

o If h(x,y) is a constant throughout R(h), then

B Area of R(h)
Area of [R(f) x R(g)]

M(X,Y)=1

e For fixed R(f) and R(g), let hy and hs be two constant densities defined
inside R(f) x R(g), such that the marginal densities are positive in R(f)
and R(g) Then, R(hl) g R(hg) 1mpheb that M(Xl,Yl) Z M(XQ,YQ),
where (X7,Y7) and (X5,Y3) have joint densities hy and hs, respectively.

e M(X,Y) is invariant under smooth monotone transformation of the
marginals. (Of course, it changes sign if the transformation of one marginal
is increasing and the other is decreasing.)

Just as the maximal correlation and monotone correlation are difficult to
calculate, M(X,Y) may not be easy to calculate as well, and especially so
when R(f) and R(g) are not finite intervals.
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Chapter 5
Construction of Bivariate Distributions

5.1 Introduction

In this chapter, we review methods of constructing bivariate distributions.
There is no satisfactory mathematical scheme for classifying the methods.
Instead, we offer a classification that is based on loosely connected common
structures, with the hope that a new bivariate distribution can be fitted into
one of these schemes. We focus especially on application-oriented methods as
well as those with mathematical nicety.

Sections 5.2-5.11 of this chapter deal with the first major group of meth-
ods which have been repeatedly rediscovered and reinvented by applied sci-
entists seeking models for statistical dependence in numerous applied fields.
Sections 5.12-5.16 deal with approaches that are more specific to particular
applications.

In Section 5.2, we explain the marginal transformation method. In Sec-
tions 5.3 and 5.4, we describe different methods of constructing copulas
and the mixing and compounding methods, respectively. In Section 5.5,
we present the variables in common and trivariate reduction techniques
for constructing bivariate distributions. In Section 5.6, we explain the con-
struction of a joint distribution based on specified conditional distributions.
Next, in Section 5.7 the marginal replacement method is outlined. In Sec-
tion 5.8 bivariate ad multivariate skew distributions are referenced. Sec-
tions 5.9 and 5.10 outline density generators and geometric approaches. In
Sections 5.11 and 5.12, some other simple construction methods and the
weighted linear combination method are detailed. Data-guided methods are
described in Section 5.13, while some special methods used in applied fields
are presented in Section 5.14. Some bivariate distributions that are derived
as limits of discrete distributions are explained in Section 5.15. After de-
scribing some other methods that could potentially be useful in construct-
ing bivariate distributions but are not in vogue in Section 5.16, we com-
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plete the discussion in this chapter by making some concluding remarks in
Section 5.17.

In the remainder of this section, we present some preliminary details and
notation that are used throughout this chapter.

5.1.1 Fréchet Bounds

Let f and g be marginal probability density functions. For given marginal
distribution functions F’ and G, what limits must a joint distribution function
H satisfy so as to have its p.d.f. be non-negative everywhere? Hoeffding (1940)
and Fréchet (1951) showed in this regard that

H™(z,y) < H(z,y) < H' (2,y), (5.1)
where
H™ (2,y) = min[F(z), G(y)] (5.2)
and
H™ (z,y) = max[F(z) + G(y) — 1,0]. (5.3)

It is easy to verify that the Fréchet bounds H™ and H~ are themselves
d.f.’s and that they have maximum and minimum correlations for the given
marginals. Also, Ht concentrates all the probability on the increasing curve
F(z) = G(y), and H~ concentrates all the probability on the decreasing
curve F(z) + G(y) = 1. For any F and G, [F~1(U)G~1(U)] has d.f. HT and
[F~1(U),G~Y(1—U)] has d.f. H~, where U denotes a standard uniform(0,1)
random variable. For proofs and discussion on H+ and H~, one may refer to
Whitt (1976), who also proved that convolution of identical bivariate distri-
butions results in an increase of the Fréchet upper bound and a decrease of
the Fréchet lower bound.

In order to have notation for the independent case, we further define

H(z,y) = F(z)G(y). (5.4)

Devroye (1986, p. 581) uses the term comprehensive for any family of distri-
butions that includes H+, H®, and H~.

What if the distribution is restricted to the region X < Y? Smith (1983)
showed that, in this case, the bounds on H become

G(y) —max{0,min[G(y) — G(z), F(y) — F ()]} < H(z,y) < min[F(z), G(y)].

(5.5)
In (5.5), the lower bound need not necessarily be a distribution function.
A sufficient condition for it to be one is that there exist an xy such that
g(x) > f(z) for x > x¢ and g(z) < f(x) for < xo.
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Regarding Fréchet bounds for multivariate distributions, one may refer to
Kwerel (1983).

5.1.2 Transformations

Suppose we have a density h(x,y) and we form two new variables A(X,Y")
and B(X,Y). What is the joint density of A and B? To answer this, we first
need to express X and Y in terms of A and B. Letting, as usual, the values
of variates X,Y, A, and B be z,y,a, and b, the density of (4, B) is then
hlz(a,b),y(a,b)] |J|, where J is the Jacobian, given by

J_‘gggﬂg‘_axay Ay O 1 (5.6)
= = oo T o ar T adb dadb '
% % da 0b  Oa Ob oz 0y Oy ow

For a more detailed explanation that includes pictures of a rectangle being
transformed into a distorted rectangle, see Blake (1979, Section 7.2). Trans-
formations often encountered include X +Y, X -V, XY, X/Y, X/(X+Y),
VX2 +Y2, and tan"(Y/X); see, for example, Blake (1979, Section 7.2).

Let us now consider the special case of transforming the marginals. Sup-
pose X and Y are each uniformly distributed between 0 and 1, and we trans-
form the marginals so that they become F and G (with densities f and g,
respectively). In this case, A = F~! and B = G~!, so that X = F and
Y = G. Hence, the density of (A4, B) will be given by h[F(a), G(b)]2E & =
hlF(a), G(b)]f(a)g(b).

Physicists have apparently found it helpful to put the conditions that a
p.d.f. has to satisfy (non-negative and integrates to 1), along with what hap-
pens under transformation of the marginals, into the following form. Bivariate
densities having f(x) and g(y) as their marginal densities and F(z) and G(y)
as their marginal d.f.’s must be of the form h = fg[1+a(F, G)], where a(u,v)
is any function on the unit square that is bounded below by —1 and satisfies
fol a(u,v)du = fol a(u,v)dv = 0; see Finch and Groblicki (1984) and Cohen
and Zaparovanny (1980).

5.2 The Marginal Transformation Method

5.2.1 General Description

The basic idea here, usually attributed to Nataf (1962), is that if we start
with a bivariate distribution H(x,y) (with density h(z,y)) and apply mono-
tone transformations X — X* and Y — Y*, there is a sense in which the
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new distribution H*(z*,y*) has the same bivariate structure as the origi-
nal H, and all that has changed is the marginals (viz., F' becoming F* and
G becoming G*). In the univariate situation, familiar examples include (i)
transforming the normal distribution so that it becomes lognormal and (ii)
transforming the exponential distribution so that it becomes Weibull.

The emphasis when transforming marginals may take either of two forms,
which is easier to illustrate in the context of the bivariate normal distribution:

e Start with the bivariate normal distribution. Accept its description of how
X and Y are interconnected as satisfactory, but suppose normal marginals
are unsatisfactory for the purpose at hand. Transform the marginals so
that they become normal.

e Start with an empirical or unfamiliar bivariate distribution. In order to
compare its contours or other properties with the bivariate normal distri-
bution, free from the influence of the forms of the marginals, transform its
marginals to be normal.

Other distributions are sometimes used as standard—uniform and expo-
nential are two examples. In Chapter 2, a number of distributions were writ-
ten as their uniform representations, from which it was easy to transform to
any other required marginals.

Sometimes, the purpose of a transformation is to change the region of
support of a distribution. For example, suppose (X,Y’) has a bivariate nor-
mal distribution. Then, (eX,e¥) has a bivariate lognormal distribution (the

v
1+eex+ey ’ 1+e§(+ey) has a
bivariate logistic-normal distribution (the support of which is the simplex).

support of which is the positive quadrant), and (

5.2.2 Johnson’s Translation Method

The best-known set of distributions constructed by marginal transformation
is that due to Johnson (1949), who started with the bivariate normal and
transformed X and/or Y so that the marginals

remain the same,

become lognormal,
become logit-normal, and
become sinh~'-normal.

This has traditionally been referred to as a translation method, though we
feel that transformation would be a better term. Including no transformation
of the normal marginals as one of the possibilities, subscripts N, L, B, and U
are used for the four models. There being four choices for X and similarly
four choices for Y, a total of 16 possible bivariate distributions result, which
are all listed in Kotz et al. (2000). For example, hxx is the bivariate normal
density, while hyy, is the bivariate lognormal density function.
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As already mentioned in Chapter 4, it is well known that Pearson’s
product-moment correlation is not affected by linear transformations of X
and Y. But what happens when applying nonlinear transformations? The
answer is that if we start with the bivariate normal distribution and do this,
the correlation becomes smaller (in absolute magnitude).

5.2.3 Uniform Representation: Copulas

The great innovation in the study of bivariate distributions over the last
30 years has been the desire to separate the bivariate structure from the
marginal distributions. One manifestation of this has been the great inter-
est in the study of copulas (also known as the uniform representation) of
the distribution. This is the form the distribution takes when X and Y are
transformed so that they each have a uniform distribution over the range 0
to 1.
As an example, suppose we start with

H=zy[l+ ol —z)(1—y)] (5.7)

for x and y between 0 and 1, with —1 < o < 1. Setting y = 1, we see that
the distribution of X is uniform, F' = x; similarly, setting z = 1, we see
the distribution of Y is uniform, G = y. Now, suppose we require the new
marginals to be exponential, F =1 —e " and G =1 — e Y. Replacing = by
1—e®and y by 1 —e ¥ in (5.7), we obtain

H=(1-e")(1-e )[4 ae @], (5.8)

Equation (5.8) is a bivariate exponential distribution considered by Gumbel
(1960), and the copula in (5.7) is known as the Farlie-Gumbel-Morgenstern
copula.

Some of the important advantages of considering distributions after their
marginals have been made uniform are as follows:

e Independence does not usually have a clear geometric meaning, in that
the graph of the joint p.d.f. of X and Y provides us no insight as to
whether or not X and Y are independent. However, independence takes
on a geometric meaning for variates U and V' with uniform marginals, in
that they are independent if and only if their joint p.d.f. is constant. Any
variation in the value of the p.d.f. is indicative of dependence between U
and V.

e The copula is the natural framework in which to discuss nonparametric
measures of correlation, such as Kendall’s 7 and Spearman’s rank correla-
tion pg.
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e Simulations of X and Y may become easier via simulations of the associ-
ated copulas.

5.2.4 Some Properties Unaffected by Transformation

For any family Hy (—1 < 6 < 1) of d.f.’’s having absolutely continuous
marginals F' and G, consider the following five conditions:

(1) The upper Fréchet bound corresponds to 6 = 1, i.e.,

Hy(z,y) = min[F(z), G(y)].
(2) At 0 =0, X and Y are independent, i.e., Hyo(z,y) = F(z)G(y).
(3) The lower Fréchet bound corresponds to § = —1, i.e.,
Hfl(xvy) = max[F(x) + G(y) - 170]

(4) For fixed «,y, Hy is continuous in [—1,1].
(5) For fixed 0 in (—1,1), Hy is an absolutely continuous d.f.

Then, Kimeldorf and Sampson (1975) have given the following result. Let
H ={Hy: -1 <0 < 1} be a family of d.f.’s with fixed marginals Fy, Gy,
and satisfying any subset of conditions (1)—(5). Let Fy and G5 be any two
continuous d.f.’s. Then,

J = {Jo(x,y) = Ho[F ' Fa(x), Gy ' Ga(y)], =1 < 0 < 1} (5.9)

is a family of d.f.’s with fixed marginals F» and G, that satisfies the same
subset of conditions (1)—-(5) as does Hp.

Ezxample 5.1. Suppose we pick one of the distributions whose d.f. is simple
in form and whose marginals are uniform—for example, Frank’s copula (see
Section 2.4) given by

(a® = 1)(a¥ 1)
a—1

Hazloga{l—l— }, 0<a#l.

Then, if we require a joint distribution with marginals ' and G, we can write

(aF(r) _ 1)(aG(y) —1) }

Jo(z,y) =log. 41
R
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5.3 Methods of Constructing Copulas

Copulas can be considered as a starting point for constructing families of bi-
variate distributions because a bivariate distribution H with given marginals
F and G can be generated via Sklar’s theorem that H(x,y) = C(F(z), H(y))
after the copula C' is determined. Thus, constructions of copulas play an
important role in producing various families of bivariate distributions.

5.3.1 The Inversion Method

This is simply the marginal transformation method through inverse proba-
bility integral transforms of the marginals F~!(u) = x and G~ !(v) = y. If
either one of the two inverses does not exist, we simply modify our definition
so that F~!(u) = inf{x : F(x) > u}, for example. Then, for a given bivariate
distribution function H with continuous marginals F' and G, we obtain a
copula

C(u,v) = H(F~ Y (u), G (v)). (5.10)

With this copula, new bivariate distributions with arbitrary marginals, say
F' and G’, can be constructed using the formula H'(x,y) = C(F',G").

Note also that a survival copula (complementary copula) can be obtained
by using the survival functions F', G, and H (in place of F,G, and H) as

C(u,v) = H(F Y (u), G (v)). (5.11)

5.3.2 Geometric Methods

Several geometric schemes have been given in Chapter 3 of Nelsen (2006):

singular copulas with prescribed support;

ordinal sums;

shuffles of Min [Mikusinski et al. (1992)];

copulas with prescribed horizontal or vertical sections;
copulas with prescribed diagonal sections.

Wei et al. (1998) constructed copulas with discontinuity constraints. Their
procedures may be considered as geometric methods, and they obtained the
following three families of copulas:

(1) piecewise additive copulas with the unit square being partitioned into
measurable closed sets A; such that the copula is piecewise additive
[i.e., on each partition set A;, C'(u,v)|a, = C1(u)+ Ca(v), where Cy(u)
and Cs(v) are some increasing functions];
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(2) piecewise quadratic copulas whose densities are piecewise constant over
the four rectangular regions of the unit square (so that they are locally
independent);

(3) quadratic copulas with holes constructed by shifting the omitted mass
of holes along one axis, next along the other axis, and again along the
first axis, so as to ensure that the marginals are unaffected.

5.3.3 Algebraic Methods

Two well-known families of copulas, the Plackett and Ali-Mikhail-Haq fam-
ilies, were constructed using an algebraic relationship between the joint dis-
tribution function and its univariate marginals. In both cases, the algebraic
relationship concerns an odds ratio. In the first case, we generalize 2x2 con-
tingency tables, and in the second case we work with a survival odds ratio.

5.3.4 Rischendorf’s Method

Riischendorf (1985) developed a general method of constructing a copula as
follows:

Step 1. Find a function f!(u,v) such that

/01 /01 fH(u,v)dudv =0 (5.12)

1 1
/ fH(u,v)du = 0 and / fH(u,v)dv = 0. (5.13)
0 0

Clearly, (5.13) implies (5.12).
Step 2. (Construction of f1) One starts with an arbitrary real integrable
function f on the unit square and then computes

//fuvdudvﬁ /fuvdudufg /fuv

Then, fl=f—fi— fo+V.

Step 3. Then, c(u,v) = 1+ f(u,v) is a density of a copula. However,
there is a constraint that 1 + f!(u,v) must be positive. If this is not the
case but f! is bounded, we can then find a constant « such that 1 + af?!
is positive.

and
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In general, 1 + Y"1 | f} is a density with f; satisfying the conditions above
in (5.12) and (5.13).

Ezample 5.2. Lai and Xie (2000) extended the F-G-M copula as
C(u,v) = wv +w(u,v) = uv + au’v’(1 —u)*(1 —v)?, a,b,0 < a < 1. (5.14)

This method allows us to generate all polynomial copulas discussed earlier in
Section 1.10.

5.3.5 Models Defined from a Distortion Function

In the field of insurance pricing, one often uses [see, e.g., Frees and Valdez
(1998)] a distortion function ¢ that maps [0,1] onto [0,1], with ¢(0) =
0,$(1) =1, and ¢ increasing.

Starting with H(z,y) = C(F(z),G(y)), one defines another distribution
function via such a function ¢ as

H*(x,y) = ¢)[H(.’E,y)] (515)

with marginals F*(z) = ¢(F(z)) and G*(y) = ¢(G(y)). The associated cop-
ula is then

C*(u,v) = ¢[C(¢™" (u), ¢~ (v))]- (5.16)
Ezample 5.3 (Frank’s copula). Let
==L a0,

with independent copula C'(u,v) = uv, yielding the copula

(@ —1)(a” - 1)) ,

a—1

C*(u,v) = log, (1 +

which is the well-known Frank’s copula; see Section 2.4 for pertinent details.

5.3.6 Marshall and Olkin’s Mixture Method

Marshall and Olkin (1988) considered a general method for generating bi-
variate distributions through mixture. Set

H(u,v)://K(F91,G92)d/1(91,92), (5.17)
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where K is a copula, A is a mixing distribution, and ¢; is the Laplace trans-
form of the marginal A; of A. Thus, selections of A and K lead to a variety
of distributions with marginals as parameters. Note that ' and G here are
not the marginals of H.

If K is an independent bivariate distribution and the two marginals of A
are equal to the Fréchet bound (i.e., A(61,602) = min(A;1(61), A2(02))), then
H(u,v) = [;° F%(u)G?(v)dA; () with 6; = 0. Now, let F'(u) = exp[—¢~ " (u)]
and G(u) = exp[—¢~!(u)], where ¢(t) is the Laplace transform of A; and so
@(—t) is the moment generating function of A;. It then follows that

H(u,v) = /OOO exp [—0 (¢~ (u) + ¢~ (v))] dA1(6). (5.18)

Because ¢~ = 0, it is clear that the marginals of H are uniform and so H
is a copula. In other words, when ¢ is the Laplace transform of a distribution,
then the function defined on the unit square by

Clu,v) = ¢ (67 (u) + 67 (v)) (5.19)

is indeed a copula. Marshall and Olkin (1988) have presented several
examples.

Joe (1993) studied the properties of a group of eight families of copulas,
three of which were given by Marshall and Olkin (1988). Joe and Hu (1996)
derived a class of bivariate distributions that are mixtures of the positive
powers of a max-infinitely divisible distribution. Their approach is based on
a generalization of Marshall and Olkin’s (1988) mixture method.

5.3.7 Archimedean Copulas

An important family of copulas are Archimedean copulas, which were dis-
cussed in Section 1.5.

Any function ¢ that has two continuous derivatives and that satisfies
©(1) = 0,¢'(u) < 0, and ¢”(u) > 0 (naturally, v is between 0 and 1) gener-
ates a copula. These conditions are equivalent to saying that 1—@~1(t) is the
distribution of a unimodal r.v. with mode at 0 [Genest and Rivest (1989)].

We can define an inverse (or quasi-inverse if ¢(0) < co) by

1 1), 0<t< (0
4 ](t):{(f, ()@(O)Stwé(c)xa.

An Archimedean copula is then defined as

C(u,v) = () + ¢(v)). (5.20)
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Here, the function ¢ is called a generator of an Archimedean copula. In other
words, one can construct an Archimedean copula C by finding a generator
having the above-mentioned properties. Several examples were presented in
Section 1.5.

5.3.8 Archimax Copulas

An Archimax copula is generated by a bivariate extreme-value copula and a
convex function defined on [0, 1] that maps onto [1/2,1] as

Coatin) =47 |tpt) + o)A { A (s
subject to max(t,1 —t) < A(t) <1 for all ¢ € [0, 1].

5.4 Mixing and Compounding

In the statistical literature, the terms mizing and compounding are often used
synonymously, with the latter being used rarely these days. Here, we prefer
to reserve the term mizing for a finite mixture of distributions while the rest
of the mixtures involve compounding.

5.4.1 Mixing

One of the easiest ways to generate bivariate distributions is to use the
method of mixing along with two distributions. Specifically, if H; and Hy
are two bivariate distribution functions, then

H(z,y) =0H (z,y) + (1 — 0)Hy(z,y), 0<6<1, (5.22)

is a new bivariate distribution. Examples are readily found in Fréchet bounds:

e Fréchet (1951) himself suggested a one-parameter family of bivariate dis-
tributions that attained the Fréchet bounds at the limits of the parameter
0 as

H(z,y) =0H Y(2,y) + (1 - 0)H  (2,y), 0<0<1; (5.23)

however, this family does not include H as a special case.
e A second example of a one-parameter family with a meaningful 6 that
includes H* and H ! is the one given by Mardia (1970, p. 33) as
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1 1
H(z,y) = 5(92(1+9)H+1 + (1= H(z,y)+ 592(1 —0H ' (z,y) (5.24)

for —1 < @ < 1. This family does include H° as a special case.

Kimeldorf and Sampson (1975) generalized the idea to propose
Lo =t(0)Hy +[1 —t(0)|Ky, —-1<06<1, (5.25)

where {Hy} and {Ky} are two families of d.f.’s having the same marginals
and satisfying the conditions given in Section 5.2.4 . Here, ¢ is a continuous
mapping of [—1,1] into [0,1]. This generalization allows us to generate a
wide range of bivariate distributions, though its usefulness is questionable.
For mixtures of two bivariate normal distributions, one may refer to Johnson
(1987, pp. 55-62).

The concepts of mixture above can be readily extended to three compo-
nents—an example is (5.24) above, though usually two or more of the pro-
portions will be free parameters, not merely one. Mixing infinitely many
components is called compounding, which is described in the following sec-
tion.

For a more detailed account of applications of mixture distributions, see
Everitt (1985), McLachlan and Basford (1988), and Titterington et al. (1985).

5.4.2 Compounding

The idea of generating distributions by compounding has a long history,
especially in the univariate setting. Motivation is often from survival time
applications in biological or engineering sciences, and this does apply to the
bivariate case as much as to the univariate case. Let X and Y be two random
variables with parameters 6, and 0o, respectively. For a given value of (6,
05), X and Y are assumed to be independent. The basic idea of compounding
is to say that #; and # are themselves random variables, not constants,
and the observed distribution of X and Y results from integrating over the
(unobserved) distribution of 8; and 5. It is usual to assume that 6; and 6, are
identically equal so that only a single integration is necessary, but sometimes
they are assumed to be merely correlated, thus making an integration with
respect to their bivariate distribution necessary. It should be noted that if 64
and 0, are identical and play the role of a scale parameter of F' and G, then
compounding is equivalent to a version of the trivariate reduction method,
which is discussed in Section 5.5.
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Bivariate Gamma Distribution as an Example

We now present an example due to Gaver (1970). This illustrates how the joint
moment generating function of the compound distribution can be obtained
by summing or integrating over the distribution of 6 (the common value of
01 and 6-).

Let X and Y have the same gamma distribution with shape parameter
0+ k (6 is an integer and k > 0 need not be an integer). For a given value of
6, X and Y are independent with moment generating functions (1 —s)~(¢*+%)
and (1 — t)’((’*k), respectively. Assuming now that € has a negative binomial
distribution with the probability generating function

Gr(z) = 2bn(k)z" - (O‘) k, (5.26)

l+a—=z
where by, (k) is the probability that 6 takes on the value n, and k and o > 0

are the two parameters of the negative binomial distribution, we derive the
joint moment generating function of X and Y as

M(s,t) = E(esXHtY)

=Y B(“XH9 = n) Pr(0 = n)
n=0

= bu(R)[(A—s)(1 =) "1 —s)(1 - )]
n=0
=G{[1-9A -} Q-9 -t)"

—k
1 1 1
:(1_a+ S_oz+ t+oz+ st) .

« « «

Integration May Be Over Two Parameters

Suppose that the parameters pertaining to X and Y are not identical but
merely correlated. Specifically, suppose they have Kibble’s bivariate gamma
distribution, i.e., their marginal densities are of gamma form with shape
parameter ¢ and their joint p.d.f. is

h(61,65)
(010)(c= /2 01 + 0y 2/(1 —k)610,
- ATl (VTR s
bL(1 — k)02, () bk f e bk 527)

where 0 < k£ < 1 and I, is the modified Bessel function of the first kind.
Then, upon performing the integration
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Pr(X >z,Y >y) = / exp(—61x — Oay) h(61,02) dO1dOy (5.28)
0

by making use of Eq. (18) of Erdélyi (1954, p. 197), we find the bivariate
survival function to be

(1 + bz + by + kb2zy)~°. (5.29)

Marshall and Olkin’s Construction Scheme

Marshall and Olkin’s (1988) method of constructing bivariate distributions is
a generalization of constructing bivariate survival models induced by frailties.
Frailty models have been defined and widely used in the field of survival
analysis; see, for example, Hougaard (2000) and Oakes (1989).

The procedure for constructing a bivariate survival function from the
marginal survival functions by the Laplace transform of a frailty variable
can be easily applied to F' and G to obtain another joint distribution H as

H(z,y) = o~ [p(F(z)) + ¢(G(y))]. (5.30)

Marshall and Olkin (1988) have generalized themethod above to the case
where the mixing distribution is also a bivariate distribution (2(w,ws) de-
fined on [0,00] x [0,00] with the Laplace transform ¢ and its marginals
;i = 1,2, with the Laplace transforms ¢;, and K a bivariate distribu-
tion with uniform marginals over [0,1]. F and G are defined using Fy and
G, the two univariate baseline distribution functions, so that F' = ¢4 (log Fp)
and G = @a(log Go). Then there exists a distribution function H such that

) = [ [ KE 0.6 @) a0 ). (531

Marshall and Olkin (1988) and Oakes (1989) have shown that for any
distribution obtained as [ exp[—0A(xz)]exp[—60B(y)]f(#)df, the copula is
Archimedean. That is, there exists a function ¢ such that ¢(H) = ¢(F) +
©(G). Writing T(t) = [, exp(—0t) f(6)df, we obtain H = T(A(z) + B(y))
with marginals F' = T'(A(z)) and G = T(B(y)). Hence, T~ (H) = T~Y(F) +
T~(G). What this means is that if we know the function ¢(.) defining the
Archimedean copula and we want to know the compounding density f(6),
we invert ¢ to get T and then apply the inverse Laplace transform to get f
from T'; see Table 5.1. But, not all Archimedean copulas give rise to valid
densities f(f). Three Archimedean copulas are summarized in the following
discussion.
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Table 5.1 Laplace transform and compounding density

Compounding density f(0) T(t) p(u) =T H(u)
Gamma (14t)—¢ u—t/e —1
Positive stable exp(—t%) (—logu)l/«
Inverse Gaussian exp[—n(v/1 + 2t — 1)][(log u)[log(u) — 21]/(2n?)

Whitmore and Lee (1991, p. 41) argued for the case of the inverse Gaussian
as the compounding density on the grounds that “the level of imperfection
in the item may be proportional to the length of time the reaction continues
before a critical condition is first satisfied. Based on this reasoning, we shall
consider here a physical model in which the hazard rate equals the stop-
ping time of a stochastic process. Furthermore, because of the prevalence of
Wiener diffusion processes in chemical and molecular reactions and in physi-
cal systems, we select the first hitting time of a fixed barrier in such a process
as a model ... [this] distribution is inverse Gaussian.”

5.5 Variables in Common and Trivariate
Reduction Techniques

5.5.1 Summary of the Method

The idea here is to create a pair of dependent random variables from three
or more random variables. In many cases, these initial random variables are
independent, but occasionally they may be dependent—an example of the
latter is the construction of a bivariate t-distribution from two variates that
have a standardized correlated bivariate normal distribution and one that has
a chi-distribution. An important aspect of this method is that the functions
connecting these random variables to the two dependent random variables are
generally elementary ones; random realizations of the latter can therefore be
generated as easily as these of the former. A broad definition of the variables-
in-common (or trivariate reduction) technique is as follows. Set

X=T1(X1,X2,X3)} (5.32)

Y =1 (X1, X2, X3)

where X7, X5, X3 are not necessarily independent or identically distributed.
A narrow definition is

Y — Xot X (5.33)

with X7, X9, X3 being i.i.d. Another possible definition is

X=X1+X3}
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X:T(Xl,Xg) 534
ST 7 (5.34)

with (i) the X; being independently distributed and having d.f. Fy(z;; \;)
and (ii) X and Y having distributions Fy(z; A1 + A2) and Fy(y; A1 + A3),
respectively.

Three well-known distributions that can be obtained in this way are:

e the bivariate normal, from the additive model in (5.33), with the X,’s
having normal distributions;

e Cherian’s bivariate gamma distribution, also obtained from (5.33), but
with the X;’s having gamma distributions; and

e Marshall and Olkin’s bivariate exponential distribution with joint survival
function

H(a?, y) = exp(—()q + /\12).13 — ()\2 + /\12)y + A2 min(a:, y))
= F(z2)G(y) min{exp(A27),exp(A12y)}, (5.35)

with the transformation 7 being the minimum and the X;’s having expo-
nential distributions.

5.5.2 Denominator-in-Common and Compounding

The denominator-in-common version of the trivariate reduction method of
constructing bivariate distributions sets X = X;/X3 and Y = X5/X3. This
may readily be seen to be equivalent to compounding a scale parameter if we
instead write them as X = X;/0 and Y = X5/6. Then,

Hiz,y) = Pr(X < 2,Y <)
= Pr(X; <0z, X5 < 0y)

- / Pr(X; < ) Pr(Xs < 0y)(0) O
— [ B 600, 00 0) b,

where f(0) is the p.d.f. of §, which is the familiar equation for compounding
a scale parameter; see Lai (1987).

5.5.3 Mathai and Moschopoulos’ Methods

Mathai and Moschopoulos (1991) constructed a bivariate gamma distribution
whose components are positively correlated and have three-parameter distri-
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butions. Denote the three-parameter (shape, scale, and location) gamma by
Vi~ G(aiaﬁi7’yi>7 1=0,1,2, and let

The X and Y so defined have a bivariate distribution with gamma marginals.
Mathai and Moschopoulos (1992) constructed another form of bivariate
gamma distribution. Let V;, ¢ = 1,2, be defined as above. Form

X=V, Y=WVi+V.

Then X and Y clearly have a bivariate gamma distribution. Theconstruction
above is only part of a multivariate setup motivated by the consideration of
the joint distribution of the total waiting times of a renewal process.

5.5.4 Modified Structure Mixture Model

Lai (1994) proposed a method of constructing bivariate distributions by a
generalized trivariate reduction technique that may be considered as a mod-
ified structure mixture model.

The proposed model has the form

X1 =Y1 + 1Yy,
Xo = V3 + LY, (5.36)

where Y; are independent random variables and I; (i = 1,2) are indicator
random variables that are independent of Y; but where (I1,15) has a joint
probability function with joint probabilities given by p;j, 7,7 = 0, 1.

Thus, new bivariate distributions can be constructed by specifying pog
and p1g-

5.5.5 Khintchine Mixture

The following method of generating bivariate distributions may be found in
Bryson and Johnson (1982) and Johnson (1987, Chapter 8). Let

X =20 } (5.37)

Y = ZyU,

where U’s are uniform on (0,1) and both U’s and Z’s can be either identical
or independent.



196 5 Construction of Bivariate Distributions

5.6 Conditionally Specified Distributions

5.6.1 A Conditional Distribution with a
Marginal Given

A bivariate p.d.f. can be expressed as the product of a marginal p.d.f. and
a conditional p.d.f., h(z,y) = f(z)g(y|z). This is easily understood and has
been a popular approach in the literature, especially when Y can be thought
of as being caused by, or predictable from, X. We will give one simple and
one complicated example. Conditionally specified distributions have been dis-
cussed rather extensively in the books by Arnold et al. (1992, 1999).

Ezample 5.4 (The Beta-Stacy Distribution). Mihram and Hultquist (1967)
discussed the idea of a warning-time variable, X, for Y = the failure time
of a component being tested, where 0 < X < Y. A bivariate distribution
was proposed, with Y having Stacy’s generalized gamma distribution and X,
conditional on Y = y, having a beta distribution over the range 0 to y. The
p.d.f. is thus given by

]

h = mxp—l(y _ x)q—lybc—p—q eXp[—(y/a)C]. (5.38)

5.6.2 Specification of Both Sets of
Conditional Distributions

Methods of Characterizing a Bivariate Distribution

Gelman and Speed (1993) have stated three possible ways to define a joint dis-
tribution of two random variables X and Y by using conditional and marginal
specifications:

(1) The conditional distribution of X given Y and the marginal distribution
of Y specify the joint distribution uniquely.

(2) The conditional distributions of X given Y, along with the single dis-
tribution of Y given X = xq, for some x(, uniquely determine the joint
density as

h(z,y) f(ely)g(ylzo) (5.39)
f(@oly)

Normalization determines the constant of proportionality; the discrete
analogue of these results is due to Patil (1965).

(3) The conditional distributions of X given Y and Y given X determine
the joint distribution from the formula above for each zy. The con-
ditional specification thus overdetermines the joint distribution and is
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self-consistent only if the derived joint distributions agree for all values
of xg. The last sentence is effectively equivalent to the compatibility
condition discussed below.

Compatibility

Let f(z]y) and g(y|x) be given conditional density functions. There exists a
body of work that derives a bivariate density from specifying that f(xz|y) takes
a certain form, with parameters depending on y, and g(y|z) takes a certain
form (perhaps the same, perhaps different), with parameters depending on
2. This work has been brought together in important books by Arnold et al.
(1992, 1999), and we will therefore repeatedly refer to these, rather than the
original source. A key feature of the systematic development of this topic is
a theorem relating to functional equations. Details of this would be out of
place here, but we will give a summary of results in Section 5.6.5 below. As
a preliminary, we present the following theorem.

Compatibility Theorem. A bivariate density h(x,y) with conditional den-
sities f(z|y) and g(y|z) will exist if and only if [see Section 1.6 of Arnold et
al. (1999)]

L A{(z,y) : f(2y) > 0} = {(z,9) : g(ylz) > O}.

2. There exist a(x) and b(y) such that the ratio f(z|y)/g(y|x) = a(x)b(y),
where a(-) and b(-) are non-negative integrable functions.

3. [a(z)dr < .

The condition [a(z)dz < oo is equivalent to [[1/b(y)]dy < oo, and only
one of these needs to be checked in practice. Note that the joint density
obtained may not be unique; see Arnold and Press (1989). The compatibility
conditions given above are essentially those given by Abrahams and Thomas
(1984) except that these authors overlooked the possible lack of uniqueness.

If the necessary and sufficient conditions above are satisfied, we then say
that the two conditional densities are compatible.

5.6.3 Conditionals in Exponential Families

An [y-parameter exponential family of densities {fi(z;0) : @ € ©} has the
form

5t
fi(x:;0) = r1(2)B1(0) exp {Z Hiqu(x)} . (5.40)
=1

Another lp-parameter exponential family of densities {f2(y;7) : 7 € T} has
the form
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l2
faly; 7) = r2(y) B2(T) exp ZTjQ2j(y) . (5.41)

Suppose the conditional density functions of X|(Y = y) and Y |(X = z)
are specified by

f(xly) = f(x;0(y)) (5.42)
and
g(ylz) = fa(y; T(x)), (5.43)

where f; and f5 are as defined in (5.40) and (5.41), respectively. Arnold and
Strauss (1991) then showed that [see also Arnold et al. (1999, pp. 75-78)] the
joint density h(z,y) is of the form

h(z,y) = ri(z)ra2(y) exp{qV (x)Mq® (y)}, (5.44)

where
q(l)(x) = (Q10(m)7 CI11(9C)a s 41y (.’E)),

a? (y) = (g20(¥), 21 (y), - - -+ 21, (1)),

with qro(x) = g0 = 1, and M is an (I3 + 1) x (I2 + 1) matrix of con-
stant parameters. Of course, the density is subject to the requirement
[ [ f(z,y)dz dy = 1. We note that the conditionals in the exponential fami-
lies are compatible.

This is an important result, as one can generate a host of bivariate distri-
butions by selecting appropriate constant parameters in the matrix M.

Normal Conditionals

If both sets of conditional densities are normal, we let Iy = lo = 2,7r1(t) =
ro(t) = 1, and

1

qV(t) =q?(t) = | ¢

t2
The choice moy = mis = mg; = 0 yields the classical bivariate normal
provided mao < 0,mp2 < O,m%1 < 4mgomag. Several nonclassical normal
conditional models can be constructed subject to the parametric constraints

Moo < 0, Mmoo < 0, dmoomps > m%2, 4moom20 > mgl.

If the means of both normal conditionals are zero, then we have a bivariate
centered model. Plots of a density curve and its contour are presented in
Arnold et al. (1999, p. 67).
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5.6.4 Conditions Implying Bivariate Normality

Various sets of conditions on the conditional distributions are sufficient to
imply a bivariate normal distribution. Most of those below are given by Bhat-
tacharyya (1943), and Castillo and Galambos (1987); see also Kendall and
Stuart (1979) and Chapter 3 of Arnold et al. (1992):

The distribution of Y given X = x is normal and homoscedastic (i.e.,
var(Y|X = z) is a constant), together with one of the following:

— marginal normality of X, together with linearity of the regression of YV
on X or X onY;

— conditional normality of X given Y = y;

— conditional normality of X given Y = yg, for some yp, together with
linearity of the regression of Y on X [Fraser and Streit (1980)];

— marginal distributions of X and Y being identical, together with lin-
earity of the regression of Y on X [Ahsanullah (1985)].

Both conditional distributions, of Y given X = x and X given Y = y, are
normal, together with one of the following:

— marginal normality of X;
— one or both regressions are linear and nonconstant.

Both regressions, of Y on X and X on Y, are linear and have the identical
errors property (meaning only the mean of the dependent variable changes
when the independent variable does) [Kendall and Stuart (1979, Paragraph
28.8)]. In this case, X and Y can be independent or functionally related
as alternatives to being bivariate normal;

The contours of probability density are similar concentric ellipses, together
with one of the following:

— normality of Y given X = x;
— homoscedasticity of Y given X = z;
— marginal normality of X.

5.6.5 Summary of Conditionally

Specified Distributions

The rest of the conditionals in the exponential families are presented below
in Table 5.2.

Some other conditionally specified families of bivariate distributions are

summarized in Table 5.3 below. Details of some of these conditionals will be
discussed in Section 6.4.
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Table 5.2 Both conditionals in exponential families

XY Y|X

Exponential Exponential
Normal Normal

Gamma Gamma
Weibully Weibull

Gamma Normal
Power-function Power-function
Beta Beta

Inverse Gaussian Inverse Gaussian

1 Weibull distribution is not a member of the ex-
ponential family but can be expressed as a pos-
itive power of an exponential random variable
W = X¢°.

Table 5.3 Conditionals not members of the exponential family of distributions

XY Y|X

Pareto Pareto

Beta of the second kind Beta of the second kind
Pearson type VI Pearson type VI
Generalized Pareto Generalized Pareto
Cauchy Cauchy

Student ¢ Student ¢

Uniform Uniform

Possibly translated exponential Possibly translated exponential
Scaled beta Scaled beta

Weibull Logistic

Conditional Distributions in Location-Scale Families with
Specified Moments

Arnold et al. (1999) have considered conditionals in unspecified families with
specified conditional moments, which are as follows:

(1) linear regressions with conditionals in location families;

(2) specified regressions with conditionals in scale families;

(3) conditionals in location-scale families with specified moments;

(4) given one family of conditional distributions and the other a regression
function.

We now present a brief description of item (3) above. Most families of dis-
tributions considered so far have their marginals specified. Narumi (1923a,b)
took a different approach. His attack on the problem of creating bivariate
distributions was by specifying the regression and scedastic (conditional stan-
dard deviation) curves. An account of his work has been detailed in Chapter
6 of Mardia (1970). This approach does fall into the broad scheme formulated
in Arnold et al. (1999). Consider bivariate distributions with conditional den-
sities of the form
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f(zly) = g1 (x;—a(y)) L (5.45)

9(ylz) = g2 (y;(—i()x)> ﬁ,

where a and b are the regression curves, and ¢ and d are scedastic curves of X
on Y and Y on X. This type of conditionally specified bivariate distribution
has also been discussed by Arnold et al. (1999).

Some bivariate distributions that can be written in this form are summa-
rized below in Table 5.4.

(5.46)

Table 5.4 Some bivariate distributions derived from conditional moments

a(y) c(y) Type of h(z,y)

linear constant normal

linear linear beta, Pareto, F’

constant linear McKay

linear parabolic t, Cauchy, Pearson type II
r.h* r.h.* gamma conditionals

hoc (z 4 b1)7 (y + b2)72
x exply(z + 1) (y + c2)]
r.h. denotes rectangular hyperbola, i.e., of the form 1/(x + a).

*

5.7 Marginal Replacement

A simple general scheme of constructing a new bivariate distribution is to
replace a marginal of the existing bivariate distribution by a new marginal.
This method of construction is called marginal replacement by Jones (2002).
Consider a bivariate density h(z,y) which can obviously be written as

h(z,y) = f(x)g(ylx). (5.47)

With appropriate considerations for the support, we can obtain a new bivari-
ate density function by replacing f(z) above by fi(x), giving

hi(z,y) = fi(x)g(ylz). (5.48)

The only condition on this approach is that the support of f; be contained
in, or equal to, the support of f. Indeed, h; then has support contained in,
or equal to, the support of h.
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5.7.1 Example: Bivariate Non-normal Distribution

Tiku and Kambo (1992) obtained a new symmetric bivariate distribution
by replacing one of the marginals of a bivariate normal distribution by a
univariate ¢-distribution.

5.7.2 Marginal Replacement of a Spherically
Symmetric Bivariate Distribution

Jones (2002) obtained a bivariate beta/symmetric beta distribution as well
as a bivariate t/skew t distribution using this approach. More details of these
distributions will be presented in Chapter 9.

5.8 Introducing Skewness

Over the last decade or so, many families of bivariate and multivariate skew
distributions have been constructed by introducing one or more skewness
parameters in the multivariate distributions. A Google search at the site
azzalini.stat.unipd.it/SN/list-publ.ps (updated on March 17, 2007) found ap-
proximately 150 references on the skew-normal distribution and related ones.
The major multivariate skew distributions are listed below:

skew-normal family—Azzalini (2005, 2006);

skew t—Azzalini and Capitanio (2003);

skew-Cauchy—Arnold and Beaver (2000);

skew-elliptical —Branco and Dey (2001);.

log-skew-normal and log-skew-t—Azzalini et al. (2003);

general class of multivariate skew distributions—Sahu et al. (2003).

A e

5.9 Density Generators

A bivariate density function may be obtained through composition of a den-
sity generator g that is a function of a univariate density function with one
or more parameters.

Ezample 5.5 (Bivariate Liouville distributions).

po—1yb—1
h(z,y) = WQ(I +y>,
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where ¢ is beta, inverted beta, gamma, or others satisfying the condition

Ooo %g(t)dt = 1; see, for example, Gupta and Richards (1987). Ma and
Yue (1995) have extended the above to obtain the bivariate pth-order Liou-

ville distribution

a—1,b—1 D p\1/p
Wz y) = 0ot =Y ((x +y7) >,

T(a)T(0)” 9
where 6 is a parameter and c is the normalizing constant.

