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Preface

Ordered random variables have attracted several researchers due to their applica-
bility in many areas, like extreme values. These variables occur as a natural choice
when dealing with extremes like floods, earthquakes, etc. The use of ordered ran-
dom variables also appears as a natural choice when dealing with records. In this
book we have discussed various models of ordered random variables with both
theoretical and application points of view. The introductory chapter of the book
provides a brief overview of various models which are available to model the
ordered data.

In Chap. 2 we have discussed, in detail, the oldest model of ordered data, namely
order statistics. We have given the distribution theory of order statistics when
sample is available from some distribution function F(x). Some popular results
regarding the properties of order statistics have been discussed in this chapter. This
chapter also provides a brief about reversed order statistics which is a mirror image
of order statistics. We have also discussed recurrence relations for moments of order
statistics for various distributions in this chapter.

Chapter 3 of the book is dedicated to another important model of ordered
variables, known as record values introduced by Chandler (1952). Record values
naturally appear when dealing with records. This chapter discusses in detail the
model when we are dealing with larger records and is known as upper record
values. The chapter contains distribution theory for this model alongside some other
important results. The chapter also presents recurrence relations for moments of
record values for some popular probability distributions.

Kamps (1995) introduced a unified model for ordered variables, known as
generalized order statistics (GOS). This model contains several models of ordered
data as a special case. In Chap. 4, we have discussed, in detail, this unified model of
ordered data. This chapter provides a brief about distribution theory of GOS and its
special cases. The chapter also contains some important properties of the model,
like Markov chains property and recurrence relations for moments of GOS for some
selected distributions.

In Chap. 5 the model of reversed order random variables known as dual gen-
eralized order statistics (DGOS) is discussed. The model was introduced
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by Burkschat et al. (2003) as a unified model to study the properties of variables
arranged in decreasing order. The model contains reversed order statistics and lower
record values as a special case. We have given some important distributional
properties for the model in Chap. 5. We have also discussed recurrence relations for
moments of DGOS when sample is available from some distribution F(x). The
chapter also provides relationship between GOS and DGOS.

Ordered random variables have found tremendous applications in many areas
such as estimation and concomitants. Chapter 6 of the book presents some popular
uses of ordered random variables. The chapter presents use of ordered random
variables in maximum likelihood and Bayesian estimation.

Chapters 7 and 8 of the book present some popular results about probability
distributions which are based on ordered random variables. In Chap. 7 we have
discussed some important results regarding the characterization of probability
distributions based on ordered random variables. We have discussed characteriza-
tions of probability distributions based on order statistics, record values, and gen-
eralized order statistics. Chapter 8 contains some important results which connect
ordered random variables with extreme value distribution. We have discussed the
domains of attractions for several random variables for various types of extreme
values distributions.

Finally, we would like to thank our colleagues and friends for their support and
encouragement during compilations of this book. We would like to thank Prof.
Chris Tsokos for valuable suggestions which help in improving the quality of the
book. Authors 1 and 3 would like to thank Prof. Muhammad Hanif and Prof. Valary
Nevzorov for healthy comments during compilation of this book. Authors 1, 3, and
4 would also like to thank Statistics Department, King Abdulaziz University, for
providing excellent support during compilation of the book. Author 2 would like to
thank Rider University for their excellent facilities which helped in completing the
book.

Jeddah, Saudi Arabia Muhammad Qaiser Shahbaz
Lawrenceville, USA Mohammad Ahsanullah
Jeddah, Saudi Arabia Saman Hanif Shahbaz
Jeddah, Saudi Arabia Bander M. Al-Zahrani
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Chapter 1
Introduction

1.1 Introduction

Ordered Random Variables arise in several areas of life. We can see the application
of ordered random variables in our daily life for example we might be interested in
arranging prices of commodities or we may be interested in arranging list of students
with respect to their CGPA in final examination. Another use of ordered random
variables can be seen in games where; for example; record time in completing a
100m race is recorded. Several such examples can be listed where ordered random
variables are playing their role. The ordered random variables has recently attracted
attention of statisticians although their use in statistics is as old as the subject. Some
simple statistical measures which are based upon the concept of ordered random
variables are the range, themedian, the percentiles etc. The ordered random variables
are based upon different models depending upon how the ordering is being done.
In the following we will briefly discuss some popular models of ordered random
variables which will be studied in more details in the coming chapters.

1.2 Models of Ordered Random Variables

Some popular models of ordered random variables are discussed in the following.

1.2.1 Order Statistics

Order Statistics is perhaps the oldest model for ordered random variables. Order
Statistics naturally arise in life whenever observations in a sample are arranged in
increasing order of magnitude. The order statistics are formally defined as under.

© Atlantis Press and the author(s) 2016
M.Q. Shahbaz et al., Ordered Random Variables: Theory and Applications,
Atlantis Studies in Probability and Statistics 9, DOI 10.2991/978-94-6239-225-0_1
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2 1 Introduction

Let x1, x2, . . . , xn be a random sample of size n from some distribution function
F (x). The observations arranged in increasing order of magnitude x1:n ≤ x2:n ≤
· · · ≤ xn:n are called order statistics for a sample of size n. The joint distribution of
all order statistics is given in David and Nagaraja (2003) as

f1,2,...,n:n (x1, x2, . . . , xn) = n!
n∏

i=1

f (xi ) . (1.1)

Order statistics are very useful in studying distribution of maximum, minimum,
median etc. for specific probability distributions. We will study order statistics in
much detail in Chap.2. The rth order statistics Xr :n can be viewed as life length of
(n − r + 1)–out–of–n system.

1.2.2 Order Statistics with Non-integral Sample Size

The study of order statistics is based upon size of the available sample and conven-
tionally that sample size is a positive integer. The model of order statistics is easily
extended to the case of fractional sample size to give rise to fractional order statistics
as defined by Stigler (1977). The conventional order statistics appear as a special
case of fractional order statistics. The distribution function of rth fractional Order
Statistics based upon the parent distribution F (x) is given as

Fr :α (x) = 1

B (α, r)

∫ F(x)

0
tr−1 (1 − t)α−r dt. (1.2)

If α = n (integer) then we have simple order statistics. The fractional order statistics
do not have significant practical applications but they do provide basis for a general
class of distributions introduced by Eugene, Lee and Famoye (2002).

1.2.3 Sequential Order Statistics

If we consider simple order statistics as life length of components then we can
interpret them as random variables where the probability distribution of components
remains same irrespective of the failures. In certain situations the probability distri-
bution of the components changes after each failure and hence such components can
not be modeled by using simple order statistics. Sequential Order Statistics provide a
method to model the components with different underlying probability distributions
after each failure. The Sequential Order Statistics are defined as follow.

http://dx.doi.org/10.2991/978-94-6239-225-0_2


1.2 Models of Ordered Random Variables 3

Let
{
Y (i)
j ; i = 1, 2, . . . , n; j = 1, 2, . . . , n − i + 1

}
be independent randomvari-

ables so that
{
Y (i)
j ; j = 1, 2, . . . , n − i + 1

}
is distributed as Fi and F1, . . . , Fn are

strictly increasing. Moreover let X (1)
j = Y (1)

j , X (1)∗ = min
{
X (1)
1 , . . . , X (1)

n

}
and for

2 ≤ i ≤ n define

X (i)
j = F−1

i

[
Fi

(
Y (i)
j

) {
1 − F

(
X (i−1)

∗
)} + Fi

(
X (i−1)

∗
)] ;

X (i)
∗ = min

{
X (i)

j , 1 ≤ j ≤ n − i + 1
}

then the random variables X (1)∗ , . . . , X (n)∗ are called Sequential Order Statistics. The
joint density of first r Sequential Order Statistics; X (1)∗ , . . . , X (r)∗ ; is given by Kamps
(1995b) as

f1,2,...,r :n (x1, x2, . . . , xr ) = n!
(n − r)!

r∏

i=1

{
1 − Fi (xi )

1 − Fi (xi−1)

}n−i

× fi (xi )

1 − Fi (xi−1)
. (1.3)

The Sequential Order Statistics reduces to simple order statistics if all Fi (x) are
same.

1.2.4 Record Values

The Record values has emerged as an important model for ordered random variables.
The record values appear naturally in real life where one is interested in successive
extreme values. For example we might be interested in Olympic record or records
in World Cricket Cup. When we are interested in successive maximum observations
then records are known as Upper Records and when one is interested in succes-
sive minimum observations then records are known as Lower Records. Chandler
(1952) presented the idea of records in context with monitoring of extreme weather
conditions. Formally, the record time and upper record values are defined as follows.

Let {Xn; n = 1, 2, . . .} be a sequence of iid random variables with a continuous
distribution function F . The random variables

L (1) = 1

L (n + 1) = min
{
j > L (n) ; X j > XU (n)

} ; n ∈ N



4 1 Introduction

are called the record time and XU (n) is called Upper Record Values. The joint density
of first n upper record values is

fXU (1),...,XU (n)
(x1, . . . , xr ) =

{
n−1∏

i=1

f (xi )

1 − F (xi )

}
f (xn) . (1.4)

Record values have wide spread applications in reliability theory. We will discuss
the upper record values in Chap.3 and lower record values in Chap.5.

1.2.5 k–Record Values

The upper record values provide information about largest observation in a sequence
of records. Often we are interested in knowing about specific record number. The k–
Record values provide basis for studying distributional behavior of such observations.
The k–Record values are formally defined by Dziubdziela and Kopocinski (1976) as
below.

Let {Xn; n = 1, 2, . . .} be a sequence of iid random variables with a continuous
distribution function F and let k be a positive integer. The random variables UK (n)

defined as UK (1) = 1 and

UK (n + 1) = min
{
r > UK (n) : Xr :r+k−1 > XUK (n),UK (n)+k−1

} ; n ∈ N.

where Xr :r+k−1 is r th order statistics based on a sample of size r + k − 1; are called
the record time and XUK (n),UK (n)+k−1 is called nth k−record values. The joint density
of n k–records is

fUK (1),...,UK (n) (x1, . . . , xr ) = kn
{
n−1∏

i=1

f (xi )

1 − F (xi )

}

× [1 − F (xn)]
k−1 f (xn) . (1.5)

The simple upper record values appear as special case of k−record values for k = 1.
The k−record values are discussed in Chap. 3.

1.2.6 Pfeifer’s Record Values

The upper record values and k−upper record values are based upon the assumption
that the sequence of random variables {Xn; n = 1, 2, . . .} have same distributions
F . Often this assumption is very unrealistic to be kept intact and a general record
model is needed. Pfeifer (1979) proposed a general model for record values when
observations in a sequence are independent but are not identically distributed. The
Pfeifer’s record values are defined as below.

http://dx.doi.org/10.2991/978-94-6239-225-0_3
http://dx.doi.org/10.2991/978-94-6239-225-0_5
http://dx.doi.org/10.2991/978-94-6239-225-0_3
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Let
{
X (n)

j ; n, j ∈ N

}
be a double sequence of independent random variables

defined on some probability space with

P
(
X (n)

j

)
= P

(
X (n)
1

)
; n, j ∈ N

Define the inter record times as

�1 = 1

�n+1 = min
{
j ∈ N; X (n+1)

j > X (n)
�n

}
; n ∈ N.

In this case the random variables X (n)
�n

are called Pfeifer’s record values.
The joint density function of n Pfeifer’s record values is given as

f
�

(1)
1 ,...,�

(n)
n

(x1, . . . , xr ) =
{
n−1∏

i=1

fi (xi )

1 − Fi+1 (xi )

}
fn (xn) ; (1.6)

where Fi is distribution function of the sequence until occurrence of ith record. If
all random variables in the sequence are identically distributed then Pfeifer’s record
values transformed to simple upper records.

1.2.7 kn–Records from Non-identical Distributions

The Pfeifer’s record values and k–record values can be combined together to give
rise to kn–records from Non-identical distributions. Formally, the kn–records from
Non-identical distributions are defined as below.

Let
{
X (n)

j ; n, j ∈ N

}
be a double sequence of independent random variables

defined on some probability space with P
(
X (n)

j

)
= P

(
X (n)
1

)
; n, j ∈ N and let

X (n)
j ∼ X (n)

1 ∼ Fn; n, j ∈ N

Also let (kn; n ∈ N) be a sequence of positive integers. Define inter record times as

�1 = 1;
�n+1 = min

{
j ∈ N; X (n+1)

j : j+kn+1−1 > X (n)
�n ,�n+kn−1

}
; n ∈ N;

where X j : j+kn+1−1 is jth order statistics based on a sample of size j + kn+1 − 1; then
the random variables

X (n)
�n ,�n+kn−1 = X (n)

�n ,kn

are called kn–records from Non-identical distributions.
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The joint density function of r kn–records from Non-identical distributions is
given as

f
�

(1)
1,k1

,�
(2)
2,k2

,...,�
(r)
r,kr

(x1, x2, . . . , xr ) =
⎛

⎝
r∏

j=1

k j

⎞

⎠
r∏

i=1

[{
1 − Fi (xi )

1 − Fi (xi−1)

}ki−1

×
{

fi (xi )

1 − Fi+1 (xi )

}]
; (1.7)

where Fi is distribution function of the sequence until occurrence of ith record. If
kn = 1 for all n ∈ N then kn–records from Non-identical distributions reduces to
Pfeifer’s record values.



Chapter 2
Order Statistics

2.1 Introduction

Order Statistics naturally appear in real lifewheneverwe need to arrange observations
in ascending order; say for example prices arranged from smallest to largest, scores
scored by a player in last ten innings from smallest to largest and so on. The study
of order statistics needs special considerations due to their natural dependence. The
study of order statistics has attracted many statistician in the past. Formerly, order
statistics are defined in the following.

Let X1, X2, . . . , Xn be a random sample from the distribution F(x) and so all
Xi are i.i.d. random variables having same distribution F(x). The arranged sample
X1:n ≤ X2:n ≤ . . . ≤ Xn:n is called the Ordered Sample and the r th observation in
the ordered sample; denoted as Xr :n or X(r); is called the r th Order Statistics. The
realized ordered sample is written as x1:n ≤ x2:n ≤ . . . ≤ xn:n . The distribution of
r th order statistics and joint distribution of r th and sth order statistics are given
below.

2.2 Joint Distribution of Order Statistics

The joint distribution of all order statistics plays an important role in deriving several
special distributions of individual and group of order statistics. The joint distribution
of all order statistics is easily derived from the marginal distributions of available
random variables. We know that if we have a random sample of size n from a
distribution function F(x) as X1, X2, . . . , Xn then the joint distribution of all sample
observations is

f (x1, x2, . . . , xn) =
n∏

i=1

f (xi );

© Atlantis Press and the author(s) 2016
M.Q. Shahbaz et al., Ordered Random Variables: Theory and Applications,
Atlantis Studies in Probability and Statistics 9, DOI 10.2991/978-94-6239-225-0_2
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where f (xi ) is the density function of Xi . Now since all possible ordered permuta-
tions of X1, X2, . . . , Xn can be done in n! ways, therefore the joint density function
of all order statistics is readily written as

f (x1:n, x2:n, . . . , xn:n) = n!
n∏

i=1

f (xi ). (2.1)

The joint density function of all order statistics given in (2.1) is very useful in deriving
the marginal density function of a single and group of order statistics.

The joint density function of all order statistics is useful in deriving the distribution
of a set of order statistics. Specifically, the joint distribution of r order statistics;
X1:n ≤ X2:n ≤ . . . ≤ Xr :n; is derived as below

f1,...r :n(x1, . . . , xr ) =
∫ ∞

xr

· · ·
∫ xr+3

xr

∫ xr+2

xr

f (x1:n, x2:n, . . . , xn:n)

× dxr+1 · · · dxn
=
∫ ∞

xr

· · ·
∫ xr+3

xr

∫ xr+2

xr

n!
n∏

i=1

f (xi )dxr+1 · · · dxn

= n!
r∏

i=1

f (xi )
∫ ∞

xr

· · ·
∫ xr+3

xr

∫ xr+2

xr

n∏

i=r+1

f (xi )

× dxr+1 · · · dxn
= n!

(n − r)!

[
r∏

i=1

f (xi )

]
[1 − F(xr )]

n−r . (2.2)

Expression (2.2) can be used to obtain the joint marginal distribution of any specific
number of order statistics.

The distribution of a single order statistics and joint distribution of two order
statistics has found many applications in diverse areas of life. In the following we
present the marginal distribution of a single order statistics.

2.3 Marginal Distribution of a Single Order Statistics

The marginal distribution of r th order statistics Xr :n can be obtained in different
ways. The distribution can be obtained by first obtaining the distribution function of
Xr :n and then that distribution function can be used to obtain the density function of
Xr :n as given in Arnold, Balakrishnan and Nagaraja (2008) and David and Nagaraja
(2003). We obtain the distribution function of Xr :n by first obtaining distribution
function of Xn:n; the largest observation; and X1:n; the smallest observation.
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The distribution function of Xn:n is denoted as Fn:n(x) and is given as

Fn:n(x) = P{Xn:n ≤ x}
= P{all Xi ≤ x} = Fn(x). (2.3)

Again the distribution function of X1:n; denoted as F1:n(x); is

Fn:n(x) = P{X1:n ≤ x} = 1 − P{X1:n > x}
= 1 − P{all Xi > x} = 1 − [1 − F(x)]n. (2.4)

Now the distribution function of Xr :n; the r th order statistics; is denoted as Fr :n(x)
and is given as

Fr :n(x) = P{Xr :n ≤ x}
= P{atleast r o f Xi are less than or equal to x}
=

n∑

i=r

(
n

i

)
Fi (x)[1 − F(x)]n−i . (2.5)

Now using the relation

n∑

i=r

(
n

i

)
pi (1 − p)n−i =

∫ p

0

n!
(r − 1)!(n − r)! t

r−1(1 − t)n−r dt;

the distribution function of Xr :n is given as

Fr :n(x) =
n∑

i=r

(
n

i

)
Fi (x)[1 − F(x)]n−i

=
∫ F(x)

0

n!
(r − 1)!(n − r)! t

r−1(1 − t)n−r dt

=
∫ F(x)

0

�(n + 1)

�(r)�(n − r + 1)
tr−1(1 − t)n−r dt

= 1

B(r, n − r + 1)

∫ F(x)

0
tr−1(1 − t)n−r dt

= IF(x)(r, n − r + 1); (2.6)

where Ix (a, b) is incomplete Beta Function ratio. From (2.6) we see that the distri-
bution function of Xr :n resembles with the distributions proposed by Eugene, Lee
and Famoye (2002). Expression (2.6) is valid either if sample has been drawn from
a discrete distribution. An alternative form for the distribution function of Xr :n is
given as
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Fr :n(x) =
n∑

i=r

(
n

i

)
Fi (x)[1 − F(x)]n−i

=
n∑

i=r

(
n

i

)
Fi (x)

n−i∑

k=0

(−1)k
(
n − i

k

)
Fk(x)

=
n∑

i=r

n−i∑

k=0

(−1)k
(
n

i

)(
n − i

k

)
Fi+k(x). (2.7)

Assuming that X ′
i s are absolutely continuous, the density function of Xr :n ; denoted

by fr :n(x); is easily obtained from (2.6) as below

fr :n(x) = d

dx
Fr :n(x)

= d

dx

[
1

B(r, n − r + 1)

∫ F(x)

0
tr−1(1 − t)n−r dt

]

= 1

B(r, n − r + 1)

[
d

dx

{∫ F(x)

0
tr−1(1 − t)n−r dt

}]

= 1

B(r, n − r + 1)
f (x)Fr−1(x)[1 − F(x)]n−r

= n!
(r − 1)!(n − r)! f (x)F

r−1(x)[1 − F(x)]n−r . (2.8)

The density function of X1:n and Xn:n can be immediately written from (2.8) as

f1:n(x) = n f (x)[1 − F(x)]n−1

and
fn:n(x) = n f (x)Fn−1(x).

The distribution of Xr :n can also be derived by using themultinominal distribution
as under:

Recall that probability mass function of multinomial distribution is

P(Y1 = y1,Y2 = y2, . . . ,Yk = yk) = n!
y1!y2!...yk ! p

y1
1 py2

2 . . . pyk
k ;

and can be used to compute the probabilities of joint occurrence of events. Now the
place of xr;n in ordered sample can be given as

x1:n ≤ x2:n ≤ . . . ≤ xr−1:n︸ ︷︷ ︸
r−1 observations

Event 1

≤ xr :n︸︷︷︸
Event 2

≤ xr+1:n ≤ . . . ≤ xn:n︸ ︷︷ ︸
n−r observations

Event 3
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In the above probability of occurrence of Event 1 is F(x), that of Event 2 is f (x)
and probability of Event 3 is [1 − F(x)]. Hence the joint occurrence of above three
events; which is equal to density of Xr :n is

fr :n(x) = n!
(r − 1)!(n − r)! f (x)F

r−1(x)[1 − F(x)]n−r ;

which is (2.8). When the density f (x) is symmetrical about μ then the distributions
of r th and (n − r + 1)th order statistics are related by relation

fr :n(μ + x) = fn−r+1:n(μ − x).

Above relation is very useful in moment relations of order statistics.
When the sample has been drawn from a discrete distribution with distribution

function F(x) then the density of Xr :n can be obtained as below

fr :n(x) = Fr :n(x) − Fr :n(x − 1)

= IF(x)(r, n − r + 1) − IF(x−1)(r, n − r + 1)

= P
{
F(x − 1) < Tr,n−r+1 < F(x)

}

= 1

B(r, n − r + 1)

∫ F(x)

F(x−1)
ur−1(1 − u)n−r du. (2.9)

Expression (2.9) is the probability mass function of Xr :n when sample is available
from a discrete distribution. The probability mass function of Xr :n can also be written
in binomial sum as under

fr :n(x) = Fr :n(x) − Fr :n(x − 1)

=
n∑

i=r

(
n

i

)
Fi (x)[1 − F(x)]n−i

−
n∑

i=r

(
n

i

)
Fi (x − 1)[1 − F(x − 1)]n−i

=
n∑

i=r

(
n

i

){
Fi (x)[1 − F(x)]n−i

−Fi (x − 1)[1 − F(x − 1)]n−i
}
. (2.10)

We now obtain the joint distribution of two ordered observations, namely Xr :n
and Xs:n for r ≤ s; in the following.
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2.4 Joint Distribution of Two Order Statistics

Suppose we have random sample of size n from F(x) and observations are arranged
as X1:n ≤ X2:n ≤ . . . ≤ Xn:n . The joint distribution function of Xr :n and Xs:n for
r ≤ s is given by Arnold et al. (2008) as

Fr,s:n(xr , xs) = P(Xr :n ≤ xr , Xs:n ≤ xs)

= P(atleast r o f Xi are less than or equal to xr
and atleast s o f Xi are less than or equal to xs)

=
n∑

j=s

s∑

i=r

P(Exactly r o f Xi are less than or equal to xr

and exactly s o f Xi are less than or equal to xs)

=
n∑

j=s

s∑

i=r

n!
i !( j − i)!(n − j)! F

i (xr )

× [F(xs) − F(xr )]
j−i [1 − F(xs)]

n− j .

Now using the relation

n∑

j=s

s∑

i=r

n!
i !( j − i)!(n − j)! p

i
1(p2 − p1)

j−i (1 − p2)
n− j

=
∫ p1

0

∫ p2

t1

n!
(r − 1)!(s − r − 1)!(n − s)! t

r−1
1 (t2 − t1)

s−r−1(1 − t2)
n−sdt2dt1;

we can write the joint distribution function of two order statistics as

Fr,s:n(xr , xs) =
∫ F(xr )

0

∫ F(xs )

t1

n!
(r − 1)!(s − r − 1)!(n − s)!

× tr−1
1 (t2 − t1)

s−r−1(1 − t2)
n−sdt2dt1 (2.11)

;−∞ < xr < xs < ∞;

which is incomplete bivariate beta function ratio. Expression (2.11) holds for both
discrete and continuous random variables. When F(x) is absolutely continuous then
density function of Xr :n and Xs:n can be obtained from (2.11) and is given as

fr,s:n(xr , xs) = d2

dxrdxs
Fr,s:n(xr , xs)

= d2

dxrdxs

[∫ F(xr )

0

∫ F(xs )

t1

n!
(r − 1)!(s − r − 1)!(n − s)!

tr−1
1 (t2 − t1)

s−r−1(1 − t2)
n−sdt2dt1

]
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or

fr,s:n(xr , xs) = n!
(r − 1)!(s − r − 1)!(n − s)! ×
d2

dxrdxs

[∫ F(xr )

0

∫ F(xs )

t1

tr−1
1 (t2 − t1)

s−r−1(1 − t2)
n−sdt2dt1

]

= 1

B(r, s − r, n − s + 1)
f (xr ) f (xs)F

r−1(xr )

×
[
F(xs) − F(xr )

]s−r−1

[1 − F(xs)]
n−s

or

fr,s:n(xr , xs) = Cr,s,n f (xr ) f (xs)F
r−1(xr )[F(xs) − F(xr )]

s−r−1

× [1 − F(xs)]
n−s, −∞ < xr < xs < ∞, (2.12)

where Cr,s,n = [B((r, s − r, n − s + 1))]−1 = n!
(r−1)!(s−r−1)!(n−s)! ·

The joint probability mass function P{Xr :n = x; Xs:n = y} of Xr :n and Xs:n can
be obtained by using the fact that

fr,s:n(x, y) = Fr,s:n(x, y) − Fr,s:n(x − 1, y)

−Fr,s:n(x, y − 1) + Fr,s:n(x − 1, y − 1)

= P{F(x − 1) < Tr ≤ F(x), F(y − 1) < Ts ≤ F(y)}
= Cr,s,n

∫ ∫

B

vr−1(w − v)s−r−1(1 − w)n−sdvdw ; (2.13)

where integration is over the region

{(v,w) : v ≤ w, F(x − 1) ≤ v ≤ F(x), F(y − 1) ≤ w ≤ F(y)}·

Consider the joint distribution of two order statistics as

fr,s:n(xr , xs) = Cr,s,n f (xr ) f (xs)F
r−1(xr )

[
F(xs) − F(xr )

]s−r−1

× [1 − F(xs)]
n−s;

whereCr,s,n = n!
(r−1)!(s−r−1)!(n−s)! ·Using r = 1 and s = n the joint density of smallest

and largest observation is readily written as

f1,n:n(x1, xn) = n(n − 1) f (x1) f (xn)[F(xn) − F(x1)]
n−2. (2.14)
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Further, for s = r + 1 the joint distribution of two contiguous order statistics is

fr,r+1:n(xr , xr+1) = n!
(r − 1)!(n − r − 1)! f (xr ) f (xr+1)F

r−1(xr )

×
[
1 − F(xr+1)

]n−r−1

. (2.15)

Analogously, the joint distribution of any k order statistics Xr1:n, Xr2:n, . . . , Xrk :n; for
x1 ≤ x2 ≤ · · · ≤ xk ; is

fr1,r2,...,rk :n(x1, x2, · · · , xk) = n!
k∏

j=0

{[
F(xr+1) − F(xr )

]
r j+1−r j−1

(
r j+1 − r j − 1

)!

}

×
⎧
⎨

⎩

k∏

j=1

f
(
x j
)
⎫
⎬

⎭. (2.16)

where x0 = −∞, xn+1 = +∞, r0 = 0 and rn+1 = n + 1. Expression (2.16)
can be used to obtain joint distribution of any number of ordered observations.

Example 2.1 A random sample is drawn fromUniform distribution over the interval
[0, 1]. Obtain distribution of r th order statistics and joint distribution of two order
statistics.

Solution: The density and distribution function of U (0, 1) are

f (u) = 1; F(u) = u.

The distribution of r th order statistics is

fr :n(u) = 1

B(r, n − r + 1)
f (u)Fr−1(u)[1 − F(u)]n−r

= 1

B(r, n − r + 1)
ur−1(1 − u)n−r ;

which is a Beta random variable with parameters r and n − r + 1. Again the joint
distribution of two order statistics is

fr,s:n(ur , us) = 1

B(r, s − r, n − s + 1)
f (ur ) f (us)F

r−1(ur )

×
[
F(us) − F(ur )

]s−r−1

[1 − F(us)]
n−s

= 1

B(r, s − r, n − s + 1)
ur−1
r (us − ur )

s−r−1(1 − us)
n−s .
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The joint distribution of largest and smallest observation is immediately written as

fr,s:n(ur , us) = n(n − 1)(un − u1)
n−2.

Example 2.2 A random sample of size n is drawn from the standard power function
distribution with density

f (x) = vxv−1; 0 < x < 1, v > 0.

Obtain the distribution of r th order statistics and joint distribution of r th and sth
statistics.

Solution: For given distribution we have

F(x) =
∫ x

0
f (t)dt =

∫ x

0
vtv−1dt = xv; 0 < x < 1.

Now distribution of r th order statistics is

fr :n(x) = 1

B(r, n − r + 1)
f (x)Fr−1(x)[1 − F(x)]n−r

= 1

B(r, n − r + 1)
vxrv−1(1 − xv)n−r .

The distribution function of r th order statistics is readily written as

Fr :n(x) = 1

B(r, n − r + 1)

∫ F(x)

0
tr−1(1 − t)n−r dt

= 1

B(r, n − r + 1)

∫ xv

0
tr−1(1 − t)n−r dt

=
n∑

i=r

(
n

i

)
xiv(1 − xv)n−i .

The joint distribution of Xr :n and Xs:n is

fr,s:n(xr , xs) = 1

B(r, s − r, n − s + 1)
f (xr ) f (xs)F

r−1(xr )

×
[
F(xs) − F(xr )

]s−r−1

[1 − F(xs)]
n−s

= Cr,s,nv
2xrv−1

r xv−1
s

(
xv
s − xv

r

)
s−r−1

(
1 − xv

s

)
n−s .

where Cr,s,n = [B(r, s − r, n − s + 1)]−1 = n!
(r−1)!(s−r−1)!(n−s)! ·
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2.5 Distribution of Range and Other Measures

Suppose a random sample of size n is available from F(x) and let Xr :n be the r th
order statistics. Further let Xs:n be sth order statistics with r < s. The joint density
function of Xr :n and Xs:n is

fr,s:n(xr , xs) = Cr,s,n f (xr ) f (xs)F
r−1(xr )

[
F(xs) − F(xr )

]s−r−1

× [1 − F(xs)]
n−s .

Using above we can obtain the density of Wrs = Xs:n − Xr :n by making the trans-
formation wrs = xs − xr . The joint density of wrs and xr in this case is

fWrs (wrs) = Cr,s,n f (xr ) f (xr + wrs)F
r−1(xr )

× [F(xr + wrs) − F(xr )]
s−r−1[1 − F(xr + wrs)]

n−s .

The marginal density of wrs is

fWrs (wrs) = Cr,s,n

∫ ∞

−∞
f (xr ) f (xr + wrs)F

r−1(xr )

× [F(xr + wrs) − F(xr )]
s−r−1[1 − F(xr + wrs)]

n−sdxr .

When r = 1 and s = n then above result provide the density function of Range (w)

in a sample of size n and is given as

fW (w) = n(n − 1)
∫ ∞

−∞
f (xr ) f (xr + w)[F(xr + w) − F(xr )]

n−2dxr . (2.17)

The distribution function of sample range can be easily obtained from (2.17) and is

FW (w) = n
∫ ∞

−∞
f (xr )

∫ w

0
(n − 1) f

(
xr + w/

)

× [F(xr + w/
)− F(x)

]
n−2dw/dxr

= n
∫ ∞

−∞
f (xr )

[
F
(
xr + w/

)− F(xr )
]
n−1
∣∣w/=w
w/=0 dxr

= n
∫ ∞

−∞
f (xr )[F(xr + w) − F(xr )]

n−1dxr . (2.18)

Again suppose that number of observations in sample are even; say n = 2m; then
we know that the sample median is

X̃ = 1

2

[
Xm:n + Xm+1:n

]
.
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The distribution of median can be obtained by using joint distribution of two con-
tiguous order statistics and is given as

fm,m+1:n(xm, xm+1) = C/
m,n f (xm) f (xm+1)F

m−1(xm)
[
1 − F(xm+1)

]
m−1;

where C/
m,n = n!

[(m−1)!]2 · Now making the transformation x̃ = 1
2

[
xm + xm+1

]
and

y = xm the jaccobian of transformation is 2 and hence the joint density of x̃ and y is

f X̃Y (̃x, y) = 2C/
m,n f (y) f (2x̃ − y)Fm−1(y)[1 − F(2x̃ − y)]m−1.

The marginal density of sample median is, therefore

f X̃ (̃x) = 2C/
m,n

∫ x̃

−∞
f (y) f (2x̃ − y)Fm−1(y)[1 − F(2x̃ − y)]m−1dy (2.19)

The density of sample median for an odd sample size; say n = 2m + 1; is simply
the density of mth order statistics for a sample of size 2m + 1.

Example 2.3 Obtain the density function of sample range for a sample of size n from
uniform distribution with density

f (x) = 1; 0 < x < 1.

Solution: The distribution of sample range for a sample of size n from distribution
F(x) is

fW (w) = n(n − 1)
∫ ∞

−∞
f (xr ) f (xr + w)[F(xr + w) − F(xr )]

n−2dxr .

Now for uniform distribution we have

f (x) = 1; F(x) = x .

So
f (xr + w) = 1; F(xr + w) = (xr + w),

hence the density function of range is

fW (w) = n(n − 1)
∫ 1−w

0
[(xr + w) − xr ]

n−2dxr

= n(n − 1)
∫ 1−w

0
wn−2dxr

= n(n − 1)wn−2(1 − w); 0 < w < 1.
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Example 2.4 Obtain the density function of range in a sample of size 3 from expo-
nential distribution with density

f (x) = e−x ; x > 0.

Solution: The distribution of sample range for a sample of size n from distribution
F(x) is

fW (w) = n(n − 1)
∫ ∞

−∞
f (xr ) f (xr + w)[F(xr + w) − F(xr )]

n−2dxr .

which for n = 3 becomes

fW (w) = 6
∫ ∞

−∞
f (xr ) f (xr + w)[F(xr + w) − F(xr )]dxr .

Now for exponential distribution we have

f (x) = e−x and F(x) = 1 − e−x ,

hence

f (xr ) = e−xr and F(xr ) = 1 − e−xr ,

f (w + xr ) = e−(w+xr ) and F(w + xr ) = 1 − e−(w+xr ).

Using these in above expression we have

fW (w) = 6
∫ ∞

0
e−xr e−(w+xr )

[
e−xr − e−(w+xr )

]
dxr

= 6e−w
(
1 − e−w

) ∫ ∞

0
e−3xr dxr

= 2e−w
(
1 − e−w

);w > 0,

as required density function of range.

Example 2.5 Obtain the density function of median in a sample of size n = 2m
from exponential distribution with density function

f (x) = e−x ; x > 0.

Solution: The distribution of sample median for a sample of size n = 2m from
distribution F(x) is

f X̃ (̃x) = 2C/
m,n

∫ x̃

−∞
f (y) f (2x̃ − y)Fm−1(y)[1 − F(2x̃ − y)]m−1dy;
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where C/
m,n = n!

[(m−1)!]2 . For the given distribution we have

f (y) = e−y; F(y) = 1 − e−y

f (2x̃ − y) = e−(2x̃−y); F(2x̃ − y) = 1 − e−(2x̃−y).

Substituting these values in above equation we have

f X̃ (̃x) = 2C/
m,n

∫ x̃

0
e−ye−(2x̃−y)

(
1 − e−y

)
m

× [e−(2x̃−y)
]
m−1dy

= 2C/
m,ne

−2x̃ e−2(m−1)̃x
∫ x̃

0
e−2y

(
1 − e−y

)
m

× e(m−1)ydy

= 2C/
m,ne

−2mx̃
∫ x̃

0
e−(3−m)y

(
1 − e−y

)
mdy.

Now expanding
(
1 − e−y

)
m we have

f X̃ (̃x) = 2C/
m,ne

−2mx̃
∫ x̃

0
e−(3−m)y

m∑

h=0

(−1)h
(
m

h

)
e−hydy

= 2C/
m,ne

−2mx̃
m∑

h=0

(−1)h
(
m

h

)∫ x̃

0
e−[(3−m)+h]ydy

= 2C/
m,n

(3 − m) + h

m∑

h=0

(−1)h
(
m

h

)
e−2mx̃

(
1 − e−[(3−m)+h ]̃x

)
,

as required density of median.

2.6 Conditional Distributions of Order Statistics

The conditional distribution plays very important role in studying behavior of a
random variable when information about some other variable(s) is available. The
study of conditional distributions is easily extended in the case of order statistics.
The conditional distributions of order statistics provide certain additional information
about them and we present these conditional distributions in the following theorems
as discussed in Arnold et al. (2008).

We know that when we have a bivariate distribution; say f (x, y); of two random
variables X and Y , then the conditional distribution of random variable Y given X
is given as

f (y|x) = f (x, y)

f2(x)
;
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where f2(x) is the marginal distribution of X . Analogously, the conditional distribu-
tions in case of order statistics can be easily defined; say for example the conditional
distribution of Xs:n given Xr :n = xr is defined as

f (xs |xr ) = fr,s:n(xr , xs)
fr :n(xr )

,

where fr,s:n(xr , xs) is joint distribution of Xr :n and Xs:n and fr :n(x) is marginal
distribution of Xr :n . The conditional distributions of order statistics are discussed in
the following.

Theorem 2.1 Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be order statistics for a sample of size
n from an absolutely continuous distribution F(x) then the conditional distribution
of Xs:n given Xr :n = xr ; for r < s; is same as the distribution of (s − r)th order
statistics from a sample of size (n − r) from a distribution F(x) which is truncated
on the left at xr .

Proof The marginal distribution of Xr :n and the joint distribution of Xr :n and Xs:n
are given in (2.8) and (2.12) as

fr :n(xr ) = n!
(r − 1)!(n − r)! f (xr )

[
F(x)

]r−1[
1 − F(xr )

]n−r

;

and

fr,s:n(xr , xs) = n!
(r − 1)!(s − r − 1)!(n − s)! f (xr ) f (xs)

[
F(xr )

]r−1

×
[
F(xs) − F(xr )

]s−r−1

[1 − F(xs)]
n−s .

Now the conditional distribution of Xs:n given Xr :n = xr is

f (xs |xr ) = fr,s:n(xr , xs)
fr :n(xr )

=
{

n!
(r − 1)!(s − r − 1)!(n − s)! f (xr ) f (xs)

[
F(xr )

]r−1

× [F(xs) − F(xr )]
s−r−1[1 − F(xs)]

n−s
}
/

n!
(r − 1)!(n − r)! f (xr )

[
F(xr )

]r−1

[1 − F(xr )]
n−r

or
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f (xs |xr ) = (n − r)!
(s − r − 1)!(n − s)! f (xs)[1 − F(xs)]

n−s

× [F(xs) − F(xr )]s−r−1

[1 − F(xr )]n−r

= (n − r)!
(s − r − 1)!(n − s)!

f (xs)

1 − F(xr )

×
[
F(xs) − F(xr )

1 − F(xr )

]s−r−1[
1 − F(xs)

1 − F(xr )

]n−s

. (2.20)

Noting that f (xs )
{1−F(xr )} and {F(xs )−F(xr )}

{1−F(xr )} are respectively the density and distribution
function of a random variable whose distribution is truncated at left of xr completes
the proof.

Theorem 2.2 Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be order statistics for a sample of size
n from an absolutely continuous distribution F(x) then the conditional distribution
of Xr :n given Xs:n = xs; for r < s; is same as the distribution of r th order statistics
from a sample of size (s − 1) from a distribution F(x) which is truncated on the
right at xs .

Proof Themarginal distribution of Xr :n and the joint distribution of Xr :n and Xs:n are
given in (2.8) and (2.12). Now the conditional distribution of Xr :n given Xs:n = xs
is

f (xr |xs) = fr,s:n(xr , xs)
fs:n(xs)

=
{

n!
(r − 1)!(s − r − 1)!(n − s)! f (xr ) f (xs)

[
F(xr )

]r−1

× [F(xs) − F(xr )]
s−r−1[1 − F(xs)]

n−s
}
/

n!
(s − 1)!(n − s)! f (xs)[F(xs)]

s−1[1 − F(xs)]
n−s

or

f (xr |xs) = (s − 1)!
(r − 1)!(s − r − 1)! f (xr )

[
F(xr )

]r−1

×
[
F(xs) − F(xr )

]s−r−1
1

[F(xs)]s−1

= (s − 1)!
(r − 1)!(s − r − 1)!

f (xr )

F(xs)

[
F(xr )

F(xs)

]r−1

×
[
1 − F(xr )

F(xs)

]s−r−1

. (2.21)
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Proof immediately follows by noting that f (xr )/F(xs) and F(xr )/F(xs) are respec-
tively the density and distribution function of a random variable whose distribution
is truncated at right of xs .

Theorem 2.3 Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be order statistics for a sample of size
n from an absolutely continuous distribution F(x) then the conditional distribution
of Xs:n given Xr :n = xr and Xt :n = xt ; for r < s < t; is same as the distribution of
(s − r)th order statistics for a sample of size (t − r − 1) from a distribution F(x)
which is doubly truncated on the left at xr and on the right at xt .

Proof The joint distribution of Xr :n , Xs:n and Xt :n is obtained from (2.16) as

fr,s,t :n(xr , xs, xt ) = n!
(r − 1)!(s − r − 1)!(t − s − 1)!(n − t)! f (xr ) f (xs) f (xt )

×
[
F(xr )

]r−1[
F(xs) − F(xr )

]s−r−1[
F(xt ) − F(xs)

]t−s−1

×
[
1 − F(xt )

]n−t

.

Also the joint distribution of Xr :n and Xt :n is

fr,t :n(xr , xt ) = n!
(r − 1)!(t − r − 1)!(n − t)! f (xr ) f (xt )

[
F(xr )

]r−1

× [F(xt ) − F(xr )]
t−r−1[1 − F(xt )]

n−t .

Now the conditional distribution of Xs:n given Xr :n and Xt :n is

f (xs |xr , xt ) = fr,s,t :n(xr , xs, xt )
fr,t :n(xr , xt )

=
{

n!
(r − 1)!(s − r − 1)!(t − s − 1)!(n − t)!

× f (xr ) f (xs) f (xt )

[
F(xr )

]r−1[
F(xs) − F(xr )

]s−r−1

× [F(xt ) − F(xs)]
t−s−1[1 − F(xt )]

n−t
}
/

{
n!

(r − 1)!(t − r − 1)!(n − t)! f (xr ) f (xt )[F(xr )]
r−1

× [F(xt ) − F(xr )]
t−r−1[1 − F(xt )]

n−t
}

or
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f (xs |xr , xt ) = (t − r − 1)!
(s − r − 1)!(t − s − 1)! f (xs )

[
F(xs ) − F(xr )

]s−r−1

×
[
F(xt ) − F(xs )

]t−s−1 1
[
F(xt ) − F(xr )

]t−r−1

= (t − r − 1)!
(s − r − 1)!(t − s − 1)!

f (xs )

F(xt ) − F(xr )

×
[
F(xs ) − F(xr )

F(xt ) − F(xr )

]
s−r−1 ×

[
F(xt ) − F(xs )

F(xt ) − F(xr )

]t−s−1

. (2.22)

Proof immediately follows by noting that f (xs )
F(xt )−F(xr )

and F(xs )−F(xr )
F(xt )−F(xr )

are respectively
the density and distribution function of a random variable whose distribution is
doubly truncated from left at xr and at the right of xs .

Theorem 2.4 Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be order statistics for a sample of size
n from an absolutely continuous distribution F(x) then the conditional distribution
of Xr :n and Xs:n given Xt :n = xt ; for r < s < t; is same as the joint distribution
of r th and sth order statistics for a sample of size (t − 1) from a distribution F(x)
which is truncated on the right at xt .

Proof The joint distribution of Xr :n , Xs:n and Xt :n is obtained from (2.16) as

fr,s,t :n(xr , xs , xt ) = n!
(r − 1)!(s − r − 1)!(t − s − 1)!(n − t)! f (xr ) f (xs ) f (xt )

×
[
F(xr )

]r−1[
F(xs ) − F(xr )

]s−r−1[
F(xt ) − F(xs )

]t−s−1

× [1 − F(xt )]
n−t .

Also the marginal distribution of Xt :n is

ft :n(xt ) = n!
(t − 1)!(n − t)! f (xt )[F(xt )]

t−1[1 − F(xt )]
n−t .

Now the conditional distribution of Xr :n and Xs:n given Xt :n is

f (xr , xs |xt ) = fr,s,t :n(xr , xs , xt )

ft :n(xt )

=
{

n!
(r − 1)!(s − r − 1)!(t − s − 1)!(n − t)!

× f (xr ) f (xs ) f (xt )[F(xr )]
r−1

[
F(xs ) − F(xr )

]s−r−1

× [F(xt ) − F(xs )]
t−s−1[1 − F(xt )]

n−t
}
/

{
n!

(t − 1)!(n − t)! f (xt )[F(xt )]
t−1

× [1 − F(xt )]
n−t}



24 2 Order Statistics

or

f (xr , xs |xt ) = (t − 1)!
(r − 1)!(s − r − 1)!(t − s − 1)! f (xr ) f (xs)[F(xr )]

r−1

×
[
F(xs) − F(xr )

]s−r−1

[
F(xt ) − F(xs)

]t−s−1

[F(xt )]t−1

= (t − 1)!
(r − 1)!(s − r − 1)!(t − s − 1)!

f (xr )

F(xt )

f (xs)

F(xt )

×
[
F(xr )

F(xt )

]r−1[ F(xs)

F(xt )
− F(xr )

F(xt )

]s−r−1

×
[
1 − F(xs)

F(xt )

]t−s−1

. (2.23)

The proof is complete by noting that f (xr )/F(xt ) and F(xr )/F(xt ) are respec-
tively the density and distribution function of a random variable whose distribution
is truncated at the right at xt .

Theorem 2.5 Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be order statistics for a sample of size
n from an absolutely continuous distribution F(x) then the conditional distribution
of Xs:n and Xt :n given Xr :n = xr ; for r < s < t; is same as the joint distribu-
tion of (s − r)th and (t − r)th order statistics for a sample of size (n − r) from a
distribution F(x) which is truncated on the left at xr .

Proof The joint distribution of Xr :n , Xs:n and Xt :n is obtained from (2.16) as

fr,s,t :n(xr , xs , xt ) = n!
(r − 1)!(s − r − 1)!(t − s − 1)!(n − t)! f (xr ) f (xs) f (xt )

× [F(xr )]
r−1
[
F(xs) − F(xr )

]s−r−1[
F(xt ) − F(xs)

]t−s−1

× [1 − F(xt )]
n−t .

Also the marginal distribution of Xr :n is

fr :n(xr ) = n!
(r − 1)!(n − r)! f (xr )[F(xr )]

r−1[1 − F(xr )]
n−r .

Now the conditional distribution of Xs:n and Xt :n given Xr :n is

f (xs, xt |xr ) = fr,s,t :n(xr , xs, xt )
fr :n(xt )

=
{

n!
(r − 1)!(s − r − 1)!(t − s − 1)!(n − t)!

× f (xr ) f (xs) f (xt )[F(xr )]
r−1

[
F(xs) − F(xr )

]s−r−1
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× [F(xt ) − F(xs)]
t−s−1[1 − F(xt )]

n−t
}
/

{
n!

(r − 1)!(n − r)! f (xr )[F(xr )]
r−1

× [1 − F(xr )]
n−r
}

or

f (xs , xt |xr ) = (n − r)!
(s − r − 1)!(t − s − 1)!(n − t)! f (xs) f (xt )

×
[
F(xs) − F(xr )

]s−r−1

[F(xt ) − F(xs)]
t−s−1

× [1 − F(xt )]
n−t 1

[1 − F(xr )]n−r

= (n − r)!
(s − r − 1)!(t − s − 1)!(n − t)!

f (xs)

1 − F(xr )

× f (xt )

1 − F(xr )

[
F(xs) − F(xr )

1 − F(xr )

]
s−r−1

×
[
F(xt ) − F(xs)

1 − F(xr )

]
t−s−1

[
1 − F(xt )

1 − F(xr )

]
n−t . (2.24)

The proof is complete by noting that f (xs )
1−F(xr )

and F(xs )−F(xr )
1−F(xr )

are respectively the
density and distribution function of a random variable whose distribution is truncated
at the left of xr .

Theorems 2.1 to 2.5 provide some interesting results about the conditional dis-
tributions of order statistics from a distribution F(x). From all these theorems we
can see that the conditional distributions in order statistics are simply the marginal
and joint distributions of corresponding order statistics obtained from the truncated
parent distribution and appropriately modified sample size.

Example 2.6 A random sample of size n is drawn from theWeibull distribution with
density function

f (x) = αxα−1 exp(−xα); x, α > 0.

Obtain the conditional distribution of Xs:n given Xr :n = xr and conditional distrib-
ution of Xr :n given Xs:n = xs .

Solution: The conditional distribution of Xs:n given Xr :n = xr is given as

f (xs |xr ) = (n − r)!
(s − r − 1)!(n − s)!

f (xs)

1 − F(xr )

×
[
F(xs) − F(xr )

1 − F(xr )

]s−r−1[1 − F(xs)

1 − F(xr )

]n−s

.

Also the conditional distribution of Xr :n given Xs:n = xs is
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f (xr |xs) = (s − 1)!
(r − 1)!(s − r − 1)!

f (xr )

F(xs)

[
F(xr )

F(xs)

]
r−1

×
[
1 − F(xr )

F(xs)

]
s−r−1.

Now for the given distribution we have

F(x) =
∫ x

0
f (t)dt

=
∫ x

0
αtα−1 exp(−tα)dt = 1 − exp(−xα); x, α > 0.

So, the conditional distribution of Xs:n given Xr :n = xr is

f (xs |xr ) = (n − r)!
(s − r − 1)!(n − s)!

αxα−1
s e−xα

s

e−xα
r

×
(
e−xα

r − e−xα
s

e−xα
r

)
s−r−1

(
e−xα

s

e−xα
r

)
n−s .

= (n − r)!αxα−1
s e−(n−s+1)xα

s

(s − r − 1)!(n − s)!
(
e−xα

r − e−xα
s
)
s−r−1

e−(n−r)xα
r

.

Again, the conditional distribution of Xr :n given Xs:n is

f (xr |xs) = (s − 1)!
(r − 1)!(s − r − 1)!

αxα−1
r e−xα

r

1 − e−xα
s

[
1 − e−xα

r

1 − e−xα
s

]r−1

×
[
1 − 1 − e−xα

r

1 − e−xα
s

]s−r−1

,

or

f (xr |xs) = (s − 1)!
(r − 1)!(s − r − 1)!

αxα−1
r e−xα

r

(
1 − e−xα

s
)
s−1

× (1 − e−xα
r
)
r−1(e−xα

r − e−xα
s
)
s−r−1,

Above conditional distributions can also be derived from the parent truncated distri-
bution.

2.7 Order Statistics as Markov Chain

In the previous section we have presented the conditional distributions of order
statistics. The conditional distributions of order statistics enable us to study their



2.7 Order Statistics as Markov Chain 27

additional behavior. One of the popular property which is based upon the conditional
distributions of order statistics is that the order statistics follows the Markov chain.
We prove this property of order statistics in the following.

We know that a sequence of random variables X1, X2, . . . , Xr , Xs has Markov
chain property if the conditional distribution of Xs given X1 = x1, X2 = x2, . . . ,
Xr = xr is same as the conditional distribution of Xs given Xr = xr , that is if

f (xs |X1 = x1, . . . , Xr = xr ) = f (xs |Xr = xr ).

Now to show that the order statistics follow the Markov chain we need to show
that the conditional distribution of sth order statistics given the information of r th
order statistics is same as the conditional distribution of sth order statistics given
the joint information of first r order statistics. From Theorem 2.1 we know that the
conditional distribution of Xs:n given Xr :n = xr is

f (xs |xr ) = (n − r)!
(s − r − 1)!(n − s)!

f (xs)

1 − F(xr )

×
[
F(xs) − F(xr )

1 − F(xr )

]s−r−1[1 − F(xs)

1 − F(xr )

]n−s

. (2.25)

Also, the conditional distribution of of Xs:n given X1:n = x1, X2:n = x2, . . . ,
Xr :n = xr is

f (xs |x1, . . . xr ) = f1,2,...r,s:n(x1, . . . , xr , xs)
f1,2,...r :n(x1, . . . , xr )

.

The joint distribution of first r order statistics is given in (2.26) as

f1,...r :n(x1, . . . , xr ) = n!
(n − r)!

[
r∏

i=1

f (xi )

]
[1 − F(xr )]

n−r . (2.26)

Now the joint distribution of X1:n, X2:n, . . . , Xr :n and Xs:n is obtained as

f1,...r,s:n(x1, . . . , xr , xs) =
∫ ∞

xs

· · ·
∫ xs+3

xs

∫ xs+2

xs

∫ xs

xr

· · ·
∫ xr+3

xr

∫ xr+2

xr

× f1,...n:n(x1, . . . , xn)
× dxr+1 · · · dxs−1ds+1 . . . dxn

=
∫ ∞

xs

· · ·
∫ xs+3

xs

∫ xs+2

xs

∫ xs

xr

· · ·
∫ xr+3

xr

∫ xr+2

xr

× n!
n∏

i=1

f (xi )dxr+1 · · · dxn



28 2 Order Statistics

or

f1,...r,s:n(x1, . . . , xr , xs) = n!
[

r∏

i=1

f (xi )

]
f (xs)

×
{∫ xs

xr

· · ·
∫ xr+3

xr

∫ xr+2

xr

s−1∏

i=r+1

f (xi )dxr+1 . . . dxs−1

}

×
{∫ ∞

xs

· · ·
∫ xs+3

xs

∫ xs+2

xs

n∏

i=s+1

f (xi )dxs+1 . . . dxn

}

or

f1,...r,s:n(x1, . . . , xr , xs) = n!
(s − r − 1)!(n − s)!

[
r∏

i=1

f (xi )

]
f (xs)

×
[
F(xs) − F(xr )

]s−r−1

[1 − F(xs)]
n−s .

Hence the conditional distribution of Xs:n given X1:n = x1, X2:n = x2, . . . , Xr :n = xr
is

f (xs |x1, . . . xr ) =
{

n!
(s − r − 1)!(n − s)!

[
r∏

i=1

f (xi )

]
f (xs)

[
F(xs) − F(xr )

]s−r−1

[1 − F(xs)]
n−s

}
/

{
n!

(n − r)!

[
r∏

i=1

f (xi )

]
[1 − F(xr )]

n−r

}

or

f (xs |x1, . . . xr ) = (n − r)!
(s − r − 1)!(n − s)! f (xs)

×
[
F(xs) − F(xr )

]s−r−1
[1 − F(xs)]n−s

[1 − F(xr )]n−r

= (n − r)!
(s − r − 1)!(n − s)!

f (xs)

1 − F(xr )

×
[
F(xs) − F(xr )

1 − F(xr )

]s−r−1[
1 − F(xs)

1 − F(xr )

]n−s

;

which is (2.25). Hence order statistics from a distribution F(x) form aMarkov chain.
The transition probabilities of order statistics are easily computed from conditional
distributions. We know that the transition probability is computed as
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P(Xr+1:n ≥ y|Xr :n = x) =
∫ ∞

y
f (xr+1|xr = x)dxr+1.

Now the conditional distribution of Xr+1:n given Xr :n = xr is obtained from (2.25)
by using s = r + 1 as

f (xr+1|xr ) = (n − r)!
(n − r − 1)!

f (xr+1)

1 − F(xr )

[
1 − F(xs)

1 − F(xr )

]n−r−1

= (n − r)
f (xr+1)

1 − F(xr )

[
1 − F(xs)

1 − F(xr )

]n−r−1

.

Hence the transition probability is

P(Xr+1:n ≥ y|Xr :n = x)=
∫ ∞

y
f (xr+1|xr = x)dxr+1

=
∫ ∞

y
(n − r)

[
1 − F(xs)

1 − F(x)

]n−r−1

× f (xr+1)

1 − F(x)
dxr+1

= n − r

{1 − F(x)}n−r

∫ ∞

y
{1 − F(xr+1)}n−r−1

× f (xr+1)dxr+1

or

P(Xr+1 ≥ y|Xr = x) = n − r

{1 − F(x)}n−r
× −{1 − F(xr+1)}n−r

n − r

∣∣∣∣
∞

y

=
[
1 − F(y)

1 − F(x)

]n−r

.

We can readily see that the transition probabilities depends upon value of n and r .

2.8 Moments of Order Statistics

The probability distribution of order statistics is like conventional probability dis-
tribution and hence the moments from these distributions can be computed in usual
way. Specifically, the pth raw moment of r th order statistics is computed as

μp
r :n =

∫ ∞

−∞
xr fr :n(x)dx

= 1

B(r, n − r + 1)

∫ ∞

−∞
x p
r f (xr )F

r−1(xr )[1 − F(xr )]
n−r dx . (2.27)
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Using the probability integral transform property of order statistics, the moments can
also be written as

μp
r :n = 1

B(r, n − r + 1)

∫ 1

0

{
F−1(ur )

}
pur−1

r (1 − ur )
n−r du; (2.28)

where ur is r th Uniform Order Statistics. The mean and variance of Xr :n can be
computed from (2.27) or (2.28). Further, the joint pth and qth order moments of
two order statistics; Xr :n = x1 and Xs:n = x2; are computed as

μp,q
r,s:n = E

(
X p
r :n X

q
s:n
) =

∫ ∞

−∞

∫ x2

−∞
x p
1 x

q
2 fr,s:n(x1, x2)dx1dx2

= Cr,s:n
∫ ∞

−∞

∫ x2

−∞
x p
1 x

q
2 f (x1) f (x2)F

r−1(x1)

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx1dx2. (2.29)

Using probability integral transform, we have

μp,q
r,s:n = Cr,s:n

∫ 1

0

∫ v

0

{
F−1(u)

}
p
{
F−1(v)

}
qur−1(v − u)s−r−1

× (1 − v)n−sdudv. (2.30)

The pth and qth joint central moments are given as

σ p,q
r,s:n = E

[
(Xr :n − μr :n)p(Xs:n − μs:n)q

]

=
∫ ∞

−∞

∫ x2

−∞
(x1 − μr :n)p(x2 − μs:n)q fr,s:n(x1, x2)dx1dx2

= Cr,s:n
∫ 1

0

∫ v

0

[
F−1(u) − μr :n

]
p
[
F−1(v) − μs:n

]
q

× ur−1(v − u)s−r−1(1 − v)n−sdudv. (2.31)

Specifically, for p = q = 1; the quantity σr,s:n is called covariance between Xr :n and
Xs:n . Also if F(x) is symmetrical; say about 0; then following relations holds

μp
r :n = (−1)pμp

n−r+1:n

and
μp,q
r,s:n = (−1)p+qμ

p,q
n−s+1,n−r+1:n .

Further, themoments of linear combinations of order statistics can be easily obtained.
The conditional distributions of order statistics provide basis for computation of

conditional moments of order statistics. Specifically, the pth conditional moment
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of sth order statistics; Xs:n; given Xr :n = xr is obtained by using the conditional
distribution of Xs:n given Xr :n = xr as

μ
p
s|r :n = E

(
X p
s:n|xr

) =
∫ ∞

xr

x p
s f (xs |xr )dxs

= (n − r)!
(s − r − 1)!(n − s)![1 − F(xr )]n−r

×
∫ ∞

xr

x p
s f (xs)

[
F(xs) − F(xr )

]s−r−1

× [1 − F(xs)]
n−sdxs . (2.32)

The conditional mean and variance can be obtained from (2.32). Further, the pth
conditional moment of Xs:n given Xr :n = xr and Xt :n = xt is computed from the
conditional distribution of Xs:n given Xr :n = xr and Xt :n = xt as

μ
p
s|r,t :n = E

(
X p
s:n |xr , xt

)
=
∫ xt

xr
x ps f (xs |xr , xt )dxs

= (t − r − 1)!
(s − r − 1)!(t − s − 1)![F(xt ) − F(xr )]t−r−1

×
∫ ∞
xr

x ps f (xs)

[
F(xs) − F(xr )

]s−r−1

× [F(xt ) − F(xs)]
t−s−1dxs . (2.33)

In similar way the joint conditional moments of order statistics can be defined by
using corresponding conditional distribution.

Example 2.7 A random sample has been obtained from the density

f (x) = vxv−1; 0 < x < 1; v > 0.

Obtain expression for pth moment of r th order statistics and that for joint pth and qth
moment of r th and sth order statistics. Hence or otherwise obtain mean and variance
of Xr :n and covariance between Xr :n and Xs:n .