Example 5.6 (Elliptical contoured distributions and extreme type elliptical dis-
tributions). (X,Y) is said to have an elliptically contoured distribution if its
joint density takes the form

h(z;y) =

1 (2% — 2pzy + y?)1/P
1- ng 1—p? 7

where —1 < p < 1 and g(+) is a scale function referred to as the density
generator.

By setting g(z) = M%, where h(z) is the density function of (i)

Weibull, (ii) Fréchet, and (iii) Gumbel, Kotz, and Nadarajah (2001) have
obtained three extremal-type elliptical distributions.

5.10 Geometric Approach

In Stoyanov (1997, p. 77), an interesting nonbivariate normal distribution
is given, of which two marginal distributions are normal. This is a classical
counterexample that involves geometry. The basic idea is to punch four square
holes symmetrically in the domain of a bivariate normal density function and
to move the probability mass over the four holes to the four other symmetrical
positions so as to ensure that the marginals are not affected.

Inspired by this counterexample, Wei et al. (1998) also constructed copulas
with holes that are constrained within an admissible rectangle. They also
provided a construction algorithm called the squeeze algorithm.

Nelsen (2006, pp. 59-88) has described various geometric methods of con-
structing copulas in the following manner:

(1) Singular copulas with prescribed support: Utilize some information of
a geometric nature, such as a description of the support or the shape
of the graphs of horizontal, vertical, or diagonal sections.

(2) Ordinal sum construction: Members of a set of copulas are scaled and
translated in order to construct a new copula.

(3) Shuffles of M: These are constructed from the Fréchet upper bound.
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Johnson and Kotz (1999) constructed what they called square tray distri-
butions by simple, piecewise uniform modifications of a copula on the unit
square. The resulting bivariate distributions may not be copulas, as their
marginals may not be uniform.

5.11 Some Other Simple Methods

The transformation method outlined in Section 5.1.2 is pretty trivial. All
that is done is to take one distribution and stretch or compress it in the X
and/or the Y direction. Other methods that may be thought of as trivial and
inelegant include the following:

e Let the formula for h take one form for some region of the (X, Y") plane and
another form for the remaining region. (A particular example occurs when
the p.d.f. of a unimodal distribution is reduced to ¢ within the contour
h = c and then h is rescaled so that it becomes a p.d.f. again.) Another
simple example in constructing a copula is given by Wei et al. (1998) as
follows. Divide the rectangle formed by 0 < u < 1 and 0 < v < 1 into four
rectangular areas by drawing v = « and v = «. Assign probability mass
Aa, (1= Na, (1—=N)a, and 1 — (2 — X)a uniformly to the four regions with
0</\<1and0§a§ﬁ.

e Take an existing distribution and truncate it, singly or doubly, in one
or both the variates; for example, a truncated bivariate normal [Kotz et
al. (2000, pp. 311-320)]. Nadarajah and Kotz (2007) also gave truncated
versions of several well-known bivariate distributions.

e Take a trivariate distribution of (X,Y, Z) and find the conditional distri-
bution of (X,Y") given Z = z. In the previous situation, find the marginal
distribution of (X,Y").

e Take an existing distribution and extend its region of support by reflecting
the p.d.f. into the previously empty area.

e Take an existing p.d.f. h(x,y) and multiply it by some function a(x,y).
Provided the volume under the surface remains finite, the result can be
treated as proportional to a probability density. A special case of this
method is where a(x,y) is a risk function, so that the densities in the
surviving and nonsurviving (or, more generally, selected and nonselected)
populations are (1 — a)h and ah. Epidemiological studies often find it
necessary to make an assumption about the joint distribution of two (or
more) variables considered to be possible risk factors for the disease under
consideration. For instance, Halperin et al. (1979) were concerned with the
probability of death (from any cause) being a function of systolic blood
pressure and the number of cigarettes smoked per day. The interest of
Halperin et al. (1979) was primarily methodological: They demonstrated
that if X and Y have a bivariate normal distribution, with the risk of
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death being a probit function ®(a + Sz + Pay), then not only do X and
Y have different means in the group that dies and the group that survives,
but also the variances and covariances in the groups differ also.

e (Calculate two summary statistics from a univariate sample. The sample
mean and variance are often uncorrelated, and hence their joint distribu-
tion is often uninteresting, but this is not so for the sample minimum and
maximum or for the sample skewness and kurtosis. The sample mean and
sample median from a symmetric distribution are often asymptotically
bivariate normal [Stigler (1992)].

e C(Calculate a summary statistic for both X and Y, starting from a bivariate
sample. For example:

- The sampling distribution of (X,Y) is often bivariate normal.
- The maxima of X and Y have limiting bivariate extreme-value distribu-
tions.

e A popular method that often lacks any further justification is to write
down a formula and then check whether it satisfies the criteria for being
a bivariate distribution. As an example of this, we may give the Farlie—
Gumbel-Morgenstern distribution. In copula form, this is

H=zy[l+ ol —z)(1—y)] (5.49)
for —1 < a <1, and the corresponding density is

h=14+a(l—2z)(1-2y). (5.50)

5.12 Weighted Linear Combination

In many simulation applications, it is required to generate dependent pairs
of continuous random variables for which there is limited information on the
joint distribution. The example that Johnson and Tenenbein (1981) presented
is that of a portfolio analysis simulation in which a joint distribution of stock
and bond returns may have to be specified. Because of a lack of data, it may
be difficult to specify completely the joint distribution of stock and bond
returns. However, it may be realistic (so state Johnson and Tenenbein) to
specify the marginal distributions and some measures of dependence between
the random variables.
The weighted linear combination (WLC) technique is as follows. Let

X=U }

Y =cU; + (1 — C)U2 (551)

where U; and U, are independent and identically distributed with common
probability density function f and ¢ is a constant (0 < ¢ < 1).
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Johnson and Tenenbein (1981) were then concerned with using WLC in the
case where the specified measure of dependence was Kendall’'s 7 or Spear-
man’s rank correlation pg. For some choice of f, they obtained equations
connecting ¢ to 7 and pg. They handled the problem of getting the appropri-
ate marginals by means of the transformation method discussed in Section
5.2. A slightly more general model than WLC, in which Y is an arbitrary
combination of U and Us, was considered earlier by Jogdeo (1964). A general
model in which both X and Y are linear combinations of U; and Us has been
treated by Mardia (1970, Chapter 5).

5.13 Data-Guided Methods

The study of bivariate distributions usually tends very much toward the
modeling end of the statistical spectrum rather than toward the analysis end.
In this section, however, we emphasize the data analysis side: If we want to
follow passively, without preconceptions about the appropriate model, where
bivariate data was leading us, how best can we do this?

5.13.1 Conditional Distributions

An elementary idea that is often useful when exploring bivariate data is to
examine the conditional distributions. That is, given that X equals (or is
within a narrow range of) z, what properties does the distribution of Y
have? And, similarly, the distribution of X for a given Y may be examined.
The methods that are common for univariate distributions are then applied;
in particular, the conditional mean, the conditional standard deviation, and
(for necessarily possible variates) the conditional coefficient of variation may
each be plotted. Recall that the conditional means are linear and the con-
ditional standard deviations are constant in the case of a bivariate normal
distribution.

Mardia (1970, p. 81) suggested focusing attention on the regression and
scedastic curves after the observations have been transformed to uniform
marginals.

One might also consider conditioning of the form X > x. Further, one
might think in terms of quantiles. Then one might decide that the statistic
of prime interest is the mean. This leads to asking how useful it is to know
that X is big compared with how useful it is to know that Y is big for the
purpose of predicting Y. Hence, one will want to calculate the following

E(Y|X > x,) — E(Y)
E(YY >y,) - E(Y)

(5.52)
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(which is a function of p), where z, and y, are the pth quantiles of X and Y,
respectively. Kowalczyk and Pleszczynska (1977) referred to this as the mono-
tonic quadrant dependence function; see Section 3.5.3 for details. Clearly,
many variations can be played on this theme.

5.13.2 Radii and Angles

The probability density h of the class of elliptically symmetric bivariate dis-
tributions is a function only of a positive definite quadratic form

(x—p)E7Hx —p).

Let R? = (X? —2pX1 X2+ X3)/(1 — p?), where p is the off-diagonal entry
in the scaling matrix 3.

Let L be the lower triangle (Choleski) decomposition of 3. Then, for this
class of distributions, X may be represented as (X, Xs) = RLU® + p,
where U®) is uniformly distributed on the circumference of a unit circle and
is independent of R. The distribution of R discriminates the members within
the class.

For most practical purposes, the bivariate normal distributions would be
the first to come to mind. The radii and angles method is specifically for
assessing bivariate normality. It was discussed by Gnanadesikan (1977, Chap-
ter 5). Let (X7, X2)’ denote the bivariate normal vector with the variance—
covariance matrix . First, transform the original variates X; and X5 to
independent standard normal variates X and Y using

X\ o1 (Xi—m

(X) =z (B, o5
Second, transform (X,Y’) to polar coordinates (R, ). Then, under the hy-
pothesis of bivariate normality, R? has a x3-distribution (i.e., exponential
with mean 2) and 6 has a uniform distribution over the range 0 to 2. These
consequences may be tested graphically—by plotting sample quantiles of R?
versus quantiles of the exponential distribution with mean 2 and by plotting
sample quantiles of the angle 6 versus those of the uniform distribution; for
illustration, see Gnanadesikan (1977). If bivariate normality holds, the two
plots should be approximately linear. However, if g/ = (u1,u2) and X are
estimated, the distributional properties of R and 6 are only approximate. For
n > 25, the approximation is good. It is important to mention that the radii
and angles approach, though informal, is an informative graphical aid.



208 5 Construction of Bivariate Distributions

5.13.3 The Dependence Function in the
Extreme-Value Sense

In Section 12.5, we will see that bivariate extreme-value distributions hav-

ing exponential marginals can be expressed as H = exp [,@ +y)A (ri’_y)]

Pickands (1981) [see also Reiss (1989)] suggested estimating A(w) from a
sample of n observations by

A ~ Li Yi
A (w) :n/me (1—w’ 1—w)’
i=1

with w being between 0 and 1. This suggestion was made by using the fact

that min (%, %) has an exponential distribution with mean 1/A(w). This
estimate was applied by Tawn (1988) to data on annual maximum sea levels
at Lowestoft and Sheerness and by Smith (1990) to maximum temperatures
at two places and to best performances in mile races in successive years.

There is currently interest in modifying the estimate of A(-) above in order
to obtain a smoother one; see Smith (1985), Smith et al. (1990), Deheuvels
and Tiago de Oliveira (1989), and Tiago de Oliveira (1989b). Exactly what
method of estimating A(-) will eventually emerge as the preferred one seems
uncertain at present. Due to the availability of these procedures, one may
suggest transforming observations so that the marginals become exponential
and then use them to estimate the function A.

A(w) is interpretable in terms of Pr (X—}_;Y < w). This suggests direct

consideration of the angle tan~!(y; /z;) after X and Y have been transformed
to exponential marginals—calculate the values observed in the sample, show
them as a histogram, determine various summary statistics, and so on.

5.14 Special Methods Used in Applied Fields

There will be five specialist fields considered in this section: shock models,
queueing theory, compositional data, extreme-value models, and time series.

5.14.1 Shock Models

Marshall and Olkin’s Model

This is a distribution having exponential distributions as marginals. It is ob-
tained by supposing that there is a two-component system subject to shocks
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that may knock out the first component, the second component, or both of
them. If these shocks result from independent Poisson processes with param-
eters A1, Ao and Apo, respectively, Marshall and Olkin’s distribution arises.
Equivalently, X = min(Z1,Z3) and Y = min(Z,, Z3), where the Z’s are
independent exponential variates.

The upper right volume under the probability density surface is [Marshall
and Olkin (1967)]

H = exp[— A1z — A2y — A2 max(z,y)], (5.54)

where the \’s are positive.

This model is widely used in reliability. Certainly, the idea of simultaneous
failure of two components is far from being merely an academic plaything;
Hagen (1980) has given a review in the context of nuclear power, wherein
it is pointed out that redundancy in a system reduces random component
failure to insignificance, leading to the common-mode/common-cause type
being predominant among system failures.

Raftery’s Model

In its general form, Raftery’s (1984, 1985) scheme for obtaining a bivariate
distribution with exponential marginals is

X=(1—-pio—p1)U+ I1W}, (5.55)

Y =(1—por —pi1)V + LW

where U, V, W are independent and exponentially distributed and I; and I
are each either 0 or 1, with probabilities as set out below:

IL=00L=1
I =0 poo  po1
Li=1] pio  pn

Raftery obtained the correlation as 2p11 — (po1r + p11)(p1o + p11). There
is also an extension of the model to permit negative correlation. The dis-
tribution arises from a shock model. This refers to a system that has two
components, S; and Ss, each of which can be functioning normally, unsat-
isfactorily, or have failed. The system is subject to three kinds of shocks
governed by independent Poisson processes. These kinds of shocks cause nor-
mal components to become unsatisfactory, an unsatisfactory Sy to fail, and
an unsatisfactory Ss to fail, respectively.

A special case of this model sets pg; = p1p = 0 so that

X=(1—p11)U—|—IW}’ (5.56)

Y = (1—])11)V—|—IW
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and the distribution in this case is a mixture of independence and trivariate
reduction.

Downton’s Model

This distribution has exponential marginals and has the joint p.d.f.

1 + 2./T
h(z,y) = T pexp [—31: i] I ( 1 ypp) , (5.57)

where I is the modified Bessel function of the first kind of order zero. It
has become associated with the name of Downton, though his paper explic-
itly acknowledged that it was not new at that time. The paper of Downton
(1970) was concerned with the context of reliability studies and used the fol-
lowing model to obtain (5.57). Consider a system of two components, each
being subjected to shocks, the intervals between successive ones having ex-
ponential distributions. Suppose the numbers of shocks Ny and Ny required
for the components to fail follow a bivariate geometric distribution with joint
probability generating function
122

P _ . 5.58
(251722) 1+a+ﬂ+’Y*azlfﬂ22772122 ( )

Let

N N2

(X,Y) = (ZXZY> (5.59)
i=1 i=1

where X; and Y; are the intershock intervals, mutually independent exponen-

tial variates. Then the component lifetimes (X, Y") have the joint density as in

(5.57). Several different bivariate geometric distributions in (5.58) give rise to

the density in (5.57); all that is required is that p = %ﬁm In par-
ticular, the case in which N7 and N» are identical corresponds to o = 3 = 0.
Gaver (1972) gave a slightly different motivation for this distribution.
Equation (5.59) may be termed the random sums method of constructing
bivariate distributions. As far as we know, only the case in which the X; and
Y; have exponential distributions and N7 and N, have geometric distributions

has received much attention.

5.14.2 Queueing Theory

Consider a single-server queueing system such that the interarrival time X
and the service time Y have exponential distributions, as is a common as-
sumption in this context. If it is desired to introduce positive correlation
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(arising from cooperative service) into the model, Downton’s distribution is
a suitable choice [Conolly and Choo (1979)]. Langaris (1986) applied it to a
queueing system with infinitely many servers. Other relevant works include
Mitchell and Paulson (1979) and Niu (1981). Naturally, one of the important
issues in this context is how waiting time is affected by the presence of such
a correlation.

5.14.3 Compositional Data

The distinctive feature of compositional data is that it consists of proportions,
which must sum to unity (or to less than unity when considering just n of
the n + 1 components). A field where such data are particularly important
is within the earth sciences when dealing with the composition of rocks. A
bivariate distribution with support 0 < z + y < 1 will be required when n
is 2.

The univariate beta distribution has support [0, 1] and is therefore often
used as a distribution of a proportion or probability. Its density is propor-
tional to 2% ~1(1 — 2)%~1. Correspondingly, the bivariate beta distribution
has the correct region of support for the joint distribution of two proportions.
With support being that part of the unit square such that = +y < 1, the
bivariate beta distribution has density

I
~ T(01 + 02+ 63) Pyt

ME9) = o .)T (05

(1—2—y)ht (5.60)
This distribution may be constructed by a form of trivariate reduction: If
X; ~ Gamma(0;, 1), then X /(X1 + X2+ X3) and Xo/(X; + X2+ X3) jointly
have a bivariate beta distribution; see, for example, Wilks (1963, p. 179).
This distribution chiefly arises in the context of a trivariate distribution of
three quantities that must sum to 1—for example, the probabilities of events
or the proportions of substances in a mixture, which are mutually exclusive
and exhaustive. When considering just two of these quantities, a bivariate
beta distribution may be a natural model to adopt.

5.14.4 Extreme-Value Models

All types of extreme-value distributions can be transformed to the exponen-
tial distribution easily, and in what follows we will take the marginals to have
this form.

With the support being the positive quadrant, the upper right volume
under the probability density surface must take on the form
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H = exp [—(m+y)A (xiyﬂ (5.61)

where the function A satisfies
1
dB
A(w) = [ max[(1 —w)q,w(1l —q)] d—qdq, (5.62)
0

in which B is a positive increasing function on [0, 1].
A is often termed the dependence function of (X,Y) [Pickands (1981) and
Tawn (1988)]. The following properties of A are worth noting:

(1) A(0) = A1) =1.

(2) max(w,l —w) < A(w) < 1, where 0 < w < 1. Thus A(w) lies within
the triangle in the (w, A) plane bounded by (0, 1), (%, %), and (1,1).

(3) A(w) = 1 implies that X and Y are independent. A(w) = max(w, 1 —w)
implies that X and Y are equal; i.e., Pr(X =Y) = 1.

(4) A is convex, i.e., A{dwy + (1 — Nwa] < AA(wq) + (1 — X) A(ws).

(5) If A; are dependence functions, so is > ., a;A;, where a; > 0 and

(6) Pr (L < w) =w+w(l—w) ’Z/((;”)) [Tiago de Oliveira (1989a)].

A may or may not be differentiable. In the former case, H has a joint
density everywhere; in the latter, H has a singular component, and is not
differentiable in a certain region of its support. The dependence function A(w)
is analogous to the generator of an Archimedean copula discussed earlier in
Section 1.5.

Some Special Cases of A(w)

The mized model: Also known as Gumbel’s type A bivariate extreme-value
distribution, this sets A(w) = fw? — fw + 1 for 0 < 6 < 1. Then,

_ Oy
H=exp|—(z+vy)+ . 5.63
p|—(r+y) oy (5.63)

The logistic model: This sets A(w) = [(1 —w)” + w"]'/" for 7 > 1. Then,
H = exp[—(z" +y")'/"]. (5.64)
The biextremal model: This sets A(w) = max(w, 1 —60w) for 0 < 0 < 1. Then,

H = exp{—max[z + (1 - 0)y,y]}. (5.65)
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The Gumbel model: This sets A(w) = max[l — 6w, 1 —0(1 —w)](0 <O < 1).
Then,
H = exp[—(1 —0)(z + y) — O max(z,y)]. (5.66)

This is essentially the bivariate exponential distribution of Marshall and
Olkin (1967a,b).

5.14.5 Time Series: Autoregressive Models

Joint Distribution of AR Models

Damsleth and El-Shaarawi (1989) considered autoregressive models in which
the “noise” has either (i) a Laplace distribution or (ii) the more commonly
assumed normal distribution. Most of their results are for the AR(1) model
X = ¢ X1 +¢¢ with ¢ having a Laplace or a normal distribution. Damsleth
and El-Shaarawi obtained an expression (an infinite series) for the p.d.f. of
X in the former case (notice that this is not a Laplace distribution). They
then extended this to the joint distribution of X; and X;_j and presented
six contour plots of the resulting p.d.f. (for ¢ = 0.25 and 0.90 and k = 1,5,
and 10).

A Logistic Model

Developing the work of Yeh et al. (1988), Arnold and Robertson (1989) con-
structed a stationary Markov model with logistic marginals as follows. Let
¢; have a logistic distribution (mean = y and scale parameter = o = (v/3/7)
S.d.), XQ = &0, and

Yo — Xy —ologp with probability 3
17\ min(X,) — o log # with probability 1 — £3.

Then, all the X;’s have logistic distributions, and the joint survival function
of X = (Xy —p)/oand Y = (X1 — p) /0 is given by

1+ BeY

i = (1 + ev¥)[1 + max(e*, Be¥)]’

(5.67)

A Pareto Model

Yeh et al. (1988) supposed ¢; to have the following Pareto distribution:
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e/t
Pr(e; >¢e)= |1+ (E) for e > 0.

They then set
X with probability
Xep1 =4 : o
min (37 Xy, ¢41) with probability 1 — 3.

Then, all the X;’s have the same (Pareto) distribution as the ¢;’s. The joint
survival function of X = X; and Y = X4 is

= 1+ o)/
TG ey for 0 < b7y <z

i {[1+<y/0)1”]‘1 for 0 <z =00y

Exponential Models

Several models giving rise to exponential marginals for the X;’s were consid-
ered by Lawrance and Lewis (1980). The qualitative features of the bivariate
distributions of (X, X;41) that are implied are clear from the methods of
construction.

In the model they called EAR(1),

Yo — pX¢ with probability p,
t+l pXt + €441 with probability 1 — p,

with the €’s being exponentially distributed. For a discussion on this model,
also see Gaver and Lewis (1980).
In the model Lawrance and Lewis called TEAR(1),

Y, (1 — a)eg41 + X with probability «,
LT (1 - a)er with probability 1 — a,

with the €’s, as before, being exponentially distributed.
In the model they called NEAR(1),

x, . Jern + BX; with probability «,
i Et41 with probability 1 — «,

with the €’s having a particular mixed exponential distribution that is nec-
essary for getting an exponential distribution for the X;’s.

There have been further developments in this direction by Dewald et al.
(1989) and Block et al. (1988).
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5.15 Limits of Discrete Distributions

It is well known that many of the univariate distributions have their genesis in
the Bernoulli distributions and are obtained as sums or limits. * Marshall and
Olkin (1985a) extended these elementary probability ideas to two dimensions
and obtained a number of bivariate distributions.

A random variable (X,Y) is said to have a bivariate Bernoulli distribu-
tion if it has only four possible values, (1,1), (1,0), (0,1), and (0,0), these
occurring with probabilities p11, p1g, Po1, and pgg, respectively. We also set
P1+ = P11 + P10 = 1 —pot and py1 = p11 + po1 = 1 — p4o in the notation of
Marshall and Olkin.

Many of the bivariate distributions obtained by Marshall and Olkin are
discrete. As this book is concerned only with continuous distributions we only
mention the construction of a bivariate exponential as the limit of a bivariate
geometric distribution, and a bivariate gamma as the limit of a bivariate
negative binomial distribution.

5.15.1 A Bivariate Exponential Distribution

If (X1,Y1), (X2,Y3),. .. is a sequence of i.i.d. bivariate Bernoulli variates and
U and V are the number of 0’s before the first 1 among the X’s and among
the Y'’s, respectively, then U and V each have a geometric distribution in
general but not independent. The bivariate distribution function of U and V/
is given by

v—u—1 :
PooPo1P pr1if0<u<w
Pr(U=uV =0v)={ 10 5F (5.68)
DooP11 if0<u=vw
and
Pr(U > u,V >v) = pgopiy" for 0 <u <w. (5.69)

Now, obtain a bivariate exponential distribution as a limit of this bi-
variate geometric distribution in (5.67): If independent Bernoulli variates
(X1,Y7),(X2,Y3),... are observed at times %, %, ..., then

[nt1] [nta]—[nt1]

Poo Pio if t7 <tg
Pr(U > t1,V > t9) = inta] [mtr]—[nta] - (5.70)
Poo - Pot if t1 > to

provided nt; and nty are not integers, where [a] denotes the integer part of
a. Writing A;; = np;; and passing to the limit, we find

1 Examples are binomial, negative binomial, Poison, and gamma (integer shape parameter).
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lim PY(U >t,V > tg) = exp [—)\10t1 — Xorte — A1 max(tl,tg)] (571)
for t1,t2 > 0. This indeed is the bivariate exponential distribution of Marshall
and Olkin (1967a).

5.15.2 A Bivariate Gamma Distribution

If (X1, Y1), (X2,Y2),... is a sequence of i.i.d. bivariate Bernoulli variates and
(for positive integers r,s) U and V are the number of 0’s before the rth 1
among the X’s and before the sth 1 among the Y’s, respectively, then U and
V' each have a negative binomial distribution in general but one that is not
independent.

The negative binomial distribution obtained in this way has untidy expres-
sions for its probability functions and for its cumulative distribution function,
and we shall not present them here; see Marshall and Olkin (1985b). Proceed-
ing as before, if independent bivariate Bernoulli variates (X1, Y1), (X2, Y2),...
are observed at times 1,2, ... then, on setting Aij = np;;, Marshall and

non’”

Olkin (1985b) showed that

lim Pr(U > t1,V > t3)

n—oo

= Z MGXP —(A11 4 Aot + >\01)t1& exp[—Ap1(ta — t1)™]
il(a —0)!(1 —1)! m!

(5.72)

for 0 < t; <ty and with nt; and nt, not being integers, where the summation
is over those values of a,i,l,m such that r—1>1>7>0,s—1>a > 0, and
s—1—a > m > 0. This distribution has marginals to be gamma distributions
with integer shape parameters r and s, respectively.

5.16 Potentially Useful Methods But Not in Vogue

The methods considered in this section are rather more heavily mathematical-
based differential equation methods, diagonal expansion, and bivariate Edge-
worth expansion, and they are potentially useful but are not in vogue.
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5.16.1 Differential Equation Methods

Karl Pearson derived a family of univariate distributions through the differ-
ential equation
Ldf Tr—a

?% o bo + b1x + b2$27 (573)

where a, by, by, and by are constants. The univariate Pearson family of distri-
butions has been discussed in detail in Chapter 12 of Johnson et al. (1994).

Early efforts to generalize this method to two dimensions were unsuccessful
until van Uven (1947a,b; 1948a,b) succeeded. Note that the left-hand side of

(5.73) is (logf ). Van Uven started with the particular derivatives

dlogh _ Ly
ologn _ 24 (> (5.74)
Jdy T Q2

where h is the joint pdf of X and Y, L; and Ly are linear functions of both z
and y, and @1 and @y are quadratic (or, possibly, linear) functions of both z
and y. On fixing either x or y, it is clear that the conditional distributions of
either variable, given the other, satisfying differential equations of the form
(5.73), belong to the univariate Pearson family. A detailed discussion of the
solutions to the differential equations above has been presented by Mardia
(1970, pp. 5-9). We provide a condensed version of it as follows.
From (5.74), we obtain by a simple differentiation that

2 oL o( Lz
0% logh _ (5-) _ (QQ)’ (5.75)
0xdy oy ox
5L1 OLy  L1Q20Q1 L@y 0Q
Doy TN Ty Q@ or (5.76)

The nature of the solution of (5.75) and (5.76) depends mainly on the
structure of @)1 and @2, and the usefulness of the solution will depend on
their having common factors. If @1 and (2 do not have a common factor,
then X and Y are independent, as shown by Mardia (1970, p. 8). Important
cases are as follows:

Case 1. @7 and Q)5 have a common linear factor.
Case 2. Q1 and Q2 are identical.
Case 3. @5 is a linear factor of @, i.e., Q1 = LQs.

Case 1

The solution has the form

h(z,y) = ko(ax + b)P* (cy + d)P? (@12 + by + ¢1)P3. (5.77)



218 5 Construction of Bivariate Distributions

This family of distributions includes the bivariate beta, Pareto, and
F-distributions and the following two cases:

L(=pg)aPy?? (=1 —z 4+ y)*

h(xz,y) = 5.78

C) = R T T o e o) 7
for p1,ps > —1, (p1 +p2 +p3) < =3,y —1>2 >0, and
I'(— ProP2( 1 — b3

h(z,y) = Cp)ay (71 o +y) (5.79)

L1+ p2)T(1+p3)I'(=p1 — p2 —p3 — 2)

for pa,p3 > —1, (p1 +p2+p3) <=3, z2—-1>y>0.
The last two cases are effectively equivalent, though they are considered
sometimes as distinct types.

Case 2
When @1 = @2, the solution is

h(z,y) = ko(az® + 2bxy + cy® + 2dx + 2ey + co)P. (5.80)

Examples include bivariate Cauchy, t-, and Pearson type II distributions.
The bivariate normal distribution is a limit of Case 2, in which a = ¢ =
—(1=p?)/2,b=p/(1—p%), co=1,d=e=0, ko = (2m/(1 - p*)7!, and

p — 0.
Case 3
When Q1 = LQ-, we get

h(z,y) = ko(ax + b)P(a12 + bry + ¢1)? exp(—cy). (5.81)

This family includes McKay’s bivariate gamma distribution [McKay (1934)].

Remarks

In fact, van Uven considered all possible cases, but other solutions do not
have both marginals of the same form. The system of bivariate distributions
obtained through (5.74) is generally known as the family of bivariate Pearson
distributions. Any member of this family may be called a Pearson type 14
distribution, ¢ = LII,...,VII, if the marginals are type i. For example, the
bivariate ¢t-distribution may be called a bivariate type VII distribution.

In general, the conditional distribution of a member of the family of Pear-
son distributions is a univariate Pearson distribution, though it may not have
the same form as the marginals [Mardia (1970, p. 10)].
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The Fokker—Planck Equation

Another family of bivariate distributions that was constructed from a dif-
ferent equation is due to Wong and Thomas (1962) and Wong (1964). The
differential equation concerned is the Fokker—Planck equation in diffusion
theory given by

0? 0 A Op

@[B(f)l’} - %[ (z)p] = G (5.82)

where p = p(z|zg,t),0 < t < 0o, and the variables are z and ¢ rather than x
and y. A(x) and B(x) are called the “infinitesimal” mean and variance of the
underlying Markov transitional probability density functions; see Chapter 5
of Cox and Miller (1965) for further information and details.

The joint densities h(zg, z) obtained from the conditional densities p form
a family that includes some members of the Pearson system such as the
bivariate normal, type I, type II, and Kibble’s bivariate gamma. The equi-
librium density f(x) = lim;_ o p(x|zo,t) satisfies the Pearson differential
equation (5.82) when A(x) and B(z) are linear and quadratic functions,
respectively, and the latter is non-negative.

The Ali—-Mikhail-Haq Distribution

Refer to Section 2.3 for this distribution and its derivation from a differential
equation [Ali et al. (1978)].

5.16.2 Diagonal Expansion

The diagonal expansion of a bivariate distribution involves representing it
as

dH (z,y) = dF (2)dG(y) Y _ pi&i(z)mi(y). (5.83)
1=0

& and m; are known as the canonical variables and p; as the canonical
correlation. When X and Y have finite moments of all orders, sets of
orthonormal polynomials {P,} and {Q,} can be constructed with respect
to F and G—for example, the Hermite polynomials for normal marginals
and shifted Legendre polynomials for uniform (0, 1) marginals.

If

(5.84)

E[X™Y = y] = a polynomial in y of degree = n
E[Y"|X = z] = a polynomial in z of degree =n [’

then H has a diagonal expression in terms of F' and G and their respective
orthonormal polynomials.
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For given marginals with unbounded supports, it is possible to generate a
new bivariate distribution by selecting a new canonical sequence {p;} with
3 p? < oo such as a moment sequence defined on [0, 1] or [—1, 1]. See Sections
12.4.4 and 12.4.5 of Hutchinson and Lai (1991) for constructing bivariate dis-
tributions with normal and other marginals, respectively. See also Sarmanov
(1970) and Lee (1996) for constructing a bivariate exponential distribution
using this method.

5.16.3 Bivariate Edgeworth Expansion

Let I’ be a distribution function with known cumulants x; and ® be the
standard normal distribution function. The Edgeworth expansion is a repre-
sentation of F' in terms of @ and k;.

The bivariate Edgeworth series expansion is an extension of the univariate
Edgeworth expansion. Briefly, we expand a bivariate density function A in
the series of derivatives of the standardized normal density ¢ such that

D™ D¥
M) =o@in)+ [ (D™ A Py, (589)
m+n>3
where the coefficients A,,, may be expressed in terms of the cumulants of X

and Y, and Dy = 9/0z, Dy = 9/0y.
Similarly, the joint distribution function is expanded as

Dm—l D'n,—l
o) =y + [ (0" 2P o yip). (580

m+n>3

Thus, h is represented as ¢ proportional to a polynomial in x and y, i.e.,
h(z,y) = ¢(z,y) [ amnz™y™. The distribution obtained by considering

m,n
terms up to m + n = 4 has been given by Pearson (1925). This “fifteen
constant” bivariate distribution is also known as the type AA distribution.
Chapter 3 of Mardia (1970) presents a historical account of the bivariate
Edgeworth expansion as well as describing how the type AA distribution was
fitted to Johannsen’s bean data; see also Rodriguez (1983, pp. 235-239). The
type AA distribution was also applied by Mitropol’skii (1966, pp. 67-70) to
the diameters and heights of pine trees.
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5.16.4 An Application to Wind Velocity at the
Ocean Surface

For this special application, we feel obliged to follow quite closely the expla-
nations of Frieden (1983, Section 3.15.9) and Cox and Munk (1954).

Cox and Munk photographed from an airplane the sun’s glitter pattern on
the ocean surface and translated the statistics of the glitter into the statistics
of the slope distribution of the ocean surface; that is, of the joint distribution
of wave slope in the direction of the wind (X) and transverse to the wind
direction (Y"). Conceivably, this could be the basis of a method of measuring
the wind velocity at the ocean surface.

“If the sea surface were absolutely calm, a single, mirror-like reflection of
the sun would be seen at the horizontal point. In the usual case there are
thousands of ‘dancing’ highlights. At each highlight there must be a water
facet, possibly quite small, which is so inclined as to reflect an incoming ray
from the sun towards the observer. The farther the highlighted facet is from
the horizontal specular point, the larger must be this inclination. The width
of the glitter patterns is therefore an indication of the maximum slope of
the sea surface” [Cox and Munk (1954)]. In fact, these authors measured
the variation in brightness within the glitter pattern, rather than computing
maximum slopes from the outer boundaries, and thus obtained more detailed
information.

In choosing a functional form for h(x,y) in this case, two factors considered
are the following:

e The p.d.f. of X should be skewed, as waves tend to lean away from the
wind, having gentler slopes on the windward side than on the leeward side.

e There should be no such skew for the p.d.f. of Y because waves transverse
to the wind are not directly formed by the wind but rather by leakage of
energy from the longitudinal wave motion.

Consequently, the following form of the two-dimensional expansion was
fitted to experimental data:

h(z,y) = f(@)f(y)[1 + cna Hi(x) Ha(y) + asoHs(y) + aos(y)
+0422H2(33)H2(y) =+ 0440H4(.1‘)], (587)

where the H;’s are the Hermite polynomials.

5.16.5 Another Application to Statistical Spectroscopy

As a result of analytical and numerical studies showing that the higher
bivariate cumulants of the relevant variables are quite small, Kota (1984)
concluded that it was meaningful to employ an expansion around a bivariate
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normal density—especially for a bivariate density of importance in statistical
spectroscopy; see also the follow-up work by Kota and Potbhare (1985).

5.17 Concluding Remarks

We have reviewed in this chapter a great many methods of constructing
bivariate distributions and have given examples of contexts in which they
have been used. Most statisticians, hopefully, would have found something
new to them! A particular contribution of this chapter has been the method
of organizing the material. It is not, we admit, an elegant and mathematically
satisfactory scheme, but it is one that we have found somewhat helpful, and
we hope that readers will, too. We first divided methods of construction into
popular methods and a miscellaneous group; the first included conditional
distributions, compounding, and variables in common, and the second was
made up of some inelegant methods, data-guided methods, special methods
used in some applied fields, and some potentially useful methods. Finally,
each of them had their own subdivisions.

By way of a pointer to the possible future development of the subject,
we may remark that, in some areas of statistics, the results that can be
obtained are determined by whether one is clever enough to manipulate
mathematically rather than any real conceptual depth. For instance, suppose
there is a bivariate survival function H,(x,y) and a bivariate p.d.f. ho(61,65).
Then, another bivariate survival function can be obtained by compounding
as [[ Hi(01z,602y)ho(01,02)d01df>. The results obtainable depend on one’s
ingenuity in choosing H; and hs so that the double integration is tractable.
The increasing sophistication and widening availability of packages for com-
puterized algebraic manipulation, such as MACSYMA and REDUCE, gives
hope that this limitation may diminish in the years to come; see, for exam-
ple, Steele (1985), Bryan-Jones (1987), Rayna (1987, pp. 29-31), and Heller
(1991) for more on this. Of course, we can ask why we need to have an ex-
plicit expression for [ [ Hhs. One could say that this itself contains all the
modeling information and that one should be looking to fit this directly to
data.

One can imagine the interfacing of computer algebra packages with those
for model fitting, so that for a given H; and ho, the algebra part solves
the double integral and passes the result to the model-fitting part. Because
the number-crunching is becoming as fast as it is, the double integral could
be evaluated numerically whenever required by the model-fitting package.
Although this discussion has been posed in terms of the compounding method
for constructing distributions, it applies equally well to other methods of
construction as well.
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Chapter 6

Bivariate Distributions Constructed by
the Conditional Approach

6.1 Introduction

6.1.1 Contents

In Section 5.6, we outlined the construction of a bivariate p.d.f. as the product
of a marginal p.d.f. and a conditional p.d.f., h(z,y) = f(2)g(y|z). This con-
struction is easily understood, and has been a popular choice in the literature,
especially when Y can be thought of as being caused by, or predicted from, X.
Arnold et al. (1999, p. 1) contend that it is often easier to visualize conditional
densities or features of conditional densities than marginal or joint densities.
They cite, for example, that it is not unreasonable to visualize that, in the
human population, the distribution of heights for a given weight will be uni-
modal, with the mode of the conditional distribution varying monotonically
with weight. Similarly, we may visualize a unimodal distribution of weights
for a given height, this time with the mode varying monotonically with the
height. Thus, construction of a bivariate distribution using two conditional
distributions may be practically useful.

We begin this chapter by considering distributions such that both sets of
conditionals are beta, exponential, gamma, Pareto, normal, Student ¢ or some
other distributions in Sections 6.2—6.6. Sections 6.7 and 6.8 deal with situa-
tions wherein the conditional distributions and moments are specified. Section
6.9 describes the parameter estimation for conditionally specified models. Sec-
tions 6.10 and 6.11 give brief accounts of specific distributions constructed by
the conditional method such as McKay’s bivariate gamma distribution and its
variants, Dubey’s distribution, Blumen and Ypelaar’s distribution, exponen-
tial dispersion models, four densities of Barndorff-Nielsen and Blasield, and
continuous bivariate densities with a discontinuous marginal density func-
tion. Section 6.12 discusses a common approach where the marginal and
conditional distributions are of the same family. In Section 6.13, we con-
sider bivariate distributions when conditional survival functions are speci-

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 229
DOI 10.1007/b101765_7, (© Springer Science+Business Media, LLC 2009
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fied. Finally, several papers dealing with applications of these models are
summarized in Section 6.14, and, in particular, the fields of meteorology and
hydrology provide several examples.

Arnold et al. (1999) have devoted the bulk of their book to a discussion
of the joint distributions obtained from a specification of both conditional
densities. The present chapter provides in this direction an overview of five
chapters of their important book. For an introduction to the subject of con-
ditionally specified distributions, see Arnold et al. (2001).

6.1.2 Pertinent Univariate Distributions

Definition 6.1. X has an exponential distribution if its density function is
flz)=0e7% x>0, 60>0,
and we denote it by X ~ Exp(6).

Definition 6.2. X has a gamma distribution if its density function is

0 0
f(QT 91 92> _ x91—1e—92x 921 — x—leél log x—0s2 921
o T(6,) T(6,)

for > 0, and we denote it by X ~ I'(61,62).

Definition 6.3. X has a beta distribution if its density function is

f(z) = B0 q)xp’l(l )Tt 0<xz <1, pg>0.

Definition 6.4. X has a beta distribution of the second kind, denoted by
B2(p,q,0), if it has a density function of the form

O'q
B(p,q)

Definition 6.5. X has a Cauchy distribution, denoted by C(u, o), if its den-
sity function is

P Ho4+z)"PH) x>0, p g0 >0.

f(m’a) =

1
TOo (1 + (%)2) 7

Definition 6.6. A random variable T, is said to follow a Student ¢-distribution
if its density function is

fx) =

—oo < x < oo, >0, ureal
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r 1)/2 2\ —(a+1)/2
[+ 1)/2] (1+x> , —oo<x<o0.

1) = ey ' T

Definition 6.7. We say that X has an inverse Gaussian distribution if its
density function is

f(z) = 2 62\/7717726*77190*772171’ x>0,
m

and we denote it by X ~ IG(n1,n2).

Definition 6.8. A random variable has a Pareto type II distribution if its
density function is

—a—1

f(x,a):g(l—kf) , x>0, a,0>0.
o o

This distribution is also known as the Lomax distribution, and it will be

denoted by P(o, @).

Definition 6.9. We say that X has a generalized Pareto distribution (or
Burr type XII), denoted by X ~ GP(o, 0, a), if its survival function is of the

form
5 —
Pr(X>9c):{1+(f_>} . >0

6.1.3 Compatibility and Uniqueness

Tt is well known that if we specify the marginal density of X, f(x), and for
each possible value of x, specify the conditional density of Y given X = z,
i.e., g(y|z), then a unique joint density h(x,y) results.

Suppose now that both the families of conditional distribution of X given
Y and conditional distribution of X given Y are specified. This would result in
over-determining the joint distribution, and so the problem of consistency has
to be resolved. We say that the two conditional distributions are compatible
if there exists at least one joint distribution of (X,Y") with the given families
as its conditional distributions.

Necessary and Sufficient Conditions

A bivariate density h(x,y), with conditional densities f(x|y) and g(y|z), will
exist if and only if [see Section 1.6 of Arnold et al. (1999)]
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L {(x,y) : f(zly) > 0} = {(x,y) : g(y[x) > 0}.

2. There exist a(z) and b(y) such that the ratio J;E;Hg; = a(z)b(y), where

a(-) and b(-) are non-negative integrable functions.
3. [a(z)dx < oco.

The three conditions specified above are necessary and sufficient conditions
for two conditional distributions to be compatible.

Also, the condition [ a(z)dx < oo is equivalent to [[1/b(y)]dy < oo, and
only one needs to be checked in practice.

In cases in which compatibility is confirmed, the question of possible
uniqueness of the compatible distribution still needs to be addressed. Arnold
et al. (1999) showed that the joint density h(x,y) is unique if and only if the
Markov chain associated with a(x,y) and b(x,y) is indecomposable. Gelman
and Speed (1993) have addressed the issue of uniqueness in a multivariate
setting.

6.1.4 FEarly Work on Conditionally
Specified Distributions

One of the earliest contributions to the study of conditionally specified models
was the work of Patil (1965). This was followed by Besag (1974), Abrahams
and Thomas (1984), and then a major breakthrough by Castillo and Galam-
bos (1987a).