Solution: The distribution of r th order statistics is given as

fr :n(xr ) = 1

B(r, n − r + 1)
f (xr )F

r−1(xr )[1 − F(xr )]
n−r .

For given distribution we have F(x) = xv and hence the density of Xr :n is

fr :n(xr ) = 1

B(r, n − r + 1)
vxrv−1

r

(
1 − xv

r

)
n−r .
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Now we have

μ
p
r :n = E

(
X p
r :n
) =

∫ ∞

−∞
x p
r fr :n(xr )dxr

= 1

B(r, n − r + 1)

∫ 1

0
x p
r vxrv−1

r

(
1 − xv

r

)n−r dxr

= v

B(r, n − r + 1)

∫ 1

0
x p+rv−1
r

(
1 − xv

r

)n−r dxr

= v

B(r, n − r + 1)

∫ 1

0
x p+rv−1
r

(
1 − xv

r

)n−r dxr

= v

B(r, n − r + 1)

∫ 1

0
x p+v(r−1)
r xv−1

r

(
1 − xv

r

)n−r dxr

Making the transformation xv
r = y we have vxv−1

r dxr = dy, hence

μ
p
r :n = 1

B(r, n − r + 1)

∫ 1

0
y

p
v
+r−1(1 − y)n−r dxr

= B
(
r + p

v
, n − r + 1

)

B(r, n − r + 1)
= �(n + 1)�

( p
v

+ r
)

�(r)�
(
n + p

v
+ 1

) ·

The mean is readily written as

μr :n = �(n + 1)�
(
1
v

+ r
)

�(r)�
(
n + 1

v
+ 1

) ·

Again the joint distribution of Xr :n and Xs:n is

fr,s:n(xr , xs) = Cr,s,nv
2xrv−1

r xv−1
s

(
xv
s − xv

r

)
s−r−1(1 − xv

s

)
n−s .

The product moments are therefore

μp,q
r,s:n = E

(
X p
r :n X

q
s:n
) =

∫ 1

0

∫ xs

0
x p
r x

q
s fr,s:n(xr , xs)dxrdxs

= Cr,s:nv2
∫ 1

0

∫ xs

0
x p
r x

q
s x

rv−1
r xv−1

s

(
xv
s − xv

r

)
s−r−1

× (1 − xv
s

)
n−sdxrdxs

= Cr,s:nv
∫ 1

0
xqs x

v−1
s

(
1 − xv

s

)
n−s

×
{
v

∫ xs

0
x p+v(r−1)
r xv−1

r

(
xv
s − xv

r

)
s−r−1dxr

}
dxs

= Cr,s:nv
∫ 1

0
xqs x

v−1
s

(
1 − xv

s

)
n−s{v I (xr )}dxs
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Now consider

v I (xr ) = v

∫ xs

0
x p+v(r−1)
r xv−1

r

(
xv
s − xv

r

)
s−r−1dxr

= vxv(s−r−1)
s

∫ xs

0
x p+v(r−1)
r xv−1

r

(
1 − xv

r

xv
s

)
s−r−1dxr .

Making the transformation y = xv
r /x

v
s we have

v I (xr ) = x (s−r−1)
s

∫ 1

0
y p/v+(r−1)(1 − y)s−r−1dy

= x p+v(s−2)
s B

( p
v

+ r, s − r
)

= x p+v(s−2)
s

�
(
r + p

v

)
�(s − r)

�
(
s + p

v

) .

Using above value of v I (xr ) in above equation we have

μp,q
r,s:n = Cr,s:n

�(s − r)�
(
r + p

v

)

�
(
s + p

v

) v

∫ 1

0
x p+q+v(s−1)
s xv−1

s

(
1 − xv

s

)
n−s

= Cr,s:n
�(s − r)�

(
r + p

v

)

�
(
s + p

v

) × (n − s)�(n − s)�
( p+q

v
+ s
)

�
( p+q

v
+ n + 1

)

Now using the value of Cr,s:n we have

μp,q
r,s:n = 1

B(r, s − r, n − s + 1)
× �(s − r)�

(
r + p

v

)

�
(
s + p

v

)

× (n − s)�(n − s)�
( p+q

v
+ s
)

�
( p+q

v
+ n + 1

)

= �(n + 1)

�(r)�(s − r)�(n − s + 1)
× �(s − r)�

(
r + p

v

)

�
(
s + p

v

)

× (n − s)�(n − s)�
( p+q

v
+ s
)

�
( p+q

v
+ n + 1

)

= �(n + 1)�
(
r + p

v

)
�
( p+q

v
+ s
)

�(r)�
(
s + p

v

)
�
( p+q

v
+ n + 1

) ; r < s.

The covariance can be easily obtained from above.
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Example 2.8 Find pth moment of r th order statistics for standard exponential
distribution.

Solution: The density and distribution function of standard exponential distribu-
tion are

f (x) = e−x and F(x) = 1 − e−x .

The pth moment of r th order statistics is

μp
r :n = E

(
X p
r :n
) =

∫ ∞

−∞
x p fr :n(x)dx

= Cr :n
∫ ∞

0
x pe−x

(
1 − e−x

)
r−1
(
e−x
)
n−r dx

=
r−1∑

j=0

(−1) jCr :n
(
r − 1

j

)∫ ∞

0
x pe−x(n−r+ j+1)dx

=
r−1∑

j=0

(−1) j
n!

j !(r − 1 − j)!(n − r)!
�(p + 1)

(n − r + j + 1)p+1
·

The mean and variance can be obtained from above.

Example 2.9 A random sample of size n is drawn from theWeibull distribution with
density

f (x) = αxα−1 exp(−xα); x, α > 0.

Obtain the expression for pth conditional moment of Xs:n given Xr :n = xr .

Solution: The pth conditional moment of Xs:n given Xr :n = xr is given in (2.34)
as

μ
p
s|r :n = E

(
X p
s:n|xr

) =
∫ ∞

xr

x p
s f (xs |xr )dxs

= (n − r)!
(s − r − 1)!(n − s)![1 − F(xr )]n−r

∫ ∞

xr

x p
s f (xs)

×
[
F(xs) − F(xr )

]s−r−1

[1 − F(xs)]
n−sdxs . (2.34)

Now for given distribution we have

f (x) = αxα−1 exp(−xα)

and

F(x) =
∫ x

0
f (t)dt =

∫ x

0
αtα−1 exp(−tα)dt = 1 − e−xα

.
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Hence the pth conditional moment of Xr :s given Xr :n = xr is

μ
p
s|r :n = Kr,s:n

(e−xα
r )n−r

∫ ∞

xr

x p
s αxα−1

s e−xα
s
(
e−xα

r − e−xα
s
)
s−r−1

× (e−xα
s
)
n−sdxs

= αKr,s:n
e−(n−r)xα

r

∫ ∞

xr

x p+α−1
s e−(n−s+1)xα

s

s−r−1∑

j=0

(−1) j

×
(
s − r − 1

j

)
e−(s−r− j−1)xα

r e− j xα
s dxs;

or

μ
p
s|r :n = αKr,s:n

s−r−1∑

j=0

1

e−(n−s+ j+1)xα
r
(−1) j

(
s − r − 1

j

)

×
∫ ∞

xr

x p+α−1
s e−(n−s+ j+1)xα

s dxs

Making the transformation (n − s + j + 1)xα
s = y we have

μ
p
s|r :n = αKr,s:n

s−r−1∑

j=0

1

e−(n−s+ j+1)xα
r
(−1) j

(
s − r − 1

j

)

×
∫ ∞

(n−s+ j+1)xα
r

y p/α

(n − s + j + 1)p/α+1
e−ydy

= αKr,s:n
s−r−1∑

j=0

1

e−(n−s+ j+1)xα
r
(−1) j

(
s − r − 1

j

)

×�(n−s+ j+1)xα
r

( p
α

+ 1
)
;

where Kr,s:n = (n−r)!
(s−r−1)!(n−s)! .Theconditionalmean andvariance canbeobtained from

above expression. Using α = 1 in above expression we can obtain the expression for
pth conditional moment of Xs:n given Xr :n = xr for Exponential distribution.

2.9 Recurrence Relations and Identities for Moments of
Order Statistics

In previous sectionwe have discussed about single, product and conditionalmoments
of order statistics in detail. The moments of order statistics posses certain additional
characteristics in that they are related with each other in certain way. In this section
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we will give some relationships which exist among moments of order statistics.
The relationships among moments of order statistics enable us to compute certain
moments of higher order statistics on the basis of lower order statistics and/or on
the basis of lower order moments. Some of the relationships which exist among
moments of order statistics are distribution specific and some of the relationships
are free from the underlying parent distribution of the sample. In the following we
discuss some of the popular relationships which exist among moments of order
statistics. We present both type of relationships; that is distribution free relationships
and distribution specific relationships.

2.9.1 Distribution Free Relations Among Moments of Order
Statistics

The moments of order statistics have several interesting relationships and identities
which hold irrespective of the parent distribution. Some relations hold among mo-
ments of order statistics and several relations connectmoments of order statisticswith
moments of the distribution from where sample has been drawn. In the following
we first present some relationships that hold among single and product moments of
order statistics and latter we will give some identities which hold between moments
of order statistics and population moments.

We first give an interesting relationship which hold between distribution of r th
order statistics and other single ordered observations and a relationship that connect
joint distribution of two r th and sth order statistics with joint distribution of other
ordered observations in the following.

We know that the distribution of r th order statistics is

fr :n(x) = n!
(r − 1)!(n − r)! f (x)[F(x)]r−1[1 − F(x)]n−r

or

fr :n(x) = n!
(r − 1)!(n − r)! f (x)[F(x)]r−1[1 − F(x)]n−r−1[1 − F(x)]

= n!
(r − 1)!(n − r)! f (x)[F(x)]r−1[1 − F(x)](n−1)−r

− n!
(r − 1)!(n − r)! f (x)[F(x)](r+1)−1[1 − F(x)]n−(r+1)
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or

fr :n(x) = n

n − r

(n − 1)!
(r − 1)!(n − r − 1)! f (x)[F(x)]r−1[1 − F(x)](n−1)−r

− r

n − r

n!
r !(n − r − 1)! f (x)[F(x)](r+1)−1[1 − F(x)]n−(r+1)

= n

n − r
fr :n−1(x) − r

n − r
fr+1:n(x).

So we have following relationship for distribution of r th order statistics and other
ordered observations

(n − r) fr :n(x) = n fr :n−1(x) − r fr+1:n(x). (2.35)

In similar way we can show that

(n − s) fr,s:n(x1, x2) = n fr,s:n−1(x1, x2) − r fr+1,s+1:n(x1, x2)
−(s − r) fr,s+1:n(x1, x2). (2.36)

The relationships given in (2.35) and (2.36) enable us to derive two important rela-
tionships which hold between single and product moments of order statistics. The
relationships are given below.

We know that the pth moment of r th order statistics is

μp
r :n = E

(
X p
r :n
) =

∫ ∞

−∞
x p fr :n(x)dx .

Using the relationship given in (2.35) we have

(n − r)μp
r :n =

∫ ∞

−∞
x p{n fr :n−1(x) − r fr+1:n}dx

= n
∫ ∞

−∞
x p fr :n−1(x)dx − r

∫ ∞

−∞
x p fr+1:n(x)dx

= nμ
p
r :n−1 − rμp

r+1:n

or
rμp

r+1:n = nμ
p
r :n−1 − (n − r)μp

r :n . (2.37)

The relation (2.37) was derived by Cole (1951) and is equally valid for expectation
of function of order statistics; that is

r E
[{g(Xr+1:n)}p

] = nE
[{g(Xr :n−1)}p

]− (n − r)E
[{g(Xr :n)}p

];
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also holds. Again consider the product moments of order statistics as

μp,q
r,s:n = E

(
X p
r :n X

q
s:n
) =

∫ ∞

−∞

∫ x1

−∞
x p
1 x

q
2 fr,s:n(x1, x2)dx1dx2.

Using the relationship (2.36) we have

μp,q
r,s:n =

∫ ∞

−∞

∫ x1

−∞
x p
1 x

q
2

{
n

n − s
fr,s:n−1(x1, x2) − r

n − s

× fr+1,s+1:n(x1, x2) − (s − r)

n − s
fr,s+1:n(x1, x2)

}
dx1dx2

or

(n − s)μp,q
r,s:n = n

∫ ∞

−∞

∫ x1

−∞
x p
1 x

q
2 fr,s:n−1(x1, x2)dx1dx2

−r
∫ ∞

−∞

∫ x1

−∞
x p
1 x

q
2 fr+1,s+1:n(x1, x2)dx1dx2

−(s − r)
∫ ∞

−∞

∫ x1

−∞
x p
1 x

q
2 fr,s+1:n(x1, x2)dx1dx2

or
(n − s)μp,q

r,s:n = nμ
p,q
r,s:n−1 − rμp,q

r+1,s+1:n − (s − r)μp,q
r,s+1:n

or
rμp,q

r+1,s+1:n = nμ
p,q
r,s:n−1 − (n − s)μp,q

r,s:n − (s − r)μp,q
r,s+1:n . (2.38)

which is due to Govindarajulu (1963). Again the relationship (2.38) is equally valid
for function of product moments of order statistics. The relationship (2.37) further
provide us following interesting relationship for n even

1

2

(
μ

p
n
2 +1:n + μ

p
n
2 :n
)

= nμ
p
n
2 :n−1; (2.39)

which can be easily proved by using r = n
2 in (2.37). The relationship (2.39) also

provide following interesting result for symmetric parent distribution

μ
p
n
2 :n−1 = μ

p
n
2 :n f or p even

= 0 f or p odd.

The relationships given in (2.37) and (2.38) enable us to compute moments of
order statistics recursively. We have certain additional relationships available for
moments of order statistics which are based upon the sum of moments of lower
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order statistics. We present those relationships, which are due to Srikantan (1962);
in the following theorems.

Theorem 2.6 For any parent distribution following relation holds betweenmoments
of order statistics

μp
r :n =

n∑

i=r

(−1)i−r

(
i − 1

r − 1

)(
n

i

)
μ

p
i :i ; r = 1, 2, . . . , n − 1. (2.40)

Proof We have

μp
r :n = E

(
X p
r :n
) =

∫ ∞

−∞
x p fr :n(x)dx

=
∫ 1

0

{
F−1(u)

}
p fr :n(u)du

= n!
(r − 1)!(n − r)!

∫ ∞

−∞

{
F−1(u)

}
pur−1(1 − u)n−r du

Now expanding (1 − u)n−r using binomial expansion we have

μp
r :n = n!

(r − 1)!(n − r)!
∫ ∞

−∞

{
F−1(u)

}
pur−1

n−r∑

j=0

(−1)i
(
n − r

j

)
u jdu

=
n−r∑

j=0

(−1) j
(
n − r

j

)
n!

(r − 1)!(n − r)!
∫ ∞

−∞

{
F−1(u)

}
pur+ j−1du

=
n−r∑

j=0

(−1) j
(n − r)!

j !(n − r − j)!
n!(r + j)

(r − 1)!(n − r)!(r + j)
μ

p
r+ j :r+ j .

Now writing r + j = i we have

μp
r :n =

n∑

i=r

(−1)i−r (n − r)!
i(i − r)!(n − r − i + r)!

n!
(r − 1)!(n − r)!μ

p
i :i

=
n∑

i=r

(−1)i−r (i − 1)!n!
i(i − 1)!(i − r)!(n − i)!(r − 1)!μ

p
i :i

=
n∑

i=r

(−1)i−r

(
i − 1

r − 1

)(
n

i

)
μ

p
i :i

as required.
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Theorem 2.7 Following relationship holds between moments of order statistics

μp
r :n =

n∑

i=n−r+1

(−1)i−n+r−1

(
i − 1

n − r

)(
n

i

)
μ

p
1:i ; r = 2, 3, . . . , n. (2.41)

Proof Consider the expression for pth moment of r th order statistics as

μp
r :n = E

(
X p
r :n
) =

∫ ∞

−∞
x p fr :n(x)dx

=
∫ 1

0

{
F−1(u)

}
p fr :n(u)du

= n!
(r − 1)!(n − r)!

∫ ∞

−∞

{
F−1(u)

}
pur−1(1 − u)n−r du.

Writing ur−1 as {1 − (1 − u)}r−1 and expanding binomially in power series of
(1 − u) we have

μp
r :n = n!

(r − 1)!(n − r)!
∫ ∞

−∞

{
F−1(u)

}
p
r−1∑

j=0

(−1) j

×
(
r − 1

j

)
(1 − u) j (1 − u)n−r du

=
r−1∑

j=0

(−1) j
(r − 1)!

j !(r − 1 − j)!
n!

(r − 1)!(n − r)!

×
∫ ∞

−∞

{
F−1(u)

}
p(1 − u)n−r+ j du

Now using j = r + i − n − 1 or i = j − r + n + 1 we have

μp
r :n =

n∑

i=n−r+1

(−1)r+i−n−1 (r − 1)!
(r + i − n − 1)!(n − i)!

n!
r !(n − r)!

× r
∫ ∞

−∞

{
F−1(u)

}
p(1 − u)i−1du

=
n∑

i=n−r+1

(−1)i−n+r−1

(
i − 1

n − r

)(
n

i

)
μ

p
1:i ;

as required.

Theorem 2.8 Following relationship holds between moments of order statistics for
r, s = 1, 2, . . . , n and r < s
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μp,q
r,s:n =

s−1∑

i=r

n∑

j=n−s+i+1

(−1) j+n−r−s+1

(
i − 1

r − 1

)(
j − i − 1

n − s

)(
n

j

)
μ

p,q
i,i+1: j (2.42)

Proof Consider the expression for product moments of order statistics as

μp,q
r,s:n = E

(
X p
r :n X

q
s:n
) =

∫ ∞

−∞

∫ x2

−∞
x p
1 x

q
2 fr,s:n(x1, x2)dx1dx2

= Cr,s:n
∫ ∞

−∞

∫ x2

−∞
x p
1 x

q
2 f (x1) f (x2)F

r−1(x1)

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx1dx2.

or

μp,q
r,s:n = Cr,s:n

∫ 1

0

∫ v

0

{
F−1(u)

}
p
{
F−1(v)

}
qur−1(v − u)s−r−1

× (1 − v)n−sdudv.

Now expanding (v − u)s−r−1 in power series we have

μp,q
r,s:n = Cr,s:n

∫ 1

0

∫ v

0

{
F−1(u)

}
p
{
F−1(v)

}
qur−1

×
s−r−1∑

h=0

(−1)h
(
s − r − 1

h

)
vs−r−1−huh(1 − v)n−sdudv

=
s−r−1∑

h=0

(−1)h
n!

(r − 1)!(s − r − 1)!(n − s)!
(s − r − 1)!

h!(s − r − h − 1)!

×
∫ 1

0

∫ v

0

{
F−1(u)

}
p
{
F−1(v)

}
qur+h−1vs−r−h−1(1 − v)n−sdudv

=
s−r−1∑

h=0

(−1)h
n!

h!(r − 1)!(s − r − h − 1)!(n − s)!

×
∫ 1

0

∫ v

0

{
F−1(u)

}
p
{
F−1(v)

}
qur+h−1vs−r−h−1(1 − v)n−sdudv.

Now using i = h + r we have:

μp,q
r,s:n =

s−1∑

i=r

(−1)i−r n!
(i − r)!(r − 1)!(s − i − 1)!(n − s)!

×
∫ 1

0

∫ v

0

{
F−1(u)

}
p
{
F−1(v)

}
qui−1vs−i−1(1 − v)n−sdudv.
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Now writing vs−i−1 as {1 − (1 − v)}s−i−1 and expanding in power series we have

μp,q
r,s:n =

s−1∑

i=r

(−1)i−r n!
(i − r)!(r − 1)!(s − i − 1)!(n − s)!

×
∫ 1

0

∫ v

0

{
F−1(u)

}
p
{
F−1(v)

}
qui−1

×
s−i−1∑

m=0

(−1)m
(
s − i − 1

m

)
(1 − v)m(1 − v)n−sdudv

or

μp,q
r,s:n =

s−1∑

i=r

s−i−1∑

m=0

(−1)i−r+m n!
(i − r)!(r − 1)!(s − i − 1)!(n − s)!

× (s − i − 1)!
m!(s − i − 1 − m)!

∫ 1

0

∫ v

0

{
F−1(u)

}
p
{
F−1(v)

}
q

× ui−1(1 − v)n−s+mdudv.

=
s−1∑

i=r

s−i−1∑

m=0

(−1)i−r+mn!
(i − r)!(r − 1)!m!(s − i − 1 − m)!(n − s)!

×
∫ 1

0

∫ v

0

{
F−1(u)

}
p
{
F−1(v)

}
qui−1(1 − v)n−s+mdudv

or

μp,q
r,s:n =

s−1∑

i=r

s−i−1∑

m=0

(−1)i−r+mn!(i − 1)!(n − s + m)!
(i − r)!(r − 1)!m!(s − i − 1 − m)!(n − s)!

× (n − s + i + m + 1)! × μi,i+1:n−s+m+i+1.

Now using j = n − s + i + 1 + m and rearranging the terms we have

μp,q
r,s:n =

s−1∑

i=r

n∑

j=n−s+i+1

(−1) j+n−r−s+1

(
i − 1

r − 1

)(
j − i − 1

n − s

)(
n

j

)
μ

p,q
i,i+1: j ;

as required.
Proceeding in the way of Theorem 2.8, we also have following relationships

between product moments of order statistics.

μp,q
r,s:n =

s−1∑

i=s−r

n∑

j=n−s+i+1

(−1)n− j−r+1

(
i − 1

s − r − 1

)(
j − i − 1

n − s

)(
n

j

)
μ

p,q
1,i+1: j ;

(2.43)
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and

μp,q
r,s:n =

n−r∑

i=s−r

n∑

j=r+i

(−1)s+ j

(
i − 1

s − r − 1

)(
j − i − 1

r − 1

)(
n

j

)
μ

p,q
j−i, j : j . (2.44)

The relationships given in (2.43) and (2.44) link product moments of order statistics
with those based upon the product moments of order statistics based upon smaller
sample sizes and on lower order product moments.

The relationships given in equations (2.40) to (2.44) are useful in computing single
and product moments of a specific order statistics as a sum of moments of lower
order statistics. We have some additional interesting identities which relates sum of
moments of a specific order statistics with sum of moments of lower order statistics.
We also have some interesting identities which relate moments of order statistics
with population moments and are free from any sort of distributional assumptions.
We present these identities in the following section.

2.9.2 Some Identities for Moments of Order Statistics

The moments of order statistics posses certain simple identities. These identities are
based upon following very basic formulae

n∑

r=1

X p
r :n =

n∑

r=1

X p
r ; p ≥ 1 (2.45)

and
n∑

r=1

n∑

s=1

X p
r :n X

q
s:n =

n∑

r=1

n∑

s=1

X p
r X

q
s ; p, q ≥ 1. (2.46)

Now if all Xr have same distribution F(x) with E
(
X p
r
) = μp, variance σ 2 and

E
(
X p
r X

q
s
) = μp,q then we have following interesting identities.

Taking expectation on (2.45) we

E

(
n∑

r=1

X p
r :n

)
= E

(
n∑

r=1

X p
r

)

or
n∑

r=1

E
(
X p
r :n
) =

n∑

r=1

E
(
X p
r

)

or
n∑

r=1

μp
r :n =

n∑

r=1

μp = nμp. (2.47)
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In particular
n∑

r=1

μr :n = nμ. (2.48)

Again taking the expectation of (2.46) we have

E

(
n∑

r=1

n∑

s=1

X p
r :n X

q
s:n

)
= E

(
n∑

r=1

n∑

s=1

X p
r X

q
s

)

or
n∑

r=1

n∑

s=1

E
(
X p
r :n X

q
s:n
) =

n∑

r=1

n∑

s=1

E
(
X p
r X

q
s

)

or
n∑

r=1

n∑

s=1

μp,q
r,s:n =

n∑

r=1

n∑

s=1

μp,q .

Since Xr and Xs have same distribution therefore above relation can be written as

n∑

r=1

n∑

s=1

μp,q
r,s:n =

n∑

r=1

μp+q +
n∑

r=1

n∑

s �=r=1

μpμq

or
n∑

r=1

n∑

s=1

μp,q
r,s:n = nμp+q + n(n − 1)μpμq . (2.49)

In particular

n∑

r=1

n∑

s=1

μr,s:n = nμ2 + n(n − 1)μ2 = nσ 2 + n2μ2; (2.50)

and as a result we have

n−1∑

r=1

n∑

s=r+1

μr,s:n = 1

2

{
n∑

r=1

n∑

s=1

μr,s:n −
n∑

r=1

μ2
r :n

}

= 1

2

{
nμ2 + n(n − 1)μ2 − nμ2

}

= n(n − 1)

2
μ2 =

(
n

2

)
μ2. (2.51)

We also have following identity for n = 2

μ
p,q
1,2:2 + μ

q,p
1,2:2 = 2μpμq; (2.52)
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which for p = q = 1 reduces to

μ1,2:2 = μ2.

Also from (2.48) and (2.50) we have

n∑

r=1

n∑

s=1

σr,s:n =
n∑

r=1

n∑

s=1

μr,s:n −
(

n∑

r=1

μr :n

)(
n∑

s=1

μs:n

)

= nσ 2 + n2μ2 − n2μ2 = nσ 2. (2.53)

Above identities are very useful in checking the accuracy of single and product
moments of order statistics by their comparison with the population moments.

The single moments of order statistics have an additional identity which relates
the sum of single moments in terms of sum of moments of lower order statistics.
These identities are given in the following theorem.

Theorem 2.9 The single moments of order statistics satisfies following identities

n∑

r=1

1

r
μp
r :n =

n∑

r=1

1

r
μ1:r (2.54)

and
n∑

r=1

1

n − r + 1
μp
r :n =

n∑

r=1

1

r
μr :r . (2.55)

Proof Consider the expression for single moments of order statistics as

μp
r :n =

∫ ∞

−∞
x p
r fr :n(xr )dxr

=
∫ 1

0

{
F−1(u)

}
p fr :n(u)du

= n!
(r − 1)!(n − r)!

∫ 1

0

{
F−1(u)

}
pur−1(1 − u)n−r du.

Applying summation over both sides we have

n∑

r=1

1

r
μp
r :n =

n∑

r=1

n!
r(r − 1)!(n − r)!

∫ 1

0

{
F−1(u)

}
p

× ur−1(1 − u)n−r du

=
n∑

r=1

(
n

r

)∫ 1

0

{
F−1(u)

}
pur−1(1 − u)n−r du
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=
∫ 1

0

{
F−1(u)

}
p 1

u

{
n∑

r=1

(
n

r

)
ur (1 − u)n−r

}
du

=
∫ 1

0

{
F−1(u)

}
p 1

u

{
1 − (1 − u)n

}
du.

Now using the identity

1 − (1 − u)n = u
n∑

r=1

(1 − u)r−1;

we have

n∑

r=1

1

r
μp
r :n =

∫ 1

0

{
F−1(u)

}
p

n∑

r=1

(1 − u)r−1du

=
n∑

r=1

1

r
r
∫ 1

0

{
F−1(u)

}
p(1 − u)r−1du

=
n∑

r=1

1

r
μ

p
1:r ;

which is (2.54).

For second identity again consider the expression for single moments as

μp
r :n = n!

(r − 1)!(n − r)!
∫ 1

0

{
F−1(u)

}
pur−1(1 − u)n−r du

or

n∑

r=1

1

n − r + 1
μp
r :n =

n∑

r=1

n!
(r − 1)!(n − r + 1)!

×
∫ 1

0

{
F−1(u)

}
pur−1(1 − u)n−r du

=
n∑

r=1

(
n

r − 1

)∫ 1

0

{
F−1(u)

}
pur−1(1 − u)n−r du

or

n∑

r=1

μ
p
r :n

n − r + 1
=
∫ 1

0

{
F−1(u)

}
p 1

1 − u

{
n−1∑

r=1

(
n

r

)
ur (1 − u)n−r

}
du

=
∫ 1

0

{
F−1(u)

}
p 1

1 − u

(
1 − un

)
du.



2.9 Recurrence Relations and Identities for Moments of Order Statistics 47

Now using the identity

1 − un = (1 − u)

n∑

r=1

ur−1;

we have

n∑

r=1

1

n − r + 1
μp
r :n =

∫ 1

0

{
F−1(u)

}
p

n∑

r=1

ur−1du

=
n∑

r=1

1

r
r
∫ 1

0

{
F−1(u)

}
pur−1du

=
n∑

r=1

1

r
μp
r :r ;

which is (2.55). Hence the theorem.

Example 2.10 Prove that in a random sample from a continuous distribution with
cdf F(x) following relation holds:

E[Xs:n F(Xr :n)] = r

n + 1
μs+1:n+1.

Solution: We have:

fr,s:n(x1, x2) = Cr,s:n f (x1) f (x2)[F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s .

Now

E[Xs:n F(Xr :n)] = Cr,s:n
∫ ∞

−∞

∫ x2

−∞
{x2F(x1)} f (x1) f (x2)[F(x1)]

r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx1dx2

= Cr,s:n
∫ 1

0

∫ v

0
F−1(v)ur (v − u)s−r−1(1 − v)n−sdudv

= Cr,s:n
∫ 1

0
F−1(v)(1 − v)n−s

[∫ v

0
ur (v − u)s−r−1du

]
dv

= Cr,s:n
∫ 1

0
F−1(v)(1 − v)n−s(I )dv; (2.56)

where I = ∫ v

0 ur (v − u)s−r−1du. Now consider
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I =
∫ v

0
ur (v − u)s−r−1du

= vs−r−1
∫ v

0
ur
(
1 − u

v

)
s−r−1du.

Making the transformation u
v

= w we have

I = vs
∫ 1

0
wr (1 − w)s−r−1dw

= vs B(r + 1, s − r) = vs �(r + 1)�(s − r)

�(s + 1)

= vs r !(s − r − 1)!
s! ·

Using above value in (2.56) we have

E[Xs:n F(Xr :n)] = n!
(r − 1)!(s − r − 1)!(n − s)!
×
∫ 1

0
F−1(v)(1 − v)n−svs r !(s − r − 1)!

s! dv

= r(r − 1)!n!
(r − 1)!s!(n − s)!

∫ 1

0
F−1(v)vs(1 − v)n−svs

= r

n + 1

(n + 1)!
s!(n − s)!

∫ 1

0
F−1(v)vs+1−1(1 − v)n−svs

= r

n + 1
μs+1:n+1;

as required.

2.9.3 Distribution Specific Relationships for Moments of
Order Statistics

In previous section we have given some useful relations which exist amongmoments
of order statistics irrespective of the parent distribution. There exist certain other
relationships among moments of order statistics which are based upon the parent
distribution from where sample has been drawn. In this section we will give some
recurrence relations for single and product moments of order statistics which are
limited to parent probability distribution.We first give two useful results in following
theorem which can be used to derive the recurrence relations for single and product
moments of order statistics for certain special distributions.
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Theorem 2.10 Following relations hold for single and product moments of order
statistics from a distribution F(x)

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

× [F(x)]r−1[1 − F(x)]n−r+1dx . (2.57)

and

μp,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)

× [F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s+1dx2dx1. (2.58)

where Cr,s:n = n!
(r−1)!(s−r−1)!(n−s)! .

Proof We know that the pth moment of r th order statistics is

μp
r :n = E

(
X p
r :n
) =

∫ ∞

−∞
x p fr :n(x)dx

=
∫ ∞

−∞
x p n!

(r − 1)!(n − r)! f (x)[F(x)]r−1[1 − F(x)]n−r dx

= n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p f (x)[F(x)]r−1[1 − F(x)]n−r dx .

Integrating above equation by parts taking f (x)[1 − F(x)]n−r as function for inte-
gration we have

μp
r :n = n!

(r − 1)!(n − r)!

[
−x p[F(x)]r−1 {1 − F(x)}n−r+1

n − r + 1

∣∣∣∣
∞

−∞

−
∫ ∞

−∞

{
px p−1[F(x)]r−1 + (r − 1)x p[F(x)]r−2 f (x)

}

× −[1 − F(x)]n−r+1

n − r + 1
dx

]

or

μp
r :n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1[1 − F(x)]n−r+1

× [F(x)]dx + (r − 1)

n − r + 1

n!
(r − 1)!(n − r)!
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×
∫ ∞

−∞
x p f (x)[1 − F(x)]n−r+1[F(x)]r−2dx

= p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1[F(x)]r−1

× [1 − F(x)]n−r+1dx + n!
(r − 2)!(n − r + 1)!

∫ ∞

−∞
x p f (x)

× [F(x)]r−2[1 − F(x)]n−(r−1)dx .

Since

μ
p
r−1:n = n!

(r − 2)!(n − r + 1)!
∫ ∞

−∞
x p f (x)[F(x)]r−2

× [1 − F(x)]n−(r−1)dx,

hence above equation can be written as

μp
r :n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1[F(x)]r−1

× [1 − F(x)]n−r+1dx + μ
p
r−1:n

or

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

× [F(x)]r−1[1 − F(x)]n−r+1dx,

which is (2.57).

To prove the second result we consider the expression for product moments of
order statistics as

μ
p,q
r,s:n = E

(
X p
r :n Xq

s:n
) =

∫ ∞

−∞

∫ ∞

x1
x p
1 x

q
2 fr,s:n(x1, x2)dx2dx1

= Cr,s:n
∫ ∞

−∞

∫ ∞

x1
x p
1 x

q
2 f (x1) f (x2)[F(x1)]

r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2dx1

= Cr,s:n
∫ ∞

−∞
x p
1 f (x1)[F(x1)]

r−1 I (x2)dx1, (2.59)

where

I (x2) =
∫ ∞

x1

xq2 f (x2)

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2.
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Integrating above integral by parts using f (x2){1 − F(x2)}n−s for integration we
have

I (x2) = −xq2

[
F(x2) − F(x1)

]s−r−1 {1 − F(x2)}n−s+1

n − s + 1

∣∣∣∣
∞

x1

+ 1

n − s + 1

∫ ∞

x1

[
qxq−1

2

[
F(x2) − F(x1)

]s−r−1

+(s − r − 1)xq2 {F(x2) − F(x1)}s−r−2 f (x2)
]

× {1 − F(x2)}n−s+1dx2

= q

n − s + 1

∫ ∞

x1
xq−1
2 [F(x2) − F(x1)]

s−r−1

× {1 − F(x2)}n−s+1dx2 + s − r − 1

n − s + 1

∫ ∞

x1
xq2 f (x2)

× [F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−s+1dx2. (2.60)

Now using the value of I (x2) from (2.60) in (2.59) we have

μ
p,q
r,s:n = Cr,s:n

∫ ∞

−∞
x p
1 f (x1)[F(x1)]

r−1
[

q

n − s + 1

×
∫ ∞

x1
xq−1
2

[
F(x2) − F(x1)

]s−r−1

{1 − F(x2)}n−s+1dx
2

+ s − r − 1

n − s + 1

∫ ∞

x1
xq2 f (x2)[F(x2) − F(x1)]

s−r−2

× [1 − F(x2)]
n−s+1dx2

]
dx1

or

μp,q
r,s:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)[F(x1)]

r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1dx2dx1

+ s − r − 1

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2 f (x1) f (x2)[F(x1)]

r−1

× [F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−s+1dx2dx1

or

μp,q
r,s:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)[F(x1)]

r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1dx2dx1
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+Cr,s−1:n
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2 f (x1) f (x2)[F(x1)]

r−1

× [F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−s+1dx2dx1

or

μp,q
r,s:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)[F(x1)]

r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1dx2dx1

+μ
p,q
r,s−1:n

or

μp,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)

× [F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1dx2dx1,

which is (2.58) and hence the theorem.

The results given in Theorem 2.10 are very useful in deriving distribution specific
recurrence relations for single and product moments of order statistics. In the follow-
ing subsections we have discussed recurrence relations between single and product
moments of order statistics for certain distributions.

2.9.4 Exponential Distribution

The Exponential distribution has been the area of study in order statistics by many
researchers. The density and distribution function of this distribution are

f (x) = α exp(−αx); x, α > 0

and
F(x) = 1 − exp(−αx).

We can readily see that the density and distribution function for exponential distrib-
ution are related through the equation

f (x) = α[1 − F(x)]. (2.61)
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The recurrence relation for single and product moments of order statistics for expo-
nential distribution are derived Joshi (1978, 1982) by using (2.57), (2.58) and (2.61)
as below.

For recurrence relation between single moments of order statistics consider rela-
tion (2.57) as

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

× [F(x)]r−1[1 − F(x)]n−r+1dx .

or

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

× [F(x)]r−1[1 − F(x)]n−r [1 − F(x)]dx .

Now using (2.61) in above equation we have

μp
r :n − μ

p
r−1:n = p

α(n − r + 1)

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

f (x)[F(x)]r−1[1 − F(x)]n−r dx

or
μp
r :n − μ

p
r−1:n = p

α(n − r + 1)
μp−1
r :n

or
μp
r :n = μ

p
r−1:n + p

α(n − r + 1)
μp−1
r :n ; (2.62)

as given in Balakrishnan and Rao (1998). The recurrence relation (2.62) provide
following relation as a special case for r = 1

μ
p
1:n = p

αn
μ

p−1
1:n .

The recurrence relation for product moments of order statistics for exponential dis-
tribution is readily obtained by using (2.58) as

μ
p,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1
x p
1 x

q−1
2 f (x1)

× [F(x1)]
r−1
[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s+1dx2dx1.
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or

μp,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)

× [F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s[1 − F(x2)]dx2dx1.

Now using (2.61) in above equation we have

μp,q
r,s:n − μ

p,q
r,s−1:n = q

α(n − s + 1)
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1) f (x2)

× [F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−sdx2dx1.

or
μp,q
r,s:n − μ

p,q
r,s−1:n = q

α(n − s + 1)
μp,q−1
r,s:n

or
μp,q
r,s:n = μ

p,q
r,s−1:n + q

α(n − s + 1)
μp,q−1
r,s:n . (2.63)

Using s = r+1 in (2.63) we have following recurrence relation for product moments
of two contiguous order statistics from exponential distribution

μ
p,q
r,r+1:n = μp+q

r :n + q

α(n − r)
μ

p,q−1
r,r+1:n . (2.64)

Certain other relations can be derived from (2.63) and (2.64). Some more recur-
rence relations for single and product moments of order statistics from exponential
distribution can be found in Joshi (1982).

2.9.5 The Weibull Distribution

The Weibull distribution has wide spread applications in almost all the areas of life.
The density and distribution function for a Weibull random variable are

f (x) = βαβxβ−1 exp
[−(αx)β

]; x, α, β > 0

and
F(x) = 1 − exp

[−(αx)β
]
.
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We can see that the density and distribution function are related as

f (x) = βαβxβ−1[1 − F(x)]. (2.65)

The recurrence relations for single and product moments of order statistics for
Weibull distribution are derived below.

The recurrence relation for single moments is given in (2.57) as

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

× [F(x)]r−1[1 − F(x)]n−r+1dx .

or

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

× [F(x)]r−1[1 − F(x)]n−r [1 − F(x)]dx .

Using (2.65) in above equation we have

μp
r :n − μ

p
r−1:n = p

αββ(n − r + 1)

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1x1−β

× f (x)[F(x)]r−1[1 − F(x)]n−r dx

or

μp
r :n − μ

p
r−1:n = p

αββ(n − r + 1)

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−β

× f (x)[F(x)]r−1[1 − F(x)]n−r dx

or
μp
r :n − μ

p
r−1:n = p

αββ(n − r + 1)
μp−β
r :n

or
μp
r :n = μ

p
r−1:n + p

αββ(n − r + 1)
μp−β
r :n . (2.66)

We can see that (2.66) reduces to (2.62) for β = 1 as it should be. Using β = 2 in
(2.66) we obtain the recurrence relation for single moments of order statistics from
Rayleigh distribution as

μp
r :n = μ

p
r−1:n + p

2α2(n − r + 1)
μp−2
r :n . (2.67)
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Also for r = 1 we have following recurrence relations for single moments of first
order statistics from Weibull distribution

μ
p
1:n = p

nαββ
μ

p−β

1:n . (2.68)

We now present the recurrence relations for product moments of order statistics for
Weibull distribution. We have relation (2.58) as

μp,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)

× [F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s+1dx2dx1.

or

μp,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)

× [F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s[1 − F(x2)]dx2dx1.

Using (2.65) in above equation we have

μp,q
r,s:n − μ

p,q
r,s−1:n = q

αββ(n − s + 1)
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−β

2 f (x1)

× f (x2)[F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−sdx2dx1.

or
μp,q
r,s:n − μ

p,q
r,s−1:n = q

αββ(n − s + 1)
μp,q−β
r,s:n

or
μp,q
r,s:n = μ

p,q
r,s−1:n + q

αββ(n − s + 1)
μp,q−β
r,s:n . (2.69)

We can immediately see that (2.69) reduces to (2.63) for β = 1. Using β = 2 in
(2.69) we have following recurrence relation for product moments of order statistics
for Rayleigh distribution
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μp,q
r,s:n = μ

p,q
r,s−1:n + q

2α2(n − s + 1)
μp,q−2
r,s:n . (2.70)

Also for s = r + 1 the recurrence relation for product moments of two contiguous
order for Weibull distribution is

μ
p,q
r,r+1:n = μp+q

r :n + q

αββ(n − r)
μ

p,q−β

r,r+1:n . (2.71)

The relationships (2.67) and (2.69) can be used to derive recurrence relations for
mean, variances and covariances of order statistics from Weibull distribution.

2.9.6 The Logistic Distribution

The Logistic distribution has density and distribution function as

f (x) = e−x

(1 + e−x )2
;−∞ < x < ∞

and

F(x) = 1

1 + e−x
.

We can readily see that the density and distribution function are related as

f (x) = F(x)[1 − F(x)]. (2.72)

Shah (1966, 1970) used the representation (2.72) to derive the recurrence relations
for single and product moments of order statistics from the Logistic distribution.
These relations are given below.

For single moments consider (2.57) as

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

× [F(x)]r−1[1 − F(x)]n−r+1dx .

or

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1F(x)

× [F(x)](r−1)−1[1 − F(x)]n−r [1 − F(x)]dx .

= p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

× F(x)[1 − F(x)][F(x)](r−1)−1[1 − F(x)]n−r dx .



58 2 Order Statistics

Now using (2.72) in above equation we have

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1 f (x)

× [F(x)](r−1)−1[1 − F(x)]n−r dx

or

μp
r :n − μ

p
r−1:n = p

n − r + 1

n(n − 1)!
(r − 1)(r − 2)!(n − r)!

∫ ∞

−∞
x p−1

× f (x)[F(x)](r−1)−1[1 − F(x)]n−r dx

or
μp
r :n − μ

p
r−1:n = np

(r − 1)(n − r + 1)
μ

p−1
r−1:n−1

or
μp
r :n = μ

p
r−1:n + np

(r − 1)(n − r + 1)
μ

p−1
r−1:n−1; (2.73)

as the recurrence relation for single moments of order statistics from Logistic distri-
bution.

We now present the recurrence relation for first order product moments of order
statistics from Logistic distribution. For this consider

μr :n = E
(
Xr :n X0

s:n
) =

∫ ∞

−∞

∫ ∞

x1

x1x
0
2 fr,s:n(x1, x2)dx2dx1

= Cr,s:n
∫ ∞

−∞

∫ ∞

x1

x1 f (x1) f (x2)[F(x1)]
r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2dx1

= Cr,s:n
∫ ∞

−∞
x1 f (x1)[F(x1)]

r−1 I (x2)dx1; (2.74)

where

I (x2) =
∫ ∞

x1

f (x2)

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2.

Using (2.72) in above equation we have
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I (x2) =
∫ ∞

x1

F(x2)

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1dx2

=
∫ ∞

x1

[1 − {1 − F(x2)}]
[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s+1dx2

or

I (x2) =
∫ ∞

x1

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1dx2

−
∫ ∞

x1

[F(x2) − F(x1)]
s−r−1[1 − F(x2)]

n−s+2dx2

= I1(x2) − I2(x2);

Using above equation in (2.74) we have

μr :n = Cr,s:n
∫ ∞

−∞
x1 f (x1)[F(x1)]

r−1 I1(x2)dx1

−Cr,s:n
∫ ∞

−∞
x1 f (x1)[F(x1)]

r−1 I2(x2)dx1. (2.75)

Now consider

I1(x2) =
∫ ∞

x1

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1dx2.

Integrating by parts, taking dx2 as integration and rest of the function for differenti-
ation we have

I1(x2) =
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1x2

∣∣∣∣∣
∞
x1

−
∫ ∞

x1

x2
[{

(s − r − 1)[F(x2) − F(x1)]
s−r−2

× [1 − F(x2)]
n−s+1 f (x2)

}− {(n − s + 1) f (x2)

[F(x2) − F(x1)]
s−r−1[1 − F(x2)]

n−s
}]
dx2

= (n − s + 1)
∫ ∞

x1

x2 f (x2)

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−sdx2−(s − r − 1)

∫ ∞

x1

x2 f (x2)

× [F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−s+1dx2. (2.76)
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Similarly

I2(x2) = (n − s + 2)
∫ ∞

x1

x2 f (x2)

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s+1dx2−(s − r − 1)

∫ ∞

x1

x2 f (x2)

× [F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−s+2dx2. (2.77)

Now using (2.76) and (2.77) in (2.75) we have

μr :n = (n − s + 1)Cr,s:n
∫ ∞

−∞

∫ ∞

x1

x1x2 f (x1) f (x2)[F(x1)]
r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2dx1

−(s − r − 1)Cr,s:n
∫ ∞

−∞

∫ ∞

x1

x1x2 f (x2) f (x1)[F(x1)]
r−1

× [F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−s+1dx2

−(n − s + 2)Cr,s:n
∫ ∞

−∞

∫ ∞

x1

x1x2 f (x1) f (x2)[F(x1)]
r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1dx2dx1

+(s − r − 1)Cr,s:n
∫ ∞

−∞

∫ ∞

x1

x1x2 f (x2) f (x1)[F(x1)]
r−1

× [F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−s+1dx2.

Now rearranging the terms we have

μr,s:n+1 = n + 1

n − s + 2

[
μr,s:n − μr,s−1:n − n − s + 2

n + 1
μr,s−1:n+1

− 1

n − s + 2
μr :n

]
. (2.78)

Using s = r+1 in above equation the relation for productmoments of two contiguous
order statistics from Logistic distribution turned out to be

μr,r+1:n+1 = n + 1

n − r + 1

[
μr,r+1:n − r

n + 1
μ2
r+1:n+1 − 1

n − r
μr :n

]
. (2.79)

Certain other relations can be derived from (2.78) and (2.79).
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2.9.7 The Inverse Weibull Distribution

The Inverse Weibull distribution is another useful distribution which has several
applications in almost all the areas of life. The density and distribution function for
an Inverse Weibull random variable are

f (x) = β

xβ+1
exp

(
− 1

xβ

)
; x, β > 0

and

F(x) = exp

(
− 1

xβ

)
.

The density and distribution function of Inverse Weibull distribution are related as

f (x) = xβ+1

β
F(x). (2.80)

The recurrence relations for single and productmoments of order statistics for Inverse
Weibull distribution are derived below.

The recurrence relation for single moments is given in (2.57) as

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

× [F(x)]r−1[1 − F(x)]n−r+1dx .

or

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1F(x)

× [F(x)]r−2[1 − F(x)]n−r+1dx .

Using (2.80) in above equation we have

μp
r :n − μ

p
r−1:n = p

β(n − r + 1)

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1xβ+1

× f (x)[F(x)](r−1)−1[1 − F(x)]n−(r−1)dx

or

μp
r :n − μ

p
r−1:n = p

β(r − 1)

n!
(r − 2)!(n − r + 1)!

∫ ∞

−∞
x p+β

× f (x)[F(x)](r−1)−1[1 − F(x)]n−(r−1)dx
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or
μp
r :n − μ

p
r−1:n = p

β(r − 1)
μ

p+β

r−1:n

or
μp
r :n = μ

p
r−1:n + p

β(r − 1)
μ

p+β

r−1:n . (2.81)

as a recurrence relation for single moments of order statistics from Inverse Weibull
distribution. Using β = 2 in (2.81) we have following recurrence relation for single
moments of order statistics from Inverse Rayleigh distribution

μp
r :n = μ

p
r−1:n + p

2(r − 1)
μ

p+2
r−1:n . (2.82)

We now present the recurrence relations for product moments of order statistics for
Inverse Weibull distribution. We have relation (2.58) as

μp,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)

× [F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s+1dx2dx1.

or

μp,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)

× [F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s[1 − F(x2)]dx2dx1.

or

μp,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)[F(x1)]

r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2dx1

− qCr,s:n
n − s + 1

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)[F(x1)]

r−1F(x2)

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2dx1.
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Now using (2.80) in above equation we have

μp,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)[F(x1)]

r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2dx1

− qCr,s:n
β(n − s + 1)

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q+β

2 f (x1) f (x2)[F(x1)]
r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2dx1.

or

μp,q
r,s:n − μ

p,q
r,s−1:n = q

n − s + 1
Cr,s:n

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1)[F(x1)]

r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2dx1

− q

β(n − s + 1)
μp,q+β
r,s:n

or

μp,q
r,s:n − μ

p,q
r,s−1:n = qCr,s:n

n − s + 1

∫ ∞

−∞
x p
1 f (x1)[F(x1)]

r−1

× I (x2)dx1 − q

β(n − s + 1)
μp,q+β
r,s:n ; (2.83)

where

I (x2) =
∫ ∞

x1

xq−1
2

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2.

Now integrating above equation by parts using xq−1
2 as function for integration we

have

I (x2) =
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s x

q
2

q

∣∣∣∣
∞

x1

−(s − r − 1)
∫ ∞

x1

{
[F(x2) − F(x1)]

s−r−2

[1 − F(x2)]
n−s f (x2) − (n − s)[1 − F(x2)]

n−s−1

[
F(x2) − F(x1)

]s−r−1

f (x2)

}
xq2
q
dx2
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or

I (x2) = n − s

q

∫ ∞

x1

xq2 f (x2)[F(x2) − F(x1)]
s−r−1

× [1 − F(x2)]
n−s−1dx2 − s − r − 1

q

∫ ∞

x1

xq2

× f (x2)[F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−sdx2.

Using above in (2.83) we have

μp,q
r,s:n − μ

p,q
r,s−1:n = qCr,s:n

n − s + 1

∫ ∞

−∞
x p
1 f (x1)[F(x1)]

r−1

×
{
n − s

q

∫ ∞

x1

xq2 f (x2)[F(x2) − F(x1)]
s−r−1

× [1 − F(x2)]
n−s−1dx2 − s − r − 1

q

∫ ∞

x1

xq2 f (x2)

× [F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−sdx2
}
dx1

− q

β(n − s + 1)
μp,q+β
r,s:n

or

μ
p,q
r,s:n − μ

p,q
r,s−1:n = (n − s)Cr,s:n

n − s + 1

∫ ∞
−∞

∫ ∞
x1

x p1 x
q
2 f (x1) f (x2)[F(x1)]

r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
(n−1)−sdx2dx1

− (s − r − 1)Cr,s:n
n − s + 1

∫ ∞
−∞

∫ ∞
x1

x p1 x
q
2 f (x1) f (x2)[F(x1)]

r−1

× [F(x2) − F(x1)]
(s−1)−r−1[1 − F(x2)]

n−sdx2dx1

− q

β(n − s + 1)
μ
p,q+β
r,s:n

or

μ
p,q
r,s:n − μ

p,q
r,s−1:n = nCr,s:n−1

n − s + 1

∫ ∞
−∞

∫ ∞
x1

x p1 x
q
2 f (x1) f (x2)[F(x1)]

r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
(n−1)−sdx2dx1

− nCr,s−1:n−1

n − s + 1

∫ ∞
−∞

∫ ∞
x1

x p1 x
q
2 f (x1) f (x2)[F(x1)]

r−1

× [F(x2) − F(x1)]
(s−1)−r−1[1 − F(x2)]

n−sdx2dx1

− q

β(n − s + 1)
μ
p,q+β
r,s:n

or
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μp,q
r,s:n − μ

p,q
r,s−1:n = n

n − s + 1
μ

p,q
r,s:n−1 − n

n − s + 1
μ

p,q
r,s−1:n−1

− q

β(n − s + 1)
μp,q+β
r,s:n

or

μp,q
r,s:n = μ

p,q
r,s−1:n + 1

n − s + 1

[
nμ

p,q
r,s:n−1 − nμ

p,q
r,s−1:n−1 − q

β
μp,q+β
r,s:n

]
. (2.84)

The recurrence relations for product moments of order statistics for Inverse Expo-
nential and Inverse Rayleigh distribution can be easily obtained from (2.84) by using
β = 1 and β = 2 respectively. Some other references on recurrence relations for
moments of order statistics include Al-Zahrani and Ali (2014), Al-Zahrani et al.
(2015), Balakrishnan et al. (2015a, b).

Example 2.11 Show that for standard exponential distributionhavingdensity f (x) =
e−x ; following relation holds for moments of order statistics:

μp
r :n = μ

p
r−1:n−1 + p

n
μp−1
r :n ; 2 ≤ r ≤ n.

Solution: We have (p − 1)th moment of r th order statistics as:

μp−1
r :n = E

(
X p−1
r :n
) =

∫ ∞

−∞
x p−1 fr :n(x)dx

=
∫ ∞

−∞
x p−1 n!

(r − 1)!(n − r)! f (x)[F(x)]r−1

× [1 − F(x)]n−r dx

= n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1 f (x)[F(x)]r−1

× [1 − F(x)]n−r dx .

Now for standard exponential distribution we have f (x) = 1 − F(x) so we have:

μp−1
r :n = n!

(r − 1)!(n − r)!
∫ ∞

0
x p−1[F(x)]r−1[1 − F(x)]n−r+1dx .

Now integrating by parts taking x p−1 for integration and rest of the function for
differentiation we have:
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μp−1
r :n = n!

(r − 1)!(n − r)!
[
[F(x)]r−1[1 − F(x)]n−r+1 x

p

p

∣∣∣∣
∞

0

−
∫ ∞

0

{
(r − 1)[F(x)]r−2[1 − F(x)]n−r+1 f (x)

−(n − r + 1)[F(x)]r−1[1 − F(x)]n−r f (x)
} x p

p
dx

]

= n!
(r − 1)!(n − r)!p

[
(n − r + 1)

∫ ∞

0
x p f (x)[F(x)]r−1[1 − F(x)]n−r dx

−(r − 1)
∫ ∞

0
x p f (x)[F(x)]r−2[1 − F(x)]n−r+1dx

]
.

Now splitting the first integral we have:

μp−1
r :n = n!

(r − 1)!(n − r)!p
[
n
∫ ∞

0
x p f (x)[F(x)]r−1[1 − F(x)]n−r dx

−(r − 1)
∫ ∞

0
x p f (x)[F(x)]r−1[1 − F(x)]n−r dx

−(r − 1)
∫ ∞

0
x p f (x)[F(x)]r−2[1 − F(x)]n−r+1dx

]

= n!
(r − 1)!(n − r)!p

[
n
∫ ∞

0
x p f (x)[F(x)]r−1[1 − F(x)]n−r dx

−(r − 1)
∫ ∞

0
x p f (x)[F(x)]r−2[1 − F(x)]n−r dx

]

= n

p

[
n!

(r − 1)!(n − r)!
∫ ∞

0
x p f (x)[F(x)]r−1[1 − F(x)]n−r dx

]

− (r − 1)

p

[
n!

(r − 1)!(n − r)!
∫ ∞

0
x p f (x)[F(x)]r−2[1 − F(x)]n−r dx

]

or

μp−1
r :n = n

p
μp
r :n − n

p
μ

p
r−1:n−1

or μp
r :n = μ

p
r−1:n−1 + p

n
μp−1
r :n ;

as required. Further, for r = 1 we have a special relation as:

μ
p
1:n = p

n
μ

p−1
1:n .

Example 2.12 Show that for standard exponential distribution having density
f (x) = e−x ; following relations holds for joint moments of order statistics:
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μr :r+1:n = μ2
r :n + 1

n − r
μr :n; 1 ≤ r ≤ n − 1

and μr,s:n = μr,s−1:n + 1

n − s − 1
μr :n; 1 ≤ r < s ≤ n, s − r ≥ 2.

Solution: We first obtain the first relation. Consider:

μr :n = E
(
Xr :n X0

s:n
) =

∫ ∞

−∞

∫ ∞

x1

x1x
0
2 fr,s:n(x1, x2)dx2dx1

= Cr,s:n
∫ ∞

−∞

∫ ∞

x2

x1 f (x1) f (x2)[F(x1)]
r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2dx1;

whereCr,s:n = n!
(r−1)!(s−r−1)!(n−s)! . Now for standard exponential distribution we have

f (x) = 1−F(x) and hencewriting f (x2) = 1−F(x2) above equation can bewritten
as:

μr :n = Cr,s:n
∫ ∞

−∞

∫ ∞

x1

x1 f (x1)[F(x1)]
r−1

[
F(x2) − F(x1)

]s−r−1

×
[
1 − F(x2)

]n−s+1

dx2dx1

= Cr,s:n
∫ ∞

−∞
x1 f (x1)[F(x1)]

r−1 I (x2)dx1; (2.85)

where

I (x2) =
∫ ∞

x1

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1dx2.

Now integrating above by parts, using dx2 for integration and rest as differentiation
we have

I (x2) =
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1x2

∣∣∣∣∣

∞

x1

−
∫ ∞

x1

[{
(s − r − 1)[F(x2) − F(x1)]

s−r−2[1 − F(x2)]
n−s+1 f (x2)

}

{
−(n − s + 1)

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s f (x2)

}]
x2dx2

or
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I (x2) =
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s+1x2

∣∣∣∣∣

∞

x1

+(n − s + 1)
∫ ∞

x1

x2

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s

× f (x2)dx2 − (s − r − 1)
∫ ∞

x1

x2[F(x2) − F(x1)]
s−r−2

× [1 − F(x2)]
n−s+1 f (x2)dx2. (2.86)

Now for s = r + 1 in (2.86) we have

I (x2) = (n − r)
∫ ∞

x1

x2[1 − F(x2)]
n−r−1 f (x2)dx2

−x1[1 − F(x1)]
n−r . (2.87)

Now using (2.87) in (2.85); with Cr,s:n = n!
(r−1)!(n−r−1)! ; we have:

μr :n = Cr,s:n
∫ ∞

−∞
x1 f (x1)[F(x1)]

r−1

[
(n − r)

∫ ∞

x1

x2[1 − F(x2)]
n−r−1

× f (x2)dx2 − x1[1 − F(x1)]
n−r
]
dx1

= n!
(r − 1)!(n − r − 1)! (n − r)

∫ ∞

−∞

∫ ∞

x1

x1x2 f (x1) f (x2)

× [F(x1)]
r−1[1 − F(x2)]

n−r−1dx2dx1

− n!
(r − 1)!(n − r − 1)!

∫ ∞

−∞
x21 f (x1)[F(x1)]

r−1

× [1 − F(x1)]
n−r dx1

or
μr :n = (n − r)μr,r+1:n − (n − r)μ2

r :n

or

μr,r+1:n = μ2
r :n + 1

n − r
μr :n;

as required. Again for s − r ≥ 2 we have, from (2.86):

I (x2) = (n − s + 1)
∫ ∞

x1

x2

[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−s

× f (x2)dx2 − (s − r − 1)
∫ ∞

x1

x2[F(x2) − F(x1)]
s−r−2

× [1 − F(x2)]
n−s+1 f (x2)dx2. (2.88)
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Now using (2.88) in (2.85) we have:

μr :n = Cr,s:n
∫ ∞

−∞
x1 f (x1)[F(x1)]

r−1

{
(n − s + 1)

∫ ∞

x1

x2

[
F(x2) − F(x1)

]s−r−1

× [1 − F(x2)]
n−s f (x2)dx2 − (s − r − 1)

∫ ∞

x1

x2

[F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−s+1 f (x2)dx2
}
dx1

or

μr :n = (n − s + 1)Cr,s:n
∫ ∞

−∞

∫ ∞

x1

x1x2 f (x1) f (x2)[F(x1)]
r−1

×
[
F(x2) − F(x1)

]s−r−1

[1 − F(x2)]
n−sdx2dx1

−(s − r − 1)Cr,s:n
∫ ∞

−∞

∫ ∞

x1

x1x2 f (x1) f (x2)[F(x1)]
r−1

× [F(x2) − F(x1)]
s−r−2[1 − F(x2)]

n−s+1 f (x2)dx2dx1

or
μr :n = (n − s + 1)μr,s:n − (n − s + 1)μr,s−1:n

or

μr,s:n = μr,s−1:n + 1

n − s + 1
μr :n;

as required.

2.10 Relations for Moments of Order Statistics for Special
Class of Distributions

In previous section we have discussed recurrence relations for single and product
moments of order statistics for certain distributions.We have seen that the recurrence
relations for single moments of order statistics can be derived from (2.89) as

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞
x p−1

× [F(x)]r−1[1 − F(x)]n−r+1dx . (2.89)
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Using probability integral transform above relation can be written as

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞

{
F−1(t)

}
p−1

× {F−1(t)
}

/tr−1(1 − t)n−r+1dt. (2.90)

We now present a recurrence relation for single moments of order statistics for class
of distributions having special structure of

{
F−1(t)

}
/. The relation is given in the

following.

Theorem: For the class of distributions defined as

{
F−1(t)

}
/ = 1

d
t p1(1 − t)q−p1−1 on (0, 1);

the following relation holds for single moments of order statistics

μp
r :n − μ

p
r−1:n = pC(r, n, p1, q)μ

p−1
r+p1:n+q; (2.91)

where

C(r, n, p1, q) = μr :n − μr−1:n = 1

d

( n
r−1

)

(r + p1)
( n+q
r+p1

) .

Proof We have from (2.90)

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞

{
F−1(t)

}
p−1

× {F−1(t)
}

/tr−1(1 − t)n−r+1dt. (2.92)

Now using the representation for
{
F−1(t)

}
/ we have

μp
r :n − μ

p
r−1:n = p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞

{
F−1(t)

}
p−1

× 1

d
t p1(1 − t)q−p1−1tr−1(1 − t)n−r+1dt.

or

μp
r :n − μ

p
r−1:n = 1

d

p

n − r + 1

n!
(r − 1)!(n − r)!

∫ ∞

−∞

{
F−1(t)

}
p−1

× tr+p1−1(1 − t)(n+q)−(r+p1)+1dt.

or
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μp
r :n − μ

p
r−1:n = p

1

d

n!
(r − 1)!(n − r + 1)!

(r + p1)
( n+q
r+p1

)

(r + p1)
( n+q
r+p1

)

×
∫ ∞

−∞

{
F−1(t)

}
p−1tr+p1−1(1 − t)(n+q)−(r+p1)+1dt

or

μp
r :n − μ

p
r−1:n = p

1

d

( n
r−1

)

(r + p1)
( n+q
r+p1

) (r + p1)

(
n + q

r + p1

)

×
∫ ∞

−∞

{
F−1(t)

}
p−1tr+p1−1(1 − t)(n+q)−(r+p1)+1dt

or
μp
r :n − μ

p
r−1:n = pC(r, n, p1, q)μ

p−1
r+p1:n−q;

as required. Using p = 1 we can readily see that

C(r, n, p1, q) = μr :n − μr−1:n = 1

d

( n
r−1

)

(r + p1)
( n+q
r+p1

) .

The class of distribution defined as

{
F−1(t)

}
/ = 1

d
t p1(1 − t)q−p1−1;

give rise to several special distributions for suitable choices of p1 and q. Some of
these special cases are given below.

1. For p1 = 0 and q = 0 we have

{
F−1(t)

}
/ = 1

d
(1 − t)−1

or

F−1(t) = 1

d
log

(
1

1 − t

)

or
t = F(x) = 1 − e−dx ;

that is the Exponential Distribution.
2. For p1 = 0 and q �= 0 we have

{
F−1(t)

}
/ = 1

d
(1 − t)q−1
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or

F−1(t) = − 1

dq
(1 − t)q

or
t = F(x) = 1 − (dqx)1/q;

which for q < 0 provides Pareto distribution and for q > 0 provides Pearson
type I distribution.

3. For p1 �= −1 and q = p + 1 we have

{
F−1(t)

}
/ = 1

d
tq−1

or

F−1(t) = 1

dq
tq

or
t = F(x) = (dqx)1/q;

which for q > 0 provides Power function distribution.
4. For p = −1 and q = 0 we have

{
F−1(t)

}
/ = 1

d
t−1

or

F−1(t) = 1

d
log(t)

or
t = F(x) = edx ;

which is reflected Exponential distribution.
5. For p = −1 and q = −1

{
F−1(t)

}
/ = 1

d
t−1(1 − t)−1

or

F−1(t) = 1

d
log

(
t

1 − t

)

or

t = F(x) = 1

1 + e−dx
;

which is the Logistic distribution.
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We can obtain other distributions for various choices of p1 and q. The recurrence
relations for these special cases can be directly obtained from (2.91) by using the
corresponding values.

2.11 Reversed Order Statistics

Reversed Order Statistics appear frequently when data is arranged in descending
order of magnitude, say for example marks of students arranged from highest to
lowest or population of cities; in million; arranged in decreasing order. The dis-
tribution theory of such variables can be studied in the context of Reversed Order
Statistics which appear as a special case of Dual Generalized Order Statistics; dis-
cussed in Chap.5. The reversed order statistics and their distribution are defined in
the following.

Let x1, x2, . . . , xn be a random sample from a distribution F(x) and suppose
that the sample is arranged in descending order as x1 ≥ x2 ≥ · · · ≥ xn then this
descendingly ordered sample constitute the reversed order statistics. The joint distri-
bution of n reversed order statistics is same as the joint distribution of ordinary order
statistics. The joint marginal distribution of r reversed order statistics is given as

f1(re),...,r(re):n(x1, . . . , xr ) = n!
(n − r)!

[
r∏

i=1

f (xi )

]
{F(xr )}n−r . (2.93)

Further, the marginal distribution of r th reversed order statistics and joint marginal
distribution of r th and sth reversed order statistics; for r < s; are easily written from
(2.93) as

fr(re):n(x) = n!
(r − 1)!(n − r)! f (x){F(x)}n−r {1 − F(x)}r−1. (2.94)

and

fr(re),s(re):n(x1, x2)= n!
(r − 1)!(s − r − 1)!(n − s)! f (x1) f (x2){1 − F(x1)}r−1

× [F(x1) − F(x2)]
s−r−1{F(x2)}n−s . (2.95)

We can readily see that the distribution of r th reversed order statistics from distrib-
ution F(x) is same as the the distribution of (n − r + 1)th ordinary order statistics
from the distribution F(x).

Example 2.13 A random sample is available from the density

f (x) = αxα−1 exp(−xα); x, α > 0

http://dx.doi.org/10.2991/978-94-6239-225-0_5
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Obtain the marginal density function of r th reversed order statistics and joint density
function of r th and sth reversed order statistics for this distribution.

Solution: The density function of r th reversed order statistics and joint density
function of r th and sth reversed order statistics are given in (2.94) and (2.95) as

fr(re):n(x) = n!
(r − 1)!(n − r)! f (x){F(x)}n−r {1 − F(x)}r−1.

and

fr(re),s(re):n(x1, x2)= n!
(r − 1)!(s − r − 1)!(n − s)! f (x1) f (x2){1 − F(x1)}r−1

× [F(x1) − F(x2)]
s−r−1{F(x2)}n−s .

Now we have
f (x) = αxα−1 exp(−xα)

So

F(x) =
∫ x

0
f (t)dt =

∫ x

0
αtα−1 exp(−tα)dt = 1 − exp(−xα).

The density function of r th reversed order statistics is therefore

fr(re):n(x) = n!
(r − 1)!(n − r)! f (x){F(x)}n−r {1 − F(x)}r−1

= n!
(r − 1)!(n − r)!αx

α−1 exp(−xα)

×{1 − exp(−xα)}n−r {exp(−xα)}r−1

= n!
(r − 1)!(n − r)!αx

α−1 exp(−r xα)

×
n−r∑

j=0

(−1) j
(
n − r

j

)
exp(− j xα)

or

fr(re):n(x) = n!
(r − 1)!(n − r)!αx

α−1
n−r∑

j=0

(−1) j
(
n − r

j

)

× exp
{−xa(r + j)

}
.

Again the joint density of r th and sth reversed order statistics is
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fr(re),s(re):n(x1, x2)= Cr,s:nαxα−1
1 exp

(−xα
1

)
αxα−1

2 exp
(−xα

2

)

× {
exp
(−xα

1

)}r−1[
exp
(−xα

1

)− exp
(−xα

2

)]
s−r−1

× {
1 − exp

(−xα
2

)}
n−s,

or

fr(re),s(re):n(x1, x2)= Cr,s:nα2xα−1
1 xα−1

2 exp
(−r xα

1

)
exp
(−xα

2

)

×
s−r−1∑

j=0

(−1) j
(
s − r − 1

j

)
exp
{−xα

1 (s − r − j − 1)
}

× exp
(− j xα

2

) n−s∑

k=0

(−1)k
(
n − s

k

)
exp
(−kxα

2

)
.

or

fr(re),s(re):n(x1, x2)= Cr,s:nα2xα−1
1 xα−1

2

n−s∑

k=0

s−r−1∑

j=0

(−1) j+k

(
n − s

k

)

×
(
s − r − 1

j

)
exp
{−xα

1 (s − j − 1)
}

× exp
{−xα

2 ( j + k + 1)
}
,

where Cr,s:n = n!
(r−1)!(s−r−1)!(n−s)! .



Chapter 3
Record Values

3.1 Introduction

Several situations arise where one is interested in studying the behavior of obser-
vation(s) which exceed already established maximum. For example one might be
interested to know the new highest stock price of a product or new highest runs score
in an innings of a cricket match. These are the examples where we are talking about
the Upper Records. Upper Records naturally arises in daily life whenever we want
to replace an already recorded maximum observation whit one which exceeds that
value.

The upper record values have widespread applications in several areas of life and
have attracted number of statisticians to study the distributional behavior of upper
record values when underlying phenomenon follow some specific distribution. The
concept of upper record values was first introduced by Chandler (1952) and are
formerly defined as below.

Suppose that we have a sequence of independently and identically distributed
random variables X1,X2, . . . having the distribution function F (x). Suppose Yn =
max {X1,X2, . . . ,Xn} for n ≥ 1.We call Xj is an Upper Record Value of the sequence
{Xn, n ≥ 1} if Yj > Yj−1. From this definition it is clear that X1 is an upper record
value. We also associate the indices to each record value with which they occur.
These indices are called the record time {U (n)} , n > 0 where

U (n) = min
{
j|j > U (n − 1) ,Xj > XU(n−1), n > 1

}
.

We can readily see that U (1) = 1. We will denote the upper record values by XU(n).
Many authors have characterized various probability distributions by using the upper
record values. Some notable references are Ahsanullah (1978, 1979, 1986, 1991a,
1991b),Ahsanullah andHoland (1984),Ahsanullah andShakil (2011), Balakrishnan,

© Atlantis Press and the author(s) 2016
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Ahsanullah and Chan (1992), Balakrishnan and Ahsanullah (1993, 1995), Balakrish-
nan and Balasubramanian (1995), Nevzorov (1995), Raqab and Ahsanullah (2000),
Raqab (2002) and Shakil and Ahsanullah (2011). The probability density function
of upper record values is given in the following section.

3.2 Marginal and Joint Distribution
of Upper Record Values

The distribution theory of upper record values ask for special attention. The upper
records depends upon certain hazards which arise in their occurrence and hence are
based upon the hazard rate function of the probability distribution followed by the
sequence of observations. The probability distribution of upper record values is given
in the following.

Suppose that we have a sequence of independent random variables X1,X2, . . .

each having the same density function f (x) and distribution function F (x). Suppose
further that the hazard rate function of nth member of the sequence is

r (xn) = f (x)

1 − F (x)
;

as each member has same distribution. Further, the total hazard rate is

R (x) =
∫

r (xn) dx =
∫

f (x)

1 − F (x)
dx

= − ln [1 − F (x)] .

Based upon above notations Ahsanullah (2004) has given the joint density of n upper
records as

fXU(1),...,XU(n) (x1, . . . , xn) =
[
n−1∏

i=1

r (xi)

]
f (xn) . (3.1)

The joint density function of n upper records given in (3.1) provide basis to
derive the marginal density function of XU(n) and joint marginal density of two upper
records XU(m) and XU(n) for m < n. Following Ahsanullah (2004), the marginal
density function of XU(n) is given in the following.

Let FU(n) (x) be the distribution function of XU(n), then by definition we have

FXU(1) (x) = P
(
XU(1) ≤ x

) = F (x) .
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Again the distribution function of XU(2) is

FXU(2) (x) = P
(
XU(2) ≤ x

)

=
∫ x

−∞

∫ y

−∞

∞∑

i=1

[F (u)]i−1 f (u) f (y) dudy

=
∫ x

−∞

∫ y

−∞
f (u)

1 − F (u)
f (y) dudy

=
∫ x

−∞
R (y) f (y) dy.

The density function of XU(2) is readily written from above as

fXU(2) (x) = R (x) f (x) ; −∞ < x < ∞.

Once again the distribution function of XU(3) is

FXU(3) (x) = P
(
XU(3) ≤ x

)

=
∫ x

−∞

∫ y

−∞

∞∑

i=1

[F (u)]i−1 R (u) f (u) f (y) dudy

=
∫ x

−∞

∫ y

−∞
f (u)

1 − F (u)
R (u) f (y) dudy

= 1

2!
∫ x

−∞

[
R (y)

]2
f (y) dy;

and the density function of XU(3) is

fXU(3) (x) = 1

2! [R (x)]2 f (x) ; −∞ < x < ∞.

Proceeding in the same way, the distribution function of XU(n) is

FXU(n) (x) = P
(
XU(n) ≤ x

)

=
∫ x

−∞
f (un) dun

∫ un

−∞
f (un−1)

1 − F (un−1)
dun−1

× · · · ×
∫ u2

−∞
f (u1)

1 − F (u1)
du1

= 1

(n − 1)!
∫ x

−∞

[
R (y)

]n−1
f (y) dy. (3.2)
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The density function of XU(n) is readily written from (3.2) as

fXU(n) (x) = 1

(n − 1)! [R (x)]n−1 f (x)

= 1

� (n)
[R (x)]n−1 f (x) ; −∞ < x < ∞. (3.3)

The joint density function of two upper record values XU(m) and XU(n); m < n; has
been given by Ahsanullah (2004) as

fXU(m),XU(n) (x1, x2) = 1

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

[R (x2) − R (x1)]
n−m−1 , (3.4)

for −∞ < x1 < x2 < ∞.
If we make the transformation v = R (x) in (3.3), then we can see that the density

function of R (x) is
fV (v) = 1

� (n)
vn−1e−v; v > 0, (3.5)

that is v = R (x) has Gamma distribution with shape parameter n. The joint density
of v1 = R (x1) and v2 = R (x2) is obtained as below.

We have

fXU(m),XU(n) (x1, x2) = 1

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

[R (x2) − R (x1)]
n−m−1 .

Making the transformation v1 = R (x1) and v2 = R (x2) we have

r (x1) = f (x1)

1 − F (x1)
= f (x1)

e−v1
= f (x1) e

v1 .

The Jacobbian of transformation from x1 and x2 to v1 and v2 is

|J| = 1

f (x1) f (x2)
e−v1e−v2 .

The joint density of v1 and v2 is, therefore

f (v1, v2) = 1

� (m) � (n − m)
f (x1) e

v1 f (x2) vm−1
1

× (v2 − v1)
n−m−1 1

f (x1) f (x2)
e−v1e−v2

= 1

� (m) � (n − m)
vm−1
1 (v2 − v1)

n−m−1 e−v2
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or

f (v1, v2) = 1

� (m) � (n − m)
vm−1
1 (v2 − v1)

n−m−1 e−v2 , (3.6)

for 0 < v1 < v2 < ∞.

Again consider the joint density of XU(m) and XU(n) as

fXU(m),XU(n) (x1, x2) = 1

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

[R (x2) − R (x1)]
n−m−1 .

or

fXU(m),XU(n) (x1, x2) = 1

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

[R (x2)]
n−m−1

[
1 − R (x1)

R (x2)

]n−m−1

.

Now making the transformation w1 = R (x1) and w2 = R (x1) /R (x2), the joint
density function of w1 and w2 is

f (w1, w2) = 1

� (m) � (n − m)
f (x1) e

w1 f (x2) wm−1
1

(
w1

w2

)n−m−1

× (1 − w2)
n−m−1 1

f (x1) f (x2)

w1

w2
2

e−w1e−w1/w2

or

f (w1, w2) = 1

� (m) � (n − m)
wn−1

1
(1 − w2)

n−m−1

wn−m+1
2

e−w1/w2 ,

for w1 > 0 and 0 < w2 < 1. The marginal density of w2 is

f (w2) =
∫ ∞

0
f (w1, w2) dw1

= 1

� (m) � (n − m)

1

wn−m+1
2

(1 − w2)
n−m−1

×
∫ ∞

0
wn−1

1 e−w1/w2dw1

or

f (w2) = � (n)

� (m) � (n − m)
wm−1

2 (1 − w2)
n−m−1 ; 0 < w2 < 1; (3.7)

that is w2 = R (x1) /R (x2) has Beta distribution with parameters m and n − m.
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Example 3.1 Find the distribution of upper record XU(n) and joint distribution of two
upper records XU(m) and XU(n) for exponential distribution with density

f (x) = αe−αx; α, x > 0.

Solution: The density function of XU(n) is given in (3.3) as

fXU(n) (x) = 1

� (n)
[R (x)]n−1 f (x) ; −∞ < x < ∞;

where R (x) = − ln [1 − F (x)]. Now for given distribution we have

F (x) =
∫ x

0
f (u) du =

∫ x

0
αe−αudu = 1 − e−αx; x > 0.

So
R (x) = − ln [1 − F (x)] = − ln

(
e−αx

) = αx.

Hence the density function of XU(n) is

fXU(n) (x) = 1

� (n)
(αx)n−1 αe−αx

= αn

� (n)
xn−1e−αx; x > 0,

which is Gamma distribution with shape parameter n and scale parameter α.

Again the joint density function of XU(m) and XU(n) is given in (3.4) as

fXU(m),XU(n) (x1, x2) = 1

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

[R (x2) − R (x1)]
n−m−1 .

Now for given distribution we have

r (x1) = f (x1)

1 − F (x1)
= αe−αx1

e−αx1
= α,

hence the joint density of XU(m) and XU(n) is

fXU(m),XU(n) (x1, x2) = α2e−αx2

� (m) � (n − m)
(αx1)

m−1 (αx2 − αx1)
n−m−1

= αn

� (m) � (n − m)
xm−1
1 (x2 − x1)

n−m−1 e−αx2 ,

for 0 < x1 < x2 < ∞.
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Example 3.2 Obtain themarginal distribution ofXU(n) and joint distribution ofXU(m)

and XU(n) form < n if a sequence of random variables haveWeibull distribution with
density

f (x) = αβxβ−1 exp
(−αxβ

) ; x,α,β > 0.

Solution: The density function of XU(n) is given in (3.3) as

fXU(n) (x) = 1

� (n)
[R (x)]n−1 f (x) ; −∞ < x < ∞,

where R (x) = − ln [1 − F (x)]. Now for given distribution we have

F (x) =
∫ x

0
f (u) du =

∫ x

0
αβxβ−1 exp

(−αuβ
)
du

= 1 − exp
(−αxβ

) ; x > 0.

So

R (x) = − ln [1 − F (x)]

= − ln
[
exp

(−αxβ
)] = αxβ .

The density function of XU(n) is therefore

fXU(n) (x) = 1

� (n)

(
αxβ

)n−1
αβxβ−1 exp

(−αxβ
)

= αnβ

� (n)
xnβ−1 exp

(−αxβ
) ; x,α,β, n > 0.

Again the joint density of XU(m) and XU(n) is given as

fXU(m),XU(n) (x1, x2) = 1

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

[R (x2) − R (x1)]
n−m−1 .

Now for given distribution we have

r (x1) = f (x1)

1 − F (x1)
=

=
αβxβ−1

1 exp
(
−αxβ

1

)

exp
(
−αxβ

1

) = αβxβ−1,

hence the joint density of XU(m) and XU(n) is
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fXU(m),XU(n) (x1, x2) = 1

� (m) � (n − m)
αβxβ−1

1 αβxβ−1
2 exp

(
−αxβ

2

)

×
(
αxβ

1

)m−1 (
αxβ

2 − αxβ
1

)n−m−1

= α2β2

� (m) � (n − m)
exp

(
−αxβ

2

) (
αxβ

1

)m−1

×
(
αxβ

2 − αxβ
1

)n−m−1

or

fXU(m),XU(n) (x1, x2) = αnβ2xβm−1
1

� (m) � (n − m)

(
xβ
2 − xβ

1

)n−m−1
exp

(
−αxβ

2

)
,

for 0 < x1 < x2 < ∞. We can see that the distribution of XU(n) and joint distribution
of XU(m) and XU(n) in case ofWeibull distribution reduces to the same for exponential
distribution when β = 1.

Example 3.3 Find the distribution of XU(n) and joint distribution of XU(m) and XU(n)

for Lomax distribution with density

f (x) = α

(1 + x)α+1 ; x > 0,α > 1.

Solution: The distribution of XU(n) is given as

fXU(n) (x) = 1

� (n)
[R (x)]n−1 f (x) ; −∞ < x < ∞;

where R (x) = − ln [1 − F (x)]. Now for given distribution we have

F (x) =
∫ x

0
f (u) du =

∫ x

0

α

(1 + u)α+1 du

= 1 − 1

(1 + x)α
; x > 0.

So

R (x) = − ln [1 − F (x)]

= − ln

[
1

(1 + x)α

]
= α ln [(1 + x)] .
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The density function of XU(n) is therefore

fXU(n) (x) = 1

� (n)
[α ln (1 + x)]n−1 α

(1 + x)α+1

= αn

� (n)

[ln (1 + x)]n−1

(1 + x)α+1 .

Again, the joint density of XU(m) and XU(n) is

fXU(m),XU(n) (x1, x2) = 1

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 .

Now for given distribution we have

r (x1) = f (x1)

1 − F (x1)
=

= α (1 + x1)
α

(1 + x1)
α+1 = α

(1 + x1)
,

hence the joint density of XU(m) and XU(n) is

fXU(m),XU(n) (x1, x2) = αn

� (m) � (n − m)

1

(1 + x1)

1

(1 + x2)
α+1

× [ln (1 + x1)]
m−1

[
ln

(
1 + x2
1 + x1

)]n−m−1

,

for x1 < x2.

3.3 Conditional Distributions of Record Values

In previous sectionwehave discussed themarginal distribution of an upper record and
joint distribution of two upper records. These distributions can be used to derive the
conditional distributions of upper records. In the followingwe discuss the conditional
distributions of upper records.

The marginal distribution of upper record XU(n) is given in (3.3) as

fXU(n) (x) = 1

� (n)
[R (x)]n−1 f (x) ; −∞ < x < ∞,
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and the joint distribution of XU(m) and XU(n) is given in (3.4) as

fXU(m),XU(n) (x1, x2) = 1

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 .

Now the conditional distribution of XU(n) given XU(m) = x1 is

fXU(n)|x1 (x2|x1) = fXU(m),XU(n) (x1, x2)

fXU(m)
(x1)

=
[

1

� (m) � (n − m)

f (x1)

1 − F (x1)
f (x2)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1
]

/[
1

� (m)
[R (x1)]

n−1 f (x1)

]

or

fXU(n)|x1 (x2|x1) = 1

� (n − m)

f (x2)

1 − F (x1)
[R (x2) − R (x1)]

n−m−1 . (3.8)

Using n = m + 1; the conditional distribution of two contiguous records is

fXU(m+1)|x1 (xm+1|xm) = f (xm+1)

1 − F (xm)
. (3.9)

The conditional distributions are very useful in studying certain behaviors of records.

Example 3.4 Obtain the conditional distribution of XU(n) given XU(m) = x1 for
Weibull distribution with density

f (x) = αβxβ−1 exp
(−αxβ

) ; x,α,β > 0.

Solution: The conditional distribution of XU(n) given XU(m) = x1 is given as

fXU(n)|x1 (x2|x1) = 1

� (n − m)

f (x2)

1 − F (x1)
[R (x2) − R (x1)]

n−m−1 .

For Weibull distribution we have

F (x) = 1 − exp
(−αxβ

)

R (x) = − ln [1 − F (x)] = αxβ .
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The conditional distribution is, therefore

fXU(n)|x1 (x2|x1) = 1

� (n − m)

αβxβ−1
2 exp

(
−αxβ

2

)

exp
(
−αxβ

1

)

×
(
αxβ

2 − αxβ
1

)n−m−1

or

fXU(n)|x1 (x2|x1) = αn−mβxβ−1
2

� (n − m)

(
xβ
2 − xβ

1

)n−m−1

× exp
[
−α

(
xβ
2 − xβ

1

)]
,

for 0 < x1 < x2 < ∞. Using n = m + 1 the conditional distribution of two
contiguous records is

fXU(m+1)|xm (xm+1|xm) =
αβxβ−1

m+1 exp
(
−αxβ

m+1

)

exp
(
−αxβ

m

) ,

3.4 Record Values as Markov Chain

In previous section we have derived the conditional distribution of XU(n) given XU(m).
The conditional distribution can further be used to study another important property
of record values that is the Markoven property. In the following we show that the
record values follows the Markov chain just like the order statistics.

We know that a sequence of random variables X1,X2, . . . ,Xm,Xn has Markov
chain property if the conditional distribution of Xn given X1 = x1,X2 = x2, . . . ,Xm

= xm is same as the conditional distribution of Xn given Xm = xm; that is if

f (xs|X1 = x1, . . . ,Xr = xr) = f (xs|Xr = xr) .

The record values will follow the Markov chain if

fXU(n)|x1,...,xm (xn|x1, . . . , xm) = fXU(n)|xm (xn|xm) .

Now from (3.8) we have

fXU(n)|xm (xn|xm) = 1

� (n − m)

f (xn)

1 − F (xm)
[R (xn) − R (xm)]n−m−1
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Further, the joint distribution of m upper record values is given in (3.1) as

fXU(1),...,XU(m)
(x1, . . . , xm) =

[
m−1∏

i=1

r (xi)

]
f (xm)

Also, the joint distribution of XU(1),XU(2), . . . ,XU(m) and XU(n) is immediately writ-
ten as

fXU(1),...,XU(m),XU(n) (x1, . . . , xm, xn) = 1

� (n − m)

[
m∏

i=1

r (xi)

]
f (xn)

× [R (xn) − R (xm)]n−m−1 . (3.10)

Now, the conditional distribution of XU(n) given XU(1) = x1, . . . ,XU(m) = xm is
obtained from (3.1) and (3.10) as

fXU(n)|x1,...,xm (xn|x1, . . . , xm) = fXU(1),...,XU(m),XU(n) (x1, . . . , xm, xn)

fXU(1),...,XU(m)
(x1, . . . , xm)

=
[

1

� (n − m)

{
m∏

i=1

r (xi)

}
f (xn)

× [R (xn) − R (xm)]n−m−1
]

/[{
m−1∏

i=1

r (xi)

}
f (xm)

]

or

fXU(n)|x1,...,xm (xn|x1, . . . , xm) = 1

� (n − m)

r (xm)

f (xm)
f (xn)

× [R (xn) − R (xm)]n−m−1

or

fXU(n)|x1,...,xm (xn|x1, . . . , xm) = 1

� (n − m)

f (xn)

1 − F (xm)

× [R (xn) − R (xm)]n−m−1 ,

which is same as (3.8). Hence the upper record values follow the Markov chain. The
transition probabilities of upper record values are computed below
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P
(
XU(m+1) ≥ y|XU(m) = xm

) =
∫ ∞

y
fXU(m+1)|x1 (xm+1|xm) dxm+1

=
∫ ∞

y

f (xm+1)

1 − F (xm)
dxm+1

= 1 − F (y)

1 − F (xm)
.

The transition probabilities can be computed for different parent distribution of the
sequence. For example if the sequence hasWeibull distribution with shape parameter
β and scale parameter α then the transition probability of upper record is given as

P
(
XU(m+1) ≥ y|XU(m) = xm

) = exp
(−αyβ

)

exp
(
−αxβ

m

) ,

which can be computed for various values of α and β.

3.5 The K-Upper Record Values

Wehave seen that the upper record values of a sequence are based upon themaximum
observation of that sequence. Often we are interested in records which are not based
upon maximum of the sequence; say for example records which are based upon kth
largest observation of that sequence. The record values which are based upon kth
maximum of a sequence are called the k-Upper Record Values. The k-upper record
values are based upon the k-record time. The k-record values are formally defined as
below.

Let {Xn; n ≥ 1} be a sequence of independently and identically distributed ran-
dom variables with an absolutely continuous distribution function F (x) and density
function f (x). Let Xr:n be the rth order statistics based upon a sample of size n. For
a fixed k ≥ 1 the kth upper record time UK (n) ; n ≥ 1 is defined as UK (1) = 1 and

UK (n + 1) = min
{
r > UK (n) : Xr:r+k−1 > XUK (n),UK (n)+k−1

} ; n ∈ N.

The kth upper record values are XUK (n):UK (n)+k−1 and for the sake of simplicity will
be denoted as XUK (n). The joint density of n kth upper record values is given by
Dziubdziela and Kopocinski (1976) as

fUK (1),UK (2),...,UK (n) (x1, x2, . . . , xn) = kn
{
n−1∏

i=1

f (xi)

1 − F (xi)

}

× [1 − F (xn)]
k−1 f (xn) . (3.11)
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The marginal density of XUK (n) is readily written as

fUK (n) (x) = kn

� (n)
[R (x)]n−1 [1 − F (x)]k−1 f (x) , (3.12)

where R (x) = − ln [1 − F (x)]. The joint density of two kth upper record is given
by Dziubdziela and Kopocinski (1976) as

fUK (m),UK (m) (x1, x2) = kn

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1 , (3.13)

where −∞ < x1 < x2 < ∞. Using (3.12) and (3.13), the conditional distribution of
XUK (n) given XUK (m) = x1 is readily written as

fUK (n)|x1 (x2|x1) =
[

kn

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1
]
/

[
km

� (m)
[R (x1)]

m−1 [1 − F (x1)]
k−1 f (x1)

]

or

fUK (n)|x1 (x2|x1) = kn−m

� (n − m)

f (x2)

[1 − F (x1)]
k
[1 − F (x2)]

k−1

× [R (x2) − R (x1)]
n−m−1 . (3.14)

Substituting n = m + 1 in (3.14), the conditional distribution of two contiguous kth
upper records is

fUK (n)|x1 (x2|x1) = k
f (x2)

[1 − F (x1)]
k
[1 − F (x2)]

k−1 . (3.15)

Further, the joint distribution of XUK (1), . . . ,XUK (m) and XUK (n) is given as

fUK (1),...,UK (m),UK (n) (x1, . . . , xm, xn) = kn

� (n − m)

[
m∏

i=1

r (xi)

]

× f (xn) [1 − F (xn)]
k−1

× [R (xn) − R (xm)]n−m−1 . (3.16)

Now using (3.11) and (3.16), the conditional distribution of XUK (n) given XUK (1) =
x1, . . . ,XUK (m) = xm is
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fUK (n)|x1,...,xm (xn|x1, . . . , xm) = fUK (1),...,UK (m),UK (n) (x1, . . . , xm, xn)

fUK (1),UK (2),...,UK (n) (x1, x2, . . . , xn)

=
[

kn

� (n − m)

{
m∏

i=1

r (xi)

}
f (xn)

[1 − F (xn)]
k−1 [R (xn) − R (xm)]n−m−1] /

[
km
{
m−1∏

i=1

r (xi)

}
[1 − F (xm)]k−1 f (xm)

]

or

fUK (n)|x1,...,xm (xn|x1, . . . , xm) = kn−m

� (n − m)

f (xn)

[1 − F (xm)]k
[1 − F (xn)]

k−1

× [R (xn) − R (xm)]n−m−1 ,

which is same as the conditional distribution of XUK (n) given XUK (m) = x1. The kth
upper record values therefore follow the Markov chain. The transition probability
for kth upper record is computed below

P
(
XUK (m+1) ≥ y|XUK (m) = xm

) =
∫ ∞

y
fUK (m+1)|xm (xm+1|xm) dxm+1

= k

[1 − F (xm)]k

∫ ∞

y
f (xm+1)

× [
1 − F (xm+1)

]k−1
dxm+1

=
[
1 − F (y)

1 − F (xm)

]k
.

We can see that the results of kth upper records reduces to simple upper records for
k = 1.

Example 3.5 Find the distribution of XUK (n), joint distribution of XUK (m) and XUK (n);
m < n; and the conditional distribution of XUK (n) given XUK (m) = x1 if the sequence
of random variables follow the Weibull distribution with density

f (x) = αβxβ−1 exp
(−αxβ

) ; x,α,β > 0.

Solution: The marginal distribution of XUK (n) is given in (3.12) as

fUK (n) (x) = kn

� (n)
[R (x)]n−1 [1 − F (x)]k−1 f (x) .
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Now for Weibull distribution we have

F (x) =
∫ x

0
f (t) dt =

∫ x

0
αβtβ−1 exp

(−αtβ
)
dt

= 1 − exp
(−αxβ

) ; x,α,β > 0.

Hence
R (x) = − ln [1 − F (x)] = αxβ .

The density function of XUK (n) is therefore given as

fUK (n) (x) = kn

� (n)

(
αxβ

)n−1 [
exp

(−αxβ
)]k−1

×αβxβ−1 exp
(−αxβ

)

= αnknβ

� (n)
xnβ−1 exp

(−kαxβ
) ; x,α,β, n, k > 0.

We can readily see that for k = 1 the density function of XUK (n), given above, reduces
to the density of XU(n) given in Example 3.2.

Again the joint density of XUK (m) and XUK (n) is given in (3.13) as

fUK (m),UK (m) (x1, x2) = kn

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1 .

Now for Weibull distribution we have

r (x1) = d

dx1
R (x1) =

d
(
αxβ

1

)

dx1
= αβxβ−1

1 .

Hence the joint distribution of XUK (m) and XUK (n) is

fUK (m),UK (m) (x1, x2) = kn

� (m) � (n − m)
αβxβ−1

1 αβxβ−1
2 exp

(
−αxβ

2

)

×
(
αxβ

1

)m−1 (
αxβ

2 − αxβ
1

)n−m−1

×
[
exp

(
−αxβ

2

)]k−1

or

fUK (m),UK (m) (x1, x2) = αnknβ2xmβ−1
1

� (m) � (n − m)
xβ−1
2

(
xβ
2 − xβ

1

)n−m−1

× exp
(
−kαxβ

2

)
,
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for 0 < x1 < x2 < ∞. We again see that for k = 1 the above density reduces to
the joint density of XU(m) and XU(n) given in Example 3.2. Finally the conditional
distribution of XUK (n) given XUK (m) = x1 is given in (3.14) as

fUK (n)|x1 (x2|x1) = kn−m

� (n − m)

f (x2)

[1 − F (x1)]
k
[1 − F (x2)]

k−1

× [R (x2) − R (x1)]
n−m−1 .

For Weibull distribution the conditional distribution of XUK (n) given XUK (m) = x1 is

fUK (n)|x1 (x2|x1) = kn−m

� (n − m)

αβxβ−1
2 exp

(
−αxβ

2

)

[
exp

(
−αxβ

1

)]k

×
[
exp

(
−αxβ

2

)]k−1 (
αxβ

2 − αxβ
1

)n−m−1

or

fUK (n)|x1 (x2|x1) = αn−mkn−mβ

� (n − m)
xβ−1
2

(
xβ
2 − xβ

1

)n−m−1

× exp
[
−kα

(
xβ
2 − xβ

1

)]
,

for 0 < x1 < x2 < ∞.

3.6 Moments of Record Values

The marginal, joint and conditional distributions of upper record values are proper
probability distributions and hence we can study some additional properties of these
distributions. A relatively useful method to study the properties of any probability
distribution is to compute its moments. In this section we present the simple, product
and conditional moments of upper record values that can be used to study further
properties of records based upon certain specific distributions. The basic definition
of moments of upper records is given in the following.

The pth marginal moment of upper record value XU(n) is defined as

μ
p
(n) = E

(
Xp
U(n)

)
=
∫ ∞

−∞
xpfXU(n) (x) dx

= 1

� (n)

∫ ∞

−∞
xp [R (x)]n−1 f (x) dx. (3.17)
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The quantity μ(n) is called mean of XU(n). The variance of XU(n) is computed as

σ2
(n) = μ2

(n) − [
μ1

(n)

]2
.

The (p, q)th product moment of XU(m) and XU(n) are defined as

μ
p,q
(m,n) = E

(
Xp
U(m)X

q
U(n)

)

=
∫ ∞

−∞

∫ ∞

x1

xp1x
q
2 fXU(m),XU(n) (x1, x2) dx2dx1

= 1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

r (x1) f (x2) [R (x1)]
m−1

× [R (x2) − R (x1)]
n−m−1 dx2dx1. (3.18)

The covariance between two upper records is computed as

σ(m,n) = μ1,1
(m,n) − μ1,0

(m,n)μ
0,1
(m,n). (3.19)

The pth conditional moment of XU(n) given XU(m) = x1 is defined as

μ
p
(n|m) = E

(
Xp
U(n)|x1

)
=
∫ ∞

x1

xp2 fXU(n)|x1 (x2|x1) dx2

= 1

� (n − m)

∫ ∞

x1

f (x2)

1 − F (x1)
[R (x2) − R (x1)]

n−m−1 dx2. (3.20)

The conditional mean and conditional variance are easily computed from (3.20).
We can also define the moments of kth upper records on the parallel lines. Specif-

ically, the pth moment of kth record based on a sequence {Xn; n ≥ 1} is defined as

μ
p
K(n) = E

(
Xp
UK (n)

)
=
∫ ∞

−∞
xpfUK (n) (x) dx

= kn

� (n)

∫ ∞

−∞
xpf (x) [1 − F (x)]k−1 [R (x)]n−1 dx. (3.21)

The mean and variance of XUK (n) is readily computed from (3.21). The (p, q)th
product moments of XUK (m) and XUK (n) are defined as

μ
p,q
K(m,n) = E

(
Xp
UK (m)X

q
UK (n)

)

=
∫ ∞

−∞

∫ ∞

x1

xp1x
q
2 fUK (m),UK (n) (x1, x2) dx2dx1

= kn

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q
2r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1 dx2dx1. (3.22)
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The covariance between two kth upper records is

σK(m,n) = μ1,1
K(m,n) − μ1,0

K(m,n)μ
0,1
K(m,n).

The conditional moments of kth record are computed as

μ
p
K(n|m) = E

(
Xp
UK (n)|x1

)
=
∫ ∞

x1

xp2 fUK (n)|x1 (x2|x1) dx2

= kn−m

� (n − m)

∫ ∞

x1

f (x2)

[1 − F (x1)]
k
[R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 dx2. (3.23)

The conditional mean and variance are easily computed from (3.23).

Example 3.6 Obtain the expression for pth marginal moments and (p, q)th product
moments of upper record values if the sequence {Xn; n ≥ 1} hasWeibull distribution
with density

f (x) = αβxβ−1 exp
(−αxβ

) ; x,α,β > 0.

Solution: The pth moment of XU(n) is defined as

μ
p
(n) = E

(
Xp
U(n)

)
=
∫ ∞

−∞
xpfXU(n) (x) dx,

where fXU(n) (x) is density function of XU(n). Now forWeibull distribution, the density
function of XU(n) is given in Example 3.2 as

fXU(n) (x) = αnβ

� (n)
xnβ−1 exp

(−αxβ
) ; x,α,β, n > 0.

Hence the pth moment of XU(n) is

μ
p
(n) = αnβ

� (n)

∫ ∞

0
xpxnβ−1 exp

(−αxβ
)
dx

= αnβ

� (n)

∫ ∞

0
xnβ+p−1 exp

(−αxβ
)
dx.

Now making the transformation w = αxβ we have x = (w/α)1/β and dx =
1

αβ (w/α)1/β−1 dw. Hence we have

μ
p
(n) = αnβ

� (n)

∫ ∞

0

(w

α

) nβ+p−1
β

e−w 1

αβ

(w

α

)1/β−1
dw

= 1

α
p
β � (n)

∫ ∞

0
w

n+ p
β −1e−wdw
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or

μ
p
(n) = 1

α
p
β � (n)

�

(
n + p

β

)
.

The mean and variance are readily obtained from above by using p = 1 and p = 2
respectively. Forβ = 1 the expression for pthmoment of upper record for exponential
distribution is obtained as

μ
p
(n) = 1

αp� (n)
� (n + p) = (n + p − 1)!

αp (n − 1)! ,

and the mean and variance of XU(n) for exponential distribution are

μ(n) = 1

α
and σ(n) = n

α2

respectively. Again the product moments of XU(m) and XU(n) are computed as

μ
p,q
(m,n) = E

(
Xp
U(m)X

q
U(n)

)

=
∫ ∞

−∞

∫ x2

−∞
xp1x

q
2 fXU(m),XU(n) (x1, x2) dx1dx2,

where fXU(m),XU(n) (x1, x2) is joint density of XU(m) and XU(n). Now for Weibull distri-
bution we have, from Example 3.2,

fXU(m),XU(n) (x1, x2) = αnβ2xβm−1
1

� (m) � (n − m)

(
xβ
2 − xβ

1

)n−m−1
exp

(
−αxβ

2

)
,

for 0 < x1 < x2 < ∞. The product moments are therefore

μ
p,q
(m,n) =

∫ ∞

0

∫ x2

0
xp1x

q
2

αnβ2xβm−1
1

� (m) � (n − m)

×
(
xβ
2 − xβ

1

)n−m−1
exp

(
−αxβ

2

)
dx1dx2

= αnβ2

� (m) � (n − m)

∫ ∞

0
xq2 exp

(
−αxβ

2

)
I (x1) dx2, (i)

where

I (x1) =
∫ x2

0
xβm+p−1
1

(
xβ
2 − xβ

1

)n−m−1
dx1
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Now making the transformation x1 = ux2 we have dx1 = x2du and hence

I (x2) =
∫ 1

0
(ux2)

βm+p−1
(
xβ
2 − uβxβ

2

)n−m−1
x2du

= xβn+p−β
2

∫ 1

0
uβm+p−1

(
1 − uβ

)n−m−1
du

= xβn+p−β
2

� (n − m) �
(
m + p

β

)

β�
(
n + p

β

) .

Using the value of I (x1) in (i) we have

μ
p,q
(m,n) = αnβ2

� (m) � (n − m)

∫ ∞

0
xq2 exp

(
−αxβ

2

)
xβn+p−β
2

×
� (n − m) �

(
m + p

β

)

β�
(
n + p

β

) dx2

=
αnβ�

(
m + p

β

)

� (m) �
(
n + p

β

)
∫ ∞

0
xβn+p+q−β
2 exp

(
−αxβ

2

)
dx2.

Now making the transformation αxβ
2 = w we have x2 = (

w
α

)1/β
or dx2 =

1
β

(
w
α

)1/β−1 1
α
dw and hence

μ
p,q
(m,n) =

αnβ�
(
m + p

β

)

� (m) �
(
n + p

β

)
∫ ∞

0

(w

α

)n+ p+q
β −1

exp (−w)
1

α1/ββ
w1/β−1dw

=
�
(
m + p

β

)

α(p+q+1/β)−1� (m) �
(
n + p

β

)
∫ ∞

0
w

n+ p+q+1
β −2 exp (−w) dw

or

μ
p,q
(m,n) =

�
(
m + p

β

)
�
(
n − 1 + p+q+1

β

)

α(p+q+1/β)−1� (m) �
(
n + p

β

) .

The expression for product moments for exponential distribution can be obtained by
using β = 1 in above expression as

μ
p,q
(m,n) = � (m + p) � (n + p + q)

αp+q� (m) � (n + p)
.
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Using p = q = 1 in above expansion, we have

μ1,1
(m,n) = m (n + 1)

α2
.

Also
μ1,0

(m,n) = m

α
and μ0,1

(m,n) = n

α
.

The covariance between XU(m) and XU(n) for exponential distribution is therefore

σ(m,n) = μ1,1
(m,n) − μ1,0

(m,n)μ
0,1
(m,n)

= m (n + 1)

α2
−
(m

α

) ( n
α

)
= m

α2
.

Wesee that the covariance does not dependuponn. Finally theCorrelationCoefficient
between two upper records for exponential distribution is

ρ(m,n) = σ(m,n)√
σ(m)σ(n)

= m/α2

√(
m/α2

) (
n/α2

) =
√
m

n
.

We can see that the correlation coefficient between upper records only depends upon
m and n only.

Example 3.7 A sequence {Xn; n ≥ 1} has exponential distribution with density
f (x) = αe−αx; x,α > 0.

Derive the expression for pth moment of XUK (n) and (p, q)th joint moments of XUK (m)

and XUK (n).

Solution: The pth moment of XUK (n) is given as

μ
p
K(n) = E

(
Xp
UK (n)

)
=
∫ ∞

−∞
xpfUK (n) (x) dx,

where fUK (n) (x) is density function of XUK (n) and is given as

fUK (n) (x) = kn

� (n)
[R (x)]n−1 [1 − F (x)]k−1 f (x) .

For exponential distribution we have R (x) = 1 − F (x) = αx and hence the density
function of XUK (n) is

fUK (n) (x) = kn

� (n)
(αx)n−1

(
e−αx

)k−1
αe−αx

= αnkn

� (n)
xn−1e−αkx; x, k,α > 0.
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The pth moment of XUK (n) is therefore

μ
p
K(n) = αnkn

� (n)

∫ ∞

0
xn+p−1e−αkxdx

= 1

(αk)p � (n)
� (n + p) .

The mean and variance of XUK (n) are

μK(n) = n

αk
and σ2

K(n) = n

α2k2
.

The (p, q)th product moments of XUK (m) and XUK (n) are computed as

μ
p,q
K(m,n) = E

(
Xp
UK (m)X

q
UK (n)

)

=
∫ ∞

−∞

∫ x2

−∞
xp1x

q
2 fUK (m),UK (n) (x1, x2) dx1dx2 (i)

where fUK (m),UK (n) (x1, x2) is joint density of XUK (m) and XUK (n) and is given as

fUK (m),UK (n) (x1, x2) = kn

� (m) � (n − m)
r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1 .

Now for exponential distribution we have

fUK (m),UK (n) (x1, x2) = kn

� (m) � (n − m)
ααe−αx2 (αx1)

m−1

× (αx2 − αx1)
n−m−1

(
e−αx2

)k−1

= αnkn

� (m) � (n − m)
xm−1
1 (x2 − x1)

n−m−1

× e−αkx2 ,

for 0 < x1 < x2 < ∞. Using the joint density in (i) we have

μ
p,q
K(m,n) =

∫ ∞

0

∫ x2

0
xp1x

q
2

αnkn

� (m) � (n − m)
xm−1
1

× (x2 − x1)
n−m−1 e−αkx2dx1dx2

or

μ
p,q
K(m,n) = αnkn

� (m) � (n − m)

∫ ∞

−∞
xq2e

−αkx2 I (x1) dx1, (ii)
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where

I (x1) =
∫ x2

0
xp+m−1
1 (x2 − x1)

n−m−1 dx1.

Now making the transformation x1 = ux2 we have

I (x1) =
∫ 1

0
(ux2)

p+m−1 (x2 − ux2)
n−m−1 x2du.

= xn+p−1
2

∫ 1

0
up+m−1 (1 − u)n−m−1 du

= xn+p−1
2

� (n − m) � (m + p)

� (n + p)
.

Using above result in (ii) we have

μ
p,q
K(m,n) = αnkn

� (m) � (n − m)

� (n − m) � (m + p)

� (n + p)

×
∫ ∞

0
xq2e

−αkx2xn+p−1
2 dx2

= αnkn� (m + p)

� (m) � (n + p)

∫ ∞

0
xq2e

−αkx2xn+p−1
2 dx2

= αnkn� (m + p)

� (m) � (n + p)

∫ ∞

0
xn+p+q−1
2 e−αkx2dx2

or

μ
p,q
K(m,n) = αnkn� (m + p)

� (m) � (n + p)

1

(αk)n+p+q � (n + p + q)

= � (m + p) � (n + p + q)

(αk)p+q � (m) � (n + p)
.

For p = q = 1 we have

μ1,1
K(m,n) = m (n + 1)

α2k2
.

The covariance between XUK (m) and XUK (n) is therefore

σK(m,n) = μ1,1
K(m,n) − μ1,0

K(m,n)μ
0,1
K(m,n)

= m (n + 1)

α2k2
−
( m

αk

) ( n

αk

)
= m

α2k2
.

We can see that σK(m,n) = σ2
K(m). Finally the correlation coefficient between XUK (m)

and XUK (n) is
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ρ(m,n) = σK(m,n)√
σK(m)σK(n)

= m/α2k2√(
m/α2k2

) (
n/α2k2

) =
√
m

n
.

We can see that the correlation coefficient between two kth upper record values for
exponential distribution is same as the correlation coefficient between two simple
upper record values.

Example 3.8 Obtain the expression for pth conditional moment of XU(n) given
XU(m) = x1 if the sequence {Xn; n ≥ 1} has Weibull distribution with density

f (x) = αβxβ−1 exp
(−αxβ

) ; x,α,β > 0.

Hence or otherwise obtain the conditional mean and variance of XU(n) given XU(m) =
x1 in case of exponential distribution.

Solution: The pth conditional moment of XU(n) given XU(m) = x1 is computed as

μ
p
(n|m) = E

(
Xp
U(n)|x1

)
=
∫ ∞

x1

xp2 fXU(n)|x1 (x2|x1) dx2;

where fXU(n)|x1 (x2|x1) is conditional distribution of XU(n) given XU(m) = x1 and for
Weibull distribution is given in Example 3.4 as

fXU(n)|x1 (x2|x1) = αn−mβxβ−1
2

� (n − m)

(
xβ
2 − xβ

1

)n−m−1

× exp
[
−α

(
xβ
2 − xβ

1

)]
.

The pth conditional moment is, therefore

μ
p
(n|m) = αn−mβ

� (n − m)

∫ ∞

x1

xp+β−1
2

(
xβ
2 − xβ

1

)n−m−1

× exp
[
−α

(
xβ
2 − xβ

1

)]
dx2

Now making the transformation
(
xβ
2 − xβ

1

)
= w we have x2 =

(
w + xβ

1

)1/β
and

dx2 = 1
β

(
w + xβ

1

)1/β−1
du and hence the pth conditional moment is

μ
p
(n|m)

= αn−mβ

� (n − m)

∫ ∞
0

{(
w + xβ

1

)1/β}p+β−1
wn−m−1e−αw

× 1

β

(
w + xβ

1

)1/β−1
dw

= αn−m

� (n − m)

∫ ∞
0

(
w + xβ

1

)p/β
wn−m−1e−αwdw.
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Now expanding
(
w + xβ

1

)p/β
we have

μ
p
(n|m) = αn−m

� (n − m)

∫ ∞

0

p/β∑

r=0

� (p/β + 1)

� (r + 1) � (p/β − r + 1)

×wp/β−rxβr
1 wn−m−1e−αwdw

or

μ
p
(n|m) = αn−m

� (n − m)

p/β∑

r=0

� (p/β + 1) xβr
1

� (r + 1) � (p/β − r + 1)

×
∫ ∞

0
wn+p/β−m−r−1e−αwdw

or

μ
p
(n|m) = 1

� (n − m)

p/β∑

r=0

αp/β+r� (p/β + 1) xβr
1

� (r + 1) � (p/β − r + 1)

×�

(
n − m − r − p

β

)
.

Usingβ = 1 the expression for conditionalmoments of upper records for exponential
distribution is

μ
p
(n|m) = 1

� (n − m)

p∑

r=0

αp+rxr1� (p + 1)

� (r + 1) � (p − r + 1)

×� (n − m − r − p) .

The conditional mean is obtained by using p = 1 as

μ(n|m) = α (αx1 + n − m − 2)

(n − m − 1) (n − m − 2)
.

The conditional variance can be obtained easily by using p = 2 in expression of
μ
p
(n|m).

3.7 Recurrence Relations for Moments of Record Values

In previous section we have discussed single, product and conditional moments of
upper records and kth upper records. We have also given some examples to compute
the moments of upper records. In several cases the explicit expression for moments
of upper records can be derived but several cases may arise where explicit expres-
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sion for moments of upper record is very complicated. Several researchers have
established the recurrence relations to compute moments of specific order for upper
records by using the information of lower order moments. In this section we will
discuss a general method to derive the recurrence relations for single and product
moments of upper records. We will also illustrate the use of that general expression
to derive the recurrence relations for moments of upper record values for certain
special distributions. We first present a general expression for recurrence relations
of moments of upper records, due to Bieniek and Szynal (2002), in the following
theorem.

Theorem 3.1 Suppose a sequence of random variables {Xn; n ≥ 1} is available
froman absolutely continuous distribution functionF (x). Suppose further that XUK (n)

be kth upper record of the sequence then following recurrence relation hold between
moments of the records

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx, (3.24)

and

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k dx2dx1, (3.25)

where R (x) = − ln [1 − F (x)].

Proof The pth moment of kth upper record is

μ
p
K(n) = E

(
Xp
UK (n)

)
=
∫ ∞

−∞
xpfUK (n) (x) dx

= kn

� (n)

∫ ∞

−∞
xpf (x) {1 − F (x)}k−1 {R (x)}n−1 dx.

Integrating above equation by parts taking f (x) {1 − F (x)}k−1 as function for inte-
gration we have

μ
p
K(n) = kn

� (n)

[
−xp {R (x)}n−1 {1 − F (x)}k

k

∣∣∣∣∣

∞

−∞

−
∫ ∞

−∞

{
pxp−1 {R (x)}n−1 + (n − 1) xp {R (x)}n−2

× f (x)

[1 − F (x)]

} −{1 − F (x)}k
k

dx

]
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= pkn

k� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx

+ (n − 1) kn

k� (n)

∫ ∞

−∞
xpf (x) [1 − F (x)]k−1 {R (x)}n−2 dx

or

μ
p
K(n) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx

+ kn−1

� (n − 1)

∫ ∞

−∞
xpf (x) [1 − F (x)]k−1 {R (x)}n−2 dx.

Since

μ
p
K(n−1) = kn−1

� (n − 1)

∫ ∞

−∞
xpf (x) [1 − F (x)]k−1 {R (x)}n−2 dx,

hence above equation can be written as

μ
p
K(n) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx + μ

p
K(n−1)

or

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx;

which is (3.24).
Again consider the expression for product moments of kth upper records as

μ
p,q
K(m,n) = E

(
Xp
UK (m)X

q
UK (n)

)

=
∫ ∞

−∞

∫ ∞

x1

xp1x
q
2 fUK (m),UK (n) (x1, x2) dx2dx1

= kn

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q
2r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1 dx2dx1.

or

μ
p,q
K(m,n) = kn

� (m) � (n − m)

∫ ∞

−∞
xp1r (x1) [R (x1)]

m−1 I (x2) dx1 (i)

where

I (x2) =
∫ ∞

x1

xq2 f (x2) [1 − F (x2)]
k−1 [R (x2) − R (x1)]

n−m−1 dx2.
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Integrating above integral by parts using f (x2) {1 − F (x2)}k−1 for integration we
have

I (x2) = −xq2[R (x2) − R (x1)]
n−m−1 {1 − F (x2)}k

k

∣∣∣∣∣

∞

x1

+ 1

k

∫ ∞

x1

[
qxq−1

2 [R (x2) − R (x1)]
n−m−1

+ (n − m − 1) xq2[R (x2) − R (x1)]
n−m−2

× f (x2)

1 − F (x2)

]
{1 − F (x2)}k dx2

or

I (x2) = q

k

∫ ∞

x1

xq−1
2 [R (x2) − R (x1)]

n−m−1 [1 − F (x2)]
k dx2

+ (n − m − 1)

k

∫ ∞

x1

xq2 f (x2) [R (x2) − R (x1)]
n−m−2

× [1 − F (x2)]
k−1dx2.

Now using the value of I (x2) in (i) we have

μ
p,q
K(m,n) = kn

� (m) � (n − m)

∫ ∞

−∞
xp1r (x1) [R (x1)]

m−1

×
[
q

k

∫ ∞

x1

xq−1
2 [R (x2) − R (x1)]

n−m−1 [1 − F (x2)]
k dx2

+ (n − m − 1)

k

∫ ∞

x1

xq2 f (x2) [R (x2) − R (x1)]
n−m−2

× [1 − F (x2)]
k−1dx2

]
dx1

or

μ
p,q
K(m,n) = qkn

k� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k dx2dx1

+ (n − m − 1) kn

k� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q
2r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−2 [1 − F (x2)]

k−1dx2dx1
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or

μ
p,q
K(m,n) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k dx2dx1

+ kn−1

� (m) � (n − m − 1)

∫ ∞

−∞

∫ ∞

x1

xp1x
q
2r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−2 [1 − F (x2)]

k−1dx2dx1.

Since

μ
p,q
K(m,n−1) = kn−1

� (m) � (n − m − 1)

∫ ∞

−∞

∫ ∞

x1

xp1x
q
2r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−2 [1 − F (x2)]

k−1dx2dx1.

Hence

μ
p,q
K(m,n) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k dx2dx1 + μ
p,q
K(m,n−1)

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k dx2dx1;

which is (3.25) and hence the theorem.

Corollary Suppose a sequence of randomvariables {Xn; n ≥ 1} is available froman
absolutely continuous distribution functionF (x). Suppose further that XU(n) be upper
record of the sequence then following recurrence relation hold between moments of
the records

μ
p
(n) − μ

p
(n−1) = p

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)} {R (x)}n−1 dx; (3.26)

and

μ
p,q
(m,n) − μ

p,q
(m,n−1) = q

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k dx2dx1. (3.27)
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where R (x) = − ln [1 − F (x)].

Proof The proof is straightforward by using k = 1 in (3.24) and (3.25).

The relations given in (3.24)–(3.27) are very useful in deriving recurrence relations
for single and product moments of upper record values for special distributions. In
the following we have given recurrence relations for single and product moments of
kth upper records and upper records for some selected distributions.

3.7.1 The Uniform Distribution

The Uniform distribution is a simple yet powerful distribution. The density and
distribution functions of Uniform distribution are respectively

f (x) = 1

b − a
; a ≤ x ≤ b

and
F (x) = x − a

b − a
; a ≤ x < b.

The density and distribution function are related as

(b − x) f (x) = 1 − F (x) . (3.28)

Bieniek and Szynal (2002) has used (3.28) to derive the recurrence relations for single
and product moments of kth upper records of uniform distribution. We present these
relations in the following.

We have from (3.24)

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx

= pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k−1 {R (x)}n−1

× {1 − F (x)} dx

Now using (3.28) we have

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ b

a
xp−1 {1 − F (x)}k−1 {R (x)}n−1

× (b − x) f (x) dx
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or

μ
p
K(n) − μ

p
K(n−1) = bpkn−1

� (n)

∫ b

a
xp−1f (x) {1 − F (x)}k−1 {R (x)}n−1 dx

−pkn−1

� (n)

∫ b

a
xpf (x) {1 − F (x)}k−1 {R (x)}n−1 dx

or

μ
p
K(n) − μ

p
K(n−1) = pb

k
μ
p−1
K(n) − p

k
μ
p
K(n)

or (
1 + p

k

)
μ
p
K(n) = pb

k
μ
p−1
K(n) + μ

p
K(n−1)

or

μ
p
K(n) = pb

k + p
μ
p−1
K(n) + k

k + p
μ
p
K(n−1). (3.29)

Again from Theorem 3.1, we have

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k dx2dx1

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 [1 − F (x)] dx2dx1.

Now using (3.28) we have

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ b

a

∫ b

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 (b − x2) f (x2) dx2dx1.

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qbkn−1

� (m) � (n − m)

∫ b

a

∫ b

x1

xp1x
q−1
2 r (x1)
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× f (x2) [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 dx2dx1 − qkn−1

� (m) � (n − m)

×
∫ b

a

∫ b

x1

xp1x
q
2r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1 dx2dx1.

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qb

k
μ
p,q−1
K(m,n) − q

k
μ
p,q
K(m,n)

or (
1 + q

k

)
μ
p,q
K(m,n) = qb

k
μ
p,q−1
K(m,n) + μ

p,q
K(m,n−1)

or

μ
p,q
K(m,n) = qb

k + q
μ
p,q−1
K(m,n) + k

k + q
μ
p,q
K(m,n−1). (3.30)

The recurrence relations for upper records can be obtained by substituting k = 1 in
(3.29) and (3.30) and are given by Ahsanullah (2004) as

μ
p
(n) = pb

p + 1
μ
p−1
(n) + 1

p + 1
μ
p
(n−1). (3.31)

and

μ
p,q
(m,n) = qb

q + 1
μ
p,q−1
(m,n) + 1

q + 1
μ
p,q
(m,n−1). (3.32)

3.7.2 Power Function Distribution

The Power function distribution is extended form of the Uniform distribution. The
density and distribution function of a random variable X having Power function
distribution are

f (x) = θ (x − a)θ−1

(b − a)θ
; a ≤ x ≤ b, θ ≥ 1

and

F (x) =
(
x − a

b − a

)θ

; a ≤ x < b, θ ≥ 1.