6.1.5 Approxrimating Distribution Functions Using the
Conditional Approach

Parrish and Bargmann (1981) have given a general method for evaluating
bivariate d.f.’s that “utilizes a factorization of the joint density function into
the product of a marginal density function and an associated density, per-
mitting the expressions of the double integral in a form amenable to the use
of specialized Gaussian-type quadrature techniques for numerical evaluation
of cumulative probabilities.” See also Parrish (1981).

As mentioned earlier, conditionally specified distributions are authorita-
tively treated in Arnold et al. (1999). Sections 6.2-6.9 summarize some of
their work. For ease of referring back to this source, much of their notation
has been retained here.
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6.2 Normal Conditionals

Bivariate distributions having conditional densities of the normal form and
yet not the classical normal distribution have been known in the literature
for a long time; see Bhattacharyya (1943), for example.

6.2.1 Conditional Distributions

Suppose

X | (Y =y) ~ N(ui(y), 03 (y)) and Y | (X = 2) ~ N (3 (), 02(x)), (6.1)

where B2+ H 2
24+ Hy — Ey*/2
G+ Hx + Ja?
EYIX =) =pe@) = =5 T
and
var(X|Y =y) = 03(y) = =————
C+2Jy—Fy?’
1
oo 200
var(Y|X = z) = o5(x) = Dt Brt P

6.2.2 Expression of the Joint Density

The joint density corresponding to the specification in (6.1) is

1
exp{Q[A + Bz 4 2Gy + Cx? — Dy* + 2Hzxy

1
h(x,y) =
(z,y) N
+2J2%y — Bay® — Fx2y2]}, (6.2)

where A is the normalizing constant so that h(x,y) is a bivariate density.
Equation (6.2) may be reparametrized as

Mmoo Mo1 M02 1
h(z,y) = exp (179%»’52) mip M11 Mi2 Yy ) (6.3)
map MM21 122 y2

where
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moo = A/2, me1 = G, moz = —D/2,
mig = B/Q, mip = .[T[7 mig = —E/2, (64)
Mmoo = 0/2, mo1 = J7 Mmoo = —F/2

6.2.3 Univariate Properties

The two marginals densities are

f(z) =exp {; [2(m20x2 + miox + moo) — u%(w)/a%(x)] } oa(x) (6.5)
and

g(y) = exp {; [2(mo2y® + mory + moo) — 13 (y) /ot (y)] } o1(y).  (6.6)

6.2.4 Further Properties

The normal conditionals distribution has joint density of the form in (6.3),
where the constants, the m;;’s, satisfy one of the two sets of conditions

: 2
(1) maog = mis2 = may; = 0, maog < 0, Moz < 0, M7, < dmoamag or
.. 2 2

(ii) mag < 0, dmasmoy > miy, dmaogmas > ms;.

Models satisfying (i) are classical bivariate normal with normal marginals,
normal conditionals, linear regressions, and constant conditional variances.
Models that satisfy (ii) have distinctively non-normal marginal densities, con-
stant or nonlinear regressions, and bounded conditional variances.

6.2.5 Centered Normal Conditionals

Conditional Distributions

Suppose
X | (Y =y) ~N(0,0¢(y)) and Y | (X = z) ~ N(0,03(2)), (6.7)

where 0%(y) > 0 and 03(x) > 0 are two unknown functions. In fact, these
conditionals are the special case of the normal conditionals in (6.1) with
11 (y) = 0, pa(x) = 0. Or equivalently, the densities can be identified as that
obtainable from (6.3) on setting mp; = mig = mea1 = mia = my; = 0.
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Expression of the Joint Density

The joint density corresponding to the specification in (6.7) is

e = {1 (2) 4 (2) 4o (2) (1))

Univariate Properties

The two marginal densities are

Fw) = b(e)— L e H ()] (6.9)

c
o1V 2T 2 o1
1+c(§1)
and )
1 1 Y
=k(c exp |— — , 6.10
P z p[ 2<02>] o
1+c<0%>
where

Ve
S U(1/2,1,1/2¢)’

with U(a, b, c) being Kummer’s hypergeometric function.

k(c)

Remarks

o1 g2

(%) m ~ N(0,1) and is independent of X.

— c)—4co(c 252 (e "(c
° COI'I'(X2,Y2) == ! 2:51(,)25%C;$§,i:;§2(i)( )7 Where 5(6) = k];((c))

2
(i) 1+¢ (L) ~ N(0,1) and is independent of Y. Similarly,

Applications

Arnold and Strauss (1991) considered 30 bivariate observations of slow-firing
target data and fitted the centered normal conditionals model to them by
using the maximum likelihood method.
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References to Illustrations

Several density surface plots and contour plots of the normal conditionals
and the centered normal conditionals models are given in Sections 3.4 and
3.5 of Arnold et al. (1999). Gelman and Meng (1991) produced graphs of
three bivariate density functions that are not bivariate normal, including a
bimodal joint density.

6.3 Conditionals in Exponential Families

Exponential family. An [;-parameter family of {fi(x;60) : @ € O} of the
form

l1
J1(2;0) = ri(x)B1(0) exp {Z 9iqli(fﬂ)} (6.11)

is called an exponential family of distributions. Here, © is the natural param-
eter space and the ¢1;(x)’s are assumed to be linearly independent.

Let us consider another lo-parameter family of {fa(y;7) : 7 € T’} of the
form

l2
Fa(y;m) = ra(y)Ba(T) exp $ Y Tia25(y) 7 (6.12)
j=1

where 7" is the natural parameter space and the ¢2;(y)’s are assumed to be
linearly independent.

Suppose we are given two conditional densities f(z|y) and g(y|x) such
that f(x|y) belongs to the family (6.11) for some 0 that may depend on y
and g(y|z) belongs to the family (6.12) for some 7 that may depend on x.
Tt has been shown [see Arnold et al. (1999)] that the corresponding bivariate
density is of the form

f(x,y) = ri(@)r2(y) exp{q™ (2) Mq® (y)}, (6.13)
where
aM(z) = (quo(2), q11(2), ..., qu, (2)),
a?(y) = (q20(y), @21 (¥), - - -, ¢21, (1))

with ¢10(z) = ga0(y) =1, and M is an (1 + 1) x (l2 + 1) matrix of constant
parameters. Of course, the density is subject to the usual requirement that

JJ f(,y)dedy = 1.
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6.3.1 Dependence in Conditional Exponential Families

Let ¢ and @® denote @V and q(® having their respective first element
removed. Delete the first row and first column of M and denote the remaining
matrix by M. Then, f(x,y) is TPy if

[@" (z1) — @™ (@2))' M@ (y1) — @® ()] > 0 (6.14)
for every 1 < z9 and y1 < y. Thus, if the ¢i;(z)’s and the gq;(y)’s are
all increasing functions, then a sufficient condition for TPs; and hence for
non-negative correlation is that M >0 (e, my; >0Vi=1,2,...,0,j =
1,2,...,0). If M < 0, then negative correlation is assured. If the ¢i;’s and
g2;’s are not monotone, then it is unlikely that any choice for M will lead to

a TPs density, and in such a setting it is quite possible to encounter both
positive and negative correlations.

6.3.2 Exponential Conditionals

In this case, [y =ly = 1,71(t) = ro(t) =1, t > 0, and ¢q11(t) = go1(t) = —t.

Conditional Distributions

The conditional densities are exponential, i.e.,
X | (Y =y) ~exp[(l + cy/o2)/o1], (6.15)

Y | (X =2) ~expl(l+cx/o1)/o2]. (6.16)

Expression of the Joint Density
The joint density corresponding to the specification in (6.15) and (6.16) is
h(z,y) = exp(moo — migx — mery + mi1zy), >0, y>0. (6.17)

A more convenient parametrization of this joint density is

h(z,y) = k(c)exp SR A , x,y>0, ¢>0, (6.18)

where the constant k(c) is
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k(c) = cexp(—1/¢)

“Ei(1/c) (6.19)

in which Ei() is the exponential integral function, defined by Ei(u) =
— f;o v~te~?dv. [Beware of the lack of standardization of nomenclature and
notation for functions such as this. For computation of this function, see Amos
(1980).] The joint p.d.f. of (6.18) was first studied in Arnold and Strauss
(1988a).

Univariate Properties

The marginal densities are

fz) = k(c) e >0, (6.20)
(o5 1 <1 + %)
k’(C) —y/o
gy) = —————=e V7, y>0, (6.21)

o2 (l-i-%)

which are not exponential in form but X (1 + ¢Y/0o3)/o1 ~ Exp(1) and
Y(1+c¢X/o1)/oa ~ Exp(1).
For o4 = 1, (6.20) reduces to

0 exp(—x)

f=hO—T 0" (6.22)

where k is as defined in (6.19) and similarly for g(y).

Formula for Cumulative Distribution Function

Assuming o7 = 05, H may be written in a compact, though not elementary,

form as
Ei(c™! + 2+ y + cxy)

H = 6.23
Ei(c—1) ’ (6.23)
and
h(z,y) = k(c)e”@Hvtesy) gy >0, ¢ > 0.
Correlation Coefficients
Pearson’s product-moment correlation coefficient is cth(e) k() here k

k(c)[1+c—k(o)]’
is the same function of ¢ as before. This is zero when ¢ = 0, the case of
independence, and it becomes increasingly negative with increasing ¢ until
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it reaches approximately —0.32 at about ¢ = 6 and then gets less negative,
tending slowly to zero as ¢ — oc.

Relation to Other Distributions

For a more general family, see Arnold and Strauss (1987), and for conditions

on the sign of correlation obtainable with such a generalization, one may refer
to Arnold (1987b).

Remarks

e Exponential conditional densities were first studied by Abrahams and
Thomas (1984) and then (independently) by Arnold and Strauss (1988a).
Consequently, it is easy to write down the regression equation; see Inaba

and Shirahata (1986).
o With k as before, the joint moment generating function is

k(c)

M) = A o5 T = oat)k(

_ (6.24)
(1—018)(1—0o2t) )

e The bivariate failure rate is increasing in both x and y, being given by
(with 09 =09 =1)

(1+ ca)(1 + ey)k <(1+cx)c(1+cy)) . (6.25)

e Castillo and Galambos (1987b) have considered the case of Weibull condi-
tionals. Their joint distribution can be obtained through the relationship

(W1, Wa) = (X, Y2).

e The distribution of the product XY was derived by Nadarajah (2006).

Fields of Application

As is often true with the exponential distributions, applications in reliability
studies are envisaged. Inaba and Shirahata (1986) fitted this distribution to
data on white blood cell counts and survival times of patients who died of
acute myelogenous leukemia [Gross and Clark (1975, Table 3.3)], comparing
it with the fit obtained from a bivariate normal distribution.



240 6 Bivariate Distributions Constructed by the Conditional Approach

6.3.3 Normal Conditionals

This was dealt with in Section 6.2. Essentially, the normal conditionals belong
to two-parameter exponential families with I; = ls = 2 and r1(¢) = ro(t) = 1.
Also,

g(1) — g(2) W=\ 1t],
t2

yielding a bivariate density of the form given in (6.3).

6.3.4 Gamma Conditionals

Gamma conditionals belong to exponential families with Iy = 1o = 2, 71 (t) =
1
ro(t) =1, ¢t> 0, and qV(t) = qH(t) = —t
—logt

Conditional Distributions

Suppose
X | (Y =y) ~T'(maog + mazlogy — mary, mig — mi1y + miz logy)
and

Y | (X =2) ~ T(moz2 + mazlogx — misx, mgr — my1x + moy log x).

Expression of the Joint Density

The corresponding joint density function is

1
1
h(z,y) = —expq (1 —z logz) M | y , >0, y>0. (6.26)
y logy

Arnold et al. (1999) have listed six possible bivariate densities with requisite
conditions such that (6.26) is a proper density function. They have been
designated them as Model I, Model II, Model IIIA, Model IIIB, Model 1V,
and Model V.
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Univariate Properties

The corresponding marginal density of X is

1 I‘(77702 + Mmoo logx — m12x)€m00_m10$+m20 logx
flx) =~ >0, (6.27)
T (m01 — mi1x + moy log 1-) 02+ma2 log 1o

and an analogous expression holds for g(y).

Other Conditional Properties

The regression curves are generally nonlinear, and they are given by

Mao + maz logy — ma1y

E(X|Y =vy) =
(X v) mio + mizlogy — mi1y

(6.28)

and

1 _
E(Y|X =) = moz2 + Ma2 l0g X — M2

. (6.29)
mo1 + mey logz — myix

6.3.5 Model II for Gamma Conditionals

Conditional Distributions

Gamma conditionals Model II can be reparametrized so that

X[(Y =) ~T(r, (1 + ey/o2)/or) and ¥ | (X = 2) ~ T(s, (1 + cx/o1) /).
(6.30)

Expression of the Joint Density

The joint density function corresponding to the specification in (6.30) is

krs(c) 1 s T y Ty
h = —————a"" 'y’ == >0
(@,y) U{USF(T)F(s)x vy oy 09 00102 » By ( ’ |
6.31

with 7,5 > 0, 01,090 > 0, and ¢ > 0, with k, s(¢) being the normalizing
constant. r;s > 0 are shape parameters, o; and oo are scale parameters,
and c¢ is a dependence parameter such that ¢ = 0 corresponds to the case of
independence.
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Univariate Properties

The corresponding marginal densities are

kys(c) 1,—
_ 1 5T z/o1 32
f(x) I‘(r)( +cxfoy)” e , x>0, (6.32)
and Era()
c
_ 1 Tyt lemv/o2, 0 6.33
9(y) F(5)( +ey/oz) "y e y>0, (6.33)
with .
c
kr s = ’
#(0) U(r,r—s+1,1/c)
where U ( b, ) is Kummer’s confluent hypergeometric function defined by
Ula,b,2) = gy Jy~ e 7 (L +8)0 e,
Correlation

It can be shown that the covariance is given by
cov(X,Y) = gy103[(r + s)cdr s(c) — s+ dr5(c) — 0253,5(0» (6.34)

where 6, s(c) = 80 log k. s(c).

6.3.6 Gamma-Normal Conditionals

Conditional Distributions

Suppose
X | (Y =y) ~ T(mao + mary + masy®, mig + mary + may?), (6.35)

Y| (X =) ~ N(u(x), 0()), (6.36)

where
mo1 — Mm@ + moy logx

2(—m02 + M2 — Moo log .1?) ’

1 _
0'2(1:) = 5(—m02 + Mio2x — Moo IOgLU) !
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Expression of the Joint Density

The joint density function corresponding to the specification in (6.35) and
(6.36) is
1 1
hz,y) = —exp (1 —x loga) M | y , >0, —co <y < 0.
x

y2

(6.37)
Models

Three models are possible, and they are labeled as Model I, Model II, and
Model ITI by Arnold et al. (1999).

6.3.7 Beta Conditionals

Conditional Distributions

Suppose X | (Y = z) and Y | (X = ) belong to beta exponential families

with 1 1
r(r) = ———=, 7r2(y) = ma

— 1
20 —a) O0<z, y<l1,
qu1(w) =log, g21(y) = logy, qua(x) = log(l —x), gaz(y) = log(1 — y).

Expression of the Joint Density

The corresponding joint density function is

1
h(z,y) = ——————— exp{ma1 log zlog y + m12log zlog(1 — y)
(1 —z)y(l—y)
+meo1 log(1 — ) logy + mas log(1 — x) log(1 — y) + mqg log x
+mag log(1 — x) + mo1 logy + moz log(1 — y) + moo},
for0 <z, y<1, (6.38)
with parameters subject to several requirements, including m;, ¢ = 1,2,

j = 1,2. In order to guarantee integrability of the marginal distributions, we
also require myg > 0, mog, mo1 > 0, mga > 0.



244 6 Bivariate Distributions Constructed by the Conditional Approach
Other Conditional Properties

We have

myo + miy logy + mizlog(l —y)

(m1o + ma2) + (m11 + mo1)logy + (mi2 + ma2) log(1 (— y))
6.39

E(X|Y =y) =

and a similar expression for E(Y|X = x).

6.3.8 Inverse Gaussitan Conditionals

The inverse Gaussian conditionals model corresponds to the following choices
for r’s and ¢’s in (6.13):

ri(z) =272 >0,  roy) =y % y>0,

q1(x) = —x, g1 = —y, q2(z) = —z !, q22(y) = —y~

Conditional Distributions
We have
X | (Y =y) ~IG(mig — mi1y — mizy ™', mag — mary — maoy '), (6.40)

and consequently,

Mooy — M21y — Moy !
E(X|Y =y) = . 6.41
] v) \/mw —muy —mizy ! ( )

A similar expression for Y | (X = z) can be presented.

In order to have proper inverse Gaussian conditionals and guarantee that
the resulting marginal densities are integrable, we require that m;; < 0,7 =
1,2,7 = 1,2. In addition, we require

mio > —24/Mmi1miz, Mag > —2+/M21Mag,
me1 > —2y/miimea1, Moz > —2y/mizmiz.

Expression of the Joint Density

The corresponding joint density function is
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h(z,y) = (wy)_g/Q exp {mufﬂy +mygry '+ moz Ty

1 1

1 — _
+Mo2® Y T — M1 — Mok

—mo1y —mo2y ' +moo}, x,y>0. (6.42)

6.4 Other Conditionally Specified Families

6.4.1 Pareto Conditionals

Conditional Distributions

Suppose
X | (Y =y)~ Ploi(y), @) and Y [ (X = ) ~ P(o1(y), @), (6.43)
where Aoo + Ao1y oo + Ao
o1(y) = m, oa(x) = m (6.44)

Expression of the Joint Density
The joint density function corresponding to the specification in (6.43) is
hz,y) = K (Ao + Aoz + A1y + Adazy) " @, 2,y >0, (6.45)

where \;; > 0, a > 0, and the constant 1/K is expressible in terms of the
Gauss hypergeometric function o F(a, b; ¢; 2).

Univariate Properties

The marginals are not Pareto in form in general. Instead, that are

f(z) = K(Xo1 + /\1133)71(/\00 + Aoz) ™,
9(y) = KMo+ A1y) ™ (Moo + Aory) " (6.46)

Special Case: Mardia’s Bivariate Pareto Distribution

Arnold et al. (1999) have considered three cases involving different constraints
on « and the A’s. A special case in which a > 1, A\1; = 0, and all other \’s
are positive gives rise to a bivariate distribution with Pareto marginals and
Pareto conditionals, with the joint density function
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—(at1)

—1

h(z,y) = 2D (1 L2 y) , (6.47)
0102 01 g9

This special case is the bivariate Pareto distribution introduced by Mardia
(1962).

Remarks

e Pareto conditional distributions are fully covered in Arnold (1987a).

e X is stochastically increasing (SI) or decreasing with Y depending on the
sign of ()\10/\01 — /\00)\11).

e sign(p) = sign(AipAor — AooA11), where p is Pearson’s product-moment
correlation coefficient.

6.4.2 Beta of the Second Kind (Pearson Type VI)
Conditionals

Beta of the second kind is also known as the inverted beta or inverted Dirichlet
distribution.
Conditional Distributions

Suppose
X | (Y =y) ~ B2p, q,01(y)) and Y | (X = 2) ~ B2p,q,02(2)), (6.48)

where o; are as defined in (6.44).

Expression of the Joint Density

The joint density function corresponding to the specification in (6.48) is
xp—lyp—l

(Xo1 + Aoz + Ao1y + Anay)pta

hz,y) =K (6.49)

where the reciprocal normalizing constant .J = K ! is as presented in Table
6.1. It is required that Agp, A11 > 0 and Aqg, Ag1 > 0.
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Table 6.1 Reciprocals of the normalizing constant for beta
of the second kind models

B(p,q)B(p —q,9)

Aoo =0 J= g g y\P—4q
AloA01 A1

g Bp9Bp.g—p)

A =0 a—pyd \p
Ao Ao

B(p,q)? ( 1
Ao0; A11 >0 J=——"—"—>F |ppp+tql——
Ao " Mo ATy 4

Note: Here, 2 F1(a,b;c; z) is the Gauss hypergeometric series.

Univariate Properties

The marginal densities are given by

xpfl ypfl
x , x )
(Ao1 + A112)P(Aoo + A1ox)? 9(9) (Aot + A119)P (Moo + A10y)?

f(x)

Conditional Moments

The conditional moments can be shown to be

B(p+k,q—k) (Ao + Aory g
E(XFY =y) =
S ) B(p,q) Aoo + A1y
B(p+k,q—k) (Ao + o1z F
EY X =x) = ’
7 ™) B(p,q) Aoo + Az

provided g > k.

Correlation Coefficient
The correlation coefficient is such that
Sign(p) = Sign(/\lo)\(n — )\00)\11),

just as in the Pareto case.
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6.4.3 Generalized Pareto Conditionals

The generalized Pareto distribution is also known as a Burr type XII distri-
bution.

Conditional Distributions

Suppose
X[ (Y =y)~GP(o(y),6(y), aly)) and Y | (X = x) ~ GP(7(x),y(x), B(x)).
(6.50)
Expression of the Joint Density
Assuming 6(y) = 0,7(z) = v, two classes of joint densities are obtained
corresponding to the specification in (6.50).
Model I:
h(w,y) =21y 7 A+ A’ + Aay” + A2’y @,y >0, (6.51)
and
Model II:
h(z,y) = 2° 1y " exp {01 + 02 log(05 + 2°) + 05 1log (0 + y7)
+04log(65 +2°)log(0s + ")}, x,y > 0. (6.52)

For Model I, we require A5 < —1 and Ay > 0, A > 0,3 > 0,A4 > 0. For
Model II, we require 05,05 > 0, 65,03 < —1, and 04 < 0.

Univariate Properties

For Model I, the marginal densities are

1
flz) = mm‘s_l()\g + Az®) TH O A+ Aez®) L 2 >0, (6.53)

1
9W) = =¥ Qe+ ") T O+ Ay g >0, (6.54)
Y(=1—=2s)
where we have let a(y) = f(x) = —1 — A5. The marginal densities for Model
IT can be obtained similarly.
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6.4.4 Cauchy Conditionals

Conditional Distributions

Suppose

YV [(X =) ~ Cua(x),02(x)),  o2(z) >0,
XY =y)~C(u(y),o1(y), o1(x) >0. (6.55)

Expression of the Joint Density

Let M = (myj), i,j = 0,1,2, be a matrix of arbitrary constants. Then, two
possible classes are discussed in Arnold et al. (1999).

(i) The class with mgay = 0 leads to an improper distribution
h(z,y) o< (moo + miox + mory + maox® + mozy® + muzy) ="

(ii) The class with mag > 0, in general, has densities that are quite complex.
However, a special case with m1g = mg1 = mq11 = mi2 = mo; = 0 gives

May) = Kmoo + moga? + 717102?/2 + maoga?y? (6.56)
where 1 o -
S (5/04) ,
with « satisfying the relation
2 m3gmds — Miomay .

sin“ o =

)

m3,mg,
here, F'(3/a) is the complete elliptical integral of the first kind, which

has been tabulated in Abramowitz and Stegun (1994, pp. 608-611). The
conditional scale parameters are

Mmoo + Maox? Mmoo + Mmaoy?
os(x) = ———— and o1(y) = — .
mo2 + Mook mo2 + Ma2y

Univariate Properties

The marginals densities are
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1

\/(moo + maox?)(mo2 + maga?) ’

9(y) o 7 ! : (6.57)

(Mmoo + m20y?)(mo2 + ma2y?)

fx)

Transformation

If U =log X and V =logY, then the joint density of U and V is
huv(u,v) o (ae™ Y + Be™ T 4 eV 4 e TY) ! (6.58)

for a, B,v6 > 0.

6.4.5 Student t-Conditionals

Conditional Distributions

Suppose
X (Y = y) ~ pua(g)+or()Te and Y | (X =) ~ pa(w) +02(2) T, (6.59)

where o; > 0, and T, denotes a Student t-variable with parameter a.

Expression of the Joint Density

The joint density function corresponding to the specification in (6.59) is
h(z,y) o (L 2®)M(1y y?) ]~ D72, (6.60)

The location and scale parameters for the conditional densities are given by

p(y) = *% x 28;
) = —5 x 240
and
2y da(y)er(y) = bi(y)
1) daci(y ’
> 4y (y)ér(y) — B (y)
72(w) = 4aci(y
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Univariate Properties

The corresponding marginal densities are

[e1 ()] (@71
[das ()21 (2) — b (a)]o/2

[ea ()]t~ D/2
[4a1(y)er (x) — b3 (y)]*/>

f(z) o

(6.61)

g(x) o (6.62)

6.4.6 Uniform Conditionals

Conditional Distributions

Suppose

X[ (Y =y) ~U(p1(y), 2(y), c <y <d, ¢1(y) < d2(y),
Y |[(X =) ~U@(z), o)), a <z <b, ¢1(x) < tho(x), (6.63)

where ¢ and 1 are either both decreasing or both increasing, and that the two
domains Ny = {(z,9) : $1(y) < = < ¢2(y),c <y < d} and Ny = {(z,y) :
P1(z) < y < Yo(x),a < x < b} are coincident, so that the compatibility
conditions are satisfied.

Expression of the Joint Density

The joint density function corresponding to the specification in (6.63) is

k if (x,y) € Ny

0 otherwise ’ (6.64)

h(z,y) = {

where k! = area of N, = f:[w(x) — Y (x)]de = f:[@(y) — ¢1(y)]dy < o0.

Univariate Properties

The corresponding marginal densities are

[a(z) — 1 (2)], a<z<b,

k
klp2(y) — d1(y)], c<y<d. (6.65)
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6.4.7 Translated Exponential Conditionals

A random variable X has a translated exponential distribution if
Pr(X > ) =e o9 1> aq,

where A > 0 and « € (—00,0), and is denoted by X ~ exp(a, \).

Conditional Distributions

Suppose
X | (Y =y) ~expla(y), Ay)), yesSY), (6.66)

and
Y [(X =) ~exp(B(z),7(x)), =z€S(X), (6.67)

where S(X) and S(Y) denote the supports of X and Y, respectively. For
compatibility, we must assume that

D ={(z,y) s aly) <z} = {(z,y) : B(z) <y} (6.68)

Expression of the Joint Density

The joint density function corresponding to the specifications in (6.66) and
(6.67) is
h(z,y) = exp(d + cx — by — azy), (x,y) € D, (6.69)

where v(z) = az+b, \(y) = ay—c, 8 = a~ !, and d is part of the normalizing
constant.

Univariate Properties

The corresponding marginal densities are

explex + d — (ax + b)5(x)]

fz) = P

, x€8X), (6.70)

and

o(y) = exp[—by +d — (ay — c)a(y)]

. .z e SX). (6.71)

Other Regression Properties

The regression curves are given by
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E(X|Y =y)=a(y) +(ay—o)~", yesS(Y), (6.72)

and
E(Y|X =) =p(x)+ (ax +b)~', zeS(X). (6.73)

6.4.8 Scaled Beta Conditionals

Conditional Distributions

Suppose

Expression of the Joint Density

The joint density function corresponding to the specification in (6.74) is
h(z,y) oc x¥1 71y P21 (1 — g —y)Pa—Lenloezlosy 4y >0 x4y <1, (6.75)

for 61,05,05 > 0, n < 0, except that if n < 0 and 63 > 1,0, and 65 can be
zero, with the support being that part of the unit square wherein x +y < 1,
and 61,05,03 > 0,7 <0.

Univariate Properties

The marginals are not beta in form (unless 7 = 0). The expressions of
the marginal densities are rather complicated; see James (1975). The beta
(Dirichlet) distribution is characterized by being that member of this family
with at least one of the marginals as univariate beta.

Remarks
This is the distribution with both sets of conditional densities (of ¥ given

X =2z and of X given Y = y) beta. It is due to James (1975); see also James
(1981, pp. 133-134).
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Another Distribution

The distribution above interprets the requirement for the conditional distri-
butions to be beta as follows: beta distributions over the range 0 to 1 —x (for
Y) or 1 —y (for X), but with the parameters being functions of x or y.
Instead, we might interpret it as a beta distribution with some particular
distributions with some particular constant exponent but the range being a

function of x or y. Abrahams and Thomas (1984) have shown in this case
T(01+60203) 01 —1 02 1(1 o y)egfl

that the joint density must either be OO0 T(05) ¢
or proportional to (z +y)?* 71 (1 —x —y)? (the support of which is that part
of the unit square wherein z + y < 1 and having uniform marginals).

6.5 Conditionally Specified Bivariate
Skewed Distributions

The development of these models was considered in Arnold et al. (2002).
The basic skewed normal density takes the form

flz,A) =2¢(2)P(A\x), —o0o<a < o0,

where ¢(z) and ®(x) denote the standard normal density and the distribution
functions and where ) is a parameter that governs the skewness of the density.
If X has the density above, we then write X ~ SN(X).

6.5.1 Bivariate Distributions with Skewed
Normal Conditionals

Assume X|(Y =gy) ~ SN(AD(y)) and Y|(X = z) ~ SN(A?)(z)), for some
functions (A()(y)) an ( A2 (x)). Then there must exist densities f(z) and
g(y) such that

h(z,y) = 26(x) (A (y)2)g(y) = 20(y) 2\ (2)y) f (x). (6.76)

Arnold et al. (2002) identified two types of solutions that satisfy the func-
tional equation (6.76):

Type I. (Independence). If X (y) = A and A (z) = \(?)| then

(@) = 20(2)2(\Pz); g(y) = 20(y)2(AVy)

and
h(z,y) = 46(2)d(y) (AN Pz) 2 (A Dy). (6.77)
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The joint density (6.77) is a proper (integrable) model.
Type II. (Dependent case). If (V) (y) = Ay and A®)(z) = Az, then

and
h(z,y) = 2¢(x)P(y) P (Azy). (6.78)
The joint density (6.78) is also a proper (integrable) model.

Univariate Properties

Both X and Y are normally distributed.

Conditional Properties

The expression h(z,y) has skewed normal conditionals. The corresponding
regression functions are nonlinear, with the form

2 Ay
BXY =y) = f it

2 AT
BY|X =z) = ﬁ NiEwvrh

Correlation Coefficient

Pearson’s correlation coefficient is given by
. U(3/2,2,1/2)2)
p(X,Y) = sign(}) x YN
where U(a, b, z) represents the confluent hypergeometric function, defined as

1 oo
U(a,b,z) = @/0 e #eT (1 +t)bmaa,

in which b > a > 0 and z > 0. It can be verified that [p(X,Y")| < 0.63662.
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6.5.2 Linearly Skewed and Quadratically Skewed
Normal Conditionals

Arnold et al. (2002) also considered bivariate distributions having conditional
densities of the linearly skewed normal conditionals. More generally, bivariate
distributions with quadratically and polynomially skewed normal condition-
als were also investigated.

6.6 Improper Bivariate Distributions from Conditionals

Recall that the necessary and sufficient compatibility conditions for two con-
ditionally specified distributions were as follows:

() {(z,y) : f(zly) >0} = {(z,y) : g(ylx) > O}.
(i) f(ly)/g(ylz) = a(2)b(y).

(iii) a(x) in (ii) must be integrable.

An improper bivariate distribution may nevertheless be useful. Arnold et al.
(1999, p. 133) have stated that, “In several potential situations, compatibility
fails because Condition (ii) is not satisfied. Such ‘improper’ models may have
utility for predictive purposes and in fact are perfectly legitimate models
if we relax the finiteness condition in our definition of probability. Many
subjective probabilists are willing to make such an adjustment (they can
thus pick an integer at random). Another well-known instance in which the
finiteness condition could be relaxed with little qualm is associated with the
use of improper priors in Bayesian analysis. In that setting, both sets of
conditional densities (the likelihood and the posterior) are integrable non-
negative densities but for one marginal (prior), and therefore both marginals
are non-negative but nonintegrable. For many researchers, these ‘improper’
models are perfectly possible. All that is required is that f(z|y) and f(y|x)
be non-negative and satisfy (i) and (ii). Integrability is not a consideration. A
simple example (mentioned in Chapter 1) will help visualize the situation.”

Chapter 6 of Arnold et al. (1999) presents several improper bivariate distri-
butions arising from conditionally specified models including certain uniform
conditionals as well as exponential-Weibull conditionals. We refer the inter-
ested reader to this source.

6.7 Conditionals in Location-Scale Families with
Specified Moments

Arnold et al. (1999) have considered conditionals in unspecified families
with specified conditional moments. The discussion is based on the work
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by Narumi (1923a,b), who sought joint densities whose conditionals satisfy

_ (z—aly)) 1
f(ly) =g < ) ) )’ (6.79)
9(ylz) = g2 (yb(i()x)> %x), (6.80)

where a(y) and b(z) are the regression curves and ¢(y) and d(z) are scedastic
curves of X on Y and Y on X, respectively. Two cases have been presented
by Arnold et al. (1999, p. 154) and are discussed below.

Case (i) Linear Regressions and Conditional Standard Deviations
We assume
a(y) = ao + a1y, b(x) =bg+ bz, c(y) =1+ cy, d(z) =1+ dz.

Narumi (1923a,b) has shown that the joint density function in this case must
be of the form

hz,y) = (a+z)P (B +y)P? (v + 012 + d2y)?, x,y > 0. (6.81)

Case (ii) Linear Regressions and Quadratic Conditional Variances

We assume

a(y) = ap + a1y, b(z) = by + byx,

o(y) = V1+ ey +ep?, dz) = V1+diw+dya?,

The joint density function in this case is necessarily of the form

W, y) = (a+ Bayy + 612° + Saay + d3y°) 7. (6.82)
6.8 Given One Family of Conditional Distributions and

the Regression Function for the Other

6.8.1 Assumptions and Specifications

Suppose we are given a family of conditional densities

flzly) = alz,y), =€ S(X), yeSY), (6.83)
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and a regression function
E(Y|X =) =¢(z), z€S(X). (6.84)

Obviously, questions on compatibility and uniqueness of the joint density
arise. Several partial answers to those questions have been provided in the
literature. Here, we simply present the following theorem due to Wesolowski
(1995).

6.8.2 Wesolowski’s Theorem

If (X,Y) is a pair of absolutely continuous random variables with S(X) =

S(Y) = (0,00) and if, for every y > 0, X|(Y =y) ~ P (Cl‘_ti’z,a), where
a>0,a>0b>0 ¢c>0, a> 0, then the distribution is uniquely

determined by E(Y|X = z) =¢(x), z > 0.

Ezample 6.10 (Pareto conditionals). If E(Y|X = z) = %, then
(X,Y) must have a Pareto conditionals distribution. If ¢ = 0, we then have

Mardia’s bivariate Pareto distribution.

Ezample 6.11 (Exponential conditionals). We have
faly) = alz,y) = (y+6)e”@T* 2 >0, (6.85)

with
EY|X =2)=9¢(z), >0,

where exp[— fow(u)du] is a Laplace transform; for example, 1 (z) = (y+z)~!.

6.9 Estimation in Conditionally Specified Models

In this section, we aim to summarize estimation methods used for condi-
tionally specified models. Because of some special difficulties, several of the
techniques are tailor-made for these models. One of the main obstacles is
the presence of the normalizing constant mgg, which is chosen to make the
density integrate to 1. Unfortunately, mgq is often an intractable function of
the other parameters. In some cases, an explicit expression is available; for
example, in the exponential conditionals density and the Pareto conditionals
density.
Chapter 9 of Arnold et al. (1999) has outlined the following methods:

e Maximum likelihood estimate. The maximum likelihood estimate @
of 0 satisfies
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n n

[ 7(X:,Vi:6) = max [ [ u(X;,Y3: 0). (6.86)
i=1 fco ;)

Two examples are presented: (i) Centered normal conditionals distribu-
tion and (ii) bivariate Pareto conditionals distribution. The method works
better when the resulting joint distributions are themselves exponential
families of bivariate densities.

e Pseudolikelihood estimate. The method is due to Arnold and Strauss
(1988b). The technique involves a pseudolikelihood function that does not
involve the normalizing constant. The pseudolikelihood estimate of € is to
maximize the function

n

[1r(xilyi; 0)g(vi|Xi; 6) (6.87)

i=1

over the parameter space ©.

Arnold and Strauss (1988b) have shown that the resulting estimate
is consistent and asymptotically normal with a potentially computable
asymptotic variance. In exchange for simplicity in calculation (since the
conditionals and hence the pseudolikelihood do not involve the normalizing
constant), we pay the price in slightly reduced efficiency. The centered
normal conditionals distribution has been used to illustrate this method.

e Marginal likelihood estimate. It is the unique value of @ that maxi-
mizes the function

H f(Xi;0) H 9(Yi; 0) (6.88)

over the parameter space ©.

Castillo and Galambos (1985) have reported on successful use of this
approach for the eight parameters of the normal conditionals model given
in (6.2).

e Moment estimate. This method is very well known. Assuming 8 =
(01,...,0k), we choose k functions ¢1, ..., ¢y such that

Eg(6:(X)) = g:(0), X = (X,Y), i=1,2...,k (6.89)

We then set up k equations
1 & _ .
gi(8) = 52@()@), with X; = (X;,Y;), i=1,2,...,k  (6.90)
7j=1

and solve for 6. To avoid repeated recomputations of the normalizing con-
stant, Arnold and Strauss (1988a) treated this constant as an additional
parameter 6y and set up an additional moment equation. The following
three examples have been given: (i) exponential conditionals distribution,



260 6 Bivariate Distributions Constructed by the Conditional Approach

(ii) centered normal conditionals distribution, and (iii) gamma condition-
als distribution Model II.

e Bayesian estimate and pseudo-Bayes approach. These two ap-
proaches have been described in Section 9.9 of Arnold et al. (1999).

6.10 McKay’s Bivariate Gamma Distribution and
Its Generalization

We now present two examples of a bivariate distribution where both condi-
tionals and both marginals are specified.

6.10.1 Conditional Properties

Y —x conditional on (X = ) has a gamma distribution with shape parameter
q, and X /y conditional on (Y = y) has a beta distribution with parameters
p and q.

6.10.2 Expression of the Joint Density

The corresponding joint density function is
aPta

I'(p)T'(q)

(i.e., the support is a wedge that is half of the positive quadrant), where
a,p,q > 0. More details on this distribution can be found in Section 8.17.

h(z,y) = Ny —2) e ™, y>z>0 (6.91)

6.10.3 Dussauchoy and Berland’s Bivariate Gamma
Dastribution

This reduces to McKay’s bivariate gamma distribution when a; = ay = 8 =
1. The support is the wedge y > Sx > 0, and the joint density in this case is
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where 1 F} is the confluent hypergeometric function. More details on this
distribution can be found in Section 8.18.

Some Variants of Distribution

We now summarize in Table 8.1 some variations on the theme of Y necessarily
being positive and X necessarily being 0 and y.

Table 6.2 Distributions specified by marginal and conditional

Reference Distribution of Y Distribution of X,
given Y =y
McKay (1934) Gamma Beta over (0,y)
Mihram and Hultquist (1967)| Stacy Beta over (0,y)
Block and Rao (1973) generalized inverted beta*| Beta over (0,y)
Ratnaparkhi (1981)1 Stacy, Pareto, or Beta or log-gamma
lognormal over (0,y)

* Density oc y* (1 + yc)*k.
1 In Ratnaparkhi’s paper, the roles of X and Y were reversed from those here.

6.11 One Conditional and One Marginal Specified

6.11.1 Dubey’s Distribution

Dubey (1970) gave some properties of the distribution constructed by sup-
posing (i) that Y has a gamma distribution, and (ii) conditional on Y =y, X
has a gamma distribution, with constant shape parameter and mean inversely
proportional to y.
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6.11.2 Blumen and Ypelaar’s Distribution

Expression of the Joint Density

The joint density function is

h(w,y) =a®y" ", x,y>0. (6.92)

Univariate Properties

X is uniformly distributed over the range 0 to 1, but this is not true for Y.

Conditional Properties

Conditional on X = x, the cumulative distribution of Y is y*".

Remarks

It seems that the motivation of Blumen and Ypelaar (1980) for constructing
this distribution was to obtain one that is (i) tractable for studying the
properties of Kendall’s tau and (ii) reasonably similar to the bivariate normal
(after appropriate transformations of the marginals).

6.11.3 Exponential Dispersion Models

Jorgensen (1987) studied general properties of the class of exponential disper-
sion models that is the multivariate generalization of the error distribution
of generalized linear models. Although this is outside our scope, we note that
its Section 5 concerns combining a conditional and a marginal distribution,
both being exponential dispersion models, to obtain a higher-dimensional
exponential dispersion model.

We may add that in the Discussion of Jgrgensen’s (1987) paper, Seshadri
(1987) has mentioned obtaining a bivariate exponential dispersion model with
gamma marginals.
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6.11.4 Four Densities of Barndorff-Nielsen
and Blesild

We note that, in the course of studying reproductive exponential models,
Barndorff-Nielsen and Blaesild (1983) wrote out four examples of bivariate
densities constructed by the conditional approach:

Table 6.3 Four densities of Barndorff-Nielsen and Blaesild

Distribution of X [Distribution of Y given X = z|Example no.
Exponential Inverse Gaussian 1.1
Inverse Gaussian | Normal 4.1
Inverse Gaussian | Inverse Gaussian 4.2
Inverse Gaussian | Gamma 4.3

The inverse Gaussian/inverse Gaussian example is also considered by
Barndorff-Nielsen (1983, pp. 306-361), who remarked that a special case of
it (with two of the four parameters being zero) can be said to be bivariate
stable of index (%, %), as when a sample of size n is taken, the distribution
of (n™2Y x;,n~*>_y;) is the same whatever n is.

6.11.5 Continuous Bivariate Densities with a
Discontinuous Marginal Density

The conditional approach was used by Romano and Siegel (1986, Section
2.15) to construct (for the fun of it!) a continuous distribution, and ¥ (con-
ditional on X = z) has a normal distribution with mean 1/x and constant
variance. The density is 0 for < 0 and is proportional to exp[fxf%(yf:c*)ﬂ
for z > 0. Romano and Siegel then showed that h(z,y) is continuous every-
where in the plane, but the marginal density f(z), with its jump at = 0, is
not continuous.

Also, Clarke (1975) considered a joint density being proportional to
|z| exp[—(|z| + 2%y*/2)], which is continuous. The marginal density of X
turns out to be e~!*1/2 if & # 0 but is 0 if z = 0. This example is also in
Székely (1986, pp. 216-217). Clarke also constructed an example in which
h(z,y) is continuous everywhere but f(x) is nowhere continuous.
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6.11.6 Tiku and Kambo’s Bivariate
Non-normal Distribution

Expression of the Joint Density

The joint density function is

1 1 po1 }2
hz,y) =C—F———=exp |~ 75— — 1 — —(y —
) kofo3(1 — p?) ’ [ 20%(1 - p?) { s, = p2)

x{1+(y“2)2}_p : (6.93)

2
kos

where C' is the normalizing constant.

Conditional Properties
X given Y = y is normally distributed. More explicitly, it is the conditional

distribution that is associated with the bivariate normal density with corre-
lation coefficient p and marginal means 1, 12 and marginal variances o7, o3.

Univariate Properties

Y has a Student t-distribution with density

o(y) <ko§>1/2{1+(?‘”‘2)2}_p,

ko3
where k = 2p — 3 and p > 2.
The marginal distribution of X is unknown, however.
Moments

Let 11;; be the cross-product central moment of order i + j; all odd order
moments are zero, and the first few even order moments are as follows:
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Derivation

Tiku and Kambo (1992) derived this distribution by replacing one of the
two marginal distributions in a bivariate normal by a symmetric distribution
(related to the t-distribution), resulting in a symmetric bivariate distribution.

Remarks

For the estimation of parameters of this model, one may refer to Tiku and
Kambo (1992).

6.12 Marginal and Conditional Distributions of the
Same Variate

For bivariate distributions, it is common to combine marginal and/or condi-
tional densities to describe the joint density h(z,y). It is well known that,
given the marginal density f(z) of X and the conditional density g(y|z) of
Y given X = z, there exists a unique joint density h(z,y) = f(x)g(y|z). We
have devoted the major part of this chapter to discussing bivariate distribu-
tions when both conditional densities are specified. This section describes a
different kind of conditional specification.

A paper that is different is that of Seshadri and Patel (1963), which gave
some theoretical results on the extent to which knowledge of the marginal
distribution of one variate together with knowledge of the conditional dis-
tributions of the same variate serves to determine the bivariate distribution.
Can we characterize the joint density if we are given one marginal density, say
f(x), and the “wrong” family of conditional densities; i.e., f(x|y), y € S(Y)?
The answer to this question is “sometimes.” We now explore this problem in
a general setting. Suppose we are given two functions, u(x) and a(z,y), and
we ask ourselves whether there exists a compatible distribution for (X,Y)
such that

f(z) =u(x), VzeS(X), (6.94)
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and, for each y € S(Y),

f(zly) = a(z,y), VYze S(X). (6.95)

We may also ask when there is such a compatible joint distribution that is
unique.

It is evident that w(z) and a(z,y) will be compatible if there exists a
suitable density for Y, say w(y), such that

u(z) = / a(z,y)w(y)dy, Vze S(X). (6.96)
S(Y)

Thus, u(x) and a(x,y) are compatible if and only if u(z) can be expressed as
a mixture of the given conditional densities {a(z,y) : y € S(Y')}. Uniqueness
of the compatible distribution h(z,y) = w(y)a(x,y) will be encountered if
and only if the family of conditional densities is identifiable.

6.12.1 Example

Arnold et al. (1999) presented an example with
a(z,y) =ye ™, x>0,

and
u(r,y)=(1+2)"2 >0

It can be verified that these are indeed compatible with the density of Y
given by
wly) =e¥, y>0.

Identifiability of the family {ye=*¥, xz,y > 0} may be verified by using the
uniqueness property of Laplace transforms, and consequently there is a unique
joint density corresponding to the given a(x) and u(z,y), given by

h(z,y) = ye VY 2y > 0.

6.12.2 Vardi and Lee’s Iteration Scheme

Suppose now that a(z) and u(z,y) are given. How can we identify in general
the corresponding mixing density w(y)? Vardi and Lee (1993) provided an
iterative scheme for this purpose.

Let wg(y) be an arbitrary strictly positive density defined on S(Y"). For
n=0,1,..., define
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a(z,y)u(x)
Wnt1(y) = wn(y) / dx. (6.97)
- S(X) fs(y) wn(y')a(x,y")dy’
Vardi and Lee (1993) showed that the iterative scheme in (6.97) will always
converge. If a(x) and u(z, y) are compatible, it will converge to an appropriate
mixing scheme w(y).

6.13 Conditional Survival Models

So far, we have discussed only conditionally specified bivariate distributions
in terms of conditional density functions in which one of them belongs to a
particular parametric family, whereas the other belongs to a possibly different
parametric family. In the context of bivariate survival models, it is more
natural to condition on component survivals (i.e., on events such as {X > x}
and {Y > y}) rather than conditioning on a particular value of X and Y. The
question of compatibility will spring to our mind immediately, but this has
been answered in Arnold et al. (1999) as follows, Two families of conditional
survival functions

Pr(X > z|Y > y) = a(z,y), (x,y) € S(X)xSY),
Pr(Y > y|X > z) =b(z,y), (z,y)e€ S(X)xS(Y), (6.98)

are compatible if and only if there exist functions u(z) € S(X) and v(y) €
S(Y) such that

a(z,y) _ u(z) (z,y) € S(X) x S(Y), (6.99)

where u(x) is a one-dimensional survival function. We now present two ex-
amples of distributions characterized by conditional survival.

6.13.1 Exponential Conditional Survival Function

Conditional Properties
Suppose
Pr(X > z|Y >y) = exp[—0(y)z], =,y >0,

and
Pr(Y > y|X > x) = exp[—7(2)y], z,y >0,

where 0(y) = a+ vy and 7(z) = § + yz.
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Expression of the Joint Survival Function

In this case, we have as the joint survival function

H(z,y) = exp(d+ax+pLy+vyzy), 6 > 0,«, >0, v <0, af > —v. (6.100)

Reparametrizing in terms of marginal scale parameters and an interaction
parameter, we have

H(z,y) = exp [— (;1+y+9 i )] .y >0, (6.101)

g2 0102

where 01,00 > 0 and 0 < # < 1. This is indeed Gumbel’s type I bivariate
exponential distribution, discussed in Section 2.10.

6.13.2 Weibull Conditional Survival Function

Conditional Properties

Suppose
Pr(X > alY > y) = exp{[—a/o1 ()]}, 2y >0,

and
Pr(Y > y|X > x) =exp{[-y/o2(x)]?}, z,y >0,

where o1 (y)" = (o +~y?2)~! and o9(x)" = (8 + ya?1) L.

Expression of the Joint Survival Function

In this case, we have as the joint survival function

e e (2 (20 (3 @)} oo
(6.102)

where 01,09 > 0 and 0 < 0 < 1. If ;3 = 79, then (6.101) reduces to Gumbel’s
bivariate exponential distribution in (6.100).



6.14 Conditional Approach in Modeling 269

6.13.3 Generalized Pareto Conditional
Survival Function

Conditional Properties

Suppose
Pr(X > zlY >y) =1+ (z/01)"] ", ,y>0,

and
Pr(Y > y|X > ) = [1+ (y/o2)2] ", z,y>0.

Expressions of the Joint Survival Function

Two solutions are possible for the joint survival function, and they are as
follows:

B 2 c1 y ca z c1 y coq —k
Ho,y) - [1+ () n () 1o () () ] L2y >0,
o1 02 a1 02
(6.103)
for positive constants ¢y, ca, 01,02,k and 6 € [0, 2], and

H(z,y) = exp {—91 log [1 + ([%1)1} — 6, log [1 + (%)2}
—05log [1+ (U—)} log [1+ (g)}} 2,y >0, (6.104)

for 1 > 0,05 > 0,03 > 0,01 > 0,09 > 0,c1 > 0,c9 > 0.
The bivariate generalized Pareto distribution in (6.103) was first discussed
in Durling (1975).

6.14 Conditional Approach in Modeling

6.14.1 Beta-Stacy Distribution

Mihram and Hultquist (1967) discussed the idea of a warning-time variable,
X, for Y =the failure time of a component being tested, where 0 < X < Y.
A bivariate distribution was proposed, with Y having Stacy’s generalized
gamma distribution and X, conditional on Y = g, having a beta distribution
over the range 0 to y. The resulting joint density is given by

¢l

e mxp—l(y _ x)q—lybc—p—q eXp[—(y/a)c] (6.105)

h(z,y)
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if 0 < x < y and is 0 otherwise.
Pearson’s product-moment correlation coefficient is

p?var(Y)

v (6.106)

where var(X) is related to the moments of Y by

_ pp+1EY?)  pEY)P
W) = et ) R (6.107)

and the moments of Y are given by
EY")=aT[(bc+7r)/p]/T(b) for r/c>—b (6.108)

and are undefined otherwise.

The generation of random variates from this distribution is straightfor-
ward.

Setting ¢ = 1 and bc = p + ¢, we obtain McKay’s bivariate gamma distri-
bution.

6.14.2 Sample Skewness and Kurtosis

Shenton and Bowman (1977) considered the joint distribution of the sample
skewness and kurtosis statistics. It is well known that, in sampling from a
normal population, the distributions of v/b; (= mg/mg/z) and by (= my/m3)
are individually well approximated by Johnson’s Sy distribution, but little
consideration has been given to the joint distribution (m; being the jth
sample central moment). When Shenton and Bowman conducted extensive
simulations of (v/by,bs), they found that the distribution of \/b; is unimodal
for small by but becomes bimodal for large bo—provided n is not too large (as
n — 00, s0 v/b; becomes unimodal, whatever by might be). Their approach
to the bivariate distribution was to use Sy for the marginal distribution of
/by and a conditional gamma density for b, given the value of v/b;. That is,

h(V/b1,b2) = w(v/b1)g(ba|V/b1), (6.109)

where w is the density of Sy, and the gamma density ¢ is written in terms
of by — 1 — by since the constraint by > 1+ by applies to the relative values of

b2 and \/E7
k

[k(by — 1 —b1)]" Lexp[—k(by — 1 —by)], (6.110)
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in which 6 is a quadratic in v/b;. This work has also been described in Section
7.7 of Bowman and Shenton (1986).

6.14.3 Business Risk Analysis

We summarize here the work of Kottas and Lau (1978). The subject is risk
analysis in business, by which is meant determining the stochastic charac-
teristics of secondary variables such as profit Z from (i) the stochastic char-
acteristics of primary variables such as sales volume @, unit price P, unit
variable cost V', and fixed cost F' and (ii) a functional relationship such as
Z = Q(P — V) — F. The starting point of Kottas and Lau is:

e Emphasis has traditionally been on estimating the individual stochastic
characteristics of the primary variables, with their interdependencies being
neglected.

e Even when some attempt has been made to model the dependencies, this
has often been done in an unsatisfactory way; for example, by merely
specifying a correlation coefficient.

Kottas and Lau reviewed the shortcomings of the product-moment cor-
relation as a measurement of dependence, the specific one is imposing on a
model when making a simple and apparently harmless assumption such as
bivariate normality or lognormality and the impracticality of obtaining sub-
jective estimates of higher moments if a more general bivariate distribution is
permitted.

The alternative that they suggested is what they call a “functional ap-
proach,” and it consists of getting the dependencies of E(Y') and var(Y') on x
correctly specified. In principle, this might be extended to higher conditional
moments but in practice the shape of the conditional distribution of Y is
assumed to be independent of z, only the mean and the spread being allowed
to change.

To a statistical audience, the points made by Kottas and Lau may seem
uncontroversial and hardly worth saying, but it is a well-written article and
it brings home the necessity in model construction to always stay closely in
touch with what is practical.

6.14.4 Intercropping

This refers to growing two crops simultaneously on the same area of land and
harvesting and processing them separately. Mead et al. (1986) have stated,
“Amid all the other justifications of the practice of intercropping, the ben-
efit of ‘stability’ is a recurring theme. However, the concept of stability is
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variously and poorly defined, and the attempts to express the stability in
the quantitative terms have been statistically unconvincing.” Their paper is
chiefly about refining the notion of stability, which they do in terms of the
relative risks associated with intercropping and monocropping systems.

The data analyzed by Mead et al. (1986) consisted of financial returns
obtained by (i) intercropping sorghum with pigeonpea and (ii) monocrop-
ping sorghum at 51 site-year combinations in India (7 years, 11 areas, many
combinations omitted). A scatterplot of the 51 points reveals:

e a strong correlation between the returns of the two cropping systems;

e a higher average return with intercropping; and

e suggestions in the shape of the scatter that the relationship between the
two returns is curvilinear and heteroscedastic.

Mead et al. (1986) suggested it was appropriate to quantify the relative
risks of the two cropping systems by plotting the risk of “failure” under each
system against each other, as the definition of failure varies. In other words,
plot Pr(Y < t) against Pr(X < t) for various levels of ¢. For a dataset of 51
points, that can be done satisfactorily directly from the data points.

However, partly to understand their dataset better and partly to provide
an approach that would be more satisfactory for lesser amounts of data (given
that it had been validated on larger datasets), Mead et al. (1986) went on to:

e fit a bivariate distribution to their scatter of points; and
e calculate a smooth risk vs. risk curve from that distribution.

The approach chosen was (i) to fit a normal distribution to the sum of the
returns (S = X 4+Y) from the two systems and (ii) to assume the conditional
distribution of the difference in returns between the two systems had a normal
distribution also, with the mean and the logarithm of the variance having a
quadratic dependence on S. Mead et al. (1986) have presented a contour plot
of the resulting distribution.

This method of analysis was repeated on four other datasets that had
resulted from intercropping sorghum with various second crops.

6.14.5 Winds and Waves, Rain and Floods

Height and Period of Waves of the Sea

A good deal of empirical data have been published on the joint distribution
of wave height and period.

Haver (1985) approached some data collected off northern Norway from
the conditional point of view:

e The distribution of wave height X that was chosen was an unusual one,
being lognormal for small X and Weibull for large X.
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e Given X = x, the “spectral peak period” T was assumed to have a log-
normal distribution.

Haver did not assume a functional form for the dependence on X of the
parameters of the distribution of T'; instead, for each of several ranges of
X, the mean and variance of logT were estimated. In Haver’s Figure 10,
expressions are given for how these are related to X. However, because the
expressions are quite messy, in addition to the marginal distribution of X, an
explicit formula for the joint distribution of X and T would be grotesquely
cumbersome.

Another study of this type was Burrows and Salih (1987). These authors
took X to have a Weibull distribution and the conditional distribution of T’
to be either Weibull or lognormal; it seems that the Weibull distribution was
used in shifted form (i.e., three-parameter form). They fitted these and other
distributions to data from 18 sites around the British Isles.

For data from the North Sea, Krogstad (1985) took X to have a Weibull
distribution and the conditional distribution of T" given X to be normal, with
constant mean and variance inversely proportional to X.

Myrhaug and Kjeldsen (1984) analyzed data from the North Sea with re-
gard to the joint distribution of the wave height and several other variables—
crest from the steepness and period, also assumed to have Weibull distribu-
tions. The conditional distributions of vertical asymmetry factor and total
wave steepness, in contrast, were taken to be lognormal.

Wind Speeds

It is of interest in the wind energy industry, as mentioned by Kaminsky
and Kirchhoff (1988), to estimate the energy available from the wind energy
conversion systems at one height from data collected at a lower height.

It is a common practice to assume the wind energy speed has a Rayleigh
distribution. In modeling the joint distribution of wind speeds at two heights,
Kaminsky and Kirchhoff therefore required the marginal distributions to have
this form, at least roughly. In fact, they considered two alternatives:

e X has a Rayleigh distribution and Y has a Rayleigh distribution with an
origin at Y = z and a constant scale factor. So, Pr(Y < X) = 0 for this
model.

e X has a Rayleigh distribution and Y has a normal distribution with mean
a + bx and a constant variance.

Kaminsky and Kirchhoff (1988) presented an empirical contour plot of the
bivariate distribution of wind speeds—at heights of 32 ft and 447 ft at a site
in Waterford, Connecticut—along with contour plots of the two distributions
that had been fitted to the data. The Rayleigh-normal distribution appeared
to be a better fit than the Rayleigh-shifted Rayleigh distribution (but it does
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have two more parameters). The use of the symbolic algebra software package
MACSYMA to obtain expressions for the marginal distributions of Y in the
two cases was a further feature of interest in this study.

Wind Speed and Wave Height

Liu (1987) was concerned with the joint distribution of wind speed X and
wave height Y on the Great Lakes of North America. Here, Y| X was taken
as a gamma distribution; separately, the use of (i) empirically obtained
equations connecting the parameters of this to wind speed, together with
(ii) a histogram of wind speeds were used for the calculation of the joint
distribution.

Storm Surge and Wave Height

In a study by Vrijling (1987) regarding the Dutch dikes, a part was played by
the joint distribution of the storm surge level of the sea and the significant
wave height, with the assumptions that:

e The storm surge level X has an extreme-value distribution; that is, F'(z) =
exp[—e~ @)/t

e Given X, wave height is normally distributed, with mean dependent on X
and constant variance.

Floods

Correia (1987) has considered the duration and peak discharge of floods of a
river. He supposed that:

e Flood duration is exponentially distributed.
e For a given duration, the peak discharge has a normal distribution whose
mean is a linear function of duration and whose variance is a constant.

Streamflow and Rain

Clarke (1979, 1980) used McKay’s distribution (Section 6.9) with X = annual
streamflow and Y = real precipitation. The justification was that

e With McKay’s distribution, X,Y, and Y — X (= evaporation) all have
gamma distributions, this being a popular univariate choice in hydrology.

e Y > X is reasonable on physical grounds (for watertight basins with little
over a year storage).
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The motivation for Clarke’s work was that X is the variable of chief interest,
but there were often only a few years of data available for it, with the records
of Y being more extensive.

Rain

e According to Etoh and Murota (1986), a rainstorm can be adequately de-
scribed by three characteristics: duration X, maximum intensity Y, and
total amount Z. Further, it can be assumed that Z o XY/2. Conse-
quently, two random variables suffice. Etoh and Murota made the following
assumptions:

— X has a gamma distribution.

— Y =nX®, where n has a gamma distribution and «a is a constant (and
0 < a < 1, reflecting a less than proportionate increase of maximum
intensity with duration).

Etoh and Murota had some empirical data from Osaka and some results
published by Cérdova and Rodriguez-Iturbe (1985) for Denver (Colorado)
and Boconé (Venezuela). They found that the shapes of the univariate
distributions and the values of the correlation coefficients could be ap-
proximately reproduced by judicious selection of the parameters of their
model.

e Sogawa et al. (1987) were concerned with (i) the annual rainfall and (ii) the
annual maximum daily rainfall, each at four places in Nagano prefecture,
Japan. In both cases, they used a quadrivariate conditional maximum-
entropy distribution.

e The method adopted by Snyder and Thomas (1987) was not exactly
that of conditional distributions, but here is a good place to summa-
rize it. The subject was agriculture-related variates, such as monthly
rainfall and monthly average temperature. After univariate transforma-
tions, Snyder and Thomas (1987) used “a form-free bivariate distribution
based on two-dimensional sliding polynomials,” which they found to be
“necessary to model the bi-modal and heavy-tailed distributions frequently
encountered.”
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Chapter 7
Variables-in-Common Method

7.1 Introduction

The terms “trivariate reduction” or “variables in common” are used for
schemes for constructing of pairs of r.v.’s that start with three (or more)
r.v.’s and perform some operations on them to reduce the number to two.

The idea here is to create a pair of dependent random variables from three
or more random variables. In many cases, these initial random variables are
independent, but occasionally they may be dependent—an example of the
latter is the construction of a bivariate t-distribution from two variates that
have a standardized correlated bivariate normal distribution and one that has
a chi-distribution. An important aspect of this method is that the functions
connecting these random variables to the two dependent random variables
are generally elementary ones; random variate generation of the latter can
therefore be done as easily as for the former.

Different authors have used the terms in slightly different ways. A broad
definition of variables in common (or trivariate reduction) is

X = Ty(X1, X2, X3) } (7.1)

Y = Th(X1, X, X3)

where X7, X5, X3 are not necessarily independent or identically distributed.
A narrow definition is

X =X1+X3

Y =Xo+ X5 }’ (7.2)
where X1, X5, X3 are i.i.d. Another possible definition is

X =T(X1,X3)

Y = (X, Xs) (7.3)
N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 279
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with (i) the X; being independently distributed and having d.f. Fy(z;; ;)
and (ii) X and Y having distributions Fy(z; A1 + A2) and Fy(y; A1 + A3),
respectively.

Three well-known distributions obtainable in this way are (a) the bivari-
ate normal, from the additive model in (7.2), with the X;’s having normal
distributions; (b) Cherian’s bivariate gamma distribution, also from (7.2) but
with the X;’s having gamma distributions; and (c¢) Marshall and Olkin’s bi-
variate exponential distribution from (7.3), with the transformation 7' being
the minimum and the X;’s having exponential distributions.

We first present a general description of this method in Section 7.2. In Sec-
tion 7.3, we describe the additive model, while the generalized additive model
is explained in Section 7.4. Models arising from weighted linear combinations
of random variables are discussed in Section 7.5. In Section 7.6, bivariate dis-
tributions of random variables having a common denominator are detailed.
In Sections 7.7 and 7.8, multiplicative trivariate reduction and Khintchine’s
mixture forms are discussed. While transformations involving the minimum
are explained in Section 7.9, some other forms of the variables-in-common
technique are discussed in Section 7.10.

7.2 General Description

Let X; (i = 1,2,3) be three independent random variables with distribution
functions Fj(x;;A;). The Fj’s are often assumed to be the same, but the
parameters \; may be different. Suppose there exists a function 7" such that

X =T(Xy, Xs) } (7.4)

Y =T (X2, X3)

Then, X and Y are said to have a bivariate distribution generated by a
trivariate reduction technique. Pearson (1897) generated the bivariate normal
distribution in this way and Cherian (1941) the bivariate gamma.

More generally, let us define

X =Ti(Xy,...,X,)
Y =To(X1,...,Xn) |’ (7.5)
where X and Y have one or more X;’s in common and the X; (i = 1,2,...,n)

may not be mutually independent. The structure of T is obviously important,
but consider only a simple transformation of the X;’s. Usually, the X;’s will be
mutually independent, but occasionally they will be allowed to be dependent.

The following example, taken from Section 6 of Sumita and Kijima (1985),
is from the field of production engineering. Suppose a machine is alternately
producing items or being maintained. Let a period of useful production (of
length X3) followed by a maintenance period (of length X;) be referred to as a
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cycle (of length X7+ X3). The cost incurred during a cycle consists of running
costs during the production period (which are proportional to the length of
the production period, X3) and of such things as parts for maintenance (a
random variable, X5). Then, we have the length of cycle X = X; + X3 and
the total cost Y = X5 + ¢X3. Sumita and Kijima assumed X7, X5, and X3
have exponential distributions.

An example from the field of geotechnical engineering is that in determin-
ing the probability of failure of a slope, comparison of the total force resisting
sliding with the total force tending to induce sliding is required. These have
variables in common, such as the weight of the block of rock, its angle to the
horizontal, and forces due to water pressure in a tension crack; see Frangopol
and Hong (1987).

An example motivated from plant breeding is the following. Suppose we
are interested in the true values of a particular characteristic, but we can
only observe Y = X + ¢, where € is an error term. What is the distribution
of X within the population selected by the requirement that Y > y? For the
case of ¢ being normally distributed, see Curnow (1958).

Another form of variable in common may occur in a reliability context
when two components may be subjected to the same set of stresses, which
will invariably affect the lifetimes of both components.

7.3 Additive Models

7.3.1 Background

The first model we consider is
T(X1,X3) = X1 + Xs. (7.6)

The X;’s are usually taken to come from the same family of distributions; it
may happen that the family is closed under convolution (i.e., the sum X; + X3
also belongs to the same family of distributions).

As mentioned in Section 7.2, Pearson (1897) obtained the bivariate normal
using the trivariate reduction technique. In his well-known dice problem,
Weldon first constructed a bivariate binomial distribution using (7.2), with
the X;’s being independent binomial variables.

Cherian (1941) and David and Fix (1961) obtained a bivariate gamma
distribution in the same manner. Let X = X; 4+ X3,Y = X5 + X3, where the
X,’s are independent gamma variables with shape parameters \;. Then, the
joint density of X and Y is a bivariate gamma density.

Eagleson (1964) used a particular additive model in which the sums and
the X;’s belong to the same family of distributions to obtain a class of bivari-
ate distributions whose marginals are members of Meixner classes, defined
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in Section 7.3.2; see also Lancaster (1975, 1983). Meixner’s collection of dis-
tributions have often appeared in characterization theorems because of their
regression properties. Some of these characterizations and properties have
been discussed by Lai (1982). The Meixner collection of distributions has
also appeared in Morris (1982, 1983). We now give a brief account of the
Meixner classes of bivariate distributions.

7.3.2 Meixner Classes

Suppose that X is a centered (i.e., with zero mean) random variable possess-
ing a moment generating function with distribution function G, on which can
be defined an orthogonal polynomial system { P, }, where P, (x) = 2"+ terms
of lower order, such that f P, P,dG = 0,,nby,. Here, 0., is the Kronecker
delta and by, is a normalizing constant. Meixner (1934) considered these dis-
tributions, for which the generating function for their orthogonal polynomials
is of the form

o0

K(z,t) =Y Pu(2)t"/n! = explzu(t)]/Mu(t)], (7.7)

n=0

where
u(t) =t + possibly terms of higher powers of ¢

is a real power series in ¢t and M(:) is necessarily the moment generating
function.

It has been shown by Meixner (1934) [see also Lancaster (1975)] that there
are precisely six statistical distributions for which (7.7) is satisfied, and they
are:

positive binomial,
normal,

Poisson,

gamma (transformed),
negative binomial, and
Meixner hypergeometric.

The first five are in common use, while the last distribution has been dis-
cussed in diverse literature.

Eagleson (1964) showed that if X;’s belong to the same Meixner class and
if they are mutually independent, then X and Y obtained by (7.2) also belong
to the same Meixner class, and their joint distribution function satisfies the
biorthogonal property

dH (z,y) = dF(x)dG(y) Y puPu(@)Pa(y). (7.8)
n=0
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Correlation

It is easy to see that the correlation coefficient of X and Y in the additive
model is given by
var(X3)

\/V&I'(Xl + XQ)V&I'(XQ + Xg) ’

which is always positive. It follows at once that we cannot obtain bivari-
ate distributions with negative correlations with such a scheme; independent
marginals can only be obtained by letting (X3 = a constant) be included in
the family. The values X and Y obtained in this way will have linear regres-
sion on each other. This is a consequence of a theorem of Rao (1947), which
was restated in Lancaster (1975); see also Eagleson and Lancaster (1967).

(7.9)

7.3.3 Cherian’s Bivariate Gamma Distribution

Let X = X1+ X3,Y = Xo+ X3, with X;’s being independent standard gamma
random variables having shape parameters «;. In his derivation, Cherian
(1941) assumed that a; = ag and the joint density of X and Y is expressed
in terms of an integral. Szdntai (1986) provided an explicit expression for
the joint density function h(z,y) for arbitrary shape parameters in terms of
Laguerre polynomials.

7.3.4 Symmetric Stable Distribution

A class of bivariate symmetric stable distributions can be obtained via the
additive model. Let X;’s be three mutually independent symmetric stable
random variables with characteristic functions exp(—A;[t|*), \; > 0,0 < a <
2. Consider the transformations X = X; + X3 and Y = X5 + X3; then, the
joint characteristic function of (X,Y") is

(s, t) = exp(—A1|s]® — Aslt + 5| — Aaft]?). (7.10)

De Silva and Griffiths (1980) constructed a test of independence for this class
of bivariate distributions.
7.3.5 Bivariate Triangular Distribution

Eagleson and Lancaster (1967) constructed a bivariate triangular distribution
by letting the X,’s have a uniform distribution on [0, 1].
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e The marginal p.d.f.’s are

_ z, 0<z<1 _ y, 0<y<1
f(x)_{Q—x71<x<2 and g<y)_{2—y,0<y<1'
e The regression is linear, B(Y|X = z) = #:L.
o E(Y})X =2) =15+ %+ c(x), where

(z) = z%/2, 0<z<1 .
=1 @*—2+1)/3,1<2<2’

see Eagleson and Lancaster (1967). Since this is not a polynomial of the
second degree, the canonical variations associated with the diagonal expan-
sion of the bivariate triangular distribution are not polynomials. This ex-
ample was constructed as a counterexample to the proposition that linear
regression implies the canonical variables are polynomials. Griffiths (1978)
showed that these canonical variables, though not polynomials themselves,
have a relationship with the Legendre polynomials.

7.3.6 Summing Several 1.I1.D. Variables

What follows generalizes the model we have discussed so far in that more
than two variables are added together, but it is a specialization also, as the
variables considered are now i.i.d.

Let X; (i=1,2,...) be a sequence of i.i.d. variables, and let us define

X = ZieA Xi }
Y o= YiepXi
where A and B are subsets of positive integers. The joint distribution of X
and Y has a correlation coefficient given by
n(ANB)
[n(A)n(B)]/2

(7.11)

P(X,Y) = (7.12)
where n(A) denotes the number of elements in the set A. Clearly, X and Y
are independent if AN B =0 (i.e., p(X,Y) =0), and p(X,Y)=1if A= B.
For further details, see Lancaster (1982).
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Example: Moving Averages

Consider a series of simple moving averages (or moving sums) of order k. Let
A={s+1,s+2,...,s+k}, B={s+2,s+3,...,s+k+ 1} for any s > 0.
Then, X and Y are two adjacent moving sums.

7.4 Generalized Additive Models

7.4.1 Trivariate Reduction of Johnson and Tenenbein

Johnson and Tenenbein (1979) considered the trivariate reduction of the form

X:X1+CX3
Y:X2+CX3 ’

where X1, X5 and X3 are i.i.d. random variables.
The values 7 and pg were calculated for the following choices of X;’s:
Exponential:
2¢? A2 +9¢+6)
A+tol+2) T at020+202+0) "

T =

Laplace:

_3(32¢° 4 125¢* + 161¢® + 90¢? + 22¢ + 2)

T 2(1+¢)3(1 + 2¢)* ;
_ A(16¢7 4152¢% + 588¢” 4 1122¢* + 1104¢” 4 555¢% + 132¢ 412
ps = 2(1 + 0)4(1 + 26)3(2 + 6)2 .
Uniform:
?(c2—6c+10)
T = 621756 for0<c¢<1
155{575‘”4 forl1 <e¢
€?(19¢?~126c+210)
= c7f14csilg4c5728064+770c37672c2+238c724 for0scestl
" 105¢ —105¢c+52 210¢? for1<c<2
c — C
o 1053 for 2 < ¢

Note that when ¢ = 1, Johnson and Tenenbein’s trivariate reduction model
reduces to the simple additive model considered in Section 7.3.
A generalized additive model also includes the situation in which
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X=X14+aX3, Y =X,4+0X5.

In this case, X and Y are positively quadrant dependent provided X;’s are
mutually independent, with a and b having the same sign; see Example 1(ii)
of Lehmann (1966).

7.4.2 Mathait and Moschopoulos’ Bivariate Gamma

Mathai and Moschopoulos (1991) constructed a bivariate gamma distribution
whose components are positively correlated and have three-parameter distri-
butions. Denote the three-parameter (shape, scale, and location) gamma by
Vi~ F(ahﬂia’yi)v 1=0,1,2 and let

—§1V0+V1, Y = 2V, + Vs.

x =t
0
The X and Y so defined have a bivariate distribution with gamma marginals.
Mathai and Moschopoulos (1992) constructed another form of bivariate

gamma distribution. Let V;, i = 1,2, be as defined above. Form
X =1, Y=V +VW.

Then X and Y clearly have a bivariate gamma distribution. The construction
above is only part of a multivariate setup motivated by considering the joint
distribution of the total waiting times of a renewal process.

7.4.3 Lai’s Structure Mixture Model

Lai (1994) proposed a method of constructing bivariate distributions by ex-
tending a model proposed by Zheng and Matis (1993). The generalized model
may be considered as a modified structure mixture model and has the form

X=X1+1LX3 Y=Xo41LX3, (713)

where X;’s are independent random variables and I; (i = 1,2) are indica-
tor random variables that are independent of X;, but (I1,l2) has a joint
probability mass function with joint probabilities p;;, 4, = 0, 1.

It is easy to verify that

j 1 with probability m = p1o + p11
170 0 with probability 1 — 71 = poo + po1

and
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I — 1 with probability ms = po1 + p11
271 0 with probability 1 — 7 = pgo + pio.

Denote the mean and variance of X; by u; and o2, respectively. We then
obtain the following properties.

Marginal Properties

We have
E(X)=p +mps and E(Y) = ps + mous,

and

var(X) = o2 4+ mos + 71 (1 —7m)pui and var(Y) = o3 + w0 +mo(1 — 71 ) 3.

Correlation Coefficient

Pearson’s correlation can be shown to be

. p11(03 + p3) — mmap3 C(1a)

{[02 + 70} + m1 (1 — m1)pd][0F + 703 + mo(1 — mo)ud]} '/

The correlation can be negative or positive depending on the values of p;;.
Lai (1994) has given lower and upper bounds for p.

7.4.4 Latent Variables-in-Common Model

In assessing the health of plants, two raters often show more disagreement
about the relatively healthy plants than about the less healthy ones. It is
reasonable to assume that each rater may commit an error in judgment.

A common idea in fields such as plant science is that there is a true level of
health of any particular plant (H, say), and that the two opinions about this
are respectively, X = H + F; and Y = H + F5, where F; and E5 represent
errors, independent of each other and of H. This may be termed a model
with latent variables in common.

Hutchinson (2000) proposed a generalization in which the variability of
the errors is greater for large valued of H than for small values. Then the
new model may be written as

X =H+ E;-expla+bH),
Y = H+ FEy-exp(a+ bH).
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Here, H, E1, E5 can be taken as mutually independent normal distributions.
Clearly, now the E’s are multiplied by something that is bigger when H is
big than when H is small. When b = 0, the bivariate normal model will be
obtained.

7.4.5 Bivariate Skew-Normal Distribution

A random variable Z is said to be skew-normal with parameter A if its density
function is given by

d(z;N) = 2¢0(2)P(Nz), —00< 2z <00, (7.15)

where ¢(z) and ®(z) denote the N(0,1) density and distribution function,
respectively. The parameter \ varying in (—o0o, 00) regulates the skewness and
A = 0 corresponds to the standard normal density. Azzalini and Dalla-Valle
(1996) have shown that the distribution can be derived in two ways:

(1) Let (X,Y) have a bivariate normal density with standardized marginals
with correlation §. Then, the conditional distribution of Y given X > 0
has a skew-normal distribution with parameter A that is a function of

d.
(2) If Yy and Y7 are independent unit normals and § € (—o0, 00), then

Z = 68|Yo| + (1 — 6%)Y?y;

is skew-normal, with A depending on §.

Bivariate Skew-Normal

Define

— _52)3

Y = 62|Yo| + (1 - 63)2 V2
where (Y7,Y3) has a standardized bivariate normal distribution and Y, has

a standard normal distribution independent of (Y7,Y3). Then, (X,Y) has a
bivariate skew-normal distribution with density

hMz,y) = 2¢(z,y; w)®(arx + asy), (7.17)

where w is the correlation coefficient between Y7 and Y5 that has the standard
bivariate normal distribution, and «a;, i = 1,2 depends on w and the §’s.
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Applications

(1) The bivariate skew-normal model has been fitted to a weight versus
height dataset of athletes from the Australian Institute of Sport and
reported by Cook and Weisberg (1984); see Azzalini and Dalla-Valle
(1996) for details.

(2) Gupta and Brown (2001) have established P(X < Y) in the context of
a strength—stress model. The bivariate skew-normal model is fitted to a
dataset from Roberts (1988), and then the probability that the IQ score
for white employees is less than the IQ score of nonwhite employees is
estimated.

(3) For further statistical applications of multivariate skew-normal distri-
butions, one may refer to Azzalini and Capitanio (1999).

7.4.6 Ordered Statistics

Jamalizadeh and Balakrishnan (2008) derived the distributions of order
statistics from bivariate skew-normal and bivariate skew-t, distributions in
terms of generalized skew-normal distributions, and used them to obtain ex-
plicit expressions for means, variances and covariance. Here, by generalized
skew-normal distribution, we mean the distribution of X |(U; < 61 X,Us <
02X) when X ~» N(0,1) independently of (Uy,Us)”T ~» BVN(0,0,1,1,7).
This distribution, which is a special case of the unified multivariate skew-
normal distribution introduced by Arellano-Valle and Azzalini (2006), has
also been utilized by Jamalizadeh and Balakrishnan (2009) to obtain a mix-
ture representation for the distributions of order statistics from a trivariate
normal distribution. These authors also carried out a similar work for order
statistics from the trivariate skew-t, distribution by showing that they are
indeed mixtures of a generalized skew-t, distribution.

Remark

e A bivariate (multivariate) skew-Cauchy distribution is discussed in Arnold
and Beaver (2000). The derivation is similar to that for the bivariate skew-
normal distribution.

e Two other alternative approaches to derive the multivariate skew-normal
distribution have been given, one by Jones (2002) and the other by Branco
and Dey (2001), who introduces an extra parameter to regulate skewness
to obtain a class of multivariate skew-elliptical distributions.
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7.5 Weighted Linear Combination

7.5.1 Derivation

Let
X=U;
Y =cU; + (1 —C)U2

(0 < ¢ <1), where the U;’s are i.i.d. random variables.

7.5.2 Expression of the Joint Density

If the U;’s have a negative exponential distribution, then

1
1—c¢

e—a:—y-‘,-QC:v7

h(z,y) =
the support being part of the positive quadrant.
If the U;’s have a Laplace distribution, then
1
4(1 —¢)

the support being the whole plane.
If the U;’s have a uniform distribution, then

h(z, y) = e(~lel=ly=cal)/(1—c)

h(x,y) =

1—-¢’

the support being part of the unit square.

For further details, see Johnson and Tenenbein (1979, 1981).

7.5.3 Correlation Coefficients

(7.18)

(7.19)

(7.20)

(7.21)

For Spearman’s rank correlation and Kendall’s 7, Johnson and Tenenbein
(1979, 1981) presented 7 and pg for the following three choices of distributions

of X1 and XQZ

Exponential:
T=¢, ps=cB—c)/(2-c),

and hence
ps =7(3—=27)/(2— 7).
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Laplace:

T=1c(3+3c—2c%)/4, ps=c(9—18c* +14c® — 3¢ /[2(2 — ¢)?].

Uniform:
4c — 2
07502 ,0<c<05
T = 62(1_0)
11 1 ’
L&f“ ,05<c<1
6c2
¢(10 — 13¢)
_— 0<ec<0.5
ps = 10(1 — ¢)2 U=
3¢? +16¢2 — 1le+2
5H<e<1
10¢3 » 05<ses

7.5.4 Remarks

For a given distribution of the U;’s, these distributions have the “monotone
regression dependence” property; i.e., the degree to which they are regression
dependent is a monotone function of the parameter indexing the family, ¢
[Bilodeau (1989)].

7.6 Bivariate Distributions Having a Common
Denominator

7.6.1 Explanation

In this section, we let X3, independent of X; and X5, be the common de-
nominator of X and Y, which are defined as

X =X1/Xs5, Y=X,/X;. (7.22)

Many of the well-known bivariate distributions are generated this way, and
we will give several examples.

Remark: Ratio variables are sometimes known as index variables in some
disciplines.
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7.6.2 Applications

Turning away from distribution construction for a moment, a similar pair
of equations is often used the in data analysis context, with X3 being some
general measurement of size. For example, in economics, X; and X, may
be measures of the total wealth of a country and X3 its population, and, in
biology, X7 and X9 may be the lengths of parts of an animal’s body and X3 its
overall length. In any particular application, there might be controversy over
whether an empirical positive correlation between the two ratios X; /X3 and
Xo /X3 is genuine or results spuriously from dividing by the same factor, X3.
This subject is connected to ideas of “neutrality”; see also Pendleton (1986)
and Prather (1988). More recently, Kim (1999) considered the correlation
between birth rates and death rates of 97 countries from a dataset reported
in the UNESCO 1990 Demographic Year Book. In this case, X1, X5, and X3
denote the number of births, number of deaths, and the size of the population,
respectively.

7.6.3 Correlation Between Ratios with a
Common Divisor

Pearson (1897) investigated the correlation of ratios of bone measurements
and found that although the correlation among the original measures was
low, the correlations among ratios with common measures were about 0.5.
He concluded that “part [of the correlation between ratio variables that] is
solely due to the nature of [the] arithmetic ... is spurious” (p. 491).

The issue of spuriousness of correlations between ratio variables that have
a common element has been raised by numerous authors across many dis-
ciplines, such as psychology, management, etc. Dunlap et al. (1997) have
provided an excellent review on the subject.

Let Vx be the coefficient of variation of a random variable X; i.e.,
Vx = /var(X)/E(X). Assuming the X;’s are uncorrelated, Pearson’s (1897)
approximate formula for the correlation between X and Y is

p(X,Y) ~ p(X1,X2)Vx, Vx, —p(X1,X3)Vx, Vx3fp(X2,X3)VX2VX3+V§3 .
VR +VE, —20(X1,Xa) Vi, Vicg ) (VZ, +VZ, —20(X2,X3) Vix, Vi, )

Kim (1999) presented the exact formula for the correlation between X and
Y when the X;’s are independent as

Vi) z,5180(E(X1))sign(E(X>))
VZ, (1 + V12/X3)V12/X3} +VR,(+ V12/X3)V12/X3]

p(X,Y) = (7.23)
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If X; and X, take positive values, or more generally, when F(X;) and
E(X53) have the same sign, then the formula above becomes
V12/Z3
[V)Qﬁ(l + V12/X3)V12/X3} + [V)sz(l + Vl2/X3)V12/X3]

p(X,Y) = (7.24)

The Case Where All the CV’s Are Equal

Consider the case where the coefficients of variation of all variables are equal.
Dunlap et al. (1997) have shown that Pearson’s approximation formula is
simplified to

1 — p(X1, X3) — p(Xa, X3) + p(X1, X2)
2(1 — p(X1, X3))1/2(1 = p(X2, X3))1/2

p(X,Y) =

Even if the three variables X1, X5, X3 are all independent, the correlation
among ratios with a common denominator would not equal 0; instead the
equation above simplified to 0.5.

7.6.4 Compounding

The denominator-in-common version of the trivariate reduction method of
constructing bivariate distribution sets through X = X;/X3 and Y = X5/X3
may readily be seen to be equivalent to compounding of a scale parameter.
Suppose we instead write it as X = X;/6 and Y = X5/60. Then, we have

H(z,y) =Pr(X <z,Y <y)
= Pr(X; <0z, Xy < 0y)

= /Pr(X1 < fz)Pr(Xs < 0y)f(6)do
- / Fx, (62) Fx, (9y) f(0)d6;

see, for example, Lai (1987).

7.6.5 Examples of Two Ratios with a Common Divisor

Ezample 7.1 (Bivariate Cauchy Distribution). Let X; and X5 be two inde-
pendent normal variates and X3 independent of X; and X5 be distributed
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as x1 (i.e., chi-distribution with 1 degree of freedom). Then, the joint distri-
bution of X = X;/X5 and Y = X,/ X3 is a bivariate Cauchy distribution.

Ezample 7.2 (Bivariate t-Distribution). Let X; and X5 have a joint standard
bivariate normal density and X3, independent of X7 and X5, be distributed as
Xv- Then, the joint distribution of X = X;/(X3/y/v) and Y = X5/(X3//V)
is a bivariate ¢-distribution with v degrees of freedom.