We can see that following relation holds between density and distribution function

(b − x) f (x) = θ [1 − F (x)] . (3.33)
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The recurrence relation for single moments of Power function distribution has been
derived by Bieniek and Szynal (2002) by using (3.33). We present these relations in
the following.

We have from (3.24)

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx

= pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k−1 {R (x)}n−1

× [1 − F (x)] dx.

Now using (3.33) we have

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ b

a
xp−1 {1 − F (x)}k−1 {R (x)}n−1

× b − x

θ
f (x) dx

or

μ
p
K(n) − μ

p
K(n−1) = pbkn−1

θ� (n)

∫ b

a
xp−1 {1 − F (x)}k−1 {R (x)}n−1 dx

− pkn−1

θ� (n)

∫ b

a
xp {1 − F (x)}k−1 {R (x)}n−1 dx

or

μ
p
K(n) − μ

p
K(n−1) = pb

kθ
μ
p−1
K(n) − p

kθ
μ
p
K(n)

or (
1 + p

kθ

)
μ
p
K(n) = pb

kθ
μ
p−1
K(n) + μ

p
K(n−1)

or

μ
p
K(n) = pb

kθ + p
μ
p−1
K(n) + kθ

kθ + p
μ
p
K(n−1). (3.34)

The recurrence relation for product moments of Power function distribution can be
derived by using (3.25)

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k dx2dx1
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or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 [1 − F (x)] dx2dx1.

Now using (3.33) we have

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ b

a

∫ b

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 (b − x2)

θ
f (x2) dx2dx1,

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qbkn−1

θ� (m) � (n − m)

∫ b

a

∫ b

x1

xp1x
q−1
2 r (x1)

× f (x2) [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 dx2dx1 − qkn−1

θ� (m) � (n − m)

×
∫ b

a

∫ b

x1

xp1x
q
2r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1 dx2dx1,

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qb

kθ
μ
p,q−1
K(m,n) − q

kθ
μ
p,q
K(m,n)

or (
1 + q

kθ

)
μ
p,q
K(m,n) = qb

kθ
μ
p,q−1
K(m,n) + μ

p,q
K(m,n−1)

or

μ
p,q
K(m,n) = qb

kθ + q
μ
p,q−1
K(m,n) + kθ

kθ + q
μ
p,q
K(m,n−1). (3.35)

We can see that the recurrence relations for single and product moments of kth upper
record values for Uniform distribution can be obtained from (3.34) and (3.35) by
using θ = 1 and are given in (3.29) and (3.30). Further, the recurrence relations for
single and product moments of upper records for Power function distribution can be
obtained from (3.34) and (3.35) by using k = 1 and are given as
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μ
p
(n) = pb

p + θ
μ
p−1
K(n) + θ

p + θ
μ
p
K(n−1), (3.36)

and

μ
p,q
(m,n) = qb

q + θ
μ
p,q−1
K(m,n) + θ

q + θ
μ
p,q
K(m,n−1). (3.37)

3.7.3 The Burr Distribution

The density and distribution function of the Burr distribution are given as

f (x) = cβλβxc−1

(λ + xc)β+1
; x, c,β,λ > 0

and

F (x) = 1 −
(

λ

λ + xc

)β

; x > 0.

The density and distribution function are related as

f (x) = cβxc−1

λ + xc
[1 − F (x)] . (3.38)

The recurrence relations for single and product moments of kth upper records for
Burr distribution have been derived by Pawlas and Szynal (1999) by using (3.38) in
(3.24). We present these relations in the following.

Consider (3.24) as

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx

= pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k−1 [1 − F (x)]

× {R (x)}n−1 dx.

Now using (3.38) in above equation we have

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

0
xp−1 {1 − F (x)}k−1

(
λ + xc

cβxc−1

)

× f (x) {R (x)}n−1 dx



3.7 Recurrence Relations for Moments of Record Values 113

or

μ
p
K(n) − μ

p
K(n−1) = pkn−1

cβ� (n)

∫ ∞

0
xp−1 {1 − F (x)}k−1

(
λ

xc−1
+ x

)

× f (x) {R (x)}n−1 dx

or

μ
p
K(n) − μ

p
K(n−1) = λpkn−1

cβ� (n)

∫ ∞

0
xp−cf (x) {1 − F (x)}k−1 {R (x)}n−1 dx

+ pkn−1

cβ� (n)

∫ ∞

0
xpf (x) {1 − F (x)}k−1 {R (x)}n−1 dx

or

μ
p
K(n) − μ

p
K(n−1) = λp

kcβ
μ
p−c
K(n) + p

kcβ
μ
p
K(n)

or (
1 − p

kcβ

)
μ
p
K(n) = μ

p
K(n−1) + λp

kcβ
μ
p−c
K(n)

or

μ
p
K(n) = kcβ

kcβ − p
μ
p
K(n−1) + λp

kcβ − p
μ
p−c
K(n). (3.39)

The recurrence relation for single moments of upper records for Burr distribution
can be obtained by using k = 1 in (3.39) and is given as

μ
p
(n) = cβ

cβ − p
μ
p
(n−1) + λp

cβ − p
μ
p−c
(n) . (3.40)

Further, the recurrence relation for single moments of kth upper records and simple
upper records for Pareto distribution can be readily obtained from (3.39) and (3.40)
by using c = 1 and are given as

μ
p
K(n) = kβ

kβ − p
μ
p
K(n−1) + λp

kβ − p
μ
p−1
K(n) (3.41)

and

μ
p
(n) = β

β − p
μ
p
(n−1) + λp

β − p
μ
p−1
(n) . (3.42)
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Again the recurrence relation for product moments is derived by using (3.25) as

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k dx2dx1,

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 [1 − F (x2)] dx2dx1.

Now using (3.38) in above equation we have

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

0

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1

(
λ + xc2
cβxc−1

2

)
f (x2) dx2dx1

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

cβ� (m) � (n − m)

∫ ∞

0

∫ ∞

x1

xp1x
q−1
2

×
(

λ

xc−1
2

+ x2

)
[R (x1)]

m−1 r (x1) f (x2)

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1 dx2dx1

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = λqkn−1

cβ� (m) � (n − m)

∫ ∞

0

∫ ∞

x1

xp1x
q−c
2 r (x1) f (x2)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 dx2dx1 + qkn−1

cβ� (m) � (n − m)

×
∫ ∞

0

∫ ∞

x1

xp1x
q
2r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1 dx2dx1



3.7 Recurrence Relations for Moments of Record Values 115

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = λq

kcβ
μ
p,q−c
K(m,n) + q

kcβ
μ
p,q
K(m,n)

or

μ
p,q
K(m,n) − q

kcβ
μ
p,q
K(m,n) = μ

p,q
K(m,n−1) + λq

kcβ
μ
p,q−c
K(m,n)

or (
1 − q

kcβ

)
μ
p,q
K(m,n) = μ

p,q
K(m,n−1) + λq

kcβ
μ
p,q−c
K(m,n)

or

μ
p,q
K(m,n) = kcβ

kcβ − q
μ
p,q
K(m,n−1) + λq

kcβ − q
μ
p,q−c
K(m,n). (3.43)

The recurrence relation for upper records of Burr distribution can be readily obtained
from (3.43) by using k = 1 and is given as

μ
p,q
(m,n) = cβ

cβ − q
μ
p,q
(m,n−1) + λq

cβ − q
μ
p,q−c
(m,n) . (3.44)

Finally, the recurrence relation for product moments of kth upper records and upper
records for Pareto distribution can be easily obtained from (3.43) and (3.44) by using
c = 1.

3.7.4 The Exponential Distribution

The exponential distribution is very useful distribution in life testing. The density
and distribution function of a random variable X having exponential distribution are
respectively

f (x) = αe−αx; x,α > 0

and
F (x) = 1 − e−αx; x,α > 0.

The density and distribution function are related as

f (x) = α [1 − F (x)] . (3.45)

The recurrence relation for single moments of kth upper records is derived by Pawlas
and Szynal (1998) by using the relation (3.45) in (3.24) and is given below.
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Consider (3.24) as

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx

= pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k−1 {1 − F (x)}

× {R (x)}n−1 dx.

Now using (3.45) in above equation we have

μ
p
K(n) − μ

p
K(n−1) = pkn−1

α� (n)

∫ ∞

0
xp−1 {1 − F (x)}k−1 f (x) {R (x)}n−1 dx

= p

kα
μ
p−1
K(n)

or
μ
p
K(n) = μ

p
K(n−1) + p

kα
μ
p−1
K(n). (3.46)

Again, the recurrence relation for product moments of kth upper records for Expo-
nential distribution is derived below.

We have from (3.25)

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k dx2dx1

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 [1 − F (x2)] dx2dx1.

Now using (3.45) in above equation we have

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

α� (m) � (n − m)

∫ ∞

0

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 f (x2) dx2dx1
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or
μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = q

kα
μ
p,q−1
K(m,n)

or
μ
p,q
K(m,n) = μ

p,q
K(m,n−1) + q

kα
μ
p,q−1
K(m,n). (3.47)

The recurrence relations for single and product moments of upper records of expo-
nential distribution can be obtained from (3.46) and (3.47) by using k = 1.

3.7.5 The Weibull Distribution

The density and distribution function of Weibull random variable are

f (x) = αβxβ−1 exp
(−αxβ

) ; x,α,β > 0

and
F (x) = 1 − exp

(−αxβ
) ; x,α,β > 0.

The density and distribution function are related as

f (x) = αβxβ−1 [1 − F (x)] . (3.48)

The relation (3.48) has been used by Pawlas and Szynal (2000) to derive the recur-
rence relation for moments of kth upper records and is given below.

Consider (3.24) as

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx

= pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k−1 {1 − F (x)}

× {R (x)}n−1 dx.

Now using (3.48) in above equation we have

μ
p
K(n) − μ

p
K(n−1) = pkn−1

αβ� (n)

∫ ∞

0
xp−1 {1 − F (x)}k−1 {R (x)}n−1

× x1−β f (x) dx

= p

kαβ
μ
p−β
K(n)
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or
μ
p
K(n) = μ

p
K(n−1) + p

kαβ
μ
p−β
K(n). (3.49)

We can see that β = 1, the recurrence relation (3.49) reduces to the recurrence
relation for single moments of kth upper records for exponential distribution. The
recurrence relation for single moments of upper records can be easily obtained from
(3.49) by using k = 1.

The recurrence relation for product moments of kth upper records for Weibull
distribution can be derived by using (3.25) as below.

We have

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k dx2dx1

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 [1 − F (x2)] dx2dx1.

Now using (3.48) in above equation we have

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

αβ� (m) � (n − m)

∫ ∞

0

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 x1−β

2 f (x2) dx2dx1

or
μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = q

kαβ
μ
p,q−β
K(m,n)

or
μ
p,q
K(m,n) = μ

p,q
K(m,n−1) + q

kαβ
μ
p,q−β
K(m,n). (3.50)

It can be seen that (3.50) reduces to (3.47) for β = 1 as the case should be. Finally,
the recurrence relation for product moments of upper records forWeibull distribution
can be obtained from (3.50) by using k = 1.
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3.7.6 The Frechet Distribution

The density and distribution function of Frechet distribution are

f (x) = αβ

xβ+1
exp

(
− α

xβ

)
; x,α,β > 0

and
F (x) = exp

(
− α

xβ

)
.

The density and distribution function are related as

1 − F (x) = xβ+1

αβ

{
exp

( α

xβ

)
− 1

}
f (x) . (3.51)

The recurrence relations for single and product moments of kth upper records for
Frechet distribution are obtained by using (3.51) in (3.24) and (3.25). First consider
(3.24) as

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx

= pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k−1 {1 − F (x)}

× {R (x)}n−1 dx.

Now using (3.51) in above equation we have

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k−1 x

β+1

αβ
f (x)

×
{
exp

( α

xβ

)
− 1

}
× {R (x)}n−1 dx

or

μ
p
K(n) − μ

p
K(n−1) = pkn−1

αβ� (n)

∫ ∞

−∞
xp+β exp

( α

xβ

)
f (x) {1 − F (x)}k−1

× {R (x)}n−1 dx − pkn−1

αβ� (n)

∫ ∞

−∞
xp+β f (x)

× {1 − F (x)}k−1 {R (x)}n−1 dx

or

μ
p
K(n) − μ

p
K(n−1) = pkn−1

αβ� (n)

∫ ∞

−∞
xp+β exp

( α

xβ

)
f (x) {1 − F (x)}k−1

× {R (x)}n−1 dx − p

kαβ
μ
p+β
K(n)
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Now expanding exp
(
α/xβ

)
we have

μ
p
K(n) − μ

p
K(n−1) =

∑∞
j=0

αj−1

j!
pkn

kβ� (n)

∫ ∞

−∞
xp+β−jβ f (x)

× {1 − F (x)}k−1 {R (x)}n−1 dx − p

kαβ
μ
p+β
K(n)

or

μ
p
K(n) − μ

p
K(n−1) = p

kβ

{∑∞
j=0

αj−1

j! μ
p−β(j−1)
K(n) − 1

α
μ
p+β
K(n)

}
· (3.52)

The recurrence relations for single moments of upper records can be easily obtained
from (3.52) by using k = 1. Again consider (3.25) as

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k dx2dx1

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 [1 − F (x2)] dx2dx1.

Now using (3.51) in above equation we have

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

αβ� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q+β
2 r (x1) f (x2)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1 [1 − F (x2)]
k−1

×
{
exp

(
α

xβ
2

)
− 1

}
dx2dx1

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

αβ� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q+β
2 exp

(
α

xβ
2

)

× r (x1) f (x2) [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 dx2dx1 − qkn−1

αβ� (m) � (n − m)
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×
∫ ∞

−∞

∫ ∞

x1

xp1x
q+β
2 r (x1) f (x2) [R (x1)]

m−1

× [R (x2) − R (x1)]
n−m−1 [1 − F (x2)]

k−1 dx2dx1

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

αβ� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q+β
2 exp

(
α

xβ
2

)

× r (x1) f (x2) [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 dx2dx1 − q

kαβ
μ
p,q+β
K(m,n).

Now expanding exp
(
α/xβ

)
we have

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) =

∑∞
j=0

αj−1

j!
qkn−1

β� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q+β−jβ
2

× r (x1) f (x2) [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 dx2dx1 − q

kαβ
μ
p,q+β
K(m,n).

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = q

kβ

{∑∞
j=0

αj−1

j! μ
p,q−β(j−1)
K(m,n) − 1

α
μ
p,q+β
K(m,n)

}
. (3.53)

The recurrence relation for productmoments of upper records can be readily obtained
from (3.53) by using k = 1.

3.7.7 The Gumbel Distribution

TheGumbel distribution is a popular distribution in extreme value theory. The distrib-
ution is described in two situations, namelyGumbelmaximumandGumbelminimum
distribution. The density and distribution function for Gumbel minimum distribution
are

f (x) = 1

σ
exp

[ x
σ

− exp
( x
σ

)]
; −∞ < x < ∞, σ > 0

and
F (x) = 1 − exp

[
− exp

( x
σ

)]
; −∞ < x < ∞, σ > 0.
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The density and distribution function are related as

∑∞
j=0

(−1)j
xj

σj−1j! f (x) = [1 − F (x)] . (3.54)

The recurrence relation for single moments of kth upper records is derived by using
the relation (3.54) in (3.24) and is given below.

Consider (3.24) as

μ
p
K(n) − μ

p
K(n−1) = pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k {R (x)}n−1 dx

= pkn−1

� (n)

∫ ∞

−∞
xp−1 {1 − F (x)}k−1 {1 − F (x)}

× {R (x)}n−1 dx.

Now using (3.54) in above equation we have

μ
p
K(n) − μ

p
K(n−1) =

∑∞
j=0

(−1)j

σj−1j!
pkn−1

� (n)

∫ ∞

0
xp+j−1f (x) {1 − F (x)}k−1

× {R (x)}n−1 dx

=
∑∞

j=0

(−1)j

σj−1j!
p

k
μ
p+j−1
K(n) .

or

μ
p
K(n) = μ

p
K(n−1) +

∑∞
j=0

(−1)j

σj−1j!
p

k
μ
p+j−1
K(n) . (3.55)

Again, the recurrence relation for product moments of kth upper records for Expo-
nential distribution is derived below.

We have from (3.25)

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k dx2dx1

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) = qkn−1

� (m) � (n − m)

∫ ∞

−∞

∫ ∞

x1

xp1x
q−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 [1 − F (x2)] dx2dx1.
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Now using (3.54) in above equation we have

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) =

∑∞
j=0

(−1)j

σj−1j!
qkn−1

� (m) � (n − m)

∫ ∞

0

∫ ∞

x1

xp1x
q+j−1
2 r (x1)

× [R (x1)]
m−1 [R (x2) − R (x1)]

n−m−1

× [1 − F (x2)]
k−1 f (x2) dx2dx1

or

μ
p,q
K(m,n) − μ

p,q
K(m,n−1) =

∑∞
j=0

(−1)j

σj−1j!
q

k
μ
p,q+j−1
K(m,n)

or

μ
p,q
K(m,n) = μ

p,q
K(m,n−1) +

∑∞
j=0

(−1)j

σj−1j!
q

k
μ
p,q+j−1
K(m,n) . (3.56)

The recurrence relations for single and product moments of upper records of expo-
nential distribution can be obtained from (3.55) and (3.56) by using k = 1.



Chapter 4
The Generalized Order Statistics

4.1 Introduction

In Chap.1 we have given a brief overview of some of the possible models for ordered
random variables. Further, in previous two chapters we have discussed, in detail, two
popular models of ordered random variables, namely Order Statistics and Record
Values. We have seen that the order statistics and record values have been studied by
several authors in context of different underlying probability models.

The other models of ordered random variables given in Chap.1 have not been
studied in much details for specific probability distributions but they all have been
combined in a more general model for ordered data known as Generalized Order
Statistics (GOS). Kamps (1995a) has proposed GOS as a unified models for ordered
random variables which produce several models as a special case. Since its inception
GOS has attracted number of statisticians as distribution specific results obtained for
GOS can be used to obtain the results for other models of ordered random variables
as special case. We formally define GOS and their joint distribution in the following.

4.2 Joint Distribution of GOS

Suppose a random sample of size {n; n ∈ N} is available from a distribution with
cumulative distribution function F(x) and let k ≥ 1. Suppose further that the con-
stants m1,m2, . . . ,mn−1 are available such that mr ∈ R and let

Mr =
n−1∑

j=r

m j ; 1 ≤ r ≤ n − 1.
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The numbers n, k and mr are parameters of the model. Define γr as γr = k +
(n − r) + Mr such that γr ≥ 1 for all r ∈ {1, 2, . . . , n − 1}. Finally let

m̃ = (m1,m2, . . . ,mn−1); i f n ≥ 2

then the random variables Xr :n,m̃,k are the Generalized Order Statistics (GOS) from
the distribution F(x), if their joint density function is of the form

f1,...,n:n,m̃,k(x1, . . . , xn) = k

⎛

⎝
n−1∏

j=1

γ j

⎞

⎠{1 − F(xn)}k−1 f (xn)

×
[
n−1∏

i=1

{1 − F(xi )}mi f (xi )

]
; (4.1)

and is defined on the cone F−1(0) < x1 ≤ x2 ≤ ... ≤ xn < F−1(1).
If m1 = m2 = · · · = mn−1 = m, then GOS are denoted as Xr :n,m,k .

Making the transformation Ur :n,m̃,k = F
(
Xr :n,m̃,k

)
, the random variables Ur :n,m̃,k

are called the Uniform GOS with joint density function

f1,...,n:n,m̃,k(u1, . . . , un) = k

⎛

⎝
n−1∏

j=1

γ j

⎞

⎠
[
n−1∏

i=1

(1 − ui )
mi

]

× (1 − un)
k−1; (4.2)

with 0 ≤ u1 ≤ u2 ≤ ... ≤ un < 1. The joint distribution of GOS given in (4.1) pro-
vides a comprehensive model for joint distribution of all models of ordered random
variables for different values of the parameters involved. We have given the joint
distribution of various models of ordered random variables as special cases of (4.1)
in the following.

4.3 Special Cases of GOS

Kamps (1995b) have discussedGOS as a unifiedmodel for ordered randomvariables.
This model contains all the models of GOS discussed in Chap.1. We see in the
following how GOS provide various models of ordered random variables as special
cases.

1. Choosing m1 = m2 = · · · = mn−1 = 0 and k = 1, such that γr = n − r + 1,
density (4.1) reduces to

http://dx.doi.org/10.2991/978-94-6239-225-0_1
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f1,...,n:n,0,1(x1, . . . , xn) = n!
n∏

i=1

f (xi ),

which is joint density of Ordinary Order Statistics (OOS).
2. Choosing m1 = m2 = · · · = mn−1 = 0 and k = α − n + 1, with n − 1 < α such

that γr = α − r + 1, the density (4.1) reduces to

f1,...,n:n,0,α−n+1(x1, . . . , xn) =
n∏

j=1

(α − j + 1)

× [1 − F(xn)]
α−n

×
n∏

i=1

f (xi ),

which is joint density of OOS with non–integral sample size.
3. Choosing mi = (n − i + 1)αi − (n − i)αi+1 − 1; i = 1, 2, ..., n − 1; k = αn

for some real number α1,α2, . . . ,αn such that γr = (n − r + 1)αr , the density
(4.1) becomes

f1,...,n:n,m̃,αn (x1, ..., xn) = n!
⎛

⎝
n−1∏

j=1

α j

⎞

⎠
[
n−1∏

i=1

{1 − F(xi )}mi

× f (xi )]{1 − F(xn)}αn−1

× f (xn),

which is joint density of Sequential Order Statistics (SOS) based on the arbitrary
distribution function

Fr (t) = 1 − [1 − F(t)]αr ; 1 ≤ r ≤ n.

4. Form1 = m2 = · · · = mn−1 = −1 and k ∈ N, such that γr = k, the density (4.1)
reduces to

f1,...,n:n,−1,k(x1, ..., xn) = kn
[
n−1∏

i=1

f (xi )

1 − F(xi )

]

× {1 − F(xn)}k−1 f (xn),

which is joint density of kth records. Choosing k = 1 we obtain joint density of
records.

5. For positive real numbers β1,β2, . . . ,βn , choosing mi = βi − βi+1 − 1; i =
1, 2, . . . , n − 1 and k = βn; such that γr = βr ; the density (4.1) reduces to
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f1,...,n:n,m̃,βn (x1, ..., xn) =
⎛

⎝
n∏

j=1

β j

⎞

⎠
[
n−1∏

i=1

{1 − F(xi )}mi

f (xi )]{1 − F(xn)}βn−1

× f (xn),

which is joint density of Pfeifer’s record values from non–identically distributed
random variables based upon

Fr (t) = 1 − [1 − F(t)]βr ; 1 ≤ r ≤ n.

6. For positive real numbers β1,β2, . . . ,βn , choosing

mi = βi ki − βi+1ki+1 − 1; i = 1, 2, . . . , n − 1

and k = βnkn; such that γr = βr kr ; the density (4.1) reduces to

f1,...,n:n,m̃,βn (x1, ..., xn) =
⎛

⎝
n∏

j=1

k j

⎞

⎠ f (xn)

×
[
n−1∏

i=1

{1 − F(xi )}ki−ki+1−1

f (xi )] × {1 − F(xn)}kn−1,

which is joint density of kn–records from non–identically distributed random
variables.

7. Choosing
m1 = · · · = mr1−1 = mr1+1 = · · · = mn−1 = 0;

mr1 = n1 and k = ν − n1 − n + 1 such that

γr = ν − n + 1; 1 ≤ r ≤ r1

and
γr = ν − n1 − r + 1; r1 < r ≤ n − 1

the density (4.1) reduces to

f1,...,n:n,m̃,βn (x1, ..., xn) = ν!(ν − r1 − n1)!
(ν − r1)!(ν − n1 − n)

n∏

i=1

f (xi )

× [
1 − F

(
xr1

)]n1 [1 − F(xn)]
ν−n1−n

which is joint density of progressive type II censoring with two stages.
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4.4 Some Notations

Since GOS provides a unified model for ordered random variables, it requires certain
special notations. These notations are given below.

1. The constant Cr−1 is defined as

Cr−1 =
r∏

j=1

γ j ; r = 1, 2, . . . , n

with γn = k. Hence we have

Cn−1 =
n∏

j=1

γ j = k
n−1∏

j=1

γ j .

2. On the unit interval the functions hm(x) and gm(x), m ∈ R, are defined as

hm(x) =
{− 1

m+1 (1 − x)m+1; m �= −1
− ln(1 − x) ; m = −1

; x ∈ [0, 1)

gm(x) = hm(x) − hm(0)

=
{ 1

m+1

[
1 − (1 − x)m+1

] ; m �= −1
− ln(1 − x) ; m = −1

; x ∈ [0, 1)

Using above representation, the joint density of Uniform GOS can be written as

f1,...,n:n,m̃,k(u1, ..., un) = k

⎛

⎝
n−1∏

j=1

γ j

⎞

⎠
[
n−1∏

i=1

d

dui
hmi (ui )

]

× (1 − un)
k−1

Hence the functions hm(x) and gm(x) occur very frequently in context of GOS.

We now give the joint marginal distribution of first r GOS.

4.5 Joint Marginal Distribution of r GOS

The joint density function of n uniform GOS is given in (4.2) as

f1,...,n:n,m̃,k(u1, ..., un) = Cn−1

[
n−1∏

i=1

(1 − ui )
mi

]

× (1 − un)
k−1.
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The joint marginal density of r uniform GOS is readily written by integrating out
variables ur+1, . . . , un by induction as

f1,...,r :n,m̃,k(u1, ..., ur ) = Cr−1

[
r−1∏

i=1

(1 − ui )
mi

]
(1 − ur )

γr−1

; 0 ≤ u1 ≤ · · · ≤ ur < 1, (4.3)

which immediately yields following jointmarginal distribution ofGOS for any parent
distribution F(x)

f1,...,r :n,m̃,k(x1, ..., xr ) = Cr−1

[
r−1∏

i=1

{1 − F(xi )}mi f (xi )

]

× {1 − F(xr )}γr−1 f (xr ), (4.4)

on the cone F−1(0) < x1 ≤ · · · ≤ xr < F−1(1).
The joint marginal distribution of r GOS given in (4.4) provide joint marginal

distribution of other models of ordered random variables as special case. These
special cases are given below.

1. Ordinary Order Statistics: using m1 = · · · = mn−1 = 0 and k = 1 in (4.4), we
have the joint marginal distribution of r ordinary order statistics as

f1,...,r :n,0,1(x1, ..., xr ) = n!
(n − r)!

[
r−1∏

i=1

f (xi )

]

×{1 − F(xr )}n−r f (xr ).

2. Fractional Order Statistics: using m1 = · · · = mn−1 = 0 and k = α − n + 1 in
(4.4), we have the joint marginal distribution of r fractional order statistics as

f1,...,r :n,0,α−n+1(x1, ..., xr ) =
r∏

j=1

(α − j + 1)

[
r−1∏

i=1

f (xi )

]

×{1 − F(xr )}α−r f (xr ).

3. Sequential Order Statistics: The joint distribution of r sequential order statistics
is obtained by using mi = (n − i + 1)αi − (n − i)αi+1 and k = αn in (4.4) as

f1,...,r :n,m̃,αn (x1, . . . , xn) = n!
(n − r)!

r∏

j=1

α j

[
r−1∏

i=1

f (xi )

×{1 − F(xi )}mi
]

×{1 − F(xr )}αr (n−r+1)−1 f (xr ).
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4. Record Values: using m1 = · · · = mn−1 = −1 and k ∈ N in (4.4), the joint
marginal distribution of r k−record values is obtained as

f1,...,r :n,−1,k(x1, ..., xr ) = kr
[
r−1∏

i=1

f (xi )

1 − F(xi )

]

×{1 − F(xr )}k−1 f (xr ).

5. Pfeifer Record Values: using mi = βi − βi+1 − 1; k ∈ βn; as

f1,...,r :n,−1,k(x1, ..., xr ) =
r∏

j=1

β j

[
r−1∏

i=1

{1 − F(xi )}mi f (xi )

]

×{1 − F(xr )}βr−1 f (xr ).

Other special cases can also be obtained from (4.4). The jointmarginal distribution
of r uniform GOS given in (4.3) can be used to obtain the marginal distribution of
r th GOS and joint marginal distribution of r th and sth GOS. We have given these
distributions in the following but we first give a Lemma due to Kamps (1995b).

Lemma 4.1 We define the quantity A j as

A j =
∫ ur

ur− j−1

· · ·
∫ ur

ur−2

r−1∏

i=1

h/
m(ui )dur−1 · · · dur− j

= 1

j !
r− j−1∏

i=1

h/
m(ui )

{
hm(ur ) − hm

(
ur− j−1

)}
j .

We now give the marginal distribution of r th GOS.

4.6 Marginal Distribution of a Single GOS

The joint marginal distribution of r uniform GOS is given in (4.3) as

f1,...,r :n,m̃,k(u1, ..., ur ) = Cr−1

[
r−1∏

i=1

(1 − ui )
mi

]
(1 − ur )

γr−1

; 0 ≤ u1 ≤ · · · ≤ ur < 1.

Assuming m1 = · · · = mn−1 = m, the joint distribution is
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f1,...,r :n,m,k(u1, ..., ur ) = Cr−1

[
r−1∏

i=1

(1 − ui )
m

]
(1 − ur )

γr−1

; 0 ≤ u1 ≤ · · · ≤ ur < 1.

The marginal distribution of r th uniform GOS can be obtained from above by inte-
grating out u1, u2, . . . , ur−1 as under

fr :n,m,k(ur ) =
∫ ur

0
· · ·

∫ ur

ur−2

f1,...,r :n,m,k(u1, ..., ur )dur−1 · · · du1

=
∫ ur

0
· · ·

∫ ur

ur−2

Cr−1

[
r−1∏

i=1

(1 − ui )
m

]
(1 − ur )

γr−1

× dur−1 · · · du1

= Cr−1(1 − ur )
γr−1

∫ ur

0
· · ·

∫ ur

ur−2

[
r−1∏

i=1

(1 − ui )
m

]

× dur−1 · · · du1

= Cr−1(1 − ur )
γr−1

∫ ur

0
· · ·

∫ ur

ur−2

r−1∏

i=1

h/
m(ui )dur−1 · · · du1

Now using the Lemma 4.1 with j = r − 1; and noting that u0 = 0; we have:

Ar−1 =
∫ ur

0
· · ·

∫ ur

ur−2

r−1∏

i=1

h/
m(ui )dur−1 · · · du1

= 1

(r − 1)! {hm(ur ) − hm(0)}r−1 = 1

(r − 1)!g
r−1
m (ur ).

Hence the marginal distribution of r th uniform GOS is

fr :n,m,k(ur ) = Cr−1

(r − 1)! (1 − ur )
γr−1gr−1

m (ur ). (4.5)

The marginal density of r th GOS for any parent distribution is readily written from
(4.5); by noting that for any distribution the random variable F(x) is always uniform;
as

fr :n,m,k(x) = Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)]. (4.6)

The special cases can be readily written from (4.6). Specifically the marginal distri-
bution of r th k−record value is

fr :n,−1,k(x) = kr

(r − 1)! f (x){1 − F(x)}k−1[− ln{1 − F(x)}]r−1; (4.7)
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which for k = 1 reduces to distribution of r th record value as

fr :n,−1,k(x) = 1

(r − 1)! f (x)[− ln{1 − F(x)}]r−1. (4.8)

Further from (4.6) it can be readily seen that GOS Xr :n,m,k and Xr :n/,−m−2,k/ are
identically distributed where

k − k/ = −(
n + n/ − r − 1

)
(m + 1)& k/, n/ ∈ N.

Alsowe can see from (4.5) thatUr :n,m,k+m+1 andUr :n+1,m,k are identically distributed.
We now give the joint distribution of r th and sth GOS in the following.

4.7 Joint Distribution of Two GOS

We derive the joint distribution of rth and sth GOS ; with r < s; as under.
The joint marginal distribution of first s uniform GOS is given from (4.3) as

f1,...,s:n,m,k(u1, ..., us) = Cs−1

[
s−1∏

i=1

(1 − ui )
m

]
(1 − us)

γs−1

; 0 ≤ u1 ≤ · · · ≤ us < 1,

or

f1,...,s:n,m,k(u1, ..., us) = Cs−1

[
s−1∏

i=1

h/
m(ui )

]
(1 − us)

γs−1

; 0 ≤ u1 ≤ · · · ≤ us < 1.

The joint distribution of rth and sth GOS is obtained by integrating out ur = u1 and
us = u2 as

fr,s:n,m,k(u1, u2) =
∫ ur

0
· · ·

∫ ur

ur−2

∫ us

ur

· · ·
∫ us

us−2

f1,...,s:n,m,k(u1, ..., us)

× dus−1 · · · dur+1dur−1 · · · du1

=
∫ ur

0
· · ·

∫ ur

ur−2

∫ us

ur

· · ·
∫ us

us−2

Cs−1

[
s−1∏

i=1

h/
m(ui )

]

× (1 − us)
γs−1dus−1 · · · dur+1dur−1 · · · du1
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or

fr,s:n,m,k(u1, u2) = Cs−1(1 − us)
γs−1

×
∫ ur

0
· · ·

∫ ur

ur−2

∫ us

ur

· · ·
∫ us

us−2

s−1∏

i=1

h/
m(ui )

× dus−1 · · · dur+1dur−1 · · · du1
or

fr,s:n,m,k(u1, u2) = Cs−1(1 − us)
γs−1(1 − ur )

m

×
∫ ur

0
· · ·

∫ ur

ur−2

r−1∏

i=1

h/
m(ui )

×
[∫ us

ur

· · ·
∫ us

us−2

s−1∏

i=r+1

h/
m(ui )dus−1 · · · dur+1

]

× dur−1 · · · du1
or

fr,s:n,m,k(u1, u2) = Cs−1(1 − us)
γs−1(1 − ur )

m (4.8)

×
∫ ur

0
· · ·

∫ ur

ur−2

r−1∏

i=1

h/
m(ui )

× I (s)dur−1 · · · du1,

where

I (s) =
∫ us

ur

· · ·
∫ us

us−2

s−1∏

i=r+1

h/
m(ui )dus−1 · · · dur+1.

Now using Lemma 4.1 with s = r and j = s − r − 1 we have

As−r−1 = I (s) =
∫ us

ur

· · ·
∫ us

us−2

s−1∏

i=r+1

h/
m(ui )dus−1 · · · dur+1

= 1

(s − r − 1)! {hm(us) − hm(ur )}s−r−1

Using above result in (4.8) we have
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fr,s:n,m,k(u1, u2) = Cs−1(1 − us)
γs−1(1 − ur )

m

× 1

(s − r − 1)! {hm(us) − hm(ur )}s−r−1

×
∫ ur

0
· · ·

∫ ur

ur−2

r−1∏

i=1

h/
m(ui )dur−1 · · · du1

= Cs−1(1 − us)
γs−1(1 − ur )

m 1

(s − r − 1)!
× {hm(us) − hm(ur )}s−r−1 I (r)

Again using Lemma 4.1 with j = r − 1; and noting that u0 = 0; we have

Ar−1 = I (r) =
∫ ur

0
· · ·

∫ ur

ur−2

r−1∏

i=1

h/
m(ui )

× dur−1 · · · du1
= 1

(r − 1)! {hm(ur ) − hm(0)}r−1

or

Ar−1 = 1

(r − 1)!g
r−1
m (ur ).

Hence the joint density of r th and sth uniform GOS is

fr,s:n,m,k(u1, u2) = Cs−1

(r − 1)!(s − r − 1)! (1 − u1)
mgr−1

m (u1)

× (1 − u2)
γs−1{hm(u2) − hm(u1)}s−r−1. (4.9)

The joint density of rth and sth GOS from any parent distribution is readily written
as

fr,s:n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)! f (x1) f (x2)
× {1 − F(x1)}mgr−1

m {F(x1)}
× {1 − F(x2)}γs−1[hm{F(x2)} − hm{F(x1)}]s−r−1. (4.10)

The joint density of two contiguous GOS is immediately written as

fr,r+1:n,m,k(x1, x2) = Cr

(r − 1)! f (x1) f (x2){1 − F(x1)}m

× gr−1
m {F(x1)}{1 − F(x2)}γs−1. (4.11)
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Further, the joint density of smallest and largest GOS is

f1,n:n,m,k(x1, x2) = Cn−1

(n − 2)! f (x1) f (x2){1 − F(x1)}m

× {1 − F(x2)}k−1[hm{F(x2)} − hm{F(x1)}]n−2. (4.12)

The expression for special cases can be immediately written from (4.10), (4.11) and
(4.12). Specifically the joint density of rth and sth k record values is

fr,s:n,−1,k(x1, x2) = ks

(r − 1)!(s − r − 1)!
{

f (x1)

1 − F(x1)

}
f (x2)

× [− ln{1 − F(x1)}]r−1{1 − F(x2)}k−1

× [ln{1 − F(x1)} − ln{1 − F(x2)}]s−r−1. (4.13)

Other special cases can also be obtained in similar way.

Example 4.1 A random sample of size n is drawn from standard exponential distri-
bution with density function

f (x) = e−x ; x > 0.

Obtain the distribution of r th Generalized Order Statistics and joint distribution of
r th and sth Generalized Order Statistics.

Solution: We have f (x) = e−x ; x > 0 and hence

F(x) =
∫ x

0
e−t dt = 1 − e−x ; x > 0.

The density function of r th GOS is given in (4.6) as

fr :n,m,k(x) = Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)],

where

gm(u) = 1

m + 1

[
1 − (1 − u)m+1

]

so

gm[F(x)] = 1

m + 1

[
1 − {1 − F(x)}m+1

]
.
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Now for given distribution we have

gm[F(x)] = 1

m + 1

[
1 − e−(m+1)x

]

or gr−1
m [F(x)] =

[
1

m + 1

{
1 − e−(m+1)x

}]r−1

= 1

(m + 1)r−1

r−1∑

i=0

(−1)i
(
r − 1

i

)
e−(m+1)i x

Hence the density function of rth GOS for standard exponential distribution is

fr :n,m,k(x) = Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)]

= Cr−1

(r − 1)!(m + 1)r−1
e−x

(
e−x

)
γr−1

×
r−1∑

i=0

(−1)i
(
r − 1

i

)
e−(m+1)i x

= Cr−1

(r − 1)!(m + 1)r−1
e−γr x

r−1∑

i=0

(−1)i

×
(
r − 1

i

)
e−(m+1)i x

or

fr :n,m,k(x) = Cr−1

(r − 1)!(m + 1)r−1

r−1∑

i=0

(−1)i
(
r − 1

i

)

× exp[−{(m + 1)i + γr }x],

for x > 0. Again the joint density of rth and sth GOS is

fr,s:n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)! f (x1) f (x2)[1 − F(x1)]
m

× gr−1
m [F(x1)][1 − F(x2)]

γs−1

× [hm{F(x2)} − hm{F(x1)}]s−r−1;

where

hm{F(x)} = − 1

m + 1
{1 − F(x)}m+1.



138 4 The Generalized Order Statistics

For standard exponential distribution we have

hm[F(x2)] = − 1

m + 1
e−(m+1)x2

hm[F(x1)] = − 1

m + 1
e−(m+1)x1

gr−1
m [F(x1)] = 1

(m + 1)r−1

r−1∑

i=0

(−1)i
(
r − 1

i

)
e−(m+1)i x1

Now using these values; the joint density of rth and sth GOS for standard expo-
nential distribution is

fr,s:n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)!e
−x1e−x2e−mx1

1

(m + 1)r−1

×
r−1∑

i=0

(−1)i
(
r − 1

i

)
e−(m+1)i x1

(
e−x2

)
γs−1

×
[
− 1

m + 1
e−(m+1)x2 + 1

m + 1
e−(m+1)x1

]s−r−1

= Cs−1

(r − 1)!(s − r − 1)! · e−γs x2
1

(m + 1)r−1

×
r−1∑

i=0

(−1)i
(
r − 1

i

)
e−(m+1)(i+1)x1

1

(m + 1)s−r−1

× {
e−(m+1)x1 + e−(m+1)x2

}
s−r−1

or

fr,s:n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)!(m + 1)s−2
e−γs x2

×
r−1∑

i=0

(−1)i
(
r − 1

i

)
e−(m+1)(i+1)x1

s−r−1∑

j=0

(−1) j

×
(
s − r − 1

j

)
e−(m+1)(s−r− j−1)x1e−(m+1) j x2

or

fr,s:n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)!(m + 1)s−2

×
s−r−1∑

j=0

r−1∑

i=0

(−1)i+ j

(
r − 1

i

)(
s − r − 1

j

)

× e−(m+1)(s−r− j+i)x1e−[(m+1) j+γs ]x2 ,
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0 < x1 < x2 < ∞; as required.
Example 4.2 A random sample of size n is drawn from standardWeibull distribution
with density function

f (x) = βxβ−1 exp
(−xβ

); x,β > 0.

Obtain the distribution of r th k−Record value and joint distribution of rth and sth k
record values.

Solution: The distribution of rth k–Record value is given as

fUK (r)(x) = kr

(r − 1)! f (x){1 − F(x)}k−1[− ln{1 − F(x)}]r−1.

For given distribution we have

f (x) = βxβ−1 exp
(−xβ

); x,β > 0;
F(x) =

∫ x

0
f (t)dt =

∫ x

0
βtβ−1 exp

(−tβ
)
dt

= 1 − exp
(−xβ

); x,β > 0.

So − ln[1 − F(x)] = xβ .
Using above results the density of rth k–Record value is

fUK (r)(x) = kr

(r − 1)!βx
β−1 exp

(−xβ
){
exp

(−xβ
)}

k−1
(
xβ

)
r−1

= kr

(r − 1)!βx
rβ−1 exp

(−kxβ
)
.

For k = 1 we have density of rth Record value as

fXU (r) (x) = 1

(r − 1)!βx
rβ−1 exp

(−xβ
)
.

Again, the joint density of rth and sth k–Record value is

fUK (r),UK (s)(x1, x2) = ks

(r − 1)!(s − r − 1)!r(x1)
× f (x2)[R(x1)]

r−1{1 − F(x2)}k−1

× [R(x2) − R(x1)]
s−r−1,

where R(x) = − ln[1 − F(x)]; r(x) = R/(x) = f (x)
1−F(x) ·
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Now for given distribution we have

r(x1) = f (x1)

1 − F(x1)
=

βxβ−1
1 exp

(
−xβ

1

)

exp
(
−xβ

1

) = βxβ−1
1 ,

R(x1) = − ln[1 − F(x1)] = xβ
1 .

So
R(x2) − R(x1) = xβ

2 − xβ
1 .

Using these values; we have the joint density of rth and s th k–Record values as

fUK (r),UK (s)(x1, x2) = ks

(r − 1)!(s − r − 1)!βx
β−1
1 βxβ−1

2 exp
(
−xβ

2

)

×
(
xβ
1

)
r−1

{
exp

(
−xβ

2

)}
k−1

(
xβ
2 − xβ

1

)
s−r−1

= β2ks

(r − 1)!(s − r − 1)! x
rβ−1
1 xβ−1

2 exp
(
−kxβ

2

)

×
s−r−1∑

i=0

(−1)i
(
s − r − 1

i

)(
xβ
2

)
s−r−1−i

(
xβ
1

)
i

or

fUK (r),UK (r)(x1, x2) = β2ks

(r − 1)!(s − r − 1)! exp
(
−kxβ

2

)

×
s−r−1∑

i=0

(−1)i
(
s − r − 1

i

)
xβ(s−r−i)−1
2 xrβ+iβ−1,

1

for x1 < x2. Using k = 1 the joint density of rth and sth Record value is easily
obtained as

fXU (r),XU (s) (x1, x2) = β2

(r − 1)!(s − r − 1)! exp
(
−xβ

2

)

×
s−r−1∑

i=0

(−1)i
(
s − r − 1

i

)
xβ(s−r−i)−1
2 xrβ+iβ−1

1 ,

for x1 < x2.
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4.8 Distribution Function of GOS and Its Properties

The distribution function of GOS is very useful in exploring certain properties of
GOS. The distribution function of GOS can be written in different forms and each
of the form can be further used to study the properties of GOS as given by Kamps
(1995b). We will discuss the distribution function of GOS in the following.

Consider the density function of uniform GOS and GOS from any parent distrib-
ution as

ϕr,n(u) = Cr−1

(r − 1)! (1 − u)γr−1gr−1
m (u) (4.14)

and

fr :n,m,k(x) = Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)]. (4.15)

Kamps (1995b) have shown that the distribution function of uniform GOS can be
written as

�r,n(u) = 1 − Cr−1(1 − u)γr
r−1∑

j=0

1

j !Cr− j−1
g j
m(u).

Using the probability integral transform, the distribution function of GOS from any
parent distribution F(x) is readily written as

FX(r :n,m,k)(x) = 1 − Cr−1[1 − F(x)]γr
r−1∑

j=0

1

j !Cr− j−1
g j
m[F(x)]. (4.16)

Burkschat et al. (2003) have shown that the distribution function of GOS can be
written in the following form

FX(r :n,m,k)(x) = 1 − Cr−1

∫ 1−F(x)

0
Gr,0

r,r

[
y

∣∣∣∣
γ1, . . . γr

γ1 − 1, . . . γr − 1

]
dy (4.17)

where Gm,n
p,q

(
x
∣∣∣a1,...,ap

b1,...,bp

)
is Meijer’s G–function.

The distribution function of rth GOS can also be presented in the form of Incomplete
Beta function ratio as under

FX(r :n,m,k)(x) =
∫ x

−∞
fr :n,m,k(t)dt

= Cr−1

(r − 1)!
∫ x

−∞
f (t){1 − F(t)}γr−1gr−1

m [F(t)]dt

= Cr−1

(r − 1)!
∫ x

−∞
f (t){1 − F(t)}γr−1

×
[

1

m + 1

(
1 − {1 − F(t)}m+1)

]r−1

dt
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Now making the transformation w = (
1 − {1 − F(t)}m+1

)
we have

FX(r :n,m,k)(x) = Cr−1

�(r)(m + 1)r

∫ α[F(x)]

−∞
wr−1(1 − w)[γr /(m+1)]−1dw,

where α[F(x)] = 1 − {1 − F(x)}m+1. So the distribution function of GOS is

FX(r :n,m,k)(x) = Cr−1

�(r)(m + 1)r
Bα[F(x)]

(
r,

γr

m + 1

)

= Cr−1

�(r)(m + 1)r
B

(
r,

γr

m + 1

)
Iα[F(x)]

(
r,

γr

m + 1

)
,

where Ix (a, b) is incomplete Beta function ratio. The distribution function of GOS
may further be simplified as

FX(r :n,m,k)(x) = Cr−1

�(r)(m + 1)r
�(r)�

( γr
m+1

)

�
(
r + γr

m+1

) Iα[F(x)]

(
r,

γr

m + 1

)
·

Now using the relation

�

(
r + γr

m + 1

)
=

(
k

m + 1
+ n − 1

)
· · ·

(
k

m + 1
+ n − r

)
�

(
γr

m + 1

)

= Cr−1

(m + 1)r
�

(
γr

m + 1

)
,

we have

FX(r :n,m,k)(x) = Iα[F(x)]

(
r,

γr

m + 1

)
, (4.18)

The above relation can be used to obtain distribution function of special cases for
example using m = 0 and k = 1 in (4.18) we have

FX(r :n,0,1)(x) = IF(x)(r, n − r + 1);

which is (2.6), the distribution function of ordinary order statistics.
The distribution function of GOS has certain recurrence relations which are really

useful in computing probabilities for GOS from any parent distribution. We give a
useful recurrence relation between distribution functions of uniform GOS in the
following theorem.

Theorem 4.1 The distribution functions of uniform GOS are related as

�r :n(x) − �r−1:n(x) = − Cr−2

(r − 1)! (1 − x)γr gr−1
m (x) (4.19)

http://dx.doi.org/10.2991/978-94-6239-225-0_2
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Proof We have

�r :n(x) =
∫ x

0
ϕr :n(t)dt =

∫ x

0

Cr−1

(r − 1)! (1 − t)γr−1gr−1
m (t)dt

Now integrating by parts treating (1 − t)γr−1 for integration we have

�r :n(x) = − Cr−1

(r − 1)! · (1 − t)γr

γr
· gr−1

m (t)

∣∣∣∣
x

0

+
∫ x

0

{
Cr−1

(r − 2)!
(1 − t)γr

γr
gr−2
m (t)g/

m(t)

}
dt

= − Cr−2

(r − 1)! (1 − x)γr gr−1
m (x)

+
∫ x

0

Cr−2

(r − 2)! (1 − t)γr gr−2
m (t)(1 − t)mdt

or

�r,n(x) = − Cr−2

(r − 1)! (1 − x)γr gr−1
m (x)

+
∫ x

0

Cr−2

(r − 2)! (1 − t)γr+mgr−2
m (t)dt

= − Cr−2

(r − 1)! (1 − x)γr gr−1
m (x)

+
∫ x

0

Cr−2

(r − 2)! (1 − t)γr−1−1gr−2
m (t)dt

or

�r,n(x) = − Cr−2

(r − 1)! (1 − x)γr gr−1
m (x) + �r−1:n(x),

or

�r :n(x) − �r−1:n(x) = − Cr−2

(r − 1)! (1 − x)γr gr−1
m (x),

as required.

The relationship between distribution function of GOS from any parent distribution
is readily written as

FX(r :n,m,k)(x) − FX(r−1:n,m,k)(x) = − Cr−2

(r − 1)! [1 − F(x)]γr gr−1
m [F(x)]. (4.20)

The corresponding relationships for special cases can be readily obtained, for exam-
ple the recurrence relation for distribution functions of ordinary order statistics is
obtained from (4.20) by using m = 0 and k = 1 as
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FX(r :n,0,1)(x) − FX(r−1:n,0,1)(x) = − Cr−2

(r − 1)! [1 − F(x)]n−r+1[F(x)]r−1.

Recurrence relations for other special cases can be obtained in similar way.

4.9 GOS as Markov Chain

We have seen that the ordinary order statistics and record values form the Markov
chain with certain transition probabilities. In the following we will see that the GOS
also form the Markov chain with certain transition probability. The Markovian
property of GOS can be easily proved by looking at the conditional distributions
derived below.

The marginal distribution of r th GOS and joint marginal distribution of r th and
sth GOS are given in (4.6) and (4.10) as

fX(r :n,m,k)(x) = Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)] (4.21)

and

fr,s:n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)! f (x1) f (x2){1 − F(x1)}m

× gr−1
m {F(x1)} {1 − F(x2)}γs−1

× [hm{F(x2)} − hm{F(x1)}]s−r−1.

Using above two equations, the conditional distribution of sth GOS given rth GOS
is readily written as

fs|r :n,m,k(x2|x1) = fr,s:n,m,k(x1, x2)

fr :n,m,k(x1)

= Cs−1 f (x2){1 − F(x2)}γs−1[hm{F(x2)} − hm{F(x1)}]s−r−1

Cr−1(s − r − 1)! {1 − F(x)}γr−1−m

= Cs−1 f (x2){1 − F(x2)}γs−1[hm{F(x2)} − hm{F(x1)}]s−r−1

Cr−1(s − r − 1)! {1 − F(x)}γr+1
. (4.22)

Again the joint density of first r GOS is given in (4.4) as

f1,2,...,r :n,m,k(x1, x2, ..., xr ) = Cr−1

[
r−1∏

i=1

{1 − F(xi )}m f (xi )

]

×{1 − F(xr )}γr−1 f (xr ). (4.23)
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Also the joint density of first r and sth GOS is

f1,2,...,r,s:n,m,k(x1, x2, ..., xr ) = Cs−1

(s − r − 1)!

[
r∏

i=1

{1 − F(xi )}m f (xi )

]

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(xs)}γs−1 f (xs). (4.24)

Using (4.4) and (4.24), the conditional distribution of sth GOS given information of
first r GOS is

fs|1,2,...,r :n,m,k(xs |x1, . . . , xr ) = f1,...,r,s:n,m,k(x1, . . . , xr , xs)

f1,...,r :n,m,k(x1)

=
Cs−1

(s−r−1)!
[∏r

i=1{1 − F(xi )}m f (xi )
] {1 − F(xs)}γs−1 f (xs)

Cr−1

[∏r−1
i=1 {1 − F(xi )}m f (xi )

]
{1 − F(xr )}γr−1 f (xr )

= Cs−1 f (x2){1 − F(x2)}γs−1[hm{F(x2)} − hm{F(x1)}]s−r−1

Cr−1(s − r − 1)! {1 − F(x)}γr−1−m

= Cs−1 f (x2){1 − F(x2)}γs−1 [hm{F(x2)} − hm{F(x1)}]s−r−1

Cr−1(s − r − 1)! {1 − F(x)}γr+1
; (4.25)

which is same as the conditional distribution of sth GOS given rth GOS and hence
the GOS form the Markov Chains.

The transition probability of GOS are obtained by using the conditional distribu-
tion of two contiguous GOS. The conditional distribution of sth GOS given r th GOS
is given in (4.22) as

fs|r :n,m,k(x2|x1) = Cs−1 f (x2){1 − F(x2)}γs−1

Cr−1(s − r − 1)! {1 − F(x)}γr+1

× [hm{F(x2)} − hm{F(x1)}]s−r−1.

Using s = r + 1 in above equation the conditional distribution of (r + 1)th GOS
given r th GOS is

fr+1|r :n,m,k(xr+1|xr ) = Cr f (xr+1){1 − F(xr+1)}γr+1−1

Cr−1! {1 − F(xr )}γr+1

= γr+1

[
1 − F(xr+1)

1 − F(xr )

]γr+1−1 f (xr+1)

1 − F(xr )
. (4.26)
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The transition probability of GOS is therefore

P
(
Xr+1:n,m,k ≥ y|Xr :n,m,k = x

) =
∫ ∞

y
fr+1|r :n,m,k(xr+1|xr = x)dxr+1

=
∫ ∞

y
γr+1

[
1 − F(xr+1)

1 − F(x)

]γr+1−1

× f (xr+1)

1 − F(x)
dxr+1

or

P
(
Xr+1:n,m,k ≥ y|Xr :n,m,k = x

) = γr+1

{1 − F(x)}γr+1

∫ ∞

y
f (xr+1)

× {1 − F(xr+1)}γr+1−1dxr+1

or

P
(
Xr+1:n,m,k ≥ y|Xr :n,m,k = x

) =
[
1 − F(y)

1 − F(x)

]γr+1

. (4.27)

The transition probability for special cases can be readily obtained from (4.27).
For example using m = 0 and k = 1, the transition probability for ordinary order
statistics is obtained as

P
(
Xr+1:n,0,1 ≥ y|Xr :n,0,1 = x

) =
[
1 − F(y)

1 − F(x)

]n−r

.

Transition probability for other special cases can be obtained in similar way.

4.10 Moments of GOS

The distribution of r th GOS is as like any conventional distribution and hence prop-
erties of the r th GOS can be explored by computing its moments. The moments
computed for r th GOS can be used to obtain the moments of special cases by using
specific values of the parameters. In the following we will discuss the moments of
GOS for any parent probability distribution. Recall that the density function of r th
GOS for the distribution F(x) is given as

fr :n,m,k(x) = Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)].
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The expected value of r th GOS; Xr :n,m,k; is defined as

μr :n,m,k = E
(
Xr :n,m,k

) =
∫ ∞

−∞
x fr :n,m,k(x)dx

=
∫ ∞

−∞
x

Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)]dx . (4.28)

The expected value of some function of r th GOS is given as

E
[
t
(
Xr :n,m,k

)] =
∫ ∞

−∞
t(x) fr :n,m,k(x)dx

=
∫ ∞

−∞
t(x)

Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)]dx .

Again the pth raw moment of r th GOS; μp
r :n,m,k ; is computed as

μ
p
r :n,m,k = E

(
X p
r :n,m,k

) =
∫ ∞

−∞
x p fr :n,m,k(x)dx

=
∫ ∞

−∞
x p Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)]dx; (4.29)

and the pth raw moment of any function of r th GOS is given as

E
[{
t
(
Xr :n,m,k

)}
p
] =

∫ ∞

−∞
{t(x)}p fr :n,m,k(x)dx

=
∫ ∞

−∞
{t(x)}p Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)]dx .

Using the probability integral transformation, the pth moment of r th GOS can also
be written as

μ
p
r :n,m,k = E

(
X p
r :n,m,k

) = Cr−1

(r − 1)!
∫ 1

0

{
F−1(t)

}
pϕr :n(t)dt

= Cr−1

(r − 1)!
∫ 1

0

{
F−1(t)

}
p(1 − t)γr−1gr−1

m (t)dt, (4.30)

where t = F(x) and x = F−1(t) is the inverse function.
The joint density of r th and sth GOS provide basis for computation of product

moments of two GOS. The joint density of r th and sth GOS is given in (4.10) as
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fr,s:n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)! f (x1) f (x2){1 − F(x1)}m

× gr−1
m {F(x1)}{1 − F(x2)}γs−1

× [hm{F(x2)} − hm{F(x1)}]s−r−1.

Using the joint density, the product moment of r th and sth GOS is computed as

μr,s:n,m,k = E
(
Xr :n,m,k Xs:n,m,k

) =
∫ ∞

−∞

∫ ∞

x1

x1x2 fr,s:n,m,k(x1, x2)dx2dx1

= Cs−1

(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x1x2 f (x1) f (x2){1 − F(x1)}m

× gr−1
m {F(x1)}[hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1. (4.31)

The (p, q)th raw moment of r th and sth GOS is readily written as

μ
p,q
r,s:n,m,k = E

(
X p
r :n,m,k X

q
s:n,m,k

) =
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2 fr,s:n,m,k(x1, x2)dx2dx1

= Cs−1

(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2 f (x1) f (x2){1 − F(x1)}m

× gr−1
m {F(x1)}[hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1. (4.32)

The (p, q)th central moment of r th and sth GOS is given as

σ
p,q
r,s:n,m,k = E

[{
Xr :n,m,k − μr :n,m,k

}
p
{
Xs:n,m,k − μs:n,m,k

}
q
]
.

The covariance between r th and sth GOS is readily computed from above as

σr,s:n,m,k = E
[{
Xr :n,m,k − μr :n,m,k

}{
Xs:n,m,k − μs:n,m,k

}]
.

The correlation coefficient can also be computed easily.

Example 4.3 A random sample is drawn from standard exponential distributionwith
density function

f (x) = e−x ; x > 0.

Obtain expression for single and product moments of GOS for this distribution.

Solution: The distribution of r th GOS is

fr :n,m,k(x) = Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)].



4.10 Moments of GOS 149

For given distribution we have f (x) = e−x and F(x) = 1 − e−x . Now we have

gr−1
m [F(x)] =

(
1

m + 1

[
1 − {1 − F(x)}m+1]

)
r−1

= 1

(m + 1)r−1

[
1 − e−(m+1)x

]
r−1.

The distribution of Xr :n,m,k is therefore

fr :n,m,k(x) = Cr−1

(r − 1)!e
−γr x

{
1 − e−(m+1)x

}
r−1.

Now the pth moment of Xr :n,m,k is

μ
p
r :n,m,k = E

(
X p
r :n,m,k

) =
∫ ∞

−∞
x p fr :n,m,k(x)dx

= Cr−1

(r − 1)!
∫ ∞

0
x pe−γr x

{
1 − e−(m+1)x

}
r−1dx

= Cr−1

(r − 1)!(m + 1)r−1

r−1∑

i=0

(−1)i
(
r − 1

i

)

×
∫ ∞

0
x pe−[(m+1)i+γr ]xdx

= Cr−1

(r − 1)!(m + 1)r−1

r−1∑

i=0

(−1)i
(
r − 1

i

)

× 1

{(m + 1)i + γr }p+1
�(p + 1).