Ezample 7.3 (Bivariate F-Distribution). Let X1, X5, and X3 be independent
chi-squared random variates with v, 5, and v3 degrees of freedom, respec-
tively. Then, X = % and Y = ﬁiﬂi have a joint bivariate t-density;
see Mardia (1970, pp. 92-93). We may generalize the distribution above to
the case where X; and X5 have noncentrality parameters \; and As, respec-
tively. The correlation structure for this generalized bivariate F-distribution
is considered in detail by Feingold and Korsog (1986).

Ezample 7.4 (Jensen’s Bivariate F-Distribution). Let X; and X, have a
correlated chi-squared distribution of Kibble’s type with shape parameter
a = n/2, and X3, independent of X7 and X», also be chi-squared, with m

degrees of freedom. Then, X = ))((;//:l and YV = ;((;//:1 have a bivariate F-

distribution of Krishnaiah’s (1964, 1965) type. More generally, let Q1 and
Q- follow Jensen’s (1970) bivariate chi-squared distribution with degrees of
freedom 7 and s, respectively, and V', independent of ()1 and @2, be a chi-
squared variate with v degrees of freedom. Then, X = ?/1/: and YV = %2/1,5
follow Jensen’s bivariate F-distribution.

Ezample 7.5 (Bivariate Pareto Distribution). Suppose X; and X, are inde-
pendent unit exponential variates, and X3, independent of X; and X5, has
a gamma distribution. The joint distribution of X and Y is then bivariate
Pareto. More generally, if X; and Xs have unit gamma distributions instead,
then a bivariate inverted beta distribution is the resulting distribution.

If we suppose (X1, X5) has a Farlie-Gumbel-Morgenstern distribution
with unit exponential marginals and that X3 has an independent gamma
distribution with shape parameter ¢, then the pair X = X7/X35,Y = Xo/X3
has a bivariate distribution with Pareto marginals; see Johnson (1987, pp.
170-171).

Ezample 7.6 (Bivariate Inverted Beta Distribution). Suppose X1, X5, and X3
are independent gamma variables with shape parameters «; (i = 1,2,3).
Then, the pair X = X;/X3, Y = X5/X3 has the standard inverted beta
distribution; see Tiao and Guttman (1965).
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7.6.6 Bivariate t-Distribution with Marginals Having
Different Degrees of Freedom

The nature of having the same denominator has been generalized by Jones
(2002).

Let X1, Xo and W7, W5 be mutually independent random variables, each
X, following the standard normal distribution and W; following the chi-
squared distribution with n; degrees of freedom. For the sake of convenience,
we let v1 = ny and vy = ny + ng, so that v; < vy, In the case where v; = vy,
we define Wy = 0.

Define a pair of random variables as follows:

./Vle 1/V2X2
X = , ¥ = . 7.25
VWi VW1 + W, (7.25)

Details on this distribution will be presented in Section 9.3.

7.6.7 Bivariate Distributions Having a Common
Numerator

It is conceivable that one may be interested in the correlations among ratios
that have a common numerator [i.e., corr (X3/X1, X3/X>2)]. Assuming equal
CV’s, Dunlap et al. (1997) again simplified the approximation formula of
Pearson (1897), giving

1 — p(X1, X3) — p(X2, X3) + p(X1, X2)

Py = = (X, X)) 12(1 — p(Xo, X)) 12

which was identical to the correlations among ratio variables with a com-
mon denominator. It is easy to see that ratios sharing a numerator will be
spuriously correlated as badly as those sharing denominators.

7.7 Multiplicative Trivariate Reduction

In this section, we discuss the case where the transformation is multiplication.
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7.7.1 Bryson and Johnson (1982)

Bryson and Johnson (1982) [and Chapter 8 of Johnson (1987)] draw attention
to Khintchine’s theorem, which states that any random variable X has a
single mode at the origin if and only if it can be expressed as a product

X = ZU, (7.26)

where Z and U are independent continuous variables, U having a uniform
distribution on the unit interval; see, for instance, Feller (1971, Section V.9).
For a given marginal density of X, f, the density fz has to be —zf’(z), where
/' is the derivative of f. Bryson and Johnson present a multiplicative version
of trivariate reduction,

X = 70,
Y = 20, } , (7.27)

where (Uy,Us) has any bivariate distribution that has uniform marginals.
Z is referred to as a “generator” variable. Bryson and Johnson found the
correlation between X and Y to be

1
1 3= +pw) 1+ )} (7.28)

where cx is the common coefficient of variation between X and Y, and p(r)
is the correlation between Uy and Us. A consequence of Khintchine’s theorem
is cg( > %; if U; and Uy have normal or other symmetric distributions, they
are uncorrelated, though they are independent only if the U;’s are.

Bryson and Johnson (1982) go on to discuss what they call Khintchine
mixtures; see Section 7.8 below.

7.7.2 Gokhale’s Model

Gokhale (1973) gave some attention to the scheme of construction

Y 2vs (7.29)

X:Z%}
where V1,V5, and Z are independent beta variates whose parameters are
either

e Respectively (a,6),(a + m,0 — m), and (a + 0,0 + m — 0), so that X
and Y had beta distributions with parameters (a,b + m) and (a + m,b),
respectively.

e Respectively (a+ A,b— A), (a+ A0 — A), and (a, A), so that X and YV
had beta distributions with parameters (a,b) and (a,b’), respectively.
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7.7.3 Ulrich’s Model

Ulrich (1984) considered
X:zm}

v 7 (7.30)

where the Z;’s are independent, having gamma distributions (with unit scale
parameter and shape parameter «; +¢), and the V;’s; independent of the Z;’s
but possibly not mutually independent, have beta distributions with param-
eters a; and ¢. The scheme of dependence that Ulrich paid most attention to
is that of his beta mixture. He referred to the resulting distribution of (X,Y")
as the “bivariate product gamma.”

7.8 Khintchine Mixture

This section may not quite fit well with the rest of this chapter, but it does
have a similar flavor.

7.8.1 Derivation

Continuing the discussion of bivariate distributions suggested by Bryson and
Johnson (1982) and Johnson (1987, Chapter 8) that we started in Section
7.7.1, let

X:%m}, (7.31)

Y = 25U,
where the U,’s are uniformly distributed on (0, 1) and either:

e the U;’s are independent and the Z;’s are either identical (with probability
p) or independent (with probability 1 — p), or

e the Z,’s are independent and the U;’s are either identical (with probability
q) or independent (with probability 1 — q).

As before, the Z;’s are referred to as “generator” variables.

7.8.2 Exponential Marginals

If X and Y are to have exponential marginals, Bryson and Johnson gave
these results:

e The case of independent U;’s and identical Z;’s gave a p.d.f. of —Ei[max(z, y)],
where Ei(-) is the exponential integral.
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e The case of independent Z;’s and identical U;’s gives a p.d.f. of

ﬁp + 2z 4 y) + (@ +y) e @Y,

e In the fully independent case, the p.d.f. is e~ (*+¥),

The correlation is p/2 if the first and the third are mixed in proportions
p:1—p, q/3 if the second and the third are mixed in proportions ¢ : 1 — ¢,
and £ + £ if all three are mixed in proportions p:¢q:1—p—gq.

The following five cases have been illustrated (contour and three-dimen-
sional plots of the p.d.f.’s) by Johnson et al. (1981): independent U;’s, inde-
pendent Z;’s (i.e., p = ¢ = 0); independent U;’s, p = 0.6; independent U;’s,
identical Z;’s; independent Z;’s, ¢ = 0.6; independent Z;’s, identical U;’s.
The final one has also been shown in Figure 8.2 of Johnson (1987).

7.8.3 Normal Marginals

This case has also been treated by Bryson and Johnson, but the formulas are
more complicated than in the exponential case. The following six cases were
illustrated (contour and three-dimensional plots of the p.d.f.’s) by Johnson
et al. (1981): ¢ =0,p =0; ¢ =0,p = 0.25; ¢ = 0,p = 0.5; ¢ = 0,p = 0.74;
q=0,p=1;9=0.25p=0.75. The two cases p = 1 and ¢ = 1 are illustrated
in Figures 8.3 and 8.4 of Johnson (1987).

Three examples in which the U;’s have the Farlie-Gumbel-Morgenstern
distribution are illustrated by Bryson and Johnson (1982) and Johnson (1987,
Figures 8.5-8.7). The density is given by

azy 1 —azy

2

h(x,y) = {1—<I>[max(|x|,|y\)]}

(7.32)
These are illustrated in Johnson et al. (1984, pp. 239-242) and Johnson
(1986).

mq&[maxﬂxL )] +

7.8.4 References to Generation of Random Variates

Devroye (1986, pp. 603-604) and Johnson et al. (1984, pp. 239-240) have
discussed the random generation from these distributions.
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7.9 Transformations Involving the Minimum

Let X; (i = 1,2,3) belong to the same one-parameter family of distribution
functions F'(z;; \;). (We assume that the other parameters, if present, are
common to all X;.) We now wish to find the family that is closed under the
transformation T(X1, X5) = min(Xy, X3); i.e., we want to find distribution
functions F'(z; A) such that

F(z; M) F(25)03) = F(z; M + A3), (7.33)
where F, as usual, is 1 — F. This in turn implies that
F(z;\) = [F(z)]. (7.34)

There are several continuous distributions satisfying the above [see Arnold
(1967)]—exponential, Pareto, and Weibull. Marshall and Olkin (1967) con-
structed their bivariate exponential distribution by taking F' to be the ex-
ponential distribution and defining X = min(X7, X3) and Y = min(X», X3),
thus giving

H(x,y) = exp[-\1z — Aoy — Az max(x,y)]. (7.35)

The case of T being the maximum can be discussed similarly.

7.10 Other Forms of the Variables-in-Common
Technique

7.10.1 Bivariate Chi-Squared Distribution
Let X1, X5, X3 be independent univariate normal variates, and define

X :X12+X§}. (7.36)

Y = X3+ X2

Then, X and Y have a joint bivariate chi-squared distribution (with two
degrees of freedom), and the joint moment generating function is

B ) = {[1—2(s +1)](1 — 25)(1 — 20)} /2. (7.37)

The joint density is not of a simple form. This is an example of Cherian’s
construction of a bivariate gamma distribution discussed earlier.

Note that if X7, X3, X7 are each supposed to have a y3-distribution (i.e.,
exponential), the joint density function of X and Y takes the simple form



300 7 Variables-in-Common Method
h(z,y) = (67 max(e,y)/2 _ 67(x+y>/2) /4. (7.38)

Note that the marginals are not exponential but y*-distributions; see Johnson
and Kotz (1972, pp. 260-261).

7.10.2 Bivariate Beta Distribution

This example illustrates that X and Y may have more than one variable in
common.

Let X; (i = 1,2,3) be independent and have gamma distributions with
shape parameters 6;. Consider

(7.39)

X = X1 /(X1 4 Xo + X3)
Y = Xo/ (X1 + Xo+ X3) [

Then, X and Y have a bivariate beta distribution. We will obtain the same
bivariate beta density if the X;’s in (7.39) are three independent beta variates
with parameters (6;, 1), respectively, conditional on X7 + Xo + X5 < 1.

7.10.3 Bivariate Z-Distribution

Consider three independent gamma variates X7, Xo and X3 with shape pa-
rameters «, 3, and v, respectively. Form two variables X and Y as follows:

X:long—logXl} (7.40)

Y =log X3 — log Xo

The joint moment generating function of X and Y can be obtained in a
straightforward manner as

Tv+s+t)T'(a—s)T(B—1)
I'(a)(v)

By inverting the moment generating function in (7.41), we obtain as the joint
density function of X and Y

M(s,t) = (7.41)

IF(v+a+p) e~ er=Py
()(v) (14 e % e v)athty

h(z,y) = (7.42)

By writing X = —log(X1/X3) and Y = —log(X2/X3), we see that the
distribution of (X,Y) is simply a logarithmic transformation of the bivari-
ate inverted beta distribution discussed earlier; see Hutchinson (1979, 1981)
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and Lee (1981). As the marginals are Z-distributions, we may call (7.42) a
bivariate Z-distribution or a generalized logistic distribution; see Malik and
Abraham (1973), Lindley and Sinpurwalla (1986), and Balakrishnan (1992).

Some methods specifically oriented toward the reliability context with ex-

ponential distribution have also been discussed by Tosch and Holmes (1980),
Lawrance and Lewis (1983), and Raftery (1984, 1985).
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Chapter 8

Bivariate Gamma and Related
Distributions

8.1 Introduction

Many of the bivariate gamma distributions considered in this chapter may
be derived from the bivariate normal in some fashion, such as by marginal
transformation. It is well known that a univariate chi-squared distribution
can be obtained from one or more independent and identically distributed
normal variables and that a chi-squared random variable is a special case of
gamma; hence, it is not surprising that a bivariate gamma model is related
to the bivariate normal one.

In this chapter, we present many different forms of bivariate gamma dis-
tributions that have been introduced in the literature and list their key prop-
erties and interconnections between them. In Section 8.2, we describe the
form and features of Kibble’s bivariate gamma distribution. In Section 8.3,
we present Royen’s bivariate gamma distribution and point out its close con-
nection with Kibble’s form. The bivariate gamma distribution of Izawa and
its properties are described in Section 8.4. Next, the bivariate form of Jensen
is discussed in Section 8.5. In Section 8.6, the bivariate gamma distribution
of Gunst and Webster and its related models are described. The bivariate
gamma model of Smith et al. is detailed next, in Section 8.7. The bivariate
gamma distribution obtained from the general Sarmanov family and its prop-
erties are discussed in Section 8.8. The bivariate gamma model of Lodiciga
and Leipnik is detailed next, in Section 8.9. The forms of bivariate gamma
distributions of Cheriyan et al., Prékopa and Szantai, and Schmeiser and Lal
are described next, in Sections 8.10, 8.11, and 8.12, respectively. The bivariate
gamma distribution obtained from the general Farlie-Gumbel-Morgenstern
family and its properties are discussed in Section 8.13. The bivariate gamma
models of Moran and Crovelli are presented in Sections 8.14 and 8.15, re-
spectively. Some applications of bivariate gamma distributions in the field
of hydrology are mentioned in Section 8.16. Next, the bivariate gamma dis-
tributions proposed by McKay et al., Dussauchoy and Berland, Mathai and

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 305
DOI 10.1007/b101765.9, (© Springer Science+Business Media, LLC 2009
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Moschopoulos, and Becker and Roux and their properties are described in
Sections 8.17, 8.18, 8.19, and 8.20, respectively. Some other forms of bivariate
gamma models obtained from the variables-in-common technique are men-
tioned in Section 8.21. The noncentral version of bivariate chi-squared dis-
tribution is discussed in Section 8.22. The bivariate gamma distribution of
Gaver and its properties are detailed in Section 8.23. The bivariate gamma
distributions of Nadarajah and Gupta and Arnold and Strauss are discussed
in Sections 8.24 and 8.25, respectively. Finally, in Section 8.26, the bivariate
mixture gamma distribution and its characteristics are presented.

8.2 Kibble’s Bivariate Gamma Distribution

8.2.1 Formula of the Joint Density

The joint density function is

o) = Falo)fal) Tk exp { AT (e, (B2

(8.1)
(x,y > 0,0 < p<1), where fo(t) = ﬁ e t*=1 and I,(-) is the modified
Bessel function of the first kind and order v. The probability density function

may also be expressed in terms of Laguerre polynomials? L§a_1) as

(a=1) (yp (=D D()I'(j + 1)

hz,y) = fa(x)faly) (8.2)

]2

J

Il
o

An alternative expression of the joint density function, obtained by Krishna-
iah (1963) [see also Krishnaiah (1983)], is

b = S Yoyl e (—ffﬁ) L 63
j=0

h S ’
where a; =ty Ty

1 Y] Jtoa) caof g (dta) caof (@)
L¢(z) = j=0<j*k) i = J'=0<k+a 7 Note that L™ has not been

normalized with respect to the marginal gamma density function.
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8.2.2 Formula of the Cumulative Distribution Function

Expressed as an infinite series in terms of Laguerre polynomials, the joint
distribution function is

H(z,y) = Fa (l’)Fa(y)

P"“ (@+DIG+1D) .,
+aZ frar @8 W@ ),

(8.4)

where F( fo fa(u)du; see Lai and Moore (1984) for details.
Alterna‘mvely7 the Jomt distribution function can also be expressed as

Hz,y) Zc] v (155) P (125) - 69

where ¢; = M ; see Johnson and Kotz (1972, p. 221).

8.2.3 Univariate Properties

The marginal distributions are both gamma with the same shape parame-
ter a.

8.2.4 Correlation Coefficient

The parameter p in (8.1) is indeed Pearson’s product-moment correlation
coefficient.

8.2.5 Moment Generating Function

The joint moment generating function is
M(s,t)=1[(1—=s)(1—1t)—pst]”®, 0<p<O. (8.6)

Thus, the moments 4, ; can be obtained easily from (8.6).

The joint moment generating function in (8.6) was first given by Wicksell
(1933), but the explicit form of the density in (8.1) is due to Kibble (1941).
For this reason, some authors refer to this distribution as the Kibble—Wicksell
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bivariate gamma distribution. Vere-Jones (1967) showed that this distribution
is infinitely divisible.?

8.2.6 Conditional Properties

The regression is linear and is given by
EY|X =z)=p(z—a)+a. (8.7)
The conditional variance is also linear and is given by
var(Y|X = z) = (1 - p)2pz + (1 = p)}; (8.8)

see Mardia (1970, p. 88).

8.2.7 Dertvation

In the univariate situation, the derivation of the chi-squared distribution as
the sum of squared normal variables is well known. Now, let (X1,Y7),...,
(X,,Y,) be a random sample of size n from a bivariate normal distribution
with mean 0 and variance—covariance matrix

> - < O‘% poO'%O'Q ) .
L0010 5
Define X = % Y X?andY = é >, Y2 Then, after replacing n/2 by
« in the density function, the distribution of (X,Y’) turns out to be Kibble’s
bivariate gamma with p = p2. For a generalization to higher dimensions, one
may refer to Krishnamoorthy and Parthasarathy (1951) and Krishnaiah and
Rao (1961).

Clearly, the random variate generation is then easy when 2« is a fairly
small integer.

2 A bivariate distribution with characteristic function ¢ is said to be infinitely divisible
if 1/™ is also a characteristic function for every positive integer n. In terms of r.v.’s,
this means that, for each n > 1, the random variable with characteristic function ¢ can
be written as X = 2?21 Xy, where X5 (1 < j < n) are independent and identically

distributed with characteristic function Lpl/”.
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8.2.8 Relations to Other Distributions

e Downton’s bivariate exponential distribution is a special case of this dis-
tribution; see Chapter 10 for pertinent details.
e According to Khan and Jain (1978), the quantity

u

is a p.d.f. of interest in the theory of emptiness of reservoirs, with u being
the initial content of the reservoir and f(xz,y;t) being the p.d.f. for the
amounts ax and by for the flows from two sources into the reservoir during
time ¢. Khan and Jain used (8.9), where f is Kibble’s density function.
These authors then provided an expression for the p.d.f. and obtained the
lower-order moments; see also Jain and Khan (1979, pp. 166-167).

8.2.9 Generalizations

e In Jensen’s bivariate gamma distribution, (i) the shape parameters of the
marginals are different and they are integers or half-integers, and (ii) the
bivariate normal distributions used for derivation have different correla-
tion coefficients. For this and further generalizations, one may refer to
Section 8.5.

e Malik and Trudel (1985) expressed (8.2) as

= a+] )P (zy)* 7! x+y
h ) -
) 2 D(@)j T+ )1 =)= 7P 1=

(8.10)
They then generalized the density above in the following form:

h(z,y) = (1= p)lrre/2x
D(HF22 + j)pl et~y +y
T e et (1)
(8.11)

The marginals of this distribution, however, are not gamma unless
a1 = (9.

QMS

8.2.10 Illustrations

Surfaces and contours of a probability density function of Kibble’s form have
been provided by Smith et al. (1982). Contours of the probability density
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function for the cases p = 0.5, « = 1 and p = 0.5, @ = 2 have been given by
Tzawa (1965).

8.2.11 Remarks

e It can be easily proved that [Jensen (1969)]

Pr(c; < X < 9,00 <Y <) > Pr(eg <X <c)Pr(eg <Y < e9).
(8.12)
Jensen called this positive dependence, but we use this term in a different
way in Chapter 3. In particular, we have

Pr(X <z, Y <y)>Pr(X <z)Pr(Y <y)

(i.e., X and Y are positively quadrant dependent); see Section 3.4.

o Izawa (1965) presented formulas for the density and moments of the sum,
product, and ratio of X and Y.

e For results on the location of the mode, see Brewer et al. (1987).

e For a brief account of this distribution, in the context of others with gamma
marginals, one may refer to Krishnaiah (1985).

8.2.12 Fields of Applications

e Electric counter system. Lampard (1968) built this distribution in the
conditional manner, h = f(z)g(y|z); his context was a system of two re-
versible counters (i.e., an input can either increase or decrease the cumu-
lative count), with two Poisson inputs (an increase process and a decrease
process). Output events occur when either of the cumulative counts de-
creases to zero. The sequence of time intervals between outputs forms a
Markov chain, and the joint distribution of successive intervals is of Kib-
ble’s form of bivariate gamma. Lampard also gave an interpretation of the
same process in terms of a queueing system.

e Hydrology. Phatarford (1976) used this distribution as a model to de-
scribe the summer and winter streamflows.

e Rainfall. As the gamma distribution is a popular univariate choice for
the description of amount of rainfall, Izawa (1965) used Kibble’s bivariate
gamma distribution to describe the joint distribution of rainfall at two
nearby rain gauges.

e Wind gusts. Smith and Adelfang (1981) reported an analysis of wind
gust data using Kibble’s bivariate gamma distribution. The two variates
considered were magnitude and length of the gust.
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8.2.13 Tables and Algorithms

For « an integer or half-integer, Gunst and Webster (1973) presented a table
of upper 5% critical points, and Krishnaiah (1980) gave an algorithm to
compute the probability integral. For arbitrary o, an algorithm to compute
the probability integral has been given by Lai and Moore (1984).

8.2.14 Transformations of the Marginals

e The joint distribution of v/ X and v/Y is a bivariate chi-distribution, which
is also known as a bivariate Rayleigh distribution. This has been studied
by Krishnaiah et al. (1963).

e Izawa (1965) has given some attention to a distribution for which certain
transformations of the variates—square root, cube root, or logarithm—
have Kibble’s bivariate gamma distribution.

e By transforming the marginals to be Pareto in form, Mardia (1962) ob-
tained a model that is termed a type 2 bivariate Pareto distribution.

8.3 Royen’s Bivariate Gamma Distribution
Royen (1991) considered this bivariate gamma distribution without realizing
its close relationship to Kibble’s bivariate gamma distribution.

8.3.1 Formula of the Cumulative Distribution Function

The joint cumulative distribution function is

(1-p*)"
I(a)

(8.13)

H(z,y) =

where F,(-) is the cumulative distribution function of the standard gamma
with shape parameter a.
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8.3.2 Univariate Properties

The marginal distributions are gamma with shape parameter o and scale
parameter 1/2.

8.3.3 Derivation

Let R = <; f) be a nonsingular correlation matrix, Yi,...,Yy be inde-

pendent standard bivariate normal random variables with correlation matrix
R, and Y be the (2 x d) matrix with columns Y;, 7 = 1,2,...,d. Then,
according to Royen (1991), the joint cumulative distribution function of the
squared Euclidean norms of the row vectors of Y is the bivariate gamma
distribution in (8.13) with shape parameter o = d/2.

8.3.4 Relation to Kibble’s Bivariate
Gamma Distribution

Comparing (8.13) with (8.5), it is clear that Royen’s bivariate gamma is the
same as Kibble’s distribution except that the marginals of the former have a
scale parameter 1/2. Two derivations are also identical apart from the latter
having a divisor 2 in the derivation.

8.4 Izawa’s Bivariate Gamma Distribution

Izawa (1953) proposed a bivariate gamma model that is constructed from
gamma marginals allowing for different scale and shape parameters. As this
model was published in Japanese, it did not attract much attention in the
literature.

8.4.1 Formula of the Joint Density

Taking both scale parameters to be 1 for the sake of simplicity, the joint
density function is



8.5 Jensen’s Bivariate Gamma Distribution 313

(zy) (21 2l exp (222 )

(o)l (ay — ag)(1 — n)nler—1)/2
1 B _
« [ (=g e, <2w<lt>> dt,
0

1—n

h(x,y) =

(8.14)

for a1 > a9, n = py/ar/as, 0 < p < 1,0 <n < 1, where I, denotes the
Bessel function of the first kind and order «; see Izawa (1953), Nagao (1975),
and Yue et al. (2001).

8.4.2 Correlation Coefficient

The Pearson product-moment correlation coefficient is p, and 7 is the asso-
ciation parameter.

8.4.3 Relation to Kibble’s Bivariate
Gamma D:istribution

When a3 = as = «, (8.14) reduces to Kibble’s bivariate gamma density
function in (8.1).

8.4.4 Fields of Application

Yue et al. (2001) have used this distribution in the field of hydrology.

8.5 Jensen’s Bivariate Gamma Distribution

8.5.1 Formula of the Joint Density

In this generalization of Kibble’s distribution due to Jensen (1970), the joint
density function has as a diagonal expansion in terms of Laguerre polynomials

> Gr(8)(K)?T(a/2)T(b/2) (2-1), | (5-1)
Tk +a/2T (kb2 o @h W),

h(z,y) = fa/2($)fb/2(y)

k=0
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where a and b are positive integers such that a < b, f, is the standard gamma
density as before, and

Gk(é) = Gk(517527~~75a) = Z Clj102j2 ...Ca]‘a, (816)
J1:J25-+5Ja

in which the sum is taken over all integer partitions® of k in the second
subscript of ¢, and _
o TUntd)
T D+ DE(3)
The density function for the equicorrelated case (i.e., all the ¢’s are equal)

with @ = b was discussed in Section 8.2; for the case where a # b, see
Krishnamoorthy and Parthasarathy (1951).

8.5.2 Univariate Properties

The marginals are again gamma distributions, but in this case with different
shape parameters, a/2 and b/2.

8.5.3 Correlation Coefficient

Pearson’s product-moment correlation is

_pitpt et

Vab ’

where p? = 6; > 0 and p; is the correlation coefficient of the bivariate normal
distribution that is involved in this derivation; see Section 8.5.5 below.

(8.17)

8.5.4 Characteristic Function

The joint characteristic function is

o(s,t) = (1 —it)~®=a)/2 ﬁ[(l —is)(1 — it) + stp3] /2. (8.18)

3 An integer partition of k with a group is a vector (j1,j2,...,ja) such that ¢ | j; = k,
0 < j; < k. Each vector is a distinct partition. For example, if a = k = 2, then all possible
partitions are (0,2),(2,0), and (1,1).
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In the equicorrelated case p? = p3 = -+ = p2 =1, (8.18) reduces to
o(s,t) = (1 —it)"C=0/2[(1 —is)(1 — it) + stn] /2, (8.19)

and the correlation in this case is ny/a/b.

8.5.5 Derivation

This distribution may be derived as follows. Let Z be a normal random vec-
tor with a + b components, having zero means and general positive definite

. . . . Y11z
variance—covariance matrix X, partitioned as Z' = (Z;, Z;), Y= (Ei E;z )

where Z and Zgy are (a x 1) and (b x 1) normal vectors, with a < b, respec-
tively. Here, X171 and X9 are identity matrices, and X5 = 2/21 = (D 0),
where D has the p’s down the diagonal and zeros elsewhere. Then, the
quadratic forms @1 = %z;z;}zl and Q2 = %Z/IE;;ZZ jointly follow
Jensen’s bivariate gamma distribution.

8.5.6 Illustrations

For some graphical illustrations of this bivariate gamma distribution, one
may refer to Smith et al. (1982) and Tubbs (1983b).

8.5.7 Remarks

Jensen (1970) showed that this bivariate gamma distribution can be expanded
diagonally in terms of orthogonal polynomials (in fact, orthonormal polyno-
mials) as

h(may) = fa/2 fb/2 ZMJE e EEE
7=0
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where ﬁ;z )(x) and £§2 1)(y) are the normalized Laguerre? polynomials,
and the canonical coefficients are

_INTE2T2)
T V(a2 + j)T0/2 + j)

G, (8). (8.21)

8.5.8 Fields of Application

Smith et al. (1982) and Tubbs (1983b) have used this bivariate gamma dis-
tribution to model wind gusts. An advantage of this distribution is that the
shape parameters of the marginal gamma distributions can be unequal.

8.5.9 Tables and Algorithms

Tables of upper 5% critical points have been presented by Gunst and Webster
(1973). An algorithm for calculating the probability integral of this distribu-
tion has been given by Smith et al. (1982).

8.6 Gunst and Webster’s Model and
Related Distributions

Gunst and Webster (1973) considered Jensen’s bivariate gamma distribution
in the case where the p?’s are either zero or n. Let m be the number of
nonzero p?’s.

4 Any orthogonal function or polynomial with respect to a weight function f can be nor-
malized to give [ 0;(z)0;(z)f(xz)dz = &;;, where §;; is 1 if i = j and 0 otherwise. The

_1)

Laguerre polynomials L;a were defined in footnote 1. The normalized Laguerre poly-

nomials are L;o‘fl) = L;”‘l)/\/(] +?_ 1) = {\/ L(a)j! } L;ail). They can then be

r(+a)
. —1 T(a)T(ati) 1 /2 i j k
written as L;a )(m) = {W} ?c:O(_l)k <']7€> m Kotz et al. (2000, p.

436) used L;a71> to denote the normalized Laguerre polynomial, and hence their notation
is different from ours.
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8.6.1 Case 3 of Gunst and Webster

Set a = m + n, and b = m + p, with the m nonzero and p? = 7. Then, the
joint density function is given by

_a-p
h(z,y) = I'(m/2)I'(n/2)(p/2)
oo 0o 00 ]+k+l Ni4+Nz+1, Ni4+N2+1
Xzzza]kl 2j+k+lx 1+ N2+ y 1+ N2+
7=0 k=0 1=0
xeXP< — > (8'22)

WheI‘eNli%%*j*l,NQ:%%*k lNgprrl—l,and

N 2~ N1+ N>+Ns—4) o LN+ DP(Ns + DT(Ns + 1)
gt = 1K T(Ny + Na + 2)T(Ny + N3 + 2)°

The correlation coefficient in this case is n/m+/ab. For the case where m,n,
and p are not necessarily integers, Krishnaiah and Rao (1961) and Krishnaiah
(1983) rewrote the m.g.f. in (8.6) as

M(s,8) = (1= )=(1 = )~{1 = pst[(1 — 5)(1 — £)] 71}~
Then the first two a’s were replaced by a; and as, with o; > a > 0, to give
M(s,t) = (1 —s)" (1 —t)7*2{1 — pst[(1 — s)(1 — )] '}, (8.23)

It is clear from (8.23) that the marginal gamma distributions have shape
parameters a and as. The m.g.f. above was inverted to obtain the density

B ; F(Oq) F(QQ)
h(@,y) = fay () fan(y Z 1 F(a1+j)F(042+j)

(1 —1) (@2 )
xL; (ﬂf)Lj (v), (8.24)
which is an alternative expression for the joint density function in (8.22).
[Note that the Laguerre polynomial L;(z,«) defined in Krishnaiah (1983)
is j !L?‘fl(x).] Sarmanov (1974) also constructed the same bivariate gamma
distribution.
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8.6.2 Case 2 of Gunst and Webster

In this case, we set a = m, and b = m + p. This is the equicorrelated case of
Jensen’s bivariate gamma, i.e., all the d’s are equal. The joint density function
is given by

(1—n)—™/2
1“(m/?)r(p/?)

N1y NN +1 T +y
S e e (L,

=0 k=0

h(x’y) =

(8.25)

2—(2N1+N2+3)F(N2+1) The

where Ny = 5 +j—1,No =3 +k—1, and a;x = T (MM T 2)

correlation coefficient in this case is ny/a/b.

8.7 Smith, Aldelfang, and Tubbs’ Bivariate
Gamma Distribution

Smith et al. (1982) extended Case 2 of Gunst and Webster to the case where
m and p are not necessarily integers. Replacing a/2 and b/2 by 71 and s,
respectively, they showed that the joint density function can be written as

gLy 1exp[(x+y Zak - (2\/2nmy)
(I=mr Tl —m) = "7 1—n )’
(8.26)

, and 7 is a dependency parameter satis-

h(z,y) =

(vy)"Tyva—y1+k)(1—n)72 "1
K (vay) 2 TE-172

where a; =

fying0 <np < 1landn= p(wg/wl)1/27 in which p is the correlation coefficient
between X and Y'; see Brewer et al. (1987) and Smith et al. (1982) for further
details. (The expression for aj given in those papers seems to be incorrect,
however.)

Remarks

e Brewer et al. (1987) gave some results concerning the location of the mode
of distributions (8.26).

e See Tubbs (1983a) for the distribution of the ratio X/Y.

e Smith et al. (1982) considered an application of the distribution to gust
modeling.
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e Yue (2001) studied the applicability of the distribution to flood frequency
analysis.

e Nadarajah (2007) questioned the convergence of the series in the expres-
sion for the joint p.d.f.

8.8 Sarmanov’s Bivariate Gamma Distribution

Sarmanov (1970a,b) introduced asymmetrical bivariate gamma distributions
that extend Kibble’s bivariate gamma distribution in (8.2).

8.8.1 Formula of the Joint Density

The joint density function is
h(,y) = for (@) fan (0) D as L5 V@)L V), (8.27)
§=0

for z,y > 0,1 > o, where

Do)l (e +4)1
W=V e ey} o 0=A L

8.8.2 Univariate Properties

The marginals are gamma distributions with shape parameters a; and as.
Note that Ega_l)() are the orthonormal Laguerre polynomials with respect
to the gamma density f,.

8.8.3 Correlation Coefficient

Pearson’s coefficient of correlation is

corr(X,Y) = p=AJ/as /a1 = ay.
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8.8.4 Derivation

This distribution can be derived by generalizing the diagonal expansion of
Kibble’s bivariate gamma density in (8.2) by choosing an appropriate canon-
ical sequence a;, as discussed in Lancaster (1969).

8.8.5 Interrelationships

Interrelationships between the distributions of Kibble (1941), Jensen (1970),
Gunst and Webster (1973), Smith et al. (1982), Krishnaiah (1983), and Malik
and Trudel (1985) are as presented below, in which GW stands for Gunst and
Webster and MT stands for Malik and Trudel.

Sarmanov (d)

!
Krishnaiah (a) ® Smithetal < Kibble MT (e)

! l

GW Case 3(a) &) GW Case 2 & Jensen (2)

Notes: The last two downward arrows indicate that the «; are restricted to
be integers or half-integers.

N

(a) Parameter «, no greater than a; or as, is present.
) Parameter « is dropped.
) aq and a are set to be equal.
(d) a1 and g are not necessarily equal.
) The marginals are not gamma distributions.
) The correlations are not equal.
) a1 < ag, the «; being integers or half-integers. pi,pa,...,p2q, are
nonzero but may be different.

We further note the following:

e Royen’s bivariate gamma is essentially the same as Kibble’s bivariate
gamma distribution, except the marginals are nonstandard gamma with
scale parameter 1/2.

e Kibble’s bivariate gamma is a special case of Izawa’s bivariate gamma
model.

8.9 Bivariate Gamma of Loaiciga and Leipnik

Another unsymmetrical bivariate generalization of Kibble’s bivariate gamma
with different shape and scale parameters was introduced by Lodiciga and
Leipnik (2005).
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8.9.1 Formula of the Joint Density

The joint density function is
— Shuhe N Hk—n, AyHj—n ¥y
h(z,y) = ;};;Anw R exp( = b2> (8.28)

for > 0 and y > 0, where \; = a;(n +7),\; = X\; — 1, and A,,;; are given

by
1 n+k+j an n! 2 _ N, N
Ankj = k+A§+1)j+x+1ﬂ ) ( 7) ( _lk> < 2 ) (8.29)
by VT PTT(A)T(A) N n n—17j
Here va; and ~yasy are the marginal shape parameters of X and Y, respec-

tively, with 1,9 > 0; v is a (collective) positive shape parameter of the
joint distribution; and by, by > 0 are shape parameters.

8.9.2 Univariate Properties

Both X and Y have gamma distributions with shape parameters ya; and
scale parameters b;, j = 1, 2, respectively.

8.9.3 Joint Characteristic Function
o(s,t) = [(1 —isby)* (1 — itbe)** + Bst] 7. (8.30)

8.9.4 Correlation Coefficient

Pearson’s product-moment correlation coefficient is

p

P= blbgw/alag ’

8.9.5 Moments and Joint Moments
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i = obyy, o = a;biy;
10 = 2biyan, fo,3 = 2b3a;

Ho,1 = 2Baiby, p1,2 = 2Basbs.

Remarks

e In their original derivation, a location parameter &; for each marginal is
included so that the characteristic function has the form

@(s,t) = eWEsTIED (1 — jsh )21 (1 — ibyt)*2 + Bst] 7.

e Equation (8.30) shows that the distribution is indeed a generalization of
Kibble’s bivariate gamma with a; = as = 1, by = by = b, and v = p.

e The distribution X/Y and its moments were derived in Lodiciga and Leip-
nik (2005). The p.d.f. of the ratio was fitted to correlated bacteria densities
in stream water.

e Nadarajah and Kotz (2007a) commented that the sums and products are
required in hydrology and then went on to derive the distributions of X +Y
and XY when the joint density is given by (8.28).

8.9.6 Application to Water-Quality Data

Lodiciga and Leipnik (2005) have successfully fitted the probability distri-
bution of X/Y to the water-quality data collected from Las Palmas Creek,
Santa Barbara, California. The aim of their investigation was to study the
ratio of fecal coliforms (FC) to fecal streptococcus (FS). FC and FS are en-
teric bacteria that live in the intestinal tract of warm-blooded animals and
are frequently used as indicators of fecal contamination of water bodies. A
total of 38 pairs of 100-ml water aliquots were collected. In each pair, one
was analyzed for FC and the other for F'S. The authors found that both FC
and FS can be adequately modeled by univariate gamma distributions.

8.10 Cheriyan’s Bivariate Gamma Distribution

Kotz et al. (2000) have referred to this distribution as Cheriyan and Ramab-
hadran’s bivariate gamma distribution.
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8.10.1 Formula of the Joint Density
The joint density function is

h e~ (@+y) min(=.y) 6 O2-10s 102z (8.31
_ e _ 1l 2— 37 e%dz. .
(z,y) r(el)r(az)r(eg)/o e

8.10.2 Univariate Properties

The marginal distributions are gamma with shape parameters a; = 61 + 603
and Qg = 92 + 92.

8.10.3 Correlation Coefficient

Pearson’s product-moment correlation is ——

Dabrowska (1982) has discussed the behavior of the monotone quadrant
dependence function (see Section 3.5.3 for definition and details)—whether
the tendency for small values of Y to associate with small values of X is
bigger or smaller than the tendency of big values of Y to associate with big
values of X, for example.

8.10.4 Moment Generating Function

The joint moment generating function is

M(s,t) = (1—s)" (1 —t)"%2(1 -5 —1)7%. (8.32)

8.10.5 Conditional Properties

The conditional distribution of Y given X is the sum of two independent
random variables, one distributed as X X (standard beta variable, with pa-
rameters 03 and 1) and the other as a standard gamma variable with shape

parameter o. The regression is linear and is E(Y|X = z) = elafelx + 0s,
0103

and the conditional variance is quadratic and is Wﬁ + 05; see
Johnson and Kotz (1972, p. 218).
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8.10.6 Derivation

This distribution can be derived by the trivariate reduction method. Let X; ~
gamma(f;, 1) for i = 1,2, 3, and let the X;’s be mutually independent. Then,
X = X1+ X3 and Y = X5 + X3 have this joint distribution.

8.10.7 Generation of Random Variates

The trivariate reduction method is very easy to use to generate bivariate
random variates from this distribution; see Devroye (1986, pp. 587-588).
Consequently, this distribution could be used to generate a bivariate gamma
population when the marginals (gamma) and the correlation coefficient are
specified; see Schmeiser and Lal (1982).

8.10.8 Remarks

e This distribution originated with Cheriyan, who considered the case in
which 07 = 0.

e Ramabhadran (1951) also obtained the same distribution and then dis-
cussed the multivariate form.

e Independently, Cheriyan (1941) obtained this distribution and derived a
number of its properties. In particular, they derived explicit expressions
for h(z,y) for five combinations of small values of 61,65, and 3. For 6, =
0> = 1 and 63 an integer,

h(z,y)
2 05—1
= e*(w+y)(_1)03 [1 v {1 W 4 il R (_1)931“}” ,

where w = min(z, y).

e The joint probability density function has a different expression for x < y
and for x > y; see Moran (1967).

e The joint density can be expanded in terms of Laguerre polynomials as
shown by Eagleson (1964) and Mardia (1970).

e Ghirtis (1967) referred to this distribution as the double-gamma distribu-
tion and studied some properties of estimators of this distribution.

e Jensen (1969) showed that

Pra< X <b,a<Y <b) >Pr(a< X <bh)Pr(a <Y <b) (8.34)
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for any 0 < a < b. Another way of expressing (8.34) is
Pra<Y <bla< X <b)>Pr(a<Y <),

which means that if it is known that X is between a and b, then it increases
the probability that Y is between a and b. Letting either a = 0 or b = oo
in (8.34), we conclude that X and Y are PQD. In fact, this result follows
directly from Lehmann (1966); see Section 7.4.

e Mielke and Flueck (1976) and Lee et al. (1979) discussed the distribution
of X/Y.

e The class of bivariate gamma distributions having diagonal expansions,
considered by Griffiths (1969), includes the forms of Cheriyan.

8.11 Prékopa and Szantai’s Bivariate
Gamma Distribution

Prékopa and Szantai (1978) introduced a multivariate gamma distribution
as the distribution of the multivariate vector Y = AX, where X has inde-
pendent standard gamma components and the matrix A consists of nonzero
vectors having components 0 or 1.

Széantai (1986) considered the bivariate case of this multivariate gamma
family with the structure

X:X1+X3 and YV:)(Q—F)(?,7

where X7, X5, and X3 are independent gamma random variables having
shape parameters oy, as, and ag, respectively.

8.11.1 Formula of the Cumulative
Distribution Function

The joint cumulative distribution function is

min(z,y)
H(xy) = / For (@ — 2)Fay(y — 2)fo (2)dz.  (8.35)

8.11.2 Formula of the Joint Density

The joint density function is
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(a1 +7r) T(ag+as) T(ag + a3)
T(ay) T(ar4+az+7)T(as+az+7r)

Xﬁgaﬁrasfl)(x)ﬁgaﬁaa*l)(y)’ (8.36)

h(.’L‘, y) = f041+043 (x)foéeras (y) Z r! L
r=0

where z:&“‘” are the orthonormal Laguerre polynomials defined on the
gamma density with shape parameter «.