The Mean of Xr :n,m,k is

μr :n,m,k = Cr−1

(r − 1)!(m + 1)r−1

r−1∑

i=0

(−1)i
(
r − 1

i

)
1

{(m + 1)i + γr }2 ·

Again the joint density of Xr :n,m,k and Xs:n,m,k is

fr,s:n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)! f (x1) f (x2){1 − F(x1)}m

× gr−1
m {F(x1)}{1 − F(x2)}γs−1

× [hm{F(x2)} − hm{F(x1)}]s−r−1.
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Now for given distribution we have

fr,s:n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)!e
−x1e−x2e−mx1

×
[

1

m + 1

{
1 − e−(m+1)x

}]
r−1e−(γs−1)x2

×
[

1

m + 1
e−(m+1)x1 − 1

m + 1
e−(m+1)x2

]
s−r−1

= Cs−1

(m + 1)s−2(r − 1)!(s − r − 1)!

×
s−r−1∑

j=0

r−1∑

i=0

(−1)i+ j

(
r − 1

i

)(
s − r − 1

j

)

× e−(m+1)(s−r− j+i)x1e−[(m+1) j+γs ]x2 .

The product moments of order (p, q) are

μ
p,q
r,s:n,m,k = E

(
X p
r :n,m,k X

q
s:n,m,k

) =
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2 fr,s:n,m,k(x1, x2)dx2dx1

= Cs−1

(m + 1)s−2(r − 1)!(s − r − 1)!

×
s−r−1∑

j=0

r−1∑

i=0

(−1)i+ j

(
r − 1

i

)(
s − r − 1

j

)

×
∫ ∞

0

∫ ∞

x1

x p
1 x

q
2 e

−(m+1)(s−r− j+i)x1e−[(m+1) j+γs ]x2dx2dx1

or

μ
p,q
r,s:n,m,k = Cs−1

(m + 1)s−2(r − 1)!(s − r − 1)!

×
s−r−1∑

j=0

r−1∑

i=0

(−1)i+ j

(
r − 1

i

)(
s − r − 1

j

)

× 1

(p + 1){(m + 1) j + γs}p+q+2
�(p + q + 2)

× 2F1

[
p + 1, p + q + 2; p + 2; (s − r − j + i)(m + 1)

(m + 1) j + γs

]
.

The Covariance can be obtained by using above results.
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Example 4.4 A random sample is drawn from the Pareto distribution with density
function

f (x) = ac

xa+1
; x > c1/a, a, c > 0.

Show that the pth moment of r th GOS for this distribution is given as

μ
p
r :n,m,k = E

(
X p
r :n,m,k

) = cp/a
Cr−1(k)

Cr−1(k − p/a)
,

where notations have their usual meanings.

Solution: The pth moment of r th GOS is given as

μ
p
r :n,m,k = E

(
X p
r :n,m,k

) =
∫ ∞

−∞
x p fr :n,m,k(x)dx

=
∫ ∞

−∞
x p Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)]dx .

Using the probability integral transform, the pth moment is given as

μ
p
r :n,m,k = E

(
X p
r :n,m,k

) = Cr−1

(r − 1)!
∫ 1

0

{
F−1(t)

}
pϕr :n(t)dt

= Cr−1

(r − 1)!
∫ 1

0

{
F−1(t)

}
p(1 − t)γr−1gr−1

m (t)dt.

Now for given distribution we have

f (x) = ac

xa+1
; x > c1/a

So

F(x) =
∫ x

c1/a
f (t)dt =

∫ x

c1/a

ac

ta+1
dt

= 1 − c

xa
; x > c1/a .

Also by using t = F(x) we have

t = 1 − c

xa
=⇒ x = F−1(t) =

{
1

c
(1 − t)

}
−1/a .

Hence the pth moment of r th GOS for Pareto distribution is:
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μ
p
r :n,m,k = Cr−1

(r − 1)!
∫ 1

0

{
F−1(t)

}
p(1 − t)γr−1gr−1

m (t)dt

= Cr−1

(r − 1)!
∫ 1

0

[{
1

c
(1 − t)

}
−1/a

]
p(1 − t)γr−1gr−1

m (t)dt

= Cr−1

(r − 1)!c
p/a

∫ 1

0
(1 − t)(k−p/a)+(n−r)(m+1)gr−1

m (t)dt

or

μ
p
r :n,m,k = cp/a

Cr−1(k)

Cr−1(k − p/a)

Cr−1(k − p/a)

(r − 1)!
×

∫ 1

0
(1 − t)(k−p/a)+(n−r)(m+1)gr−1

m (t)dt

= cp/a
Cr−1(k)

Cr−1(k − p/a)
;

as
Cr−1(k − p/a)

(r − 1)!
∫ 1

0
(1 − t)(k−p/a)+(n−r)(m+1)gr−1

m (t)dt = 1,

as required.

4.11 Recurrence Relations for Moments of GOS

The moments for GOS from any parent distribution F(x) can be used to obtain the
expression for special cases by using certain values of the parameters involved. As
we have seen in previous two chapters that the moments of ordinary order statistics
and record values are connected via certain relations. We have also seen that those
relations can be used to compute higher order single and product moments by using
information of lower order moments. In this section we will discuss the recurrence
relations between single and product moments of GOS and wewill see that the recur-
rence relations for single and product moments discussed in previous two chapters
turn out to be special cases for recurrence relations discussed below.

Various properties of GOS are based upon the probability integral transform of
any probability distribution. Some of the properties are given in the following by
first noting that the density of Uniform GOS is given as

ϕr :n(x) = fU (r :n,m,k)(x) = Cr−1

(r − 1)! (1 − x)γr−1gr−1
m (x),
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and the density function of rth GOS from any distribution is given as

fX(r :n,m,k)(x) = Cr−1

(r − 1)! f (x){1 − F(x)}γr−1gr−1
m [F(x)].

The density function of rth GOS from any parent distribution; with distribution
function F(x); is readily derived from the density of Uniform GOS by using the
relation

fX(r :n,m,k)(x) = fU (r :n,m,k){F(x)} f (x) = ϕ{F(x)} f (x), (4.33)

where f (x) is the density function. The density function of uniform GOS are con-
nected through various relationships. Some of these relationships are given below:

γr+1ϕr :n(x) + r(m + 1)ϕr+1:n(x) = γ1ϕr :n−1(x) (i)

γr+1{ϕr+1:n(x) − ϕr :n(x)} = γ1{ϕr+1:n(x) − ϕr :n−1(x)} (ii)

γ1{ϕr :n(x) − ϕr :n−1(x)} = r(m + 1){ϕr :n(x) − ϕr+1:n(x)} (iii)

The first relation is readily proved by noting that

Cr(n) = {k + (n − r − 1)(m + 1)}Cr−1(n)

Cr(n) = {k + (n − 1)(m + 1)}Cr−1(n−1);

Cr(n) is Cr based upon the sample of size n etc. Now consider left hand side of (i) as

γr+1ϕr :n(x) + r(m + 1)ϕr+1:n(x)
= {k + (n − r − 1)(m + 1)}

×
[
Cr−1(n)

(r − 1)! (1 − x)k+(n−r)(m+1)−1gr−1
m (x)

]

+r(m + 1)

×
[
Cr(n)

r ! (1 − x)k+(n−r−1)(m+1)−1gr−1
m (x)

]

= Cr(n)

(r − 1)! (1 − x)k+(n−r)(m+1)−1gr−1
m (x)+(m + 1)

×
[

Cr(n)

(r − 1)! (1 − x)k+(n−r−1)(m+1)−1gr−1
m (x)

]
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or

γr+1ϕr :n(x) + r(m + 1)ϕr+1:n(x)

= Cr(n)

(r − 1)! (1 − x)k+(n−r−1)(m+1)−1gr−1
m (x)

× [
(1 − x)m+1 + (m + 1)gm(x)

]

= Cr(n)

(r − 1)! (1 − x)k+(n−r−1)(m+1)−1gr−1
m (x)

or

γr+1ϕr :n(x) + r(m + 1)ϕr+1:n(x)

= {k + (n − 1)(m + 1)}Cr−1(n−1)

(r − 1)!
× (1 − x)k+(n−r−1)(m+1)−1gr−1

m (x)

= γ1ϕr :n−1(x),

as required. Other two relationships can be proved in same way. The relationships
between density function of uniformGOSprovide relationship between density func-
tions of GOS for any parent distribution. These relationships are given below:

γr+1 fr :n,m,k(x) + r(m + 1) fr+1:n,m,k(x) = γ1 fr :n−1,m,k(x) (i)

γr+1
{
fr+1:n,m,k(x) − fr :n,m,k(x)

} = γ1
{
fr+1:n,m,k(x) − fr :n−1,m,k(x)

}
(ii)

γ1
{
fr :n,m,k(x) − fr :n−1,m,k(x)

} = r(m + 1)
{
fr :n,m,k(x) − fr+1:n,m,k(x)

}
(iii)

Using above relations we can immediately write following relations between
moments of GOS

γr+1μ
p
r :n,m,k + r(m + 1)μp

r+1:n,m,k = γ1μ
p
r :n−1,m,k (i)

γr+1
{
μ
p
r+1:n,m,k − μ

p
r :n,m,k

} = γ1
{
μ
p
r+1:n,m,k − μ

p
r :n−1,m,k

}
(ii)

γ1
{
μ
p
r :n,m,k − μ

p
r :n−1,m,k

} = r(m + 1)
{
μ
p
r :n,m,k − μ

p
r+1:n,m,k

}
. (iii)

The second relation can be alternatively written as

γr+1
{
μ
p
r+1:n,m,k − μ

p
r :n,m,k

} = γ1
{
μ
p
r+1:n,m,k − μ

p
r :n−1,m,k

}

or
γr+1μ

p
r+1:n,m,k − γ1μ

p
r+1:n,m,k = γr+1μ

p
r :n,m,k − γ1μ

p
r :n−1,m,k
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or
(γr+1 − γ1)μ

p
r+1:n,m,k = γr+1μ

p
r :n,m,k − γ1μ

p
r :n−1,m,k

or
−r(m + 1)μp

r+1:n,m,k = γr+1μ
p
r :n,m,k − γ1μ

p
r :n−1,m,k

or
γr+1μ

p
r :n,m,k = γ1μ

p
r :n−1,m,k − r(m + 1)μp

r+1:n,m,k .

This relation reduces to corresponding relation for simple order statistics for m = 0
and k = 1. The relationship between moments of GOS given above hold for any
distribution. Distribution specific relationships between single and product moments
of GOS have been studied by various authors. The distribution specific relationships
between single and product moments are readily derived by using a general result
given by Athar and Islam (2004). We have given the result in a theorem below.

Theorem 4.2 Suppose a sequence of random variables {Xn; n ≥ 1} is available
from an absolutely continuous distribution function F(x). Suppose further that
Xr :n,m,k be rth GOS of the sequence then following recurrence relation hold between
moments of the GOS

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx; (4.34)

and

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs dx2dx1. (4.35)

Proof We have

μ
p
r :m,n,k = E

(
X p
r :n,m,k

) =
∫ ∞

−∞
x p fr :n,m,k(x)dx

=
∫ ∞

−∞
x p Cr−1

(r − 1)! f (x)[1 − F(x)]γr−1gr−1
m [F(x)]dx

= Cr−1

(r − 1)!
∫ ∞

−∞
x p f (x)[1 − F(x)]γr−1gr−1

m [F(x)]dx .

Integrating above equation by parts taking f (x)[1 − F(x)]γr−1 as function for
integration we have
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μ
p
r :n,m,k = Cr−1

(r − 1)!

[
−x pgr−1

m {F(x)} {1 − F(x)}γr
γr

∣∣∣∣
∞

−∞

−
∫ ∞

−∞

{
px p−1gr−1

m [F(x)] + (r − 1)x pgr−2
m [F(x)]

× [1 − F(x)]m f (x)
}−{1 − F(x)}γr

γr
dx

]

= pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx

+ (r − 1)Cr−1

γr (r − 1)!
∫ ∞

−∞
x p f (x)[1 − F(x)]γr+mgr−2

m [F(x)]dx

= pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx

+ Cr−2

(r − 2)!
∫ ∞

−∞
x p f (x)[1 − F(x)]γr−1−1gr−2

m [F(x)]dx

Since

μ
p
r−1:n,m,k = Cr−2

(r − 2)!
∫ ∞

−∞
x p f (x)[1 − F(x)]γr−1−1gr−2

m [F(x)]dx,

hence above equation can be written as

μ
p
r :n,m,k = pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx + μ
/p
r−1:n,m,k,

or

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx,

as required. We can readily see; from (4.34); that for p = 1 following recurrence
relationship exist between expectations of GOS

μr :n,m,k − μr−1:n,m,k = Cr−1

γr (r − 1)!
∫ ∞

−∞
{1 − F(x)}γr gr−1

m [F(x)]dx . (4.36)

We also have an alternative representation for recurrence relation between single
moments of GOS based upon probability integral transform of (4.34) as under

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ 1

0

{
F−1(t)

}
p−1

{
F−1(t)

}
/

× (1 − t)γr gr−1
m (t)dt. (4.37)
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The representation (4.37) is very useful in deriving relations for specific distributions.
Again consider

μ
p,q
r,s:n,m,k = E

(
X p
r :n,m,k X

q
s:n,m,k

) =
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2 fr,s:n,m,k(x1, x2)dx2dx1

= Cs−1

(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2 f (x1) f (x2){1 − F(x1)}m

× gr−1
m {F(x1)}[hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1

or

μ
p,q
r,s:n,m,k = Cs−1

(r − 1)!(s − r − 1)!
∫ ∞

−∞
x p
1 f (x1){1 − F(x1)}m

× gr−1
m {F(x1)}I (x2)dx1; (4.38)

where

I (x2) =
∫ ∞

x1

xq2 f (x2){1 − F(x2)}γs−1[hm{F(x2)} − hm{F(x1)}]s−r−1dx2.

Integrating above integral by parts using f (x2){1 − F(x2)}γs−1 for integration we
have

I (x2) = −xq2 [hm{F(x2)} − hm{F(x1)}]s−r−1 {1 − F(x2)}γs
γs

∣∣∣∣
∞

x1

+ 1

γs

∫ ∞

x1

[
qxq−1

2 [hm{F(x2)} − hm{F(x1)}]s−r−1

+(s − r − 1)xq2 [hm{F(x2)} − hm{F(x1)}]s−r−2

×{1 − F(x2)}m f (x2)
]{1 − F(x2)}γs dx2

or

I (x2) = q

γs

∫ ∞

x1

xq−1
2 [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs dx2 + (s − r − 1)

γs

∫ ∞

x1

xq2 f (x2)

× [hm{F(x2)} − hm{F(x1)}]s−r−2{1 − F(x2)}γs+mdx2. (4.39)
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Now using the value of I (x2) from (4.39) in (4.38) we have

μ
p,q
r,s:n,m,k = Cs−1

(r − 1)!(s − r − 1)!
∫ ∞

−∞
x p
1 f (x1){1 − F(x1)}mgr−1

m {F(x1)}

×
[
q

γs

∫ ∞

x1

xq−1
2 [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs dx2 + (s − r − 1)

γs

∫ ∞

x1

xq2 f (x2)

× [hm{F(x2)} − hm{F(x1)}]s−r−2{1 − F(x2)}γs+mdx2
]
dx1

or

μ
p,q
r,s:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1){1 − F(x1)}m

× gr−1
m {F(x1)}[hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs dx2dx1 + (s − r − 1)Cs−1

γs(r − 1)!(s − r − 1)!
×

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2 f (x1) f (x2){1 − F(x1)}mgr−1

m {F(x1)}
× [hm{F(x2)} − hm{F(x1)}]s−r−2{1 − F(x2)}γs+mdx2dx1

or

μ
p,q
r,s:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1){1 − F(x1)}m

× gr−1
m {F(x1)}[hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs dx2dx1 + Cs−2

(r − 1)!(s − r − 2)!
×

∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2 f (x1) f (x2){1 − F(x1)}mgr−1

m {F(x1)}
× [hm{F(x2)} − hm{F(x1)}]s−r−2{1 − F(x2)}γs−1−1dx2dx1

or

μ
p,q
r,s:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2 f (x1){1 − F(x1)}m

× gr−1
m {F(x1)}[hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs dx2dx1 + μ
p,q
r,s−1:n,m,k,
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or

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs dx2dx1;

as required.
We now present recurrence relations for single and product moments of GOS for

some special distributions.

4.11.1 Exponential Distribution

The density and distribution function of Exponential random variable are given as

f (x) = αe−αx ;α, x > 0

and
F(x) = 1 − e−αx .

We note that
f (x) = α[1 − F(x)]. (4.40)

Consider (4.34)

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx

= pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr−1

× [1 − F(x)]gr−1
m [F(x)]dx .

Using (4.40) in (4.34) following recurrence relation between singlemoments of GOS
has been obtained by Ahsanullah (2000)

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

αγr (r − 1)!
∫ ∞

−∞
x p−1 f (x){1 − F(x)}γr−1

× gr−1
m [F(x)]dx

or
μ
p
r :n,m,k − μ

p
r−1:n,m,k = p

αγr
μ
p−1
r :n,m,k,
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or
μ
p
r :n,m,k = μ

p
r−1:n,m,k + p

αγr
μ
p−1
r :n,m,k (4.41)

The relationship (4.41) reduces to corresponding relationship for simple order sta-
tistics given in (2.58) for m = 0 and k = 1. Again consider (4.35) as

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs dx2dx1.

or

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1[1 − F(x2)]dx2dx1.

Now using (4.40) in above equation we have

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

αγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1) f (x2){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1

or
μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = q

αγs
μ
p,q−1
r,s:n,m,k

or
μ
p,q
r,s:n,m,k = μ

p,q
r,s−1:n,m,k + q

αγs
μ
p,q−1
r,s:n,m,k . (4.42)

Using s = r + 1 in (4.42) we have following relation between product moments of
two contiguous GOS

μ
p,q
r,r+1:n,m,k = μ

p+q
r :n,m,k + q

αγs
μ
p,q−1
r,r+1:n,m,k .

http://dx.doi.org/10.2991/978-94-6239-225-0_2
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The recurrence relationship given in (4.42) reduces to relationship (2.59) for m = 0
and k = 1. Further, form = −1, the relationship (4.42) reduces to recurrence relation
for product moment of record values given in (3.47).

4.11.2 The Rayleigh Distribution

The density and distribution function of Rayleigh distribution are

f (x) = 2αx exp
(−αx2

);α, x > 0;

and
F(x) = 1 − exp

(−αx2
)
.

The density and distribution function are related as

f (x) = 2αx[1 − F(x)]. (4.43)

Using (4.43) in (4.34) Mohsin et al. (2010) has derived recurrence relation for single
moments of GOS for Rayleigh distribution as under

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx

= pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr−1

× [1 − F(x)]gr−1
m [F(x)]dx .

Now using (4.43) in above equation we have

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

2αγr (r − 1)!
∫ ∞

−∞
x p−2 f (x)

×{1 − F(x)}γr−1gr−1
m [F(x)]dx;

or
μ
p
r :n,m,k − μ

p
r−1:n,m,k = p

2αγr
μ
p−2
r :n,m,k

or
μ
p
r :n,m,k = μ

p
r−1:n,m,k + p

2αγr
μ
p−2
r :n,m,k . (4.44)

Again consider (4.35) as

http://dx.doi.org/10.2991/978-94-6239-225-0_2
http://dx.doi.org/10.2991/978-94-6239-225-0_3
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μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1[1 − F(x2)]dx2dx1.

Now using (4.43) in above equation we have

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

2αγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−2
2

× f (x1) f (x2){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1.

or
μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = q

2αγs
μ
p,q−2
r,s:n,m,k

or
μ
p,q
r,s:n,m,k = μ

p,q
r,s−1:n,m,k + q

2αγs
μ
p,q−2
r,s:n,m,k . (4.45)

The recurrence relation for single and product moments for special cases can be
readily obtained from (4.43) and (4.44).

4.11.3 Weibull Distribution

The density and distribution function for Weibull random variable are

f (x) = αβxβ−1 exp
(−αxβ

); x,α,β > 0;

and
F(x) = 1 − exp

(−αxβ
)
.

We also have
f (x) = αβxβ−1[1 − F(x)]. (4.46)

Now using (4.46) in (4.34) we have

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

αβγr (r − 1)!
∫ ∞

0
x p−β f (x)

×{1 − F(x)}γr−1gr−1
m [F(x)]dx .
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or
μ
p
r :n,m,k − μ

p
r−1:n,m,k = p

αβγr
μ

(p−β)

r :n,m,k,

or
μ
p
r :n,m,k = μ

p
r−1:n,m,k + p

αβγr
μ

(p−β)

r :n,m,k . (4.47)

The relation (4.47) reduces to relation (4.41) for β = 1 and to (4.44) for β = 2 as
expected. The recurrence relation between product moments can be derived by using
(4.35) as

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1{1 − F(x2)}dx2dx1.

Now using (4.46) in above equation we have

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

αβγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−β
2

× f (x1) f (x2){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1

or
μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = q

αβγs
μ
p,q−β
r,s:n,m,k,

or
μ
p,q
r,s:n,m,k = μ

p,q
r,s−1:n,m,k + q

αβγs
μ
p,q−β
r,s:n,m,k . (4.48)

Further, by using s = r + 1, the recurrence relation between product moments of
two contiguous GOS for Weibull distribution is obtained as

μ
p,q
r,r+1:n,m,k = μ

p+q
r :n,m,k + q

βγs
μ
p,q−β
r,r+1:n,m,k .

The corresponding relationships for Order Statistics and k−Upper Record Values
can be readily obtained for (m = 0; k = 1) and m = −1.
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4.11.4 Power Function Distribution

The Power function distribution has density and distribution function as

f (x) = θ(x − a)θ−1

(b − a)θ
; a ≤ x ≤ b, θ ≥ 1

and

F(x) =
(
x − a

b − a

)θ

; a ≤ x < b, θ ≥ 1.

We can see that following relation holds between density and distribution function

(b − x) f (x) = θ[1 − F(x)]. (4.49)

The recurrence relations for single and product moments of GOS for Power function
distribution are derived by using (4.49) in (4.34) and (4.35). From (4.34) we have

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx

= pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr−1

× [1 − F(x)]gr−1
m [F(x)]dx .

Using (4.49) in above equation we have

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

θγr (r − 1)!
∫ ∞

−∞
x p−1(b − x) f (x)

×{1 − F(x)}γr−1gr−1
m [F(x)]dx

or

μ
p
r :n,m,k − μ

p
r−1:n,m,k = bpCr−1

θγr (r − 1)!
∫ ∞

−∞
x p−1(b − x) f (x)

×{1 − F(x)}γr−1gr−1
m [F(x)]dx

− pCr−1

θγr (r − 1)!
∫ ∞

−∞
x p f (x)

×{1 − F(x)}γr−1gr−1
m [F(x)]dx

or

μ
p
r :n,m,k − μ

p
r−1:n,m,k = bp

θγr
μ
p−1
r :n,m,k − p

θγr
μ
p
r :n,m,k
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or (
1 + p

θγr

)
μ
p
r :n,m,k = bp

θγr
μ
p−1
r :n,m,k + μ

p
r−1:n,m,k

or

μ
p
r :n,m,k = 1

p + θγr

(
pbμp−1

r :n,m,k + θγrμ
p
r−1:n,m,k

)
. (4.50)

We can see that for m = −1, the recurrence relation (4.50) reduces to (3.34) as it
should be. Again consider (4.35) as

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1{1 − F(x2)}dx2dx1.

Now using (4.49) in above equation we have

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

θγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1(b − x2) f (x2)dx2dx1

or

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = bqCs−1

θγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1) f (x2){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1

− qCs−1

θγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2

× f (x1) f (x2){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1

or

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = bq

θγs
μ
p,q−1
r,s:n,m,k − q

θγs
μ
p.q
r,s:n,m,k

http://dx.doi.org/10.2991/978-94-6239-225-0_3
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or (
1 + q

θγs

)
μ
p,q
r,s:n,m,k = bq

θγs
μ
p,q−1
r,s:n,m,k + μ

p,q
r,s−1:n,m,k

or

μ
p,q
r,s:n,m,k = bq

q + θγs
μ
p,q−1
r,s:n,m,k + θγs

q + θγs
μ
p,q
r,s−1:n,m,k . (4.51)

Using s = r +1 in above equation we have following recurrence relation for product
moments of two contiguous GOS for Power function distribution

μ
p,q
r,r+1:n,m,k = 1

q + θγs

(
bqμ

p,q−1
r,r+1:n,m,k + θγsμ

p+q
r :n,m,k

)
. (4.52)

The recurrence relations (4.51) and (4.52) reduces to recurrence relations for product
moments of upper record values for m = −1. Further, using θ = 1 in (4.50), (4.51)
and (4.52) we can readily derive the recurrence relations for single and product
moments of GOS for Uniform distribution.

4.11.5 Marshall-Olkin-Weibull Distribution

TheMarshall-Olkin-Weibull distribution is an extension ofWeibull distribution. The
density and distribution function of Marshall-Olkin-Weibull distribution are

f (x) = λθxθ−1 exp
(−xθ

)

[
1 − (1 − λ) exp

(−xθ
)]2 ; x,λ, θ > 0

and

F(x) = 1 − λ exp
(−xθ

)

[
1 − (1 − λ) exp

(−xθ
)]2 .

The density and distribution function of Marshall-Olkin-Weibull distribution are
related as

1 − F(x) = 1

θxθ−1

[
1 − (1 − λ) exp

(−xθ
)]

f (x). (4.53)

We can see that the Marshall-Olkin-Weibull distribution reduces to Weibull distribu-
tion for λ = 1. Athar et al. (2012) have derived the recurrence relations for single and
product moments of GOS for Marshall-Olkin-Weibull distribution by using (4.53).
We present these relations in the following.
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Consider (4.34) as

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx

= pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr−1

× [1 − F(x)]gr−1
m [F(x)]dx .

Using (4.53) in above equation we have

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

θγr (r − 1)!
∫ ∞

−∞
x p−θ f (x){1 − F(x)}γr−1

× [
1 − (1 − λ) exp

(−xθ
)]

gr−1
m [F(x)]dx

or

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

θγr (r − 1)!
∫ ∞

−∞
x p−θ f (x){1 − F(x)}γr−1

× gr−1
m [F(x)]dx − p(1 − λ)Cr−1

θγr (r − 1)!
×

∫ ∞

−∞
x p−θ exp

(−xθ
)
f (x)

×{1 − F(x)}γr−1gr−1
m [F(x)]dx

Now expanding exp
(−xθ

)
in power series we have

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

θγr (r − 1)!
∫ ∞

−∞
x p−θ f (x){1 − F(x)}γr−1

× gr−1
m [F(x)]dx − p(1 − λ)

θγr

×
∞∑

h=0

(−1)h

h!
Cr−1

(r − 1)!
∫ ∞

−∞
x p−θ(1−h) f (x)

×{1 − F(x)}γr−1gr−1
m [F(x)]dx

or

μ
p
r :n,m,k − μ

p
r−1:n,m,k = p

θγr
μ
p−θ
r :n,m,k − p(1 − λ)

θγr

∞∑

h=0

(−1)h

h! μ
p−θ(1−h)

r :n,m,k
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or

μ
p
r :n,m,k = μ

p
r−1:n,m,k + p

θγr
μ
p−θ
r :n,m,k

− p(1 − λ)

θγr

∞∑

h=0

(−1)h

h! μ
p−θ(1−h)

r :n,m,k . (4.54)

We can readily see that the relation (4.54) reduces to (4.47) for λ = 1. The recurrence
relation for product moments is derived by using (4.53) in (4.35) as under

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1{1 − F(x2)}dx2dx1.

Now using (4.53) in above equation we have

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

θγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−θ
2

× f (x1) f (x2){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1

× [
1 − (1 − λ) exp

(−xθ
)]
dx2dx1.

or

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

θγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−θ
2

× f (x1) f (x2){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1

− q(1 − λ)Cs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−θ
2

× exp
(−xθ

)
f (x1) f (x2){1 − F(x1)}m

× gr−1
m {F(x1)}{1 − F(x2)}γs−1

× [hm{F(x2)} − hm{F(x1)}]s−r−1dx2dx1
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or

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = q

θγs
μ
p,q−θ
r,s:n,m,k − q(1 − λ)Cs−1

θγs(r − 1)!(s − r − 1)!
×

∞∑

h=0

(−1)h

h!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−θ(1−h)

2

× f (x1) f (x2){1 − F(x1)}m
× gr−1

m {F(x1)}{1 − F(x2)}γs−1

× [hm{F(x2)} − hm{F(x1)}]s−r−1dx2dx1

or

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = q

θγs
μ
p,q−θ
r,s:n,m,k − q(1 − λ)

θγs

×
∞∑

h=0

(−1)h

h! μ
p,q−θ(1−h)

r,s:n,m,k

or

μ
p,q
r,s:n,m,k = μ

p,q
r,s−1:n,m,k + q

θγs
μ
p,q−θ
r,s:n,m,k

−q(1 − λ)

θγs

∞∑

h=0

(−1)h

h! μ
p,q−θ(1−h)

r,s:n,m,k . (4.55)

The recurrence relation (4.55) reduces to (4.48) for λ = 1 as it should be.

4.11.6 The Kumaraswamy Distribution

The Kumaraswamy distribution is a simple yet powerful distribution. The density
and distribution function of Kumaraswamy distribution are

f (x) = αβxα−1(1 − xα)β−1;α,β > 0, 0 ≤ x ≤ 1

and
F(x) = 1 − (1 − xα)β .

The density and distribution function are related as

1 − F(x) = 1

αβ

[
x−(α−1) − x

]
f (x). (4.56)

Kumar (2011) has derived the recurrence relations for single and product moments
of GOS for Kumaraswamy distribution. We give these relations in the following.
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Consider (4.34) as

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx

= pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr−1

× [1 − F(x)]gr−1
m [F(x)]dx .

Now using (4.56) in above equation we have

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

αβγr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr−1

× [
x−(α−1) − x

]
f (x)gr−1

m [F(x)]dx

or

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

αβγr (r − 1)!
∫ ∞

−∞
x p−α f (x)

×{1 − F(x)}γr−1gr−1
m [F(x)]dx

− pCr−1

αβγr (r − 1)!
∫ ∞

−∞
x p f (x)

×{1 − F(x)}γr−1gr−1
m [F(x)]dx

or
μ
p
r :n,m,k − μ

p
r−1:n,m,k = p

αβγr
μ
p−α
r :n,m,k − p

αβγr
μ
p
r :n,m,k

or (
1 + p

αβγr

)
μ
p
r :n,m,k = μ

p
r−1:n,m,k + p

αβγr
μ
p−α
r :n,m,k

or

μ
p
r :n,m,k = 1

p + αβγr

(
pμp−α

r :n,m,k + αβγrμ
p
r−1:n,m,k

)
(4.57)

The recurrence relations for singlemoments ofGOS for standard uniformdistribution
can be obtained from (4.57) by setting α = β = 1. Again consider (4.35) as

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1{1 − F(x2)}dx2dx1.
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Using (4.56) in above equation we have

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

αβγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−1
2

× f (x1) f (x2){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1
[
x−(α−1)
2 − x2

]
dx2dx1

or

μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = qCs−1

αβγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q−α
2

× f (x1) f (x2){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1

− qCs−1

αβγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

x p
1 x

q
2

× f (x1) f (x2){1 − F(x1)}mgr−1
m {F(x1)}

× [hm{F(x2)} − hm{F(x1)}]s−r−1

×{1 − F(x2)}γs−1dx2dx1

or
μ
p,q
r,s:n,m,k − μ

p,q
r,s−1:n,m,k = q

αβγs
μ
p,q−α
r,s:n,m,k − q

αβγs
μ
p,q
r,s:n,m,k

or (
1 + q

αβγs

)
μ
p,q
r,s:n,m,k = q

αβγs
μ
p,q−α
r,s:n,m,k + μ

p,q
r,s−1:n,m,k

or

μ
p,q
r,s:n,m,k = 1

q + αβγs

(
qμ

p,q−α
r,s:n,m,k + αβγsμ

p,q
r,s−1:n,m,k

)
. (4.58)

Using α = β = 1 in (4.58) we can obtain the recurrence relations for product
moments of GOS for Uniform distribution.

Example 4.5 A random sample is available fromUniform distribution over the inter-
val [0, 1]. Show that

μr :n,m,k − μr−1:n,m,k = Cr−2(k)

Cr−1(k + 1)
,

where notations have their usual meanings.
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Solution: We have following recurrence relation for moments of GOS:

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ 1

0

{
F−1(t)

}
p−1

{
F−1(t)

}
/

× (1 − t)γr gr−1
m (t)dt.

For p = 1 we have:

μr :n,m,k − μr−1:n,m,k = Cr−1

γr (r − 1)!
∫ 1

0

{
F−1(t)

}
/(1 − t)γr gr−1

m (t)dt.

For standard uniform distribution we have

f (x) = 1; 0 < x < 1

and F(x) =
∫ x

0
f (t)dt = x

so t = F(x) gives t = x and hence

x = F−1(t) = t,
{
F−1(t)

}
/ = 1.

So we have

μr :n,m,k − μr−1:n,m,k = Cr−2

(r − 1)!
∫ 1

0
(1 − t)γr gr−1

m (t)dt

= Cr−2

(r − 1)!
∫ 1

0
(1 − t)(k+1)+(n−r)(m+1)−1gr−1

m (t)dt

= Cr−2(k)

Cr−1(k + 1)
× Cr−1(k + 1)

(r − 1)!
×

∫ 1

0
(1 − t)(k+1)+(n−r)(m+1)−1gr−1

m (t)dt

= Cr−2(k)

Cr−1(k + 1)
,

as
Cr−1(k + 1)

(r − 1)!
∫ 1

0
(1 − t)(k+1)+(n−r)(m+1)−1gr−1

m (t)dt = 1,

as required.
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4.12 Relation for Moments of GOS for Special Class
of Distributions

We have shown that following recurrence relation hold between single moments of
GOS for any parent distribution

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ ∞

−∞
x p−1{1 − F(x)}γr gr−1

m [F(x)]dx . (4.32)

Using probability integral transform, above relation can be written as

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ 1

0

{
F−1(t)

}
p−1

{
F−1(t)

}
/

× (1 − t)γr gr−1
m (t)dt. (4.59)

The relation (4.59) is very useful in deriving recurrence relations between sin-
gle moments of GOS for certain class of distributions depending upon choice of{
F−1(t)

}
/. In following theorem; given by Kamps (1995b); we present a general

recurrence relation between singlemoments of GOS for class of distributions defined
as {

F−1(t)
}

/ = 1

d
(1 − t)(q−p1)(m+1)+s1−1g p1

m (t) on (0, 1). (4.60)

Theorem 4.3 If the class of distributions is defined as

{
F−1(t)

}
/ = 1

d
(1 − t)(q−p1)(m+1)+s1−1g p1

m (t) on (0, 1);

with d > 0, p1, q ∈ Z and s1 > 1 − k then following recurrence relation hold
between moments of GOS

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pKμ

(p−1)
r+p1:n+q,m,k+s; (4.61)

where

K = 1

d

Cr−2(n, k)

Cr+p1−1(n + q, k + s)

(r + p1 − 1)!
(r − 1)!

= μr :n,m,k − μr−1:n,m,k .

Proof We have following recurrence relation for moments of GOS

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ 1

0

{
F−1(t)

}
p−1{F−1(t)

}
/

× (1 − t)γr gr−1
m (t)dt.
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Now using the representation of
{
F−1(t)

}
/ for given class we have

μ
p
r :n,m,k − μ

p
r−1:n,m,k = pCr−1

γr (r − 1)!
∫ 1

0

{
F−1(t)

}
p−1

× 1

d
(1 − t)(q−p1)(m+1)+s1−1(1 − t)k+(n−r)(m+1)

× g p1
m (t)gr−1

m (t)dt.

or

μ
p
r :n,m,k − μ

p
r−1:n,m,k = 1

d

pCr−2(n, k)

(r − 1)!
∫ 1

0

{
F−1(t)

}
p−1gr+p1−1

m (t)

× (1 − t)(k+s1)+{(n+q)−(r+p1)}(m+1)−1dt

or

μ
p
r :n,m,k − μ

p
r−1:n,m,k = 1

d

pCr−2(n, k)

(r − 1)! × Cr+p1−1(n + q, k + s1)

Cr+p1−1(n + q, k + s1)

× (r + p1 − 1)!
(r + p1 − 1)!

∫ 1

0

{
F−1(t)

}
p−1

× (1 − t)(k+s1)+{(n+q)−(r+p1)}(m+1)−1gr+p1−1
m (t)dt

or

μ
p
r :n,m,k − μ

p
r−1:n,m,k = p

1

d

Cr−2(n, k)

Cr+p1−1(n + q, k + s1)

(r + p1 − 1)!
(r − 1)!

× Cr+p−1(n + q, k + s1)

(r + p1 − 1)!
∫ 1

0

{
F−1(t)

}
p−1

× (1 − t)(k+s1)+{(n+q)−(r+p1)}(m+1)−1gr+p1−1
m (t)dt

or
μ
p
r :n,m,k − μ

p
r−1:n,m,k = pKμ

(p−1)
r+p1:n+q,m,k+s1

.

Also from (4.35) we have for p = 1:

K = μr :n,m,k − μr−1:n,m,k,

which completes the proof.

Above theorem readily produce the corresponding recurrence relation for Order
Statistics for m = 0 and k = 1. In that case the class of distributions is

{
F−1(t)

}
/ = 1

d
t p1(1 − t)q−p1−1,
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and the recurrence relation is

μp
r :n − μ

p
r−1:n = pC(r, n, p1, q)μ

(p−1)
r+p1,n+q;

where

C(r, n, p, q) = μr :n − μr−1:n = 1

d

( n
r−1

)

(r + p)
(n+q
r+p

) .

Above relation is same as we have derived in (2.33).
Further, if we have a real valued function defined as

d

dt
h(t) = 1

d
(1 − t)(q−p1)(m+1)+s1−1g p1

m (t) on (0, 1),

and distribution function of GOS is expressible as

F−1(t) =
[
exp{h(t)},β = 0
{βh(t)}1/β,β > 0

then following recurrence relation holds between moments of GOS for this class of
distributions

μ
(p+β)

r :n,m,k − μ
(p+β)

r−1:n,m,k = (p1 + β)Kμ
p
r+p1:n+q,m,k+s1

, (4.62)

where K is defined earlier.
The class of distributions given in (4.60) provide several distributions for various

choices of the constants involved. For example choosing p1 = q = s1 = 0 in (4.60)
we have {

F−1(t)
}

/ = 1

d
(1 − t)−1

which gives

F−1(t) = 1

d
ln

(
1

1 − t

)
.

Solving F−1(t) = x for x we have

F(x) = 1 − e−dx ,

which is Exponential distribution. Hence the recurrence relations for single moments
of GOS can be directly obtained from (4.61) by setting p1 = q = s1 = 0.

http://dx.doi.org/10.2991/978-94-6239-225-0_2


Chapter 5
Dual Generalized Order Statistics

5.1 Introduction

In previous chapters we have discussed some popularmodels of ordered randomvari-
ables when the sample is arranged in increasing order. The simplest of these models
is Order Statistics and is discussed in detail in Chap.2. The comprehensive model for
ordered random variables arranged in ascending order is Generalized Order Statistics
and is discussed in detail in Chap. 4. The generalized order statistics produce several
models for ordered random variables arranged in ascending order as special case
for various choices of the parameters involved. Often it happen that the sample is
arranged in descending order for example the life length of an electric bulb arranged
from highest to lowest. In such situations the distributional properties of variables
can not be studied by using the models of ordered random variables discussed ear-
lier. The study of distributional properties of such random variables is studied by
using the inverse image of Generalized Order Statistics and is popularly known as
Dual Generalized Order Statistics (DGOS). The dual generalized order statistics was
introduced by Burkschat et al. (2003) as a unified model for descendingly ordered
random variables. In this chapter we will discuss dual generalized order statistics in
detail with its special cases.

5.2 Joint Distribution of Dual GOS

The Dual Generalized Order Statistics (DGOS) or sometime called Lower Gen-
eralized Order Statistics (LGOS) is a combined mechanism of studying random
variables arranged in descending order. The technique was introduced by Burkschat
et al. (2003) and is defined in the following.

© Atlantis Press and the author(s) 2016
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Suppose a random sample of size n is available from a distributionwith cumulative
distribution function F(x) and let k and mj be real numbers such that

k ≥ 1, m1, m2, . . . , mn−1 ∈ R.

Also let

Mr =
n−1∑

j=r

mj; 1 ≤ r ≤ n − 1

Define γr as γr = k + (n − r) + Mr such that γr ≥ 1 for all r ∈ {1, 2, . . . , n − 1}.
Finally let

m̃ = (m1,m2, . . . ,mn−1); if n ≥ 2

then the random variables Xr:n,m̃,k are theDual Generalized Order Statistics (DGOS)
from the distribution F(x), if their joint density function is of the form

f1(d),2(d),...,n(d):n,m̃,k(x1, x2, . . . , xn) = k

⎛

⎝
n−1∏

j=1

γj

⎞

⎠{F(xn)}k−1f (xn)

×
[
n−1∏

i=1

{F(xi)}mi f (xi)

]
(5.1)

on the cone F−1(1) > x1 ≥ x2 ≥ · · · ≥ xn > F−1(0). If m1,m2, . . . ,mn−1 = m,
then the joint density of DGOS is given as

f1(d),2(d),...,n(d):n,m,k(x1, x2, . . . , xn) = k

⎛

⎝
n−1∏

j=1

γj

⎞

⎠{F(xn)}k−1f (xn)

×
[
n−1∏

i=1

{F(xi)}mf (xi)
]
. (5.2)

Making the transformation Ur:n,m̃,k = F
(
Xr:n,m̃,k

)
, the random variables Ur:n,m̃,k are

called the Uniform DGOS with joint density function as

f1(d),2(d),...,n(d):n,m,k(u1, u2, . . . , un) = k

⎛

⎝
n−1∏

j=1

γj

⎞

⎠
[
n−1∏

i=1

umi

]
uk−1
n ; (5.3)

with 1 > u1 ≥ u2 ≥ · · · ≥ un ≥ 0.
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The joint distribution of DGOS given in (5.1) provides a comprehensive model
for joint distribution of all forms of descendingly ordered random variables using
different values of the parameters involved. We have given the joint distribution of
various models of ordered random variables as special case of (5.2) in the following.

5.3 Special Cases of Dual GOS

We see in the following how DGOS provide various models of ordered random
variables as special case.

1. Choosing m1 = m2 = · · · = mn−1 = 0 and k = 1, such that γr = n − r + 1,
density (5.2) reduces to

f1(d),...,n(d):n,0,1(x1, . . . , xn) = n!
n∏

i=1

f (xi),

which is joint density of Ordinary Order Statistics (OOS).
2. Choosing m1 = m2 = · · · = mn−1 = 0 and k = α − n + 1, with n − 1 < α such

that γr = α − r + 1, the density (5.2) reduces to

f1(d),...,n(d):n,0,α−n+1(x1, . . . , xn) =
n∏

j=1

(α − j + 1)

× [F(xn)]
α−n

×
n∏

i=1

f (xi),

which is joint density of OOS with non-integral sample size.
3. Choosing mi = (n − i + 1)αi − (n − i)αi+1 − 1; i = 1, 2, . . . , n− 1; k = αn for

some real number α1,α2, . . . ,αn such that γr = (n − r + 1)αr , the density (5.2)
becomes

f1(d),...,n(d):n,m̃,αn(x1, . . . , xn) = n!
⎛

⎝
n−1∏

j=1

αj

⎞

⎠

×
[
n−1∏

i=1

{F(xi)}mi f (xi)

]

× {F(xn)}αn−1f (xn),
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which is joint density of Lower Sequential Order Statistics (SOS) based on the
arbitrary distribution function

Fr(t) = 1 − [F(t)]αr ; 1 ≤ r ≤ n.

4. For m1 = m2 = · · · = mn−1 = −1 and k ∈ N, such that γr = k, the density (5.2)
reduces to

f1(d),...,n(d):n,−1,k(x1, . . . , xn) = kn
[
n−1∏

i=1

f (xi)

F(xi)

]

× {F(xn)}k−1f (xn),

which is joint density of kth lower records. Choosing k = 1 we obtain joint
density of lower records.

5. For positive real numbers β1,β2, . . . ,βn, choosing mi = βi − βi+1 − 1; i =
1, 2, . . . , n − 1 and k = βn; such that γr = βr ; the density (5.2) reduces to

f1(d),...,n(d):n,m̃,βn(x1, . . . , xn) =
⎛

⎝
n∏

j=1

βj

⎞

⎠{F(xn)}βn−1f (xn)

×
[
n−1∏

i=1

{F(xi)}mi f (xi)

]
,

which is joint density of Pfeifer’s lower record values from non-identically dis-
tributed random variables based upon

Fr(t) = 1 − [F(t)]βr ; 1 ≤ r ≤ n.

Other special cases can be obtained by using specific values of the parameters in
density (5.2).

5.4 Some Notations for Dual GOS

We discussed some notations that repeatedly arises in study of GOS. The counterpart
notations for dual GOS can also be described on the same way. The constants Cr−1

which appear in GOS remains same for dual GOS. We give additional notations in
the following.
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On the unit interval the functions hm(d)(x) and gm(d)(x), m ∈ R, are defined as

hm(d)(x)=
{

xm+1

m+1 ; m �= −1
ln x; m = −1

; x ∈ [0, 1)

gm(d)(x) = hm(d)(1) − hm(d)(x)

=
{ 1

m+1

[
1 − xm+1

] ; m �= −1
− ln x ; m = −1

; x ∈ [0, 1)

Using above representation, the joint density of Uniform dual GOS can be written
as

f1(d),...,n(d):n,m̃,k(u1, . . . , un) = k

⎛

⎝
n−1∏

j=1

γj

⎞

⎠
[
n−1∏

i=1

d

dui
hmi(d)(ui)

]
uk−1
n .

Hence the functions hm(d)(x) and gm(d)(x) occur very frequently in context of dual
GOS.

We now give the joint marginal distribution of first r dual GOS.

5.5 Joint Marginal Distribution of r Dual GOS

The joint density function of n uniform GOS is given in (5.3) as

f1(d),...,n(d):n,m̃,k(u1, . . . , un) = Cn−1

(
n−1∏

i=1

umi
i

)
uk−1
n .

The joint marginal density of r uniform dual GOS is readily written by integrating
out variables ur+1, . . . , un by induction as

f1(d),...,r(d):n,m̃,k(u1, . . . , ur) = Cr−1

(
r−1∏

i=1

umi
i

)
uγr−1
r

; 1 > u1 ≥ u2 ≥ · · · ≥ ur ≥ 0; (5.4)

which immediately yields following joint marginal distribution of dual GOS for any
parent distribution F(x)

f1(d),...,r(d):n,m̃,k(x1, . . . , xr)= Cr−1

[
r−1∏

i=1

F(xi)
mi f (xi)

]
F(xr)

γr−1f (xr), (5.5)

on the cone F−1(1) > x1 ≥ x2 ≥ · · · ≥ xr > F−1(0).
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The joint marginal distributions of r dual GOS given in (5.5) can be used to
obtain the jointmarginal distribution of othermodels of descendingly ordered random
variables as special case. Some of these special cases are given below.

1. Reversed Order Statistics: using m1 = · · · = mn−1 = 0 and k = 1 in (5.5), we
have the joint marginal distribution of r reversed ordinary order statistics as

f1(d),...,r(d):n,0,1(x1, . . . , xr) = n!
(n − r)!

[
r−1∏

i=1

f (xi)

]

× {F(xr)}n−r f (xr).

2. Fractional Reversed Order Statistics: using m1 = · · · = mn−1 = 0 and k =
α−n+1 in (5.5), we have the joint marginal distribution of r fractional reversed
order statistics as

f1(d),...,r(d):n,0,α−n+1(x1, . . . , xr) =
r∏

j=1

(α − j + 1)

[
r−1∏

i=1

f (xi)

]

× {F(xr)}α−r f (xr).

3. Reversed Sequential Order Statistics; The joint distribution of r reversed sequen-
tial order statistics is obtained by using mi = (n − i + 1)αi − (n − i)αi+1 and
k = αn in (5.5) as

f1(d),...,r(d):n,m̃,αn(x1, . . . , xn) = n!
(n − r)!

r∏

j=1

αj

×
[
r−1∏

i=1

{F(xi)}mi f (xi)

]

× {F(xr)}αr(n−r+1)−1f (xr).

4. Lower Record Values: usingm1 = · · · = mn−1 = −1 and k ∈ N in (5.5), the joint
marginal distribution of r k- lower record values is obtained as

f1(d),...,r(d):n,−1,k(x1, . . . , xr) = kr
[
r−1∏

i=1

f (xi)

F(xi)

]

× {F(xr)}k−1f (xr).

5. Pfeifer Lower Record Values: using mi = βi − βi+1 − 1; k ∈ βn; as

f1(d),...,r(d):n,−1,k(x1, . . . , xr) =
r∏

j=1

βj

[
r−1∏

i=1

{F(xi)}mi f (xi)

]

× {F(xr)}βr−1f (xr).
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Other special cases can also be obtained from (5.5). The jointmarginal distribution
of r uniform dual GOS given in (5.4) can be used to obtain the marginal distribution
of rth dual GOS and joint marginal distribution of rth and sth dual GOS. We have
given these distributions in the following.

Lemma 5.1 We define the quantity Aj(d) as

Aj(d)=
∫ ur−j−1

ur

· · ·
∫ ur−2

ur

r−1∏

i=1

h/

m(d)(ui)dur−1 · · · dur−j

= 1

j!
r−j−1∏

i=1

h/

m(d)(ui)
{
hm(d)

(
ur−j−1

) − hm(d)(ur)
}
j.

We now give the marginal distribution of rth dual GOS.

5.6 Marginal Distribution of a Single Dual GOS

We have given the joint marginal distribution of r uniform dual GOS in (5.6) as

f1(d),...,r(d):n,m̃,k(u1, . . . , ur) = Cr−1

(
r−1∏

i=1

umi
i

)
uγr−1
r

; 1 > u1 ≥ u2 ≥ · · · ≥ ur ≥ 0; (5.6)

Assuming m1 = · · · = mn−1 = m; the joint distribution is

f1(d),...,r(d):n,m,k(u1, . . . , ur) = Cr−1

(
r−1∏

i=1

umi

)
uγr−1
r .

Now the marginal distribution of rth uniform dual GOS can be obtained from above
by integrating out u1, u2, . . . , ur−1 as under

fr(d):n,m,k(ur)=
∫ 1

ur

· · ·
∫ ur−2

ur

f1(d),...,r(d):n,m,k(u1, . . . , ur)dur−1 · · · du1

=
∫ 1

ur

· · ·
∫ ur−2

ur

Cr−1

(
r−1∏

i=1

umi

)
uγr−1
r dur−1 · · · du1

= Cr−1u
γr−1
r

∫ 1

ur

· · ·
∫ ur−2

ur

(
r−1∏

i=1

umi

)
dur−1 · · · du1

= Cr−1u
γr−1
r

∫ 1

ur

· · ·
∫ ur−2

ur

r−1∏

i=1

h/

m(d)(ui)dur−1 · · · du1
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Now using the Lemma5.1 with j = r − 1; and noting that u0 = 1; we have:

Ar−1(d)=
∫ 1

ur

· · ·
∫ ur−2

ur

r−1∏

i=1

h/

m(d)(ui)dur−1 · · · du1

= 1

(r − 1)! {hm(1) − hm(ur)}r−1 = 1

(r − 1)!g
r−1
m(d)(ur).

Hence the marginal distribution of rth uniform dual GOS is

fr(d):n,m,k(ur) = Cr−1

(r − 1)!u
γr−1
r gr−1

m(d)(ur). (5.7)

The marginal density of rth dual GOS for any parent distribution is easily written
from (5.7) and is given as

fr(d):n,m,k(x) = Cr−1

(r − 1)! f (x){F(x)}γr−1gr−1
m(d)[F(x)]. (5.8)

The distribution of special cases are readily written from (5.8). The marginal distri-
bution of rth reversed order statistics is obtained by using m = 0 and k = 1 and is
given as

fr(d):n,m,k(x) = n!
(r − 1)!(n − r)! f (x){F(x)}n−r{1 − F(x)}r−1, (5.9)

F−1(0) < x < F−1(1). We can see that the distribution of rth reversed order sta-
tistics is same as the distribution of (n − r + 1)th ordinary order statistics from the
distribution F(x). Again using m = −1 the marginal distribution of rth k−lower
record value is

fr(d):n,−1,k(x) = kr

(r − 1)! f (x){F(x)}k−1[− ln{F(x)}]r−1, (5.10)

which for k = 1 reduces to distribution of rth lower record value as

fr(d):n,−1,k(x) = 1

(r − 1)! f (x)[− ln{F(x)}]r−1. (5.11)

We now give the joint distribution of rth and sth dual GOS for r < s in the
following.
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5.7 Joint Distribution of Two Dual GOS

The joint marginal distribution of first s uniform GOS is given from (5.12) as

f1(d),...,s(d):n,m̃,k(u1, . . . , us) = Cs−1

(
s−1∏

i=1

umi
i

)
uγs−1
s

; 1 > u1 ≥ u2 ≥ · · · ≥ us ≥ 0; (5.12)

or

f1(d),...,s(d):n,m,k(u1, . . . , us) = Cs−1

[
s−1∏

i=1

h/

m(d)(ui)

]
uγs−1
s

; 1 > u1 ≥ u2 ≥ · · · ≥ us ≥ 0.

The joint distribution of rth and sth dual GOS is obtained by integrating out ur = u1
and us = u2 as

fr(d),s(d):n,m,k(u1, u2)=
∫ 1

ur

· · ·
∫ ur−2

ur

∫ ur

us

· · ·
∫ us−2

us

f1(d),...,s(d):n,m,k(u1, . . . , us)

× dus−1 · · · dur+1dur−1 · · · du1

=
∫ 1

ur

· · ·
∫ ur−2

ur

∫ ur

us

· · ·
∫ us−2

us

Cs−1

[
s−1∏

i=1

h/

m(d)(ui)

]

× uγs−1
s dus−1 · · · dur+1dur−1 · · · du1

or

fr(d),s(d):n,m,k(u1, u2) = Cs−1u
γs−1
s

×
∫ 1

ur

· · ·
∫ ur−2

ur

∫ ur

us

· · ·
∫ us−2

us

s−1∏

i=1

h/

m(d)(ui)

× dus−1 · · · dur+1dur−1 · · · du1
or

fr(d),s(d):n,m,k(u1, u2) = Cs−1u
γs−1
s umr

×
∫ 1

ur
· · ·

∫ ur−2

ur

r−1∏

i=1

h/
m(d)

(ui)
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×
⎡

⎣
∫ ur

us
· · ·

∫ us−2

us

s−1∏

i=r+1

h/
m(d)

(ui)dus−1 · · · dur+1

⎤

⎦

× dur−1 · · · du1

or

fr(d),s(d):n,m,k(u1, u2) = Cs−1u
γs−1
s umr

∫ 1

ur

· · ·
∫ ur−2

ur

r−1∏

i=1

h/
m(ui)

× I(s)dur−1 · · · du1; (5.13)

where

I(s) =
∫ ur

us

· · ·
∫ us−2

us

s−1∏

i=r+1

h/

m(d)(ui)dus−1 · · · dur+1.

Now using Lemma5.1 with s = r and j = s − r − 1 we have

As−r−1= I(s) =
∫ ur

us

· · ·
∫ us−2

us

s−1∏

i=r+1

h/

m(d)(ui)dus−1 · · · dur+1

= 1

(s − r − 1)!
{
hm(d)(ur) − hm(d)(us)

}
s−r−1

Using above result in (5.13) we have

fr(d),s(d):n,m,k(u1, u2)= Cs−1u
γs−1
s umr

1

(s − r − 1)!
× {

hm(d)(ur) − hm(d)(us)
}
s−r−1

×
∫ 1

ur

· · ·
∫ ur−2

ur

r−1∏

i=1

h/

m(d)(ui)dur−1 · · · du1

= Cs−1u
γs−1
s umr

1

(s − r − 1)!
× {

hm(d)(ur) − hm(d)(us)
}
s−r−1I(r)

Again using Lemma5.1 with j = r − 1; and noting that u0 = 1; we have

Ar−1= I(r) =
∫ 1

ur

· · ·
∫ ur−2

ur

r−1∏

i=1

h/

m(d)(ui)dur−1 · · · du1

= 1

(r − 1)!
{
hm(d)(1) − hm(d)(ur)

}
r−1
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or

Ar−1 = 1

(r − 1)!g
r−1
m(d)(ur).

Hence the joint density of rth and sth uniform dual GOS is

fr(d),s(d):n,m,k(u1, u2) = Cs−1

(r − 1)!(s − r − 1)!u
m
1 gr−1

m(d)(u1)

× uγs−1
2

{
hm(d)(u1) − hm(d)(u2)

}
s−r−1. (5.14)

The joint density of rth and sth dual GOS from any parent distribution is readily
written as

fr(d),s(d):n,m,k(x1, x2)= Cs−1

(r − 1)!(s − r − 1)! f (x1)f (x2){F(x1)}m

× gr−1
m {F(x1)}{F(x2)}γs−1

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1, (5.15)

F−1(0) < x2 < x1 < F−1(1). The joint density of two contiguous dual GOS is
immediately written as

fr(d),r+1(d):n,m,k(x1, x2)= Cr

(r − 1)! f (x1)f (x2){F(x1)}m

× gr−1
m(d)

{F(x1)}{F(x2)}γs−1. (5.16)

Further, the joint density of smallest and largest dual GOS is

f1(d),n(d):n,m,k(x1, x2)= Cn−1

(n − 2)! f (x1)f (x2){F(x1)}m{F(x2)}k−1

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
n−2. (5.17)

The expression for special cases can be immediately written from (5.15), (5.16) and
(5.17). Specifically the joint density of rth and sth k-lower record values is

fr(d),s(d):n,−1,k(x1, x2)= ks

(r − 1)!(s − r − 1)!
{
f (x1)

F(x1)

}
f (x2)

× [− ln{F(x1)}]r−1{F(x2)}k−1

× [ln{F(x1)} − ln{F(x2)}]s−r−1. (5.18)

Other special cases can also be obtained in similar way.

Example 5.1 A random sample is drawn from the Inverse Weibull distribution with
density function

f (x) = βx−(β+1) exp
(−x−β

); x > 0.
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Obtain the distribution of rth Dual GOS and the joint distribution of rth and sth Dual
GOS for this distribution.

Solution: The density function of rth Dual GOS is given in (5.19) as

fr(d):n,m,k(x) = Cr−1

(r − 1)! f (x){F(x)}γr−1gr−1
m(d)[F(x)]. (5.19)

where

gm(d)(u) = 1 − um+1

m + 1

Now for given distribution we have

F(x) =
∫ x

0
f (t)dt =

∫ x

0
βt−(β+1) exp

(−t−β
)
dt

= exp
(−x−β

); x > 0.

So

gm(d)[F(x)] = 1

m + 1

[
1 − {F(x)}m+1

]

= 1

m + 1

[
1 − {

exp
(−x−β

)}
m+1

]

or

gm(d)[F(x)] =
[
1 − exp

{(−(m + 1)x−β
)}]

m + 1
.

Hence

gr−1
m(d)[F(x)]=

[
1

m + 1

{
1 − exp

(−(m + 1)x−β
)}]

r−1

= 1

(m + 1)r−1

{
1 − exp

(−(m + 1)x−β
)}

r−1

= 1

(m + 1)r−1

r−1∑

j=0

(−1)j
(
r − 1

j

)
exp

{−(m + 1)jx−β
}

Using above value in (5.19) we have the density of rth Dual GOS as
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fr(d):n,m,k(x)= Cr−1

(r − 1)!βx
−(β+1) exp

(−x−β
)[
exp

(−x−β
)]

γr−1

× 1

(m + 1)r−1

r−1∑

j=0

(−1)j
(
r − 1

j

)
exp

{−(m + 1)jx−β
}

or

fr(d):n,m,k(x) = Cr−1

(r − 1)!βx
−(β+1) exp

(−x−β
)
exp

{−(γr − 1)x−β
}

× 1

(m + 1)r−1

r−1∑

j=0

(−1)j
(
r − 1

j

)
exp

{−(m + 1)jx−β
}

= Cr−1

(m + 1)r−1(r − 1)!
r−1∑

j=0

(−1)j
(
r − 1

j

)

× βx−(β+1) exp
[−{(m + 1)j + γr}x−β

]
.

Again the joint density of rth and sth Dual GOS is

fr(d),s(d):n,m,k(x1, x2)= Cs−1

(r − 1)!(s − r − 1)! f (x1)f (x2)[F(x1)]
mgr−1

m(d)
{F(x1)}

×[F(x2)]
γs−1

[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1.

where hm(d)(u) = um+1/(m + 1).
Now for given distribution we have

hm(d)[F(x2)]= 1

m + 1

{
exp

(
−x−β

2

)}
m+1 = 1

m + 1
exp

(
−(m + 1)x−β

2

)

hm(d)[F(x1)]= 1

m + 1

{
exp

(
−x−β

1

)}
m+1 = 1

m + 1
exp

(
−(m + 1)x−β

1

)

Hence the joint density of rth and sth Dual GOS is

fr(d),s(d):n,m,k(x1, x2)= Cs−1

(r − 1)!(s − r − 1)!βx
−(β+1)
1 βx−(β+1)

1 exp
(
−x−β

1

)

× exp
(
−x−β

2

)[
exp

(
−x−β

1

)]
m
[
exp

(
−x−β

2

)]
γs−1

×
⎡

⎣ 1

(m + 1)r−1

r−1∑

j=0

(−1)j
(
r − 1

j

)
exp

(−(m + 1)jx−β
)
⎤

⎦

×
⎡

⎣
exp

{
−(m + 1)x−β

1

}

m + 1
−

exp
{
−(m + 1)x−β

2

}

m + 1

⎤

⎦
s−r−1
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or

fr(d),s(d):n,m,k(x1, x2) = β2Cs−1

(m + 1)s−2(r − 1)!(s − r − 1)!x
−(β+1)
1 x−(β+1)

2

× exp
(
−x−β

1

)
exp

(
−x−β

2

)
exp

(
−x−mβ

1

) r−1∑

j=0

(−1)j
(
r − 1

j

)

× exp
(−(m + 1)jx−β

)
exp

{
−(γs − 1)x−β

2

} s−r−1∑

k=0

(−1)k

×
(
s − r − 1

k

)
exp

(
−(m + 1)(s − r − k − 1)x−β

1

)

× exp
(
−(m + 1)kx−β

2

)

or

fr(d),s(d):n,m,k(x1, x2) = β2Cs−1

(m + 1)s−2(r − 1)!(s − r − 1)!

×
s−r−1∑

k=0

r−1∑

k=0

(−1)j+k

(
r − 1

j

)(
s − r − 1

j

)
x−(β+1)
1 x−(β+1)

2

× exp
[
−{(m + 1)(s − r − k + j)}x−β

1

]

× exp
[
−{(m + 1)k + γs}x−β

2

]
.

5.8 Conditional Distributions for Dual GOS

The marginal distribution of rth dual GOS and joint distribution of rth and sth dual
GOS are given in (5.20) and (5.21) respectively as

fr(d):n,m,k(x1) = Cr−1

(r − 1)! f (x1){F(x1)}γr−1gr−1
m(d)[F(x1)]. (5.20)

and

fr(d),s(d):n,m,k(x1, x2)= Cs−1

(r − 1)!(s − r − 1)! f (x1)f (x2){F(x1)}m

× gr−1
m {F(x1)}{F(x2)}γs−1

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1. (5.21)
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The conditional distribution of sth dual GOS given information of rth dual GOS is
readily written as under

fs(d)|r(d):n,m,k(x2|x1) = fr(d),s(d):n,m,k(x1, x2)

fr(d):n,m,k(x1)

=
[

Cs−1

(r − 1)!(s − r − 1)! f (x1)f (x2){F(x1)}m

× gr−1
m {F(x1)}{F(x2)}γs−1

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

]
/[

Cr−1

(r − 1)! f (x1){F(x1)}γr−1gr−1
m(d)

{F(x1)}
]

= Cs−1f (x2){F(x2)}γs−1
[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

Cr−1(s − r − 1)!{F(x1)}γr−1−m

= Cs−1f (x2){F(x2)}γs−1
[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

Cr−1(s − r − 1)!{F(x1)}γr+1
. (5.22)

Again the joint density function of r dual GOS is given in (5.23) as

f1(d),...,r(d):n,m,k(x1, . . . , xr) = Cr−1

[
r−1∏

i=1

F(xi)
mi f (xi)

]
F(xr)

γr−1f (xr). (5.23)

Further, the joint density of first r and sth dual GOS is given as

f1(d),...,r(d),s(d):n,m̃,k(x1, . . . , xr, xs) = Cs−1

(s − r − 1)!

[
r∏

i=1

F(xi)
mi f (xi)

]

× [
hm(d){F(xr)} − hm(d){F(xs)}

]
s−r−1

× F(xs)
γs−1f (xs).

The conditional distribution of sth dual GOS given first r dual GOS is therefore

fs(d)|1(d),...,r(d):n,m,k(xs|x1, . . . , xr) = f1(d),...,r(d),s(d):n,m̃,k(x1, . . . , xr)

f1(d),...,r(d):n,m̃,k(x1, . . . , xr)

= Cs−1f (xs){F(xs)}γs−1
[
hm(d){F(xr)} − hm(d){F(xs)}

]
s−r−1

Cr−1(s − r − 1)!{F(xr)}γr+1
, (5.24)

which is (5.22). Hence the dual GOS form the Markov Chain.



192 5 Dual Generalized Order Statistics

The transition probability for dual GOS is obtained by first obtaining the con-
ditional distribution of (r + 1)th dual GOS given rth dual GOS. This conditional
distribution is readily written from (5.22) by using s = r + 1 and is

fr+1(d)|r(d):n,m,k(x1, x2) = Crf (xr+1){F(xr+1)}γr+1−1

Cr−1(s − r − 1)!{F(xr)}γr+1

= γr+1

[
F(xr+1)

F(xr)

]
γr+1−1 f (xr+1)

F(xr)
. (5.25)

The transition probability for dual GOS is therefore

P
(
Xr+1(d):n,m,k ≥ y|Xr(d):n,m,k = x

) =
∫ ∞

y
fr+1(d)|r(d):n,m,k(x1, x2) dxr+1

= γr+1

∫ ∞

y

[
F(xr+1)

F(xr)

]
γr+1−1 f (xr+1)

F(xr)
dxr+1

= γr+1

{F(xr)}γr+1

∫ ∞

y
f (xr+1)

× {F(xr+1)}γr+1−1dxr+1

or

P
(
Xr+1(d):n,m,k ≥ y|Xr(d):n,m,k = x

) =
[
F(y)

F(x)

]γr+1

. (5.26)

The transition probabilities for special cases are easily obtained from (5.26). For
example the transition probability for reversed order statistics is obtained by using
m = 0 and k = 1 and is given as

P
(
Xr+1(d):n,0,1 ≥ y|Xr(d):n,0,1 = x

) =
[
F(y)

F(x)

]n−r

.

Again the transition probability for k-lower records is obtained by setting m = −1
in (5.26) and is given as

P
(
Xr+1(d):n,−1,k ≥ y|Xr(d):n,−1,k = x

) =
[
F(y)

F(x)

]k
.

For example if the sequence follow the Weibull distribution with density

f (x) = αβxβ−1 exp
(−αxβ

); x,α,β > 0
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then the transition probability for reversed order statistics is

P
(
Xr+1(d):n,0,1 ≥ y|Xr(d):n,0,1 = x

) =
[
1 − exp

(−αyβ
)

1 − exp
(−αxβ

)
]n−r

,

and can be computed for various choices of the parameters involved.

5.9 Lower Record Values

In Sect. 5.2 we have seen that the dual GOS provides several models for descendingly
ordered random variables as special case for various choices of the parameters.
Among these special models two popular models for descendingly ordered random
variables are of special interest. These models include Reversed Order Statistics;
which has been discussed in Chap.2; and Lower Record Values. We now discuss
Lower Record Values in the following.

Record values are popular area of study within the context of ordered random
variables. In Chap.4 we have discussed in detail the concept of upper record values
which appear as values that are greater than the earlier records. Often it happen that
records are formed when values smaller than already available records form new
records. Such records are called the Lower Record Values. The lower record values
are defined below.

Let {Xn; n ≥ 1} be a sequence of independently and identically distributed ran-
dom variables with an absolutely continuous distribution function F(x) and density
function f (x). Let Xr(re):n be the rth reversed order statistics based upon a sample
of size n. For a fixed k ≥ 1 the k-lower record time LK(n); n ≥ 1 is defined as
UK(1) = 1 and

LK(n + 1) = min
{
r > UK(n) : Xr(re):r+k−1 < XLK (n),LK (n)+k−1

}; n ∈ N.

The kth lower record values are XLK (n):LK (n)+k−1 and for the sake of simplicity will be
denoted asXLK (n). The joint density of n k-lower record values is given byAhsanullah
(1995) as

fLK (1),LK (2),...,LK (n)(x1, . . . , xn) = kn
{

n−1∏

i=1

f (xi)

F(xi)

}

× [F(xn)]
k−1f (xn). (5.27)

When k = 1 then the k-lower record records reduces to lower records and are defined
as under.

http://dx.doi.org/10.2991/978-94-6239-225-0_5
http://dx.doi.org/10.2991/978-94-6239-225-0_2
http://dx.doi.org/10.2991/978-94-6239-225-0_4
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Suppose X1,X2, . . . be a sequence of independently and identically distributed
random variables from the distribution function F(x). Suppose Yn = min{X1,

X2, . . . ,Xn} for n ≥ 1. We call Xj a Lower Record Value of the sequence {Xn, n ≥ 1}
if Yj < Yj−1. From this definition it is clear that X1 is a lower record value. We also
associate the indices to each record value with which they occur. These indices are
called the record time {L(n)}, n > 0 where

U(n) = min
{
j|j > L(n − 1),Xj < XL(n−1), n > 1

}
.

We can readily see that L(1) = 1. We will denote the lower record values by XL(n).
Using k = 1 in (5.27), the joint density of n lower records is readily written as

fXL(1),...,XL(n) (x1, . . . , xn) =
{

n−1∏

i=1

f (xi)

F(xi)

}
f (xn). (5.28)

Themarginal density of nth k-lower record value is immediately obtained from (5.27)
and is given as

fLK (n)(x) = kn

�(n)
f (x){F(x)}k−1[− ln{F(x)}]n−1,

or

fLK (n)(x) = kn

�(n)
f (x){F(x)}k−1[H(x)]n−1,−∞ < x < ∞, (5.29)

whereH(x) = − ln{F(x)}. The marginal density of nth lower record value is readily
obtained from (5.29) by using k = 1 and is given by Ahsanullah (1995) as

fXL(n)(x) = 1

�(n)
f (x)[H(x)]n−1,−∞ < x < ∞.

Again the joint density of two k-lower record values is given by Ahsanullah (1995)
as

fLK (m),LK (n)(x1, x2) = kn

�(m)�(n − m)

f (x1)

F(x1)
f (x2)[H(x1)]

m−1

× [H(x2) − H(x1)]
n−m−1[F(x2)]

k−1, (5.30)

where−∞ < xn < xm < ∞. The joint density ofmth and nth lower records is easily
written from (5.30) by setting k = 1 and is given as

fXL(m),XL(n)(x1, x2) = 1

�(m)�(n − m)

f (x1)

F(x1)
f (x2)[H(x1)]

m−1

× [H(x2) − H(x1)]
n−m−1. (5.31)
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Using (5.29) and (5.30) we obtain following conditional distribution of n th lower
record given mth lower record.

fLK (n)|LK (m)=x1(x2|x1) = kn−m

�(n − m)

f (x2)

F(x1)

{
F(x2)

F(x1)

}k−1

× [H(x2) − H(x1)]
n−m−1. (5.32)

The conditional distribution given in (5.32) can be directly obtained from (5.22) by
using m = −1. The conditional distribution of (m + 1) th k-lower record given mth
k-lower record is obtained from (5.32) by using n = m + 1 and is given as

fLK (n)|LK (m)=x1(x2|x1) = k
f (x2)

F(x1)

{
F(x2)

F(x1)

}k−1

,

and since lower records follow a Markov Chain, the transition probability is imme-
diately obtained from (5.26) by using m = −1.

We have seen in Chap.3 that the quantities R(x) = − ln[1 − F(x)] which appear
in context of upper records have nice distributional properties. We now give some
distributional properties for the quantities H(x) = − ln[F(x)] which appear in the
context of lower records. The distributional properties of H(x) are given below.

The distribution of nth lower record and joint distribution of mth and nth lower
records are

fXL(n)(x) = 1

�(n)
f (x)[H(x)]n−1,−∞ < x < ∞.

and

fXL(m),XL(n)(x1, x2) = 1

�(m)�(n − m)

f (x1)

F(x1)
f (x2)[H(x1)]

m−1

× [H(x2) − H(x1)]
n−m−1.

Now making the transformation v = H(x) = − ln[F(x)] in the density function
of nth lower record we have F(x) = e−v and hence f (x)dx = e−vdv. The density
function of v is therefore

fV (v) = 1

�(n)
vn−1e−v, v > 0.

We see that the distribution of H(x) = − ln[F(x)] is Gamma with shape parameter
n. In Chap.3 we see that R(x) = − ln[1 − F(x)] also has the same distribution. We
therefore conclude that the quantities R(x) and H(x) are same in distribution.

Again making the transformation v1 = H(x1) and v2 = H(x2) in joint density of
mth and nth lower records, we have

F(x1) = e−v1 and F(x2) = e−v2

http://dx.doi.org/10.2991/978-94-6239-225-0_3
http://dx.doi.org/10.2991/978-94-6239-225-0_3
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and the Jacobbian of transformation is

|J| = 1

f (x1)f (x2)
e−v1e−v2 .

The joint density of v1 and v2 is therefore

fV1,V2(v1, v2) = 1

�(m)�(n − m)

f (x1)

e−v1
f (x2)v

m−1
1

× (v2 − v1)
n−m−1 1

f (x1)f (x2)
e−v1e−v2

or

fV1,V2(v1, v2) = 1

�(m)�(n − m)
vm−1
1 (v2 − v1)

n−m−1e−v2 ,

which is same as joint distribution of R(x1) and R(x2) given in (3.6). It can be easily
shown that the distribution of the ratio w = H(x1)/H(x2) is Beta distribution with
parameters m and n − m.

Example 5.2 Obtain the distribution of nth lower record, joint distribution of mth
and nth lower records and conditional distribution of nth lower record given mth
lower record if sequence of random variables follow Inverse Weibull distribution
with density

f (x) = βx−(β+1) exp
(−x−β

); x, β > 0.

Solution: The density function of nth lower record is

fLK (n)(x) = 1

�(n)
f (x)[H(x)]n−1,

where H(x) = − ln[F(x)]. Now for given distribution we have

F(x) =
∫ x

0
f (t)dt = exp

(−x−β
)
,

hence
H(x) = − ln[F(x)] = x−β .

The distribution of nth lower record is therefore

fLK (n)(x) = 1

�(n)
βx−(β+1) exp

(−x−β
)(
x−β

)
n−1

= 1

�(n)
βx−(βn+1) exp

(−x−β
); x > 0.

http://dx.doi.org/10.2991/978-94-6239-225-0_3
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Again the joint density of mth and nth lower record is given as

fXL(m),XL(n)(x1, x2) = 1

�(m)�(n − m)

f (x1)

F(x1)
f (x2)[H(x1)]

m−1

× [H(x2) − H(x1)]
n−m−1.

For given distribution we have

fXL(m),XL(n)(x1, x2) = 1

�(m)�(n − m)

βx−(β+1)
1 exp

(
−x−β

1

)

exp
(
−x−β

1

) βx−(β+1)
2

× exp
(
−x−β

2

)(
x−β
1

)
m−1

(
x−β
2 − x−β

1

)
n−m−1

or

fXL(m),XL(n)(x1, x2) = β2

�(m)�(n − m)
x−(βm+1)
1 x−(β+1)

2

×
(
x−β
2 − x−β

1

)
n−m−1 exp

(
−x−β

2

)
,

−∞ < x2 < x1 < ∞. Finally, the conditional distribution of n th lower record given
mth lower record is

fXL(n)|XL(m)=x1(x2|x1) = 1

�(n − m)

f (x2)

F(x1)
[H(x2) − H(x1)]

n−m−1,

which for given distribution is

fXL(n)|XL(m)=x1(x2|x1) = 1

�(n − m)
βx−(β+1)

2

(
x−β
2 − x−β

1

)
n−m−1

× exp
{
−
(
x−β
2 − x−β

1

)}
,

−∞ < x2 < x1 < ∞.

5.10 Distribution Function of Dual GOS and Its Properties

The distribution function of dual GOS play important role in studying certain proper-
ties of dual GOS. Just like the distribution function of GOS the distribution function
of dual GOS also has nice properties and are discussed in Burkschat et al. (2003).
We give these properties of distribution function of dual GOS in the following.
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The density function of rth dual GOS is given in (5.20) as

fr(d):n,m,k(x) = Cr−1

(r − 1)! f (x){F(x)}γr−1gr−1
m(d)[F(x)].

The distribution function of rth dual GOS is

Fr(d):n,m,k(x) =
∫ x

−∞
fr(d):n,m,k(t)dt

=
∫ x

−∞
Cr−1

(r − 1)! f (t){F(t)}γr−1gr−1
m(d)[F(t)]dt

= Cr−1

(r − 1)!
∫ x

−∞
f (t){F(t)}γr−1gr−1

m(d)[F(t)]dt.

The distribution functions of dual GOS are nicely related. One of important relation
is obtained below. For this we integrate Fr(d):n,m,k(x) by parts taking {F(t)}γr−1 for
integration to get

Fr(d):n,m,k(x) = Cr−1

(r − 1)!g
r−1
m(d)[F(t)]

{F(t)}γr
γr

∣∣∣∣
x
−∞ + Cr−1

(r − 2)!
×

∫ x

−∞

{ {F(t)}γr
γr

gr−2
m(d)[F(t)]f (t){F(t)}m

}
dt

= Cr−2

(r − 1)!g
r−1
m(d)[F(x)]{F(x)}γr + Cr−2

(r − 2)!
×

∫ x

−∞
f (t){F(t)}γr+mgr−2

m(d)[F(t)]dt

or

Fr(d):n,m,k(x) = Cr−2

(r − 1)!g
r−1
m(d)[F(x)]{F(x)}γr−1F(x)

f (x)
f (x)

+ Cr−2

(r − 2)!
∫ x

−∞
f (t){F(t)}γr−1−1gr−2

m(d)[F(t)]dt

or

Fr(d):n,m,k(x) = F(x)

γr f (x)
fr(d):n,m,k(x) + Fr−1(d):n,m,k(x)

or

γr
{
Fr(d):n,m,k(x) − Fr−1(d):n,m,k(x)

} = F(x)

f (x)
fr(d):n,m,k(x). (5.33)

The relation (5.33) is a useful relation which shows that the difference between
distribution functions of two contiguous dual GOS is proportional to the density
function of a dual GOS.
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Burkschat et al. (2003) have shown that the distribution function of dual GOS can
be written in the following form

Fr(d):n,m,k(x) = Cr−1

∫ F(x)

0
Gr,0

r,r

[
y

∣∣∣∣
γ1, . . . γr

γ1 − 1, . . . γr − 1

]
dy (5.34)

where Gm,n
p,q

(
x
∣∣∣a1,...,apb1,...,bp

)
is Meijer’s G-function.

The distribution function of rth dual GOS can also be presented in the form of
Incomplete Beta function ratio as under

Fr(d):n,m,k(x)=
∫ x

−∞
fr(d):n,m,k(t)dt

= Cr−1

(r − 1)!
∫ x

−∞
f (t){F(t)}γr−1gr−1

m(d)[F(t)]dt

= Cr−1

(r − 1)!
∫ x

−∞
f (t){F(t)}γr−1

×
[
1 − {F(t)}m+1

m + 1

]r−1

dt

Now making the transformation w = {F(t)}m+1 we have

Fr(d):n,m,k(x) = Cr−1

�(r)(m + 1)r

∫ α[F(x)]

−∞
w{γr/(m+1)}−1(1 − w)r−1dw;

where α∗[F(x)] = {F(x)}m+1. So the distribution function of dual GOS is

Fr(d):n,m,k(x)= Cr−1

�(r)(m + 1)r
Bα∗[F(x)]

(
r,

γr

m + 1

)

= Cr−1

�(r)(m + 1)r
B

(
r,

γr

m + 1

)
Iα∗[F(x)]

(
r,

γr

m + 1

)
;

where Ix(a, b) is incomplete Beta function ratio. The distribution function of dual
GOS may further be simplified as

FX(r:n,m,k)(x) = Cr−1

�(r)(m + 1)r
�(r)�

( γr
m+1

)

�
(
r + γr

m+1

) Iα∗[F(x)]

(
r,

γr

m + 1

)
·

Now using the relation

�

(
r + γr

m + 1

)
=
(

k

m + 1
+ n − 1

)
· · ·

(
k

m + 1
+ n − r

)
�

(
γr

m + 1

)

= Cr−1

(m + 1)r
�

(
γr

m + 1

)
;
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we have

Fr(d):n,m,k(x) = Iα∗[F(x)]

(
r,

γr

m + 1

)
. (5.35)

The above relation can be used to obtain distribution function of special cases by
using various values of the parameters involved.

5.11 Moments of Dual GOS

The moments of dual GOS are computed by using the density function of r th dual
GOS. We know that the density function of rth dual GOS is given as

fr(d):n,m,k(x) = Cr−1

(r − 1)! f (x){F(x)}γr−1gr−1
m(d)[F(x)].

The expected value of rth dual GOS; Xr(d):n,m,k; is defined as

μr:n,m,k = E
(
Xr(d):n,m,k

) =
∫ ∞

−∞
xfr(d):n,m,k(x)dx

= Cr−1

(r − 1)!
∫ ∞

−∞
xf (x){F(x)}γr−1gr−1

m(d)[F(x)]dx. (5.36)

The expected value of some function of rth dual GOS is

E
[
t
(
Xr(d):n,m,k

)] =
∫ ∞

−∞
t(x)fr:n,m,k(x)dx

= Cr−1

(r − 1)!
∫ ∞

−∞
t(x)f (x){F(x)}γr−1gr−1

m(d)[F(x)]dx.

Again the pth raw moment of rth dual GOS; μp
r(d):n,m,k ; is computed as

μ
p
r(d):n,m,k = E

(
Xp
r(d):n,m,k

)
=
∫ ∞

−∞
xpfr(d):n,m,k(x)dx

= Cr−1

(r − 1)!
∫ ∞

−∞
xpf (x){F(x)}γr−1gr−1

m(d)[F(x)]dx; (5.37)

Using the probability integral transformation, the pth moment of rth dual GOS can
also be written as

μ
p
r(d):n,m,k = E

(
Xp
r(d):n,m,k

)
= Cr−1

(r − 1)!
∫ 1

0

{
F−1(t)

}
pϕr(d):n(t)dt

= Cr−1

(r − 1)!
∫ 1

0

{
F−1(t)

}
ptγr−1gr−1

m(d)(t)dt; (5.38)
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where t = F(x), x = F−1(t) is the inverse function and ϕr(d):n(x) is density function
of uniform Dual GOS.

The joint density of rth and sth dual GOS provide basis for computation of product
moments of two GOS. The joint density of rth and sth dual GOS is given as

fr(d),s(d):n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)! f (x1)f (x2){F(x1)}m

× gr−1
m(d)

{F(x1)}{F(x2)}γs−1

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1.

The (p, q)th raw moment of rth and sth dual GOS is readily written as

μ
p,q
r(d),s(d):n,m,k = E

(
Xp
r(d):n,m,kX

q
s(d):n,m,k

)

=
∫ ∞

−∞

∫ ∞

x2

xp1x
q
2 fr(d),s(d):n,m,k(x1, x2)dx1dx2

= Cs−1

(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x2

xp1x
q
2 f (x1)f (x2){F(x1)}m

× gr−1
m(d)

{F(x1)}
[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

× {F(x2)}γs−1dx1dx2. (5.39)

The (p, q)th central moment of rth and sth dual GOS is given as

σ
p,q
r(d),s(d):n,m,k = E

[{
Xr(d):n,m,k − μr(d):n,m,k

}
p
{
Xs(d):n,m,k − μs(d):n,m,k

}
q
]
.

The covariance between rth and sth dual GOS is readily computed from above as

σr(d),s(d):n,m,k = E
[{
Xr(d):n,m,k − μr(d):n,m,k

}{
Xs(d):n,m,k − μs(d):n,m,k

}]
.

The correlation coefficient can also be computed easily.

Example 5.3 A random sample is drawn from standard Inverse Rayleigh distribution
with density function

f (x) = 2

x3
exp

(−x−2
); x > 0.

Obtain expression for single and product moments of dual GOS for this distribution.
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Solution: The distribution of rth dual GOS is

fr(d):n,m,k(x) = Cr−1

(r − 1)! f (x){F(x)}γr−1gr−1
m(d)[F(x)].

For given distribution we have

F(x) =
∫ x

0
f (t)dt =

∫ x

0

2

t3
exp

(−t−2
)
dt = exp

(−x−2
)
, x > 0.

Now we have

gr−1
m(d)[F(x)] =

(
1

m + 1

[
1 − {F(x)}m+1

])
r−1

=
[
1 − exp

{−(m + 1)x−2
}]

r−1

(m + 1)r−1
.

The distribution of Xr(d):n,m,k is therefore

fr(d):n,m,k(x) = Cr−1

(r − 1)!
2

x3
exp

(−γrx
−2
)

×
[
1 − exp

{−(m + 1)x−2
}]

r−1

(m + 1)r−1

= Cr−1

(r − 1)!(m + 1)r−1

2

x3
exp

(−γrx
−2)

×
r−1∑

j=0

(−1)j
(
r − 1

j

)
exp

{−(m + 1)jx−2
}

or

fr(d):n,m,k(x) = Cr−1

(r − 1)!(m + 1)r−1

r−1∑

j=0

(−1)j
(
r − 1

j

)

× 2

x3
exp

[−{(m + 1)j + γr}x−2
]
.
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The pth moment of Xr(d):n,m,k is therefore

μ
p
r(d):n,m,k = E

(
Xp
r(d):n,m,k

)
=
∫ ∞

−∞
xpfr(d):n,m,k(x)dx

= Cr−1

(r − 1)!(m + 1)r−1

r−1∑

j=0

(−1)j
(
r − 1

j

)

×
∫ ∞

0
2xp−3 exp

[−{(m + 1)j + γr}x−2
]

= Cr−1

(r − 1)!(m + 1)r−1

r−1∑

j=0

(−1)j
(
r − 1

j

)

× {(m + 1)i + γr}p/2−1�
(
1 − p

2

)
.

The Mean of Xr(d):n,m,k is

μr(d):n,m,k = Cr−1

(r − 1)!(m + 1)r−1

r−1∑

j=0

(−1)j
(
r − 1

j

)

×
√

π

{(m + 1)i + γr} ·

Again the joint density of Xr(d):n,m,k and Xs(d):n,m,k is

fr(d),s(d):n,m,k(x1, x2) = Cs−1

(r − 1)!(s − r − 1)! f (x1)f (x2){F(x1)}m

× gr−1
m(d)

{F(x1)}{F(x2)}γs−1

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1.

Now for given distribution we have

fr(d),s(d):n,m,k(x1, x2) = 4Cs−1

(r − 1)!(s − r − 1)!
1

x31x
3
2

e−x−2
1 e−x−2

2 e−mx−2
1

×
[

1

m + 1

{
1 − e−(m+1)x−2

1

}]r−1

× e−(γs−1)x−2
2

[
e−(m+1)x−2

1

m + 1
− e−(m+1)x−2

2

m + 1

]s−r−1
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or

fr(d),s(d):n,m,k(x1, x2) = 4Cs−1

(m + 1)s−2(r − 1)!(s − r − 1)!

×
s−r−1∑

j=0

r−1∑

i=0

(−1)i+j

(
r − 1

i

)(
s − r − 1

j

)

× 1

x31x
3
2

e−(m+1)(s−r−j+i)x−2
1 e−[(m+1)j+γs]x−2

2 .

The product moments of order (p, q) are therefore

μ
p,q
r(d),s(d):n,m,k = E

(
Xp
r(d):n,m,kX

q
s(d):n,m,k

)

=
∫ ∞

−∞

∫ ∞

x2

xp1x
q
2 fr(d),s(d):n,m,k(x1, x2)dx1dx2

= 4Cs−1

(m + 1)s−2(r − 1)!(s − r − 1)!

×
s−r−1∑

j=0

r−1∑

i=0

(−1)i+j

(
r − 1

i

)(
s − r − 1

j

)∫ ∞

−∞

∫ ∞

x2

xp1x
q
2

× 1

x31x
3
2

e−(m+1)(s−r−j+i)x−2
1 e−[(m+1)j+γs]x−2

2 dx2dx1

or

μ
p,q
r,s:n,m,k = 4Cs−1

(m + 1)s−2(r − 1)!(s − r − 1)!

×
s−r−1∑

j=0

r−1∑

i=0

(−1)i+j

(
r − 1

i

)(
s − r − 1

j

)

× 1

(1 − p/2){(m + 1)j + γs}2−(p+q)/2
�

(
2 − p + q

2

)

× 2F1

[
1 − q

2
, 2 − p + q

2
; 2 − q

2
; (m + 1)j + γs

(s − r − j + i)(m + 1)

]
.

The Covariance can be obtained by using above results.

Example 5.4 A random sample is drawn from the distribution

f (x) = a

ca
xa−1; 0 < x < c; a, c > 0.
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Show that the pth moment of rth dual GOS for this distribution is given as

μ
p
r(d):n,m,k = E

(
Xp
r(d):n,m,k

)
= cp

Cr−1(k)

Cr−1(k + p/a)
;

where notations have their usual meanings.

Solution: The pth moment of rth dual GOS is given as

μ
p
r(d):n,m,k = E

(
Xp
r(d):n,m,k

)
=
∫ ∞

−∞
xpfr(d):n,m,k(x)dx

=
∫ ∞

−∞
xp

Cr−1

(r − 1)! f (x){F(x)}γr−1gr−1
m(d)[F(x)]dx.

Using the probability integral transform, the pth moment is given as

μ
p
r(d):n,m,k = E

(
Xp
r(d):n,m,k

)
= Cr−1

(r − 1)!
∫ 1

0

{
F−1(t)

}
pϕr(d):n,m,k(t)dt

= Cr−1

(r − 1)!
∫ 1

0

{
F−1(t)

}
ptγr−1gr−1

m(d)(t)dt.

Now for given distribution we have

f (x) = a

ca
xa−1; 0 < x < c.

So

F(x) =
∫ x

0
f (t)dt =

∫ x

0

a

ca
xa−1dt

=
(x
c

)
a; 0 < x < c.

Also by using t = F(x) we have

t = xa

ca
=⇒ x = F−1(t) = ct1/a.

Hence the pth moment of rth dual GOS is:

μ
p
r(d):n,m,k = Cr−1

(r − 1)!
∫ 1

0

{
F−1(t)

}
ptγr−1gr−1

m(d)(t)dt

= Cr−1

(r − 1)!
∫ 1

0

(
ct1/a

)
ptγr−1gr−1

m(d)(t)dt

= Cr−1

(r − 1)!c
p
∫ 1

0
t(k+p/a)+(n−r)(m+1)gr−1

m(d)(t)dt
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or

μ
p
r:n,m,k = cp

Cr−1(k)

Cr−1(k + p/a)

Cr−1(k + p/a)

(r − 1)!
×

∫ 1

0
t(k+p/a)+(n−r)(m+1)gr−1

m(d)(t)dt

= cp
Cr−1(k)

Cr−1(k + p/a)
;

as
Cr−1(k + p/a)

(r − 1)!
∫ 1

0
t(k+p/a)+(n−r)(m+1)gr−1

m(d)(t)dt = 1,

as required.

5.12 Recurrence Relations for Moments of Dual GOS

The moments of Dual GOS are discussed in the previous section. For certain distrib-
utions the moments can be expressed in a simple and compact way but for others the
expressions are sometime too much complex and hence computing the moments for
real data is tedious. The problem can be overcomed by obtaining recurrence relations
between moments of Dual GOS and hence these recurrence relations can be used to
compute the higher order moments from the lower order moments. We discuss these
recurrence relations between moments of Dual GOS in the following.

The density function of rth Dual GOS is given as

fr(d):n,m,k(x) = Cr−1

(r − 1)! f (x){F(x)}γr−1gr−1
m(d)[F(x)].

We can establish two types of recurrence relations between moments of Dual GOS,
one which are distribution free and one which are distribution specific. The distrib-
ution free relationships are more general in their applications. The distribution free
relationships between moments of Dual GOS can be readily established by noting
following relationships between density functions of Dual GOS

γr+1fr(d):n,m,k(x) + r(m + 1)fr+1(d):n,m,k(x) = γ1fr(d):n−1,m,k(x) (i)

γr+1
{
fr+1(d):n,m,k(x) − fr(d):n,m,k(x)

} = γ1
{
fr+1(d):n,m,k(x) − fr(d):n−1,m,k(x)

}
(ii)

γ1
{
fr(d):n,m,k(x) − fr(d):n−1,m,k(x)

} = r(m + 1)
{
fr(d):n,m,k(x) − fr+1(d):n,m,k(x)

}
(iii)

Using above relations we can immediately write following relations between
moments of dual GOS
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γr+1μ
p
r(d):n,m,k + r(m + 1)μp

r+1(d):n,m,k = γ1μ
p
r(d):n−1,m,k (i)

γr+1

{
μ
p
r+1(d):n,m,k − μ

p
r(d):n,m,k

}
= γ1

{
μ
p
r+1(d):n,m,k − μ

p
r(d):n−1,m,k

}
(ii)

γ1

{
μ
p
r(d):n,m,k − μ

p
r(d):n−1,m,k

}
= r(m + 1)

{
μ
p
r(d):n,m,k − μ

p
r+1(d):n,m,k

}
. (iii)

The second relation can be alternatively written as

r(m + 1)μp
r+1(d):n,m,k = γ1μ

p
r(d):n−1,m,k − γr+1μ

p
r(d):n,m,k .

We can see that these relations are exactly same as the relations between moments
of GOS and hence these two models of ordered random variables are same in expec-
tations.

Distribution specific relationships between single and product moments of Dual
GOS have been studied by various authors. The distribution specific recurrence rela-
tions between moments of Dual GOS are easily obtained by using a general result
given by Khan et al. (2009). We have given the result in following theorem.

Theorem 5.1 Suppose a sequence of randomvariables {Xn; n ≥ 1} is available from
an absolutely continuous distribution function F(x). Suppose further that Xr(d):n,m,k

be rth Dual GOS of the sequence then following recurrence relation hold between
moments of the Dual GOS

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γrgr−1

m(d)[F(x)]dx; (5.40)

and

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γsdx2dx1. (5.41)

Proof We have

μ
p
r(d):m,n,k = E

(
Xp
r(d):n,m,k

)
=
∫ ∞

−∞
xpfr(d):n,m,k(x)dx

=
∫ ∞

−∞
xp

Cr−1

(r − 1)! f (x){F(x)}γr−1gr−1
m(d)[F(x)]dx

= Cr−1

(r − 1)!
∫ ∞

−∞
xpf (x){F(x)}γr−1gr−1

m(d)[F(x)]dx.
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Integrating above equation by parts taking f (x){F(x)}γr−1 as function for integration
we have

μ
p
r:n,m,k = Cr−1

(r − 1)!
[
xpgr−1

m(d)
{F(x)} {F(x)}γr

γr

∣∣∣∣
∞

−∞

−
∫ ∞

−∞

{
pxp−1gr−1

m(d)[F(x)] − (r − 1)xpgr−2
m(d)[F(x)]

×[F(x)]mf (x)} {F(x)}γr
γr

dx

]

= − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γrgr−1

m(d)[F(x)]dx

+ (r − 1)Cr−1

γr(r − 1)!
∫ ∞

−∞
xpf (x){F(x)}γr+mgr−2

m(d)[F(x)]dx

= − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γrgr−1

m(d)[F(x)]dx

+ Cr−2

(r − 2)!
∫ ∞

−∞
xpf (x){F(x)}γr−1−1gr−2

m(d)[F(x)]dx

Since

μ
p
r−1(d):n,m,k = Cr−2

(r − 2)!
∫ ∞

−∞
xpf (x){F(x)}γr−1−1gr−2

m(d)[F(x)]dx,

hence above equation can be written as

μ
p
r(d):n,m,k = − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γrgr−1

m(d)[F(x)]dx + μ
p
r−1(d):n,m,k,

or

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γrgr−1

m(d)[F(x)]dx,

as required. We can readily see; from (5.40); that for p = 1 following recurrence
relationship exist between expectations of Dual GOS

μr(d):n,m,k − μr−1(d):n,m,k = − Cr−1

γr(r − 1)!
∫ ∞

−∞
{F(x)}γrgr−1

m(d)[F(x)]dx. (5.42)

We also have an alternative representation for recurrence relation between single
moments of GOS based upon probability integral transform of (5.40) as under

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

γr(r − 1)!
∫ 1

0

{
F−1(t)

}
p−1

{
F−1(t)

}
/

× tγrgr−1
m(d)(t)dt. (5.43)
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The representation (5.43) is very useful in deriving relations for specific distributions.
Again consider

μ
p,q
r(d),s(d):n,m,k = E

(
Xp
r(d):n,m,kX

q
s(d):n,m,k

)
=
∫ ∞

−∞

∫ x1

−∞
xp1x

q
2 fr(d),s(d):n,m,k(x1, x2)dx2dx1

= Cs−1

(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ ∞

x1

xp1x
q
2 f (x1)f (x2){F(x1)}m

× gr−1
m(d)

{F(x1)}
[
hm(d){F(x1)} − hm{F(x2)}

]
s−r−1

× {1 − F(x2)}γs−1dx2dx1

or

μ
p,q
r(d),s(d):n,m,k = Cs−1

(r − 1)!(s − r − 1)!
∫ ∞

−∞
xp1f (x1){F(x1)}m

× gr−1
m(d)

{F(x1)}I(x2)dx1; (5.44)

where

I(x2) =
∫ x1

−∞
xq2 f (x2){F(x2)}γs−1

[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1dx2.

Integrating above integral by parts using f (x2){F(x2)}γs−1 for integration we have

I(x2) = xq2
[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1 {F(x2)}γs

γs

∣∣∣∣
x1−∞

− 1

γs

∫ x1

−∞

[
qxq−1

2

[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

−(s − r − 1)xq2
[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−2

×{1 − F(x2)}mf (x2)
]{F(x2)}γsdx2

or

I(x2) = − q

γs

∫ ∞

x1

xq−1
2

[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

× {F(x2)}γsdx2 + (s − r − 1)

γs

∫ x1

−∞
xq2 f (x2)

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−2{F(x2)}γs+mdx2. (5.45)
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Now using the value of I(x2) from (5.45) in (5.44) we have

μ
p,q
r(d),s(d):n,m,k = Cs−1

(r − 1)!(s − r − 1)!
∫ ∞

−∞
xp1f (x1){F(x1)}mgr−1

m(d)
{F(x1)}

×
[
− q

γs

∫ x1

−∞
xq−1
2

[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

× {F(x2)}γsdx2 + (s − r − 1)

γs

∫ x1

−∞
xq2 f (x2){F(x2)}γs+m

×[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−2dx2

]
dx1

or

μ
p,q
r(d),s(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2 f (x1){F(x1)}m

× gr−1
m(d)

{F(x1)}
[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

× {F(x2)}γsdx2dx1 + (s − r − 1)Cs−1

γs(r − 1)!(s − r − 1)!
×

∫ ∞

−∞

∫ x1

−∞
xp1x

q
2 f (x1)f (x2){F(x1)}mgr−1

m(d)
{F(x1)}

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−2{F(x2)}γs+mdx2dx1

or

μ
p,q
r(d),s(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2 f (x1){F(x1)}m

× gr−1
m(d)

{F(x1)}
[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

× {F(x2)}γsdx2dx1 + Cs−2

(r − 1)!(s − r − 2)!
∫ ∞

−∞

∫ ∞

x1

xp1x
q
2

× f (x1)f (x2){F(x1)}mgr−1
m(d)

{F(x1)}{F(x2)}γs−1−1

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−2dx2dx1

or

μ
p,q
r(d),s(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2 f (x1){F(x1)}m

× gr−1
m(d)

{F(x1)}
[
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

× {F(x2)}γsdx2dx1 + μ
p,q
r(d),s−1(d):n,m,k;
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or

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γsdx2dx1,

as required.

We now present recurrence relations for single and product moments of GOS for
some special distributions.

5.12.1 Reflected Exponential Distribution

The density and distribution function of Reflected Exponential random variable are
given as

f (x) = αeαx; x < 0,α > 0

and
F(x) = eαx.

We note that
f (x) = αF(x). (5.46)

Consider (5.40)

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γrgr−1

m(d)[F(x)]dx

= − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γr−1

× F(x)gr−1
m(d)[F(x)]dx

Using (5.46) in (5.40) following recurrence relation between single moments of Dual
GOS has been obtained by Ahsanullah (2000)

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

αγr(r − 1)!
∫ ∞

−∞
xp−1f (x){F(x)}γr−1

× gr−1
m(d)[F(x)]dx
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or
μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − p

αγr
μ
p−1
r(d):n,m,k,

or
μ
p
r(d):n,m,k = μ

p
r−1(d):n,m,k − p

αγr
μ
p−1
r(d):n,m,k (5.47)

The relationship (5.47) reduces to corresponding relationship for reversed order sta-
tistics for m = 0 and k = 1 and for lower record values for m = −1. Again consider
(5.41) as

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γsdx2dx1
or

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γs−1F(x2)dx2dx1.

Now using (5.46) in above equation we have

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

αγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1)f (x2){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γs−1dx2dx1.

or
μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − q

αγs
μ
p,q−1
r(d),s(d):n,m,k

or
μ
p,q
r(d),s(d):n,m,k = μ

p,q
r(d),s−1(d):n,m,k − q

αγs
μ
p,q−1
r(d),s(d):n,m,k . (5.48)
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Using s = r + 1 in (5.48) we have following relation between product moments of
two contiguous Dual GOS

μ
p,q
r(d),r+1(d):n,m,k = μ

p+q
r(d):n,m,k − q

αγs
μ
p,q−1
r(d),r+1(d):n,m,k .

The recurrence relationship given in (5.48) reduces to relationship for reversed order
statistics for m = 0 and k = 1. Further, for m = −1, the relationship (5.48) reduces
to recurrence relation for product moment of lower record values.

5.12.2 The Inverse Rayleigh Distribution

The density and distribution function of Inverse Rayleigh distribution are

f (x) = 2α

x3
exp

(
− α

x2

)
;α, x > 0;

and
F(x) = exp

(
− α

x2

)
.

The density and distribution function are related as

f (x) = 2α

x3
F(x). (5.49)

Using (5.49) in (5.40) the recurrence relation for moments of single Dual GOS can
be derived as under. Consider (5.40) as

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γrgr−1

m(d)[F(x)]dx

= − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γr−1

× F(x)gr−1
m(d)[F(x)]dx

Using (5.49) in above equation we have

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γr−1

× x3

2α
f (x)gr−1

m(d)[F(x)]dx
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or

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

2αγr(r − 1)!
∫ ∞

−∞
xp+2f (x)

× {F(x)}γr−1gr−1
m(d)[F(x)]dx

or
μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − p

2αγr
μ
p+2
r(d):n,m,k

or
μ
p
r(d):n,m,k = μ

p
r−1(d):n,m,k − p

2αγr
μ
p+2
r(d):n,m,k . (5.50)

Again consider (5.41) as

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γsdx2dx1.

or

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γs−1F(x2)dx2dx1.

Now using (5.49) in above equation we have

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

2αγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q+2
2

× f (x1)f (x2){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γs−1dx2dx1.

or
μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − q

2αγs
μ
p,q+2
r(d),s(d):n,m,k

or
μ
p,q
r(d),s(d):n,m,k = μ

p,q
r(d),s−1(d):n,m,k − q

2αγs
μ
p,q+2
r(d),s(d):n,m,k . (5.51)
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We can obtain the recurrence relation for moments for special cases by using specific
values of parameters in (5.50) and (5.51). For example the recurrence relation for
single moments of lower order statistics can be obtained by using m = −1 and are
given as

μ
p
r(d):n,−1,k = μ

p
r−1(d):n,−1,k − p

2αk
μ
p+2
r(d):n,−1,k

and
μ
p,q
r(d),s(d):n,−1,k = μ

p,q
r(d),s−1(d):n,−1,k − q

2αγs
μ
p,q+2
r(d),s(d):n,−1,k .

Recurrence relations for other special cases can be readily written.

5.12.3 The Inverse Weibull Distribution

The density and distribution function for Inverse Weibull distribution

f (x) = αβ

xβ+1
exp

(
− α

xβ

)
; x,α,β > 0;

and
F(x) = exp

(
− α

xβ

)
.

We also have

f (x) = αβ

xβ+1
F(x). (5.52)

Pawlas and Szynal (2001) derived the recurrence relations for single and product
moments of Dual GOS for Inverse Weibull distribution. These relations are given
below.

Using (5.52) in (5.40) we have

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γr−1

× xβ+1

αβ
f (x)gr−1

m(d)[F(x)]dx

or

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

αβγr(r − 1)!
∫ ∞

−∞
xp+β f (x)

× {F(x)}γr−1gr−1
m(d)[F(x)]dx

or
μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − p

2αγr
μ
p+β
r(d):n,m,k
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or
μ
p
r(d):n,m,k = μ

p
r−1(d):n,m,k − p

2αγr
μ
p+β
r(d):n,m,k . (5.53)

Again consider (5.41) as

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γsdx2dx1.

or

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γs−1F(x2)dx2dx1.

Now using (5.52) in above equation we have

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

αβγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q+β
2

× f (x1)f (x2){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γs−1dx2dx1.

or
μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − q

αβγs
μ
p,q+β
r(d),s(d):n,m,k

or
μ
p,q
r(d),s(d):n,m,k = μ

p,q
r(d),s−1(d):n,m,k − q

αβγs
μ
p,q+β
r(d),s(d):n,m,k . (5.54)

The recurrence relations (5.53) and (5.54) reduces to relations (5.50) and (5.51) for
β = 2 as expected. Further, by using s = r + 1, the recurrence relation between
product moments of two contiguous Dual GOS for Inverse Weibull distribution is
obtained as

μ
p,q
r(d),r+1(d):n,m,k = μ

p+q
r(d):n,m,k − q

αβγs
μ
p,q+β
r(d),r+1(d):n,m,k .
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The recurrence relations for reversed Order Statistics and k-Lower Record Values
can be readily obtained for (m = 0; k = 1) and m = −1.

5.12.4 The Power Function Distribution

The density and distribution function of Power Function distribution are

f (x) = α + 1

θα+1
xα; 0 < x < θ, α > −1

and
F(x) =

(x
θ

)
α+1; 0 < x < θ.

The density and distribution function are related as

f (x) = α + 1

x
F(x). (5.55)

Athar and Faizan (2011) have derived the recurrence relations for single and product
moments of Dual GOS by using (5.55) in (5.40) and (5.41). We have given these
relations in the following.

Using (5.55) in (5.40) we have

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γr−1

× x

α + 1
f (x)gr−1

m(d)[F(x)]dx

or

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

(α + 1)γr(r − 1)!
∫ ∞

−∞
xpf (x)

× {F(x)}γr−1gr−1
m(d)[F(x)]dx

or
μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − p

(α + 1)γr
μ
p
r(d):n,m,k

or

μ
p
r(d):n,m,k

{
(α + 1)γr + p

(α + 1)γr

}
= μ

p
r−1(d):n,m,k

or

μ
p
r(d):n,m,k =

{
(α + 1)γr

(α + 1)γr + p

}
μ
p
r−1(d):n,m,k . (5.56)
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Again consider (5.41) as

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γsdx2dx1.

or

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γs−1F(x2)dx2dx1.

Using (5.55) in above equation we have

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

(α + 1)γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q
2

× f (x1)f (x2){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γs−1dx2dx1.

or
μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − q

(α + 1)γs
μ
p,q
r(d),s(d):n,m,k

or

μ
p,q
r(d),s(d):n,m,k

{
(α + 1)γs + q

(α + 1)γs

}
= μ

p,q
r(d),s−1(d):n,m,k

or

μ
p,q
r(d),s(d):n,m,k =

{
(α + 1)γs

(α + 1)γs + q

}
μ
p,q
r(d),s−1(d):n,m,k . (5.57)

The recurrence relations for special cases can be readily obtained from (5.56) and
(5.57).
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5.12.5 The General Class of Inverted Distributions

The Inverted Rayleigh and Inverted Weibull distributions belong to a more general
class of inverted distributions. The density function of this inverted class is

f (x) = θλ′(x)
λ2(x)

exp

{
− θ

λ(x)

}
; α < x < β,

where α and β are suitable numbers and λ(x) is a non-negative, strictly increasing
and differentiable function of x such that: λ(x) → 0 and x → α and λ(x) → ∞ and
x → β. The distribution function corresponding to above density is

F(x) = exp

{
− θ

λ(x)

}
; α < x < β.

The InvertedRayleigh and InvertedWeibull distributions appear as special case of the
inverted class for λ(x) = x2 and λ(x) = xβ respectively. The density and distribution
functions are related as

f (x) = θλ′(x)
λ2(x)

F(x). (5.58)

Using the relation (5.58), Kotb et al. (2013) have derived the recurrence relations for
single and product moments of Dual GOS for the general class of Inverted distribu-
tions . These recurrence relations are given in the following.

Using (5.58) in (5.40) we have

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

γr(r − 1)!
∫ ∞

−∞
xp−1{F(x)}γr−1

× λ2(x)

θλ′(x)
f (x)gr−1

m(d)[F(x)]dx

or

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

θγr(r − 1)!
∫ ∞

−∞

{
xp−1λ2(x)

λ′(x)

}
f (x)

× {F(x)}γr−1gr−1
m(d)[F(x)]dx

or

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − pCr−1

θγr(r − 1)!
∫ ∞

−∞
φ(x)f (x)

× {F(x)}γr−1gr−1
m(d)[F(x)]dx,
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where φ(x) =
{
xp−1 λ2(x)

λ′(x)

}
. Above relation can be written as

μ
p
r(d):n,m,k − μ

p
r−1(d):n,m,k = − p

θγr
μ

φ(x)
r(d):n,m,k

or
μ
p
r(d):n,m,k = μ

p
r−1(d):n,m,k − p

θγr
μ

φ(x)
r(d):n,m,k . (5.59)

The recurrence relation (5.59) reduces to (5.50) for λ(x) = x2 and it reduces to
(5.53) for λ(x) = xβ as expected.

Again consider (5.41) as

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γsdx2dx1.

or

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

γs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× f (x1){F(x1)}mgr−1
m(d)

{F(x1)}
× [

hm(d){F(x1)} − hm(d){F(x2)}
]
s−r−1

× {F(x2)}γs−1F(x2)dx2dx1.

Now using (5.58) in above equation we have

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

θγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
xp1x

q−1
2

× λ2(x2)

λ′(x2)
f (x1)f (x2){F(x1)}mgr−1

m(d)
{F(x1)}

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1

× {F(x2)}γs−1dx2dx1.
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or

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

θγs(r − 1)!(s − r − 1)!
×

∫ ∞

−∞

∫ x1

−∞

{
xp1x

q−1
2

λ2(x2)

λ′(x2)

}
f (x1)f (x2)

× {F(x1)}mgr−1
m(d)

{F(x1)}{F(x2)}γs−1

× [
hm(d){F(x1)} − hm(d){F(x2)}

]
s−r−1dx2dx1.

or

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − qCs−1

θγs(r − 1)!(s − r − 1)!
∫ ∞

−∞

∫ x1

−∞
φ(x1, x2)f (x1)

× f (x2){F(x1)}mgr−1
m(d)

{F(x1)}{F(x2)}γs−1

× [
hm(d){F(x1)} − hm(d){F(x2)}

]s−r−1dx2dx1.

where φ(x1, x2) =
{
xp1x

q−1
2

λ2(x2)
λ′(x2)

}
. Above recurrence relation can be written as

μ
p,q
r(d),s(d):n,m,k − μ

p,q
r(d),s−1(d):n,m,k = − q

θγs
μ

φ(x1,x2)
r(d),s(d):n,m,k,

or
μ
p,q
r(d),s(d):n,m,k = μ

p,q
r(d),s−1(d):n,m,k − q

θγs
μ

φ(x1,x2)
r(d),s(d):n,m,k . (5.60)

Recurrence relation (5.60) reduces to (5.51) for λ(x) = x2 and to (5.54) for
λ(x) = xβ as the case should be.

5.13 Relationship Between GOS and Dual GOS

The GOS and Dual GOS present two models of ordered random variables. Since
the models represent random variables arranged in ascending and descending order
respectively, there is essentially some relationships between these two models and
hence between special cases. Arnold et al. (2008) has shown that ordinary order
statistics from some distribution function F(x) are related as

Xr:n ∼ −Xn−r+1:n ; 1 ≤ r ≤ n.

Arnold et al. (1998) have also given following relation between upper and lower
records of a sequence of random variables

XU(n) ∼ −XL(n) ; n ∈ N.
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The extended results for relationship between GOS and Dual GOS have been
discussed byBurkschat et al. (2003) which produce the above two relations as special
case. These relationships are given below but we first give some common notations.

We will denote the GOS from any continuous distribution F(x) by Xr:n,m,k and
the Dual GOS by Xr(d):n,m,k . The uniform GOS and Dual GOS will be denoted by
Ur:n,m,k andUr(d):n,m,k respectively. The first relation between GOS and Dual GOS is
evident from their distribution functions given in (4.17) and (5.34). From these two
equations it is obvious that distribution functions of both the models can be written
in the form of Meijer G-function and this relation is given in Burkschat et al. (2003).

An important relationship which relates GOS and Dual GOS is based upon the
probability integral transform of both the models. This relationship is based upon
GOS and Dual GOS from two different distribution functions F(x) and G(x) and is
given as

F
(
Xr(d):n,m,k

) ∼ {
1 − G

(
Xr:n,m,k

)} ; 1 ≤ r ≤ n. (5.61)

The corresponding relationship for uniform GOS and Dual GOS is immediately
written as

Ur(d):n,m,k ∼ (
1 − Ur:n,m,k

) ; 1 ≤ r ≤ n. (5.62)

The relationship (5.62) provide basis for the following relationship which enable
us to give distribution of GOS from uniformDual GOS and distribution of Dual GOS
from uniform GOS

Xr(d):n,m,k ∼ F−1
(
1 − Ur:n,m,k

)
, (5.63)

and

Xr:n,m,k ∼ F−1
(
1 − Ur(d):n,m,k

)
. (5.64)

The corresponding results for special cases can be readily written from above
relationships.

http://dx.doi.org/10.2991/978-94-6239-225-0_4


Chapter 6
Some Uses of Ordered Random Variables

6.1 Introduction

In previous chapters we have discussed popular models of ordered random variables
alongside their common distributional properties. Ordered random variables are use-
ful in several areas of statistics like reliability analysis and censoring. In this chapter
we will discuss some common uses of ordered random variables.

6.2 Concomitants of Ordered Random Variables

Sofar in this book we have discussed the concepts of various models of ordered
random variables when a sample is available from some distribution F (x). The
comprehensive models of Generalized Order Statistics and Dual Generalized Order
Statistics have been discussed in detail in Chaps. 4 and 5 which contain several spe-
cial models for various choices of the parameters involved. Often it happen that
the sample of size n is available from some bivariate distribution F (x, y) and the
sample is ordered with respect to one of the variable by using any of the models
of ordered random variables. In such situations the other variable is automatically
shuffled and is called the Concomitants of Ordered Variable. The concomitants of
ordered random variables are accompanying variables which occur naturally when
sample is available from a bivariate distribution and is arranged with respect to one
variable. The concept of concomitants of ordered random variables can be extended
to situations when sample is available from some multivariate distribution and is
arranged with respect to one of the variable. In such situations all other variables are
called the multivariate concomitants. The concomitants of ordered random variables
are random variables and have formal distributional properties. The distributional
properties of concomitants of order statistics have been discussed in Arnold et al.
(2008) and distributional properties of concomitants of generalized order statistics
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have been discussed in Ahsanullah and Nevzorov (2001). In this chapter we will dis-
cuss distributional properties of concomitants for various models of ordered random
variables.

6.2.1 Concomitants of Generalized Order Statistics

The Concomitants of Generalized Order Statistics arise when we have sample from
some bivariate or multivariate distribution and the sample is arranged on the basis of
GOS of one of the variable. We will discuss in detail the concomitants of GOS when
sample is available from some bivariate distribution. The idea can be easily extended
to multivariate case. The concomitants of GOS are formally defined below.

Suppose (X1,Y1) , (X2,Y2) , . . . , (Xn,Yn) be a random sample of size n from
some bivariate distribution F (x, y). Suppose further that the sample is ordered with
respect to variable X , that is Xr :n,m,k is the r th GOS for marginal distribution of
X . The automatically shuffled variable Y is called the Concomitant of Generalized
Order Statistics and is denoted as Y[r :n,m,k]. The distribution r th concomitant of GOS
is given by Ahsanullah and Nevzorov (2001) as

f[r :n,m,k] (y) =
∫ ∞

−∞
f (y|x) fr :n,m,k (x) dx, (6.1)

where f (y|x) is conditional distribution of Y given x and fr :n,m,k (x) is the marginal
distribution of r th GOS for random variable X . The joint distribution of r th and sth
concomitants of GOS is

f[r,s:n,m,k] (y1, y2) =
∫ ∞

−∞

∫ ∞

x1

f (y1|x1) f (y2|x2) fr,s:n,m,k (x1, x2) dx2dx1, (6.2)

where fr,s:n,m,k (x1, x2) is joint distributionof r th and sthGOS for randomvariable X .
The marginal distribution of r th concomitant of GOS and joint distribution of r th

and sth concomitant of GOS provide basis to study basic properties of the concomi-
tants of GOS. Formally, the pth moment of r th concomitant of GOS is readily writ-
ten as

E
(
Y p
[r :n,m,k]

) =
∫ ∞

−∞
y p f[r :n,m,k] (y) dy, (6.3)

and the joint (p, q)th moment of r th and sth concomitants is computed as

E
(
Y p
1[r :n,m,k],Y

q
2[r :n,m,k]

) =
∫ ∞

−∞

∫ ∞

−∞
y p
1 y

q
2 f[r,s:n,m,k] (y1, y2) dy1dy2. (6.4)

The mean, variance and covariance are easily obtained from above expressions.
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The idea of concomitants of GOS can be easily extended to the case when sample
is available from some multivariate distribution, say F

(
x, y1, y2, . . . , yp

)
and the

sample is ordered with respect to variable X . The vector y = [Y1,Y2, . . . ,Yp
]/

in
this case is the vector of concomitants of GOS. The distribution of r th multivariate
concomitant in this case is given as

f[r :n,m,k] (y) =
∫ ∞

−∞
f (y|x) fr :n,m,k (x) dx, (6.5)

where f (y|x) is the conditional distribution of vector y given x .

Example 6.1 A random sample of size n is drawn from the density

f (x, y) = f (x) f (y) [1 + α {2F (x) − 1} {2F (y) − 1}] .

Obtain distribution of r th concomitant of GOS for this distribution alongside the
expression for pth moment of r th concomitant (Beg and Ahsanullah 2008).

Solution: The distribution of r th concomitant of GOS is given as

f[r :n,m,k] (y) =
∫ ∞

−∞
f (y|x) fr :n,m,k (x) dx,

where fr :n,m,k (x) is distribution of r th GOS for random variable X and is given as

fr :n,m,k (x) = Cr−1

(r − 1)! f (x) {1 − F (x)}γr−1 gr−1
m [F (x)] .

Further, the conditional distribution of Y given x is

f (y|x) = f (x, y)

f (x)
= f (y) [1 + α {2F (x) − 1} {2F (y) − 1}]

= f (y) + α f (y) {2F (x) − 1} {2F (y) − 1} .