8.11.3 Univariate Properties

The marginal distributions are gamma with shape parameters o + a3 and
Qa9 + ag, respectively.

8.11.4 Relation to Other Distributions

Clearly, the bivariate distribution of this model is identical to Cheriyan’s
bivariate gamma distribution. In contrast to Cheriyan’s result, Szantai (1986)
has given an explicit expression for the joint density function.

8.12 Schmeiser and Lal’s Bivariate Gamma Distribution

Schmeiser and Lal (1982) developed an algorithm that enables us to generate
bivariate distributions that have

e given gamma marginals with parameters (5;,;),i = 1,2 (8; are scale
parameters and «; are shape parameters),

e any specified correlation coefficient p, and

e linear or nonlinear regression curves.

8.12.1 Method of Construction

Let X;, X5, and Z be three independent standard gamma variables with
shape parameters 1,02, and -, respectively, and let U be an independent
uniform random variable on (0,1). Also, V. =U or V =1 —U. Define

GyHU) + Z + X, v G (V) +Z+ X,

X= B ’ = 5 :

(8.37)
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where G, (+) is the distribution function of a standard gamma random variable
with shape parameter A and G;l(-) is the inverse function of G().
For \; > 0,6; > 0,7 > 0, the parameters are selected according to

YHA+ b=,  i=1,2
E{GHU)GHV) = Mda +7} = py/araz.

8.12.2 Correlation Coefficient

Pearson’s product-moment correlation coefficient is given by

~EB{G )G (V) = Mda + )
v/ 109 ’

p

8.12.3 Remarks

e This is another example of constructing a pair of random variables using
the variables-in-common method.

e Schmeiser and Lal (1982) also developed an algorithm called GBIV, which
determines the parameter values as well as generating the random vector
(X,Y).

8.13 Farlie-Gumbel-Morgenstern Bivariate
Gamma Distribution

The bivariate gamma distribution of F-G-M type was discussed by D’Este
(1981) and Gupta and Wong (1989).

8.13.1 Formula of the Joint Density

The joint density function is

Wz, y) = f@)g()[1 + M2F(z) - 1}{2G(y) = 1}], N[ <1, (838)

where F'(x) and G(y) are the marginal cumulative distribution functions and
f(z) and g(y) are the corresponding density functions.
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8.13.2 Univariate Properties

The marginal densities f(z) and g(y) are gamma densities with shape pa-
rameters op and «o, respectively.

8.13.3 Moment Generating Function

The joint moment generating function is

210,05 (1 —s)7") 21 (g, 0; (1 =) 1)
I(aq,0;1) I(a,0;1) ’
(8.39)

M(s,t) = (1—8)~" (1—)=°2 |1+

where I(a, k;z) = [ %dz; see Gupta and Wong (1989).

8.13.4 Correlation Coefficient

Pearson’s product-moment correlation coefficient is
p+ AK (a1)K(az),

where
K(a) =1/{2°*'B(a, )V}

and B(a, 3) is the complete beta function.

8.13.5 Conditional Properties

The regression is nonlinear and is given by

gD +1/2)
(a1 + Dy

A similar expression can be presented for the regression of Y on X.

EXY =y)=a1 + {2G(y) — 1}

8.13.6 Remarks

Kotz et al. (2000, p. 441) have presented expressions for the joint moments.
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8.14 Moran’s Bivariate Gamma Distribution

8.14.1 Derivation

Moran (1969) derived a bivariate gamma distribution by using the following
two steps:

(1) Use marginal transformation first to transform the standard bivariate
normal with correlation p into a copula C(u,v).

(2) Use inverse transform X = F~}(U),Y = G71(V) to find the joint
distribution function of X and Y. In fact, the cumulative distribution
function is given by H(z,y) = C(F(x),G(y)). Here, F' is the marginal
gamma distribution function with shape parameter a; and scale pa-
rameter A\; and G is the other marginal gamma distribution with shape
parameter oo and scale parameter \s.

8.14.2 Formula of the Joint Density

The joint density function is

_ 1 _ (pz")?—2pa"y' +(py")?
hla,y) = s fla)g(y) exp { LSRRI L gy >,
(8.40)

where 7/ = ®~1(F(x)) and y = ® 1(G(y)), with ® being the distribution
function of the standard normal.

8.14.3 Computation of Bivariate Distribution Function

Yue (1999) presented a procedure to compute the bivariate distribution func-
tion. Effectively, this is done through generation of marginal gammas using
Jonk’s gamma generator that is written in MATLAB code.

8.14.4 Remarks

e Moran’s model is a special case of the bivariate meta-Gaussian model
proposed by Kelly and Krzysztofowicz (1997).
e This is an example of obtaining a bivariate distribution using copulas.
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8.14.5 Fields of Application

Yue et al. (2001) presented a review of several bivariate gamma models includ-
ing those of Moran, Izawa, Smith et al., and F-G-M models, and illustrated
their applications in hydrology.

8.15 Crovelli’s Bivariate Gamma Distribution

Crovelli (1973) proposed a bivariate gamma distribution having the joint
density

h(z,y) = PrBre™P2¥(1 — e=17) for 0 < iz < fay
€r,Y) = 61626*511(1 _ 6*5234) for 0 < 62y < ﬂlx

8.15.1 Fields of Application

Crovelli (1973) used this bivariate distribution to model the joint distribution
of storm depths and durations.

8.16 Suitability of Bivariate Gammas for
Hydrological Applications

A bivariate gamma distribution whose marginals have different scale and
shape parameters may be useful to model multivariate hydrological events
such as floods and storms. Yue et al. (2001) considered four models (Izawa,
Moran, Smith et al., and F-G-M) and discussed their advantages and lim-
itations. Using both real and generated flood data, they found that Izawa,
Moran, and Smith et al. models with five parameters (two shape, two scale,
and one correlation parameter) are suitable to describe two positively cor-
related flood characteristics (such as flood peak and flood volume or flood
volume and flood duration), whereas the Moran and F-G-M models are able
to describe both positively and negatively correlated random variables. How-
ever, the applicability of the latter model is somewhat limited because of the
limited range of correlation it can attain; also see Long and Krzysztofowicz
(1992).
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8.17 McKay’s Bivariate Gamma Distribution

8.17.1 Formula of the Joint Density

The joint density function is
aPta

L'(p)L(q)

(i.e., the support is a wedge that is half of the positive quadrant), where
a,p,q > 0.

h(z,y) = PNy —2) e, y>z>0 (8.41)

8.17.2 Formula of the Cumulative
Distribution Function

The p.d.f. in (8.41) may be expressed in terms of the transcendental function
known as Fox’s H function. Hence, as done by Kellogg and Barnes (1989,
Section 4.6), the joint distribution function can also be expressed in terms of
Fox’s function.

8.17.3 Unwvariate Properties

The marginal distributions of X and Y are gamma, with shape parameters
p and p + q, respectively, but they have a common scale parameter a.

8.17.4 Conditional Properties

Y — z, conditional on (X = z), has a gamma distribution with shape param-
eter ¢q. X/y, conditional on (Y = y), has a beta distribution with parameters
p and q.

Correlation Coefficient

Pearson’s product-moment correlation coefficient is v/p/(p + q).
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8.17.5 Methods of Derivation

o McKay (1934) derived this distribution as follows: Let (X3, Xs,..., Xn)
be a random sample from a normal population. Suppose s%; is the sample
variance and s2 is the variance in a subsample of size n. Then, s and s2
jointly have McKay’s bivariate gamma distribution.

e As a member of Pearson’s system of bivariate distributions, it may be
derived by a differential equation; see Section 5.15 for details.

e [t was derived by the conditional approach as a special case of beta-Stacy
distribution by Mihram and Hultquist (1967).

Illustrations

Plots of the probability density surface for three cases—a = 2.0, p = ¢ = 0.5;
a=p=q=0.5a=1.0,p=0.2, ¢g=0.8have been provided by Kellogg
and Barnes (1989).

8.17.6 Remarks

e This is also known as the bivariate Pearson type III distribution, although
in van Uven’s designation, it is type IVa.

e One of the examples that Parrish and Bargmann (1981) gave to illustrate
their method of evaluating d.f.’s was this distribution.

e The exact distributions of the sums, products, and ratios for McKay’s
bivariate gamma distributions were obtained by Gupta and Nadarajah
(2006).

8.18 Dussauchoy and Berland’s Bivariate
Gamma Distribution

This is an extension of McKay’s bivariate gamma distribution.

8.18.1 Formula of the Joint Density

The support is the wedge y > fx > 0, and within this wedge, the joint
density is
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h(z,y) = P
Tl — )
X exp {—%(y . ﬂz)] Ry [zl, Iy — Ii; (% - a2> (y - Bx)} :

B>0; 0<ap <

(Bz) " exp(—agz)(y — Ba)2 1!

al .
/8 b
where 1 F; is the confluent hypergeometric function.

This distribution reduces to McKay’s bivariate gamma distribution when
a1 = ag = ﬂ =1.

O<l1<lg,

Remarks

e The marginal distributions of X and Y are gamma with shape parameters
l1 and [, respectively.

e Pearson’s product-moment correlation coefficient is %2\/11 /la.

The plots of the probability density surface (seven cases) were given by
Berland and Dussauchoy (1973).

e The density has been written above in a form that makes clear the inde-
pendence of X and Y — [x.

e For more details, see Dussauchoy and Berland (1972), Berland and Dus-
sauchoy (1973), and Dussauchoy and Berland (1975) for the multivariate
case.

e Berland and Dussauchoy (1973) applied this distribution to the joint dis-
tribution of the charge transported by a microdischarge (of electricity be-
tween two electrodes) and the interval of time between two of them.

Some Variants of this Distribution

We now summarize some variations in Table 8.1 on the theme of Y necessarily
being positive, and X necessarily being between 0 and y.

Table 8.1 Distributions specified by marginal and conditional

Reference Distribution of Y Distribution of X,
given Y =y
McKay (1934) Gamma Beta over (0,y)
Mihram and Hultquist (1967) Stacy Beta over (0,y)
Block and Rao (1973) Generalized inverted beta* Beta over (0,y)
Ratnaparkhi (1981)f Stacy, Pareto, or Beta or log-gamma
lognormal over (0,y)

* Density oc y* (1 4 y°) k.
1 In Ratnaparkhi’s paper, the roles of X and Y were reversed from those here.
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8.19 Mathai and Moschopoulos’ Bivariate
Gamma Distributions

We discuss bivariate versions of two multivariate gamma distributions pro-
posed by Mathai and Moschopoulos (1991, 1992). To simplify our presenta-
tion, we assume that the location parameter of the gamma variable is zero.
Also, our scale parameter beta here is defined differently from that of Mathai
and Moschopoulos.

8.19.1 Model 1

Method of Construction

Mathai and Moschopoulos (1991) constructed a bivariate gamma distribu-
tion, whose components are positively correlated, as follows.

Let V; be a gamma variable with shape parameter «; and scale parameter
Bi, having as its density =37 e fi% i =0,1,2. Define

(o)
X=Potth, Y=LV
1 2

Then, X and Y have a bivariate distribution with gamma marginals.

Joint Moment Generating Function

The joint moment generating function is

M(s,t) = (1— By s) ™ (1 — By )2 (1 — By ts — By ) oo, (8.42)

Univariate Properties

X is distributed as gamma with shape parameter o+ a; and scale parameter
(1, while Y is distributed as gamma with shape parameter ag + as and scale
parameter (.

Correlation Coefficients

Pearson’s product-moment correlation coefficient is
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&%)
\/(040 +a1)(ap + a2)

corr(X,Y)=p=

Conditional Properties

The regression is linear and is given by

- - ap B2 _
BXJY = y) = B(X) + 82 (y = B(Y)).

A similar expression can be presented for the regression of Y on X.

Relations to Other Distributions

This is a slight extension of Kibble’s bivariate gamma distribution. If g; = 1,
it reduces to Kibble’s case, and if 3; = 1/2, it becomes Royen’s bivariate
gamma distribution.

8.19.2 Model 2

Method of Construction

Mathai and Moschopoulos (1992) constructed another form of multivariate
gamma distribution. The special case of the bivariate version is as follows.
Let V;, i = 1,2, be defined as above but with the same scale parameter. Form

X =W, Y =Vi+Vy

then, X and Y clearly have a bivariate gamma distribution. The above con-
struction above is only part of a multivariate setup motivated by the con-
sideration of the joint distribution of the total waiting times of a renewal
process.

Formula of the Joint Density

The joint density function is

6(041 +az)

a—— e (TR .
Mo’ W= (8.43)

h(z,y) =
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Marginal Properties

The marginal distributions of X and Y are gamma, with shape parameters
ay and aq + ag, respectively, and with a common scale parameter (3.

Relation to Other Distributions

The bivariate case of this multivariate gamma is simply McKay’s bivariate
gamma distribution.

8.20 Becker and Roux’s Bivariate Gamma Distribution

8.20.1 Formula of the Joint Density

The joint density function is

ha.y).,
| w8 (v — @) + Ba]exp[-Bly — (a+ B )], 0 <z <y
= /b ’
oy e (@ —y) + ay]* L exp—a/z — (a+ B —a')yl, 0 <y <

(8.44)

8.20.2 Derivation

Let us restate Freund’s model as follows. Suppose that shocks that knock out
components A and B, respectively, are governed by Poisson processes. Let us
further assume the following:

e For component A, the Poisson process has rate @ when component B is
functioning and rate o’ after component B has failed.

e For component B, the Poisson process has rate 8 when component A is
functioning and rate [’ after component A has failed. Becker and Roux
(1981) generalized Freund’s distribution by supposing that the components
did not fail after a single shock but that it took a and b shocks, respectively,
to destroy them. (The numbers a and b are deterministic, and not random.)
The resulting joint density is the one given in (8.44).
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8.20.3 Remarks

e The original model proposed by Becker and Roux (1981) was slightly
reparametrized by Steel and le Roux (1987) to a form that is more
amenable for practical applications.

e When a = b = 1, the model abovereduces to Freund’s (1961) bivariate
exponential distribution; see Chapter 10 for pertinent details.

8.21 Bivariate Chi-Squared Distribution

8.21.1 Formula of the Cumulative
Distribution Function

The joint cumulative distribution function is
H(z,y) = ch Pr[X%—u—zj < (1*P)71x]XPT[Xi—1+2j < (1-p) 'y, (8.45)
j=0
for z,y > 0,0 < p < 1, where
L(=1)+5) (1= P10y
I (3(n—1)) !

Note that ¢;, 2 = 0,1,..., are terms in the expression of the negative binomial

L, D
1—-p'1—0p ’

so that Zjio ¢;j = 1. Thus, the joint distribution of X and Y can be regarded
as a mixture of joint distributions, with weights c;, in which X and Y are
independent x?2_; 4o, distributions.

C; =

8.21.2 Unavariate Properties

Both marginals have chi-squared distributions with n — 1 degrees of freedom.
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8.21.3 Correlation Coefficient

Pearson’s product-moment correlation coefficient is corr(X,Y) = p = p3.

8.21.4 Conditional Properties

X, conditional on (Y = y), is distributed as (1 — p)x (noncentral x? with (n—
1) degrees of freedom and noncentrality parameter py(1 — p)~'). Therefore,
the regression is linear and is given by

E(X|Y = y) = (n—1)(1 - p) + py. (8.46)
Also, the conditional variance is linear and is given by
var(X|Y =y) = 2(n — 1)(1 = p)* + 4p(1 - p)y. (8.47)

A similar expression can be presented for Y, conditioned on (X = x).

8.21.5 Deritvation

Let (X;,Y;), ¢ = 1,2,...,n, be n independent random vectors, each having
a standard bivariate normal distribution with correlation coefficient pg. Fur-
ther, let X =>" (X;—X)?and Y =Y | (V; — Y)?, where X and Y are
the sample means of X; and Y;, respectively. Then, X and Y have a joint cu-
mulative distribution function as given in (8.45); see, for example, Vere-Jones
(1967) and Moran and Vere-Jones (1969).

8.21.6 Remarks

e The bivariate distribution is also called the generalized Rayleigh distribu-
tion; see, for example, Miller (1964).

e The joint distribution VX and VY is a bivariate chi-distribution studied
by Krishnaiah et al. (1963).

e A more general bivariate gamma can be obtained by replacing (n — 1) in
(8.48) by v, which should be positive but need not be an integer.

e X/Y is distributed as a mixture, with the same proportions as ¢;, of
FTL—1+2j,7L—1+2j distributions.
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8.22 Bivariate Noncentral Chi-Squared Distribution

Let (X;,Y:), i = 1,2,...,n, be n independent random vectors having bi-
variate normal distributions with means (p;,p;), identical variances o2,
and correlation pg. Further, let X = Y%  X2/0? and Y = Y1 | V?/o%

Krishnan (1976) then showed that their joint distribution has density func-

tion
-t 52550 )

p
=0
Vi vy
Ifi{1+\/ﬁ}ffi{l+ﬁ}7 (8.48)

where A = " | 4i? is the noncentrality parameter, p = p3, Iy, is the modified
Bessel function of the first kind and order f; = % + i —1, and k and d; are

given b .
(A [,

o= () GG )

Krishnan (1976) also showed that the joint moment generating function is

M(s,t) = [1—2(s+1t) +4st(1 — p)}n/2exp{ A[s +t—4st(1— }

1—2(s+1t) +4st( 1—

8.49)
When X = 0, we obtain Kibble’s bivariate gamma distribution.
8.23 Gaver’s Bivariate Gamma Distribution
We present here the bivariate version of Gaver’s (1970) multivariate gamma
distribution.

8.23.1 Moment Generating Function

The joint moment generating function is

—k
1 | |
atl o+l ot st) . ka>0 (850

M(s,t) = (1 - s —

(&% (67 (67
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8.23.2 Deritvation

Let X and Y have the same gamma distribution with the shape parameter
0 + k (0 is an integer, and k > 0 need not be an integer). For a given value
of 8, X and Y are independent. Assuming that 6 has a negative binomial
distribution with probability generating function (3 To s )¥, the joint moment
generating function of X and Y is obtained as given in (8.50).

8.23.3 Correlation Coefficients

1
1+ a

Pearson’s product-moment correlation coefficient is corr(X,Y) = p =

8.24 Bivariate Gamma of Nadarajah and Gupta

Nadarajah and Gupta (2006) introduced two new gamma distributions based
on a characterizing property involving products of gamma and beta random
variables. Both joint density functions involve the Whittaker function defined
by

a2 exp(—a/2) [
= tHATL2 (] 4 g)ptA=1/2 —at)dt.
W = o | (1 4+ 012 exp(~at)

8.24.1 Model 1

Formula of the Joint Density

The joint density function is

h(z,y) = CT(b)(ay)"~ ( Z. j)
W, rL Y
[ e

13 )

z >0,y >0,

where C is a constant given by C~1 = (u1p2)°T'(c)I'(a)T'(b).
When b = 1, then the joint p.d.f. reduces to a simpler form:

h(z,y) = C(zy)°? (/Z + 52) r (20 —a, I + ﬂ2>
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Method of Derivation

Assume that W is beta distributed with shape parameters a and b. Assume
further that U and V are gamma distributed with common shape parameter
¢ and scale parameters 1/uq and 1/pus, respectively, with ¢ = a + b. Then
X =UW,Y = VW have the joint density function given above.

Correlation Coefficient

Pearson’s product-moment correlation coefficient is

Vab
COI'I'(X, Y) = p= m

Other Properties

Product moments and conditional distributions are also given in Nadarajah
and Gupta (2006).

8.24.2 Model 2

Formula for the Joint Density

The joint density function is

by +by—ct1
2

h(.y) = CT(b)T (o) P (- L)
I

0o (1) (ux) 2y x
XZ]’:O ]'F(bg—j) ngfblgc—j—lyblﬁ»bngcfj ; y

for x > y > 0, where C' is a constant given by C~1 = u°T'(c) B(ay, b1)B(az, b).
The corresponding expression for 0 < z < y can be obtained from the
last equation for the joint density by symmetry; i.e., interchange x with vy,
ay with as, and b; with bs.
If both b, = 1 and by = 1, then the joint density above reduces to

h(z,y) = Cp* ™ ty»~'T <2 -, z) :
1

where I'(a, z) is the incomplete gamma function.
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Method of Derivation

Assume that U and V are beta distributed with shape parameters (ay,b1)
and (ag, be), respectively, where a; + by = ag + be = ¢. Assume further that
W is gamma distributed with shape parameter ¢ and scale parameter 1/pu.
Then X = UW, Y = VW have the joint density function given above.

Correlation Coefficient

Pearson’s product-moment correlation coefficient is

corr(X,Y)=p=~ 142

c

Other Properties

Product moments and conditional distributions are also given in Nadarajah
and Gupta (2006).

8.25 Arnold and Strauss’ Bivariate Gamma Distribution

This is a slight generalization of Arnold and Strauss’ (1988) bivariate distri-
bution with exponential conditionals.

Formula of the Joint Density

The joint density function is
h(z,y) = Ka* 'y’ L exp {—(ax + by + cxy)} (8.51)

forx >0,y >0,a>0, 08>0 a>0b>0, and ¢ > 0, where K is the
normalizing constant such that

1 ab
—_— = Q_B -« —_ —_—
e b P T ()T () W <a,a B+1, ; ) .

Here ¥ is the Kummer function defined by

1 [ee)
U(a,b,z) = T / t27 (1 + 1) L exp(—zt)dt.
0
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8.25.1 Remarks

e The distribution above was considered by Nadarajah (2005, 2006).

e The distributions of XY and X/(X +Y) were considered by Nadarajah
(2005).

e The Fisher information matrix and tools for numerical computation of the
derivation were also derived by Nadarajah (2006).

8.26 Bivariate Gamma Mixture Distribution

8.26.1 Model Specification

Let X have a gamma density

1
f(SC‘l/, 7) = W,YVIV*IB*’YI’ T > Oa

with shape parameter v > 0 and random scale parameter v taking two dis-
tinct values, 1 and .. Similarly, Y has a gamma density

1

_ a, a—1_—fy
9(yle, B) f(a)ﬂ y* e,y >0,

with shape parameter o > 0, and (§ is a random scale parameter taking two
distinct values ;1 and fs.

For given (v, ), we assume that X and Y are independent but v and
are correlated, having a joint probability mass function Pr (y = v;,8 = ;) =
Dyigyy 03 =1,2.

8.26.2 Formula of the Joint Density

The joint density function is [see Jones et al. (2000), where the scale param-
eter is defined differently]

Be,y) = 2"yt oyt B ) 4yt gemOoton)

+ ey Bre” (B L (1 — g — b — ¢)yy Bge”(2rtB) |
(8.52)

where @ = py,8,, b =Dvy,8,; C=Dypp,a0dd=py,p, =1—a—-b—c.
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8.26.3 Formula of the Cumulative
Distribution Function

The joint cumulative distribution function is

H(,y) = m {712 ()T 51y (@) + B0 ()T (@)

+ CF’YZGK(V)FBNT(Q) + (1 —a—b— C)F’Yzﬂc(y)rﬁfzw(a)} )
(8.53)

where I'(v) = fot ¥~ te~%dz is the incomplete gamma function.

8.26.4 Unwvariate Properties

The marginal densities are
f@) =mfi(e) + (1 —m)fa(z), m =a+b,

9(y) = m01(y) + (1 — m2)g2(y), ma=a+c,
where f;(z) = f(z[v,7i), 9i(y) = g(yla, B;). Consequently, we have

EX) =v[m/m+ 0 —m)/rpl, EY)=vm/f+ (1 -m)/b].

8.26.5 Moments and Moment Generating Function

The joint moment generating function is

M(s,t) = a(l —s/vs) (1 —=t/B1)"* +b(1 —s/715)""(1 —t/B2)"
+e(l—8/728) (1 =t/B1)"* +d(1 — s/v258) " (1 = t/B2) "7,
(8.54)

where d = (1 — a — b — ¢). The product moments (about zero) are given by

. L(j+ )L+ «)
N I()l(a)

{ani 807 + b3 "By + e 1877 + dvi '3}

where d= (1 —a—b—c).
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8.26.6 Correlation Coefficient

Pearson’s product-moment correlation coefficient is

B var(y)var(f)
p = va - corr(y, () (X )var(Y) (8.55)
p is bounded above by
_ (71 +72)? }1/2 { (81 + B2)* }1/2
Prmax = {1 A7 o e G (8.56)

which is attainable if and only if v1 /72 = $1/B2 at a = y1 /(71 +72),b=c = 0.
The minimum of p occurs at approximately b = ¢ = 0.5 if v, , and 74 /72’
B31/ P2 are similar.

8.26.7 Fields of Application

Tocher (1928) presented a number of large bivariate datasets concerning the
milk yields of dairy cows. The bivariate gamma mixture model of Jones et
al. (2000) has been used to model these data very well.

8.26.8 Mixtures of Bivariate Gammas of
Iwasaki and Tsubak:

Using an integrating method to satisfy the integrability condition of the quasi-
score function, Iwasaki and Tsubaki (2005) derived a bivariate distribution
that can be expressed as a mixture of a discrete distribution whose probability
mass is concentrated at the origin and independent gamma density functions.

8.27 Bivariate Bessel Distributions

There are two kinds of univariate Bessel distributions. Let U; and Us be two
independent chi-squared random variables with common degrees of freedom
v; see for example, Johnson et al. (1994, pp. 50-51)

1. The first kind of Bessel distribution corresponds to aiU; + asUs for
a; > 0, as > 0.
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2. The second kind of Bessel distribution corresponds to a1U; — asUs for
a1 >0, ax > 0.

Let U, V, W be three independent chi-squared random variables with com-
mon degrees of freedom v. Nadarajah and Kotz (2007b) have constructed
four bivariate Bessel functions as follows:

(1) For a; > (81 > 0 and g > (B2 > 0, define

X = U+ BV, Y = U + B5V.
(2) For a1 > (1 > 0 and ag > (B2 > 0, define

X = U+ W, Y = asV + B W.
(3) For ag > 0,31 > 0,9 > 0, and [ > 0, define

X =aU—-pV, Y = aoU — B2V.
(4) For oy > 0,61 > 0,2 > 0, and (B2 > 0, define

X = U - W, Y = asV — B W.

The marginals of (1) and (2) belong to the Bessel distribution of the first
kind, whereas the marginals of (3) and (4) are of the Bessel distribution of
the second kind.

Explicit expressions as well as the contour plots for the four joint distribu-
tions are given in their equations (7), (10), (12), and (13), respectively. The
product moments of these distributions were also derived.
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Chapter 9

Simple Forms of the Bivariate
Density Function

9.1 Introduction

When one considers a bivariate distribution, it is perhaps common to think
of a joint density function rather than a joint distribution function, and it
is also conceivable that such a density may be simple in expression, while
the corresponding distribution function may involve special functions, can be
expressed only as an infinite series, and sometimes may even be more compli-
cated. Such distributions form the subject matter of this chapter. Although
the standard form of these densities is simple, their generalizations are often
not so simple. To include these generalizations would undoubtedly place the
title of this chapter under question, but the alternative of leaving them out
would be remiss. Therefore, for the sake of completeness, generalized forms
of these simple densities will also be included in this discussion.

In Section 9.2, we describe the classical bivariate t-distribution and its
properties. The noncentral version of the bivariate t-distribution is discussed
next, in Section 9.3. In Section 9.4, the bivariate ¢t-distribution having as its
marginals ¢-distributions having different degrees of freedom is presented and
some of its properties are detailed. The bivariate skew t-distributions of Jones
and Branco and Dey are discussed in Sections 9.5 and 9.6, respectively. Next,
the bivariate t-/skew t-distribution and its properties are discussed in Section
9.7. A family of bivariate heavy-tailed distributions is presented in Section
9.8. In Sections 9.9-9.12, the bivariate Cauchy, F', Pearson type II, and finite
range distributions, respectively, are all described in detail. In Sections 9.13
and 9.14, the classical bivariate beta and Jones’ form of bivariate beta distri-
butions are presented along with their properties. The bivariate inverted beta
distribution and its properties are detailed in Section 9.15. The bivariate Liou-
ville, logistic, and Burr distributions and their characteristics and properties
are presented in Sections 9.16-9.18, respectively. Rhodes’ distribution is the
topic of discussion of Section 9.19. Finally, the bivariate distribution with
support above the diagonal proposed recently by Jones and Larsen (2004)

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 351
DOI 10.1007/b101765-10, (© Springer Science+Business Media, LLC 2009
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is described in Section 9.20, where its properties and applications are also
pointed out.

Many of the distributions in this chapter belong to Pearson’s system and
thus can be derived by the differential equation method described in Section
5.16.1. It is a common practice to refer to Pearson distributions by the form
of their marginals—thus, for example, a bivariate type II has type I marginal
distributions. But van Uven’s designation is also used. The following table
clarifies the nomenclature we have used.

Common name van Uven’s designation Pearson marginals
t ITTac VII
F (inverted beta) ITag VI

1ITag 11
beta (Dirichlet) TTac Iand I, or I and II
McKay’s bivariate gamma IVa 111

ITary VI

IIb V and VI
normal VI normal

Elderton and Johnson (1969, p. 138), Johnson and Kotz (1972, Table 1
in Chapter 34), and Rodriguez (1983) have presented versions of the table
above in which expressions for the densities, supports, and restrictions on the
parameters are also included.

9.2 Bivariate t-Distribution

9.2.1 Formula of the Joint Density

The joint density function is

—(v+2)/2
(2% = 2pzy + y°) (9-1)

h(a:,y) =

1 1
1+
2my/1 — p? v(1—p?)

forv >0, -1<p<1,z,y>0.

9.2.2 Univariate Properties

Both marginal distributions are ¢-distributions with the same degrees of free-
dom v.
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9.2.3 Correlation Coefficients

For v > 2, Pearson’s product-moment correlation coefficient is p. For 0 <
v < 2, p represents the gradient of the major axis of elliptical contours.

This distribution is an example of zero correlation not necessarily implying
independence; see also Sections 9.2.6 and 9.2.9.

9.2.4 Moments

From the basic construction of this distribution described below in Section
9.2.6, the product moments are easily found to be

Hro = B(XTY?) = /U R E(XTXS)E(S™0H), (9-2)
where E(X7X35) is simply the (r, s)th product moment of the standard bi-
variate normal distribution with correlation coefficient p and

B(Sr+9)) = 9=(r+s)/2p (”_;_5) JT(v/)2). (9.3)
If X and Y are independent (i.e., p = 0), then y. . is zero unless both 7 and
s are even, in which case it is given by

[1-3-5-(2r—DJ[1-3-5--- (25— 1)]

(r+s)/2
v—2)v—4) - (v—r—2s) ’

(9.4)

see Johnson and Kotz (1972, pp. 135-136) for details.
The characteristic function of this distribution is given by
Sutradhar (1986).

9.2.5 Conditional Properties

V(V+1):| 1/2 Y —px
v4a? \/1—p2 ’
has a t-distribution with v + 1 degrees of freedom. The regression is linear
and is given by E(Y|X = x) = pz, and the conditional variance is quadratic
and is given by —*=(1 — p?)(1 + 22 /v); see Mardia (1970, p. 92).

When X = z, the linear transformation of Y, viz. U = {
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9.2.6 Derivation

This distribution is derived from the trivariate reduction method as follows.
Let (X7, X2) have the standardized bivariate normal distribution, with cor-
relation coefficient p, and S, independent of X; and X5, be distributed as x,
(i.e., the square root of a x2-variate). Then X = X1,/7/S and Y = X51/v/S
follow the bivariate ¢-distribution in (9.1).

9.2.7 Illustrations

Devlin et al. (1976) have presented contour plots of the density in (9.1), while
Johnson (1987, pp. 119-122, 124) has presented illustrations of the density
surface.

9.2.8 Generation of Random Variates

The generation of random variates from this bivariate t-distribution has been
discussed by many authors, including Johnson et al. (1984, p. 235), Vaduva
(1985), and Johnson (1987, pp. 120-121).

9.2.9 Remarks

e This is also known as the Pearson type VII distribution, though the density
of the latter usually appears in the form

—m\/T= )

o (k + 2 = 2zyp +y*)™ ! (9.5)

h(l‘, y) =

form<0; =1 <p<1;k>0.

e For the special case where p = 0 and v = 1, the bivariate Cauchy distri-
bution is obtained; see Section 9.9 for more details.

e For p =0, X? and Y? have a bivariate F-distribution; see Section 9.10 for
more details.

e As v — oo, this distribution tends to a bivariate normal distribution.

e The contours of the probability density are ellipses. One may refer to
Chapter 13 for more details on elliptical distributions.

e The variable (X2 — 2pXY + Y?)/[2(1 — p?)] has an F-distribution with
(2,v) degrees of freedom; see Johnson et al. (1984).
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e For this distribution, zero correlation does not imply independence of X
and Y. This is so because though X; and X, having a bivariate nor-
mal distribution with correlation p become independent when p = 0, the
denominator variable S is in common. In fact, apart from the bivariate
normal, all the elliptically contoured bivariate distributions discussed in
Chapter 13 have this property.

e The distributions of XY and X/Y have been discussed by Malik and
Trudel (1985) and Wilcox (1985).

e For probability inequalities connected with bivariate and multivariate
t-distributions, one may refer to Tong (1980, Section 3.1).

9.2.10 Fields of Application

e While this distribution is not often used to fit data, tables of its percentage
points are required in the applications of multiple comparison procedures,
ranking and selection procedures, and estimation of rank parameters. For
a more detailed discussion, one may refer to Dunnett and Sobel (1954),
Gupta (1963), Johnson and Kotz (1972, p. 145), and Chen (1979).

e Pearson (1924) fitted the distribution to two sets of data on the number
of cards of a given suit that two players of whist hold in their hands.

e FEconometricians make extensive use of systems of linear simultaneous
equations and then commonly assume the stochastic terms, the distur-
bances, to have a multivariate normal distribution. Concerned with the
possibility that the actual distribution has thicker tails than the normal,
and hence that too much weight is given to outliers by conventional meth-
ods of estimation, Prucha and Kelejian (1984) proposed alternative meth-
ods based on multivariate ¢ and other thick-tailed distributions.

9.2.11 Tables and Algorithms

Johnson and Kotz (1972, pp. 137-140) have listed many references to tables.
Some recent tables include those of Chen (1979), Gupta et al. (1985), Wilcox
(1986), and Bechhofer and Dunnett (1987).

For numerical computation of multivariate ¢ probabilities over convex re-
gions, see Somerville (1998). A generalization of Plackett’s formula was de-
rived by Genz (2004) for efficient numerical computations of the bivariate
and trivariate ¢ probabilities.

Genz and Bretz (2002) gave a comparison of methods for the computation
of multivariate ¢ probabilities.



356 9 Simple Forms of the Bivariate Density Function

9.2.12 Spherically Symmetric Bivariate t-Distribution

If p =0, then (9.1) simply becomes

1 —(v
ha,y) = g2 (vt @2 7)) (9.6)
s
which is a spherically symmetric bivariate distribution. By replacing v inside
the bracket in (9.6) by a? and adjusting the normalizing constant, we obtain

1 —(v
h(zx,y) = Q—a”u (a* + 2% + ¢°) /2 (9.7)
™
This is the form of bivariate t-distribution that is considered by Wesolowski
and Ahsanullah (1995). For a review of spherically symmetric distributions,
one may refer to Fang (1997).

9.2.13 Generalizations

e Poly (or multiple) ¢-distributions are those densities that correspond to
the product of two or more terms like the right-hand side of (9.1); see
Press (1972).

9.3 Bivariate Noncentral ¢t-Distributions

Johnson and Kotz (1972, Chapter 37) considered the derivation of a more
general form of bivariate t-distribution of the form

X = (X1 +61) /7 /S1
Y = (X2 + 02)\/112/S2 }’ (9-8)

where the 0’s are noncentrality parameters, the X’s have a joint normal
distribution with a common variance o2, and the S;/o’s have a joint chi-
distribution. The cumulative distribution has been derived by Krishnan
(1972). Ramig and Nelson (1980) have presented tables of the integral when
S1 = 55.

The correlation coefficient p in this case is between —1 and 1.
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9.3.1 Biwvariate Noncentral t-Distribution with p =1

Consider
X = Y = (9.9)

where Z is a standard normal variable. The correlation coefficient is 1, which
is not surprising since the two numerators Z + §; and Z + 05 are mutually
completely dependent. The joint distribution of X and Y in (9.9) seems to
have been first discussed by Owen (1965). Some applications and properties,
including tables, have been presented by Chou (1992).

9.4 Bivariate t-Distribution Having Marginals with
Different Degrees of Freedom

The nature of using the same denominator to derive the bivariate ¢-distribu-

tion has been generalized by Jones (2002a). Specifically, let X;, X5 and

W1, Wy be mutually independent random variables, the X;’s following the

standard normal distribution and W;’s following the chi-squared distribution

with n; degrees of freedom. For the sake of convenience, let v1 = n; and

Vo = nq + ng so that v; < vy, In the case v1 = vy, we simply define Wy = 0.
Define a pair of random variables X and Y as

X = o X1 /W, Y = 1o Xo/\/ W1 + Wa. (9.10)

Formula of the Joint Density

The joint density function is

2Fi(Fvo + 1, dng; 2 (v + 1); (2% /v1) /{1 + 2% /1 + 4 /1a})

L2/ + 9P fua} 251 |
(9.11)

h(%y) =C12

where

1 T3+ )52 +1)
Crz = — 1 1
™ 1/V1V2F§(1/1>F§(1/2 + 1)

and 2 F7(a, b; ¢; 2) is the Gauss hypergeometric distribution.

Univariate Properties

The marginal distributions of X and Y are t-distributions with v and s
degrees of freedom, respectively.
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Joint Product Moments

The general (r, s)th product moment is given by

E(X"Y*®)
PTG+ DD s+ DITG (= ))T G —r =) (9.12)

if » and s are both even and is zero otherwise.

Correlation Coefficient

Like the spherically symmetric bivariate ¢-distribution in (9.7) above (with
the correlation coefficient between X; and Xs being zero), X and Y are
uncorrelated and yet not independent in this case as well.

Conditional Properties

Denote u; = 1 + 2?/v1. Then, the conditional density of YV, given X = z, is

2P (312 + 1, 302 2 (o + 1); (ur — 1)/ (ur + 42 /1))
(ur + Y2 Jv)re/2+1 ’

g(ylz) = Copn (9.13)

where
u I (L, 4 1)

VTRl (5(ve +1))

In a similar way, with ug = 1 + y?/vs, the conditional density of X, given
Y =y, is

Copp =

2F1(%1/2 +1, %ng; %(VQ + 1)1 —ua/(ug + 22 /1))
(ug + a2 /vy )v2/2+1 ’

fzly) = Cup (9.14)

where )
. u I (L + DEE ) D (R + 1)
112 =
| VL) (5 (2 + 1))
Illustrations

Jones (2002a) has presented a contour plot of the density when 11 = 2 and
Vo = 5.
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9.5 Jones’ Bivariate Skew t-Distribution

The bivariate skew ¢-distribution constructed by Jones (2001) is described
here. This, incidentally, differs from another bivariate distribution that is
also known as a bivariate skew t-distribution. The derivation of the latter is
in the same spirit as that of the bivariate skew-normal distribution described
in Section 7.4. In order to make a distinction, we shall call the latter the
bivariate skew t-distribution. It has been discussed by Branco and Dey (2001),
Azzalini and Capitanio (2003), and Kim and Mallick (2003), and it will be
the subject of the next section.

9.5.1 Univariate Skew t-Distribution

A skew t-distribution, defined by Jones (2001) and studied further by Jones
and Faddy (2003), has as its density function

1 " a+1/2 " b+1/2
fO) = sam—am 1t e L= 7
2¢=1B(a, b)cl/? (c+ t2)1/2 (c+ t2)1/2
(9.15)

for a,b > 0 and ¢ = a+b. When a = b, f in (9.15) reduces to a standard
t-density with 2a degrees of freedom.

9.5.2 Formula of the Joint Density

The joint density function is

21/2
2 (z + Vwr + x2)2V1 } 2 (y + w2 + yz)

h(z,y) = K, —
v { VT N

2\ — 1
N ($+ /’LU1+$2)2 N (y+\/WZ+y2)

wy w2

1

. (9.16)

where w; =vg+v;, i =1,2 , n=wvy+ 11 + v, and
Ky =T(n)/{T (o)L (v1)I(v2)},

the multinomial coefficient. When vy = 11 = v = /2, say, then the density
in (9.16) becomes a bivariate symmetric ¢-density distribution having the
usual ¢t marginals, given by
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(x+m)”} <y+ \/V+y2)u
Vv +a? Vvt y?

x{y+(z+ V+x2)2+(y+ \/V+y2)2}su/2. (9.17)

h(z,y) = 4r(3y/2)r(y/2)—3yy/z{

Remarks

In Jones (2001), (9.16) is called the bivariate - /skew ¢-distribution. However,
he called their marginals a “skew t” variable. In order to be consistent with
the acronym for the marginals, we have named (9.16) as Jones’ bivariate skew
t-distribution.

9.5.3 Correlation and Local Dependence for the
Symmetric Case

Pearson’s correlation coefficient is given by

. (2V8— 3) (F((Ilj(;/lg))ﬂ)) L u>2. (9.18)

It is conjectured that this correlation is a monotonically increasing function
of v > 0.

The local dependence function defined by v(z,y) = 0% log h(z,y)/0x dy is
given by

6v (z + Vvt a2) (y+ \/W)2

v +a2)v+y?) {”+ (2 +vrTa?) + (y+ W)Z}Q.
(9.19)

V(z,y) =
Note that v(z,y) > 0.

9.5.4 Derivation

Let W;, i = 0,1,2, be mutually independent x? random variables with 2u;
degrees of freedom as specified above. Define X = \/571 (,/% — ,/%‘;);

similarly, X = ‘/572 (,/%{2} — ,/%‘ZJ), where w; = 19 + v, ¢ = 1,2. Then, X
and Y have a joint density as given in (9.16).
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9.6 Bivariate Skew t-Distribution

The bivariate skew t-distribution presented here differs from Jones’ bivariate
skew t-distribution discussed in the preceding section. The distribution pre-
sented in this section is derived by adding an extra parameter to the bivariate
t-distribution to regulate skewness. As mentioned in the last section, we call
this distribution as the bivariate skew t-distribution.

9.6.1 Formula of the Joint Density

The joint density function is
yo\ /2
h(z,y) = hr(z,y; )T | o1z + « e v+2], 9.20
(#29) = (o) (ana + ey (552 ) (9.20)

where Q = (22 — 2pzy +y?)/(1 — p?), hr(x,y;v) is the bivariate t-density in
(9.1), and T3 (x; v + 2) is the cumulative distribution function of the Student
t-distribution with v + 2 degrees of freedom.

9.6.2 Moment Properties

Azzalini and Capitanio (2003) discussed the likelihood inference and pre-
sented moments of this distribution up to the fourth order as well. Kim and
Mallick (2003) derived the moment properties when the bivariate skew ¢ has
a nonzero mean vector p # 0.