Now distribution of r th concomitant of GOS is

f[r :n,m,k] (y) =
∫ ∞

−∞
[ f (y) + α f (y) {2F (x) − 1} {2F (y) − 1}]

× Cr−1

(r − 1)! f (x) {1 − F (x)}γr−1 gr−1
m [F (x)] dx
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or

f[r :n,m,k] (y) = f (y)
∫ ∞

−∞
Cr−1

(r − 1)! f (x) {1 − F (x)}γr−1 gr−1
m [F (x)] dx

+ α f (y) {2F (y) − 1}
∫ ∞

−∞
{2F (x) − 1} Cr−1

(r − 1)! f (x)

× {1 − F (x)}γr−1 gr−1
m [F (x)] dx

or

f[r :n,m,k] (y) = f (y) + α f (y) {2F (y) − 1}
∫ ∞

−∞
[1 − 2 {1 − F (x)}]

× Cr−1

(r − 1)! f (x) {1 − F (x)}γr−1 gr−1
m [F (x)] dx

or

f[r :n,m,k] (y) = f (y) + α f (y) {2F (y) − 1}
[∫ ∞

−∞
Cr−1

(r − 1)! f (x)

×{1 − F (x)}γr−1 gr−1
m [F (x)] dx

− 2
∫ ∞

−∞
Cr−1

(r − 1)! f (x) {1 − F (x)}γr gr−1
m [F (x)] dx

]

or

f[r :n,m,k] (y) = f (y) + α f (y) {2F (y) − 1}
[
1 − 2

∫ ∞

−∞
Cr−1

(r − 1)! f (x)

×{1 − F (x)}γr+1−1 gr−1
m [F (x)] dx

]

or

f[r :n,m,k] (y) = f (y) + α f (y) {2F (y) − 1}
[
1 − 2

Cr−1

Cr−1 (1)

∫ ∞

−∞
Cr−1 (1)

(r − 1)!
× f (x) {1 − F (x)}γr+1−1 gr−1

m [F (x)] dx
]

or

f[r :n,m,k] (y) = f (y) + α f (y) {2F (y) − 1}
(
1 − 2

Cr−1

Cr−1 (1)

)
,

where Cr−1 (1) = ∏r
j=1

(
γ j + 1

)
. The density function or r th concomitant of GOS

can further be written as
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f[r :n,m,k] (y) = f (y) + α f (y) {2F (y) − 1}
(
1 − 2

Cr−1

Cr−1 (1)

)

= f (y)

[
1 + α {2F (y) − 1}

(
1 − 2

Cr−1

Cr−1 (1)

)]
.

Now using the fact that 2F (y) − 1 = 1 − 2 {1 − F (y)} = 1 − 2F̄ (y) the density
function of r th concomitant can be written as

f[r :n,m,k] (y) = f (y)

[
1 + α

{
1 − 2F̄ (y)

}(
1 − 2

Cr−1

Cr−1 (1)

)]

= f (y)

[
1 + α

(
1 − 2

Cr−1

Cr−1 (1)

)
− 2α

(
1 − 2

Cr−1

Cr−1 (1)

)
F̄ (y)

]

= f (y)
[
d1,r + d2,r F̄ (y)

]
, (6.6)

where

d1,r = 1 + α

(
1 − 2

Cr−1

Cr−1 (1)

)
and d2,r = −2α

(
1 − 2

Cr−1

Cr−1 (1)

)
.

The density (6.6) provide general expression for distribution of r th concomitant of
GOS for Farlie-Gumbel-Morgenstern family of distributions discussed by Morgen-
stern (1956), Farlie (1960) and Gumbel (1960).

The expression for pth moment of r th concomitant of GOS is

E
(
Y p
[r :n,m,k]

) =
∫ ∞

−∞
y p f[r :n,m,k] (y) dy

=
∫ ∞

−∞
y p f (y)

[
d1,r + d2,r F̄ (y)

]
dy

= d1,r

∫ ∞

−∞
y p f (y) dy + d2,r

∫ ∞

−∞
y p f (y) F̄ (y) dy

or

E
(
Y p
[r :n,m,k]

) = d1,rμ
p
Y + d2,r

∫ ∞

−∞
y p f (y) {1 − F (y)} dy

= d1,rμ
p
Y + d2,rμ

p
Y − d2,r

∫ ∞

−∞
y p f (y) F (y) dy,

where μ
p
Y = E (Y p). The expression for pth moment can further be simplified as

E
(
Y p
[r :n,m,k]

) = d1,rμ
p
Y + d2,rμ

p
Y − d2,r

2
μ

p
Y (2:2)

= μ
p
Y

(
d1,r + d2,r

)− d2,r
2

μ
p
Y (2:2), (6.7)



228 6 Some Uses of Ordered Random Variables

where μ
p
Y (2:2) is pth moment of maximum of Y in a sample of size 2. Expression

(6.7) can be used to compute moments of concomitants of GOS for various members
of the family. For example if we use exponential distribution with

f (y) = e−y and F (y) = 1 − e−y

then the density function of r th concomitant of GOS is

f[r :n,m,k] (y) = e−y
[
d1,r + d2,r e

−y
]

= d1,r e
−y + d2,r e

−2y .

The expression for pth moment of r th concomitant of GOS is immediately written as

E
(
Y p
[r :n,m,k]

) = d1,r

∫ ∞

0
y pe−ydy + d2,r

∫ ∞

0
y pe−2ydy

= d1,r� (p + 1) + d2,r
1

2p+1
� (p + 1)

=
(
d1,r + d2,r

2p+1

)
� (p + 1) ,

as given by BuHamra and Ahsanullah (2013). The mean and variance can be readily
obtained from above.

6.2.2 Concomitants of Order Statistics

The distribution of concomitants of GOS discussed in the previous section provide
basis for distribution of concomitants for sub models. Specifically, the concomi-
tants of order statistics has attracted several statisticians. The concomitants of order
statistics are formally defined below.

Suppose (X1,Y1) , (X2,Y2) , . . . , (Xn,Yn) be a random sample from a bivariate
distribution F (x, y) and let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics of
variable X , the variable Y in this case is called the Concomitants of Order Statistics.
The density function of r th concomitant of order statistics is given by Arnold et al.
(2008) as

f[r :n] (y) =
∫ ∞

−∞
f (y|x) fr :n (x) dx, (6.8)

where fr :n (x) is the marginal distribution of r th order statistics for X . The joint
distribution of r th and sth concomitants is

f[r,s:n] (y1, y2) =
∫ ∞

−∞

∫ ∞

x1

f (y1|x1) f (y2|x2) fr,s:n (x1, x2) dx2dx1, (6.9)

where fr,s:n (x1, x2) is joint distribution of r th and sth order statistics for X .
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The moments for concomitants of order statistics can be easily computed from
(6.8) and (6.9). The distribution of concomitants of order statistics can be obtained
from distribution of concomitants of GOS by using m = 0 and k = 1.

Example 6.2 A random sample of size n is drawn from the density

f (x, y) = f (x) f (y) [1 + α {2F (x) − 1} {2F (y) − 1}] .

Obtain distribution of r th concomitant of order statistics for this distribution along-
side the expression for pth moment of r th concomitant.

Solution: The distribution of r th concomitant of order statistics is

f[r :n,m,k] (y) =
∫ ∞

−∞
f (y|x) fr :n (x) dx,

where fr :n (x) is distribution of r th order statistics for X given as

fr :n (x) = n!
(r − 1)! (n − r)! f (x) [F (x)]r−1 [1 − F (x)]n−r

= Cr,n f (x) [F (x)]r−1 [1 − F (x)]n−r ,

where Cr,n = n!
(r−1)!(n−r)! . Now the conditional distribution of Y given x is

f (y|x) = f (x, y)

f (x)
= f (y) [1 + α {2F (x) − 1} {2F (y) − 1}]

= f (y) + α f (y) {2F (x) − 1} {2F (y) − 1} .

The distribution of r th concomitant of order statistics is

f[r :n] (y) =
∫ ∞

−∞
[ f (y) + α f (y) {2F (x) − 1} {2F (y) − 1}]

× Cr,n f (x) [F (x)]r−1 [1 − F (x)]n−r dx

or

f[r :n] (y) = f (y)
∫ ∞

−∞
Cr,n f (x) [F (x)]r−1 [1 − F (x)]n−r dxdx

+ α f (y) {2F (y) − 1}
∫ ∞

−∞
{2F (x) − 1}Cr,n f (x)

× [F (x)]r−1 [1 − F (x)]n−r dx
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or

f[r :n] (y) = f (y) + α f (y) {2F (y) − 1}
∫ ∞

−∞
[1 − 2 {1 − F (x)}]

× Cr,n f (x) [F (x)]r−1 [1 − F (x)]n−r dx

or

f[r :n,m,k] (y) = f (y) + α f (y) {2F (y) − 1}
[∫ ∞

−∞
Cr,n f (x) [F (x)]r−1

× [1 − F (x)]n−r dx − 2
∫ ∞

−∞
Cr,n f (x)

[F (x)]r−1 [1 − F (x)]n−r+1 dx
]

or

f[r :n] (y) = f (y) + α f (y) {2F (y) − 1}
[
1 − 2

∫ ∞

−∞
Cr,n f (x)

× [F (x)]r−1 [1 − F (x)](n+1)−r dx
]

or

f[r :n] (y) = f (y) + α f (y) {2F (y) − 1}
[
1 − 2

Cr,n

Cr,n+1

∫ ∞

−∞
Cr,n+1

× f (x) [F (x)]r−1 [1 − F (x)](n+1)−r dx
]
,

whereCr,n+1 = (n+1)!
(r−1)!(n+1−r)! .The density function can further be simplified as under

f[r :n] (y) = f (y) + α f (y) {2F (y) − 1}
(
1 − 2

Cr,n

Cr,n+1

)

= f (y) + α f (y) {2F (y) − 1}
(
1 − 2

n − r + 1

n + 1

)

= f (y)

[
1 + α {2F (y) − 1}

(
2r − n − 1

n + 1

)]
.

The density function of r th concomitant of order statistics can be obtained from (6.6)
by using m = 0 and k = 1. The expression for pth moment of r th concomitant of
order statistics is
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E
(
Y p
[r :n]
) =

∫ ∞

−∞
y p f[r :n] (y) dy

=
∫ ∞

−∞
y p f (y)

[
1 + α {2F (y) − 1}

(
2r − n − 1

n + 1

)]
dy

=
∫ ∞

−∞
y p f (y) dy + α

(
2r − n − 1

n + 1

)

×
∫ ∞

−∞
y p f (y) {2F (y) − 1} dy

or

E
(
Y p
[r :n,m,k]

) = μ
p
Y + α

(
2r − n − 1

n + 1

)∫ ∞

−∞
y p2 f (y) F (y) dy

− α

(
2r − n − 1

n + 1

)∫ ∞

−∞
y p f (y) dy

= μ
p
Y − α

(
2r − n − 1

n + 1

)
μ

p
Y + α

(
2r − n − 1

n + 1

)
μ

p
Y (2:2),

where μ
p
Y = E (Y p) and μ

p
Y (2:2) is pth moment of maximum of Y in a sample of

size 2. Above expression can be used to compute moments of concomitants of order
statistics for various members of the family.

6.2.3 Concomitants of Upper Record Values

In Chap.3 we have discussed in detail the distributional properties of upper record
values when the sequence of random variables is available from a continuous univari-
ate distribution function F (x).When sample is available from a bivariate distribution
F (x, y) and is arranged with respect to upper records of variable X then the variable
Y is called the concomitant of upper record values. The marginal density function
of nth concomitant of k−record values and the joint distribution of nth and mth
concomitants of k−record values are given by Ahsanullah (2008) as

f[UK (n)] (y) =
∫ ∞

−∞
f (y|x) fUK (n) (x) dx, (6.10)

and

f[UK (n),UK (m)] (y1, y2) =
∫ ∞

−∞

∫ ∞

x1

f (y1|x1) f (y2|x2) fUK (n),UK (m) (x1, x2) dx2dx1,

(6.11)

http://dx.doi.org/10.2991/978-94-6239-225-0_3
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where fUK (n) (x) is the marginal distribution of nth k-record values and fUK (n),UK (m)

(x1, x2) is joint distribution of nth and mth k-record values of X given in (3.12) and
(3.13) respectively. The distribution of concomitants of record values can be obtained
by using k = 1 in (6.10) and (6.11). The moments of concomitants can be obtained
from (6.10) and (6.11).

Several authors have studied the concomitants of record values for certain class
of distributions. We have given some examples below.

Example 6.3 The joint distribution of X and Y is

f (x, y) = βθ1θ2x
2θ1−1yθ2−1 exp

{−xθ1
(
β + yθ2

)} ; x, y, θ1, θ2, β > 0.

Obtain the distribution of nth concomitant of upper record value for this distribution
(Ahsanullah et al. 2010).

Solution: The distribution of nth concomitant of upper record values is given as

f[YU (n)] (y) =
∫ ∞

−∞
f (y|x) fXU (n)

(x) dx,

where fXU (n)
is given in (3.3). Now for given distribution we have

f (x) =
∫ ∞

0
f (x, y) dy

=
∫ ∞

0
βθ1θ2x

2θ1−1yθ2−1 exp
{−xθ1

(
β + yθ2

)}
dy

= βθ1θ2x
2θ1−1 exp

(−βxθ1
) ∫ ∞

0
yθ2−1 exp

(−xθ1 yθ2
)
dy

= βθ1x
θ1−1 exp

(−βxθ1
)
, x, θ1, β > 0.

Also

F (x) =
∫ x

0
f (t) dt = 1 − exp

(−βxθ1
)

and

fXU (n)
(x) = 1

� (n)
[R (x)]n−1 f (x) ,

where R (x) = − ln [1 − F (x)] = βxθ1 . So we have

fXU (n)
(x) = 1

� (n)

(
βxθ1

)n−1
βθ1x

θ1−1 exp
(−βxθ1

)

= θ1

� (n)
βnxnθ1−1 exp

(−βxθ1
) ; x, n, β, θ1 > 0.

http://dx.doi.org/10.2991/978-94-6239-225-0_3
http://dx.doi.org/10.2991/978-94-6239-225-0_3
http://dx.doi.org/10.2991/978-94-6239-225-0_3
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Now the conditional distribution of Y given X is

f (y|x) = θ2x
θ1 yθ2−1 exp

(−xθ1 yθ2
) ; x, y, θ1, θ2 > 0,

so the distribution of nth concomitant of record value is

f[YU (n)] (y) =
∫ ∞

0
θ2x

θ1 yθ2−1 exp
(−xθ1 yθ2

)

× θ1

� (n)
βnxnθ1−1 exp

(−βxθ1
)
dx

= θ1θ2

� (n)
βn yθ2−1

∫ ∞

0
xnθ1+θ1−1 exp

{−xθ1
(
β + yθ2

)}
dx,

now making the transformation xθ1
(
β + yθ2

) = w and integrating we have

f[YU (n)] (y) = nθ2β
n yθ2−1

(
β + yθ2

)n+1 ; y, n, θ2, β > 0.

Now pth moment of nth concomitant is

E
(
Y p
[U (n)]

)
=
∫ ∞

0
y p f[YU (n)] (y) dy =

∫ ∞

0
y p nθ2β

n yθ2−1

(
β + yθ2

)n+1 dy

= nθ2β
n
∫ ∞

0

yθ2+p−1

(
β + yθ2

)n+1 dy

or

E
(
Y p
[U (n)]

)
= β p/θ2� (n − p/θ2) � (p/θ2 + 1)

� (n)
; p < nθ2.

The mean and variance can be obtained from above.

6.2.4 Concomitants of Dual GOS

The concomitants of ordered random variables can be extended to the case of Dual
GOS and are defined as below.

Suppose a random sample of size n is available from F (x, y) and distribution of
r th dual GOS is obtained for X . The variable Y in this case is called the concomitant
of dual GOS. The density function of r th concomitant of dual GOS is readily written
on the lines of distribution of concomitants of GOS as

f[r(d):n,m,k] (y) =
∫ ∞

−∞
f (y|x) fr(d):n,m,k (x) dx, (6.12)
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where fr(d):n,m,k (x) is the marginal distribution of r th dual GOS for X . The joint
distribution of r th and sth concomitants of dual GOS is

f[r(d),s(d):n,m,k] (y1, y2) =
∫ ∞

−∞

∫ ∞

x1

f (y1|x1) f (y2|x2)
× fr(d),s(d):n,m,k (x1, x2) dx2dx1, (6.13)

where fr,s:n,m,k (x1, x2) is joint distribution of r th and sth GOS for random variable
X . Expression for single and product moments can be easily obtained from (6.12)
and (6.13).

The distribution of concomitants of dual GOS provides distribution of concomi-
tants for special models by using specific values of the parameters involved. For
example by using m = −1 in (6.12) and (6.13) we obtain the distribution of con-
comitants of lower record values and is given as

f[LK (n)] (y) =
∫ ∞

−∞
f (y|x) fLK (n) (x) dx, (6.14)

where fLK (n) (x) is distribution of nth k−lower records.

Example 6.4 A random sample of size n is drawn from the density

f (x, y) = f (x) f (y) [1 + α {2F (x) − 1} {2F (y) − 1}] .

Obtain distribution of r th concomitant of dual GOS for this distribution alongside
the expression for pth moment of r th concomitant.

Solution: The distribution of r th concomitant of GOS is given as

f[r(d):n,m,k] (y) =
∫ ∞

−∞
f (y|x) fr(d):n,m,k (x) dx,

where fr(d):n,m,k (x) is distribution of r th dual GOS for random variable X and is
given as

fr :n,m,k (x) = Cr−1

(r − 1)! f (x) {F (x)}γr−1 gr−1
m(d) [F (x)] .

Further, the conditional distribution of Y given x is

f (y|x) = f (x, y)

f (x)
= f (y) [1 + α {2F (x) − 1} {2F (y) − 1}]

= f (y) + α f (y) {2F (x) − 1} {2F (y) − 1}
= f (y) + 2α f (y) {2F (y) − 1} F (x) − α f (y) {2F (y) − 1} .
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Now distribution of r th concomitant of GOS is

f[r(d):n,m,k] (y) =
∫ ∞

−∞
[ f (y) + 2α f (y) {2F (y) − 1} F (x) − α f (y) {2F (y) − 1}]

× Cr−1

(r − 1)! f (x) {F (x)}γr−1 gr−1
m(d) [F (x)] dx

or

f[r(d):n,m,k] (y) = f (y)
∫ ∞

−∞
Cr−1

(r − 1)! f (x) {F (x)}γr−1 gr−1
m(d) [F (x)] dx

+ 2α f (y) {2F (y) − 1}
∫ ∞

−∞
F (x)

Cr−1

(r − 1)! f (x)

× {F (x)}γr−1 gr−1
m(d) [F (x)] dx − α f (y) {2F (y) − 1}

×
∫ ∞

−∞
Cr−1

(r − 1)! f (x) {F (x)}γr−1 gr−1
m(d) [F (x)] dx

or

f[r(d):n,m,k] (y) = f (y) +2α f (y) {2F (y) − 1}
∫ ∞

−∞
Cr−1

(r − 1)! f (x)

×{F (x)}γr+1−1 gr−1
m(d) [F (x)] dx − α f (y) {2F (y) − 1}

or

f[r(d):n,m,k] (y) = f (y) + 2α f (y) {2F (y) − 1}
[

Cr−1

Cr−1 (1)

∫ ∞

−∞
Cr−1 (1)

(r − 1)!
× f (x) {F (x)}γr+1−1 gr−1

m(d) [F (x)] dx
]

− α f (y) {2F (y) − 1}

or

f[r(d):n,m,k] (y) = f (y) + α f (y) {2F (y) − 1} Cr−1

Cr−1 (1)
− α f (y) {2F (y) − 1} ,

where Cr−1 (1) = ∏r
j=1

(
γ j + 1

)
. The density function or r th concomitant of dual

GOS can further be written as

f[r(d):n,m,k] (y) = f (y)

[
1 + α {2F (y) − 1}

(
2Cr−1

Cr−1 (1)
− 1

)]

= f (y)
[
1 + αC∗ {2F (y) − 1}] ,

where C∗ =
(

2Cr−1

Cr−1(1)
− 1

)
. The density function can be further simplified as
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f[r(d):n,m,k] (y) = f (y)
[
1 + αC∗ {2F (y) − 1}]

= f (y) + αC∗ {2 f (y) F (y) − f (y)}
= f1:1 (y) + αC∗ { f2:2 (y) − f1:1 (y)} , (6.15)

where f2:2 (y) is distribution of maximum order statistics for a sample of size 2 and
f1:1 (y) = f (y). The density (6.15) provide general expression for distribution of
r th concomitant of dual GOS forFarlie-Gumbel-Morgenstern family of distributions
discussed by Morgenstern (1956), Farlie (1960) and Gumbel (1960). The expression
for pth moment of r th concomitant of dual GOS is readily written as

E
(
Y p
[r :n,m,k]

) =
∫ ∞

−∞
y p f[r :n,m,k] (y) dy

=
∫ ∞

−∞
y p
[
f1:1 (y) + αC∗ { f2:2 (y) − f1:1 (y)}] dy

=
∫ ∞

−∞
y p f (y) dy + αC∗

∫ ∞

−∞
y p f2:2 (y) dy

− αC∗
∫ ∞

−∞
y p f (y) dy

or

E
(
Y p
[r :n,m,k]

) = μ
p
Y + αC∗μp

Y (2:2) − αC∗μp
Y

= μ
p
Y + αC∗

{
μ

p
Y (2:2) − μP

Y

}
. (6.16)

Expression (6.16) can be used to compute moments of concomitants of dual GOS
for various members of the family.

Example 6.5 Obtain the distribution of nth concomitant of lower record value for
the distribution

f (x, y) = 4θ

x5y3
exp

{
− 1

x2

(
θ + 1

y2

)}
; x, y, θ > 0.

Also obtain expression for pth moment of r th concomitant of lower record value
(Mohsin et al. 2009).

Solution: The distribution of r th concomitant of lower record values is

f[YL (n)] (y) =
∫ ∞

−∞
f (y|x) fXL (n) (x) dx,

where fXL(n)
(x) is given as

fXL (n) (x) = 1

� (n)
f (x) [H (x)]n−1 , −∞ < x < ∞
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and H (x) = − ln [F (x)]. Now for given distribution we have

f (x) =
∫ ∞

0
f (x, y) dy =

∫ ∞

0

4θ

x5y3
exp

{
− 1

x2

(
θ + 1

y2

)}
dy

= 4θ

x5
exp

(
− θ

x2

)∫ ∞

0

1

y3
exp

(
− 1

x2y2

)
dy

= 2θ

x3
exp

(
− θ

x2

)
, x, θ > 0.

and

F (x) =
∫ x

0
f (t) dt =

∫ x

0

2θ

t3
exp

(
− θ

t2

)
dt = exp

(
− θ

x2

)
.

So H (x) = − ln [F (x)] = θ/x2. We therefore have

fXL (n) (x) = 1

� (n)

2θ

x3
exp

(
− θ

x2

)(
θ

x2

)n−1

= 1

� (n)

2θn

x2n+1
exp

(
− θ

x2

)
.

Also we have

f (y|x) = 2

x2y3
exp

(
− 1

x2y2

)

and hence the distribution of nth concomitant is

f[YL (n)] (y) = 4θn

� (n)

1

y3

∫ ∞

0

1

x2n+3
exp

{
− 1

x2

(
θ + 1

y2

)}
dx

= 2nθn

y3

(
y2

1 + θy2

)n+1

, y, n, θ > 0.

The expression for pth moment is

E
(
Y p
L(n)

)
=
∫ ∞

0
y p f[YL (n)] (y) dy

=
∫ ∞

0
y p 2nθn

y3

(
y2

1 + θy2

)n+1

dy

or

E
(
Y p
L(n)

)
= 1

θn/2� (n)
�
(
n + p

2

)
�
(
1 − p

2

)
; p < 2.

We can see that the variance of the distribution of concomitants does not exist.



238 6 Some Uses of Ordered Random Variables

6.3 Ordered Random Variables in Statistical Inference

Ordered random variables have been used by various authors in drawing inferences
about population parameters. Ordered random variables have been used in estima-
tion as well as in hypothesis testing about population parameters. Ordered random
variables has attracted several statisticians in drawing inferences about location scale
populations. In this section we will discuss some common uses of ordered random
variables in statistical inference.

6.3.1 Maximum Likelihood Estimation

Maximum likelihood method has been a useful method of estimation of population
parameters due to its nice properties. Themaximum likelihoodmethod is based upon
maximizing the likelihood function of the data with respect to unknown parameters,
that is if a random sample of size n is available from the distribution F (x; θ) where
θ is a (p × 1) vector of parameters then the parameters can be estimated by solving
the likelihood equations

∂ ln [L (x; θ)]

∂θi
= 0 ; i = 1, 2, . . . , p

where [L (x; θ)] is likelihood function of the data.
Situations do arise where the domain of the distribution involve a parameter and in

such situations the maximum likelihood estimation can not be done in conventional
way but is based upon the order statistics of the sample. For example if we have a
sample of size n from the distribution

f (x; θ) = 1

θ
; 0 < x < θ,

then the maximum likelihood estimator is θ̂ = Xn:n , the largest value of the sample.
Anotherwayof usingordered randomvariables inmaximum likelihood estimation

is to use the joint distribution of the ordered data instead of using the joint distribution
of the sample to obtain the maximum likelihood estimates. The idea is illustrated in
the following by using the joint distribution of Generalized Order Statistics.

Suppose X1, X2, . . . , Xn be a random sample from the distribution F (x; θ) and
X1:n,m,k, X2:n,m,k, . . . , Xn:n,m,k be the corresponding GOS of the sample. The joint
distribution of GOS is given in (4.1) as

f1,...,n:n,m̃,k (x1, ..., xn; θ) = k

⎛

⎝
n−1∏

j=1

γ j

⎞

⎠ {1 − F (xn; θ)}k−1 f (xn; θ)

×
[
n−1∏

i=1

{1 − F (xi ; θ)}m f (xi ; θ)

]
;

http://dx.doi.org/10.2991/978-94-6239-225-0_4
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and can be used as the likelihood function to estimate the population parameters.
The maximum likelihood estimation based upon ordered random variables is done
in conventional way, that is by differentiating the joint distribution with respect to
unknown parameters and equating the derivatives to zero. That is, the maximum
likelihood estimate of parameters based upon GOS are given by the solution of
likelihood equations

∂ ln
[
L
(
xn,m,k; θ

)]

∂θi
= 0 ; i = 1, 2, . . . , n (6.17)

where L
(
xn,m,k; θ

)
is given in (4.1) above.

The maximum likelihood estimates of population parameters obtained by using
joint distribution of GOS can be used to obtain the maximum likelihood estimates
based upon special cases by using specific values of the parameters. For example
usingm = 0 and k = 1 in (6.17) we obtain the maximum likelihood estimates based
upon order statistics and for m = −1 we obtain the maximum likelihood estimates
based upon upper record values.

Example 6.6 A random sample of size n is drawn from the distribution

f (x; θ) = 1

θ
exp

(
− x

θ

)
; x, θ > 0.

Obtain maximum likelihood estimate of θ on the basis of GOS.

Solution: The joint distribution of GOS is given as

L
(
xn,m,k; θ

) = k

⎛

⎝
n−1∏

j=1

γ j

⎞

⎠ {1 − F (xn; θ)}k−1 f (xn; θ)

×
[
n−1∏

i=1

{1 − F (xi ; θ)}m f (xi ; θ)

]
.

Now for given distribution we have

f (x; θ) = 1

θ
exp

(
− x

θ

)
and F (x) = 1 − exp

(
− x

θ

)
.

The joint density of GOS is therefore

L
(
xn,m,k; θ

) = k

⎛

⎝
n−1∏

j=1

γ j

⎞

⎠
{
exp

(
− xi

θ

)}k−1 1

θ
exp

(
− xi

θ

)

×
[
n−1∏

i=1

{
exp

(
− xi

θ

)}m 1

θ
exp

(
− xi

θ

)]

http://dx.doi.org/10.2991/978-94-6239-225-0_4
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or

L
(
xn,m,k; θ

) = Cn−1
1

θn
exp

(
−kxi

θ

) n−1∏

i=1

{
exp

(
− (m + 1) x

θ

)}

= Cn−1
1

θn
exp

(
−kxi

θ

)
exp

(
−m + 1

θ

n−1∑

i=1

xi

)

where Cn−1 = k
(∏n−1

j=1 γ j

)
. The log of likelihood function is

ln
[
L
(
xn,m,k; θ

)] = ln (Cn−1) − n ln θ − kxi
θ

− m + 1

θ

∑n−1

i=1
xi .

Now
∂ ln

[
L
(
xn,m,k; θ

)]

∂θ
= −n

θ
+ 1

θ2

{
kxi + (m + 1)

∑n−1

i=1
xi
}

.

The maximum likelihood estimator of θ is the solution of

−n

θ̂
+ 1

θ̂2

{
kxi + (m + 1)

∑n−1

i=1
xi
}

= 0

or
1

θ̂2

{
kxi + (m + 1)

∑n−1

i=1
xi
}

= n

θ̂

or

θ̂ = 1

n

{
kxi + (m + 1)

∑n−1

i=1
xi
}

.

We can see that the maximum likelihood estimator based upon GOS reduces to
conventional maximum likelihood estimator for m = 0 and k = 1.

6.3.2 The L-Moment Estimation

The L-moment estimation was introduced by Hosking (1990) and is based upon
equating few moments of order statistics with corresponding sample moments and
obtaining estimates of unknown population parameters. The L-moment estimation
is a useful technique for estimation of population parameters when the distribution
under study is a location-scale distribution. The L- moment estimation is described
in the following.

Suppose a random sample of size n is available from the density f (x; θ) and
x1:n ≤ x2:n ≤ · · · ≤ xn:n be the corresponding order statistics. Suppose further that
E (Xr :n) exist for r = 1, 2, . . . , n where
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E (Xr :n) = n!
(r − 1)! (n − r)!

∫

�
x f (x) [F (x)]r−1 [1 − F (x)]n−r dx

= n!
(r − 1)! (n − r)!

∫ 1

0

{
F−1 (u)

}
ur−1 (1 − u)n−r du;

and F−1 (u) is inverse function and U is U (0, 1) random variable. The L-moments
are weighted sum of expected values of these order statistics and are computed as

λr = 1

r

r−1∑

k=0

(−1)k
(
r − 1

k

)
E (Xr−k:r ) . (6.18)

The “L” in L-moments is emphasizes that λr is a linear function of “Expected Order
Statistics”. The first few L-moments are given as

λ1 = E (X1:1) = X̄ =
∫ 1

0

{
F−1 (u)

}
du

λ2 = 1

2
E (X2:2 − X1:2) =

∫ 1

0

{
F−1 (u)

}
(2u − 1) du

λ3 = 1

3
E (X3:3 − 2X2:3 + X1:3)

=
∫ 1

0

{
F−1 (u)

} (
6u2 − 6u + 1

)
du

and

λ4 = 1

4
E (X4:4 − 3X3:4 + 2X2:4 − X1:4)

=
∫ 1

0

{
F−1 (u)

} (
20u3 − 30u2 + 12u − 1

)
du.

The L-moments can also be computed as special case of Probability Weighted
Moments of Greenwood et al. (1979) which are defined as

Mp,r,s = E
[
X p {F (X)}r {1 − F (X)}s]

=
∫

�
x p {F (x)}r {1 − F (x)}s f (x) dx

=
∫ 1

0

{
F−1 (u)

}p {u}r {1 − u}s f (u) du. (6.19)
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For this we first define βr as

βr = M1,r,0 =
∫

�
x f (x) {F (x)}r dx

=
∫ 1

0

{
F−1 (u)

}
urdu. (6.20)

The L-moments can then be computed from βr as

λ1 = β0 (6.21)

λ2 = 2β1 − β0 (6.22)

λ3 = 6β2 − 5β1 + β0 (6.23)

λ4 = 20β3 − 30β2 + 12β1 − β0. (6.24)

The L-moment estimates can be obtained by equating population L-moments with
corresponding sample L-moments, that is, the L-moment estimates are obtained by
solving

λr = λ̂r ; r = 1, 2, . . . , p. (6.25)

where the sample L-moments are computed as

λ̂r =
r−1∑

k=0

(−1)r−k−1

(
r − 1

k

)(
r + k − 1

k

)
β̂k (6.26)

where

β̂r = 1

n

∑n

j=r+1

( j − 1) ( j − 2) . . . ( j − r)

(n − 1) (n − 2) . . . (n − r)
x j :n . (6.27)

First few λ̂r are

λ̂1 = β̂0

λ̂2 = 2β̂1 − β̂0

λ̂3 = 6β̂2 − 5β̂1 + β̂0

λ̂4 = 20β̂3 − 30β̂2 + 12β̂1 − β̂0.

and first few β̂r are given as

β̂0 = 1

n

∑n

i=1
x1:n = X̄

β̂1 = 1

n

∑n

j=2

( j − 1)

(n − 1)
x j :n
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β̂2 = 1

n

∑n

j=3

( j − 1) ( j − 2)

(n − 1) (n − 2)
x j :n

β̂3 = 1

n

∑n

j=4

( j − 1) ( j − 2) ( j − 3)

(n − 1) (n − 2) (n − 3)
x j :n .

We see that the L-moment estimation is like conventional moment estimation with
the difference that the simple moments are replaced by the L- moments.

Example 6.7 Suppose we have a random sample from the density

f (x;α, θ) = 1

θ
exp

{
−1

θ
(x − α)

}
; x ≥ α, θ > 0.

Obtain L-moment estimate of the parameters.

Solution: We know that the L-moment estimates are solution of

λr = λ̂r ; r = 1, 2, . . . , k.

Since given distribution has two parameters therefore L-moment estimates are solu-
tion of

λ1 = λ̂1 and λ2 = λ̂2.

Now we find L-moments of the distribution. We have

F (x) =
∫ x

α

f (t) dt =
∫ x

α

1

θ
exp

{
−1

θ
(t − α)

}
dt

= 1 − exp

{
−1

θ
(x − α)

}
.

So F (x) = u gives

1 − exp

{
−1

θ
(x − α)

}
= u

or
x = F−1 (u) = α − θ log (1 − u) .

Now we have

β0 =
∫ 1

0

{
F−1 (u)

}
du =

∫ 1

0
{α − θ log (1 − u)} du

= α

∫ 1

0
du − θ

∫ 1

0
log (1 − u) du = α + θ.
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Again

β1 =
∫ 1

0

{
F−1 (u)

}
udu =

∫ 1

0
{α − θ log (1 − u)} udu

= α

∫ 1

0
udu − θ

∫ 1

0
u log (1 − u) du = α

2
+ 3θ

4
.

So by using (6.22) and (6.23) we have

λ1 = β0 = α + θ

λ2 = 2β1 − β0 = 2

(
α

2
+ 3θ

4

)
− (α + θ) = θ

2
.

The L-moment estimates are therefore the solution of

α̂ + θ̂ = λ̂1 and θ̂/2 = λ̂2;

which gives
α̂ = λ̂1 − 2λ̂2 and θ̂ = 2λ̂2.

We see that the L-moment estimates are easy to compute.

6.3.3 Ordered Least Square Estimation

The Least Square Estimation is a popular method of estimation for parameter of
statistical models. Themethod can also be used to compute parameters of probability
distributions. Lloyed (1952) introduced the use of least square estimation to estimate
location and scale parameters of probability distributions by using the order statistics
of a sample of size n from distribution F (x) with location and scale parameters μ

and σ . The ordered least square method is illustrated in the following.
Let X1, X2, . . . , Xn be a sample from distribution F (x;μ, σ) where μ and σ

are location and scale parameters respectively and let X1:n, X2:n, . . . , Xn:n be the
corresponding order statistics of the sample and define

Zr :n = Xr :n − μ

σ

with E (Zr :n) = αr , Var (Zr :n) = Vr,s and Cov (Zr :n, Zs:n) = Vr,s . Now using
Xr :n = μ + σ Zr :n we have

E (Xr :n) = μ + σαr

V ar (Xr :n) = σ 2Vr,r and Cov (Xr :n, Xs:n) = σ 2Vr,s .
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Now writing z = [
Z1:n Z2:n . . . . . . Zn:n

]/
we have x = μ1 + σz,

E (z) = α , Cov (z) = V,

E (x) = μ1 + σα and Cov (x) = σ 2V.

where 1 is (n × 1) vector of 1′s, α is (n × 1) vector of E (Zr :n) and V is (n × n)

matrix of variances and covariances of Zr :n . Now using the fact that least square
estimate of parameters of the model y = Xβ + ε with Cov (ε) = V are given as

β̂ = (
X/V−1X

)−1
X/V−1y

the estimates of μ and σ are obtained as under.
From E (x) = μ1 + σα we have

E (x) = [
1 α

] [μ

σ

]
= Xβ,

so
[

μ̂

σ̂

]
=
([

1 α
]/
V−1

[
1 α

])−1 [
1 α

]/
V−1y

=
[
1/V−11 1/V−1α

1/V−1α α/V−1α

]−1 [ 1/V−1y
α/V−1y

]

or
[

μ̂

σ̂

]
= 1

�

[
α/V−1α −1/V−1α

−1/V−1α 1/V−11

] [
1/V−1y
α/V−1y

]

= 1

�

[ (
α/V−1α

) (
1/V−1y

)− (
1/V−1α

) (
α/V−1y

)
(
1/V−11

) (
α/V−1y

)− (
1/V−1α

) (
1/V−1y

)
]

or

μ̂ = 1

�

{−α/V−1
(
1α/−α1/

)
V−1y

}
(6.28)

and

σ̂ = 1

�

{
1/V−1

(
1α/−α1/

)
V−1y

}
, (6.29)

where � = (
1/V−11

) (
α/V−1α

)− (
1/V−1α

)2
. Also we have

Var
(
μ̂
) = 1

�

(
α/V−1α

)
, Var

(
σ̂
) = 1

�

(
1/V−11

)

Cov
(
μ̂, σ̂

) = − 1

�

(
1/V−1α

)
. (6.30)
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If the parent distribution is symmetrical then we have αr = −αn+r−1 and hence we
have 1/V−1α = 0 and hence the ordered least square estimators reduces to

μ̂ = 1/V−1y
1/V−11

and σ̂ = α/V−1y
α/V−1α

. (6.31)

The variances in this case reduces to

Var
(
μ̂
) = σ 2

1/V−11
and σ̂ = σ 2

α/V−1α
. (6.32)

The covariance in this case is zero.
The Lloyed’s ordered least square estimation method can be extended by using

mean vector and covariance matrix of any model of ordered random variables.

Example 6.8 A random sample of size n is drawn from the distribution

f (x) = 1

σ
; μ − 1

2
σ < x < μ + 1

2
σ.

Obtain the ordered least square estimators of μ and σ by using order statistics.

Solution: We see that the distribution is symmetrical as f (μ − x) = f (μ + x)
therefore the ordered least square estimators of parameters μ and σ are given as

μ̂ = 1/V−1y
1/V−11

and σ̂ = α/V−1y
α/V−1α

,

where α is mean vector and V is covariance matrix of standardized order statistics

Zr :n = Xr :n − μ

σ
.

Now we first obtain the distribution of standardized r th order statistics and joint
distribution of standardized r th and sth order statistics. For this we first obtain the
distribution of Z = (X − μ) /σ which is given as

f (x) = 1 ; − 1

2
< z <

1

2
.

Also

F (z) =
∫ z

−1/2
f (t) dt =

∫ z

−1/2
dt = z + 1

2
.
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Now distribution of r th order statistics for Z is

fr :n (z) = n!
(r − 1)! (n − r)! f (z) [F (z)]r−1 [1 − F (z)]n−r

= n!
(r − 1)! (n − r)!

(
z + 1

2

)r−1 (
1 − z − 1

2

)n−r

.

Again the joint distribution of r th and sth order statistics for z is

fr,s:n (z1, z2) = Cr,s:n f (z1) f (z2) [F (z1)]
r−1 [F (z2) − F (z1)]

s−r−1

× [1 − F (z2)]
n−s

= Cr,s:n
(
z1 + 1

2

)r−1

(z2 − z1)
s−r−1

(
1 − z2 − 1

2

)n−s

,

where Cr,s:n = n!
(r−1)!(s−r−1)!(n−s)! . We now find mean vector and covariance matrix

of z as under

αr = E (Zr :n) =
∫ 1/2

−1/2
z fr :n (z) dz

= n!
(r − 1)! (n − r)!

∫ 1/2

−1/2
z

(
z + 1

2

)r−1 (
1 − z − 1

2

)n−r

dz.

Now making the transformation z + 1
2 = w we have

αr = n!
(r − 1)! (n − r)!

∫ 1

0

(
w − 1

2

)
wr−1 (1 − w)n−r dz

= n!
(r − 1)! (n − r)!

∫ 1

0
wr (1 − w)n−r dz

−1

2

n!
(r − 1)! (n − r)!

∫ 1

0
wr−1 (1 − w)n−r dz

= n!
(r − 1)! (n − r)! B (r + 1, n − r + 1)

−1

2

n!
(r − 1)! (n − r)! B (r, n − r + 1)

or

αr = n!
(r − 1)! (n − r)! × r ! (n − r)!

(n + 1)!
−1

2

n!
(r − 1)! (n − r)! × (r − 1)! (n − r)!

n!
= r

n + 1
− 1

2
.
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Again

Vr,s = E {(Zr :n − αr ) (Zs:n − αs)}
=
∫ 1/2

−1/2

∫ z2

−1/2
(z1 − αr ) (z2 − αs) fr,s:n (z1, z2) dz1dz2

= Cr,s:n
∫ 1/2

−1/2

∫ z2

−1/2
(z1 − αr ) (z2 − αs)

(
z1 + 1

2

)r−1

× (z2 − z1)
s−r−1

(
1 − z2 − 1

2

)n−s

dz1dz2,

which after simplification becomes

Vr,s = r (n − s + 1)

(n + 1)2 (n − s)
; r ≤ s

= 0 Otherwise

Now we have

α =

⎡

⎢⎢⎢⎢⎢⎣

α1

α2
...

αn−1

αn

⎤

⎥⎥⎥⎥⎥⎦
= − 1

2 (n + 1)

⎡

⎢⎢⎢⎢⎢⎣

n − 1
n − 3

...

3 − n
1 − n

⎤

⎥⎥⎥⎥⎥⎦

and

V = [
Vr,s
] = 1

(n + 1)2 (n − 2)

⎡

⎢⎢⎢⎢⎢⎣

n n − 1 n − 2 · · · 1
0 2 (n − 1) 2 (n − 2) · · · 2
0 0 3 (n − 2) · · · 3
...

...
...

...
...

0 0 0 · · · n

⎤

⎥⎥⎥⎥⎥⎦
.

Also

V−1 = (n + 1) (n + 2)

⎡

⎢⎢⎢⎢⎢⎣

2 −1 0 · · · 0
−1 2 −1 · · · 0
0 −1 2 · · · 0
...

...
...

...
...

0 0 0 · · · 2

⎤

⎥⎥⎥⎥⎥⎦
.

Further

1/V−11 = 2 (n + 1) (n + 2)

α/V−1α = 1

2
(n + 2) (n − 1)
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α/V−1y = (n + 1) (n + 2)

2
(yn:n − y1:n)

1/V−1y = (n + 1) (n + 2) (yn:n + y1:n)

The ordered least square estimators are therefore

μ̂ = 1/V−1y
1/V−11

= 1

2
(yn:n + y1:n)

and

σ̂ = α/V−1y
α/V−1α

= n + 1

n − 1
(yn:n − y1:n) .

The ordered least square estimation is computer extensive and in certain cases
we need to use numerical methods to obtain the ordered least square estimators as
analytical solutions are very complicated.

6.3.4 Bayes Estimation Using Ordered Variables

Bayes estimation is a popular method of parameter estimation when parameters
are random variables. The conventional Bayes method is based upon computing
parameter estimates by using posterior distribution of the parameter given as

f (θ |x) = f (x|θ) g (θ)∫
� f (x|θ) g (θ) dθ

, (6.33)

where f (x|θ) is joint distribution of data and g (θ) is prior distribution of the para-
meter. In computing Bayes estimates by using ordered random variables the joint
distribution of data in (6.33) is replaced by the joint distribution of any model of
ordered random variables. For example if the joint distribution of GOS given in (4.1)
is replaced in (6.33) then Bayes estimation is based upon GOS.

Example 6.9 A random sample of size n is drawn from the distribution

f (x; θ) = θe−θx ; x, θ > 0.

Compute Bayes estimator of θ by using GOS if prior distribution of θ is

f (θ;α, β) = βα

� (α)
θα−1e−βθ ; θ, α, β > 0.

Solution: The Bayes estimator of θ is the mean of posterior distribution of
θ given as

http://dx.doi.org/10.2991/978-94-6239-225-0_4
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f
(
θ |xn,m,k

) = f
(
xn,m,k |θ

)
g (θ)

∫
� f

(
xn,m,k |θ

)
g (θ) dθ

,

where f
(
xn,m,k |θ

)
if the joint distribution of GOS given as

f
(
xn,m,k; θ

) = k

⎛

⎝
n−1∏

j=1

γ j

⎞

⎠ {1 − F (xn; θ)}k−1 f (xn; θ)

×
[
n−1∏

i=1

{1 − F (xi ; θ)}m f (xi ; θ)

]
.

Now for given distribution we have

f (x; θ) = θe−θx and F (x) = 1 − e−θx .

The joint density of GOS is therefore

f
(
xn,m,k;θ

) = k

⎛

⎝
n−1∏

j=1

γ j

⎞

⎠{e−θxi
}k−1

θe−θxi

[
n−1∏

i=1

{
e−θxi

}m
θe−θxi

]

or

f
(
xn,m,k;θ

) = Cn−1θ
ne−kθxi

n−1∏

i=1

e−(m+1)θxi

= Cn−1θ
nexp

[
−θ

{
kxi + (m + 1)

(∑n−1

i=1
xi
)}]

= Cn−1θ
nexp (−θu)

where Cn−1 = k
(∏n−1

j=1 γ j

)
and u =

{
kxi + (m + 1)

(∑n−1
i=1 xi

)}
.

Now

f
(
xn,m,k;θ

)
g (θ) = Cn−1θ

nexp (−θw)
βα

� (α)
θα−1e−βθ

= Cn−1
βα

� (α)
θn+α−1exp {−θ (β + u)} ,

also
∫ ∞

0
f
(
xn,m,k;θ

)
g (θ) dθ =

∫ ∞

0
Cn−1

βα

� (α)
θn+α−1exp {−θ (β + u)} dθ

= Cn−1β
α� (n + α)

(β + u)n+α � (α)
,
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hence

f
(
θ |xn,m,k

) = (β + u)n+α

� (n + α)
θn+α−1 exp {−θ (β + u)} .

The Bayes estimator of θ is therefore

θ̂ = Eθ (θ) =
∫

�
θ f
(
θ |xn,m,k

)
dθ

=
∫ ∞

0
θ
(β + u)n+α

� (n + α)
θn+α−1 exp {−θ (β + u)} dθ

= (β + u)n+α

� (n + α)

∫ ∞

0
θn+α exp {−θ (β + u)} dθ.

Integrating we have

θ̂ = � (n + α + 1)

(β + u) � (n + α)
= n + α

β + u

= n + α

β +
{
kxi + (m + 1)

(∑n−1
i=1 xi

)} .

We can see that the estimator reduces to conventional Bayes estimator for m = 0
and k = 1.



Chapter 7
Characterizations of Distribution

7.1 Introduction

Characterization of probability distributions play important role in probability and
statistics. Before a probability distribution is applied to a real set of data it is nec-
essary to know the distribution that fits the data by characterization. A probability
distribution can be characterized by various methods, see for example Ahsanullah
et al. (2014). In this chapter we will characterize probability distributions by vari-
ous properties of ordered data. We will consider order statistics, record values and
generalized order statistics to characterize the probability distributions.

7.2 Characterization of Distributions by Order Statistics

We assume that we have n (fixed) number of observations from an absolutely con-
tinuous distribution with cdf F(x) and pdf f(x). Let X1:n < X2:n < · · · < Xn:n be the
corresponding order statistics.Wewill use order statistics for various characterization
of probability distributions.

7.2.1 Characterization of Distributions by Conditional
Expectations

We assume that E(X) exists. We consider that E(Xj,n|Xi,n = x) = ax + b j > i ≥ 1.
Fisz (1958) considered the characterization of exponential distribution by consider-
ing j=2, i=1 and a = 1. Roger (1963) characterized the exponential distribution
by considering j= i+1 and a = 1. Ferguson (1963) characterized following distri-
butions with j= i+1.

© Atlantis Press and the author(s) 2016
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(i) Exponential distribution with a = 1
(ii) Pareto distribution with a > 1
(iii) Power function distribution with a < 1.

The following useful theorem is given by Gupta and Ahsanullah (2004).

Theorem 7.1 Under some mild conditions on �(x) and g(x) the relation

E(ψ(Xi+s,n)|Xi,n = x) = g(x), s ≥ 1 (7.1)

Uniquely determines the distribution F(x).
The relation (7.1) for s=1 will lead to the equation

r(x) = g′(x)
(n − i)(g(x) − ψ(x))

(7.2)

Here r(x) = f(x)/(1−F(x)), the hazard rate of X. If �(x) = x and g(x)=ax + b, then
we obtain from (7.2)

r(x) = a

(n − i)((a − 1)x + b)
(7.3)

From (7.3) we have

(i) If a = 1, then r(x)=constant and X has the exponential distribution with
F(x) = 1 − e−λ(x−μ), x ≥ μ, and λ = 1

b(n−i) , x ≥ μ, b > 0.
(ii) If a > 1, then X will have the Pareto distribution

with F(x) = 1 − (x − b
a−1 )

− a
(a−1)(n−i) , x ≥ b

a−1
(iii) If a < 1, then X will have power function distribution

with F(x) = 1 − ( b
1−a − x)

a
(1−a)(n−i) , 0 ≤ x ≤ b

1−a .

Wesolowski and Ahsanullah (2001) have extended the result of Ferguson’s (1963),
which we have given in the following theorem.

Theorem 7.2 Suppose that X is an absolutely continuous random variable with
cumulative distribution function F(x) and probability distribution function f(x). If
E(Xk+2,n) < ∞, 1≤ k≤ n−2, n>2, then E(Xk+2,n|Xk,n =x)=ax+b iff

(i) a > 1, F(x) = 1 − (
μ+δ

x+δ
)θ , x≥ μ, θ > 1

where μ is a real number, δ = b/(a − 1) and

θ = a(2n − 2k − 1) + √
a2 + 4a(n − k)(n − k − 1)

2(a − 1)(n − k)(n − k − 1)

(ii) a = 1, F(x) = 1 − e−λ(x−μ), x ≥ μ,

b = 2n − 2k − 1

λ(n − k)(n − k − 1)
, λ > 0
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(iii) a < 1, F(x) = 1 − ( ν−x
ν+μ

)θ , 0 ≤ x ≤ ν, ν = b
1−a and

θ = a(2n − 2k − 1) + √
a2 + 4a(n − k)(n − k − 1)

2(1 − a)(n − k)(n − k − 1)
.

Deminska and Wesolowski (1998) gave another general result which we give in
following theorem.

Theorem 7.3 Suppose that X is an absolutely continuous random variables with
cumulative distribution function F(x) and probability distribution function f(x). If
E(Xi+r,n) < ∞, 1 ≤ i ≤ n − r, r ≥ 1, n ≥ 2, then E(Xi+r |Xi,n = x)=ax+b iff

(i) a > 1, F(x) = 1 − (
μ+δ

x+δ
)θ ,≥ μ, θ > 1

n−k−r+1

where μ is a real number,

a = n(n − k)!
(n − k − r)!

r−1∑

m=0

1

m!(r − 1 − m)!
(−1)m

[θ(n − k − r + 1 + m) − 1]

b = δ
θ(n − k)

(n − k − r)!
r−1∑

m=0

1

m!(r − 1 − m)!
(−1)m

n(n − r + 1 + m)!θ(n − k − r + 1 + m)[θ(n − k − r + 1 + m) − 1]

(ii) a < 1, F(x) = 1 − ( v−x
v−μ

)θ , μ ≤ x ≤ ν.

b = ν
θ(n − k)

(n − k − r)!
r−1∑

m=0

1

m!(r − 1 − m)!
(−1)m

θ(n − k − r + 1 + m)[θ(n − k − r + 1 + m) + 1]

a = θ(n − k)

(n − k − r)!
r−1∑

m=0

1

m!(r − 1 − m)!
(−1)m

[θ(n − k − r + 1 + m) + 1]

(iii) a = 1, F(x) = 1 − e−λ(x−μ), x ≥ μ,

b = (n − k)!
λ(n − k − r)!

r−1∑

m=0

1

m!(r − 1 − m)!
(−1)m

(n − k − r + 1 + m)2

Consider the extended sample case. Suppose in addition to n sample observa-
tions, we take another m observations from the same distribution. We order the m+n
observations. The combined order statistics is X 1:m+n ≤ X 2:m+n < · · · < Xm+n:m+n.
We assume F(x) is the cdf of the observations.

Ahsanullah and Nevzorov (1997) proved the following theorem, Theorem7.4 if
E(X1:n|X1:m+n =x) = ax+m(x), then

(i) For a = 1, F(x) is exponential with F(x)= 1−exp(−x),x>0 and m(x)= m
n(m+n)



256 7 Characterization of Distribution

(ii) For a> 1, F(x) is Pareto with F(x)=1− (x − 1)−∂ , x>1, ∂ > 0 and m(x)
= m(x−1)

(m+n)(m∂+1)

(iii) For a< 1, F(x) is Power function with F(x) = 1—(1 − x)∂ , 0 < x < 1, ∂ >

0 and m(x) = m(1−x)
(m+n)(m∂+1) .

7.2.2 Characterization by Identical Distribution

It is known that for exponential distribution X1:n and X are identically distributed.
Desu (1971) proved that if X1:n and X are equally distributed for all n, then the
distribution of X is exponential. Ahsanullah (1977) proved that with a mild condition
on F(x) if for a fixed n, X1:n and X are identically distributed, then the distribution
of X is exponential Ahsanullah (1978a, b, 1984) prove that the

identical distributions of Di+1:n and Xn−I:n characterize the exponential distribu-
tion.

Wewill call a distribution function “new better than used, (NBU) if 1−F(x + y)≤
(1−F(x))(1−F(y)) for all x, y ≥ 0” and “new worse than used (NWU) if 1−F(x +
y)≥ (1−F(x))(1−F(y))”.

For all x, y ≥0. We say that F belongs to class c0 if F is either NBU or NWU. We
say that F belongs to the class c if the hazard rate (f(x)/(1−F(x)) is either increasing
or decreasing.

The following theorem by Ahsanullah (1976) gives a characterization of expo-
nential distribution based on the equality of two spacing.

Theorem 7.4 Let X be a non-negative random variable with an absolutely con-
tinuous cumulative distribution function F(x) that is strictly increasing in [0,∞)

and having probability density function f(x), then the following two conditions are
identical.

(a) F(x) has an exponential distribution with F(x) = exp(-λx), x ≥ 0, λ > 0
for some i, j,i<< j<n the statistics Dj:n and Di:n are identically distributed and F
belongs to the class C.

Proof We have already seen (a) ⇒ (b). We will give here the proof of (b) ⇒ (a).
The conditional pdf of Dj:n given Xi:n =x is given by

fDi,n (d|Xi,n) = k
∫ ∞

d
(F(x)−F(x +s))(F(x))−(i−i−1) · (F(x +s+ d

n − j
)/(F(x))−1)n−j−1

f (x + s)
−
F(x)

f (x + s + d
n−j )

−
F(x)

ds (7.4)

where k= (n−i)!
(j−i−1)!(n−j)! .
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Integrating the above equation with respect to d from d to ∞, we obtain

FDj,n (d||Xi,n) = k
∫ ∞

d
(F(x) − F(x + s))(F(x))−(i−i−1) · (F(x + s + d

n − j
)/(F(x))−1)n−j−1

f (x + s)

F̂(x)
ds

The conditional probability density function f i:n of Di:n given Xi,n−x is given by

fDi+1:n(d|Xi,n = x) = (n − i)
(F(d + x

n−r ))
n−i−1

(F(x))n−i

f (u + x
n−i )

F(x)

The corresponding cdf Fi:n(x) is giving by 1−F Di+1:n = (F̄(d+ x
n−r ))n−i

(F̄(x))n−i .
Using the relations

1

k

∫ ∞

0
(
F(x + s)

F(x)
)n−j(

F(x) − F(x + s)

F(x)
)j−i−1 f (x + s)

F(x)
ds

and the equality of the distribution of Dj:n and Di:n given Xi:n, we obtain

∫ ∞

0
(
F(x + s)

F(x)
)n−j(

F(x) − F(x + s)

F(x)
)j−i−1G(x, d, s)

f (x + s)

F(x)
ds = 0 (7.5)

where

G(x, d, s) = (
F(x + d

n−i )

F(x)
)n−i − (

F(x + s + d
n−j )

F(x + s)
)n−j. (7.6)

Differentiating (7.5) with respect to s, we obtain

∂

∂s
G(x, s, d) = (

−
F(x + s + d

n−j )

−
F(x + s)

)n−j(r(x + s + d

n − i
) − r(x + s)) (7.7)

(i) If F has IHR, then G(x, s, d) is increasing with s. Thus (7.5) to be true, we must
have G(x, 0, d) ≤ G(x, s, d) ≤ 0. If F has IFR, then lnF̄ is concave and

ln(
−
F(x + d

nn − i
) ≥ j − i

n − i
ln(

−
F(x)) + n − j

n − i
ln(

−
F(x + d

n − j
))

i.e.

(
−
F(x + d

nn − i
))n−i ≥ −

(F(x))j−i(
−
F(x + d

n − j
))n−j.
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Thus G(x, 0, d) ≥ 0. Thus (7.5) to be true we must have G(x, 0, d)=0 for all d
and any given x.

(ii) If F has DHR, then similarly we get G(x, 0, d)=0. Taking x=o, we obtain
from G(x, 0, d) as

(
=
F(

d

n − i
)n−i = (

−
F(

d

n − j
))n−j (7.8)

for all d ≥ 0 and some i, j, n with 1 ≤ i < j < n.

Using ϕ(d) = ln(
−
F(d)) we obtain (n− i) ϕ( d

n−i ) = (n − jϕ)( d
n−j )

Putting d
n−i = t, we obtain

ϕt(t) = jn − j

n − i
ϕt(

n − i

n − j
t) (7.9)

The non zero solution of (7.9) is

ϕ(x) = x (7.10)

for all x ≥ 0.
Using the boundary conditions F(x)=0 and F(∞)1, we obtain

F(x) = 1 − e−λx, x ≥ 0, λ > 0. (7.11)

for all x ≥ 0 and λ > 0.
In the Theorem 7.5 under the assumption of finite expectation of X, the equality

of the spacings can be replaced by the equality of the expectations.

7.2.3 Characterization by Independence Property

Fisz (1958) gave the following characterization theorem based upon independence
property.

Theorem 7.5 If X1 and X2 are independent and identically distributed with contin-
uous cumulative distribution function F(x). Then X2:2 − X1:2 is independent of X1:2
if and only if F(x) = 1−exp(−λx), x ≥ 0 and λ > 0.

Proof The “if” condition is easy to show. We will show “the only if” condition.
We have

P(X2:2 − X1:2 > y|X1:2 = x) = P(X2:2 > x + y|X1:2 = x) = 1 − F(x + y)

1 − F(x)
.

Since 1−F(x+y)
1−F(x) is independent of X, we must have 1−F(x+y)

1−F(x) =g(y) where g(y) is
a function of y only. Taking x ⇒ 0, we obtain from the above equation
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1 − F(x + y) = (1 − F(x))(1 − F(y)) (7.12)

for all λ > 0 and almost all x≥ 0.
The non zero solution of the above equationwith the boundary conditions F(0)=0

and F(∞) = 1 is F(x) = 1−exp(−λx) for all λ > 00 and almost all x ≥0.

The following theorem is a generalization of Fisz (1958) result.

Theorem 7.6 If X1 X2, . . .Xn are independent and identically distributed random
variables with continuous cumulative distribution function F(x). Then Xn:n −X1:n
and X1:n are independent of if and only if F(x) = 1−exp(−λx), x ≥ 0 and λ > 0.

The proof of the only if condition will lead to the following differential equation

(
(1 − F(x) − (1 − F(y + x))

1 − F(x)
)n−1 = g(y)

where g(y) is a function of y for all x ≥ 0 a and almost all y ≥ 0. The following
theorem gave a more general result.

Theorem 7.7 Suppose that X1 X2, . . .Xn are independent and identically distrib-
uted random variables with continuous cumulative distribution function F(x). Then
Xj:n −Xi:n and XI:n are independent if and only if F(x) = 1−exp(−λx), x ≥ 0 and
λ > 0.

The proof of the only if condition will be similar to the proof of the following
theorem of Ahsanullah and Kabir (1973).

Theorem 7.8 Suppose that X1 X2...,Xn are independent and identically distributed
with continuous cumulative distribution function F(x) and probability density func-
tion f(x). Then Xj:n

Xi:n and Xi,n are independent if and only if F(x) = x−β for all x ≥ 1
and β > 0.