9.6.3 Derivation

Let Z denote the standard bivariate skew-normal variable having probability
density function 2¢(z;Q)®(a’z), where ¢ is the standard bivariate normal
density with correlation matrix §2, ® is the distribution function of the stan-
dard normal, and o = (a1, @)’

Let X = (X,Y) and V ~ x2. Then, X = V~1/2Z has its density function
as given in (9.20); see, for example, Kim and Mallick (2003).
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9.6.4 Possible Application due to Flexibility

It has been stated by several authors that, by introducing a skewness param-
eter to a symmetric distribution, the new bivariate distribution would bring
additional flexibility for modeling skewed data. This will be useful for re-
gression and calibration problems when the corresponding error distribution
exhibits skewness.

9.6.5 Ordered Statistics

Jamalizadeh and Balakrishnan (2008b) derived the distributions of order
statistics from bivariate skew t,-distribution in terms of generalized skew-
normal distributions, and used them to obtain explicit expressions for means,
variances and covariance. Here, by generalized skew-normal distribution, we
mean the distribution of X|(U; < 61X,Us < 62X) when X ~ N(0,1) in-
dependently of (Uy,Us)” ~ BVN(0,0,1,1,~). This distribution, which is a
special case of the unified multivariate skew-normal distribution introduced
by Arellano-Valle and Azzalini (2006), has also been utilized by Jamalizadeh
and Balakrishnan (2009) to obtain a mixture representation for the distribu-
tions of order statistics from the trivariate skew t,-distribution in terms of
generalized skew t,-distributions.

9.7 Bivariate t-/Skew t-Distribution

This model was proposed by Jones (2002b) based on a marginal replacement
scheme. The idea is to replace one of the marginals of the spherically sym-
metric bivariate ¢-distribution of (9.1) by the univariate skew t-distribution
as specified by (9.15).

9.7.1 Formula of the Joint Density

The joint density function is
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h(z,y)
_ I'((v+2)/2)
I'((v+1)/2)B(a,c)(a+ c)t/22ate=1(ry)1/2

a+1/2
—1,.2\(rv+1)/2 T x
(04072002 (14 ot ) (1 i)
(1+ v 1(22 + 42))v+2)/2 )
(9.21)

>C+1/2

X

here, a,c¢, and v are all positive. Equation (9.21) becomes the spherically
symmetric bivariate ¢-density in (9.6) when a = ¢ = v/2.

9.7.2 Univariate Properties

The marginal distribution of X is the skew ¢-distribution presented in (9.15)
with parameters ¢ and c¢. The marginal distribution of Y is symmetric and
can be well approximated by a t-distribution with the same variance.

9.7.3 Conditional Properties

The conditional distribution of Y, given X = z, matches that of the bivariate
t-distribution and is a univariate ¢-distribution with v+ 1 degrees of freedom
scaled by a factor {(v 4+ 1)~'(z? + v)}'/2,

9.7.4 Other Properties

e X and Y are uncorrelated.

e The local dependence function is the same as that of the bivariate
t-distribution in (9.6).

e corr(|X],|Y]) > 0.

9.7.5 Derivation

This distribution can be derived by the marginal replacement scheme, i.e.,
multiply (9.6) by (9.15) and divide by the density of the standard univariate
t-distribution.
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9.8 Bivariate Heavy-Tailed Distributions

9.8.1 Formula of the Joint Density

The joint density function is
Wz, y) = (1+27) 21+ %) 221+ 2% +y?) /2 (9.22)

for x,y > 0, ¢1,c2,¢ > 0.

9.8.2 Univariate Properties

Let s1 =c+ 1,80 = ¢+ ¢2,83 = ¢+ c1 + co, and further
Ve(z) = (14 22) 72 and ¢ (z) = (1 + 22) "% log(2 + z?).

1. If s1 < s3 — 1, then f(:l?) = wsl (LL')
2. If sy = s3 — 1, then f(x) = o7 ().

3. If 51 > s3 — 1, then f(x) = ¥g,—1(x).

9.8.3 Remarks

e The first two terms on the right-hand side of (9.22) correspond to indepen-
dent univariate t-densities, while the last term corresponds to a bivariate
t-density.

e Le and O’Hagan (1998) have discussed various other properties of this
family of distributions, and, in particular, they have expounded the dif-
ference between this distribution and the class of v-spherical distributions
of Fernandez, Osiewalski, and Steel (1995), which also possesses a heavy
tail.

9.8.4 Fields of Application

This distribution provides resolutions for conflicting information in a Bayesian
setting; see O’Hagan and Le (1994).
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9.9 Bivariate Cauchy Distribution
This distribution, a special case of the bivariate ¢-distribution when p = 0

and v = 1, is of limited interest, as it has no correlation parameter.

9.9.1 Formula of the Joint Density

The joint density function is

1 ]
Mz, y) = 5 (1+22+9*)7%2 zyeR. (9.23)

™
Of course, location and scale factors can readily be introduced into (9.23) if
required.

9.9.2 Formula of the Cumulative Distribution Function
The joint cumulative distribution function is

1
H(z,y)=-+ — (tan_l x+tan"ty + tan~? a:y) . (9.24)

1
4 27 \ﬂ1+x2+y2

9.9.3 Univariate Properties

Both marginals are Cauchy, and therefore their means and standard devia-
tions do not exist; consequently, some other measures of location and spread
need to be used in this case.

9.9.4 Conditional Properties

The conditional density of Y, given X = z, is

o(yle) = 50+ 2%)/(1 + a2 4 )7
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Hence, Y/4/3(1 + 2?), conditional on X = z, has a t-distribution with two

degrees of freedom. The distribution of any linear combination of X and Y
is Cauchy as well; see Ferguson (1962).

9.9.5 Illustrations

Contours of the density have been presented by Devlin et al. (1976). Plots of
the density as well as the contours after transformation to uniform marginals
have been provided by Barnett (1980). Johnson et al. (1984) have presented
the contours after transformation to normal marginals.

9.9.6 Remarks

e For bivariate distributions with Cauchy conditionals, see Section 6.4 and
also Chapter 5 of Arnold et al. (1999).

e Sun and Shi (2000) have considered the tail dependence in the bivariate
Cauchy distribution.

9.9.7 Generation of Random Variates

For generation of random variates from this distribution, one may refer to
Devroye (1986, p. 555) and Johnson et al. (1984).

9.9.8 Generalization

Jamalizadeh and Balakrishnan (2008a) proposed a generalized bivariate Cauchy

distribution as the distribution of (W7, Wo)T = (I%\’ %) , where (Uy, Us, U3)T

has a standard trivariate normal distribution with correlation matrix R.
They then showed the joint distribution function of (Wi, W) to be, for
(tla t2) € R27
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Pty 12 R) = —= 4 cos~! | P23 = P12t — pista + il
dm V1= 2p1ats +t33/1 = 2pisto + t2

_ t1 — p12 _1 [ t2—p13
+tan ! [ —== | + tan —_—
<\/1—P%2> (\/1_:0%3
teos! [ — P23 + p12t1 + p13ta + t1t2
\/1 + 2p1aty + 13 \/1 + 2p1sts + 13

t t
+tan~? SLEN LN s ,015 + tan~! 2 TS + Pls .
V1—0pi, V1—pis
In the special case when p1s = p13 = 0 and pa3 = p, this distribution re-
duces to the standard bivariate Cauchy distribution discussed, for example,

in Fang, Kotz, and Ng (1990); in this case, the above joint distribution func-
tion simplifies to

1 1 p+tits 1 . ,
o ) ® ———————F—— | +tan (1) +tan (¢ . (t1,t2) € R%
27r{ < mm) () +tan™(t2) - (11,12)

9.9.9 Bivariate Skew-Cauchy Distribution

Consider three independent standard Cauchy random variables W7, Ws, and
U. Let W = (W3, W3). Arnold and Beaver (2000) constructed a basic bivari-
ate skew-Cauchy distribution by considering the conditional distribution of
W given \g + \{W > U.

The basic bivariate skew-Cauchy distribution has a joint density of the
form

h(@,y) = Y(@)d(y) P (Ao + Az + Aizy) /¥ (M) )

where ¥ (u) = U(u) =1+ Ltan~'u,ureal, and N; = (A1, A12).

1
m(1+u2)?

9.10 Bivariate F-Distribution

The distribution has been widely studied. It is also known as the bivariate in-
verted beta or the bivariate inverted Dirichlet distribution [Kotz et al. (2000,
pp. 492-497)].
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9.10.1 Formula of the Joint Density

The joint density function is

T + vy
Vo

? m) y Z 07
(9.25)

—(vo+ritva)/2
W) = Kz1=2yea=2/2 (1 . ) o

where the v’s are positive and referred to as the “degrees of freedom,” and
the constant K is given by
r (Vo +v+ Vz) y—(otvitra)/2 VSO/ZVIWI/ZVQ/Z/Q
2 0 T(v0/2)T (v1/2)T(v2/2)

9.10.2 Formula of the Cumulative
Distribution Function

There is no elementary form for H(z,y), but it may be written in terms of
F5, Appell’s hypergeometric functions of two variables; see Amos and Bulgren
(1972) and Hutchinson (1979, 1981).

9.10.3 Univariate Properties

The marginal distributions of X and Y are F-distributions with (v1,1p) and
(v, 1) degrees of freedom, respectively.

9.10.4 Correlation Coefficients

) _ 3 3 ViV
Pearson’s product-moment correlation is \/ o= (oo =2) for vy > 4.

9.10.5 Product Moments

The (r, s)th product moment is given by

L(ivg —r—s) (v +7)(300 +5)
(v0/2)L (11 /2)T (v2/2) (11 /v0)" (v2/v0)*

E(XTY‘;) — F
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if r+s < 1p/2 and is undefined otherwise; see Nayak (1987).

9.10.6 Conditional Properties

The expression (vy + v1)Y/(vo + 112), conditional on X = z, has an F-
distribution with degrees of freedom (va,v + v1). The regression is linear
and is given by E(Y|X = ) = (vp+112)/(vo+1v1 —2) for vy > 0; see Mardia
(1970, p. 93) and Nayak (1987).

9.10.7 Methods of Derivation

This distribution may be obtained by transforming the bivariate ¢-distribu-
tion in (9.6). More precisely, if (X, Y") is the bivariate t-variate with v degrees
of freedom and p = 0, then (X?,Y?) has a bivariate F-distribution with
degrees of freedom vy, 1, and 1. However, this method does not lead to a
bivariate F-distribution with other values of v; and 5.

Alternatively, we may consider a trivariate reduction technique with X =
i;ﬁi and Y = §§§Zi, where Xy, X1, and X5 are independent chi-squared
variables with degrees of freedom vy, 11, and vs, respectively. Then, X and Y
have a bivariate F-distribution with degrees of freedom vy, 1, and v5. The
distribution may also be obtained by the method of compounding (equivalent
to the method of trivariate reduction in some situations). For further details,
see Adegboye and Gupta (1981).

9.10.8 Relationships to Other Distributions

e [t is related to the bivariate t-distribution as indicated earlier.

e The bivariate inverted beta distribution (see Section 9.15) is essentially
the bivariate F-distribution, written in a slightly different form.

e [t is a special case of the bivariate Lomax distribution.

e For the distributions of XY and X/Y, one may refer to Malik and Trudel
(1985).

e A noncentral generalization has been given by Feingold and Korsog (1986).

This is obtained by letting X = §;jg;, Y = % where Xo, X1, and
X5 have noncentral chi-squared distributions.

e Another generalization is Krishnaiah’s (1964, 1965) bivariate F-distribu-
tions, obtained by the trivariate reduction method just mentioned, but
with X7 and X5 now being correlated (central) chi-squared variates; viz.

their joint distribution is Kibble’s bivariate gamma (see Section 8.2).




370 9 Simple Forms of the Bivariate Density Function

e A generalization of Krishnaiah’s bivariate F-distribution is Jensen’s bi-
variate F', which is obtained through two quadratic forms from a multi-
variate distribution and a chi-squared distribution; see Section 8.5 for more
details.

e The distribution of V' = min(X,Y") was studied in detail by Hamdy et al.
(1988).

9.10.9 Fields of Application

The distribution is rarely used to fit data. However, tables of its percentage
points are required in the analysis of variance and experimental design in gen-
eral; see Johnson and Kotz (1972, pp. 240-241). This distribution is closely
related to the bivariate beta distribution, and the application of the latter to
compositional data is sometimes expressed in such a way that bivariate F' is
the one that gets applied; see Ratnaparkhi (1983). However, the distribution
of V = min(X,Y) arises in many statistical problems including analysis of
variance, selecting and ordering populations, and in some two-stage estima-
tion procedures [Hamdy et al. (1988)].

9.10.10 Tables and Algorithms

Amos and Bulgren (1972) recognized that the cumulative distribution can
be expressed in terms of Appell’s F» function. Tiao and Guttman (1965)
expressed the integral in terms of a finite sum of incomplete beta functions.

Hewitt and Bulgren (1971) have shown that if 11 and v are equal, then
for any a and b such that 0 < a < b < oo,

Prla< X <b,a<Y <b) >Prla< X <b)Pr(a<Y <), (9.26)

meaning that X and Y are positively quadrant dependent. Numerical stud-
ies carried out they show that the right-hand side of (9.26) is quite a good
approximation to the left-hand side. Accuracy increases as v increases, but
decreases as v and vo increase. Hamdy et al. (1988) have presented an algo-
rithm to compute the lower and upper percentage points of min(X,Y"); see
also the references therein.
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9.11 Bivariate Pearson Type II Distribution

9.11.1 Formula of the Joint Density

The joint density function is

v+1) [, 2*—2pzy+y*]"
I I

where v > 1, —1 < p < 1, and (z,y) is in the ellipse 22 — 2pzy +y? = 1 — p?,
which itself lies within the unit square.

h(x,y) =

(9.27)

9.11.2 Unavariate Properties

The marginals are of Pearson type II with density f(x) = (1 — xz)”“‘%/B(%,
v+32), =1 <z < 1 and a similar expression for g(y). The distribution is also
known as the symmetric beta distribution. A simple linear transformation
Z = (X 4 1)/2 reduces a Pearson type II distribution to a standard beta
distribution.

9.11.3 Correlation Coefficient

The variable p in (9.27) is indeed Pearson’s product-moment correlation.

9.11.4 Conditional Properties

The conditional distribution of one variable, given the other, is also of Pearson
type IL

9.11.5 Relationships to Other Distributions

Let U = (aX —bY)? and V = (aY — bX)?, where a = YA2EV"2 4pq

24/1—p2
b= YV P Then, U and V have a bivariate beta distribution with joint
24/1—p?

n+1(1l—u—v)"
Vuo

density
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9.11.6 Illustrations

Johnson (1986; 1987, pp. 111-117, 123) has presented plots of the density.

9.11.7 Generation of Random Variates

Johnson (1987, pp. 115-116, 123) and Johnson et al. (1984, p. 235) have
discussed generation of random variates from this distribution.

9.11.8 Remarks

e This is type IITag in van Uven’s classification.

e Along with the bivariate normal and ¢-distributions, this distribution is a
well-known member of the class of elliptically contoured distributions.

e The quantity (X2 —2pXY +Y?2)/(1—p?) has a beta(1, n+1) distribution;
see, for example, Johnson et al. (1984).

e The cumulative distribution has a diagonal expansion in terms of orthog-
onal (Gegenbauer) polynomials; see McFadden (1966).

e The expression for Rényi and Shannon entropies for a bivariate Pearson
type II distribution was given in Nadarajah and Zografosb (2005).

9.11.9 Tables and Algorithms

An algorithm for computing the bivariate probability integral can be devel-
oped using the results of Parrish and Bargmann (1981). Joshi and Lalitha
(1985) have developed a recurrence formula for the evaluation of H.

9.11.10 Jones’ Bivariate Beta/Skew Beta Distribution

Consider a special case of the bivariate Pearson type II distribution for which
p = 0. Then, letting b = v + 2, (9.27) becomes

W) = ~OFY2) (2 ez s (gg)

CT(b—-1/2)7

which is a spherically symmetric distribution.
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Each marginal is a univariate symmetric beta (Pearson type II) with den-
sity function
1
1 g2)b-1
Byt )
Jones (2002b) obtained an asymmetric beta density by multiplying (9.28) by
(14 2)**(1 — 2)°" and renormalizing suitably to give

, l<z<l (9.29)

1
— (142 ‘-2, 1 1. 9.30
B(Mﬂw,l( +z)" T (1-2)7", 1<z< (9.30)

Jones (2001) constructed a new bivariate distribution by the marginal re-
placement scheme, specifically by replacing the marginal density of X in
(9.28) by (9.30), resulting in a bivariate beta/skew beta distribution (X has
a skew beta distribution) with joint density function

L(b)(1+ z)270(1 — z)e?
B(a,c)T'(b—1/2)20te=1 /7

h(z,y) = (1—z?— yz)b*?’/2 (9.31)

for 0 < 22 +9y%2 < 1,a > 0, b > 1/2, ¢ > 0. By construction, X has a
skew beta density given in (9.29), and the marginal distribution of Y is a

symmetric beta. The conditional distribution of Y, given X = x, is also a
rescaled symmetric beta over the interval (—v/1 — 22,v/1 — 2:2).

9.12 Bivariate Finite Range Distribution

The bivariate finite range distribution has been discussed by Roy (1989, 1990)
and Roy and Gupta (1996).

9.12.1 Formula of the Survival Function

The joint survival function is

H(z,y) = (1 — 012 — O2y — O3xy)", (9.32)

where 0; > 0,0 > 0, p—1 > 03/(6162) > -1, 0 <z < 6;5,0< y <
(]. —911’)/(02+93$)
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9.12.2 Characterizations

The joint survival function in (9.32) can be characterized either through a
constant bivariate coefficient of variation C;(z,y) = {Vi(x,y)}l/2 /M (x,y),
where Vi (z,y) = var(X —z|X > z,Y > y), Va(z,y) = var(Y —y|X > 2,V >
y), Mi(z,y) = E(X—z|X >2,Y >y) and Ma(z,y) = E(Y —y|X > z,y > y)
or by a constant product of mean residual lives and hazard rates.

Case 1. 1/v3 < Ci(z,y) = Co(z,y) = k < 1 if and only if (X,Y) has a
bivariate finite range distribution in (9.32) with p = 2k?/(1 — k?). Also,
0 < k < 1v/3 if and only if X and Y are mutually independent with
O3 = —0105.

Case 2. Let r(z,y) = —ﬁlogﬂ(x,y) and ro(z,y) = —a%logH(x,y).
Then, 0 < 1 —ri(x,y)M;(x,y) =k < 1/2 (i = 1,2) if and only if (X,Y)
has a bivariate finite range distribution in (9.32). Also, + < k < 1 if and
only if X and Y have independent finite range distributions.

9.12.3 Remarks

e The distribution in (9.32) has been referred to as a bivariate rescaled
Dirichlet distribution by Ma (1996).

e The bivariate finite range distribution, bivariate Lomax, and Gumbel’s
bivariate exponential are three distributions that are characterized either
through a constant bivariate coefficient of variation or by a constant prod-
uct of mean residual lives and hazard rates.

9.13 Bivariate Beta Distribution

9.13.1 Formula of the Joint Density

The joint density function is

(01 + 03 + 65)

$9171 6’271(1 o
L(61)L(62)I'(05)

h(z,y) = z—y)h! (9.33)

for z,y > 0, v +y < 1. This distribution is often known as the bivariate
Dirichlet distribution; see Chapter 49 of Kotz et al. (2000).
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9.13.2 Univariate Properties

The marginal distributions of X ad Y are beta(f1, 02 + 03) and beta(fs, 05,
01 + 03), respectively.

9.13.3 Correlation Coefficient

0102 .
(01463)(02+463) " Thus,

as might be expected from its support and its application to joint distribu-
tions of proportions, this distribution is unusual in being oriented toward
negative correlation—to get positive correlation, we would have to change X
to —X or Y to —Y.

Pearson’s product-moment correlation coefficient is —

9.13.4 Product Moments

The product moments are given by

’ - F(Gl + T)F(GQ + s)F(01 =+ 02 =+ 93) .
Frs =10, + 0 + 05 + 1+ s)0(61)0(02)

see Wilks (1963, p. 179).

(9.34)

9.13.5 Conditional Properties

The expression Y/(1 — x), conditional on X = z, has a beta(fs, 03) distribu-
tion.

9.13.6 Methods of Derivation

This distribution may be defined by the trivariate reduction method as fol-
lows. If X; ~ Gamma(0;, 1), then X3 /(X1 +X2+X3) and Xo/(X7+Xo+X3),
conditional on X; + X5 + X3 < 1, have a bivariate beta distribution; see
Loukas (1984).
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9.13.7 Relationships to Other Distributions

e This distribution is related to the bivariate Pearson type I distribution; it
is often referred to as a bivariate Dirichlet distribution.

e The relation between this distribution and the bivariate Pearson type II
was mentioned earlier in Section 9.11.4.

e The conditional distributions are beta; see James (1975).

9.13.8 Illustrations

Hoyer and Mayer (1976) and Kellogg and Barnes (1989) have illustrated the
density and contours.

9.13.9 Generation of Random Variates

Because of the method of derivation described above in Section 9.13.5, gen-
eration of variates is straightforward as mentioned by Devroye (1986, pp.
593-596), see also Macomber and Myers (1978) and Vaduva (1985).

9.13.10 Remarks

e The variates X and Y are “neutral” in the following sense: X and Y/(1—-X)
are independent, and the distribution being symmetric in x and y, so are
Y and X/(1-Y).

e H(z,y) has a diagonal expansion in terms of orthogonal (shifted Jacobi)
polynomials; see Lee (1971).

o If (i) h(x,y) takes the product form aq(z)as(y)asz(l —x —y), (ii) at least
one of the a; is a power function, and (iii) the regressions E(Y|X) and
E(X|Y) are both linear, then h(x,y) is the bivariate beta distribution; see
Rao and Sinha (1988).

e X +Y has a beta distribution with parameters 61 + 605 and 63. Also, X +Y
is independent of X/Y, which has an inverted beta distribution.

e Kotz et al. (2000) have given a comprehensive treatment of multivariate
Dirichlet distributions in Chapter 49 of their book.

e It is a member of the bivariate Liouville family of distributions to be
discussed in Section 9.16 below.

e Provost and Cheong (2000) considered the distribution of a linear combi-
nation )\1X + /\QY.
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9.13.11 Fields of Application

The distribution mainly arises in the context of a trivariate reduction of
three quantities that must sum to 1 (for example, the probabilities of
events or the proportions of substances in a mixture) that are mutually
exclusive and collectively exhaustive. When considering just two of these
quantities, a bivariate beta distribution may be a natural model to adopt.
Mosimann (1962) and others have studied spurious correlations or corre-
lations among proportions in relation to various types of pollen and grain
and types of vegetation in general. See also the work of Narayana (1992)
for an illuminating numerical example that was mentioned above.

Sobel and Uppuluri (1974) utilized a Dirichlet distribution for the distri-
bution of sparse and crowded cells closely related to occupancy models.
Chatfield (1975) presented a particular example for the general context
just mentioned. The subject is the joint distribution of brand shares; that
is, the proportion of brands 1,2,...,n of some consumer product that
are bought by customers. (The bivariate distribution on (9.33) will arise
for n = 3.) Chatfield mentioned that the following two conditions are
approximately correct in most product fields:

— A consumer’s rates of buying different brands are independent.
— A consumer’s brand shares are independent of his/her total rate of
buying.

The joint distribution of brand shares must then follow the multivariate
beta distribution because of the following characterization theorem. Sup-
pose Y; are independent positive r.v.’s and that 7' = ). Y; and X; = Y;/T;
then, each X; is independent of T', and the joint distribution of X'’s is
multivariate beta. See Goodhardt et al. (1984) for a more comprehensive
account of work in this field.

Wrigley and Dunn (1984) showed that the Dirichlet model provides a good
fit to a consumer-panel survey dataset from a study on urban consumer
purchasing behavior.

Hoyer and Mayer (1976) used this distribution in modeling the proportions
of the electorate who vote for candidates in a two-candidate election (these
two proportions adding to less than 1 because of abstentions). They say
that this distribution “is sufficiently versatile to model many natural phe-
nomena, yet it demonstrates a degree of simplicity such that a candidate
who is reasonably adept at estimating probabilities could easily use our
model to make a fairly accurate estimate of the actual joint distribution
of proportions of his and his opponent’s vote for a fixed set of political
strategies.”

A-Grivas and Asaoka (1982) used a bivariate beta distribution to describe
the joint distribution of two soil strength parameters.

Modeling activity times in a PERT (Program Evaluation and Review Tech-
nique) network. A PERT network involves a collection of activities and
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each activity is often modeled as a random variable following a beta dis-
tribution; see Monhor (1987).

e In Bayesian statistics, the beta distribution is a popular choice for a prior
because it is a conjugate with respect to the binomial distribution; i.e.,
the posterior distribution is also beta. Similarly, the multivariate beta and
multinomial distributions go together in the same manner. An example
of such an analysis is by Apostolakis and Moieni (1987). These authors
considered a system of three identical components subject to shocks that
knock out 0,1,2, or 3 of them in a style of Marshall and Olkin’s model.
Apostolakis and Moieni supposed that the state of knowledge regarding the
vector of probabilities (po, p1,p2,ps) could be described by a multivariate
beta distribution.

e Lange (1995) applied the Dirichlet distribution to forensic match proba-
bilities. The Dirichlet distribution is also relevant to the related problem
of allele frequency estimation.

9.13.12 Tables and Algorithms

For algorithms evaluating the cumulative distribution function, one may refer
to Parrish and Bargmann (1981), who used this distribution as an illustration
of their general technique for evaluation of bivariate cumulative bivariate
probabilities. Yassaee (1979) also evaluated the probability integral of the
bivariate beta distribution by using a program that is used for evaluating the
probability integral of the inverted beta distribution given earlier by Yassaee
(1976).

9.13.13 Generalizations

e Connor and Mosimann (1969) and Lochner (1975) considered the gener-
alized density of the form

h(z,y) = [Blau, B1)B(ag, B2)] e y 2 (1—a) i~ (02 t) (1—p—y) 2!
(9.35)
for z,y > 0,z +y < 1. When as = (81 — 32, it reduces to the standard
bivariate beta density in (9.33). Since the generalized bivariate beta dis-
tribution has a more general covariance structure than the bivariate beta
distribution, the former turns out to be more practical and useful. Wong
(1998) has studied this distribution further.
e The bivariate Tukey lambda distribution, briefly considered by Johnson
and Kotz (1973), is the joint distribution of the variables
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X = [0 = (1= UP]/A
= [V~ (1= V)" } (9.36)

where (U, V) has a bivariate beta distribution. The resulting distribution
is a mess [“mathematically not very elegant” according to Johnson and
Kotz, and “almost intractable” according to James (1975)].

e If (U < V) again has a bivariate beta distribution a distribution of (X,Y)
is defined implicitly by U = \/(XY),V = /(1 — X)(1 — Y); this is briefly
mentioned by Mardia (1970, p. 88).

e Ulrich (1984) proposed a “bivariate beta mixture” distribution, which he
used for a robustness study. Within each rectangle that the unit square is
divided into, the p.d.f. is proportional to the product of a beta distribu-
tion of Y'; the constants of proportionality are different for the different
rectangles.

e Attributing an idea by Salvage, Dickey (1983) gave some attention to the
distribution of the variables obtained by (first) scaling and (second) renor-
malizing to sum to unity,

(9.37)

X =aU/(aU +bV)
Y =bV/(aU +bV) } ’

with (U, V') having a bivariate beta distribution.

e For another generalization, one may refer to Nagarsenker (1970).

e Lewy (1996) also extended the bivariate beta to what he called a delta-
Dirichlet distribution. The development of delta-Dirichlet distributions
originated in sampling problems relating to the estimation of the species
composition of the biomass within the Danish industrial fishery and with
evaluation of the accuracy of estimates.

9.14 Jones’ Bivariate Beta Distribution

This distribution was first proposed by Jones (2001) and independently by
Olkin and Liu (2003).

9.14.1 Formula of the Joint Density

The joint density function is

F(CL + b 4 C) xaflybfl(l o I)bJrcfl(l o y)a+c71

h(x, y) = F(a)F(b)F(c) (1 _ xy)a-&-b-&-c

(9.38)
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9.14.2 Univariate Properties

The marginal distributions are standard beta distributions with parameters
(a,c) and (b, ), respectively.

9.14.3 Product Moments

Olkin and Liu (2003) showed that
E(X*YY = 3Fy(a+k,b+ 1,555 + ks +1;1), (9.39)

where 3F5 is the generalized hypergeometric distribution function defined by
k
3F2(a7b7 (X d,e;Z) Zk (a)k(b ok 2!

(Dr(e)r

9.14.4 Correlation and Local Dependence

Letting k =1 =1 in (9.39), we have

abT(a+ )T (b+c)
EXY)=———F———23F 1,b+1,s;8+1 1;1
(xY) s T(a+b+te) ° 2@+ 1,0+ 1L sis+1 s+ 1)
and E(X)E(Y) = %, from which the correlation can be found, al-

though numerical computations are required. Table 1 of Olkin and Liu (2003)
provides correlation coefficient values for various choices of a, b, and c.

Note. E(XY) was also derived in Jones (2001).

(2,y) = a+b+c
VS Ty
9.14.5 Other Dependence Properties

Olkin and Liu (2003) showed that h is TPs (also known as LRD; see Section
3.4.6 for a definition). Thus, X and Y are PQD.
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9.14.6 Illustrations

Density surfaces have been given by Olkin and Liu (2003) for several choices
of a,b, and c¢. Two contour plots of the density have been given by Jones
(2001).

9.15 Bivariate Inverted Beta Distribution

9.15.1 Formula of the Joint Density

The joint density function is

F(al + Qo +043> xal—lyo{z_l
F(a1)F(a2)F(a3) (1 +x+ y)a1+&2+a3 s

h(z,y) = x,y > 0. (9.40)

It is also commonly known as the bivariate inverted Dirichlet distribution.
9.15.2 Formula of the Cumulative
Dsistribution Function

The joint cumulative distribution function is

[(a1 + ag + ag)z®1y*?

H(@.9) = F DT + 9T (as)
x Fy(ag + as + az;aq, a0y 00 + 1,00 + 1; —2, —y) (9.41)
B T(ag + ag + ag3) T
- T(ap + DI (az + 2)T(as) (1 + x + y)ortextas
X Fy (a1+a2—|—a3;1,1;a1 + 1, a0 + 1; 1+i+y7 1+z+y> ,
(9.42)

where Fy is Appell’s hypergeometric function of two variables.

9.15.3 Dertvation

Suppose X1, X5 and X3 are independent gamma variables with shape pa-
rameters a; (i = 1,2,3). Then the pair X = X;/X3, Y = X3/X3 has the
standard inverted beta distribution; see Tiao and Guttman (1965). This is
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evidently an example of the construction of a bivariate distribution by the
trivariate reduction method.

9.15.4 Tables and Algorithms

Yassaee (1976) presented a computer program for calculating the probability
integral of the inverted beta distribution.
For computation of H(z,y), see Ong (1995).

9.15.5 Application

The inverted beta distribution is used in the calculation of confidence re-
gions for variance ratios of random models for balanced data; see Sahai and
Anderson (1973).

9.15.6 Generalization

Nagarsenker (1970) discussed the generalized density

04171 04271

T Y
(1+x+ y)(a1/ﬁ1)+(a2/ﬁ2)+u3 ’

h(z,y)

9.15.7 Remarks

e Comparing (9.25) and (9.40), we see this is effectively the bivariate F-
distribution discussed in Section 8.11. Another account is due to Ratna-
parkhi (1983).

e It is also a special case of a bivariate Lomax distribution.

e It is also a member of the bivariate Liouville family of distributions.

9.16 Bivariate Liouville Distribution

Liouville distributions seem to be one of those classes of distributions that
have attracted much attention in recent years. Marshall and Olkin’s (1979)
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book was perhaps the first place where Liouville distributions were discussed,
briefly. Shortly thereafter, Sivazlian (1981) presented results on marginal dis-
tributions and transformation properties of Liouville distributions. Anderson
and Fang (1982, 1987) discussed Liouville distributions arising from quadratic
forms. The first comprehensive discussion of these distributions was provided
by Fang et al. (1990). A series of papers by Gupta and Richards (1987, 1991,
1992, 1995, 1997, 2001a,b), along with Gupta et al. (1996), provides a rich
source of information on Liouville distributions and their properties, matrix
extensions, some other generalizations, and their applications to statistical
reliability theory.

The family of bivariate Liouville distributions are often regarded as com-
panions of the Dirichlet (beta) family because they were derived by Liouville
through an application of a well-known extension of the Dirichlet integral.
The family includes the well-known bivariate beta and bivariate inverted beta
distributions. Gupta and Richards (2001b) provided a history of the devel-
opment of the Dirichlet and Liouville distributions.

9.16.1 Definitions

Two definitions can be provided as follows. X and Y have a bivariate Liouville
distribution if their joint density is proportional to [Gupta and Richards
(1987)]

Yz +y)z™ly2=t 2 >0,y>0,0<z+y<b (9.43)
Thus
CI'(a) 1, az—1
hz,y) = ———— g0~ 1y x4+ 9.44
(z,9) T(an)(as) Y2 (r +y) (9.44)

where a = a1 + as, C~! = fob to= 1y (t)dt, and 1 is a suitable non-negative
function defined on (0, b).

An alternative definition, as given in Fang et al. (1990), is as follows.
Let X=(X,Y) and Y=(Y7,Y2)". Then, X=(X,Y")’ has a bivariate Liouville
distribution if it has a stochastic representation X 4 RY , where R =X +Y
has a univariate Liouville distribution and Y'=(Y7,Y5)’ is independent of R
and has a beta density function

['(a; +az) pai—1

Na)T(ag)” 797, 0sesL

Using another expression, we can present

XLRY =(X+Y)Vi; YER:,=(X4Y)Y,, Yi+Yy=1 (9.45)
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The density function of the bivariate Liouville distribution may also be

written as
CT(a) axn—lyew-t

[(a)l(az) (z+y)*~!

o(x+y), a1 +az =a, (9.46)

defined over the simplex {(z,y) : 2 > 0,y > 0,0 <z +y < b} if and only if ¢
is defined over (0, b).
The density generator ¢ is related to the function ¢ as

0) = 2 o(0), a =+ (9.47)

The generator in (9.47) satisfies the condition

00 ta—l o0
/O mw(t)dt:/o B(t)dt < . (9.48)

Ratnaparkhi (1985) called this distribution the bivariate Liouville-Dirichlet
and presented the examples summarized below:

P(t) b Resulting bivariate distributions

(1 —tyas—1 1 Beta

(14t)—e—as 00 Inverted beta (F)

ta—le—t oo Gamma, h(z,y) o (z + y)*3x*1y*2e~ (@+y)
(—logt)®s—1 1 “Unit-gamma-type”

h(z,y) o< a1~ ya2 = [~ log(x + y)]®3 ~1

The joint density in the third example corresponds to the distribution of
correlated gamma variables; see, for example, Marshall and Olkin (1979).

9.16.2 Moments and Correlation Coefficient

The moments and covariance structure of the bivariate Liouville distribution
can be derived easily; see Gupta and Richards (2001a). Because Y7 and Y3
are both beta and Y; and R are independent, we readily find

E(X) = E(RY}) = %E(R), E(Y) = E(RY;) = %E(R) (9.49)
and a
= —1 alay var a9 2 . .
var(X) = s faes + Dvan(R) + aa(E(R))?) (9.50)

A similar expression can be presented for var(Y'). Furthermore,

cov(X,Y) = 292 ){avar(R)f(E(R))z}. (9.51)

a?(a+1
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Denote the coefficient of variation of R by cv(R) = V;?;()R). Then, the
covariance is negative if ¢cv(R) < 1/y/a. Gupta and Richards (2001a) have

presented a sufficient condition for this inequality to hold.

e If (X,Y) has a bivariate beta distribution (a member of the bivariate
Liouville family), then the above-mentioned sufficient condition holds and
so we have X and Y negatively correlated, which is a well-known result.

o Let ¥(t) = t*(1 — )%, 0 < t < 1, where a and 3 are chosen so that
cv(R) = ﬁ In this case, X and Y are uncorrelated but not independent.

o If¢)(t) =e '™ ¢t > 0so that X and Y have a correlated bivariate gamma
distribution of Marshall and Olkin (1979), then cv(R) = ﬁ implies a = 0,
which is equivalent to X and Y being independent.

9.16.3 Remarks

The bivariate Liouville distribution arises in a variety of statistical and prob-
ability contexts, some of which are listed below:

e Bivariate majorization—Marshall and Olkin (1979) and Diaconis and Perl-
man (1990).

e Total positivity and correlation inequalities—Aitchison (1986) and Gupta
and Richards (1987, 1991).

e Statistical reliability theory—Gupta and Richards (1991).

e Stochastic partial orderings—Gupta and Richards (1992).

e For other properties, such as stochastic representations, transformation
properties, complete neutrality, marginal and conditional distributions,
regressions, and characterization, one may refer to Gupta and Richards
(1987).

Fang et al. (1990) showed that if X has a bivariate Liouville distribution,
then the condition that X and Y are independent is equivalent to X and Y
being distributed as gamma with a common scale parameter.

Kotz et al. (2000) have provided an excellent summary on the multivariate
Liouville distributions.

9.16.4 Generation of Random Variates

For generation of random variates, one may refer to Devroye (1986, pp. 596—
599).
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9.16.5 Generalizations

Gupta et al. (1996) introduced a sign-symmetric Liouville distribution, but
the joint density function does not have a simple form.

9.16.6 Bivariate pth-Order Liouwville Distribution

Ma and Yue (1995) introduced a bivariate pth-order Liouville distribution
having a joint density function of the form

(zP 4 yP)1/P

fH—a a1—1, a2—1
chl ‘x Y P ( 7

). mwnoso )
where a = a1 +a2, 0 < z+y < b < oo, and ¥(+) is a non-negative measurable
function on (0, 00) such that 0 < [~ 1(t)t* " dt < cc.

For p = 1, it is the usual bivariate Liouville distribution. The bivariate
Lomax distribution of Nayak (1987) with density

ixal—lyGQ—l 14+ 1(3; . y) —(a+l)
oo 0 ’

where ¥(t) = (1+1)(@*D [ > 0, is a special case. Ma and Yue (1995) demon-
strated how the parameter 6 can be estimated by using their methods.

In the case where oy = a2 = p, (9.52) is the bivariate [,-norm symmetric
distribution introduced by Fang and Fang (1988, 1989) and Yue and Ma
(1995). Roy and Mukherjee (1988) discussed the case p = 2 as an extension
of a class of generalized mixtures of exponential distributions.

9.16.7 Remarks

e X and Y can be viewed as a univariate dependent sample of random
lifetimes of a coherent system or proportional hazards model when the
joint density is given by (9.45).

e Ma et al. (1996), in addition to discussing the basic properties and the
dependence structure of a multivariate pth-order Liouville distribution,
also discussed the multivariate order statistics induced by ordering the
l,-norm.

e Ma and Yue (1995) also discussed the estimation of the parameter 6.
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9.17 Bivariate Logistic Distributions

The work that is commonly cited on this subject is that of Gumbel (1961).
He proposed three bivariate logistic distributions:

1
H = R .
H(z,y) = exp [— {log(l +e )Y L log(1 + e_y)l/“H , T,y €R,
(9.54)
and

H(z,y)=1+e*) "1+ e*y)*1 {1 +ae”"TY(1+ e*“:)*l(l + e*y)*l}
(9.55)
forz,y e Rand -1 <a< 1.

9.17.1 Standard Bivariate Logistic Distribution

The distribution in (9.53) is known as the standard bivariate logistic
distribution.

Formula of the Joint Density

The joint density function is

2e e Y

(1+e*+ev)3

h(z,y) = , x,y€R. (9.56)

Conditional Properties

The conditional density of X, given Y = y, can be shown to be

2e % (1 +e7Y)?
(14e 2 4ev)3

f(zly) =

and a similar expression can be presented for g(y|z). The regression of X on
Y is
EX|Y =y)=1—log(l+eY).
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Correlation Coefficient

Pearson’s product-moment correlation coefficient is
1
corr(X,Y)=p= 3

which reveals the restrictive nature of this bivariate logistic distribution.

Moment Generating Function

The joint moment generating function is given by

M(s,t) =D(1+ s+ t)T(1 — s)D(1 — ).

Derivation

Let U,V, and W be independent and identically distributed extreme value
random variables with density function e %e® ,—oo < & < co. Then, the
joint density function of X =V —U and Y = W —U is the standard bivariate
logistic distribution. This, incidentally, is another example of the construction

of a bivariate distribution by the variable-in-common scheme.

Relationships to Other Distributions

The copula density that corresponds to the standard bivariate logistic distri-

bution is
2uv

m; (9.57)

c(u,v) =
see, for example, Nelsen (1999, p. 24). Now, let us consider Mardia’s bivariate
Pareto distribution with the joint density (after reparametrization)

—(a+1)

—1

(a=Dao (1 L E2 y) ,
0109

h(z,y) = peni

For a = 1, the copula density that corresponds to the distribution above is

given by
2(1 —u)(1 —w)

{1—w)+ (1 —v) = (1-u)( -0}

Rotating this surface about (%, %) by m radians, we obtain the copula in
(9.57).

c(u,v) =
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9.17.2 Archimedean Copula

The bivariate logistic distribution that corresponds to (9.54) is an
Archimedean copula (see Section 1.5 for a definition) with generator p(u) =
(—logu)'/. This copula was termed the Gumbel-Hougaard copula earlier
in Section 2.6.

9.17.3 F-G-M D:stribution with Logistic Marginals

The distribution in (9.55) is the well-known Farlie-Gumbel-Morgenstern dis-
tribution with logistic marginals. The bivariate F-G-M distribution was dis-
cussed in detail in Section 2.2.

9.17.4 Generalizations

o Satterthwaite and Hutchinson (1978) extended the standard bivariate lo-
gistic to the form

Hzy)=04+e"+e )¢ z,yeR, c>0. (9.58)

This is only a marginal transformation of the bivariate Pareto distribution.
e Arnold (1990, 1992) constructed a generalization of a bivariate logistic
model through geometric minimization of the form

H(z,y) = (1+e" +e¥+ 01 0<o<2 (9.59)
If geometric maximization is considered instead, we obtain
H(z,y)=(1+e " +e ¥+ Yt 0<60<2 (9.60)
The distribution in (9.60) reduces to (9.54) when 6 = 0.

We note that the bivariate model in (9.59) was first derived by Ali et al.
(1978), and its corresponding copula was given in Section 2.3.

9.17.5 Remarks

The multivariate extension of (9.53) was discussed by Malik and Abraham
(1973). Kotz et al. (2000) therefore refers to this distribution as the Gumbel—
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Malik—Abraham distribution. Section 10 of Chapter 51 of Kotz et al. (2000)
also discusses several generalizations of multivariate beta distributions.

9.18 Bivariate Burr Distribution

Bivariate Burr distributions with Burr type III or type XII marginals have
received some attention in the literature. Two main methods have been used
for their construction:

e The Farlie-Gumbel-Morgenstern method.

e Compounding, either as a straightforward generalization of the construc-
tion of the bivariate Pareto distribution (abbreviated as P in the following
table), or the bivariate method which Hutchinson (1979, 1981) showed
underlies the Durling-Burr distribution (abbreviated as D).

The following table lists some sources where more details can be found; see
also Sections 2.8 and 2.9. A brief account of these distributions has been
given by Rodriguez (1983, pp. 241-244).

Marginals Construction

References

XII
XII
XII

II1

II1
11T
II1
11T

Compounding (P)
Compounding (D)
F-G-M

Compounding (P)

Compounding (D)
Compounding™*
F-G-M

F-G-M, extended

Takahasi (1965), Crowder (1985)

Durling (1975), Bagchi and Samanta (1985)
Bagchi and Samanta (1985)

Rodriguez (1980),

Rodriguez and Taniguchi (1980)

Rodriguez (1980)

Rodriguez (1980)

Rodriguez (1980)

Rodriguez (1980)

* [° min[L, (z/X)]dF(X), where F(A = (1 — k)(1 — A=¢)~F 4 k(14 A—c)~k—1
Rodriguez (1980, p. 39) makes only passing mention of these.

9.19 Rhodes’ Distribution

9.19.1 Support

The region of support of this distribution is all x,y such that 1 — £ 4- ¥ > 0
and 1+ % — % > 0.

9.19.2 Formula of the Joint Density

The joint density function is
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Aa,y) o (1= + %)p (1+2- g)pl e~tm=my, (9.61)

9.19.3 Derivation

Starting with two independent variables having not necessarily identical
gamma distributions, let X be a linear combination of them and Y be some
other linear combination of them. The result then is that (X,Y") has Rhodes’
distribution.

9.19.4 Remarks

For the properties of this distribution, see Mardia (1970, pp. 40, 94-95).
Rhodes (1923) fitted this distribution to barometric heights observed at
Southampton and Laudale; see Pearson and Lee (1897).

9.20 Bivariate Distributions with Support Above
the Diagonal

Jones and Larsen (2004) proposed and studied a general family of bivariate
distributions that is based on, but greatly extends, the joint distribution
of order statistics from independent and identically distributed univariate
variables.

9.20.1 Formula of the Joint Density

The joint density function is

F'(a+b+c)

M Y) = Fa o)

k(@)k(y) K™ (2) (K (y) — K (2))" (1= K ()"

(9.62)
on x < y, where a,b,c > 0. Here, K is the distribution function from which
the random sample is drawn and k = K’ is the corresponding density func-
tion. Furthermore, it is assumed that K is a symmetric univariate distribu-
tion.
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9.20.2 Formula of the Cumulative
Distribution Function

The joint distribution function H(z,y) can be expressed in terms of an in-
complete two-dimensional beta function.

9.20.3 Univariate Properties

The marginal density functions are

) = o k() K )1 K ()
and . )
90) = Tt HD K ) - K@),

9.20.4 Other Properties

e If K has a uniform distribution on [0, 1], then the joint density in (9.62)
has a link to the bivariate beta distribution; see Jones and Larsen (2004).
e The local dependence function is

(b — Dk(2)k(y)

T R - R TS

It follows that ~ is positive or negative depending on whether b > 1 or
b<1.

e FE(Y|X = z) is nondecreasing in « for all b > 0 and so cov(X,Y) > 0 for
all b > 0; Jones and Larsen (2004) have provided a proof.

9.20.5 Rotated Bivariate Distribution

Consider a rotated version of (9.62) obtained through rotating the two axes
anticlockwise by 45°; i.e., we wish to find the joint distribution of W = X +Y
and Z =Y — X > 0.
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Formula of the Joint Density

Let hw,z denote the joint density function of W and Z. Jones and Larsen
(2004) have shown that

heztns) = st () + () 0 (M)

(x(559) (=) (=% (=)

(9.63)

X

for —oo < w < 00, z > 0.

The marginal distributions of the rotated bivariate distribution in (9.63)
appear to be intractable analytically. Note that, however, E(W) = E(Y) +
E(X), E(Z)=E(Y) — E(X), and cov(X,Y) = var(Y)— var(X).

Special Case where a = ¢
Since hw,z(—w,z;a,b,¢) = hw,z(w, z;¢,b,a), there is symmetry in the w

direction if a = ¢. For this special case, var(Y') = var(X), which implies that
cov(X,Y) =0, but X and Y are not independent.

9.20.6 Some Special Cases

We now consider some special cases of the density in (9.62).

(i) Bivariate Skew t-Distribution

Suppose K has Student’s ¢t-distribution with two degrees of freedom,

1 1 x

Then, (9.62) reduces to the bivariate skew ¢-distribution discussed in Section
9.5.
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(ii) Bivariate log F' Distribution

If k(z) is the density of the logistic distribution, then a bivariate log F' distri-
bution is obtained. The univariate log F' distribution may be found in Brown
et al. (2002), for example.

9.20.7 Applications

The bivariate log F' distribution proves to be a good fit to the temperature
data of Jolliffe and Hope (1996). Jones and Larsen (2004) have also listed
several potential applications of this family of distributions.
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Chapter 10

Bivariate Exponential and Related
Distributions

10.1 Introduction

The vast majority of the bivariate exponential distributions arise in the re-
liability context one way or another. When we talk of reliability, we have in
mind the failure of an item or death of a living organism. We especially think
of time elapsing between the equipment being put into service and its failure.
In the bivariate or multivariate context, we are concerned with dependencies
between two failure times, such as those of two components of an electrical,
mechanical, or biological system.

Just as the univariate exponential distribution is important in describing
the lifetime of a single component [see, e.g., Balakrishnan and Basu (1995)],
bivariate distributions with exponential marginals are also used quite ex-
tensively in describing the lifetimes of two components together. Bivariate
exponential distributions often arise from shocks that knock out or cause
cumulative damage to components that will knock out the components even-
tually. The numbers of shocks N; and Ny that are required to knock out
components 1 and 2, respectively, usually have a bivariate geometric distribu-
tion. Marshall and Olkin’s and Downton’s bivariate exponential distributions
are prime examples of models that can be derived in this manner. A notable
exception is Freund’s bivariate exponential, which cannot be obtained from
such a bivariate geometric compounding scheme. Bivariate exponential mix-
tures may also arise in a reliability context with two components sharing a
common environment.

Distributions with exponential marginals may, of course, be obtained by
starting with any bivariate distribution of a familiar form and then trans-
forming the X and Y axes appropriately. In particular, this may be done
with any of the copulas presented earlier in Chapter 2—in the expression of
C, we simply need to replace x by 1 —e™ and y by 1 —e™ Y.

Surveys of bivariate exponential distributions and their applications to
reliability have been given by Basu (1988) and Balakrishnan and Basu (1995).

N. Balakrishnan, C.D. Lai, Continuous Bivariate Distributions, 401
DOI 10.1007/b101765-11, (© Springer Science+Business Media, LLC 2009
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Chapter 47 of Kotz et al. (2000) presents an excellent treatment on bivariate
and multivariate exponential distributions.

In Section 10.2, we first present the three forms of bivariate exponential
distributions introduced by Gumbel. Freund’s bivariate exponential distri-
bution and its properties are discussed in Section 10.3. In Section 10.4, the
extension of Freund’s distribution due to Hashino and Sugi is described. The
well-known Marshall and Olkin bivariate exponential distribution and related
issues are discussed in Section 10.5. As Marshall and Olkin’s distribution
contains a singular part, Block and Basu proposed an absolutely continuous
bivariate exponential distribution. This model is presented in Section 10.6. In
Section 10.7, Sarkar’s bivariate exponential distribution is described. Next,
in Section 10.8, a comparison of different properties of the models of Mar-
shall and Olkin, Block and Basu, Sarkar, and Freund is made, and some
basic differences and commonalities are pointed out. In Sections 10.9 and
10.10, the generalized forms (which include both Freund and Marshall-Olkin
distributions) proposed by Friday and Patil and Tosch and Holmes, respec-
tively, are presented. The system of exponential mixture distributions due to
Lawrance and Lewis and its characteristic properties are discussed in Sec-
tion 10.12. The bivariate exponential distributions obtained from Raftery’s
scheme are mentioned in Section 10.13. In Section 10.14, the bivariate expo-
nential distributions derived by Iyer et al. by using auxiliary random vari-
ables forming linear structures are presented, and their differing correlation
structures are highlighted. Another well-known bivariate exponential distri-
bution, known as the Moran—Downton model in the literature, and its related
developments are detailed in Section 10.15. The bivariate exponential distri-
butions of Sarmanov, Cowan, Singpurwalla and Youngren, and Arnold and
Strauss are presented in Sections 10.16-10.19, respectively. Several different
forms of mixtures of bivariate exponential distributions have been consid-
ered in the statistical as well as applied fields, and Section 10.20 presents
these forms. Section 10.21 describes details on bivariate exponential distri-
butions connected with geometric compounding schemes. Different concepts
of the lack of memory property associated with different forms of bivariate
exponential distributions are described next in Section 10.22. Section 10.23
briefly discusses the effect of parallel redundancy in systems with dependent
exponential components. In Section 10.24, the role of bivariate exponential
distributions as a stress-strength model is explained. Finally, the bivariate
Weibull distributions and their properties are presented in Section 10.25.

10.2 Gumbel’s Bivariate Exponential Distributions

Gumbel (1960) introduced three types of bivariate exponential distributions,
and these are described in this section.
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10.2.1 Gumbel’s Type I Bivariate
Exponential Distribution

The joint cumulative distribution function is
H(z,y)=1—e " —e Ve @ty 4y >00<0<1.  (10.1)

This distribution was discussed earlier in Section 2.10.

10.2.2 Characterizations

Along with the bivariate Lomax distribution and bivariate finite range dis-
tribution, Gumbel’s type I bivariate exponential distribution can be charac-
terized through

e constant product of bivariate mean remaining (residual) lives and hazard
rates [see Roy (1989), Ma (1996), Roy and Gupta (1996)] and

e constant coefficient of variation of bivariate residual lives; see Roy and
Gupta (1996).

10.2.3 Estimation Method

By introducing scale parameters to the marginal distributions, the survival
function corresponding to (10.1) (after relabeling 6 by «) becomes

H(x,y):exp{—gl—;é—;ia;:}, x,y >0, 61,00 >0, 0<a<1. (10.2)

Castillo et al. (1997) have discussed methods for estimating the parameters
in (10.2).

10.2.4 Other Properties

The correlation coefficient is given in Section 2.10.

The copula C'(u,v) is given by (2.47).

The product moments were derived by Nadarajah and Mitov (2003).
The Fisher information matrix was derived by Nadarajah (2006a).

It is easy to show that X and Y are NQD (negative quadrant dependent);
see Lai and Xie (2006, p. 324).
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e Kotz et al. (2003b) derived the distributions of 773 = min(X,Y) and 75 =
max(X,Y). In particular, it was shown that

Bt = [7 [1- 0 (V270)]
Bt =2 [7 [1- 0 (V27A)]

Further, it was shown that F(T%) is almost linearly increasing in p.
e Franco and Vivo (2006) discussed log-concavity of the extremes. (The dis-
tribution that has a log-concave density has an increasing likelihood ratio.)

and that

10.2.5 Gumbel’s Type II Bivariate
Exponential Distribution

The F-G-M bivariate distributions were discussed in detail earlier in Section
2.2. Gumbel’s type II bivariate exponential distribution is simply an F-G-M
model with exponential marginals. The density function is given by

h(z,y) =e "V {l+ae®-1)(2eY-1)}, |of <1 (10.3)

Bilodeau and Kariya (1994) observed that the density functions of both
type I and type II are of the form

h(z,y) = MAeg(Mz, Aay; 0)e =2,

Fisher Information

Nagaraja and Abo-Eleneen (2002) derived expressions for the elements of
the Fisher information matrix for the three elements of the Gumbel type II
bivariate exponential distribution. They observed that the improvement in
the efficiency of the maximum likelihood estimate of the mean of X due to
availability of the covariate values as well as the knowledge of the nuisance
parameters is limited for this distribution.

Other Properties

e The copula is given by (2.1).
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e The distributions of the maximum and minimum statistics are well known
and can be easily derived; see, for example, Lai and Xie (2006, p. 310).
Clearly, they can be expressed as mixtures of two or more exponential
distributions.

e Franco and Vivo (2006) discussed log-concavity of the extreme statistics
min(X,Y) and max(X,Y).

10.2.6 Gumbel’s Type III Bivariate
Exponential Distribution

The joint cumulative distribution function is
H(z,y)=1—e"—eY+exp {—(xm + ym)l/m} , 2,y >0, m>1. (10.4)

The survival function is

H(z,y) = exp {f(xm + ym)l/m} :
The corresponding joint density function is
h(w,y) = (@™ +ym) 2 mgmtym-t {(w’” +y™Ym 4 m - 1}
xexp{—(xm—i—ym)l/m}, x,y >0, m>1. (10.5)

If m =1, X and Y are mutually independent. Lu and Bhattacharyya (1991
a,b) have studied this bivariate distribution in detail and in particular pro-
vided several inferential procedures for this model.

Some Other Properties

e Baggs and Nagaraja (1996) have derived the distributions of the maximum
and minimum statistics; in particular, the minimum is exponentially dis-
tributed, but the maximum statistic 75 is a generalized mixture of three
or fewer exponentials.

e Franco and Vivo (2006) discussed the log-concavity property of Tb.

e The copula that corresponds to this distribution is known as the Gumbel—-
Hougaard copula as given in (2.30).

e The Gumbel-Hougaard copula is max-stable and hence an extreme-value
copula. It is the only Archimedean extreme-value copula [Nelsen (2006,
p. 143)].
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10.3 Freund’s Bivariate Distribution

This distribution is often given the acronym BEE (bivariate exponential ex-
tension) because it is not a bivariate exponential distribution in the tradi-
tional sense, as the marginals are not exponentials. We note that the Friday
and Patil distribution in Section 10.9 is also known as BEE.

10.3.1 Formula of the Joint Density

The joint density function is

_ JaB exp[—(a+ B — ")z — Y] for z <y
h($7y) = {a’ﬁexp[—(a—i—ﬂ _ a’)y _ O/.”L'] forz >y ° (10.6)

where x,y > 0 and the parameters are all positive.

10.3.2 Formula of the Cumulative
Distribution Function

The joint cumulative distribution function corresponding to (10.6) is

H(z,y) ,

ari=z expl-(a+ B — )z — Byl + 75525 expl—(a+ B)y] forz <y |

s expl—(a + B — a')y — o/a] + 72525 exp[—(a + B)z] for z > y
(10.7)

where z,y > 0.

10.3.3 Unwvariate Properties

The marginal distributions are not exponential, but they are mixtures of
exponentials. Hence, (10.6) is often known as Freund’s bivariate exponential
extension, or a bivariate exponential mixture distribution, as it is called by
Kotz et al. (2000, p. 356). The expression for the marginal density f(z) is

_ (Ol*Oél)(Ozﬁ*ﬂ) —(a+p) O/ﬂ —a'z
f(x)_—oz—i—ﬁ—o/ e~ (ot y+7a+5_a,e : (10.8)
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provided o + 8 # ', and naturally a similar expression for g(y) holds with
B and 3 changed to a and o/, respectively. The special case of a + 8 = o’
gives f(z) = (o/fr 4+ a)e > *.

’ 12 2
The mean and variance of this distribution are —2+t8_ and 2&_f200+08

o’ (a+B) a2 (a+p)?
respectively.
10.3.4 Correlation Coefficient
Pearson’s correlation coefficient is given by
rar
b —ab : (10.9)

V(@2 +2aB+ B2)(B72 + 208 + a?)

which is restricted to the range —% to 1.

10.3.5 Conditional Properties

The conditional densities can be derived, but they are quite cumbersome. We
refer our readers to Kotz et al. (2000, p. 357) for more details.

10.3.6 Joint Moment Generating Function

The joint m.g.f. is

(10.10)

M(s,t):(a+5—s—t)_1[ o'f , of ]

o —s [ —t

10.3.7 Dertvation

This distribution was originally derived by Freund (1961) from a reliabil-
ity consideration as follows. Suppose a system has two components A and
B whose lifetimes X and Y have exponential densities ae™®* and Be= Y,
respectively. Further, suppose that the only dependence between X and Y
arises from failure of either component changing the parameter of the life
distribution of the other component; more specifically, when A fails, the pa-
rameter for Y becomes [/, and when B fails, the parameter for X becomes
o/. Then, the joint density of X and Y is as presented in (10.6).
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We may restate Freund’s model in terms of a shock model. Suppose that
the shocks that knock out components A and B, respectively, are governed
by two Poisson processes:

e For component A, the Poisson process has a rate & when component B is
functioning and rate o’ after component B fails.

e For component B, the Poisson process has a rate 8 when component A is
functioning and rate (3 after component A fails.

Freund’s model may realistically represent systems in which the failure of one
component puts an additional burden on the remaining one (e.g., kidneys) or,
alternatively, the failure of one may relieve somewhat the burden on the other
(e.g., competing species). A special case of Freund’s bivariate distribution was
also derived by Block and Basu (1974); see Section 10.6 for pertinent details.

10.3.8 Illustrations

Conditional density plots have been presented by Johnson and Kotz (1972,
p. 265).

10.3.9 Other Properties

e For distributions of the minimum and maximum statistics, see Baggs and
Nagaraja (1996).

e The exact distribution of the product XY is given in Nadarajah (2006b).

e For sums, products, and ratios for Freund’s bivariate exponential distri-
bution, see Gupta and Nadarajah (2006).

e For an expression of the Rényi and Shannon entropy for Freund’s bivariate
exponential distribution, see Nadarajah and Zografos (2005).

10.3.10 Remarks

e For a test of symmetry and independence, one may refer to O’Neill (1985).

e There is some interest in the reliability literature in the probability of sys-
tem failure when two components are in parallel and repair or replacement
of a failed component takes a finite time. In this situation, the probability
that the working component fails before the failed one is repaired is of
importance. Biswas and Nair (1984) have considered this situation when
Freund’s distribution is applicable; see also Adachi and Kodama (1980)
and Goel et al. (1984).
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e For parallel systems, Klein and Moeschberger (1986) made some calcula-
tions of the errors resulting from erroneously assuming component lifetimes
have independent exponential distributions when in fact they jointly have
Freund’s distribution.

e The study of Klein and Basu (1985) referred to in Section 10.5.9 below
also included bias reduction techniques for the estimation of H when (10.7)
holds.

e Besides the variants and generalizations of this distribution that are de-
scribed in Sections 10.3.12-10.3.16 and Section 10.4 below, we note a com-
plicated generalization given by Holla and Bhattacharya (1965) that in-
volves replacement of failed components.

10.3.11 Fields of Application

This distribution is useful as a reliability model. It was applied to analyze
the data of Barlow and Proschan (1977) concerning failures of Caterpillar
tractors; see also O’Neill (1985). For an application in distribution substation
locations, see Khodr et al. (2003).

10.3.12 Transformation of the Marginals

The power-transformed version of Fruend’s distribution has been considered
by Spurrier and Weier (1981), concentrating on the performance of maximum
likelihood estimates (which are not in closed form).

Hashino and Sugi’s (1984) extension of this distribution was used with
power-transformed observations by Hashino (1985); see Section 10.4 for more
details.

10.3.13 Compounding

Roux and Becker (1981) obtained a compound distribution, which they called
a bivariate Bessel distribution, by assuming that o/ = 1/a/ is exponentially
distributed with density exp(—a’/7)/v, and similarly, 8” = 1/’ has density
exp(—0"/d)/d. The resulting density is given by
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28y~ exp[—(a + B)y] Ko | 2 (:,EY_y) forO<y<ux

h(z,y) = — ,
200 exp[—(a + B)x] Ky | 2 ('i_x) for0<z<y
(10.11)

where K is the modified Bessel function of the third kind of order zero.

10.3.14 Bhattacharya and Holla’s Generalizations

In Model T of Bhattacharya and Holla (1963), it is supposed that when one
component fails, the distribution of the other’s lifetime becomes Weibull, not
exponential. The density is then proportional to (y — )9~ exp[—d(y — x)? —
(a + B)x] for 0 < < y, with an analogous expression for 0 < y < z. In
Model II, the distribution of the other component’s lifetime becomes gamma
after the failure of one component. The density is in this case proportional
to (y — x)? texp[d(y — ) — (o + B)x] for 0 < z < y, with an analogous
expression for 0 < y < x.

10.3.15 Proschan and Sullo’s Extension of
Freund’s Model

Proschan and Sullo (1974) considered an extension in which one assumes
the existence of a common cause of failure (i.e., a shock from a third source
that destroys both components). This additional assumption is similar to
that of Marshall and Olkin’s model to be discussed in Section 10.5 below. It
is easy to see that Proschan and Sullo’s extension (often denoted by PSE)
subsumes both Freund’s bivariate exponential and Marshall and Olkin’s BVE
model.

avexp[—(0 — v)x — vy| for x <y,
h(z,y) = q nBexp[—(0 —n)y —nz]  for x>y,
v exp(—0x), for z = y.

Here, 6 = a+f(+~,n=a'+7v,and v = ' +~. When v = 0, it gives Freund’s
model. For a = o’ and 8 = ' it gives the BVE model.

The resulting model retains the lack of memory property (10.21) that is
enjoyed by Marshall and Olkin’s model. Some inference results were derived
for this extension by Hanagal (1992).
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10.3.16 Becker and Roux’s Generalization

Becker and Roux (1981) generalized Freund’s model by supposing that the
components did not fail after a single shock but that it took a and b shocks,
respectively, to destroy them. (These numbers a and b are deterministic, not
random.)

The resulting density function is

h(x,y)
p(’i/{la(b) B (y — x) + Br]*Lexp[-By — (a+ 8- F)z], 0 <z <y,

1 3b

et o' (@ —y) + oyl exp[—a'z — (a+ B —a')y], 0 <y <

see also Steel and Roux (1987).

10.4 Hashino and Sugi’s Distribution

10.4.1 Formula of the Joint Density

For z,y > 0, the joint density is given by

h(@,y)
af exp[—p'y — (a+  — §')x] for 0 <z <y, with z <+,
o/ Bexp[—d'x — (a+ B — o )y] for 0 <y < z,with y <+,

ab’ exp[—b'(y —0) — (a+b—V)(xz —9)] for y <z <y,
a'bexp[—ad'(x =) — (a+b—a')(y—9)] for y <y <z,
(10.12)

where all the parameters are positive. In fact, there are just six free param-
eters because of continuity conditions at X =~ and Y = ~.

10.4.2 Remarks

An English account of this extension of Freund’s distribution is given by
Hashino (1985), who has attributed this model to Hashino and Sugi (1984).
Hashino has presented expressions of the marginal density of Y, the marginal
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cumulative distribution of Y, the conditional cumulative distribution function
of X given Y, and the joint cumulative distribution function H.

The distribution was not motivated by a reliability application; rather, it
was intended to provide a tractable bivariate distribution that is somewhat
analogous to the univariate piecewise-exponential distribution.

10.4.3 An Application

The Osaka district in Japan suffers from typhoons. When these occur, the
river, in its tidal reaches, rises for two reasons: the rain that drains into it, and
the storm surge that comes in from the sea. The study by Hashino was of the
peak rainfall intensity and the maximum storm surge for 117 typhoons occur-
ring over an 80-year period. In fitting the density in (10.12), X and Y were
transformed to X™ /ogm, and Y™ /o, respectively, with o’s being standard
deviations of the transformed variables. Hashino found large differences (a
factor of more than 2) between return periods 1/H (x,y) calculated using the
fitted distribution and 1/[F(z)G(y)] calculated by assuming independence.

Two minor points: (i) It appears that the typhoons included in the study
were restricted to those for which the storm surge exceeded a certain level,
Hashino did not discuss whether this truncation of the sample had any effect
on the conclusions. (ii) The correlation coefficient, given by Hashino (viz.,
—0.02 is calculated for the distribution by applying it only to large values of
X and Y [i.e., the last expression in (10.12 and not for the distribution as a
whole].

10.5 Marshall and Olkin’s Bivariate
Exponential Distribution

It is one of the most widely studied bivariate exponential distributions. The
acronym BVE is often used in the literature to designate this distribution. It
is comprehensively studied in Section 2.4 of Chapter 47 in Kotz et al. (2000).

10.5.1 Formula of the Cumulative
Distribution Function

The upper right volume under the probability density surface is given by [see
Marshall and Olkin (1967a)]
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H(x,y) = exp[- A7 — Aoy — Appmax(x,9)], z,y >0, (10.13)

where all \’s are positive.

10.5.2 Formula of the Joint Density Function

This takes slightly different forms depending on whether x or y is bigger:

A2(A1 + Ar2) exp[—(A1 + Ai2)z — Aoy for z >y,
h(z,y) = ¢ Ar(A2 + Ai2) exp[=A1z + (A2 + A12)y] fory >z, (10.14)
Singularity along the diagonal for z = y.

The amount of probability for the singular part is Aia/(A1 + A2 + A12).

The singularity! in this case is due to the possibility of X exactly equaling
Y. In the reliability context, this corresponds to the simultaneous failure of
the two components.

10.5.3 Univariate Properties

Both marginal distributions are exponential.

10.5.4 Conditional Distribution

The conditional density of Y given X = x is

At(A2+M2) —Noy—Aia(y—x)
o, € fory > x,

h(ylz) =
Aoe A2V )\ fory < .

10.5.5 Correlation Coefficients

Pearson’s product-moment correlation coefficient is A12/(A1 + A2 + A12). The
rank correlation coefficients were given in Chapter 2.

1 For a bivariate distribution, a singularity is a point with positive probability or a line such
that every segment has positive probability. (We are not concerned here with more complicated
forms of singularity.)
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10.5.6 Derivations

Fatal Shocks

Suppose there is a two-component system subject to shocks that may knock
out the first component, the second component, or both of them. If these
shocks result from independent Poisson processes with parameters A1, Ao, and
A12, respectively, Marshall and Olkin’s distribution results. Equivalently, X =
min(Zy, Z3) and Y = min(Zs, Z3), where the Z’s are independent exponential
variates. Thus, this is an example of the trivariate reduction method.

Nonfatal Shocks

It could be that the shocks sometimes knock out a component and sometimes
not.2 Consider events in the Poisson process with rate 8 that cause failure to
the ith component (but not the other) with probability p; (i = 1,2) and cause
failure to both components with probability pi2, where 1 —p; —ps —p12 > 0. If
i = p;6 and A2 = p120, then the times to failure X and Y of components 1
and 2 have their joint survival function as in (10.13); see Marshall and Olkin
(1985) for a representation like this.

10.5.7 Fisher Information

Nagaraja and Abo-Eleneen (2002) obtained the Fisher information for the
three parameters of this model. They observed that the improvement in the
efficiency of the maximum likelihood estimator of the mean of X due to the
availability of the covariate as well as the knowledge of the nuisance parameter
is quite substantial.

10.5.8 Estimation of Parameters

e Arnold (1968) proposed consistent estimators of A1, Aa, and Aja.

e For the maximum likelihood estimation of parameters, one may refer to
Bemis et al. (1972), Proschan and Sullo (1974, 1976), and Bhattacharyya
and Johnson (1971, 1973). Proschan and Sullo (1976) also proposed esti-
mators based on the first iteration of the maximum of the log-likelihood

2 The term nonfatal shock model is perhaps unfortunate, as it may suggest that the shocks
are injurious, whereas in fact it is usually assumed that they are either fatal or do not have
an effect at all.
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function. Awad et al. (1981) proposed “partial maximum likelihood esti-
mators.” Chen et al. (1998) investigated the asymptotic properties of the
maximum likelihood estimators based on mixed censored data.
e Hanagal and Kale (1991a) constructed consistent moment-type estimators.
Hanagal and Kale (1991b) also discussed tests for the hypothesis A2 = 0.
e For other references on estimation, see pp. 363-367 of Kotz et al. (2000).

10.5.9 Characterizations

Block (1977b) proved that X and Y with exponential marginals have Mar-
shall and Olkin’s bivariate exponential distribution if and only if one of the
following two equivalent conditions holds:

e min(X,Y) has an exponential distribution,
e X —Y and min(X,Y) are independent.

Some other characterizations have been established by Samanta (1975),
Obretenov (1985), Azlarov and Volodin (1986, Chapter 9), Roy and Mukher-
jee (1989), and Wu (1997).

10.5.10 Other Properties

The joint moment generating function is

()\ + s+ t)()\l + )\12)()\2 + A12) + Apast

M(s,t) =
(S ) ()\1+>\127$)(A2+>\127t)

e min(X,Y) is exponential and max(X,Y") has a survival function given by

e—()\1+>\12)3¢ + e—(>\2+A12)$ _ e—(>\1+>\2+>\12)3ﬂ7 > 07

see Downton (1970) and Nagaraja and Baggs (1996).

e The aging properties of minimum and maximum statistics were discussed
by Franco and Vivo (2002), who showed that max(X,Y) is a generalized
mixture of three exponential components. The distribution is neither ILR
(increasing likelihood ratio) nor DLR (decreasing likelihood ratio). Because
the minimum statistic is exponentially distributed, it is therefore both ILR
and DLR.

e The exact distribution of the product XY is given in Nadarajah (2006b).

e An expression for Rényi and Shannon entropy for this distribution was
obtained by Nadarajah and Zografos (2005).
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e The distribution is not infinitely divisible except in the degenerate case
when A; = 0 (or Ay = 0) or when A5 = 0 (in the latter case, X and Y are
independent).

e For dependence concepts for Marshall and Olkin’s bivariate distribution,
see Section 3.4 for details.

e Beg and Balasubramanian (1996) have studied the concomitants of order
statistics arising from this bivariate distribution.

e By letting 6; = 1/);,i = 1,2, Boland (1998) has shown that ¢; X + ¢} is
“stochastically arrangement increasing” in ¢ = (¢1,¢2)" and 6 = (01, 02)’.

e It has the lack of memory property given below in (10.21).

10.5.11 Remarks

e This distribution was first derived by Marshall and Olkin (1967a). It is
sometimes denoted simply by BVE.

e H(z,y) can be expressed as

A(ry) = T2 0,y + 22y, (1019)

where A = A1 + A2 + A12 and Hg and H, are the singular and absolutely
continuous parts® of H given by

H,(z,y) = exp[—Amax(z,y)], (10.16)
Hy(z,y) = " -/i\-)\z exp[—A1x — Ay — Amax(x, y)]
A1z
— — . 10.1
IV exp[—A max(z, y)] (10.17)

e For tests of independence, see Kumar and Subramanyam (2005) and the
references therein.

e Lu (1997) proposed a new plan for life-testing two-component parallel
systems under Marshall and Olkin’s bivariate exponential distribution.

e Earlier, Ebrahimi (1987) also discussed accelerated life tests based on Mar-
shall and Olkin’s model.

e In the “competing risks” context [for an explanation of this, see Chapter
9 of Cox and Oakes (1984)], this distribution is fully identified, provided
it is known which observations correspond to failure from both causes
together as well as which correspond to failure from each cause alone.
This is because the distribution arises from three kinds of shocks acting

3 That is, referring respectively to Y = X (with positive probability) and Y # X (where
the p.d.f. is finite). More formally, a bivariate distribution H is absolutely continuous if
the joint density exists almost everywhere.
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independently, and that leading to failure of Type 1 and Type 2 together
can simply be treated as a failure of Type 3; see David and Moeschberger
(1978, Section 4.4).

e In collecting data where this distribution is to be applied, it may happen
that the nature of the second failure is indeterminate; i.e., it is not known
whether the second shock would or would not have knocked out both
components had both still been functioning. This leads to difficulties in
estimating the \’s; see Shamseldin and Press (1984).

e Klein and Moecshberger (1988) made some calculations of errors resulting
from wrongly assuming that component lifetimes have independent expo-
nential distributions when in fact they jointly have Marshall and Olkin’s
distribution. They carried out the calculations for both series and parallel
systems.

e According to Klein and Basu (1985), if interest centers on estimating H,
the matter is not as simple as merely substituting good estimates of the
model parameters into (10.13), as the resulting estimate may be biased to
an unacceptable degree. So, Klein and Basu discussed some methods of
bias reduction.

e This distribution and the associated shock model quickly received atten-
tion in the reliability literature; see Harris (1968). Some developments
since then include the following. A brief report on a two-component sys-
tem with Marshall and Olkin’s distributions for both life and repair times
is due to Ramanarayanan and Subramanian (1981). Osaki (1980), Sugasaw
and Kaji (1981), and Goel et al. (1985) have presented some results for a
two-component system in which failures follow this model, but other dis-
tributions (such as those of inspection, repair, and interinspection times)
are arbitrary. Ebrahimi (1987) has given some results for the case where
the two-component system is tested at a number of different stress levels,
55, and failures follow the Marshall-Olkin distribution, with each A be-
ing proportional to s3. Osaki et al. (1989) have presented some results for
availability measures of systems in which two units are in series, failure
of unit 1 shuts off unit 2 but not vice versa, with the lifetimes follow-
ing the Marshall-Olkin distribution, the units have arbitrary repair-time
distributions, and two alternative assumptions are made about the repair
discipline.

e Another account of this distribution is given by Marshall and Olkin (1985).

e A parametric family of bivariate distributions for describing the lifelengths
of a system of two dependent components operating under a common en-
vironment when component conditional lifetime distribution follows Mar-
shall and Olkin’s bivariate exponential and the environment follows an
inverse Gaussian distribution was derived by Al-Mutairi (1997).
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10.5.12 Fields of Application

Among many applications of Marshall and Olkin’s distribution, we note es-
pecially the fields of nuclear reactor safety, competing risks, and reliability.

Certainly, the idea of simultaneous failure of two components is far from
being merely of academic interest. Hagen (1980) has presented a review in the
context of nuclear power and has pointed out that introducing redundancy
into a system reduces random component failure to insignificance, leading
to the common-mode/common-cause type being predominant among system
failures.

Rai and Van Ryzin (1984) applied this distribution as a tolerance distri-
bution in a quantal response context to the occurrence of bladder and liver
tumors in mice exposed to one of several alternative dosages of a carcinogen.
Actually, the distribution was (i) used in the form with Weibull marginals
and (ii) mixed with a finite probability of tumors occurring even at zero dose.

Kotz et al. (2000) have provided a list of references for each of the three
primary applications mentioned above.

10.5.13 Transformation to Uniform Marginals

Cuadras and Augé (1981) proposed the following joint distribution, whose
support is the unit square:

z'=¢y  for x >y,

xyt=¢  for x <. (10.18)

H(%y)—{

The corresponding joint density is

(I=c)z—° for x >y,
h(z,y)=q (L—c)y=®  forz <y, (10.19)
singularity along the diagonal x = y.

Cuadras and Augé did not refer to Marshall and Olkin, and so it is likely
that they were not aware that their distribution was a transformation of one
that is already known. Conway (1981) gave an illustration of the Marshall
and Olkin distribution after transformation to uniform marginals, and that
becomes an illustration of the Cuadras and Augé distribution.
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10.5.14 Transformation to Weibull Marginals

As with other distributions having exponential marginals, this one is some-
times generalized by changing them to Weibull; see, for example, Marshall
and Olkin (1967a), Moeschberger (1974), and Lee (1979).

10.5.15 Transformation to Extreme-Value Marginals

This distribution is sometimes met in the form with extreme value marginals.

10.5.16 Transformation of Marginals: Approach of
Muliere and Scarsini

First, consider the univariate case. Muliere and Scarsini (1987) presented a
general version of the lack of memory property as follows:

F(s*t) = F(s)F(t), (10.20)

where * is any binary operation that is associative (i.e., such that (xxy)*z =
x * (y * z)). Examples include the following:

e The operation * being addition leads to the usual lack of memory char-
acterization of exponential distribution: If F(s + t) = F(s)F(t), then
F(r) = e,

o Ifxxy= (2 +y*)"/* then the Weibull distribution F(z) = exp(—\z?)
results.

e If v %y = xy, then the Pareto distribution F(z) = z~*

results.

In the bivariate case, consider first the following version of the bivariate lack
of memory property:

H(S1 + 1,892 —l—t) = H(Sl,SQ)H(t,t). (10.21)

For more on this, see Section 10.22, but if we assume the marginals are
exponential, the solution is the Marshall and Olkin distribution. Now consider

H(sy *t,80%t) = H(sy,s2)H(t,t) (10.22)
together with (10.20) for each marginal. The solution is then

H(s,t) = exp{—XAia(s) — Aza(t) — A2a[max(s, t)]}, (10.23)
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with a(-) being a (strictly increasing) function corresponding to the operation
; Le., a(x *xy) = a(z) + a(y). Examples include the following:

e The operation * being addition leads to the Marshall and Olkin distribu-
tion.

o If zxy = (x* + y*)'/*, the Weibull version of the Marshall and Olkin
distribution results, i.e., H(z,y) = exp[—A2® — Xoy® — A1o max(z®, y*)].

o If 2 %y = xy, then the result is H(x,y) = v~ My~ *2[max(z,y)]" M2, the
Pareto version of Marshall and Olkin’s distribution. For related develop-
ments, one may refer to Sections 6.2.1 and 6.2.3 of Arnold (1983).

10.5.17 Generalization

Johnson and Kotz (1972, p. 267) have credited Saw (1969) for the proposal
of replacing max(x,y) in (10.13) by an increasing function of max(x,y). One
choice leads to

H(z,y) = [1 + max(x, y)]**2 exp[Mz — Aoy — A2 max(z, y)]. (10.24)

Marshall and Olkin (1967b) considered some generalizations of (10.13),
including

H(z,y) = exp{—A1z — Aoy — Ao max([z,y + min(x,d)]}, 6 >0. (10.25)

Ohi and Nishida (1979), following an idea of Itoi et al. (1976), considered
the case where component ¢ (¢ = 1,2) needs k; shocks before it fails. The

bivariate life distribution that results is called a bivariate Erlang distribution
(BVEr). Ohi and Nishida then showed that:

e X and Y are positively regression dependent (see Section 3.4.4 for this
concept).
e BVEr is bivariate NBU but not bivariate IFR. Here bivariate NBU is

defined as a joint distribution that satisfies the inequality H (x+t,y+t) <
H(z,y)H(t,t) for all x,y,t > 0.

Hyakutake (1990) suggested incorporating location parameters &; and &
in the BVE. The joint survival function is

H(x,y) — ¢~ M@E—&)=A2(y—€2) A2 maX(fE*El,y*&)7 z>&,y> &

Ryu (1993) extended Marshall and Olkin’s model such that the new joint
distribution is absolutely continuous and need not be memoryless. The new
marginal distribution has an increasing failure rate, and the joint distribution
exhibits an aging pattern.
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10.6 ACBVE of Block and Basu

10.6.1 Formula of the Joint Density

The joint density is

A1 A(A2+X12)
A1+
h(z,y) =
(z,y) A2A(r+ A1)
A1+A2

exp[—A1z — (A2 + A12)y] if x <y,
(10.26)
exp[— (A1 + Ai2)z — A2y] if z >y,

where x,y > 0, the \’s are positive, and A = Ay + Ao + A1o.
10.6.2 Formula of the Cumulative

Distribution Function

The upper right volume under the probability density surface is given by

H(LL', y) = /\1 ¥ )\2 exp[_)‘lx - )\2@/ - >\12 max(w, y)]
7/\1)\41-2/\2 exp[—A max(z, y)]. (10.27)

10.6.3 Unavariate Properties

The marginals are not exponential but rather a negative mixture of two
exponentials given by

= A A12
_ N _ _ 10.
F(z) IV exp[— (A1 4+ A22)] IV exp(—Az), (10.28)

and a similar expression holds for G(y) as well.

10.6.4 Correlation Coefficient

Pearson’s product-moment correlation coefficient is

A1+22)? A1+ A12) Qe +A12) =AM ds
VIOT+22)2 (A1 +A12) 2+ X2 A2 +22 1) A2][(A1 +22)2 (A2 +A12) 2+ A1 (A1 +2X2) A2

(10.29)
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We feel that the expression presented by Block and Basu (1974) may be in
erTor.

10.6.5 Moment Generating Function

The m.g.f. may be obtained from (10.10) (by using substitutions given in
Section 10.6.6) to be

1 A M2+ A2) (A + A2)Ae

M(s,t) =
(S)) )\1+)\2)\—(8+t) )\2+>\12—t >\1+/\12—8

(10.30)

10.6.6 Derivation

This distribution was derived by Block and Basu (1974) by omitting the
singular part of Marshall and Olkin’s distribution; see also Block (1975).
Alternatively, it can be derived by Freund’s method, with

a = A1+ A2[A /(A1 + A2)]
o =X+ A2
ﬂ =X+ )\12[)\2/()\1 + /\2)]
B = X2 + A2

(10.31)

10.6.7 Remarks

min(X,Y’) is an exponential variate.

X —Y and min(X,Y) are independent variables.

The lack of memory property holds.

For inferential methods, see Hanagal and Kale (1991a), Hanagal (1993),

Achcar and Santander (1993), and Achcar and Leandro (1998).

e Achcar (1995) has discussed accelerated life tests based on bivariate expo-
nential distributions.

e The exact distributions of sum R = X + Y, the product P = XY, and
the ratio W = X/(X 4 Y), and the corresponding moment properties are
derived by Nadarajah and Kotz (2007) when X and Y follow Block and
Basu’s bivariate exponential distribution.

e From the expression for H(z,y), it is easy to show that the distribution is

PQD.
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10.6.8 Applications

Gross and Lam (1981) considered this distribution to be suitable in cases
such as the following:

e lengths of tumor remission when a patient receives different treatments on
two occasions,

e lengths of time required for analgesics to take effect when patients with
headaches receive different ones on two occasions.

Gross and Lam were then concerned primarily with developing hypothesis
tests for equality of marginal means. They also made the following suggestion
for determining whether Block and Basu’s distribution is appropriate or not:

e Test whether min(X,Y") has an exponential distribution.
e Test whether X — Y and min(X,Y") are uncorrelated.
e Test whether X — Y has the distribution given by their Eq. (4.1).

These three properties, except with independence replacing zero correlation
in the second of them, together characterize the Block and Basu distribution.

Block and Basu’s bivariate exponential distribution was applied by Nadara-
jah and Kotz (2007) to drought data.

10.7 Sarkar’s Distribution

10.7.1 Formula of the Joint Density

For (x,y) in the positive quadrant, the joint density function h(z,y) is given
by

% exp[—A1z — (A2 + A12)y]
X[(A1 + X2) (A2 + Ai2) — Ao dexp(— )] [AA2)] Y [A(Nay)]~ D) if 2 < g,

% exp[—()\l =+ )\12)$ — )\gy]
X[(A1 4 A2) (A2 + Ar2) — MAexp(=Aay)][A(Mz)] - [A(gy)]Y ifz >y,
(10.32)
where the N’s are positive, A = A; + Ay + Aj2, v