Proof We will give here the proof of the only if condition.
Writing V=Xj:n|Xi:n and U = Xi:n, the conditional pdf h(v) of V given U=u can

be written as

H(v) = c(
F(uv) − F(u)

1 − F(u)
)j−i−1(

1 − F(uv)

1 − F(u)
)s−r−1 uf (uv)

1 − F(u)
(7.13)

where c= (n−i)!
(j−i−1)!(n−j)! .

Since U and V are independent h(v) will be independent of u. Thus we will need
for some j and i, 1≤ i< j≤n(1 − q(u, v))j−i−1(q(u, v))n−j δq(u,v)

δv
to be independent

of u. where q(uv) = 1−F(uv)

1−F(u)
.

The independence of (7.13) of u will lead to the functional equation

1 − F(uv) = (1 − F(u))(1 − F(v)) (7.14)



260 7 Characterization of Distribution

For all u ≥ and v ≥ 1.
The solution of the Eq. (7.14)with the boundary condition F(1)=0 andF(∞) = 1

is

F(x) = 1 − (
1

x
)
β

(7.15)

where for all x ≥ 1 and β > 0
The following theorem gives a characterization of the power function distribution.

Theorem 7.9 Suppose that X1, X2,...,Xn are independent and identically distributed
with continuous cumulative distribution function F(x) and probability density func-
tion f(x), then Xi:n

Xj:n and Xi,n are independent if and only if F(x) = xβ , for all o≤ x ≤ 1
and β > 0.

The proof of only if condition is similar to Theorem 7.8.

7.3 Characterization of Distributions by Record Values

Suppose {Xi, i=1,2,…} be a sequence of independent and identically distributed
random variables with cdf F(x) and pdf f(x). We assume E(Xi) exists. Let X(n), n ≥
1 be the corresponding upper records.

7.3.1 Characterization Using Conditional Expectations

We have the following theorem to determine F(x) based on the conditional expecta-
tion.

Theorem 7.10 The condition E(ψ(X(k + s)|X(k) = z) = g(z) where k,s ≥1 and
ψ(x) is a continuous function, determines the distribution F(x) uniquely

Proof Consider

E(ψ(X(k + s)|X(k) = z) =
∫ ∞

z

ψ(x)(R(x) − R(z))s−1

F̄(z)
f (x)dx (7.16)

where R(x)= − lnF̄(x).
Case s=1
Using the Eq. (7.16), we obtain

∫ ∞

z
ψ(x)f (x)dx = g(z)F̄(z) (7.17)

Differentiating both sides of (7.17) with respect to z and simplifying, we obtain
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r(z) = f (z)

F̄(z)
= g′(z)

g(z) − ψ(z)
(7.18)

where r(z) is the failure rate of the distribution. Hence the result.
If ψ(x) = x and g(x) = ax + b, a, b ≥ 0, then

r(x) = a

(a − 1)x + b
(7.19)

If a �= 1, then F(x)−1−((a−1)x+b)−
a

a−1 , which is the power function distribution
for a <1 and the Pareto distributionwith a>1. For a = 1, (7.19)will give exponential
distribution. Nagaraja (1977) gave following characterization theorem.

Theorem 7.11 Let F be a continuous cumulative distribution function. If, for some
constants a and b, E(X(n)|X(n−1)=x) = a x+b, then except for a change of location
and scale,

(i) F(x) = 1− (−x) θ , x<0, if 0< a <1
(ii) F(x)= 1−e−x , x ≥ 0, if a = 1

(iii) F(x)= 1−xθ , x >1 if a >1,

where θ = a/(1−a). Here a >0.

Proof of Theorem 7.11
In this case , we obtain

∫ ∞

z
ψ(x)(R(x) − R(z)f (x)dx = g(z)F̄(z) (7.20)

Differentiating both sides of the equation with respect to z, we obtain

−
∫ ∞

z
ψ(x)f (z)dx = g′(z) (F̄(z))2

f (z)
− g(z)F̄(z) (7.21)

Differentiating both sides of (7.21) with respect to z and using the relation f ′(z)
f (z) =

r′(z)
r(z) − r(z) we obtain on simplification

g′(z)
r′(z)
r(z)

+ 2g′(z)r(z) = g′′(z) + (r(z))2(g(z) − ψ(z)) (7.22)

Thus r’(z) is expressed in terms of r(z) and known functions. The solution of r(x) is
unique (for details see Gupta and Ahsanullah (2004)).

Putting ψ(x) = x and g(x) = ax + b, we obtain from (7.22)

a
r′(z)
r(z)

+ 2ar(z) = (r(z))2((a − 1)a + b) (7.23)
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The solution of (7.23) is r(x) = a+√
a

(a – 1) x +b . Thus X will have (i) exponential distri-

bution if a=1, (ii) power function distribution if a <1 and (iii) Pareto distribution if
a >1.

Ahsanullah and Wesolowski (1998) extended the result Theorem 7.11 for non
adjacent record values. Their result is given in the following theorem.

Theorem 7.12 If E(X(n+2)|X(n)) = a X(n) + b, n≥1 where the constants a and b ,
then if:

(a) a =1, then Xi has the exponential distribution,
(b) a < 1, then Xi has the power function distribution
(c) a > 1, Xi has the Pareto distribution

Proof of Theorem 7.12 for s>2.
In this case, the problem becomes more complicated because of the nature of the
resulting differential equation

Lopez-Blazquez and Moreno-Rebollo (1997) also gave characterizations of dis-
tributions by using the following linear property

E(X(k)|X(k + s) = z) = az + b, k ≥ 1 k, s ≥ 1,

Raqab (2002) andWu (2004) considered this problem for non-adjacent record values
under some stringent smoothness assumptions on the distribution function F(x).
Dembinska and Wesolowski (2000) characterized the distribution by means of the
relation E(X(s + k)||X(k) = z) = az + b, for k ≥ 1, s ≥ 1.

They used a result of Rao and Shanbhag (1994) which deals with the solution
of extended version of integrated Cauchy functional equation. It can be pointed
out earlier that Rao and Shanbhag’s result is applicable only when the conditional
expectation is a linear function.

Theorem 7.13 Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with common
distribution function F which is absolutely continuous with pdf f. Assume that F(0)=0
and F(x) > 0 for all x > 0. Then Xn to have the cdf, F(x) = 1− e−x/σ , x ≥ 0, σ > 0,
it is necessary and sufficient that X(n) –X(n–1) and X(n–1), n ≥ 2, are independent.

Proof It is easy to establish that if Xn has the cdf, F(x) = 1 − e−x/σ , x ≥ 0, σ > 0,
then X(n) –X(n – 1) and X(n – 1) are independent. Suppose that X(n) – X(n-1) and
X(n), n ≥ 1, are independent. Now the joint pdf f(z, u) of Z=X(n)−X(n-1) and
U=X(n) can be written as

f(z, u) = [R(u)]n − 1

�(n)
r(u)f (u + z), 0 < u, z < ∞.

= 0, otherwise. (7.24)

But the pdf fn (u) of X(n) can be written as
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fn−1(u) = [R(u)]n − 1

�(n)
f (u), 0 < u < ∞,

= 0, otherwise. (7.25)

Since Z and U are independent, we get from (7.24) and (7.25)

f (u + z)

F̄(u)
= g(z), (7.26)

where g(z) is the pdf of u. Integrating (7.26) with respect z from 0 to z1, we obtain
on simplification

F̄(u) − F̄(u + z1) = F̄(u)G(z1) . (7.27)

Since G(z1) = ∫ z1
0 g(z)dz. Now u→ 0+ and using the boundary condition F̄(0) = 1,

we see that G(z1) = F(z1). Hence we get from (7.27)

F̄(u + z1) = F̄(u) F̄(z1). (7.28)

The only continuous solution of (7.28) with the boundary conditions F̄(0) = 0 and
F̄(∞) = 1,is

F̄(x) = e−σ − 1 x, x ≥ 0 (7.29)

where σ is an arbitrary positive real number.
The following theorem is a generalization of the Theorem 7.13.

Theorem 7.14 Let {Xn, n ≥ 1} be independent and identically distributed with com-
mon distribution function F which is absolutely continuous and F(0)=0 and F(x) <

1 for all x > 0. Then Xn has the cdf, F(x) = 1 − e−σx, x ≥ 0, σ > 0, it is necessary
and sufficient that X(n) –X(m) and X(m), n > m ≥ 1, are independent.

Proof The necessary condition is easy to establish. To prove the sufficient condition,
we need the following lemma.

Lemma 7.1 Let F(x) be an absolutely continuous function and F̄(x) > 0, for all
x > 0. Suppose that F̄(u + v)(F̄(v))− 1 = exp{−q(u,v)} and h(u, v) = {q(u, v)}r

exp{–q(u,v)} ∂
∂ u q(u,v), for r ≥ 0. Further if h(u, v) �= 0, and ∂

∂ u q(u,v) �= 0 for any
positive u and v. If h(u, v) is independent of v, then q(u, v) is a function of u only.

We refer to Ahsanullah and Kabir (1974) for the proof of the lemma.
Proof: of the sufficiency part of Theorem 7.14.
The conditional pdf of Z=X(n)−X(m) given V(m)=x is f(z|X(m) = x) = 1

�(n −m)

[R(z + x) − R(x)]n − m −1 f (z + x)
F̄(x)

, 0 < z < ∞, 0 < x < ∞.
Since Z and X(m) are independent, we will have for all z > 0,

(R(z + x) − R(x))n −m−1 f (z + x)

F̄(x)
(7.30)
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as independent of x. Now let R(z + x) − R(x) = − ln F̄(z+x)
F̄(x)

= q(z, x), say.
Writing (7.30) in terms of q(z, x), we get

[q(z, x)]n − m −1 exp{−q(z, x)} ∂

∂ z
q(z, x), (7.31)

as independent of x. Hence by the Lemma 7.1 we have

− ln{F̄(z + x) (F̄(x))− 1} = q(z + x) = c(z), (7.32)

where c(z) is a function of z only. Thus

F̄(z + x) (F̄(x))−1 = c1(z), (7.33)

and c1(z) is a function of z only.
The relation (7.33) is true for all z ≥ 0 and any arbitrary fixed positive number

x. The continuous solution of (7.33) with the boundary conditions, F̄(0) = 1 and
F̄(∞) = 0 is

F̄(x) = exp(− x σ− 1), (7.34)

for x ≥ 0 and any arbitrary positive real number σ . The assumption of absolute
continuity of F(x) in the Theorem can be replaced by the continuity of F(x).

Chang (2007) gave an interesting characterization of the Pareto distribution.
Unfortunately the statement and the proof of the theorem were wrong. Here we will
give a correct statement and proof of his theorem.

Theorem 7.15 Let {Xn, n ≥1} be independent and identically distributed with com-
mon distribution function F which is absolutely continuous and F(1) = 0 and F(x)
< 1 for all x >1. Then Xn has the cdf, F(x) = 1− x−θ , x ≥ 1, θ > 0, it is necessary
and sufficient that X(n)

X(n+1)−X(n)
and X(m), n ≥ 1 are independent.

Proof If F(x) = 1 − x−θ , x ≥ 1, θ > 0, then the joint pdf fn,n+1(x,y) of X(n) and
X(n+1) is

fn,n+1(x, y) = 1

�(n)

θn+1(ln x)n−1

xyθ+1
, 1 < x < y < ∞, θ > 0.

Using the transformation, U=X(m) and V= X(n)

X(n+1)−X(n)
. The joint pdf fUV (u, v) can

be written as

fW,V (w, v) = 1

�(n)

θn+1(ln u)n−1

uθ+3
(

v

1 + v
)θ+1, 1 < u, v < ∞, θ > 0. (7.35)

Thus U and V are independent.
The proof of sufficiency.
The joint pdf of U and V can be written as
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fW,V (u, v) = (R(u))n−1

�(n)
r(u)f (

1 + v

v
u)

u

V 2
, 1 < u, v < ∞, (7.36)

where R(x) = −ln(1-F(x)) and r(x) = d
dx R(x).

We have the pdf fU (u) of U as fU(u) = (R(u))n−1

�(n)
f (u). Since U and V are indepen-

dent, we must have the pdf fV (v) of V as

fV (v) = f (
1 + v

v
u)

u

v2

1

1 − F(u)
, 0 < v < ∞. (7.37)

Integrating above pdf from v0 to ∞, we obtain

1 − F(v0) = 1 − F( 1+v0
v0

u)

1 − F(u)
(7.38)

Since F(v0) is independent of U, we must have

1 − F( 1+v0
v0

u)

1 − F(u)
= G(v0) (7.39)

where G(v0) is independent of u.
Letting u → 1, we obtain G(v0) = 1 − F( 1+v0

v0
).

We can rewrite (7.39) as

1 − F(
1 + v0

v0
u) = (1 − F(

1 + v0

v0
)(1 − F(u)) (7.40)

Since the above equation is true all u ≥ 1 and almost all v0 ≥1, we must have
F(x)= 1 − xβ . Since F(1)=0 and F(∞) = 1, we must have F(x)= 1 − x−θ , x ≥ 1
and θ > 0.

The following theorem is a generalization of Chang’s (2007) result.

Theorem 7.16 Let {Xn, n ≥ 1} be independent and identically distributed with com-
mon distribution function F which is absolutely continuous and F(1)=0 and F(x) <

1 for all x > 0. Then Xn has the cdf, F(x) = 1 − x−θ , x ≥ 1, θ > 0, it is necessary
and sufficient that X(m)

X(n)−X(m)
, 1 < m < n and X(m) are independent.

Proof The joint pdf fm,n(x, y) of X(n) and X(m) is

fm,n(x, y) = (R(x))m−1

�(m)

(R(y) − R(x))n−m−1

�(n − m)
r(x)f (y), (7.41)

We have F(x)=1 − x−θ , R(x)= θ ln x, r(x) = θ
x , thus we obtain

fm,n(x, y) = (θ ln x)m−1

�(m)

(ln y − ln x)n−m−1

�(n − m)

1

xyθ+1
. (7.42)
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where 1≤ x < y < ∞, θ > 0.
Using the transformation U=X(m) and V= X(m)

X(n)−X(m)
, we obtain the pdf fU,V (u,

v) of U and V as

fU,V (u, v = θn(ln u)n−1

�(n)

(ln( 1+v
v

))n−m−1

�(n − m)

vθ−1

uθ+1(1 + v)θ+1

Thus X(m) and X(m)

X(n)−X(m)
are independent.

Proof of sufficiency.
Using U=X(m) and V= X(m)

X(n)−X(m)_ , we can obtain the pdf fUV (u, v) of U and V
from (7.42) as

fU,V (u, v) = (R(u))m−1

�(m)

(R( u(1+v)

v
) − R(u))n−m−1

�(n − m)
r(u)

u

v2
f (

u(1 + v)

v
), (7.43)

We can write the conditional pdf fV |U (v|u) of V|U as

fV |U(v|u) = (R( u(1+v)

v
) − R(u))n−m−1

�(n − m)

uf ( u(1+v)

v
)

v2F̄(u)
, 1 < u < ∞, 0 ≤ v < ∞.

(7.44)
Using the relation R(x) = –ln F̄(x), we obtain from (7.44) that

fV |U(v|u) =
(− ln(

F̄( u(1+v)

v
)

F̄(u)
))n−m−1

�(n − m)

d

dv
(
F̄( u(1+v)

v
)

F̄(u)
), 1 < u < ∞, 0 < v < ∞.

(7.45)

Since V and U are independent, we must have
F̄( u(1+v)

v
)

F̄(u)
independent of U.

Let
F̄( u(1+v)

v
)

F̄(u)
= G(v), (7.46)

Letting u → 1, we obtain

F̄(
u(1 + v)

v
) = F̄(u)F̄(

1 + v)

v
), (7.47)

For all u, 1< u < ∞ and all v, 0 < v < ∞.
The continuous solution of (7.47) with the boundary conditions F(0) = 0 and

F(∞) = 1 is F(x)=1−x−θ , x ≥ 1 and θ > 0.

Remark 7.1 If Xk , k ≥ 1 has an absolutely continuous distribution function F with
pdf f and F(0) = 0. If In,n+1 and In−1,n, n≥ 1, are identically distributed and F belongs
to C, then Xk has the cdf F(x) =1 − e−ςx, x ≥ 0, σ > 0, k ≥ 1.
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7.3.2 Characterization Based on Identical Distribution

If F is the distribution function of a non-negative random variable, we will call F is
“new better than used” (NBU) if for x, y ≥ 0, F̄(x + y) ≤ F̄(x) F̄(y), and F is
“new worse than used” (NWU) if for x, y ≥ 0, F̄( x + y) ≥ F̄(x) F(y). We will
say F belongs to the class C1 if either F is NBU or NWU. We say F belongs to the
class C2 if the hazard rate r(x) = f (x)

1−F(x) increases monotonically for all x.

Theorem 7.17 Let Xn, n ≥ 1 be a sequence of i.i.d. random variables which has
absolutely continuous distribution function F with pdf f and F(0) = 0. Assume that
F(x) < 1 for all x > 0. If Xn belongs to the class C1 and In−1,n = X(n)–X(n–1), n>1,

has an identical distribution with Xk, k ≥ 1, then Xk has the cdf F(x) = 1− e−x/σ ,

x ≥ 0, σ > 0,

Proof The if condition is easy to establish. We will proof here the only if condition.
The pdf fn−1,n of In−1,n can be written as

fn−1,n(x,y)=
∫ ∞

0

[R(u)]n − 1

�(n)
r(u)f (u + z ) du , z ≥ 0

= 0, otherwise. (7.48)

By the assumption of the identical distribution of In−1,n and Xk, we must have

∫ ∞

0
[R(u)]n − 1 r(u)

�(n)
f (u + z) du = f (z), for all z > o. (7.49)

Substituting ∫ ∞

0
[R(u)]n − 1f (u) du = �(n), (7.50)

we have

∫ ∞

0
[ R(u)]n − 1 r(u) f (u + z) du = f (z)

∫ ∞

0
[R(u)]n −1 f (u) du , z > 0. (7.51)

Thus

∫ ∞

0
[R(u)]n − 1 f (u) [ f (u + z ) (F̄(u))− 1 − f (z)]du = 0, z > 0. (7.52)

Integrating the above expression with respect to z from z1 to ∞, we get from
(7.52)
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∫ ∞

0
[R(u)]n − 1 f (u)[F̄(u + z1 ) (F̄(u))− 1 − F̄(z1)]du = 0, z1 > 0. (7.53)

If F(x) is NBU, then (7.53) is true if

F̄(u + z1) (F̄(u))− 1 = F̄(z1) > 0, for all u and almost all z1 > 0. (7.54)

The only continuous solution of (7.54) with the boundary conditions F̄(0) = 1

and F̄(∞) = 0 is
−
F(x) = e−x/σ ,+ where σ is an arbitrary real positive number.

Similarly, if F is NWU then (7.44) is true if (7.54) is satisfied and Xk has the cdf
F(x)=1−e−x/σ , x ≥ 0, σ > 0, k ≥ 1.

Theorem 7.18 Let Xn, n≥1 be a sequence of independent and identically distributed
non-negative random variables with absolutely continuous distribution function F(x)
with f(x) as the corresponding density function. If F ∈ C2 and for some fixed n, m, 1≤
m < n < ∞, Im,n

d= X(n−m−1), then Xk has the cdf F(x) =1–e−x/σ , x ≥ 0, σ > 0,
k ≥ 1.

Proof The pdfs f1(x) of Rn−m and f2(x) of Im,n = (Rn – Rm) can be written as

f1 (x) = 1

�(n − m)
[R(x)]n − m −1 f (x), for 0 < x < ∞, (7.55)

and

f2(x) =
∫ ∞

0

[R(u)] m − 1

�(m)

[R(x + u) − R(x)]n − m − 1

�(n − m)
r(u) f (u + x) d u, 0 < x < ∞.

(7.56)

Integrating (7.55) and (7.56) with respect to x from o to xo, we get

F1(x0) = 1 − g1(x0), (7.57)

where

g1(x0) =
n−m∑

j =1

[R(x0)]j − 1

�(j)
e−R(xo),

and
F2(xo) = 1 − g2(xo,u), (7.58)

where
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g2(x0, u) =
n − m∑

j =1

[R(u + xo) − R(u)]j −1

�(j)
exp{−(R(u + xo) − R(u)) }.

Now equating (7.57) and (7.58), we get

∫ ∞

0

[R(y)]m−1

�(m)
f (u)[g2(u, x0) − g1(x0)]du = 0, x0 > 0. (7.59)

Now g2(x0) = 0 = g1(0) and

0 = [R(u) − R(u)]n −m−1

�(n − m)
exp{−(R(u + xo) − R(u)} [r(xo) − r(u + xo)].

Thus if F ∈ C2 then (7.59) is true if

r(u + xo) = r(u) (7.60)

for almost all u and any fixed xo ≥ 0. Hence Xk has the cdf F(x) = 1–e−x/σ ,

x ≥ 0, σ > 0, k ≥ 1. Here σ is an arbitrary positive real number. Substituting m =

n – 1, we get In−1,n
d= X1 as a characteristic property of the exponential distribution.

Theorem 7.19 Let {Xn, n ≥ 1} be a sequence of independent and identically distrib-
uted non-negative random variables with absolutely continuous distribution function
F(x) and the corresponding density function f(x). If F belongs to C2 and for some m,
m > 1, X(m) and X(m – 1) + U are identically distributed, where U is independent
of X(m) and X(m – 1) is distributed as Xn’s, then Xk has the cdf F(x) =1 − e−x/σ ,

x ≥ 0, σ > 0.

Proof The pdf fm(x) of Rm, m ≥ 1, can be written as

fm(y) = [R(y)]m

�(m+1) f (y), 0 < y < ∞ ,

= d
d y

(
−F̄(y)

∫ y
0

[R(x)]m − 1

�(m )
r(x) dx + ∫ y

0
[R(x)]m

�(m )
f (x) dx

)
,

(7.61)

The pdf f2(y) of X(n – 1) + U can be written as

f2(y) = ∫ y
0

[R(x)]m −1

�(m )
f (y − x) f (x)dy

= d
dy

(
−[R(x)]m − 1

�(m )
F̄(y − x)f (x)dx + ∫ y

0
[R(x)]m − 1

�(m )
f (x) dx

)
.

(7.62)

Equating (7.61) and (7.62), we get on simplification

∫ y

0

[R(x)]m − 1

�(m − 1)
f (x)H1(x, y) dx = 0, (7.63)
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where H1(x, y) = F̄(y − x) − F̄(y) (F̄(x))− 1 , 0 < x < y < ∞. Since F ∈
C1, therefore for (7.63) to be true, we must have

H1(x, y) = 0 (7.64)

for almost all x, 0 < x < y < ∞. This implies that

F̄(y − x) F̄(x) = F̄(y), (7.65)

for almost all x, 0 < x < y < ∞. The only continuous solution of (7.65) with the
boundary conditions F(0) = 1, and F(∞) = 0, is

F(x) = e−xσ−1
, (7.66)

where σ is an arbitrary positive number.

Remark 7.2 The Theorem 7.19 can be used to obtain the following known results
of a two parameter exponential distribution F̄(x) = exp{−σ− 1(x − μ)}).

E(X(n) = μ + n σ

Var(X(n)) = n σ 2

Cov(X(m)X(n)) = m σ 2, m < n.

7.4 Characterization of Distributions by Generalized
Order Statistics

Kamp (1995a) introduced Generalized Order Statistics (gos) and many interesting
properties of it. The characterizations given in order statistics and record values can
be obtained as special cases of gos. For example consider the following conditional
characterization theorem given by Beg et al. (2013).

Theorem 7.20 If for given two consecutive values of r, r+1 and an integer s with
1≤ r< s<n, E(ψ(X(s, n, m, k)|X(r, n, m, k) − x) =gr(x) whereψ(x)is a continuous
function and gr(x) is a differential function of x, then 1−F(x) = c exp(− ∫

M(x)dx).

M(x) = g′r((x)
γr+1(gr+(x)−gr(x))

and c is determined by the condition 1
c = ∫

f (x)dx. If
ψ(x) = x and gr(x)= ax+b, then we obtain for

(i) a = 1, exponential distribution
(ii) a > 1, Pareto distribution’

(iii) a < 1, Power function distribution.

This theorem for s = r + 1 was proved by Ahsanullah and Bairamov (2004)
If s= r+1 and m=0, then from this theorem we will get Theorem 7.1. If s= r+1

and m=0, then we will get the Theorem 7.2. If s > r and m=o, then we will have
the Theorem 7.3.
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If s=n and r=n−1, then we will have Theorem 7.11. If s=n+2 and r=n, we
will get the Theorem 7.12. If s> n and r=n, r, then we get Theorem 7.13.

Let D(1, n, m, k) = γ1(X(1, n, m, k) and
D(r, n, m, k) =γr (X(r + 1, n, m, k) − X(r, n, m, k)

Kamp and Gather (1997) proved the following theorem.

Theorem 7.21 Let F (x) be absolutely continuous and let corresponding pdf be f(x).
If F(0) = 0 and F(x) is strictly increasing on (0, ∞) with E(X) exists and either F(X)
is IFR or DFR. Then F(x) = 1 – exp(–λx) iff there exists integers r and n, 1 ≤ r < n
such that E(D(r, n, m, k))= E(D(r + 1, n, m, k).

The theorem is also true if the expected values are replaced by the equality in
distributions. Recently Rasouli et al. (2016) gave the following theorem.

Theorem 7.22 Let X be an absolutely continuous with cdf F(x) and E(X) exists.
Then E(X(s, n, m, k)| X(r, n, n, k) = x) = ax +b iff

(1) a = 1, F(x) is exponential
(2) a > 1, F(x) is Pareto
(3) a < 1, F(x) is power function distribution.

The results given by Deminska andWesolowski (1998),Wesolowski and Ahsanullah
(1997) for order statistics and Ahsanullah and Wesolowski (1998) for record values
are special cases of this theorem.



Chapter 8
Extreme Value Distributions

8.1 Introduction

Extreme value distributions arise in probability theory as limit distributions of maxi-
mum orminimum of n independent and identically distributed random variables with
some normalizing constants. For example if X1,X2, . . .,Xn are n independent and
identically distributed random variables, then the largest normalized order statistic
Xn,n, will converge to one of the following three distributions if it has a nondegenerate
distribution as n → ∞.

(1) Type 1: (Gumbel) F(x) = exp(−e−x) for all x, −∞ < x < ∞
(2) Type 2: (Frechet) F(x) = exp(−x−δ), x ≥0, δ > 0
(3) Type 3: (Weibull) F(x) = exp(−(−x)−δ

), x ≤ 0, δ > 0

Since the smallest order statistic X1:n = Yn:n, where Y = −X,X1:n with some
appropriate normalizing constants will also converge to one of the above three lim-
iting distributions if we change x to −x in (1), (2) and (3). Gumbel (1958) has given
various applications of these distributions.

Suppose X1, X2, . . .Xn be i.i.d. random variable having the distribution function
F(X) with F(x) = 1 − e−x. Then with normalizing constant an = ln n and bn = 1,
P(Xn.n,< an + bnx) = P(Xn,n ≤ ln n + x) = (1 − e−(ln n+x))n = (1 − e−x

n )n → e−e−x

as n → ∞. Thus the limiting distribution of Xn:n when X’s are distributed as expo-
nential with unit mean is Type 1 extreme value distribution as given above. It can
be shown that Type 1 (Gumbel distribution) is the limiting distribution of Xn,n when
F(x) is normal, log normal, logistic, gamma etc. The type 2 and type 3 distributions
can be transformed to Type 1 distribution by the transformations ln X and—ln X
respectively. We will denote the Type 1 distribution as T10 and Type 2 and Type 3
distribution as T2δ and T3δ respectively. If the Xn,n of n independent random variables
from a distribution F when normalized has the limiting distribution T, then we will
say that F belongs to the domain of attraction of T and write F ∈ D(T).

© Atlantis Press and the author(s) 2016
M.Q. Shahbaz et al., Ordered Random Variables: Theory and Applications,
Atlantis Studies in Probability and Statistics 9, DOI 10.2991/978-94-6239-225-0_8
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The extreme value distributions were originally introduced by Fisher and Tippet
(1928). These distributions have been used in the analysis of data concerning floods,
extreme sea levels and air pollution problems for details see Gumbel (1958), Horwitz
(1980), Jenkinson (1955) and Roberts (1979).

8.2 The PDF’s of the Extreme Values Distributions of Xn,n

8.2.1 Type 1 Extreme Value Distribution

The probability density function of type 1 extreme value distribution (T10) is given
in Fig. 8.1.

The type I extreme value distribution is unimodal with mode at 0 and the points of

inflection are at ± ln
(
(3 + √

5)/2
)
. The pth percentile ηp, (0 < p < 1) of the curve

can be calculated by the relation ηp = − ln(− ln p). The median of X is—lnln2. The
moment generating function M10(t), of this distribution for some t, 0 < |t| < δ, is
M10(t) = ∫ ∞

−∞ etxe−xe−e−x
dx = et�(1 − t). The mean = γ , the Euler’s constant and

the variance = π2/6.

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.1

0.2

0.3

x

PDF

Fig. 8.1 PDF of T10
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Fig. 8.2 PDFs. T2,3-Black, T2,5-Red, T2,10-Green

8.2.2 Type 2 Extreme Value Distribution

The probability density functions of T23,T2,5 and T2.10 are given in Fig. 8.2.
For T2,δ , mode = ( δ

1+δ
)1/δ , median = ( 1

ln2 )
1/δ , mean = �(1 − 1

δ
), δ > 1

and variance = �(1 − 2
δ
) − (�(1 − 1

δ
))2, δ > 2.

8.2.3 Type 3 Extreme Value Distribution

The probability density functions of type 3 extreme value distributions for δ = 3, 5
and 10 are given in Fig. 8.3. Note for δ = 1, T31 is the reverse exponential distribu-
tion.

The mode of the type 3 distribution is at
(

δ−1
δ

) 1
δ . For type 3 distribution, E(X) =

�
(
1 + 1

δ

)
and Var(X)= �(1 + 2

δ
) − (

�
(
1 + 1

δ

))2
.

Table8.1 gives the percentile points of T10, T21, T31 and T32 for some selected
values of p.
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Fig. 8.3 / PDFs T3,3-Black, T3,5-Red, T3,10-Green

Table 8.1 Percentile points of T10, T21, T31 and T32

P T10 T21 T31 T32

0.1 −0.83403 0.43429 −2.30259 −1.51743

0.2 −0.47589 0.62133 −1.60844 −1.26864

0.3 −0.18563 0.83058 −1.20397 −1.09726

0.4 0.08742 1.09136 −0.91629 −0.95723

0.5 0.36651 1.44270 −0.69315 −0.83255

0.6 0.67173 1.95762 −0.51083 −0.71472

0.7 1.03093 2.80367 −0.35667 −0.59722

0.8 1.49994 4.48142 −0.22314 −0.47239

0.9 2.2504 9.49122 −0.10536 −0.32459

8.3 Domain of Attraction of Xn,n

In this section we will study the domain of attraction of various distributions. The
maximum order statistics Xn,n of n independent and identically distributed random
variables will considered.Wewill say that Xn,n will belong to the domain of attraction
of T(x) if the lim

n→∞P(Xn:n ≤ an + bnx) = T(x) for some sequence of normalizing

constants an and bn.
The following lemma will be helpful in proving the theorems of the domain of
attractions.
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Lemma 8.1 Let {Xn, n ≥ 1} be a sequence of independent and identically distrib-
uted random variables with distribution function F. Consider a sequence (en, n ≥ 1}
of real numbers. Then for any ξ, 0 ≤ ξ < ∞, the following two statements are equiv-
alent

(i) lim
n→∞ n(F̄(en)) = ξ

(ii) lim
n→∞P

(
Xn,n ≤ en

) = e−ξ .

8.3.1 Domain of Attraction of Type I Extreme Value
Distribution

The following theorem is due to Gnedenko (1943).

Theorem 8.1 LetX1,X2, . . . be a sequence of i.i.d. random variables with distribu-
tion function F and e(F) = sup{x : F(x) < 1}. Then F ∈ T10 iff there exists a positive
function g(t) such that

lim
t→e(F)

=
F(t + xg(t))

=
F(t)

= e−x,
−
F = 1 − F for all real x.

The following Lemma (see Von Mises (1936)) gives a sufficient condition for the
domain of attraction of Type 1 extreme value distribution for Xn:n.

Lemma 8.2 Suppose that the distribution function F has a derivative on (c0,e(F))

for some c0, 0 < c0 < e(F), then lim
x↑e(F)

f (x)
F(x) = c, c > 0, then F ∈ D(T10).

Example 8.1 The exponential distribution F(x) = 1 − e−x satisfies the sufficient
condition, since lim

x→∞
f (x)
F̄(x)

= 1. For the logistic distributionF(x) = 1
1+e−x , lim

x→∞
f (x)
F̄(x)

=
lim
x→∞

1
1+e−x = 1. Thus the logistic distribution satisfies the sufficient condition.

Example 8.2 For the standard normal distribution with x > 0, (see Abramowitz and
Stegun (1968 p. 932)

F̄(x) = e− x2
2

x
√
2π
h(x), where h(x) = 1 − 1

x2 + 1.3
x4 + · · · + (−1)n1.3.....(2n−1)

x2n + Rn and

Rn = (−1)n+11.3....(2n + 1) = ∫ ∞
x

e− 1
2 u2√

2πu2n+2 du which is less in absolute value than
the first neglected term.

It can be shown that g(t) = 1/t + 0(t3). Thus

lim
t→∞

F̄(t + xg(t))

F̄(t)
= lim

t→∞
te

t2

2

(t + xg(t)) e
1
2 (t+xg(t))2

h(t + xg(t))

h(t)
= lim

t→∞
te−xm(x)

t + xg(t)
,
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where m(t, x) = g(t)(1 + 1
2g(t)). Since as t→ ∞, m(t, x) → 1, we lim

t→∞
F̄(t+xg(t))

F̄(t)
=

e−x. Thus normal distribution belongs to the domain of attraction of Type I distrib-
ution.

Since lim
x→∞

e− x2
2√

2πxF̄(x)
= lim

x→∞ h(x) = 1, the standard normal distribution does not

satisfy the von Mises sufficient condition for the domain of attraction of the type I
distribution.

We can take an = 1
bn

− bn
2 (ln ln n + 4π) and bn = (2 ln ln n)−1/2. However this

choice of an and bn is not unique. The rate of convergence of P(Xn,n ≤ an + bnx)
to T10(x) depends on the choices of an and bn.

8.3.2 Domain of Attraction of Type 2 Extreme Value
Distribution

Theorem 8.2 Let X1, X2,… be a sequence of i.i.d random variables with distribution
function F and e(F)= sup {x: F(x)< 1}. If e(F) = ∞, then F∈T2δ iff lim

t→∞
F̄(tx)
F̄(t)

= x−δ

for x > 0 and some constant δ > 0.

Proof Let an = inf{x : F̄(x) ≤ 1
n }, then an → ∞ as n → ∞. Thus lim

n→∞ n(F̄(anx)) =
lim
n→∞ n(F̄(an))

F̄(anx)
F̄(an)

= x−δ lim
n→∞ nF̄(an).

It is easy to show that lim
n→∞ nF̄(an) = 1. Thus lim

n→∞ n(F̄(anx)) = x−δ and the proof

the only if condition of the Theorem follows from Lemma8.1.

Example 8.3 For the Pareto distribution with F̄(x) = 1
xδ , δ > 0, 0 ≤ x < ∞ lim

t→∞
F̄(tx)
F̄(t)

= 1
xδ . Thus the Pareto distribution belongs to T2δ .

The following theorem gives a necessary and sufficient condition for the domain
of attraction Type 3 distribution for Xn:n when e(F) < ∞.

Theorem 8.3 LetX1,X2, .. be a sequence of i.i.d random variables with distribution
function F and e(F) = sup {x: F(x) < 1}. If e(F) < ∞, then F ∈ T2δ iff

lim
t→∞

F̄(e(F)− 1
tx )

F̄(e(F)− 1
t )

= x−δ for x > 0 and some constant δ > 0.

Proof Similar to Theorem8.2

Example 8.4 The truncated Pareto distribution f(x) = δ
xδ+1 · 1

1=b−δ , 1≤x < b, b > 1,

lim
t→∞

F̄(e(F)− 1
tx )

F̄(e(F)− 1
t )

= lim
t→∞

F̄(b− 1
tx )

F̄(b− 1
t )

= lim
t→∞

(b− 1
tx )

−δ−b−δ

(b− 1
t )

−δ−b−δ
= x−1. Thus the truncated Pareto

distribution belongs to the domain of attraction of Type T21 distribution.
The following Lemma (see von Mises (1936)) gives a sufficient condition for the

domain of attraction of Type 2 extreme value distribution for Xn,n.

Lemma 8.3 Suppose the distribution function F is absolutely continuous in c0, e(F)

for some c0, 0 < c0 < e(F), then if lim
x↑e(F)

xf (x)
F̄(x)

= δ, δ > 0, then F ∈ D(T2δ).
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Example 8.5 The truncated Pareto distribution f(x) = δ
xδ+1 · 1

1−b−δ , 1 ≤ x < b, b >

1, lim
x→∞

xf(x)
F̄(x)

= lim
x→b

δx−δ

x−δ−b−δ = ∞. Thus the truncated Pareto distribution does

not satisfy the von Mises sufficient condition. However it belongs to the domain of

attraction of the type 2 extreme value distribution, because lim
t→∞

F̄(e(F)− 1
tx )

F̄(e(F)− 1
t )

= x−δ for

x > 0 and some constant δ > 0.

8.3.3 Domain of Attraction of Type 3 Extreme Value
Distribution

The Following TheoremGives a Necessary and Sufficient Condition For the Domain
of Attraction of Type 3 Distribution For Xn,n

Theorem 8.4 Let X1,X2, ... be a sequence of i.i.d. random variables with distri-
bution function F and e(F) = sup {x : F(x) < 1}. If e(F) < ∞, then F ∈ T3δ iff
lim
t→0+

F̄(e(F)+tx)
F̄(e(F)−t)

= (−x)δ for x < 0 and some constant δ > 0.

Proof Similar to Theorem8.3.

Example 8.6 Suppose X is an exponential distribution truncated at x = b > 0. The

pdf of X is f(x) = e−x

F(b) , then for x< 0, P(Xn:n ≤ b + x(eb−1)
n ) =

(
1−e−(b+ x(eb−1

n )

1−e−b

)n

→ ex as n → ∞.
Thus the truncated exponential distribution belongs to T31.

Example 8.7 Since lim
t→0+

F̄(e(F)+tx)
F̄(e(F)−t)

= lim
t→0+

e−(b+tx)−e−b

e−(b−t)−e−b = −x, the truncated exponen-

tial distribution satisfies the necessary and sufficient condition for the domain of
attraction of type 3 distribution for maximum.

The following Lemma due to vonMises gives a sufficient condition for the domain
of attraction of type 3 distribution for Xn,n.

Lemma 8.4 Suppose thedistribution functionF is absolutely continuous in [c0,e(F)]
for some c0, 0 < c0 < e(F) < ∞, then if lim

x↑e(F)

(e(F)−x)f (x)
F̄(x)

= δ, δ > 0., then F ∈
D(T3δ).

Proof Similar to Lemma8.3.

Example 8.8 Suppose X is an exponential distribution truncated at x = b > 0, then
the pdf of X is f(x) = e−x

F(b) . Now lim
x↑e(F)

(e(F)−x)f (x)
F̄(x)

= lim
x↑b

(b−x)e−x

e−x−e−b = 1, thus the trun-

cated exponential distribution satisfies the von Mises sufficient condition for the
domain of attraction to type 3 distribution.

The normalizing constants of Xn:n are not unique for any distribution. From the
table it is evident that two different distributions (exponential and logistic) belong
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to the domain of attraction of the same distribution and have the same normalizing
constants. The normalizing constants dependonF and the limiting distribution. Itmay
happen that Xn:n with any normalizing constants may not converge in distribution to a
non degenerate limiting distribution butWn:n whereW = u(X), a function of X, with
some normalizing constants, may converge in distribution to one of the three limiting
distributions.We can easily verify that the rv Xwhose pdf, f(x) = 1

x(ln x)2 , x ≥ e does
not satisfy the necessary and sufficient conditions for the convergence in distribution
of Xn:n to any of the extreme value distributions. Suppose W = lnX, then FW(x) =
1 − 1/x for x > 1. Thus with an = 0 and bn = 1/n,P(Wn:n. ≤ x) → T31 as n →
∞.

Following Pickands (1975), the following theoremgives a necessary and sufficient
condition for the domain of attraction of Xn:n from a continuous distribution.

Theorem 8.5 For a continuous random variable the necessary and sufficient con-
dition forXn:n to belong to the domain of attraction of the extreme value distribution
of the maximum is

lim
c→0

F−1(1 − c) − F−1(1 − 2c)

F−1(1 − 2c) − F−1(1 − 4c)
= 1 if F ∈ T10,

lim
c→0

F−1(1 − c) − F−1(1 − 2c)

F−1(1 − 2c) − F−1(1 − 4c)
= 21/δif F ∈ T2δ

and

lim
c→0

F−1(1 − c) − F−1(1 − 2c)

F−1(1 − 2c) − F−1(1 − 4c)
= 2−1/δif F ∈ T3δ

Example 8.9 For the exponential distribution, E(0, σ ), with pdf f(x) = σ−1

e−σ−1x, x ≥ 0,F−1(x) = −σ−1 ln(1 − x) and lim
c→0

F−1(1−c)−F−1(1−2c)
F−1(1−2c)−F−1(1−4c) = lim

c→0
− ln{1−(1−c)}+ln{1−(1−2c)}
− ln{1−(1−2c)}+ln{1−(1−4c)} = 1. Thus the domain of attraction of Xn:n from the expo-
nential distribution, E(0, σ ), is T10.

For the Pareto distribution, P(0, 0, α) with pdf f(x) = αx−(α+1), x > 1, α > 0,
F−1(x) = (1 − x)−1/α and

lim
c→0

F−1(1 − c) − F−1(1 − 2c)

F−1(1 − 2c) − F−1(1 − 4c)
= lim

c→0

c−1/α − (2c)−1/α

(2c)−1/α − (4c)=1/α
= 21/α.

Hence the domain of attraction of Xn:n from the Pareto distribution, P(0, 0, α) is T2α .
For the uniform distribution, U(−1/2, 1/2), with pdf f(x) = 1,− 1

2 < x < 1
2 ,

F−1(x) = x − 1/2. We have

lim
c→0

F−1(1 − c) − F−1(1 − 2c)

F−1(1 − 2c) − F−1(1 − 4c)
== lim

c→0

1 − c − (1 − 2c)

(1 − 2c) − (1 − 4c)
= 2−1.
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Consequently the domain of attraction of of Xn:n from the uniform distribution,
U(−1/2, 1/2) is T31.

It may happen that Xn:n from a continuous distribution does not belong to the
domain of attraction of any one of three distributions. In that case Xn:n has a degener-
ate limiting distribution. Suppose the rv X has the pdf f(x), where f(x) = 1

x(ln x)2 , x ≥
e. F−1(x) = e

1
1−x , 0 < x < 1.

Then lim
c→0

F−1(1−c)−F−1(1−2c)
F−1(1−2c)−F−1(1−4c) = lim

c→0

e
1
c −e

1
2c

e
1
2c −e

1
4c

= lim
c→0

e
1
c −1

1−e
1
2c

= lim
c→0

2e
1
c

e
1
2c

= lim
c→0

2e
1
2c = ∞
Thus the limit does not exit. Hence the rv X does not satisfy the necessary and

sufficient condition given in Theorem8.4.
Theorems8.1, 8.2, 8.3, 8.4 and 8.5 are also true for discrete distributions. If Xn:n is

from discrete random variable with finite number of points of support, then Xn:n can
not converge to one of the extreme value distributions. Thus Xn:n from binomial and
discrete uniform distributionwill converge to degenerate distributions. The following
Lemma (Galambos (1987), p. 85) is useful to determine whether Xn:n from a discrete
distribution will have a degenerate distribution.

Lemma 8.5 Suppose X is a discrete random variable with infinite number of points
in its support and taking values on non negative integers with P(X = k) = pk.
Then a necessary condition for the convergence of P(Xnn ≤ an + bnx), for a suit-
able sequence of an and bn, to one of the three extreme value distributions is
lim
k→∞

pk
P(X≥k) = 0.

For the geometric distribution, P(X = k) = p(1 − p)k−1, k ≥ 1, 0 < p < 1,
pk

P(X≥k) = p. Thus Xnn from the geometric distribution will have degenerate distribu-
tion as limiting distribution of Xnn.

Consider the distribution: P(X = k) = 1
k(k+1) , k = 1, 2, . . ., then P(X ≥ k) = 1

k

and lim
k→∞

pk
P(X≥k) = lim

k→∞
1

k+1 = 0. But lim
t→∞

F̄(tx)
F̄(t)

= x−1. ThusX belongs to the domain

of attraction of T21. The normalizing constants are an = 0 and bn = n.
However the condition lim

k→∞
pk

P(X≥k) = 0 is necessary but not sufficient.

Consider the discrete probability distribution whose P(X = k) = c
k(ln(k+1))6 , k =

1, 2, . . . where 1/c = ∑∞
k=1

1
k(ln(k+1))6

∼= 9.3781.

Since 1 − ∑n
k=1

1
k(ln(k+1))6 ∝ 1

(ln n)5 ,
P(X=n)

1−∑n=1
k=1 P(X=k)

→ 0 an n→ ∞.

But this probability distribution does not satisfy the necessary and sufficient con-
ditions for the convergence of Xn,n to the extreme value distributions.

We can use the following lemma to calculate the normalizing constants for various
distributions belonging to the three domain of attractions of T(x).

Lemma 8.6 Suppose P(Xn:n ≤ an + bnx) → T(x) as n → ∞, then

(i) an = F−1(1 − 1
n ), bn = F−1(1 − 1

ne ) − F−1(1 − 1
n ) if T(x) = T10(x),

(ii) an = 0, bn = F−1(1 − 1
n ) if T(x) = T2δ(x),

(iii) an = F−1(1), bn = F−1(1) − F−1(1 − 1
n ) if T(x) = T3δ(x)
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We have seen that the normalizing constants are not unique. However we can use
the following Lemma to select simpler normalizing constants.

Lemma 8.7 Suppose an and bn is a sequence of normalizing constants forXn:n for the
convergence to the domain of attraction of any one of the extreme value distributions.
If a∗

n and b
∗
n is another sequence such that lim

n→∞
an−b∗

n
bn

= 0 and lim
n→∞

b∗
n
bn

= 0, then

a∗
n andb

∗
n can be substituted for as the normalizing constants an and bn for Xn,n.

Example 8.10 We have seen (see Table8.2) that for the Cauchy distribution with
pdf f(x) = 1

π(1+x2) ,−∞ < x < ∞ the normalizing constants as an = 0 and bn =
cot(π/n). However we can take a∗

n = 0 and b∗
n = n

π
.

The following tables gives the normalizing constants for some well known distri-
butions belonging the domain of attraction of the extreme value distributions.

8.4 The PDF’s of Extreme Value Distributions for X1:n

Let us consider X1:n of n i.i.d. random variables. Suppose P(X1:n ≤ cn + dnx) →
H(x) as n → ∞, then the following three types of distributions are possible for
H(x).

Type 1 distribution H10(x) = 1 − e−ex ,−∞ < x < ∞ :;
Type 2 distribution H2δ(x) = 1 − e−(−x)−δ

, x < 0, δ > 0.
Type 3 distribution H3δ(x) = 1 − e−xδ

, x > 0, δ > 0.
Itmayhappen thatXn:n andX1:n maybelong to different types of extremevalue dis-

tributions. For example consider the exponential distribution, f(x) = e−x, x > 0. The
Xn:n belongs to the domain of attraction of the type 1 distribution of the maximum,
T10. Since P(X1:n > n−1x) = e−x,X1:n belongs to the domain of attraction of Type
2 distribution of theminimum,H21.Itmay happen thatXn:n does not belong to any one
of the three limiting distributions of the maximum but X1:n belong to the domain of
attraction of one of the limiting distribution of theminimum.Consider the rvXwhose
pdf, f(x) = 1

x(ln x)2 , x ≥ e. We have seen that F does not satisfy the necessary and suf-
ficient conditions for the convergence in distribution of Xn:n to any of the extreme
value distributions. However it can be shown that P(X1:n > αn + βnx) → e−x as
n → ∞ for αn = e and βn = e− n−1

n − e. Thus the X1:n belongs to the domain of
attraction of H21.

If X is a symmetric random variable and Xn:n belongs to the domain of attraction
of Ti(x), then X1:n will belong to the domain of attraction of the corresponding Hi(x),
i =1, 2, 3.
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Table 8.2 Normalizing Constants and the domain of attraction ofr Xn:n
Distribution f(x) an bn Domain

Beta
cxα−1(1 − x)β−1

c = �(α+β)
�(α)�(β)

α > 0, β > 0

0 < x < 1

1
(

β
nc

)1/β
T3 β

Cauchy
1

π(1+x2)
,

−∞ < x < ∞
0 cot( π

n ) T21

Discrete Pareto P(X = k)=[k]θ − [k + 1]θ, θ > 0,
k ≥ 1, [] represents the greatest
integer contained in

0 n1/θ T2 θ

Exponential σ e− σ x, 0 < x < ∞, σ > 0 1
σ lnn

1
σ T10

Gamma
xα−1e−x

�(α)
,

0 < x < ∞
ln n +ln�(α) -(α-1) lnln n 1 T10

Laplace
1
2 e

−|x|,
−∞ < x < ∞ ln

( n
2
)

1 T10

Logistic e−x

(1+e−x )2
ln n 1 T10

Lognorma 1 1
x
√
2π

e−
1
2 (ln x)20 < x < ∞ eαn, αn = 1

βn
− βnDn

2 ,

Dn

= ln ln n + ln 4π
βn = (2ln

n)−1/2

(2ln
n)−1/2eαn

T10

Normal 1√
2π

e−
1
2 x

2
, –∞ < x < ∞ 1

βn
− βnDn

2 ,

Dn

= ln ln n + ln 4π
βn =(2ln

n)−1/2

(2ln n)−1/2 T10

Pareto
αx−(α+1)

x > 1, α > 0
0 n1/α T2α

Power Function
αxα−1,

0 < x < 1, α > 0
1 1

nα T31

Rayleigh 2x
σ2

e
− x2

σ2 , x ≥ 0 σ (ln n)
1
2 σ

2 (ln n)−
1
2 T10

t distribution k

(
1+ x2

υ

)(υ+1)/2

k =
�((υ+1)/2)

(πυ)1/2�(υ/2)

0
(
kn
υ

)1/υ
T2υ

Truncated Expo-
nential

Ce−x, C= 1/(1 − e−e(F)),
0 < x < e(F) < ∞

E(F) ee(F)−1
n T31

Type 1 e−xe−e−x
ln n 1 T10

Type 2
αx−(α+1)e−x−α

x > 0, α > 0
0 n1/α T2α

Type 3

α(−x)α−1

.e−(−x)α , x < 0,

α > 0

0 n−1/α T3α

Uniform 1/θ , 0< x < θ θ θ /n T31

Weibull
αxα−1e−xα ,

x > 0, α > 0
(ln n)1/α (ln n)

1−α
α

α T1α
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8.5 Domain of Attractions for X1:n

The following Lemma is needed to prove the necessary and sufficient conditions for
the convergence of X1n to one of the three limiting distributions.

Lemma 8.8 Let {Xn, n ≥ 1} be a sequence of independent and identically distrib-
uted random variables with distribution function F. Consider a sequence (en, n ≥ 1}
of real numbers. Then for any ξ, 0 ≤ ξ < ∞, the following two statements are equiv-
alent

(iii) lim
n→∞ n(F(en)) = ξ

(iv) lim
n→∞P

(
Xn,n > en

) = e−ξ .

Proof: The proof of the Lemma follows from Lemma 2.1.1 by considering the
fact P(X1n > en) = (1 − F(en))n

8.5.1 Domain of Attraction for Type 1 Extreme Value
Distribution for X1:n

The following theorem gives a necessary and sufficient condition for the convergence
of X1n to H10(x).

Theorem 8.6 Let X1, X2, . . . be a sequence of i.i.d. random variables with distri-
bution function F. Assume further that E(X|X ≤ t) is finite for some t > α(F) and
h(t) = E(t − X|X ≤ t), then F ∈ H10 iff lim

t→α(F)

F(t+xh(t))
F(t) = ex for all real x.

Proof Similar to Theorem8.1.

Example 8.10 Consider the logistic distribution with F(x) = 1
1+e−x ,−∞ < x <

∞. Now

h(t) = E(t − x|X ≤ t) = t − (1 + e−t)

∫ t

−ℵ
xe−x

(1 + e−x)2
dx = (1 + e−t) ln(1 + et).

It can easily be shown that h(t) →1 as t → −∞. We have
lim

t→α(F)

F(t+xh(t))
F(t) = lim

t→−∞
1+e−t

1+e−(t+xh(t)) = lim
t→−∞

et+xh(t)+exh(t)

1+et+xh(t) = ex. Thus X1:n from

logistic distribution belongs to the domain of H10.

8.5.2 Domain of Attraction of Type 2 Distribution for X1:n

Theorem 8.7 Let X1, is from a distribution function F then F ∈ H2δ iff α(F) =
−∞ and lim

t→α(F)

F(tx)
F(t) = xδ for all x > 0.
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Proof Suppose H2δ(x) = 1 − e−(−x)−δ

, x < 0, δ > 0, then we have

lim
t→α(F)

F(tx)

F(t)
= lim

t→−∞
1 − e−(−tx)−δ

1 − e−(−t)=δ
= lim

t→−∞
δx(−tx)−(δ+1)e−(−tx)−δ

δ(−t)−(δ+1)e−(−t)=δ
= x−δ, δ > 0.

Let lim
t→α(F)

F(tx)
F(t) = x−δ, δ > 0. We can write an = inf {x :F̄(x) ≤ 1

n }, then an → −∞
as n → ∞. Thus lim

n→−∞ n(F(anx)) = lim
n→−∞ n(F(an))

F(anx)
F(an)

= x−δ lim
n→−∞ nF(an).

It is easy to show that lim
n→−∞ nF(an) = 1. Thus lim

n→−∞ n(F(anx)) = x−δ and the

proof of the follows.

Example 8.11 For the Cauchy distribution F(x) lim
t→α(F)

F(tx)
F(t) = lim

t→−∞
1
2 + 1

π
tan−1(tx)

1
2 +− 1

π
tan−1(i)

=
lim

t→−∞
x(1+t2)
1+(tx)2 = x−1. = 1

2 + tan−1(x).

Thus Cauchy distribution belongs to the domain of attraction of H21.

8.5.3 Domain of Attraction of Type 3 Extreme Value
Distribution

Theorem 8.8 Let X1, X2, . . . be a sequence of i.i.d random variables with distrib-
ution function F then F ∈ H3δ iff α(F) is finite and lim

t→0

F(α(F)+tx)
F(α(F)+t) = xδ, δ> 0 and for

all x > 0.

Proof The proof is similar to Theorem 8.3.

Example 8.12 Suppose X has the uniform distribution with F(x) = x, 0 < x <

1.Then
lim
t⇒0

F(tx)
F(t) = x. Thus then F ∈ H31.

Following Pickands (1975), the following theoremgives a necessary and sufficient
condition for the domain of attraction of X1:n from a continuous distribution.

Theorem 8.9 For a continuous random variable the necessary and sufficient con-
dition forX1:n to belong to the domain of attraction of the extreme value distribution
of the minimums

lim
c→0

F−1(c)−F−1(2c)
F−1(2c)−F−1(4c) = 1 if F ∈ H10,

lim
c→0

F−1(c)−F−1(2c)
F−1(2c)−F−1(4c) = 21/δ ifF ∈ H2δ and

lim
c→0

F−1(c) − F−1(2c)

F−1(2c) − F−1(4c)
= 2−1/δ if F ∈ H3δ
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Example 8.13 For the logistic distribution with F(x) = 1
1+e−x ,F−1(x) = ln x − ln

(1 − x)
lim
c→0

F−1(c)−F−1(2c)
F−1(2c)−F−1(4c) = lim

c→0

ln c−ln(1−c)−ln 2c+ln(1−2c)
ln 2c−ln(1−2c)−ln 4c+ln(1−4c) = 1. Thus the domain of

attraction of X1:n from the logistic distribution is T10.
For the Cauchy distribution with F(x) = 1

2 + tan−1(x).
We have F−1(x) = tan π(x − 1

2 ) = − 1
πx for small x.

Thus lim
c→0

F−1(c)−F−1(2c)
F−1(2c)−F−1(4c) = 1

2πc − 1
πc

1
4πc − 1

2πc
= 2.

Thus the domain of attraction of X1:n from the Cauchy distribution is T21.
For the exponential distribution, E(0, σ ), with pdf f(x) = σ−1e−σ−1x, x ≥ 0,F−1

(x) = −σ−1 ln(1 − x) and lim
c→0

F−1(c)−F−1(2c)
F−1(2c)−F−1(4c) = lim

c→0

− ln{1−c)+ln{1−2c)
− ln{1−2c)+ln{1−4c) = 2−1. Thus

the domain of attraction of X1:n from the exponential distribution, E(0, σ ), is T31.
We can use the following lemma to calculate the normalizing constants for various

distributions belonging to the domain of attractions of H(x).

Lemma 8.9 Suppose P(X1:n ≤ cn + dnx) → H(x) as n → ∞, then

(i) cn = F−1( 1n ), dn = F−1( 1n ) − F−1( 1
ne ) if H(x) = H10(x),

(ii) cn = 0, bn = |F−1( 1n )| if H(x) = H2δ(x),
(iii) cn = α(F), bn = F−1( 1n ) − α(F) if H(x) = H3δ(x)

We have seen that the normalizing constants are not unique for Xn:n. The same is
also true for the X1:n.

Example 8.14 For the logistic distribution with F(x) = 1
1+e−x , X1:n when normalized

converge in distribution to Type 1(H10) distribution. The normalizing constants are

cn = F−1( 1n ) = ln
(

1/n
1−(1/n)

) ∼= − ln n and dn = F−1( 1n ) − F−1( 1
ne ) = 1.

For Cauchy distribution with F(x)= 1
2 + 1

π
tan−1(x), X1n when normalized con-

verges in distribution to Type 2 (H21) distribution. The normalizing constants are
cn = 0 and dn = |F−1( 1n )| = tan π( 12 − 1

n ), n > 2
For the uniform distribution with F(x) = x, X1n when normalized converge in

distribution to Type 3 (H31) distribution. The normalizing constants are cn = 0, bn =
F−1( 1n ) = 1

n (see Table8.3).
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Table 8.3 Normalizing constants and domain of attraction of X1:n
Distribution f(x) Cn Dn Domain

Beta
cxα−1(1 − x)β−1

c = 1
B(α,β)

α > 0, β > 0

0< x <1

0

( cα
n

)1/α

c = �(α)�(β)
�(α+β)

H3α

Cauchy
1

π(1+x2)
,

−∞ < x < ∞
0 cot( π

n ) H21

Exponential σe−σx , 0<x<∞, σ > 0 0 1
nσ H31

Gamma
xα−1e−x

�(α)
,

0 < x < ∞
0 �(α)

n H31

Laplace
1
2 e

−|x|,
−∞ < x < ∞ ln

( n
2
)

1 H10

Logistic e−x

(1+e−x )2
-ln n 1 H10

Lognorma 1 1
x
√
2π

e−
1
2 (ln x)2 0 < x < ∞ enαn , αn = 1

bn
− bnDn

2 ,

Dn

= ln ln n + ln 4π
bn =(2ln

n)−1/2

(2ln n)−1/2eαn H10

Normal 1√
2π

e−
1
2 x

2
, −∞ < x < ∞ 1

cn
− cnDn

2 ,

Dn

= ln ln n + ln 4π
bn =(2ln

n)−1/2

(2ln n)−1/2 H10

Pareto
αx−(α+1)

x > 1, α > 0
0

(
n

n−1

)1/α
H21

Power Function
αxα−1,

0 < x < 1, α > 0
0 1

n1/α
H31

Rayleigh 2x
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√
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n H32
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υ
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(πυ)1/2�(υ/2)
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(
kn
υ

)1/υ
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0 n1/α H2α
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αxα−1.ex
α

x > 0, α > 0
0 n−1/α H3α

Uniform 1/ θ, 0 < x < θ 0 θ /n H31
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x > 0, α > 0
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